COMPOSITIONS AND METHODS FOR TREATMENT OF BODY WEIGHT CONDITIONS

Information

  • Patent Application
  • 20120052132
  • Publication Number
    20120052132
  • Date Filed
    November 07, 2011
    13 years ago
  • Date Published
    March 01, 2012
    12 years ago
Abstract
A nutritional supplement composition having therapeutically effective amounts of milk minerals including calcium, a protein source including kappa-casein fragment 106-169, and enzyme-inhibiting peptides is provided for the treatment of body weight conditions. The nutritional supplement composition is administered in amounts effective for limiting weight gain and/or enhancing weight loss, as well as promoting overall good health, in the treatment of body weight conditions, including overweight and obesity.
Description
BACKGROUND OF THE INVENTION

The present invention is directed to compositions and methods for treatment of body weight conditions by administering a therapeutically effective nutritional supplement composition. More particularly, the nutritional composition, which includes a milk mineral blend and protein components, is effective for enhancing weight loss and/or limiting weight gain.


Obesity is a significant worldwide health concern that affects both young and old. In the United States, it is estimated that more than 50% of men and women are overweight. The degree to which a person may be overweight can be evaluated based on the person's “body mass index” or “BMI”, which is calculated as follows:






BMI=Weight in kilograms (kg)/[Height in meters (m)]2.


In 2000, almost 20% of the population fell into the obese category as defined by a BMI of greater than or equal to 30. Problems associated with obesity include cardiovascular disease, diabetes mellitus, certain types of cancer, osteoarthritis and sleeping disorders. Obesity and related disorders account for almost 10% of US health care expenditures.


Over 90% of body energy is stored in adipose (fat) tissue. Adipose tissue has a number of important functions, the most obvious of which is to “buffer” the daily influx of dietary fat entering the blood circulation and release fatty acids as a source of metabolic fuel when needed. Other functions include the production and release of adipsin (essential for blood clotting), angiotensinogen (involved in blood pressure control), and leptin (a hormone involved in energy control). An accumulation of adipose tissue leads to overweight and obesity.


Diet is known to have effects on weight control. Excesses in diet, such as high caloric intake and consumption of high fat foods, can result in undesired weight gain and poor health. Similarly, a diet lacking one or more nutrients also can have a negative impact on weight control and health. For example, literature suggests that that a diet deficient in calcium can contribute to the occurrence obesity. Shi et al., “Effects of dietary calcium on adipocyte lipid metabolism and body weight regulation in energy-restricted aP2-agouti transgenic mice” FASEB J. 15(2), 291-93 (2001); Zemel et al., “Regulation of adiposity by dietary calcium,” FASB J. 14(9) 1132-38 (2000).


Mechanisms in the human body also are known to impact weight gain. For example, when food is consumed, the body releases a peptide, cholecystokinin (CCK), which acts to signal satiety as a result of promoting secretion of enzymes and other bodily fluids and other physical reaction within the gastric system. It has been shown that CCK release results in appetite reduction so that the person will stop eating. Proteins such as kappa-casein fragment 106-169, also referred to as glycomacropeptide (GMP), are known to stimulate the release of CCK.


Various weight control compositions and methods for use by overweight and obese adults are known. Typically, however, the methods focus on a particular weight control mechanism in order to control weight gain or promote weight loss, with little or no regard for providing a balanced diet. For example, U.S. Pat. No. 6,384,087 to Zemel discloses methods and materials for treating or avoiding obesity in humans and other animals. The patent discloses that the obesity-control benefits can be achieved by providing a diet high in calcium. Additionally, the patent teaches that individuals are maintained on a restricted caloric diet. The weight control mechanism of this patent is directed to providing increased levels of one specific nutrient, calcium, while optionally limiting caloric intake, without promoting a balanced diet. As another example, U.S. Pat. No. 6,207,638 to Portman discloses a nutritional intervention composition for enhancing and extending satiety by stimulating the release of CCK. The composition includes a protein, a glycomacropeptide, long chain fatty acids, calcium (in the form of calcium carbonate or calcium lactate) and a combination of soluble and insoluble fibers. The patent teaches that the composition can be taken orally to permit a person to be satiated with a lower calorie intake. The weight management mechanism of this composition is directed to limiting caloric intake, without addressing overall nutritional requirements.


