Compositions and methods for treating phenylketonuria

Abstract
A lentiviral vector system for expressing a lentiviral particle is disclosed. The lentiviral vector system includes a therapeutic vector. The therapeutic vector comprises a phenylalanine hydroxylase (PAH) sequence for expressing at least one of PAH or a variant thereof, wherein the PAH sequence is truncated.
Description
FIELD

Aspects of the invention relate to genetic medicines for treating phenylketonuria (PKU). More specifically, aspects of the invention relate to using lentiviral vectors, including PAH-containing lentiviral vectors, to treat PKU.


BACKGROUND

Phenylketonuria (PKU) refers to a heterogeneous group of disorders that can lead to increased concentration of phenylalanine in the blood, or hyperphenylalaninemia, Hyperphenylalaninemia can cause intellectual disability, seizures, behavioral problems, and impaired growth and development in affected children if left untreated. The mechanisms by which hyperphenylalaninemia results in intellectual impairment reflect the surprising toxicity of high dose phenylalanine and involve hypomyelination or demyelination of nervous system tissues. PKU has an average reported incidence rate of 1 in 12,000 in North America, affecting males and females equally. The disorder is most common in people of European or Native American Ancestry and reaches much higher levels in the eastern Mediterranean region.


Neurological changes in patients with PKU have been demonstrated within one month of birth, and magnetic resonance imaging (MRI) in adult PKU patients has shown white matter lesions in the brain. The size and number these lesions relate directly to blood phenylalanine concentration. The cognitive profile of adolescents and adults with PKU compared with control subjects can include significantly reduced IQ, processing speed, motor control and inhibitory abilities, and reduced performance on tests of attention.


The majority of PKU is caused by a deficiency of hepatic phenylalanine hydroxylase (PAH). PAH is a multimeric hepatic enzyme that catalyzes the hydroxylation of phenylalanine (Phe) to tyrosine (Tyr) in the presence of molecular oxygen and catalytic amounts of tetrahydrobiopterin (BH4), its nonprotein cofactor. In the absence of sufficient expression of PAH, phenylalanine levels in the blood increase, leading to hyperphenylalaninemia and harmful side effects in PKU patients. Decreased or absent PAH activity can lead to a deficiency of tyrosine and its downstream products, including melanin, 1-thyroxine and the catecholamine neurotransmitters including dopamine.


PKU can be caused by mutations in PAH and/or a detect in the synthesis or regeneration of PAH cofactors (i.e., BH4). Notably, several PAH mutations have been shown to affect protein folding in the endoplasmic reticulum resulting in accelerated degradation and/or aggregation due to missense mutations (63%) and small deletions 13%) in protein structure that attenuate or largely abolish enzyme catalytic activity.


In general, three major phenotypic groups are used to classify PKU based on blood plasma Phe levels, dietary tolerance to Phe and potential responsiveness to therapy. These groups include classical PKU (Phe>1200 μM), atypical or mild PKU (Phe is 600-1200 μM), and permanent mild hyperphenylalaninemia (HPA, Phe 120-600 μM).


Detection of PKU relies on universal newborn screening (NBS). A drop of blood collected from a heel stick is tested for phenylalanine levels in a screen that is mandatory in all 50 states of the USA.


Currently, lifelong dietary restriction of Phe and BH4 supplementation are the only two available treatment options for PKU, where early therapeutic intervention is critical to ensure optimal clinical outcomes in affected infants. However, costly medication and special low-protein foods imposes a major burden on patients that can lead to malnutrition, psychosocial or neurocognitive complications notable when these products are not fully covered by private health insurance. Moreover, BH4 therapy is primarily effective for treatment of mild hyperphenylalaninemia as related to defects in BH4 biosynthesis, whereas only 20-30% of patients with mild or classical PKU are responsive, Thus, there is an urgent need for new treatment modalities for PKU as an alternative to burdensome Phe-restriction diets. Thus, it would be desirable to develop an alternative method for the treatment of phenylketonuria. Genetic medicines have the potential to effectively treat PKU.


SUMMARY OF THE INVENTION

In an aspect, a viral vector is disclosed. The viral vector comprises a phenylalanine hydroxylase (PAH) sequence for expressing at least one of PAH or a variant thereof, wherein the PAH sequence is truncated. In embodiments, the PAH sequence is truncated at a 3′ untranslated region (UTR) of the sequence. In embodiments, the PAH sequence comprises at least one of 80%, 85%, 90%, 95%, or 100% identity with at least one of SEQ ID NO: 2, SEQ ID NO: 3, or SEQ ID NO: 4.


In embodiments, the viral vector further comprises at least one small RNA sequence that is capable of binding to at least one pre-determined complementary mRNA sequence. In embodiments, the at least one pre-determined complementary mRNA sequence comprises a full-length 3′ untranslated region (UTR). In embodiments, the at least one pre-determined complementary mRNA sequence is a PAH mRNA sequence. In embodiments, the at least one small RNA sequence comprises a shRNA. In embodiments, the at least one small RNA sequence comprises a sequence having at least one of 80%, 85%, 90%, 95%, or 100% identity with at least one of SEQ ID NO: 5 or SEQ ID NO: 6. In embodiments, the at least one small RNA sequence is under the control of a first promoter, and wherein the PAH sequence is under the control of a second promoter. In embodiments, the first promoter comprises a H1 promoter. In embodiments, the second promoter comprises a liver-specific promoter. In embodiments, the liver-specific promoter comprises a hAAT promoter.


In another aspect, a viral vector is disclosed. The viral vector comprises a phenylalanine hydroxylase (PAH) sequence for expressing at least one of PAH or a variant thereof, and at least one small RNA sequence that is capable of binding to at least one pre-determined complementary mRNA sequence. In embodiments, the PAH sequence comprises at least one of 80%, 85%, 90%, 95%, or 100% identity with SEQ ID NO: 1.


In another aspect, a lentiviral particle produced by a packaging cell and capable of infecting a target cell is disclosed. The lentiviral particle comprises an envelope protein capable of infecting a target cell, and the viral vector comprises a phenylalanine hydroxylase (PAH) sequence for expressing at least one of PAH or a variant thereof, and at least one small RNA sequence that is capable of binding to at least one pre-determined complementary mRNA sequence. In embodiments, the target cell is at least one of a hepatic cell, a muscle cell, an epithelial cell, an endothelial cell, a neural cell, a neuroendocrine cell, an endocrine cell, a lymphocyte, a myeloid cell, a cell present within a solid organ, or cell of a hematopoietic lineage, a hematopoietic stem cell, or a precursor hematopoietic stem cell.


In another aspect, a method of treating phenylketonuria (PKU) in a subject is disclosed. The method comprises administering to the subject a therapeutically effective amount of a lentiviral particle produced by a packaging cell and capable of infecting a target cell, wherein the lentiviral particle comprises an envelope protein capable of infecting a target cell, and a viral vector comprising a phenylalanine hydroxylase (PAH) sequence for expressing at least one of PAH or a variant thereof, and at least one small RNA sequence that is capable of binding to at least one pre-determined complementary mRNA sequence.


In embodiments, the therapeutically effective amount of the lentiviral particle comprises a plurality of single doses of the lentiviral particle. In embodiments, the therapeutically effective amount of the lentiviral particle comprises a single dose of the lentiviral particle. In embodiments, the subject is in utero. In embodiments, the method further comprises diagnosing a PKU genotype in the subject that correlates with a PKU phenotype. In embodiments, the diagnosing occurs during prenatal screening of the subject. In embodiments, the diagnosing occurs prior to the administering.


In another aspect, use of a therapeutically effective amount of a lentiviral particle for treatment of phenylketonuria (PKU) in a subject is disclosed. The lentiviral particle is produced by a packaging cell, is capable of infecting a target cell, and comprises an envelope protein capable of infecting a target cell, and a viral vector. In embodiments, the viral vector comprises a phenylalanine hydroxylase (PAH) sequence for expressing at least one of PAH or a variant thereof, wherein the PAH sequence is truncated. In embodiments, the viral vector comprises a phenylalanine hydroxylase (PAH) sequence for expressing at least one of PAH or a variant thereof, and at least one small RNA sequence that is capable of binding to at least one pre-determined complementary mRNA sequence.


Other aspects and advantages of the inventions described herein will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate by way of example the aspects of the inventions.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an exemplary 3-vector lentiviral vector system in a circularized form.



FIG. 2 depicts an exemplary 4-vector lentiviral vector system in a circularized form.



FIG. 3 depicts an exemplary 3-vector adeno-associated viral vector system in a circularized form.



FIG. 4 depicts: (A) a linear map of a lentiviral vector expressing PAH; and (B) a linear map of a lentiviral vector expressing a PAH shRNA sequence and a PAH sequence.



FIG. 5 depicts a phenylalanine hydroxylase open reading frame including complete 5′ and 3′ UTRs.



FIG. 6 depicts a phenylalanine hydroxylase open reading frame including a complete 5′ UTR and a truncated 3′ UTR.



FIG. 7 depicts immunoblot data comparing levels of expression for human and mouse PAH genes.



FIG. 8 depicts data demonstrating lentivirus-delivered expression of hPAH with or without the 3′ UTR region in Hepa1-6 cells.



FIG. 9 depicts results of a lentiviral vector expressing hPAH with a truncated 3′ UTR in Hepa1-6 cells.



FIG. 10 depicts data demonstrating expression of codon-optimized hPAH with or without WPRE in mouse Hepa1-6 cells.



FIG. 11 depicts data demonstrating that shPAH-1 and shPAH-2 reduces hPAH expression in human Hep3B cells.



FIG. 12 depicts data demonstrating shPAH-1 suppression of endogenous hPAH and hAAT-hPAH-3′UTR289 in Hep3B cells.



FIG. 13 depicts data demonstrating that shPAH-2 suppresses endogenous hPAH but not hAAT-hPAH-3′UTR289 in HepG2 cells.



FIG. 14 depicts data demonstrating results of treating a Pah(enu2) mouse with hAAT-PAH-UTR. FIG. 14A depicts change in weight over 8 weeks for the groups depicted therein.



FIG. 14B depicts change in weight over 8 weeks for the groups depicted therein. FIG. 14C depicts change in weight over 8 weeks for the groups depicted therein. FIG. 14D depicts levels of phenylalanine over 1 month post-treatment.



FIG. 15 depicts data demonstrating lentiviral-delivered expression of the human PAH gene using hAAT and CMV promoters in Hepa1-6 mouse hepatoma cells.



FIG. 16 depicts demonstrating lentivirus-delivered expression of hPAH using expression constructs with the hAAT promoter and liver-specific enhancer element ApoE (1), ApoE (2), or prothrombin in mouse Hepa1-6 cells.





DETAILED DESCRIPTION

Overview of the Disclosure


The present disclosure relates to therapeutic vectors and delivery of the same to cells. In embodiments, the therapeutic vectors include PAH sequences or variants thereof. In embodiments, the therapeutic vectors also include a small RNA that targets host (endogenous) PAH expression.


Definitions and Interpretation

Unless otherwise defined herein, scientific and technical terms used in connection with the present disclosure shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclature used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well-known and commonly used in the art. The methods and techniques of the present disclosure are generally performed according to conventional methods well-known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g.: Sambrook J. & Russell D. Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2000); Ausubel et al., Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, John & Sons, Inc. (2002); Harlow and Lane Using Antibodies: A Laboratory Manual; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1998); and Coligan et al., Short Protocols in Protein Science, Wiley, John & Sons, Inc. (2003). Any enzymatic reactions or purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The nomenclature used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well-known and commonly used in the art.


As used in the description and the appended claims, the singular forms “a”, “an” and “the” are used interchangeably and intended to include the plural forms as well and fall within each meaning, unless the context clearly indicates otherwise. Also, as used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the listed items, as well as the lack of combinations when interpreted in the alternative (“or”).


All numerical designations, e.g., pH, temperature, time, concentration, and molecular weight, including ranges, are approximations which are varied (+) or (−) by increments of 0.1. It is to be understood, although not always explicitly stated that all numerical designations are preceded by the term “about”. It also is to be understood, although not always explicitly stated, that the reagents described herein are merely exemplary and that equivalents of such are known in the art.


As used herein, the term “about” will be understood by persons of ordinary skill in the art and will vary to some extent depending upon the context in which it is used. If there are uses of the term which are not clear to persons of ordinary skill in the art given the context in which it is used, “about” will mean up to plus or minus 10% of the particular term.


The terms “administration of” or “administering” an active agent should be understood to mean providing an active agent to the subject in need of treatment in a form that can be introduced into that individual's body in a therapeutically useful form and therapeutically effective amount.


As used herein, the term “comprising” is intended to mean that the compositions and methods include the recited elements, but not excluding others. “Consisting essentially of” when used to define compositions and methods, shall mean excluding other elements of any essential significance to the composition or method. “Consisting of” shall mean excluding more than trace elements of other ingredients for claimed compositions and substantial method steps. Embodiments defined by each of these transition terms are within the scope of this disclosure. Accordingly, it is intended that the methods and compositions can include additional steps and components (comprising) or alternatively including steps and compositions of no significance (consisting essentially of) or alternatively, intending only the stated method steps or compositions (consisting of).


As used herein, the terms “expression”, “expressed”, or “encodes” refers to the process by which polynucleotides are transcribed into mRNA and/or the process by which the transcribed mRNA is subsequently being translated into peptides, polypeptides, or proteins. Expression may include splicing of the mRNA in a eukaryotic cell or other forms of post-transcriptional modification or post-translational modification.


As used herein, the term “phenylketonuria”, which is also referred to herein as “PKU”, refers to the chronic deficiency of phenylalanine hydroxylase, as well as all symptoms related thereto including mild and classical forms of disease. Treatment of “phenylketonuria”, therefore, may relate to treatment for all or some of the symptoms associated with PKU.


As used herein, the term “phenylalanine hydroxylase” may also be referred to herein as PAH. Human PAH may also be referred to herein as hPAH. Mouse PAH may also be referred to herein as mPAH.


As used herein, the term “shPAH” refers to a small hairpin RNA targeting PAH.


As used herein, the term “hAAT-hPAH-3′UTR289” may also be referred to herein as U289, or generally as transgene-expressed truncated hPAH 3′UTR, or generally a truncated 3′ UTR.


As used herein, the term “hAAT-hPAH-3′UTR238” may also be referred to herein as U238, or generally as transgene-expressed truncated hPAH 3′UTR, or generally a truncated 3′ UTR.


As used herein, the term “wild type hPAH” may also be referred to herein as “endogenous PAH” or “full-length PAH”.


As used herein, the term truncated may also be referred to herein as “shortened” or “without”.


As used herein, the term variant may also be referred to herein as analog or variation. A variant refers to any substitution, deletion, or addition to a nucleotide sequence.


As used herein, the term “genetic medicine” or “genetic medicines” refers generally to therapeutics and therapeutic strategies that focus on genetic targets to treat a clinical disease or manifestation. The term “genetic medicine” encompasses gene therapy and the like.


As used herein, the terms “individual,” “subject,” and “patient” are used interchangeably herein, and refer to any individual mammal subject, e.g., bovine, canine, feline, equine, or human.


As used herein, the term “LV” refers generally to “lentivirus”. As an example, reference to “LV-shPAH” is reference to a lentivirus that expresses a shRNA that targets PAH.


As used herein, the term “packaging cell line” refers to any cell line that can be used to express a lentiviral particle.


As used herein, the term “percent identity”, in the context of two or more nucleic acid or polypeptide sequences, refer to two or more sequences or subsequences that have a specified percentage of nucleotides or amino acid residues that are the same, when compared and aligned for maximum correspondence, as measured using one of the sequence comparison algorithms described below (e.g., BLASTP and BLASTN or other algorithms available to persons of skill) or by visual inspection. Depending on the application, the “percent identity” can exist over a region of the sequence being compared, e.g., over a functional domain, or, alternatively, exist over the full length of the two sequences to be compared. For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.


Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see generally Ausubel et al., infra).


One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al., J. Mol. Biol. 215:403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information website.


The percent identity between two nucleotide sequences can be determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. The percent identity between two nucleotide or amino acid sequences can also be determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. In addition, the percent identity between two amino acid sequences can be determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.


The nucleic acid and protein sequences of the present disclosure can further be used as a “query sequence” to perform a search against public databases to, for example, identify related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score=100, word length=12 to obtain nucleotide sequences homologous to the nucleic acid molecules provided in the disclosure. BLAST protein searches can be performed with the XBLAST program, score=50, word length=3 to obtain amino acid sequences homologous to the protein molecules of the disclosure. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov.


As used herein, the term “pharmaceutically acceptable” refers to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues, organs, and/or bodily fluids of human beings and animals without excessive toxicity, irritation, allergic response, or other problems or complications commensurate with a reasonable benefit/risk ratio.


As used herein, the term “pharmaceutically acceptable carrier” refers to, and includes, any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. The compositions can include a pharmaceutically acceptable salt, e.g., an acid addition salt or a base addition salt (see, e.g., Berge et al. (1977) J Pharm Sci 66:1-19).


As used herein, the term “SEQ ID NO” is synonymous with the term “Sequence ID No.”


As used herein, “small RNA” refers to non-coding RNA that are generally about 200 nucleotides or less in length and possess a silencing or interference function. In other embodiments, the small RNA is about 175 nucleotides or less, about 150 nucleotides or less, about 125 nucleotides or less, about 100 nucleotides or less, or about 75 nucleotides or less in length. Such RNAs include microRNA (miRNA), small interfering RNA (siRNA), double stranded RNA (dsRNA), and short hairpin RNA (shRNA). “Small RNA” of the disclosure should be capable of inhibiting or knocking-down gene expression of a target gene, generally through pathways that result in the destruction of the target gene mRNA.


As used herein, the term “therapeutically effective amount” refers to a sufficient quantity of the active agents of the present disclosure, in a suitable composition, and in a suitable dosage form to treat or prevent the symptoms, progression, or onset of the complications seen in patients suffering from a given ailment, injury, disease, or condition. The therapeutically effective amount will vary depending on the state of the patient's condition or its severity, and the age, weight, etc., of the subject to be treated. A therapeutically effective amount can vary, depending on any of a number of factors, including, e.g., the route of administration, the condition of the subject, as well as other factors understood by those in the art.


As used herein, the term “therapeutic vector” includes, without limitation, reference to a lentiviral vector or an adeno-associated viral (AAV) vector. Additionally, as used herein with reference to the lentiviral vector system, the term “vector” is synonymous with the term “plasmid”. For example, the 3-vector and 4-vector systems, which include the 2-vector and 3-vector packaging systems, can also be referred to as 3-plasmid and 4-plasmid systems.


As used herein, the term “treatment” or “treating” generally refers to an intervention in an attempt to alter the natural course of the subject being treated, and can be performed either for prophylaxis or during the course of clinical pathology. Desirable effects include, but are not limited to, preventing occurrence or recurrence of disease, alleviating symptoms, suppressing, diminishing or inhibiting any direct or indirect pathological consequences of the disease, ameliorating or palliating the disease state, and causing remission or improved prognosis. The particular treatment thus will depend on the disease state to be targeted and the current or future state of medicinal therapies and therapeutic approaches. A treatment may have associated toxicities.


Description of Aspects and Embodiments of the Disclosure

In an aspect of the present disclosure, a viral vector is disclosed. The viral vector comprises a therapeutic cargo portion, wherein the therapeutic cargo portion comprises a PAH sequence or a variant thereof. In embodiments, the PAH sequence or the variant is truncated. In embodiments, the portion of the PAH sequence or the variant thereof that is truncated is the 3′ untranslated region (UTR) of the PAH sequence or the variant thereof. In embodiments, the PAH sequence or the variant thereof comprises a sequence having at least 80%, or at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95% or more percent identity with:









(SEQ ID NO: 1)


ATGTCCACTGCGGTCCTGGAAAACCCAGGCTTGGGCAGGAAACTCTCTGA





CTTTGGACAGGAAACAAGCTATATTGAAGACAACTGCAATCAAAATGGTG





CCATATCACTGATCTTCTCACTCAAAGAAGAAGTTGGTGCATTGGCCAAA





GTATTGCGCTTATTTGAGGAGAATGATGTAAACCTGACCCACATTGAATC





TAGACCTTCTCGTTTAAAGAAAGATGAGTATGAATTTTTCACCCATTTGG





ATAAACGTAGCCTGCCTGCTCTGACAAACATCATCAAGATCTTGAGGCAT





GACATTGGTGCCACTGTCCATGAGCTTTCACGAGATAAGAAGAAAGACAC





AGTGCCCTGGTTCCCAAGAACCATTCAAGAGCTGGACAGATTTGCCAATC





AGATTCTCAGCTATGGAGCGGAACTGGATGCTGACCACCCTGGTTTTAAA





GATCCTGTGTACCGTGCAAGACGGAAGCAGTTTGCTGACATTGCCTACAA





CTACCGCCATGGGCAGCCCATCCCTCGAGTGGAATACATGGAGGAAGAAA





AGAAAACATGGGGCACAGTGTTCAAGACTCTGAAGTCCTTGTATAAAACC





CATGCTTGCTATGAGTACAATCACATTTTTCCACTTCTTGAAAAGTACTG





TGGCTTCCATGAAGATAACATTCCCCAGCTGGAAGACGTTTCTCAATTCC





TGCAGACTTGCACTGGTTTCCGCCTCCGACCTGTGGCTGGCCTGCTTTCC





TCTCGGGATTTCTTGGGTGGCCTGGCCTTCCGAGTCTTCCACTGCACACA





GTACATCAGACATGGATCCAAGCCCATGTATACCCCCGAACCTGACATCT





GCCATGAGCTGTTGGGACATGTGCCCTTGTTTTCAGATCGCAGCTTTGCC





CAGTTTTCCCAGGAAATTGGCCTTGCCTCTCTGGGTGCACCTGATGAATA





CATTGAAAAGCTCGCCACAATTTACTGGTTTACTGTGGAGTTTGGGCTCT





GCAAACAAGGAGACTCCATAAAGGCATATGGTGCTGGGCTCCTGTCATCC





TTTGGTGAATTACAGTACTGCTTATCAGAGAAGCCAAAGCTTCTCCCCCT





GGAGCTGGAGAAGACAGCCATCCAAAATTACACTGTCACGGAGTTCCAGC





CCCTGTATTACGTGGCAGAGAGTTTTAATGATGCCAAGGAGAAAGTAAGG





AACTTTGCTGCCACAATACCTCGGCCCTTCTCAGTTCGCTACGACCCATA





CACCCAAAGGATTGAGGTCTTGGACAATACCCAGCAGCTTAAGATTTTGG





CTGATTCCATTAACAGTGAAATTGGAATCCTTTGCAGTGCCCTCCAGAAA





ATAAAGTAA;





(SEQ ID NO: 2)


ATGAGCACAGCTGTGTTGGAAAATCCTGGGCTGGGCCGTAAGCTTTCCGA





TTTCGGCCAGGAGACTTCATACATTGAGGACAACTGCAACCAGAATGGGG





CCATTTCTTTGATCTTCAGTCTCAAAGAAGAGGTAGGCGCTCTGGCTAAG





GTCCTGAGGCTGTTTGAGGAAAATGACGTGAATCTGACACACATTGAGTC





TAGGCCTTCCCGACTTAAGAAGGATGAGTATGAGTTCTTCACACACCTGG





ACAAACGATCTCTCCCAGCACTGACCAATATCATCAAGATTCTCAGGCAT





GATATCGGTGCCACGGTCCACGAACTTTCACGCGATAAGAAGAAAGACAC





AGTTCCCTGGTTCCCGAGAACCATTCAGGAACTGGATAGGTTTGCCAATC





AGATTCTGAGCTATGGGGCAGAGTTGGATGCCGACCATCCAGGCTTCAAA





GACCCCGTATATCGGGCTCGGAGAAAGCAGTTTGCAGACATCGCTTACAA





TTACAGGCATGGACAGCCCATCCCTAGAGTGGAGTACATGGAAGAAGGCA





AGAAAACCTGGGGAACGGTGTTTAAGACCCTCAAAAGCCTGTATAAGACC





CACGCGTGTTATGAGTACAACCACATTTTCCCATTGCTGGAGAAGTACTG





TGGCTTTCACGAGGACAACATCCCTCAACTGGAGGATGTTTCACAGTTCC





TTCAGACTTGCACTGGTTTCCGCCTTCGACCTGTGGCTGGGCTGCTTAGC





TCACGGGACTTCCTGGGAGGCCTGGCCTTCAGAGTCTTTCACTGCACTCA





GTACATTCGGCATGGCTCTAAGCCAATGTACACCCCTGAACCGGATATAT





GCCACGAGCTGTTGGGACATGTGCCCCTGTTTTCTGATCGCAGCTTTGCC





CAGTTTTCCCAGGAGATTGGCCTGGCAAGTCTTGGTGCGCCTGATGAGTA





CATCGAGAAGCTCGCGACAATCTACTGGTTCACCGTGGAATTTGGACTCT





GCAAACAAGGGGACTCTATCAAAGCCTACGGAGCAGGACTCCTCTCCAGC





TTCGGTGAACTGCAGTATTGTCTGTCCGAGAAACCCAAACTCTTGCCCCT





GGAACTGGAAAAGACTGCCATCCAAAACTATACTGTCACGGAATTTCAGC





CACTGTATTATGTGGCTGAATCCTTTAACGATGCCAAGGAGAAGGTCCGT





AATTTTGCTGCCACAATACCACGCCCCTTCAGCGTGAGATACGACCCGTA





TACACAACGGATAGAGGTTCTGGACAACACCCAGCAACTGAAAATTCTGG





CAGACAGTATAAACAGCGAAATAGGGATCCTCTGTAGTGCCCTGCAGAAA





ATCAAATGA;





(SEQ ID NO: 3)


AGCCATGGACAGAATGTGGTCTGTCAGCTGTGAATCTGTTGATGGAGATC





CAACTATTTCTTTCATCAGAAAAAGTCCGAAAAGCAAACCTTAATTTGAA





ATAACAGCCTTAAATCCTTTACAAGATGGAGAAACAACAAATAAGTCAAA





ATAATCTGAAATGACAGGATATGAGTACATACTCAAGAGCATAATGGTAA





ATCTTTTGGGGTCATCTTTGATTTAGAGATGATAATCCCATACTCTCAAT





TGAGTTAAATCAGTAATCTGTCGCATTTCATCAAGATTAATTAAAATTTG





GGACCTGCTTCATTCAAGCTTCATATATGCTTTGCAGAGAACTCATAAAG





GAGCATATAAGGCTAAATGTAAAACCCAAGACTGTCATTAGAATTGAATT





ATTGGGCTTAATATAAATCGTAACCTATGAAGTTTATTTTTTATTTTAGT





TAACTATGATTCCAATTACTACTTTGTTATTGTACCTAAGTAAATTTTCT





TTAAGTCAGAAGCCCATTAAAATAGTTACAAGCATTGAACTTCTTTAGTA





TTATATTAATATAAAAACATTTTTGTATGTTTTATTGTAATCATAAATAC





TGCTGTATAAGGTAATAAAACTCTGCACCTAATCCCCATAACTTCCAGTA





TCATTTTCCAATTAATTATCAAGTCTGTTTTGGGAAACACTTTGAGGACA





TTTATGATGCAGCAGATGTTGACTAAAGGCTTGGTTGGTAGATATTCAGG





AAATGTTCACTGAATAAATAAGTAAATACATTATTGAAAAGCAAATCTGT





ATAAATGTGAAATTTTTATTTGTATTAGTAATAAAACATTAGTAGTTTAA





ACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTCGACTCTAGATT;


or





(SEQ ID NO: 4)


AGCCATGGACAGAATGTGGTCTGTCAGCTGTGAATCTGTTGATGGAGATC





CAACTATTTCTTTCATCAGAAAAAGTCCGAAAAGCAAACCTTAATTTGAA





ATAACAGCCTTAAATCCTTTACAAGATGGAGAAACAACAAATAAGTCAAA





ATAATCTGAAATGACAGGATATGAGTACATACTCAAGAGCATAATGGTAA





ATCTTTTGGGGTCATCTTTGATTTAGAGATGATAATCCCATACTCTCAAT





TGAGTTAAATCAGTAATCTGTCGCATTTCATCAAGATTA.







In embodiments, variants can be made to any of the above-described sequences. In embodiments, the PAH sequence or the variant thereof comprises (SEQ ID NO: 1), (SEQ ID NO: 2), (SEQ ID NO: 3), or (SEQ ID NO: 4).


In embodiments, the therapeutic cargo portion comprises at least one small RNA sequence that is capable of binding to at least one pre-determined complementary mRNA sequence. In embodiments, the at least one small RNA sequence targets a complementary mRNA sequence that contains a full-length UTR. In embodiments, the at least one small RNA sequence does not target a complementary mRNA sequence that contains a truncated UTR. In embodiments, the truncated UTR can include any of the truncated sequences identified herein or any variants thereof. In embodiments, the at least one pre-determined complementary mRNA sequence is a PAH mRNA sequence. In embodiments, the at least one small RNA sequence comprises a shRNA. In embodiments, the at least one small RNA sequence is under the control of a first promoter, and the PAH sequence or the variant thereof is under the control of a second promoter. In embodiments, the first promoter comprises a H1 promoter. In embodiments, the second promoter comprises a liver-specific promoter. In embodiments, the liver-specific promoter comprises a hAAT promoter. In embodiments, the at least one small RNA sequence comprises a sequence having at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95% or more percent identity with:









(SEQ ID NO: 5)


TCGCATTTCATCAAGATTAATCTCGAGATTAATCTTGATGAAATGCGATT





TTT;


or





(SEQ ID NO: 6)


ACTCATAAAGGAGCATATAAGCTCGAGCTTATATGCTCCTTTATGAGTTT





TTT.







In embodiments, variants can be made of the above-described sequences. In embodiments, the at least one small RNA sequence comprises: (SEQ ID NO: 5), or (SEQ ID NO: 6). In embodiments, the viral vector is a lentiviral vector or an adeno-associated viral vector.


In another aspect, a lentiviral particle capable of infecting a target cell is disclosed. The lentiviral particle comprises an envelope protein optimized for infecting the target cell; and further comprises a viral vector as detailed herein. In embodiments, the target cell is a hepatic cell.


In another aspect, a method of treating PKU in a subject is disclosed. The method comprises administering to the subject a therapeutically effective amount of a lentirviral particle as detailed herein.


In another aspect, a method of preventing PKU in a subject is disclosed. The method comprises administering to the subject a therapeutically effective amount of the lentirviral particle as detailed herein. In embodiments, the therapeutically effective amount of the lentiviral particle comprises a plurality of single doses of the lentiviral particle. In embodiments, the therapeutically effective amount of the lentiviral particle comprises a single dose of the lentiviral particle. In embodiments, the method comprises administering to the subject therapeutically effective amounts of a first lentirviral particle and a second lentirviral particle comprising a viral vector. In embodiments, the first lentiviral particle comprises a PAH sequence or a variant thereof, and the second lentival particle comprises at least one small RNA sequence that is capable of binding to at least one pre-determined complementary mRNA sequence.


In another aspect, a method of treating or preventing PKU in a subject is disclosed. In embodiments, the subject is in utero. In embodiments, the method of treating or preventing PKU further comprises diagnosing a PKU genotype in the subject that correlates with a PKU phenotype. In embodiments, the method of treating or preventing PKU comprises diagnosis during prenatal screening of the subject. However, in embodiments, a subject may be diagnosed at any time prior to or after treatment.


Other aspects and advantages of the inventions described herein will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate by way of example the aspects of the inventions.


Phenylketonuria


PKU is believed to be caused by mutations of PAH and/or a defect in the synthesis or regeneration of PAH cofactors (i.e.; BH4). Notably, several PAH mutations have been shown to affect protein folding in the endoplasmic reticulum resulting in accelerated degradation and/or aggregation due to missense mutations (63%) and small deletions (13%) in protein structure that attenuates or largely abolishes enzyme catalytic activity. As there are numerous mutations that can affect the functionality of PAH, an effective therapeutic approach for treating PKU may address the aberrant PAH and/or a mode by which replacement PAH can be administered.


In general, three major phenotypic groups are classified in PKU based on Phe levels measured at diagnosis, dietary tolerance to Phe and potential responsiveness to therapy. These groups include classical PKU (Phe>1200 μM), atypical or mild PKU (Phe is 600-1200 μM), and permanent mild hyperphenylalaninemia (HPA, Phe 120-600 μM).


Detection of PKU typically occurs during universal newborn screening (NBS). A drop of blood collected from a heel stick is tested for phenylalanine levels. NBS is mandatory in all 50 states of the USA.


Genetic Medicines


Genetic medicine includes reference to viral vectors that are used to deliver genetic constructs to host cells for the purposes of disease therapy or prevention.


Genetic constructs can include, but are not limited to, functional genes or portions of genes to correct or complement existing defects, DNA sequences encoding regulatory proteins, DNA sequences encoding regulatory RNA molecules including antisense, short homology RNA, long non-coding RNA, small interfering RNA or others, and decoy sequences encoding either RNA or proteins designed to compete for critical cellular factors to alter a disease state. Genetic medicine involves delivering these therapeutic genetic constructs to target cells to provide treatment or alleviation of a particular disease.


