Compositions and methods for the removal of oil-based filtercakes

Information

  • Patent Grant
  • 7906464
  • Patent Number
    7,906,464
  • Date Filed
    Tuesday, May 13, 2008
    16 years ago
  • Date Issued
    Tuesday, March 15, 2011
    13 years ago
Abstract
A method of servicing a wellbore comprising providing a composition comprising a mutual solvent precursor, an acid precursor, and an aqueous fluid, and contacting the composition with oil wet solids in the wellbore. A method of servicing a wellbore comprising introducing an oil-based fluid into a wellbore, wherein the oil-based fluid forms oil wet solids in the wellbore, contacting the oil wet solids in the wellbore with a composition comprising a mutual solvent precursor; an acid precursor and an aqueous fluid, and allowing the oil wet solids to become water wet. A method of servicing a well bore comprising contacting a composition comprising a formate ester with oil wet solids in the well bore under conditions wherein the formate ester hydrolyzes to release formic acid, wherein the formic acid catalyzes the hydrolysis of additional formate ester, and wherein all or a portion of the formate ester converts at least a portion of the oil-wet solids to water-wet solids.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The subject matter of the present application is related to U.S. patent application Ser. No. 11/536,833 filed Sep. 26, 2006 and entitled “Methods and Compositions Related to the Control of the Rates of Acid-Generating Compounds in Acidizing Operations” and Ser. No. 11/622,898 filed Jan. 12, 2007 and entitled “Surfactant Wash Treatment Fluids and Associated Methods,” each of which is hereby incorporated herein by reference in its entirety for all purposes.


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.


BACKGROUND OF THE INVENTION

1. Field of the Invention


This disclosure relates to servicing a wellbore. More specifically, it relates to servicing a wellbore with compositions comprising (i) an acid and/or an acid precursor and (ii) a mutual solvent precursor.


2. Background of the Invention


Natural resources such as gas, oil, and water residing in a subterranean formation can be recovered by drilling wells into the formation. Well drilling involves drilling a wellbore down to the formation while circulating a drilling fluid or mud through the wellbore. Various types of drilling fluids, also known as drill-in fluids when used in the productive interval, have been used in well drilling, such as water-based fluids, mineral oil-based fluids, and synthetic oil-based fluids. Such drilling fluids form a thin, slick filter cake on the formation face that provides for successful drilling of the wellbore and that helps prevent loss of fluid to the subterranean formation.


In well drilling, several stages may be used to produce oil found in subterranean formations. The first stage, which is known as the primary production stage, allows the oil to flow into a production well (or wells) under natural forces. At first, the natural forces may be sufficient to drive the oil to the surface where it is recovered. However, at some point, pumps may be required to displace the oil from the wellbore to the surface. A secondary recovery operation thus is typically performed to recover additional amounts of the oil from the reservoir. A common secondary recovery operation known as secondary flooding involves injecting a fluid such as water into a so-called injection well (or wells) to drive oil in the formation to the production well (or wells). Tertiary recovery operations such as tertiary flooding may also be used to drive the remaining oil from the formation to the production well.


Typically, the presence of the filter cake on the face of the subterranean formation can adversely affect the flow of fluid though the injection wells and the production wells. In the case of the injection wells, particularly in deepwater environments, the injected fluid is not flowed back to remove the filter cake left by the drill-in fluid. The pump pressures (e.g., fracturing pressures) required to inject past the filter cake are higher than desirable for achieving good sweep efficiency of the oil. Thus, it would be desirable to develop improved compositions and methods for removing a filter cake from a subterranean formation.


SUMMARY

Disclosed herein is a method of servicing a wellbore comprising providing a composition comprising a mutual solvent precursor, an acid precursor, and an aqueous fluid, and contacting the composition with oil wet solids in the wellbore.


Also disclosed herein is a method of servicing a wellbore comprising introducing an oil-based fluid into a wellbore, wherein the oil-based fluid forms oil wet solids in the wellbore, contacting the oil wet solids in the wellbore with a composition comprising a mutual solvent precursor; an acid precursor and an aqueous fluid, and allowing the oil wet solids to become water wet.


Further disclosed herein is a method of servicing a well bore comprising contacting a composition comprising a formate ester with oil wet solids in the well bore under conditions wherein the formate ester hydrolyzes to release formic acid, wherein the formic acid catalyzes the hydrolysis of additional formate ester, and wherein all or a portion of the formate ester converts at least a portion of the oil-wet solids to water-wet solids.


Further disclosed herein is a method of servicing a wellbore comprising providing a composition comprising a mutual solvent precursor, an acid, and an aqueous fluid, and contacting the composition with oil wet solids in the wellbore.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure and the advantages thereof, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.



FIG. 1 is an illustration of a high temperature high pressure cell used in Example 1.





DETAILED DESCRIPTION

The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.


Disclosed herein are wellbore servicing compositions comprising a mutual solvent precursor, an acid precursor, and an aqueous fluid. Such compositions may be referred to herein as compositions for oil-based filtercake removal (COFR). In some embodiments, the COFR may be used for the removal of a water-based filtercake containing oil-wet components. In other embodiments, the COFR may be used for the removal of a water based filtercake that has been contaminated with oil wet components (e.g., crude oil) Hereinafter, the disclosure will refer to the use of compositions for the removal of an oil-based filtercake although the removal of other compositions of the type disclosed herein are also contemplated. The COFRs may be placed downhole and used to service a wellbore, for example providing for a time-delayed removal of an oil-based filtercake from the wellbore. Each of the components of the COFR as well as methods of using same will be described in more detail herein.


In an embodiment, the COFR comprises a mutual solvent precursor. Herein a mutual solvent is defined as a material that is soluble in oil, water, and acid-based treatment fluids. Given that the mutual solvent is miscible with more than one class of liquids, such materials may also be referred to as coupling agents because such materials can cause two ordinarily immiscible liquids to combine with each other. Herein a mutual solvent precursor is defined as a mutual solvent or coupling agent that has been modified to provide for delayed release of the mutual solvent. Such mutual solvent precursors may also be referred to as time-delayed and/or time-released mutual solvents. Examples of modifications to mutual solvents to form mutual solvent precursors include without limitation the addition of an operable functionality component or substituent, physical encapsulation or packaging, or combinations thereof. The operable functionality component or substituent may be acted upon in any fashion (e.g., chemically, physically, thermally, etc.) and under any conditions compatible with the components of the process in order to release the mutual solvent at a desired time and/or under desired conditions such as in situ wellbore conditions. In an embodiment, the mutual solvent precursor may comprise at least one modified mutual solvent (e.g., having an operable functionality, encapsulation, packaging, etc.) such that when acted upon and/or in response to pre-defined conditions (e.g., in situ wellbore conditions such as temperature, pressure, chemical environment), a mutual solvent is released.