There remains a need for methods of improving human diets in order to maintain an ideal weight, reduce weight gain and/or enhance weight loss while promoting a nutritionally balanced diet. There also remains a need for dietary compositions to provide essential nutrients associated with a healthy diet to reduce incidence of overweight and obesity and maintain overall health.


SUMMARY OF THE INVENTION

The present invention is directed to compositions for the management of body weight and treatment of body weight conditions, such as overweight or obesity. According to one aspect of the invention, a weight control composition is provided that includes one or more of a milk mineral blend in an amount effective for decreasing adiposity, a protein compound in an amount effective for enhancing satiety after consumption of food, and enzyme-inhibiting peptides in an amount effective for controlling fat metabolism. The milk mineral blend includes calcium, and the protein compound includes kappa-casein fragment 106-169. According to another aspect of the invention, a nutritional supplement for maintaining and/or reducing weight is provided. The supplement can include a milk mineral composition having calcium in an amount effective for decreasing adiposity. The supplement also can include a protein composition having kappa-casein fragment 106-169 in an amount effective for enhancing satiety to limit or curtail consumption of food. The supplement also can include enzyme-inhibiting peptides, such as angiotensin converting enzyme-inhibiting peptides, in an amount effective for enhancing weight loss in treating an overweight condition or obesity.


According to yet another aspect of the invention, methods of maintaining a desired weight and treating an overweight condition or obesity include administering to an individual in need of such treatment a nutritional composition limiting weight gain and/or enhancing weight loss, as well as promoting overall good health. The composition can include therapeutically effective amounts of a milk mineral component, a protein component and/or an enzyme-inhibiting peptide component. The composition can be taken directly by an individual or administered via a food product fortified with the composition. The amount of nutritional supplement composition when administered via a food product can be suitably selected, for example, such that a daily serving or a predetermined number of servings of the food product delivers an amount of the composition effective for maintaining a desired weight or treating an overweight condition or obesity. The composition can be administered just prior to or after consumption of food, as part of a meal or as a snack between meals.


The nutritional supplement composition, generally in the form of a powder of appropriate particle size, can be incorporated into a wide variety of types of food products. By way of example, the nutritional composition can be added to acidic juice beverages (e.g., orange juice, apple juice, grape juice, grapefruit juice, cranberry juice, or blended juices), acidic beverages (e.g., sport beverages, Gatorade®, neutral pH beverages (e.g., milk UHT dairy, RTD nutritional, soy milk, or shakes and other blended beverages such as milkshakes, smoothies, frappes), nutritional supplement foodstuffs (e.g., high-energy protein bars), confectionery products (e.g., high calcium chews, chewing gum, chocolate, or cookies), dairy products (e.g., yogurt, ice cream, milk, cheese, processed cheese, or butter), and farinaceous products (e.g., bread, muffins, biscuits, cereal or rolls). Alternatively, the nutritional supplement composition can be administered directly, such as in the form of tablets or capsules and optionally combined with other minerals and/or vitamins.







DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to compositions and methods for maintaining a predetermined body weight range and treating an overweight condition or obesity by enhancing weight loss and/or limiting weight gain and promoting good health. Overweight and obesity has been associated to some degree with inadequate intake of dairy products, and more particularly the minerals present in dairy products. It has been discovered that an overweight condition and obesity can be effectively treated by administering nutritional supplement compositions, either directly or via food products fortified with the compositions, in accordance with the practice of the present invention. The nutritional supplement compositions contain therapeutically effective amounts of milk mineral, protein and enzyme-inhibiting peptides and are administered prior to or during a meal. The nutritional supplement compositions also can be administered to an individual seeking to maintain a desired body weight.


Treatment can be enhanced by use of additional ingredients in the composition to address other mechanisms for weight control. The compositions can include kappa-casein fragment 106-169 (or a source of such peptides) to limit caloric intake by providing a sense of satiety, which will lead to termination of eating. Additionally, enzyme-inhibiting peptides may be included to assist with regulation of adiposity by controlling fat metabolism.