By delivering a functional PAH gene to the liver in vivo, its activity may be reconstituted, leading to normal clearance of Phe in the blood therefore eliminating the need for dietary restrictions or frequent enzyme replacement therapies. The effect of this therapeutic approach may be improved by the targeting of a shRNA against endogenous PAH. In an aspect of the disclosure, a functional PAH gene or a variant thereof can be delivered in utero if a fetus has been identified as being at risk of having a PKU genotype, especially in cases where the parental genotypes are known. Treatment may occur in vivo or in utero. In embodiments, the diagnostic step may be carried out to determine whether the fetus is at risk for a PKU phenotype. If the diagnostic step determines that the fetus is at risk for a PKU phenotype, then the fetus may be treated with the genetic medicines detailed herein.


Therapeutic Vectors


A lentiviral virion (particle) in accordance with various aspects and embodiments herein is expressed by a vector system encoding the necessary viral proteins to produce a virion (viral particle). In various embodiments, one vector containing a nucleic acid sequence encoding the lentiviral poi proteins is provided for reverse transcription and integration, operably linked to a promoter. In another embodiment, the pot proteins are expressed by multiple vectors. In other embodiments, vectors containing a nucleic acid sequence encoding the lentiviral Gag proteins for forming a viral capsid, operably linked to a promoter, are provided. In embodiments, this gag nucleic acid sequence is on a separate vector than at least some of the pol nucleic acid sequence. In other embodiments, the gag nucleic acid is on a separate vector from all the poi nucleic acid sequences that encode pol proteins.


Numerous modifications can be made to the vectors herein, which are used to create the particles, to further minimize the chance of obtaining wild type revertants. These include, but are not limited to deletions of the U3 region of the LTR, tat deletions and matrix (MA) deletions. In embodiments, the gag, poi and env vector(s) do not contain nucleotides from the lentiviral genome that package lentiviral RNA, referred to as the lentiviral packaging sequence.


The vector(s) forming the particle preferably do not contain a nucleic acid sequence from the lentiviral genome that expresses an envelope protein. Preferably, a separate vector that contains a nucleic acid sequence encoding an envelope protein operably linked to a promoter is used. This env vector also does not contain a lentiviral packaging sequence. In one embodiment the env nucleic acid sequence encodes a lentiviral envelope protein.


In another embodiment the envelope protein is not from the lentivirus, but from a different virus. The resultant particle is referred to as a pseudotyped particle. By appropriate selection of envelopes one can “infect” virtually any cell. For example, one can use an env gene that encodes an envelope protein that targets an endocytic compartment such as that of the influenza virus, VSV-G, alpha viruses (Semliki forest virus, Sindbis virus), arenaviruses (lymphocytic choriomeningitis virus), flaviviruses (tick-borne encephalitis virus, Dengue virus, hepatitis C virus, GB virus), rhabdoviruses (vesicular stomatitis virus, rabies virus), paramyxoviruses (mumps or measles) and orthomyxoviruses (influenza virus). Other envelopes that can preferably be used include those from Moloney Leukemia Virus such as MLV-E, MLV-A and GALV. These latter envelopes are particularly preferred where the host cell is a primary cell. Other envelope proteins can be selected depending upon the desired host cell.


Lentiviral vector systems as provided herein typically include at least one helper plasmid comprising at least one of a gag, pol, or rev gene. Each of the gag, pol and rev genes may be provided on individual plasmids, or one or more genes may be provided together on the same plasmid. In one embodiment, the gag, pol, and rev genes are provided on the same plasmid (e.g., FIG. 1). In another embodiment, the gag and pol genes are provided on a first plasmid and the rev gene is provided on a second plasmid (e.g., FIG. 2). Accordingly, both 3-vector and 4-vector systems can be used to produce a lentivirus as described herein. In embodiments, the therapeutic vector, at least one envelope plasmid and at least one helper plasmid are transfected into a packaging cell, for example a packaging cell line. A non-limiting example of a packaging cell line is the 293T/17 HEK cell line. When the therapeutic vector, the envelope plasmid, and at least one helper plasmid are transfected into the packaging cell line, a lentiviral particle is ultimately produced.


In another aspect, a lentiviral vector system for expressing a lentiviral particle is disclosed. The system includes a lentiviral vector as described herein; an envelope plasmid for expressing an envelope protein optimized for infecting a cell; and at least one helper plasmid for expressing gag, pol, and rev genes, wherein when the lentiviral vector, the envelope plasmid, and the at least one helper plasmid are transfected into a packaging cell line, a lentiviral particle is produced by the packaging cell line, wherein the lentiviral particle is capable of inhibiting of producing PAH and/or inhibiting the expression of endogenous PAH.


In another aspect, the lentiviral vector, which is also referred to herein as a therapeutic vector, includes the following elements: hybrid 5′ long terminal repeat (RSV/5′ LTR) (SEQ ID NOS: 7-8), Psi sequence (RNA packaging site) (SEQ ID NO: 9), RRE (Rev-response element) (SEQ ID NO: 10), cPPT (polypurine tract) (SEQ ID NO: 11), Anti alpha trypsin promoter (hAAT) (SEQ ID NO: 12), Phenylalanine hydroxylase (PAH) (SEQ ID NO: 1-4, Woodchuck Post-Transcriptional Regulatory Element (WPRE) (SEQ ID NOS: 13), and ΔU3 3′ LTR (SEQ ID NO: 14). In embodiments, sequence variation, by way of substitution, deletion, another aspect, the lentiviral vector, which is also referred to herein as a therapeutic vector, includes the following elements: hybrid 5′ long terminal repeat (RSV/5′ LTR) (SEQ ID NOS: 7-8), Psi sequence (RNA packaging site) (SEQ ID NO: 9), RRE (Rev-response element) (SEQ ID NO: 10), cPPT (polypurine tract) (SEQ ID NO: 11), H1 promoter (SEQ ID NO: 15), PAH shRNA (SEQ ID NO: 1-4), Anti alpha trypsin promoter (hAAT) (SEQ ID NO: 12), PAH shRNA (SEQ ID NO: 1-4), Woodchuck Post-Transcriptional Regulatory Element (WPRE) (SEQ ID NOS: 13), and ΔU3 3′ LTR (SEQ ID NO: 14). In embodiments, sequence variation, by way of substitution, deletion, addition, or mutation can be used to modify the sequences references herein.


In another aspect, a helper plasmid includes the following elements: CAG promoter (SEQ ID NO: 16); HIV component gag (SEQ ID NO: 17); HIV component pol (SEQ ID NO: 18); HIV Int (SEQ ID NO: 19); HIV RRE (SEQ ID NO: 20); and HIV Rev (SEQ ID NO: 21). In another aspect, the helper plasmid may be modified to include a first helper plasmid for expressing the gag and pol genes, and a second and separate plasmid for expressing the rev gene. In embodiments, sequence variation, by way of substitution, deletion, addition, or mutation can be used to modify the sequences references herein.


In another aspect, an envelope plasmid includes the following elements: RNA polymerase II promoter (CMV) (SEQ ID NO: 22) and vesicular stomatitis virus G glycoprotein (VSV-G) (SEQ ID NO: 23). In embodiments, sequence variation, by way of substitution, deletion, addition, or mutation can be used to modify the sequences references herein.


In various aspects, the plasmids used for lentiviral packaging are modified by substitution, addition, subtraction or mutation of various elements without loss of vector function. For example, and without limitation, the following elements can replace similar elements in the plasmids that comprise the packaging system: Elongation Factor-1 (EF-1), phosphoglycerate kinase (PGK), and ubiquitin C (UbC) promoters can replace the CMV or CAG promoter. SV40 poly A and bGH poly A can replace the rabbit beta globin poly A. The HIV sequences in the helper plasmid can be constructed from different HIV strains or clades. The VSV-G glycoprotein can be substituted with membrane glycoproteins from feline endogenous virus (RD114), gibbon ape leukemia virus (GALV), Rabies (FUG), lymphocytic choriomeningitis virus (LCMV), influenza A fowl plague virus (FPV), Ross River alphavirus (RRV), murine leukemia virus 10A1 (MLV), or Ebola virus (EboV).


Various lentiviral packaging systems can be acquired commercially (e.g., Lenti-vpak packaging kit from OriGene Technologies, Inc., Rockville, MD), and can also be designed as described herein. Moreover, it is within the skill of a person ordinarily skilled in the art to substitute or modify aspects of a lentiviral packaging system to improve any number of relevant factors, including the production efficiency of a lentiviral particle.


In another aspect, adeno-associated viral (AAV) vectors can be used.


AAV Vector Construction.


PAH shRNA sequence #1 (SEQ ID NO: 5) or PAH shRNA sequence #2 (SEQ ID NO: 6) can be inserted into the pAAV plasmid (Cell Biolabs). PAH oligonucleotide sequences containing BamHI and EcoRI restriction sites can be synthesized by Eurofins MWG Operon. Overlapping sense and antisense oligonucleotide sequences can be mixed and annealed during cooling from 70 degrees Celsius to room temperature. The pAAV can be digested with the restriction enzymes BamHI and EcoRI for one hour at 37 degrees Celsius. The digested pAAV plasmid can be purified by agarose gel electrophoresis and extracted from the gel using a DNA gel extraction kit from Thermo Scientific. The DNA concentrations can be determined and vector to oligo (3:1 ratio) can be mixed, allowed to anneal, and ligated. The ligation reaction can be performed with T4 DNA ligase for 30 minutes at room temperature. 2.5 microliters of the ligation mix can be added to 25 microliters of STBL3 competent bacterial cells. Transformation can be achieved after heat-shock at 42 degrees Celsius. Bacterial cells can be spread on agar plates containing ampicillin and drug-resistant colonies (indicating the presence of ampicillin-resistance plasmids) can be recovered and expanded in LB broth. To check for insertion of the oligo sequences, plasmid DNA can be extracted from harvested bacteria cultures with the Thermo Scientific DNA mini prep kit. Insertion of shRNA sequences in the pAAV plasmid can be verified by DNA sequencing using a specific primer for the promoter used to regulate shRNA expression.


An exemplary AAV plasmid system for expressing PAH (SEQ ID NO: 1) is depicted in FIG. 3. Briefly, the leftmost AAV Helper plasmid contains a Left ITR (SEQ ID NO: 47), a Prothrombin enhancer (SEQ ID NO: 48), a human Anti alpha trypsin promoter (SEQ ID NO: 12), a PAH element (SEQ ID NO: 1), a PolyA element (SEQ ID NO: 49), and a Right ITR (SEQ ID NO: 50). The AAV plasmid depicted in the middle of FIG. 3 shows an AAV plasmid that contains a suitable promoter element (SEQ ID NO: 16; SEQ ID NO: 22), and E2A element (SEQ ID NO: 51), an E4 element (SEQ ID NO: 52), a VA RNA element (SEQ ID NO: 53), and a PolyA element (SEQ ID NO: 49). The rightmost plasmid depicts an AAV Rep/Cap plasmid that contains a suitable promoter element, a Rep element (SEQ ID NO: 54), a Cap element (SEQ ID NO: 55), and a PolyA element (SEQ ID NO: 49).


Production of AAV Particles.


The AAV-PAH shRNA plasmid may be combined with the plasmids pAAV-RC2 (Cell Biolabs) and pHelper (Cell Biolabs). The pAAV-RC2 plasmid may contain the Rep and AAV2 capsid genes and pHelper may contain the adenovirus E2A, E4, and VA genes. To produce AAV particles, these plasmids may be transfected in the ratio 1:1:1 (pAAV-shPAH: pAAV-RC2: pHelper) into 293T cells. For transfection of cells in 150 mm dishes (BD Falcon), 10 micrograms of each plasmid may be added together in 1 ml of DMEM. In another tube, 60 microliters of the transfection reagent PEI (1 microgram/ml) (Polysciences) may be added to 1 ml of DMEM. The two tubes may be mixed together and allowed to incubate for 15 minutes. Then the transfection mixture may be added to cells and the cells may be collected after 3 days. The cells may be lysed by freeze/thaw lysis in dry ice/isopropanol. Benzonase nuclease (Sigma) may be added to the cell lysate for 30 minutes at 37 degrees Celsius. Cell debris may then be pelleted by centrifugation at 4 degrees Celsius for 15 minutes at 12,000 rpm. The supernatant may be collected and then added to target cells.


Dosage and Dosage Forms


The disclosed vector compositions allow for short, medium, or long-term expression of genes or sequences of interest and episomal maintenance of the disclosed vectors. Accordingly, dosing regimens may vary based upon the condition being treated and the method of administration.


In embodiments, vector compositions may be administered to a subject in need in varying doses. Specifically, a subject may be administered about ≥106 infectious doses (where 1 dose is needed on average to transduce 1 target cell). More specifically, a subject may be administered about ≥107, about ≥108, about ≥109, or about ≥1010 infectious doses, or any number of doses in-between these values. Upper limits of dosing will be determined for each disease indication, including a specific cancer type, and will depend on toxicity/safety profiles for each individual product or product lot.


Additionally, vector compositions of the present disclosure may be administered periodically, such as once or twice a day, or any other suitable time period. For example, vector compositions may be administered to a subject in need once a week, once every other week, once every three weeks, once a month, every other month, every three months, every six months, every nine months, once a year, every eighteen months, every two years, every thirty months, or every three years.


In embodiments, the disclosed vector compositions are administered as a pharmaceutical composition. In embodiments, the pharmaceutical composition can be formulated in a wide variety of dosage forms, including but not limited to nasal, pulmonary, oral, topical, or parenteral dosage forms for clinical application. Each of the dosage forms can comprise various solubilizing agents, disintegrating agents, surfactants, fillers, thickeners, binders, diluents such as wetting agents or other pharmaceutically acceptable excipients. The pharmaceutical composition can also be formulated for injection, insufflation, infusion, or intradermal exposure. For instance, an injectable formulation may comprise the disclosed vectors in an aqueous or non-aqueous solution at a suitable pH and tonicity.


The disclosed vector compositions may be administered to a subject via direct injection into a tumor site or at a site of infection. In some embodiments, the vectors can be administered systemically. In some embodiments, the vector compositions can be administered via guided cannulation to tissues immediately surrounding the sites of tumor or infection.


The disclosed vector compositions can be administered using any pharmaceutically acceptable method, such as intranasal, buccal, sublingual, oral, rectal, ocular, parenteral (intravenously, intradermally, intramuscularly, subcutaneously, intraperitoneally), pulmonary, intravaginal, locally administered, topically administered, topically administered after scarification, mucosally administered, via an aerosol, in semi-solid media such as agarose or gelatin, or via a buccal or nasal spray formulation.


Further, the disclosed vector compositions can be formulated into any pharmaceutically acceptable dosage form, such as a solid dosage form, tablet, pill, lozenge, capsule, liquid dispersion, gel, aerosol, pulmonary aerosol, nasal aerosol, ointment, cream, semi-solid dosage form, a solution, an emulsion, and a suspension. Further, the pharmaceutical composition may be a controlled release formulation, sustained release formulation, immediate release formulation, or any combination thereof. Further, the pharmaceutical composition may be a transdermal delivery system.


In embodiments, the pharmaceutical composition can be formulated in a solid dosage form for oral administration, and the solid dosage form can be powders, granules, capsules, tablets or pills. In embodiments, the solid dosage form can include one or more excipients such as calcium carbonate, starch, sucrose, lactose, microcrystalline cellulose or gelatin. In addition, the solid dosage form can include, in addition to the excipients, a lubricant such as talc or magnesium stearate. In some embodiments, the oral dosage form can be immediate release, or a modified release form. Modified release dosage forms include controlled or extended release, enteric release, and the like. The excipients used in the modified release dosage forms are commonly known to a person of ordinary skill in the art.


In embodiments, the pharmaceutical compositions can be formulated as sublingual or buccal dosage forms. Such dosage forms comprise sublingual tablets or solution compositions that are administered under the tongue and buccal tablets that are placed between the cheek and gum.


In embodiments, the pharmaceutical compositions can be formulated as nasal dosage forms. Such dosage forms of the present invention comprise solution, suspension, and gel compositions for nasal delivery.


In embodiments, the pharmaceutical compositions can be formulated in liquid dosage forms for oral administration, such as suspensions, emulsions or syrups. In embodiments, the liquid dosage forms can include, in addition to commonly used simple diluents such as water and liquid paraffin, various excipients such as humectants, sweeteners, aromatics or preservatives. In embodiments, the compositions can be formulated to be suitable for administration to a pediatric patient.


In embodiments, the pharmaceutical compositions can be formulated in dosage forms for parenteral administration, such as sterile aqueous solutions, suspensions, emulsions, non-aqueous solutions or suppositories. In embodiments, the solutions or suspensions can include propylene glycol, polyethylene glycol, vegetable oils such as olive oil or injectable esters such as ethyl oleate.


The dosage of the pharmaceutical compositions can vary depending on the patient's weight, age, gender, administration time and mode, excretion rate, and the severity of disease.


In embodiments, the vector compositions are administered into the cerebrospinal fluid, blood or lymphatic circulation by venous or arterial cannulation or injection, intradermal delivery, intramuscular delivery or injection into a draining organ near the site of disease.


The following examples are given to illustrate aspects of the present invention. It should be understood, however, that the invention is not to be limited to the specific conditions or details described in these examples. All printed publications referenced herein are specifically incorporated by reference.


EXAMPLES
Example 1: Development of a Lentiviral Vector System

A lentiviral vector system was developed as summarized in FIG. 1 (circularized form). Lentiviral particles were produced in 293T/17 HEK cells (purchased from American Type Culture Collection, Manassas, VA) following transfection with the therapeutic vector, the envelope plasmid, and the helper plasmid. The transfection of 293T/17 HEK cells, which produced functional viral particles, employed the reagent Poly(ethylenimine) (PEI) to increase the efficiency of plasmid DNA uptake. The plasmids and DNA were initially added separately in culture medium without serum in a ratio of 3:1 (mass ratio of PEI to DNA). After 2-3 days, cell medium was collected and lentiviral particles were purified by high-speed centrifugation and/or filtration followed by anion-exchange chromatography. The concentration of lentiviral particles can be expressed in terms of transducing units/ml (TU/ml). The determination of TU was accomplished by measuring HIV p24 levels in culture fluids (p24 protein is incorporated into lentiviral particles), by measuring the number of viral DNA copies per transduced cell by quantitative PCR, or by infecting cells and using light (if the vectors encode luciferase or fluorescent protein markers).


As mentioned above, a 3-vector system (i.e., which includes a 2-vector lentiviral packaging system) was designed for the production of lentiviral particles. A schematic of the 3-vector system is shown in FIG. 1. Briefly, and with reference to FIG. 1, the top-most vector is a helper plasmid, which, in this case, includes Rev. The vector appearing in the middle of FIG. 1 is the envelope plasmid. The bottom-most vector is the therapeutic vector, as described herein.


Referring to FIG. 1, the Helper plus Rev plasmid includes a CAG enhancer (SEQ ID NO: 24); a CAG promoter (SEQ ID NO: 16); a chicken beta actin intron (SEQ ID NO: 25); a HIV gag (SEQ ID NO: 17); a HIV Pol (SEQ ID NO: 18); a HIV Int (SEQ ID NO: 19); a HIV RRE (SEQ ID NO: 20); a HIV Rev (SEQ ID NO: 21); and a rabbit beta globin poly A (SEQ ID NO: 26).


The Envelope plasmid includes a CMV promoter (SEQ ID NO: 22); a beta globin intron (SEQ ID NO: 27); a VSV-G envelope glycoprotein (SEQ ID NO: 23); and a rabbit beta globin poly A (SEQ ID NO: 26).


Synthesis of a 3-vector system, which includes a 2-vector lentiviral packaging system, consisting of Helper (plus Rev) and Envelope plasmids, is disclosed.


Materials and Methods:


Construction of the Helper Plasmid:


The helper plasmid was constructed by initial PCR amplification of a DNA fragment from the pNL4-3 HIV plasmid (NIH Aids Reagent Program) containing Gag, Pol, and Integrase genes. Primers were designed to amplify the fragment with EcoRI and NotI restriction sites which could be used to insert at the same sites in the pCDNA3 plasmid (Invitrogen). The forward primer was (5′-TAAGCAGAATTCATGAATTTGCCAGGAAGAT-3′) (SEQ ID NO: 28) and reverse primer was (5′-CCATACAATGAATGGACACTAGGCGGCCGCACGAAT-3′) (SEQ ID NO: 29).


The sequence for the Gag, Pol, Integrase fragment was as follows:









(SEQ ID NO: 30)


GAATTCATGAATTTGCCAGGAAGATGGAAACCAAAAATGATAGGGGGAAT





TGGAGGTTTTATCAAAGTAAGACAGTATGATCAGATACTCATAGAAATCT





GCGGACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAAC





ATAATTGGAAGAAATCTGTTGACTCAGATTGGCTGCACTTTAAATTTTCC





CATTAGTCCTATTGAGACTGTACCAGTAAAATTAAAGCCAGGAATGGATG





GCCCAAAAGTTAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTA





GTAGAAATTTGTACAGAAATGGAAAAGGAAGGAAAAATTTCAAAAATTGG





GCCTGAAAATCCATACAATACTCCAGTATTTGCCATAAAGAAAAAAGACA





GTACTAAATGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACT





CAAGATTTCTGGGAAGTTCAATTAGGAATACCACATCCTGCAGGGTTAAA





ACAGAAAAAATCAGTAACAGTACTGGATGTGGGCGATGCATATTTTTCAG





TTCCCTTAGATAAAGACTTCAGGAAGTATACTGCATTTACCATACCTAGT





ATAAACAATGAGACACCAGGGATTAGATATCAGTACAATGTGCTTCCACA





GGGATGGAAAGGATCACCAGCAATATTCCAGTGTAGCATGACAAAAATCT





TAGAGCCTTTTAGAAAACAAAATCCAGACATAGTCATCTATCAATACATG





GATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAGCATAGAACAAA





AATAGAGGAACTGAGACAACATCTGTTGAGGTGGGGATTTACCACACCAG





ACAAAAAACATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAACTC





CATCCTGATAAATGGACAGTACAGCCTATAGTGCTGCCAGAAAAGGACAG





CTGGACTGTCAATGACATACAGAAATTAGTGGGAAAATTGAATTGGGCAA





GTCAGATTTATGCAGGGATTAAAGTAAGGCAATTATGTAAACTTCTTAGG





GGAACCAAAGCACTAACAGAAGTAGTACCACTAACAGAAGAAGCAGAGCT





AGAACTGGCAGAAAACAGGGAGATTCTAAAAGAACCGGTACATGGAGTGT





ATTATGACCCATCAAAAGACTTAATAGCAGAAATACAGAAGCAGGGGCAA





GGCCAATGGACATATCAAATTTATCAAGAGCCATTTAAAAATCTGAAAAC





AGGAAAGTATGCAAGAATGAAGGGTGCCCACACTAATGATGTGAAACAAT





TAACAGAGGCAGTACAAAAAATAGCCACAGAAAGCATAGTAATATGGGGA





AAGACTCCTAAATTTAAATTACCCATACAAAAGGAAACATGGGAAGCATG





GTGGACAGAGTATTGGCAAGCCACCTGGATTCCTGAGTGGGAGTTTGTCA





ATACCCCTCCCTTAGTGAAGTTATGGTACCAGTTAGAGAAAGAACCCATA





ATAGGAGCAGAAACTTTCTATGTAGATGGGGCAGCCAATAGGGAAACTAA





ATTAGGAAAAGCAGGATATGTAACTGACAGAGGAAGACAAAAAGTTGTCC





CCCTAACGGACACAACAAATCAGAAGACTGAGTTACAAGCAATTCATCTA





GCTTTGCAGGATTCGGGATTAGAAGTAAACATAGTGACAGACTCACAATA





TGCATTGGGAATCATTCAAGCACAACCAGATAAGAGTGAATCAGAGTTAG





TCAGTCAAATAATAGAGCAGTTAATAAAAAAGGAAAAAGTCTACCTGGCA





TGGGTACCAGCACACAAAGGAATTGGAGGAAATGAACAAGTAGATAAATT





GGTCAGTGCTGGAATCAGGAAAGTACTATTTTTAGATGGAATAGATAAGG





CCCAAGAAGAACATGAGAAATATCACAGTAATTGGAGAGCAATGGCTAGT





GATTTTAACCTACCACCTGTAGTAGCAAAAGAAATAGTAGCCAGCTGTGA





TAAATGTCAGCTAAAAGGGGAAGCCATGCATGGACAAGTAGACTGTAGCC





CAGGAATATGGCAGCTAGATTGTACACATTTAGAAGGAAAAGTTATCTTG





GTAGCAGTTCATGTAGCCAGTGGATATATAGAAGCAGAAGTAATTCCAGC





AGAGACAGGGCAAGAAACAGCATACTTCCTCTTAAAATTAGCAGGAAGAT





GGCCAGTAAAAACAGTACATACAGACAATGGCAGCAATTTCACCAGTACT





ACAGTTAAGGCCGCCTGTTGGTGGGCGGGGATCAAGCAGGAATTTGGCAT





TCCCTACAATCCCCAAAGTCAAGGAGTAATAGAATCTATGAATAAAGAAT





TAAAGAAAATTATAGGACAGGTAAGAGATCAGGCTGAACATCTTAAGACA





GCAGTACAAATGGCAGTATTCATCCACAATTTTAAAAGAAAAGGGGGGAT





TGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACA





TACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTCGG





GTTTATTACAGGGACAGCAGAGATCCAGTTTGGAAAGGACCAGCAAAGCT





CCTCTGGAAAGGTGAAGGGGCAGTAGTAATACAAGATAATAGTGACATAA





AAGTAGTGCCAAGAAGAAAAGCAAAGATCATCAGGGATTATGGAAAACAG





ATGGCAGGTGATGATTGTGTGGCAAGTAGACAGGATGAGGATTAA






Next, a DNA fragment containing the Rev, RRE, and rabbit beta globin poly A sequence with XbaI and XmaI flanking restriction sites was synthesized by Eurofins Genomics. The DNA fragment was then inserted into the plasmid at the XbaI and XmaI restriction sites The DNA sequence was as follows:









(SEQ ID NO: 31)


TCTAGAATGGCAGGAAGAAGCGGAGACAGCGACGAAGAGCTCATCAGAAC





AGTCAGACTCATCAAGCTTCTCTATCAAAGCAACCCACCTCCCAATCCCG





AGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGA





CAGAGACAGATCCATTCGATTAGTGAACGGATCCTTGGCACTTATCTGGG





ACGATCTGCGGAGCCTGTGCCTCTTCAGCTACCACCGCTTGAGAGACTTA





CTCTTGATTGTAACGAGGATTGTGGAACTTCTGGGACGCAGGGGGTGGGA





AGCCCTCAAATATTGGTGGAATCTCCTACAATATTGGAGTCAGGAGCTAA





AGAATAGAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACT





ATGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTC





TGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAAC





AGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGA





ATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTAGATCTTTT





TCCCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGA





CTTCTGGCTAATAAAGGAAATTTATTTTCATTGCAATAGTGTGTTGGAAT





TTTTTGTGTCTCTCACTCGGAAGGACATATGGGAGGGCAAATCATTTAAA





ACATCAGAATGAGTATTTGGTTTAGAGTTTGGCAACATATGCCATATGCT





GGCTGCCATGAACAAAGGTGGCTATAAAGAGGTCATCAGTATATGAAACA





GCCCCCTGCTGTCCATTCCTTATTCCATAGAAAAGCCTTGACTTGAGGTT





AGATTTTTTTTATATTTTGTTTTGTGTTATTTTTTTCTTTAACATCCCTA





AAATTTTCCTTACATGTTTTACTAGCCAGATTTTTCCTCCTCTCCTGACT





ACTCCCAGTCATAGCTGTCCCTCTTCTCTTATGAAGATCCCTCGACCTGC





AGCCCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTG





TTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTA





AAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGC





TCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCGGATCCGCAT





CTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCC





CCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTT





TTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAG





AAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTAAC





TTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAA





TTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCA





AACTCATCAATGTATCTTATCAGCGGCCGCCCCGGG






Finally, the CMV promoter of pCDNA3.1 was replaced with the CAG enhancer/promoter plus a chicken beta actin intron sequence. A DNA fragment containing the CAG enhancer/promoter/intron sequence with MluI and EcoRI flanking restriction sites was synthesized by Eurofins Genomics. The DNA fragment was then inserted into the plasmid at the MluI and EcoRI restriction sites. The DNA sequence was as follows:









(SEQ ID NO: 32)


ACGCGTTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCC





CATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGC





TGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCC





CATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGACTATT





TACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGT





ACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGC





CCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTAT





TAGTCATCGCTATTACCATGGGTCGAGGTGAGCCCCACGTTCTGCTTCAC





TCTCCCCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTATTT





TTTAATTATTTTGTGCAGCGATGGGGGCGGGGGGGGGGGGGGCGCGCGCC





AGGCGGGGCGGGGCGGGGCGAGGGGCGGGGCGGGGCGAGGCGGAGAGGTG





CGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCG





AGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGGG





AGTCGCTGCGTTGCCTTCGCCCCGTGCCCCGCTCCGCGCCGCCTCGCGCC





GCCCGCCCCGGCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGG





GACGGCCCTTCTCCTCCGGGCTGTAATTAGCGCTTGGTTTAATGACGGCT





CGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTAAAGGGCTCCGGGAGGGCC





CTTTGTGCGGGGGGGAGCGGCTCGGGGGGTGCGTGCGTGTGTGTGTGCGT





GGGGAGCGCCGCGTGCGGCCCGCGCTGCCCGGCGGCTGTGAGCGCTGCGG





GCGCGGCGCGGGGCTTTGTGCGCTCCGCGTGTGCGCGAGGGGAGCGCGGC





CGGGGGCGGTGCCCCGCGGTGCGGGGGGGCTGCGAGGGGAACAAAGGCTG





CGTGCGGGGTGTGTGCGTGGGGGGGTGAGCAGGGGGTGTGGGCGCGGCGG





TCGGGCTGTAACCCCCCCCTGCACCCCCCTCCCCGAGTTGCTGAGCACGG





CCCGGCTTCGGGTGCGGGGCTCCGTGCGGGGCGTGGCGCGGGGCTCGCCG





TGCCGGGCGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGGCGGGGCCG





CCTCGGGCCGGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCCGGAGCGCC





GGCGGCTGTCGAGGCGCGGCGAGCCGCAGCCATTGCCTTTTATGGTAATC





GTGCGAGAGGGCGCAGGGACTTCCTTTGTCCCAAATCTGGCGGAGCCGAA





ATCTGGGAGGCGCCGCCGCACCCCCTCTAGCGGGCGCGGGCGAAGCGGTG





CGGCGCCGGCAGGAAGGAAATGGGCGGGGAGGGCCTTCGTGCGTCGCCGC





GCCGCCGTCCCCTTCTCCATCTCCAGCCTCGGGGCTGCCGCAGGGGGACG





GCTGCCTTCGGGGGGGACGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTG





ACCGGCGGGAATTC






Construction of the VSV-G Envelope plasmid:


The vesicular stomatitis Indiana virus glycoprotein (VSV-G) sequence was synthesized by Eurofins Genomics with flanking EcoRI restriction sites. The DNA fragment was then inserted into the pCDNA3.1 plasmid (Invitrogen) at the EcoRI restriction site and the correct orientation was determined by sequencing using a CMV specific primer.


