COMPOSITIONS AND METHODS IDENTIFYING AND USING STEM CELL DIFFERENTIATION MARKERS

Information

  • Patent Application
  • 20220283144
  • Publication Number
    20220283144
  • Date Filed
    October 07, 2021
    4 years ago
  • Date Published
    September 08, 2022
    3 years ago
Abstract
Provided herein are compositions and methods for identifying and using stem cell regulation factors. For example, in some embodiments, provided herein are compositions and methods for identifying stem cell regulation factors using marker gene expression libraries. Also provided herein are compositions and methods for generating differentiated cells lines and uses of such cell lines.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been filed electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created Oct. 6, 2021, is named 079445-1273450-006220US_SL.txt and is 1.47 MB (1,547,157) bytes in size.


FIELD

Provided herein are compositions and methods for identifying and using stem cell differentiation regulation factors. For example, in some embodiments, provided herein are compositions and methods for identifying stem cell differentiation regulation factors using marker gene expression libraries. Also provided herein are compositions and methods for generating differentiated and induced cells lines and uses of such cell lines.


BACKGROUND

Stem cells are cells that are capable of differentiating into many cell types. Embryonic stem cells are derived from embryos and are potentially capable of differentiation into all of the differentiated cell types of a mature body. Certain types of stem cells are “pluripotent,” which refers to their capability of differentiating into many cell types. One type of pluripotent stem cell is the human embryonic stem cell (hESC), which is derived from a human embryonic source. Human embryonic stem cells are capable of indefinite proliferation in culture, and therefore, are an invaluable resource for supplying cells and tissues to repair failing or defective human tissues in vivo.


Similarly, induced pluripotent stem (iPS) cells, which may be derived from non-embryonic sources, can proliferate without limit and differentiate into each of the three embryonic germ layers. It is understood that iPS cells behave in culture essentially the same as ESCs. Human iPS cells and ES cells express one or more pluripotent cell-specific markers, such as Oct-4, SSEA-3, SSEA-4, Tra 1-60, Tra 1-81, and Nanog (Yu et al. Science, Vol. 318. No. 5858, pp. 1917-1920 (2007); herein incorporated by reference in its entirety). Also, recent findings of Chan, indicate that expression of Tra 1-60, DNMT3B, and REX1 can be used to positively identify fully reprogrammed human iPS cells, whereas alkaline phosphatase, SSEA-4, GDF3, hTERT, and NANOG are insufficient as markers of fully reprogrammed human iPS cells. (Chan et al., Nat. Biotech. 27:1033-1037 (2009); herein incorporated by reference in its entirety).


The cell fate decision making of stem cells is governed by multistep dynamic processes, in which transcriptional networks play a critical role (Chambers and Tomlinson, 2009 Development 136, 2311-2322; Filipczyk et al., 2015 Nat. Cell Biol. 17, 1235-1246; Kim et al., 2008 Cell 132, 1049-1061; MacArthur et al., 2009 Nat. Rev. Mol. Cell Biol. 10, 672-681). Expression of different transcription factors coordinate to activate or suppress sets of genes specific to different lineages, serving as major regulators that maintain cell identities or drive cell fate transitions (Iwafuchi-Doi and Zaret, 2014 Genes Dev. 28, 2679-2692; Zaret and Carroll, 2011 Genes Dev. 25, 2227-2241). The successes of somatic cell reprogramming and directed lineage differentiation using transcription factors highlight their central role in cell fate determination (Davis et al., 1987 Cell 51, 987-1000; Takahashi and Yamanaka, 2006 Cell 126, 663-676; Vierbuchen et al., 2010 Nature 463, 1035-1041; Xu et al., 2015 Cell Stem Cell 16, 119-134). Over the past few decades, although individual or combinatorial transcription factors have been identified for cell differentiation, there is a dearth of systematically unbiased studies of how specific genetic programs determine cell fate maintenance and transitions. Because of this, the available tools to control stem cell differentiation are limited and the full promise of stem cells as therapeutic, drug screening, and research tools have gone unmet.


A systematic screening approach to profile and characterize all transcription factors is needed to offer new insights into their contributions to cell fate decisions, which greatly enhances the ability to manipulate cell fate for both basic research and therapeutic purposes.


SUMMARY

Provided herein are compositions and methods for identifying and using stem cell differentiation regulation factors. For example, in some embodiments, provided herein are compositions and methods for identifying stem cell differentiation regulation factors using marker gene expression libraries. Also provided herein are compositions and methods for generating differentiated and induced cells lines and uses of such cell lines.


The compositions, systems, kits, and methods of the present disclosure overcome limitations of existing technologies to identify transcription factors and nucleic that drive differentiation of pluripotent cells. The transcription factors identified using the described methods find use in research, screening, and therapeutic applications.


In some embodiments, provided herein are systems and methods for identifying factors involved in (e.g., that regulate or control) the differentiation of stem cells by employing a CRISPR activation (CRISPRa)-mediated gain-of-function screening platform. In some such embodiments, a reporter stem cell line is generated that comprises components of a CRSIPR activation system. In some embodiments, the cell line is exposed to an sgRNA library targeting all putative transcription factors or other candidate factors that may be involved in a cellular differentiation process.


In some embodiments, the CRISPR activation system comprises a dCas9 construct under the transcriptional control of a first promoter. In some embodiments, the dCas9 is fused to a peptide epitope. In some embodiments, the activation system further comprises a VP64 transactivation domain under the transcriptional control of a second promoter. In some embodiments, the VP64 transactivation domain is fused to a peptide that specifically binds to the peptide epitope. In some embodiments, the activation system further comprises a selection marker under the transcriptional control of a third promoter. In some embodiments, each of the first, second, and third promoters are different than each other.


For example, in some embodiments, provided herein is a method of identifying pluripotent cell differentiation markers, comprising: a) generating a pluripotent cell line that expresses i) nuclease dead Cas9 fused to a plurality of peptide epitopes; ii) a single chain variable chain antibody fragment specific for the peptide epitope fused to a VP64 tranactivator domain; and iii) a transactivator polypeptide; b) contacting the cell line with a plurality of single guide RNAs (sgRNAs) specific for activation of pluripotent cell differentiation factors to generate a gene activation library; c) sorting the library to identify pluripotent cells that retain pluripotency or differentiate; and d) identifying cell differentiation factors that induce or prevent differentiation of the pluripotent cells. In some embodiments, the differentiation factors are transcription factors or non-coding (e.g., lincRNAs). In some embodiments, the cells are further contacted with a plurality of non-targeting sgRNAs (e.g., to serve as a negative control). In some embodiments, the cells further overexpress endogenous POU domain, class 3, transcription factor 2 (Brn2). In some embodiments, each cell differentiation factors is targeted with a plurality (e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100) distinct sgRNAs. In some embodiments, the cells that retain pluripotency are identified by screening for expression of SSEA1 after culture in media lacking inhibitors of GSK3 and ERK pathways. In some embodiments, cells that differentiate are identified by expression of a differentiation marker. For example, in some embodiments, cells that differentiate into neuronal cells express Tuj1. In some embodiments, the identifying comprises sequencing of sgRNAs after selection for cells that retain pluripotency or differentiate. In some embodiments, the sequencing further comprises comparing the level of the sgRNAs to the level of non-targeting sgRNAs. In some embodiments, cell differentiation factors that retain pluripotency are one or more of the regulation factors shown in FIG. 3 or Table 3. In some embodiments, cell differentiation factors that are associated with differentiation into neuronal cells are one or more of the regulation factors shown in FIG. 6 or Tables 4 and 10. In some embodiments, the sgRNAs are dual-sgRNA-constructs comprising two sgRNAs. In some embodiments, the method further comprises contacting the cell differentiation factors with a fibroblast cell line and identifying cell differentiation factors that promote transdifferentiation of the fibroblast cell line. In some embodiments, the fibroblast cell line is contacted with combinations of two or more cell differentiation factors. In some embodiments, the cell differentiation factors that promote transdifferentiation are a combination of Ezh2 or Ngn1 and one or more additional markers (e.g., Ngn1+Brn2, Brn2+Ezh2, Mecom+Ezh2, Ngn1+Ezh2 or Ngn1+Foxo1).


In some embodiments, the pluripotent cells are induced pluripotent stem cells, adult stem cells, or embryonic stem cells. In some embodiments, the method further comprises the step of activating pairs or groups of pluripotent cell differentiation factors.


In some embodiments, the method comprises or further comprises the step of performing a CRISPR gene repression screen. For example, in some embodiments, the CRISP repression screen comprises: a) contacting a pluripotent cell that expresses dCas9 fused to a transcription repressor domain with a plurality of sgRNAs specific for repression of a plurality of cell differentiation factors; b) sorting the library to identify cells that retain pluripotency or differentiate; and c) identifying cell differentiation factors that induce or prevent differentiation of said pluripotent cells. In some embodiments, the CRISPR repression screen and the CRISPR activation screen are performed in the same or different pluripotent cells. In some embodiments, the CRISPR repression screen and the CRISPR activation screen are performed simultaneously using vectors comprising a first sgRNA specific for activation of a first cell differentiation factor and a second sgRNA specific for repression of a second cell differentiation factor.


Further embodiments provide a library of pluripotent cells generated by the methods descried herein.


Additional embodiments provide a kit or system, comprising: a) a pluripotent cell line that expresses i) nuclease dead Cas9 fused to a plurality of peptide epitopes; ii) a single chain variable chain antibody fragment specific for the peptide epitope fused to a VP64 tranactivator domain; and iii) a transactivator polypeptide; and b) a plurality of single guide RN As (sgRNAs) specific for activation of pluripotent cell differentiation factors. In some embodiments, the kit or system further comprises reagents for analysis of one or more properties (e.g., pluripotency or differentiation) of the cell lines. In some embodiments, the kit or system further comprises reagents for sequencing the cells to identify the presence of said sgRNAs. In some embodiments, the system comprises or further comprises a CRISPR repression system as described herein. In some embodiments, the system comprises one or more sgRNAs (e.g., 10 or more, 100 or more, 1000 or more, or 5000 or more) described in Table 13 (e.g., SEQ ID NOs:586-8317).


Yet other embodiments provide a method of determining the differentiation status of pluripotent or somatic cells, comprising: a) assaying the cells for the expression of one or more transcription factors or lincRNAs selected from those in FIGS. 3 and 6 and Tables 3 and 4; and b) determining the differentiation status of the cells based on the expression. In some embodiments, the presence or increased level of the cell transcription factors in FIG. 3 or Table 3 are indicative of cells that retain pluripotency. In some embodiments, the cell transcription factors are not Nanog, Sox2, Klf4, or Oct4. In some embodiments, the cell transcription factors selected from, for example, Mixip, Etv2, Zc3h11a, Zfp36, Isl2, Tfeb, Fig1a, Hsf2, or Hoxc11 are indicative of cells that retain pluiripotency. In some embodiments, the presence or increased level of the cell transcription factors shown in FIG. 6 or Table 4 is indicative of cells that have differentiated into neuronal cells. In some embodiments, the cell differentiation factors are not Neurog1, Brn2, or KIlf12. In some embodiments, the cell differentiation factors are selected from, for example, Ezh2, Suz12, or Jun.


Still further embodiments provide a method of differentiating pluripotent or somatic (e.g., fibroblast) cells into neuronal cells, comprising: inducing expression of one or more cell regulation factors shown in FIG. 6 or Table 4 in the pluripotent cells. In some embodiments, the cell differentiation factors are selected from, for example, Ezb2, Ngn1, Suz12, or Jun. In some embodiments, the inducing expression comprises contacting the pluripotent cells with a nucleic acid encoding one or more of the cell differentiation factors, contacting the pluripotent cells with an sgRNA that induces expression of one or more of the cell differentiation factors, or contacting the pluripotent cells with a small molecule that induces expression of the cell differentiation factors. In some embodiments, the method further comprises the step of determining the presence of increased level of expression of the cell differentiation factors shown in FIG. 6 or Table 4. In some embodiments, the presence or increased level of the cell differentiation factors shown in FIG. 6 or Table 4 is indicative of cells that have differentiated into neuronal cells.


Certain embodiments provide differentiated cells generated by the methods described herein.


Embodiments of the present disclosure provide a plurality of neuronal cells that express one or more cell differentiation regulation factors shown in FIG. 6 or Table 4 (e.g., one or more of Ezh2, Suz12 or Jun).


Further embodiments provide a method of inducing pluripotency or maintaining pluripotency of a cell line (e.g., a somatic or pluripotent cell line), comprising: inducing expression of one or more cell regulation factors shown in FIG. 3 or Table 3 in said cells (e.g., one or more of Mlxip, Etv2, Zinc Zc3h11a, Zfp36, Isl2, Tfeb, Fig1a, Hsf2, or Hoxc11).


Still other embodiments provide a plurality of pluripotent cells generated or maintained by the methods described herein.


In other embodiments, the present disclosure provides a plurality of pluripotent or iPSCs cells that express one or more cell regulation factors shown in FIG. 3 or Table 3 (e.g., one or more of Mlxip, Etv2, Zinc Zc3h11a, Zfp36, is12, Tfeb, Fig1a, Hsf2, or Hoxc11).


Some embodiments provide a method of transplanting cells, comprising: transplanting differentiated cells generated by the methods described herein into a subject in need thereof (e.g., a subject diagnosed with a disease or condition).


Further embodiments are described herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A-D shows that enhanced CRISPR activation mouse ES (CamES) cells allow efficient single sgRNA-directed gene activation and stem cell fate control. (A) Engineered eCRISPRa system in mouse ES cells for single sgRNA-mediated self-renewal and differentiation control. (B) A panel of sgRNAs tiling along the upstream regulatory region of Asc11 relative to transcription start site (TSS) in CamES cells show a gradient of efficient gene activation. (C) Effective neural (day 8) and muscle (day 12) differentiation of CamES cells using a single sgRNA to activate endogenous genes. (D) Time-course measurement of endogenous gene expression (Asc11, Brn2, Tuj1, and Map2) during differentiation for CamES cells −sgRNA, +negative control sgRNA, or +sgAsc11, and E14 mouse ES cells +Asc11 cDNA.



FIG. 2A-E shows the use of an sgRNA library to screen genes that maintain pluripotency and self-renewal in mouse ES cells. (A) Schematic representation of CRISPRa-mediated gain-of-function screening (dropout) of genes that maintain pluripotency and self-renewal in CamES cells using a sgRNA library. (B) Flow cytometry data of library-transduced CamES cells during serial passages and after SSEA1 sorting. Negative control, isotype antibody control. (C) Microscopic images showing bright Feld (BF), Oct4 staining, and DAPI of library-transduced CamES cells in −2i medium at passage 2, passage 10 before SSEA1 sorting and passage 10 after sorting. Scale bar, 100 μm. (D) Boxplot of normalized sgRNA counts for the plasmid library, library-transduced CamES cells at D0, and library-transduced CamES cells after SSEA1 sorting. (E) Detected sgRNA counts (sgRNAs with at least one count) in the plasmid library, library-transduced CamES cells at D0, and library-transduced CamES cells after SSEA1 sorting.



FIG. 3A-C shows validation of top hits from the CRISPRa self-renewal screen. (A) A scatter plot showing enrichment of sgRNAs for ranked top hit genes. (B) Fold change of mRNA expression measure by quantitative PCR for each gene using their individual sgRNA in CamES cells. (C) Microscopic images and flow cytometry analysis of pluripotency markers Oct4, Nanog, and SSEA1 in CamES cells transduced with 18 individual sgRNAs in −2i medium after 10 passages.



FIG. 4A-D shows functional characterization and deep sequencing analysis of sgMlxip-transduced CamES cells confirm maintenance of pluripotency in −2i medium. (A) Spontaneous differentiation of sgMlxip- or sgKlf2-transduced CamES cells after 10 passages shows generation of three germ layers. (B) RNA-seq paired scatter plot analysis of the Wnt pathway gene expression comparing CamES +sgMlxip in −2i medium with CamES +2i medium (left, R2=0.81), and comparing CamES −sgMlxip in −2i medium and CamES −2i medium at day 7 (right, R2=0.35). (C) RNA-seq scatter plot analysis of the MAPK pathway gene expression comparing CamES +sgMlxip in −2i medium with CamES +2i medium (left, R2=0.90), and comparing CamES +sgMlxip in −2i medium and CamES −2i medium at day 7 (right, R2=0.59). (D) Normalized mRNA expression for genes in the PI3K pathway for CamES +sgMlxip in −2i medium, CamES +2i medium, and CamES −2i medium at day 7.



FIG. 5A-D shows the use of sgRNA library to screen genes that promote neural differentiation of mouse ES cells. (A) Schematic representation of CRISPRa-mediated gain-of-function screening (non-dropout) of genes that promote neural differentiation in CamES cells using an sgRNA library. (B) Quantification by qPCR for neural marker Tuj1 and Map2 expression before and after MACS sorting. (C) Boxplot of normalized sgRNA counts for the plasmid library, sorted Tuj1-hCD8+ cells, and sorted Tuj1-hCD8− cells. (D) Detected sgRNA counts (sgRNAs with at least one count) in the plasmid library, sorted Tuj1-hCD8+ cells, and sorted Tuj1-hCD8− cells.



FIG. 6A-F shows validation of top hits from CRISPRa neural differentiation screen. (A) Scatter plot of sgRNA enrichment for ranked top hit genes. Only sgRNAs enriched in both replicates are shown. 20 genes and their most enriched sgRNAs (orange) are chosen for validation. (B) Fold change of mRNA expression measure by quantitative PCR for each gene using their individual sgRNA in Tuj1-hCD8 CamES cells. (C) Quantification of hCD8+ cells measured by flow cytometry in Tuj1-hCD8 CamES cells transduced without sgRNA, with 6 individual non-targeting sgRNAs, and with 20 individual sgRNA hits after 12-day differentiation. (D) Quantification of NCAM+ cells measured by flow cytometry in CamES cells transduced without sgRNA, with 6 individual non-targeting sgRNAs, and with 20 individual sgRNA hits after 12-day differentiation. (E) Microscopic images ofMap2 staining in Tuj1-hCD8 CamES cells transduced with individual sgRNAs after 12-day differentiation. Scale bar, 100 μm. (F) Characterization of staining various neural lineage markers (Tuj1, Map2, NeuN, Olig2, GFAP, and vGluT1) in Tuj1-hCD8 CamES cells transduced with individual sgRNAs after 12-day differentiation.



FIG. 7A-G shows functional characterization and deep sequencing analysis of sgJun-mediated CamES neural differentiation. (A) Representative traces of membrane potentials of differentiated neurons from Tuj1-hCD8 CamES cells transduced with sgJun in response to step-voltage (left) and step-current injections (right). (B) Principle component analysis of RNA-seq samples from D0, D2, D5, and D12 of sgJun-transduced CamES cells. (C) RNA-seq analysis showing time-course expression of 6 pluripotency genes and 6 neural lineage genes during differentiation of sgJun-transduced CamES cells. Error bars, s.d.±the mean of four biological replicates. (D) Gene ontology analysis of genes that are enriched in D5 and D12 differentiated neural cells (left, D5 versus D0; right, D12 versus D0). (E) Western blot showing protein expression of Jun and phosphorylated Jun at different time points during differentiation. P-Jun: phosphorylated Jun. (F) RNA-seq paired scatter plot analysis of the downstream genes targeted by the AP-1 complex formed between Jun and c-Fos. Left, D2 versus D0 (p=0.2); middle, D5 versus D0 (p=0.002); and right, D12 versus D0 (p=0.004). (G) Gaussian kernel density plot of expression of the Wnt pathway genes in sgJun-directed differentiated cells at different time points during the neural differentiation.



FIG. 8A-H shows generation of eCRISPRa by systematic optimization of the CRISPRa-SunTag system. (A) A multiple lentiviral eCRISPRa system. (B) Comparison of endogenous Brn2 activation efficiency using 12 individual sgRNAs targeting Brn2 or their mixture for the SFFV-driven scFv-stGFP-VP64 CRISPRa system. (C) Comparison of endogenous Brn2 activation efficiency for different promoters driving scFv-sfGFP-VP64. Data is normalized to the −sgRNA sample. (D) Comparison of endogenous Brn2 activation efficiency for 6 clonal cell lines each generated from EF1a- or PGK-driven scFv-sfGFP-VP64 systems. Data is normalized to the −sgRNA sample. (E) Comparison of endogenous Brn2 activation efficiency for 28 clonal cell lines generated from the PGK-driven scFv-sfGFP-VP64 system. (F) Characterization of CamES cells for the morphology, expression of pluripotency marker Oct4, and expression of eCRISPRa components. (G) Negative staining of Tuj1 (red) in CamES cells, CamES cells +sgControl, and E14 mouse ES cells +sgAsc11 after 12-day differentiation. DAPI is shown in blue. (H) Microscopic images showing cell morphology of CamES cells +sgAsc11 (top) and E14 mouse ES cells +Asc11 cDNA (bottom) at D0, D6, and D12 during differentiation.



FIG. 9A-B shows an experimental procedure and characterization of the CRISPRa self-renewal screen in mouse ES cells. (A) Time line scheme of the gain-of-function self-renewal screen using the sgRNA library. (B) Correlation of sequenced sgRNA counts in library-transduced CamES cells at D0 and after SSEA1 sorting.



FIG. 10 shows a ranked gene list based on the dropout self-renewal screen described in FIGS. 2 and 3.



FIG. 11A-C shows RNA sequencing and characterization of CamES cells +sgMlxip or +sgKlf2 cultured in −2i medium. (A) Heatmap illustrating mRNA expression of the pluripotency-associated genes and lineage specific genes for indicated samples. (B) Histogram plot showing distribution of ratios of the Wnt pathway gene expression for indicated samples. (C) mRNA expression of indicated MAPK pathway genes in CamES cells in −2i medium at D7, in +2i medium, and transduced with sgMlxip in −2i medium.



FIG. 12A-F shows an experimental procedure and characterization of CRISPRa gain-of-function neural differentiation screen. (A) Sequencing results of the Tuj1 locus in Tuj1-hCD8 CamES cells. (B) Flow cytometry data (right) showing the hCD8+ percentage of cells in sgAsc11-transduced Tuj1-hCD8 CamES cells after 8-day differentiation. (C) Comparison of Tuj1 and Map2 mRNA expression levels in differentiated cells with various initial seeding cell densities. (D) Quantification of Tuj1 and Map2 mRNA expression levels in CamES cells, CamES cells +sgControl, and CamES cells +sgLibrary during differentiation. (E) Staining of neural markers Tuj1 and Map2 in library-transduced Tuj1-hCD8 CamES cells. (F) Time line scheme of the gain-of-function neural differentiation screen using the sgRNA library in Tuj1-hCD8 CamES cells.



FIG. 13 shows a ranked gene list based on non-dropout neural differentiation screen shown in FIGS. 5 and 6.



FIG. 14A-F shows characterization of sgJun-directed neural differentiated cells and analysis of dropout and non-dropout screens. (A) Heatmap illustrating mRNA expression of representative pluripotency-associated, progenitor neural lineage, terminal neural lineage, endoderm lineage, and mesoderm lineage genes. (B) Time-course of normalized RNA-seq mRNA counts of 12 genes in the MAPK and Wnt pathways during sgJun-direct CamES cells differentiation. (C) A hypothesized model for endogenous Jun activation-induced neural differentiation by sgJun. (D) Toy example of dropout (left) and non-dropout screens (right). In dropout screens, negative cells drop out of the population and have little noticeable effect. (E) The percentage of screen hits in common with Tuj1-hCD8+/D0 for the Tuj1-hCD8−/D0. SSEA1+/D0, and Tuj1-hCD8+/Tuj1-hCD8− gene ranks at a given hit cutoff. (F) The top ten enriched genes as calculated for Tuj1-hCD8+ relative to day 0, Tuj1-hCD8− relative to day 0, and Tuj1-hCD8+ relative to Tuj1-hCD8-.



FIG. 15A-G shows a CRISPRi experimental screening platform for studying genetic interactions. (A) The experimental setup of the single and double CRISPRi screening platform for GI studies. (B-E) Characterization of biological replicates for single and double sgRNA libraries (R1—biological replicate 1; R2, biological replicate 2): (B) single library without Dox at day 20; (C) single library with Dox at day 20; (D) double library without Dox at day 16; (E) double library with Dox at day 16. (F) Comparison of single library with and without Dox at day 20. (G) Comparison of double library with and without Dox at day 16.



FIG. 16A-F shows a time-course comparison of sgRNA enrichment for single and double libraries and validation of sgRNA pairs for epistatic interactions. (A) Comparing day 0 sample to other time points (grey—day 3; red—day 7; blue—day 13) in the presence of Dox for the single library. (B) The 20 genes among 112 epigenetic factor genes that showed consistent depletion over time due to CRISPRi inhibition. (C) Comparing day 0 sample to other time points (grey—day 8; blue—day 16) in the presence of Dox for the double library. For the comparison without Dox, refer to Fig. S4B. (D) A selected combinations that showed consistent depletion over time due to multiplexed CRISPRi inhibition. (E-F) Validation of two pairwise sgRNAs (MRGBP & MED6; BRD7 & LEO1) for their combinatorial effects in suppressing cell growth and endogenous gene expression.



FIG. 17 shows a module map of chromatin-related genes based on a curated set of protein complexes.



FIG. 18A-E shows (A) Schematic representation of CRISPRa-mediated gain-of-function screenings that promote neuronal differentiation in CamES cells using an sgRNA library. (B) Frequency histograms of the top 3 enriched sgRNAs targeting genes indicated. (C) Quantification of PSA-NCAM+ cells were measured by flow cytometry in CamES cells transduced with three individual sgRNAs of each gene after 12-day differentiation. (D) Microscopic images of Map2 staining in CamES cells transduced with individual sgRNAs after 12-day differentiation. Scale bar, 100 μm. (E) Staining of various neuronal lineage markers (NeuN, Olig2, GFAP, GABA, and vGluT1) in CamES cells transduced with individual sgRNAs after 12-day differentiation.



FIG. 19A-F shows (A) Schematic representation of CRISPRa-mediated gain-of-function double screenings that promote neuronal differentiation in CamES cells using a double sgRNA library. (B) Schematic of the two-guide vector. (C) Reproducibility between the two replicates of the paired CRISPR screen of gene-targeting and negative control (or vice versa) guide pairs, mean±s.e.m. (standard error of the mean). (D) Interaction scores for a pair were computed by subtracting off the maximum of the guide-level effect sizes. (E) Interaction forming capacities of the two sgRNAs inducing different gene activation levels. (F) Quantification of PSA-NCAM+ cells measured by flow cytometry in CamES cells transduced with one single sgRNA or double sgRNAs after 12-day differentiation. Error bars represent standard deviation of three independent experiments.



FIG. 20A-E shows (A) Quantification of MAP2+ cells from MEFs infected with different gene combinations. Averages from 20 randomly selected visual fields are shown. Error bars indicate±s.d. (B) Representative images of Tuj1 staining of MEFs infected with different genes or gene combinations. Scale bar, 100 μm. (C) Ngn1 and Ezh2 induced MEF neuron cells express MAP2, Tuj1 and NeuN, synapsin, and GABA 14 days after infection. Scale bar, 100 μm. (D) Bar graph showing the percentage of Tbr1-positive neurons (Tbr1+) and GABA-positive neurons (GABA+) out of total neurons. (E) Ngn1 and Ezh2 induced perinatal TTF neuron cells express MAP2, Tuj1 and NeuN, synapsin, and GABA 26 days after infection. Scale bar, 100 μm.



FIG. 21A-I shows that MEF-derived induced neurons show functional synaptic properties. (A) Recording electrode patched onto a sfGFP-positive cell with a stimulation electrode (middle panel). The right panel is a merged picture of BF and fluorescence images showing that the recorded cell is sfGFP-positive. (B) Representative traces of whole-cell currents in voltage-clamp mode; cells were held at −80 mV. Step depolarization from 70 mV to +40 mV at 10-mV intervals was delivered (lower panel). (C) Representative trace of evoked membrane potential by +40 pA current injection (lower panel) in current-clamp mode held at −75 mV. Application of 100 nM tetrodotoxin (TTX), a selective blocker of voltage-gated sodium channels, inhibited the action potential. (D) Inward sodium currents were evoked from an induced neurons, and application of 500 nM TTX inhibited these currents. Step depolarization from −70 mV to +60 mV at 10-mV intervals was delivered; cells were held at −80 mV (right panel); a presentative trace of whole-cell current with and without TTX at −10 mV membrane potential in voltage-clamp mode is shown (left panel). (E) Outward potassium currents were evoked from an induced neurons, and application of 5 mM tetraethylammonium (TEA) inhibited these currents. Step depolarization from −70 mV to +60 mV at 10-mV intervals was delivered; cells were held at −80 mV (right panel); a presentative trace of whole-cell current with and without TEA at +60 mV membrane potential in voltage-clamp mode is shown (left panel). (F) Spontaneous EPSCs were recorded from induced neurons. (G) Spontaneous action potentials recorded from an induced neuron (left panel). Application of 100 nM TTX blocked the action potentials (middle panel). Washout of TTX reversed the blockade (right panel). (1-) Representative traces of evoked excitatory spontaneous postsynaptic currents (EPSCs) recorded from an induced neuron (left panel). Application of 30 μM DNQX (6,7-dinitroquinoxaline-2,3-dione), an AMPA/kainate glutamate receptor antagonist, blocked the response of EPSCs (middle panel). Washout of DNQX reversed the blockade (right panel). (1) Representative traces of evoked EPSCs recorded from an induced neuron (left panel). Application of 30 μM BIC (Bicuculline), a GABA receptor antagonist, slightly increased the frequency and amplitude of EPSCs (middle panel). Washout of BIC reversed the increase (right panel). F, and H-I, Cells were recorded at a holding potential (Vh) of −60 mV. Error bars indicate±s.d. of cell counts. Scale bar, 10 μm.



FIG. 22A-E shows generation of the CRISPRa and CRISPRa knock-in cell lines. (A) A multiple lentiviral CRISPRa system. (B) Characterization of CamES cells for the morphology, expression of pluripotency marker Oct4, and expression of CRISPRa components. Scale bars, 100 μm. (C) Schematic of the clonal CamES cell line carrying a biallelic IRES-hCD8 insertion at the Tuj1 locus. (D) Sequencing results of the Tuj1 locus in Tuj1-hCD8 CamES cells. (E) Quantification by qPCR for neuronal markers Tuj1 and Map2 expression before and after MACS sorting.



FIG. 23A-G shows (A) Time line scheme of the neural differentiation screens using the sgRNA library in Tuj1-hCDS CamES cells. (B) Quantification of Tuj1 and Map2 mRNA expression levels in CamES cells, CamES cells +sgControl, and CamES cells +sgLibrary during differentiation. Error bars, s.d.±the mean of three independent experiments. (C) Staining of neural markers Tuj1 and Map2 in library-transduced Tuj1-hCD8 CamES cells. Scale bar, 100 μm. (D) Boxplot. of normalized sgRNA counts for the plasmid library, sorted Tuj1-hCD8+ cells, and sorted Tuj1-hCD8− cells. (E) The top ten enriched genes as calculated for Tuj1-hCD8+ relative to day 0, Tuj1-hCD8− relative to day 0, and Tuj1-hCD8+ relative to Tuj1-hCD8−. (F) Toy example of sgRNA stochastic representation in the screening system. (G) The percentage of screen hits in common with Tuj1-hCDS+/D0 for the Tuj1-hCD8−/D0, SSEA1+/D0, and Tuj1-hCD8+/Tuj1-hCD8− gene ranks at a given hit cutoff.



FIG. 24A-D shows (A) Quantification of PSA-NCAM+ cells were measured by flow cytometry in CamES cells transduced with three individual sgRNAs of each gene after 12-day differentiation. (B) Quantification of hCD8+ cells measured by flow cytometry in Tuj1-hCD8 CamES cells transduced without sgRNA, with 6 individual non-targeting sgRNAs, and with 19 individual sgRNAs after 12-day differentiation. Error bars represent standard deviation of three independent experiments. (C) Quantification of PSA-NCAM+ cells were measured at day 10 by flow cytometry in E14 cells after induction of different transgenes or negative control transgene BFP. Error bars represent standard deviation of three independent experiments. (D) Staining of various neuronal lineage markers (Tuj1, NeuN, Olig2, GFAP, GABA, and vGluT1) in CamES cells transduced with individual sgRNAs after 12-day differentiation. Scale bar, 100 μm.



FIG. 25 shows quantification of MAP2+ cells from MEFs infected with different genes.



FIG. 26A-E shows (A) The distribution of guides for the top 19 hits in green against an equal number of randomly selected negative control guides. (B) Variable gene effects and mixing proportions. (C) The estimated gene effect sizes plotted versus the estimated gene specific mixing proportions. (D) The estimated feature coefficients and their 80% credible interval from the model described in Example 4. (E) The distribution of average log 2 fold change of guides in the corresponding feature (top).



FIG. 27A-D shows (A) Cloning strategy for final two-guides vector. (B) Sequencing strategy to analyze the sgRNA sequences for the double sgRNA library. (C) Empirical Bayes fit of the null distribution of the constructed test statistic using the R package locfdr. (D) Correlation of sequenced sgRNA counts in library-transduced CamES cells at D0, Tuj1-hCD8+ cells and Tuj1-hCD8− cells after hCD8 sorting.



FIG. 28A-1H shows (A) Ngn1 and Foxo1 induced MEF neuron cells express MAP2, Tuj1 and NeuN, synapsin, and GABA 14 days after infection. Scale bar, 100 μm. (B) Bar graph showing the percentage of Tbr1-positive neurons (Tbr1+) and GABA-positive neurons (GABA+) out of total neurons. (C) Ngn1 and Foxo1 induced perinatal TTF neuron cells express MAP2, Tuj1, and NeuN, synapsin, and GABA 26 days after infection. Scale bar, 100 μm. (D) Inward sodium currents were evoked from induced neurons, and application of 500 nM TTX inhibited these currents. (E) Outward potassium currents were evoked from an induced neurons, and application of 5 mM tetraethylammonium (TEA) inhibited these currents. (F) Spontaneous action potentials recorded from an induced neuron (left panel). Application of 100 nM TTX blocked the action potentials (middle panel). Washout of TTX reversed the blockade (right panel). ((G) Representative traces of evoked excitatory spontaneous postsynaptic currents (EPSCs) recorded from an induced neuron (left panel). Application of 30 μM DNQX (6,7-dinitroquinoxaline-2,3-dione), an AMPA/kainate glutamate receptor antagonist, blocked the response of EPSCs (middle panel). Washout of DNQX reversed the blockade (right panel). (H) Representative traces of evoked EPSCs recorded from an induced neuron (left panel). Application of 30 μM BIC (Bicuculline), a GABA receptor antagonist, slightly increased the frequency and amplitude of EPSCs (middle panel). Washout of BIC reversed the increase (right panel). G and H, Cells were recorded at a holding potential (Vh) of −60 mV. Error bars indicate±s.d. of cell counts.



FIG. 29 shows representative images of Tuj1 staining of MEFs infected with different gene combinations. Scale bar, 100 μm.





DEFINITIONS

As used herein the term “stem cell” (“SC”) refers to cells that can self-renew and differentiate into multiple lineages. A stem cell is a developmentally pluripotent or multipotent cell. A stem cell can divide to produce two daughter stem cells, or one daughter stem cell and one progenitor (“transit”) cell, which then proliferates into the tissue's mature, fully formed cells. Stem cells may be derived, for example, from embryonic sources (“embryonic stem cells”) or derived from adult sources. For example, U.S. Pat. No. 5,843,780 to Thompson describes the production of stem cell lines from human embryos. PCT publications WO 00/52145 and WO 01/00650 (herein incorporated by reference in their entireties) describe the use of cells from adult humans in a nuclear transfer procedure to produce stem cell lines.


Examples of adult stem cells include, but are not limited to, hematopoietic stem cells, neural stem cells, mesenchymal stem cells, and bone marrow stromal cells. These stem cells have demonstrated the ability to differentiate into a variety of cell types including adipocytes, chondrocytes, osteocytes, myocytes, bone marrow stromal cells, and thymic stroma (mesenchymal stem cells); hepatocytes, vascular cells, and muscle cells (hematopoietic stem cells); myocytes, hepatocytes, and glial cells (bone marrow stromal cells) and, indeed, cells from all three germ layers (adult neural stem cells).


As used herein, the term “totipotent cell” refers to a cell that is able to form a complete embryo (e.g., a blastocyst).


As used herein, the term “pluripotent cell” or “pluripotent stem cell” refers to a cell that has complete differentiation versatility, e.g., the capacity to grow into any of the mammalian body's approximately 260 cell types. A pluripotent cell can be self-renewing, and can remain dormant or quiescent within a tissue. Unlike a totipotent cell (e.g., a fertilized, diploid egg cell), a pluripotent cell, even a pluripotent embryonic stem cell, cannot usually form a new blastocyst.


As used herein, the term “induced pluripotent stem cells” (“iPSCs”) refers to a stem cell induced from a somatic cell, e.g., a differentiated somatic cell, and that has a higher potency than said somatic cell. iPS cells are capable of self-renewal and differentiation into mature cells.


As used herein, the term “multipotent cell” refers to a cell that has the capacity to grow into a subset of the mammalian body's approximately 260 cell types. Unlike a pluripotent cell, a multipotent cell does not have the capacity to form all of the cell types.


As used herein, the term “progenitor cell” refers to a cell that is committed to differentiate into a specific type of cell or to form a specific type of tissue.


As used herein, the term “embryonic stem cell” (“ES cell” or ESC”) refers to a pluripotent cell that is derived from the inner cell mass of a blastocyst (e.g., a 4- to 5-day-old human embryo), and has the ability to yield many or all of the cell types present in a mature animal.


As used herein the term “feeder cells” refers to cells used as a growth support in some tissue culture systems. Feeder cells may, for example, embryonic striatum cells or stromal cells.


As used herein, the term “chemically defined media” refers to culture media of known or essentially-known chemical composition, both quantitatively and qualitatively. Chemically defined media is free of all animal products, including serum or serum-derived components (e.g., albumin).


DETAILED DESCRIPTION

Provided herein are compositions and methods for identifying and using stem cell differentiation regulation factors. For example, in some embodiments, provided herein are compositions and methods for identifying stem cell differentiation regulation factors using marker gene expression libraries. Also provided herein are compositions and methods for generating differentiated and induced cells lines and uses of such cell lines.


The RNA-guided microbial endonuclease CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR associated protein 9) system was recently repurposed as a tool for sequence-specific gene editing and transcriptional regulation (Cho et al., 2013 Nat. Biotechnol. 31, 230-232; Cong et al., 2013 Science 339, 819-823; Fu et al., 2014 Nat. Biotechnol. 32, 279-284; Jinek et al. Science 337, 816-821, 2012; Mali et al., 2013b Science 339, 823-826; Qi et al., 2013 Cell 152, 1173-1183; Ran et al., 2015 Nature 520, 186-191; Yu et al., 2015 Cell Stem Cell 16, 142-147). The nuclease-dead Cas9 (dCas9) fused with transcription activator domains allows endogenous genes activation, leading to CRISPR activation (CRISPRa) methods (Chavez et al., 2015 Nat. Method. 12, 326-328; Cheng et al., 2013 Cell Res. 23, 1163-1171; Gilbert et al., 2013 Cell 154, 442-451; Hilton et al., 2015 Nat. Biotechnol. 33, 510-517; Konermann et al., 2015 Nature 517, 583-588; Maeder et al., 2013 Nat. Method. 10, 977-979; Mali et al., 2013a Nat. Biotechnol. 31, 833-838; Perez-Pinera et al., 2013 Nat. Method. 10, 973-976; Tanenbaum et al., 2014 Cell 159, 635-646; Zalatan et al., 2015 Cell 160, 339-350). Previous work demonstrated that CRISPR activation of endogenous genes allowed, in principle, somatic cell reprogramming and directed cell differentiation (Black et al., 2016 Cell Stem Cell 19, 406-414; Chakraborty et al., 2014 Stem Cell Reports 3, 940-947; Chavez et al., 2015 Nat. Method. 12, 326-328; Wei et al., 2016 Sci. Rep. 6, 19648). However, since these studies relied on using a mixture of multiple sgRNAs for activating a single gene and inducing differentiation, applying these methods for large-scale activation screening has been a major challenge.