The terms “treat,” “treating,” “treatment,” and similar terms as used herein refer to the administration of the nutritional supplement compositions to individuals, particularly humans, who are overweight or obese, for alleviating, suppressing, inhibiting, or otherwise reducing the extent to which the individual is overweight or obese or any symptom associated therewith. The terms “treat,” “treating,” “treatment,” and similar terms also are used herein to refer to the prophylactic administration of the nutritional supplement compositions to individuals who may be at risk of, or otherwise wish to avoid, becoming overweight or obese.


One component of the nutritional supplement composition is milk minerals. The term “milk mineral,” as used herein, refers to a mineral complex obtained from whey or milk. The mineral complex contains a balanced form of calcium, copper, magnesium, phosphorus, potassium, selenium and zinc. Milk mineral has a relatively neutral taste, in contrast to the chalky taste of calcium carbonate. Whey fractions that are high in calcium have been demonstrated to exhibit higher calcium bioavailability than are exhibited by calcium carbonate and calcium lactate. Ranhotra et al., “Bioavailability of Calcium in a High Calcium Whey Fraction,” Nutrition Research, Vol. 17 Nos. 11-12, pp. 1663-1670 (1997). For optimal absorption, calcium and phosphorous preferably are present in a calcium-to-phosphorous ratio of about 1:1 to 2:1, e.g., a ratio similar to that found in both milk and in bone. The milk mineral also typically contains quantities of lactose and bioactive proteins. Milk mineral is also commonly referred to as “milk calcium.”


Milk mineral provides various benefits as compared to supplements having other forms of calcium. Calcium supplements and calcium-fortified foods contain calcium in such forms as calcium carbonate, calcium lactate, calcium citrate, calcium chloride, and calcium hydroxide. These forms of calcium, however, can yield undesirable flavors and/or can strip desirable aroma and flavor compounds from food products. Use of milk minerals can avoid these problems. More significantly, the milk mineral complex delivers not only calcium but a balanced and pure form of the other milk minerals, including calcium, copper, magnesium, phosphorus, potassium, selenium and zinc, that are present only in milk and dairy products and that are important to a healthy diet. As a result, the milk mineral complex provides a balanced form of minerals, including calcium that is a preferred form of calcium and other minerals from a nutritional standpoint.


Suitable methods of obtaining milk mineral by extraction from whey or milk are known to persons skilled in the art. One suitable extraction method is described in U.S. Pat. No. 5,639,501, the disclosure of which hereby is incorporated by reference in its entirety. Additionally, commercially available milk mineral products include TRUCAL® products, which are commercially available from Glanbia Nutritionals, Inc. of Monroe, Wis. A typical composition of milk mineral is illustrated in Table 1 below.









TABLE 1







Typical Composition for Milk Mineral Powder










Component
Relative Amount (% by weight)







Total Minerals
50-90%



Inorganic Mineral (Ash)
45-85%



Organic Mineral (Citrate)
 1-10%



Calcium
15-35%



Magnesium
 0-10%



Phosphorous
 7-15%



Potassium
0-5%



Zinc
0-1%



Lactose
 0-15%



Protein
 1-15%



Free Moisture
2-5%



Fat
0-5%










One important attribute of milk mineral is the calcium-to-magnesium ratio. Predetermined calcium-to-magnesium ratios are desired to limit or avoid leaching of other important minerals, which in turn may lead to bone brittleness and can even increase the risk of osteoporosis. Without wishing to be bound by any theories, high dietary Ca:Mg ratios interfere with magnesium absorption because calcium and magnesium share common intestinal absorption pathways. When calcium levels are high with respect to magnesium levels, calcium competes with magnesium for the absorption pathways, resulting in hypomagnesaemia (low magnesium in the blood).


