The invention pertains to the field of treatment of diseases of the nail and nail bed. In particular, the invention pertains to methods for treatment of disorders such as onychomycosis or psoriasis involving the nails.
Onychomycosis, a fungal disease of the nail unit caused by yeasts, dermatophytes, or other molds, accounts for approximately 50% of all nail disorders in humans. In about 80% of onychomycosis cases, the toenails are infected, whereas in the remaining 20%, the fingernails are infected. The symptoms of this disease include split, thickened, hardened, and rough nail plates.
Another common disorder of nails is nail psoriasis, which affects up to 50% of patients with psoriasis. Characteristic nail psoriasis symptoms include pitting, which appears as punctuated or irregularly shaped depressions arranged on the surface of the body of the nail; discoloration of the nail bed; onycholysis or detachment of the body of the nail from the nail bed; subungual keratosis; or anomalies of the body of the nail. Other diseases and disorders involving the nails in humans and in other animals include onychia, onychocryptosis, onychodystrophy, onychogryposis, onycholysis, onychomadesis, onychophosis, onychoptosis, paronychia, koilonychia, subungual hematoma, and laminitis.
The nail plate is thick, hard, and dense, and represents a formidable barrier to drug penetration. Although nail material is similar in various ways to the stratum corneum of the skin, the nail is composed primarily of hard keratin which is highly disulfide-linked and is approximately 100-fold thicker than stratum corneum.
Various topical therapies have been suggested for treatment of nail disorders, such as onychomycosis. Nail lacquers, coating, polishes, enamels, and varnishes have been described. Bohn, U.S. Pat. No. 4,957,730, describes a nail varnish containing a water-insoluble film-forming substance and antimycotic compound. Ferro, U.S. Pat. No. 5,120,530, describes an antimycotic nail varnish containing amorolfine in quaternary ammonium acrylic copolymer. The water-insoluble film former is a copolymerizate of acrylic acid esters and methacrylic acid esters having a low content of quaternary ammonium groups. Bohn, U.S. Pat. No. 5,264,206, describes a nail lacquer with antimycotic activity, which contains an antimycotic agent and water-insoluble film formers including polyvinyl acetate, a copolymer of polyvinyl acetate and acrylic acid, copolymers of vinyl acetate and crotonic acid. Wohlrab, U.S. Pat. No. 5,346,692, describes a nail lacquer for treating onychomycosis, comprised of a film-forming agent, an antimycotically active substance, and urea, wherewith the antimycotic agent and urea are liberated from the lacquer when the lacquer is applied. A preferred formulation comprises cellulose derivatives as film former, clotrimazole as the antimycotic agent, dibutyl phthalate as a plasticizer, and a mixture of acetone and ethanol as solvent. Nimni, U.S. Pat. No. 5,487,776, describes a nail lacquer composition which forms a water permeable film containing griseofulvin when the organic solvent system evaporates, wherein a portion of the griseofulvin is in solution and a portion of griseofulvin is present as a colloidal suspension. Chaudhuri, U.S. Pat. No. 6,143,794, describes a topical formulation for the treatment of nail fungal infections that includes an antifungal, solvent, gelling agent, adhesion-promoting agent, film-forming agent, surfactant, and optionally a keratolytic agent. The adhesion-promoting agent was a hydroxy-terminated polyurethane such as polyolprepolymer-2. All of these patents and publications describe products applied to the nail that form a substantive nail coating or film containing a drug from which the drug is to penetrate into the nail. None of these methods has proven to be consistently effective in treating disorders of the nail such as onychomycosis.
Various topical therapies utilizing chemical compounds disclosed to enhance penetration through the nail have been described. Knowles, U.S. Pat. No. 5,652,256, describes the use of methyl acetate as a penetration enhancing compound in combination with naftifine or sulconazole and naftifine as a topical gel for fungal treatment of the nails. Sorenson, U.S. Pat. No. 5,972,317, discloses that a proteolytic enzyme such as papain, delivered by pads soaked in the enzyme solution, produces a more permeable nail. Sun, U.S. Pat. No. 6,231,875, describes acidified compositions of antifungals to enhance transport across nails and skin. Reeves, U.S. Pat. No. 6,391,879, describes the combination of an anti-fungal agent dissolved in an anhydrous blend of polyglycol and DMSO. Although these and other enhanced penetration formulations were reported to increase penetration through the nail, they have not been shown to be clinically effective in treating conditions of the nail, such as onychomycosis.
Because of the difficulty in obtaining clinically effective concentrations of medication to the nail bed by topical application of a pharmaceutical composition to the affected nail, nail disorders, such as onychomycosis, are typically treated with systemic medications or with topical medications following removal of the nail. Systemic treatment for onychomycosis and other nail disorders is often not satisfactory because therapy must be continued for long periods of time, often many weeks or months, and the medication has effects on tissues other than on the affected nail. Antifungal compounds, such as miconazole and ketoconazole, have been demonstrated to be effective in topically treating onychomycosis after nail removal. However, it is clear that removal of the nail is a measure than most individuals suffering from onychomycosis would prefer not to undergo if a less drastic therapeutic method would be efficacious.
Pitre, U.S. Patent Publication 2007/0041910, filed as U.S. patent application Ser. No. 11/432,410; and Mallard, U.S. Patent Publication 2006/0147383, filed as U.S. patent application Ser. No. 11/315,259, disclose that application of a pharmaceutical composition containing a vehicle, a volatile silicone, and a non-volatile oily phase, provides increased penetration of a pharmaceutically active compound when topically to skin or mucous membrane. This enhanced penetration is obtained without the use of glycols, such as propylene glycol, which are known to augment skin penetration of pharmaceutical compounds but which are also known to be irritating to skin. The formulations of Pitre and Mallard contain at least 25% w/w of a volatile silicone and, if formulated with an alcoholic vehicle, contain at least 15% of alcohol. All alcoholic compositions disclosed in Pitre and Mallard contain greater than 50% volatile silicone and the concentration of the volatile silicone is at least twice the concentration of the alcohol in the composition.
Pitre and Mallard do not disclose or suggest the use of such compositions for the treatment of diseases of a nail, such as onychomycosis. Moreover, studies have been conducted, including studies conducted in the laboratories of the present inventors, that show that the penetrating ability of an active agent from a composition into skin cannot be correlated to the penetrating ability of the active agent from the composition into or through a nail.
A significant need remains for a pharmaceutical composition that provides for enhanced penetration of a pharmaceutical agent contained within the composition into and through an intact nail. Such a composition would be valuable for topically treating conditions affecting the nail or nail bed, such as onychomycosis.
It has been unexpectedly discovered that a pharmaceutical composition containing an active pharmaceutical ingredient (API), a solvent, referred to herein as the “vehicle” or the “volatile vehicle”, a wetting agent which may or may not be the same compound as the vehicle, and a non-volatile solvent which has limited water miscibility provides enhanced penetration of the API into and through an intact nail. Preferably, the composition of the invention is free of film forming polymeric compounds. It is conceived that such compositions may be used to deliver an API in order to treat medical conditions involving the nail and/or the underlying nail bed.
In one embodiment, the invention is a pharmaceutical composition for the treatment of disorders of the nail or nail bed. The pharmaceutical composition of the invention contains a volatile and/or penetrating vehicle, a non-volatile solvent that is dissolved, suspended, dispersed, or emulsified within the vehicle, an API that is soluble in the non-volatile solvent and/or a mixture of the vehicle and the non-volatile solvent and is optionally soluble in the vehicle, and a wetting agent, which may or may not be the vehicle itself.