Mutual solvents suitable for modification to form mutual solvent precursors include for example and without limitation glycol ethers such as ethylene glycol monobutylether (EGMBE) or propylene glycol monobutylether; methanol; isopropyl alcohol; alcohol ethers; aldehydes; ketones; aromatic solvents; derivatives thereof; and combinations thereof. Examples of commercially available mutual solvents include MUSOL mutual solvent sold by Halliburton Energy Services, SOL-15 sold by Fracmaster Ltd., and SUPER-SOL sold by Osca.


In an embodiment, the mutual solvent precursor comprises an esterified mutual solvent. In such embodiments, the ester linkage may be hydrolyzed to release the mutual solvent. For example, the ester linkage may be hydrolyzed by contact with water present in the aqueous fluid of the COFR and/or water present in situ in the wellbore. In an embodiment, the mutual solvent precursor comprises a glycol ether ester, and upon hydrolysis of the ester linkage, a glycol ether mutual solvent is released. Examples of glycol ether esters suitable for use in this disclosure include without limitation butyl glycol acetate, butyl diglycol acetate, butyl triglycol acetate, butyl glycol dimethoxyacetal, isooctanol acetate, isopropanol acetate, 1-methoxy-2-propanol acetate and the corresponding acetals, propionates and the like.


The concentration of the mutual solvent precursor in the COFR may range from about 1% to about 50% by volume, alternatively from about 1% to about 30%, alternatively from about 5% to about 15%, alternatively from about 10% to about 20%. Other factors that may be considered in deciding how much of the mutual solvent precursor to use include, but are not limited to; the temperature of the formation; the pressure of the formation; the particular mutual solvent precursor used; and the expected contact time of the generated mutual solvent with the filtercake. Other suitable mutual solvent precursors are disclosed in U.S. Pat. Nos. 6,877,563 and 7,021,383 the disclosures of which are incorporated by reference herein in their entirety.


In an embodiment, the COFR comprises an acid precursor. Herein an acid precursor is defined as a material or combination of materials that provides for delayed release of one or more acidic species. Such acid precursors may also be referred to as time-delayed and/or time-released acids. In embodiments, acid precursors comprise a material or combination of materials that may react to generate and/or liberate an acid after a period of time has elapsed. The liberation of the acidic species from the acid precursor may be accomplished through any means known to one of ordinary skill in the art with the benefits of this disclosure and compatible with the user-desired applications. In embodiments, acid precursors may be formed by modifying acids via the addition of an operable functionality component or substituent, physical encapsulation or packaging, or combinations thereof. The operable functionality component or substituent may be acted upon in any fashion (e.g., chemically, physically, thermally, etc.) and under any conditions compatible with the components of the process in order to release the acid at a desired time and/or under desired conditions such as in situ wellbore conditions. In an embodiment, the acid precursor may comprise at least one modified acid (e.g., having an operable functionality, encapsulation, packaging, etc.) such that when acted upon and/or in response to pre-defined conditions (e.g., in situ wellbore conditions such as temperature, pressure, chemical environment), an acid is released. In an embodiment, the acid precursor may comprise an acidic species that is released after exposure to an elevated temperature such as an elevated wellbore temperature. In an embodiment, the acid precursor comprises a material which reacts with one or more components of the COFR (e.g., reacts with an aqueous fluid present in the COFR) to liberate at least one acidic species.


In an embodiment, the acid precursor compound comprises a reactive ester. Hereinafter, for simplicity, the remainder of the disclosure will focus on the use of a reactive ester as the acid precursor with the understanding that other acid precursors may be used in various embodiments. The reactive ester may be converted to an acidic species by hydrolysis of the ester linkage, for example by contact with water present in the aqueous fluid of the COFR and/or water present in situ in the wellbore. Suitable acid precursors for use in the present disclosure include lactic acid derivatives such as methyl lactate, ethyl lactate, propyl lactate, butyl lactate; esters and/or formates that are water soluble or partially soluble such as ethylene glycol monoformate, ethylene glycol diformate, diethylene glycol diformate, glyceryl monoformate, glyceryl diformate, glyceryl triformate, triethylene glycol diformate; formate esters of pentaerythritol; esters or polyesters of glycerol including, but not limited to, tripropionin (a triester of propionic acid and glycerol), trilactin, esters of acetic acid and glycerol such as monoacetin, diacetin, and triacetin; esters of glycolic acid such as ethyl or methyl or propyl or butyl glycolate or esters of glycolic acid and polyols such as glycerol and glycols, aliphatic polyesters; poly(lactides); poly(glycolides); poly(ε-caprolactones); poly(hydroxybutyrates); poly(anhydrides); aliphatic polycarbonates; poly(amino acids); and polyphosphazenes; or copolymers thereof: poly(ortho esters); orthoesters (which may also be known as “poly ortho ethers” or “ortho ethers”); esters of oxalic acid; aliphatic polyesters; poly(lactides); poly(glycolides); poly(ε-caprolactones); poly(hydroxybutyrates); poly(anhydrides); poly(amino acids); esters of propionic acid; esters of butyric acid; esters of monochloroacetic acid; esters of dichloroacetic acid; esters of trichloroacetic acid; derivatives thereof; or combinations thereof. Other suitable acid precursors include halide esters and esters of acids such as esters of nitric acid, sulphuric acid, sulphonic acid, sulphinic acid, phosphoric acid, phosphorous acid, phosphonic acid, phosphinic acid, sulphamic acid and the like.


In an embodiment, the acid precursor comprises diethylene glycol diformate, diethylene glycol monoformate, monoethylene monoformate, monoethylene diformate, ethyl lactate, methyl lactate, tri-n-propyl orthoformate, tri-n-butyl orthoformate, or combinations thereof.


The choice and physical form of a suitable acid precursor may depend on a variety of factors including but not limited to the time at which liberation of the acidic species is desired relative to the placement of the COFR in the wellbore; the environmental conditions presented; the conditions within the wellbore; the temperature of the wellbore section in which the COFR is being placed; the composition of the formation water, etc. Other considerations may be evident to those skilled in the art with the benefits of this disclosure.


The acid precursor may be present in an amount ranging from about 5% to about 50% based on total volume of the composition, alternatively from about 5% to about 30%, alternatively from about 10% to about 25%, alternatively from about 12% to about 18%. Other factors that may be considered in deciding how much of the acid precursor to use include, but are not limited to, the composition of the formation, the temperature of the formation, the pressure of the formation, the diameter of the hole, the particular fines and damage present in the formation (e.g., scale, skin, calcium carbonate, silicates, and the like), the particular acid precursor used, the expected contact time of the generated acid with the formation, and the like. Suitable acid precursors have been disclosed in U.S. Pat. Nos. 6,877,563 and 7,021,383 and U.S. patent application Ser. No. 11/536,833 filed Sep. 26, 2006 and entitled “Methods and Compositions Related to the Control of the Rates of Acid-Generating Compounds in Acidizing Operations,” the disclosures of which were previously incorporated by reference.