The DNA sequence was as follows:









(SEQ ID NO: 23)


GAATTCATGAAGTGCCTTTTGTACTTAGCCTTTTTATTCATTGGGGTGAA





TTGCAAGTTCACCATAGTTTTTCCACACAACCAAAAAGGAAACTGGAAAA





ATGTTCCTTCTAATTACCATTATTGCCCGTCAAGCTCAGATTTAAATTGG





CATAATGACTTAATAGGCACAGCCTTACAAGTCAAAATGCCCAAGAGTCA





CAAGGCTATTCAAGCAGACGGTTGGATGTGTCATGCTTCCAAATGGGTCA





CTACTTGTGATTTCCGCTGGTATGGACCGAAGTATATAACACATTCCATC





CGATCCTTCACTCCATCTGTAGAACAATGCAAGGAAAGCATTGAACAAAC





GAAACAAGGAACTTGGCTGAATCCAGGCTTCCCTCCTCAAAGTTGTGGAT





ATGCAACTGTGACGGATGCCGAAGCAGTGATTGTCCAGGTGACTCCTCAC





CATGTGCTGGTTGATGAATACACAGGAGAATGGGTTGATTCACAGTTCAT





CAACGGAAAATGCAGCAATTACATATGCCCCACTGTCCATAACTCTACAA





CCTGGCATTCTGACTATAAGGTCAAAGGGCTATGTGATTCTAACCTCATT





TCCATGGACATCACCTTCTTCTCAGAGGACGGAGAGCTATCATCCCTGGG





AAAGGAGGGCACAGGGTTCAGAAGTAACTACTTTGCTTATGAAACTGGAG





GCAAGGCCTGCAAAATGCAATACTGCAAGCATTGGGGAGTCAGACTCCCA





TCAGGTGTCTGGTTCGAGATGGCTGATAAGGATCTCTTTGCTGCAGCCAG





ATTCCCTGAATGCCCAGAAGGGTCAAGTATCTCTGCTCCATCTCAGACCT





CAGTGGATGTAAGTCTAATTCAGGACGTTGAGAGGATCTTGGATTATTCC





CTCTGCCAAGAAACCTGGAGCAAAATCAGAGCGGGTCTTCCAATCTCTCC





AGTGGATCTCAGCTATCTTGCTCCTAAAAACCCAGGAACCGGTCCTGCTT





TCACCATAATCAATGGTACCCTAAAATACTTTGAGACCAGATACATCAGA





GTCGATATTGCTGCTCCAATCCTCTCAAGAATGGTCGGAATGATCAGTGG





AACTACCACAGAAAGGGAACTGTGGGATGACTGGGCACCATATGAAGACG





TGGAAATTGGACCCAATGGAGTTCTGAGGACCAGTTCAGGATATAAGTTT





CCTTTATACATGATTGGACATGGTATGTTGGACTCCGATCTTCATCTTAG





CTCAAAGGCTCAGGTGTTCGAACATCCTCACATTCAAGACGCTGCTTCGC





AACTTCCTGATGATGAGAGTTTATTTTTTGGTGATACTGGGCTATCCAAA





AATCCAATCGAGCTTGTAGAAGGTTGGTTCAGTAGTTGGAAAAGCTCTAT





TGCCTCTTTTTTCTTTATCATAGGGTTAATCATTGGACTATTCTTGGTTC





TCCGAGTTGGTATCCATCTTTGCATTAAATTAAAGCACACCAAGAAAAGA





CAGATTTATACAGACATAGAGATGAGAATTC






A 4-vector system, which includes a 3-vector lentiviral packaging system, has also been designed and produced using the methods and materials described herein. A schematic of the 4-vector system is shown in FIG. 2. Briefly, and with reference to FIG. 2, the top-most vector is a helper plasmid, which, in this case, does not include Rev. The vector second from the top is a separate Rev plasmid. The vector second from the bottom is the envelope plasmid. The bottom-most vector is the therapeutic vector as described herein.


Referring to FIG. 2, the Helper plasmid includes a CAG enhancer (SEQ ID NO: 24); a CAG promoter (SEQ ID NO: 16); a chicken beta actin intron (SEQ ID NO: 25); a HIV gag (SEQ ID NO: 17); a HIV Pol (SEQ ID NO: 18); a HIV Int (SEQ ID NO: 19); a HIV RRE (SEQ ID NO: 20); and a rabbit beta globin poly A (SEQ ID NO: 26).


The Rev plasmid includes a RSV promoter (SEQ ID NO: 7); a HIV Rev (SEQ ID NO: 21); and a rabbit beta globin poly A (SEQ ID NO: 26).


The Envelope plasmid includes a CMV promoter (SEQ ID NO: 22); a beta globin intron (SEQ ID NO: 27); a VSV-G (SEQ ID NO: 23); and a rabbit beta globin poly A (SEQ ID NO: 26).


In one aspect, the therapeutic PAH lentivirus plasmid includes all of the elements shown in FIG. 4A. In another aspect, the therapeutic PAH lentivirus plasmid includes all of the elements shown in FIG. 4B.


Synthesis of a 4-vector system, which includes a 3-vector lentiviral packaging system consisting of Helper, Rev, and Envelope plasmids, is disclosed.


Materials and Methods:


Construction of the Helper Plasmid without Rev:


The Helper plasmid without Rev was constructed by inserting a DNA fragment containing the RRE and rabbit beta globin poly A sequence. This sequence was synthesized by Eurofins Genomics with flanking XbaI and XmaI restriction sites. The RRE/rabbit poly A beta globin sequence was then inserted into the Helper plasmid at the XbaI and XmaI restriction sites.


The DNA sequence is as follows:









(SEQ ID NO: 56)


TCTAGAAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTA





TGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCT





GGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACA





GCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAA





TCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTAGATCTTTTT





CCCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGAC





TTCTGGCTAATAAAGGAAATTTATTTTCATTGCAATAGTGTGTTGGAATT





TTTTGTGTCTCTCACTCGGAAGGACATATGGGAGGGCAAATCATTTAAAA





CATCAGAATGAGTATTTGGTTTAGAGTTTGGCAACATATGCCATATGCTG





GCTGCCATGAACAAAGGTGGCTATAAAGAGGTCATCAGTATATGAAACAG





CCCCCTGCTGTCCATTCCTTATTCCATAGAAAAGCCTTGACTTGAGGTTA





GATTTTTTTTATATTTTGTTTTGTGTTATTTTTTTCTTTAACATCCCTAA





AATTTTCCTTACATGTTTTACTAGCCAGATTTTTCCTCCTCTCCTGACTA





CTCCCAGTCATAGCTGTCCCTCTTCTCTTATGAAGATCCCTCGACCTGCA





GCCCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGT





TATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAA





AGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCT





CACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCGGATCCGCATC





TCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCC





CTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTT





TTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGA





AGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTAACT





TGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAAT





TTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAA





ACTCATCAATGTATCTTATCACCCGGG






Construction of the Rev Plasmid:


The RSV promoter and HIV Rev sequences were synthesized as a single DNA fragment by Eurofins Genomics with flanking MfeI and XbaI restriction sites. The DNA fragment was then inserted into the pCDNA3.1 plasmid (Invitrogen) at the MfeI and XbaI restriction sites in which the CMV promoter is replaced with the RSV promoter. The DNA sequence was as follows:









(SEQ ID NO: 33)


CAATTGCGATGTACGGGCCAGATATACGCGTATCTGAGGGGACTAGGGTG





TGTTTAGGCGAAAAGCGGGGCTTCGGTTGTACGCGGTTAGGAGTCCCCTC





AGGATATAGTAGTTTCGCTTTTGCATAGGGAGGGGGAAATGTAGTCTTAT





GCAATACACTTGTAGTCTTGCAACATGGTAACGATGAGTTAGCAACATGC





CTTACAAGGAGAGAAAAAGCACCGTGCATGCCGATTGGTGGAAGTAAGGT





GGTACGATCGTGCCTTATTAGGAAGGCAACAGACAGGTCTGACATGGATT





GGACGAACCACTGAATTCCGCATTGCAGAGATAATTGTATTTAAGTGCCT





AGCTCGATACAATAAACGCCATTTGACCATTCACCACATTGGTGTGCACC





TCCAAGCTCGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCAT





CCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCC





CTCGAAGCTAGCGATTAGGCATCTCCTATGGCAGGAAGAAGCGGAGACAG





CGACGAAGAACTCCTCAAGGCAGTCAGACTCATCAAGTTTCTCTATCAAA





GCAACCCACCTCCCAATCCCGAGGGGACCCGACAGGCCCGAAGGAATAGA





AGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACG





GATCCTTAGCACTTATCTGGGACGATCTGCGGAGCCTGTGCCTCTTCAGC





TACCACCGCTTGAGAGACTTACTCTTGATTGTAACGAGGATTGTGGAACT





TCTGGGACGCAGGGGGTGGGAAGCCCTCAAATATTGGTGGAATCTCCTAC





AATATTGGAGTCAGGAGCTAAAGAATAGTCTAGA






The plasmids used in the packaging systems can be modified with similar elements, and the intron sequences can potentially be removed without loss of vector function. For example, the following elements can replace similar elements in the packaging system:


Promoters: Elongation Factor-1 (EF-1) (SEQ ID NO: 34), phosphoglycerate kinase (PGK) (SEQ ID NO: 35), and ubiquitin C (UbC) (SEQ ID NO: 36) can replace the CMV (SEQ ID NO: 22) or CAG promoter (SEQ ID NO: 16). These sequences can also be further varied by addition, substitution, deletion or mutation.


Poly A sequences: SV40 poly A (SEQ ID NO: 37) and bGH poly A (SEQ ID NO: 38) can replace the rabbit beta globin poly A (SEQ ID NO: 26). These sequences can also be further varied by addition, substitution, deletion or mutation.


HIV Gag, Pol, and Integrase sequences: The HIV sequences in the Helper plasmid can be constructed from different HIV strains or clades. For example, HIV Gag (SEQ ID NO: 17); HIV Pol (SEQ ID NO: 18); and HIV Int (SEQ ID NO: 19) from the Bal strain can be interchanged with the gag, pol, and int sequences contained in the helper/helper plus Rev plasmids as outlined herein. These sequences can also be further varied by addition, substitution, deletion or mutation.


Envelope: The VSV-G glycoprotein can be substituted with membrane glycoproteins from feline endogenous virus (RD114) (SEQ ID NO: 39), gibbon ape leukemia virus (GALV) (SEQ ID NO: 40), Rabies (FUG) (SEQ ID NO: 41), lymphocytic choriomeningitis virus (LCMV) (SEQ ID NO: 42), influenza A fowl plague virus (FPV) (SEQ ID NO: 43), Ross River alphavirus (RRV) (SEQ ID NO: 44), murine leukemia virus 10A1 (MLV) (SEQ ID NO: 45), or Ebola virus (EboV) (SEQ ID NO: 46). Sequences for these envelopes are identified in the sequence portion herein. Further, these sequences can also be further varied by addition, substitution, deletion or mutation.


In summary, the 3-vector versus 4-vector systems can be compared and contrasted as follows. The 3-vector lentiviral vector system contains: 1. Helper plasmid: HIV Gag, Pol, Integrase, and Rev/Tat; 2. Envelope plasmid: VSV-G/FUG envelope; and 3. Therapeutic vector: RSV 5′LTR, Psi Packaging Signal, RRE, cPPT, ApoE Enhancer, anti-alpha trypsin promoter, phenylalanine hydroxylase, 3′ UTR, WPRE, and 3′delta LTR. The 4-vector lentiviral vector system contains: 1. Helper plasmid: HIV Gag, Pol, and Integrase; 2. Rev plasmid: Rev; 3. Envelope plasmid: VSV-G/FUG envelope; and 4. Therapeutic vector: RSV 5′LTR, Psi Packaging Signal, RRE, cPPT, ApoE Enhancer, anti-alpha trypsin promoter, phenylalanine hydroxylase, WPRE, and 3′delta LTR. Sequences corresponding with the above elements are identified in the sequence listings portion herein.


Example 2. Therapeutic Vectors

Exemplary therapeutic vectors have been designed and developed as shown, for example, in FIG. 4.


Referring first to FIG. 4A, from left to right, the key genetic elements are as follows: hybrid 5′ long terminal repeat (RSV/LTR), Psi sequence (RNA packaging site), RRE (Rev-response element), cPPT (polypurine tract), a hAAT promoter, a PAH or variant thereof, as detailed herein, Woodchuck Post-Transcriptional Regulatory Element (WPRE), and LTR with a deletion in the U3 region.


Referring next to FIG. 4B, from left to right, the key genetic elements are as follows: hybrid 5′ long terminal repeat (RSV/LTR), Psi sequence (RNA packaging site), RRE (Rev-response element), cPPT (polypurine tract), an H1 promoter, a PAH shRNA sequence or variant thereof, as detailed herein, a hAAT promoter, a PAH sequence including the PAH sequences and variants thereof, as detailed herein, a Woodchuck Post-Transcriptional Regulatory Element (WPRE), and LTR with a deletion in the U3 region.


To produce the vectors outlined generally in FIGS. 4A and 4B, the following methods and materials were employed.


Inhibitory RNA Design:


The sequence of Homo sapiens phenylalanine hydroxylase (PAH) (NM_000277.1) mRNA was used to search for potential shRNA candidates to knockdown PAH levels in human cells. Potential RNA shRNA sequences were chosen from candidates selected by siRNA or shRNA design programs such as from the GPP Web Portal hosted by the Broad Institute (http://portals.broadinstitute.org/gpp/public/) or the BLOCK-iT RNAi Designer from Thermo Scientific (https://rnaidesigner.thermofisher.com/rnaiexpress/). Individual selected shRNA sequences were inserted into a lentiviral vector immediately 3 prime to a RNA polymerase III promoter H1 (SEQ ID NO: 15) to regulate shRNA expression. These lentivirus shRNA constructs were used to transduce cells and measure the change in specific mRNA levels.


Vector Construction:


For PAH shRNA, oligonucleotide sequences containing BamHI and EcoRI restriction sites were synthesized by Eurofins MWG Operon. Overlapping sense and antisense oligonucleotide sequences were mixed and annealed during cooling from 70 degrees Celsius to room temperature. The lentiviral vector was digested with the restriction enzymes BamHI and EcoRI for one hour at 37 degrees Celsius. The digested lentiviral vector was purified by agarose gel electrophoresis and extracted from the gel using a DNA gel extraction kit from Thermo Scientific. The DNA concentrations were determined and vector to oligo (3:1 ratio) were mixed, allowed to anneal, and ligated. The ligation reaction was performed with T4 DNA ligase for 30 minutes at room temperature. 2.5 microliters of the ligation mix were added to 25 microliters of STBL3 competent bacterial cells. Transformation was achieved after heat-shock at 42 degrees Celsius. Bacterial cells were spread on agar plates containing ampicillin and drug-resistant colonies (indicating the presence of ampicillin-resistance plasmids) were recovered and expanded in LB broth. To check for insertion of the oligo sequences, plasmid DNA was extracted from harvested bacteria cultures with the Thermo Scientific DNA mini prep kit. Insertion of shRNA sequences in the lentiviral vector was verified by DNA sequencing using a specific primer for the promoter used to regulate shRNA expression. Using the following target sequences, exemplary shRNA sequences were determined to knock-down PAH.









PAH shRNA sequence #1:


(SEQ ID NO: 5)


TCGCATTTCATCAAGATTAATCTCGAGATTAATCTTGATGAAATGCGATT





TTT





PAH shRNA sequence #2:


(SEQ ID NO: 6)


ACTCATAAAGGAGCATATAAGCTCGAGCTTATATGCTCCTTTATGAGTTT





TTT






Example 3—Phenylalanine Hydroxylase Open Reading Frame Including Complete 5′ and 3′ UTR

Hepa1-6 mouse hepatoma cells were infected with lentiviral vectors containing the PAH gene (SEQ ID NO: 1), including its full 5 prime untranslated region and its full 3 prime untranslated region (SEQ ID NO: 3) as shown in FIG. 5. FIG. 5 provides the complete DNA sequence of a cDNA expression construct for human PAH (SEQ ID NO: 57). This version includes the intact 5′ UTR region (shown in boldface), the coding region for hPAH, and the complete 3′ UTR (shown in boldface). Results for these infections are detailed in further Examples herein.


Example 4—Phenylalanine Hydroxylase Open Reading Frame Including Complete 5′ UTR and a Truncated 3′ UTR

Hepa1-6 mouse hepatoma cells were infected with lentiviral vectors containing the PAH gene (SEQ ID NO: 1), including its full 5 prime untranslated region and a truncated 3 prime untranslated region (SEQ ID NO: 4) as shown in FIG. 6. FIG. 6 provides the cDNA sequence for human PAH that includes the 5′ UTR (897 nucleotides) (shown in boldface), the coding region for hPAH, and the truncated 3′ UTR (289 nucleotides) (shown in boldface) (SEQ ID NO: 58).


Example 5. Materials and Methods for PAH

The sequence of Homo sapiens phenylalanine hydroxylase (hPAH) mRNA (Gen Bank: NM_000277.1) was chemically synthesized with EcoRI and SalI restriction enzyme sites located at distal and proximal ends of the gene. hPAH treated with EcoRI and SalI restriction enzymes was excised and ligated into pCDH plasmids under control of a hybrid promoter comprising parts of ApoE (NM_000001.11, U35114.1) and hAAT (HG98385.1) locus control regions. Similarly, the mouse PAH gene (mPAH) (NM_008777.3) was synthesized and inserted into pCDH under control of the same hybrid promoter. Additionally, human PAH was synthesized to include the 3′ untranslated region (UTR).


In a further modification, the naturally occurring UTR was truncated to improve expression of the hPAH gene when controlled by liver-specific promoter hAAT. Oligonucleotide sequences containing hPAH, hPAH with full-length UTR, hPAH with truncated UTR or mPAH alone with BamHI and EcoRI restriction sites were synthesized by Eurofins Genomics. Oligonucleotide sequences were annealed by incubation at 70 degrees Celsius and cooling to room temperature. The lentiviral vector was digested with the restriction enzymes BamHI and EcoRI for one hour at 37 degrees Celsius. The digested lentiviral vector was purified by agarose gel electrophoresis and extracted from the gel using a DNA gel extraction kit from Invitrogen. The DNA concentration was determined then mixed with the synthetic oligonucleotides (hPAH or mPAH) using a vector to oligo sequence ratio of 3:1 insert to vector. The mixture was ligated T4 DNA ligase for 30 minutes at room temperature. 2.5 microliters of the ligation mix was added to 25 microliters of STBL3 competent bacterial cells. Transformation was carried out by heat-shock at 42 degrees Celsius. Bacterial cells were streaked onto agar plates containing ampicillin and then colonies were expanded in LB broth. To check for insertion of the oligo sequences, Plasmid DNA was extracted from harvested bacteria cultures with the Invitrogen DNA mini prep kit. Insertion of the shRNA sequence in the lentiviral vector (LV) was verified by DNA sequencing using a primer complementary to the promoter used for shRNA expression. The lentiviral vectors containing a verified hPAH or mPAH sequence were then used to package lentiviral particles to test for their ability to express PAH. Mammalian cells were transduced with lentiviral particles. Cells were collected after 2-4 days and protein was analyzed by western blot for PAH expression.


Modifications of the hPAH Sequence:


Several modifications of the hPAH sequence were incorporated to improve cellular expression levels. First, normal hPAH 3′ untranslated region (UTR) was inserted after the PAH coding region and before the mRNA terminus. This created LV-hAAT-hPAH-UTR. Levels of hPAH expression were increased by adding the 3′ UTR but did not reach the levels of mPAH expressed in a similar vector.


Next, the hPAH UTR region was modified to improve expression levels under the control of a liver-specific promoter. A portion of the untranslated region approximately equal to the distal half of the sequence was removed. This modification increased expression of LV-hAAT-hPAH-UTR up to levels similar to what was achieved for mPAH expression. Surprisingly, truncation of the UTR was only required for high-level expression when using the liver-specific hAAT promoter. Generating hPAH expression constructs under the control of the CMV immediate early promoter gave high-level expression irrespective of the presence or absence of UTR and irrespective of whether or not the UTR was truncated. This important advance in understanding the structure function for the hPAH gene locus allows us to generate constructs for specific expression in liver tissue while still achieving high-level production of hPAH. Restricting transgene expression to liver cells is an important consideration for vector safety and target specificity in a genetic medicine for phenylketonuria.


Example 6. Immunoblot Analysis Comparing Levels of Expression for Human and Mouse PAH Genes

An immunoblot analysis comparing levels of expression for human and mouse PAH genes was conducted as summarized in FIG. 7. This Example illustrates that expression of mouse PAH in Hepa1-6 mouse liver cancer cells (Hepa1-6) is higher compared to the nearly undetectable expression of human PAH in Hepa1-6.


Human and mouse PAH were synthesized and inserted into lentiviral vectors. Insertion of the sequences was then verified by DNA sequencing. The lentiviral vectors containing a correct hPAH or mPAH sequence were then used to transduce Hepa1-6 mouse liver cancer cells (purchased from American Type Culture Collection, Manassas, VA). Cells were collected after 2-4 days and protein was analyzed by western blot for PAH expression. Hepa1-6 cells were infected with lentiviral particles containing green fluorescent protein (GFP) as a marker for transduction efficiency. The relative expression of human or mouse PAH was detected by immunoblot using an anti-PAH antibody (Abcam).


Example 7. Lentivirus-Delivered Expression of hPAH with or without the 3′ UTR Region in Hepa1-6 Cells

This Example illustrates that expression of PAH is substantially increased in Hepa1-6 carcinoma cells when a lentiviral vector expresses hPAH including both the 5′ UTR and 3′ UTR, as shown in FIG. 8. This Example also illustrates that a lentivirus vector expressing only the coding region for hPAH does not increase the levels of PAH protein in Hepa1-6 cells.


Human PAH was synthesized and inserted into lentiviral vectors. Insertion of the sequences was verified by DNA sequencing. The lentiviral vectors containing a verified hPAH sequence were then used to transduce Hepa1-6 mouse liver cancer cells (purchased from American Type Culture Collection, Manassas, VA). The lentiviral vectors incorporated a human PAH gene with or without its 3′ UTR. In addition, hPAH expression in these constructs was driven by the hAAT promoter. Cells were transduced with lentiviral particles and after 2-4 days protein was analyzed by western blot for PAH expression. Hepa1-6 cells were infected with lentiviral particles containing green fluorescent protein (GFP) as a marker for transduction efficiency. The relative expression of human PAH was detected by immunoblot using an anti-PAH antibody (Abcam).


As shown in FIG. 8, three groups are compared: a control comprising Hepa1-6 cells alone (lane 1), a group expressing a lentivirus vector expressing only the coding region for hPAH (lane 2), and a lentivirus vector expressing hPAH and including both the 5′ and 3′ UTR regions (lane 3). Notably, Hepa1-6 carcinoma cells are derived from mouse liver tissue and thus there is a natural background expression of PAH observed in Lane 1 (labeled hAAT). FIG. 8 demonstrates that expression of PAH is substantially increased in Hepa1-6 carcinoma cells when a lentivirus (LV) expressing PAH shRNA includes both the 5′ UTR and 3′ UTR.


Example 8. Lentiviral Vector Expressing hPAH with a Truncated 3′ UTR in Hepa1-6 Cells

This Example illustrates that a lentiviral vector expressing hPAH with a truncated 3′ UTR (hPAH-3′UTR) demonstrates substantially increased expression of hPAH compared to constructs containing a full-length 3′UTR sequence, as shown in FIG. 9.


Human PAH was synthesized and inserted into lentiviral vectors. Insertion of the sequences was verified by DNA sequencing. The lentiviral vectors containing a verified hPAH sequence were then used to transduce Hepa1-6 liver cancer cells (purchased from American Type Culture Collection, Manassas, VA). The lentiviral vectors incorporated a human PAH gene with or without its 3′ UTR. In addition, hPAH expression in these constructs was driven by the hAAT promoter. Cells were transduced with lentiviral particles and after 2-4 days protein was analyzed by western blot for PAH expression. Hepa1-6 cells were infected with lentiviral particles containing green fluorescent protein (GFP) as a marker for transduction efficiency. The relative expression of human PAH was detected by immunoblot using an anti-PAH antibody (Abcam) and the loading control Beta-actin.



FIG. 9 shows expression of hPAH constructs in Hepa1-6 carcinoma cells. As shown in FIG. 9, three groups are compared: a control lentiviral vector expressing only the coding region for hPAH (lane 1), a construct containing hPAH-3′UTR (lane 2), and a full-length hPAH 3′UTR sequence (lane 3). Notably, Hepa1-6 carcinoma cells are derived from human liver tissue and thus there is a natural background expression of PAH observed in Lane 1 (labeled hAAT). This Example illustrates that hPAH-3′UTR increases hPAH expression relative to the wild type 3′UTR sequence in Hepa1-6 cells.


Example 9. Expression of Codon-Optimized hPAH with or without WPRE in Mouse Hepa1-6 Cells

This Example illustrates that removing the WPRE element from a lentiviral vector containing the hAAT-hPAH-3′UTR289 reduced hPAH expression significantly, indicating that WPRE is required for optimal protein expression, as shown in FIG. 10. This Example also illustrates that optimizing codon choice based on preferred human codon bias (PAH-OPT) failed to increase hPAH expression levels.


Human PAH was synthesized and inserted into lentiviral vectors. Insertion of the sequences was verified by DNA sequencing. Lentiviral vectors containing a verified hPAH sequence were then used to transduce mouse Hepa1-6 cells (purchased from American Type Culture Collection, Manassas, VA). In addition, hPAH expression in these constructs was driven by the hAAT promoter. Cells were transduced with lentiviral particles and after 2-4 days protein was analyzed by western blot for PAH expression. The relative expression of human PAH was detected by immunoblot using an anti-PAH antibody (Abcam) and the loading control Beta-actin.


This Example shows the effect on hPAH expression in Hepa1-6 cells of: 1) codon optimization of the hPAH coding region and, 2) deletion of the WPRE gene component. Expression of various hPAH constructs in mouse Hepa1-6 cells was compared to address this question. As shown in FIG. 10, five groups are compared: a Beta-actin loading control (lane 1), an optimized codon control construct (lane 2), an optimized codon construct containing a truncated hPAH 3′UTR sequence (lane 3), a control construct containing a truncated hPAH 3′UTR sequence (lane 4), and a construct with a deleted WPRE sequence and containing a truncated hPAH 3′UTR (lane 5). Hepa1-6 carcinoma cells are derived from mouse liver tissue and thus there is a natural background expression of PAH observed in Lane 1 (labeled hAAT). This Example illustrates that optimizing codon choice based on preferred human codon bias (PAH-OPT) failed to increase hPAH expression levels. As observed with the wild type hPAH gene, including a truncated 3′UTR (UTR289) increases hPAH expression but only to levels substantially below what is observed with the wild type (non-optimized) sequence linked to UTR289. Removing the WPRE element from a lentiviral vector containing the hAAT-hPAH-3′UTR289 also reduces hPAH expression indicating that WPRE is required for optimal protein expression.


Example 10. shPAH-1 and shPAH-2 Reduces hPAH Expression in Human Hep3B Cells

This Example demonstrates that lentivirus-delivered PAH shRNA reduces hPAH expression in human Hep3B cells, as shown in FIG. 11.


Human PAH was synthesized and inserted into lentiviral vectors. Insertion of the sequences was verified by DNA sequencing. The lentiviral vectors containing hPAH sequence was then used to transduce human Hep3B cells (purchased from American Type Culture Collection, Manassas, VA). In addition, hPAH expression in these constructs was driven by the hAAT promoter. Cells were transduced with lentiviral particles and after 2-4 days protein was analyzed by western blot for PAH expression. Insertion of the shRNA sequence in the lentiviral vector (LV) was verified by DNA sequencing using a primer complementary to the promoter used to regulate shRNA expression. The relative expression of human PAH was detected by immunoblot using an anti-PAH antibody (Abcam) and the loading control Beta-actin.



FIG. 11 compares the ability of 2 different shRNA constructs to reduce hPAH expression in Hep3B cells, namely PAH shRNA sequence #1 (shPAH-1) and PAH shRNA sequence #2 (shPAH-2). As shown in FIG. 11, three constructs are compared: a control with Hep3B cells alone (lane 1), a construct containing Hep3B cells plus shPAH-1(lane 2), and a construct containing Hep3B cells plus shPAH-2 (lane 3). Notably, Hep3B cells express endogenous PAH at significant levels. This Example illustrates that both shPAH-1 and shPAH-2 were effective in reducing endogenous hPAH expression levels.


Example 11. shPAH-1 Suppression of Endogenous hPAH and hAAT-hPAH-3′UTR289 in Hep3B Cells

This Example demonstrates that shPAH-1 suppresses expression of endogenous PAH and truncated hPAH 3′UTR (hAAT-hPAH-3′UTR289) in Hep3B cells, as shown in FIG. 12.


Human PAH was synthesized and inserted into lentiviral vectors. Insertion of the sequences was verified by DNA sequencing. Lentiviral vectors containing hPAH sequence was then used to transduce human Hep3B cells (purchased from American Type Culture Collection, Manassas, VA). Cells were transduced with lentiviral particles and after 2-4 days protein was analyzed by western blot for PAH expression. The relative expression of human PAH was detected by immunoblot with an anti-PAH antibody (Abcam) and the loading control Beta-actin. hPAH expression in both full-length and 3′UTR-truncated constructs were driven by hAAT promoter. The lentiviral vectors incorporated, in various instances, a human PAH gene with its 3′UTR, a human PAH gene with a truncated 3′UTR, and/or shPAH-1. Insertion of the shRNA sequence in the lentiviral vector (LV) was verified by DNA sequencing using a primer complementary to the promoter used to regulate shRNA expression. The target sequence for shPAH-1 is in the portion of 3′UTR that is preserved in both full-length and shortened versions.



FIG. 12 shows expression of hPAH and PAH shRNA in human Hep3B cells. As shown in FIG. 12, four groups are compared: a control comprising Hep3B cells alone (lane 1), a group comprising Hep3B cells plus a lentiviral vector expressing shPAH-1(lane 2), a control comprising hAAT-hPAH-3′UTR289 alone (lane 3), and a group containing both hAAT-hPAH-3′UTR289 and a lentiviral vector expressing shPAH-1. Notably, Hep3B cells alone express endogenous PAH at significant levels. This Example illustrates that shPAH-1 suppresses expression of both endogenous PAH and expression of hAAT-hPAH-3′UTR289. Further, this confirms the significant potency of shPAH-1 against endogenous and hAAT-hPAH-3′UTR289 in Hep3B cells.


Example 12. shPAH-2 Suppression of Endogenous hPAH but not hAAT-hPAH-3′UTR289 in HepG2 Cells

This Example illustrates that shPAH-2 suppresses expression of endogenous PAH but does not suppress expression of hAAT-hPAH-3′UTR289 in HepG2 cells, as shown in FIG. 13.


Human PAH was synthesized and inserted into lentiviral vectors. Insertion of the sequences was verified by DNA sequencing. Lentiviral vectors containing hPAH sequence was then used to transduce human Hep3B cells (purchased from American Type Culture Collection, Manassas, VA). Cells were transduced with lentiviral particles and after 2-4 days protein was analyzed by western blot for PAH expression. The relative expression of human PAH was detected by immunoblot using an anti-PAH antibody (Abcam) and the loading control Beta-actin. hPAH expression in both full-length and 3′UTR-truncated constructs were driven by hAAT promoter. The lentiviral vectors incorporated, in various instances, a human PAH gene with its 3′UTR, a human PAH gene with a truncated 3′UTR, and/or shPAH-2. Insertion of the shRNA sequence in the lentiviral vector (LV) was verified by DNA sequencing using a primer complementary to the promoter used to regulate shPAH-2 expression. The target sequence for shPAH-2 is in the distal portion of the hPAH 3′UTR that is present in full-length hPAH construct but absent in the truncated hPAH construct (hAAT-hPAH-3′UTR289).



FIG. 13 shows expression of hPAH and PAH shRNA in human Hep3B cells. As shown in FIG. 13, four groups are compared: a control with HepG2 cells alone (lane 1), HepG2 cells plus a lentiviral vector expressing shPAH-2 (lane 2), a control with lentiviral vector expressing truncated hPAH 3′UTR (lane 3), and a lane containing both a lentiviral vector expressing truncated hPAH 3′UTR (hPAH-3′UTR) and a lentiviral vector expressing shPAH-2. This Example illustrates that the shPAH-2 sequence suppresses expression of endogenous PAH but has no discernible effect on expression of hAAT-hPAH-3′UTR289.


Example 13. Preliminary Test of hAAT-PAH-UTR in the Pah(Enu2) Mouse


FIG. 14 summarizes results from a preliminary test of hAAT-PAH-UTR in the Pah(enu2) mouse that is a standard model for experimental studies on PKU (Shedlovsky, McDonald et al. 1993, Fang, Eisensmith et al. 1994, Mochizuki, Mizukami et al. 2004, Oh, Park et al. 2004). Panel A shows that lentivirus vector hAAT-PAH injected directly into the liver of neonatal Pah(enu2) mice substantially corrects a growth defect seen in mice that received only a control lentivirus vector that does not express PAH. Panel B provides a cluster plot representation of data in Panel A showing a clear overlap between weight gain curves for normal mice and Pah(enu2) treated with LV-hAAT-PAH. Panel C shows that LV-hAAT-PAH was effective in female mice. This is important because the PAH defect in females is more difficult to correct compared to male mice. Panel D plots the plasma phenylalanine levels for control (normal) mice, Pah(enu2) mice treated with LV-hAAT-PAH and Pah(enu2) mice treated with a control lentivirus vector that does not express PAH.


Experimental Methodology:


Neonatal mice aged 1 to 2 days were divided into three groups of four neonatal mice each. The first group of neonatal mice comprise a control group with normal PAH expression activity. The second and third group of neonatal mice contain the mutation PAH(enu2), which is a chemically induced mutation in the PAH gene that inhibits enzymatic activity of PAH.


The first group of neonatal mice were injected with lentiviral vectors comprising the hAAT promoter, human PAH, an elongation factor (EF1), and green fluorescent protein (GFP). The second group of neonatal mice were injected with lentiviral vectors lacking human PAH but comprising the hAAT promoter, an elongation factor (EF1), and green fluorescent protein (GFP). The third group of neonatal mice were injected with lentiviral vectors comprising the hAAT promoter, human PAH, an elongation factor (EF1), and green fluorescent protein (GFP).