The natural milk minerals, especially calcium, copper, magnesium, phosphorus, potassium, selenium and zinc, are of great importance in nutrition. Calcium, for example, is essential to many body functions, such as muscle function regulation, blood clotting, hormone regulation, nerve function, and enzyme activation. Calcium in milk mineral has a high bioavailability, which is enhanced by vitamin D, lactose, gastrointestinal acidity, and certain fibers. Also, the balanced form of calcium, copper, magnesium, phosphorus, potassium, selenium and zinc, and vitamin D in milk mineral helps to minimize calcium depletion through urinary loss.


The balance of minerals and bioactive proteins in the milk mineral renders food products fortified with the compositions of the present invention effective for healthy weight maintenance and in the treatment of the conditions of overweight and obesity. While not wanting to be bound by any theory, the following provides a discussion of the various mechanisms by which body weight conditions can be treated using the compositions of the present invention.


The milk minerals of the present compositions provide high calcium bioavailability effective for managing body weight and treating conditions including overweight and obesity. A common metabolic defect in cellular calcium ion handling is thought to contribute to the occurrence of weight gain and obesity. Low calcium intake increases intracellular calcium concentration in the adipocyte (fat cell) thereby switching its metabolism from lipolysis (fat breakdown) to lipogenesis (fat synthesis) and fat accumulation. By increasing the amount of calcium intake, intracellular calcium concentration is reduced, which leads to increased lipolysis and decreased lipogenesis. Thus, it is desired to provide a daily intake of an amount of calcium effective for weight maintenance and/or loss through reduction of fat tissue mass.


In another aspect of the present invention, the nutritional supplement composition includes a protein source such as whey proteins or other suitable food protein. Whey proteins occur in milk as soluble, globular proteins. Generally, they are an important source of protein needed for overall good health and nutrition. The primary proteins and peptide constituents derived from whey proteins include alpha-lactalbumin and beta-lactoglobulin, kappa-casein fragment 106-109, lactoferrin, bovine serum albumin, lactoperoxidase, and immunoglobulins.


An important peptide constituent is kappa-casein fragment 106-109. These peptides function as an appetite suppressant by stimulating the release of the gastrointestinal hormone CCK. CCK is effective for short-term control of eating behavior because it generates responses in the body that are associated with satiety, thereby resulting in termination of the meal. Thus, by administering an effective amount of kappa-casein fragment 106-169 prior to, during, or even shortly after a meal, the amount of food eaten during a meal can be limited while providing a sense of satiety. Additionally, administering kappa-casein fragment 106-169 between meals when a person may feel hungry may also provide a sense of satiety, thereby avoiding undesired snacking between meals.


Sources of kappa-casein fragment 106-169 include PROVON® 190 and PROVON® 290, which are commercially available from Glanbia Nutritionals, Inc. of Monroe, Wis. Suitable methods for producing kappa-casein fragment 106-169 are known to those of skill in the art and are, for example, described in U.S. Pat. Nos. 5,278,288 and 5,280,107, incorporated herein by reference in their entirety, which describe processes for producing kappa-casein fragment 106-169 from milk raw materials such as cheese whey and whey protein concentrates.


In another aspect of the present invention, the composition includes enzyme-inhibiting peptides. Sources of such peptides include casein, whey proteins, soy proteins, or any other suitable commercially available food protein which can be processed according to any methods known to those of skill in the art to provide the peptides. One example of such peptides are those that inhibit angiotensin converting enzyme (ACE). Angiotensin II is a hormone that is synthesized and secreted by adipose cells. Literature has shown that angiotensin II may be involved in control of adiposity through regulation of lipid synthesis and storage of adipocytes. Some dairy peptides are associated with the inhibition of angiotensin converting enzyme (ACE). Thus, by administering a therapeutically effective amount of ACE-inhibiting peptides, weight loss can be enhanced. Another type of enzyme-inhibiting peptides are those that will inhibit the enzymatic breakdown of CCK. One or more enzyme-inhibiting peptides can be included in the composition.