In an embodiment, the COFR may comprise a mutual solvent (e.g., EGMBE), a mutual solvent precursor (e.g., EGMBE acetate), an acid (e.g., HCl), an acid precursor (e.g., formate ester), or combinations thereof. The mutual solvent may be of a type formed from one or more of the mutual solvent precursors described herein, and the acid may be of a type formed from one or more of the acid precursors described herein. The components of the COFR may be chosen by one of ordinary skill in the art, with the benefits of this disclosure, to produce a COFR that results in the delayed removal of an oil based filtercake or a water-wet filtercake having oil-wet components. The extent of the delay may be adjusted by one of ordinary skill in the art using the benefits of this disclosure.


Aqueous fluids that may be used in the COFR include any aqueous fluid suitable for use in subterranean applications. For example, the COFR may comprise water or a brine. Suitable brines include, but are not limited to: NaCl, NaBr, CaCl2, CaBr2, ZnBr2, sodium formate, potassium formate, cesium formate, combinations thereof and derivatives thereof. The specific brine used may be dictated by the desired density of the resulting surfactant wash treatment fluid. Denser brines may be useful in some instances. The density of the aqueous fluid, and likewise the density of the COFR, may be selected and adjusted as recognized by one skilled in the art with the benefit of this disclosure. In an embodiment, the aqueous fluid comprises a brine, alternatively NaBr. The brine may be present in an amount of from about 40 wt. % to about 90 wt. % based on the total weight of the composition. Alternatively, the aqueous fluid may comprise the balance of the COFR after considering the amount of the other components used.


In an embodiment, the COFR further comprises one or more rate adjustment materials (RAMs), which function to adjust the hydrolysis rate of the mutual solvent precursor and/or acid precursor. In some embodiments, the COFR may contain more than one acid precursor that functions as a RAM for one or more additional precursors (e.g., acid and/or mutual solvent) present in the COFR. For example, the COFR may contain more than one acid precursor wherein a first acid precursor may function to rapidly generate an acidic species that influences the half life of the hydrolysis reaction for one or more additional precursors (e.g., a second acid precursor and/or mutual solvent precursor). As such the first acidic precursor may function primarily as a RAM which controls the rate of the development of a second acidic species that is to be used in removal of the filtercake. The term “half-life” as used herein refers to the time it takes for half of the original amount of the precursor (either mutual solvent or acid) to react. For example, diethyleneglycol diformate may be employed as a RAM in a wellbore servicing composition comprising a mutual solvent precursor in the form of an ester of a hydroxyl compound. Thus, the diethyleneglycol diformate, or other RAMs, could be used to shorten the completion time of the well. Diethyleneglycol diformate forms formic acid as a result of hydrolysis, and is commercially available from Halliburton Energy Services, Inc., under the tradename “N FLOW 325.” Examples of other esters or polyesters that may be suitable for adjusting the half-life of the acid and/or mutual solvent precursor in the COFR include, but are not limited to, diethyleneglycol monoformate, monoethyleneglycol diformate, monoethyleneglycol monoformate, polylactic acid, lactate esters, and derivatives and combinations thereof. The combinations of these precursors (e.g., a RAM acid precursor with one or more additional precursor materials) may be selected and designed by one of ordinary skill in the art with the benefits of this disclosure to produce a desired effect or profile (e.g., acid and/or mutual solvent release profile) at or over a period of time, for example after introduction of the COFR to a wellbore, after completion of certain wellbore servicing or processing such as drilling, etc. Such release profiles may include a steady increase or decrease in release rate (i.e., constant slope), exponential increase or decrease in release rate, step-wise increases or decreases in release rates, maximums and/or minimums in release rate (e.g., bell-shaped profiles), and combinations thereof.


In another embodiment, the RAM comprises one or more pH lowering materials (e.g., acids or acidic materials). For example, the RAM may comprise small amounts of one or more reactive materials such as mineral acids, organic acids, acidic anhydrides, p-toluenesulfonic acid, etc. to lower the pH and accelerate the hydrolysis of the acid-precursors. In other embodiments, the RAM comprises one or more pH raising materials (e.g., bases or basic materials). For example, in some instances, such as with ortho esters, the hydrolysis rate may be slowed by the addition of a small amount of a strong base such as NaOH, Na2CO3, NaHCO3 and Mg(OH)2 or organic bases such as ethanolamine or other aliphatic or aromatic amine type compounds. RAMs are also described in U.S. patent application filed Sep. 26, 2006 and entitled “Methods and Compositions Related to the Control of the Rates of Acid-Generating Compounds in Acidizing Operations” and U.S. patent application Ser. No. 11/622,898 filed Jan. 12, 2007 and entitled “Surfactant Wash Treatment Fluids and Associated Methods,” each of which was previously incorporated by reference.


In some embodiments, the components of the COFR may comprise water and/or brine insoluble compounds. Alternatively, the COFR comprises compounds with a low solubility in water and/or brine. In such embodiments, the compounds may be introduced to the COFR as oil-in-water emulsions, water on oil emulsions or additives may be included in the compositions (e.g. demulsifiers) to facilitate the preparation of the COFR.


In an embodiment, the COFR comprises a mutual solvent precursor and acid precursor wherein the mutual solvent precursor and acid precursor are provided by a single compound. For example, the COFR may comprise a formate ester. Hydrolysis of a formate ester is known to be rapid in comparison to the hydrolysis of acetates or propionates under similar hydrolysis conditions. Consequently, the formate when hydrolyzed produces formic acid which in turn lowers the pH of the COFR and increases the hydrolysis of additional formate ester.


In an embodiment, the COFR comprises EGMBE formate which functions as both a mutual solvent precursor and an acid precursor. In such embodiments, the dual functionality of EGMBE formate may preclude the use of additional acid, acid precursor, or RAMs in the COFR. In some embodiments, the COFR comprising EGMBE formate may comprise components to delay the action of the COFR on the filtercake such as for example, pH raising materials. The composition of a COFR comprising a formate (e.g. EGMBE formate) may be adjusted by one of ordinary skill in the art to meet the needs of the process with the benefits of this disclosure.