Neonatal mice were injected with 10 μL of a lentivirus particle suspension containing between 1×106 to 1×1010 transducing units per mL of normal saline or blood plasma substitute directly into the liver. Prior to injection, neonatal mice were treated with clodronate liposomes to deplete liver Kupffer cells.


Neonatal mice were monitored for phenotypic changes associated with reduced phenylalanine levels in the blood, including coat color changes, PAH and phenylalanine levels, and behavior. At 0, 4, and 8 weeks post-injection, blood phenylalanine levels were measured. At 0, 2, 4, and 8 weeks post-injection, neonatal mice weight were measured. If the growth of neonatal mice in group three improved over growth of neonatal mice in group two, behavioral tests will be performed, including the T-maze Spontaneous Alternation Test and the Win-Stay Eight-arm Radial Maze Task. At 8 weeks post-injection, two mice from each group will be sacrificed and human PAH expression in the liver will be measured. Methylome assessment and long bone and spinal bone assessments will be performed on sacrificed mice. The remaining mice were maintained and blood phenylalanine will was measured at 6 months post-injection.


Example 14. Lentiviral-Delivered Expression of the Human PAH Gene Using hAAT and CMV Promoters in Hepa1-6 Mouse Hepatoma Cells

This Example illustrates that utilization of hPAH expression constructs under control of the CMV immediate early promoter provides high-level expression irrespective of the presence or absence of 3′UTR and irrespective of whether or not the 3′UTR is truncated, as shown in FIG. 15.


Human PAH was synthesized and inserted into lentiviral vectors. Insertion of the sequences was verified by DNA sequencing. Lentiviral vectors containing hPAH sequence was then used to transduce human Hep3B cells (purchased from American Type Culture Collection, Manassas, VA). Cells were transduced with lentiviral particles and after 2-4 days protein was analyzed by western blot for PAH expression. The relative expression of human PAH was detected by immunoblot using an anti-PAH antibody (Abcam) or an anti-tubulin antibody (Sigma) as the loading control. hPAH expression in both full-length and 3′UTR-truncated constructs were driven by hAAT promoter or CMV promoter, respectively. The lentiviral vectors incorporated, in various instances, a human PAH gene with its 3′UTR, a human PAH gene with a truncated 3′UTR, in the absence or presence of hAAT promoter or CMV promoter.


As shown in FIG. 15, four groups are compared: a control with Hepa1-6 cells and hAAT promoter alone (lane 1), a lentiviral vector expressing full-length 3′UTR hPAH under control of the hAAT promoter (lane 2), a lentiviral vector expressing truncated 3′UTR hPAH under control of the hAAT promoter (lane 3), and a group with a lentiviral vector expressing truncated 3′UTR hPAH under control of the CMV promoter. This Example illustrates that hPAH expression under control of the CMV immediate early promoter gives rise to high-level expression irrespective of the presence or absence of UTR and irrespective of whether or not the UTR is truncated. This permits the generation of constructs for specific expression in liver tissue while still achieving high-level production of hPAH. Notably, restricting transgene expression to liver cells is an important consideration for vector safety and target specificity in a genetic medicine for phenylketonuria.


Example 15. Lentivirus-Delivered Expression of hPAH Using Expression Constructs with the hAAT Promoter and Liver-Specific Enhancer Element ApoE (1), ApoE (2), or Prothrombin in Mouse Hepa1-6 Cells

This Example illustrates that ApoE (1), ApoE (2), and prothrombin enhancers may be utilized to increase expression of PAH in mouse Hepa1-6 cells.


Human PAH was synthesized and inserted into lentiviral vectors. Insertion of the sequences was verified by DNA sequencing. Lentiviral vectors containing hPAH sequence was then used to transduce human Hep3B cells (purchased from American Type Culture Collection, Manassas, VA). Cells were transduced with lentiviral particles and after 2-4 days protein was analyzed by western blot for PAH expression. PAH was detected by immunoblot using an anti-PAH antibody and an anti-Beta actin antibody for the loading control.


As shown in FIG. 16, four groups are compared: a control with Hepa1-6 cells alone (lane 1), a lentiviral vector expressing ApoE(1) enhancer with full-length 3′UTR hPAH under control of the hAAT promoter (lane 2), a lentiviral vector expressing ApoE(2) enhancer with full-length 3′UTR hPAH under control of the hAAT promoter (lane 3), and a lentiviral vector expressing the prothrombin enhancer with full-length 3′UTR hPAH under control of the hAAT promoter (lane 3). This Example illustrates that ApoE (1), ApoE (2), and prothrombin enhancers may each be utilized to increase expression of PAH in mouse Hepa1-6 cells under control of the hAAT promoter.


The disclosure of the above example embodiments is intended to be illustrative, but not limiting, of the scope of the inventions, which are set forth in the following claims and their equivalents. Although example embodiments of the inventions have been described) some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications can be practiced within the scope of the following claims. In the following claims, elements and/or steps do not imply any particular order of operation, unless explicitly stated in the claims or implicitly required by the disclosure.












Sequence Listings









SEQ ID NO:
Description
Sequence





 1
PAH
ATGTCCACTGCGGTCCTGGAAAACCCAGGCTTGGGCAGGAAACTCT




CTGACTTTGGACAGGAAACAAGCTATATTGAAGACAACTGCAATCA




AAATGGTGCCATATCACTGATCTTCTCACTCAAAGAAGAAGTTGGT




GCATTGGCCAAAGTATTGCGCTTATTTGAGGAGAATGATGTAAACC




TGACCCACATTGAATCTAGACCTTCTCGTTTAAAGAAAGATGAGTA




TGAATTTTTCACCCATTTGGATAAACGTAGCCTGCCTGCTCTGACA




AACATCATCAAGATCTTGAGGCATGACATTGGTGCCACTGTCCATG




AGCTTTCACGAGATAAGAAGAAAGACACAGTGCCCTGGTTCCCAAG




AACCATTCAAGAGCTGGACAGATTTGCCAATCAGATTCTCAGCTAT




GGAGCGGAACTGGATGCTGACCACCCTGGTTTTAAAGATCCTGTGT




ACCGTGCAAGACGGAAGCAGTTTGCTGACATTGCCTACAACTACCG




CCATGGGCAGCCCATCCCTCGAGTGGAATACATGGAGGAAGAAAAG




AAAACATGGGGCACAGTGTTCAAGACTCTGAAGTCCTTGTATAAAA




CCCATGCTTGCTATGAGTACAATCACATTTTTCCACTTCTTGAAAA




GTACTGTGGCTTCCATGAAGATAACATTCCCCAGCTGGAAGACGTT




TCTCAATTCCTGCAGACTTGCACTGGTTTCCGCCTCCGACCTGTGG




CTGGCCTGCTTTCCTCTCGGGATTTCTTGGGTGGCCTGGCCTTCCG




AGTCTTCCACTGCACACAGTACATCAGACATGGATCCAAGCCCATG




TATACCCCCGAACCTGACATCTGCCATGAGCTGTTGGGACATGTGC




CCTTGTTTTCAGATCGCAGCTTTGCCCAGTTTTCCCAGGAAATTGG




CCTTGCCTCTCTGGGTGCACCTGATGAATACATTGAAAAGCTCGCC




ACAATTTACTGGTTTACTGTGGAGTTTGGGCTCTGCAAACAAGGAG




ACTCCATAAAGGCATATGGTGCTGGGCTCCTGTCATCCTTTGGTGA




ATTACAGTACTGCTTATCAGAGAAGCCAAAGCTTCTCCCCCTGGAG




CTGGAGAAGACAGCCATCCAAAATTACACTGTCACGGAGTTCCAGC




CCCTGTATTACGTGGCAGAGAGTTTTAATGATGCCAAGGAGAAAGT




AAGGAACTTTGCTGCCACAATACCTCGGCCCTTCTCAGTTCGCTAC




GACCCATACACCCAAAGGATTGAGGTCTTGGACAATACCCAGCAGC




TTAAGATTTTGGCTGATTCCATTAACAGTGAAATTGGAATCCTTTG




CAGTGCCCTCCAGAAAATAAAGTAA





 2
Codon
ATGAGCACAGCTGTGTTGGAAAATCCTGGGCTGGGCCGTAAGCTTT



optimized
CCGATTTCGGCCAGGAGACTTCATACATTGAGGACAACTGCAACCA



PAH
GAATGGGGCCATTTCTTTGATCTTCAGTCTCAAAGAAGAGGTAGGC




GCTCTGGCTAAGGTCCTGAGGCTGTTTGAGGAAAATGACGTGAATC




TGACACACATTGAGTCTAGGCCTTCCCGACTTAAGAAGGATGAGTA




TGAGTTCTTCACACACCTGGACAAACGATCTCTCCCAGCACTGACC




AATATCATCAAGATTCTCAGGCATGATATCGGTGCCACGGTCCACG




AACTTTCACGCGATAAGAAGAAAGACACAGTTCCCTGGTTCCCGAG




AACCATTCAGGAACTGGATAGGTTTGCCAATCAGATTCTGAGCTAT




GGGGCAGAGTTGGATGCCGACCATCCAGGCTTCAAAGACCCCGTAT




ATCGGGCTCGGAGAAAGCAGTTTGCAGACATCGCTTACAATTACAG




GCATGGACAGCCCATCCCTAGAGTGGAGTACATGGAAGAAGGCAAG




AAAACCTGGGGAACGGTGTTTAAGACCCTCAAAAGCCTGTATAAGA




CCCACGCGTGTTATGAGTACAACCACATTTTCCCATTGCTGGAGAA




GTACTGTGGCTTTCACGAGGACAACATCCCTCAACTGGAGGATGTT




TCACAGTTCCTTCAGACTTGCACTGGTTTCCGCCTTCGACCTGTGG




CTGGGCTGCTTAGCTCACGGGACTTCCTGGGAGGCCTGGCCTTCAG




AGTCTTTCACTGCACTCAGTACATTCGGCATGGCTCTAAGCCAATG




TACACCCCTGAACCGGATATATGCCACGAGCTGTTGGGACATGTGC




CCCTGTTTTCTGATCGCAGCTTTGCCCAGTTTTCCCAGGAGATTGG




CCTGGCAAGTCTTGGTGCGCCTGATGAGTACATCGAGAAGCTCGCG




ACAATCTACTGGTTCACCGTGGAATTTGGACTCTGCAAACAAGGGG




ACTCTATCAAAGCCTACGGAGCAGGACTCCTCTCCAGCTTCGGTGA




ACTGCAGTATTGTCTGTCCGAGAAACCCAAACTCTTGCCCCTGGAA




CTGGAAAAGACTGCCATCCAAAACTATACTGTCACGGAATTTCAGC




CACTGTATTATGTGGCTGAATCCTTTAACGATGCCAAGGAGAAGGT




CCGTAATTTTGCTGCCACAATACCACGCCCCTTCAGCGTGAGATAC




GACCCGTATACACAACGGATAGAGGTTCTGGACAACACCCAGCAAC




TGAAAATTCTGGCAGACAGTATAAACAGCGAAATAGGGATCCTCTG




TAGTGCCCTGCAGAAAATCAAATGA





 3
PAH 3′UTR
AGCCATGGACAGAATGTGGTCTGTCAGCTGTGAATCTGTTGATGGA



sequence (897
GATCCAACTATTTCTTTCATCAGAAAAAGTCCGAAAAGCAAACCTT



nucleotides)
AATTTGAAATAACAGCCTTAAATCCTTTACAAGATGGAGAAACAAC




AAATAAGTCAAAATAATCTGAAATGACAGGATATGAGTACATACTC




AAGAGCATAATGGTAAATCTTTTGGGGTCATCTTTGATTTAGAGAT




GATAATCCCATACTCTCAATTGAGTTAAATCAGTAATCTGTCGCAT




TTCATCAAGATTAATTAAAATTTGGGACCTGCTTCATTCAAGCTTC




ATATATGCTTTGCAGAGAACTCATAAAGGAGCATATAAGGCTAAAT




GTAAAACCCAAGACTGTCATTAGAATTGAATTATTGGGCTTAATAT




AAATCGTAACCTATGAAGTTTATTTTTTATTTTAGTTAACTATGAT




TCCAATTACTACTTTGTTATTGTACCTAAGTAAATTTTCTTTAAGT




CAGAAGCCCATTAAAATAGTTACAAGCATTGAACTTCTTTAGTATT




ATATTAATATAAAAACATTTTTGTATGTTTTATTGTAATCATAAAT




ACTGCTGTATAAGGTAATAAAACTCTGCACCTAATCCCCATAACTT




CCAGTATCATTTTCCAATTAATTATCAAGTCTGTTTTGGGAAACAC




TTTGAGGACATTTATGATGCAGCAGATGTTGACTAAAGGCTTGGTT




GGTAGATATTCAGGAAATGTTCACTGAATAAATAAGTAAATACATT




ATTGAAAAGCAAATCTGTATAAATGTGAAATTTTTATTTGTATTAG




TAATAAAACATTAGTAGTTTAAACAAAAAAAAAAAAAAAAAAAAAA




AAAAAAAAACTCGACTCTAGATT





 4
PAH 3′UTR
AGCCATGGACAGAATGTGGTCTGTCAGCTGTGAATCTGTTGATGGA



sequence (289
GATCCAACTATTTCTTTCATCAGAAAAAGTCCGAAAAGCAAACCTT



nucleotides)
AATTTGAAATAACAGCCTTAAATCCTTTACAAGATGGAGAAACAAC




AAATAAGTCAAAATAATCTGAAATGACAGGATATGAGTACATACTC




AAGAGCATAATGGTAAATCTTTTGGGGTCATCTTTGATTTAGAGAT




GATAATCCCATACTCTCAATTGAGTTAAATCAGTAATCTGTCGCAT




TTCATCAAGATTA





 5
PAH shRNA
TCGCATTTCATCAAGATTAATCTCGAGATTAATCTTGATGAAATGC



sequence #1
GATTTTT





 6
PAH shRNA
ACTCATAAAGGAGCATATAAGCTCGAGCTTATATGCTCCTTTATGA



sequence #2
GTTTTTT





 7
Rous Sarcoma
GTAGTCTTATGCAATACTCTTGTAGTCTTGCAACATGGTAACGATG



virus (RSV)
AGTTAGCAACATGCCTTACAAGGAGAGAAAAAGCACCGTGCATGCC



promoter
GATTGGTGGAAGTAAGGTGGTACGATCGTGCCTTATTAGGAAGGCA




ACAGACGGGTCTGACATGGATTGGACGAACCACTGAATTGCCGCAT




TGCAGAGATATTGTATTTAAGTGCCTAGCTCGATACAATAAACG





 8
5′ Long
GGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTA



terminal
ACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTG



repeat (LTR)
CTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGA




GATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCA





 9
Psi Packaging
TACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAG



signal






10
Rev response
AGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATG



element (RRE)
GGCGCAGCCTCAATGACGCTGACGGTACAGGCCAGACAATTATTGT




CTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGC




GCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTC




CAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGC




TCC





11
Central
TTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGA



polypurine
ATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAA



tract (cPPT)
AACAAATTACAAAATTCAAAATTTTA





12
Human alpha-1
GATCTTGCTACCAGTGGAACAGCCACTAAGGATTCTGCAGTGAGAG



antitrypsin
CAGAGGGCCAGCTAAGTGGTACTCTCCCAGAGACTGTCTGACTCAC



promoter
GCCACCCCCTCCACCTTGGACACAGGACGCTGTGGTTTCTGAGCCA



(hAAT)
GGTACAATGACTCCTTTCGGTAAGTGCAGTGGAAGCTGTACACTGC




CCAGGCAAAGCGTCCGGGCAGCGTAGGCGGGCGACTCAGATCCCAG




CCAGTGGACTTAGCCCCTGTTTGCTCCTCCGATAACTGGGGTGACC




TTGGTTAATATTCACCAGCAGCCTCCCCCGTTGCCCCTCTGGATCC




ACTGCTTAAATACGGACGAGGACAGGGCCCTGTCTCCTCAGCTTCA




GGCACCACCACTGACCTGGGACAGTGAAT





13
Long WPRE
AATCAACCTCTGATTACAAAATTTGTGAAAGATTGACTGGTATTCT



sequence
TAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATG




CCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCT




CCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCC




CGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCA




ACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCG




GGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGC




CGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACT




GACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGC




TGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTG




CTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGC




CTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTC




AGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCT





14
3′delta LTR
TGGAAGGGCTAATTCACTCCCAACGAAGATAAGATCTGCTTTTTGC




TTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTC




TCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGC




CTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGG




TAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCT




AGCAGTAGTAGTTCATGTCA





15
H1 Promoter
GAACGCTGACGTCATCAACCCGCTCCAAGGAATCGCGGGCCCAGTG




TCACTAGGCGGGAACACCCAGCGCGCGTGCGCCCTGGCAGGAAGAT




GGCTGTGAGGGACAGGGGAGTGGCGCCCTGCAATATTTGCATGTCG




CTATGTGTTCTGGGAAATCACCATAAACGTGAAATGTCTTTGGATT




TGGGAATCTTATAAGTTCTGTATGAGACCACTT





16
CAG
TAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCA



promoter
TATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTG




GCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTA




TGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGG




GTGGACTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT




ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATG




GCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCT




ACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGGTC




GAGGTGAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCCCCCCCT




CCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGC




AGCGATGGGGGCGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGG




GCGGGGCGAGGGGCGGGGCGGGGCGAGGCGGAGAGGTGCGGCGGCA




GCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCGAGGC




GGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCG





17
HIV Gag
ATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGAT




GGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATT




AAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTT




AATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGG




GACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATC




ATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATA




GAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGC




AAAACAAAAGTAAGAAAAAAGCACAGCAAGCAGCAGCTGACACAGG




ACACAGCAATCAGGTCAGCCAAAATTACCCTATAGTGCAGAACATC




CAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTTAAATG




CATGGGTAAAAGTAGTAGAAGAGAAGGCTTTCAGCCCAGAAGTGAT




ACCCATGTTTTCAGCATTATCAGAAGGAGCCACCCCACAAGATTTA




AACACCATGCTAAACACAGTGGGGGGACATCAAGCAGCCATGCAAA




TGTTAAAAGAGACCATCAATGAGGAAGCTGCAGAATGGGATAGAGT




GCATCCAGTGCATGCAGGGCCTATTGCACCAGGCCAGATGAGAGAA




CCAAGGGGAAGTGACATAGCAGGAACTACTAGTACCCTTCAGGAAC




AAATAGGATGGATGACACATAATCCACCTATCCCAGTAGGAGAAAT




CTATAAAAGATGGATAATCCTGGGATTAAATAAAATAGTAAGAATG




TATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAAGGAAC




CCTTTAGAGACTATGTAGACCGATTCTATAAAACTCTAAGAGCCGA




GCAAGCTTCACAAGAGGTAAAAAATTGGATGACAGAAACCTTGTTG




GTCCAAAATGCGAACCCAGATTGTAAGACTATTTTAAAAGCATTGG




GACCAGGAGCGACACTAGAAGAAATGATGACAGCATGTCAGGGAGT




GGGGGGACCCGGCCATAAAGCAAGAGTTTTGGCTGAAGCAATGAGC




CAAGTAACAAATCCAGCTACCATAATGATACAGAAAGGCAATTTTA




GGAACCAAAGAAAGACTGTTAAGTGTTTCAATTGTGGCAAAGAAGG




GCACATAGCCAAAAATTGCAGGGCCCCTAGGAAAAAGGGCTGTTGG




AAATGTGGAAAGGAAGGACACCAAATGAAAGATTGTACTGAGAGAC




AGGCTAATTTTTTAGGGAAGATCTGGCCTTCCCACAAGGGAAGGCC




AGGGAATTTTCTTCAGAGCAGACCAGAGCCAACAGCCCCACCAGAA




GAGAGCTTCAGGTTTGGGGAAGAGACAACAACTCCCTCTCAGAAGC




AGGAGCCGATAGACAAGGAACTGTATCCTTTAGCTTCCCTCAGATC




ACTCTTTGGCAGCGACCCCTCGTCACAATAA





18
HIV Pol
ATGAATTTGCCAGGAAGATGGAAACCAAAAATGATAGGGGGAATTG




GAGGTTTTATCAAAGTAGGACAGTATGATCAGATACTCATAGAAAT




CTGCGGACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCT




GTCAACATAATTGGAAGAAATCTGTTGACTCAGATTGGCTGCACTT




TAAATTTTCCCATTAGTCCTATTGAGACTGTACCAGTAAAATTAAA




GCCAGGAATGGATGGCCCAAAAGTTAAACAATGGCCATTGACAGAA




GAAAAAATAAAAGCATTAGTAGAAATTTGTACAGAAATGGAAAAGG




AAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCC




AGTATTTGCCATAAAGAAAAAAGACAGTACTAAATGGAGAAAATTA




GTAGATTTCAGAGAACTTAATAAGAGAACTCAAGATTTCTGGGAAG




TTCAATTAGGAATACCACATCCTGCAGGGTTAAAACAGAAAAAATC




AGTAACAGTACTGGATGTGGGCGATGCATATTTTTCAGTTCCCTTA




GATAAAGACTTCAGGAAGTATACTGCATTTACCATACCTAGTATAA




ACAATGAGACACCAGGGATTAGATATCAGTACAATGTGCTTCCACA




GGGATGGAAAGGATCACCAGCAATATTCCAGTGTAGCATGACAAAA




ATCTTAGAGCCTTTTAGAAAACAAAATCCAGACATAGTCATCTATC




AATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCA




GCATAGAACAAAAATAGAGGAACTGAGACAACATCTGTTGAGGTGG




GGATTTACCACACCAGACAAAAAACATCAGAAAGAACCTCCATTCC




TTTGGATGGGTTATGAACTCCATCCTGATAAATGGACAGTACAGCC




TATAGTGCTGCCAGAAAAGGACAGCTGGACTGTCAATGACATACAG




AAATTAGTGGGAAAATTGAATTGGGCAAGTCAGATTTATGCAGGGA




TTAAAGTAAGGCAATTATGTAAACTTCTTAGGGGAACCAAAGCACT




AACAGAAGTAGTACCACTAACAGAAGAAGCAGAGCTAGAACTGGCA




GAAAACAGGGAGATTCTAAAAGAACCGGTACATGGAGTGTATTATG




ACCCATCAAAAGACTTAATAGCAGAAATACAGAAGCAGGGGCAAGG




CCAATGGACATATCAAATTTATCAAGAGCCATTTAAAAATCTGAAA




ACAGGAAAATATGCAAGAATGAAGGGTGCCCACACTAATGATGTGA




AACAATTAACAGAGGCAGTACAAAAAATAGCCACAGAAAGCATAGT




AATATGGGGAAAGACTCCTAAATTTAAATTACCCATACAAAAGGAA




ACATGGGAAGCATGGTGGACAGAGTATTGGCAAGCCACCTGGATTC




CTGAGTGGGAGTTTGTCAATACCCCTCCCTTAGTGAAGTTATGGTA




CCAGTTAGAGAAAGAACCCATAATAGGAGCAGAAACTTTCTATGTA




GATGGGGCAGCCAATAGGGAAACTAAATTAGGAAAAGCAGGATATG




TAACTGACAGAGGAAGACAAAAAGTTGTCCCCCTAACGGACACAAC




AAATCAGAAGACTGAGTTACAAGCAATTCATCTAGCTTTGCAGGAT




TCGGGATTAGAAGTAAACATAGTGACAGACTCACAATATGCATTGG




GAATCATTCAAGCACAACCAGATAAGAGTGAATCAGAGTTAGTCAG




TCAAATAATAGAGCAGTTAATAAAAAAGGAAAAAGTCTACCTGGCA




TGGGTACCAGCACACAAAGGAATTGGAGGAAATGAACAAGTAGATG




GGTTGGTCAGTGCTGGAATCAGGAAAGTACTA





19
HIV Int
TTTTTAGATGGAATAGATAAGGCCCAAGAAGAACATGAGAAATATC




ACAGTAATTGGAGAGCAATGGCTAGTGATTTTAACCTACCACCTGT




AGTAGCAAAAGAAATAGTAGCCAGCTGTGATAAATGTCAGCTAAAA




GGGGAAGCCATGCATGGACAAGTAGACTGTAGCCCAGGAATATGGC




AGCTAGATTGTACACATTTAGAAGGAAAAGTTATCTTGGTAGCAGT




TCATGTAGCCAGTGGATATATAGAAGCAGAAGTAATTCCAGCAGAG




ACAGGGCAAGAAACAGCATACTTCCTCTTAAAATTAGCAGGAAGAT




GGCCAGTAAAAACAGTACATACAGACAATGGCAGCAATTTCACCAG




TACTACAGTTAAGGCCGCCTGTTGGTGGGCGGGGATCAAGCAGGAA




TTTGGCATTCCCTACAATCCCCAAAGTCAAGGAGTAATAGAATCTA




TGAATAAAGAATTAAAGAAAATTATAGGACAGGTAAGAGATCAGGC




TGAACATCTTAAGACAGCAGTACAAATGGCAGTATTCATCCACAAT




TTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAA




TAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAA




ACAAATTACAAAAATTCAAAATTTTCGGGTTTATTACAGGGACAGC




AGAGATCCAGTTTGGAAAGGACCAGCAAAGCTCCTCTGGAAAGGTG




AAGGGGCAGTAGTAATACAAGATAATAGTGACATAAAAGTAGTGCC




AAGAAGAAAAGCAAAGATCATCAGGGATTATGGAAAACAGATGGCA




GGTGATGATTGTGTGGCAAGTAGACAGGATGAGGATTAA





20
HIV RRE
AGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATG




GGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGT




CTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGC




GCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTC




CAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGC




TCCT





21
HIV Rev
ATGGCAGGAAGAAGCGGAGACAGCGACGAAGAACTCCTCAAGGCAG




TCAGACTCATCAAGTTTCTCTATCAAAGCAACCCACCTCCCAATCC




CGAGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGA




GAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCCTTAGCA




CTTATCTGGGACGATCTGCGGAGCCTGTGCCTCTTCAGCTACCACC




GCTTGAGAGACTTACTCTTGATTGTAACGAGGATTGTGGAACTTCT




GGGACGCAGGGGGTGGGAAGCCCTCAAATATTGGTGGAATCTCCTA




CAATATTGGAGTCAGGAGCTAAAGAATAG





22
CMV
ACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCA



Promoter
TTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGG




TAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGAC




GTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTC




CATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGG




CAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGT




CAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACC




TTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCG




CTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGG




ATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGAC




GTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAA




AATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCG




TGTACGGTGGGAGGTCTATATAAGC





23
VSV-G/DNA
GAATTCATGAAGTGCCTTTTGTACTTAGCCTTTTTATTCATTGGGG



fragment
TGAATTGCAAGTTCACCATAGTTTTTCCACACAACCAAAAAGGAAA



containing
CTGGAAAAATGTTCCTTCTAATTACCATTATTGCCCGTCAAGCTCA



VSV-G/
GATTTAAATTGGCATAATGACTTAATAGGCACAGCCTTACAAGTCA



Envelope
AAATGCCCAAGAGTCACAAGGCTATTCAAGCAGACGGTTGGATGTG



Glycoprotein
TCATGCTTCCAAATGGGTCACTACTTGTGATTTCCGCTGGTATGGA




CCGAAGTATATAACACATTCCATCCGATCCTTCACTCCATCTGTAG




AACAATGCAAGGAAAGCATTGAACAAACGAAACAAGGAACTTGGCT




GAATCCAGGCTTCCCTCCTCAAAGTTGTGGATATGCAACTGTGACG




GATGCCGAAGCAGTGATTGTCCAGGTGACTCCTCACCATGTGCTGG




TTGATGAATACACAGGAGAATGGGTTGATTCACAGTTCATCAACGG




AAAATGCAGCAATTACATATGCCCCACTGTCCATAACTCTACAACC




TGGCATTCTGACTATAAGGTCAAAGGGCTATGTGATTCTAACCTCA




TTTCCATGGACATCACCTTCTTCTCAGAGGACGGAGAGCTATCATC




CCTGGGAAAGGAGGGCACAGGGTTCAGAAGTAACTACTTTGCTTAT




GAAACTGGAGGCAAGGCCTGCAAAATGCAATACTGCAAGCATTGGG




GAGTCAGACTCCCATCAGGTGTCTGGTTCGAGATGGCTGATAAGGA




TCTCTTTGCTGCAGCCAGATTCCCTGAATGCCCAGAAGGGTCAAGT




ATCTCTGCTCCATCTCAGACCTCAGTGGATGTAAGTCTAATTCAGG




ACGTTGAGAGGATCTTGGATTATTCCCTCTGCCAAGAAACCTGGAG




CAAAATCAGAGCGGGTCTTCCAATCTCTCCAGTGGATCTCAGCTAT




CTTGCTCCTAAAAACCCAGGAACCGGTCCTGCTTTCACCATAATCA




ATGGTACCCTAAAATACTTTGAGACCAGATACATCAGAGTCGATAT




TGCTGCTCCAATCCTCTCAAGAATGGTCGGAATGATCAGTGGAACT




ACCACAGAAAGGGAACTGTGGGATGACTGGGCACCATATGAAGACG




TGGAAATTGGACCCAATGGAGTTCTGAGGACCAGTTCAGGATATAA




GTTTCCTTTATACATGATTGGACATGGTATGTTGGACTCCGATCTT




CATCTTAGCTCAAAGGCTCAGGTGTTCGAACATCCTCACATTCAAG




ACGCTGCTTCGCAACTTCCTGATGATGAGAGTTTATTTTTTGGTGA




TACTGGGCTATCCAAAAATCCAATCGAGCTTGTAGAAGGTTGGTTC




AGTAGTTGGAAAAGCTCTATTGCCTCTTTTTTCTTTATCATAGGGT




TAATCATTGGACTATTCTTGGTTCTCCGAGTTGGTATCCATCTTTG




CATTAAATTAAAGCACACCAAGAAAAGACAGATTTATACAGACATA




GAGATGAGAATTC





24
CAG enhancer
TAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCA




TATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTG




GCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTA




TGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGG




GTGGACTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT




ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATG




GCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCT




ACTTGGCAGTACATCTACGTATTAGTCATC





25
Chicken beta
GGAGTCGCTGCGTTGCCTTCGCCCCGTGCCCCGCTCCGCGCCGCCT



actin intron
CGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTTACTCCCACAGGT




GAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTGTAATTAGCGCTTG




GTTTAATGACGGCTCGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTA




AAGGGCTCCGGGAGGGCCCTTTGTGCGGGGGGGAGCGGCTCGGGGG




GTGCGTGCGTGTGTGTGTGCGTGGGGAGCGCCGCGTGCGGCCCGCG




CTGCCCGGCGGCTGTGAGCGCTGCGGGCGCGGCGCGGGGCTTTGTG




CGCTCCGCGTGTGCGCGAGGGGAGCGCGGCCGGGGGCGGTGCCCCG




CGGTGCGGGGGGGCTGCGAGGGGAACAAAGGCTGCGTGCGGGGTGT




GTGCGTGGGGGGGTGAGCAGGGGGTGTGGGCGCGGCGGTCGGGCTG




TAACCCCCCCCTGCACCCCCCTCCCCGAGTTGCTGAGCACGGCCCG




GCTTCGGGTGCGGGGCTCCGTGCGGGGCGTGGCGCGGGGCTCGCCG




TGCCGGGCGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGGCGGG




GCCGCCTCGGGCCGGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCC




GGAGCGCCGGCGGCTGTCGAGGCGCGGCGAGCCGCAGCCATTGCCT




TTTATGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTCCCAA




ATCTGGCGGAGCCGAAATCTGGGAGGCGCCGCCGCACCCCCTCTAG




CGGGCGCGGGCGAAGCGGTGCGGCGCCGGCAGGAAGGAAATGGGCG




GGGAGGGCCTTCGTGCGTCGCCGCGCCGCCGTCCCCTTCTCCATCT




CCAGCCTCGGGGCTGCCGCAGGGGGACGGCTGCCTTCGGGGGGGAC




GGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTGACCGGCGG





26
Rabbit beta
AGATCTTTTTCCCTCTGCCAAAAATTATGGGGACATCATGAAGCCC



globin poly A
CTTGAGCATCTGACTTCTGGCTAATAAAGGAAATTTATTTTCATTG




CAATAGTGTGTTGGAATTTTTTGTGTCTCTCACTCGGAAGGACATA




TGGGAGGGCAAATCATTTAAAACATCAGAATGAGTATTTGGTTTAG




AGTTTGGCAACATATGCCATATGCTGGCTGCCATGAACAAAGGTGG




CTATAAAGAGGTCATCAGTATATGAAACAGCCCCCTGCTGTCCATT




CCTTATTCCATAGAAAAGCCTTGACTTGAGGTTAGATTTTTTTTAT




ATTTTGTTTTGTGTTATTTTTTTCTTTAACATCCCTAAAATTTTCC




TTACATGTTTTACTAGCCAGATTTTTCCTCCTCTCCTGACTACTCC




CAGTCATAGCTGTCCCTCTTCTCTTATGAAGATC





27
Beta globin
GTGAGTTTGGGGACCCTTGATTGTTCTTTCTTTTTCGCTATTGTAA



intron
AATTCATGTTATATGGAGGGGGCAAAGTTTTCAGGGTGTTGTTTAG




AATGGGAAGATGTCCCTTGTATCACCATGGACCCTCATGATAATTT




TGTTTCTTTCACTTTCTACTCTGTTGACAACCATTGTCTCCTCTTA




TTTTCTTTTCATTTTCTGTAACTTTTTCGTTAAACTTTAGCTTGCA




TTTGTAACGAATTTTTAAATTCACTTTTGTTTATTTGTCAGATTGT




AAGTACTTTCTCTAATCACTTTTTTTTCAAGGCAATCAGGGTATAT




TATATTGTACTTCAGCACAGTTTTAGAGAACAATTGTTATAATTAA




ATGATAAGGTAGAATATTTCTGCATATAAATTCTGGCTGGCGTGGA




AATATTCTTATTGGTAGAAACAACTACACCCTGGTCATCATCCTGC




CTTTCTCTTTATGGTTACAATGATATACACTGTTTGAGATGAGGAT




AAAATACTCTGAGTCCAAACCGGGCCCCTCTGCTAACCATGTTCAT




GCCTTCTTCTCTTTCCTACAG





28
Primer
TAAGCAGAATTCATGAATTTGCCAGGAAGAT





29
Primer
CCATACAATGAATGGACACTAGGCGGCCGCACGAAT





30
Gag, Pol,
GAATTCATGAATTTGCCAGGAAGATGGAAACCAAAAATGATAGGGG



Integrase
GAATTGGAGGTTTTATCAAAGTAAGACAGTATGATCAGATACTCAT



fragment
AGAAATCTGCGGACATAAAGCTATAGGTACAGTATTAGTAGGACCT




ACACCTGTCAACATAATTGGAAGAAATCTGTTGACTCAGATTGGCT




GCACTTTAAATTTTCCCATTAGTCCTATTGAGACTGTACCAGTAAA




ATTAAAGCCAGGAATGGATGGCCCAAAAGTTAAACAATGGCCATTG




ACAGAAGAAAAAATAAAAGCATTAGTAGAAATTTGTACAGAAATGG




AAAAGGAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAA




TACTCCAGTATTTGCCATAAAGAAAAAAGACAGTACTAAATGGAGA




AAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAAGATTTCT




GGGAAGTTCAATTAGGAATACCACATCCTGCAGGGTTAAAACAGAA




AAAATCAGTAACAGTACTGGATGTGGGCGATGCATATTTTTCAGTT




CCCTTAGATAAAGACTTCAGGAAGTATACTGCATTTACCATACCTA




GTATAAACAATGAGACACCAGGGATTAGATATCAGTACAATGTGCT




TCCACAGGGATGGAAAGGATCACCAGCAATATTCCAGTGTAGCATG




ACAAAAATCTTAGAGCCTTTTAGAAAACAAAATCCAGACATAGTCA




TCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAAT




AGGGCAGCATAGAACAAAAATAGAGGAACTGAGACAACATCTGTTG




AGGTGGGGATTTACCACACCAGACAAAAAACATCAGAAAGAACCTC




CATTCCTTTGGATGGGTTATGAACTCCATCCTGATAAATGGACAGT




ACAGCCTATAGTGCTGCCAGAAAAGGACAGCTGGACTGTCAATGAC




ATACAGAAATTAGTGGGAAAATTGAATTGGGCAAGTCAGATTTATG




CAGGGATTAAAGTAAGGCAATTATGTAAACTTCTTAGGGGAACCAA




AGCACTAACAGAAGTAGTACCACTAACAGAAGAAGCAGAGCTAGAA




CTGGCAGAAAACAGGGAGATTCTAAAAGAACCGGTACATGGAGTGT




ATTATGACCCATCAAAAGACTTAATAGCAGAAATACAGAAGCAGGG




GCAAGGCCAATGGACATATCAAATTTATCAAGAGCCATTTAAAAAT




CTGAAAACAGGAAAGTATGCAAGAATGAAGGGTGCCCACACTAATG




ATGTGAAACAATTAACAGAGGCAGTACAAAAAATAGCCACAGAAAG




CATAGTAATATGGGGAAAGACTCCTAAATTTAAATTACCCATACAA




AAGGAAACATGGGAAGCATGGTGGACAGAGTATTGGCAAGCCACCT




GGATTCCTGAGTGGGAGTTTGTCAATACCCCTCCCTTAGTGAAGTT




ATGGTACCAGTTAGAGAAAGAACCCATAATAGGAGCAGAAACTTTC




TATGTAGATGGGGCAGCCAATAGGGAAACTAAATTAGGAAAAGCAG




GATATGTAACTGACAGAGGAAGACAAAAAGTTGTCCCCCTAACGGA




CACAACAAATCAGAAGACTGAGTTACAAGCAATTCATCTAGCTTTG




CAGGATTCGGGATTAGAAGTAAACATAGTGACAGACTCACAATATG




CATTGGGAATCATTCAAGCACAACCAGATAAGAGTGAATCAGAGTT




AGTCAGTCAAATAATAGAGCAGTTAATAAAAAAGGAAAAAGTCTAC




CTGGCATGGGTACCAGCACACAAAGGAATTGGAGGAAATGAACAAG




TAGATAAATTGGTCAGTGCTGGAATCAGGAAAGTACTATTTTTAGA




TGGAATAGATAAGGCCCAAGAAGAACATGAGAAATATCACAGTAAT




TGGAGAGCAATGGCTAGTGATTTTAACCTACCACCTGTAGTAGCAA




AAGAAATAGTAGCCAGCTGTGATAAATGTCAGCTAAAAGGGGAAGC




CATGCATGGACAAGTAGACTGTAGCCCAGGAATATGGCAGCTAGAT




TGTACACATTTAGAAGGAAAAGTTATCTTGGTAGCAGTTCATGTAG




CCAGTGGATATATAGAAGCAGAAGTAATTCCAGCAGAGACAGGGCA




AGAAACAGCATACTTCCTCTTAAAATTAGCAGGAAGATGGCCAGTA




AAAACAGTACATACAGACAATGGCAGCAATTTCACCAGTACTACAG




TTAAGGCCGCCTGTTGGTGGGCGGGGATCAAGCAGGAATTTGGCAT




TCCCTACAATCCCCAAAGTCAAGGAGTAATAGAATCTATGAATAAA




GAATTAAAGAAAATTATAGGACAGGTAAGAGATCAGGCTGAACATC




TTAAGACAGCAGTACAAATGGCAGTATTCATCCACAATTTTAAAAG




AAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGAC




ATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTA




CAAAAATTCAAAATTTTCGGGTTTATTACAGGGACAGCAGAGATCC




AGTTTGGAAAGGACCAGCAAAGCTCCTCTGGAAAGGTGAAGGGGCA




GTAGTAATACAAGATAATAGTGACATAAAAGTAGTGCCAAGAAGAA




AAGCAAAGATCATCAGGGATTATGGAAAACAGATGGCAGGTGATGA




TTGTGTGGCAAGTAGACAGGATGAGGATTAA





31
DNA
TCTAGAATGGCAGGAAGAAGCGGAGACAGCGACGAAGAGCTCATCA



Fragment
GAACAGTCAGACTCATCAAGCTTCTCTATCAAAGCAACCCACCTCC



containing
CAATCCCGAGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGG



Rev, RRE and
TGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCC



rabbit beta
TTGGCACTTATCTGGGACGATCTGCGGAGCCTGTGCCTCTTCAGCT



globin poly A
ACCACCGCTTGAGAGACTTACTCTTGATTGTAACGAGGATTGTGGA




ACTTCTGGGACGCAGGGGGTGGGAAGCCCTCAAATATTGGTGGAAT




CTCCTACAATATTGGAGTCAGGAGCTAAAGAATAGAGGAGCTTTGT




TCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTC




AATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTG




CAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATC




TGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAAT




CCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTAGATCTT




TTTCCCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGC




ATCTGACTTCTGGCTAATAAAGGAAATTTATTTTCATTGCAATAGT




GTGTTGGAATTTTTTGTGTCTCTCACTCGGAAGGACATATGGGAGG




GCAAATCATTTAAAACATCAGAATGAGTATTTGGTTTAGAGTTTGG




CAACATATGCCATATGCTGGCTGCCATGAACAAAGGTGGCTATAAA




GAGGTCATCAGTATATGAAACAGCCCCCTGCTGTCCATTCCTTATT




CCATAGAAAAGCCTTGACTTGAGGTTAGATTTTTTTTATATTTTGT




TTTGTGTTATTTTTTTCTTTAACATCCCTAAAATTTTCCTTACATG




TTTTACTAGCCAGATTTTTCCTCCTCTCCTGACTACTCCCAGTCAT




AGCTGTCCCTCTTCTCTTATGAAGATCCCTCGACCTGCAGCCCAAG




CTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTAT




CCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTA




AAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTT




GCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCGG




ATCCGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCC




GCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCC




CATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCT




CGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGG




CCTAGGCTTTTGCAAAAAGCTAACTTGTTTATTGCAGCTTATAATG




GTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATT




TTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTA




TCTTATCAGCGGCCGCCCCGGG





32
DNA
ACGCGTTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCAT



fragment
AGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCC



containing
CGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAAT



the CAG
GACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGT



enhancer/
CAATGGGTGGACTATTTACGGTAAACTGCCCACTTGGCAGTACATC



promoter/
AAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGG



intron
TAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGAC



sequence
TTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCA




TGGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCC




CCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATT




TTGTGCAGCGATGGGGGCGGGGGGGGGGGGGGCGCGCGCCAGGCGG




GGCGGGGCGGGGCGAGGGGCGGGGCGGGGCGAGGCGGAGAGGTGCG




GCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGG




CGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCG




GGCGGGAGTCGCTGCGTTGCCTTCGCCCCGTGCCCCGCTCCGCGCC




GCCTCGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTTACTCCCAC




AGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTGTAATTAGCG




CTTGGTTTAATGACGGCTCGTTTCTTTTCTGTGGCTGCGTGAAAGC




CTTAAAGGGCTCCGGGAGGGCCCTTTGTGCGGGGGGGAGCGGCTCG




GGGGGTGCGTGCGTGTGTGTGTGCGTGGGGAGCGCCGCGTGCGGCC




CGCGCTGCCCGGCGGCTGTGAGCGCTGCGGGCGCGGCGCGGGGCTT




TGTGCGCTCCGCGTGTGCGCGAGGGGAGCGCGGCCGGGGGCGGTGC




CCCGCGGTGCGGGGGGGCTGCGAGGGGAACAAAGGCTGCGTGCGGG




GTGTGTGCGTGGGGGGGTGAGCAGGGGGTGTGGGCGCGGCGGTCGG




GCTGTAACCCCCCCCTGCACCCCCCTCCCCGAGTTGCTGAGCACGG




CCCGGCTTCGGGTGCGGGGCTCCGTGCGGGGCGTGGCGCGGGGCTC




GCCGTGCCGGGCGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGG




CGGGGCCGCCTCGGGCCGGGGAGGGCTCGGGGGAGGGGCGCGGCGG




CCCCGGAGCGCCGGCGGCTGTCGAGGCGCGGCGAGCCGCAGCCATT




GCCTTTTATGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTC




CCAAATCTGGCGGAGCCGAAATCTGGGAGGCGCCGCCGCACCCCCT




CTAGCGGGCGCGGGCGAAGCGGTGCGGCGCCGGCAGGAAGGAAATG




GGCGGGGAGGGCCTTCGTGCGTCGCCGCGCCGCCGTCCCCTTCTCC




ATCTCCAGCCTCGGGGCTGCCGCAGGGGGACGGCTGCCTTCGGGGG




GGACGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTGACCGGCGGGA




ATTC





33
RSV promoter
CAATTGCGATGTACGGGCCAGATATACGCGTATCTGAGGGGACTAG



and HIV Rev
GGTGTGTTTAGGCGAAAAGCGGGGCTTCGGTTGTACGCGGTTAGGA




GTCCCCTCAGGATATAGTAGTTTCGCTTTTGCATAGGGAGGGGGAA




ATGTAGTCTTATGCAATACACTTGTAGTCTTGCAACATGGTAACGA




TGAGTTAGCAACATGCCTTACAAGGAGAGAAAAAGCACCGTGCATG




CCGATTGGTGGAAGTAAGGTGGTACGATCGTGCCTTATTAGGAAGG




CAACAGACAGGTCTGACATGGATTGGACGAACCACTGAATTCCGCA




TTGCAGAGATAATTGTATTTAAGTGCCTAGCTCGATACAATAAACG




CCATTTGACCATTCACCACATTGGTGTGCACCTCCAAGCTCGAGCT




CGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTT




TTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCCCTCGAA




GCTAGCGATTAGGCATCTCCTATGGCAGGAAGAAGCGGAGACAGCG




ACGAAGAACTCCTCAAGGCAGTCAGACTCATCAAGTTTCTCTATCA




AAGCAACCCACCTCCCAATCCCGAGGGGACCCGACAGGCCCGAAGG




AATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGA




TTAGTGAACGGATCCTTAGCACTTATCTGGGACGATCTGCGGAGCC




TGTGCCTCTTCAGCTACCACCGCTTGAGAGACTTACTCTTGATTGT




AACGAGGATTGTGGAACTTCTGGGACGCAGGGGGTGGGAAGCCCTC




AAATATTGGTGGAATCTCCTACAATATTGGAGTCAGGAGCTAAAGA




ATAGTCTAGA





34
Elongation
CCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGT



Factor-1 alpha
CGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTAT



(EF1-alpha)
ATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTG



promoter
CCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGG




CCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCACG




CCCCTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGA




AGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCCCCTTCGC




CTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGT




GCGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAG




TCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTTTT




TCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGG




TATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCC




CAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGA




GAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCC




TGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTG




GCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCG




GCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGGCGCTCGGGAGA




GCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCC




TCAGCCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCA




GGCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTAGG




TTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCT




TGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCC




TCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGA





35
Promoter;
GGGGTTGGGGTTGCGCCTTTTCCAAGGCAGCCCTGGGTTTGCGCAG



PGK
GGACGCGGCTGCTCTGGGCGTGGTTCCGGGAAACGCAGCGGCGCCG




ACCCTGGGTCTCGCACATTCTTCACGTCCGTTCGCAGCGTCACCCG




GATCTTCGCCGCTACCCTTGTGGGCCCCCCGGCGACGCTTCCTGCT




CCGCCCCTAAGTCGGGAAGGTTCCTTGCGGTTCGCGGCGTGCCGGA




CGTGACAAACGGAAGCCGCACGTCTCACTAGTACCCTCGCAGACGG




ACAGCGCCAGGGAGCAATGGCAGCGCGCCGACCGCGATGGGCTGTG




GCCAATAGCGGCTGCTCAGCAGGGCGCGCCGAGAGCAGCGGCCGGG




AAGGGGCGGTGCGGGAGGCGGGGTGTGGGGCGGTAGTGTGGGCCCT




GTTCCTGCCCGCGCGGTGTTCCGCATTCTGCAAGCCTCCGGAGCGC




ACGTCGGCAGTCGGCTCCCTCGTTGACCGAATCACCGACCTCTCTC




CCCAG





36
Promoter;
GCGCCGGGTTTTGGCGCCTCCCGCGGGCGCCCCCCTCCTCACGGCG



UbC
AGCGCTGCCACGTCAGACGAAGGGCGCAGGAGCGTTCCTGATCCTT




CCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGC




CTTAGAACCCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTG




GGTGACTCTAGGGCACTGGTTTTCTTTCCAGAGAGCGGAACAGGCG




AGGAAAAGTAGTCCCTTCTCGGCGATTCTGCGGAGGGATCTCCGTG




GGGCGGTGAACGCCGATGATTATATAAGGACGCGCCGGGTGTGGCA




CAGCTAGTTCCGTCGCAGCCGGGATTTGGGTCGCGGTTCTTGTTTG




TGGATCGCTGTGATCGTCACTTGGTGAGTTGCGGGCTGCTGGGCTG




GCCGGGGCTTTCGTGGCCGCCGGGCCGCTCGGTGGGACGGAAGCGT




GTGGAGAGACCGCCAAGGGCTGTAGTCTGGGTCCGCGAGCAAGGTT




GCCCTGAACTGGGGGTTGGGGGGAGCGCACAAAATGGCGGCTGTTC




CCGAGTCTTGAATGGAAGACGCTTGTAAGGCGGGCTGTGAGGTCGT




TGAAACAAGGTGGGGGGCATGGTGGGCGGCAAGAACCCAAGGTCTT




GAGGCCTTCGCTAATGCGGGAAAGCTCTTATTCGGGTGAGATGGGC




TGGGGCACCATCTGGGGACCCTGACGTGAAGTTTGTCACTGACTGG




AGAACTCGGGTTTGTCGTCTGGTTGCGGGGGCGGCAGTTATGCGGT




GCCGTTGGGCAGTGCACCCGTACCTTTGGGAGCGCGCGCCTCGTCG




TGTCGTGACGTCACCCGTTCTGTTGGCTTATAATGCAGGGTGGGGC




CACCTGCCGGTAGGTGTGCGGTAGGCTTTTCTCCGTCGCAGGACGC




AGGGTTCGGGCCTAGGGTAGGCTCTCCTGAATCGACAGGCGCCGGA




CCTCTGGTGAGGGGAGGGATAAGTGAGGCGTCAGTTTCTTTGGTCG




GTTTTATGTACCTATCTTCTTAAGTAGCTGAAGCTCCGGTTTTGAA




CTATGCGCTCGGGGTTGGCGAGTGTGTTTTGTGAAGTTTTTTAGGC




ACCTTTTGAAATGTAATCATTTGGGTCAATATGTAATTTTCAGTGT




TAGACTAGTAAA





37
Poly A; SV40
GTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACA




AATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTT




TGTCCAAACTCATCAATGTATCTTATCA





38
Poly A; bGH
GACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCC




GTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCT




AATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTC




TATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGG




GAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGG





39
Envelope;
ATGAAACTCCCAACAGGAATGGTCATTTTATGTAGCCTAATAATAG



RD114
TTCGGGCAGGGTTTGACGACCCCCGCAAGGCTATCGCATTAGTACA




AAAACAACATGGTAAACCATGCGAATGCAGCGGAGGGCAGGTATCC




GAGGCCCCACCGAACTCCATCCAACAGGTAACTTGCCCAGGCAAGA




CGGCCTACTTAATGACCAACCAAAAATGGAAATGCAGAGTCACTCC




AAAAAATCTCACCCCTAGCGGGGGAGAACTCCAGAACTGCCCCTGT




AACACTTTCCAGGACTCGATGCACAGTTCTTGTTATACTGAATACC




GGCAATGCAGGGCGAATAATAAGACATACTACACGGCCACCTTGCT




TAAAATACGGTCTGGGAGCCTCAACGAGGTACAGATATTACAAAAC




CCCAATCAGCTCCTACAGTCCCCTTGTAGGGGCTCTATAAATCAGC




CCGTTTGCTGGAGTGCCACAGCCCCCATCCATATCTCCGATGGTGG




AGGACCCCTCGATACTAAGAGAGTGTGGACAGTCCAAAAAAGGCTA




GAACAAATTCATAAGGCTATGCATCCTGAACTTCAATACCACCCCT




TAGCCCTGCCCAAAGTCAGAGATGACCTTAGCCTTGATGCACGGAC




TTTTGATATCCTGAATACCACTTTTAGGTTACTCCAGATGTCCAAT




TTTAGCCTTGCCCAAGATTGTTGGCTCTGTTTAAAACTAGGTACCC




CTACCCCTCTTGCGATACCCACTCCCTCTTTAACCTACTCCCTAGC




AGACTCCCTAGCGAATGCCTCCTGTCAGATTATACCTCCCCTCTTG




GTTCAACCGATGCAGTTCTCCAACTCGTCCTGTTTATCTTCCCCTT




TCATTAACGATACGGAACAAATAGACTTAGGTGCAGTCACCTTTAC




TAACTGCACCTCTGTAGCCAATGTCAGTAGTCCTTTATGTGCCCTA




AACGGGTCAGTCTTCCTCTGTGGAAATAACATGGCATACACCTATT




TACCCCAAAACTGGACAGGACTTTGCGTCCAAGCCTCCCTCCTCCC




CGACATTGACATCATCCCGGGGGATGAGCCAGTCCCCATTCCTGCC




ATTGATCATTATATACATAGACCTAAACGAGCTGTACAGTTCATCC




CTTTACTAGCTGGACTGGGAATCACCGCAGCATTCACCACCGGAGC




TACAGGCCTAGGTGTCTCCGTCACCCAGTATACAAAATTATCCCAT




CAGTTAATATCTGATGTCCAAGTCTTATCCGGTACCATACAAGATT




TACAAGACCAGGTAGACTCGTTAGCTGAAGTAGTTCTCCAAAATAG




GAGGGGACTGGACCTACTAACGGCAGAACAAGGAGGAATTTGTTTA




GCCTTACAAGAAAAATGCTGTTTTTATGCTAACAAGTCAGGAATTG




TGAGAAACAAAATAAGAACCCTACAAGAAGAATTACAAAAACGCAG




GGAAAGCCTGGCATCCAACCCTCTCTGGACCGGGCTGCAGGGCTTT




CTTCCGTACCTCCTACCTCTCCTGGGACCCCTACTCACCCTCCTAC




TCATACTAACCATTGGGCCATGCGTTTTCAATCGATTGGTCCAATT




TGTTAAAGACAGGATCTCAGTGGTCCAGGCTCTGGTTTTGACTCAG




CAATATCACCAGCTAAAACCCATAGAGTACGAGCCATGA





40
Envelope;
ATGCTTCTCACCTCAAGCCCGCACCACCTTCGGCACCAGATGAGTC



GALV
CTGGGAGCTGGAAAAGACTGATCATCCTCTTAAGCTGCGTATTCGG




AGACGGCAAAACGAGTCTGCAGAATAAGAACCCCCACCAGCCTGTG




ACCCTCACCTGGCAGGTACTGTCCCAAACTGGGGACGTTGTCTGGG




ACAAAAAGGCAGTCCAGCCCCTTTGGACTTGGTGGCCCTCTCTTAC




ACCTGATGTATGTGCCCTGGCGGCCGGTCTTGAGTCCTGGGATATC




CCGGGATCCGATGTATCGTCCTCTAAAAGAGTTAGACCTCCTGATT




CAGACTATACTGCCGCTTATAAGCAAATCACCTGGGGAGCCATAGG




GTGCAGCTACCCTCGGGCTAGGACCAGGATGGCAAATTCCCCCTTC




TACGTGTGTCCCCGAGCTGGCCGAACCCATTCAGAAGCTAGGAGGT




GTGGGGGGCTAGAATCCCTATACTGTAAAGAATGGAGTTGTGAGAC




CACGGGTACCGTTTATTGGCAACCCAAGTCCTCATGGGACCTCATA




ACTGTAAAATGGGACCAAAATGTGAAATGGGAGCAAAAATTTCAAA




AGTGTGAACAAACCGGCTGGTGTAACCCCCTCAAGATAGACTTCAC




AGAAAAAGGAAAACTCTCCAGAGATTGGATAACGGAAAAAACCTGG




GAATTAAGGTTCTATGTATATGGACACCCAGGCATACAGTTGACTA




TCCGCTTAGAGGTCACTAACATGCCGGTTGTGGCAGTGGGCCCAGA




CCCTGTCCTTGCGGAACAGGGACCTCCTAGCAAGCCCCTCACTCTC




CCTCTCTCCCCACGGAAAGCGCCGCCCACCCCTCTACCCCCGGCGG




CTAGTGAGCAAACCCCTGCGGTGCATGGAGAAACTGTTACCCTAAA




CTCTCCGCCTCCCACCAGTGGCGACCGACTCTTTGGCCTTGTGCAG




GGGGCCTTCCTAACCTTGAATGCTACCAACCCAGGGGCCACTAAGT




CTTGCTGGCTCTGTTTGGGCATGAGCCCCCCTTATTATGAAGGGAT




AGCCTCTTCAGGAGAGGTCGCTTATACCTCCAACCATACCCGATGC




CACTGGGGGGCCCAAGGAAAGCTTACCCTCACTGAGGTCTCCGGAC




TCGGGTCATGCATAGGGAAGGTGCCTCTTACCCATCAACATCTTTG




CAACCAGACCTTACCCATCAATTCCTCTAAAAACCATCAGTATCTG




CTCCCCTCAAACCATAGCTGGTGGGCCTGCAGCACTGGCCTCACCC




CCTGCCTCTCCACCTCAGTTTTTAATCAGTCTAAAGACTTCTGTGT




CCAGGTCCAGCTGATCCCCCGCATCTATTACCATTCTGAAGAAACC




TTGTTACAAGCCTATGACAAATCACCCCCCAGGTTTAAAAGAGAGC




CTGCCTCACTTACCCTAGCTGTCTTCCTGGGGTTAGGGATTGCGGC




AGGTATAGGTACTGGCTCAACCGCCCTAATTAAAGGGCCCATAGAC




CTCCAGCAAGGCCTAACCAGCCTCCAAATCGCCATTGACGCTGACC




TCCGGGCCCTTCAGGACTCAATCAGCAAGCTAGAGGACTCACTGAC




TTCCCTATCTGAGGTAGTACTCCAAAATAGGAGAGGCCTTGACTTA




CTATTCCTTAAAGAAGGAGGCCTCTGCGCGGCCCTAAAAGAAGAGT




GCTGTTTTTATGTAGACCACTCAGGTGCAGTACGAGACTCCATGAA




AAAACTTAAAGAAAGACTAGATAAAAGACAGTTAGAGCGCCAGAAA




AACCAAAACTGGTATGAAGGGTGGTTCAATAACTCCCCTTGGTTTA




CTACCCTACTATCAACCATCGCTGGGCCCCTATTGCTCCTCCTTTT




GTTACTCACTCTTGGGCCCTGCATCATCAATAAATTAATCCAATTC




ATCAATGATAGGATAAGTGCAGTCAAAATTTTAGTCCTTAGACAGA




AATATCAGACCCTAGATAACGAGGAAAACCTTTAA





41
Envelope;
ATGGTTCCGCAGGTTCTTTTGTTTGTACTCCTTCTGGGTTTTTCGT



FUG
TGTGTTTCGGGAAGTTCCCCATTTACACGATACCAGACGAACTTGG




TCCCTGGAGCCCTATTGACATACACCATCTCAGCTGTCCAAATAAC




CTGGTTGTGGAGGATGAAGGATGTACCAACCTGTCCGAGTTCTCCT




ACATGGAACTCAAAGTGGGATACATCTCAGCCATCAAAGTGAACGG




GTTCACTTGCACAGGTGTTGTGACAGAGGCAGAGACCTACACCAAC




TTTGTTGGTTATGTCACAACCACATTCAAGAGAAAGCATTTCCGCC




CCACCCCAGACGCATGTAGAGCCGCGTATAACTGGAAGATGGCCGG




TGACCCCAGATATGAAGAGTCCCTACACAATCCATACCCCGACTAC




CACTGGCTTCGAACTGTAAGAACCACCAAAGAGTCCCTCATTATCA




TATCCCCAAGTGTGACAGATTTGGACCCATATGACAAATCCCTTCA




CTCAAGGGTCTTCCCTGGCGGAAAGTGCTCAGGAATAACGGTGTCC




TCTACCTACTGCTCAACTAACCATGATTACACCATTTGGATGCCCG




AGAATCCGAGACCAAGGACACCTTGTGACATTTTTACCAATAGCAG




AGGGAAGAGAGCATCCAACGGGAACAAGACTTGCGGCTTTGTGGAT




GAAAGAGGCCTGTATAAGTCTCTAAAAGGAGCATGCAGGCTCAAGT




TATGTGGAGTTCTTGGACTTAGACTTATGGATGGAACATGGGTCGC




GATGCAAACATCAGATGAGACCAAATGGTGCCCTCCAGATCAGTTG




GTGAATTTGCACGACTTTCGCTCAGACGAGATCGAGCATCTCGTTG




TGGAGGAGTTAGTTAAGAAAAGAGAGGAATGTCTGGATGCATTAGA




GTCCATCATGACCACCAAGTCAGTAAGTTTCAGACGTCTCAGTCAC




CTGAGAAAACTTGTCCCAGGGTTTGGAAAAGCATATACCATATTCA




ACAAAACCTTGATGGAGGCTGATGCTCACTACAAGTCAGTCCGGAC




CTGGAATGAGATCATCCCCTCAAAAGGGTGTTTGAAAGTTGGAGGA




AGGTGCCATCCTCATGTGAACGGGGTGTTTTTCAATGGTATAATAT




TAGGGCCTGACGACCATGTCCTAATCCCAGAGATGCAATCATCCCT




CCTCCAGCAACATATGGAGTTGTTGGAATCTTCAGTTATCCCCCTG




ATGCACCCCCTGGCAGACCCTTCTACAGTTTTCAAAGAAGGTGATG




AGGCTGAGGATTTTGTTGAAGTTCACCTCCCCGATGTGTACAAACA




GATCTCAGGGGTTGACCTGGGTCTCCCGAACTGGGGAAAGTATGTA




TTGATGACTGCAGGGGCCATGATTGGCCTGGTGTTGATATTTTCCC




TAATGACATGGTGCAGAGTTGGTATCCATCTTTGCATTAAATTAAA




GCACACCAAGAAAAGACAGATTTATACAGACATAGAGATGAACCGA




CTTGGAAAGTAA





42
Envelope;
ATGGGTCAGATTGTGACAATGTTTGAGGCTCTGCCTCACATCATCG



LCMV
ATGAGGTGATCAACATTGTCATTATTGTGCTTATCGTGATCACGGG




TATCAAGGCTGTCTACAATTTTGCCACCTGTGGGATATTCGCATTG




ATCAGTTTCCTACTTCTGGCTGGCAGGTCCTGTGGCATGTACGGTC




TTAAGGGACCCGACATTTACAAAGGAGTTTACCAATTTAAGTCAGT




GGAGTTTGATATGTCACATCTGAACCTGACCATGCCCAACGCATGT




TCAGCCAACAACTCCCACCATTACATCAGTATGGGGACTTCTGGAC




TAGAATTGACCTTCACCAATGATTCCATCATCAGTCACAACTTTTG




CAATCTGACCTCTGCCTTCAACAAAAAGACCTTTGACCACACACTC




ATGAGTATAGTTTCGAGCCTACACCTCAGTATCAGAGGGAACTCCA




ACTATAAGGCAGTATCCTGCGACTTCAACAATGGCATAACCATCCA




ATACAACTTGACATTCTCAGATCGACAAAGTGCTCAGAGCCAGTGT




AGAACCTTCAGAGGTAGAGTCCTAGATATGTTTAGAACTGCCTTCG




GGGGGAAATACATGAGGAGTGGCTGGGGCTGGACAGGCTCAGATGG




CAAGACCACCTGGTGTAGCCAGACGAGTTACCAATACCTGATTATA




CAAAATAGAACCTGGGAAAACCACTGCACATATGCAGGTCCTTTTG




GGATGTCCAGGATTCTCCTTTCCCAAGAGAAGACTAAGTTCTTCAC




TAGGAGACTAGCGGGCACATTCACCTGGACTTTGTCAGACTCTTCA




GGGGTGGAGAATCCAGGTGGTTATTGCCTGACCAAATGGATGATTC




TTGCTGCAGAGCTTAAGTGTTTCGGGAACACAGCAGTTGCGAAATG




CAATGTAAATCATGATGCCGAATTCTGTGACATGCTGCGACTAATT




GACTACAACAAGGCTGCTTTGAGTAAGTTCAAAGAGGACGTAGAAT




CTGCCTTGCACTTATTCAAAACAACAGTGAATTCTTTGATTTCAGA




TCAACTACTGATGAGGAACCACTTGAGAGATCTGATGGGGGTGCCA




TATTGCAATTACTCAAAGTTTTGGTACCTAGAACATGCAAAGACCG




GCGAAACTAGTGTCCCCAAGTGCTGGCTTGTCACCAATGGTTCTTA




CTTAAATGAGACCCACTTCAGTGATCAAATCGAACAGGAAGCCGAT




AACATGATTACAGAGATGTTGAGGAAGGATTACATAAAGAGGCAGG




GGAGTACCCCCCTAGCATTGATGGACCTTCTGATGTTTTCCACATC




TGCATATCTAGTCAGCATCTTCCTGCACCTTGTCAAAATACCAACA




CACAGGCACATAAAAGGTGGCTCATGTCCAAAGCCACACCGATTAA




CCAACAAAGGAATTTGTAGTTGTGGTGCATTTAAGGTGCCTGGTGT




AAAAACCGTCTGGAAAAGACGCTGA





43
Envelope;
ATGAACACTCAAATCCTGGTTTTCGCCCTTGTGGCAGTCATCCCCA



FPV
CAAATGCAGACAAAATTTGTCTTGGACATCATGCTGTATCAAATGG




CACCAAAGTAAACACACTCACTGAGAGAGGAGTAGAAGTTGTCAAT




GCAACGGAAACAGTGGAGCGGACAAACATCCCCAAAATTTGCTCAA




AAGGGAAAAGAACCACTGATCTTGGCCAATGCGGACTGTTAGGGAC




CATTACCGGACCACCTCAATGCGACCAATTTCTAGAATTTTCAGCT




GATCTAATAATCGAGAGACGAGAAGGAAATGATGTTTGTTACCCGG




GGAAGTTTGTTAATGAAGAGGCATTGCGACAAATCCTCAGAGGATC




AGGTGGGATTGACAAAGAAACAATGGGATTCACATATAGTGGAATA




AGGACCAACGGAACAACTAGTGCATGTAGAAGATCAGGGTCTTCAT




TCTATGCAGAAATGGAGTGGCTCCTGTCAAATACAGACAATGCTGC




TTTCCCACAAATGACAAAATCATACAAAAACACAAGGAGAGAATCA




GCTCTGATAGTCTGGGGAATCCACCATTCAGGATCAACCACCGAAC




