Compositions and Methods for Treating Lung Cancer

Information

  • Patent Application
  • 20110092595
  • Publication Number
    20110092595
  • Date Filed
    February 13, 2009
    15 years ago
  • Date Published
    April 21, 2011
    13 years ago
Abstract
Embodiments of the present invention provide compositions and methods for treating lung cancer, including small cell and non-small cell lung cancer that may express HIF-1a by administering a therapeutically effective amount of PX-478.
Description
GOVERNMENT INTERESTS

Not applicable


PARTIES TO A JOINT RESEARCH AGREEMENT

Not applicable


INCORPORATION BY REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC

Not applicable


BACKGROUND

1. Field of Invention


Not applicable


2. Description of Related Art


Not applicable


BRIEF SUMMARY OF THE INVENTION

Embodiments of the present invention provide methods of treating lung cancer by administering PX-478. Preferably, PX-478 is administered in a therapeutically effective amount. Preferably, said lung cancer is selected from small cell and non-small cell lung cancer.


Further embodiments of the present invention provide methods of treating lung cancer by administering PX-478, wherein said lung cancers exhibit HIF-1α. Preferably, said lung cancer is selected from small cell and non-small cell lung cancer. More preferably, said small cell and non-small cell lung cancer express HIF-1α.


Further embodiments of the present invention provide therapeutic compositions and pharmaceutical compositions comprising a therapeutically effective amount of PX-478 to inhibit lung cancer.





DESCRIPTION OF DRAWINGS

The file of this patent contains at least one photograph or drawing executed in color. Copies of this patent with color drawing(s) or photograph(s) will be provided by the Patent and Trademark Office upon request and payment of necessary fee.


For a fuller understanding of the nature and advantages of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings, in which:



FIG. 1 is a schematic of the effects of hypoxia on an exemplary mammalian system. In particular, the schematic illustrates HIF-1α antagonism of PX-478 inhibits progression and spread of orthotopic human small cell lung cancer and lung adenocarcinoma in mice.



FIG. 2 is a schematic of the effects of HIF-1 as a target for cancer therapy.



FIG. 3A is the immunohistochemical staining for HIF-1α in HT-29 colon cancer cell line and FIG. 3B is a graph depicting the mean tumor volume following administration of PX-478 or control. FIG. 3C is the immunohistochemical staining for HIF-1 α in A549 non-small cell lung cancer cell line and FIG. 3D is a graph depicting the mean tumor volume following administration of PX-478 or control.



FIG. 4 is the analysis of the expression of HIF-1α in a panel of lung cancer cell lines.



FIG. 5 presents the HIF-1α expression in tumor tissue from orthotopic human lung cancer in mice. In particular, FIG. 5A is non-small cell lung cancer (PC14PE6); FIG. 5B is non-small cell lung cancer (NCI-H460); FIG. 5 C is small cell lung cancer (NCI-H187); and FIG. 5D is small cell lung cancer (NCI-N417).



FIG. 6 is a table presenting the results of treatment of orthotopic human lung adenocarcinoma (PC14PE6) with PX-478 at 10 or 20 mg/kg/day for five days, vehicle for five days or cytoxan at 150 mg/kg/day for five days, which began on day 18 after lung tumor implantation.



FIG. 7 is a table presenting the results of treatment of orthotopic human small cell lung cancer (NCI-H187) with PX-478 at 10 or 20 mg/kg/day for five days, vehicle for five days or cytoxan at 150 mg/kg/day for five days, which began on day 18 after lung tumor implantation.



FIG. 8 are graphs depicting the percent survival of mice with orthotopic human lung adenocarcinoma (PC14PE6) (A) or small cell lung cancer (NCI-H187) (B) after treatment with PX-478 or vehicle for five days.





DETAILED DESCRIPTION

Before the present compositions and methods are described, it is to be understood that this invention is not limited to the particular processes, compositions, or methodologies described, as these may vary. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, the preferred methods, devices, and materials are now described. All publications mentioned herein are incorporated by reference in their entirety. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.


Optical Isomers—Diastereomers—Geometric Isomers—Tautomers. Compounds described herein may contain an asymmetric center and may thus exist as enantiomers. Where the compounds according to the invention possess two or more asymmetric centers, they may additionally exist as diastereomers. The present invention includes all such possible stereoisomers as substantially pure resolved enantiomers, racemic mixtures thereof, as well as mixtures of diastereomers. The formulas are shown without a definitive stereochemistry at certain positions. The present invention includes all stereoisomers of such formulas and pharmaceutically acceptable salts thereof. Diastereoisomeric pairs of enantiomers may be separated by, for example, fractional crystallization from a suitable solvent, and the pair of enantiomers thus obtained may be separated into individual stereoisomers by conventional means, for example by the use of an optically active acid or base as a resolving agent or on a chiral HPLC column. Further, any enantiomer or diastereomer of a compound of the general formula may be obtained by stereospecific synthesis using optically pure starting materials or reagents of known configuration.


It must also be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to a “cell” is a reference to one or more cells and equivalents thereof known to those skilled in the art, and so forth.


As used herein, the term “about” means plus or minus 10% of the numerical value of the number with which it is being used. Therefore, about 50% means in the range of 45%-55%.


“Administering” when used in conjunction with a therapeutic means to administer a therapeutic directly into or onto a target tissue or to administer a therapeutic to a patient whereby the therapeutic positively impacts the tissue to which it is targeted. Thus, as used herein, the term “administering”, when used in conjunction with a compound, can include, but is not limited to, providing the compound into or onto the target tissue; providing the compound systemically to a patient by, e.g., intravenous injection whereby the therapeutic reaches the target tissue. “Administering” a composition may be accomplished by injection, topical administration, or by either method in combination with other known techniques. Such combination techniques include radiation or other cancer chemotherapeutic agents.


The term “animal,” “subject” or “patient” as used herein includes, but is not limited to, humans and non-human vertebrates such as wild, domestic and farm animals, preferably humans.


The term “inhibiting” includes the administration of a compound of the present invention to prevent the onset of the symptoms, alleviating the symptoms, or eliminating the disease, condition or disorder.


By “pharmaceutically acceptable”, it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.


As used herein, the term “therapeutic” means an agent utilized to treat, combat, ameliorate, prevent or improve an unwanted condition or disease of a patient. In part, embodiments of the present invention are directed to the treatment of cancer, the decrease in proliferation of cells, the increase in apoptosis of cancerous cells, the decrease in tumor growth or decrease in metastasis.