In another embodiment, the invention is a pharmaceutical formulation for delivery of an API to the nail or nail bed in order to treat disorders of this area. According to this embodiment, the formulation contains a volatile and/or penetrating vehicle, a non-volatile solvent that is dissolved, suspended, dispersed, or emulsified within the vehicle, and a wetting agent, which may or may not be the vehicle itself. The API that is to be used with the formulation of the invention is one that is soluble in the non-volatile solvent and/or a mixture of the vehicle and the non-volatile solvent and is optionally soluble in the vehicle alone.
In another embodiment, the invention is a method for treating a disorder of the nail or nail bed. According to this embodiment of the invention, a pharmaceutical composition containing a volatile and/or penetrating vehicle, a non-volatile solvent that is dissolved, suspended, dispersed, or emulsified within the vehicle, an API that is soluble in the non-volatile solvent and/or a mixture of the vehicle and the non-volatile solvent and is optionally soluble in the vehicle alone, and a wetting agent, which may or may not be the vehicle itself, is topically applied to the surface of a nail that is suffering from a disorder in an amount and for a time sufficient to ameliorate the symptoms of the disorder.
As used herein, the term “volatile” when referring to the vehicle means that the vehicle is a compound that evaporates from the surface of the nail when applied. Volatile vehicles are compounds which have a measurable vapor pressure, and preferably are compounds that have a vapor pressure of greater than 100 Pa at room temperature. Examples of volatile vehicles include: acetone, 2-amino-2-methyl-1-propanol, 1,2-butanediol, 1,4-butanediol, 2-butanol, cyclomethicone-4, cyclomethicone-5, cyclomethicone-6, ethanol, ethyl acetate, n-heptane, isobutanol, isopropyl alcohol, 1-propanol and 2-propanol.
As used herein, the term “penetrating” when referring to the vehicle means that the vehicle is a compound that rapidly penetrates into a nail when applied to the surface of the nail so that, after 10 minutes following the application of a thin layer of the vehicle onto the surface of a nail, no more than 10% of the applied amount remains on the nail surface. The term “penetrating” thus includes both volatile and non-volatile vehicles.
Examples of pharmaceutical compositions that may be used in the method of the present invention are disclosed in Pitre, U.S. patent application Ser. No. 11/432,410; and in Mallard, U.S. patent application Ser. No. 11/315,259, which applications are incorporated herein in their entirety. In accordance with the present invention, the pharmaceutical compositions of Pitre and Mallard that may be used to treat medical conditions of the nail in accordance with the present invention may contain Vitamin D as the API as disclosed in Pitre or clobetasol as disclosed in Mallard, or may contain other APIs in place of, or in addition to, these APIs, as disclosed herein.
The API of the composition of the invention is one that is useful in the treatment of a disorder of the nail or nail bed. The API is soluble in the solvent of the composition and/or in the combination of the solvent and vehicle of the composition. Examples of suitable APIs include anti-inflammatory agents, antimicrobial agents such as antibiotics and antifungal agents, anesthetic agents, steroidal agents, vitamins and derivatives thereof, anti-psoriatic drugs, and analgesic agents.
In a preferred embodiment, the API of the composition of the invention is an antifungal chemical compound, particularly those effective in the treatment of onychomycosis. Examples of suitable antifungal agents include polyene antimycotic agents such as natamycin, rimocidin, filipin, nystatin, and amphotericin B; imidazole compounds such as miconazole, ketoconazole, clotrimazole, econazole, bifonazole, butoconazole, fenticonazole, isoconazole, oxiconazole, sertaconazole, sulconazole, and tioconazole; triazole compounds such as fluconazole, itraconazole, ravuconazole, posaconazole, voriconazole, (2R,3R)-2-(2,4-difluorophenyl)-3-(4-methylenepiperidine-1-yl)-1-(1H-1,2,4-triazole-1-yl)butane-2-ol (referred to herein as “KP-103”), and terconazole; allylamine compounds such as terbinafine, amorolfine, naftifine, and butenafine; echinocandin compounds such as anidulafungin, caspofungin, and micafungin; and other antifungal drugs such as ciclopirox, flucytosine, griseofulvin, gentian violet, haloprogin, tolnaftate, and undecylenic acid. Any antifungal compound suitable for pharmaceutical use in humans or mammals, and particularly those which are active in vitro against Candida albicans, Trichophyton rubrum or Trichophyton mentagrophytes, is suitable for the API of the invention. Particularly preferred are antifungal APIs that have relatively low binding to keratin, such as triazole compounds like KP-103.
Other APIs that are suitable for the composition of the invention include those that are effective in treating diseases and disorders of nails other than onychomycosis, especially those diseases and disorders affecting tissues deep to the external surface of the nail, such as the internal portion of the nail, the deep nail surface adjacent to the nail bed, and the nail bed. Such diseases and disorders may include onychia, onychocryptosis, onychodystrophy, onychogryposis, onycholysis, onychomadesis, onychophosis, onychoptosis, paronychia, koilonychia, subungual hematoma, and laminitis.
The vehicle of the composition of the invention is a pharmaceutically acceptable vehicle in which the constituents of the composition of the invention can be dissolved, suspended, disbursed, or emulsified. The constituents of the composition may be all within a single phase in the vehicle. For example, the API, wetting agent, and the non-volatile phase may be dissolved in the vehicle. Alternatively, the constituents may occupy separate phases within the vehicle. For example, the API may be dissolved in the vehicle and the other constituents may be suspended, dispersed, or emulsified in solvent. For another example, the API may be dissolved in the solvent which is suspended, dispersed, or emulsified in the vehicles, with the remaining constituents being dissolved in either the vehicle or the solvent. Preferably, but not necessarily, the API, wetting agent, and non-volatile phase are all miscible in the vehicle.
Examples of suitable vehicles include one or more of water, alcohols, polyols, ethers, esters, aldehydes, ketones, fatty acids, fatty alcohols, and fatty esters. Specific examples of suitable vehicles include ethanol; 3-propanediol; 1,2-butanediol; 1,2,3-propanetriol; 1,3-butanediol; 1,4-butanediol; isopropyl alcohol; and 2-amino-2-methyl-1-propanol. In a preferred embodiment, the vehicle is an alcohol, and most preferably a linear or branched aliphatic lower alcohol, such as methanol, ethanol, propanol, or isopropanol.
The wetting agent of the composition of the invention is a chemical compound that reduces the surface tension of liquid compositions and that does not build viscosity. The wetting agent may be a surfactant, which may be anionic, cationic, or non-ionic.
Preferably, the wetting agent is a volatile silicone. Such volatile silicones include linear or cyclic polyorganosiloxane compounds of formula [R1SiOR2]n wherein n=6 or less and R1 and R2 are alkyl groups that may be the same or different, and which compound has a measurable vapor pressure under ambient conditions. Preferably, n=from 3 to 6, and most preferably n=4 or 5. Preferably R1 and R2=methyl.
Examples of cyclic volatile silicones include polydimethylcyclosiloxanes, generally known as cyclomethicones. Particular examples of cyclic volatile silicones include cyclopentasiloxane, cyclotetrasiloxane, decylmethylcyclopentasiloxane, and octylmethylcyclotetrasiloxane. Examples of linear volatile silicones include linear polysiloxanes. Particular examples of linear volatile silicones include hexamethyldisiloxane, octamethyltrisiloxane, and dimethicones.