Unlike cell growth phenotypes that entail a dropout live-or-dead process, cell fate determination is a dynamic, stochastic process that often generates a heterogeneous cell population with diverse phenotypes (e.g., non-dropout) (Hanna et al., 2009 Nature 462, 595-601; Johnston and Desplan, 2010 Annu. Rev. Cell Dev. Biol. 26, 689-719). This imposes another challenge to simply perform dropout screens that distinguish lineage specification processes from spontaneous differentiation events. Furthermore, because developmental programs are highly dependent on the expression level of endogenous genes (Niwa et al., 2000 Nat. Genet. 24, 372-376; Papapetrou et al., 2009 Proc. Natl. Acad. Sci. USA 106, 12759-12764), gain-of-function screens that allow very efficient gene activation (comparable to cDNA overexpression) while covering a broad range of expression offer more promise for identifying candidate genes driving cell lineages. To date, two reports used CRISPRa for cell growth-based dropout screens (Gilbert et al., 2014 Cell 159, 647-661; Konermann et al., 2015 Nature 517, 583-588). However, the application of CRISPRa screens for the systematic inference of cell fate determination has not yet been established.


Experiments described herein overcame these challenges by developing a CRISPR activation (CRISPRa)-mediated gain-of-function screening approach to identify transcription factors (TFs) important for stem cell fate determination. An enhanced CRISPRa system was developed in mouse embryonic stem (ES) cells that efficiently activates endogenous genes and drives cell lineage differentiation. A single sgRNA was sufficient to induce neuron or muscle differentiation. Based on the system, a large-scale sgRNA library (>50,000 sgRNA) was used to target all putative endogenous TF genes (˜800) and a small set of noncoding RNA genes (50). Targeting a single gene using multiple sgRNAs (>60 sgRNA per gene) allowed activating each gene to a broad range of expression levels. A CRISPRa dropout screen was used to identify genes that promote stem cell self-renewal, as well as a non-dropout screen for inducing neural differentiation. The top gene hits were validated using individual sgRNAs, and it was observed that all hits could maintain self-renewal. For neural differentiation, it was confirmed that 19 out of top 20 gene hits could induce efficient neural differentiation. For both screens, the lists of gene hits include known TF factors and those TFs and noncoding RNAs that are not previously related to self-renewal maintenance or neural differentiation. Different identified TFs preferentially induced different types of neurons. Deep sequencing and functional analysis of a few gene hits (Mlxip for self-renewal and Jun for neural differentiation) confirmed their functions for driving desired cellular processes.


Thus, the compositions and methods provide herein allow for the identification of the relevant factors necessary, sufficient, and/or useful for controlling differentiation of stem cells into any desired fat. The transcription factors identified herein and identifiable using the compositions and methods described herein provide target and reagents for differentiation of cells an provide the cells made therefrom that find use as research tools, drug screening targets, and therapeutics (e.g., via cell transplantation into a host).


The CRISPRa gain-of-function screens and stem cell libraries described herein find use in research, therapeutic, and screening applications to determine differentiation factors for a variety of stem cells. The differentiation factors identified further find use in stem cell differentiation for research, screening, and clinical applications.


1. Identification of Differentiation Factors

As described herein, embodiments of the present disclosure provide compositions and methods for identifying stem cell differentiation regulation factors. In some embodiments, the methods utilize a modified pluripotent or multipotent (e.g., stem cell) line. The present disclosure is not limited to particular cell lines. Examples include, but are not limited iPSC, embryonic stem cells, adult stem cells, and the like.


In some embodiments, the CRISPR activation system comprises a dCas9 construct under the transcriptional control of a first promoter. In some embodiments, the dCas9 is fused to a peptide epitope. In some embodiments, the activation system further comprises a VP64 transactivation domain under the transcriptional control of a second promoter. In some embodiments, the VP64 transactivation domain is fused to a peptide that specifically binds to the peptide epitope. In some embodiments, the activation system further comprises a selection marker under the transcriptional control of a third promoter. In some embodiments, each of the first, second, and third promoters are different than each other.


In some embodiments, cell lines for determination of differentiation regulation factors are pluripotent cells modified with a dead Cas9/transactivator activation system. For example in some embodiments, cells comprise a nuclease dead Cas9 (dCas9). In some embodiments, the dCas9 is fused to a signal activation component (e.g., a plurality of peptide epitopes as described in Tanenbaum et al., (2014). Cell 159, 635-646; herein incorporated by reference in its entirety). In some embodiments, the cell lines further comprise a single chain variable chain antibody fragment specific for the peptide epitope fused to a tranactivator domain (e.g., VP64; See e.g., Beerli et al., Proc Natl Acad Sci USA. 1998 Dec 8; 95(25): 14628-14633; herein incorporated by reference in its entirety) and a transactivator polypeptide. In some embodiments, the activation components are provided on a vector (e.g., retroviral vector, adenoviral viral vector, adeno-associated vector, lentiviral vector, etc.). In some embodiments, cells further overexpress endogenous Brn2 (e.g., via an sgRNA that targets activation of Brn2).


In some embodiments, the cells lines are next contacted with a plurality of sgRNAs (e.g., targeting cell differentiation regulation factors). In some embodiments, sgRNAs target transcription factors or non-coding RNAs (e.g., lincRNAs). In some embodiments, more than one (e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100) sgRNAs specific for each differentiation factor are utilized. In some embodiments, sgRNAs are provided on vectors (e.g., retroviral vector, adenoviral viral vector, adeno-associated vector, lentiviral vector, etc.). In some embodiments, cells are further contacted with a plurality of non-targeting sgRNAs (e.g., to serve as negative controls). In some embodiments, a double CRISPR screen is performed using dual-sgRNA-constructs comprising two (or more) sgRNAs to screen for interactions between multiple cell differentiation factors in combination.


In some embodiments, the method further comprises contacting the cell differentiation factors with a fibroblast or other cell line and identifying cell differentiation factors that promote transdifferentiation of the fibroblast cell line. In some embodiments, the fibroblast cell line is contacted with combinations of two or more cell differentiation factors. In some embodiments, the cell differentiation factors that promote differentiation are combinations of Ngn1+Brn2, Ezh2+Brn2, Mecom+Ezh2, Ngn1+Ezh2, or Ngn1+Foxo1.


In some embodiments, the method comprises or further comprises the step of performing a CRISPR gene repression screen. For example, in some embodiments, the CRISPR repression screen comprises: a) contacting a pluripotent cell that expresses dCas9 fused to a transcription repressor domain (e.g., KRAB) with a plurality of sgRNAs specific for repression of a plurality of cell differentiation factors; b) sorting the library to identify cells that retain pluripotency or differentiate; and c) identifying cell differentiation factors that induce or prevent differentiation of said pluripotent cells. In some embodiments, the CRISPR repression screen and the CRISPR activation screen are performed in the same or different pluripotent cells. In some embodiments, the CRISPR repression screen and the CRISPR activation screen are performed simultaneously using vectors comprising a first sgRNA specific for activation of a first cell differentiation factor and a second sgRNA specific for repression of a second cell differentiation factor.


The resulting gene activation library from CRISPR activation and/or repressor cells are then further analyzed as described below. For example, in some embodiments, following delivery of sgRNAs, cells are cultured and cells that retain pluripotency or differentiate are identified. In some embodiments, cells are sorted based on the presence or absence of differentiation or pluiptency markers.


In some embodiments, in order to identify regulation factors for pluipotency, cells are cultured under conditions that do not inhibit differentiation (e.g., in media lacking inhibitors of GSK3 and ERK pathways). In some embodiments, pluripotent cells are sorted by identifying and selecting (e.g., using flow cytometry) cells that express SSEA1 after culture.


In some embodiments, cells that differentiate are identified by sorting for cells that express differentiation markers specific to the final cell type. For example, in some embodiments, cells that differentiate into neuronal cells are identified by sorting for cells that express Tuj1.


In some embodiments, cell differentiation factors are activated and analyzed in pairs or groups (e.g., as described in Example 2 below) in order to identify combined effects of between different factors.


In some embodiments, after selection, cell differentiation regulation factors are identified by identifying sgRNAs that persist in the sorted cells. In some embodiments, sequencing (e.g., deep sequencing) is used to identify sgRNAs. In some embodiments, sequencing methods further comprises comparing the level of said sgRNAs to the level of non-targeting sgRNAs.


In deep sequencing, a high number of replicates of each sequencing read (e.g., at least 10, 20, 30, 40, 50, or 100) are used to improve accuracy. The present disclosure is not limited to a particular sequencing technique. Exemplary sequencing techniques are described below. A variety of nucleic acid sequencing methods are contemplated for use in the methods of the present disclosure including, for example, chain terminator (Sanger) sequencing, dye terminator sequencing, and high-throughput sequencing methods. Many of these sequencing methods are well known in the art. See, e.g., Sanger et al., Proc. Natl. Acad. Sci. USA 74:5463-5467 (1997); Maxam et al., Proc. Natl. Acad. Sci. USA 74:560-564 (1977); Drmanac, et al., Nat. Biotechnol. 16:54-58 (1998); Kato, Int. J. Clin. Exp. Med. 2:193-202 (2009); Ronaghi et al., Anal. Biochem. 242:84-89 (1996); Margulies et al., Nature 437:376-380 (2005); Ruparel et al., Proc. Natl. Acad. Sci. USA 102:5932-5937 (2005), and Harris et al., Science 320:106-109 (2008); Levene et al., Science 299:682-686 (2003); Korlach et al., Proc. Natl. Acad. Sci. USA 105:1176-1181 (2008); Branton et al., Nat. Biotechnol. 26(10):1146-53 (2008); Eid et al., Science 323:133-138 (2009); each of which is herein incorporated by reference in its entirety.


Next-generation sequencing (NGS) methods share the common feature of massively parallel, high-throughput strategies, with the goal of lower costs in comparison to older sequencing methods (see, e.g., Voelkerding et al., Clinical Chem., 55: 641-658, 2009; MacLean et al., Nature Rev. Microbiol., 7: 287-296; each herein incorporated by reference in their entirety). NGS methods can be broadly divided into those that typically use template amplification and those that do not. Amplification-requiring methods include pyrosequencing commercialized by Roche as the 454 technology platforms (e.g., GS 20 and GS FLX), the Solexa platform commercialized by illumina, and the Supported Oligonucleotide Ligation and Detection (SOLiD) platform commercialized by Applied Biosystems. Non-amplification approaches, also known as single-molecule sequencing, are exemplified by the HeliScope platform commercialized by Helicos BioSciences, and emerging platforms commercialized by VisiGen, Oxford Nanopore Technologies Ltd., Life Technologies/Ion Torrent, and Pacific Biosciences, respectively.


Other emerging single molecule sequencing methods include real-time sequencing by synthesis using a VisiGen platform (Voelkerding et al., Clinical Chem., 55: 641-58, 2009; U.S. Pat. No. 7,329,492; U.S. patent application Ser. No. 11/671,956; U.S. patent application Ser. No. 11/781,166; each herein incorporated by reference in their entirety) in which immobilized, primed DNA template is subjected to strand extension using a fluorescently-modified polymerase and florescent acceptor molecules, resulting in detectible fluorescence resonance energy transfer (FRET) upon nucleotide addition.


Exemplary cell regulation factors indicative of cells that retain pluripotency or differentiate are described in the Figures and Tables herein. For example, in some embodiments, cell transcription factors that retain pluripotency are one or more of the regulation factors shown in FIG. 3 or Table 3 and cell differentiation factors that are associated with differentiation into neuronal cells are one or more of the regulation factors shown in FIG. 6 or Table 4.


The cell differentiation factors identified using the described methods find use in a variety of applications. Exemplary uses are described herein.


II. Cell Lines and Libraries and Uses Thereof

In some embodiments, the present disclosure provides cells lines, kits, and systems for use in the described methods. For example, in some embodiments, provided herein are libraries of modified pluripotent cells as described above. For example, in some embodiments, the cells comprise a dCas9 construct under the transcriptional control of a first promoter. In some embodiments, the dCas9 is fused to a peptide epitope. In some embodiments, the cells comprise a VP64 transactivation domain under the transcriptional control of a second promoter. In some embodiments, the VP64 transactivation domain is fused to a peptide that specifically binds to the peptide epitope. In some embodiments, the cells comprise a selection marker under the transcriptional control of a third promoter. In some embodiments, each of the first, second, and third promoters are different than each other.


In some embodiments, cells express i) nuclease dead Cas9 fused to a plurality of peptide epitopes; ii) a single chain variable chain antibody fragment specific for said peptide epitope fused to a VP64 tranactivator domain; and iii) a transactivator polypeptide.


In some embodiments, the cell lines described herein find use in screening (e.g., drug screening) and research applications as described below.


In some embodiments, provided herein are kits and systems comprising the cell lines described herein. In some embodiments, kits and systems further comprise a plurality of sgRNAs specific for activation of pluripotent cell differentiation factors. In some embodiments, the kit or system comprises one or more sgRNAs (e.g., 10 or more, 100 or more, 1000 or more, or 5000 or more) described in Table 13 (e.g., SEQ ID NOs:586-8317).


In some embodiments, kits and systems further comprise reagents for analysis of one or more properties of the cell lines (e.g., pluripotency or differentiation), reagents for sequencing the cells to identify the presence of sgRNAs, reagents for further downstream analysis (e.g., molecular analysis, toxicity screening, drug screening, or cellular activity assays), or computer software and computer systems for analyzing data.


III. Differentiation Methods

In some embodiments, the present disclosure provides compositions and methods for differentiating cells into multipotent or specific cell types. The present disclosure is not limited to particular target cell types. Examples include, but are not limited to, epithelial cells (e.g., exocrine secretory epithelial cells, hormone secreting cells (e.g., islet cells), keratinizing epithelial cells (e.g., skin cells), central nervous system cells (e.g., neuronal cells), blood cells, and organ cells.


In some embodiments, differentiation is induced by increasing expression of cellular regulation factors identified using the methods described herein. In some embodiments, expression is induced by exogenously introduced differentiation genes. In one embodiment, the exogenously introduced gene may be expressed from a chromosomal locus different from the endogenous chromosomal locus of the gene. Such chromosomal locus may be a locus with open chromatin structure, and contain gene(s) dispensible for a somatic cell. In other words, the desirable chromosomal locus contains gene(s) whose disruption will not cause cells to die. Exemplary chromosomal loci include, for example, the mouse ROSA 26 locus and type II collagen (Col2a1) locus (See Zambrowicz et al., 1997) The exogenously introduced pluripotency gene may be expressed from an inducible promoter such that their expression can be regulated as desired.


In some embodiments, the exogenously introduced gene is transiently transfected into cells, either individually or as part of a cDNA expression library. The cDNA library is prepared by conventional techniques. Briefly, mRNA is isolated from an organism of interest. An RNA-directed DNA polymerase is employed for first strand synthesis using the mRNA as template. Second strand synthesis is carried out using a DNA-directed DNA polymerase which results in the cDNA product. Following conventional processing to facilitate cloning of the cDNA, the cDNA is inserted into an expression vector such that the cDNA is operably linked to at least one regulatory sequence. The choice of expression vectors for use in connection with the cDNA library is not limited to a particular vector. Any expression vector suitable for use in mammalian cells is appropriate. In one embodiment, the promoter which drives expression from the cDNA expression construct is an inducible promoter. The term regulatory sequence includes promoters, enhancers and other expression control elements. Exemplary regulatory sequences are described in Goeddel: Gene Expression Technology: Methods in Enzymology, Academic Press, San Diego, Calif. (1990). For instance, any of a wide variety of expression control sequences that control the expression of a DNA sequence when operatively linked to it may be used in these vectors to express cDNAs. It should be understood that the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of protein desired to be expressed. Moreover, the vector's copy number, the ability to control that copy number and the expression of any other protein encoded by the vector, such as antibiotic markers, should also be considered.


In some embodiments, the CRISPR activation and/or repression system is expressed from an inducible promoter. The term “inducible promoter”, as used herein, refers to a promoter that, in the absence of an inducer (such as a chemical and/or biological agent), does not direct expression, or directs low levels of expression of an operably linked gene (including cDNA), and, in response to an inducer, its ability to direct expression is enhanced, Exemplary inducible promoters include, for example, promoters that respond to heavy metals (CRC Boca Raton, Fla. (1991), 167-220; Brinster et al. Nature (1982), 296, 39-42), to thermal shocks, to hormones (Lee et al. P.N.A.S. USA (1988), 85, 1204-1208; (1981), 294, 228-232; Klock et al. Nature (1987), 329, 734-736; Israel and Kaufman, Nucleic Acids Res. (1989), 17, 2589-2604), promoters that respond to chemical agents, such as glucose, lactose, galactose or antibiotic.


A tetracycline-inducible promoter is an example of an inducible promoter that responds to an antibiotics. See Gossen et al., 2003. The tetracycline-inducible promoter comprises a minimal promoter linked operably to one or more tetracycline operator(s). The presence of tetracycline or one of its analogues leads to the binding of a transcription activator to the tetracycline operator sequences, which activates the minimal promoter and hence the transcription of the associated cDNA and the expression of CRISPR activation and/or repression system. Tetracycline analogue includes any compound that displays structural homologies with tetracycline and is capable of activating a tetracycline-inducible promoter. Exemplary tetracycline analogues includes, for example, doxycycline, chlorotetracycline and anhydrotetracycline.


In some embodiments, expression of cell differentiation factors is induced via activating sgRNAs as described herein (e.g., Example 1). One or more sgRNAs are introduced into a pluripotent cell that expresses a CRISPR activation system (e.g., those described herein or other suitable system).


In some embodiments, differentiation is induced via small molecules that active expression or activity of cell differentiation genes or downstream signaling partners.


In some embodiments, cells are cultured under conditions that promote differentiation. In some embodiments, cultures are adherent cultures, e.g., the cells are attached to a substrate. The substrate is typically a surface in a culture vessel or another physical support, e.g. a culture dish, a flask, a bead or other carrier. In some embodiments, the substrate is coated to improve adhesion of the cells and suitable coatings include laminin, poly-lysine, poly-ornithine and gelatin. In some embodiments, the cells are grown in a monolayer culture or in suspension or as balls or clusters of cells. At higher densities, cells may begin to pile up on each other, but the cultures are essentially monolayers or begin as monolayers, attached to the substrate.


Cells differentiated using the methods described herein find use in a variety of research, screening, and clinical applications. In some embodiments, cells are used to prepare antibodies and cDNA libraries that am specific for the differentiated phenotype. General techniques used in raising, purifying and modifying antibodies, and their use in immunoassays and immunoisolation methods are described in Handbook of Experimental Immunology (Weir & Blackwell, eds.), Current Protocols in Immunology (Coligan et al., eds.); and Methods of Immunological Analysis (Masseyeff et al., eds., Weinheim: VCH Verlags GmbH). General techniques involved in preparation of mRNA and cDNA libraries are described in RNA Methodologies: A Laboratory Guide for Isolation and Characterization (R. E. Farrell, Academic Press, 1998); cDNA Library Protocols (Cowell & Austin, eds., Humana Press); and Functional Genomics (Hunt & Livesey, eds., 2000). Relatively homogeneous cell populations are particularly suited for use in drug screening and therapeutic applications.


In some embodiments, the cells generated by methods provided herein or the above-described cell lines are used to screen for agents (e.g., small molecule drugs, peptides, polynucleotides, and the like) or environmental conditions (such as culture conditions or manipulation) that affect the cells. Particular screening applications relate to the testing of pharmaceutical compounds in drug research. Assessment of the activity of candidate pharmaceutical compounds generally involves combining the cells with the candidate compound, determining any change in the morphology, marker phenotype, or metabolic activity of the cells that is attributable to the compound (compared with untreated cells or cells treated with an inert compound), and then correlating the effect of the compound with the observed change. Any suitable assays for detecting changes associated with test agents may find use in such embodiments. The screening may be done, for example, either because the compound is designed to have a pharmacological effect on specific cell types, because a compound designed to have effects elsewhere may have unintended side effects, or because the compound is part of a library screen for a desired effect. Two or more drugs can be tested in combination (by combining with the cells either simultaneously or sequentially), to detect possible drug-drug interaction effects. In some applications, compounds are screened for cytotoxicity.


In some embodiments, methods and systems are provided for assessing the safety and efficacy of drugs that act upon the differentiated cells, or drugs that might be used for another purpose but may have unintended effects upon the cells. In some embodiments, cells described herein find use in high throughput screening (ITS) applications. In some embodiments, a HTS screening platform is provided (e.g., cells and plates) that allows for the rapid testing of large number (e.g., 1×103, 1×104, 1×105, 1×106 (or more) of agents (e.g., small molecule compounds, peptides, etc.).


In some embodiments cells generated using methods and reagents described herein are utilized for therapeutic delivery to a subject (e.g., a subject with a disease or other condition). Cells may be placed directly in contact with subject tissue or may be otherwise sealed or encapsulated (e.g., to avoid direct contact). In embodiments in which cells are encapsulated, exchange of factors, nutrients, gases, etc. between the encapsulated cells and the subject tissue is allowed. In some embodiments, cells are implanted/transplanted on a matrix or other delivery platform.


If appropriate, cells are co-administered with one or more pharmaceutical agents or bioactives that facilitate the survival and function of the transplanted cells.


Support materials suitable for use for purposes of the present disclosure include tissue templates, conduits, barriers, and reservoirs useful for tissue repair. In particular, synthetic and natural materials in the form of foams, sponges, gels, hydrogels, textiles, and nonwoven structures, which have been used in vitro and in vivo to reconstruct or regenerate biological tissue, as well as to deliver chemotactic agents for inducing tissue growth, are suitable for use in practicing the methods of the present disclosure. See, for example, the materials disclosed in U.S. Pat. Nos. 5,770,417, 6,022,743, 5,567,612, 5,759,830, 6,626,950, 6,534,084, 6,306,424, 6,365,149, 6,599,323, 6,656,488, U.S. Published Application 2004/0062753 A1, U.S. Pat. Nos. 4,557,264 and 6,333,029.


Cells generated with methods and reagents herein may be implanted as dispersed cells or formed into implantable clusters. In some embodiments, cells are provided in biocompatible degradable polymeric supports; porous, permeable, or semi-permeable non-degradable devices; or encapsulated (e.g., to protect implanted cells from host immune response, etc.). Cells may be implanted into an appropriate site in a recipient. Suitable implantation sites depend on the cell type and may include, for example, the brain, spinal cord, skin, liver, natural pancreas, renal subcapsular space, omentum, peritoneum, subserosal space, intestine, stomach, or a subcutaneous pocket.


In some embodiments, cells or cell clusters are encapsulated for transplantation into a subject. Encapsulation techniques are generally classified as microencapsulation, involving small spherical vehicles, and macroencapsulation, involving larger flat-sheet and hollow-fiber membranes (Uludag, H. et al. Technology of mammalian cell encapsulation. Adv Drug Deliv Rev. 2000; 42: 29-64, herein incorporated by reference in its entirety).


Methods of preparing microcapsules include those disclosed by Lu M Z, et al. Biotechnol Bioeng. 2000, 70: 479-83; Chang T M and Prakash S, Mol Biotechnol. 2001, 17: 249-60; and Lu M Z, et al., J. Microencapsul. 2000, 17: 245-51; herein incorporated by reference in their entireties. For example, microcapsules may be prepared by complexing modified collagen with a ter-polymer shell of 2-hydroxyethyl methylacrylate (HEMA), methacrylic acid (MAA) and methyl methacrylate (MMA), resulting in a capsule thickness of 2-5 μm. Such microcapsules can be further encapsulated with additional 2-5 μm ter-polymer shells in order to impart a negatively charged smooth surface and to minimize plasma protein absorption (Chia, S. M. et al. Multi-layered microcapsules for cell encapsulation Biomaterials. 2002 23: 849-56; herein incorporated by reference in its entirety). In some embodiments, microcapsules are based on alginate, a marine polysaccharide (Sambanis. Diabetes Technol. Ther. 2003, 5: 665-8; herein incorporated by reference in its entirety) or its derivatives. For example, microcapsules can be prepared by the polyelectrolyte complexation between the polyanions sodium alginate and sodium cellulose sulphate with the polycation poly(methylene-co-guanidine) hydrochloride in the presence of calcium chloride.


In some embodiments, cells generated using methods and reagents described herein are microencapsulated for transplantation into a subject (e.g., to prevent immune destruction of the cells). Microencapsulation of cells provides local protection of implanted/transplanted cells from immune attack (e.g., along with or without the use of systemic immune suppressive drugs). In some embodiments, cells and/or cell clusters are microencapsulated in a polymeric, hydrogel, or other suitable material, including but not limited to: poly(orthoesters), poly(anhydrides), poly(phosphoesters), poly(phosphazenes), polysaccharides, polyesters, poly(lactic acid), poly(L-lysine), poly(glycolic acid), poly(lactic-co-glycolic acid), poly(lactic acid-co-lysine), poly(lactic acid-graft-lysine), polyanhydrides, poly(fatty acid dimer), poly(fumaric acid), poly(sebacic acid), poly(carboxyphenoxy propane), poly(carboxyphenoxy hexane), poly(anhydride-co-imides), poly(amides), poly(ortho esters), poly(iminocarbonates), poly(urethanes), poly(organophasphazenes), poly(phosphates), poly(ethylene vinyl acetate), poly(caprolactone), poly(carbonates), poly(amino acids), poly(acrylates), polyacetals, poly(cyanoacrylates), poly(styrenes), poly(vinyl chloride), poly(vinyl fluoride), poly(vinyl imidazole), chlorosulfonated polyolefins, polyethylene oxide, polystyrene, polysaccharides, alginate, hydroxypropyl cellulose (HPC), N-isopropylacrylamide (NIPA), polyethylene glycol, polyvinyl alcohol (PVA), polyethylenimine, chitosan (CS), chitin, dextran sulfate, heparin, chondroitin sulfate, gelatin, etc., and their derivatives, co-polymers, and mixtures thereof. In some embodiments, cells are microencapsulated in an encapsulant comprising or consisting of alginate. Cells may be embedded in a material or within a particle (e.g., nanoparticle, microparticle, etc.) or other structure (e.g., matrix, nanotube, vesicle, globule, etc.). In some embodiments, microencapsulating structures are modified with immune-modulating or immunosuppressive compounds to reduce or prevent immune response to encapsulated cells. For example, in some embodiments, cells are encapsulated within an encapsulant material (e.g., alginate hydrogel) that has been modified by attachment of an immune-modulating agent (e.g., the immune modulating chemokine, CXCL12 (also known as SDF-1). In some embodiments, such an immune modulating agent is a T-cell chemorepellent and/or a pro-survival factor.


In some embodiments, cells generated using methods and reagents described herein are macroencapsulated for transplantation into a subject. Macroencapsulation of cells, for example, within a permeable or semi-permeable chamber, provides local protection of implanted/transplanted cells from immune attack (e.g., along with or without the use of systemic immune suppressive drugs), prevents spread of cells to other tissues or areas of the body, and/or allows for efficient removal of cells. Suitable devices for macroencapsulation include those described in, for example, U.S. Pat. No. 5,914,262; Uludag, et al., Advanced Drug Delivery Reviews, 2000, pp. 29-64, vol. 42, herein incorporated by reference in their entireties.


Other encapsulation (micro or macro) devices and methods may find use in embodiments described herein. For example, methods and devices described in U.S. Pub No. 20130209421, U.S. Pat. No. 8,785,185, each of which are herein incorporated by reference in their entireties, are within the scope of embodiments described herein.


IV. Differentiation Factors

As described above and in the examples below, a number of new transcription factor and other regulatory factors involved in the regulating the differentiation processes have been discover using the screening methods described herein. These factors find use in generating stem cells or differentiated cells have desired properties for use in research, drug screening, and therapeutic applications.


In some embodiments, individual or combinations of these factors are used to induce differentiation in a stem cell to obtain differentiated cells or multipotent cells of a particular lineage (e.g., neural stem cells). In some embodiments, such factor are introduced exogenously to stem cells in vitro or in vivo (e.g., via expression vector, etc). In some embodiments, endogenous factors are up or down regulated by providing activators or inhibitors of endogenous expression.


In some embodiments, individual or combinations of these factors are used to induce differentiation in a somatic cell (e.g., fibroblast, neuronal cell, etc).


In some embodiments, individual or combinations of these factors are used to maintain or induce pluripotency in a cell line. In some embodiments, such factor are introduced exogenously to stem cells or somatic cells in vitro or in vivo (e.g., via expression vector, etc). In some embodiments, endogenous factors are up or down regulated by providing activators or inhibitors of endogenous expression.


In some embodiments, one or more of the markers described in Tables 3 and 4 are targeted. In some embodiments, provided herein are one or more sgRNAs (e.g., 10 or more, 100 or more, 1000 or more, or 5000 or more) described in Table 13 (e.g., SEQ ID NOs:586-8317) for use in targeting the described markers.


In some embodiments, provided herein are cell generated by such methods and the use of such cells, for example, in drug screening, diagnostic, and therapeutic indications.


Where transcription factors are introduced as peptides, in some embodiments they are complexed with cell membrane permeable peptides (e.g., Tat protein, penetratin, etc.) to facilitate entry into target cells.


EXPERIMENTAL
Example 1
CRISPR Activation Screens Identify Genes Promoting Self-Renewal and Neuronal Differentiation of Stem Cells
Methods

sgRNA Library Construction


The oligo library was PCR amplified, gel purified and ligated to the linearized backbone vector (pSLQ1373) digested with BstXI and BlpI using In-Fusion cloning (Clontech).


Cell Culture


E14 mouse ES cells and CamES cells were maintained on gelatin coated tissue culture plates with basal medium (50% Neurobasal, 50% Dulbecco modified Eagle medium (DMEM) Ham's nutrient mixture F12, 0.5% NEAA, 0.5% Sodium Pyruvate, 0.5% GlutaMax, 0.5% N2, 1% B27, 0.1 mM β-mercaptoethanol and 0.05 g/L bovine albumin fraction V; all from Thermo Fisher Scientific) supplemented with LIF (Millipore) and 2i (Stemgent), Human embryonic kidney (HEK293T) cells (ATCC) were cultured in 10% fetal bovine serum (Thermo Fisher Scientific) in DMEM (Thermo Fisher Scientific).


Lentiviral Production


HEK293T cells were seeded at ˜30% confluence one day before transfection. Lentivirus were produced by cotransfecting with pHR plasmids and encoding packaging protein vectors (pMD2.G and pCMV-dR8.91) using TransIT-LT1 transfection reagents (Mirus). Viral supernatants were collected 3 days after transfection and filtered through 0.45 μm strainer. Supernatant was used for transduction immediately or kept at −80° C. for long-term storage.


High-Throughput Pooled Screening


Screens were performed in two independent replicates for both self-renewal and neural differentiation. For both screens, 108 CamES cells were transduced with the pooled lentiviral library with an MOI of 0.3, treated with puromycin, and cultured in specified medium. After a period of time indicated for each screen, cells were harvested and FACS/MACS sorted. Deep sequencing was performed to profile the sgRNA counts in each sample, and computationally analyzed to infer top sgRNA and gene hits.


Plasmid Design and Construction


To clone sgRNA vectors, the optimized sgRNA expression vector (pSLQ1373) was linearized and gel purified (Chen et al., 2013 Cell 155, 1479-1491). New sgRNA sequences were PCR amplified from pSLQ1373 using different forward primers and a common reverse primer, gel purified and ligated to the linearized pSLQ1373 vector using In-Fusion cloning (Clontech). Primers used to construct individual sgRNAs are shown in Table 1. To change the promoter of scFv-sfGFP-VP64, the EF1α and PGK promoters were PCR amplified, gel purified, and ligated to linearized pSLQ1504 using In-Fusion cloning (Clontech).


sgRNA Library Design


Putative transcription factor (TF) genes were selected according to the TRANSFAC database, and TSS (transcription start site) for each gene was determined using the Gencode and refFlat databases. All possible transcripts were selected if multiple TSSs existed for a gene. All sgRNAs targeting was −3 kb to 0 relative to TSS. Using the CRISPR-era algorithm (Liu et al., 2015 Bioinformatics 31, 3676-3678), the targeting sequences of sgRNAs adjacent to an NGG PAM (protospacer adjacent motif) were computed, starting with a G (for more efficient U6 promoter activity) with a length of 20 bp. The sgRNAs containing homopolymers spanning greater than 3 nucleotides (nt) were discarded. To avoid off-target effects, sgRNA sequences alignment to the mouse genome was computed using the short read aligner Bowtie, and those with less than 2 mismatches with another genomic region were excluded. Furthermore, sgRNA sequences that contained certain restriction sites (BstXI and XhoI) were also removed. sgRNAs with a GC content between 30% and 70% were used. An average of about 60 sgRNAs were selected for each target gene. Sequences for non-targeting negative control sgRNAs were generated using a randomized mouse gene TSS region and selected using the same rules as described above.


sgRNA Library Construction


The oligonucleotide pool was synthesized by Custom Array. The oligo library was PCR amplified, gel purified and ligated to the linearized pSLQ1373 digested with BstXI and BlpI using in-Fusion cloning.


Construction of the CamES Cell Line


Mouse ES cells were co-transduced with multiple lentiviral constructs that expressed dCas9-SunTag from a TRE3G promoter, scFV-sfGFP-VP64 from the EF1a or PGK promoter, and rtTA from the EF1a promoter. After adding Doxycycline, polyclonal cells were sorted by flow cytometry using a BD FACS Aria2 for GFP+ and mCherry+ cells. After verification of gene activation using a sgBrn2, monoclonal cells were further sorted, and one efficient cell line was selected as CamES cells.


Construction of the Tuj-1-hCD8 CamES Cell Line


Construction of CRISPR/Cas9 vector for Tuj1 knockin. The pX330-derived pSLQ1654 encoding the nuclease Cas9 and an optimized sgRNA sequence was first linearized by a BbsI digest and gel purified. Two primers sgTuj-1 F and sgTuj-1 R were phosphorylated, annealed, and ligated to the linearized vector pSLQ1654 to generate pSLQ1654-sgTuj1. sgTuj-1 F: caccgcccaagtgaagttgctcgcagc (SEQ ID NO:378). sgTuj-1 R: aaacgctgcgagcaacttcacttgggc (SEQ ID NO:379).


Construction of DNA template. The Tuj1-IRES-hCD8 vector (pSLQ1760) was assembled with three fragments (5′ homologous arm of Tuj1, IRES-hCD8 and 3′ homologous arm of Tuj1) and a modified pUC19 backbone vector by using Gibson Assembly Master Mix (New England Biolabs). Both 5′ and 3′ homology arms were PCR amplified from the genomic DNA extracted from mouse ES cells with Herculase 11 Fusion DNA polymerase (Agilent). The IRES-hCD8 was PCR amplified from pSLQ1729 (gift from Wendell Lim). The backbone vector was linearized by digestion with PmeI and Zra1. All DNA fragments and the backbone vector were gel purified followed by a Gibson assembly reaction. Primers: 5′ homologous arm F: aaagtgccacctgacactcagtccLagatgtcgtgcgg. 5′ (SEQ ID NO:380) homologous arm R: tcacttgggcccctgggct (SEQ ID NO:381). IRES-human CD8 F: caggggcccaagtgaactagtaaaattcgcccctctccctc (SEQ ID NO:382). IRES-human CD8 R: cagctgcgagcaactttaacctgcaaaaagggagcagtuaaagg (SEQ ID NO:383). 3′ homologous arm F: agttgctcgcagctggggt (SEQ ID NO:384). 3′ homologous arm R: agctggagaccgttttttctgactgactggatacagggcat (SEQ ID NO:385).


Electroporation and clonal Tuj1-hCD8 CamES cells: 2.5 μg pSLQ1654-sgTuj1, 12.5 μg Tuj1-1RES-hCD8 template DNA in 100 μL. Nucleofector solution (Amaxa) were electroporated into 1×106 CamES cells using program A-030. Both plasmids were maxiprepped using the Endofree Maxiprep Kit (Qiagen). After 3 days of culture, sorted single cells were seeded in a 96-well plate with one cell per well. All clonal cell lines were analyzed using PCR and sequencing (Yu et al., 2015 Cell 16, 142-147).


Quantitative RT-PCR


Cells were harvested using Accutase (STEMCELL), and total RNA was isolated using the RNeasy Plus Mini Kit (QIAGEN), according to manufacturer's instructions. Reverse transcription was performed using iScript cDNA Synthesis kit (Bio-Rad). Quantitative PCR reactions were prepared with iTaq Universal SYBR Green Supermix (Bio-Rad). Reactions were run on a LightCycler thermal cycler (Bio-Rad). Primers used are summarized in Table 2.


High-Throughput Pooled Self-Renewal Screening


Screens were performed in two independent replicates. For both screens. 108 CamES cells were transduced with the pooled lentiviral library with an MOI of 0.3 on day −3. On day −2, CamES cells were treated with puromycin (Invitrogen, 1 μg/mL) in basal medium supplemented with LIF and 2i. After 48 hours of puromycin selection, cells were harvested as the day 0 sample. Another 108 CamES cells with the same treatment were passaged for 10 times under the basal medium supplemented with LIF and Doxycycline (Invitrogen, 100 ng/mL), without 2i. Cells were passaged every 3 days. After 30 days, cells were harvested, stained with mouse anti-SSEA1 (BD, 1:50), and FACS sorted using BD FACS Aria2 as SSEA1+ sample (FIG. 9A). For the individual sgRNA validation experiments, a similar protocol was used, except that the CamES cells were infected with a high MOL. Top 100 hits are summarized in Table 3.


High-Throughput Pooled Neural Differentiation Screening


The neural differentiation screens were performed as two independent replicates. For both screens, 108 CamES cells were seeded at 40,000 cells/cm2 density at day −1. Cells were transduced with pooled lentiviral sgRNA library with an MOI of 0.3 at day 0 in basal medium supplemented with LIF and 2i. At day 1, puromycin was added at 1 μg/mL in ES2N medium (Millipore) with Doxycycline for another 24 hours. Fresh ES2N medium was changed with Doxycycline every day starting day 2. On day 12, cells were harvested and sorted for hCD8+ and hCD8− cells using EasySep human CD8 isolation kit (STEMCELL Technologies) (FIG. 20F). For the individual sgRNA validation experiments, a similar protocol except that CamES cells were cultured in basal medium seeded at 5,500 cells/cm2 after puromycin selection and transduced with a high MOI was used. Top 100 hits are summarized in Table 4.


Flow Cytometry Analysis


Cells were harvested, washed, and adjusted to a concentration of 106 cells/mL, in ice cold PBS with 2% FBS. Cells were stained and incubated with diluted primary antibodies at 4° C. for 30 mins in Eppendorf tubes. After staining, cells were washed three times by centrifugation at 400 g for 5 mins and resuspended in 500 μL to 1 mL in ice cold PBS. Cells were kept in dark on ice and analyzed using BD Accuri C6 Cytometer.


Immunocytochemistry


Experiments were performed on cells seeded on plate (IBIDI) that had been coated with gelatin (0.1%) overnight at 37° C. Cells were washed twice with PBS, fixed in 4% Paraformaldehyde (Wako) for 15 mins at room temperature, permeabilized and blocked with 0.1% Triton X-100, 5% donkey serum in PBS (blocking buffer) for 1 h at room temperature. After three times wash with PBS, cells were incubated with primary antibodies. The following primary antibodies with indicated dilution in blocking buffer were used: Rabbit anti-Oct4 (Santa Cruz, 1:200), Rabbit anti-Nanog (Abcam, 1:500), Mouse anti-Tuj1 (Covance, 1:1000), Rabbit anti-Map2 (Cell Signaling Technology, 1:200), Rabbit anti-NeuN (Abcam, 1:1000), Rabbit anti-vGluT1 (Synaptic Systems, 1:200). Rabbit anti-GFAP (Dako, 1:500), Rabbit anti-Olig-2 (Millipore, 1:500) Cells were incubated with primary antibodies at 4° C. for overnight, then washed three times with PBS. After staining with corresponding secondary antibodies in blocking buffer for 1 hour at room temperature, cells were washed three times with PBS and stained with DAPI (Vector Labs) for 5 mins. Washed cells were examined using a Nikon Spinning Disk Confocal microscope with TIRF.


Electrophysiology


External bath solution for whole cell patch clamp recordings contains (in mM) 140 NaCl, 5 KCl, 2 cacl2, 2 MgC2, 20 HEPES, and glucose 10, pH 7.4. Action potentials were recorded current-clamp while sodium and potassium currents were recorded under voltage clamp. The internal pipette solution contained (in mM): 123 K-gluconate, 10 KCl, 1 MgCl2, HEPES, 1 EGTA, 0.1 CaCl2, 1 MgATP, 0.3 Na4GTP and glucose 4, pH 7.2. For current clamp experiments, currents were injected to keep membrane potentials around −65 mV, and action potentials were elicited by stepwise current injections.