A “therapeutically effective amount” or “effective amount” of a composition is a predetermined amount calculated to achieve the desired effect, i.e., to inhibit, block, or reverse the activation, migration, or proliferation of cells. The activity contemplated by the present methods includes both medical therapeutic and/or prophylactic treatment, as appropriate. The specific dose of a compound administered according to this invention to obtain therapeutic and/or prophylactic effects will, of course, be determined by the particular circumstances surrounding the case, including, for example, the compound administered, the route of administration, and the condition being treated. The compounds are effective over a wide dosage range and, for example, dosages per day will normally fall within the range of from 0.001 to 10 mg/kg, more usually in the range of from 0.01 to 1 mg/kg, and as further described herein. However, it will be understood that the effective amount administered will be determined by the physician in the light of the relevant circumstances including the condition to be treated, the choice of compound to be administered, and the chosen route of administration, and therefore the above dosage ranges are not intended to limit the scope of the invention in any way. A therapeutically effective amount of compound of this invention is typically an amount such that when it is administered in a physiologically tolerable excipient composition, it is sufficient to achieve an effective systemic concentration or local concentration in the tissue.


The terms “treat,” “treated,” or “treating” as used herein refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological condition, disorder or disease, or to obtain beneficial or desired clinical results. For the purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms; diminishment of the extent of the condition, disorder or disease; stabilization (i.e., not worsening) of the state of the condition, disorder or disease; delay in onset or slowing of the progression of the condition, disorder or disease; amelioration of the condition, disorder or disease state; and remission (whether partial or total), whether detectable or undetectable, or enhancement or improvement of the condition, disorder or disease. Treatment includes eliciting a clinically significant response without excessive levels of side effects. Treatment also includes prolonging survival as compared to expected survival if not receiving treatment.


Generally speaking, the term “tissue” refers to any aggregation of similarly specialized cells which are united in the performance of a particular function. As used herein, “tissue”, unless otherwise indicated, refers to tissue which includes elastin as part of its necessary structure and/or function.


Embodiments of the present invention provide methods of treating lung cancer by administering PX-478. Preferably, PX-478 is administered in a therapeutically effective amount. Preferably, said lung cancer is selected from small cell and non-small cell lung cancer. Such methods may further comprise administering PX-478 in combination with other cancer therapies, including, for example, cancer chemotherapeutic agents and/or radiation or photodynamic therapy. Such methods may further comprise administering PX-478 in combination with other antiangiogenic agents or other targeted drug therapy. Exemplary chemotherapeutic agents include, for example, cyclophosphamide (Cytoxan®), gemcitabine, paclitaxel (Taxol) or vinorelbine, platinum drugs (for example carboplatin or cisplatin), docetaxel (Taxotere), etoposide and topotecan. Exemplary targeted drug therapy that may be useful in the embodiments of the present invention include, for example, bevacizumab (Avastin) and erlotinib (Tarceva), gefitinib.


Further embodiments of the present invention provide methods of treating lung cancer by administering PX-478, wherein said lung cancers exhibit HIF-1α. Preferably, said lung cancer is selected from small cell and non-small cell lung cancer. More preferably, said small cell and non-small cell lung cancer express HIF-1α. Such methods may further comprise administering PX-478 in combination with other cancer therapies, including, for example, cancer chemotherapeutic agents and/or radiation. Such methods may further comprise administering PX-478 in combination with other antiangiogenic agents.


Embodiments of the present invention provide methods of treating small cell lung cancer by administering PX-478. Such methods may further comprise administering PX-478 in combination with other cancer therapies, including, for example, cancer chemotherapeutic agents and/or radiation or photodynamic therapy. Such methods may further comprise administering PX-478 in combination with other antiangiogenic agents or other targeted drug therapy. Exemplary chemotherapeutic agents include, for example, cyclophosphamide (Cytoxan®), gemcitabine, paclitaxel (Taxol) or vinorelbine, platinum drugs (for example carboplatin or cisplatin), docetaxel (Taxotere), etoposide and topotecan. Exemplary targeted drug therapy that may be useful in the embodiments of the present invention include, for example, bevacizumab (Avastin) and erlotinib (Tarceva), gefitinib.


Further embodiments of the present invention provide therapeutic compositions and pharmaceutical compositions comprising a therapeutically effective amount of PX-478 to inhibit lung cancer. The compositions may further comprise other therapeutic agents, including, for example, cancer chemotherapeutic agents and/or other antiangiogenic agents. In certain embodiments, a therapeutically effective amount of PX-478 is equal to about 1 to about 500 mg/kg/day, about 10 to about 100 mg/kg/day, about 50 to about 100 mg/kg/day, such as about 10 mg/kg/day, about 20 mg/kg/day, about 80 mg/kg/day and about 100 mg/kg/day. In certain embodiments, a therapeutically effective amount of PX-478 is about 25 to about 100 mg/m2 in humans. In certain embodiments, a therapeutically effective amount of PX-478 is about 25 to about 75 mg/m2 in humans. In certain embodiments, a therapeutically effective amount of PX-478 is no more than about 75 mg/m2 in humans. In certain embodiments, a therapeutically effective amount of PX-478 is the human equivalent dose of about 1 to about 500 mg/kg/day for mice, about 10 to about 100 mg/kg/day for mice, about 50 to about 100 mg/kg/day for mice, such as about 10 mg/kg/day for mice, about 20 mg/kg/day for mice, about 80 mg/kg/day for mice and about 100 mg/kg/day for mice, which would be readily understood by one skilled in the art, particularly with reference to the FDA Dose Calculator. For example, an about 10 mg/kg/day dose in mice would be equivalent to about 0.79/mg/kg/day in a human using an average human body weight of 65 kg or about 30 mg/m2, an about 20 mg/kg/day dose in mice would be equivalent to about 1.59 mg/kg/day in a human using an average human body weight of 65 kg or about 60 mg/m2, an about 80 mg/kg/day dose in mice would be equivalent to about 6.35 mg/kg/day in a human using an average human body weight of 65 kg or about 240 mg/m2, and an about 100 mg/kg/day dose in mice would be equivalent to about 7.94 mg/kg/day in a human using an average human body weight of 65 kg or about 300 mg/m2. With respect to an effective dosing regimen, in certain embodiments, the therapeutically effective amount of PX-478 may be administered once a day for about five consecutive days over an about 21 day cycle. In another embodiment, an effective dosing regimen may be every about 3 days. In another embodiment, an effective dosing regimen may be about every other day for a total of 3 days during a week for about four weeks.


Further embodiments of the present invention provide methods of inhibiting or treating metastasis of lung cancer by administering PX-478. Preferably, said lung cancers express HIF-1α. Such methods may further comprise administering PX-478 in combination with other cancer therapies, including, for example, cancer chemotherapeutic agents and/or radiation. Such methods may further comprise administering PX-478 in combination with other antiangiogenic agents.


Another emobidment of the present invention is a therapeutic composition for inhibiting lung cancer comprising PX-478 and a pharmaceutically acceptable excipient. In certain embodiments, the therapeutic composition contains a therapeutically effective amount of PX-478.