In one particular embodiment of the invention, a single compound forms both the vehicle and the wetting agent of the composition. For example, the vehicle may be a volatile silicone. In this situation, the volatile silicone may also be the wetting agent of the composition. In the case in which the wetting agent serves also as the vehicle, the concentration of the wetting agent in the composition is sufficiently high to function as a vehicle in which all other components of the composition are dissolved, suspended, dispersed, or emulsified.
The non-volatile solvent of the composition is a non-aqueous solvent that may or may not be soluble or miscible in the vehicle of the composition. The API of the composition is preferably, but not necessarily, soluble in the non-volatile solvent. In a preferred embodiment wherein the API is hydrophilic, the non-volatile solvent is a polar or semi-polar molecule. In another preferred embodiment wherein the API is hydrophobic, the non-volatile solvent is non-polar.
Suitable non-volatile solvents for hydrophobic drugs are disclosed in Pitre, U.S. patent application Ser. No. 11/432,410 in paragraphs 0069 to 0082, which paragraphs are incorporated herein by reference. For example, the non-volatile solvent may be an ester of the formula RCO—OR′, wherein R and R′ may be identical or different and each of R and R′ represents a linear or branched chain of an alkyl, alkenyl, alkoxycarbonylalkyl, or alkoxycarbonyloxyalkyl radical having from 1 to 25 carbon atoms, preferably from 4 to 20 carbon atoms. The non-volatile solvent may be a glyceryl ester of a fatty acid, such as fatty esters of natural fatty acids or triglycerides of animal or plant origin. The non-volatile solvent may be a fatty acid glyceride, including synthetic or semi-synthetic glyceryl esters, such as fatty acid mono-, di-, or triglycerides, which are oils or fats. The non-volatile solvent may be a non-volatile hydrocarbon, such as paraffins, isoparaffins, and mineral oil. The non-volatile solvent may be a guerbet ester. The non-volatile solvent may be a non-volatile silicone, provided that the presence of the non-volatile silicone in the composition does not result in the formation of a hard polymeric film upon application of the composition onto a nail. Included within such non-film forming silicones are polyorganosiloxane compounds that have the formula [R1SiOR2]n wherein n>6 and R1 and R2 are alkyl groups that may be the same or different, and which compound may or may not have a measurable vapor pressure under ambient conditions.
Other examples of suitable non-volatile solvents for hydrophobic drugs in addition to those disclosed in Pitre include squalane, dibutyl sebacate, isopropyl laurate, isopropyl myristate, isopropyl palmitate, isopropyl stearate, myristyl alcohol, oleyl alcohol, oleic acid, lauryl lactate, myristyl lactate, mixed C12-15 alkyl lactates, diisopropyl adipate, octyldodecanol, caproic acid, caprylic acid, capric acid, lauryl benzoate, myristyl benzoate, mixed C12 15 alkyl benzoates, benzyl benzoate, tridecyl neopentanoate, spermaceti, petrolatum, and alpha terpineol. Examples of suitable non-volatile solvents for hydrophilic drugs include diethylene glycol monoethyl ether, n-methyl pyrrolidone, dimethyl sulfoxide, ethyl lactate, hexylene glycol, glycerol, benzyl alcohol and glycerol triacetate.
The composition of the invention may contain additional optional components, such as wetting agents, preservatives, stabilizers, lubricants, humectants, moisture regulators, foaming agents, binders, pH regulators, osmotic pressure modifiers, emulsifiers, antioxidants, colors, fragrances, or odor maskers. If desired, the composition may also contain additional nail modifiers or penetration enhancers, such as urea, propylene glycol, sodium lauryl sulfate, and glycolic acid.
The composition is intended to remain in a liquid or semi-solid state after application to the nail and does not form a hard lacquer, shell, or film on the nail following application, which occurs by a process of solvent casting following evaporation of a volatile solvent which leaves behind a solid residue that forms the lacquer, shell or film. Therefore, it is preferred that the components of the composition are miscible in the composition and also are miscible in the “secondary” composition that remains after the volatile vehicle has evaporated or penetrated the nail. It is also suitable for the components of the composition, other than the vehicle, to be suspendable, dispersible, or emulsifiable, in the secondary composition, such as in the non-volatile solvent.
The composition of the invention may be prepared in any number of forms, such as ointments, creams, milks, salves, impregnated pads, solutions, tinctures, liniments, liquids, sprays, foams, suspensions, lotions, or patches. The composition may be formulated to provide for immediate or controlled release of the API from the composition.
The concentration of the various essential and optional components of the composition of the invention will vary, depending on the particular components contained in the composition, the form of the composition, the particular disease or condition that is to be treated with the composition, and whether the formulation is for immediate or for controlled release.
The API of the composition is at a concentration that is effective to treat a disorder or disease of the nail or nail bed. Typically, the concentration of the API will constitute between 0.0001 to 30% or higher by weight of the composition.
The concentration of the wetting agent in the composition may vary depending on several factors, including the identity of the wetting agent and whether the wetting agent is also the vehicle of the composition. Generally, the concentration of the wetting agent, such as a volatile silicone, will be between 0.001% to 95% by weight of the composition. Preferably, the concentration of the wetting agent is between 5% and 80%, more preferably between 7% and 60%, and most preferably between 10% and 40% w/w of the composition. In a particularly preferred embodiment, the concentration of wetting agent in the composition is between 10% and 15% w/w. In the case where the wetting agent is not functioning as a vehicle of the composition, the concentration of wetting agent in the composition will generally be towards the lower end of the above range of concentration, such as between 0.001% and 10%.
The concentration of the non-volatile solvent will constitute between 5 and 90% w/w of the composition. Generally, with less viscous forms of the compositions, lower concentrations of non-volatile phase will be present, and with more viscous forms, higher concentrations of the non-volatile phase will be used. Also, ointment and other predominately oil-based compositions tend to have a higher concentration of non-volatile phase or components than do compositions such as sprays, gels, and lotions and so will have a higher concentration of a non-volatile solvent. Typical concentrations of non-volatile solvent are between 10 and 80%, with preferred concentrations being between 12 and 60%, and most preferred concentrations between 15 and 50% w/w.
The concentration of the vehicle will be that which is sufficient to dissolve, suspend, disperse, or emulsify the other components of the composition. In many but not all cases, the concentration of the vehicle will be higher than that of any other constituent of the composition. In some cases, the concentration of the vehicle will be higher than that of the combined concentration of the other constituents of the composition. In a preferred embodiment in which the vehicle is an alcohol, the composition will contain at least 10% alcohol, more typically at least 15% alcohol, and most typically at least 25% alcohol. The concentration of alcohol in the composition may be as high as 80%, or higher. In one preferred embodiment, the concentration of alcohol is at least 50% w/w of the composition.
In a particularly preferred embodiment of the invention, the composition of the invention is an alcoholic composition containing a volatile silicone. In a first preferred embodiment, the ratio of alcohol to volatile silicone in the composition % w/w is at least 2:3, preferably at least 1:1, more preferably at least 2:1, and most preferably at least 3:1. In a second preferred embodiment, the concentration of the volatile silicone in the composition is less than 25% w/w. In a third preferred embodiment, the concentration of the alcohol in the composition is at least 40%, more preferably at least 45%, and most preferably at least 50% w/w. The composition of the invention, according to this embodiment of the invention, may be made so as to encompass any one, two, or all three of the embodiments described above. It has been determined that, when applied to the surface of a nail, the alcoholic composition of the invention containing a volatile silicone provides a high degree of penetration of an API contained therein into the nail.