Western Blot


Samples were collected with NP40 buffer with protease inhibitor and phosphatase inhibitor, and boiled in 1×SDS loading buffer, separated by SDS-PAGE gels, and transferred onto a nitrocellulose (NC) membrane, which was blocked with 5% non-fat dry milk and incubated with primary antibodies at 4° C. overnight. Rabbit anti-Jun antibody (Cell Signaling Technology, 1:1000), rabbit anti-β-actin antibody (Cell Signaling Technology, 1:5000), rabbit anti-phospho-Jun antibody (Cell Signaling Technology. 1:1000) were used as primary antibodies. HRP-conjugated donkey anti-rabbit IgG (Jackson ImmunoResearch, 1:5000) were used as secondary antibodies. Signals were detected using SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Scientific). β-actin was used as a loading control.


Differentiation of Mouse ES Cells Through Embryoid Body Formation


The sgKlf2- and sgMlxip-transduced CamES cells were trypsinized, plated on ultralow attachment plates, and cultured in Knockout DMEM supplemented with 10% FBS, without Doxcycline. After 6 days, aggregated cells were collected and seeded onto gelatin-coated plates. Four days later, cells were fixed and stained with markers for three germ layers.


RNA-Seq


CamES cells were transduced with individual sgRNAs, expanded, and differentiated after 2 days of puromycin selection in 6 well plates. Total RNA was purified using RNeasy Plus Mini Kit (Qiagen). Libraries were prepared using TruSeq Stranded mRNA LT Sample Prep kit (Illumina) according to the manufacturer's instructions. Samples were combined and purified using Ampure XP Agencourt beads (Beckman Coulter) and sequenced on a Hi-Seq 4000 (Illumina), to generate paired-end 150 bp reads. Each sample was sequenced to an average depth of 40 million reads.


Reads were mapped with kallisto (Bray et al., 2016 Nature biotechnology 34, 525-527) to the provided GRCm38 downloaded from bio math at Berkley. Normalized gene expression and differentially expressed genes were estimated using sleuth (Pimentel et al., 2016 bioRxiv) and DESeq2 (Love et al., 2014 Genome Biol 15, 550) for the self-renewal and neural data, respectively. Gene ontology analysis was performed using the Bioconductor package gage (Luo et al., 2009 BMC Bioinformatics 10, 161). AP-1 targets were defined as genes that have an AP-1 consensus binding motif (Biddie et al., 2011 Mol Cell 43, 145-155; Rauscher et al., 1988 Genes & Development 2, 1687-1699; Shaulian and Karin, 2002 Nat Cell Biol 4, E131-E136; Zhou et al., 2005 DNA Research 12, 139-150) within 500 bases upstream of the TSS.


Bioinformatic Analysis of sgRNA and Gene Hits


Data processing was conducted with custom scripts. Reads were mapped allowing for a mismatch for the first and last base pair of the spacer, which uniquely identified sgRNA.


Each sample was normalized by the total read count. This gave a frequency for each sgRNA:







f
sgRNA

=


sgRNA


counts




sgRNA


counts







For the self-renewal screen, in each condition (CamES cells and SSEA+ cells), frequency for each sgRNA was averaged across replicates. sgRNA with less than 20 counts at time 0 were discarded. The sgRNA enrichment (Esg) was calculated as the log 2 fold change from the average time 0 frequency to the average SSEA+ frequency.


For the neuronal differentiation screen, the paired Tuj1-hCD8+ and Tuj1-hCD8− were used to compute the enrichment scores. Specifically, frequencies were computed as above, sgRNA with less than 1 count in the Tuj1-hCD8− library was discarded. Enrichment for each sgRNA in each replicate was calculated as the log 2 fold-change from the Tuj1-hCD8− sample to the Tuj1-hCD8− libraries. Enrichment was averaged across replicates and used as Esg in subsequent analysis.


For each gene, an enrichment score (ESgene) was calculated from the sgRNA enrichment above, as follows. An unnormalized enrichment score (Egene.top3) was calculated by averaging Fsg for the 3 sgRNA with highest Esg. Egene.top3 was normalized by the distribution of nontargeting sgRNA as follows (Gilbert et al., 2014 Cell 159, 647-661).


Suppose a gene had N targeting sgRNA. Then, 10000 bootstrap samples of size N were drawn from the nontargeting sgRNA. For each sample of size N, Esample.top3 was computed as above. This gave an empirical estimate of the distribution of Egene.top3 if the all the sgRNA targeting that gene had been negative control sgRNA. For the final, normalized gene enrichment score (ESgene), the unnormalized enrichment score was divided by the 0.9 quantile of thie smpirical distribution:







ES
gene

=


E

gene
,

top

3





quantile
samples

(


E

sample
,

top

3



,
0.9

)






After ranking genes by ES, the most enriched sgRNA for each gene was selected to subsequently validate.


Results

Generation of CRISPRa Mouse Embryonic Stem Cells for Single sgRNA-Mediated Gene Activation and Cell Fate Control


Single sgRNA-mediated efficient endogenous gene activation is useful for large-scale pooled screens of sophisticated cell differentiation phenotypes (FIG. 1A). To establish such a highly efficient CRISPRa system, a reported CRISPRa system based on a polypeptide array, SunTag, was used (Tanenbaum et al., (2014). Cell 159, 635-646). A panel of individual or mixed sgRNAs was used to activate endogenous Brn2 (FIGS. 8A and 8B), a gene driving neuron formation in mouse ES cells (Sokolik et al., 2015 Cell Systems 1, 117-129). Mixed sgRNAs showed better activation compared to individual sgRNAs, whereas none of them induced neural differentiation.


The dCas9-SunTag system contains two components, a SunTag polypeptide domain fused to dCas9 and a VP64 transactivator domain fused to a single chain fragment variable (scFv). It was investigated whether their expression ratio was a key factor determining the activation efficiency. To facilitate fine-tuning their ratio, each component was cloned onto a lentiviral vector (FIG. 8A). The dCas9-Suntag fusion was expressed using a Doxycycline (Dox)-inducible promoter pTRE3G, and the SFFV promoter was replaced with an EF1a promoter for Tet-On 3G transactivator expression, as silenced SFFV activity was observed during ES cell differentiation. It was tested if promoters (PGK, EF1a, and SFFV) with different strengths driving scFv-VP64 fusion could lead to various activation efficiencies. It was observed the PGK promoter exhibited best endogenous Brn2 expression using both bulk and clonal cells (FIGS. 8C and 8D). By tuning the stoichiometry ratio between the two components, an enhanced CRISPRa (eCRISPRa) system with better activation of endogenous genes was obtained.


Twenty eight clonal cell lines with the PGK promoter were sorted, and one cell line (#5) showing best Brn2 activation was obtained, which was named CamES (CRISPR-activating mouse ES) cells (FIG. 8E). It was confirmed that this cell line could be stably cultured in ES cell conditions, while maintaining stem cell morphology and pluripotency and expressing eCRISPRa components over a long-term passage (FIG. 8F). It was determined if CamES cells allowed efficient activation of another gene, Asc11, using a single sgRNA. All 5 Asc11 sgRNAs showed strong activation (>10,000 fold) compared to using a control sgRNA (FIG. 1B). In addition, the activation efficiency varied among 5 sgRNAs, showing that a broad range of gene activation can be achieved.


It was next tested if this promoted neural differentiation (Chanda et al., 2014 Stem Cell Reports 3, 282-296). Using a single sgAsc11, robust differentiation of CamES cells into a neuronal phenotype was observed at day 8, which stained positively for the neuronal markers Tuj1 (class III beta-tubulin) and Map2 (Microtubule-associated protein 2) (FIG. 1C). All negative controls (CamES cells without sgRNA, CamES cells with non-target control sgRNA, and E14 mouse ES cells with sgAsc11) showed no neural differentiation morphology or neural marker expression, confirming neurons were indeed induced by eCRISPRa-mediated target gene activation. Another neural transcription factor, Neurog1 (Velkey and O'Shea, 2013 Dev Dyn. 242, 230-253), was tested with a single sgRNA, and similarly observed neuron formation (FIG. 1C). The cell line also showed efficient skeletal muscle differentiation using a single sgRNA activating MyoD1 (FIG. 1C) (Shani et al., 1992 Symp. Soc. Exp. Biol. 46, 19-36). These experiments together demonstrate that CamES cells allow single sgRNA-mediated endogenous gene activation and cell differentiation.


The CamES cells activating endogenous Asc11 were compared with overexpression of exogenous Asc11 cDNA for neural differentiation. A similar neuronal phenotype was observed using the two approaches (FIG. 1C). It was found that cells using two systems showed similar morphogenetic features characterized by the formation of neural rosettes after 6 days of differentiation and extensive neurite outgrowth between days 8-12 (FIG. 9H). Though overexpression of exogenous cDNA showed higher total Asc11 expression, CRISPRa-mediated endogenous Asc11 activation exhibited comparable or even better neural differentiation as seen by the fold change of other neural markers Brn2, Tuj1, and Map2 over a 10-day differentiation process (FIG. 1D). The data demonstrated that modulating endogenous genes is a better strategy for directed cell differentiation compared to cDNA expression. Taken together, these results showed that the CamES cells were able to induce high-level endogenous gene expression using only a single sgRNA for controlling cell fate.


CamES Cells Allow an eCRISPRa-Mediated Dropout Screen to Identify Transcription Factors that Maintain Self-Renewal


CamES cells were used as an unbiased screening platform to identify key factors among the set of all putative transcription factors that direct cell fate determination. Initial studies focused on factor contributing to the maintenance of ES cell self-renewal. An sgRNA library targeting all putative TFs (˜800) and a small set of lincRNAs (long intergenic noncoding RNAs) (˜50) was generated. Multiple sgRNA (60 sgRNAs per gene on average) were designed to target each gene to cover a broad range of gene activation. An additional 9,296 non-targeting negative control sgRNAs were included. Altogether, a library with a total of 55,336 sgRNAs was generated (FIG. 2A).


The sgRNA library was introduced into CamES cells as a gain-of-function screen to study stem cell self-renewal. Self-renewal of mouse ES cells in serum-free conditions requires simultaneous inhibition of the GSK3 and ERK pathways, which is typically achieved by using two small molecule inhibitors (2i) (Ying et al., 2008 Nature 453, 519-523). It was determined whether activating transcription factors could functionally rescue the loss of 2i to support self-renewal over a long period of time. To do this, the lentiviral sgRNA library was transduced into CamES cells, cultured the transduced cells in −2i medium, and passaged every three days (FIGS. 2A and 9A). For library transduction, MOI (multiplicity of Infection) was kept below 0.3 such that the majority of cells were transduced only with a single sgRNA. Over half of cells quickly lost pluripotency markers (SSEA1 and Oct4) and initiated spontaneous differentiation within two passages post library transduction (FIGS. 28 and 2C). Repeated passaging of cells removed most differentiated cells, while the SSEA1+ population gradually increased over time, providing a dropout screen. After 10 passages, SSEA1+ cells were sorted using FACS (flow cytometry activated sorting), which further increased SSEA1+ cell percentage to 96.9% (FIG. 2B). The sorted cells showed mouse ES cell morphology and were Oct4+, confirming maintenance of pluripotency (FIG. 2C).


To identify genes whose gain-of-function maintains self-renewal of ES cells, deep sequencing was used to read out the sgRNA representation (FIG. 2A). The overall distribution of sgRNAs from samples collected from the original plasmid library, CamES cells with sgRNA library at day 0, and sorted SSEA1+ cells after passage 10 were compared (FIG. 9A). Only a small fraction of sgRNAs were detected after sorting compared to the plasmid library and day 0 samples (FIGS. 2D and 2E), indicating an efficient selection process.


Gene-level enrichment scores were obtained by considering the enrichment of the top three sgRNAs targeting each gene and normalizing by the empirical distribution of the non-targeting sgRNA. A good correlation was obtained between both sgRNA enrichment and gene-level scores across independent library transductions (FIG. 9B).


Validation of Top Enriched sgRNAs Promoting Long-Term Maintenance of Self-Renewal in ES Cells


Using the non-targeting sgRNA normalized gene scoring method, all detected sgRNAs and their targeting genes were ranked (FIG. 10). For each gene, the majority of designed sgRNAs were depleted, implying either most genes had no function in self-renewal or the depleted sgRNAs were unable to sufficiently activate gene expression for functional genes. Major pluripotency factors such as Nanog, Sox2, Klf4, and Oct4 appeared as top enriched hits, consistent with previous works showing their critical roles in maintaining stem cell self-renewal (Chambers et al., 2003 Cell 113, 643-655; Masui et al., 2007 Nat. Cell Biol. 9, 625-635; Mitsui et al., 2003 Cell 113, 631-642; Niwa et al., 2000 Nat. Genet. 24, 372-376; Zhang et al., 2010 J. Biol. Chem. 285, 9180-9189).


The most enriched sgRNAs of the top 18 genes were selected for validation (FIG. 3A). The 18-gene list contained pluripotency genes (Klf2 and Id1) (Jiang et al., 2008 Nat. Cell Biol. 10, 353-360; Yeo et al., 2014 Cell Stem Cell 14, 864-872; Ying et al., 2003a Cell 115, 281-292), lineage specific genes (Etv2 and Isl2) (Koyano-Nakagawa et al., 2012 Stem Cells 30, 1611-1623; Thaler et al., 2004 Neuron 41, 337-350), and one lincRNA gene (4930555M17Rik). For validation, 18 individual sgRNAs were constructed and transduced into CamES cells. Six individual non-targeting sgRNAs were included as negative controls. None of the negative control sgRNAs was able to maintain stem cell self-renewal in −2i medium condition beyond passage 2.


Quantitative PCR results confirmed activation of target genes by each sgRNA (FIG. 3B). All 18 sgRNAs maintained stem cell morphology and expressed pluripotency markers Oct4, Nanog, and SSEA1 after culturing in −2i condition over 30 days (FIG. 3C). Notably, 9 out of 18 validated genes (Mlxip, Etv2, Zc3h11a, Zfp36, Isl2, Tfeb, Fig1a, Hsf2, and Hoxc11) are not previously annotated for maintenance of pluripotency and self-renewal. The high rate of validated true hits indicates that the screening method provides an effective dropout screen of genes promoting self-renewal and maintaining pluripotency.


Deep Sequencing and Functional Validation Confirmed the Function of Positive Hits for Self-Renewal Maintenance


sgMlxip was chosen to explore its role in promoting self-renewal. The MLXIP protein forms a heterodimer with MLX (Max-like protein X) and modulates transcriptional regulation in response to cellular glucose levels (Stoltzman et al., 2008 Proc. Natl. Acad. Sci. USA 105, 6912-6917), and its function related to ES cell self-renewal is unknown.


The developmental potential of CamES +sgMlxip cells cultured in −2i conditions for generating the three germ layers was evaluated using CamES +sgKlf2 as a comparison. After removal of Dox to switch of eCRISPRa activity, spontaneous differentiation of both samples in serum-based medium via embryoid body formation generated cells representative of ecdoderm (Tuj1+), mesoderm (SMA+), and endoderm (Sox17+) lineages (FIG. 4A). This confirmed the differentiation potential of these cells cultured in −2i medium.


RNA-seq analysis was performed on CamES +sgMlxip and CamES +sgKlf2 cells cultured in −2i conditions, and compared to CamES cells cultured with or without 2i. Both samples exhibited high mRNA expression for most pluripotency genes and low expression for most lineage specific genes, with a pattern similar to ES cells cultured in 2i medium and distinct from cells without 2i (FIG. 11A), indicating that the CamES +sgMlxip and CamES +sgKlf2 cells maintained a similar gene expression profile as the undifferentiated stem cells in 2i medium.


The 2i cocktail contains two small molecules that maintain pluripotency by inhibiting GSK3 (CHIR99021) and MEK1/2 (PD0325901) (Ying et al., 2008 Nature 453, 519-523). Via activation of the Wnt pathway and inhibition of the MAPK pathway, the 2i molecules inhibit differentiation while promoting proliferation of ES cells. The RNA-seq gene expression profiles for the Wnt and MAPK pathways were compared among the samples. For the Wnt pathway genes, CamES-sgMlxip cells correlated well with CamES cells in +2i medium (R2=0.81), while poorly with CamES cells in −2i medium (R2=0.35) (FIG. 4B). A different ratio distribution of corresponding gene expression between +sgMlxip/+2i and +sgMlxip/−2i was found (FIG. 11B) (Zhang et al., 2013 Stem Cells 31, 2667-2679).


Similar results were observed for the MAPK pathway: there was a good correlation between CamES +sgMlxip and CamES +2i samples (R2=0.91), compared to a poor correlation between CamES-sgMlxip and CamES-2i (R2=0.59). Gene expression related to the MAPK pathway showed a similar pattern at the transcript level in both CamES +sgMlxip and CamES +2i cells. For example, inhibition of Jun, a major transcription factor of the MAPK pathway, was observed in both CamES +sgMlxip and CamES +2i cells, as well as inhibition of other MAPK related genes (EGF, FAS, FGF, PDGF and TGFb) (FIG. 11C). These results together indicate that CamES +sgMlxip cells possess similar Wnt and MAPK pathway activities as CamES +2i cells.


The PI3K pathway, which is important in the regulation of ES cell pluripotency and proliferation (Yu and Cui, 2016 Development 143, 3050-3060), was also investigated. The CamES +sgMlxip cells also showed a similar expression pattern as CamES +2i cells (FIG. 4D). For example, PI3K-related genes such as Fos, Mapkapk2, Gadd45b, and Gadd45g were downregulated in both CamES +sgMlxip and CamES +2i cells, while Ccnd1, Cdk2, Cdk9, and Sod2 were similarly upregulated (FIG. 4D). The PI3K gene expression further confirms the similarity between CamES +sgMlxip cells and ES cells cultured in 2i medium.


In summary, both functional tests and gene expression indicate that true positive hits identified using the CRISPRa screening method maintain self-renewal of stem cells.


Engineered CamES Cells Allow an eCRISPRa-Mediated Non-Dropout Screen to Identify Key Factors Promoting Neural Differentiation


A eCRISPRa gain-of-function screen was performed to identify TFs that promote the dynamic, complex neural differentiation process. Transcription factor-mediated lineage specification is heterogeneous and stochastic: unlike in the dropout screen, a desired differentiated cell type may only represent a small subset of the total population; and spontaneous differentiation may generate the desired cell type even when a non-functional factor is present.


To address these challenges, a clonal reporter CamES (Tuj1-hCD8 CamES) cell line carrying a biallelic human CD8 (hCD8) gene cassette appended downstream to endogenous Tuj1 via an IRES (internal ribosome entry site) was established (FIGS. 5A and 12A). Upon transduction with sgAsc11 and Dox induction, differentiated Tuj1-hCD8 CamES cells expressed both Tuj1 and hCD8 (Figure S5B). MACS (magnetic-activated cell sorting) was used to isolate hCD8+ and hCD8− cells, and observed hCD8+ cells expressed a higher level of neural markers (Tuj1 and Map2) compared to hCD8− cells and unsorted cells (FIG. 5B). This demonstrates that sorted hCD8+ cells are positively correlated with differentiated neuron cells.


The parameters of cell density and differentiation time for screening, which affected neural differentiation efficiency, were determined. 40,000 cells/cm2 was chosen as the seeding density, as Tuj1-hCD8 CamES cells transduced the sgRNA library maximized the seeding cell number and showed detectable neural marker expression Tuj1 and Map2 (FIG. 12C). Day 12 was chosen as the sample collection time point, when differentiated cells showed neuronal morphology and expression of neural markers (FIGS. 12D and 12E). With these conditions, MACS was performed to sort and isolate Tuj1-hCD8 positive and negative populations (FIGS. 5A and 12F).


Deep sequencing was used to identify sgRNAs for transcription factors that enhance neural differentiation. The overall distributions of sgRNA from samples collected from plasmid library, sorted Tuj1-hCD8+ and Tuj1-hCD8− cells was compared (FIGS. 5A and 12F). In contrast to the self-renewal screen, a larger fraction of sgRNAs were detected after sorting compared to the plasmid library (FIGS. 5C and 5D). In addition, Tuj1-hCD8+ and Tuj1-hCD8− cells exhibited similar sgRNA depletion.


Stem cell differentiation is affected by stochastic factors. In these experiments, activation of Asc11, a powerful neural inducer, led to only 47.6% of cells being Tuj1-hCD8+(FIG. 12B). In addition, the effects of spontaneous differentiation and less proliferative capacity of desired differentiated cells may affect the overall screening outcome. Thus, most sgRNAs in the non-dropout neural differentiation screen cannot be depleted as strongly as in the dropout screen (FIGS. 5C and 5D). It was contemplated that normalizing positive population against the negative population would more accurately identify the TFs that drive neural differentiation. Thus, paired comparative analysis of Tuj1-hCD8+ and Tuj1-hCD8-cell populations was used to rank the most enriched genes and their sgRNAs.


Validation of Top Enriched sgRNAs Promoting Neural Differentiation


Among the ranked gene hits, the top 20 most effective sgRNAs were chosen for validation (FIGS. 13 and 6A). The 20-gene list contained known neuron-driving transcription factors (Neurog1, Brn2, and Klf12) (Theodorou et al., 2009 Genes Dev. 23, 575-588), and genes that were not previously linked to neural early development including epigenetic regulators (Ezh2, Suz12) and signaling proteins (Jun).


Twenty individual sgRNAs for the top gene hits, as well as 6 non-targeting negative control sgRNAs were tested, Quantitative PCR results showed activation (10 to 10,000 fold) of 19 genes out of 20 tested by their cognate sgRNA (FIG. 6B). Using Tuj1-hCDg CamES cells, Tuj1-hCD8 expression was measured after 12 days of differentiation in basal medium by FACS. All 20 sgRNAs transduced-cells showed expression of hCD8 in a significant percentage of cells (10-50%), while all 6 negative control sgRNAs or cells without a transduced sgRNA showed no hCD8+ cells (FIG. 6C).


Another neuronal marker, NCAM, was used to test differentiation of CamES cells. Similarly, all 20 sgRNAs generated NCAM+ cells (20-60%) after 12 days of differentiation in basal medium, and all negative control sgRNAs showed much less NCAM+ cells (below 10%) (FIG. 6D). Positive immunostaining of neural marker Map2 in all 20 sgRNAs differentiated cells was observed (FIG. 6E). One sgRNA targeting Arnt failed to activate target expression at the time it was assayed for activation. However, this sgRNA was able to induce neural differentiation, which may be due to a longer latency of activation, activation of nearby regulatory elements (e.g., a cis-acting lincRNA), or off-target effects.


Activation of different endogenous genes induced different neural subtypes (FIG. 6F). Most genes induced a high percentage cells expressing neuron markers (Tuj14+, Map2+, and NeuN+). Some hits such as Nr2f1, Nr3c1, and Tcf15 induced more cells with a positive astrocyte marker GFAP. The oligodendrocyte marker Olig2 and the Glutamatergic neuron marker vGluT1 were assayed, and varying levels of expression across the top 20 sgRNAs was observed.


Functional Test and Transcriptome Profiling Confirmed sgJun-Induced Neural Differentiation


The role of Jun for promoting neural differentiation was examined. Jun has not previously been tied to early neural development. It was observed that sgJun could induce functional neurons that were able to generate action potentials upon current injection (FIG. 7A). RNA-seq was performed to profile the transcriptome of CamES +sgJun cells at various time points (day 0, 2, 5, and 12) (FIG. 14A). Cells were analyzed at different time points using PCA (Principal component analysis), and four distinct clusters that correlated with a dynamic process of neural differentiation were identified (FIG. 7B). It was found that the pluripotency genes were consistently downregulated starting at day 2 after sgJun transduction, and neural marker genes were upregulated throughout the process (FIG. 7C). Meanwhile, day 12 cells were highly enriched for Gene Ontology (GO) terms associated with neural fate and functions, such as axonogenesis and neuron projection guidance (FIG. 7D).


Jun regulates downstream target genes through its phosphorylation and the AP-1 complex formation with c-Fos (Rauscher et al., 1988 Genes Dev. 2, 1687-1699). It was confirmed that endogenous Jun induced by sgJun also was phosphorylated (FIG. 7E). Analysis of AP-1 target genes showed that they were activated at days 5 and 12 (FIG. 7F). It was also found that expression of both FGF ligands and receptors (Fgf5, Fgf8, Egf9, Fgfr1, Fgfr2, and Fgfr3) were rapidly increased at day 2 (FIG. 14B). Meanwhile, key genes of the Wnt pathway (Wnt3a, Wnt6, Wnt10b, and β-catenin) were also upregulated in sgJun-induced cells at days 5 and 12 (FIGS. 7G and 14B).


Previous work reported that overexpression of β-catenin in mouse ES cells induce neurogenesis (Otero et al., 2004: Development 131, 3545-3557). The excessive expression of Wnt genes in the cells indicates that the Wnt pathway plays an important role in sgJun-induced neurogenesis (FIG. 14C). Furthermore, since MAPK, the downstream pathway of FGF, activates Jun via phosphorylation, sgJun-activated endogenous Jun likely maintains its stable expression and sustained activity via a FGF/MAPK positive feedback loop (FIG. 14C), which is consistent with works showing the important role of FGF/MAPK pathway in neural fate commitment of ES cells (Chen et al., 2010 Journal of Biomedical Science 17, 1-11; Ying et al., 2003b Nat. Biotechnol. 21, 183-186). Together, modulation of these pathways through endogenous Jun activation indicates a functional role of Jun for induced neural differentiation of mouse ES cells.


Paired-Analysis is Useful in the Non-Dropout Cell Differentiation Screen


In dropout screens, cells that are negative for the phenotype of interest are almost completely removed from the selected population. Therefore, one can calculate enrichment of the selected population relative to initial pool of sgRNAs to infer functional genes (FIG. 14D). In non-dropout screens, the phenotype of interest may arise stochastically (FIG. 14D). If activation of a gene confers a proliferative advantage, then even if the probability of the phenotype of interest is small (spontaneous differentiation), with more cells it would appear that the gene is enriched in the selected population when compared to the initial population. In fact, a high correlation of enriched genes between the positive and negative Tuj1-hCD8 populations was found (FIG. 14E). The top hits relative to initial sgRNA pool in both populations contain many proliferative genes, but few are related to neural phenotype (FIG. 14F). Those proliferative genes disappear, and several known neural genes are identified when the Tuj1-hCD8+ population was normalized against Tuj1-hCD8− population. The final rankings show little correlation with the enrichment in the positive population (FIGS. 14E and 14F), indicating that these proliferative genes were mostly false positives.









TABLE 1 







Primers used to construct individual sgRNAs.









Primers
sgRNA sequence
SEQ ID NO












Forward
gtatcccttggagaaccaccttgttgnnnn
386


primer
nnnnnnnnnnnnnnnngtttaagagctaag




ctggaaacagca






Reverse
gatcctagtactcgagaaaaaaagcaccga
387


primer
ctcggtgccac






sgBrn2-1
gggagagagcttgagagcgc
388





sgBrn2-2
gcccaggcgcgtgccgctgcgag
389





sgBrn2-3
gcggtatccacgtaaatcaaa
390





sgBrn2-4
gctccggtctgggaggttgctag
391





sgBrn2-5
gcaccaatcactggctccggtc
392





sgBrn2-6
gactgagaagactgggcgcccg
393





sgBrn2-7
gaatctgaatcgctgagcta
394





sgBrn2-8
gaggccggggacagaagaga
395





sgBrn2-9
gagcgcctggaccgaccgcc
396





sgBrn2-10
gaaatcgtagtcctgctggctgact
397





sgBrn2-11
gtgtgtgtgttcctaggagaa
398





sgBrn2-12
gtctagctttggctctcgttct
399





sgAscl1-1
ggctgggtgtcccattgaaa
400





sgAscl1-2
gaatggagagtttgcaaggag
401





sgAscl1-3
gtctggagggaaaagtgtctt
402





sgAscl1-4
gagttactgcggagagaagaaa
403





sgAscl1-5
gagggaaaggctgctcagaca
404





Neurog1
ggctgctgggagttgtgcaa
405





Myod1
ggtctccagagtggagtccg
406





Nanog
ggaagtttcaggtcaagtgg
407





Mlxip
ggcactccacgtggtgggta
408





Sox2
gcctttgcaccctttggatg
409





Klf2
gagggtaatagagagaggga
410





Etv2
gttcgtggctcacctctggc
411





Klf4
gtgcgtatgcgagagagggc
412





Zc3h11a
gcattatcccttagatgcca
413





Hsf2
ggattcgcatggaaagggtt
414





Hey2
ggtgtgtctagacaggagac
415





ZFP36
ggttgtgtacgaccaactgg
416





Isl2
gagaggagaaaggagagggt
417





Tfeb
gacatgggcaataacagggt
418





Nobox
gcctgcttgatggaaaggta
419





Figla
ggcatctgaaaccaggagga
420





Bcl6
ggtgggaagagagagagaga
421





Id1
ggctcaagaactgaaagggt
422





Hoxc11
ggaggagagagagagagggt
423





M17Rik
gctgataaggtagaaaggta
424





Foxo1
ggttcaggatgagtggaggc
425





Nr2f1
ggagccaagagaagggctgc
426





Rb1
ggctacatacagtctaggtt
427





Pou3f2
gaggaaggactgagaagact
428





Ezh2
ggttcctttcggcaccttgg
429





Maz
ggaaggcatctctgggaagc
430





Nr4a1
gctaacgtgtagtctcgttg
431





Arnt
gtttgaaactccaggttaat
432





Dmrt3
gaggagttgatagttgttcc
433





Sin3b
gtgcaagaattcagtccaca
434





Jun
gagaataaagtgttgtgccg
435





Suz12
gaagctctcaaggcgagaaa
436





Klf12
gatttgaccatctcttgccg
437





Nr3c1
gtcactgctctttaccaaga
438





Tcf15
gggatatgctcactttggga
439





Zeb1
gaaggaactaagtttcttct
440





Nr6a1
gatgacggtcggccgtagtt
441





Mecom
gattctcaggcagggctcta
442





Hoxc8
gctctttcctctaacagccc
443
















TABLE 2







Primers used for quantitative PCR.











SEQ


Gene name
Primer sequence
ID NO





RiboL7 F
accgcactgagattcggatg
444





RiboL7 R
gaaccttacgaacctttgggc
445





Ascl1 F
aagaagatgagcaaggtggagacg
446





Ascl1 R
gagatggtgggcgacagga
447





Brn2 F
tttcctcaaatgccctaagc
448





Brn2 R
ggaggggtcatccttttctc
449





Tuj1 F
agtcagcatgagggagatcg
450





Tuj1 R
agtcccctacatagttgccg
451





Map2 F
agcactgattgggaagcact
452





Map2 R
caattcaaggaagttgtaaagtagtgaag
453



tttg






Nanog F
aaccaaaggatgaagtgcaagcgg
454





Nanog R
tccaagttgggttggtccaagtct
455





Mlxip F
aagctcttcgagtgcatgac
456





Mlxip R
ttgttgagccggatcttgtc
457





Sox2 F
acaagagaattgggaggggt
458





Sox2 F
ttttctagtcggcatcaccg
459





Klf2 F
ccttcggtcttttcgagga
460





Klf2 R
cttggcctccagcagctc
461





Etv2 F
acgtagaaggctgctggaa
462





Etv2 R
tgtccagtctcgcgacca
463





Klf4 F
aaaagaacagccacccacac
464





Klf4 R
cgtcccagtcacagtggtaa
465





Zc3h11a F
catcggttcggtaaagtttctgt
466





Zc3h11a R
ccactcagccacagaaatcg
467





Hsf2 F
tgaagcagagttccaacgtg
468





Hsf2 R
ttgctcatccaagaccagaa
469





Hey2 F
tgaagatgctccaggctaca
470





Hey2 F
tctgtcaagcactctcggaa
471





Zfp36 F
tctcttcaccaaggccattc
472





Zfp36 R
tatgttccaaagtcctccga
473





Isl2 F
agtcgaggtgcagacgtac
474





Isl2 R
ttgcctagggagcctgact
475





Tfeb F
caacagtgctcccaacagtc
476





Tfeb R
ttgatgtagcccagcacgc
477





Nobox F
acggagaagctctgcaagaa
478





Nobox R
ttgtcttgatcatcctggatgg
479





Figla F
actcggctgtgttctggaag
480





Figla R
tgggtagcatttcccaagag
481





Bcl6 F
ttggactgtgaagcaaggca
482





Bcl6 R
actccggaggcgattaagg
483





Id1 F
ctgaacggcgagatcagtg
484





Id1 R
tttcctcttgcctcctgaag
485





Hoxc11 F
aacacgaatcccagctcgt
486





Hoxc11 R
ggatctggaatttcgaataagggc
487





M17Rik F
cctgagactaatactgtatgatttggaaa
488





M17Rik R
cacaggtttagagataaccaaagtgg
489





Foxo1 F
gagtggatggtgaagagcgt
490





Foxo1 R
tgctgtgaagggacagattg
491





Nr2f1 F
ccaacaggaactgtcccatc
492





Nr2f1 R
attcttcctcgctgaaccg
493





Neurog1 F
cggcttcagaagacttcacc
494





Neurog1 R
ggcctagtggtatgggatga
495





Rb1 F
gcagcatcttgattctggaac
496





Rb1 R
tgtcaagttggcttccacttt
497





Pou3f2 F
tttcctcaaatgccctaagc
498





Pou3f2 R
ggaggggtcatccttttctc
499





Ezh2 F
acttctgtgagctcattgcg
500





Ezh2 R
cgactgcattcagggtcttt
501





Maz F
gtggcaagatgctgagctc
502





Maz R
cattggacaaacctcaccagtac
503





Nr4a1 F
gctagaaggactgcggagc
504





Nr4a1 R
attgagcttgaatacagggca
505





Arnt F
ggcgactacagctaacccag
506





Arnt R
gccctctgtacaacagctcc
507





Dmrt3 F
agcgcagcttgctaaacc
508





Dmrt3 R
gcttttgacaacatctgggg
509





Sin3b F
agagttcggacagttcctgc
510





Sin3b R
tcctcattcttctgcccact
511





Jun F
gaaaagtagcccccaacctc
512





Jun R
aatcagacaggggacacagc
513





Suz12 F
tcgaaattccagaacaagca
514





Suz12 R
tgtggaagaaaccggtaaatg
515





Klf12 F
ccataaagaatctcagcgcc
516





Klf12 R
ccatatcggggtagttgtgg
517





Nr3c1 F
ggacaacctgacttccttgg
518





Nr3c1 R
ctggacggaggagaactcac
519





Tcf15 F
tctgcaccttctgtctcagc
520





Tcf15 R
aaccagggatccaggttcat
521





Zeb1 F
acagagaatggaatgtatgcatgtg
522





Zeb1 R
agattccacactcgtgaggc
523





Nr6a1 F
gcaacggtttctgtcaggat
524





Nr6a1 R
ggttcgttgttcagctcgat
525





Mecom F
acagcatgagatccaaaggc
526





Mecom R
ttatcccatctgcatcagca
527





Hoxc8 F
aaatcctccgccaacactaa
528





Hoxc8 R
tgtaagtttgtcgaccgctg
529
















TABLE 3







Top 100 gene hits from CRISPRa self-renewal screen.









Rank
Gene name
Enrichment score












1
Nanog
6.436538099


2
Sox2
5.110480488


3
Klf4
4.679609611


4
Bc16
4.250485879


5
Tfeb
4.160094948


6
Mlxip
3.992616854


7
Klf2
3.911099626


8
Etv2
3.644806172


9
Isl2
3.468873873


10
Hey2
3.189713541


11
Zfp36
2.929649816


12
Zc3h11a
2.83067826


13
Sox18
2.813521887


14
Nobox
2.627399442


15
Figla
2.607875769


16
4921504A21Rik
2.594074135


17
Hsf2
2.552027639


18
Hoxc11
2.518020583


19
Tfcp211
2.460616651


20
Spi1
2.383834061


21
Id1
2.277631872


22
Tlx2
2.237444329


23
4930555M17Rik
1.890123174


24
Nov
1.874188087


25
Klf5
1.852149928


26
Crygf
1.829064836


27
Sox11
1.807058979


28
Atf5
1.774675631


29
Esrrg
1.746829472


30
Tsn
1.744364085


31
Thrb
1.602037631


32
Nfe212
1.593264465


33
Lhx1
1.548863185


34
Pou5fl
1.518892786


35
Ebfl
1.452433199


36
Dlx5
1.403820123


37
Mycl
1.371065103


38
Atfl
1.36137151


39
Tftdp1
1.326446848


40
Irx6
1.194061551


41
Zfp2
1.191847857


42
Nfatc1
1.188011066


43
Crem
1.049272101


44
Nr3c1
1.042323412


45
Pax5
1.024334324


46
Foxfl
1.00419091


47
Snai1
0.960150521


48
Zfp423
0.947760908


49
Esrrb
0.904004441


50
Pbx2
0.899430618


51
Foxd4
0.895608808


52
Sox1
0.878521398


53
Lbx1
0.841046411


54
Mecom
0.820757135


55
Ncor2
0.780231219


56
Nr0b2
0.752404477


57
Trp53
0.743632306


58
Lmo3
0.732198452


59
En1
0.731989985


60
Rfx1
0.725576385


61
Maz
0.700348134


62
Alx4
0.686172162


63
Nr1d2
0.679722158


64
Tcf15
0.620553011


65
Egr3
0.617223131


66
Nr5a1
0.614144289


67
Tfe3
0.60710143


68
Spdef
0.593267507


69
Tcfl2
0.564881228


70
Dlx2
0.541542994


71
Vezfl
0.534712227


72
Gata1
0.504194994


73
Arf6
0.491842327


74
Sox21
0.477561748


75
Lmx1a
0.447377739


76
Pou4f2
0.410773196


77
Nr1b2
0.406668822


78
Fox11
0.394295617


79
Stat5b
0.369982068


80
Evx2
0.360115239


81
Sox5
0.348850095


82
Hivep3
0.324844194


83
Tfap2a
0.303852954


84
Glis3
0.277004435


85
Mafk
0.265635614


86
Hoxb5
0.256534563


87
Myf5
0.252944449


88
Nkx2-5
0.251102596


89
Lhx6
0.244502182


90
Foxs1
0.242003106


91
Rnps1
0.2417908


92
Mitf
0.229103445


93
Drd1a
0.21477535


94
Lmx1b
0.191984237


95
Vax2
0.183188363


96
Hoxa11
0.1661187439


97
Otp
0.163494265


98
Mxd4
0.160929842


99
Plag11
0.137545433


100
Smad5
0.128584689
















TABLE 4







Top 100 gene hits from CRISPRa neural differentiation screen.