To obtain the compositions of the present invention, the components selected for the compositions can be processed as desired prior to preparation of the nutritional supplement compositions. Milk mineral extract typically is purified, spray dried, and ground into a powder having an appropriate particle size to permit mixing with a liquid or solid food product if desired. The milk mineral extract has calcium and other minerals as shown in Table 1. Similarly, the protein component typically is purified, dried, and ground into a powder. The protein component has kappa-casein fragment 106-169 and, if desired, amino acids and other nutrients essential for overall good health and nutrition. ACE-inhibiting peptides also can be provided in the nutritional supplement composition. The desired components, which are selected from milk mineral extract, protein component and ACE-inhibiting peptides and combinations thereof, are blended to provide the nutritional supplement compositions of the present invention. The composition optionally can include other ingredients, such as minerals, vitamins, flavorings and colorants, in accordance with techniques well known to persons skilled in the art.


Suitable particle sizes for the composition will depend on such factors as the physical properties (e.g., liquid or solid, specific gravity, pH, viscosity, etc.) of the food product into which the powder is mixed. The mean particle size most often ranges from about 0.1 microns to about 300 microns, more usually from about 1 micron to about 100 microns. For neutral pH beverages, such as milk, a more finely ground powder preferably is employed so that a suspension of the powder can be easily formed. Because the solubility of the powder increases as pH decreases, less finely ground powders typically can be used, for example, in acidic juice beverages and in acidic beverages, in which the powder solubilizes.


The nutritional supplement composition in powder form can be used as an additive for a wide variety of types of food products, including acidic juice beverages (e.g., orange juice, apple juice, grape juice, grapefruit juice, cranberry juice, or blended juices), acidic beverages (e.g., sport beverages, Gatorade®), neutral pH beverages (e.g., milk UHT dairy, RTD nutritional, soy milk, or shakes and other blended beverages such as milkshakes, smoothies, frappes), nutritional supplement foodstuffs (e.g., high-energy protein bars), confectionery products (e.g., high calcium chews, chewing gum, chocolate, or cookies), dairy products (e.g., yogurt, ice cream, milk, cheese, processed cheese, or butter), and farinaceous products (e.g., bread, muffins, biscuits, cereal or rolls). The relative amount by weight of the nutritional supplement compositions combined with a food product depends on such factors as the density and the serving size of the food product. Typically, the amount of nutritional supplement compositions ranges from 0.1 to about 10 percent by weight, based on the total weight of the food product.


Alternatively, the nutritional supplement composition can be prepared in a form to be directly administered to an individual. By way of example, the composition can be prepared in the form of tablets, chewable tablets, capsules, and liquid syrup.


The formulation of the composition and, if administered via a food product, the amount of the composition blended into the food product, are selected to provide desired amounts of the particular components so as to be effective for controlling weight gain and/or weight loss. By way of example, a typical nutritional supplement composition may be administered to provide between at least about 0.5 and about 6 grams or more of calcium, between at least about 0 and about 10 grams or more of kappa-casein fragment 106-169, and between at least about 0 to about 20 grams or more of ACE-inhibiting peptides per serving of the composition. The amount of composition administered can be adjusted as desired to account for differences in physical characteristics and nutritional requirements of the individuals to whom the composition is administered.


In accordance with the methods of the present invention, body weight conditions, including overweight and obesity, are effectively managed and treated. That is, an individual of healthy condition and having a generally ideal weight can manage his weight and maintain a desired weight range. An individual who has a weight in excess of a desired range, and may be considered overweight or obese, can be effectively treated by limiting weight gain and/or promoting weight loss. A therapeutically effective amount of the nutritional supplement composition is administered to an individual to provide these benefits.


EXAMPLES

The following examples further illustrate preferred embodiments of the present invention but are not be construed as in any way limiting the scope of the present invention as set forth in the appended claims.


Example 1

This example illustrates preparation of a beverage fortified with a nutritional supplement composition. The components were mixed to yield a product having the composition set forth in Table 2.













TABLE 2







Ingredient
Amount (weight %)
Weight (grams)




















Water
70.03
350.17



PROVON ® 190
10.71
53.55



Crystalline fructose
7.00
35.00



TRUCAL ® FP D7
1.48
7.38



Carrageenan
0.08
0.40



Maltodextrin
10.00
50.00



Flavor
0.70
3.50



Color
0.001
0.005










The liquid ingredients and carrageenan were mixed on high speed for about 5 minutes for hydration. The remaining dry ingredients were blended together and added slowly to the liquid mixture and mixed on low speed for between about 5 to about 10 minutes.