PX-478 is S-2-amino-3-[4′-N,N,-bis(chloroethyl)amino]-phenyl propionic acid N-oxide dihydrochloride having the following chemical structure:




embedded image


As used herein, “PX-478” means S-2-amino-3-[4′-N,N,-bis(chloroethyl)amino]-phenyl propionic acid N-oxide dihydrochloride, the basic form (non-salt), or any other salts thereof.


Hypoxia is a common feature of solid tumors and is associated with a more aggressive phenotype and resistance to radiation and chemotherapy mediated primarily by the transcription factor HIF1-α. FIG. 1 presents the effects of hypoxia. FIG. 2 presents the rationale for HIF-1 as a target for cancer therapy.


PX-478, a potent small molecule inhibitor of HIF1-α currently being evaluated in Phase I clinical trial, inhibits the subcutaneous growth of a wide variety of tumors but was ineffective against HIF1-α negative A549 lung cancer xenografts as reported in, for example, U.S. Publication No. 20060104902 entitled “Method of Preselection Patients for Anti-VEGF, Anti-HIF-1 or Anti-Thioredoxin Therapy.” As shown in FIG. 3, PX-478 inhibited the growth of HT-29 colon cancer (A), but not A549 lung cancer (B) subcutaneous tumor xenografts when administered at 80 or 100 mg/kg daily i.p. for five days.


As shown in FIG. 4, it has been observed that the expression of HIF-1α varies amongst different lung cancer cell lines.



FIG. 5 depicts the HIF-1α expression in tumor tissue from orthotopic human lung cancer in mice in non-small cell lung cancer (PC14PE6 and NCI-H460) and small cell lung cancer (NCI-H187 and NCI-N417) from immunohistochemical staining.


In the current study, the effects of PX-478 therapy on human small (SCLC) and non-small (NSCLC) cell lung cancers that express HIF1-α in vitro and in vivo, growing orthotopically was studied. The methods and results are provided in the Example 1. As reported therein, it was unexpectedly observed that PX-478 demonstrates efficacy against certain small cell and non small cell lung cancers.


For example, in some aspects, the invention is directed to a pharmaceutical composition comprising a compound, as defined above, and a pharmaceutically acceptable carrier or diluent, or an effective amount of a pharmaceutical composition comprising a compound as defined above.


The compounds of the present invention can be administered in the conventional manner by any route where they are active. Administration can be systemic, topical, or oral. For example, administration can be, but is not limited to, parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, oral, buccal, or ocular routes, or intravaginally, by inhalation, by depot injections, or by implants. Thus, modes of administration for the compounds of the present invention (either alone or in combination with other pharmaceuticals) can be, but are not limited to, sublingual, injectable (including short-acting, depot, implant and pellet forms injected subcutaneously or intramuscularly), or by use of vaginal creams, suppositories, pessaries, vaginal rings, rectal suppositories, intrauterine devices, and transdermal forms such as patches and creams.


Specific modes of administration will depend on the indication. The selection of the specific route of administration and the dose regimen is to be adjusted or titrated by the clinician according to methods known to the clinician in order to obtain the optimal clinical response. The amount of compound to be administered is that amount which is therapeutically effective. The dosage to be administered will depend on the characteristics of the subject being treated, e.g., the particular animal treated, age, weight, health, types of concurrent treatment, if any, and frequency of treatments, and can be easily determined by one of skill in the art (e.g., by the clinician).


Pharmaceutical formulations containing the compounds of the present invention and a suitable carrier can be solid dosage forms which include, but are not limited to, tablets, capsules, cachets, pellets, pills, powders and granules; topical dosage forms which include, but are not limited to, solutions, powders, fluid emulsions, fluid suspensions, semi-solids, ointments, pastes, creams, gels and jellies, and foams; and parenteral dosage forms which include, but are not limited to, solutions, suspensions, emulsions, and dry powder; comprising an effective amount of a polymer or copolymer of the present invention. It is also known in the art that the active ingredients can be contained in such formulations with pharmaceutically acceptable diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, preservatives and the like. The means and methods for administration are known in the art and an artisan can refer to various pharmacologic references for guidance. For example, Modern Pharmaceutics, Banker & Rhodes, Marcel Dekker, Inc. (1979); and Goodman & Gilman's The Pharmaceutical Basis of Therapeutics, 6th Edition, MacMillan Publishing Co., New York (1980) can be consulted.


The compounds of the present invention can be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. The compounds can be administered by continuous infusion subcutaneously over a period of about 15 minutes to about 24 hours. Formulations for injection can be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents.


For oral administration, the compounds can be formulated readily by combining these compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained by adding a solid excipient, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients include, but are not limited to, fillers such as sugars, including, but not limited to, lactose, sucrose, mannitol, and sorbitol; cellulose preparations such as, but not limited to, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and polyvinylpyrrolidone (PVP). If desired, disintegrating agents can be added, such as, but not limited to, the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.


Dragee cores can be provided with suitable coatings. For this purpose, concentrated sugar solutions can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.


Pharmaceutical preparations which can be used orally include, but are not limited to, push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as, e.g., lactose, binders such as, e.g., starches, and/or lubricants such as, e.g., talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers can be added. All formulations for oral administration should be in dosages suitable for such administration.


For buccal administration, the compositions can take the form of, e.g., tablets or lozenges formulated in a conventional manner.


For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit can be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator can be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.


The compounds of the present invention can also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.


In addition to the formulations described previously, the compounds of the present invention can also be formulated as a depot preparation. Such long acting formulations can be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.


Depot injections can be administered at about 1 to about 6 months or longer intervals. Thus, for example, the compounds can be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.


In transdermal administration, the compounds of the present invention, for example, can be applied to a plaster, or can be applied by transdermal, therapeutic systems that are consequently supplied to the organism.


Pharmaceutical compositions of the compounds also can comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as, e.g., polyethylene glycols.


The compounds of the present invention can also be administered in combination with other active ingredients, such as, for example, adjuvants, protease inhibitors, or other compatible drugs or compounds where such combination is seen to be desirable or advantageous in achieving the desired effects of the methods described herein.


In some embodiments, the disintegrant component comprises one or more of croscarmellose sodium, carmellose calcium, crospovidone, alginic acid, sodium alginate, potassium alginate, calcium alginate, an ion exchange resin, an effervescent system based on food acids and an alkaline carbonate component, clay, talc, starch, pregelatinized starch, sodium starch glycolate, cellulose floc, carboxymethylcellulose, hydroxypropylcellulose, calcium silicate, a metal carbonate, sodium bicarbonate, calcium citrate, or calcium phosphate.