Rank
Gene name
Enrichment score












1
Foxo1
2.49122811


2
Nr2fl
2.448600182


3
Neurog1
2.43849068


4
Rb1
2.435300527


5
Pou3f2
2.385360453


6
Ezh2
2.380072461


7
Maz
2.361103604


8
Nr4a1
2.351837703


9
Arnt
2.317336958


10
Dmrt3
2.304207908


11
Sin3b
2.280599668


12
Jun
2.277732884


13
Suz12
2.276236754


14
KIfl2
2.269476929


15
Nr3cl
2.249983644


16
Tcfl5
2.229200027


17
Zeb1
2.221200461


18
Nr6a1
2.208496165


19
Mecom
2.207944981


20
Trim24
2.206262504


21
Hoxc8
2.184103377


22
Foxk1
2.171388615


23
2410080102RiK
2.171161939


24
Nr4a3
2.168779599


25
Trp73
2.16579857


26
Foxs1
2.162897697


27
Ikzf3
2.15938851


28
Nkx2-6
2.15063949


29
Sox11
2.140964961


30
1110054M08Rik
2.139005342


31
Crem
2.133968618


32
Meis3
2.131453549


33
Bmyc
2.130409666


34
Epas1
2.129339686


35
Nr2f6
2.128397081


36
Nacc1
2.120269011


37
Bsx
2.120136772


38
Foxd3
2.114601186


39
Myog
2.107435864


40
Smad3
2.105254748


41
Wt1
2.091731056


42
Taz
2.091306567


43
Smad7
2.071136269


44
Stra13
2.06971649


45
Hoxc4
2.062634453


46
Pou3f3
2.058607569


47
Zbtb12
2.051837502


48
Atf5
2.042025795


49
Gtf2a2
2.041587014


50
Pura
2.040735147


51
Snai1
2.040229657


52
Ncor1
2.038396405


53
Pcbp2
2.036271048


54
E2f2
2.028758908


55
Nfkbib
2.023153101


56
Gli2
2.021010016


57
Nr0b1
2.020715359


58
B230110C06Rik
2.016733057


59
T
2.014396786


60
Runx3
2.011724145


61
Rxra
2.011600497


62
Mafk
2.009964981


63
Foxnl
2.006315586


64
Smad4
1.999197443


65
Meis2
1.998728368


66
Hoxa1
1.996287157


67
Zic1
1.992579239


68
Sebox
1.99248237


69
Nfyc
1.983084664


70
Lmx1b
1.980716237


71
Lhx3
1.979175342


72
Hmx2
1.978886945


73
Arf6
1.977331424


74
Nfatc3
1.975872129


75
Neurod6
1.973516686


76
Smarca4
1.972359038


77
Twist1
1.971479015


78
Gzfl
1.963483117


79
Hoxcl0
1.962998475


80
Tbx4
1.962626034


81
Npas2
1.962608209


82
Ctbp1
1.960624385


83
Gcm2
1.960206991


84
Is12
1.957324105


85
Arid5a
1.956887379


86
Lef1
1.955552772


87
RP24-399L6.2
1.953337042


88
Smad5
1.949029539


89
Lbx1
1.948838891


90
Pax3
1.945680745


91
Foxj1
1.944149198


92
Tbx5
1.943975816


93
Barh11
1.943598679


94
Hoxd11
1.9410811


95
Pou1fl
1.939557398


96
Klf3
1.938997548


97
Pcbp1
1.937292841


98
Evx2
1.935442174


99
Irx5
1.934100096


100
Nkx6-3
1.928635054









Example 2

Quantitative Genetic Interaction Mapping Using CRISPRI


A. Methods

The vectors used in this study were constructed by using standard molecular cloning techniques, including PCR, restriction enzyme digestion and ligation. Custom oligonucleotides were from Integrated DNA Technologies. E. coli strain D1H5a was used for the transformation and selected by 100 μg/ml of carbenicillin, or 50 μg/ml of Kanamycin. DNA was extracted and purified using Plasmid Mini or Midi Kits (Macherey-Nagel). Sequences of the vector constructs were verified with Quintarabio's DNA sequencing service.


Construct Design


The dCas9-KRAB plasmid and sgRNA expressing plasmid are previously described vectors (Du, D. & Qi, L S. Cold Spring Harbor Protocols 2016, (2016)). The SpeI and Sail sites were mutated in the sgRNA expression plasmid. The single sgRNA expression plasmids were cloned as described previously with minor modifications. Briefly, the plasmids were cloned by PCR from an existing sgRNA template using a unique 50 primer containing the desired protospacer (N is the protospacer) and a common primer with (SpeI and SalI sites). The PCR products and the lentiviral mice 16 (mU6) based sgRNA expression vector were digested with BstXI and XhoI and the two pieces of DNA were ligated together. The single vector was introduced unique SpeI and SalI sites to enable the insertion of the mU6-sgRNA expression cassettes.


To construct a lentiviral vector for mU6-driven expression of combinatorial gRNAs, mU6-sgRNA expression cassettes were prepared from digestion of the storage vector with XbaI and XhoI enzymes, and inserted into the target single sgRNA expression vector backbone, using ligation via the compatible sticky ends generated by digestion of the target single sgRNA expression vector with SpeI and SalI enzymes.


The Single Library Cloning


A library of 336 sgRNAs targeting a set of 112 genes encoding epigenetic regulators (3 sgRNAs/gene) was constructed using top prediction hits from the CRISPR-ERA algorithm (Liu, H, et al Bioinformatics 31, 3676-3678 (2015)). The library also included 30 non-targeting negative control sgRNAs. sgRNAs containing XbaI, XhoI, SpeI, and SalI restriction sites, which were used for double sgRNA library construction, were excluded. Individual oligos encoding sgRNAs were synthesized in a 384-well format, pooled, and the single sgRNA expression vectors were constructed individually by ligating the oligos into a common sgRNA lentiviral vector with SpeI and SalI sites. After sequencing validation, 336 sgRNA constructs were manually mixed with equal amount for the single sgRNA screens and double sgRNA library construction. The sgRNA sequence and corresponding genes are listed in Table 5.


Combinatorial sgRNA Library Pool


To generate the pooled storage vector library, the 336 single sgRNA expression vectors were mixed equally. Pooled lentiviral vector libraries harboring combinatorial gRNA(s) were constructed with the same strategy as for the generation of combinatorial sgRNA constructs described above, except that the assembly was performed with pooled inserts and vectors, instead of individual ones. Briefly, the pooled mU6-sgRNA inserts were generated by a single-pot digestion of the pooled storage vector library with XbaI and XhoI. The destination lentiviral vectors were digested with SpeI and SalI. The digested inserts and vectors were ligated via their compatible ends (i.e., XbaI+SalI & XhoI+SpeI) to create the pooled double sgRNA library (336×336=112,896 total combinations) in the lentiviral vector. The lentiviral sgRNA library pools were prepared in DHS ultra-competent cells (Agilent Technologies) and purified by Plasmid Midi Kit (Macherey-Nagel). The sequences of the deep sequencing is listed in Table 6.


Cell Culture


1HEK293T and HEK293 cells were cultured in DMEM supplemented with 10%/6 fetal bovine serum, 100 units/ml streptomycin and 100 mg/ml penicillin at 3TC, with 5% CO2. To generate inducible CRISPRi HEK293 (TetOn-dCas9-KRAB) cell line, the cells were lentivirally transduced with constructs that express dCas9-KRAB from the TRE3G promoter and rtTA. Pure polyclonal populations of CRISPRi cell line were treated with doxycycline, and sorted by flow cytometry using a BD FACS Aria2 for mCherry expression. These cells were then grown in the absence of doxycycline until mCherry fluorescence reduced to uninduced levels.


Lentivirus Production and Transduction


Lentiviruses were produced and packaged in HEK293T cells as described previously with minor modification (Du et al., 2016, supra). Briefly, HEK 293′T were transfected with standard packaging vectors using Mirus TransIT-LT1 transfection reagent (Mirus MIR 2300) according to the manufacturer's instructions. Viral supernatant was harvested 48-72 h following transfection and either filtered through a 0.45 μm syringe filter or snap-frozen.


Growth Competition Assay


Cells were grown at minimum library coverage of 1,000 for the screens. The target cells were infected in the presence of 8 μg/ml polybrene (Sigma) at a multiplicity of infection of about 0.3 to ensure single copy integration in most cells, which is corresponded to an infection efficiency of 30-40%. For single library screens, cells were grown in the flasks and harvested at 0, 12 and 20 days after puromycin selection; for double library screens, cells were grown in the flasks and harvested at 0, 8 and 16 days after puromycin selection. Cells were maintained at least 1,000 cells per sgRNA for each screen.


After the cell samples were collected, the genomic DNA was isolated using QIAamp DNA Blood Maxi Kit (Qiagen) according to the manufacturer's protocol, the cassette encoding the sgRNA was amplified by PCR, and relative sgRNA abundance was determined by next generation sequencing on an Illumina Miseq for single screens or an lllumina HiSeq-2500 for double screens using custom primers with previously described protocols at high coverage (Bassik, M. C. et al. Cell 152, 909-922(2013); Roguev, A. et al. Nat. Methods 10, 432-437 (2013)). Two biological replicates of each screen were performed.


For the cell growth validation experiments, the viruses with single sgRNAs or double sgRNA were transduced into HEK293 (TetOn-dCas9-KRAB) cells, followed by the selection with 2 μg/ml puromycin to remove the uninfected cells. Three days after the cells were treated with or without Dox (0.5 ug/ml), the cell viability was measured by XTT assay (Biotium) according to the manufacturer's experimental protocol. 2,000 to 10,000 cells were plated into 96-well tissue culture plates for the growth assay. For each 96 well, 30 μl of XTT solution was added to the 100 ul cell cultures at the time points indicated. Cells were incubated for 6 hours at 37 C with 5% CO2. Measure the absorbance signal of the samples with a spectrophotometer at a wavelength of 450-500 nm. Measure background absorbance at a wavelength between 630-690 nm. The normalized absorbance values were obtained by subtracting background absorbance from signal absorbance.


Validation of Gene Hits


Cells were harvested and total RNA was isolated using the RNAeasy Kit (Qiagen), according to manufacturer's instructions. RNA was converted to cDNA using iScript™ cDNA Synthesis Kit according to manufacturer's instructions (Bio-rad). Quantitative PCR reactions were prepared with a 2× master mix according to the manufacturer's instructions (Bio-rad). Reactions were run on CFX96 Touch™ Real-Time PCR Detection System (Bio-rad). Primer sequences for qPCR are listed in Table 3.


Results

To develop a CRISPRi combinatorial screening approach, a single library consisting of 336 sgRNAs using was constructed using a computational algorithm (Liu, H. et al. Bioinformatics 31, 3676-3678 (2015)), which sequence-specifically targeted 112 genes (3 sgRNA/gene) involved in chromatin regulation (for the gene list and their sgRNAs, see Table 5). The library also included 30 negative control sgRNAs without target sites in the human genome. Pooled cloning of 336 sgRNAs onto itself generated a mixed double sgRNA library containing 112,896 (336×336) combinations. Both libraries were prepared as lentivirus pools ready for large-scale mammalian cell transduction at a low multiplicity of infection (MOI=0.3).


The repressive dCas9-KRAB protein was conditionally expressed under the control of the Doxycycline (Dox)-inducible promoter TetON-3G in the human embryonic kidney 293 (HEK293) cells. Transducing both libraries into clonal HEK293-dCas9-KRAB cells generated two pooled cell populations (FIG. 16A): one with 336 single perturbations and the other with 112,896 double perturbations. Adding Dox to cells could induce expression of dCas9-KRAB to repress target gene(s) guided by co-expressed sgRNA(s) and monitored the growth phenotype from single or double gene perturbations. Pair-ended deep sequencing of sgRNA library distribution for each library (Mi-seq for single library and Hi-seq for double library) was performed with and without Dox, as well as at different time points.


It was first investigated if sgRNA distribution remained consistent between biological replicates before and after library screening. Sequencing single and double libraries with or without Dox at different time points exhibited consistently high coefficient of determination (R2) (FIG. 15B-E). For example, R2 was 0.980 without Dox induction and 0.971 with Dox for the single library (day 20) (FIG. 15B-C); and for the double library (day 16), 0.934 without Dox and 0.906 with Dox (FIG. 15D-E). sgRNA distribution from biological replicates was assayed at other time points and similarly high correlation was observed. Together these data demonstrate that the experimental platform produces data of very high reproducibility.


It was next determined if inducible expression of dCas9-KRAB allowed one to identify single and double gene perturbations that influenced cell growth (FIGS. 15F & G). It was observed that repression of a set of individual genes dramatically slowed down cell growth in the presence of Dox compared to without (FIG. 15F). This list of genes included gene components of the mediator complex (MED14 and MED15), components of the histone H3-Lys4 methyltransferase complex (WDR82 and WDR5), and RNA polymerase II associated factors (PAF1 and RTF1). Double library culture showed a large number of combinatorial perturbations significantly reduced cell growth with Dox, with an overall bifurcation pattern, wherein the negative controls fell along the diagonal line and the positive controls were biased from the diagonal line (FIG. 15G).


The above inducible experiments were performed at end time points. sgRNA distribution was further compared for both single and double libraries with and without Dox induction at intermediate time points (day 12 for single library and day 8 for double library). Consistent phenotypes at these time points compared to end time points were observed. For example, a similar list of genes whose repression slowed down cell growth, including ME14, MED15, WDR82, PAF1, and RIF1. The absence of WDR5 at day 12 indicates that WDR5 has a moderate role for growth compared to other gene hits. For the double library, a similar bifurcation pattern was observed, with a difference that the bifurcation degree (measured by the angle between the two populations) is smaller at earlier time points.


The consistent gene hits and dropout pattern for both libraries between different time points propelled a comparison of datasets across a broad time course. It was investigated if the trend of dropout effects could provide another layer of identification of true positive hits (FIG. 16). For the single library in the presence of Dox, sgRNA enrichment was compared at days 0, 3, 7, and 13 (FIG. 16A). While some genes showed consistent depletion (e.g., RTF1, MED14, SAP30), many other genes showed inconsistent enrichment (e.g., MRGBP). Among 112 epigenetic factors, 20 genes were observed to exhibit consistent depletion over time, showing inhibition of these genes constantly slowed down cell growth (FIG. 168). The double library similarly showed temporal dropout of pairwise sgRNAs assayed at days 0, 8 and 16 (FIG. 16C). Over time, a large number of combinations were consistently depleted as a selection of these was plotted as in FIG. 16D.


The time-course sgRNA enrichment was compared in the absence of Dox for both single and double libraries. No significant changes of sgRNA distribution were observed over time for both libraries without Dox. For the single library, comparing the day 0 sample with day 12 or day 20 samples (+/− Dox) showed only dropout of gene hits with Dox (FIGS. 17A-B), and for the double library comparing day 0 with day 8 or day 16 (+/− Dox) confirmed similar conclusions. Altogether, these experiments confirmed that the system enables inducible, temporal screens of genetic interactions.


Two negative interactions were validated, demonstrating their ability to suppress cell proliferation and causing repression of target endogenous genes. Two pairs were chosen for testing: MGBRP/MED6, and BRD7/LEO1. MRGBP is a component of the NuA4 histone acetyltransferase complex involved in gene activation by acetylation of histones; BRD7 is a member of the bromodomain-containing protein family; and LEO1 is a component of the PAF1 complex (PAF1C) involved in transcription of RNA Pol II. The results confirmed the validity of the double repression and synthetic lethality-based growth effects. As shown in FIGS. 16E & 16F, repression of two genes simultaneously (MGBRP & MED6 for FIG. 16E; and BRD7 & LEO1 for FIG. 16F) suppressed cell growth over time, while repression of individual genes did not cause significant growth inhibition. Quantitative PCR results further confirmed the repressive effects of the sgRNAs on the corresponding genes either individually or combinatorically delivered into cells. Notable, the moderate repression effects of the tested sgRNAs supported the strong growth effects of the genetic interacting pairs. Future optimization of CRISPRi repression efficacy allow one to perform screens at different strengths (weak, medium, strong) of gene repression.


Based on the curated set of protein complexes and pathways, a GI map depicting the genetic cross-talk between different functional modules involved in chromatin was created (FIG. 17). Using a scoring system similar to the S-score (Collins, et al., J. Meth. Enzymol. 470, 205-231 (2010)), 68 negative and 47 positive genetic interactions were identified. Contained within this map are modules corresponding to the INO80 chromatin remodeling complex; the mediator complex (MED); the NuA4 histone acetyltransferase (HAT) complexes; the Nucleosome Remodeling Deacetylase NURD complex; the histone methyltransferase (HMT) complex SET1A/B; the Polycomb complex PRC1; the histone 3 lysine-4 methyltransferases MLL3/4; the SIN3 transcription repressor; Host Cell Factor C (HCFC)-glycosyltransferase (OGT) complex; and nuclear THO transcription elongation complex. Notably, the mediator complex occupies a large set of interactions on the map, interacting strongly, both positively and negatively, with many other functional modules. For example, strong positive GIs were observed between the MED complex and modules corresponding to PRC1 and the SET1A/B complex. Furthermore, strong negative interactions were observed between components of the SIN3 complex and many other modules of mediator components and SWI/SNF family of protein SMARCC2.


The nuclease Cas9 for gene editing-mediated knockout allows complete loss of function, yet knockout can be heterogeneous among alleles due to existence of in-frame indels. On the contrary, CRISPRi-based dCas9 transcription knockdown leads to partial, homogeneous loss of function (Mandegar, M. A. et al. Cell Stem Cell 18, 541-553 (2016)). Applying the two methods to higher-order genetic screening needs to consider these important differences. For example, as epistatic genetic screens require simultaneous perturbation of multiple genes (usually 2 genes, 4 alleles), the heterogeneity of gene knockout in pooled CRISPR screens may result in a significant portion of cells without proper epistatic perturbation. Among the cells that are properly perturbed, complete knockout of function offers a highly sensitive way to discover novel gene combinations whose perturbation leads to measurable phenotypes (e.g., growth). Yet, combinatorial multiple gene knockouts may easily cause lethal effects by itself, precluding testing other phenotypes (e.g., differentiation or host-pathogen interaction).


On the contrary, partial knockdown by CRISPRi, while being less sensitive than CRISPR knockout, likely avoids major dominating lethal effects. The homogeneous transcriptional repression could generate cell populations with consistent multi-gene perturbation. Furthermore, sgRNAs binding at various loci along the promoter lead to varying levels of CRISPRi repression, which is contemplated to provide dosage-dependent combinatorial screening distinct from binary perturbation from CRISPR. The demonstration of the inducible and titratable features of CRISPRi combinatorial screening showed the method allows assaying genetic interactions temporally and potentially in a dose-dependent manner.


Compared to RNAi-based methods, the major approach for genetic interaction mapping, CRISPRi presents a few advantages as well. CRISPRi knockdown is specific (Gilbert, L. A. et al., Cell 159, 647-661 (2014)), with less concerns about multiple sgRNAs in the same cells causing unexpected off-target perturbation. As CRISPR activation (CRISPRa) is based on somewhat similar setup as CRISPRi, by changing a repressive effector into an activating effector, the same approach can be expanded into gain-of-function screening of pairwise of genes. Furthermore, combining CRISPRi and CRISPRa into the some cells is contemplated to allow simultaneous activating a gene while repressing another gene. These dramatically expand the modes of epistatic screens that can be performed.


Development of high-throughput epistasis-mapping technologies has made it possible to interrogate complex biological phenomena. Mapping the PPI networks and GI networks have become major methodologies to study epistasis. The PPI networks report on gene products that interact physically; (GIs, in contrast, illustrate functional relationships between genes including, but not limited to, physical interactions of their gene products. They often reveal how groups of proteins and complexes work together to carry out biological functions and can describe the cross-talk between pathways and processes. Therefore, the method for mapping GI networks in mammalian cells provides a useful, natural complement to PPI mapping methods and other existing GI mapping methods. Integrating the two types of information is extremely powerful in understanding complex biology in broader contexts of basic and translational research.









TABLE 5







Gene list and sgRNA sequences











Gene name
sgRNA sequence
SEQ ID NO







ACTL6A_1
GTGGGTGGCGGTGGAAGTTA
  1







ACTL6A_2
GGCCGCGACTGCGAGTCTCG
  2







ACTL6A_3
GCGCCGGCAGCAGCCATGAG
  3







ACTR8_1
GCGCTGCAGCCACGACTGCC
  4







ACTR8_2
GTCTCCGGCCATAATGACCC
  5







ACTR8_3
GCGGCCCATCGTGCCCGCGC
  6







ARID1A_1
GGCTCTGTAGGCTCGGGACC
  7







ARID1A_2
GGAGAAGACGAAGACAGGGC
  8







ARID1A_3
GCCCCCCTCATTCCCAGGCA
  9







ARID1B_1
GCATCCTCTTCCTCCTCGTC
 10







ARID1B_2
GGGGAGCAGCCCCGTCTCCA
 11







ARID1B_3
GAGGCGGCTCTCAAGGAGGG
 12







ARID2_1
GGAACTGCCGCAGCTCGTCC
 13







ARID2_2
GAACCGGGGGGGCAGCGCCG
 14







ARID2_3
GGGGTCCCGGCTGACAAGTG
 15







ASH2L_1
GGAGCGGTCGCAAATGCAAC
 16







ASH2L_2
GCAGCCGCTCCTCCTGGAGA
 17







ASH2L_3
GTGGCCGTGATGGCGGCGGC
 18







BRD7_1
GTCGGACAAACACCTCTACG
 19







BRD7_2
GGGCTTCCGCTCTTTCCCAG
 20







BRD7_3
GCAGGCCCAGGCCGGCGAAG
 21







BRD9_1
GCTGGCACCCGGTCGGACCT
 22







BRD9_2
GAGTGGCGCTCGTCCTACGA
 23







BRD9_3
GCGAGCGCGGGCGGCCAGCC
 24







CBX2_1
GTACTCCAGCTTGCCCTGCG
 25







CBX2_2
GCTGAGCAGCGTGGGCGAGC
 26







CBX6_1
GTGGGTGCCGCTGAGCAAGA
 27







CBX6_2
GCTGTCTGCAGTGGGCGAGC
 28







CBX6_3
GCATCGAGTACCTGGTGAAA
 29







CBX7_1
GCTGTCAGCCATCGGCGAGC
 30







CBX7_2
GTGCGGAAGGTGAGGCTGCC
 31







CBX7_3
GCACCGCTCCCTCCACGCTG
 32







CBX8_1
GCTCCTGGAAGCGGCCAAGG
 33







CBX8_2
GGTGGGGGAGCGGGTGTTCG
 34







CBX8_3
GCACGGAGGCCCTAGGCCCG
 35







CHD3_1
GCTCCCACTCGGGCTTGGGG
 36







CHD3_2
GTCTGCCGCCTTCATCACAC
 37







CHD3_3
GAGGAAAAGAAATCCTCAGC
 38







CHD3_4
GTTTTAGGCTACTTGGGAGG
 39







CHD4_1
GCTCCGGCTCCTCCTCGCCG
 40







CHD4_2
GCGCGACCTGCGGCGGCTCC
 41







CHD4_3
GGCCGTGAGGGGCGTCTCTT
 42







CNOT1_1
GTCGAGGAGAGCCGGAGTCG
 43







CNOT1_2
GGAGCCGCCTGAGGTGAGGC
 44







CNOT1_3
GTTTCTCTACAAAATGGCGC
 45







CNOT2_1
GAGCCTAGGGGAGTGGAGTC
 46







CNOT2_2
GCCGCCTTCTCTTCTCCCCC
 47







CNOT2_3
GCAGCTCCAGATCCTAGGCC
 48







CNOT3_1
GTCAGCTTCCGCGGAGCCAT
 49







CNOT3_2
GTTGTTCTGACGACGGGGGT
 50







CNOT3_3
GCCGCTATCGCGATAGCGCC
 51







CTR9_1
GTGAGTGACGGCTCCGGCTC
 52







CTR9_2
GGAGACTACCGGCTGCGGAG
 53







CTR9_3
GATGGAGCCCCGCGACATGA
 54







CXXC1_1
GAATGAATACAACTTGATCC
 55







CXXC1_2
GAACCTCTCTGCCTGACAAA
 56







CXXC1_3
GGACGGCTGTGTGCCTTGCG
 57







DMAP1_2
GGCCGTTAGGAACATCCAAG
 58







DMAP1_2
GCGGGCCAAGAGGAGAAGGG
 59







DMAP1_3
GACCCAGGTGCGGAAGTGCG
 60







DPY30_1
GAGTGGGACAGTCCACGACT
 61







DPY30_2
GTGCTCCCGCGCCCAGGTGG
 62







DPY30_3
GATTTCAACACGAAGACTCC
 63







EED_1
GAGAAGAGGCGAAACTCAAA
 64







EED_2
GCTGAAACGTCTTTGGAAGG
 65







EED_3
GTAAGGTCCGTTGGATTAAG
 66







ELP2_1
GGACTCCCCGCACCCGGTTT
 67







ELP2_2
GTCATAGAGCACCACGGAGC
 68







ELP2_3
GGTGCCACCATGTCGCCAAC
 69





















ELP3_1
GAAGCGGAAAGGTGCGAAAG
 70







ELP3_2
GCCTGGGCGTTCGCCCCTTT
 71







ELP3_3
GCAGCCACAAACTCAGACCA
 72







ELP4_1
GCCAGCGTGACCAACGACAG
 73







ELP4_2
GGTAGTGTTGCCGCGAGTAC
 74







ELP4_3
GCAACGTCACCAGTTTCCAG
 75







EP400_1
GCGTCAGGAGGGCGGGAGGA
 76







EP400_2
GGTAAGTGAGGGCGGAGGCG
 77







EP400_3
GGCTACGCGACCCCGGACCC
 78







EPC1_1
GGCACTAACACCAGCCGGGA
 79







EPC1_2
GCTGCCGGGGACTTGAGGGG
 80







EPC1_3
GTTGGCTGAAGAGCGCACAG
 81







EZH1_1
GTGAGTAAACAAGCCTGGGC
 82







EZH1_2
GGAAATTGGAAGGAATCCGA
 83







EZH1_3
GGCGCCCCTCCTCATTCCGA
 84







EZH2_1
GGATTTCGGGGTGCGTCGTG
 85







EZH2_2
GCTGCCCTCGCCGCCTGGTC
 86







EZH2_3
GGGGATGTACACAATGAAGT
 87







HCFC1_1
GAAAGGAGCAACAAGCGCCG
 88







HCFC1_2
GGGCTACGACTGAGGAAGGG
 89







HDAC1_1
GGGACGGGAGGCGAGCAAGA
 90







HDAC1_2
GGCTGAGGCTGGAGCGCCGA
 91







HDAC1_3
GCTCGGAGAGGAGGCTGCGA
 92







HDAC2_1
GGCTCGGTACCACCCGGCAG
 93







HDAC2_2
GGCGATAGTCCCGCGGGGAA
 94







HDAC2_3
GGCACCAACTCGCGAGGAGG
 95







IKBKAP_1
GTTTGGGCAGATGGGCAAGA
 96







IKBKAP_2
GCCTGGCACCGTAGAGGTAG
 97







IKBKAP_3
GGCGAGGCCGGGCCCGCTTC
 98







ING3_1
GAGGGAACAAGGGGGTCCAG
 99







ING3_2
GGAAAGTGAGTGCGCGGCGC
100







ING3_3
GAGTTTTGTCCCCTCCAATA
101







INO80_1
GGGGTCCCAGGAGCCGCGGA
102







INO80_2
GGTTCGCTCTCTGAGGCCGT
103







INO80B_1
GAAAGGGGACTAGAAATGGT
104







INO80B_2
GCGGCGTGGGAGCACCTCTG
105







INO80B_3
GCGAATAGATCAAGCAATTT
106







INO80C_1
GAAGACTCGGAGTGCGATGG
107







INO80C_2
GTTCCGGACTATTCCGGGAG
108







INO80C_3
GGAAGTTCCAAGGCCCGCGC
109







INO80D_1
GGCTGACAGATCAGAGTGAG
110







INO80D_2
GGAGCCCGGGGATGTGGGCC
111







INO80E_1
GGTAGCGGGAGGGCAGACTC
112







INO80E_2
GTCATGAACGGGCCGGCGGA
113







INO80E_3
GTGCTGCCGCGGGAAGGCTG
114







JARID2_1
GACTCGGCGAGCCCTCGCTG
115







JARID2_2
GTTACATCTTGGAAAAGAAA
116







JARID2_3
GGGGGGGGAGTGAAGGGCGT
117







KAT5_1
GCAAGACTGCCCCTGTGACT
118







KAT5_2
GCCTCACGAAGCCCCTGTAG
119







KAT5_3
GCCACTGGCTGTGCACGTTA
120







KDM1A_1
GACAGAGCGAGCGGCCCCTA
121







KDM1A_2
GGCGGCCCGAGATGTTATCT
122







KDM1A_3
GCGTGAAGCGAGGCGAGGCA
123







KDM2B_1
GCTCGGCTTCCATACCTATA
124







KDM2B_2
GCGGACCCGCCATGTGGAGG
125







KDM2B_3
GTCGGCCACACAGGTAATGT
126







KDM6A_1
GCAGCCACAGGCGGGGACGG
127







KDM6A_2
GAAAGCCGCCGCTGCCGACC
128







KDM6A_3
GGAGCACTGAGGGGATTCGT
129







KMT2A_1
GAGGCGGCGGCCGCTCCCCC
130







KMT2A_2
GGCCGGCCCTGAAGAGGCTG
131







KMT2A_3
GGCGCTTCCCCGCCCGACCC
132







KMT2D_1
GATAAAGATTCAGAACCGGC
133







KMT2D_2
GTGCCAGGACCAGAAATGTA
134







KMT2D_3
GAGATTATCCAAAACCTGAG
135







LEO1_1
GTGAGCGATAATGGCGGATA
136







LEO1_2
GCGAAGCTGAGCGTAAAGGT
137







LEO1_3
GCGTGGCAGGCCTTCCGCTG
138







MBD2_1
GGATTCCAAGGGCTCGGTTA
139







MBD2_2
GGGCTGGATGCGCGCGCACC
140







MBD2_3
GGACCTAAGAGGCGGTGGCC
141







MBD3_1
GGAAGAAGTGCCCAGAAGGT
142







MBD3_2
GAGCCCGTTGAGGCCCTGCG
143







MBD3_3
GCGCAATGGAGCGGAAGAGG
144







MED1_1
GATCAATCTGAAGTCCCCGG
145







MED1_2
GGCTCGGGATCCCGGGACGC
146







MED1_3
GAAGCTAGATCCGCCACAAA
147







MED10_1
GGAGAAGTTTGACCACCTAG
148







MED10_2
GTTGAGCCCGGCCTGGCTGC
149







MED10_3
GGTCTCCCCAGGGCCTGGCC
150







MED12_1
GCGGCCGAGAGACAACAAGG
151







MED12_2
GAGGGAGCCGAAAAGGGGGG
152







MED12_3
GTAGCGCCGGAGGCACCAGC
153







MED13_1
GCCGGCGGCGGCTGCTGTGA
154







MED13_2
GGTTACAGTGACAATCTTCC
155







MED13_3
GGTGCGCCCTTGGGCCGTGG
156







MED14_1
GACTCTGCCCGCTCCCGTTT
157







MED14_2
GTGTGCCGTTGCGCCAAGCC
158







MED14_3
GTGGTTCTCCAGCTGCACTG
159







MED15_1
GATACGGGCGGCGGGAGCTG
160







MED15_2
GGTCAGTCAAATGTGAGTAG
161







MED15_3
GCCGCCTCAGTCACAGAGCC
162







MED17_1
GGGAGCTTGCGGTGCGTTCT
163







MED17_2
GCGTTGCGTTCGGTTTCCCG
164







MED17_3
GAGGCTTCCCTGCGGAGAGC
165







MED23_1
GGAATATAGGGGCAGAGGGG
166







MED23_2
GGCGGGGGTGATAGTACAGA
167







MED26_1
GGCGGCTCCTCCTCCTCCTT
168







MED26_2
GTCACTCACTCGCCGGCCTC
169







MED26_3
GGCGTCTCCGCAGCAGATCA
170







MED4_1
GCGGCTGCTGTCTGCGCTTG
171







MED4_2
GGCGAGCCTGAGAGCCGGGC
172







MED4_3
GGAGCGGCTGGGAGGCGGTT
173







MED6_1
GTTTCGCTAGATCACAGCCT
174







MED6_2
GATTGTCTGTGGACCAGTTT
175







MED6_3
GCGTTTACAGGTTCTCTTTC
176







MED7_1
GAAAGACGAAAGACCGCCTT
177







MED7_2
GTGCGGTCTCTCCGAGAGCG
178







MED7_3
GGCTCTAAGCGTGGCAGTCT
179







MED8_1
GACCGAGAGTGGGCTGGCTA
180







MED8_2
GGCAGAACCCACGGCTGATA
181







MED8_3
GCGTTGGGCGTACTAGCGGC
182







MEN1_1
GTGGGATGTAAGCGCGGAGG
183







MEN1_2
GACAGACTTTACAGCCCCGG
184







MEN1_3
GGACTCTCCTTGGGGTTTGG
185







MRGBP_1
GCTCGGCCGGGCCGCGGCCA
186







MRGBP_2
GCCGCAGGCGACAAGGGCCC
187







MRGBP_3
GACAGTGGTGTGGAGCCCCG
188







MTA1_1
GCCGCCAACATGTACAGGGT
189







MTA2_1
GTTGGGCTCTGCCGGCCGCA
190







MTA2_2
GAACGAGCTCGGCTCCTGCC
191







MTA2_3
GCCTCAGCGTCCCGGAGTG
192







MTA3_1
GCCCCAGAACGTGGGGGCCG
193







MTA3_2
GTCCAGGCGCGCTACACGTT
194







MTA3_3
GGGGAGGAACGCCTTGTCAC
195







NCOA6_1
GTCGGGCTGGCTTCGCGGGG
196







NCOA6_2
GACCGTGCCACTCGGTCGCC
197







NCOA6_3
GACGGCGGCGCGGGCCCGTA
198







OGT_1
GCTCTGGAGGGCTTGAGCGG
199







OGT_2
GCTCCAGATGGCGTCTTCCG
200







OGT_3
GATGGTCAATTAGAGTTCCC
201







PAF1_1
GTGAACGCGCAGGCAGCACC
202







PAF1_2
GCGGAAAGTGGGTTGAGATG
203







PAF1_3
GCGGCCTGAGGAGACCCGTT
204







PBRM1_1
GGGTAAGGCCGGGCCCAGGG
205







PBRM1_2
GGCCCGGCAGCTGACCAAGG
206







PBRM1_3
GCAGGTGCGACAAGGCTACT
207







PCGF1_1
GCCTCATCGCGATCGCAATC
208







PCGF1_2
GATGGACCCGCTACGGAACG
209







PCGF1_3
GTCGGCCAGCGGTGCGAATT
210







PCGF2_1
GCTTACCTGGGTTCGGGGTC
211







PCGF2_2
GCCTGTAACCCTCTGGGGAT
212







PCGF2_3
GGGGGGTGCGAAGGCAGGAT
213







PCGF6_1
GTAGGCGCTGCCAAAACCGA
214







PCGF6_2
GGCGCCTCTGTCTGAGACGG
215







PCGF6_3
GGTGTCTCTCCCGACCATGG
216







PHC1_1
GAAGGTAACCGGGCGACCGA
217







PHC1_2
GGGCGTTACACAGATGGAGG
218







PHC2_3
GCTCAGCGCCGGAGGTAGGC
219







PHC2_1
GACTGGCAGCTCATTCTCCA
220







PHC2_2
GTACACAGAAATCTGGGGCC
221







PHC2_3
GGTAAGAGTCTAATTGATCT
222







PHC3_1
GTGACTGATGTCGTAACTAG
223







PHF10_1
GGGCCCACGCCCCGGCACCC
224







PHF10_2
GTCGCTGTCGCACGGCCGCG
225







RBBP4_1
GGCACCCTCACCTTCCTTGT
226







RBBP4_2
GCTGAGCCGCGGCCTCGACA
227







RBBP4_3
GGGGGCGCAGGAAACAATAG
228







RBBP5_1
GTTGTTGCCGGAGCTGAGAC
229







RBBP5_2
GCTGCGTTTTAGAGAAGCGT
230







RBBP5_3
GGTGGACGCCGCGAAGAGAC
231







RBBP7_1
GGAGCGCAGCCGCTGGAGGA
232







RBBP7_2
GCGCGCGCGTTGACCGCCTC
233







RBBP7_3
GCCCTTGTCCGGGGGTTGCT
234







RTF1_1
GGCGGGCAAGAGGGGAGTCC
235







RTF1_2
GGACCACCATGGTAAAGAAG
236







RTF1_3
GCGCGGGCCGGCGGAGCCAG
237







RUVBL1_1
GGGCGCACTGTCCTAGCTGC
238







RUVBL1_2
GCCTCCCACAGCCACGTGAA
239







RUVBL1_3
GCAGGCGGCCTCAGGGCTTG
240







SAP18_1
GGTCAGGGCGAGCGTCTCGC
241







SAP18_2
GGAGTCGCGCGTTACCCAGG
242







SAP18_3
GATCGACCGCGAGAAGGTGA
243







SAP30_1
GTGAGCGGGGTCCCCGCTCC
244







SAP30_2
GGCCCGGGACAGTTGGTGTT
245







SAP30_3
GCAGAGTGAATTGCCGCTGC
246







SETD1A_1
GAATAGCCCGCTTCTGTCCC
247







SETD1A_2
GCCAGCAGGGATTGGCTAAC
248







SETD1A_3
GACTCCACCAAGGCGGATGA
249







SETD1B_1
GGTTCCTCCTCTCGCCCGAA
250







SETD1B_2
GATTGACCCGGCTCTGAAAA
251







SETD1B_3
GCACGGCTGGGGGGGCGCGC
252







SIN3A_1
GGGCTAGTCCGCCGGCCGCT
253







SIN3A_2
GCTCGGTCCCAGGGCCCGCA
254







SIN3A_3
GGCCTGTCCCTCGCCTACCT
255







SIN3A_4
GCGGCCGCTTCTCTGTTACC
256







SIN3A_5
GCCTGTGACCGCTTCGTTAG
257







SIN3B_1
GGGACGCCACTCACGTGCAC
258







SIN3B_2
GAGGGCCGAGGTGAGAGGTG
259







SMARCA4_1
GGGCGGTTTGAATGGAGCCG
260







SMARCA4_2
GGCGCGCCCTGTGCGGGGCC
261







SMARCA4_3
GGGAAGGCCACAGTGTCGCG
262







SMARCB1_1
GGCCTGGTCGTCGTCTGCGG
263







SMARCB1_2
GGGCCGAGGGAAACCGAAGC
264







SMARCB1_3
GCGAGGGATCAGGAGGGCTG
265







SMARCC1_1
GCTGTTTATCGACGGAAGGA
266







SMARCC1_2
GACGGTGTCCCAGCTGGATT
267







SMARCC1_3
GGTGGGTTCGCGCGCCCGTG
268







SMARCC2_1
GACAACGTGCGGCTGTGGCT
269







SMARCC2_2
GACCGCGGCCCTGCAGCCCC
270







SMARCC2_3
GCCTCGTAGTACTTCACGTT
271







SMARCD1_1
GTGGCTCCAAGCGGCGGCGC
272







SMARCD1_2
GCCGCACAAAGAACCGGAAC
273







SMARCD2_1
GACTCGGGCGGCCAAACCTC
274







SMARCD2_2
GCCCGGGAGATTCCGGATCC
275







SMARCD2_3
GGAACTCGCGAACTTGGATT
276







SMARCD3_1
GAATGGGAGTCTGCCAGTCA
277







SMARCD3_2
GCCAGGCAGCGATGGGGAGG
278







SMARCD3_3
GAAAGTGCTCGGCAGGGGGG
279







SMARCE1_1
GCGGGTGAGTGTTTCCAAGT
280







SMARCE1_2
GAACTCGGGGTCTAGCCAAG
281







SMARCE1_3
GGCCTCAAGGAGGCCTCAAC
282







SRCAP_1
GTCAGTCCGTCGGGAGGGCT
283







SRCAP_2
GCTCGGGTCTTGGGAACGTG
284







SRCAP_3
GTGTGAACCCGCAGGAGGCC
285







SUZ12_1
GGGCGAGCGGTTGGTATTGC
286







SUZ12_2
GGCGGGTAGCTGGCGGGGGG
287







SUZ12_3
GCCTCAGAAGCACGGCGGTG
288







THAP1_1
GTGATGGTGGCCTCCCTCGG
289







THAP1_2
GTTCTCAGTGTCGCTGCGCT
290







THAP1_3
GCTAATGCAAACAACAAAAC
291







THAP3_1
GCTGCCCCCAACAAAGATGG
292







THAP3_2
GGGTCCCCGCCTCTTACCGG
293







THAP3_3
GGGCCCGCGGACCGACTCCG
294







THOC1_1
GCTTCGGGCAAACTGAAGAG
295







THOC1_2
GGCAAAATTCGAGTAATTTC
296







THOC1_3
GTCCGCCTCAGCGTCCGCTC
297







THOC2_1
GAGGCGAATTGTGAGTGTTC
298







THOC2_2
GCTGCACTCTCACCTGTAGT
299







THOC2_3
GACCATCCACGCCCGCCGCC
300







THOC3_1
GCTGCTGCAGTGTTGTGAGT
301







THOC3_2
GGCGGTCCCCGCTGCAGCCA
302







THOC3_3
GCCCCGGCTCGATGGCCCCG
303







TRRAP_1
GGGTCGCGGGCCGGGCCTGC
304







TRRAP_2
GGCGGGCGTCCGAACGGCCC
305







TRRAP_3
GCGGCCGAGCGGTTGCGACG
306







WDR5_1
GGCCGCACAGGAGACAAGGG
307







WDR5_2
GCTCTGGCGGCCTCGGTCTC
308







WDR5_3
GGCACGCACCTTGCTCTGAG
309







WDR82_1
GAGGTGGCTGTGAGGACGAA
310







WDR82_2
GGAGGAGGCGGCCCAACTGT
311







WDR82_3
GCGGAGCTTCCGCGTCGCTA
312







DC13_1
GGGCTGAACGCGTATTCGCG
313







DC14_1
GGCGATTCGGCGACCTTAGT
314







DC14_2
GGCGCGAGTACGAAATTAAT
315







DC14_3
GATTATCAGACGCGCTGCGT
316







DC15_1
GCGCGGCTAGAATAGACTTG
317







DC15_2
GGTTCGTGCGGTAGTGTGCG
318







DC15_3
GTATCGTCTTCCGTCCTCGT
319







DC15_4
GGCTACTCTATGCGTCGATT
320







DC15_5
GCTTAACAAAGCGAGCGACC
321







DC15_6
GGCACTGGACGATATCCGAC
322







DC15_7
GTTCATCTCAACGGTAATCG
323







DC1617_1
GGTTATATTGACGTCCTGCC
324







LC_1
GCTAGTCTGCGTGACGCGTCT
325







LC_2
GAAGTAACTGAAGGATCAATAT
326







LC_3
GCGGGAAAACCGCGCCCCGGA
327







LC_4
GCTCAGGGCCGTGACGCGTGGG
328







LC_5
GTAGGAGCGCGTGCTGATTGT
329







LC_6
GGACGAACTAATGTATTGTGGC
330







LC_7
GGTTTATGGACCTTCAGGGAG
331







LC_8
GGCGTACCCGTGGTTTCACCGT
332







LC_9
GCTTGGGAGCAAGCCGGCGGTA
333







LC_10
GTGTGGCGACCCTGGTCTCAT
334







LC_11
GGGCCTCTGTGAGGTCGTGGT
335







LC_12
GTATGATACTCGTGCTTAGT
336







LC_13
GCGAAGTCGAATGTTGGTCG
337







LC_14
GGCCCAACATCCTCGTGTCCA
338







LC_15
GTGGCGGAGCCTAGCCGAGAGT
339







LC_16
GGCGCGAACTTTAAGGTGGAC
340







LC_17
GATTAGTTCGCGTATGGCAGCA
341







LC_18
GCCGTAAGGACGGGTAGAGGT
342







LC_19
GGGGGCGGAAATCGAGCCCT
343







LC_20
GAAGTGAGAGGAGGGAGCAGCC
344







LC_21
GTAAATCCCGGAGTCAGA
345







LC_22
GTGAGCGGCGACCCCCCCTG
346







LC_23
GGTGCGGACCCCCGCCGGGGG
347







LC_24
GGTGAGCCGGTTTGTGAGAAG
348







LC_25
GAGAGTGCGCTGCAATGGATAT
349







LC_26
GGATGTGCCATGGTGAGGGCTG
350







LC_27
GGATGCGCCTAGGCGAAAGAAA
351







LC_28
GAGCCGATGCAGGGCGTAGGG
352







LC_29
GCCATTCTCTATGTTCGATAAG
353







MCM2_PC
GGATCGTGGTACTGCTATGG
354







INTS9_PC
GGCAGGTGGCGGAGATTGCAC
355







GEMIN5_PC
GGCGTGAGGCTACGAGCGGT
356







CENPA_PC
GCCAAGCACCGGCTCATGTG
357







POLR1D_PC
GGAAGCAAGGACCGACCGA
358

















TABLE 6





Regular primers for cloning and sequencing







primers to clone single sgRNA:








Forward 
GGAGAACCACCTTGTTGGN19GTTTAAGAGCTATG


primer
CTGGAAACAGCA (SEQ ID NO: 359)


(N19 is the



targeting



sequence):






Reverse 
CTAGTACTCGAGNNNNNNNNNNGCGTCGACCCTAG


primer 
GGCTAGCACTAGTAAAAAAAGCACCGACTCGGTGC 


(N10 is the
CAC (SEQ IDNO: 360)


barcode



sequence):











PRIMERS TO AMPLIFY GENOMIC DNA FOR SINGLE 


SCREENS:








Forward 
AATGATACGGCGACCACCGAGATCTACACGGTAAT


primer:
ACGGTTATCCACGCGG (SEQ ID NO: 361)





Reverse 
CAAGCAGAAGACGGCATACGAGATNNNNNNNNGCA


primer 
CAAAAGGAAACTCACCCT (SEQ ID NO: 362)


(NNNNNNNN



is the



index):











CUSTOM PRIMERS FOR M1SEQ:








Read2 
GTGTGTTTTGAGACTATAAGTATCCCTTGGAGAAC


primer:
CACCTTGTTGG (SEQ ID NO: 363)





Index read 
GTCTCAAAACACACAATTACTTTACAGTTAGGGTG


primer:
AGTTTCCTTTTGTGC (SEQ ID NO: 364)










PRIMERS TO AMPLIFY GENOMIC DNA FOR DOUBLE 


SCREENS:








Forward 
AATGATACGGCGACCACCGAGATCTACACTGAGAC


primer:
TATAAGTATCCCTTGGAGA 



(SEQ ID NO: 365)





Reverse 
CAAGCAGAAGACGGCATACGAGATNNNNNNCTGGC


primer
GAACTACTTACTCTAGCTTCCCGGCAACGCCTTAT


(NNNNNN 
TTAAACTTGCTATGCTGT


is the
(SEQ ID NO: 366)


index):











CUSTOM PRIMERS FOR H1SEQ-2500:








Read1 
CGAAGTTATAAACAGCACAAAAGGAAACTCACCCT


primer:
AACTGTAAAGTAATTGTGTG 



(SEQ ID NO: 367)





Index read 
GTTTAAATAAGGCGTTGCCGGGAAGCTAGAGTAAG


primer:
TAGTTCGCCAG (SEQ ID NO: 368)


Read2 
GCACCGACTCGGTGCCACTTTTTCAAGTTGATAAC


primer:
GGAC (SEQ ID NO: 369)
















TABLE 7







qPCR primer sequences









Gene




name
Forward primer
Reverse primer





SIN3B
TTACTGCATGTCCAAGTTCAAGA
CCAGGTGTCGTTCAGTA



(SEQ ID NO: 370)
CCC




(SEQ ID NO: 371)





MED4
GGTGGTAACAGCACACGAGA
TTGCCAGCATTTCTATA



(SEQ ID NO: 372)
AGTTCC




(SEQ ID NO: 373)





MED6
TGCAGAGGCTAACATTAGAACAC
GCTGTTGCTTCCGAATG



(SEQ ID NO: 374)
ATGA




(SEQ ID NO: 375)





MRGBP
TGAACCGACACTTCCACATGA
TGGTCCCAGATGACCTT



(SEQ ID NO: 376)
GGAT




(SEQ ID NO: 377)









Example 3
Repression Screening Platform

Besides gene activation, gene repression also can facilitate cell fate conversion. For example, knockdown of many epigenetic modulators increases the efficiency of reprogramming or transdifferentiation processes. This example describes, a repression screen platform to identify cell fate conversion barriers genes.


To perform gene repression screens, a clonal mouse ES cell line carrying Staphylococcus aureus (SaCas91-KRAB is co-transfected with Cas9, sgRNA targeting mouse Rosa 26 loci, and a vector containing dCas9-KRAB with a Zeocin-resistance gene. Zeocin-resistant cells are sorted into a 96-well plate. After a week of culture, the genome is purified and the correct integration of SadCas9-KRAB into Rosa 26 loci is confirmed. This clonal cell is used as a platform to identify gene barriers of differentiation processes.


To perform single gene repression screens, a genome-wide gene repression SadCas9 sgRNA library is generated. The library includes sgRNAs targeting −50 bp to +300 bp region relative to all putative genes in the mouse genome. All the available sgRNAs are blasted through mouse genome and excluded if there is predicted off-target binding. Other design criteria and construction method are similar to the design of activation sgRNA library described in Example 1. This repression library is transduced into the SadCas9 repression mouse ES cells, and neural differentiation is performed as in the single screen. On day 12, cells are harvested and sorted for hCD8+ and hCD8−. The sgRNAs are sequenced, paired-analyzed for enriched genes in hCD8+ and hCD8− populations, and a list of top hits for neural differentiation barrier genes is identified.


Over the past years, the literature has shown that the activation of combinatorial transcription factors can control a cell fate. For example, the transcription factors Oct4, Klf4, Sox2, and c-Myc are used to reprogram somatic cells to induced pluripotent stem (iPS) cells. Moreover, activation of combinatorial transcription factors also induces the generation of many cell types, such as cardiomyocytes, neurons, and hepatocytes, directly from somatic cells. These works indicate that single TFs are not sufficient to achieve a cell fate conversion process in most cases. Thus, a platform that allows combinatorial screen is in urgent need to facilitate cell fate determination studies.


To perform a second-round combinatorial activation screen, an sgRNA library that achieves double gene activation is generated. In this library, two different sgRNA cassettes are constructed into one vector. The first cassette contains sgRNAs targeting top hit genes from the single activation screen, which are driven by a human U6 promoter. Meanwhile, each vector contains the second cassette, which is a sgRNA with a different stemloop sequence driven by a mouse U6 promoter. The sgRNAs of the second cassettes also target top hit genes from the first round activation single screen. This construct expresses sgRNAs targeting two different genes, as well as avoids recombination of repeated sgRNA sequences. Two different sgRNAs bind to dCas9 and achieve the activation of two different top hit genes simultaneously in the dCas9-activation system. This allows the combinatorial double activation screen.


In some embodiments, this double activation library is transduced into CamES cells, and neural differentiation is performed as in the single screen. On day 12, cells are harvested and sorted for hCD8+ and hCD8−. The sgRNAs are sequenced and paired-analyze enriched genes in hCD8+ and hCD8− populations are identified. The screen identifies optimal TF combinations that drive neural differentiation of mouse ES cells.


Additionally, the combination of gain-of-function and loss-of-function techniques accelerates cell fate conversion, and sheds light on the fully revelation of cellular reprogramming mechanisms. However, a platform to perform gain-of-function and loss-of-function screen simultaneously is not available at present.


To perform a simultaneous activation/repression screen, a clonal ES cell line carrying gene activation/repression cassettes is generated. Vectors containing two cassettes separately are constructed. One vector contains the activation cassette, which is a dead Streptococcus pyogenes Cas9 (SpCas9)-activation system, with a eGFP gene cassette. The other vector comprises SadCas9-KRAB, with a zeocin-resistance gene cassette following. The two vectors, together with Cas9 and sgRNA targeting mouse Rosa26 loci are co-transfected into mouse ES cells. To select mouse ES cells carrying these two system, transfected ES cells are selected with zeocin. After seven days, remaining zeocin-resistant cells are analyzed with flow cytometry and single GFP+ cells are sorted into 96-well plates. One week later, the genome of clonal cells is analyzed to confirm the correct integration of both activation and repression cassettes. This clonal cell line allows the activation and repression of different genes simultaneously.


An sgRNA library that achieves gene turning-on and -off simultaneously is constructed. In this library, two different sgRNA cassettes are constructed into one vector. The first cassette contains sgRNAs of SpCas9 targeting top hit genes from the single activation screen, which are driven by a human U6 promoter. Meanwhile, each vector contains the second cassette, which is a sgRNA of SaCas9 driven by a mouse U6 promoter. The sgRNAs of SaCas9 in the second cassettes target top hit genes from the first round repression screen. This construct expresses sgRNAs of SpCas9 and SaCa9, and thus allows simultaneous gene activation and repression.


This activation/repression library is applied to clonal turning-on/off mouse ES cells, and neural differentiation is performed as in the single screen. On day 12, cells are harvested and sorted for hCD8+ and hCD8−. The sgRNAs and paired-analyze enriched genes in hCD8+ and hCD8− populations are sequenced. A series of gene combinations having both TF determinants and neural differentiation barriers is identified. The simultaneous turning-on of IT determinants and turning-off of neural differentiation barriers generates very high efficiency of neural cells of mouse ES cells.


Example 4
Experimental Procedures
Plasmid Design and Construction

To clone sgRNA vectors, the optimized sgRNA expression vector (pSLQ1373) was linearized and gel purified (Chen et al., 2013). New sgRNA sequences were PCR amplified from pSLQ1373 using different forward primers and a common reverse primer, gel purified and ligated to the linearized pSLQ1373 vector using In-Fusion cloning (Clontech). Primers used to construct individual sgRNAs are shown in Table 8. To change the promoter of scFv-sfGFP-VP64, the EF1α and PGK promoters were PCR amplified, gel purified, and ligated to linearized pSLQ504 using In-Fusion cloning (Clontech).


Two-guide expression vectors were assembled by a two-step cloning procedure. First, new sgRNA sequence (integrated DNA Technologieds) were PCR amplified from pSLQ5004 and ligated into BstXI and XhoI-digested pSLQ5004 parental vector, which contained a modified human 136 promoter (hU6). The same single sgRNA expression constructs were cloned into pSLQ1373 as previously described, which contained a modified mouse U6 promoter (mU6) and an optimized stem loop sequence of sgRNA. Second, the two-guide expression cassettes were then assembled from PCR amplified single cassettes using two sgRNA forward and reverse primers from pSLQ5004-based single sgRNA constructs and inserted into NsiI-digested pSLQ1373 single sgRNA constructs. Primers used to construct individual sgRNAs are shown in Table 11.


sgRNA Library Design


Putative transcription factor (TF) genes were selected according to the TRANSFAC database, and TSS (transcription start site) for each gene was determined using the Gencode and refFlat databases. All possible transcripts were selected if multiple TSSs exist for a gene. All sgRNAs targeting −3 kb to 0 relative to TSS were kept. Using the CRISPR-era algorithm (Liu et al., 2015), the targeting sequences of sgRNAs adjacent to an NGG PAM (protospacer adjacent motif) were computed, starting with a G (for more efficient U6 promoter activity) with a length of 20 bp. The sgRNAs containing homopolymers spanning greater than 3 nucleotides (nt) were discarded. To avoid off-target effects, sgRNA sequences alignment to the mouse genome was computed using the short read aligner Bowtie, and those with less than 2 mismatches with another genomic region were excluded. Furthermore, sgRNA sequences that contained certain restriction sites (BstXI and BlpI) were also removed. sgRNAs with a GC content between 30% and 70% were kept. An average of about 60 sgRNAs were selected for each target gene. Sequences for non-targeting negative control sgRNAs were generated using a randomized mouse gene TSS region and selected using the same rules as described above.


sgRNA Library Construction


The oligonucleotide pool was synthesized by Custom Array. The oligo library was PCR amplified, gel purified and ligated to the linearized backbone vector (pSLQ1373) digested with BstXI and BlpI using In-Fusion cloning. Libraries and parental vector will be made available on addgene.org.


Cell Culture

E14 mouse ES cells and CamES cells were maintained on gelatin coated tissue culture plates with basal medium (50% Neurobasal, 50% Dulbecco modified Eagle medium (DMEM)/Ham's nutrient mixture F12, 0.5% NEAA, 0.5% Sodium Pyruvate, 0.5% GlutaMax, 0.5% N2, 1% B27, 0.1 mM β-mercaptoethanol and 0.05 g/L bovine albumin fraction V; all from Thermo Fisher Scientific) supplemented with LIF (Millipore) and 2i (Stemgent). Human embryonic kidney (HEK293T) cells (ATCC) were cultured in 10% fetal bovine serum (Thermo Fisher Scientific) in DMEM (Thermo Fisher Scientific).


Construction of the CamES Cell Line

Mouse ES cells were co-transduced with multiple lentiviral constructs that expressed dCas9-SunTag from a TRE3G promoter, scFV-sfGFP-VP64 from the EF1a or PGK promoter, and reverse tetracycline-controlled transactivator (rtTA) from the EF1a promoter. After adding Doxycycline, polyclonal cells were sorted by flow cytometry using a BD FACS Aria2 for GFP+ and mCherry+ cells. After verification of gene activation using a sgBrn2, monoclonal cells were further sorted, and one efficient cell line was chosen as CamES cells.


Construction of the Tuj-1-hCD8 CamES Cell Line

Construction of CRISPR/Cas9 vector for Tuj1 knockin. The pX330-derived pSLQ1654 encoding the nuclease Cas9 and an optimized sgRNA sequence was first linearized by a BbsI digest and gel purified. Two primers sgTuj-1 F and sgTuj-1 R were phosphorylated, annealed, and ligated to the linearized vector pSLQ1654 to generate pSLQ1654-sgTuj1. sgTuj-1 F: caccgcccaagtgaagttgctcgcagc. sgTuj-1 R: aaacgctgegagcaacttcacttgggc.


Construction of DNA template. The Tuj1-IRES-hCD8 vector (pSLQ1760) was assembled with three fragments (5′ homologous arm of Tuj1, IRES-hCD8 and 3′ homologous arm of Tuj1) and a modified pUC19 backbone vector by using Gibson Assembly Master Mix (New England Biolabs). Both 5′ and 3′ homology arms were PCR amplified from the genomic DNA extracted from mouse ES cells with Herculase 11 Fusion DNA polymerase (Agilent). The IRES-hCD8 was PCR amplified from pSLQ1729. The backbone vector was linearized by digestion with PmeI and ZraI. All DNA fragments and the backbone vector were gel purified followed by a Gibson assembly reaction. Primers: 5′ homologous arm F: aaagtgccacctgacactcagtcctagatgtcgtgegg (SEQ ID NO:380). 5′ homologous arm R: tcacttgggcccctgggct (SEQ ID NO:381). IRES-human CD8 F: caggggcccaagtgaactagtaaaattcgcccctctccctc (SEQ ID NO:382). IRES-human CD8 R: cagctgcgagcaactttaacctgcaaaaagggagcagtaaagg (SEQ ID NO:383). 3′ homologous arm F: agttgctcgcagctggggt (SEQ ID NO:384). 3′ homologous arm R: agctggagaccgttttttctgactgactggalacagggcat (SEQ ID NO:385).


Electroporation and clonal Tuj1-hCD8 CamES cells: 2.5 μg pSLQ1654-sgTuj1, 12.5 μg Tuj1-IRES-hCD8 template DNA in 100 μL Nucleofector solution (Amaxa) were electroporated into 1×106 CamES cells using program A-030. Both plasmids were maxiprepped using the Endofree Maxiprep Kit (Qiagen). After 3 days of culture, sorted single cells were seeded in a 96-well plate with one cell per well. All clonal cell lines were analyzed using PCR and sequencing (Yu et al., 2015).


Lentiviral Production

HEK293T cells were seeded at ˜30% confluence one day before transfection. Lentivirus were produced by cotransfecting with pHR plasmids and encoding packaging protein vectors (pMD2.G and pCMV-dR8.91) using TransIT-LT1 transfection reagents (Mirus). Viral supernatants were collected 3 days after transfection and filtered through 0.45 μm strainer. Supernatant was used for transduction immediately or kept at −80° C. for long-term storage.


Quantitative RT-PCR

Cells were harvested using Accutase (STEMCELL), and total RNA was isolated using the RNeasy Plus Mini Kit (QIAGEN), according to manufacturer's instructions. Reverse transcription was performed using iScript cDNA Synthesis kit (Bio-Rad). Quantitative PCR reactions were prepared with iTaq Universal SYBR Green Supermix (Bio-Rad). Reactions were run on a LightCycler thermal cycler (Bio-Rad). Primers used are summarized in Table 9.


High-Throughput Pooled Neural Differentiation Screens

The neural differentiation screens were performed as two independent replicates. For both screens, 108 CamES cells were seeded at 40,000 cells/cm2 density at day −2. Cells were transduced with pooled lentiviral sgRNA library with an MOI of 0.3 at day −1 in basal medium supplemented with LIF and 2i. At day 0, puromycin was added at 1 μg/mL in ES2N medium (Millipore) with Doxycycline for another 24 hours. Fresh ES2N medium was changed with Doxycycline every day starting day 2. On day 12, cells were harvested and sorted for hCD8+ and hCD8− cells using EasySep human CD8 isolation kit (STEMCELL Technologies). Populations of cells expressing this library of sgRNAs were either harvested at the outset of the experiment (the day 0 time point: after 24 hours puromycin selection), hCD8+, or hCD8− cells. Genomic DNA was harvested from all samples; the sgRNA-encoding regions were then amplified by PCR using HiSeq forward and reverse primers and sequenced on an lllumina HiSeq-4000 using HiSeq custom primer with previously described protocols at high coverage (Bassik et al., 2013; Kampmann et al., 2014). Primers used are summarized in Table 12.


For the individual sgRNA validation experiments, a similar protocol was used, except that CamES cells were cultured in basal medium seeded at 5,500 cells/cm7 after puromycin selection and transduced with a high MOI. Top 100 hits are summarized in Table 10.


Combinatorial sgRNA Library Construction


A library of 44 sgRNAs including a set of 19 genes was designed by using the top prediction hits from the single screens and six nontargeting negative-control sgRNAs. Any sgRNAs containing NsiI restriction sites, which were used for combinatorial sgRNA library construction, were excluded. Individual oligonuclotides encoding sgRNAs were synthesized in a 96-well format (Integrated DNA Technologieds), and cloned into pSLQ1373 individually as previously described. At the same time, the same sgRNA sequence was synthesized (Integrated DNA Technologies) using different forward sequence. These sgRNAs were cloned into pSLQ5004 individually as previously described. After sequencing validation, all pSLQ1373-sgRNA constructs were manually mixed and all pSLQ5004-sgRNA constructs separately mixed in equal amounts for combinatorial sgRNA library construction. To generate the pooled combinatorial sgRNA library, the sgRNA sequence were PCR amplified using two sgRNA forward and reverse primers from pooled pSLQ5004-sgRNA constructs, gel purified and ligated into the NsiO-digested pooled pSLQ1373-sgRNA constructs using In-Fusion cloning (Clontech). The combinatorial sgRNA-library pools were prepared in Stellar competent cells (TaKaRa) and purified with a Plasmid Maxi Kit (Qiagen). The representation of each of the double-sgRNA constructs was then quantified by NGS with the oligonucleotides listed in Table 11.


High-Throughput Pooled Combinatorial Screens

The double neural differentiation screens were performed as two independent replicates. For both screens, 6 millions CamES cells were seeded at 40,000 cells/cm2 density at day −1. Cells were transduced with pooled lentiviral double sgRNA library with an MOI of 0.3 at day 0 in basal medium supplemented with LIF and 2i. At day 1, puromycin was added at 1 μg/mL in basal medium with Doxycycline for another 24 hours. Fresh basal medium was changed with Doxycycline every day starting day 2. On day 12, cells were harvested and sorted for CD8+ and CD8− cells using Aria II cell sorter (BD Biosciences). Genomic DNA was harvested from all samples; the double sgRNA-encoding regions were then amplified by PCR using MiSeq forward and reverse primers and sequenced on an Illumina Miseq using HiSeq custom primer, which for the first sgRNA, and MiSeq custom primer, which for the second sgRNA. Primers used are summarized in Table 12.


For the individual double sgRNA validation experiments, a similar protocol was used, except that CamES cells were transduced with a high MOI.


Primary Neurons Culture, Primary Astrocytes Culture and Induced Neurons Replating

Primary cultures of cortex neurons were prepared from postnatal day 1 wild-type black rat. Rats were decapitated, and their brains were removed in pre-cooled physiological saline. The cortex was dissected. Tissues were slightly minced and placed into a Papain Dissociation solution (Worthington Biochemical Corporation) containing 20 units/ml papain and 0.005% DNase in Earle's Balanced Salt Solution (Thermo Fisher Scientific). The solution was equilibrated in 95% O2, 5% CO2 before the tissue was incubated at 37° C. for 1 hour. After incubation, the tissue and solution mixture was triturated. Undissociated tissue was allowed to settle and the cloudy suspension was removed and centrifuged at 300×g for 5 minutes. The supernatant was then discarded and the cell pellet was resuspended in a DNase/albumin-inhibitor solution. A discontinuous density gradient was prepared by gently layering the cell suspension on top of an albumin-inhibitor solution in a centrifuged tube. The mixture was centrifuged at 145×g for 5 minutes. The supernatant was discarded and the neurons were resuspended in Neurobasal (Invitrogen) medium containing 2% B27 supplement, 2 mM glutamine and 0.5% penicillin/streptomycin. A total of 250,000 cells were plated onto a well of 24-well plates that had been pre-treated with 12.5 μg/ml poly-D-lysine (Sigma). The plates were incubated at 37° C. in a 5% CO2/95% air incubator and half of the medium was changed every three days.


Rat Primary Cortical Astrocytes (Thermo Fisher Scientific) were cultured and plated according to manufacturer's instructions. The astrocytes were fed every three days with fresh medium.


One week after culturing primary neurons and astrocytes, the induced neurons were gently removed from the dishes by trypsin dissociation and were replated onto primary neurons or astrocytes. Electrophysiological recordings were performed between day 14 and day 21 after replating.


Generation of Induced Neurons

Preparation Before Induction

    • 1. Embryonic skin-derived fibroblasts were isolated from E13.5 embryos of C57BL/6 mice as previously described (2010 nature, Vierbuchen et al.). Isolated fibroblasts were cultured and expanded in MEF media (Dulbecco's Modified Eagle Medium, Life Technologies) containing 10% Fetal Bovine Serum (Life Technologies), non-essential amino acids (Life Technologies), and sodium pyruvate (Life Technologies)) for 2 passages before use. Tail tip fibroblasts were isolated from the bottom third of tails from 4-day-old pups as previously described. Tail tip cells were expanded for 2 passages in MEF media before use.
    • 2. Matrigel (growth factors reduced; BD Biosciences) was thawed on ice according to the manufacturer's instruction and dilute it in pre-cold PBS with a ratio of 1:30.
    • 3. Diluted matrigel was added to 24-well plates. It was ensured that the quantity used was sufficient to cover the entire growth surface of the plates and keep the plates in 37° C. for 30 minutes to be ready to use.
    • 4. Passage 1-2 MEFs were thawed and seeded into the matrigel-coated plates at a preferentially density of 25,000 cells per well of a 24-well plates. Cells were grown in the MEF medium for 4-5 days until confluent.


Induction of Induced Neurons

    • 1. When MEFs were grown confluent, cells were infected with lentiviruses containing expression constructs of rtTA (driven by ubiquitin promoter) and additional lentiviruses overexpressing Asc11-Neurog1/Ezh2-Foxo1/Brn2/Nr4a1/Dmrt3/Jun/Suz12/Nr3c1/Tcf15/Zeb1/Mecom/Hoxc 8/Nr2f1 (driven by Tet-on promoter) in the presence of polybrene (8 mg/ml).
    • 2. The next day, media was exchanged with basal medium (50% Neurobasal, 50% Dulbecco modified Eagle medium (DMEM)/Ham's nutrient mixture F12, 0.5% NEAA, 0.5% Sodium Pyruvate, 0.5% GlutaMax, 0.5% N2. 1% B27, 0.1 mM β-mercaptoethanol and 0.05 g/L bovine albumin fraction V; all from Thermo Fisher Scientific) containing doxycycline (2 mg/ml).
    • 3. Culture medium was refreshed every 3-4 days during the induction period.


Maturation of Induced Neurons

After lentiviruses infection for about 14 days (extensive neurites outgrowth should be observed in this stage), the induced cells were progressed for further maturation: Re-plate and co-culture directly with primary neurons/astrocytes.

    • 1. Mouse primary postnatal cortical neurons or astrocytes were isolated and cultured for about 6 days before re-plating the induced cells.
    • 2. The induced cells were dissociated by using 0.05% trypsin from the culture plate.
    • 3. Cells were centrifuged for 3 min at 1000 rpm at room temperature.
    • 4. The supernatant was discarded, fresh differentiation medium (basal media with addition of 200 μM ascorbic acid, 2 μM db-cAMP, 25 ng/ml BDNF, 25 ng/ml NT3, and 50 ng/ml GDNF) was added to gently re-suspend the cells and cells were re-plated to co-culture with pre-existing primary neurons/primary astrocytes.
    • 5. Re-plated cells were co-cultured for about 14 days or longer (depending on the maturation process of the induced cells, which can be observed based on the development of the extensive neuritis outgrowth) to become functional mature. Half of the maturation medium was changed every 2-3 days.


Flow Cytometry, Cell Surface Staining and Cell Sorting

The antibody CD8-APC was purchased from BD Biosciences. and Anti-PSA-NCAM-APC was from Miltenyi Biotec. Cells were harvested, washed, and adjusted to a concentration of 106 cells/mL in ice cold PBS with 2% FBS. Cells were stained and incubated with diluted primary antibodies at 4° C. for 30 mins in Eppendorf tubes. After staining, cells were washed three times by centrifugation at 400 g for 5 mins and resuspended in 500 μL to 1 mL in ice cold PBS. Cells were kept in dark on ice and analyzed using BD Accuri C6 Cytometer. Cell sorting was performed by using Aria II cell sorter (BD Biosciences).


Immunocytochemistry

Experiments were performed on cells seeded on plate (IBIDI) that had been coated with gelatin (0.1%) overnight at 37° C. Cells were washed twice with PBS, fixed in 4% Paraformaldehyde (Wako) for 15 mins at room temperature, permeabilized and blocked with 0.1% Triton X-100, 5% donkey serum in PBS (blocking buffer) for 1 h at room temperature. After three times wash with PBS, cells were incubated with primary antibodies. The following primary antibodies with indicated dilution in blocking buffer were used: Rabbit anti-Oct4 (Santa Cruz, 1:200), Mouse anti-Tuj1 (Covance, 1:1000), Rabbit anti-Map2 (Cell Signaling Technology, 1:200), Rabbit anti-NeuN (Abcam, 1:1000), Rabbit anti-vGluT1 (Synaptic Systems, 1:200), Rabbit anti-GFAP (Dako, 1:500), Rabbit anti-Olig-2 (Millipore, 1:500), Rabbit anti-Tbr1 (Abcam, 1:100), Rabbit anti-Synapsin I (Abcam, 1:200), Rabbit anti-GABA (Sigma, 1:250). Cells were incubated with primary antibodies at 4° C. for overnight, then washed three times with PBS. After staining with corresponding secondary antibodies in blocking buffer for 1 hour at room temperature, cells were washed three times with PBS and stained with DAPI (Vector Labs) for 5 mins. Washed cells were examined using a Nikon Spinning Disk Confocal microscope with TIRF.


Efficiency Calculation

The following method was used to calculate the efficiency of neuronal induction. The total number of Map2+ cells with a neuronal morphology, defined as cells having a circular, three-dimensional appearance that extend a thin process at least three times longer than their cell body, were quantified 14 days after infection. The Map2+ and DAPI+ cells were counted from at least 20 randomly selected images at 20× magnification for each condition. The Map2+ cell number was divided by the number of DAPI+ cells to get a percentage of neuron-like cells.


Electrophysiology

Lentivirus infections (with an additional sfGFP-expression virus) and transgene induction were performed similarly to as described for the fibroblast-induced neurons production, using basal medium. Patch-clamp electrophysiological recordings were performed on sfGFP positive fibroblast-induced neurons. GFP positive neurons located using a Lambda DG-4 illumination system and Q Imaging Fast 1394 Rolera-Mgi Plus camera controlled by Micro-Manager (Version 1.4) mounted on an Olympus BX51WI fluorescence microscope. Whole-cell responses were recorded using an MultiClamp 7008 (Molecular Devices) amplifier and headstage and low-pass filtered at 10 KHz before digitization using a DigiData 1440 data acquisition system (Molecular Devices). Data was stored on a PC running pClamp software (Version 10.4, Molecular Devices). Patch-pipettes were fabricated from 1.5 mm OD borosilicate capillary glass (Warner Instruments) using a microipette puller (Sutter Instrument, Model P-87) to give tip resistances of 2-4 MO. The series resistance for all recordings was under 10MΩ (Mean: 5.62MΩ, SEM: 0.38, n=12). Capacitance transients and series resistance errors were compensated for (70%) using the amplifier circuitry. The sodium and potassium currents currents were recorded in the voltage-clamp configuration at a holding potential of −80 mV. Spontaneous postsynaptic currents were recorded in the voltage-clamp configuration at a holding potential of −60 mV or −70 mV. Spontaneous action potentials were recorded in neurons held at −60 mV to −80 mV. Action potentials were also evoked by applying depolarizing current.


All experiments were performed at ambient room temperature (25° C.). The external solution contained (in mM): NaCl (130), HEPES-Na (10), KCl (5), CaCl2(2), Glucose (10). For voltage-gated sodium currents, tetraethylammonium (TEA, 5 mM) was added to the external solution and the internal solution contained (in mM): CsF (120), HEPES (10), EGTA (11), CaCl2 (1), MgCl2 (1), TEA-Cl (10), KOH (11). For voltage-gated potassium currents, tetrodotoxin (TTX, 500 nM) was added to the external solution and the internal solution contained (in mM): KF (120), HEPES (10), EGTA (11), CaCl2) (1), MgCl2 (1), KCl (10), KOH (11). For current clamp recordings of action potentials, 2 mM MgATP was added to the internal solution. All recording solutions had pH values of 7.3-7.4 with osmolality of 290-300 mOsm/kg. Drug applications were administered via local perfusion approximately 200 μm from the recorded cells at a flow rate of 0.2 ml/min and solutions were continually withdrawn from the recording chamber by vacuum aspiration. Drugs were applied until responses reached a steady-state level. Electrophysiological data were analyzed offline using Clampfit 10.4 and data was plotted using Graphpad Prism software.


Bloinformatic Analysis of sgRNA and Gene Hits


Data processing was conducted with custom scripts. Reads were mapped allowing for a mismatch for the first and last base pair of the spacer, which uniquely identified sgRNA. Each sample was normalized by the total read count. This gave a frequency for each sgRNA:







f
sgRNA

=


sgRNA


counts




sgRNA


counts







The paired Tuj1-hCD8+ and Tuj1-hCD8− were used to compute the enrichment scores. Specifically, frequencies as above were computed as above, and sgRNA with less than 1 count in the Tuj1-hCD8− library were discarded. Enrichment was computed for each sgRNA in each replicate as the log 2 fold-change from the Tuj1-hCD8− sample to the Tuj1-hCD8+ libraries. Enrichment was averaged across replicates and used as Esg in subsequent analysis. For each gene, an enrichment score (ESgene) was computed from the sgRNA enrichment above, as follows. An unnormalized enrichment score (Egene.top3) was computed by averaging Esg for the 3 sgRNA with highest Esg. Egene.top3 was normalized by the distribution of nontargeting sgRNA as follows (Gilbert et al., 2014, supra).


Suppose a gene had N targeting sgRNA. 10000 bootstrap samples of size N were drawn from the nontargeting sgRNA. For each sample of size N, Esample.top3 was computed as above. This gave an empirical estimate of the distribution of Egene.top3 if the all the sgRNA targeting that gene had been negative control sgRNA. For the final, normalized gene enrichment score (ESgene), the unnormalized enrichment score was divided by the 0.9 quantile of this empirical distribution:







ES
gene

=


E

gene
,

top

3





quantile
samples

(


E

sample
,

top

3



,
0.9

)






After ranking genes by ES, the most enriched sgRNA was selected for each gene to subsequently validate.


Bioinformatic Analysis of Double Screen

The count matrix was calculated by exact match for both ends, throwing all other reads out. The correlation of counts between replicates of the same condition was high (0.942-0.992), indicating high reproducibility of the double screen. Effect sizes for each gene pair was calculated using MAGeCK MLE (Li et al Genome Biology 2015, 16:281).


Suppose the null hypothesis that the guide pair of genes i and j have an effect size equal to the maximum of the individual effect size. This will be the case if one gene is the primary driver of neuronal differentiation. Note that the coefficients estimated by MACeCK (βij for genes i and j, in that order) arise from a generalized linear regression and should, if the model posited by MACeCK is correct, be normally distributed.


Consider the null hypothesis H0: the effect of guide targeting two genes is less than the maximal effect of guides targeting either gene. The order of the guide is taken into account. A consistent but smaller effect is predicted with the order of the guides reversed. Let signm(x, y) be the function that returns the sign of the larger of the absolute values of the inputs. Under the null hypothesis βij=signm(βi0, β0j) max(|βi0|, |β0j|).


To this end, note that the standard deviation of βij is bounded above by





√{square root over (8βi02+8β0j2)}.


Therefore the difference βij−signm(βi0, β0j) max(|βi0|, |β0j|) has standard error bounded above by








s

β
ij

2

+



s

β

i

0


2

+

s

β

0

j

2








One can construct a test statistic to test H0 as







t

i
,
j


=



1
2





β

i
,
j


-


signm

(


β

i

0


,

β

0

j



)



max

(




"\[LeftBracketingBar]"


β

i

0




"\[RightBracketingBar]"


,



"\[LeftBracketingBar]"


β

0

j




"\[RightBracketingBar]"



)






s

β

i
,
j


2

+



s

β

i

0


2

+

s

β

0

j


2







+


1
2






β

j
,
i


-


signm

(


β

i

0


,

β

0

j



)



max

(



"\[LeftBracketingBar]"



β

j

0


,



"\[LeftBracketingBar]"


β

0

i




"\[RightBracketingBar]"




)






s

β
ji

2

+



s

β

j

0


2

+

s

β

0

i


2






.







The test statistic constructed does not have an exactly normal distribution due to the high correlation between estimates (since all gene-gene pairs are tested) and therefore an empirical Bayes approach is used to determine significant genes while appropriately controlling the false discovery rate (Efron Large-scale inference: empirical Bayes methods for estimation, testing, and prediction, volume 1. Cambridge University Press. 2012; Efron et al R package 2011).


Determinants of CRiSPRa Guide Activity

Since large variation gene effect size was observed (FIG. 27C) and an apparent mixture distribution in the top hits, a Bayesian hierarchical logistic regression mixture model was fit using stan (Carpenter et al 2017 J. of Stat. Software, Volume 76, Issue 1). Specifically, the following model was fit.

    • xi=log2 fold change of guide i;
    • gi=gene associated with guide i;
    • xi˜ZiN(μgi, σ2)+(1−Zi)N(0, 1.42);
    • μg˜ N(3, 1.52);
    • Zi˜ Bernoulli(qi);
    • yij=Indicator variable if guide i is in feature j;
    • gci=GC content of guide i;
    • di=distance from the TSS for guide i;







q
i

=

logistic



(


β
0

+




j
=
1

J



β
j



Y
ij



+


β

J
+
1




gc
i


+


β

J
+
2




d
i



)








    • βj˜Laplace(0.2);

    • β0˜N(0, 5).


      In this mixture model, features have a linear effect on the log-odds that the guides belong to the second component. In this way one can separate out gene-specific effects and compare guides targeting the same genes, but pooling the information across all genes. To shrink the feature effects towards zero, a Laplace prior is used. Eight chains were fit and good mixing in all chains and Rhat values near 1 was observed, indicating a good fit of the model.