An 11-ounce serving of the fortified drink provides 1 gram of calcium, 30 grams protein, 6 grams of kappa-casein fragment 106-169, and 1 gram of ACE-inhibiting peptide components.


Example 2

This example illustrates a formulation for a first dry beverage mix fortified with a nutritional supplement composition. The components were mixed to yield a product having the composition set forth in Table 3.











TABLE 3





Ingredient
Amount (weight %)
Weight (grams)

















PROVON ® 190*
45
18.5


TRUCAL ®*
10
4


Protein Component/ACE-inhibiting
10
4


peptide source


Fructose
31
13


Carrageenan
<1
0.3


Dispersion Aids
<1
0.3


Flavor
3
1.4


Color
<1
<0.1





*Available from Glanbia Nutritionals Inc., of Monroe, Wisconsin






The dry mix is prepared to be ready for mixing with a sufficient volume of a desired liquid, such as water or skim milk, to provide a beverage.


A single serving (41.5 grams) of the dry mix delivers about 127 calories, about 20 grams of protein, about 1 gram of calcium, about 4 grams of kappa-casein fragment 106-169, and about 2 grams of ACE-inhibiting peptide components.


Example 3

This example illustrates a formulation for a second dry beverage mix fortified with a nutritional supplement composition. The components were mixed to yield a product having the composition set forth in Table 4.











TABLE 4





Ingredient
Amount (weight %)
Weight (grams)

















PROVON ® 190*
45
18.5


TRUCAL ®*
10
4


Protein Component/ACE-inhibiting
10
4


peptide source


Fructose
31
13


Carrageenan
<1
0.3


Dispersion Aids
<1
0.3


Flavor
4
1.8


Color
<1
<0.1





*Available from Glanbia Nutritionals Inc., of Monroe, Wisconsin






The dry mix is prepared to be ready for mixing with a sufficient volume of a desired liquid, such as water or skim milk, to provide a beverage.


A single serving (41.5 grams) of the dry mix delivers about 125 calories, about 20 grams of protein, about 1 gram of calcium, about 4 grams of kappa-casein fragment 106-169, and about 4 grams of ACE-inhibiting peptide components.


Example 4

This example illustrates a formulation for a third dry beverage mix fortified with a nutritional supplement composition. The components were mixed to yield a product having the composition set forth in Table 5.













TABLE 5







Ingredient
Amount (weight %)
Weight (grams)




















Prolibra*
54
27



Fructose
27
13.3



Maltodextrin
5
2.6



Carrageenan
1
0.5



Flavor
13
6.6







*Available from Glanbia Nutritionals Inc., of Monroe, Wisconsin






The dry mix is prepared to be ready for mixing with a sufficient volume of a desired liquid, such as water or skim milk, to provide a beverage.


A single serving (50 grams) of the dry mix delivers about 162 calories, about 21 grams of protein, about 1 gram of calcium, about 4 grams of kappa-casein fragment 106-169, and about 4 grams of ACE-inhibiting peptide components.


While particular embodiments of the present invention have been described and illustrated, it should be understood that the invention is not limited thereto since modifications may be made by persons skilled in the art. The present application contemplates any and all modifications that fall within the spirit and scope of the underlying invention disclosed and claimed herein.

