The present disclosure relates to compositions and methods to improve the process of nucleic aids purification from bacterial, prokaryotic and eukaryotic cells through the use of activated carbon particles. Provided herein are methodology, compositions, and the like for using activated carbon particles to remove impurities in the purification of nucleic acids.
Nucleic Acids Purification Methods: Nucleic Acids such as plasmid DNA, genomic DNA, and RNA are frequently purified from bacterial and eukaryotic cells through the use of various methods such as alkaline-SDS lysis method, mini-column purification method, phenol-chloroform extraction method, and Boom method et al. The Alkaline lysis method is frequently used to isolate plasmid DNA from bacteria [#3656]. The procedure uses alkaline solution, consisting of the detergent sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH), to disrupt cell membranes and denature both chromosomal and plasmid DNA. Following cell lysis, potassium acetate is added to renature plasmid DNA, but not chromosomal DNA which is removed by centrifugation. The plasmid-containing supernatant is further purified by ethanol precipitation or DNA binding mini-columns.
Most DNA binding mini-column uses a solid phase of silica to bind to DNA under certain conditions such as the presence of chaotropic agents (e.g. guanidinium thiocyanate or guanidinium hydrochloride). Under these conditions, nucleic acids bind to the silica gel membrane inside the spin column. Cell debris, contaminating proteins, or other impurities are washed away by adding a wash buffer to the column. DNA is finally eluted from the column by adding an elution buffer or simply water.
In comparison with the mini-column method, a traditional way to purify nucleic acids is to use phenol-chloroform extraction. In this method, DNA solution is mixed with an equal volume of a phenol: chloroform solution. The mixture is then centrifuged and two distinct phases are formed. The nucleic acids-containing aqueous phase is on the top and the proteins and hydrophobic lipids-containing organic phase is at the bottom. The nucleic acids-containing aqueous phase is collected and further purified by ethanol precipitation. Recent years, the phenol-chloroform method is largely replaced by spin-column-based method for simple and quick nucleic acids purification, largely because of the development of the Boom Method for nucleic acids purification.
The Boom method (Boom nucleic acid extraction method) [#3655] is a solid phase extraction method for isolating nucleic acid through the use of silica beads or silica membranes which are capable of binding the nucleic acids in the presence of chaotropic substances. The method is developed into mini-spin columns for simple and quick nucleic acids purification, and became widely used.
Activated Carbon and its Application:
Activated carbon or activated charcoal is a form of carbon that is processed to have small, low-volume pores with high surface area for adsorption of chemical substances. It is produced from carbonaceous source materials such as nutshells, peat, wood, coal, or petroleum pitch. It is often produced by either physical or chemical activation. In physical activation, the carbonaceous material is pyrolyzed using hot gases (600-990° C. argon or nitrogen gas), followed by oxidation by exposure to oxidizing atmospheres (oxygen or air steam) at temperatures around 600-1200° C. In chemical activation, the raw carbonaceous material is first impregnated with chemicals such as acid, strong base, or salt (e.g. phosphoric acid, potassium hydroxide, sodium hydroxide, calcium chloride, and zinc chloride). Then, the raw material is carbonized at lower temperatures (450-900° C.).
Activated carbon has been extensively used in pharmacy, industry, and microbiology to remove various contaminants from products, water, soil, and air with its adsorption capacity. For example, in metal finishing industry, activated carbon is widely used for purification of electroplating solutions, removing unwanted chemical breakdown product. Activated carbon is also used for treating food poisoning, drug overdoses, and diseases such as diarrhea, indigestion, and flatulence. In agriculture, activated carbon is used as a pesticide, animal feed additive, processing aid, and disinfectant. In organic winemaking, activated carbon is used as a processing agent to absorb brown color pigments from white grape concentrates. It is also used to filter impurities from liquors such as vodka and whiskey, significantly increasing purity as judged by order and taste. Activated carbon or nanoporous carbon materials are also used extensively in energy industry. The porous material can act like a sponge to adsorb and store natural gas and hydrogen gas. For gas purification, activated carbon is used to remove oil vapors, order, and other hydrocarbons. For nuclear boiling water reactor, activated carbon filers are used to retain radioactive gases within air vacuumed from the turbine condenser. For coal-fired power stations, activated carbon is infused with sulfur or iodine to trap mercury emissions.