TABLE 8







Primers
sgRNA sequence









pSLQ1373-
gtatcccttggagaaccaccttgttgnnnnnnn



Forward
nnnnnnnnnnnnngttaagagctaagctggaaa



primer
cagca (SED ID NO: 386)







pSLQ1373-
gatcctagtactcgagaaaaaaagcaccgactc



Reverse
ggtgccac



primer
(SEQ ID NO: 387)







sgAscl1
gaatggagagtttgcaaggag




(SEQ ID NO: 401)







sgNeurog1-1
ggctgctgggagttgtgcaa




(SEQ ID NO: 405)







sgNeurog1-2
gtgcactactgaatccaaga




(SEQ ID NO: 530)







sgNeurog1-3
gtcaatcagtagcaggcaaa




(SEQ ID NO: 531)







sgMyod1
ggtctccagagtggagtccg




(SEQ ID NO: 406)







sgFoxo1-1
ggttcaggatgagtggaggc




(SEQ ID NO: 425)







sgFoxo1-2
gaagacttcactcatcttgg




(SEQ ID NO: 532)







sgFoxo1-3
gtctcagcgatcggattgct




(SEQ ID NO: 533)







sgNr2f1-1
ggagccaagagaagggctgc




(SEQ ID NO: 426)







sgNr2f1-2
gaagtatatcatagtttcgg




(SEQ ID NO: 534)







sgNr2f1-3
gtttggagtttgagcatcct




(SEQ ID NO: 535)







sgBrn2-1
gaggaaggactgagaagact




(SEQ ID NO: 428)







sgBrn2-2
gtgtaagggatctttgttac




(SEQ ID NO: 536)







sgBrn2-3
gtgtttatgaaagtgtatgg




(SEQ ID NO: 537)







sgEzh2-1
ggttcctttcggcaccttgg




(SEQ ID NO: 429)







sgEzh2-2
gataactgaacagggagtgg




(SEQ ID NO: 538)







sgEzh2-3
gttcggccctctgattggac




(SEQ ID NO: 539)







sgNr4a1-1
gctaacgtgtagtctcgttg




(SEQ ID NO: 431)







sgNr4a1-2
gccacctaggagaagaagtg




(SEQ ID NO: 540)







sgNr4a1-3
ggtttcctttagcttagact




(SEQ ID NO: 541)







sgDmrt3-1
gaggagttgatagttgttcc




(SEQ ID NO: 433)







sgDmrt3-2
gttacaatagactttgaggc




(SEQ ID NO: 542)







sgDmrt3-3
ggcaggtattaatactcaag




(SEQ ID NO: 543)







sgJun-1
gagaataaagtgttgtgccg




(SEQ ID NO: 435)







sgJun-2
gtttacatccaggctttgag




(SEQ ID NO: 544)







sgJun-3
gtttggctgtctagtgacgg




(SEQ ID NO: 545)







sgSuz12-1
gaagctctcaaggcgagaaa




(SEQ ID NO: 436)







sgSuz12-2
gattctgtggaattgggttg




(SEQ ID NO: 546)







sgSuz12-3
gctcagtctcatctccactg




(SEQ ID NO: 547)







sgNr3c1-1
gtcactgctctttaccaaga




(SEQ ID NO: 438)







sgNr3c1-2
gttatggtttcaggctggaa




(SEQ ID NO: 548)







sgNr3c2-3
gactcttctgctcagtttgc




(SEQ ID NO: 549)







sgTcf15-1
gggatatgctcactttggga




(SEQ ID NO: 439)







sgTcf15-2
ggtcgtcgccttatagccgg




(SEQ ID NO: 550)







sgTcf15-3
gaagtgacaggatcagctat




(SEQ ID NO: 551)







sgZeb1-1
gaaggaactaagtttcttct




(SEQ ID NO: 440)







sgZeb1-2
gtgacaggtgatctaggcgc




(SEQ ID NO: 552)







sgZeb1-3
ggaaccttgttgctagggcc




(SEQ ID NO: 553)







sgMecom-1
gattctcaggcagggctcta




(SEQ ID NO: 442)







sgMecom-2
gaccagttcactgaaagatg




(SEQ ID NO: 554)







sgMecom-3
ggcagttctcttgcctagtg




(SEQ ID NO: 555)







sgHoxc8-1
gctctttcctctaacagccc




(SEQ ID NO: 443)







sgHoxc8-2
gaggtgagagttagtaagtc




(SEQ ID NO: 556)







sgHoxc8-3
gtcatcaaagaaagaatggc




(SEQ ID NO: 557)





















TABLE 9









SEQ



Gene

ID



name
Primer sequence
NO:









RiboL7 F
accgcactgagattcggatg
444







RiboL7 R
gaaccttacgaacctttgggc
445







Ascl1 F
aagaagatgagcaaggtggagacg
446







Ascl1 R
gagatggtgggcgacagga
447







Brn2 F
tttcctcaaatgccctaagc
448







Brn2 R
ggaggggtcatccttttctc
449







Tuj1 F
agtcagcatgagggagatcg
450







Tuj1 R
agtcccctacatagttgccg
451







Map2 F
agcactgattgggaagcact
452







Map2 R
caattcaaggaagttgtaaagtagt
453




gaagtttg








Foxo1 F
gagtggatggtgaagagcgt
490







Foxo1 R
tgctgtgaagggacagattg
491







Nr2f1 F
ccaacaggaactgtcccatc
492







Nr2f1 R
attcttcctcgctgaaccg
493







Neurog1 F
cggcttcagaagacttcacc
494







Neurog1 R
ggcctagtggtatgggatga
495







Pou3f2 F
tttcctcaaatgccctaagc
498







Pou3f2 R
ggaggggtcatccttttctc
499







Ezh2 F
acttctgtgagctcattgcg
500







Ezh2 R
cgactgcattcagggtcttt
501







Nr4a1 F
gctagaaggactgcggagc
504







Nr4a1 R
attgagcttgaatacagggca
505







Dmrt3 F
agcgcagcttgctaaacc
508







Dmrt3 R
gcttttgacaacatctgggg
509







Jun F
gaaaagtagcccccaacctc
512







Jun R
aatcagacaggggacacagc
513







Suz12 F
tcgaaattccagaacaagca
514







Suz12 R
tgtggaagaaaccggtaaatg
515







Nr3c1 F
ggacaacctgacttccttgg
518







Nr3c1 R
ctggacggaggagaactcac
519







Tcf15 F
tctgcaccttctgtctcagc
520







Tcf15 R
aaccagggatccaggttcat
521







Zeb1 F
acagagaatggaatgtatgcatgtg
522







Zeb1 R
agattccacactcgtgaggc
523







Mecom F
acagcatgagatccaaaggc
526







Mecom R
ttatcccatctgcatcagca
527







Hoxc8 F
aaatcctccgccaacactaa
528







Hoxc8 R
tgtaagtttgtcgaccgctg
529





















TABLE 10









Enrichment



Rank
Gene name
score









  1
Foxo1
2.49122811







  2
Nr2f1
2.448600182







  3
Neurog1
2.43849068







  4
Rb1
2.435300527







  5
Pou3f2
2.385360453







  6
Ezh2
2.380072461







  7
Maz
2.361103604







  8
Nr4a1
2.351837703







  9
Arnt
2.317336958







 10
Dmrt3
2.304207908







 11
Sin3b
2.280599668







 12
Jun
2.277732884







 13
Suz12
2.276236754







 14
Klf12
2.269476929







 15
Nr3c1
2.249983644







 16
Tcf15
2.229200027







 17
Zeb1
2.221200461







 18
Nr6a1
2.208496165







 19
Mecom
2.207944981







 20
Trim24
2.206262504







 21
Hoxc8
2.184103377







 22
Foxk1
2.171388615







 23
2410080102Rik
2.171161939







 24
Nr4a3
2.168779599







 25
Trp73
2.16579857







 26
Foxs1
2.162897697







 27
Ikzf3
2.15938851







 28
Nkx2-6
2.15063949







 29
Sox11
2.140964961







 30
1110054M08.Rik
2.139005342







 31
Crem
2.133968618







 32
Meis3
2.131453549







 33
Bmyc
2.130409666







 34
Epas1
2.129339686







 35
Nr2f6
2.128397081







 36
Nacc1
2.120269011







 37
Bsx
2.120136772







 38
Foxd3
2.114601186







 39
Myog
2.107435864







 40
Smad3
2.105254748







 41
Wt1
2.091731056







 42
Taz
2.091306567







 43
Smad7
2.071136269







 44
Stra13
2.06971649







 45
Hoxc4
2.062634453







 46
Pou3f3
2.058607569







 47
Zbtb12
2.051837502







 48
Atf5
2.042025795







 49
Gtf2a2
2.041587014







 50
Pura
2.040735147







 51
Snai1
2.040229657







 52
Ncor1
2.038396405







 53
Pcbp2
2.036271048







 54
E2f2
2.028758908







 55
Nfkbib
2.023153101







 56
Gli2
2.021010016







 57
Nr0b1
2.020715359







 58
B230110C06Rik
2.016733057







 59
T
2.014396786







 60
Runx3
2.011724145







 61
Rxra
2.011600497







 62
Mafk
2.009964981







 63
Foxn1
2.006315586







 64
Smad4
1.999197443







 65
Meis2
1.998728368







 66
Hoxa1
1.996287157







 67
Zic1
1.992579239







 68
Sebox
1.99248237







 69
Nfyc
1.983084664







 70
Lmx1b
1.980716237







 71
Lhx3
1.979175342







 72
Hmx2
1.978886945







 73
Arf6
1.977331424







 74
Nfatc3
1.975872129







 75
Neurod6
1.973516686







 76
Smarca4
1.972359038







 77
Twist1
1.971479015







 78
Gzf1
1.963483117







 79
Hoxc10
1.962998475







 80
Tbx4
1.962626034







 81
Npas2
1.962608209







 82
Ctbp1
1.960624385







 83
Gem2
1.960206991







 84
Is12
1.957324105







 85
Arid5a
1.956887379







 86
Lef1
1.955552772







 87
RP24-399L6.2
1.953337042







 88
Smad5
1.949029539







 89
Lbx1
1.948838891







 90
Pax3
1.945680745







 91
Foxj1
1.944149198







 92
Tbx5
1.943975816







 93
Barh11
1.943598679







 94
Hoxd11
1.9410811







 95
Poulf1
1.939557398







 96
Klf3
1.938997548







 97
Pebp1
1.937292841







 98
Evx2
1.935442174







 99
Irx5
1.934100096







100
Nkx6-3
1.928635054




















TABLE 11









pSLQ5004-
tggaaagccagaaacatgnnnnnnnnnnnnnnn



Forward
nnnnngttttagagctagaaatagcaagttaaa



primer
ataaggctagtcc




(SEQ ID NO: 558)







pSLQ5004-
gatcctagtactcgaggtacctctaggc



Reverse
(SEQ ID NO: 559)



primer








Two
accgtattaccgccagccttttgctcattaat



sgRNA
taaggtaccgagg 



forward
(SEQ ID NO: 560)



primer








Two
TGACGGGCACatgcatggtacctctaggctag



sgRNA
cgaattcAAAAAAAg 



reverse
(SEQ ID NO: 561)



primer








Scramble
GAACGACTAGTTAGGCGTGTA



sgRNA-1
(SEQ ID NO: 562)







Scramble
GTTTAGTAGTTCGTCACACC



sgRNA-2
(SEQ ID NO: 563)







Scramble
GCGACATGTCTGTTGGGCGA



sgRNA-3
(SEQ ID NO: 564)







Scramble
GTATATAAGCCGGGCGCACG



sgRNA-4
(SEQ ID NO: 565)







Scramble
GTCGAACCACGCGTTGATCG



sgRNA-5
(SEQ ID NO: 566)







Scramble
GACCCATGACGGTCGACGGA



sgRNA-6
(SEQ ID NO: 567)







sgFoxo1-1
GGTTCAGGATGAGTGGAGGC




(SEQ ID NO: 568)







sgFoxo1-2
GAAGACTTCACTCATCTTGG




(SEQ ID NO: 532)







sgNr2f1-1
GGAGCCAAGAGAAGGGCTGC




(SEQ ID NO: 426)







sgNr2f1-2
GAAGTATATCATAGTTTCGG




(SEQ ID NO: 534)







sgNeurog1-1
GTGCACTACTGAATCCAAGA




(SEQ ID NO: 405)







sgNeurog1-2
GTGCACTACTGAATCCAAGA




(SEQ ID NO: 530)







sgRb1-1
GGCTACATACAGTCTAGGTT




(SEQ ID NO: 427)







sgRb1-2
GAGGAATCGAGAACTTAATT




(SEQ ID NO: 569)







sgPou3f2-1
GAGGAAGGACTGAGAAGACT




(SEQ ID NO: 428)







sgPou3f2-2
GTGTAAGGGATCTTTGTTAC




(SEQ ID NO: 536)







sgEzh2-1
GGTTCCTTTCGGCACCTTGG




(SEQ ID NO: 429)







sgEzh2-2
GATAACTGAACAGGGAGTGG




(SEQ ID NO: 538)







sgMaz-1
GGAAGGCATCTCTGGGAAGC




(SEQ ID NO: 430)







sgMaz-2
GCTCTGCAGGACACCCATGT




(SEQ ID NO: 570)







sgNr4a1-1
GCTAACGTGTAGTCTCGTTG




(SEQ ID NO: 431)







sgNr4a1-2
GCCACCTAGGAGAAGAAGTG




(SEQ ID NO: 540)







sgDmrt3-1
GAGGAGTTGATAGTTGTTCC




(SEQ ID NO; 433)







sgDmrt3-2
GTTACAATAGACTTTGAGGC




(SEQ ID NO: 542)







sgSin3b-1
GTGCAAGAATTCAGTCCACA




(SEQ ID NO: 434)







sgSin3b-2
GTGGTCAAGGTACACACCTA




(SEQ ID NO: 571)







sgJun-1
GAGAATAAAGTGTTGTGCCG




(SEQ ID NO: 435)







sgJun-2
GTTTACATCCAGGCTTTGAG




(SEQ ID NO: 544)







sgSuz12-1
GAAGCTCTCAAGGCGAGAAA




(SEQ ID NO: 436)







sgSuz12-2
GATTCTGTGGAATTGGGTTG




(SEQ ID NO: 546)







sgKlf12-1
GATTTGACCATCTCTTGCCG




(SEQ ID NO: 437)







sgKlf12-2
GAGTCACATTGATCCTGCAA




(SEQ ID NO: 572)







sgNr3c1-1
GTCACTGCTCTTTACCAAGA




(SEQ ID NO: 438)







sgNr3c1-2
GTTATGGTTTCAGGCTGGAA




(SEQ ID NO: 548)







sgTcf15-1
GGGATATGCTCACTTTGGGA




(SEQ ID NO: 439)







sgTcf15-2
GGTCGTCGCCTTATAGCCGG




(SEQ ID NO: 550)







sgZeb1-1
GAAGGAACTAAGTTTCTTCT




(SEQ ID NO: 440)







sgZeb1-2
GTGACAGGTGATCTAGGCGC




(SEQ ID NO: 552)







sgNr6a1-1
GATGACGGTCGGCCGTAGTT




(SEQ ID NO: 441)







sgNr6a1-2
GAATCAGGAAGGCTGTAGCA




(SEQ ID NO: 573)







sgMecom-1
GATTCTCAGGCAGGGCTCTA




(SEQ ID NO: 442)







sgMecom-2
GACCAGTTCACTGAAAGATG




(SEQ ID NO: 554)







sgHoxc8-1
GCTCTTTCCTCTAACAGCCC




(SEQ ID NO: 443)







sgHoxc8-2
GAGGTGAGAGTTAGTAAGTC




(SEQ ID NO: 556)







sgOct4-1
GTCTGGACAGGACAACCCTT




(SEQ ID NO: 574)







sgOct4-2
GAGTGCCTGTCTGCAAGGGA




(SEQ ID NO: 575)







sgNanog-1
GGAAGTTTCAGGTCAAGTGG




(SEQ ID NO: 407)







sgNanog-2
GCTGTAAGGTGACCCAGACT




(SEQ ID NO: 576)







sgEsrrb-1
GGTTAGTGGGCTCCAAGTGT




(SEQ ID NO: 577)







sgEsrrb-2
GGTGAGTGAGTGACACCCTC




(SEQ ID NO: 578)







sgKlf2-1
GAAAGGACCTGTGGACAGTT




(SEQ ID NO: 579)







sgKlf2-2
GCAAGAGGGTAATAGAGAGA




(SEQ ID NO: 580)




















TABLE 12









HiSeq
aatgatacggcgaccaccgagatctacacagat



forward
cggaagagcacacgtctgaactccagtcacnnn



primer
nnngcacaaaaggaaactcaccct




(SEQ ID NO: 581)







HSeq
caagcagaagacggcatacgagatcgactcggt



reverse
gccactttttc



primer
(SEQ ID NO: 582)







HiSeq
gtgtgttttgagactataagtatcccttggaga



custom
accaccttgttg



primer
(SEQ ID NO: 583)



(the




first




sgRNA)








MiSeq
aatgatacggcgaccaccgagatctacacagat



forward
cggaagagcacacgtctgaactccagtcacnnn



primer
nnngcacaaaaggaaactcaccct




(SEQ ID NO: 581)







MiSeq
caagcagaagacggcatacgagatggtacctct



reverse
aggctagcgaattc



primer
(SEQ ID NO: 584)







MiSeq
ccactttttcaagttgataacggactagcctta



custom
ttttaacttgctatttctagctctaa



primer
(SEQ ID NO: 585)



(the




second




sgRNA)










Results
CRISPRa Screening Strategy for Neuronal-Fate-Inducers

This example describes the identification of novel TFs driving direct neuronal reprogramming from fibroblasts. Using primary fibroblasts as a screening platform is technically challenging. Firstly, as primary cells have limited expansion capacities, it is difficult to modify them to generate a homogenous population, which achieves consistent CRISPR activation activities. Secondly, the neuronal transdifferentiation of fibroblasts is inefficient and not well suited for the enrichment of the desired cell population for the subsequent sgRNA sequencing.


Thus, mouse ES cells were chosen as a screening platform for the generation of candidate TFs driving neuronal-fate. The ectopic expression of individual key TFs that are critical for neuronal transdifferentiation can also drive neuronal differentiation of mouse ES cells, which supports the use of mouse ES cell differentiation as a discovery tool for neuronal-inducing TFs. Besides, as a model of developmental biology, ES cells have been successfully used to elucidate roles of many master transdifferentiation TFs of other lineages. Finally, mouse ES cells are technically easy to be equipped with CRISRP activation tools and suitable for single sgRNA screens.


A polypeptide-based SunTag CRISPRa system in mouse ES cells (Tanenbaum et al., 2014, supra) was modified (FIG. 22A). After several rounds of optimization and clonal cell selection based on endogenous gene activation efficiency, a CRISPR-activating mouse ES (CamES) cell line containing lentivirus-transduced CRISPRa elements was generated (FIG. 22B). Next, the CamES cell line was modified with a neuronal reporter. The reporter CamES cell line carrying a biallelic human CD8 (hCD8) gene cassette appended downstream to endogenous Tuj1 via an IRES (internal ribosome entry site) (Tuj1-hCD8 CamES) (FIGS. 22C and 22D). The magnetic-activated cell sorting (MACS)-enriched differentiated hCDS+ cells expressed much higher neuronal markers (Tuj1 and Map2) than hCD8− cells (FIG. 22E), demonstrating that hCD8 expression is positively correlated with differentiated neuronal cells.


An Unbiased Screen for Key Factors Promoting Neuronal Differentiation

An sgRNA library targeting all putative TFs (˜800), with an average of 60 sgRNAs per gene was constructed. This sgRNA library also contained 9,296 non-targeting negative control sgRNAs, leading to a total of 55,336 sgRNAs (FIG. 18A). The sgRNA library was transduced into Tuj1-hCD8 CamES cells and 2i+Lif was removed from ES medium to allow neuronal differentiation (FIG. 23A). The Tuj1-hCD8 CamES cells showed highest neuronal marker expression between day 10 and 11 post-transduction (FIG. 23B). MACS were used to sort Tuj1-hCD8+ and Tuj1-hCD8− populations on day 12 (FIG. 23C), and the sgRNA distributions of these two samples were compared, as well as the plasmid library (FIG. 18A). The Tuj1-hCD8+ and Tuj1-hCD8− cell populations exhibited similar sgRNA depletion when compared to plasmid library (Figure S2D). A high correlation of enriched genes between the positive and negative Tuj1-hCD8 populations was found (FIG. 23E). The top hits relative to the plasmid pool in both populations contain many proliferation and self-renewal genes, but few are related to neuronal phenotypes (FIG. 23E). It was contemplated that this is because the predominant factors that determine sgRNA representation in both the Tuj1-hCD8+ and Tuj1-hCD8− populations are in common, such as the growth advantage of cells expressing proliferation and self-renewal genes, less proliferative capacity of desired neuronal cells, and the spontaneous differentiation (FIG. 23F). To control this bias and generate gene-level enrichment scores, sgRNA representation was normalized in Tuj1-hCD8+ samples to Tuj1-hCD8− samples, the enrichment of the top three guides for each gene was examined, and the empirical distribution of the non-targeting guides was used to normalize enrichment scores (FIGS. 18B, 25G, Table 10 and Experimental Procedures). Top-ranked genes (Table 10) were used to transduce individual sgRNAs to CamES cells and look for signs of neuronal differentiation. Among 20 sgRNAs tested, 19 efficiently induced neuronal differentiation, as measured by the expression of neuronal markers, NCAM, Tuj1 and Map2 (FIGS. 18C, 18D, 24A and 24B). A large fraction of validated genes has been previously characterized to act in early neural development. Examples included neuronal fate-inducing TFs such as Ngn1, Brn2, Klf12, Tcf15, and Mecom. These results were consistent with previous studies showing that the forced expression of these genes induce neuronal phenotypes of pluripotent cells. On the other hand, the function of the remaining hits varied considerably. Major categories included neuronal survival (Jun and Maz), cellular senescence (Sin3b and Rb1), homeostasis/metabolism (Foxo1, Nr4a1 and Nr3c1), and epigenetic regulations (Ezh2 and Suz12). In addition, the neuronal-inducing effects of the majority of hit genes were confirmed via the overexpression of their cDNA in unmodified mouse ES cells (FIG. 24C).


Cells expressing varied neuronal lineage markers resulted from the activation of different endogenous genes were detected (FIGS. 18E and 24D). For example, NeuN and GA BA expressing cells were found for all identified neuronal-fate-inducers. In addition, most hits also induced GFAP and Olig2 positive cells, which indicates the presence of astrocytes and oligodendrocytes. The Glutamatergic neuron marker vGluT1 expressed at varied levels across several hits, such as Zeb1, Brn2, and Nr6a1 (FIGS. 18E and 24D).


It was next tested if these neuronal factors induce transdifferentiation. As reported, Asc11 alone can induce neuronal transition from mouse fibroblasts. cDNAs of individual genes was transduced into mouse embryonic fibroblasts, cultured cells under transdifferentiation condition, and stained them with neuronal marker Map2. Among the 19 genes tested, only Ngn1 induced neuronal marker expression (FIG. 25). However, compared to Asc11, the transdifferentiation driven by Ngn1 was inefficient (7% vs 1% Map2+ cells). All of the other tested genes failed to induced Map2− cells.


Neuronal-Fate-Inducing Activity of CRISPRa

To generate a deep view of how sgRNA design and gene activation level affects neuronal differentiation, other high-ranking sgRNAs of the 19 hit genes were investigated. Quantitative PCR results showed that effective endogenous gene activation (10 to 10,000 fold) was achieved by most of their cognate sgRNAs (FIGS. 18C and 24A). It was observed that, for the majority of hit genes, a higher gene expression level generally induced more efficient neuronal differentiation. Outliers of this trend included Jun, Brn2, Suz12, Tcf12, Zeb1, and Hoxc8. Cognate sgRNAs that induced higher expression levels of these genes generated similar amount of neuronal cells.


To investigate the determinants of CRISPRa activation in more depth, the targeting locations of top-ranked sgRNAs of the 19 hit genes was investigated. The observed signal followed a mixture distribution (FIG. 26A) (Horlbeck et al 2016 eLife 2016; 5:e19760). To determine what factors contribute to high neuronal signal, a hierarchical logistic regression mixture model was fit to estimate what genomic features can contribute to or prevent efficient activation (FIGS. 26B and 26C). It was found that KDM2B binding sites, H3K27ac peaks, and H3K4me1 peaks contribute to efficient activation (the top feature CXXC1 was primarily associated with a single gene, FIG. 26D). H3K27ac and H3K4me1 are known marks for areas of primed activation (Calo and Wysocka 2013 Mol Cell. 2013 Mar. 7:49(5):825-37), while KDM2B helps to maintain the stem cell state by recruitment of the polycomb repressive complex 1 (He et al. 2013 Nature Cell Biology 15, 373-384). Indeed, when controlling for other factors, being in a KDM2B increases the average observed log 2 fold change by nearly 1 (0.93, p=0.077, FIG. 26E). On the other hand, it was found that hotspots of open chromatin had little effect of guide efficiency (two-sided t-test, p=0.54, FIG. 26E). These indicated that the epigenetic features of sgRNA binding sites are important for CRISPRa activities.


A Double-sgRNA Screen for Genetic Interactions Driving Neuronal-Fate

The strategy to use ES cells differentiation as a tool to discover lineage reprogramming factors was justified by the fact that Ngn1, a hit of the primary screen, is able to convert fibroblasts to neurons. However, as most hits failed to achieve transdifferentiation, the difference between the two processes was highlighted. Compared to ES cell differentiation, a direct lineage programming process utilizes profound transcriptional, epigenetic, and metabolic changes of target cells. These complex mechanisms tend to be initiated by synergistic genetic interactions, instead of a single factor. In most cases, direct lineage reprogramming can only be mediated by the ectopic expression of a gene cocktail. Thus, it was hypothesized that novel gene interactions greatly facilitate direct neuronal reprogramming.


Current gain-of-function techniques, such as cDNA overexpression, are difficult to apply in a pairwise manner, even for a moderate number of genes. In addition, optimal gene expression levels are important for cell fate determinations. Overexpression libraries have limitations owing to dosage and functional issues, and thus may fail to cover genes' optimal expression level. To address these problems, a strategy to determine the gene interactions between the primary hits based on double sgRNA screen was developed. A library of dual-sgRNA-constructs targeting the top neuronal inducers was generated (FIG. 27A). For each hit gene, two sgRNAs were included. These sgRNA-High (H) and sgRNA-Low (L) were validated individually to drive different target gene activation levels (FIGS. 18C and 24A). The double sgRNA construction contains two sgRNAs driven by either human or mouse U6 promoter (FIG. 19B). Thus, two sgRNAs express independently. The library was generated through the ligation of two sgRNA elements, which can be easily scaled up (FIG. 27A). The library also included negative-control sgRNAs, i.e. non-targeting sgRNAs.


With the same strategy as in single CRISPRa screening, double CRISPRa screening was performed (FIGS. 19A and 27B). Pairwise interactions of sgRNAs were enriched relative to individual sgRNAs, and interaction scores were generated for each sgRNA pair (FIGS. 19D, 27B and 27D). It is noted that the correlations between two independent screening replicates are very high (FIGS. 19C and 27C), which indicates high reproducibility.


Hierarchical clustering of sgRNAs based on the correlation of their interactions shows that a fraction of sgRNAs tended to form a high number of interactions (FIG. 19D). These interaction-prone sgRNAs included many that drove low levels of neuronal differentiation compared to their counterparts. For example, Ngn1-H and Ezh2-H, which drove high gene activation and mediated efficient neuronal differentiation when applied individually, did not form strong interactions with other sgRNAs (FIG. 19E). On the contrary, their second top counterparts, Ngn1-1, and Ezh2-L, had synergistic effects with almost all other sgRNAs. A hypothesis to explain this is that in the screening system, some top sgRNAs already trigger saturated readout (neuronal differentiation), thus their interactions with other sgRNAs (even those synergistic) failed to be scored higher than themselves.


On the other hand, for genes whose higher activation lead to similar neuronal differentiation, such as Brn2 and Jun, a targeting sgRNA achieving highest activation tend to form stronger interactions then their counterparts (FIG. 19E). Foxo1-L and Foxo1-H, which mediated quite similar activation activities and differentiation efficiencies, both appeared as interaction-tendency hits (FIG. 19D). All together, these results showed that a library that covers a broad range of induced expression, including a “goldilocks” zone, is optimal for a gain-of-function double screen.


Gene Combinations Identified in Double CRISPRa Screen Convert Fibroblasts into Neurons


Based on false discovery rate, a list of gene pairs that showed strong synergistic effects was identified. Strong synergies included Ngn1+Ezh2, Ngn1+Foxo1, Tcf15+Zeb1, Tcf15+Foxo1, and Zeb1+Ezh2. To confirm these interactions, constructs expressing corresponding single and double sgRNAs were generated, and their effects in neuronal differentiation of CamES cells was tested. All of the identified sgRNA pairs showed additive effects in neuronal differentiation of mouse ES cells (FIG. 19F).


The synergistic links to Ngn1, the top hit in the single guide screen, that was identified have not been previously reported to drive neuronal transdifferentiation from fibroblasts. The ability of the above identified synergistic gene pairs to drive neuronal transdifferentiation from fibroblasts was investigated.


One gene pair, Ngn1+Ezh2, induced over 50% Map2+ cells, which is almost 50-fold more than Ngn1 alone (FIGS. 20A and 20B). Another double screening hit, Ngn1+Foxo1, induced nearly 45% neuronal cells. Zeb1+Ezh2, induced strong Map2 expression on neuronal cells (FIG. 20A). On the other hand, neither is able to mediate neuronal transdifferentiation alone. These results highlighted the power of double screen to discover strong synergies to mediate cell fate transitions.


Here, two new powerful neuronal inducing cocktails were identified: Ngn-1+Ezh2 and Ngn1+Foxo1. It was tested whether the induced cells possess neuron functions. The expression of other mature neuron markers in Ngn1+Ezb2 and Ngn1+Foxo1 induced cells, including Synapsin and NeuN was confirmed (FIGS. 20C and 28A). Furthermore, a large part of induced cells were Tbr1 positive, while a small part was GABA positive (FIGS. 20D and 28B). Moreover, these two combinations also induced neuronal transdifferentiation from tail tip fibroblasts with an extended culture time (FIGS. 20E and 28C).


It was next assessed whether the induced neurons using Ngn1+Ezh2 and Ngn1+Foxo1 were capable of synaptically integrating into pre-existing neural networks. After 7 days' co-infection of cDNAs and a superfold GFP (sfGFP) reporter, the induced neuron cells were re-plated onto rat neonatal cortical neurons that had been cultured for 7 days in vitro. One week after re-plating, patch-clamp recordings from sfGFP-positive induced neuron cells were performed (FIG. 21A), In voltage-clamp mode, it was observed a fast activating and inactivating inward current followed by a slow activating and inactivating current (FIG. 21B). The action potentials could also be elicited by depolarizing the membrane held at −75 mV in current-clamp mode, which could be inhibited by the application of 100 nM tetrodotoxin (TTX), a selective blocker of voltage-gated sodium (Na+) channels (FIG. 21C). Inward currents could be blocked by the application of 500 nM TTX (FIGS. 21D and 28D), and outward currents could be inhibited by the application of 5 mM tetraethylammonium (TEA), a selective blocker of voltage-gated potassium channels (FIGS. 20E and 28E). Together the voltage-clamp studies show that these induced neurons express functional voltage-gated Na+ and K+ channels, which are critical in the ability of neurons to fire action potentials.


For all the induced neuron cells analyzed (5/5), action potentials that fired spontaneously were observed (FIG. 20F). Application of 100 nM TTX blocked the spontaneous action potentials, and washout of TTX completely reversed the blockade (FIGS. 21G and 28F). Spontaneous postsynaptic currents were recorded in induced neuron cells held at −60 mV in the voltage-clamp configuration. These currents could be blocked by application of 30 μM 6,7-dinitroquinoxaline-2,3-dione (DNQX), an AMPA and kainate receptor antagonist (FIGS. 20H and 28G). The blockade is reversible upon removal of DNQZ. On the contrary, the presence of 30 μM Bicuculline (BIC), a GABAA receptor antagonist, slightly increased the observed frequency and amplitude of the spontaneous postsynaptic currents (FIGS. 20I and 28H). These experiments demonstrated the induced eurons were mostly glutamatergic excitatory neurons, which fired AMPA/kainate receptor-mediated spontaneous excitatory postsynaptic currents (EPSCs). The emergence of AMPA receptor mediated synaptic transmission is a key step in the development of mature glutamatergic synapses (Wu et al., Maturation of a central glutamatergic synapse. Science. 1996; 274:972), These data indicated that these induced neurons can form mature neurons as they form electrically active networks of cells in vitro. Overall these experiments demonstrate that functional synapses can be formed with induced neurons using Ngn1+Ezh2 or Ngn1+Foxo1.



FIG. 29 shows three additional powerful neuronal inducing cocktails: Ngn1+Brn2, Brn2+Ezh2, and Mecom+Ezh2; which could drive neuronal transdifferentiation from fibroblasts.


Table 13 Shows Exemplary sgRNAs for Genes Targeted in Examples 1-4.