The components of the COFR (e.g. mutual solvent precursor, acid precursor, aqueous fluid, optional rate adjustment material) may be combined using any mixing device compatible with the composition. In an embodiment, the components of the COFR are combined at the well site; alternatively, the components of the COFR are combined off-site and are transported to and used at the well site. The contacting of the components of the COFR may initiate hydrolysis of the acid precursor and/or mutual solvent precursor by the aqueous fluid, for example via hydrolysis and dissociation of ester groups present in the precursors. Release of one or more acidic species from the acid precursor will decrease the pH of the COFR and accelerate hydrolysis of (i) the mutual solvent precursor to release the mutual solvent, (ii) any additional acid precursors present, or (iii) combinations of (i) and (ii). The mutual solvent may then contact the oil based filtercake and convert the filtercake from oil wet to water wet thus increasing its susceptibility to degradation by the acidic species. The COFR may be designed so as to produce the acidic species and mutual solvent slowly, in-situ within the wellbore following placement therein. Thus, the pH of the COFR at the time of placement (e.g., pumping) down hole may not be as low (i.e., may be less acidic) than would be the case if an aqueous solution of the acidic species was pumped into the well bore. As such, the filtercake removal/cleaning action of the COFR likewise may be delayed, for example delayed from about 2 hours to about 96 hours, alternatively equal to or greater than about 2 to about 3 hours, alternatively equal to or greater than about 24 hours, alternatively from equal to or greater than about 2 to about 5 days. As noted previously, the extent of the delay may be adjusted by one of ordinary skill in the art with the benefit of this disclosure to meet the needs of the process by adjusting the nature of the precursors used (e.g., compound type, amounts, delaying mechanism employed, etc.) or through the addition of RAMs as described earlier.


In an embodiment, a method of servicing a wellbore comprises drilling a wellbore in a subterranean formation and introducing to the formation an oil-based servicing and/or drilling fluid or an aqueous based servicing and/or drilling fluid that comprises at least one oleaginous component, wherein oil coated/wet solids (e.g., filtercake, drill cuttings, etc.) are formed as a result. It is to be understood that “subterranean formation” encompasses both areas below exposed earth and areas below earth covered by water such as ocean or fresh water. Examples of oil-based fluids include oil-based drilling or servicing fluids, invert emulsions, servicing fluids comprising substantially no aqueous component, and the like. Examples of the oleaginous component used in an oil-based fluid may include without limitation olefins, kerosene, diesel oil, fuel oil, synthetic oils, linear or branched paraffins, olefins, esters, acetals, mixtures of crude oil, and combinations and derivatives thereof.


In an embodiment, the introduction of an oil-based fluid (e.g., drilling fluid) may result in the deposition of oil wet solids on the sides or surfaces within the wellbore. The oil-wet solids may be components of the filter cake, a formation face, a fracture face, a perforation, or on a screen (e.g., a gravel pack screen) or another piece of equipment located in the wellbore or subterranean formation.


The method further comprises contact of the oil wet solids with a COFR as described herein to effect removal of the oil from the oil wet solids and/or conversion of the solids from oil wet to water wet. For example, a COFR may be placed in a wellbore and contacted with a filtercake or other oil wet solids located down hole. The oil-wet solids when contacted with a COFR of the type disclosed herein may become water-wet, and then subsequently be degraded by the COFR. For example, upon becoming water wet, acid from the COFR may contact and decompose one or more components of the water wet solids (e.g., calcium-based components such as calcium carbonate contained in the filtercake). The COFRs disclosed herein may result in the removal of oil wet solids (e.g. filtercake) in a time delayed fashion so as to allow for the efficient removal of oil wet solids while minimizing damage to the formation or to allow for other servicing operations. For example, a time delay in removing the filter cake may provide sufficient time for the COFR to become fully and evenly distributed along a desired section of the wellbore, such that upon activation, the COFR removes the filtercake about simultaneously and equally along the entire treated section of wellbore. Such even treatment prevents isolated break-through zones in the filtercake that may undesirably divert subsequent servicing fluids placed downhole. Also, time delays in removing the filter cake may allow for subsequent servicing steps such as removing servicing tools from the wellbore. Following treatment with a COFR, production can then take place, if desired or appropriate, as for example in a hydrocarbon-producing well.


EXAMPLES

The invention having been generally described, the following examples are given as particular embodiments of the invention and to demonstrate the practice and advantages thereof. It is understood that the examples are given by way of illustration and are not intended to limit the specification.


Example 1

Compositions for the removal of an oil based filtercake were prepared having the components indicated in Table 1 and used to treat an oil based filtercake. N FLOW 325 is a delayed formic acid based breaker; BDF 443 is an acid activated surfactant as described in patent application Ser. No. 11/622,898 filed Jan. 12, 2007 and entitled “Surfactant Wash Treatment Fluids and Associated Methods” previously incorporated by reference herein; and MUSOL is a mutual solvent comprising ethyleneglycol monobutyl ether all of which are commercially available from Halliburton Energy Services. Butyl glycol acetate is a mutual solvent precursor, which upon being hydrolyzed 15% produces approximately 10% ethylene glycol monobutylether (EGMBE). The brine contained sodium bromide at a density of 1.2 kg/L. A visual assessment of the clean up of the filtercake was made and the return injectivity of the filtercake was assessed for each composition in Table 1 using a high temperature high pressure (HTHP) cell 100 fitted with a ceramic disk 110 as shown in FIG. 1.


Referring to FIG. 1, the ceramic disc 110 was pre-soaked in fresh water and then placed in the HTHP cell 100. The HTHP cell 100 was then filled with 300 ml water, sealed, and pressurized to 100 psi. The time rate of discharge for 200 ml was measured as a control. After an appropriate duration of time, at relevant temperature and applied differential pressure, a filtercake 120 was formed on the ceramic disc (110) using the drilling fluid under test and the fluid loss was measured. Next, the remaining supernatant liquor (i.e., supernatant drilling fluid) poured from the HTHP cell 100. The HTHP cell 100 was then filled with 350 ml of a composition and allowed to soak at relevant applied differential pressure for an appropriate duration of time. The compositions evaluated are presented in Table 1. Next, the remaining liquid was poured off of the HTHP cell 100, and the filtercake 120 was visually inspected. The HTHP cell 100 was then filled with 300 ml water, sealed, and pressurized to 100 psi. The time rate of discharge for 200 ml was measured again to assess the return injectivity of the filtercake 120. The results of these assessments are also summarized in Table 1 where the percentages (%) give the percent by total weight of each component of the composition.












TABLE 1






Visual





Assessment of
Return


Composition
Clean Up
Injectivity
Comments







10% N FLOW 325,
Good
Good
The results were very good but the negative aspect was


10% MUSOL, 80%


that the presence of the MUSOL caused the filtercake to


Brine


disintegrate very rapidly; much more rapidly than was





desirable.