In some embodiments, the diluent component comprises one or more of mannitol, lactose, sucrose, maltodextrin, sorbitol, xylitol, powdered cellulose, microcrystalline cellulose, carboxymethylcellulose, carboxyethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, methylhydroxyethylcellulose, starch, sodium starch glycolate, pregelatinized starch, a calcium phosphate, a metal carbonate, a metal oxide, or a metal aluminosilicate.


In some embodiments, the optional lubricant component, when present, comprises one or more of stearic acid, metallic stearate, sodium stearyl fumarate, fatty acid, fatty alcohol, fatty acid ester, glyceryl behenate, mineral oil, vegetable oil, paraffin, leucine, silica, silicic acid, talc, propylene glycol fatty acid ester, polyethoxylated castor oil, polyethylene glycol, polypropylene glycol, polyalkylene glycol, polyoxyethylene-glycerol fatty ester, polyoxyethylene fatty alcohol ether, polyethoxylated sterol, polyethoxylated castor oil, polyethoxylated vegetable oil, or sodium chloride.


As used herein, the term “alginic acid” refers to a naturally occurring hydrophilic colloidal polysaccharide obtained from the various species of seaweed, or synthetically modified polysaccharides thereof.


As used herein, the term “sodium alginate” refers to a sodium salt of alginic acid and can be formed by reaction of alginic acid with a sodium containing base such as sodium hydroxide or sodium carbonate. As used herein, the term “potassium alginate” refers to a potassium salt of alginic acid and can be formed by reaction of alginic acid with a potassium containing base such as potassium hydroxide or potassium carbonate. As used herein, the term “calcium alginate” refers to a calcium salt of alginic acid and can be formed by reaction of alginic acid with a calcium containing base such as calcium hydroxide or calcium carbonate. Suitable sodium alginates, calcium alginates, and potassium alginates include, but are not limited to, those described in R. C. Rowe and P. J. Shesky, Handbook of pharmaceutical excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety. Suitable sodium alginates, include, but are not limited to, Kelcosol (available from ISP), Kelfone LVCR and HVCR (available from ISP), Manucol (available from ISP), and Protanol (available from FMC Biopolymer).


As used herein, the teen “calcium silicate” refers to a silicate salt of calcium.


As used herein, the term “calcium phosphate” refers to monobasic calcium phosophate, dibasic calcium phosphate or tribasic calcium phosphate.


Cellulose, cellulose floc, powdered cellulose, microcrystalline cellulose, silicified microcrystal line cellulose, carboxyethylcellulose, carboxymethylcellulose, hydroxyethylcellulose, methylhydroxyethylcellulose, hydroxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose phthalate, ethylcellulose, methylcellulose, carboxymethylcellulose sodium, and carboxymethyl cellulose calcium include, but are not limited to, those described in R. C. Rowe and P. J. Shesky, Handbook of pharmaceutical excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety. As used herein, cellulose refers to natural cellulose. The term “cellulose” also refers to celluloses that have been modified with regard to molecular weight and/or branching, particularly to lower molecular weight. The term “cellulose” further refers to celluloses that have been chemically modified to attach chemical functionality such as carboxy, hydroxyl, hydroxyalkylene, or carboxyalkylene groups. As used herein, the term “carboxyalkylene” refers to a group of formula -alkylene-C(O)OH, or salt thereof. As used herein, the term “hydroxyalkylene” refers to a group of formula -alkylene-OH.


Suitable powdered celluloses for use in the invention include, but are not limited to Arbocel (available from JRS Pharma), Sanacel (available from CFF GmbH), and Solka-Floc (available from International Fiber Corp.).


Suitable microcrystalline celluloses include, but are not limited to, the Avicel pH series (available from FMC Biopolymer), Celex (available from ISP), Celphere (available from Asahi Kasei), Ceolus KG (available from Asahi Kasei), and Vivapur (available from JRS Pharma).


As used herein, the term “silicified microcrystalline cellulose” refers to a synergistic intimate physical mixture of silicon dioxide and microcrystalline cellulose. Suitable silicified microcrystalline celluloses include, but are not limited to, ProSolv (available from JRS Pharma).


As used herein, the term “carboxymethylcellulose sodium” refers to a cellulose ether with pendant groups of formula Na+−O—C(O)—CH2—, attached to the cellulose via an ether linkage. Suitable carboxymethylcellulose sodium polymers include, but are not limited to, Akucell (available from Akzo Nobel), Aquasorb (available from Hercules), Blanose (available from Hercules), Finnfix (available from Noviant), Nymel (available from Noviant), and Tylose CB (available from Clariant).


As used herein, the term “carboxymethylcellulose calcium” refers to a cellulose ether with a pendant groups of formula —CH2—O—C(O)—O½Ca2+, attached to the cellulose via an ether linkage.


As used herein, the term “carboxymethylcellulose” refers to a cellulose ether with pendant carboxymethyl groups of formula HO—C(O)—CH2—, attached to the cellulose via an ether linkage. Suitable carboxymethylcellulose calcium polymers include, but are not limited to, Nymel ZSC (available from Noviant).


As used herein, the term “carboxyethylcellulose” refers to a cellulose ether with pendant carboxymethyl groups of formula HO—C(O)—CH2—CH2—, attached to the cellulose via an ether linkage.


As used herein, the term “hydroxyethylcellulose” refers to a cellulose ether with pendant hydroxyethyl groups of formula HO—CH2—CH2—, attached to the cellulose via an ether linkage. Suitable hydroxyethylcelluloses include, but are not limited to, Cellosize HEC (available from DOW), Natrosol (available from Hercules), and Tylose PHA (available from Clariant).


As used herein, the term “methylhydroxyethylcellulose” refers to a cellulose ether with pendant methyloxyethyl groups of formula CH3—O—CH2—CH2—, attached to the cellulose via an ether linkage. Suitable methylhydroxyethylcelluloses include, but are not limited to, the Culminal MHEC series (available from Hercules), and the Tylose series (available from Shin Etsu).


As used herein, the term “hydroxypropylcellulose”, or “hypomellose”, refers a cellulose that has pendant hydroxypropoxy groups, and includes both high- and low-substituted hydroxypropylcellulose. In some embodiments, the hydroxypropylcellulose has about 5% to about 25% hydroxypropyl groups. Suitable hydroxypropylcelluloses include, but are not limited to, the Klucel series (available from Hercules), the Methocel series (available from Dow), the Nisso HPC series (available from Nisso), the Metolose series (available from Shin Etsu), and the LH series, including LHR-11, LH-21, LH-31, LH-20, LH-30, LH-22, and LH-32 (available from Shin Etsu).


As used herein, the term “methyl cellulose” refers to a cellulose that has pendant methoxy groups. Suitable methyl celluloses include, but are not limited to Culminal MC (available from Hercules).


As used herein, the term “ethyl cellulose” refers to a cellulose that has pendant ethoxy groups. Suitable ethyl celluloses include, but are not limited to Aqualon (available from Hercules).