TABLE 13









SEQ



gene
guide
ID









6430411K18Rik
GTTGCTGGTTGATGAAGTTG
 586







6430411K18Rik
GCAGTTCCAAGTACCGGTGC
 587







6430411K18Rik
GGAAGGCAGCGCCATTCTGG
 588







6430411K18Rik
GACTCAGAGGACCCAAGAAA
 589







6430411K18Rik
GGGTCGAGTCCAGGATGAGT
 590







6430411K18Rik
GGTGGACTTGCTTGCAGGGT
 591







6430411K18Rik
GGATGATGAAGAAGAGGAGG
 592







6430411K18Rik
GCACACACTCCGACTCATCC
 593







6430411K18Rik
GGCTCCTTGGCACAGTACTC
 594







Adipoq
GAACCTGGTTTAATCCAGCT
 595







Adipoq
GGTAGAGAATGGCCAAAGCC
 596







Adipoq
GTCCCATATAGGAACACTGC
 597







Adipoq
GTTTCTAGAGAAATCACGTT
 598







Adipoq
GCTGGGTCTGGTAGACACCC
 599







Adipoq
GAAGCCAGAAGCCAGTAAGA
 600







Adipoq
GTGAAGACCACGAGGCATTG
 601







Adipoq
GTACAGGAAGGTTCCTGGTG
 602







Adipoq
GGAGTCTTAAGGCAGCTGCC
 603







Aebp1
GATGTCACTTCCCTAGGCAT
 604







Aebp1
GGCACAGCGGGTTAGAGCAC
 605







Aebp1
GAGCACTCAAAGGGTCCAAG
 606







Aebp1
GAGGGATCACACAACAGCAC
 607







Aebp1
GTCATACTTGGACTGAATTT
 608







Aebp1
GAGTGGAGAGCTCTCCTCAC
 609







Aebp1
GGAATTCGAGCAGAGGAGCT
 610







Aebp1
GACAGAGAGGGTGAGGGTGA
 611







Aebp1
GGTGATCGCCAGTACCCTCG
 612







Aebp1
GGATGTCACTTCCCTAGGCA
 613







Aes
GCCTGGACACCCAGGCTTCA
 614







Aes
GAGGAAGCCTTAGAGACTGC
 615







Aes
GATTCTGGTATCCCGGAGGC
 616







Aes
GGCCTCTGATTCTGGTATCC
 617







Aes
GAGTCTGTGGCCTTGGGACT
 618







Aes
GTCTCTGTCTGTCTCAGGTA
 619







Aes
GACACCTGTCCCACAGAGGT
 620







Aes
GGATGGGACACCACTGAGGG
 621







Aes
GACTCAGCAGCTTAAGAGGA
 622







Ahr
GATGAGAAGGAAAGAAGCAC
 623







Ahr
GCCCAAGCAGAAATGAGATC
 624







Ahr
GTTGAGTGCCATGTAAGTTA
 625







Ahr
GCCTTCCTTGTTGAAATAAC
 626







Ahr
GCAGAGATGATAAAGGAAGA
 627







Ahr
GGAAATGACAACAGGAAAGT
 628







Ahr
GATTTAATGGGAGTGATGAG
 629







Ahr
GTCATCACGTGCTGCGAAGA
 630







Ahr
GTCCTTTAATAAGGTCTTCC
 631







Ahr
GAATGTGTATGCCCTGTGAT
 632







Ahrr
GGGAAGCTCCTGCTACCCAG
 633







Ahrr
GTGTGAAATACCTTAAGAGT
 634







Ahrr
GTCAGAACCTTGCATAGATG
 635







Ahrr
GAGGCATCTGGAAGTGCAGA
 636







Ahrr
GGATTTGGTGCACAAACTGG
 637







Ahrr
GTGCCTAGGTGGAAGGTGGG
 638







Ahrr
GGTGGGAGGGACTGGATGAG
 639







Ahrr
GGGTAGCAGGAGCTTCCCAG
 640







Aire
GTACAATCTCACTTTGCTGG
 641







Aire
GCACCACGACACCCAAGGAA
 642







Aire
GGGCCCAGCTTTCGAAAGCT
 643







Aire
GAACAGGGAGCAAGGGACTG
 644







Aire
GCTTGGAGGCCCTGTCTTTC
 645







Aire
GAGATTCCTCACTGGCATGA
 646







Aire
GTTTAGCCTAGAGCCAATCA
 647







Aire
GGTCAGTCACTTCAGAGCCG
 648







Aire
GCTAGAGACTGCCCTGCCTT
 649







Alx1
GCGGCTGTTAACCGGCTTGC
 650







Alx1
GGGCACAAGGCCAAGCAGAA
 651







Alx1
GCATCCGACAGCAAACGAGA
 652







Alx1
GACAGCAAACGAGAAGGCCA
 653







Alx1
GGGAGTCAGGGCTCTAAGAT
 654







Alx1
GTCGAGGCGACTACGATTCT
 655







Alx1
GCAGAACTGTTAAGTGAAGT
 656







Alx1
GTTGCTTGCTCCAcCTTCTC
 657







Alx1
GACAAATGCCAGGAGAGACA
 658







Alx1
GAAGCTTGAAATAACAGGCT
 659







Alx3
GAGAAGAGAGGCCTCTACTG
 660







Alx3
GAATGGAGAGTCTTGTAGGG
 661







Alx3
GCTGTAAATCAAGGCCAAAC
 662







Alx3
GACTGCAGGCTAGGCAGAGA
 663







Alx3
GGTTTCACAGTGGTCTGCCC
 664







Alx3
GAATGTTGGAGGAGGGATGG
 665







Alx3
GTCCTTGGTTGAGGGCAGTC
 666







Alx3
GCCATAACACTGTTTCTGAT
 667







Alx3
GCTTAAAGATCCCTTAGGTC
 668







Alx4
GTGAGGAGAATTCCAAAGAA
 669







Alx4
GTTAGCTTTGAGGTCTCCAT
 670







Alx4
GTTGAAGCAAAGGTCACCAA
 671







Alx4
GGATGAGAGGAGTGGGAAGA
 672







Alx4
GAAACCTGTGTCTGTCTCTC
 673







Alx4
GCTGGAGCAGATTGGAGGTA
 674







Alx4
GAGATAGGTGAGATTGGAGG
 675







Alx4
GATTCGACCCGGAGAAGCCT
 676







Alx4
GGAATTTCAACAGTGTGGTG
 677







Alx4
GTCAGCATCTGGATGCCTGA
 678







Alyref
GTTCCCTAATGTCTAATTAC
 679







Alyref
GACCAATCGCCGCTCGCTTC
 680







Alyref
GAACTGCGGCATCTGCAGGA
 681







Alyref
GAAGCGAGCGGCGATTGGTC
 682







Alyref
GCCCAGCAAGCATGACAATA
 683







Alyref
GGCACACGCCTCTAATCCCG
 684







Alyref
GTCTTACCTCTGTAGCATCC
 685







Amer2
GTGTAGGGAAGGCTCCTTGC
 686







Amer2
GCGTTCTAAATCAACCTGAG
 687







Amer2
GACAAAGCAGCTTTCAGTGT
 688







Amer2
GCATTGTTCTTTGTGGACAT
 689







Amer2
GAAAGAGGAAGACTGAGCCC
 690







Amer2
GTGAGAGAGAGCAGTTTCCA
 691







Amer2
GTATTCTTTCTCCTCTGTGG
 692







Amer2
GCTAATTGGTATTTGACTGA
 693







Amer2
GAGAACAACCTGTGTGGGTA
 694







Ap2b1
GTTTCCCTGTCTCAGGGATA
 695







Ap2b1
GGGTGCGCGGGAGAACCAAA
 696







Ap2b1
GATCTCCAAACCTGATGGTC
 697







Ap2b1
GGCTACCTGGCAGTGAGGAA
 698







Ap2b1
GGGCTGGAGAGATGGCTCAG
 699







Ap2b1
GGTTTCCCTGTCTCAGGGAT
 700







Ap2b1
GGAGAGATGGCTCAGTGGGC
 701







4p2b1
GGTCAAGATTTCCTGATTAA
 702







Ap2b1
GGCTGGAGAGGTGGCTCAGT
 703







Ap2b1
GATCAATCATGGTTAGCCAG
 704







Ar
GCCTAGTCAGCTCCTGGAGA
 705







Ar
GGCTTTAGAGAACGTAGTGC
 706







Ar
GCACAGAGGTAAACTCCCTT
 707







Ar
GAAACTTCACCGAAGAGGAA
 708







Ar
GGGTCTACAACCTTTCTCTA
 709







Ar
GAGTTAACTGAAACCTCAAG
 710







Ar
GGAGTTAACTGAAACCTCAA
 711







Ar
GCCCACCAGGACAAGCAGAA
 712







Ar
GCGTCCCTTAAGCTTCTGTA
 713







Arf2
GCTGGTATGTGGGAGGAGCC
 714







Arf2
GACCAATGGAAATGGCAATA
 715







Arf2
GGGCTCTGGTAGGAGATTAC
 716







Arf2
GATTGGTCGTCTGTGGCTTC
 717







Arf2
GCAATGGTATTGAAGAGGCA
 718







Arf2
GCGCAAGAGTTCCCAGGAGG
 719







Arf2
GAGGCTTTGGGAGACTGCTA
 720







Arf2
GTAGGAGATTACTGGAACTC
 721







Arf2
GAATCTGGGTATTTCTGACC
 722







Arf6
GCTTCGTCGGCCCTTAGGAC
 723







Arf6
GAAGTCAGTGAAAGGGAGCA
 724







Arf6
GCTAGTTACTGAAGACGTTC
 725







Arf6
GGAACATGGCACCTGACCAG
 726







Arf6
GAGTTTAAACTTTCAAAGGC
 727







Arf6
GTCTGTTTCTTAAGAAATGC
 728







Arf6
GCAAGGGAAGGTGACAGAGG
 729







Arf6
GAGAGGCAGGTTGTAAGTGG
 730







Arid3a
GCAGGGATATATTTAGCCAA
 731







Arid3a
GGACCTGAGCACCACCTATG
 732







Arid3a
GTCCTGGGAAAGCTTGGAAA
 733







Arid3a
GAGGTGGTGGGTGTCTCTCC
 734







Arid3a
GTCCCTTGTTAGACTGTTGT
 735







Arid3a
GAACCGTGACGACCGTACCT
 736







Arid3a
GCTCCTAGGTACGGTCGTCA
 737







Arid3a
GGGCTTCAACCCAGCAGTGG
 738







Arid3a
GGAGAAGAATGCTGGTGTGC
 739







Arid3a
GTGACTTTCCGCTCAGAGGT
 740







Arid3b
GCCTAGAGAACATTTATACT
 741







Arid3b
GAGGAGGGACAGGCAGTAAG
 742







Arid3b
GTTACATCTCTAGAGCAAGG
 743







Arid3b
GAGACGCGGGCTAGTGAAGC
 744







Arid3b
GTCCGTTGCTCTCGGTTTGG
 745







Arid3b
GGTAAGGGAAATGGTCACCA
 746







Arid3b
GCTTTCCTCAGCAAGGGAGA
 747







Arid3b
GTTTGCCATGGTAGCACTTA
 748







Arid3b
GAGGACCTGACCAGGGAAGT
 749







Arid3b
GGCAGCGGCTTTCAGCAGAT
 750







Arid5a
GTTCGCAGGTTGCCCGAGAC
 751







Arid5a
GCTAGAGTCTTGGATCTCTT
 752







Arid5a
GAACCGGCCAGGACCACTTC
 753







Arid5a
GAAGTATGGTCACTGTCTCC
 754







Arid5a
GAAATTGTCCCTTGGTGATC
 755







Arid5a
GGATTAGCTGTGGCTTTGAA
 756







Arid5a
GGCTGTGTCCCAGATCACCA
 757







Arid5a
GTAGCTTGCCAAAGACTGGG
 758







Arid5a
GCAGATCTCCATACCTAACC
 759







Arid5a
GGATGGAGAGTGATGGAGGG
 760







Arid5b
GTCTGCTCGGAATATGAATT
 761







Arid5b
GTGATGTGCAGGTCATAATT
 762







Arid5b
GTATATTATTCCTGTAGCGC
 763







Arid5b
GCAAACCGCGCAATGCTCCA
 764







Arid5b
GGCACCAATCTTTCCAGAGT
 765







Arid5b
GATTGCATCAGGTCCTGGCA
 766







Arid5b
GAGGTTTAATACACAATCCA
 767







Arid5b
GAAATATTCAGAGCTGGGTT
 768







Arid5b
GGCCTATCCGATACTGAGAA
 769







Arnt
GTTTGAAACTCCAGGTTAAT
 770







Arnt
GTGTAGTGGAGTCGTCTTTA
 771







Arnt
GAAACAGTAAGTCGCCATAG
 772







Arnt
GAGTTGGCTCTGAAGCTGGT
 773







Arnt
GTGAGCCGACCAACTGGAGT
 774







Arnt
GACTGACCGCGCCCATAGTT
 775







Arnt
GGATTAGGGAAACAGCTGGT
 776







Arnt
GCATTTCACTGACGTCAATT
 777







Arnt
GGCCGGATTAGGGAAACAGC
 778







Arnt
GCGTGTCTTCTGCCCAGGAT
 779







Arntl
GAGAGATTCCTTCACAGAAC
 780







Arntl
GACGAAGTGGCCTTGCTATC
 781







Arntl
GAGGAGGAGGGAGAGCTGAG
 782







Arntl
GGCTTCTCCTTGTGCAAACC
 783







Arntl
GTGCCAATTGGTCCACTCCT
 784







Arntl
GGTGCCAGTAGAAGATAAAC
 785







Arntl
GTGGAGCTGICATTCCCGAT
 786







Arntl
GGACCAATTGGCACGCTCTG
 787







Arntl
GATAAATTCATTGTTCTGGA
 788







Arntl2
GGGAGCTTCATGTGCAGAGT
 789







Arntl2
GCAGCCTCACTTCCTGGCTC
 790







Arntl2
GCTGCTGGTGTCTGAGGAGT
 791







Arntl2
GACAACACCATTCAGTTGTT
 792







Arntl2
GGGTGTTCATTTATTTCTGG
 793







Arntl2
GCAGTCTGGAAGCTCAGGGT
 794







Arntl2
GGTCTGGAACCGGTTGGAGG
 795







Arntl2
GGAGGATGCTATTGATGGGT
 796







Arntl2
GGTGGGTGTTCATTTATTTC
 797







Arntl2
GGGATCGGTGAGAGAGCAAT
 798







Arx
GAGGTCCATTGGTCCTAGAA
 799







Arx
GGGAATGAGGGTGTCCATTC
 800







Arx
GGCAGAGTGAATATTAAGTT
 801







Arx
GAGTATTCAGAGAGGTGAAA
 802







Arx
GGAGTCCTCAACGCAACTTG
 803







Arx
GACCCAACTTCACTCAGGGT
 804







Arx
GTCCTCAACGCAACTTGAGG
 805







Arx
GAGGGAGGTGGGTAAGAGGT
 806







Arx
GATGGTTGCCTCTGACACGT
 807







Ascl1
GTTGTTGCAGTGCGTGCGCC
 808







Ascl1
GTTCCCTAAGAAGCTGAGGC
 809







Ascl1
GAGGCAGGAGAATAAGTTGG
 810







Ascl1
GATGTTTGAGGATGACGTCA
 811







Ascl1
GAGGGAAAGGCTGCTCAGAC
 812







Ascl1
GGGCACAACTCGCTAAGGGT
 813







Ascl1
GCCTGAGACAGGGAGGGACA
 814







Ascl1
GCTAGACGCTATGGGAAAGG
 815







Ascl1
GAAGCAGAGACTGTGGAATG
 816







Ascl2
GCAGTGTGTATGGAGGTTGG
 817







Ascl2
GAGCATGTACTGCCAGTGTG
 818







Ascl2
GATTGTATTCTCTCAGGTCA
 819







Ascl2
GGTGACAGTTCCCTAGGGAT
 820







Ascl2
GGGAGGAAACAGGGCAGCAG
 821







Ascl2
GGAGCATGTACTGCCAGTGT
 822







Ascl2
GCTGGCTGTAAGGTGCAGAT
 823







Ascl2
GCACCTACCTAGTCCTTTGA
 824







Ascl2
GCCAGAAGGAAGCGTACGCC
 825







Atf1
GCTGGCCTGTTGTTCAGGCC
 826







Atf1
GTGGAAGTGCTGGATAAGAA
 827







Atf1
GAACTATCTGAGAGGATCCC
 828







Atf1
GTGACCTACAAAGTAAGGTC
 829







Atf1
GCTTGGAGATAGGCTGGCTG
 830







Atf1
GGACTTAGCATGTCCTTGTG
 831







Atf1
GATAGCGACTCCAGAGAGGT
 832







Atf1
GCCAAGGTCAGAGCATGGAT
 833







Atf2
GGCAACACCCATATTATCTC
 834







Atf2
GCTTCTCGGTACACGGAGAG
 835







Atf2
GACCGTTGTTTCGGTAACCA
 836







Atf2
GAAGAAAGCGGCAGGGATGC
 837







Atf2
GAGAGAAGAAAGGTGAGGTC
 838







Atf2
GGACCGTTGTTTCGGTAACC
 839







Atf2
GAGGGAATAGACCTGGTGTT
 840







Atf2
GTCAGCTGCTCATTACTGGT
 841







Atf2
GCCGACAATATCTAACCCAA
 842







Atf2
GGGAAGATCGGCTCCAGTTC
 843







Atf3
GAAGGAAGAGCCCTAAGGTC
 844







Atf3
GACAATCTCCCGCGTGAAGG
 845







Atf3
GACCGGAGCTGATCTGCATA
 846







Atf3
GGGATTACAGCAGCATCGCG
 847







Atf3
GGGTTGTGGAGGTGTGGAGC
 848







Atf3
GCGCAGGGATAAGAAAGGGC
 849







Atf3
GCCTTGGACTTGAGGAACCC
 850







Atf3
GGGTTTACCTGCCGGCAGGT
 851







Atf3
GATCTGCATACGGGCTCCCG
 852







Atf3
GGAGGGCAGAGGCCTGTGAA
 853







Atf4
GTGAGTCACTTAAACAGAAG
 854







4tf4
GGAACTGACCCTATACAAAC
 855







Atf4
GGACTTGGCCTCAGAGACCA
 856







Atf4
GTCCCTGTCCCAGGACTGAC
 857







Atf4
GAGGCCTTGACCAGTACCTG
 858







Atf4
GGCAGTGAGGGCCTCTATGA
 859







Atf4
GCAGAGCCAATAGGAACTTG
 860







Atf4
GGAGGAGCCACCAGAGGTTC
 861







Atf4
GAGGAGCCACCAGAGGTTCC
 862







Atf4
GGCATAGGAGGTTAGACCTG
 863







Atf5
GGGCTTAACCCACGAGGTCT
 864







Atf5
GGACACACAGAACGATCATA
 865







Atf5
GACTTAACAAAGCCCATAGC
 866







Atf5
GGCCTCTAGGGACTTGCTAG
 867







Atf5
GCTACCTAGGAGCTGTTGCC
 868







Atf5
GAGGCCTCACAGGACAGGGT
 869







Atf5
GGAGTTGTGATCATCCCTGG
 870







Atf5
GAGAGAACAGCCTTGTGTGA
 871







Atf5
GTCCCTCTTGTCCTTCACCG
 872







Atf5
GCGCATGCGCAACAGGTTGT
 873







Atoh1
GCGGAACATTTCAACGGCAC
 874







Atoh1
GAATTTCCAGAACTGACTAG
 875







Atoh1
GACAACGTGAGAGCCTGGAA
 876







Atoh1
GCTTGGAGGGATCCCAGGCC
 877







Atoh1
GCTCAGATGAGACCCAGGGT
 878







Atoh1
GCAATCCCATGGACACGCTC
 879







Atoh1
GCCTGAGATCCCTCCAAGCC
 880







Atoh1
GAGAGCACTAGGAGCAAGCT
 881







Atoh1
GTTGAAATGTTCCGCTAGCA
 882







Atox1
GAGTGGTATCAGTTCCCTTT
 883







Atox1
GATGGCCAATTCCAGTTCAC
 884







Atox1
GGACACCAAAGCTGCGCTTC
 885







Atox1
GTCATTTCTGAAACAGGGCT
 886







Atox1
GGATTCACATCAGCTCCTTC
 887







Atox1
GTGGCTCTTGCATCAGCCTC
 888







Atox1
GCTAGGTTCCTCCCTTGGGC
 889







Atox1
GTTCTGGCTGGGAGGCTTCT
 890







Atox1
GTGCAGATTAAAGTCATGGC
 891







Bach1
GCGAGCTCCGTGTAACGTTG
 892







Bach1
GTAGCCCTGGCAGGACTTGT
 893







Bach1
GCCTTCAGCAGGTGAGGAAG
 894







Bach1
GCACTGTCTGTGTGTGTTTA
 895







Bach1
GCTTATTCCATGCTATTCTA
 896







Bach1
GCACCAGGTCACCACTTACA
 897







Bach1
GAAGCTAGTGATCATTCAGA
 898







Bach1
GCTCTTACTAGCGGAGGGCG
 899







Bach1
GTGGTTCTGACAGACATTCG
 900







Bach1
GTGGTCTACCAGGCTGTGAG
 901







Bach2
GAGGCAAAGACCGGAGCTCT
 902







Bach2
GGTTGTGTTAGTTGCTGTGC
 903







Bach2
GACTGAAATTGACCTCTACT
 904







Bach2
GAAGGCCAGTGTGGCACGTG
 905







Bach2
GTTTGTCCTTTGTTGCAATC
 906







Bach2
GGCTGGAGCAACACTTTGGA
 907







Bach2
GAGAAACACTAGAACCACTG
 908







Bach2
GCATGTGGCATTGCTAGCTT
 909







Bach2
GGGCCTGATTCAGCTTTCCA
 910







Barhl1
GTTGCAGCTACTTGGAGACC
 911







Barhl1
GGATCAGCCACTGCTAGTGC
 912







Barhl1
GGAGCTGCTAGGAACCCTTG
 913







Barhl1
GCCCTAGAGAGGCCACTGAC
 914







Barhl1
GGGTCCTAAGAGGTTGGGTT
 915







Barhl1
GGAAATTAGGAGGAAGAAAG
 916







Barhl1
GTTGAGCCACACACTCACCC
 917







Barhl1
GCACAGACCTAACTATTTAC
 918







Barhl1
GTTGCGCATCTGGGCAGCAG
 919







Barhl1
GAGAATTGTGGTGTTCTACA
 920







Barhl2
GAGCAGACATTTATTTATCA
 921







Barhl2
GTAGTCTTTGGCGCCAGAAC
 922







Barhl2
GCTGACGGCACAGCTTGTGC
 923







Barhl2
GAGTAGAGCTCAGACGTTGC
 924







Barhl2
GAGTGCTATCTAGATGGTCT
 925







Barhl2
GGATGACAAGCCAACGCGCG
 926







Barhl2
GACCAAGGCCTAACCTGGGA
 927







Barhl2
GTCGCGTTCCAGGTCCCAAA
 928







Barhl2
GCGCGTTGGCTTGTCATCCG
 929







Barhl2
GGGATGGAAGCATTGGAGGG
 930







Barx1
GGCGCACCTGTGGAATGGAG
 931







Barx1
GAAACTGGCCGCTCTGGGAG
 932







Barx1
GCTCTGTGGAGAGCATTCGT
 933







Barx1
GAGCTGTAGCAATGAGCTTT
 934







Barx1
GGAATGCCTGAACCAGTCCT
 935







Barx1
GCCTGATGTTGAGCCCTCCA
 936







Barx1
GCGCATAGTGTTCAAATACA
 937







Barx1
GCACCTGTGGAATGGAGTGG
 938







Barx1
GGGATCCAGTGCAATACACC
 939







Barx1
GTGAGTAGAAGCGGCTTTCT
 940







Barx2
GGCGCTAAGGGAGGACAGAG
 941







Barx2
GAAAGTTTGTAAGGCACCGA
 942







Barx2
GCTGTGGGCTGGGTTGAGAG
 943







Barx2
GGCAATCAAGTTTGCAACCT
 944







Barx2
GCTTGCGCACACCACTTCAG
 945







Barx2
GCATTTGTGAACCCGTACCC
 946







Barx2
GCGAGTACCAACGAGGGAAA
 947







Barx2
GCCATGAACACATGATTGTA
 948







Barx2
GTATAACACACTTCTGGTAT
 949







Barx2
GCTCCGAGCATGGTTAGCCG
 950







Bbx
GTGAAAGACACATGGCAAAG
 951







Bbx
GTCAGTGGGACCTGACCGTG
 952







Bbx
GTCCAATTAGTGTTAATGTC
 953







Bbx
GATCCCTTCTGCACTGAGTT
 954







Bbx
GCCCATATCCACGTGGACTA
 955







Bbx
GAGGCAGGGACAAACCAGGT
 956







Bbx
GACTGGGACGTGAGAGCACA
 957







Bbx
GAAAGGTAACAAATCAAACA
 958







Bbx
GCTACTTAGTCTTT3AACTA
 959







Bbx
GCTCAACACCTGGGAACTAA
 960







Bcl6
GTGGGAAGAGAGAGAGAGAA
 961







Bcl6
GTGGCTCGTTAAATCACAGA
 962







Bcl6
GCTCTGTTGATTCTTAGAAC
 963







Bcl6
GTCCTTTCTTCTCTCTTTAT
 964







Bcl6
GGTGGGAAGAGAGAGAGAGA
 965







Bcl6
GGTAGAGCCAGCCAGAGTGG
 966







Bcl6b
GGCCTCTCCCTTCTGTTCTT
 967







Bcl6b
GGTCGTATCGTGGATGGCTT
 968







Bcl6b
GTCTGCATCCTTCCACGAGA
 969







Bcl6b
GCGGAGGGTGGTAATATGGG
 970







Bcl6b
GCTGAGAGCTTGATTGATGG
 971







Bcl6b
GAGGTTAGTGGTGCGGAGGG
 972







Bcl6b
GAAGCTAGGAGAGGATCTGA
 973







Bcl6b
GCCGAAGAGAGCAGGGACCT
 974







Bcl6b
GAGAAGGAGGAGTGATTGAC
 975







Bcl6b
GCATGAGTACGCAACTAATT
 976







Bhlhe41
GCATTTAGCAGGAAGAAACG
 977







Bhlhe41
GGTTCCTCGAGTAGGACGAC
 978







Bhlhe41
GATAAGCCACGCCGAGAGTG
 979







Bhlhe41
GGCTTCCTCCAGTTCTTAAC
 980







Bhlhe41
GAGCAATTTACACCTTGAGC
 981







Bhlhe41
GGCGAGCCCACGTTTACTAC
 982







Bhlhe41
GAGACTCAAGTTTAAGGCAG
 983







Bhlhe41
GGAGGTGCCAGTAGTAAACG
 984







Bhlhe41
GGCTTATCGCACGAGGGAGA
 985







Bhlhe41
GGAGACAGGATTAAGGAGGG
 986







Bmp7
GGCACTTCCTCCTAAAGTCT
 987







Bmp7
GGCCAGGGACTCAGTACTGG
 988







Bmp7
GTGCTTCTGTGGTGGGAAGA
 989







Bmp7
GCGTGTTTGTTCTGTCACTT
 990







Bmp7
GACTGGAGCAAATGGAGTGT
 991







Bmp7
GTCCAGCACCCAAGGGATCC
 992







Bmp7
GTCTCTCTGTGGAGACTCAG
 993







Bmp7
GTTAGACAGTGAGGTACCAA
 994







Bmp7
GCACCGAAGAAGGGAGAGAT
 995







Bmp7
GGCAAGCATGGCAACCTCCA
 996







Bmyc
GAACTGGGTCCAGATAGGAA
 997







Bmyc
GGCATGATAGCCCAGGAGCT
 998







Bmyc
GTTGGTCTGCTCACATGTTA
 999







Bmyc
GTGCAAAGCCCAGTGGAGGC
1000







Bmyc
GAGCAGAATTCCAGCAGGAC
1001







Bmyc
GGTCCTGCCTCCAAGTGTCC
1002







Bmyc
GGACACTTGGAGGCAGGACC
1003







Bmyc
GATACTTTGAGCTTGGCGTC
1004







Bmyc
GAGCCTGGTGAAGGGACTGT
1005







Bnc1
GGGTGCAGAAATATGTGGAG
1006







Bnc1
GAAGCAGGTGCAACAAATTG
1007







Bnc1
GCCTTCTGCCIGGTCCACAC
1008







Bnc1
GGGACTGGCTGTTTGGGTCT
1009







Bnc1
GGCTGTTTGGGTCTTGGGTC
1010







Bnc1
GACCCAGAACAGGCACCTGG
1011







Bnc1
GAGAGCAATGTGAAGGGCCA
1012







Bnc1
GGTGACTTCGCTCTCAGAGT
1013







Bnc1
GAAAGGACTCAGAGACAAGA
1014







Bnc1
GTGCCTGTTCTGGGTCTACC
1015







Bptf
GCGAGAGGGAAGAAACAAGA
1016







Bptf
GGTTTGGGAGACACGCATTG
1017







Bptf
GAGGTGTGGAAGTTCGTAGC
1018







Bptf
GGCTCAACACAGGGTCCTCG
1019







Bptf
GTTGTTCCAGGAATGCACGC
1020







Bptf
GTCAGGTAGACATTATTTCC
1021







Bptf
GAGTGGTAAACTTACCCACA
1022







Bptf
GAACTTAAGGATAGGAAGGA
1023







Bptf
GCCTTTGGGAGCTCTCTATT
1024







Bsx
GAAGAGACTGAATGTCACTT
1025







Bsx
GTGGCTGGGAACCIAGACAT
1026







Bsx
GTTATGGGTAAGGGTGGCGG
1027







Bsx
GCGATTCCTCGAGCAATCTG
1028







Bsx
GTGTTCCTCTTTGTCTGGAA
1029







Bsx
GCCTGGCAGCAGCCAGTGAA
1030







Bsx
GTGAGGATCTACACAGTGGC
1031







Bsx
GAGGCAAGAAGACAAGCGCC
1032







Bsx
GGGAGCCCGGCGAACCAATA
1033







Carf
GGCCTACAAGATATCTCAGT
1034







Carf
GTCACTCAGAATAAAGAAGC
1035







Carf
GGTACTTGATGTGTGCGGGC
1036







Carf
GAACGAGTCGGAAGGGAACT
1037







Carf
GTAGTTGTAGATGAGGAATC
1038







Carf
GGAAAGGAGAACGAGTCGGA
1039







Carf
GCATAGTCCCATTTGTACCA
1040







Carf
GAGCTGAAGTGCTTGTGTCC
1041







Carf
GTCAACTGGACAATTAATGA
1042







Cav1
GGTGCAAGGAAGAAGCACGG
1043







Cav1
GGCACCTTGGAGGAATGGGC
1044







Cav1
GCTCTGGAATCATAAAGATT
1045







Cav1
GCCTCTTGGCTGTTCGCCAG
1046







Cav1
GGCTTTCCCTCTGCTGGTTT
1047







Cav1
GAGAAGGAATACAGAGGAGG
1048







Cav1
GCCTCCTTTGTCTTATTGTA
1049







Cav1
GGCGGTGGTACTTGTGAGGG
1050







Cav1
GAGAGTGATCTAAGTAAGGG
1051







Cbfb
GGGAAAGGAGAAACAGAAGT
1052







Cbfb
GTAAGCATCTAACCAAATCA
1053







Cbfb
GCGCTAATTGTTTCTCATAT
1054







Cbfb
GCTGATACAGACCACTCAGT
1055







Cbfb
GGCTGATGCTAGCGTTTGCC
1056







Cbfb
GAACAGATTAGGTGCATGAA
1057







Cbfb
GAGGACTTTGCATACAGGGA
1058







Cbfb
GTGGACTGTGCACTGAAAGG
1059







Cbfb
GAAGTGCTGAGGAAGGAGCA
1060







Ccnt1
GAGCTTCGTTTGAGTGTTTG
1061







Ccnt1
GGATCTCCGGTAGAACGGAA
1062







Ccnt1
GAGATGCTGATACAAGACTA
1063







Ccnt1
GAACTACTGACCTGACGCGC
1064







Ccnt1
GGTGGAGGAGAAAGGATCTC
1065







Ccnt1
GACGTGACGAACTTCCTCCA
1066







Ccnt1
GGTTCCTGGGTTCTTAGCTC
1067







Ccnt1
GTAGACATTCTAAAGAGAAG
1068







Ccnt1
GTGTGGCAAGGCACTGAGCA
1069







Ccnt1
GTGTAGACATTCTAAAGAGA
1070







Cdkn1c
GGGAGTCGAGAAGGTGACTC
1071







Cdkn1c
GCTAACCAGGTCCAAGGTCG
1072







Cdkn1c
GCACACTGCTTCCAGAAGCA
1073







Cdkn1c
GAGGAACAGAATGAGGGCTG
1074







Cdkn1c
GTCTGTTGCGAGGAGGAAAC
1075







Cdkn1c
GAAGTACCCATTCTGCCCAA
1076







Cdkn1c
GGTCCAAGGTCGAGGTCCCA
1077







Cdkn1c
GGGCTCCTTTGTCTGCAGGC
1078







Cdkn1c
GGAGTGTGGTCCTGTGACCA
1079







Cdkn1c
GAGTTGGTTCGAAGAGCTGG
1080







Cdx1
GATCCTCGTTGGTAATGGAA
1081







Cdx1
GAGTTCTGCCCTTTCCTCTC
1082







Cdx1
GCCAAGCTAGAGAATTCTTT
1083







Cdx1
GGCGGTATGTCCACCCTTTG
1084







Cdx1
GGTAGTGGCTTAGAGATGGA
1085







Cdx1
GTAAGGTAGCGGGCGTCTCT
1086







Cdx1
GGTTCCGTCTGTAAGGTAGC
1087







Cdx1
GAAGGCCTAGCATGGAGGGC
1088







Cdx1
GCCTGCCTGCCTGTCTTCAA
1089







Cdx1
GACGCCCGCTACCTTACAGA
1090







Cdx2
GAAATGATACTGACAGGAAC
1091







Cdx2
GGGATGTGAAGGGTGGAAGG
1092







Cdx2
GCAGTAATGAATAGCGACAA
1093







Cdx2
GCATTCGGAAGACACAGGCT
1094







Cdx2
GAGAGCATTGTCAGCATCCT
1095







Cdx2
GAAGCTCGTAGCTAGCAAGA
1096







Cdx2
GTCTTTGAACCTGTGATTGG
1097







Cdx2
GGTGAGTACAGTAGCTCTGT
1098







Cdx2
GAGCTTCCTCCTTCCAACCT
1099







Cdx2
GCACTTTAACCTCCAATCAC
1100







Cdx4
GTACATAGATGAGCAAGAGA
1101







Cdx4
GGTCAATTACTCTTGAGTGT
1102







Cdx4
GAAATGAGCAAGTGTCATTG
1103







Cdx4
GAGCAGACTGCTCCTGCTCC
1104







Cdx4
GAGTATGCGGCTCAGAGCAA
1105







Cdx4
GAAAGGCAGGCCTCAGTGAA
1106







Cdx4
GGTAGCCAGGTCACAACACA
1107







Cdx4
GTCCCTGAAGTGGCGCTGAT
1108







Cdx4
GCTGATGGGCTAGGAGCTAG
1109







Cdx4
GTCATTGTGGTGGACCTGCA
1110







Cebpa
GAGAGACGTGGGTGCTCACC
1111







Cebpa
GCAGGTTTGTTTACCTGGGA
1112







Cebpa
GCTGGGTAGCAACGTCTGCC
1113







Cebpa
GTGAGCAGAGGATCGCTCTC
1114







Cebpa
GGTCACGGAACACGGACAAA
1115







Cebpa
GATCGAAGGCGCCAGTAGGA
1116







Cebpa
GTGACTTAGAGGCTTAAAGG
1117







Cebpa
GGAAAGTCACAGGAGAAGGC
1118







Cebpa
GTGCTAGTGGAGAGAGATCG
1119







Cebpa
GACTTRCCAAGGCGGTGAGT
1120







Cebpb
GGTCCCTGAACTGGCCTCTC
1121







Cebpb
GGAGAAAGTCTCCCAAGCCT
1122







Cebpb
GAAATGTTGGCAGGAAGCTA
1123







Cebpb
GCCTATTGAGCAAAGAACCT
1124







Cebpb
GTGGCCAGACCAACCAAGAA
1125







Cebpb
GCTCAGAGACAGCAGAGGGC
1126







Cebpb
GTCATTTCTCCAGCTCTTGG
1127







Cebpb
GGCTGCAAAGGTCTCTGGTG
1128







Cebpb
GGGTTCTGCCACACTGTGTC
1129







Cebpb
GATCTGTTTCCCAAGAGTTG
1130







Cebpd
GTTGTGTTTACAAGACAGCG
1131







Cebpd
GAACCACGGTTCACTAGTTC
1132







Cebpd
GATGCTATGCTACCACCAGG
1133







Cebpd
GAAACGCACCGCGGTTAGGG
1134







Cebpd
GCTCCTACCTTCAGTTCCTG
1135







Cebpd
GCCTTCAGACATAGCAAAGG
1136







Cebpd
GACATAGCAAAGGCGGAACA
1137







Cebpd
GTCCTGCTTTGCGCGTGTCG
1138







Cebpd
GACGCCTTCAGACATAGCAA
1139







Cebpd
GTTGCTGAACCTAACCTCGA
1140







Cebpe
GTTTAGACCAAGTTGGCACT
1141







Cebpe
GCAGCTACCAGCTTCTcCTT
1142







Cebpe
GGTAGGTGGAGTTCAGGACT
1143







Cebpe
GAAGCCTTCCCTAGCCCAGC
1144







Cebpe
GGAAGCCTTCCCTAGCCCAG
1145







Cebpe
GTAGATAGGGAAGCAGGAGA
1146







Cebpe
GGGCTGCCAGGACATAGCTG
1147







Cebpe
GATCCTTTCTGTTGGTTCTG
1148







Cebpe
GAAACTGGTCCCGCTGGGCT
1149







Cebpe
GGGTTAGTAGAAGATCAAGA
1150







Cebpg
GAGCTATTCATATGAAGTAT
1151







Cebpg
GAACTGTTCCCGGGAGACCC
1152







Cebpg
GACTCCTGGGCATTGACTGC
1153







Cebpg
GCCACCACCGACAGCCTAAG
1154







Cebpg
GGATTCCTCGAAGTCTTATG
1155







Cebpg
GCTTCTATTGGTCACGGCGG
1156







Cebpg
GCATGATGCAGATCTGTGAA
1157







Cebpg
GATAGAACTTTGCTTGCCAT
1158







Cebpg
GGAGGACCACAGTGTGACTG
1159







Cebpg
GAGGGTGTTCCTAGAATAGA
1160







Cebpz
GTGACGCACTTCCTATTGCG
1161







Cebpz
GTATGTCCAATGACCTATAT
1162







Cebpz
GCTCCTCTGTGTACACACAC
1163







Cebpz
GATTGCTTATTTGTGCCATG
1164







Cebpz
GGTGGAACTTGGCCCTGGTC
1165







Cebpz
GCCTTCCCTGTATTTGGAGA
1166







Cebpz
GGCGGTGGCTCAACACCTGA
1167







Cebpz
GTGTACACAGAGGAGCCCGA
1168







Cebpz
GCCGCGCCATACGGTTTCCA
1169







Cebpz
GAAGCTCACTCTCAGGGTGA
1170







Clock
GAACCTAAGCGAGCAGCAGA
1171







Clock
GCAGAAACTGTGCCTTTCGA
1172







Clock
GGGTCGTCCAGGTCCATCTC
1173







Clock
GGACAGAGTGGAGAATGGGT
1174







Clock
GCACATGGTGTTTAAGGCCA
1175







C1ock
GTGGTCCAGGCAGGACACTG
1176







Clock
GACAATGAAACCATTAAAGG
1177







Clock
GAGGACAATGAAACCATTAA
1178







Cnot3
GACTTAAGAAGGTGAAACCT
1179







Cnot3
GTACGTCGCTCTGCGCCGTT
1180







Cnot3
GAACTGCTTCTAGCTCTATC
1181







Cnot3
GAAGCTTATCTAGTGGGAGA
1182







Cnot3
GATCAGATAACAGCCTAGAC
1183







Cnot3
GAATTTCCATGGATCATTTC
1184







Cnot3
GCGTGGGACTGACGTTTCTC
1185







Cnot3
GTTTGCAACCTAGTCAGCAA
1186







Cnot3
GCATAGCGTGTGAGTGTTAA
1187







Cnot3
GACTGAGAAACACAAGGCGT
1188







Creb1
GAAACATGCTACAAGAAGAA
1189







Creb1
GCACGATCCGAGCCTCACTG
1190







Creb1
GCTAAGAACCGTGGGAGGAA
1191







Creb1
GCTATGGCACAGGTGGCATG
1192







Creb1
GAGCAGTTGCGGTAGCTTTG
1193







Creb1
GGCTCAGATGACTCCTGCAC
1194







Creb1
GGAACTTTGACGCGCCGCGA
1195







Creb1
GGTTTGTGTGTAGCCAGATT
1196







Creb3l2
GCCGGAGCTGGTTCTTTGCT
1197







Creb3l2
GAGCGTCGCAATGGACCAAT
1198







Creb3l2
GTCACTGGCCTGGAAGGAGG
1199







Creb3l2
GAAACATAGATCAATGAGCT
1200







Creb3l2
GGGCAGAGCTCAAGAGCCCA
1201







Creb3l2
GGTCAGGTCAATATAGAAGG
1202







Creb3l2
GAGGAGACTGAAGAAATCCA
1203







Creb312
GAGGGAACCCAGGTCACAGA
1204







Creb3l2
GAAGAGGCTAGTGTGGTCCA
1205







Creb3l2
GGGAGGGACATGGATGAGAA
1206







Crebbp
GTGTGGCACACCCAAGTGAG
1207







Crebbp
GGAAGTCCCTCTAACACTTT
1208







Crebbp
GTTCAGAGGCCTCCGAATTG
1209







Crebbp
GACCAGCATCACTGCATCTG
1210







Crebbp
GCCATTACTAGCATAGGGCG
1211







Crebbp
GTTGTCTACTAGTCTGTCCC
1212







Crebbp
GTGAATGTAGGATGCTGGTG
1213







Crebbp
GGGCCCATCTCAGATCCAGG
1214







Crebbp
GTTTACCAACAGTATCCTTT
1215







Crem
GTTAGCTACAGTACTACAGA
1216







Crem
GAAAGAAAGATTGGAATTCA
1217







Crem
GGACCAGACTCTCTTCAGGA
1218







Crem
GCAAGTGAAGATTAAAGATG
1219







Crem
GCAAATAGAACTTAGCATTG
1220







Crem
GAACAACCATTTGTGAGTTT
1221







Crem
GAAGGTTACAAATAGGCCAG
1222







Crem
GCAGCCTCTTGGCTACTAAC
1223







Crem
GACCTCAATCCCAAAGTGTG
1224







Crx
GGTGTCACTGGGAAGCATGG
1225







Crx
GTTCTGCTTCTCTAAACACC
1226







Crx
GGGTGGTGGGATTAAGCAGA
1227







Crx
GAAGGCTAAACTATGCAGAC
1228







Crx
GAAACAATCCTTCAGGCCAG
1229







Crx
GTCACTGGGAAGCATGGAGG
1230







Crx
GATCTGGAAGGGTAATCCCA
1231







Crx
GCTCTCTGAAGCTTGACAGG
1232







Crx
GGCCCTAATCTCTCCTAGCA
1233







Crx
GCCCTAATCTCTCCTAGCAG
1234







Crygf
GGCAACAGAGGTGAATTGCC
1235







Crygf
GTAGAGAGAAGAAACCTCCT
1236







Crygf
GAAAGAATGGAAGGCAGGGA
1237







Crygf
GGATAAGTCTGTCAGATTCA
1238







Crygf
GAGATCATGATGAGTGTATG
1239







Crygf
GCAGGAAGAGGTGGAAGGCA
1240







Crygf
GAATCTGACAGACTTATCCC
1241







Ctbp1
GGTCTCTTTGGTTGGGTACA
1242







Ctbp1
GAAGGATGCTGAAGGCCATA
1243







Ctbp1
GTGTCCCAGAAGTTGAGGGA
1244







Ctbp1
GGAAAGTACAGCTTTGCCAG
1245







Ctbp1
GCAGGGACCATCCCTGGAGT
1246







Ctbp1
GTAGAGATGTGGAGATGCAC
1247







Ctbp1
GGTTTCCTGGGAGGCCCTAA
1248







Ctbp1
GCCTCAGCAGATATGTAGGT