10% N FLOW 325, 1%
Good
Good
NONE


N FLOW 443, 88%


Brine


10% N FLOW 325,
No obvious
ND
NONE


90% Brine
removal


10% N FLOW 325,
Excellent
Excellent
This treatment provided an excellent clean up but also a


15% butyl glycol


delayed action on the filtercake.


acetate, 75% brine









The results demonstrate the composition comprising an acid precursor and a mutual solvent precursor, butyl glycol acetate, provided the best visual assessment of clean up of the oil-based filtercake and return injectivity.


While preferred embodiments of the invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the invention. The embodiments described herein are exemplary only, and are not intended to be limiting. Many variations and modifications of the invention disclosed herein are possible and are within the scope of the invention. Where numerical ranges or limitations are expressly stated, such express ranges or limitations should be understood to include iterative ranges or limitations of like magnitude falling within the expressly stated ranges or limitations (e.g., from about 1 to about 10 includes, 2,3,4, etc.; greater than 0.10 includes 0.11, 0.12, 0.13, etc.). Use of the term “optionally” with respect to any element of a claim is intended to mean that the subject element is required, or alternatively, is not required. Both alternatives are intended to be within the scope of the claim. Use of broader terms such as comprises, includes, having, etc. should be understood to provide support for narrower terms such as consisting of, consisting essentially of, comprised substantially of, etc.


Accordingly, the scope of protection is not limited by the description set out above but is only limited by the claims which follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated into the specification as an embodiment of the present invention. Thus, the claims are a further description and are an addition to the preferred embodiments of the present invention. The discussion of a reference herein is not an admission that it is prior art to the present invention, especially any reference that may have a publication date after the priority date of this application. The disclosures of all patents, patent applications, and publications cited herein are hereby incorporated by reference, to the extent that they provide exemplary, procedural or other details supplementary to those set forth herein.