As used herein, the term “carmellose calcium” refers to a crosslinked polymer of carboxymethylcellulose calcium.


As used herein, the term “croscarmellose sodium” refers to a crosslinked polymer of carboxymethylcellulose sodium.


As used herein, the term “crospovidone” refers to a crosslinked polymer of polyvinylpyrrolidone. Suitable crospovidone polymers include, but are not limited to Polyplasdone XL-10 (available from ISP) and Kollidon CL and CL-M (available from BASF).


As used herein, the term “crosslinked poly(acrylic acid)” refers to a polymer of acrylic acid which has been crosslinked. The crosslinked polymer may contain other monomers in addition to acrylic acid. Additionally, the pendant carboxy groups on the crosslinked polymer may be partially or completely neutralized to form a pharmaceutically acceptable salt of the polymer. In some embodiments, the crosslinked poly(acrylic acid) is neutralized by ammonia or sodium hydroxide. Suitable crosslinked poly(acrylic acid) polymers include, but are not limited to, the Carbopol series (available from Noveon).


As used herein, the term “an effervescent system based on food acids and an alkaline carbonate component” refers to a excipient combination of food acids and alkaline carbonates that releases carbon dioxide gas when administered. Suitable effervescent systems are those that those utilizing food acids (such as citric acid, tartaric acid, malic acid, fumaric acid, lactic acid, adipic acid, ascorbic acid, aspartic acid, erythorbic acid, glutamic acid, and succinic acid) and an alkaline carbonate component (such as sodium bicarbonate, calcium carbonate, magnesium carbonate, potassium carbonate, ammonium carbonate, etc.).


As used herein, the term “fatty acid”, employed alone or in combination with other terms, refers to an aliphatic acid that is saturated or unsaturated. In some embodiments, the fatty acid in a mixture of different fatty acids. In some embodiments, the fatty acid has between about eight to about thirty carbons on average. In some embodiments, the fatty acid has about eight to about twenty-four carbons on average. In some embodiments, the fatty acid has about twelve to about eighteen carbons on average. Suitable fatty acids include, but are not limited to, stearic acid, lauric acid, myristic acid, erucic acid, palmitic acid, palmitoleic acid, capric acid, caprylic acid, oleic acid, linoleic acid, linolenic acid, hydroxystearic acid, 12-hydroxystearic acid, cetostearic acid, isostearic acid, sesquioleic acid, sesqui-9-octadecanoic acid, sesquiisooctadecanoic acid, benhenic acid, isobehenic acid, and arachidonic acid, or mixtures thereof.


As used herein, the term “fatty acid ester” refers to a compound formed between a fatty acid and a hydroxyl containing compound. In some embodiments, the fatty acid ester is a sugar ester of fatty acid. In some embodiments, the fatty acid ester is a glyceride of fatty acid. In some embodiments, the fatty acid ester is an ethoxylated fatty acid ester.


As used herein, the term “fatty alcohol”, employed alone or in combination with other terms, refers to an aliphatic alcohol that is saturated or unsaturated. In some embodiments, the fatty alcohol in a mixture of different fatty alcohols. In some embodiments, the fatty alcohol has between about eight to about thirty carbons on average. In some embodiments, the fatty alcohol has about eight to about twenty-four carbons on average. In some embodiments, the fatty alcohol has about twelve to about eighteen carbons on average. Suitable fatty alcohols include, but are not limited to, stearyl alcohol, lauryl alcohol, palmityl alcohol, palmitolyl acid, cetyl alcohol, capryl alcohol, caprylyl alcohol, oleyl alcohol, linolenyl alcohol, arachidonic alcohol, behenyl alcohol, isobehenyl alcohol, selachyl alcohol, chimyl alcohol, and linoleyl alcohol, or mixtures thereof.


As used herein, the term “ion-exchange resin” refers to an ion-exchange resin that is pharmaceutically acceptable and that can be weakly acidic, weakly basic, strongly acidic or strongly basic. Suitable ion-exchange resins include, but are not limited to Amberlite™ IRP64, IRP88 and IRP69 (available from Rohm and Haas) and Duolite™ AP143 (available from Rohm and Haas). In some embodiments, the ion-exchange resin is a crosslinked polymer resin comprising acrylic acid, methacrylic acid, or polystyrene sulfonate, or salts thereof. In some embodiments, the ion-exchange resin is polacrilex resin, polacrilin potassium resin, or cholestyramine resin.


Suitable mannitols include, but are not limited to, PharmMannidex (available from Cargill), Pearlitol (available from Roquette), and Mannogem (available from SPI Polyols).


As used herein, the term “metal aluminosilicate” refers to any metal salt of an aluminosilicate, including, but not limited to, magnesium aluminometasilicate. Suitable magnesium aluminosilicates include, but are not limited to Neusilin (available from Fuji Chemical), Pharmsorb (available from Engelhard), and Veegum (available from R.T. Vanderbilt Co., Inc.). In some embodiments, the metal aluminosilicate is bentonite.


As used herein, the term “metal carbonate” refers to any metallic carbonate, including, but not limited to sodium carbonate, calcium carbonate, and magnesium carbonate, and zinc carbonate.


As used herein, the term “metal oxide” refers to any metallic oxide, including, but not limited to, calcium oxide or magnesium oxide.


As used herein, the term “metallic stearate” refers to a metal salt of stearic acid. In some embodiments, the metallic stearate is calcium stearate, zinc stearate, or magnesium stearate. In some embodiments, the metallic stearate is magnesium stearate.


As used herein, the term “mineral oil” refers to both unrefined and refined (light) mineral oil. Suitable mineral oils include, but are not limited to, the Avatech™ grades (available from Avatar Corp.), Drakeol™ grades (available from Penreco), Sirius™ grades (available from Shell), and the Citation™ grades (available from Avater Corp.).


As used herein, the term “polyethoxylated castor oil”, refers to a compound formed from the ethoxylation of castor oil, wherein at least one chain of polyethylene glycol is covalently bound to the castor oil. The castor oil may be hydrogenated or unhydrogenated. Synonyms for polyethoxylated castor oil include, but are not limited to polyoxyl castor oil, hydrogenated polyoxyl castor oil, mcrogolglyceroli ricinoleas, macrogolglyceroli hydroxystearas, polyoxyl 35 castor oil, and polyoxyl 40 hydrogenated castor oil. Suitable polyethoxylated castor oils include, but are not limited to, the Nikkol™ HCO series (available from Nikko Chemicals Co. Ltd.), such as Nikkol HCO-30, HC-40, HC-50, and HC-60 (polyethylene glycol-30 hydrogenated castor oil, polyethylene glycol-40 hydrogenated castor oil, polyethylene glycol-50 hydrogenated castor oil, and polyethylene glycol-60 hydrogenated castor oil, Emulphor™ EL-719 (castor oil 40 mole-ethoxylate, available from Stepan Products), the Cremophore™ series (available from BASF), which includes Cremophore RH40, RH60, and EL35 (polyethylene glycol-40 hydrogenated castor oil, polyethylene glycol-60 hydrogenated castor oil, and polyethylene glycol-35 hydrogenated castor oil, respectively), and the Emulgin® RO and HRE series (available from Cognis PharmaLine). Other suitable polyoxyethylene castor oil derivatives include those listed in R. C. Rowe and P. J. Shesky, Handbook of pharmaceutical excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety.