Claims
  • 1-18. (canceled)
  • 19. A method comprising administering to an individual regulating body weight a calcium-containing whey product comprising whey-derived mineral fractions, whey-derived protein isolates and an enzyme-inhibiting peptide, wherein the product is administered daily in one or more servings sufficient to provide at least about 20 grams whey-derived protein isolates and whey-derived mineral fraction comprising at least about 1 gram calcium daily, and wherein the mineral fractions, protein isolates and enzyme-inhibiting peptide are present in an amount effective to induce a metabolic change that induces weight and/or fat loss and/or the reduction of weight and/or fat gain by increasing the metabolic consumption of adipose tissue in the individual.
  • 20. The method of claim 19, wherein the product is administered daily in one or more servings sufficient to provide at least about 30 grams whey-derived protein isolates and whey-derived mineral fraction comprising at least about 1 gram calcium daily.
  • 21. The method of claim 19, wherein the enzyme-inhibiting peptide is whey-derived.
  • 22. The method of claim 19, wherein the enzyme-inhibiting peptide comprises angiotensin converting enzyme (ACE) inhibiting peptide.
  • 23. The method of claim 19, wherein the whey-derived mineral fraction comprises one or more minerals selected from the group consisting of copper, magnesium, phosphorus, potassium, selenium, zinc and/or combinations.
  • 24. The method of claim 19, wherein the whey derived mineral fraction comprises, by weight, about 15% to about 35% calcium, up to about 10% magnesium, about 7% to about 15% phosphorus, up to about 5% potassium and up to about 1% zinc.
  • 25. A method comprising administering to an individual regulating body weight a calcium-containing whey product comprising whey-derived mineral fractions, whey-derived protein isolates and an enzyme-inhibiting peptide, the mineral fractions, protein isolates and enzyme-inhibiting peptide being present in an amount effective to induce a metabolic change that induces weight and/or fat loss and/or the reduction of weight and/or fat gain by increasing the metabolic consumption of adipose tissue in the individual.
  • 26. The method of claim 25, wherein the enzyme-inhibiting peptide comprises angiotensin converting enzyme (ACE) inhibiting peptide.
  • 27. The method of claim 25, wherein the enzyme-inhibiting peptide is whey-derived.
  • 28. The method of claim 25, wherein the whey-derived mineral fraction comprises one or more minerals selected from the group consisting of calcium, copper, magnesium, phosphorus, potassium, selenium, zinc and/or combinations.
  • 29. The method of claim 25, wherein the whey-derived mineral fraction comprises calcium.
  • 30. The method of claim 25, wherein the whey derived mineral fraction comprises, by weight, about 15% to about 35% calcium, up to about 10% magnesium, about 7% to about 15% phosphorus, up to about 5% potassium and up to about 1% zinc.
  • 31. The method of claim 25, wherein the whey product fortifies a dairy product comprising milk, yogurt or cheese.
  • 32. The method of claim 25, wherein the whey product is in the form of a powder, a tablet, or a capsule.
  • 33. The method of claim 25, wherein the whey product is incorporated into a nutritional or dietary composition or supplement.
  • 34. The method of claim 25, wherein the whey product is incorporated into a food product, and wherein the food product is a beverage, a nutritional supplement foodstuff, a confectionery product, a bakery product, and a farinaceous products.
  • 35. The method of claim 25, wherein the product is administered daily in one or more servings sufficient to provide about 20 grams whey-derived protein isolates and whey-derived mineral fraction comprising about 1 gram calcium daily.
  • 36. The method of claim 25, wherein the product is administered daily in one or more servings sufficient to provide about 30 grams whey-derived protein isolates and whey-derived mineral fraction comprising about 1 gram calcium daily.
  • 37. The method of claim 25, further comprising administering the whey product to an individual and thereby treating a disorder selected from the group consisting of high blood pressure, stroke, obesity, kidney stones, colon cancer, breast cancer, head and neck tumors, premenstrual syndrome, postpartum depression, hypertensive disorders of pregnancy, Type-2 diabetes, depression, asthma, inflammatory bowel disease, attention deficit disorder, migraine headaches, kidney disease, hypercholesterolemia, congestive heart failure, and immune deficiency.
  • 38. A method comprising administering to an individual regulating body weight a nutritional composition containing a calcium-containing whey product comprising kappa-casein fragment 106-169, whey-derived mineral fractions, whey-derived protein isolates and an enzyme-inhibiting peptide in an amount effective for enhancing satiety after consumption of food and for inducing a metabolic change that induces a decrease in adiposity.
Provisional Applications (2)
Number Date Country
60558706 Apr 2004 US
60360709 Mar 2002 US
Continuations (2)
Number Date Country
Parent 11091924 Mar 2005 US
Child 13290344 US
Parent 10371534 Feb 2003 US
Child 11091924 US