Claims
  • 1. A method of servicing a wellbore comprising: providing a composition comprising a mutual solvent precursor, an acid precursor, and an aqueous fluid, wherein the mutual solvent precursor is chemically modified in the wellbore to produce a mutual solvent; andcontacting the composition with oil wet solids in the wellbore.
  • 2. The method of claim 1 wherein the mutual solvent precursor releases one or more mutual solvents selected from the group consisting of ethylene glycol monobutylether; diethylene glycol monobutyl ether; triethylene glycol monobutyl ether; tetraethylene glycol monobutyl ether; methanol; isopropyl alcohol; alcohol ethers; aromatic solvents; hydrocarbons; mineral oils; paraffins; butyl glycol acetate, butyl diglycol acetate, butyl triglycol acetate, butyl glycol dimethoxyacetal, isooctanol acetate, isopropanol acetate, 1-methoxy-2-propanol acetate, and derivatives and combinations thereof.
  • 3. The method of claim 1 wherein the mutual solvent precursor comprises an esterified ether.
  • 4. The method of claim 1 wherein the mutual solvent precursor comprises an ester of ethylene glycol monobutylether, an ester of propylene glycol monobutylether, or combinations thereof.
  • 5. The method of claim 1 wherein the mutual solvent precursor is present in the composition in an amount of from about 1% to greater than about 50% based on total volume of the composition.
  • 6. The method of claim 1 wherein the acid precursor comprises lactic acid derivatives; esters and/or formates that are water soluble or partially water soluble; esters or polyesters of glycerol; esters of acetic acid and glycerol; aliphatic polyesters; poly(lactides); poly(glycolides); poly(ε-caprolactones); poly(hydroxybutyrates); poly(anhydrides); aliphatic polycarbonates; polyphosphazenes; poly(ortho esters); orthoesters; esters of oxalic acid; poly(amino acids); esters of propionic acid; esters of butyric acid; halide esters; esters of nitric acid, sulphuric acid, sulphonic acid, sulphinic acid, phosphoric acid, phosphorous acid, phosphonic acid, phosphinic acid, sulphamic acid; derivatives thereof or combinations thereof.
  • 7. The method of claim 1 wherein the acid precursor comprises diethylene glycol diformate.
  • 8. The method of claim 1 wherein the acid precursor is present in the composition in an amount of from about 5% to about 50% based on total volume of the composition.
  • 9. The method of claim 1 wherein the aqueous fluid comprises a brine.
  • 10. The method of claim 9 wherein the brine comprises NaCl, NaBr, CaCl2, CaBr2, ZrBr2, sodium formate, potassium formate, cesium formate, or combinations thereof.
  • 11. The method of claim 9 wherein the brine is present in the composition in an amount of from about 40 wt. % to about 90 wt. % based on total weight of the composition.
  • 12. The method of claim 1 wherein the mutual solvent precursor and the acid precursor are the same or a combination of compounds.
  • 13. The method of claim 12 wherein the same compound comprises a formate ester.
  • 14. The method of claim 13 wherein the formate ester comprises ethylene glycol monobutyl ether formate, diethylene glycol monobutyl ether formate or combinations thereof.
  • 15. The method of claim 1 wherein the composition further comprises a rate adjusting material.
  • 16. The method of claim 15 wherein the rate adjusting material comprises diethyleneglycol monoformate, diethyleneglycol diformate, monoethyleneglycol diformate, monoethyleneglycol monoformate, derivatives thereof or combinations thereof.
  • 17. The method of claim 15 wherein the rate adjusting material is present in an amount of from about 0.1% to about saturation.
  • 18. The method of claim 15 wherein the rate adjusting material comprises mineral acids, organic acids, acidic anhydrides, p-toluenesulfonic acid, NaOH, Na2CO3, NaHCO3, Mg(OH)2, an organic base, an aliphatic or aromatic amine type compound, or combinations thereof.
  • 19. The method of claim 1 wherein the oil wet solids comprise a filtercake.
  • 20. A method of servicing a wellbore comprising: introducing an oil-based fluid into a wellbore, wherein the oil-based fluid forms oil wet solids in the wellbore;contacting the oil wet solids in the wellbore with a composition comprising a mutual solvent precursor; an acid precursor and an aqueous fluid, wherein the mutual solvent precursor is chemically modified in the wellbore to produce a mutual solvent; andallowing the oil wet solids to become water wet.
  • 21. The method of claim 20 wherein the oil wet solids are delayed in becoming water wet following contact with the composition.
  • 22. The method of claim 21 wherein the delay is from about 2 to about 96 hours.
  • 23. The method of claim 20 wherein the oil-based fluid is a drilling fluid and the oil wet solids comprise a filtercake.
  • 24. The method of claim 20 wherein the mutual solvent precursor comprises an ester of ethylene glycol monobutyl ether and the acid precursor comprises diethylene glycol diformate.
  • 25. The method of claim 20 wherein a formate ester comprises both the mutual solvent precursor and the acid precursor.
  • 26. A method of servicing a wellbore comprising: providing a composition comprising a mutual solvent precursor, an acid, and an aqueous fluid; andcontacting the composition with oil wet solids in the wellbore.
US Referenced Citations (374)
Number Name Date Kind
1922154 de Groote Aug 1933 A
2050392 Starr Aug 1936 A
2059459 Hund et al. Nov 1936 A
2206187 Herbsman Jul 1940 A
2238671 Woodhouse Apr 1941 A
2681889 Menaul et al. Jun 1954 A
2703316 Schneider Mar 1955 A
2863832 Perrine Dec 1958 A
2910436 Fatt et al. Oct 1959 A
3173484 Huitt Mar 1965 A
3195635 Fast Jul 1965 A
3272650 MacVittie Sep 1966 A
3302719 Fischer Feb 1967 A
3364995 Atkins Jan 1968 A
3366178 Malone Jan 1968 A
3455390 Gallus Jul 1969 A
3481404 Gidley Dec 1969 A
3548945 Gidley Dec 1970 A
3630285 Claytor, Jr. et al. Dec 1971 A
3784585 Schmitt et al. Jan 1974 A
3819525 Hattenbrun Jun 1974 A
3828854 Templeton et al. Aug 1974 A
3836465 Rhudy et al. Sep 1974 A
3868998 Lybarger et al. Mar 1975 A
3912692 Casey et al. Oct 1975 A
3948672 Harnsberger Apr 1976 A