AGACCAAACTATATGGGAGTGGAAATAAACTGATAACAGTCGGGAG




TTCCAAATATCATCAATCTTTTGTGCCGAGTCCAGGAACACGACCG




CAGATAAATGGCCAGTCCGGACGGATTGATTTTCATTGGTTGATCT




TGGATCCCAATGATACAGTTACTTTTAGTTTCAATGGGGCTTTCAT




AGCTCCAAATCGTGCCAGCTTCTTGAGGGGAAAGTCCATGGGGATC




CAGAGCGATGTGCAGGTTGATGCCAATTGCGAAGGGGAATGCTACC




ACAGTGGAGGGACTATAACAAGCAGATTGCCTTTTCAAAACATCAA




TAGCAGAGCAGTTGGCAAATGCCCAAGATATGTAAAACAGGAAAGT




TTATTATTGGCAACTGGGATGAAGAACGTTCCCGAACCTTCCAAAA




AAAGGAAAAAAAGAGGCCTGTTTGGCGCTATAGCAGGGTTTATTGA




AAATGGTTGGGAAGGTCTGGTCGACGGGTGGTACGGTTTCAGGCAT




CAGAATGCACAAGGAGAAGGAACTGCAGCAGACTACAAAAGCACCC




AATCGGCAATTGATCAGATAACCGGAAAGTTAAATAGACTCATTGA




GAAAACCAACCAGCAATTTGAGCTAATAGATAATGAATTCACTGAG




GTGGAAAAGCAGATTGGCAATTTAATTAACTGGACCAAAGACTCCA




TCACAGAAGTATGGTCTTACAATGCTGAACTTCTTGTGGCAATGGA




AAACCAGCACACTATTGATTTGGCTGATTCAGAGATGAACAAGCTG




TATGAGCGAGTGAGGAAACAATTAAGGGAAAATGCTGAAGAGGATG




GCACTGGTTGCTTTGAAATTTTTCATAAATGTGACGATGATTGTAT




GGCTAGTATAAGGAACAATACTTATGATCACAGCAAATACAGAGAA




GAAGCGATGCAAAATAGAATACAAATTGACCCAGTCAAATTGAGTA




GTGGCTACAAAGATGTGATACTTTGGTTTAGCTTCGGGGCATCATG




CTTTTTGCTTCTTGCCATTGCAATGGGCCTTGTTTTCATATGTGTG




AAGAACGGAAACATGCGGTGCACTATTTGTATATAA





44
Envelope;
AGTGTAACAGAGCACTTTAATGTGTATAAGGCTACTAGACCATACC



RRV
TAGCACATTGCGCCGATTGCGGGGACGGGTACTTCTGCTATAGCCC




AGTTGCTATCGAGGAGATCCGAGATGAGGCGTCTGATGGCATGCTT




AAGATCCAAGTCTCCGCCCAAATAGGTCTGGACAAGGCAGGCACCC




ACGCCCACACGAAGCTCCGATATATGGCTGGTCATGATGTTCAGGA




ATCTAAGAGAGATTCCTTGAGGGTGTACACGTCCGCAGCGTGCTCC




ATACATGGGACGATGGGACACTTCATCGTCGCACACTGTCCACCAG




GCGACTACCTCAAGGTTTCGTTCGAGGACGCAGATTCGCACGTGAA




GGCATGTAAGGTCCAATACAAGCACAATCCATTGCCGGTGGGTAGA




GAGAAGTTCGTGGTTAGACCACACTTTGGCGTAGAGCTGCCATGCA




CCTCATACCAGCTGACAACGGCTCCCACCGACGAGGAGATTGACAT




GCATACACCGCCAGATATACCGGATCGCACCCTGCTATCACAGACG




GCGGGCAACGTCAAAATAACAGCAGGCGGCAGGACTATCAGGTACA




ACTGTACCTGCGGCCGTGACAACGTAGGCACTACCAGTACTGACAA




GACCATCAACACATGCAAGATTGACCAATGCCATGCTGCCGTCACC




AGCCATGACAAATGGCAATTTACCTCTCCATTTGTTCCCAGGGCTG




ATCAGACAGCTAGGAAAGGCAAGGTACACGTTCCGTTCCCTCTGAC




TAACGTCACCTGCCGAGTGCCGTTGGCTCGAGCGCCGGATGCCACC




TATGGTAAGAAGGAGGTGACCCTGAGATTACACCCAGATCATCCGA




CGCTCTTCTCCTATAGGAGTTTAGGAGCCGAACCGCACCCGTACGA




GGAATGGGTTGACAAGTTCTCTGAGCGCATCATCCCAGTGACGGAA




GAAGGGATTGAGTACCAGTGGGGCAACAACCCGCCGGTCTGCCTGT




GGGCGCAACTGACGACCGAGGGCAAACCCCATGGCTGGCCACATGA




AATCATTCAGTACTATTATGGACTATACCCCGCCGCCACTATTGCC




GCAGTATCCGGGGCGAGTCTGATGGCCCTCCTAACTCTGGCGGCCA




CATGCTGCATGCTGGCCACCGCGAGGAGAAAGTGCCTAACACCGTA




CGCCCTGACGCCAGGAGCGGTGGTACCGTTGACACTGGGGCTGCTT




TGCTGCGCACCGAGGGCGAATGCA





45
Envelope;
ATGGAAGGTCCAGCGTTCTCAAAACCCCTTAAAGATAAGATTAACC



MLV 10A1
CGTGGAAGTCCTTAATGGTCATGGGGGTCTATTTAAGAGTAGGGAT




GGCAGAGAGCCCCCATCAGGTCTTTAATGTAACCTGGAGAGTCACC




AACCTGATGACTGGGCGTACCGCCAATGCCACCTCCCTTTTAGGAA




CTGTACAAGATGCCTTCCCAAGATTATATTTTGATCTATGTGATCT




GGTCGGAGAAGAGTGGGACCCTTCAGACCAGGAACCATATGTCGGG




TATGGCTGCAAATACCCCGGAGGGAGAAAGCGGACCCGGACTTTTG




ACTTTTACGTGTGCCCTGGGCATACCGTAAAATCGGGGTGTGGGGG




GCCAAGAGAGGGCTACTGTGGTGAATGGGGTTGTGAAACCACCGGA




CAGGCTTACTGGAAGCCCACATCATCATGGGACCTAATCTCCCTTA




AGCGCGGTAACACCCCCTGGGACACGGGATGCTCCAAAATGGCTTG




TGGCCCCTGCTACGACCTCTCCAAAGTATCCAATTCCTTCCAAGGG




GCTACTCGAGGGGGCAGATGCAACCCTCTAGTCCTAGAATTCACTG




ATGCAGGAAAAAAGGCTAATTGGGACGGGCCCAAATCGTGGGGACT




GAGACTGTACCGGACAGGAACAGATCCTATTACCATGTTCTCCCTG




ACCCGCCAGGTCCTCAATATAGGGCCCCGCATCCCCATTGGGCCTA




ATCCCGTGATCACTGGTCAACTACCCCCCTCCCGACCCGTGCAGAT




CAGGCTCCCCAGGCCTCCTCAGCCTCCTCCTACAGGCGCAGCCTCT




ATAGTCCCTGAGACTGCCCCACCTTCTCAACAACCTGGGACGGGAG




ACAGGCTGCTAAACCTGGTAGAAGGAGCCTATCAGGCGCTTAACCT




CACCAATCCCGACAAGACCCAAGAATGTTGGCTGTGCTTAGTGTCG




GGACCTCCTTATTACGAAGGAGTAGCGGTCGTGGGCACTTATACCA




ATCATTCTACCGCCCCGGCCAGCTGTACGGCCACTTCCCAACATAA




GCTTACCCTATCTGAAGTGACAGGACAGGGCCTATGCATGGGAGCA




CTACCTAAAACTCACCAGGCCTTATGTAACACCACCCAAAGTGCCG




GCTCAGGATCCTACTACCTTGCAGCACCCGCTGGAACAATGTGGGC




TTGTAGCACTGGATTGACTCCCTGCTTGTCCACCACGATGCTCAAT




CTAACCACAGACTATTGTGTATTAGTTGAGCTCTGGCCCAGAATAA




TTTACCACTCCCCCGATTATATGTATGGTCAGCTTGAACAGCGTAC




CAAATATAAGAGGGAGCCAGTATCGTTGACCCTGGCCCTTCTGCTA




GGAGGATTAACCATGGGAGGGATTGCAGCTGGAATAGGGACGGGGA




CCACTGCCCTAATCAAAACCCAGCAGTTTGAGCAGCTTCACGCCGC




TATCCAGACAGACCTCAACGAAGTCGAAAAATCAATTACCAACCTA




GAAAAGTCACTGACCTCGTTGTCTGAAGTAGTCCTACAGAACCGAA




GAGGCCTAGATTTGCTCTTCCTAAAAGAGGGAGGTCTCTGCGCAGC




CCTAAAAGAAGAATGTTGTTTTTATGCAGACCACACGGGACTAGTG




AGAGACAGCATGGCCAAACTAAGGGAAAGGCTTAATCAGAGACAAA




AACTATTTGAGTCAGGCCAAGGTTGGTTCGAAGGGCAGTTTAATAG




ATCCCCCTGGTTTACCACCTTAATCTCCACCATCATGGGACCTCTA




ATAGTACTCTTACTGATCTTACTCTTTGGACCCTGCATTCTCAATC




GATTGGTCCAATTTGTTAAAGACAGGATCTCAGTGGTCCAGGCTCT




GGTTTTGACTCAACAATATCACCAGCTAAAACCTATAGAGTACGAG




CCATGA





46
Envelope;
ATGGGTGTTACAGGAATATTGCAGTTACCTCGTGATCGATTCAAGA



Ebola
GGACATCATTCTTTCTTTGGGTAATTATCCTTTTCCAAAGAACATT




TTCCATCCCACTTGGAGTCATCCACAATAGCACATTACAGGTTAGT




GATGTCGACAAACTGGTTTGCCGTGACAAACTGTCATCCACAAATC




AATTGAGATCAGTTGGACTGAATCTCGAAGGGAATGGAGTGGCAAC




TGACGTGCCATCTGCAACTAAAAGATGGGGCTTCAGGTCCGGTGTC




CCACCAAAGGTGGTCAATTATGAAGCTGGTGAATGGGCTGAAAACT




GCTACAATCTTGAAATCAAAAAACCTGACGGGAGTGAGTGTCTACC




AGCAGCGCCAGACGGGATTCGGGGCTTCCCCCGGTGCCGGTATGTG




CACAAAGTATCAGGAACGGGACCGTGTGCCGGAGACTTTGCCTTCC




ACAAAGAGGGTGCTTTCTTCCTGTATGACCGACTTGCTTCCACAGT




TATCTACCGAGGAACGACTTTCGCTGAAGGTGTCGTTGCATTTCTG




ATACTGCCCCAAGCTAAGAAGGACTTCTTCAGCTCACACCCCTTGA




GAGAGCCGGTCAATGCAACGGAGGACCCGTCTAGTGGCTACTATTC




TACCACAATTAGATATCAAGCTACCGGTTTTGGAACCAATGAGACA




GAGTATTTGTTCGAGGTTGACAATTTGACCTACGTCCAACTTGAAT




CAAGATTCACACCACAGTTTCTGCTCCAGCTGAATGAGACAATATA




TACAAGTGGGAAAAGGAGCAATACCACGGGAAAACTAATTTGGAAG




GTCAACCCCGAAATTGATACAACAATCGGGGAGTGGGCCTTCTGGG




AAACTAAAAAAACCTCACTAGAAAAATTCGCAGTGAAGAGTTGTCT




TTCACAGCTGTATCAAACAGAGCCAAAAACATCAGTGGTCAGAGTC




CGGCGCGAACTTCTTCCGACCCAGGGACCAACACAACAACTGAAGA




CCACAAAATCATGGCTTCAGAAAATTCCTCTGCAATGGTTCAAGTG




CACAGTCAAGGAAGGGAAGCTGCAGTGTCGCATCTGACAACCCTTG




CCACAATCTCCACGAGTCCTCAACCCCCCACAACCAAACCAGGTCC




GGACAACAGCACCCACAATACACCCGTGTATAAACTTGACATCTCT




GAGGCAACTCAAGTTGAACAACATCACCGCAGAACAGACAACGACA




GCACAGCCTCCGACACTCCCCCCGCCACGACCGCAGCCGGACCCCT




AAAAGCAGAGAACACCAACACGAGCAAGGGTACCGACCTCCTGGAC




CCCGCCACCACAACAAGTCCCCAAAACCACAGCGAGACCGCTGGCA




ACAACAACACTCATCACCAAGATACCGGAGAAGAGAGTGCCAGCAG




CGGGAAGCTAGGCTTAATTACCAATACTATTGCTGGAGTCGCAGGA




CTGATCACAGGCGGGAGGAGAGCTCGAAGAGAAGCAATTGTCAATG




CTCAACCCAAATGCAACCCTAATTTACATTACTGGACTACTCAGGA




TGAAGGTGCTGCAATCGGACTGGCCTGGATACCATATTTCGGGCCA




GCAGCCGAGGGAATTTACATAGAGGGGCTGATGCACAATCAAGATG




GTTTAATCTGTGGGTTGAGACAGCTGGCCAACGAGACGACTCAAGC




TCTTCAACTGTTCCTGAGAGCCACAACCGAGCTACGCACCTTTTCA




ATCCTCAACCGTAAGGCAATTGATTTCTTGCTGCAGCGATGGGGCG




GCACATGCCACATTTTGGGACCGGACTGCTGTATCGAACCACATGA




TTGGACCAAGAACATAACAGACAAAATTGATCAGATTATTCATGAT




TTTGTTGATAAAACCCTTCCGGACCAGGGGGACAATGACAATTGGT




GGACAGGATGGAGACAATGGATACCGGCAGGTATTGGAGTTACAGG




CGTTATAATTGCAGTTATCGCTTTATTCTGTATATGCAAATTTGTC




TTTTAG





47
Left ITR
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGC




AAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGC




GAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTT




CCT





48
Prothrombin
GCGAGAACTTGTGCCTCCCCGTGTTCCTGCTCTTTGTCCCTCTGTC



enhancer
CTACTTAGACTAATATTTGCCTTGGGTACTGCAAACAGGAAATGGG




GGAGGGACAGGAGTAGGGCGGAGGGTAG





49
PolyA
GACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCC




GTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCT




AATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTC




TATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGG




GAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGC





50
Right ITR
AGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCG




CTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGC




TTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGC




AGG





51
E2A
TTAAAAGTCGAAGGGGTTCTCGCGCTCGTCGTTGTGCGCCGCGCTG




GGGAGGGCCACGTTGCGGAACTGGTACTTGGGCTGCCACTTGAACT




CGGGGATCACCAGTTTGGGCACTGGGGTCTCGGGGAAGGTCTCGCT




CCACATGCGCCGGCTCATCTGCAGGGCGCCCAGCATGTCAGGCGCG




GAGATCTTGAAATCGCAGTTGGGGCCGGTGCTCTGCGCGCGCGAGT




TGCGGTACACTGGGTTGCAGCACTGGAACACCATCAGACTGGGGTA




CTTCACACTAGCCAGCACGCTCTTGTCGCTGATCTGATCCTTGTCC




AGGTCCTCGGCGTTGCTCAGGCCGAACGGGGTCATCTTGCACAGCT




GGCGGCCCAGGAAGGGCACGCTCTGAGGCTTGTGGTTACACTCGCA




GTGCACGGGCATCAGCATCATCCCCGCGCCGCGCTGCATATTCGGG




TAGAGGGCCTTGACGAAGGCCGCGATCTGCTTGAAAGCTTGCTGGG




CCTTGGCCCCCTCGCTGAAAAACAGGCCGCAGCTCTTCCCGCTGAA




CTGATTATTCCCGCACCCGGCATCATGGACGCAGCAGCGCGCGTCA




TGGCTGGTCAGTTGCACCACGCTCCGTCCCCAGCGGTTCTGGGTCA




CCTTGGCCTTGCTGGGTTGCTCCTTCAGCGCACGCTGCCCGTTCTC




ACTGGTCACATCCATCTCCACCACGTGGTCCTTGTGGATCATCACC




GTCCCATGCAGACACTTGAGCTGGCCTTCCACCTCGGTGCAGCCGT




GGTCCCACAGGGCACTGCCGGTGCACTCCCAGTTCTTGTGCGCGAT




CCCGCTGTGGCTGAAGATGTAACCTTGCAACAGGCGACCCATGATG




GTGCTAAAGCTCTTCTGGGTGGTGAAGGTCAGTTGCAGACCGCGGG




CCTCCTCGTTCATCCAGGTCTGGCACATCTTTTGGAAGATCTCGGT




CTGCTCGGGCATGAGCTTGTAAGCATCGCGCAGGCCGCTGTCGACG




CGGTAGCGTTCCATCAGCACATTCATGGTATCCATGCCCTTCTCCC




AGGACGAGACCAGAGGCAGACTCAGGGGGTTGCGCACGTTCAGGAC




ACCGGGGGTCGCGGGCTCGACGATGCGTTTTCCGTCCTTGCCTTCC




TTCAACAGAACCGGCGGCTGGCTGAATCCCACTCCCACGATCACGG




CTTCTTCCTGGGGCATCTCTTCGTCTGGGTCTACCTTGGTCACATG




CTTGGTCTTTCTGGCTTGCTTCTTTTTTGGAGGGCTGTCCACGGGG




ACCACGTCCTCCTCGGAAGACCCGGATCCCACCCGCTGATACTTTC




GGCGCTTGGTTGGCAGAGGAGGTGGCGGCGAGGGGCTCCTCTCCTG




CTCCGGCGGATAGCGCGCTGAACCGTGGCCCCGGGGCGGAGTGGCC




TCTCGGTCCATGAACCGGCGCACGTCCTGACTGCCGCCGGCCAT





52
E4
TCATGTATCTTTATTGATTTTTACACCAGCACGGGTAGTCAGTCTC




CCACCACCAGCCCATTTCACAGTGTAAACAATTCTCTCAGCACGGG




TGGCCTTAAATAGGGCAATATTCTGATTAGTGCGGGAACTGGACTT




GGGGTCTATAATCCACACAGTTTCCTGGCGAGCCAAACGGGGGTCG




GTGATTGAGATGAAGCCGTCCTCTGAAAAGTCATCCAAGCGAGCCT




CACAGTCCAAGGTCACAGTATTATGATAATCTGCATGATCACAATC




GGGCAACAGGGGATGTTGTTCAGTCAGTGAAGCCCTGGTTTCCTCA




TCAGATCGTGGTAAACGGGCCCTGCGATATGGATGATGGCGGAGCG




AGCTGGATTGAATCTCGGTTTGCAT





53
VA RNA
AGCGGGCACTCTTCCGTGGTCTGGTGGATAAATTCGCAAGGGTATC




ATGGCGGACGACCGGGGTTCGAGCCCCGTATCCGGCCGTCCGCCGT




GATCCATGCGGTTACCGCCCGCGTGTCGAACCCAGGTGTGCGACGT




CAGACAACGGGGGAGTGCTCCTTT





54
AAV2 Rep
ATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACACTCTCT




CTGAAGGAATAAGACAGTGGTGGAAGCTCAAACCTGGCCCACCACC




ACCAAAGCCCGCAGAGCGGCATAAGGACGACAGCAGGGGTCTTGTG




CTTCCTGGGTACAAGTACCTCGGACCCTTCAACGGACTCGACAAGG




GAGAGCCGGTCAACGAGGCAGACGCCGCGGCCCTCGAGCACGACAA




AGCCTACGACCGGCAGCTCGACAGCGGAGACAACCCGTACCTCAAG




TACAACCACGCCGACGCGGAGTTTCAGGAGCGCCTTAAAGAAGATA




CGTCTTTTGGGGGCAACCTCGGACGAGCAGTCTTCCAGGCGAAAAA




GAGGGTTCTTGAACCTCTGGGCCTGGTTGAGGAACCTGTTAAGACG




GCTCCGGGAAAAAAGAGGCCGGTAGAGCACTCTCCTGTGGAGCCAG




ACTCCTCCTCGGGAACCGGAAAGGCGGGCCAGCAGCCTGCAAGAAA




AAGATTGAATTTTGGTCAGACTGGAGACGCAGACTCAGTACCTGAC




CCCCAGCCTCTCGGACAGCCACCAGCAGCCCCCTCTGGTCTGGGAA




CTAATACGATGGCTACAGGCAGTGGCGCACCAATGGCAGACAATAA




CGAGGGCGCCGACGGAGTGGGTAATTCCTCGGGAAATTGGCATTGC




GATTCCACATGGATGGGCGACAGAGTCATCACCACCAGCACCCGAA




CCTGGGCCCTGCCCACCTACAACAACCACCTCTACAAACAAATTTC




CAGCCAATCAGGAGCCTCGAACGACAATCACTACTTTGGCTACAGC




ACCCCTTGGGGGTATTTTGACTTCAACAGATTCCACTGCCACTTTT




CACCACGTGACTGGCAAAGACTCATCAACAACAACTGGGGATTCCG




ACCCAAGAGACTCAACTTCAAGCTCTTTAACATTCAAGTCAAAGAG




GTCACGCAGAATGACGGTACGACGACGATTGCCAATAACCTTACCA




GCACGGTTCAGGTGTTTACTGACTCGGAGTACCAGCTCCCGTACGT




CCTCGGCTCGGCGCATCAAGGATGCCTCCCGCCGTTCCCAGCAGAC




GTCTTCATGGTGCCACAGTATGGATACCTCACCCTGAACAACGGGA




GTCAGGCAGTAGGACGCTCTTCATTTTACTGCCTGGAGTACTTTCC




TTCTCAGATGCTGCGTACCGGAAACAACTTTACCTTCAGCTACACT




TTTGAGGACGTTCCTTTCCACAGCAGCTACGCTCACAGCCAGAGTC




TGGACCGTCTCATGAATCCTCTCATCGACCAGTACCTGTATTACTT




GAGCAGAACAAACACTCCAAGTGGAACCACCACGCAGTCAAGGCTT




CAGTTTTCTCAGGCCGGAGCGAGTGACATTCGGGACCAGTCTAGGA




ACTGGCTTCCTGGACCCTGTTACCGCCAGCAGCGAGTATCAAAGAC




ATCTGCGGATAACAACAACAGTGAATACTCGTGGACTGGAGCTACC




AAGTACCACCTCAATGGCAGAGACTCTCTGGTGAATCCGGGCCCGG




CCATGGCAAGCCACAAGGACGATGAAGAAAAGTTTTTTCCTCAGAG




CGGGGTTCTCATCTTTGGGAAGCAAGGCTCAGAGAAAACAAATGTG




GACATTGAAAAGGTCATGATTACAGACGAAGAGGAAATCAGGACAA




CCAATCCCGTGGCTACGGAGCAGTATGGTTCTGTATCTACCAACCT




CCAGAGAGGCAACAGACAAGCAGCTACCGCAGATGTCAACACACAA




GGCGTTCTTCCAGGCATGGTCTGGCAGGACAGAGATGTGTACCTTC




AGGGGCCCATCTGGGCAAAGATTCCACACACGGACGGACATTTTCA




CCCCTCTCCCCTCATGGGTGGATTCGGACTTAAACACCCTCCTCCA




CAGATTCTCATCAAGAACACCCCGGTACCTGCGAATCCTTCGACCA




CCTTCAGTGCGGCAAAGTTTGCTTCCTTCATCACACAGTACTCCAC




GGGACAGGTCAGCGTGGAGATCGAGTGGGAGCTGCAGAAGGAAAAC




AGCAAACGCTGGAATCCCGAAATTCAGTACACTTCCAACTACAACA




AGTCTGTTAATGTGGACTTTACTGTGGACACTAATGGCGTGTATTC




AGAGCCTCGCCCCATTGGCACCAGATACCTGACTCGTAATCTGTAA





55
AAV2 Cap
ATGCCGGGGTTTTACGAGATTGTGATTAAGGTCCCCAGCGACCTTG




ACGAGCATCTGCCCGGCATTTCTGACAGCTTTGTGAACTGGGTGGC




CGAGAAGGAATGGGAGTTGCCGCCAGATTCTGACATGGATCTGAAT




CTGATTGAGCAGGCACCCCTGACCGTGGCCGAGAAGCTGCAGCGCG




ACTTTCTGACGGAATGGCGCCGTGTGAGTAAGGCCCCGGAGGCCCT




TTTCTTTGTGCAATTTGAGAAGGGAGAGAGCTACTTCCACATGCAC




GTGCTCGTGGAAACCACCGGGGTGAAATCCATGGTTTTGGGACGTT




TCCTGAGTCAGATTCGCGAAAAACTGATTCAGAGAATTTACCGCGG




GATCGAGCCGACTTTGCCAAACTGGTTCGCGGTCACAAAGACCAGA




AATGGCGCCGGAGGCGGGAACAAGGTGGTGGATGAGTGCTACATCC




CCAATTACTTGCTCCCCAAAACCCAGCCTGAGCTCCAGTGGGCGTG




GACTAATATGGAACAGTATTTAAGCGCCTGTTTGAATCTCACGGAG




CGTAAACGGTTGGTGGCGCAGCATCTGACGCACGTGTCGCAGACGC




AGGAGCAGAACAAAGAGAATCAGAATCCCAATTCTGATGCGCCGGT




GATCAGATCAAAAACTTCAGCCAGGTACATGGAGCTGGTCGGGTGG




CTCGTGGACAAGGGGATTACCTCGGAGAAGCAGTGGATCCAGGAGG




ACCAGGCCTCATACATCTCCTTCAATGCGGCCTCCAACTCGCGGTC




CCAAATCAAGGCTGCCTTGGACAATGCGGGAAAGATTATGAGCCTG




ACTAAAACCGCCCCCGACTACCTGGTGGGCCAGCAGCCCGTGGAGG




ACATTTCCAGCAATCGGATTTATAAAATTTTGGAACTAAACGGGTA




CGATCCCCAATATGCGGCTTCCGTCTTTCTGGGATGGGCCACGAAA




AAGTTCGGCAAGAGGAACACCATCTGGCTGTTTGGGCCTGCAACTA




CCGGGAAGACCAACATCGCGGAGGCCATAGCCCACACTGTGCCCTT




CTACGGGTGCGTAAACTGGACCAATGAGAACTTTCCCTTCAACGAC




TGTGTCGACAAGATGGTGATCTGGTGGGAGGAGGGGAAGATGACCG




CCAAGGTCGTGGAGTCGGCCAAAGCCATTCTCGGAGGAAGCAAGGT




GCGCGTGGACCAGAAATGCAAGTCCTCGGCCCAGATAGACCCGACT




CCCGTGATCGTCACCTCCAACACCAACATGTGCGCCGTGATTGACG




GGAACTCAACGACCTTCGAACACCAGCAGCCGTTGCAAGACCGGAT




GTTCAAATTTGAACTCACCCGCCGTCTGGATCATGACTTTGGGAAG




GTCACCAAGCAGGAAGTCAAAGACTTTTTCCGGTGGGCAAAGGATC




ACGTGGTTGAGGTGGAGCATGAATTCTACGTCAAAAAGGGTGGAGC




CAAGAAAAGACCCGCCCCCAGTGACGCAGATATAAGTGAGCCCAAA




CGGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGACGCGGAAG




CTTCGATCAACTACGCAGACAGGTACCAAAACAAATGTTCTCGTCA




CGTGGGCATGAATCTGATGCTGTTTCCCTGCAGACAATGCGAGAGA




ATGAATCAGAATTCAAATATCTGCTTCACTCACGGACAGAAAGACT




GTTTAGAGTGCTTTCCCGTGTCAGAATCTCAACCCGTTTCTGTCGT




CAAAAAGGCGTATCAGAAACTGTGCTACATTCATCATATCATGGGA




AAGGTGCCAGACGCTTGCACTGCCTGCGATCTGGTCAATGTGGATT




TGGATGACTGCATCTTTGAACAATAA





56
DNA
TCTAGAAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGC



Fragment
ACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAAT



containing
TATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTAT



RRE and
TGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAG



rabbit beta
CAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATC



globin poly A
AACAGCTCCTAGATCTTTTTCCCTCTGCCAAAAATTATGGGGACAT




CATGAAGCCCCTTGAGCATCTGACTTCTGGCTAATAAAGGAAATTT




ATTTTCATTGCAATAGTGTGTTGGAATTTTTTGTGTCTCTCACTCG




GAAGGACATATGGGAGGGCAAATCATTTAAAACATCAGAATGAGTA




TTTGGTTTAGAGTTTGGCAACATATGCCATATGCTGGCTGCCATGA




ACAAAGGTGGCTATAAAGAGGTCATCAGTATATGAAACAGCCCCCT




GCTGTCCATTCCTTATTCCATAGAAAAGCCTTGACTTGAGGTTAGA




TTTTTTTTATATTTTGTTTTGTGTTATTTTTTTCTTTAACATCCCT




AAAATTTTCCTTACATGTTTTACTAGCCAGATTTTTCCTCCTCTCC




TGACTACTCCCAGTCATAGCTGTCCCTCTTCTCTTATGAAGATCCC




TCGACCTGCAGCCCAAGCTTGGCGTAATCATGGTCATAGCTGTTTC




CTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGC




CGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAA




CTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAA




ACCTGTCGTGCCAGCGGATCCGCATCTCAATTAGTCAGCAACCATA




GTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTT




CCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGC




AGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGA




GGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTAACTTGTT




TATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAAT




TTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGT




CCAAACTCATCAATGTATCTTATCACCCGGG





57
hPAH with fill
GGCACGAGGTACCTGAGGCCCTAAAAAGCCAGAGACCTCACTCCCG



5′ and 3′ UTR
GGGAGCCAGCATGTCCACTGCGGTCCTGGAAAACCCAGGCTTGGGC




AGGAAACTCTCTGACTTTGGACAGGAAACAAGCTATATTGAAGACA




ACTGCAATCAAAATGGTGCCATATCACTGATCTTCTCACTCAAAGA




AGAAGTTGGTGCATTGGCCAAAGTATTGCGCTTATTTGAGGAGAAT




GATGTAAACCTGACCCACATTGAATCTAGACCTTCTCGTTTAAAGA




AAGATGAGTATGAATTTTTCACCCATTTGGATAAACGTAGCCTGCC




TGCTCTGACAAACATCATCAAGATCTTGAGGCATGACATTGGTGCC




ACTGTCCATGAGCTTTCACGAGATAAGAAGAAAGACACAGTGCCCT




GGTTCCCAAGAACCATTCAAGAGCTGGACAGATTTGCCAATCAGAT




TCTCAGCTATGGAGCGGAACTGGATGCTGACCACCCTGGTTTTAAA




GATCCTGTGTACCGTGCAAGACGGAAGCAGTTTGCTGACATTGCCT




ACAACTACCGCCATGGGCAGCCCATCCCTCGAGTGGAATACATGGA




GGAAGAAAAGAAAACATGGGGCACAGTGTTCAAGACTCTGAAGTCC




TTGTATAAAACCCATGCTTGCTATGAGTACAATCACATTTTTCCAC




TTCTTGAAAAGTACTGTGGCTTCCATGAAGATAACATTCCCCAGCT




GGAAGACGTTTCTCAGTTCCTGCAGACTTGCACTGGTTTCCGCCTC




CGACCTGTAGCTGGCCTGCTTTCCTCTCGGGATTTCTTGGGTGGCC




TGGCCTTCCGAGTCTTCCACTGCACACAGTACATCAGACATGGATC




CAAGCCCATGTATACCCCCGAACCTGACATCTGCCATGAGCTGTTG




GGACATGTGCCCTTGTTTTCAGATCGCAGCTTTGCCCAGTTTTCCC




AGGAAATTGGCCTTGCCTCTCTGGGTGCACCTGATGAATACATTGA




AAAGCTCGCCACAATTTACTGGTTTACTGTGGAGTTTGGGCTCTGC




AAACAAGGAGACTCCATAAAGGCATATGGTGCTGGGCTCCTGTCAT




CCTTTGGTGAATTACAGTACTGCTTATCAGAGAAGCCAAAGCTTCT




CCCCCTGGAGCTGGAGAAGACAGCCATCCAAAATTACACTGTCACG




GAGTTCCAGCCCCTGTATTACGTGGCAGAGAGTTTTAATGATGCCA




AGGAGAAAGTAAGGAACTTTGCTGCCACAATACCTCGGCCCTTCTC




AGTTCGCTACGACCCATACACCCAAAGGATTGAGGTCTTGGACAAT




ACCCAGCAGCTTAAGATTTTGGCTGATTCCATTAACAGTGAAATTG




GAATCCTTTGCAGTGCCCTCCAGAAAATAAAGTAAAGCCATGGACA




GAATGTGGTCTGTCAGCTGTGAATCTGTTGATGGAGATCCAACTAT




TTCTTTCATCAGAAAAAGTCCGAAAAGCAAACCTTAATTTGAAATA




ACAGCCTTAAATCCTTTACAAGATGGAGAAACAACAAATAAGTCAA




AATAATCTGAAATGACAGGATATGAGTACATACTCAAGAGCATAAT




GGTAAATCTTTTGGGGTCATCTTTGATTTAGAGATGATAATCCCAT




ACTCTCAATTGAGTTAAATCAGTAATCTGTCGCATTTCATCAAGAT




TAATTAAAATTTGGGACCTGCTTCATTCAAGCTTCATATATGCTTT




GCAGAGAACTCATAAAGGAGCATATAAGGCTAAATGTAAAACCCAA




GACTGTCATTAGAATTGAATTATTGGGCTTAATATAAATCGTAACC




TATGAAGTTTATTTTTTATTTTAGTTAACTATGATTCCAATTACTA




CTTTGTTATTGTACCTAAGTAAATTTTCTTTAAGTCAGAAGCCCAT




TAAAATAGTTACAAGCATTGAACTTCTTTAGTATTATATTAATATA




AAAACATTTTTGTATGTTTTATTGTAATCATAAATACTGCTGTATA




AGGTAATAAAACTCTGCACCTAATCCCCATAACTTCCAGTATCATT




TTCCAATTAATTATCAAGTCTGTTTTGGGAAACACTTTGAGGACAT




TTATGATGCAGCAGATGTTGACTAAAGGCTTGGTTGGTAGATATTC




AGGAAATGTTCACTGAATAAATAAGTAAATACATTATTGAAAAGCA




AATCTGTATAAATGTGAAATTTTTATTTGTATTAGTAATAAAACAT




TAGTAGTTTAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACT




CGACTCTAGATT





58
hPAH with
GGCACGAGGTACCTGAGGCCCTAAAAAGCCAGAGACCTCACTCCCG



full 5′ UTR
GGGAGCCAGCATGTCCACTGCGGTCCTGGAAAACCCAGGCTTGGGC



and truncated
AGGAAACTCTCTGACTTTGGACAGGAAACAAGCTATATTGAAGACA



3′ UTR
ACTGCAATCAAAATGGTGCCATATCACTGATCTTCTCACTCAAAGA




AGAAGTTGGTGCATTGGCCAAAGTATTGCGCTTATTTGAGGAGAAT




GATGTAAACCTGACCCACATTGAATCTAGACCTTCTCGTTTAAAGA




AAGATGAGTATGAATTTTTCACCCATTTGGATAAACGTAGCCTGCC




TGCTCTGACAAACATCATCAAGATCTTGAGGCATGACATTGGTGCC




ACTGTCCATGAGCTTTCACGAGATAAGAAGAAAGACACAGTGCCCT




GGTTCCCAAGAACCATTCAAGAGCTGGACAGATTTGCCAATCAGAT




TCTCAGCTATGGAGCGGAACTGGATGCTGACCACCCTGGTTTTAAA




GATCCTGTGTACCGTGCAAGACGGAAGCAGTTTGCTGACATTGCCT




ACAACTACCGCCATGGGCAGCCCATCCCTCGAGTGGAATACATGGA




GGAAGAAAAGAAAACATGGGGCACAGTGTTCAAGACTCTGAAGTCC




TTGTATAAAACCCATGCTTGCTATGAGTACAATCACATTTTTCCAC




TTCTTGAAAAGTACTGTGGCTTCCATGAAGATAACATTCCCCAGCT




GGAAGACGTTTCTCAGTTCCTGCAGACTTGCACTGGTTTCCGCCTC




CGACCTGTAGCTGGCCTGCTTTCCTCTCGGGATTTCTTGGGTGGCC




TGGCCTTCCGAGTCTTCCACTGCACACAGTACATCAGACATGGATC




CAAGCCCATGTATACCCCCGAACCTGACATCTGCCATGAGCTGTTG




GGACATGTGCCCTTGTTTTCAGATCGCAGCTTTGCCCAGTTTTCCC




AGGAAATTGGCCTTGCCTCTCTGGGTGCACCTGATGAATACATTGA




AAAGCTCGCCACAATTTACTGGTTTACTGTGGAGTTTGGGCTCTGC




AAACAAGGAGACTCCATAAAGGCATATGGTGCTGGGCTCCTGTCAT




CCTTTGGTGAATTACAGTACTGCTTATCAGAGAAGCCAAAGCTTCT




CCCCCTGGAGCTGGAGAAGACAGCCATCCAAAATTACACTGTCACG




GAGTTCCAGCCCCTGTATTACGTGGCAGAGAGTTTTAATGATGCCA




AGGAGAAAGTAAGGAACTTTGCTGCCACAATACCTCGGCCCTTCTC




AGTTCGCTACGACCCATACACCCAAAGGATTGAGGTCTTGGACAAT




ACCCAGCAGCTTAAGATTTTGGCTGATTCCATTAACAGTGAAATTG




GAATCCTTTGCAGTGCCCTCCAGAAAATAAAGTAAAGCCATGGACA




GAATGTGGTCTGTCAGCTGTGAATCTGTTGATGGAGATCCAACTAT




TTCTTTCATCAGAAAAAGTCCGAAAAGCAAACCTTAATTTGAAATA




ACAGCCTTAAATCCTTTACAAGATGGAGAAACAACAAATAAGTCAA




AATAATCTGAAATGACAGGATATGAGTACATACTCAAGAGCATAAT




GGTAAATCTTTTGGGGTCATCTTTGATTTAGAGATGATAATCCCAT




ACTCTCAATTGAGTTAAATCAGTAATCTGTCGCATTTCATCAAGAT




TA








Claims
  • 1. A viral vector comprising: a phenylalanine hydroxylase (PAH) sequence for expressing at least one of PAH or a variant thereof, wherein the PAH sequence is truncated,wherein the truncated sequence is SEQ ID NO: 3, SEQ ID NO: 4, or a sequence that has 80%, 85%, 90%, 95%, or 100% identity to SEQ ID NO: 3 or SEQ ID NO: 4.
  • 2. The viral vector of claim 1, further comprising: at least one small RNA sequence that is capable of binding to at least one pre-determined complementary mRNA sequence.
  • 3. The viral vector of claim 2, wherein the at least one small RNA sequence is under the control of a first promoter, and wherein the PAH sequence is under the control of a second promoter.
  • 4. The viral vector of claim 3, wherein the first promoter comprises a H1 promoter and wherein the second promoter comprises a liver-specific promoter.
  • 5. The viral vector of claim 4, wherein the liver-specific promoter comprises a hAAT promoter.
  • 6. The viral vector of claim 2, wherein the at least one small RNA sequence comprises a sequence having at least one of 80%, 85%, 90%, 95%, or 100% identity with at least one of SEQ ID NO: 5 or SEQ ID NO: 6.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to: U.S. Provisional Patent Application No. 62/480,962 filed on Apr. 3, 2017 entitled “COMPOSITIONS AND METHODS FOR TREATING PHENYLKETONURIA”, and U.S. Provisional Patent Application No. 62/491,118 filed on Apr. 27, 2017 entitled “COMPOSITIONS AND METHODS FOR TREATING PHENYLKETONURIA,” the disclosures of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/025733 4/2/2018 WO
Publishing Document Publishing Date Country Kind
WO2018/187231 10/11/2018 WO A
US Referenced Citations (108)
Number Name Date Kind
5668255 Murphy Sep 1997 A
5674703 Woo et al. Oct 1997 A
6156514 Acevedo et al. Dec 2000 A
6399383 Apt et al. Jun 2002 B1
6635472 Lauermann Oct 2003 B1
7371542 Ivanova et al. May 2008 B2
8124752 Bumcrot et al. Feb 2012 B2