As used herein, the term “polyethoxylated sterol” refers to a compound, or mixture of compounds, derived from the ethoxylation of sterol molecule. Suitable polyethoyxlated sterols include, but are not limited to, PEG-24 cholesterol ether, Solulan™ C-24 (available from Amerchol); PEG-30 cholestanol, Nikkol™ DHC (available from Nikko); Phytosterol, GENEROL™ series (available from Henkel); PEG-25 phyto sterol, Nikkol™ BPSH-25 (available from Nikko); PEG-5 soya sterol, Nikkol™ BPS-5 (available from Nikko); PEG-10 soya sterol, Nikkol™ BPS-10 (available from Nikko); PEG-20 soya sterol, Nikkol™ BPS-20 (available from Nikko); and PEG-30 soya sterol, Nikkol™ BPS-30 (available from Nikko). As used herein, the term “PEG” refers to polyethylene glycol.


As used herein, the term “polyethoxylated vegetable oil” refers to a compound, or mixture of compounds, formed from ethoxylation of vegetable oil, wherein at least one chain of polyethylene glycol is covalently bound to the vegetable oil. In some embodiments, the fatty acids has between about twelve carbons to about eighteen carbons. In some embodiments, the amount of ethoxylation can vary from about 2 to about 200, about 5 to 100, about 10 to about 80, about 20 to about 60, or about 12 to about 18 of ethylene glycol repeat units. The vegetable oil may be hydrogenated or unhydrogenated. Suitable polyethoxylated vegetable oils, include but are not limited to, Cremaphor™ EL or RH series (available from BASF), Emulphor™ EL-719 (available from Stepan products), and Emulphor™ EL-620P (available from GAF).


As used herein, the term “polyethylene glycol” refers to a polymer containing ethylene glycol monomer units of formula —O—CH2—CH2—. Suitable polyethylene glycols may have a free hydroxyl group at each end of the polymer molecule, or may have one or more hydroxyl groups etherified with a lower alkyl, e.g., a methyl group. Also suitable are derivatives of polyethylene glycols having esterifiable carboxy groups. Polyethylene glycols useful in the present invention can be polymers of any chain length or molecular weight, and can include branching. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 9000. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 5000. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 900. In some embodiments, the average molecular weight of the polyethylene glycol is about 400. Suitable polyethylene glycols include, but are not limited to polyethylene glycol-200, polyethylene glycol-300, polyethylene glycol-400, polyethylene glycol-600, and polyethylene glycol-900. The number following the dash in the name refers to the average molecular weight of the polymer. In some embodiments, the polyethylene glycol is polyethylene glycol-400. Suitable polyethylene glycols include, but are not limited to the Carbowax™ and Carbowax™ Sentry series (available from Dow), the Lipoxol™ series (available from Brenntag), the Lutrol™ series (available from BASF), and the Pluriol™ series (available from BASF).


As used herein, the term “polyoxyethylene-alkyl ether” refers to a monoalkyl or dialkylether of polyoxyethylene, or mixtures thereof. In some embodiments, the polyoxyethylene-alkyl ether is a polyoxyethylene fatty alcohol ether.


As used herein, the term “polyoxyethylene fatty alcohol ether” refers to an monoether or diether, or mixtures thereof, formed between polyethylene glycol and a fatty alcohol. Fatty alcohols that are useful for deriving polyoxyethylene fatty alcohol ethers include, but are not limited to, those defined herein. In some embodiments, the polyoxyethylene portion of the molecule has about 2 to about 200 oxyethylene units. In some embodiments, the polyoxyethylene portion of the molecule has about 2 to about 100 oxyethylene units. In some embodiments, the polyoxyethylene portion of the molecule has about 4 to about 50 oxyethylene units. In some embodiments, the polyoxyethylene portion of the molecule has about 4 to about 30 oxyethylene units. In some embodiments, the polyoxyethylene fatty alcohol ether comprises ethoxylated stearyl alcohols, cetyl alcohols, and cetylstearyl alcohols (cetearyl alcohols). Suitable polyoxyethylene fatty alcohol ethers include, but are not limited to, the Brij™ series of surfactants (available from Uniqema), which includes Brij 30, 35, 52, 56, 58, 72, 76, 78, 93Veg, 97, 98, and 721, the Cremophor™ A series (available from BASF), which includes Cremophor A6, A20, and A25, the Emulgen™ series (available from Kao Corp.), which includes Emulgen 104P, 123P, 210P, 220, 320P, and 409P, the Ethosperse™ (available from Lonza), which includes Ethosperse 1A4, 1A12, TDAa6, S120, and G26, the Ethylan™ series (available from Brenntag), which includes Ethylan D252, 253, 254, 256, 257, 2512, and 2560, the Plurafac™ series (available from BASF), which includes Plurafac RA20, RA30, RA40, RA43, and RA340, the Ritoleth™ and Ritox™ series (available from Rita Corp.), the Volpo™ series (available from Croda), which includes Volpo N 10, N 20, S2, S10, C2, C20, CS10, CS20, L4, and L23, and the Texafor™ series, which includes Texafor A1 P, AP, A6, A10, A14, A30, A45, and A60. Other suitable polyoxyethylene fatty alcohol ethers include, but are not limited to, polyethylene glycol (13)stearyl ether (steareth-13), polyethylene glycol (14)stearyl ether (steareth-14), polyethylene glycol (15)stearyl ether (steareth-15), polyethylene glycol (16)stearyl ether (steareth-16), polyethylene glycol (17)stearyl ether (steareth-17), polyethylene glycol (18)stearyl ether (steareth-18), polyethylene glycol (19)stearyl ether (steareth-19), polyethylene glycol (20)stearyl ether (steareth-20), polyethylene glycol (12)isostearyl ether (isosteareth-12), polyethylene glycol (13)isostearyl ether (isosteareth-13), polyethylene glycol (14)isostearyl ether (isosteareth-14), polyethylene glycol (15)isostearyl ether (isosteareth-15), polyethylene glycol (16)isostearyl ether (isosteareth-16), polyethylene glycol (17)isostearyl ether (isosteareth-17), polyethylene glycol (18)isostearyl ether (isosteareth-18), polyethylene glycol (19)isostearyl ether (isosteareth-19), polyethylene glycol (20)isostearyl ether (isosteareth-20), polyethylene glycol (13)cetyl ether (ceteth-13), polyethylene glycol (14)cetyl ether (ceteth-14), polyethylene glycol (15)cetyl ether (ceteth-15), polyethylene glycol (16)cetyl ether (ceteth-16), polyethylene glycol (17)cetyl ether (ceteth-17), polyethylene glycol (18)cetyl ether (ceteth-18), polyethylene glycol (19)cetyl ether (ceteth-19), polyethylene glycol (20)cetyl ether (ceteth-20), polyethylene glycol (13)isocetyl ether (isoceteth-13), polyethylene glycol (14)isocetyl ether (isoceteth-14), polyethylene glycol (15)isocetyl ether (isoceteth-15), polyethylene glycol (16)isocetyl ether (isoceteth-16), polyethylene glycol (17)isocetyl ether (isoceteth-17), polyethylene glycol (18)isocetyl ether (isoceteth-18), polyethylene glycol (19)isocetyl ether (isoceteth-19), polyethylene glycol (20)isocetyl ether (isoceteth-20), polyethylene glycol (12)oleyl ether (oleth-12), polyethylene glycol (13)oleyl ether (oleth-13), polyethylene glycol (14)oleyl ether (oleth-14), polyethylene glycol (15)oleyl ether (oleth-15), polyethylene glycol (12)lauryl ether (laureth-12), polyethylene glycol (12)isolauryl ether (isolaureth-12), polyethylene glycol (13)cetylstearyl ether (ceteareth-13), polyethylene glycol (14)cetylstearyl ether (ceteareth-14), polyethylene glycol (15)cetylstearyl ether (ceteareth-15), polyethylene glycol (16)cetylstearyl ether (ceteareth-16), polyethylene glycol (17)cetylstearyl ether (ceteareth-17), polyethylene glycol (18)cetylstearyl ether (ceteareth-18), polyethylene glycol (19)cetylstearyl ether (ceteareth-19), and polyethylene glycol (20)cetylstearyl ether (ceteareth-20). The numbers following the “polyethylene glycol” term refer to the number of oxyethylene repeat units in the compound. Blends of polyoxyethylene fatty alcohol ethers with other materials are also useful in the invention. A non-limiting example of a suitable blend is Arlacel™ 165 or 165 VEG (available from Uniqema), a blend of glycerol monostearate with polyethylene glycol-100 stearate. Other suitable polyoxyethylene fatty alcohol ethers include those listed in R. C. Rowe and P. J. Shesky, Handbook of pharmaceutical excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety.