Although activated carbon adsorbs many chemical substances, it does not bind well to certain chemicals, including alcohols, strong acids and bases, metals and most inorganics, such as lithium, sodium, iron, lead. The specific adsorption characteristics are strongly dependent on the composition of the surface functional groups. The surface of activated carbon is also capable of oxidation by atmospheric oxygen and oxygen plasma, steam, and also carbon dioxide, and ozone. Oxidation in the liquid is caused by a wide range of reagents such as HNO3, H2O2, KMnO4. Some of the chemical properties of activated carbon have been attributed to presence of the surface active carbon double bond.
In one aspect, provided is a method for using activated carbon to remove impurities present in bacterial cells, bacterial cell culture, or biological samples during the purification of bacterial genomic DNA or bacterial plasmid DNA.
In another aspect, provided is a method for using activated carbon particles to remove impurities present in animal cell culture, animal tissues samples, or animal fluid samples (e.g. blood, sperm samples) during the purification of genomic DNA, cytoplasmic DNA (e.g. mitochondrial DNA) or RNA.
In another aspect, provided is a method of formulating activated carbon for use in nucleic acid extraction, comprising (a) harvesting cells through centrifugation; (b) resuspending cells in lysis buffer; (c) adding activated carbon particles either before or after cell lysis; (d) removing cell debris and activated carbon particles by centrifugation; (e) applying DNA/RNA-containing supernatant to a DNA/RNA-binding column; (f) washing the column with washing buffer to remove cellular contaminants; and (g) eluting DNA with TE buffer or with H20.
In another aspect, provided is a kit comprising activated carbon, and one or more of DNA/RNA extracting buffers, DNA/RNA binding buffer, DNA/RNA-binding columns, column washing buffers, and DNA elution buffers.
Objects of Activated Carbon Particles
1) To remove impurities present in bacterial cell and cell lysate during the purification of bacterial genomic DNA or bacterial plasmid DNA.
2) To remove impurities present in animal cell and cell lysate during the purification of genomic DNA, cytoplasmic DNA (e.g. mitochondrial DNA) or RNA.
3) To remove impurities present in plant cell and cell lysate during the purification of genomic DNA or cytoplasmic DNA (e.g. chloroplast DNA)
The present disclosure relates to composition and methodology for use activated carbon or charcoal to improve the process of nucleic aids purification from bacterial, prokaryotic and eukaryotic cells. Provided herein are methodology, compositions, and the like for using activated carbon particles to remove impurities in the purification of nucleic acids.
In one embodiment, activated carbon particles are used to remove impurities present in bacterial cell lysate during the purification of bacterial genomic DNA or bacterial plasmid DNA.
In another embodiment, activated carbon particles are used to remove impurities present in animal cell lysate during the purification of genomic DNA, cytoplasmic DNA (e.g. mitochondrial DNA) or RNA.
In another embodiment, activated carbon particles are used to remove impurities present in plant cell lysate during the purification of genomic DNA or cytoplasmic DNA (e.g. chloroplast DNA)
Activated carbon refers to activated charcoal or any porous and nanoporous carbon materials that can be used to absorb chemicals and biochemical substances.
In other embodiments, provided is a kit comprising activated charcoal and one or more of DNA/RNA extracting buffers, DNA/RNA binding buffer, DNA/RNA-binding columns, column washing buffers, and DNA elution buffers.
All technical terms in this description are commonly used in biochemistry, molecular biology and immunology, respectively, and can be understood by those skilled in the field of this invention. Those technical terms can be found in: MOLECULAR CLONING: A LABORATORY MANUAL, 3rd ed., vol. 1-3, ed. Sambrook and Russel, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001; CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, ed. Ausubel et al., Greene Publishing Associates and WileyInterscience, New York, 1988 (with periodic updates); SHORT PROTOCOLS IN MOLECULAR BIOLOGY: A COMPENDIUM OF METHODS FROM CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, 5.sup.th ed., vol. 1-2, ed. Ausubel et al., John Wiley & Sons, Inc., 2002; GENOME ANALYSIS: A LABORATORY MANUAL, vol. 1-2, ed. Green et al., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1997; CELLULAR AND MOLECULAR IMMUNOLOGY, 4.sup.th ed. Abbas et al., WB Saunders, 1994.
Illustrative Examples are presented below. They are exemplary and non-limiting.
As exemplified in
As exemplified in
This application claims priority from U.S. Provisional Application No. 62/820,311, filed Mar. 19, 2019, the entire disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62820311 | Mar 2019 | US |