8287857 Dudley et al. Oct 2012 B2
8993532 Hannon et al. Mar 2015 B2
9522176 DeRosa et al. Dec 2016 B2
9527904 Balazs Dec 2016 B2
9834790 Pauza et al. Dec 2017 B1
9834791 Zhang Dec 2017 B2
9914938 Pauza et al. Mar 2018 B2
10023880 Pauza et al. Jul 2018 B2
10036038 Pauza et al. Jul 2018 B2
10036040 Pauza et al. Jul 2018 B2
10137144 Pauza et al. Nov 2018 B2
10208295 DeRosa et al. Feb 2019 B2
10233464 Pauza et al. Mar 2019 B2
20020168345 Dong et al. Nov 2002 A1
20030013196 Engleman et al. Jan 2003 A1
20030096787 Perridcaudet et al. May 2003 A1
20030119770 Lai Jun 2003 A1
20030138444 Zavitz et al. Jul 2003 A1
20030198620 Ozawa et al. Oct 2003 A1
20040142416 Laipis et al. Jul 2004 A1
20040161412 Penn et al. Aug 2004 A1
20040192629 Xu et al. Sep 2004 A1
20040214158 Sethi et al. Oct 2004 A1
20040248296 Beresford et al. Dec 2004 A1
20050019927 Markus et al. Jan 2005 A1
20050138677 Pfister et al. Jun 2005 A1
20060057553 Aguilar-Cordova Mar 2006 A1
20060183230 Silla et al. Aug 2006 A1
20060246520 Champagne et al. Nov 2006 A1
20070026521 Colosi Feb 2007 A1
20070141679 Sodroski Jun 2007 A1
20070203333 McSwiggen et al. Aug 2007 A1
20080003225 Vie et al. Jan 2008 A1
20080003682 Lois-Caballe et al. Jan 2008 A1
20080039413 Morris et al. Feb 2008 A1
20080131940 Chiu Jun 2008 A1
20080153737 Lieberman et al. Jun 2008 A1
20080199961 Rasko et al. Aug 2008 A1
20080227736 Chen et al. Sep 2008 A1
20080293142 Liu et al. Nov 2008 A1
20090148936 Stout et al. Jun 2009 A1
20090304688 Fournie et al. Dec 2009 A1
20100017911 Dawson et al. Jan 2010 A1
20100069372 Kazantsev Mar 2010 A1
20100119511 Wang et al. May 2010 A1
20100120155 Brennan et al. May 2010 A1
20100286166 Pey Rodriguez et al. Nov 2010 A1
20100316676 Sanders Dec 2010 A1
20110008803 Stockwell et al. Jan 2011 A1
20110177155 Peer et al. Jul 2011 A1
20110207226 Ni et al. Aug 2011 A1
20120053223 Benkirane et al. Jan 2012 A1
20120027725 Galvin et al. Feb 2012 A1
20120114607 Lai et al. May 2012 A1
20120034197 Young et al. Aug 2012 A1
20120201794 Chen et al. Sep 2012 A1
20130078276 Robinson et al. Mar 2013 A1
20130090371 Lu et al. Apr 2013 A1
20130142766 Dodo et al. Jun 2013 A1
20130211380 Aquino et al. Aug 2013 A1
20140105965 Bancel et al. Apr 2014 A1
20140155468 Gregory et al. Jun 2014 A1
20140162894 Hatchwell et al. Jun 2014 A1
20140178340 Robbins et al. Jun 2014 A1
20140234958 Kashara et al. Aug 2014 A1
20140248277 Hoffman et al. Sep 2014 A1
20140336245 Mingozzi et al. Nov 2014 A1
20150010578 Balazs et al. Jan 2015 A1
20150018539 Fellmann Jan 2015 A1
20150126580 DePinho et al. May 2015 A1
20150132255 Sorensen et al. May 2015 A1
20150176006 Krause et al. Jun 2015 A1
20160060707 Goldenberg et al. Mar 2016 A1
20160243169 Chen et al. Aug 2016 A1
20160289681 Rossi Oct 2016 A1
20170015976 Nelson Jan 2017 A1
20170028036 Mingozzi et al. Feb 2017 A1
20170037369 Ramsborg et al. Feb 2017 A1
20170314041 DeRosa et al. Nov 2017 A1
20170335344 Pauza et al. Nov 2017 A1
20180010147 Pauza Jan 2018 A1
20180142257 Pauza May 2018 A1
20180142258 Pauza May 2018 A1
20180161455 Pauza Jun 2018 A1
20180177866 Pauza Jun 2018 A1
20180195046 Deng Jul 2018 A1
20180195050 Szalay Jul 2018 A1
20180256624 Pauza Sep 2018 A1
20180305716 Pauza Oct 2018 A1
20180355032 Roberts Dec 2018 A1
20190046633 Pauza et al. Feb 2019 A1
20190062786 Pauza et al. Feb 2019 A1
20190078096 Lahusen et al. Mar 2019 A1
20190083523 Pauza Mar 2019 A1
20190388456 Pauza et al. Dec 2019 A1
20200063161 Pauza Feb 2020 A1
20200109417 Pauza et al. Apr 2020 A1
20200155590 Zhennan May 2020 A1
20200181645 Pauza Jun 2020 A1
20200318081 Lahusen et al. Oct 2020 A1
20210047644 Lahusen Feb 2021 A1
Foreign Referenced Citations (89)
Number Date Country
2515 Mar 2019 BR
101516365 Aug 2009 CN
101679466 Mar 2010 CN
101805750 Aug 2010 CN
103184224 Jul 2013 CN
104428009 Mar 2015 CN
105112370 Dec 2015 CN
106459932 Feb 2017 CN
108883100 Nov 2018 CN
1647595 Apr 2006 EP
3402483 Nov 2018 EP
3413926 Dec 2018 EP
3426777 Jan 2019 EP
3468617 Apr 2019 EP
3468618 Apr 2019 EP
3481418 May 2019 EP
3481435 May 2019 EP
201947000153 Feb 2016 IN
2002506652 Mar 2002 JP
2007-527240 Sep 2007 JP
2008518591 Jun 2008 JP
2008-538174 Oct 2008 JP
2012508591 Apr 2012 JP
2013-5300152 Jul 2013 JP
2015-518838 Jul 2015 JP
2016-502404 Jan 2016 JP
2019509029 Apr 2019 JP
199947691 Sep 1999 WO
WO 2001036620 May 2001 WO
2002020554 Mar 2002 WO
2003093436 Nov 2003 WO
2004053137 Jun 2004 WO
2005028634 Mar 2005 WO
2005033282 Apr 2005 WO
2006039721 Apr 2006 WO
2006048215 May 2006 WO
2007000668 Jan 2007 WO
2007015122 Feb 2007 WO
2007132292 Nov 2007 WO
2007133674 Nov 2007 WO
2008025025 Feb 2008 WO
2008090185 Jul 2008 WO
2009100928 Aug 2009 WO
2009147445 Dec 2009 WO
2010051521 May 2010 WO
2010117974 Oct 2010 WO
2010127166 Nov 2010 WO
2011008348 Jan 2011 WO
2011071476 Jun 2011 WO
2011119942 Sep 2011 WO
2012145624 Feb 2012 WO
2012048303 Apr 2012 WO
2012061075 May 2012 WO
2013096455 Jun 2013 WO
2014016817 Jan 2014 WO
2014117050 Jul 2014 WO
2014187881 Nov 2014 WO
2015017755 Feb 2015 WO
2015042308 Mar 2015 WO
2015061491 Apr 2015 WO
2015078999 Jun 2015 WO
2015086854 Aug 2015 WO
WO2015164759 Oct 2015 WO
2016046234 Mar 2016 WO
2016061232 Apr 2016 WO
2016069716 May 2016 WO
2016200997 Jul 2016 WO
WO-2016122058 Aug 2016 WO
2016189159 Dec 2016 WO
2017007994 Jan 2017 WO
20170068077 Apr 2017 WO
2017100551 Jun 2017 WO
2017123918 Jul 2017 WO
2017139065 Aug 2017 WO
2017156311 Sep 2017 WO
20170173453 Oct 2017 WO
2017213697 Dec 2017 WO
2017214327 Dec 2017 WO
2018009246 Jan 2018 WO
2018009847 Jan 2018 WO
2018017882 Jan 2018 WO
2018126112 Jul 2018 WO
2018129540 Jul 2018 WO
20180148443 Aug 2018 WO
2018187231 Oct 2018 WO
2018232359 Dec 2018 WO
2019070674 Apr 2019 WO
2020097049 May 2020 WO
2020243717 Dec 2020 WO
Non-Patent Literature Citations (284)
Entry
Charron, Gene Therapy for Phenylketonuria: Dominant-Negative Interference in a Recessive Disease. Dissertation. University of Florida. 2005. (Year: 2005).
Ho et al., Translational Pediatrics, 2014, 3(2):49-62. (Year: 2014).
Oh et al. “Lentiviral Vector Design Using Alternative RNA Export Elements,” Retrovirology, vol. 4:38, pp. 1-10, (2007).
PCT; International Preliminary Report on Patentability dated Oct. 8, 2019 in the Application No. PCT/US2018/025733.
PCT; International Search Report and Written Opinion of the International Search Report dated Jul. 22, 2019 in the Application No. PCT/US2019/024410.
USPTO; Notice of Allowance dated Nov. 27, 2019 in the U.S. Appl. No. 13/333,882.
USPTO; Non-Final Office Action dated Jan. 13, 2020 in the U.S. Appl. No. 15/580,661.
Brites, C., M. Abrahao, P. Bozza, E. M. Netto, A. Lyra and F. Bahia (2018). “Infection by HTLV-1 Is Associated with High Levels of Proinflammatory Cytokines in HIV-HCV-Coinfected Patients.” J Acquir Immune Defic Syndr 77(2): 230-234.
Douek, D. C., J. M. Brenchley, M. R. Betts, D. R. Ambrozak, B. J. Hill, et al. (2002). “HIV preferentially infects HIV-specific CD4+ T cells.” Nature 417(6884): 95-98.
Eguchi, K., N. Matsuoka, H. Ida, M. Nakashima, M. Sakai, et al. (1992). “Primary Sjogren's syndrome with antibodies to HTLV-I: clinical and laboratory features.” Ann Rheum Dis 51(6): 769-776.
Futsch, N., R. Mahieux and H. Dutartre (2017). “HTLV-1, the Other Pathogenic Yet Neglected Human Retrovirus: From Transmission to Therapeutic Treatment.” Viruses, 10, 1; doi: 10.3390/v10010001.
Gessain, A., F. Barin, J. C. Vernant, O. Gout, L. Maurs, A. Calender and G. de The (1985). “Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis.” Lancet 2(8452): 407-410.
Gessain, A. and O. Cassar (2012). “Epidemiological Aspects and World Distribution of HTLV-1 Infection.” Front Microbiol 3: 388.
Goncalves, D. U., F. A. Proietti, J. G. Ribas, M. G. Araujo, S. R. Pinheiro, A. C. Guedes and A. B. Carneiro-Proietti (2010). “Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases.” Clin Microbiol Rev 23(3): 577-589.
Kagdi, H., M. A. Demontis, J. C. Ramos and G. P. Taylor (2018). “Switching and loss of cellular cytokine producing capacity characterize in vivo viral infection and malignant transformation in human T-lymphotropic virus type 1 infection.” PLOS Pathog 14(2): e1006861.
Kagdi, H. H., M. A. Demontis, P. A. Fields, J. C. Ramos, C. R. Bangham and G. P. Taylor (2017). “Risk stratification of adult T-cell leukemia/lymphoma using immunophenotyping.” Cancer Med 6(1): 298-309.
Macnamara, A., A. Rowan, S. Hilburn, U. Kadolsky, H. Fujiwara, et al. (2010). “HLA class I binding of HBZ determines outcome in HTLV-1 infection.” PLOS Pathog 6(9): e1001117.
Manel, N., F. J. Kim, S. Kinet, N. Taylor, M. Sitbon and J. L. Battini (2003). “The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV.” Cell 115(4): 449-459.
Martinez, M. P., J. Al-Saleem and P. L. Green (2019). “Comparative virology of HTLV-1 and HTLV-2.” Retrovirology 16(1): 21.
Mochizuki, M., T. Watanabe, K. Yamaguchi, K. Takatsuki, K. Yoshimura, et al. (1992). “HTLV-I uveitis: a distinct clinical entity caused by HTLV-I.” Jpn J Cancer Res 83(3): 236-239.
Mosley, A. J., B. Asquith and C. R. Bangham (2005). “Cell-mediated immune response to human T-lymphotropic virus type I.” Viral Immunol 18(2): 293-305.
Nagai, M. and M. Osame (2003). “Human T-cell lymphotropic virus type I and neurological diseases.” J Neurovirol 9(2): 228-235.
Yamano, Y. and T. Sato (2012). “Clinical pathophysiology of human T-lymphotropic virus-type 1-associated myelopathy/tropical spastic paraparesis.” Front Microbiol 3: 389.
Nishioka, K., I. Maruyama, K. Sato, I. Kitajima, Y. Nakajima and M. Osame (1989). “Chronic inflammatory arthropathy associated with HTLV-I.” Lancet 1(8635): 441.
Osame, M., K. Usuku, S. Izumo, N. Ijichi, H. Amitani, et al. (1986). “HTLV-I associated myelopathy, a new clinical entity.” Lancet 1(8488): 1031-1032.
Poiesz, B. J., F. W. Ruscetti, A. F. Gazdar, P. A. Bunn, J. D. Minna and R. C. Gallo (1980). “Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma.” Proc Natl Acad Sci U S A 77(12): 7415-7419.
Poiesz, B. J., F. W. Ruscetti, J. W. Mier, A. M. Woods and R. C. Gallo (1980). “T-cell lines established from human T-lymphocytic neoplasias by direct response to T-cell growth factor.” Proc Natl Acad Sci U S A 77(11): 6815-6819.
Roc, L., C. de Mendoza, M. Fernandez-Alonso, G. Reina, V. Soriano and H. N. Spanish (2019). “Rapid subacute myelopathy following kidney transplantation from HTLV-1 donors: role of immunosuppresors and failure of antiretrovirals.” Ther Adv Infect Dis 6: 2049936119868028.
Soker, S., S. Takashima, H. Q. Miao, G. Neufeld and M. Klagsbrun (1998). “Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor.” Cell 92(6): 735-745.
Uchiyama, T., J. Yodoi, K. Sagawa, K. Takatsuki and H. Uchino (1977). “Adult T-cell leukemia: clinical and hematologic features of 16 cases.” Blood 50(3): 481-492.
Dickler, H. B., et al. (1973). “Lymphocyte binding of aggregated IgG and surface Ig staining in chronic lymphocytic leukaemia.” Clin Exp Immunol 14(1): 97-106.
USPTO; Notice of Allowance dated May 18, 2020 in the U.S. Appl. No. 16/083,384.
USPTO; Final Office Action dated Jun. 2, 2020 in the U.S. Appl. No. 15/580,661.
USPTO; Non-Final Office Action dated Jun. 1, 2020 in the U.S. Appl. No. 16/530,908.
CN; 1st Office Action in the CN Application No. 20170017712.6 dated May 8, 2020.
EPO; Office Action in the EPO Application No. 16808223.8 dated May 11, 2020.
Nada et al., “Enhancing adoptive cancer immunotherapy with Vγ2Vδ2 T cells through pulse zoledronate stimulation”, Journal for Immunotherapy of Cancer, vol. 5, No. 1, (Feb. 21, 2017), pp. 1-23, (2017) DOI 10.1186/s40425-017-0209-6 *the whole document*.
Benyamine et al., “BTN3A molecules considerably improve Vγ9Vδ2T cells-based immunotherapy in acute myeloid leukemia,” Oncolmmunology, vol. 5, No. 10, 10 pages, (Oct. 2, 2016), E1146843 *the whole document*.
Harly et al., “Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset,” American Society of Hematology , vol. 120, No. 11, (Sep. 13, 2012), pp. 2269-2279, XP055081172, ISSN: 0006-4971, DOI: 10.1182/blood-2012-05-430470 *the whole document*.
Wang et al., “Intravenous Delivery of SiRNA Targeting CD47 Effectively Inhibits Melanoma Tumor Growth and Lung Metastasis”, Molecular Therapy, pp. 1919-1929, vol. 21, No. 10, Oct. 2013.
USPTO; Notice of Allowance dated Feb. 10, 2021 in the U.S. Appl. No. 16/943,800.
USPTO; Non-Final Office Action dated Feb. 19, 2021 in the U.S. Appl. No. 15/580,661.
USPTO; Final Office Action dated Feb. 26, 2021 in the U.S. Appl. No. 16/312,056.
USPTO; Corrected Notice of Allowance dated Mar. 3, 2021 in the U.S. Appl. No. 16/687,525.
USPTO; Non-Final Office Action dated Mar. 12, 2021 in the U.S. Appl. No. 16/563,738.
CN; 1st Office Action in the CN Application No. 202010396594.8 dated Jan. 15, 2021.
EP; Supplementary Search Report in the EP Application No. 18817253 dated Feb. 10, 2021.
JP; Office Action in the JP Application No. 2018-547354 dated Feb. 16, 2021.
JP; Office Action in the JP Application No. 2018-541270 dated Jan. 8, 2021.
USPTO; Notice of Allowance dated Jan. 26, 2021 in the U.S. Appl. No. 16/593,882.
Yang et al., “Construction of PARP-1 gene silencing cell lines by lentiviral-mediated RNA interference,” School of Public Health, Guangdong Medical College, Abstract (2006).
Zhaobing Ding et al., “Liver-Directed, AAV- and Lentivirus-Mediated Gene Therapy in the Phenylketonuria Mouse Model Pah-enu2”, Molecular Therapy, vol. 11, Supp. 1. (May 2005) XP055751452.
Ledley et al., “Retroviral-mediated gene transfer of human phenylalanine hydroxylase into NIH 3T3 and hepatoma cells”, Proceedings of the National Academy of Sciences, vol. 83, No. 2. (Jan. 1, 1986), pp. 409-413, XP002583115.
Ledley et al., “Molecular biology of phenylalanine hydroxylase and phenylketonurina”, Trends in Genetics, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 1. (Jan. 1, 1985), pp. 309-313, XP025943064.
USPTO; Notice of Allowance dated Jan. 13, 2021 in the U.S. Appl. No. 16/687,525.
EP; Supplementary Search Report in the EP Application No. 18781288.8 dated Dec. 8, 2020.
JP; Final Office Action in the JP Application No. 2018-536892 dated Nov. 16, 2020.
Quan Jun-Jie et al., “Parp3 interacts with FoxM1 to confer glioblastoma cell radio resistance”, Tumor Biology, Karger, Basel, CH, vol. 36, No. 11, Jun. 4, 2015 (Jun. 4, 2015), pp. 8617-8624, XP036217799, ISSN: 1010-4283, DOI: 10.1007/S13277-015-3554-4 [retrieved on Jun. 4, 2015] *whole document*.
Jakobsson J. and Lundberg C.: “Lentiviral 1, 2, 4-10 vectors for use in the central nervous system”, Molecular Therapy: The Journal of the American Society of Gene Therapy, Cell Press, US, vol. 13, No. 3, Mar. 1, 2006 (Mar. 1, 2006), pp. 484-493, XP005326761, ISSN: 1525-0016, DOI: 10.1016/ J.Ymthe.2005.11.012 *the whole document*.
Yun Jong Lee et al., “Poly (ADP-ribose) in 1-15 the pathogenesis of Parkinson's disease”, BMB Reports, vol. 47, No. 8, Aug. 31, 2014 (Aug. 31, 2014), pp. 424-432, XP55671927, KR, ISSN: 1976-6696, DOI: 10.5483/BMBRep.2014.47.8.119 *the whole document*.
Lang Yoo et al., “Parp-1 regulates the expression of caspase-11”, Biochemical and Biophysical Research Communications, vol. 408, No. 3, Apr. 22, 2011 (Apr. 22, 2011), pp. 489-493, XP028209824, ISSN: 0006-291X, DOI: 10.1016/ J. BBRC.2011.04.070 [retrieved on Apr. 22, 2011] *whole document*.
Tae-In Kam et al., “Poly (ADP-ribose) derived pathologic [alpha]-synuclein neurodegeneration in Parkinson's disease”, Science, vol. 362, No. 6414, Nov. 1, 2018 (Nov. 1, 2018), p. eaat8407, XP55672116, US, ISSN: 00368075, DOI: 10.1126/science. aat8407 *whole document*.
Olsen A.L. and Feany M.B., “PARP Inhibitors and Parkinson's Disease”, Jan. 1, 2019 (Jan. 1, 2019), XP55672111, retrieved from the Internet: URL: https://mfprac.com/web2019/07literature/literature/Neurology/ParkinsonPARPI_Olsen.pdf [retrieved on Feb. 27, 2020] *the whole document*.
Richard Lu et al., “Siman Virus 40-Based Replication of Catalytically Inactive Human Immunodeficiency Virus Type 1 Integrase Mutants in Nonpermissive T Cells and Monocyte-Derived Macrophages”, Journal of Virology, Jan. 2004, p. 658-668. DOI: 10.1128/JVI.78.2658-668.2004.
FM Sverdrup et al., “Development of human papillomavirus plasmids capable of episomal replication in human cell lines”, Gene Therapy, Mar. 26, 1999, p. 1317-1321, Retrieved from the Internet: URL: http://www.stockton-pressco.uk/gt.
Kathleen Van Craenenbroeck et al., “Episomal vectors for gene expression in mammalian cells”, Eur J. Biochem, vol. 267, p. 5665-5678, Jul. 14, 2000.
USPTO; Non-Final Office Action dated Mar. 16, 2020 in the U.S. Appl. No. 16/083,384.
EPO; Extended European Supplemental Search Report dated Mar. 11, 2020 in the Application No. 17831904.2.
JP; Japanese Office Action in the Application No. 2017-564550 dated Mar. 18, 2020.
USPTO; Restriction Requirement dated Jan. 29, 2020 in the U.S. Appl. No. 16/312,056.
EPO; Supplementary European Search Report dated Dec. 19, 2019 in the Application No. 16904834.5.
EPO; Supplementary European Search Report dated Dec. 19, 2019 in the Application No. 17810976.5.
Vargas, J. Jr. et al., “Conditionally replicating lentiviral-hybrid episomal vectors for suicide gene therapy,” Antiviral Res. Dec. 2008 vol. 80 No. 3, pp. 288-294.
Thompson et al., “Alkylamines cause Vγ9Vδ2 T-cell activation and proliferation by inhibiting the mevalonate pathway,” Blood, Jan. 15, 2006, vol. 107, pp. 651-654.
Gober et al., “Human T Cell Receptor γδ Cells Recognize Endogenous Mevalonate Metabolites in Tumor Cells,” J. of Experimental Med., Jan. 20, 2003, vol. 197, pp. 163-168.
Goepfert, et al., “Specificity and 6-Month Durability of Immune Responses Induced by DNA and Recombinant Modified Vaccinia Ankara Vaccines Expressing HIV-2 Virus-Like Particles,” J. Infectious Diseases, Jul. 1, 2014, vol. 210, pp. 99-110.
Human papillomavirus type 16 (HPV16), complete genome; GenBank: K02718.1; Publication [online], Mar. 18, 1994, https://www.ncbi.nlm.nih.gov/nucleotide/333031?report=genbank&log$=nucltop&blast_rank=22&RID=H3E1THFU014; pp. 1-4.
{Long control region} [human papillomavirus, type 16, Genomic, 860 nt]; Accession S60559. Publication [online]. May 7, 1993, https://www.ncbi.nlm.nih.gov/nucleotide/237343?report=genbank&log$=nucltop&blast_rank=1&RID=H3FCKA00014; p. 1.
Tebas, P. et al, “Antiviral effects of autologous CD4 T cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV,” Blood, 2013, vol. 121, No. 9, pp. 1524-1533.
Tebas, p. et al., “Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV,” The New England Journal of Medicine, vol. 370 (10), pp. 901-910, Mar. 6, 2014.
Li et al., “Reduced Expression of the Mevalonate Pathway Enzyme Farnesyl Pyrophosphate Synthase Unveils Recognition of Tumor Cells by Vy2Vδ2 T Cells,” J. of Immunology, 2009, vol. 182, pp. 8118-8124.
Wang et al., “Indirect Stimulation of Human Vy2Vδ2 T Cells through Alterations in Isoprenoid Metabolism,” J. of Immunology, vol. 187 pp. 5099-5113, (Nov. 15, 2011).
Stunkel et al., “The Chromatin Structure of the Long Control Region of Human Papillomavirus Type 16 Repress Viral Oncoprotein Expression,” Journal of Virology, vol. 73, No. 3, pp. 1918-1930 (Mar. 1999).
Lu et al., “Anti-sense-Mediated Inhibition of Human Immunodeficiency Virus (HIV) Replication by Use of an HIV Type 1-Based Vector Results in Severely Attenuated Mutants Incapable of Developing Resistance,” Journal of Virology, vol. 79, No. 13, pp. 7079-7088 (Jul. 2004).
Dieli et al., “Targeting Human yδ T Cells with Zoledronate and Interleukin-2 for Immunotherapy of Hormone-Refractory Prostate Cancer, ” Europe PMC Funders Group, Cancer Research, vol. 67(15), pp. 7450-1451, (Aug. 1, 2007).
GenBank Accession No. S60559 “(long control region) [human papillomavirus, type 16, Genomic, 860 nt]” May 7, 1993 [located online Nov. 21, 2017 at https://ncbi.nlm.nih.gov/nuccore/S60559] entire DNA sequence.
GenBank Accession No. JG619773, MNESC1NG-T3-001_L15_6FEB2009_054 MNESC1NG cell culture from Mahonia nervosa Berberis nervosa cDNA, mRNA sequence, Feb. 13, 2014 (online). [Retrieved on Dec. 5, 2017]. Retrieved from the internet:<URL: https://www.ncbi.nlm.nih.gov/nucest/JG619773 > entire document.
Moser et al., “yð T cells: novel initiators of adaptive immunity,” Immunological Reviews, vol. 215, pp. 89-102 (Feb. 2, 2007).
Capietto, A. H. et al., “Stimulated yδ T Cells Increase the in Vivo Efficacy of Trastuzumab in HER-2+ Breast Cancer,” J Immunology, vol. 187(2), pp. 1031-1038, (2011).
Chen, Z. and M. S. Freedman, “CD16+ yδ T Cells Mediate Antibody Dependent Cellular Cytotoxicity: Potential Mechanism in the Pathogenesis of Multiple Sclerosis,” Clin Immunology, vol. 128(2), pp. 219-227, (2008).
Couzi, L. et al., “Antibody-Dependent Anti-Cytomegalovirus Activity of Human yδ T Cells Expressing CD16 (FcyRIIIa),” Blood, vol. 119(6), pp. 1418-1427, (2012).
Fisher, J. P. et al., “Effective Combination Treatment of GD2-Expressing Neuroblastoma and Ewing's Sarcoma Using Anti-GD2 ch14.18/CHO Antibody with Vy9Vδ2+ yδT Cells,” OncoImmunology, vol. 5(1), pp. e1025194, (2016).
Gertner-Dardenne, J. et al., “Bromohydrin pyrophosphate enhances antibody-dependent cell-mediated cytotoxicity induced by therapeutic antibodies,” Blood 113(20): 4875-4884, (2009).
Poonia, B. and C. D. Pauza, “Gamma delta T cells from HIV+ donors can be expanded in vitro by zoledronate/interleukin-2 to become cytotoxic effectors for antibody-dependent cellular cytotoxicity,” Cytotherapy 14(2): 173-181, (2012).
Schiller, C. B. et al., “CD19-Specific Triplebody SPM-1 Engages NK and yδ T Cells for Rapid and Efficient Lysis of Malignant B-Lymphoid Cells,” Oncotarget, vol. 7(50), pp. 83392-83408, (2016).
Tokuyama, H. et al., “Vy9Vδ2 T Cell Cytotoxicity Against Tumor Cells is Enhanced by Monoclonal Antibody Drugs—Rituximab and Trastuzumab,” Int J Cancer, vol. 122(11), pp. 2526-2534, (2008).
Zufferey et al., “Self-Inactivating Lentivirus Vector for Safe and Efficient In Vivo Gene Delivery,” Journal of Virology, vol. 72(12), pp. 9873-9880, (1998).
Ostertag et al., “Brain Tumor Eradication and Prolonged Survival from Intratumoral Conversion of 5-Fluorocytosine to 5-fluorouracil Using a Nonlytic Retroviral Replicating Vector,” Neoro-Oncology 14(2), pp. 145-159, Feb. 2012.
Twitty et al., “Retroviral Replicating Vectors Deliver Cytosine Deaminase Leading to Targeted 5-Fluorouracil-Mediated Cytotoxicity in Multiple Human Cancer Types,” Human Gene Therapy Methods, 27(1), pp. 17-31, Feb. 1, 2016.
Charron et al., “Dominant-Negative Interference in the Pahenu2 Mouse Model of PKU: Effectiveness of Vectors Expressing Either Modified Forms of Phenylalanine Hydroxylase (PAH) or Ribozymes Plus a Hardened PAH mRNA,” Molecular Therapy, vol. 11, pp. S163-S164, (2005).
Fusetti, et al., “Structure of Tetrameric Human Phenylalanine Hydroxylase and Its Implications for Phenylketonuria,” J. Bio. Chem., vol. 273, No. 27, pp. 16962-16967 (1998).
Hafid et al., “Phenylketonuria: A Review of Current and Future Treatments,” Translational Pediatrics, vol. 4(4), pp. 304-317, (2015).