Although the compositions of the invention may be used to treat various diseases and disorders of the skin or mucous membranes, they are most advantageously used to treat conditions involving the nails of the hands or feet. The compositions and methods of the invention provide increased penetration of API in the composition into and through the nail and to the nail bed. The compositions of the invention may be used effectively to treat diseases and disorders in humans or in other animals, such as cats, dogs, horses, cattle, sheep, goats, pigs, and birds. In human and in veterinary patients, the compositions of the invention may be used, depending on the particular animal treated, to treat conditions involving nails, hooves, horns, or beaks.
The compositions of the invention are especially well suited for the treatment of onychomycosis and other disorders of the nail and nail bed. The composition is topically applied to the surface of the nail and surrounding tissue by any means by which the composition may be applied. The method of application may vary depending on the physical state of the composition, whether it is in a liquid, semisolid, or solid form, and on the viscosity of the composition if it is a liquid. Thus, for example, the composition may be rubbed, painted, dabbed, dripped, sprayed, wiped, spread, or poured onto the affected nail and surrounding tissues, or utilized as a soak. Frequency of treatment and duration of therapy will very depending on several factors, including the condition that is being treated, the identity and concentration of the API in the composition, and constituents of the composition other than the API. Typically, the frequency of treatment will be twice daily to once weekly, and preferably once daily.
To further illustrate the invention, the following examples are provided. It is to be understood that these examples are provided for illustrative purposes and are not to be construed as limiting the scope of the invention.
Four different formulations were tested to determine the penetrability of an API into skin. The formulations each contained 5.00% w/w of a triazole antifungal API compound, KP-103. The compositions of the four formulations are shown in Table 1. All concentrations of the components of the formulations are in % w/w.
Each of the formulations of Table 1 were spiked with tracer amounts of radiolabeled KP-103 at approximately 0.90 μCi/dose. A single clinically relevant dose (5 mg/cm2) was applied to dermatomed human skin obtained from one donor following elective surgery.
Percutaneous absorption was evaluated by mounting the dermatomed tissue in Bronaugh flow-through diffusion cells at 32 C. Six replicates were performed for each formulation. Fresh receptor fluid, PBS containing 0.1% w/v sodium azide and 1.5% Oleth-20, was continuously pumped under the skin at a nominal flow rate of 1 ml/hr and collected in 6-hour intervals. Following 24-hours of exposure, the residual formulation remaining on the skin surface was removed by repeated tape stripping (5 strips/cell). Subsequently, the epidermis was physically separated from the dermis by gentle peeling. The quantity of radioactivity in the tape-strips, epidermis, dermis, and receptor fluid samples was determined using liquid scintillation counting. The results for the calculated quantity of API collected in the receptor for each of the formulations of Table 1 are shown in
As shown in
The formulations 078, 080, 082, and 107 of Example 1 were tested to determine penetration of the API from the formulation into and through nail plates. Each of the formulations of Table 1 was spiked with tracer amounts of radiolabeled KP-103 at approximately 0.90 μCi/dose. A clinically relevant protocol was followed, which entailed dosing 10 μL/cm2 per day for 14 days onto healthy human finger nail plates, which were obtained from multiple donors.
Nail penetration was evaluated by mounting the finger nail plates into custom diffusion cells. Five replicates were performed for each formulation. A small cotton ball wetted with 0.1 mL normal saline was used as a receptor. For each day of the study, the surface of the nail was washed, and 10 μL of formulation was applied to the surface. Every second day, the cotton ball receptor was replaced. After fourteen days of exposure, the nail plate was sectioned into three sections, a central dorsal (upper) section, central ventral (lower) section and the remaining peripheral material. The quantity of radioactivity in the daily surface washes, cotton ball receptors, dorsal nail, ventral nail and peripheral nail was determined using liquid scintillation counting.
The results are shown in
The efficacy of a formulation of the invention, Formulation 087, containing 3.00% w/w of a triazole antifungal API, KP-103, was evaluated in an animal model of onychomycosis and, in two separate studies, was compared with that of several commercial products intended for the treatment of onychomycosis. The composition of Formulation 087 is shown in Table 2.
In order to test the efficacy of Formulation 087 and the comparison products, onychomycosis was induced in six-week old Hartley guinea pigs. Each of Formulation 087 and the comparison products were tested in five animals. Two hundred (200) μL of a suspension of Trichophyton mentagrophytes SM-110 (1_108 arthrospores/mL) was inoculated to the plantar and interdigital skin of the hind paws, and the entire feet were then covered with bandage. The bandage was removed 28 days after fungal inoculation. Test treatments were applied for a period of 30 days, starting on the 60th day after infection.
The infected nails were removed from the feet 7 days following the final treatment and were minced with scissors. The nails were placed in a glass homogenizer and PBS (phosphate buffer solution) containing 0.25% porcine pancreatic trypsin was added at a rate of 1 mL/50 mg of wet nail weight, and the nail was homogenized. The homogenate was allowed to stand at 37_ for 1 hour. One hundred microliters of the nail homogenate or its dilution was spread on a GPLP agar medium containing antibiotics and cultured at 30_C for 7 days. After culturing, the fungal colonies that appeared on the medium were counted, and the number of colony forming units (CFU) of fungi in the nails was calculated. The nail sample was considered culture-negative when no fungal colony appeared on the plate.
In Study 1, the efficacy of Formulation 087, applied to the nails at 30 μL/foot once a day for 30 days, was compared with untreated control animals and with 5% Amorolfine lacquer (Loceryl®) applied to the nails at 30 μL/foot once a week for 30 days. In Study 2, 1% naftifine gel (Naftin®) and 8% ciclopirox lacquer (Penlac®), each applied to the nails at 30 μL/foot once a day for 30 days, were compared with untreated control animals. The results of Study 1 and Study 2 are shown in Table 3.
The data of Table 3 establishes that the formulation of the invention was more efficacious in treating onychomycosis in an animal model of human disease than were several currently available therapies for onychomycosis. With Formulation 087 of the invention, 60% of the infected nails were culture-negative following treatment. With the compositions of the prior art, 10% or less of the infected nails were culture-negative following treatment.
An adult male human suffering from onychomycosis of the left large toenail was treated daily by topical application of a 10% topical formulation of the invention containing KP-103. Additional components of the 10% topical formulation were alcohol, vitamin E, butylated hydroxytoluene, cyclomethicone, diisopropyl alcohol, and C12-15 alkyl lactates. Nail involvement at the initiation of treatment was 80% with onycholysis (separation of the nail plate from the nail bed) and thickening of subungual area. Following six months of treatment, the diseased proximal portion of the nail had grown out beyond the distal end of the nail plate (hyponychium) and was subsequently clipped off. There was no active fungal involvement of the nail plate, signs of onycholysis or thickening of the subungual area, or nail involvement after 6 months of treatment.
Several additional formulations of the invention were made containing identical components, but in varying concentrations, as shown in Table 4.
While preferred embodiments of the invention have been described in detail, it will be apparent to those skilled in the art that the disclosed embodiments may be modified. It is intended that such modifications be encompassed in the following claims. Therefore, the foregoing description is to be considered to be exemplary rather than limiting, and the scope of the invention is that defined by the following claims.