3955993 Curtice et al. May 1976 A
3960736 Free et al. Jun 1976 A
3968840 Tate Jul 1976 A
3986355 Klaeger Oct 1976 A
3998272 Maly Dec 1976 A
3998744 Arnold et al. Dec 1976 A
4010071 Colegrove Mar 1977 A
4068718 Cooke, Jr. et al. Jan 1978 A
4136739 Salathiel et al. Jan 1979 A
4169798 DeMartino Oct 1979 A
4172066 Zweigle et al. Oct 1979 A
4252421 Foley, Jr. Feb 1981 A
4265673 Pace et al. May 1981 A
4267887 Watanabe May 1981 A
4299825 Lee Nov 1981 A
4387769 Erbstoesser et al. Jun 1983 A
4460052 Gockel Jul 1984 A
4470915 Conway Sep 1984 A
4498995 Gockel Feb 1985 A
4502540 Byham Mar 1985 A
4506734 Nolte Mar 1985 A
4521316 Sikorski Jun 1985 A
4526695 Erbstoesser et al. Jul 1985 A
4632876 Laird et al. Dec 1986 A
4694905 Armbruster Sep 1987 A
4713183 Patel et al. Dec 1987 A
4715967 Bellis et al. Dec 1987 A
4716964 Erbstoesser et al. Jan 1988 A
4767706 Levesque et al. Aug 1988 A
4772346 Anderson, Jr. et al. Sep 1988 A
4785884 Armbruster Nov 1988 A
4793416 Mitchell Dec 1988 A
4797262 Dewitz Jan 1989 A
4809783 Hollenbeck et al. Mar 1989 A
4817721 Pober Apr 1989 A
4822500 Dobson, Jr. et al. Apr 1989 A
4829100 Murphey et al. May 1989 A
4836940 Alexander Jun 1989 A
4843118 Lai et al. Jun 1989 A
4848467 Cantu et al. Jul 1989 A
4863980 Cowan et al. Sep 1989 A
4886354 Welch et al. Dec 1989 A
4894231 Moreau et al. Jan 1990 A
4957165 Cantu et al. Sep 1990 A
4961466 Himes et al. Oct 1990 A
4986353 Clark et al. Jan 1991 A
4986354 Cantu et al. Jan 1991 A
4986355 Casad et al. Jan 1991 A
5034139 Reid et al. Jul 1991 A
5082056 Tackett, Jr. Jan 1992 A
5142023 Gruber et al. Aug 1992 A
5152781 Tang et al. Oct 1992 A
5161615 Hutchins et al. Nov 1992 A
5203834 Hutchins et al. Apr 1993 A
5213446 Dovan May 1993 A
5216050 Sinclair Jun 1993 A
5247059 Gruber et al. Sep 1993 A
5249628 Surjaatmadia Oct 1993 A
5251697 Shuler Oct 1993 A
5295542 Cole et al. Mar 1994 A
5304620 Holtmyer et al. Apr 1994 A
5314031 Hale et al. May 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5330005 Card et al. Jul 1994 A
5359026 Gruber Oct 1994 A
5360068 Sprunt et al. Nov 1994 A
5363916 Himes et al. Nov 1994 A
5373901 Norman et al. Dec 1994 A
5386874 Laramay et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5402846 Jennings, Jr. et al. Apr 1995 A
5439055 Card et al. Aug 1995 A
5460226 Lawson et al. Oct 1995 A
5464060 Hale et al. Nov 1995 A
5475080 Gruber et al. Dec 1995 A
5484881 Gruber et al. Jan 1996 A
5487897 Polson et al. Jan 1996 A
5492177 Yeh et al. Feb 1996 A
5496557 Feijen et al. Mar 1996 A
5497830 Boles et al. Mar 1996 A
5499678 Surjaatmadja et al. Mar 1996 A
5501276 Weaver et al. Mar 1996 A
5505787 Yamaguchi Apr 1996 A
5512071 Yam et al. Apr 1996 A
5536807 Gruber et al. Jul 1996 A
5555936 Pirri et al. Sep 1996 A
5591700 Harris et al. Jan 1997 A
5594095 Gruber et al. Jan 1997 A
5602083 Gabrysch et al. Feb 1997 A
5604186 Hunt et al. Feb 1997 A
5607905 Dobson, Jr. et al. Mar 1997 A
5613558 Dillenbeck, III Mar 1997 A
5670473 Scepanski Sep 1997 A
5678632 Moses et al. Oct 1997 A
5697440 Weaver et al. Dec 1997 A
5698322 Tsai et al. Dec 1997 A
5723416 Liao Mar 1998 A
5762138 Ford et al. Jun 1998 A
5765642 Surjaatmadja Jun 1998 A
5783527 Dobson, Jr. et al. Jul 1998 A
5791415 Nguyen et al. Aug 1998 A
5799734 Norman et al. Sep 1998 A
5813466 Harris et al. Sep 1998 A
5833000 Weaver et al. Nov 1998 A
5849401 El-Afandi et al. Dec 1998 A
5853048 Weaver et al. Dec 1998 A
5888944 Patel Mar 1999 A
5893416 Read Apr 1999 A
5905061 Patel May 1999 A
5908073 Nguyen et al. Jun 1999 A
5909774 Griffith et al. Jun 1999 A
5916849 House Jun 1999 A
5924488 Nguyen et al. Jul 1999 A
5964291 Bourne et al. Oct 1999 A
5977030 House Nov 1999 A
5977031 Patel Nov 1999 A
5979557 Card et al. Nov 1999 A
5985800 Patel Nov 1999 A
5990050 Patel Nov 1999 A
5996693 Heathman Dec 1999 A
6004400 Bishop et al. Dec 1999 A
6024170 McCabe et al. Feb 2000 A
6028113 Scepanski Feb 2000 A
6029755 Patel Feb 2000 A
6047772 Weaver et al. Apr 2000 A
6110875 Tjon-Joe-Pin et al. Aug 2000 A
6114410 Betzold Sep 2000 A
6123159 Brookey et al. Sep 2000 A
6123965 Jacob et al. Sep 2000 A
6131661 Conner et al. Oct 2000 A
6135987 Tsai et al. Oct 2000 A
6143698 Murphey et al. Nov 2000 A
6148917 Brookey et al. Nov 2000 A
6162766 Muir et al. Dec 2000 A
6169058 Le et al. Jan 2001 B1
6172011 Card et al. Jan 2001 B1
6189615 Sydansk Feb 2001 B1
6202751 Chatterji et al. Mar 2001 B1
6209643 Nguyen et al. Apr 2001 B1
6209646 Reddy et al. Apr 2001 B1
6214773 Harris et al. Apr 2001 B1
6218342 Patel Apr 2001 B1
6221920 Hillion et al. Apr 2001 B1
6242390 Mitchell et al. Jun 2001 B1
6258859 Dahayanake et al. Jul 2001 B1
6260622 Blok et al. Jul 2001 B1
6279656 Sinclair et al. Aug 2001 B1
6291013 Gibson et al. Sep 2001 B1
6300286 Dobson, Jr. et al. Oct 2001 B1
6302209 Thompson, Sr. et al. Oct 2001 B1
6308788 Patel et al. Oct 2001 B1
6311773 Todd et al. Nov 2001 B1
6323307 Bigg et al. Nov 2001 B1
6326458 Gruber et al. Dec 2001 B1
6328105 Betzold Dec 2001 B1
6330917 Chatterji et al. Dec 2001 B2
6357527 Norman et al. Mar 2002 B1
6364945 Chatterji et al. Apr 2002 B1
6380138 Ischy et al. Apr 2002 B1
6387986 Moradi-Araghi et al. May 2002 B1
6390195 Nguyen et al. May 2002 B1
6394185 Constien May 2002 B1
6401819 Harris et al. Jun 2002 B1
6405809 Patel et al. Jun 2002 B2
6422314 Todd et al. Jul 2002 B1
6422326 Brookey et al. Jul 2002 B1
6432155 Swazey et al. Aug 2002 B1
6454003 Chang et al. Sep 2002 B1
6485947 Rajgarhia et al. Nov 2002 B1
6488091 Weaver et al. Dec 2002 B1
6488763 Brothers et al. Dec 2002 B2
6494263 Todd Dec 2002 B2
6508305 Brannon et al. Jan 2003 B1
6509301 Vollmer Jan 2003 B1
6527051 Reddy et al. Mar 2003 B1
6543276 Murphy, Jr. et al. Apr 2003 B2
6554071 Reddy et al. Apr 2003 B1
6566310 Chan May 2003 B2
6569814 Brady et al. May 2003 B1
6578630 Simpson et al. Jun 2003 B2
6589917 Patel et al. Jul 2003 B2
6599863 Palmer et al. Jul 2003 B1
6608006 Taylor et al. Aug 2003 B2
6620437 Ewbank et al. Sep 2003 B2
6667279 Hessert et al. Dec 2003 B1
6669771 Tokiwa et al. Dec 2003 B2
6681856 Chatterji et al. Jan 2004 B1
6686328 Binder Feb 2004 B1
6691780 Nguyen et al. Feb 2004 B2
6691805 Thaemlitz Feb 2004 B2
6702023 Harris et al. Mar 2004 B1
6710019 Sawdon et al. Mar 2004 B1
6716797 Brookey Apr 2004 B2
6737385 Todd et al. May 2004 B2