Blau et al., “Phenylketonuria,” The Lancet, vol. 376(9750), pp. 1417-1427, (2010).
Chandler et al., “Vector Design Influences Hepatic Genotoxicity After Adeno-Associated Virus Gene Therapy,” Journal of Clinical Investigation, vol. 125(2), pp. 870-880, (2015).
Christophersen et al., “A Technique of Transumbilical Portal Vein Catheterization in Adults,” The Archives of Surgery, vol. 95(6), pp. 960-963, (1967). (Abstract Only).
Bartholome, “Genetics and Biochemistry of the Phenylketonuria-Present State,” Human Genetics, vol. 51(3), pp. 241-245, (1979).
Donsante et al., “AAV Vector Integration Sites in Mouse Hepatocellular Carcinoma,” Science, vol. 317(5837, p. 477, (2007).
Eisensmith et al., “Multiple Origins for Phenylketonuria in Europe,” American Journal of Human Genetics, vol. 51(6), pp. 1355-1365, (1992).
Fisher et al., “The Inhibition of Phenylalanine and Tyrosine Hydroxylases by High Oxygen Levels,” Journal of Neurochemistry, vol. 19(5), pp. 1359-1365, (1972). (Abstract Only).
Grisch-Chan et al., “Low-Dose Gene Therapy for Murine PKU Using Episomal Naked DNA Vectors Expressing PAH from Its Endogenous Liver Promoter,” Molecular Therapy Nucleic Acids, vol. 7, pp. 339-349, (2017).
Guldberg et al., “Aberrant Phenylalanine Metabolism in Phenylketonuria Heterozygotes,” Journal of Inherited Metabolic Disease, vol. 21(4), pp. 365-372, (1998).
Kaufman et al., “A Model of Human Phenylalanine Metabolism in Normal Subjects and in Phenylketonuric Patients,” Proceedings of the National Academy of Sciences USA, vol. 96(6), pp. 3160-3164, (1999).
Kaufman et al., “Phenylalanine Hydroxylase Activity in Liver Biopsies from Hyperphenylalaninemia Heterozygotes: Deviation from Proportionality with Gene Dosage,” Pediatric Research, vol. 9(8), pp. 632-634, (1975).
Longo et al., “Single-Dose, Subcutaneous Recombinant Phenylalanine Ammonia Lyase Conjugated with Polyethylene Glycol in Adult Patients with Phenylketonuria: An Open-Label, Multicentre, Phase 1 Dose-Escalation Trial,” The Lancet, vol. 384(9937), pp. 37-44, (2014).
Mochizuki et al., “Long-Term Correction of Hyperphenylalaninemia by AAV-Mediated Gene Transfer Leads to Behavioral Recovery in Phenylketonuria Mice,” Gene Therapy, vol. 11(13), pp. 1081-1086, (2004).
Nault et al., “Adeno-Associated Virus Type 2 as an Oncogenic Virus in Human Hepatocellular Carcinoma,” Molecular & Cellular Oncology, vol. 3(2), p. e1095271, (2016).
Oh et al., “Reversal of Gene Expression Profile in the Phenylketonuria Mouse Model After Adeno-Associated Virus Vector-Mediated Gene Therapy,” Molecular Genetics and Metabolism, vol. 86(Supp. 1), pp. S124-S132, (2005).
Oh et al., “Long-Term Enzymatic and Phenotypic Correction in the Phenylketonuria Mouse Model by Adeno-Associated Virus Vector-Mediated Gene Transfer,” Pediatric Research, vol. 56(2), pp. 278-284, (2004).
Pan et al., “Biodistribution and Toxicity Studies of VSVG-Pseudotyped Lentiviral Vector After Intravenous Administration in Mice with the Observation of in Vivo Transduction of Bone Marrow,” Molecular Therapy, vol. 6(1), pp. 19-29, (2002).
Shedlovsky et al., “Mouse Models of Human Phenylketonuria,” Genetics, vol. 134(4), pp. 1205-1210, (1993).
Yagi et al., “Complete Restoration of Phenylalanine Oxidation in Phenylketonuria Mouse by a Self-Complementary Adeno-Associated Virus Vector,” Journal of Gene Medicine, vol. 13(2), pp. 114-122, (2011).
Yano et al., “Evaluation of Tetrahydrobiopterin Therapy with Large Neutral Amino Acid Supplementation in Phenylketonuria: Effects on Potential Peripheral Biomarkers, Melatonin and Dopamine, for Brain Monoamine Neurotransmitters,” PLOS One, vol. 11(8), p. e0160892, (2016).
Mason et al., “Inactivated Simian Immunodeficiency Virus-Pulsed Autologous Fresh Blood Cells as an Immunotherapy Strategy,” Journal of Virology, vol. 83(3), pp. 1501-1510, (2009).
Blick et al., “Cyclophosphamide Enhances SB-728-T Engraftment to Levels Associated with HIV-RNA Control,” CROI Conference on Retroviruses and Opportunistic Infections, Boston, Massachusetts, p. 141, (2014), (Abstract Only).
De Rose et al., “Safety, Immunogenicity and Efficacy of Peptide-Pulsed Cellular Immunotherapy in Macaques,” Journal of Medical Primatology, vol. 27(2), pp. 69-78, (2008).
Smith et al., “Developments in HIV-1 Immunotherapy and therapeutic Vaccination,” F1000Prime Reports, vol. 6, p. 42, (2014).
Charron, “Gene Therapy for Phenylketonuria: Dominant-Negative Interference in a Recessive Disease,” Dissertation, University of Florida 2005, http://etd.fcla.edu/UF/UFE0011392/charron_c.pdf>, (retrieved Jul. 26, 2018) (2005).
Ding et al., “Administration-Route and Gender-Independent Longterm Therapeutic Correction of Phenylketonuria (PKU) in a Mouse Model by Recombinant Adeno-Associated Virus 8 Pseudotyped Vector-Mediated Gene Transfer,” Gene Therapy, vol. 13, pp. 583-587, (Dec. 1, 2005).
Nowacki et al., “The PAH Mutation Analysis Consortium Database: Update 1996,” Nucleic Acid Research, vol. 25(1), pp. 139-142, (Jan. 1, 1997).
Condiotti et al., “Prolonged Liver-Specific Transgene Expression by a Non-Primate Lentiviral Vector,” Biochemical and Biophysical Research Communications, vol. 320(3), pp. 998-1006, (Jul. 30, 2004).
Wang et al., “Butyrophilin 3A1 Plays an Essential Role in Prenyl Pyrophosphate Stimulation of Human Vg2Vd2 T Cells,” Journal of Immunology, vol. 191(3), pp. 1029-1042, (Jul. 5, 2013).
Jiang et al., “A Novel EST-Derived RNAi Screen Reveals a Critical Role for Farnesyl Diphosphate Synthase in Beta2-Adrenergic Receptor Internalization and Down-Regulation,” FASEB Journal, vol. 26(5), pp. 1-13, (Jan. 25, 2012).
Miettinen et al., “Mevalonate Pathway Regulates Cell Size Homeostasis and Proteostasis Through Autophagy,” Cell Reports, vol. 13(11), pp. 2610-2620, (Dec. 2015).
Tolmachov, “Designing Lentiviral Gene Vectors,” Viral Gene Therapy, Chapter 13, pp. 263-284, (2011).
Tracey, “Human DNA Sequence from Clone RP1-288M22 on Chromosome 6q 12-13,” Complete Sequence, National Center for Biotechnology. GenBank Entry. Retrieved from the internet: <https://www.ncbi.nlm.nih.gov/nucleotide/AL035467.23?report=genbank&log$=nucltop&blast_rank=1&RID=UUD4GX2D014>; pp. 1-34, (Jan. 24, 2013).
Gorziglia et al., “Elimination of Both E1 and E2A from Adenovirus Vectors Further Improves Prospects for In Vivo Human gene Therapy,” Journal of Virology, vol. 70(6), pp. 4173-4178, (1996).
Vargas et al., “Novel Integrase-Defective Lentiviral Episomal Vectors for Gene Transfer,” Human Gene Therapy, vol. 15(4), pp. 361-372, (Apr. 2004).
Wendelburg et al., “An Enhanced EBNA1 Variant with reduced IR3 Domain for Long-Term Episomal Maintenance and Transgene Expression of ORIP-Based Plasmids in Human Cells,” Gene Therapy, vol. 5, pp. 1389-1399, (Oct. 1998).
Westerhout et al., “A Conditionally Replicating HIV-Based Vector that Stably Expresses an Antiviral shRNA Against HIV-1 Replication,” Molecular Therapy: The Journal of the American Society of Gene Therapy, vol. 14(2), pp. 268-275, (May 2006).
Lam et al., “T-Cell Therapies for HIV,” Immunotherapy, Future Medicine, vol. 5(4), pp. 407-414, (Apr. 2013).
Munoz et al., “Ex Vivo Expansion and Lentiviral Transduction of Macaca Nemestrina CD4+ T Cells,” Journal of Medical Primatology, vol. 38(6), pp. 438-443, (Dec. 2009).
Porichis et al., “HIV-Specific CD4 T Cells and Immune Control of Viral Replication,” Current Opinion in HIV and Aids, vol. 6(3), pp. 174-180, (May 2011).
Kavanagh et al., “Expansion of HIV-Specific CD4+ and CD8+ T Cells by Dendritic Cells Transfected with mRNA Encoding Cytoplasm- or Lysosome-Targeted Nef,” Blood, American Society of Hematology, vol. 107(5), pp. 1963-1969, (Mar. 2006).
Akinsheye et al., “Fetal Hemoglobin in Sickle Cell Anemia,” Blood, vol. 118(1), pp. 19-27, (2011).
Lin et al., “Up-Regulation of Bcl-2 is Required for the Progression of Prostate Cancer Cells from an Androgen-Dependent to an Androgen-Independent Growth Stage,” Cell Research, vol. 17, pp. 531-536, (2007).
GenBank Sequence M65141.1 Retrieved from the Internet <URL: https://www.ncbi.ntm.nih.gov/nuccore/M65141.1. Especially Sequence, nt 301-420, (Retrieved Mar. 31, 2019).
Hee Yeon Kim., “Farnesyl diphosphate synthase is important for the maintenance of glioblastoma stemness,” Experimental & Molecular Medicine, (2018).
Hong Wang., “Indirect Stimulation of Human V2V2 Cells Through Alterations in Isoprenoid Metabolism,” The Journal of Immunology, (2011).
Z. Li, “Inhibition of farnesyl pyrophosphate synthase prevents angiotensin II-induced cardiac fibrosis in vitro,” Clinical & Experimental Immunology, (2014).
Xiaofeng Jiang, “A novel EST-derived RNAi screen reveals a critical role for farnesyl diphosphate in B2-adrenerigic receptor internalization and down-regulation,” The FASEB Journal, vol. 26, pp. 1-13(1995).
Jian Yang, “Lentiviral-Mediated Silencing of Farnesyl Pyrophosphate Synthase through RNA Interference in Mice,” Biomed Research International, vol. 2015, Article ID 914026, 6 pages, (2015).
Yang Ye, “Knockdown of farnesyl pyrophosphate synthase prevents angiotensin II-medicated cardiac hypertrophy,” The International Journal of Biochemistry & Cell Biology, vol. 42, pp. 2056-2064, (2010).
Jianqiang Li, “Reduced Expression of Mevalonate Pathway Enzyme Farnesyl Pyrophosphate Synthase Unveils Recognition of Tumor Cells by V9V2 Cells,” The Journal of Immunology, pp. 8118-8124, (2019).
Daryl S. Schiller, “Parameters Influencing Measurement of the Gag Antigen-Specific T-Proliferative Response to HIV Type 1 Infection,” AIDS Research and Human Retroviruses, vol. 16, No. 3, pp. 259-271, (2000).
PCT: International Search Report dated Nov. 7, 2016 in Application No. PCT/US2016/036519.
PCT: Written Opinion dated Nov. 7, 2016 in Application No. PCT/US2016/036519.
PCT: International Search Report dated Oct. 19, 2016 in Application No. PCT/US2016/041456.
PCT: Written Opinion dated Oct. 19, 2016 in Application No. PCT/US2016/041456.
PCT: International Search Report dated Jul. 20, 2017 in Application No. PCT/US2017/043157.
PCT: Written Opinion dated Jul. 20, 2017 in application No. PCT/US2017/043157.
PCT: International Search Report dated Jun. 9, 2017 in Application No. PCT/US2016/066185.
PCT: Written Opinion dated Jun. 9, 2017 in Application No. PCT/ US2016/066185.
PCT: International Search Report dated Jul. 17, 2017 in Application No. PCT/US2017/013019.
PCT: Written Opinion dated Jul. 17, 2017 in Application No. PCT/US2017/013019.
PCT: International Search Report dated May 26, 2017 in Application No. PCT/US2017/013399.
PCT: Written Opinion dated May 26, 2017 in Application No. PCT/US2017/013399.
PCT: International Search report dated Aug. 25, 2017 in Application No. PCT/US2017/021639.
PCT: Written Opinion dated Aug. 25, 2017 Application No. PCT/US2017/021639.
PCT: International Search Report dated Nov. 8, 2017 Application No. PCT/US2017/041168.
PCT: Written Opinion dated Nov. 8, 2017 in Application No. PCT/US2017/041168.
PCT: International Search Report dated Dec. 15, 2017 in Application No. PCT/US2017/36433.
PCT: Written Opinion dated Dec. 15, 2017 in Application No. PCT/US2017/36433.
PCT: International Search Report dated Jul. 14, 2017 in Application No. PCT/US2017/013024.
PCT: Written Opinion dated Jul. 14, 2017 in application No. PCT/US2017/013024.
PCT: International Search Report dated May 29, 2018 in Application No. PCT/US2018/012998.
PCT: Written Opinion dated May 29, 2018 in Application No. PCT/US2018/012998.
PCT; International Search Report dated Sep. 24, 2018 in Application No. PCT/US2018/025733.
PCT; Written Opinion dated Sep. 24, 2018 in Application No. PCT/US2018/025733.
PCT; International Search Report dated Nov. 9, 2018 in Application No. PCT/US2018/037924.
PCT; Written Opinion dated Nov. 9, 2018 in Application No. PCT/US2018/037924.
PCT; Invitation to Pay Additional Fees in Application No. PCT/US2018/053919 dated Feb. 22, 2019.
PCT; Written Opinion dated Apr. 12, 2019 in Application No. PCT/US2018/053919.
PCT; International Search Report dated Apr. 12, 2019 in Application No. PCT/ US2018/053919.
PCT; International Search Report dated Jul. 22, 2019 in the Application No. PCT/US2019/24410.
PCT; Written Opinion of the International Search Report dated Jul. 22, 2019 in the Application No. PCT/US2019/24410.
PCT; International Preliminary Report on Patentability dated Jul. 9, 2019 in the Application No. PCT/US2018/012998.
USPTO; Notice of Allowance dated Oct. 13, 2017 in U.S. Appl. No. 14/706,481.
USPTO; Requirement for Restriction dated Oct. 23, 2017 in U.S. Appl. No. 15/668,223.
USPTO; Notice of Allowance dated Nov. 2, 2017 in U.S. Appl. No. 15/652,080.
USPTO; Non-Final Office Action dated Feb. 22, 2018 in U.S. Appl. No. 15/850,937.
USPTO; Non-Final Office Action dated Feb. 22, 2018 in U.S. Appl. No. 15/849,062.
USPTO; Non-Final Office Action dated Feb. 22, 2018 in U.S. Appl. No. 13/333,882.
USPTO; Notice of Allowance dated Mar. 26, 2018 in U.S. Appl. No. 15/668,223.
USPTO; Notice of Allowance dated Apr. 23, 2018 in U.S. Appl. No. 15/850,937.
USPTO; Notice Allowance dated Apr. 26, 2018 in U.S. Appl. No. 15/849,062.
USPTO; Non-Final Office Action dated Jun. 15, 2018 in U.S. Appl. No. 15/904,131.
USPTO; Requirement for Restriction dated Jul. 12, 2018 in U.S. Appl. No. 15/736,284.
USPTO; Invitation to Pay Additional Fees and, Where Applicable, Protest Fee dated Jul. 17, 2018 in Application No. PCT/US2018/25733.
USPTO; Requirement for Restriction dated Aug. 3, 2018 in U.S. Appl. No. 16/011,550.
USPTO; Notice of Allowance dated Aug. 10, 2018 in U.S. Appl. No. 15/904,131.
USPTO; Final Office Action dated Aug. 27, 2018 in U.S. Appl. No. 13/333,882.
USPTO; Non-Final Office Action dated Sep. 19, 2018 in U.S. Appl. No. 16/011,550.
USPTO; Invitation to Pay Additional Fees and, Where Applicable, Protest Fee dated Sep. 11, 2018 in Application No. PCT/US2018/37924.
USPTO; Non-Final Office Action dated Oct. 19, 2018 in U.S. Appl. No. 15/736,284.
USPTO; Notice of Allowance dated Oct. 31, 2018 in U.S. Appl. No. 16/011,550.
USPTO; Advisory Action dated Nov. 16, 2018 in U.S. Appl. No. 13/333,882.
USPTO; Non-Final Office Action dated Dec. 31, 2018 in U.S. Appl. No. 16/182,443.
USPTO; Non-Final Office Action dated Apr. 18, 2019 in U.S. Appl. No. 13/333,882.
USPTO; Final Office Action dated May 2, 2019 in U.S. Appl. No. 15/736,284.
USPTO; Final Office Action dated May 2, 2019 in U.S. Appl. No. 16/182,443.
USPTO; Non-Final Office Action dated May 7, 2019 in U.S. Appl. No. 16/008,991.
USPTO; Non-Final Office Action dated May 16, 2019 in U.S. Appl. No. 16/132,247.
USPTO; Non-Final Office Action dated May 24, 2019 in U.S. Appl. No. 16/218,010.
USPTO; Notice of Allowance dated Jun. 18, 2019 in the U.S. Appl. No. 16/182,443.
USPTO; Notice of Allowance dated Jul. 3, 2019 in U.S. Appl. No. 16/182,443.
USPTO; Restriction Requirement dated Jul. 12, 2019 in the U.S. Appl. No. 15/736,284.
USPTO; Advisory Action dated Jul. 23, 2019 in the U.S. Appl. No. 15/736,284.
USPTO; Notice of Allowance dated Aug. 14, 2019 in the U.S. Appl. No. 16/008,991.
USPTO; Notice of Allowance dated Sep. 25, 2019 in the U.S. Appl. No. 16/218,010.
USPTO; Final Office Action dated Jul. 1, 2019 in the U.S. Appl. No. 16/132,247.
USPTO; Notice of Allowance dated Jul. 19, 2019 in the U.S. Appl. No. 16/132,247.
EPO; Extended Search Report dated Dec. 12, 2018 in EP Application No. 16808223.8.
EPO; Extended Search Report dated Dec. 11, 2018 in EP Application No. 16822021.8.
EPO; Extended Search Report dated Jun. 6, 2019 in EP Application No. 17739028.3.
EPO; European Search Report dated Aug. 12, 2019 in the EP Application No. 17764128.9.
EPO; Supplementary European Search Report dated Sep. 6, 2019 in the Application No. 17750547.6.
Bergvall et al. “The E1 proteins”, Virology 445; p. 35-56, (Year:2013).
McBride, A., “The Papillomavirus E2 proteins”, Virology 445: p. 57-79, (Year: 2013).
Chiang C-m et al., “Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins.” PNAS 89: p. 5799-5803, (Year: 1992).
Krajinovic et al., “Sequencing data on the long control region of human papillomavirus type 16.” Journal of General Virology 72:2573-2576, (Year: 1991).
Seedorg et al., “Human Papillomavirus type 16 DNA sequence.” Virology 145: p. 181-185, (Year: 1985).
Jaalouk, et al. “A Self-inactivating retrovector incorporating the IL-2 promoter for activation-induced transgene expression engineered t-cells,” Virology Journal: p. 1-12, (Year: 2006).
USPTO; Non-Final Office Action dated Sep. 22, 2020 in the U.S. Appl. No. 16/308,373.
Cronin et al., “Altering the Tropism of Lentiviral Vectors through Pseudotyping”, Curr Gene Ther, Aug. 2005, vol. 5(4), pp. 687-398.
Cannon et al., “Pseudotype-Dependent Lentiviral Transduction of Astrocytes or Neurons in the Rat Substantia Nigra”, Experimental Neurology, vol. 228, (Year: 2011), pp. 41-52, doi:10.1016/J.expneurol.2010.10.016.
USPTO; Non-Final Office Action dated Nov. 18, 2020 in the U.S. Appl. No. 16/318,345.
USPTO; Restriction Requirement dated Nov. 19, 2020 in the U.S. Appl. No. 16/593,882.
USPTO; Non-Final Office Action dated Nov. 25, 2020 in the U.S. Appl. No. 16/943,800.
USPTO; Notice of Allowance dated Dec. 2, 2020 in the U.S. Appl. No. 16/076,655.
USPTO; Restriction Requirement dated Dec. 8, 2020 in the U.S. Appl. No. 16/563,738.
Lee et al., “Lentiviral delivery of short hairpin RNAs protects CD4 cells from multiple clades and primary isolates of HIV.” Blood, 2005, vol. 106(3):818-826. (Year: 2005).
Choi et al., “Multiplexing Seven miRNA-Based shRNAs to Suppress HIV Replication.” Molecular Therapy, 2015, vol. 23(2):310-320. Supplementary materials.
Spartevello et al., Development of Lentiviral Vectors Simultaneously Expressing Multiple siRNAs Against CCR5, vif and tat/rev Genes for an HIV-1 Gene Therapy Approach, Molecular Therapy—Nucleic Acids, 2016, vol. 5:1-12.
USPTO; Restriction Requirement dated Jun. 15, 2020 in the U.S. Appl. No. 16/308,373.
USPTO; Restriction Requirement dated Jun. 26, 2020 in the U.S. Appl. No. 16/318,345.
USPTO; Office Action dated Jul. 6, 2020 in the U.S. Appl. No. 16/312,056.
JP; Japanese Office Action in the Application No. 2019-500475 dated Jun. 12, 2020.
USPTO; Non-Final Office Action dated Oct. 29, 2020 in the U.S. Appl. No. 15/736,284.
JP; Japanese Office Action in the JP Application No. 2018-563892 dated Oct. 14, 2020.
PCT; International Search Report and Written Opinion in the PCT Application No. PCT/US2019/059828 dated Feb. 14, 2020.
PCT International Search Report and Written Opinion in International Application No. PCT/US2020/035584, dated Sep. 4, 2020, 10 pages.
USPTO; Notice of Allowance dated Jul. 10, 2020 in the U.S. Appl. No. 16/530,908.
USPTO; Final Office Action dated Jul. 27, 2020 in the U.S. Appl. No. 16/076,655.
JP; Japanese Office Action in the Application No. 2018-536892 dated Jun. 26, 2020.
Harding et al., “Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-medicated gene therapy in murine phenylketonuria”, Gene Ther., Mar. 2006, 13(5):457-462.
JP Office Action in Japanese Application No. 2020-518812, dated Aug. 25, 2022, 13 pages (with English translation).
U.S. Restriction Requirement in U.S. Appl. No. 16/652,867, dated Sep. 9, 2022, 9 pages.
Hassan et al., “Isolation of umbilical cord mesenchymal stem cells using human blood derivative accompanied with explant method,” Stem Cell Investigation, pp. 1-8, (2019).
Huang et al., “An Efficient protocol to generate placental chorionic plate-derived mesenchymal stem cells with superior proliferative and immunomodulatory properties,” Stem Cell Research & Therapy, pp. 1-15, (2019).
USPTO; Restriction Requirement dated Oct. 22, 2019 in the U.S. Appl. No. 15/580,661.
USPTO; Restriction Requirement dated Nov. 4, 2019 in the U.S. Appl. No. 16/076,655.
USPTO; Notice of Allowance dated Oct. 29, 2019 in the U.S. Appl. No. 13/333,882.
USPTO; Restriction Requirement dated Nov. 7, 2019 in the U.S. Appl. No. 16/083,384.
Wang et al., “HIV Vaccine Research: The Challenge and the Way Forward,” Journal of Immunology Research, vol. 2015, Article ID 503978, 5 pages.
Bourguigon et al., “Processing of blood samples influences PBMC viability and outcome of cell-mediated immune responses in antiretroviral therapy-naïve HIV-1-infected patients,” Journal of Immunological Methods, vol. 414, p. 1-10 (2014).
Briz et al., “Validation of Generation 4 Phosphorus-Containing Polycationic Dendrimer for Gene Delivery Against HIV-1,” Current Medical Chemistry, vol. 19, p. 5044-5051, (2012).
Anderson et al., “Preintegration HIV-1 Inhibition by a Combination Lentiviral Vector Containing a Chimeric TRIM5a Protein, a CCR5 shRNA, and TAR Decoy,” Molecular Therapy, vol. 17, No. 12, p. 2103-2114, Dec. 2009.
JP; Japanese Office Action in the Application No. 2017-567175 dated Jun. 15, 2020.
EPO; Extended European Search Report in the Application No. 18736295.9 dated Aug. 20, 2020.
Pallikkuth et al., “Human Immunodeficiency Virus (HIV) gag Anti-Specific T-Helper and Granule-Dependent CD8 T-Cell Activities in Exposed but Uninfected Heterosexual Partners of HIV Type 1-Infected Individuals in North India,” Clinical and Vaccine Immunology, vol. 14(9) pp. 1196-1202, (2007).
USPTO; Non-Final Office Action dated Feb. 21, 2020 in the U.S. Appl. No. 16/076,655.
EPO; Extended European Supplementary Search Report dated Feb. 6, 2020 in the Application No. 17825011.4.
EPO; Extended European Supplementary Search Report dated Feb. 6, 2020 in the Application No. 17824652.6.
CN Office Action in Chinese Application No. 201880077904, dated Feb. 19, 2023, 17 pages (with English translation).
Homo sapiens phenylalanine hydroxylase (PAH) mRNA, complete cds, GenBank: U49897.1, Publication [online], Oct. 2, 1997, https://www.ncbi.nlm.nih.gov/nuccore/2462721, 2 pages.
Bancroft et al., “Characterization of the Alu-rich 5′-flanking region of the human prothrombin-encoding gene: identification of a positive cis-acting element that regulates liver-specific expression”, Geen, Apr. 1990, 95:253-260.
Chow et al., “Characterization o a Novel Liver-specific Enhancer in the Human Prothrombin Gene”, The Journal of Biological Chemistry, Oct. 1991, 266(28):18927-18933.
JP Office Action in Japanese Application No. 2020-518812, dated Feb. 21, 2023, 9 pages (with English translation).
KR Office Action in Korean Application No. 10-2019-7032224, dated Feb. 1, 2023, 14 pages (with English translation).
U.S. Non-Final Office Action in U.S. Appl. No. 16/652,867, dated Feb. 10, 2023, 45 pages.
EP; Supplementary Search Report in the EP Application No. 20814445.1 dated May 9, 2023.
JP Office Action in Japanese Application No. 2019-554397, dated Nov. 21, 2022, 8 pages (with English translation).
CN Office Action dated Sep. 16, 2023 issued in Application No. 201880077904.0.
U.S. Office Action dated Sep. 26, 2023 issued in U.S. Appl. No. 16/652,867.
Related Publications (1)
Number Date Country
20200087682 A1 Mar 2020 US
Provisional Applications (2)
Number Date Country
62491118 Apr 2017 US
62480962 Apr 2017 US