The present application is a continuation of U.S. patent application Ser. No. 16/722,715, filed Dec. 20, 2019 (now U.S. Pat. No. 11,213,519), which is a continuation of U.S. patent application Ser. No. 15/849,414, filed Dec. 20, 2017 (now U.S. Pat. No. 10,512,640), which is a continuation of U.S. patent application Ser. No. 15/332,909, filed Oct. 24, 2016 (now U.S. Pat. No. 9,877,955), which is a continuation of U.S. patent application Ser. No. 14/755,699, filed Jun. 30, 2015 (now U.S. Pat. No. 9,566,272), which is a continuation of U.S. patent application Ser. No. 12/006,531, filed Jan. 3, 2008, which applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3655290 | Griffith | Apr 1972 | A |
4052513 | Kaplan | Oct 1977 | A |
4384589 | Morris | May 1983 | A |
4457938 | von Bittera | Jul 1984 | A |
4912124 | Das | Mar 1990 | A |
4985455 | Motono et al. | Jan 1991 | A |
5208257 | Kabara | May 1993 | A |
5391367 | DeVicentis et al. | Feb 1995 | A |
5449715 | Plochocka et al. | Sep 1995 | A |
5461068 | Thaler | Oct 1995 | A |
5549930 | Reysis | Aug 1996 | A |
5578641 | Jackson et al. | Nov 1996 | A |
5588447 | Gueret | Dec 1996 | A |
5620994 | Naito et al. | Apr 1997 | A |
5696105 | Hackler | Dec 1997 | A |
5696164 | Sun et al. | Dec 1997 | A |
5716969 | Naito et al. | Feb 1998 | A |
5750137 | Taskovich et al. | May 1998 | A |
5814305 | Laugier | Sep 1998 | A |
5874069 | Mendolia et al. | Feb 1999 | A |
5916545 | Burnett et al. | Jun 1999 | A |
5962476 | Naito et al. | Oct 1999 | A |
5997893 | Jampani et al. | Dec 1999 | A |
6022551 | Jampani et al. | Feb 2000 | A |
6040266 | Fay et al. | Mar 2000 | A |
6042845 | Sun et al. | Mar 2000 | A |
6080393 | Liu et al. | Jun 2000 | A |
6080416 | Jampani et al. | Jun 2000 | A |
6165484 | Raad et al. | Dec 2000 | A |
6176631 | Gueret | Jan 2001 | B1 |
6197305 | Friedman | Mar 2001 | B1 |
6207142 | Odds et al. | Mar 2001 | B1 |
6231875 | Sun | May 2001 | B1 |
6264927 | Monahan | Jul 2001 | B1 |
6306375 | Ellingson et al. | Oct 2001 | B1 |
6433073 | Kantner et al. | Aug 2002 | B1 |
6538039 | Laurent | Mar 2003 | B2 |
6585963 | Quan et al. | Jul 2003 | B1 |
6676953 | Hexamer | Jan 2004 | B2 |
6740326 | Meyer et al. | May 2004 | B1 |
6821508 | Zatz | Nov 2004 | B2 |
6846837 | Maibach | Jan 2005 | B2 |
7026308 | Gavin et al. | Apr 2006 | B1 |
7094422 | Chew et al. | Aug 2006 | B2 |
7214506 | Tatsumi | May 2007 | B2 |
7582621 | Baker et al. | Sep 2009 | B2 |
7622844 | Kuhlmann-Wilsdorf | Nov 2009 | B1 |
7950865 | Albisetti | May 2011 | B2 |
8039494 | Winckle et al. | Oct 2011 | B1 |
8486978 | Winckle et al. | Jul 2013 | B2 |
9302009 | Winckle et al. | Apr 2016 | B2 |
9566272 | Winckle et al. | Feb 2017 | B2 |
9662394 | Bhatt | May 2017 | B2 |
9861698 | Winckle et al. | Jan 2018 | B2 |
9877955 | Winckle et al. | Jan 2018 | B2 |
10105444 | Winckle et al. | Oct 2018 | B2 |
10245257 | Pillai et al. | Apr 2019 | B2 |
10342875 | Bhatt et al. | Jul 2019 | B2 |
10478601 | Ueta et al. | Nov 2019 | B2 |
10512640 | Winckle et al. | Dec 2019 | B2 |
10828293 | Pillai et al. | Nov 2020 | B2 |
10828369 | Winckle et al. | Nov 2020 | B2 |
10864274 | Bhatt et al. | Dec 2020 | B2 |
11213519 | Winckle | Jan 2022 | B2 |
20020022660 | Jampani et al. | Feb 2002 | A1 |
20020183387 | Bogart | Dec 2002 | A1 |
20030007939 | Murad | Jan 2003 | A1 |
20030075201 | Saito | Apr 2003 | A1 |
20030082129 | Buckingham et al. | May 2003 | A1 |
20040180025 | Long et al. | Sep 2004 | A1 |
20050129641 | Arnaud et al. | Jun 2005 | A1 |
20050142094 | Kumar | Jun 2005 | A1 |
20050176650 | Heasley | Aug 2005 | A1 |
20050181999 | Ferrandis et al. | Aug 2005 | A1 |
20050186161 | Kawase | Aug 2005 | A1 |
20050244342 | Friedman et al. | Nov 2005 | A1 |
20050281750 | Willcox et al. | Dec 2005 | A1 |
20060008538 | Wu et al. | Jan 2006 | A1 |
20060110415 | Gupta | May 2006 | A1 |
20060147383 | Mallard | Jul 2006 | A1 |
20060165747 | Rolf | Jul 2006 | A1 |
20060234981 | Baker et al. | Oct 2006 | A1 |
20060280706 | Sebillotte-Arnaud | Dec 2006 | A1 |
20070041910 | Pitre | Feb 2007 | A1 |
20070071705 | De Oliveira et al. | Mar 2007 | A1 |
20070082039 | Jones et al. | Apr 2007 | A1 |
20070082375 | Tatsumi | Apr 2007 | A1 |
20070142317 | Warren et al. | Jun 2007 | A1 |
20070142478 | Xia et al. | Jun 2007 | A1 |
20070155699 | Baker et al. | Jul 2007 | A1 |
20070207107 | Winckle et al. | Sep 2007 | A1 |
20070207222 | Yu et al. | Sep 2007 | A1 |
20070243218 | Ellinghuysen et al. | Oct 2007 | A1 |
20080233179 | Grenier et al. | Sep 2008 | A1 |
20080317684 | Spann-Wade et al. | Dec 2008 | A1 |
20090030059 | Miki et al. | Jan 2009 | A1 |
20100298394 | Steiner et al. | Nov 2010 | A1 |
20100317695 | Okumura et al. | Dec 2010 | A1 |
20120010246 | Winckle et al. | Jan 2012 | A1 |
20120071533 | Vontz et al. | Mar 2012 | A1 |
20130064872 | Jung et al. | Mar 2013 | A1 |
20130150586 | Mimura et al. | Jun 2013 | A1 |
20140228403 | Winckle et al. | Aug 2014 | A1 |
20150073020 | Winckle et al. | Mar 2015 | A1 |
20190076531 | Winckle et al. | Mar 2019 | A1 |
20190209543 | Pillai et al. | Jul 2019 | A1 |
20190358329 | Bhatt et al. | Nov 2019 | A1 |
20200215048 | Winckle et al. | Jul 2020 | A1 |
20210023069 | Pillai et al. | Jan 2021 | A1 |
20210121572 | Winckle et al. | Apr 2021 | A1 |
20210205457 | Bhatt et al. | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
2673976 | Jul 2008 | CA |
2706114 | Jul 2009 | CA |
2391274 | Dec 2010 | CA |
41306 | Sep 1965 | DE |
0211555 | Feb 1987 | EP |
1205559 | May 2002 | EP |
1273299 | Jan 2003 | EP |
1295543 | Mar 2003 | EP |
2730310 | May 2014 | EP |
2 407 496 | Oct 2003 | GB |
H4-131463 | Dec 1992 | JP |
H10226639 | Aug 1998 | JP |
H11-138086 | May 1999 | JP |
H11-214369 | Aug 1999 | JP |
2002-524495 | Aug 2002 | JP |
3608209 | Jan 2005 | JP |
2009-263346 | Nov 2009 | JP |
8702580 | May 1987 | WO |
9315719 | Aug 1993 | WO |
94026734 | Nov 1994 | WO |
9503775 | Feb 1995 | WO |
9619186 | Jun 1996 | WO |