As used herein, the term “polyoxyethylene-glycerol fatty ester” refers to ethoxylated fatty acid ester of glycerine, or mixture thereof. In some embodiments, the polyoxyethylene portion of the molecule has about 2 to about 200 oxyethylene units. In some embodiments, the polyoxyethylene portion of the molecule has about 2 to about 100 oxyethylene units. In some embodiments, the polyoxyethylene portion of the molecule has about 4 to about 50 oxyethylene units. In some embodiments, the polyoxyethylene portion of the molecule has about 4 to about 30 oxyethylene units. Suitable polyoxyethylene-glycerol fatty esters include, but are not limited to, PEG-20 glyceryl laurate, Tagat™ L (Goldschmidt); PEG-30 glyceryl laurate, Tagat™ L2 (Goldschmidt); PEG-15 glyceryl laurate, Glycerox™ L series (Croda); PEG-40 glyceryl laurate, Glycerox™ L series (Croda); PEG-20 glyceryl stearate, Capmul™ EMG (ABITEC), Aldo MS-20 KFG (Lonza); PEG-20 glyceryl oleate, Tagat™ 0 (Goldschmidt); PEG-30 glyceryl oleate, Tagat™ 02 (Goldschmidt).


As used herein, the term “propylene glycol fatty acid ester” refers to an monoether or diester, or mixtures thereof, formed between propylene glycol or polypropylene glycol and a fatty acid. Fatty acids that are useful for deriving propylene glycol fatty alcohol ethers include, but are not limited to, those defined herein. In some embodiments, the monoester or diester is derived from propylene glycol. In some embodiments, the monoester or diester has about 1 to about 200 oxypropylene units. In some embodiments, the polypropylene glycol portion of the molecule has about 2 to about 100 oxypropylene units. In some embodiments, the monoester or diester has about 4 to about 50 oxypropylene units. In some embodiments, the monoester or diester has about 4 to about 30 oxypropylene units. Suitable propylene glycol fatty acid esters include, but are not limited to, propylene glycol laurates: Lauroglycol™ FCC and 90 (available from Gattefosse); propylene glycol caprylates: Capryol™ PGMC and 90 (available from Gatefosse); and propylene glycol dicaprylocaprates: Labrafac™ PG (available from Gatefosse).


Suitable sorbitols include, but are not limited to, PharmSorbidex E420 (available from Cargill), Liponic 70-NC and 76-NC (available from Lipo Chemical), Neosorb (available from Roquette), Partech SI (available from Merck), and Sorbogem (available from SPI Polyols).


Starch, sodium starch glycolate, and pregelatinized starch include, but are not limited to, those described in R. C. Rowe and P. J. Shesky, Handbook of pharmaceutical excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety.


As used herein, the term “starch” refers to any type of natural or modified starch including, but not limited to, maize starch (also known as corn starch or maydis amylum), potato starch (also known as solani amylum), rice starch (also known as oryzae amylum), wheat starch (also known as tritici amylum), and tapioca starch. The term “starch” also refers to starches that have been modified with regard to molecular weight and branching. The term “starch” further refers to starches that have been chemically modified to attach chemical functionality such as carboxy, hydroxyl, hydroxyalkylene, or carboxyalkylene groups. As used herein, the term “carboxyalkylene” refers to a group of formula -alkylene-C(O)OH, or salt thereof. As used herein, the term “hydroxyalkylene” refers to a group of formula -alkylene-OH. Suitable sodium starch glycolates include, but are not limited to, Explotab (available from JRS Pharma), Glycolys (available from Roquette), Primojel (available from DMV International), and Vivastar (available from JRS Pharma).


Suitable pregelatinized starches include, but are not limited to, Lycatab C and PGS (available from Roquette), Merigel (available from Brenntag), National 78-1551 (available from National Starch), Spress B820 (available from GPC), and Starch 1500 (available from Colorcon).


As used herein, the term “stearoyl macrogol glyceride” refers to a polyglycolized glyceride synthesized predominately from stearic acid or from compounds derived predominately from stearic acid, although other fatty acids or compounds derived from other fatty acids may used in the synthesis as well. Suitable stearoyl macrogol glycerides include, but are not limited to, Gelucire® 50/13 (available from Gattefossé).