6761218 Nguyen et al. Jul 2004 B2
6763888 Harris et al. Jul 2004 B1
6764981 Eoff et al. Jul 2004 B1
6770293 Angel et al. Aug 2004 B2
6790811 Patel Sep 2004 B2
6793018 Dawson et al. Sep 2004 B2
6793025 Patel et al. Sep 2004 B2
6793730 Reddy et al. Sep 2004 B2
6806233 Patel Oct 2004 B2
6806235 Mueller et al. Oct 2004 B1
6817414 Lee Nov 2004 B2
6818594 Freeman et al. Nov 2004 B1
6828280 England et al. Dec 2004 B2
6837309 Boney et al. Jan 2005 B2
6840318 Lee et al. Jan 2005 B2
6852173 Banerjee et al. Feb 2005 B2
6861394 Ballard et al. Mar 2005 B2
6877563 Todd et al. Apr 2005 B2
6881709 Nelson et al. Apr 2005 B2
6883608 Parlar et al. Apr 2005 B2
6886635 Hossaini et al. May 2005 B2
6896058 Munoz, Jr. et al. May 2005 B2
6904971 Brothers et al. Jun 2005 B2
6908887 Thaemlitz Jun 2005 B2
6908888 Lee et al. Jun 2005 B2
6949491 Cooke, Jr. Sep 2005 B2
6953090 Vijn et al. Oct 2005 B2
6959767 Horton et al. Nov 2005 B2
6978838 Parlar et al. Dec 2005 B2
6981552 Reddy et al. Jan 2006 B2
6983798 Todd Jan 2006 B2
6983801 Dawson et al. Jan 2006 B2
6987083 Phillippi et al. Jan 2006 B2
6989354 Thaemlitz et al. Jan 2006 B2
6997259 Nguyen Feb 2006 B2
7000701 Todd et al. Feb 2006 B2
7007752 Reddy et al. Mar 2006 B2
7021377 Todd et al. Apr 2006 B2
7021383 Todd et al. Apr 2006 B2
7032663 Nguyen Apr 2006 B2
7036585 Zhou et al. May 2006 B2
7036586 Roddy et al. May 2006 B2
7036587 Munoz, Jr. et al. May 2006 B2
7044220 Nguyen et al. May 2006 B2
7044224 Nguyen May 2006 B2
7049272 Sinclair et al. May 2006 B2
7052901 Crews May 2006 B2
7063151 Nguyen et al. Jun 2006 B2
7066258 Justus et al. Jun 2006 B2
7066260 Sullivan et al. Jun 2006 B2
7069994 Cooke, Jr. Jul 2006 B2
7080688 Todd et al. Jul 2006 B2
7093658 Chatterji et al. Aug 2006 B2
7093664 Todd et al. Aug 2006 B2
7096947 Todd et al. Aug 2006 B2
7098171 Thaemlitz Aug 2006 B2
7101829 Guichard et al. Sep 2006 B2
7112557 Thaemlitz Sep 2006 B2
7125826 Taylor et al. Oct 2006 B2
7131491 Blauch et al. Nov 2006 B2
7132389 Lee Nov 2006 B2
7134496 Jones et al. Nov 2006 B2
7140438 Frost et al. Nov 2006 B2
7147067 Getzlaf et al. Dec 2006 B2
7151077 Prud'homme et al. Dec 2006 B2
7153902 Altes et al. Dec 2006 B2
7156174 Roddy et al. Jan 2007 B2
7159659 Welton et al. Jan 2007 B2
7165617 Lord et al. Jan 2007 B2
7166560 Still et al. Jan 2007 B2
7168489 Frost et al. Jan 2007 B2
7172022 Reddy et al. Feb 2007 B2
7178594 Patel Feb 2007 B2
7178596 Blauch et al. Feb 2007 B2
7195068 Todd Mar 2007 B2
7204311 Welton et al. Apr 2007 B2
7204312 Roddy et al. Apr 2007 B2
7205264 Boles Apr 2007 B2
7216705 Saini et al. May 2007 B2
7219731 Sullivan et al. May 2007 B2
7222672 Blauch et al. May 2007 B2
7228904 Todd et al. Jun 2007 B2
7238646 Thaemlitz et al. Jul 2007 B2
7256159 Guichard et al. Aug 2007 B2
7261156 Nguyen et al. Aug 2007 B2
7264051 Nguyen et al. Sep 2007 B2
7265079 Willberg et al. Sep 2007 B2
7267170 Mang et al. Sep 2007 B2
7267466 Reiss Sep 2007 B2
7299869 Kalman Nov 2007 B2
7299874 Welton et al. Nov 2007 B2
7303014 Reddy et al. Dec 2007 B2
7303019 Welton et al. Dec 2007 B2
7306037 Nguyen et al. Dec 2007 B2
7314850 Taylor et al. Jan 2008 B2
7322412 Badalamenti et al. Jan 2008 B2
7353879 Todd et al. Apr 2008 B2
7380606 Pursley et al. Jun 2008 B2
7514390 Chan Apr 2009 B2
20010016562 Muir et al. Aug 2001 A1
20030130133 Vollmer Jul 2003 A1
20030147965 Bassett et al. Aug 2003 A1
20030230407 Vijn et al. Dec 2003 A1
20040070093 Mathiowitz et al. Apr 2004 A1
20040072696 Patel Apr 2004 A1
20040138068 Rimmer et al. Jul 2004 A1
20040170836 Bond et al. Sep 2004 A1
20040176478 Dahayanake et al. Sep 2004 A1
20040231845 Cooke, Jr. Nov 2004 A1
20050028976 Nguyen Feb 2005 A1
20050034861 Saini et al. Feb 2005 A1
20050059556 Munoz, Jr. et al. Mar 2005 A1
20050059557 Todd et al. Mar 2005 A1
20050130848 Todd et al. Jun 2005 A1
20050183741 Surjaatmadja et al. Aug 2005 A1
20050209107 Pursley et al. Sep 2005 A1
20050257932 Davidson et al. Nov 2005 A1
20050272613 Cooke, Jr. Dec 2005 A1
20050277554 Blauch et al. Dec 2005 A1
20060016596 Pauls et al. Jan 2006 A1
20060032633 Nguyen Feb 2006 A1
20060041028 Crews Feb 2006 A1
20060046938 Harris et al. Mar 2006 A1
20060065397 Nguyen et al. Mar 2006 A1
20060105917 Munoz, Jr. May 2006 A1
20060105918 Munoz, Jr. May 2006 A1
20060108150 Luke et al. May 2006 A1
20060118300 Welton et al. Jun 2006 A1
20060169182 Todd et al. Aug 2006 A1
20060169450 Mang et al. Aug 2006 A1
20060172891 Gewehr et al. Aug 2006 A1
20060172893 Todd et al. Aug 2006 A1
20060172894 Mang et al. Aug 2006 A1
20060172895 Mang et al. Aug 2006 A1
20060183646 Welton et al. Aug 2006 A1
20060185848 Surjaatmadja et al. Aug 2006 A1
20060229212 Willberg et al. Oct 2006 A1
20060234873 Ballard Oct 2006 A1
20060258543 Saini Nov 2006 A1
20060258544 Saini Nov 2006 A1
20060276345 Todd et al. Dec 2006 A1
20060283597 Schriener et al. Dec 2006 A1
20070027253 Jones et al. Feb 2007 A1
20070100029 Reddy et al. May 2007 A1
20070169938 Moorehead et al. Jul 2007 A1
20070173416 Moorehead et al. Jul 2007 A1
20070298977 Mang et al. Dec 2007 A1
20080009423 Mang et al. Jan 2008 A1
20080076682 Jones et al. Mar 2008 A1
20080078549 Moorehead et al. Apr 2008 A1
20080110618 Quintero et al. May 2008 A1
20080169102 Carbajal et al. Jul 2008 A1
20080169103 Carbajal et al. Jul 2008 A1
20080287324 Pursley et al. Nov 2008 A1
Foreign Referenced Citations (39)
Number Date Country
0278540 Aug 1988 EP
0510762 Oct 1992 EP
0879935 Nov 1998 EP
1413710 Apr 2004 EP
2032491 May 1980 GB
2109034 May 1983 GB
2116966 Oct 1983 GB
2163790 Mar 1986 GB
2412389 Sep 2005 GB
2004181820 Feb 2004 JP
9315127 Aug 1993 WO
9407949 Apr 1994 WO
9408078 Apr 1994 WO
9408090 Apr 1994 WO
9509879 Apr 1995 WO
9711845 Apr 1997 WO
9927229 Jun 1999 WO
0008112 Feb 2000 WO
0057022 Sep 2000 WO
0102698 Jan 2001 WO
0142387 Jun 2001 WO
0187797 Nov 2001 WO
0194744 Dec 2001 WO
0212674 Feb 2002 WO
02055843 Jul 2002 WO
03027431 Apr 2003 WO
03027431 Apr 2003 WO
2004007905 Jan 2004 WO
2004037946 May 2004 WO
2004038176 May 2004 WO
2005095755 Oct 2005 WO
2006029019 Mar 2006 WO
2006029019 Mar 2006 WO
2006093863 Sep 2006 WO
2006093863 Sep 2006 WO
2006109016 Oct 2006 WO
2008038033 Apr 2008 WO
2008045734 Apr 2008 WO
2008045734 Apr 2008 WO
Related Publications (1)
Number Date Country
20090286701 A1 Nov 2009 US