9630011 | Oct 1996 | WO |
9843673 | Oct 1998 | WO |
9949835 | Oct 1999 | WO |
9951192 | Oct 1999 | WO |
0107643 | Feb 2001 | WO |
0108529 | Feb 2001 | WO |
2004021968 | Mar 2004 | WO |
2004084826 | Oct 2004 | WO |
2005053666 | Jun 2005 | WO |
2007070643 | Jun 2007 | WO |
2007102241 | Sep 2007 | WO |
2007103555 | Sep 2007 | WO |
2008017914 | Feb 2008 | WO |
2009085314 | Jul 2009 | WO |
2010090654 | Aug 2010 | WO |
2010100252 | Sep 2010 | WO |
2011008770 | Jan 2011 | WO |
2011064558 | Jun 2011 | WO |
2011073395 | Jun 2011 | WO |
2011145765 | Nov 2011 | WO |
2012005973 | Jan 2012 | WO |
2013130666 | Sep 2013 | WO |
Entry |
---|
U.S. Appl. No. 17/092,473, filed Nov. 9, 2020. |
U.S. Appl. No. 16/128,835, (now U.S. Pat. No. 10,828,369). |
U.S. Appl. No. 15/826,109, (now U.S. Pat. No. 10,105,444). |
U.S. Appl. No. 14/491,889, (now U.S. Pat. No. 9,861,698). |
U.S. Appl. No. 13/943,165, (now U.S. Pat. No. 9,302,009). |
U.S. Appl. No. 13/199,717, (now U.S. Pat. No. 8,486,978). |
U.S. Appl. No. 12/803,848, (now U.S. Pat. No. 8,039,494). |
U.S. Appl. No. 17/119,780, filed Dec. 11, 2020. |
U.S. Appl. No. 16/435,310, (now U.S. Pat. No. 10,864,274). |
U.S. Appl. No. 15/607,594, (now U.S. Pat. No. 10,342,875). |
U.S. Appl. No. 14/505,379, (now U.S. Pat. No. 9,662,394). |
U.S. Appl. No. 17/062,973, filed Oct. 5, 2020. |
U.S. Appl. No. 16/353,849, (now US. Pat. No. 10,828,293); and U.S. Appl. No. 14/552,307, (now US. Pat. No. 10,245,257). |
“Scientific Committee on Consumer Products (SSCP) Opinion on Octamethylcyclotetrasiloxane (D4), Cyclomethicone (INCI name)” dated Dec. 13, 2005. |
Abrutyn (1999) “Chapter 8: Organo-Modified Siloxane Polymers for Conditioning Skin and Hair Conditioning Agents for Hair and Skin” (Randy Schueller & Perry Romanowski, eds.). |
Abstract No. F78. The Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), 36th ICAAC, held on Sep. 15-18, New Orleans, LA, 1996. |
Abstract No. F79. The Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), 36th ICAAC, held on Sep. 15-18, New Orleans, LA, 1996. |
Abstract No. F80. The Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), 36th ICAAC, held on Sep. 15-18, New Orleans, LA, 1996. |
Adams, A. et al. (Jun. 2009) “LC Stability Studies of Voriconazole and Structural Elucidation of Its Major Degradation Product.” Chroma 69(Suppl 2): 115. |
Ahmed et al. (1983) “The Behaviour of Phenolic Antioxidants, Synergists and their Mixtures in Two Vegetable Oils” European Journal of Lipid Science and Technology 85(12): 479-483. |
Aly, R., “Ecology and epidemiology of dermatophyte infections” (Paper delivered at the International Summit on Cutaneous Antifungal Therapy) J. Am. Acad. Dermatol. 31, S21-S25 (1994). |
Arika, T., et al., “Nishinihon Hifuka” Nishinihon J. Dermatol. 52, 545-549 (1990). |
Baden, H.P., et al., “A comparative study of the physiochemical properties of human keratinized tissues” Biochim. Biophys. Acta 322, 269-278 (1973). |
Benvenuti. “Ingredient Spotlight: Disodium EDTA,” FutureDerm (Sep. 30, 2013). |
Bhatt, Varsha. Development of an optimal formulation for efinaconazole a novel antifungal agent for the treatment of onychomycosis by topical application, J. Am. Acad. Dermatol. 68(4):AB104, Apr. 2, 2013. |
Buck, D.S., et al., “Comparison of two topical preparations for the treatment of Onychomycosis: Melaleuca alternifolia (Tea Tree) oil and clotrimazole” J. Fam. Pract. 38(6), 601-605 (1994). |
Burch, G.E. & Winsor, T., “Diffusion of water through dead plantar, palmar and tarsal human skin and through toe nails” Arch. Derm. Syphilol. 53, 39-41 (1946). |
Ceschin-Roques, C.G., et al., “Ciclopirox nail lacquer 8%: In vivo penetration into and through nails and in vitro effect on pig skin” Skin Pharmacol. 4, 89-94 (1991). |
Colas, A. et al. (Oct. 2005) “Silicones in new pharmaceutical developments, from formulations to manufacturing processes.” PharmaChem, 2005, 46-49. |
Connors, K.A. et al. (1986) “Chapter 5, Oxidation and Photolysis,” Chemical Stability of Pharmaceuticals, Second Ed., John Wiley & Sons, New York, USA, pp. 82-114. |
Del Rosso, J. et al., “Efinaconazole 10% solution a new topical treatment for onychomycosis: contact sensitization and skin irritation potential,” Journal of Clinical and Aesthetic Dermatology, 6(3):20-24, 2013. |
Douglas Dec. 11, 2002 “New topical triazole superior to other agents in nail fungal model” Reuters News Service. |
Elewski, B. et al., “Efinaconazole 10% solution in the treatment of toenail onychomycosis: Two phase III multicenter, randomized, double-blind studies,” J. Am. Acad. Dermatol., 68(4):600-608, 2013. |
Elewski, B. et al., “Onchomycosis: an overview,” J. Drugs Dermatol., 12(7 Suppl. 2):s96-s103, 2013. |
Elewski, B., “Efinaconazole 10% solution: a new topical antifungal therapy for onychomycosis,” Expert Rev. Dermatol., 8(4):347-356, 2013. |
Elewski, B.E. & Hay R.J., “Update on the management of onychomycosis: Highlights of the Third annual international summit on cutaneous antifungal therapy” In: Clinical Infectious Diseases vol. 23 No. 2 Aug. 1996 (Chicago, IL: The University of Chicago Press, 1996) pp. 305-313. |
Elewski, B.E., “Onychomycosis” Fitzpatrick's J. Clin. Dermatol. Nov./Dec., 48-54 (1994). |
Elewski, B.E., “Onychomycosis: Pathogenesis, diagnosis, and management” C/in. Microbiol. Rev. 11(3), 415-429 (1998). |
Elewski, B.E., “Trends in the management of cutaneous fungal infections” Jpn. J. Med. Mycol. 36, 7-12 (1995). |
Franz, T.J., “Absorption of amorolfine through human nail” Dermato/, 184(Supp | 1 ) , 18-20 (1992). |
Ghanem, et al. (1987) “The Effects of Ethanol on the Transport of 13-Estradiol and Other Permeants in Hairless Mouse Skin” Journal of Controlled Release, 6, 75-83. |
Goodman and Gilman's (The Pharmacological Basis of Therapeutics (Tenth Edition (2001), McGraw Hill, Chapter I, pp. 3-29) (2001). |