As used herein, the term “vegetable oil” refers to naturally occurring or synthetic oils, which may be refined, fractionated or hydrogenated, including triglycerides. Suitable vegetable oils include, but are not limited to castor oil, hydrogenated castor oil, sesame oil, corn oil, peanut oil, olive oil, sunflower oil, safflower oil, soybean oil, benzyl benzoate, sesame oil, cottonseed oil, and palm oil. Other suitable vegetable oils include commercially available synthetic oils such as, but not limited to, Miglyol™ 810 and 812 (available from Dynamit Nobel Chicals, Sweden) Neobee™ MS (available from Drew Chemical Corp.), Alofine™ (available from Jarchem Industries), the Lubritab™ series (available from JRS Pharma), the Sterotex™ (available from Abitec Corp.), Softisan™ 154 (available from Sasol), Croduret™ (available from Croda), Fancol™ (available from the Fanning Corp.), Cutina™ HR (available from Cognis), Simulsol™ (available from CJ Petrow), EmCon™ CO (available from Amisol Co.), Lipvol™ CO, SES, and HS-K (available from Lipo), and Sterotex™ HM (available from Abitec Corp.). Other suitable vegetable oils, including sesame, castor, corn, and cottonseed oils, include those listed in R. C. Rowe and P. J. Shesky, Handbook of pharmaceutical excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety.


This invention and embodiments illustrating the method and materials used may be further understood by reference to the following non-limiting examples.


Example 1

The effects of PX-478 therapy on human small (SCLC) and non-small (NSCLC) cell lung cancers that express HIF1-α in vitro and in vivo, growing orthotopically was studied.


Methods: PC14—PE6 human lung adenocarcinoma or NCI-H187 human SCLC cells (1×106) were injected into the left lungs of nude mice. Mice were randomized (n=10/group) 18 days after injection, when lung tumors were visible in a subset of 5 mice, to daily oral treatment with PX-478 at 10 or 20 mg/kg/day or vehicle as control for 5 days. The experiment was terminated when control mice became moribund after 12 days for PC14-PE6 or 22 days for NCI-H187. Mice were sacrificed and assessed for tumor burden, pleural effusion and metastasis and tumor and adjacent normal tissues were collected for immunochistochemical analyses.


Results: HIF1-α, was markedly over-expressed by both NSCLC(PC14-PE6) (see FIG. 6) and SCLC(NCI-H187) (see FIG. 7) cells in vitro under hypoxic conditions and in vivo in lung tumors after orthotopic injection. After orthotopic injection of PC14-PE6 cells, HIF1-α blockade by high dose PX-478 therapy (20 mg/kg group) reduced the median primary lung tumor volume by 87% (p=0.005) and median left lung weight by 80% (p=0.006) as compared to control and markedly reduced mediastinal metastasis. In the SCLC orthotopic model, treatment with PX-478 at both the low (10 mg/kg) and high (20 mg/kg) doses were highly effective in preventing lung tumor growth and mediastinal metastasis. For the high dose group, median primary lung tumor volume was reduced by 99% (p=0.0001) and median left lung weight by 89% (p=0.0003) as compared to control. Survival of mice with orthotopic human lung adenocarcinoma or small cell lung cancer after treatment with PX-478 for five days is depicted in FIG. 8.


Conclusions: It has now been shown for the first time that HIF1-α antagonism by systemic therapy with the small molecule PX-478 significantly inhibits orthotopic growth and progression of human lung cancers that express HIF1-α. NSCLC and, in particular, SCLC tumors were highly susceptible to PX-478 therapy. The data suggest that additional studies of PX-478 as part of a combined modality treatment approach for NSCLC and SCLC patients are indicated but that it may be prudent to first assess lung tumors for HIF1-α expression.


Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other versions are possible. Therefore the spirit and scope of the appended claims should not be limited to the description and the preferred versions contained within this specification.

Claims
  • 1. A method of treating non-small cell lung cancer that expresses HIF-1α in a human subject in need thereof, comprising administering a therapeutically effective amount of PX-478 to the subject in need thereof.
  • 2. (canceled)
  • 3. (canceled)
  • 4. (canceled)
  • 5. The method of claim 1, wherein said therapeutically effective amount of PX-478 is administered to said subject locally.
  • 6. The method of claim 1, wherein said therapeutically effective amount of PX-478 is administered to said subject systemically.
  • 7. The method of claim 1, wherein said administration is selected from topical, oral, parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, oral, buccal, ocular, intravaginal, inhalation, depot injection and implant.
  • 8. The method of claim 1, wherein said therapeutically effective amount of PX-478 is administered in a pharmaceutical composition.
  • 9. The method of claim 8, wherein said pharmaceutical composition is selected from a tablet and a capsule.
  • 10. The method of claim 1, wherein said therapeutically effective amount of PX-478 is administered orally.
  • 11. The method of claim 1, wherein said therapeutically effective amount of PX-478 is from about 25 mg/m2 to about 100 mg/m2.
  • 12. The method of claim 1 further comprising administering a cancer chemotherapeutic agent, radiation, photodynamic therapy or an antiangiogenic agent.
  • 13. (canceled)
  • 14. (canceled)
  • 15. (canceled)
  • 16. A method of delaying or inhibiting metastasis associated with non-small cell lung cancer that expresses HIF-1α in a human subject in need thereof comprising administering a therapeutically effective amount of PX-478 to the subject in need thereof.
  • 17. (canceled)
  • 18. (canceled)
  • 19. (canceled)
  • 20. The method of claim 16, wherein said therapeutically effective amount of PX-478 is administered to said subject locally.
  • 21. The method of claim 16, wherein said therapeutically effective amount of PX-478 is administered to said subject systemically.
  • 22. The method of claim 16, wherein said administration is selected from topical, oral, parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, oral, buccal, ocular, intravaginal, inhalation, depot injection and implant.
  • 23. The method of claim 16, wherein said therapeutically effective amount of PX-478 is administered in a pharmaceutical composition.
  • 24. The method of claim 23, wherein said pharmaceutical composition is selected from a tablet and a capsule.
  • 25. The method of claim 16, wherein said therapeutically effective amount of PX-478 is administered orally.
  • 26. The method of claim 16, wherein said therapeutically effective amount of PX-478 is from about 25 mg/m2 to about 100 mg/m2.
  • 27. The method of claim 16 further comprising administering a cancer chemotherapeutic agent, radiation, photodynamic therapy or an antiangiogenic agent.
  • 28. (canceled)
  • 29. (canceled)
  • 30. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. Provisional Application No. 61029,084 entitled “Compositions and Methods for Treating Lung Cancer” filed Feb. 15, 2008, which is incorporated by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2009/034060 2/13/2009 WO 00 12/8/2010
Provisional Applications (1)
Number Date Country
61029084 Feb 2008 US