Haria, M. & Bryson, H.M. , “Amoro Ifine: A review of its pharmacological properties and therapeutic potential in the treatment of onychomycosis and other superficial fungal infections” Drugs, 49(1), 103-120 (1995). |
Hartman, P.G. and D. Sanglard, “Inhibitors of Ergosterol Biosynthesis as Antifungal Agents,” Current Pharmaceutical Design, 1997, vol. 3, No. 2, 177-208. |
Hay R.J. et al. (Mar. 1985) “Tioconazole Nail Solution—an Open Study of its Efficacy in Onychomycosis.” Clinical and Experimental Dermatology, 10, 111-115. |
Hay, R.J., “Leading articles: The +B208azole antifungal drugs” J. Antimicrob. Chemother. 20, 1-5 (1987). |
Inagi et al. (1981) “Influence of Vehicle Composition on the Penetration of Indomethacin through Guinea-Pig Skin” Chem. Pharm. Bull. 29(6), 1708-1714. |
Janssen Pharmaceuticals, “Pevaryl®” (Mar. 2009), 3 pages. |
Japan Pharmaceutical Excipients Council, “Disodium Edetate,” and “Anhydrous Citric Acid,” Japanese Pharmaceutical Excipient Directory, Jul. 25, 2007, ISBN 9784840809863, pp. 39 and 291. |
Japan Pharmaceutical Excipients Council, Revised Pharmaceutical Additives Handbook, Yakuji Nippo Limited, Feb. 28, 2007, pp. 407-408. |
Jarratt, M. et al., “Safety and pharmacokinetics of Efinaconazole 10% solution in healthy volunteers and patients with severe onychomycosis,” J. Drugs Dermatol., 12(9):1010-1016, 2013. |
Kobayashi, Y., et al., “Enhancing effect of N-acetyl-L-cysteine or 2-mercaptoethanol on the in vitro permeation of 5-fluorouracli or tolnaftate through the human nail plate” Chem. Pharm. Bull. 46(11), 1797-1802 (1998). |
Li et al. (2009) “Antioxidant System for the Preservation of Vitamin A in Ultra Rice,” Food and Nutrition Bulletin 30(1): 82-89. |
Lofty, H. et al. (2012) “Novel Spectrophotometric Methods for the Determination of Fluconazole in the Presence of Its Oxidative Degradation Product.” J. Chil. Chem. Soc., 57(4), 1447-1455. |
Marty, J-P. L., “Amorolfine nail lacquer: A novel formulation” J. Eur. Acad. Dermatol. Venereal. 4(Suppl. 1), S17-S21 (1995). |
Mertin, D. & Lippold, B.C., “In-vitro permeability of the human nail and of a keratin membrane from bovine hooves: Influence of the partition coefficient octanol/water and the water solubility of drugs on their permeability and maximum flux” J. Pharm. Pharmacol. 49(1), 30-34 (1997). |
Mertin, D. & Lippold, B.C., “In-vitro permeability of the human nail and of a keratin membrane from bovine hooves: Penetration of chloramphenicolfrom lipophilic vehicles and a nail lacquer” J. Pharm. Pharmacol. 49(3), 241-245 (1997). |
Mertin, D. & Lippold, B.C., “In-vitro permeability of the human nail and of a keratin membrane from bovine hooves: Prediction of the penetration rate of antimycotics through the nail plate and their efficacy” J. Pharm. Pharmacol. 49(9), 866-872 (1997). |
Murdan. “Drug delivery to the nail following topical application” Int. J. Pharmaceut. (2002) 236: 1-26. |
Nicotra, F., “4.2.2. Antioxidants,” in Organic and Bio-molecular Chemistry, vol. 2, Encyclopedia of Life Support Systems, pp. 68-71, 2009. |
Niewerth, M. & Korting, H.C., “Management of onychomycoses” Drugs 58(2), 283-296 (1999). |
Norwich Pharmacal Co. (Jun. 29, 1953) “Triple-Action + Penetration Beats Athlete's Foot.” Life Magazine, p. 96. |
Notabartolo, J., “Dermatology market watch onychomycosis rediscovering topical antifungal therapy,” J. Dermatol. Phys. Assist., 7(3):13-14, 2013. |
Odom, R.B. “New therapies for onychomycosis” (Paper delivered at the symposium “Onychomycosis: Issues and observations”) J. Am. Acad. Dermatol. 35, S26-S30 (1996). |
Ogura, et al. “Synthesis and Antifungal Activities of (2R,2R)-2-Aryl-1-azolyl-3-(substituted amino)-2-butanol Derivatives as Topical Antifungal Agents,” Chem. Pharm. Bull. 47(10) 1417-1425 (1999). |
PENLAC™ Nail Lacquer Prescription Label (Dec. 1999, pp. 1-13, accessed from http://www.accessdata.fda.gov/drugsatfda_docs/label/1999/210221bl.pdf on Dec. 14, 2015). |
Pollak, R. Jan. 22, 2013 “Could Efinaconazole 10% have an impact for onychomycosis? Online Case Study” Podiatry Today vol. 26, Issue 2, 7 pages. |
Quintanar-Guerrero, D. et al., “The effect of keratolytic agents on the permeability of three imidazole antimycotic drugs through the human nail” Drug Dev. Ind. Pharm. 24(7), 685-690 (1998). |
Raghavan, R. and Joseph, J., “Spectroscopic Methods of Analysis: Ultraviolet and Visible Spectrophotometry,” Encyclopedia of Pharmaceutical Technology, 3rd Ed. Vol. 1, pp. 3460-3475, 2007. |
Reinel, et al. (1992) “Topical Treatment of Onychomycosis with Amorolfine 5% Nail Lacquer: Comparative Efficacy and Tolerability of Once and Twice Weekly Use,” Dermatol. 184, 21-24. |
Relyveld, G et al., “Benzoyl peroxide/clindamycin/UVA is more effective than fluticasone/UVA in progressive macular hypomelanosis: a randomized study,” J. Am. Acad. Dermatol. 55:836-43, 2006. |
Remington, (2006) “Chapter 39: Solutions, Emulsions, Suspension, and Extracts.” The Science and Practice of Pharmacy, 21st Ed., pp. 747-749. |
Rich, P., “Topical treatment of onychomycosis with efinaconazole solution 10%,” Cutis, 91:305-307, 2013. |
Roberts, D.T., et al., “Guidelines for treatment of onychomycosis” Brit. J. Dermatol. 148, 402-410 (2003). |
Rowe, et al., (2006) “Citric Acid.” Handbook of Pharmaceutical Excipients, Fifth ed., The American Pharmacists Association. p. 185-187. |
Rowe, et al., (2006) “Edetic acid.” Handbook of Pharmaceutical Excipients, Fifth ed., The American Pharmacists Association. pp. 260-263. |
Rowe, et al., (2009) “Butylated Hydroxytoluene.” Handbook of Pharmaceutical Excipients, Sixth ed., Pharmaceutical Press. pp. 75-76. |
Rowe, et al., (2009) “Citric Acid Monohydrate” Handbook of Pharmaceutical Excipients, Sixth ed., Pharmaceutical Press. pp. 181-183. |
Rowe, et al., (2009) “Edetic Acid.” Handbook of Pharmaceutical Excipients, Sixth ed., Pharmaceutical Press. pp. 247-250. |
Rowe, et al., (2009) “Polyethylene Glycol.” Handbook of Pharmaceutical Excipients, Sixth ed., Pharmaceutical Press. pp. 517-521. |
Scher, R.K., “Onychomycosis: therapeutic update” J. Am. Acad. Dermatol. 40, S21-S26 (1999). |
Siddiqui et al. (2010) “Analytical Reflectance Spectroscopic Method for Analysis of Iron Oxide Lake Dye Coating Solutions,” Karachi University Journal of Science, 38, pp. 1-5. |
Siu, W.J.J. et al., “Comparison of in vitro antifungal activities of Efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis,” Antimicrobial Agents and Chemotherapy, 57(4):1610-1616, 2013. |
Smith, E. et al. (2002) “Topical Dermatological Vehicles: A Holistic Approach.” Topical Absorption of Dermatological Products; Bronaugh, R. L., Maibach, H. I., Eds; Marcel Dekker, Inc.: New York, United States; pp. 457-463. |
Spruit, D., “Measurement of water vapor loss through human nail in vivo” J. Investig. Oermatol. 56(5), 359-361 (1971). |
Starch, M.S. “Using Silicones in Topical Products” in Osborne, D.W. and Amann, A.H., Topical Drug Delivery Formulations, Boca Raton, FL: Taylor & Francis Group, LLC, 1989, 42, pp. 389-408. |
Stuttgen, G. & Bauer, E., “Bioavailability, skin and nail penetration of topically applied antimycotics” Mykosen, 25(2), 74-80 (1982). |
Summerbell, R.C., “Epidemiology and ecology of onychomycosis” Oermatol. 194(Supp. 1), 32-36 (1997). |
Sun et al., “Nail Penetration.” Chap. 30 in Topical Absorption of Dermatological Products. New York: Marcel Dekker, Inc., 2001. |
Tatsumi, Y et al. (Dec. 2002) “Therapeutic Efficacy of Topically Applied KP-103 against Experimental Tinea Unguium in Guinea Pigs in Comparison with Amorolfine and Terbinafine,” Antimicrobial Agents and Chemotherapy, vol. 46, No. 12, pp. 3797-3801. |
Tatsumi, Y. et al. “In Vivo Fungicidal Effect of KP-103 in a Guinea Pig Model of Interdigital Tinea Pedis Determined by Using a New Method for Removing the Antimycotic Carryover Effect,” Microbiol. Immunol. (2002) 46(7): 433-439. |
Tatsumi, Y. et al. (2013) “Mechanism of action of Efinaconazole, a novel triazole antifungal agent,” Antimicrob. Agents Chemother. 57(5):2405-2409. |
Tatsumi, Y. et al. (May 2001) “In Vitro Antifungal Activity of KP-103, A Novel Triazole Derivative, and its Therapeutic Efficacy Against Experimental Plantar Tinea Pedis and Cutaneous Candidiasis in Guinea Pigs,” Antimicrobial Agents and Chemotherapy, 45(5): 1493-1499. |
Tatsumi, Y. et al. “KP-103, a novel triazole derivative, is effective in preventing relapse and successfully treating experimental interdigital Tinea Pedis and Tinea Corporis in guinea pigs,” Microbiol. Immunol. (2002) 46(7): 425-432. |
Tosti, A., “Efinaconazole solution 10%: Topical antifungal therapy for toenail onychomycosis,” Cutis, 92:203-208, 2013. |
Tschen, E. et al., “Efinaconazole solution in the treatment of toenail Onychomycosis: a phase 2, multicenter, randomized, double-blind study,”J Drugs Dermatol., 12(2):186-92, 2013. |
Tsukioka. May 11, 2006 “Kaken Pharmaceutical to license its antifungal compound KP-103 to Dow Pharmaceutical Sciences” Japan Corporate News. |
USP 23 NF 18 (1995) Chapter <1061> “Color—Instrumental Measurement” The United States Pharmacopeia—The National Formulary. pp. 1860-1861. |
USP 23 NF 18 (1995) Chapter <851> “Spectrophotometry and Light-Scattering” The United States Pharmacopeia—The National Formulary. pp. 1830-1835. |
Valeant Canada LP, “PrJublia™ Efinaconazole Topical Solution, 10% w/w, Topical Antifungal Agent,” Product Monograph, Oct. 2, 2013, 24 pages. |
Valeant Pharmaceuticals International Inc., “Valeant Pharmaceuticals Announces Approval Of Jublia® For The Treatment Of Onychomycosis In Canada,” News Release 1-2, Oct. 3, 2013 [retrieved Jan. 20, 2015]. Retrieved from the Internet, http://ir.valeant.com/investor-relations/news-releases/news-release-details/2013/Valeant-Pharmaceuticals-Announces-Approval-Of-Jublia-For-The-Treatment-Of-Onychomycosis-In-Canada/default.aspx. |
Valeant Pharmaceuticals North America LLC, “JUBLIA® (efinaconazole) topical solution, 10%,” Patient Information and Instructions for Use, Revised Jun. 2014, retrieved online at URL: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/203567s000lbl.pdf on Apr. 11, 2017, 13 pages. |
Van Hoogdalem, E.J., “Nail penetration of the antifungal agent oxiconazole after repeated topical application in health volunteers, and the effect of acetylcysteine” Eur. J. Pharm. Sci. 5, 119-127 (1997). |
Vanderdonckt et al., Miconazole alcoholic solution in the treatment of mycotic nail infections, Mykosen, 19(17):251-256. |
Walters, K.A. et al. (1983) “Permeability characteristics of human nail plate.” International Journal of Cosmetic Science, 5, 231-246. |
Walters, K.A. et al., “Penetration of the human nail plate: The effects of vehicle pH on the permeation of micronazole” J. Pharm. Pharmacol. 37, 771-775 (1985). |
Walters, K.A. et al., “Physiochemical characterization of the human nail: Solvent effects on the permeation of homoglous alcohols” J. Pharm. Pharmacol. 37, 498-499 (1985). |
Walters, K.A. et al., “Physiochemical characterization of the human nail: Permeation pattern for water and the homologous alcohols and differences with respect to the stratum corneum” J. Pharm. Pharmaco. 35, 28-33 (1983). |
Walters, K.A. et al., “Physiochemical characterization of the human nail: I. Pressure sealed apparatus for measuring nail plate permeabilities” J. Invest. Dermatol. 76, 76-79 (1981). |
Wang, Shihua et al. “Effect of Disodium EDTA on the Stability and Efficacy of Compound Ketoconazole Cream” West China Journal of Pharmaceutical Sciences, vol. 22, No. 2, pp. 236-237 (Dec. 31, 2007). |
Number | Date | Country | |
---|---|---|---|
20220362231 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16722715 | Dec 2019 | US |
Child | 17561198 | US | |
Parent | 15849414 | Dec 2017 | US |
Child | 16722715 | US | |
Parent | 15332909 | Oct 2016 | US |
Child | 15849414 | US | |
Parent | 14755699 | Jun 2015 | US |
Child | 15332909 | US | |
Parent | 12006531 | Jan 2008 | US |
Child | 14755699 | US |