1249







Ctbp1
GGTTTCCGAGGTTTCCTGGG
1250







Ctbp1
GGAATTTGGGCAGCCTGAGA
1251







Ctbp2
GTGAGAATAGAGGACCACGA
1252







Ctbp2
GGGATGTGATGTGTTGGACA
1253







Ctbp2
GGTCTTCAAAGTTGTGACCT
1254







Ctbp2
GCACACAGGACAGACCTTGC
1255







Ctbp2
GAGACACATTCATCTCCATG
1256







Ctbp2
GTGTCACACTCCTCCCTAAA
1257







Ctbp2
GAGTAGTGGGTTGGCCACCA
1258







Ctbp2
GCGCCTCCCTTGAGACTCTG
1259







Ctbp2
GAGCACAGCCACTGGAAAGG
1260







Ctbp2
GTGTGCTTCTAAGCCCAGGC
1261







Ctcf
GAGTCACATTCCAAGGCTAT
1262







Ctcf
GTCGGAGAAGTGAGAGAGTG
1263







Ctcf
GGGATTAAGTACCACCGACT
1264







Ctcf
GTAACCTTAGGACTGCTTTC
1265







Ctcf
GGTATCAGAAGCCAGGAATA
1266







Ctcf
GCAAATAAAGGCATTGTCTT
1267







Ctcf
GATTAGAACACCTGCCAATA
1268







Ctcf
GGGACAGAGTCACCTCAGTC
1269







Ctcf
GGTGTGGTCTGCTATATCTC
1270







Ctcf
GGCATTGTCTTTGGAAAGAA
1271







Ctnnb1
GTGAAGGAAGCGGGAGGTGA
1272







Ctnnb1
GAGTAAACTCTGCTGCTGGC
1273







Ctnnb1
GTTGATGACGTGTTTCTTTC
1274







Ctnnbl
GTCTTCCTTCCCAGGGTTAT
1275







Ctnnb1
GGTCAGTAGAACCAGGCGTG
1276







Ctnnb1
GGAGGTGATGGGTACGGAGG
1277







Ctnnb1
GGATCCTATCCCAATAACCC
1278







Ctnnb1
GCTAGAGGAATATGAATACA
1279







Ctnnb1
GAAGCGGGAGGTGATGGGTA
1280







Ctnnbl
GGTAACACACTTCACATAGA
1281







Cux1
GTGGCAGGGCTGCAAAGAAG
1282







Cux1
GACGCAATGTACGTCATATA
1283







Cux1
GGGTGGCAGGGCTGCAAAGA
1284







Cux1
GGCCATCTACGTTTGTGCGG
1285







Cux1
GTGCAATTGTGTCGTGGTAA
1286







Cux1
GAGGGCTCATATGATTACAA
1287







Cux1
GTCACCCTCCTTCCTGAGGG
1288







Cux1
GAAGTCTATGCAGCAAACCA
1289







Cux1
GTTGTCTTTGTGGGTGTCGA
1290







Cux1
GAACTCGCGCGCGCTAAAGA
1291







Cux2
GGTAAATATGCAGGCGACAA
1292







Cux2
GGATGCTTGCTGCGTTTCTA
1293







Cux2
GGACAATAGATCAATACCGT
1294







Cux2
GCAGGAATTTATTGCACCAC
1295







Cux2
GCCACTCGGAATTGCTAACT
1296







Cux2
GTCTTTCTGAGGCCCTGGGA
1297







Cux2
GCCTCTGTGGGACACACTGC
1298







Cux2
GAGATAGCGTCTGCTCCATC
1299







Cux2
GCGAATTTATGAGCCTTTAA
1300







Dbp
GAAAGAAGTGGGCTTCGGGA
1301







Dbp
GTGTTGGAGGGTCAGGTGAG
1302







Dbp
GGCATATCCCTTCATCTCAT
1303







Dbp
GGCGCAGTTCACTGAGTCGG
1304







Dbp
GGCGGGCGTAATCCTCGTTG
1305







Dbp
GTGAGGAAACTCAGAACAGG
1306







Dbp
GCTGAGAATGGCCAGGCCGT
1307







Dbp
GGTGTCAGTCACCTGGAGGG
1308







Dbp
GGCCTTCTTCCCTCCCTACA
1309







Dbx1
GCGAAAGTGAGGGTTCGCGG
1310







Dbx1
GTGTACGTGCAAGATCTGTT
1311







Dbx1
GAGAAGTGTGCAGCCCTGCC
1312







Dbx1
GAACGCACTAAATTTATCTG
1313







Dbx1
GGACTCACTGTATAGCAGAG
1314







Dbx1
GGAGGGTAGCTAGCCTTCCA
1315







Dbx1
GTGGAATTCCCAGCCCGGTT
1316







Dbx1
GGAAGAACTAAGTTCACACA
1317







Dbx1
GACAGGTTTGCGCTAGCTAC
1318







Dbx1
GTGGCAAAGAGCGAAAGTGA
1319







Dbx2
GTTAACAGAAGGGAATAAAG
1320







Dbx2
GATCAGACAATTCTGTGCTG
1321







Dbx2
GGATGCTTCAAGACAAAGGA
1322







Dbx2
GGAGATAGGTGCACTGTGTC
1323







Dbx2
GAAAGGCAAAGTAAGGGTGG
1324







Dbx2
GCGACCAAGTACATGTACCC
1325







Dbx2
GATCTAGCTGAGAACCACAA
1326







Dbx2
GGACTCCAGCAGCAGGGTCA
1327







Dbx2
GTAACTATTGAGATGAGTGG
1328







Ddit3
GGATTGGCCACCAGTGGCCT
1329







Ddit3
GTTCAGGAAGGACAGCCGTT
1330







Ddit3
GCACAGCAGTGGCCAGACAC
1331







Ddit3
GTCAATCCAGGTGAACAAAT
1332







Ddit3
GGAGTCAGGAATGTCAGGTC
1333







Ddit3
GCAATTGCTTGGTGACCTGT
1334







Ddit3
GCCGTGAGACTCCTGAGTGG
1335







Ddit3
GAGAAGCGGGTGGACTATCA
1336







Ddit3
GACATGTTGACCTGGAGAGG
1337







Ddit3
GAACTCAGACAGCTAGAGGC
1338







Deaf1
GACAAAGGTAGACTATATGT
1339







Deaf1
GGTGTGATATGGTTGTATAC
1340







Deaf1
GGCTTCTAGAGCTGAAGTGG
1341







Deaf1
GTGTGCTCAGGATGAGCCAT
1342







Deaf1
GCTGAGAGCACCTGAGAGTG
1343







Deaf1
GATCACTGAGAGTCTAGGGT
1344







Deaf1
GAGTGTATTGTGGATATGCC
1345







Deaf1
GCATCTGAAGAGACCCAGGC
1346







Deaf1
GCAGGTGAGCACTTCAGCCA
1347







Deaf1
GTCTCCTCAGCAGCCAAGGA
1348







Dlx1
GTAGACCCATGGTCGCTCTC
1349







Dlx1
GTACAACAAATGGTCTAGTG
1350







Dlx1
GTCGGATGGCCGGATTGCCT
1351







Dlx1
GGGACAATTATTGCAGGTGA
1352







Dlx1
GACGCCTAACCCTGAACCGC
1353







Dlx1
GTTGAACCTACCTTCAGGGT
1354







Dlx1
GAGGAGGAGGTGGGAAGCTG
1355







Dlx1
GTGGTGTGTGGTAGTAGTGG
1356







Dlx1
GCTTCCCACCTCCTCCTCCA
1357







Dlx1
GCAATAATTGTCCCAGTGGT
1358







Dlx2
GATTCTGAGGTTCCCTCCTT
1359







Dlx2
GTAGGAGGTTGTTACAGGCC
1360







Dlx2
GCCTTCAAAGTCGTTTGCAT
1361







Dlx2
GTGGATCAAGCTACACTCTG
1362







Dlx2
GCATCCACTTCCCAGGCTAC
1363







Dlx2
GTCAGCCACTTTGCACCTGA
1364







Dlx2
GGAGCCTTATGTCCTGTTGC
1365







Dlx2
GAGATGTAAATCGTTAGACT
1366







Dlx2
GCCTTCAGGACAGGCTTGAT
1367







Dlx2
GGATGGACTCAGCGCAGTGA
1368







Dlx3
GCTGGCTTTCTGTGTTCTTC
1369







Dlx3
GTGTCTCTGTATGTAGTGTG
1370







Dlx3
GCTGAGGCACAGTTGATGGA
1371







Dlx3
GTTGATGGAAGGCCTGAAGC
1372







Dlx3
GGCTGCAAGTCTTGCCTTCG
1373







Dlx3
GGAGAAGCCTCCTTCCTCCA
1374







Dlx3
GCTCCCAAACCTATCCTTGG
1375







Dlx3
GTGGCTCTTCCATTCATGAA
1376







Dlx3
GGGCTTAGGTGAGATGAGGA
1377







Dlx3
GGTAAGCAGGCAGACAGGAA
1378







Dlx4
GCTGGAGGGAATCTGCTGTC
1379







Dlx4
GTAACGATGTTCAAGGTGCT
1380







Dlx4
GATGTGCTTTGAGGCAGGGC
1381







Dlx4
GTGATCCTGGAGCTCAGATT
1382







Dlx4
GACAGGTCCAACTTTCTTTC
1383







Dlx4
GCAACAGATGCTTGCATACA
1384







Dlx4
GAACAGAGACAGGCAAATCC
1385







Dlx4
GAATCTAGTTTGATGGCTCC
1386







Dlx4
GGAGATCCTCTTTGTCTGGT
1387







Dlx4
GATTCCCTCCAGCAGCCTCA
1388







Dlx5
GTTTCCAGTATCAGGGTCAT
1389







Dlx5
GCAAGGAACCAAGTCCGCTT
1390







Dlx5
GGCAAGGAACCAAGTCCGCT
1391







Dlx5
GGCCAGTCTTTCAGCACTTC
1392







Dlx5
GCTCCCTGCTGAGACATGTA
1393







Dlx5
GAGATTGGTGAATTTCAAAG
1394







Dlx5
GGAGAACAGCATTGTCTTAG
1395







Dlx5
GCAGCTCCAGATTCCAGAGA
1396







Dlx5
GCAGGAGGTCAGTCCCTCTC
1397







Dlx5
GAATCTTCTGGTTCCTCTTC
1398







Dlx6
GACTGGGTGGGAGAAATCTG
1399







Dlx6
GGTGTGTCTGGAGGTTGCGG
1400







Dlx6
GGTAAGCTCTAGGAGCTTGC
1401







Dlx6
GGTTCTCCTACCTGGTGGCT
1402







Dlx6
GTCCATCTTTGAAACAGAAG
1403







Dlx6
GCCTGTAATGATTATGGACT
1404







Dlx6
GCTCCCTTGGGAGTAGAGTT
1405







Dlx6
GAGTTACTGAACCGGCACCC
1406







Dlx6
GTCGAATGGTTTGTCTCCAA
1407







Dmbx1
GGAGCATGCATATGCAATTA
1408







Dmbx1
GATGAGCATAGGACCCAACC
1409







Dmbxl
GACTGAACGGATGGAGGTCT
1410







Dmbx1
GTGTGTGTTCTATGCTTGTG
1411







Dmbx1
GCACACACCTCAGACACACA
1412







Dmbx1
GGAAGAGGTCGTTATGCAGG
1413







Dmbx1
GGGAAATGATGGACGCTGCC
1414







Dmbx1
GTAGCCAATCTTGCACTACA
1415







Dmbx1
GGGATCCTGGTGGGAGAGAA
1416







Dmbx1
GGCTCCCTGCCTCTAACTCT
1417







Dmrt1
GATAACAGATATTAGCTGCC
1418







Dmrt1
GAACCTTCCGAGGATTGCGT
1419







Dmrt1
GTACTGGTCCAAGCTGGAAG
1420







Dmrt1
GCCTCTTGGCTAACAGAGAC
1421







Dmrt1
GACACTGGCAGAGAGCAGGT
1422







Dmrt1
GTGGTCCTGAGATGGAAGCC
1423







Dmrt1
GAGGAGGCAGTGGTACACAT
1424







Dmrt1
GAGCGCCAATGGTTGCTTGG
1425







Dmrt1
GCAATTACATGTGTACCATC
1426







Dmrt1
GGTAGGTGAATGGTTGCATG
1427







Dmrt2
GTTCTCGAGAAGGTAACTAA
1428







Dmrt2
GGTGGTGGATAATACTAGGA
1429







Dmrt2
GTGTATGAACCAGTCAGATG
1430







Dmrt2
GCAGAGAGTAGAGCCGGGAG
1431







Dmrt2
GATAGGGAGCCCTAAGACAG
1432







Dmrt2
GAACTTAAACGCACCCACCC
1433







Dmrt2
GGCAAAGACCAGGCTCTCTA
1434







Dmrt2
GATCATGTGGATAACGGGCT
1435







Dmrt2
GACCACAAATGAGGAAACTA
1436







Dmrt2
GTGGGAAAGTGGTTCCCTGG
1437







Dmrt3
GAGGAGTTGATAGTTGTTCC
1438







Dmrt3
GTTACAATAGACTTTGAGGC
1439







Dmrt3
GATGTGCACTGGAGTGAAAC
1440







Dmrt3
GGGTGAAAGTTAACGTAAAC
1441







Dmrt3
GGGAATTGAGGGTACTCCGC
1442







Dmrt3
GAATGGCTGAGGCCAAGGGT
1443







Dmrt3
GCCAAGGGTGGGAAGGAAAG
1444







Dmrt3
GCTTTAACAACTCAGTGGGA
1445







Dmrt3
GAAGGGACCAGGGAAGGAAG
1446







Dmrt3
GAAGGAGCCAACGGAAGTCC
1447







Dmrta1
GTGCAGACTTCATCTAGGAA
1448







Dmrta1
GCGGTTTCTTGCTCTGGGAC
1449







Dmrta1
GCTCTCTGTTTCTACTAAGT
1450







Dmrta1
GGGCGGAGAGTGGGACTTTC
1451







Dmrta1
GTCTAGACTCAGAGGCTCAC
1452







Dmrta1
GACAGGTTAATTCAGAGTCA
1453







Dmrta1
GAGCACATGCAGATTATACA
1454







Dmrta1
GAGGACCTAGGGCGGAGAGT
1455







Dmrta2
GCTCCGAGGTAGTTGAGAGC
1456







Dmrta2
GCAGAAGCTAACATCAGGAA
1457







Dmrta2
GAGTGTGCATACTCGCGACC
1458







Dmrta2
GACTGTGTCACCCTCCATGC
1459







Dmrta2
GAAAGGCAAGGAGGGCACAG
1460







Dmrta2
GGCATTCACGTGAAGAATTA
1461







Dmrta2
GCTTGGACCCACGTTCCTCC
1462







Dmrta2
GCATTAAAGGTGATAGAGGG
1463







Dmrta2
GGAAAGGCAAGGAGGGCACA
1464







Dmrta2
GGGAGCACATATCCAACAGG
1465







Dmrtb1
GTCAGGGATGAAAGATTCGC
1466







Dmrtb1
GCCTCCTGACTGGAGAGTCT
1467







Dmrtb1
GCCCTGCTGTGAAATCTTTC
1468







Dmrtb1
GGAATAAAGGCCATCCTGGA
1469







Dmrtb1
GGGTGTCATCTGAAGTGGGT
1470







Dmrtb1
GGTGTCATCTGAAGTGGGTA
1471







DMrtb1
GCAAGTGAAGCAGGAATGAG
1472







Dmrtb1
GACAAAGCATGTGTTCCAGT
1473







Dmrtb1
GAAATCTTTCTGGTGATGCC
1474







Dmrtc2
GTCTGTATCTACTCTCTCCC
1475







Dmrtc2
GCAATCAGTGAGCTGGAAAG
1476







Dmrtc2
GATGTCTCCTCATGTATTGG
1477







Dmrtc2
GAGTGATGAGAGGTGTCCTT
1478







Dmrtc2
GGTGCTATAAGGCCACACAT
1479







Dmrtc2
GATTGTTGCCGCGGAGAAGC
1480







Dmrtc2
GCAAGATAATTGCATTTCCC
1481







Dmrtc2
GGATCAGCACCATGGCCAGG
1482







Dmrtc2
GGTGCTTTCTGCCCAGCCTG
1483







Dmrtc2
GAAGTGAACGCTTAAGCGGT
1484







Drd1a
GATCACCAGTCTGTGGAACT
1485







Drd1a
GCTCCAGCCTTGGCACACAG
1486







Drd1a
GGACTGACTGAGTCCATATC
1487







Drd1a
GGTGACCTGAGGGCAATTTG
1488







Drd1a
GTGGCAGCAAGACTGCCAGT
1489







Drd1a
GCCAGAATCTGGACGGTGAG
1490







Drd1a
GAGGCTGCTGAGTTTATGCC
1491







Drd1a
GGAGCACTTTCCCTCCCTGA
1492







Drd1a
GCAACAATGTAGTAACACTT
1493







Drd1a
GAATCTGGACGGTGAGAGGC
1494







E2f1
GCAATCAGAAATGCTGATGG
1495







E2f1
GATCAACACATTATCTGGGA
1496







E2f1
GGGAGCCAGGAAATGAGTAA
1497







E2f1
GTTAAGAATTGGAGAGGCCA
1498







E2f1
GAGTAATGTGGTCAGAGTTG
1499







E2f1
GAGCATTGGTTGCGGCGTGC
1500







E2f1
GGCCGTCTCCAGTTCTCATG
1501







E2f1
GCTACAGGGAGCTCTCAAGC
1502







E2f1
GCTGCTTCTCAGGCCCTTTC
1503







E2f2
GCGAATCTGTGAATGACCCG
1504







E2f2
GATTCAGGAAGGAAGAGTGC
1505







E2f2
GGTAAGACCAGGGAGTCGGA
1506







E2f2
GACAGGCACAGCGTGGGTGA
1507







E2f2
GTAAGACCAGGGAGTCGGAG
1508







E2f2
GGAATGGAGGTGGCAGGGAG
1509







E2f2
GGACCCTTCCATGGATTCCG
1510







E2f2
GGAGTTTCGCTGCCTGGGAA
1511







E2f2
GGAGTCACAGAGAAATCTCA
1512







E2f2
GAGAAAGCTGCTACTCGGCC
1513







E2f3
GGGATACGGTTTACGCGCCA
1514







E2f3
GGTAAGCAGGACAIAAACCT
1515







E2f3
GCTCTATGCAAATAGAGCCC
1516







E2f3
GCTTTCCTGCGGACGTTGGG
1517







E2f3
GGGCTAATCATGAAGCTGCC
1518







E2f3
GTCTGGAGAGAGGAGGGTCC
1519







E2f3
GGCAAAGTCCTACTCTCCCA
1520







E2f3
GGTTTGCAAAGACTGGAATC
1521







E2f3
GAGCAGGCTTCTTAGGAGGT
1522







E2f4
GCTGAGGCTCTACCACATAG
1523







E2f4
GTTAGACTGGGCTGGAGGGC
1524







E2f4
GCGCCATTTCCTGTTGGGTG
1525







E2f4
GGGCGTTACAGAGCAGGAAA
1526







E2f4
GGTTCTCGCTTCTCAACTGC
1527







E2f4
GGCTACAAGCAGGTGAGTGG
1528







E2f4
GCACTAGGAAAGGGATTACA
1529







E2f4
GTCAGTGGTGCAGTCCTACC
1530







E2f4
GAGCCTCGTTGGCTGGGCTT
1531







E2f4
GTCTCGGACCTCACAAACCC
1532







E2f5
GGCAGGTAAGGAAAGAGCTG
1533







E2f5
GCCTAGTAACGCACTCTCCG
1534







E2f5
GTCTACTTCCTTCACCGTCA
1535







E2f5
GCAGGTAAGGAAAGAGCTGG
1536







E2f5
GTAACGCACTCTCCGCGGAG
1537







E2f5
GAATGCCCAAATTAACAGTA
1538







E2f5
GATCAGGTGCAAGTATTGTA
1539







E2f5
GTAGAAGTAGAATACAACTG
1540







E2f5
GGACTTAGTGAGGGCGGAAG
1541







E2f5
GTCATACATCTTCATCAACC
1542







E2f6
GTGTGTGGTGGGATGGGTTG
1543







E2f6
GTTTGGCATTCAACAGAGGA
1544







E2f6
GAGAGTTTCTCAGAGCAACT
1545







E2f6
GACCTGGGACTTAGTGAGGG
1546







E2f6
GCGCTGCGCATGTGCAAACG
1547







E2f6
GAAGCTGCGGGAGTGAGACC
1548







E2f7
GTGAACCCTGGTTAGCACCT
1549







E2f7
GGACTTTGTTGCTTTAATTT
1550







E2f7
GGAACAGTCAAGAATATCTC
1551







E2f7
GTAATACACTCTGAAACCCA
1552







E2f7
GTTTCTAGTAAGGACTAGCT
1553







E2f7
GTGCTTTGTACTTACATAAG
1554







E2f7
GCCAGGTGACACGTGAACCC
1555







E2f7
GTCTTAGCCGTTCCGTGCAA
1556







E4f1
GTGGAGTTGACCTGAGCAAG
1557







E4f1
GGGCGTGGCTTGTGTTAAAT
1558







E4f1
GTTGCAATGTCAGAATTTCC
1559







E4f1
GCGAGCAGGGACTGAGCAAG
1560







E4f1
GCCAGACATCAGGGCGGAAG
1561







E4f1
GGAGTTGACCTGAGCAAGTG
1562







E4f1
GGTCCAAAGTGAACTATCCG
1563







E4f1
GCGGTCTAGCGCGTCAGTAG
1564







Ebf1
GATGACGTTATGCAAAGAAG
1565







Ebf1
GAAGAGCTGGACACCTGGGA
1566







Ebf1
GAAGCCCTAGCTTAAGACTT
1567







Ebf1
GGCTGCCAAGGACTCCTTGG
1568







Ebf1
GCGGTCTACTAAAGTCGTAT
1569







Ebf1
GTAGACAGATACACCGGAGG
1570







Ebf1
GGGCAGAGGGAAGGAGATGG
1571







Ebf1
GCCCAACAGCATTCGTGTCT
1572







Ebf1
GGTCTGTCCAGGGAGGAAAG
1573







Ebf1
GCTAAGGAGGAAATGAGTGG
1574







Ebf2
GTTTGTCAAGGTCTTAGGGA
1575







Ebf2
GTATGAGAGAAGCCGAGGAT
1576







Ebf2
GAGCTGATCAAAGTCTCCTT
1577







Ebf2
GATAACTGCCGAATGCAACT
1578







Ebf2
GAAGCAATCATTTCGTGCGA
1579







Ebf2
GCGGATTTGCCTCTAGATGC
1580







Ebf2
GAACTTGTCACTGGGAAGGA
1581







Ebf2
GACCCTACAGATTCATTCCC
1582







Ebf2
GGTTATTCTCACGTAGCTGG
1583







Ebf2
GCAGCTGATTGTCTGCTCCA
1584







Ebf3
GACCTCTCCTAAAGGTCAGA
1585







Ebf3
GCAGAGATGAAGTTGGGAAA
1586







Ebf3
GGGTGGAGACCCTTCCTGGA
1587







Ebf3
GGCTCCTCTGCAGCAGGCTA
1588







E3f3
GCTCACACTGGGTGAGCGAC
1589







Ebf3
GGCAAAGCCTGCTGAATACA
1590







Ebf3
GAGGAGATTCCAGGAGAGGG
1591







Ebf3
GGAATACTTCCCACCCTCCA
1592







Ebf3
GGAGGAACCTGTCTCCGACG
1593







Ebf3
GGGAGTGTGGATCCCTAGAA
1594







Egr1
GAGAGATCCCGCTGGTCTCC
1595







Egr1
GGTTGAGGATCCCACCTTTG
1596







Egr1
GGAGACTGGGCAAAGTCAAG
1597







Egr1
GAGAGCCTTAGACGCAGTGA
1598







Egr1
GCAAAGAGCCCAGGAGGGAC
1599







Egr1
GTGGGAAGGGTCTGTAGGTA
1600







Egr1
GGGAGGGCTTCACGTCACTC
1601







Egr1
GCCCTCCCATCCAAGAGTGG
1602







Egr1
GGATCTGTTGGTTCTTGTGA
1603







Egr1
GTCACTTTCCAGGTGTCACC
1604







Egr2
GGGCGTTTGAAGTAATGGCG
1605







Egr2
GAAGCTCTAAGCAAGGGCGT
1606







Egr2
GGTGTGTAGTGTGTAGCGTA
1607







Egr2
GATGAAGGCAGTGTCTTCCT
1608







Egr2
GAAGTGGTTCCATACCATCA
1609







Egr2
GTAGCGTAAGGTGTGTTGAG
1610







Egr2
GCTCCGGGATCTACGTAGCC
1611







Egr2
GCAAATAGAGGTCCCGGCGG
1612







Egr2
GTAACCTGAGTCCCACCGCC
1613







Egr2
GGCTCGGAGTATTTATGGGC
1614







Egr3
GCTACGTCACGGAGCTTTCC
1615







Egr3
GTTTGGAGGAGAACATTGGG
1616







Egr3
GAGTGGGAGTGTTGACAAGA
1617







Egr3
GTTGTCCTCATTGCTGCCTG
1618







Egr3
GGCTCAGATAAATAGACTGG
1619







Egr3
GGCTGGAGAGCCAGGCAATT
1620







Egr3
GCAAAGAGGGTAATCCTCTC
1621







Egr3
GGCACCCTCAGGCAGCAATG
1622







Egr3
GTGTTGACAAGAAGGAAGAG
1623







Egr3
GAATCACACCGGGTTGGCGG
1624







Elf1
GAGTAACATAATTAGATGGC
1625







Elf1
GTGGACCCAATTATTCTGCT
1626







Elf1
GGCTCAAGGCTTTCAGCATA
1627







Elf1
GCCATATATCCCTTCATATA
1628







Elf1
GGTCAAACATGCAAATGCAC
1629







Elf1
GACATCAGIGAGCGGGATCG
1630







Elf1
GGATGGCTGACTGAGCACTG
1631







Elf1
GCAAGAAGTCCACTGTTCAC
1632







Elf1
GGGTTAATGAGTAGCCAGGT
1633







Elf1
GCAGCTTGTTCCAAGGTGTA
1634







Elf2
GATTAAGCTACATATCCTTG
1635







Elf2
GGTGAAGGAGCGCGTGTGTG
1636







Elf2
GAGGATCGTTTATTAGCCAT
1637







Elf2
GACAGTAATATAACGCGATA
1638







Elf2
GAGGTAAGGTTAGGATTACT
1639







Elf2
GTCCCTGGAGGTCTTGGGAG
1640







Elf2
GTTGGGCGCTGAGAAGAGGG
1641







Elf2
GCTGCAAACGCAGGACATCC
1642







Elf2
GGTCCCTGGAGGTCTTGGGA
1643







Elf2
GGGAGTATAAATAGCCGGCC
1644







Elf3
GCAGCCCTGACCTAGAGGAA
1645







Elf3
GCAGATACTAATGGAGTGGG
1646







Elf3
GCAGGCAGATACTAATGGAG
1647







Elf3
GACGTACGCCGAAGACCTGG
1648







Elf3
GCTTCAGCAACCATCGCGTT
1649







Elf3
GAGTCATTACAAAGACAAAC
1650







Elf3
GGACGGAATCAATACTCAGG
1651







Elf3
GCTGGTTCTCCCACATTCCA
1652







Elf3
GAGAGCGCCACAGGCACCAA
1653







Elf5
GGAAAGCTTCACTATGCCTG
1654







Elf5
GCAAATCTCTAGCCATGGGT
1655







Elf5
GACGGCCTAGGCAGTCATCT
1656







Elf5
GAGGCCTTACTCAGGCTGCC
1657







Elf5
GAAAGCTTCACTATGCCTGT
1658







Elf5
GGAAAGGCCTAGGCTGGGTA
1659







Elf5
GTGTAGGCAGAGCAGAGGGC
1660







Elf5
GGTGTAGCAGGGTCCTGGAA
1661







Elf5
GGAACGGAACCCACGAAAGG
1662







Elf5
GCCTGAGATTGAGAGAGGAA
1663







Elk1
GTAGGACTCAACTCTGTGGA
1664







Elk1
GTGCTTTAATATTGGAGGCT
1665







Elk1
GAAACAGGACTTATTTAGAA
1666







Elk1
GCCAAGGATCCTAAGCACAG
1667







Elk1
GTGTACAGCACCACCTACTT
1668







Elk1
GCGTCCTCCTGCTTGCTGAT
1669







Elk1
GCAGTCCTCCTTGACCCAAT
1670







Eik1
GCTGGGAAGATGCAGTCAAT
1671







Elk1
GACAGGAGAAAGCCAAAGAA
1672







Elk1
GGACAACGTATACTGAACCG
1673







Elk3
GAGTTTAGGGACAGGAGGGA
1674







Elk3
GATCCTGGCCATTGTCCTCA
1675







Elk3
GTACCCTGTGGTTTCAAGAC
1676







Elk3
GAAGAGGCTTAAGTTATTTG
1677







Elk3
GTCGGATAGAGTTACTGTCG
1678







Elk3
GAGAGTTGGGCATTGCTCGG
1679







Elk3
GGCTGGAGGAACTGTATACA
1680







Elk3
GCGTACTTATCCCAGACCAA
1681







Elk3
GACACAAGGCTCCTAGTTTG
1682







Elk4
GTTGTCATCTTCTCTTTAAC
1683







Elk4
GATGGTACAAGGTAGACACT
1684







Elk4
GAAACAAGTCACACTTGGTC
1685







Elk4
GTGCACGGGACGGACTAACA
1686







Elk4
GGACCAAGCTAAGTTGGTAA
1687







Elk4
GAAATCAACACCCAATTCCA
1688







Elk4
GGTAGACACTTGGTAAATAG
1689







Elk4
GGACATTCGTACTTCCTCGC
1690







Elk4
GGCTTAGTTATCTTATGCTA
1691







Emx1
GGAGCCTGAGGATGACCTGT
1692







Emx1
GCAGAGATCCGGAGAAGGCA
1693







Emx1
GGTCTCCTTGGAGCAAGGTC
1694







Emx1
GGAGTGGCATCCTAGCTTCT
1695







Emx1
GTTCTCTGGAGAATCTAGGC
1696







Emx1
GTCGCATATGGCGGGAGAGG
1697







Emx1
GATGCAGAGTGGAGGGTAGG
1698







Emx1
GAGAGCCCTAACACCGAGTT
1699







Emx1
GCTTCTCCAGACCAAGGCTC
1700







Emx1
GCAGAGTGGAGGGTAGGAGG
1701







Emx2
GTCTCCTGTTTGGTTTCTTG
1702







Emx2
GCTAATGATGCTAATGCTGG
1703







Emx2
GGCCTCCAGTCTCTTGCATG
1704







Emx2
GAAGCGGGTTAGCCCTTGCC
1705







Emx2
GCTAGGCCATCTATGAGCTC
1706







Emx2
GGTGTGGGTGCAGTAGGAGG
1707







Emx2
GACATCTGTTGTCCCAGGGC
1708







Emx2
GAAGACTGGAGCCCAAAGAA
1709







Emx2
GACTGCAAACGCGTGGACCC
1710







Emx2
GGAAAGGAGTCTTGGGTCCT
1711







En1
GACTTTGCGGATAAATAATC
1712







En1
GTTCTGCCAGGATCTCCAAC
1713







En1
GTGGGTGAGAAGCTACAGCG
1714







En1
GAGAATCTCCCGACTTCTCT
1715







En1
GTGAGGGCAACTGGAGATTT
1716







En1
GCCAGGATGGCAGACAGGTA
1717







En1
GATCCGAGAAAGCTAGAATT
1718







En1
GTCAGAAACTATGACATTTG
1719







En1
GCTTGCCAGGACGTCAGCAC
1720







En1
GTGGAGAAGCCTCAGAAAGT
1721







En2
GTGCAGGAGACGCATGCATA
1722







En2
GAGGCACGTGTCCAGGAGAC
1723







En2
GAACTGCCAGGTCCTGGTGA
1724







En2
GAGCCTACAGAACCCAGGCA
1725







En2
GTGGCCTGGTGGCTCAACAT
1726







En2
GCAAGGGCAATAACTCCCAA
1727







En2
GGGCACGGCCACTTTAAAGG
1728







En2
GTGGCTCAACATAGGAAATG
1729







En2
GCCTCCTATAAGGAACTGCC
1730







En2
GGCCTGGTATGTAAGTGGGA
1731







Eomes
GATGATACCATCTTGGCCTG
1732







Eomes
GTGTTTCTTTAAGCGTCTTT
1733







Eomes
GCTTGGAAACTTGTGAGCGG
1734







Eomes
GGTGTTTCTTTAAGCGTCTT
1735







Eomes
GACTGTTTGCGGAAACGCAG
1736







Eomes
GGCACCGTTCAGACCCACTC
1737







Eomes
GCCCGAGACCAAATCGGAGC
1738







Eomes
GAGGGTGTGCGCAGAGACTT
1739







Eomes
GCTCTATGGCGCCGGAGAAA
1740







Eomes
GTCCTGCTGTTTGTGCACCC
1741







Ep300
GCTCCTAAGTCTAGTGTGTA
1742







Ep300
GTTTGGGATCCTCAAATATA
1743







Ep300
GGTACCTGGCTGGAGAGCAG
1744







Ep300
GAGTGAGGAGGGTACCTGGC
1745







Ep300
GTTCCAAAGATCAACCTGAG
1746







Ep300
GAACCTGCCTGAAACTTCCA
1747







Ep300
GCCGCTACCGCTATCCTGTA
1748







Ep300
GCTACCGCTATCCTGTAAGG
1749







Ep300
GAATCCTCCTTACAGGATAG
1750







Epas1
GAAAGCACGGTCCCTCAAAT
1751







Epas1
GACTTGCATAGAGCAGAGCC
1752







Epas1
GGGAGCCCACGGTGATACTG
1753







Epas1
GTTAGCGCAGGACTGAGTAA
1754







Epas1
GAAATCAGTTGACACACCTG
1755







Epas1
GAATAAAGATGGTACGGTTT
1756







Epas1
GAGCGCAGCTCCAGAGAAAG
1757







Epas1
GAGGATTGTACGGCCGCCTC
1758







Epas1
GACAAGAACAAGAGCCGACA
1759







Epas1
GGGCGATACCTGTAACCCGC
1760







Erf
GAGAGTGGGTAGGAGAAGTA
1761







Erf
GCTGAATAGGAACCCAACAA
1762







Erf
GCTGCAGCAGATAGGAGGAA
1763







Erf
GAGTTACCAAAGGAAGAGAT
1764







Erf
GACCAAAGGCCCGAGCGTAG
1765







Erf
GAGGAAAGGAATTATATGAA
1766







Erf
GGAAGTGACCAGAATGCATT
1767







Erf
GATGCGGCAAGCAAGAGGGA
1768







Erf
GCGCACTCACACACGCTTGC
1769







Esr1
GTCACTGAGCATCTTATTCA
1770







Esr1
GACAGTAGTCAGTAGGCTAT
1771







Esr1
GTTTACAGACAGTAGTCAGT
1772







Esr1
GAGCGTGCAAACTATGGGTT
1773







Esr1
GCATCTGCTGTCTTGAGGTT
1774







Esr1
GTGGAAGTAAGAATGGTATC
1775







Esr1
GTTTGGTCCAGAGTCTGCAC
1776







Esr1
GACTCTACTCTTAGAGAAGC
1777







Esr1
GGAGAATGATGTTGGGTGTT
1778







Esr1
GAGTGAAGTGTTGGGTCGGG
1779







Esr2
GTGAGAGAGACAGGGAGACA
1780







Esr2
GCTGGGTTAAGCTTGCACTG
1781







Esr2
GGCAGGTAAAGGTGGTGTGA
1782







Esr2
GTTCACAGAACCCAAGGAGG
1783







Esr2
GAGTCCATCCTGGTGAGGAT
1784







Esr2
GACCTGGAAAGAGTGTGGGA
1785







Esr2
GCTCCCGGTTTGTGGTCACG
1786







Esr2
GCTTTCATAGACATCTTCCA
1787







Esr2
GGGACATTCTATCTCACAAA
1788







Esrra
GGGTGGAGTGCTCACTGATG
1789







Esrra
GCTCACTCTAACTAGTTATC
1790







Esrra
GGTGGAGTGCTCACTGATGA
1791







Esrra
GGAAGCCACATCGAACCTAC
1792







Esrra
GTTCTGGATCTCAGCCGGGT
1793







Esrra
GATGGGTGTGCCATAAGGGT
1794







Esrra
GTGCGATGTGAAGAATGGAG
1795







Esrra
GGGACACTGGTTTCAGCCCT
1796







Esrra
GTAGGCACAGGCCGACTCAA
1797







Esrra
GCGTCCTACTAGGAGGAACC
1798







Esrrb
GTCAATTCAGAAGTCAACCT
1799







Esrrb
GTATCTGTATCCCAGTAGAG
1800







Esrrb
GCAGGAACCACAAGGCTATG
1801







Esrrb
GTCATGTAGAAACCAACTCA
1802







Esrrb
GTCCACCTCTTACATCATGG
1803







Esrrb
GGTGAGTGAGTGACACCCTC
1804







Esrrb
GCTTCAGGTATTGGAATGAA
1805







Esrrb
GGTGGGACTGTTGGAAGGGA
1806







Esrrb
GCAGGGAGACTGTGTAGGTA
1807







Esrrb
GGTTAGTGGGCTCCAAGTGT
1808







Esrrg
GAGAGGGCCTGTGCTTCTGT
1809







Esrrg
GGGATATTAAGGCAGGATGC
1810







Esrrg
GAAGAGGGTTGAAGGTAAAC
1811







Esrrg
GACAAAGGTCTAAGGAGTAT
1812







Esrrg
GAGCGATTGTAAATGTGTGA
1813







Esrrg
GTGAATGCGTGCAATGAGCT
1814







Esrrg
GGTAAGACTTCAAATGCAGG
1815







Esrrg
GGGAGGGCGGGAAGTTGTTA
1816







Esrrg
GCCAACTCACGAGCCAGGAA
1817







Esrrg
GAAGACTTGCAGGAAGAGTG
1818







Esx1
GTGGGACTACACTGTAGGGT
1819







Esx1
GGAAACACTCCTATTTCTAA
1820







Esx1
GACATTTGAATTGGCTTCTT
1821







Esx1
GTAGTCCCACCCATTCCGAA
1822







Esx1
GGCATAAAGGGTTTCTTGCA
1823







Esx1
GAAGAAGCCACGGAAACCAA
1824







Esx1
GGAGTGTTTCCATTCGGAAT
1825







Esx1
GGGTGGGACTACATTGTAGG
1826







Esx1
GTCTTGCCCAACCATTCCAC
1827







Esx1
GTCTAGGCAGGAACCCTCGC
1828







Esx1
GCCAGATAACAAGATGAGTG
1829







Esx1
GAGCTGCCCTTTGTTTCTTA
1830







Esx1
GTGAGGAAATCCCTGTATAA
1831







Esx1
GACGGACTTTCCCGAGACTG
1832







Esx1
GAGTGTCAATCTCTGGGTCT
1833







Esx1
GCAAGAGTCACCTTTATACA
1834







Ets2
GCCAGGCTAGGCTTTAACTC
1835







Ets2
GGCACTTGGGTTGGGTGGTT
1836







Ets2
GTTGGGTGGTTAGGCTTCTG
1837







Ets2
GCTCAAAGGCTCTATCTTGG
1838







Ets2
GGCTGAGAACTTGGTAGGGA
1839







Ets2
GCCCTTTGAACCCAGAGGGT
1840







Ets2
GTGGGCCAACCACAAAGCAG
1841







Ets2
GTTCGGGCGTTATGCCCAGG
1842







Ets2
GCAGGGCTGAGAACTTGGTA
1843







Ets2
GGCAAGCTCAGGCAAGGCCA
1844







Etv1
GGAGCCGAAAGGTGGAGTGG
1845







Etv1
GGGTCAGCAATAAACAACAA
1846







Etv1
GCAGGATTTATTGAGATACT
1847







Etv1
GGACTTCTATCAACCTAGAG
1848







Etv1
GGAGTGTTAGGACATGCTCT
1849







Etv1
GAGAACGGGAGCCAAGAGAA
1850







Etv1
GAGAGGTGGCGCTGGAAGAG
1851







Etv1
GCCTTATCCGAATCACTCAA
1852







Etv1
GAGTCAAATAGTTAACAGGT
1853







Etv1
GAGCGAGAGATGCGAAGGGA
1854







Etv2
GGACAAGATGGTGACATTTA
1855







Etv2
GCATCAGCCTACGTCACAAT
1856







Etv2
GTTGAGAAAGGAAAGTTCTA
1857







Etv2
GGGTGACAGACAGCCAGATC
1858







Etv2
GCCTGGAGGATGAATGAATT
1859







Etv2
GGGTCAAGTTGCAGGGATGG
1860







Etv2
GTTCGTGGCTCACCTCTGGC
1861







Etv2
GTCTGAACTAGGAAGGACAG
1862







Etv2
GCTCTGGGCTTATCTGCAAC
1863







Etv2
GTGTCTGAACTAGGAAGGAC
1864







Etv4
GGTCAGATTCTGGGTCTCCC
1865







Etv4
GGAGGAACTCCGAGTCAGAC
1866







Etv4
GTGACAAGCTGAGTTACCTC
1867







Etv4
GAGGCGTGAGCTAACGCCAG
1868







Etv4
GCCATCTTACTCCTTATGAT
1869







Etv4
GGCTCAAACCGGCTTTCTCA
1870







Etv4
GAACCCGTGGAGAAGCTGCC
1871







Etv4
GGTCTCCATGAAGGTTCAGG
1872







Etv4
GAAAGCTAAGAAAGACACCA
1873







Etv4
GCCAGGGCTCTCCAGAGAAG
1874







Etv5
GCAGGACGAGGAGTTGGAAG
1875







Etv5
GTGTGAGTACGGGCTGCCCA
1876







Etv5
GGTCAGCGAGTTTCTGTGTG
1877







Etv5
GCAAGCAACACTGCTTCTCC
1878







Etv5
GATAGCCACAGTATCATATG
1879







Etv5
GGGATGAGAACAGGGAGGGA
1880







Etv5
GACACAAGAAGAATGTCCCA
1881







Etv5
GAGTCAGTGAAGCTCTTAAA
1882







Etv5
GTGTTGCTTGCCAAAGGATC
1883







Etv6
GAGTCTGGGAAACCCTCAGC
1884







Etv6
GAACCAGGCTTGCTGGTCCT
1885







Etv6
GGAGAAGGACATGTCAGGAA
1886







Etv6
GAGAGATGAACCAGGCTTGC
1887







Etv6
GGGAATACAGAGGTGAGTCT
1888







Etv6
GTTCTTGGAGGGAACCTCCA
1889







Etv6
GTCCAGTCACCTACGTCGGT
1890







Etv6
GACCTGGGCCACGCACAGTA
1891







Etv6
GGCATAGTGCATAGTGGCCC
1892







Etv6
GGAAAGCCACCCTGTGGTAT
1893







Evx1
GAGAGTGCTGGAGAAAGACA
1894







Evx1
GGCAGGTGGGCCAGATTGAG
1895







Evx1
GCGGCCAGTTCTTCGAGGAT
1896







Evx1
GGTAGGGAGAGGTTCAAGTA
1897







Evx1
GCATCGGCATAGGTAGGGAG
1898







Evx1
GAACAGAATTGTGAGATCAA
1899







Evx1
GCCCGGCTAGGAGGGATAGA
1900







Evx1
GCAGCTGTGGGTAGATTGTG
1901







Evx1
GAAGGTTATTTACTGAGCAG
1902







Evx1
GACCCAGGAAGGAGACTAAA
1903







Evx2
GAAATGCTATCCTCTGCTAA
1904







Evx2
GGGCGCGTCAAGAATGTAAG
1905







Evx2
GCTTGCCTGTAGAAATAAGT
1906







Evx2
GGCCTGCCTTTAAATAAGAC
1907







Evx2
GGTCTAGGCTAGGCTCCATG
1908







Evx2
GTGTCTCAAGGCGGGAAGGA
1909







Evx2
GCATCTGAGTCGGGCAGGGT
1910







Evx2
GTAAGGGCCTAGGGTGGAGG
1911







Evx2
GAAATCTTCCTAGGCCACTG
1912







Evx2
GCTTTCTTGCTACGTGGCTG
1913







Ezh2
GGTTCCTTTCGGCACCTTGG
1914







Ezh2
GATAACTGAACAGGGAGTGG
1915







Ezh2
GTTCGGCCCTCTGATTGGAC
1916







Ezh2
GTATGAATACTAGCTTCTAA
1917







Ezh2
GACACTGGTGGAAGTCATCC
1918







Ezh2
GGCGACCAGATTTCTCTGAA
1919







Ezh2
GAAAGCCATGGACAGGCAGG
1920







Ezh2
GCAGCTCATTTCTAITCCTC
1921







Fev
GGATGATAGAGAAATTGTTG
1922







Fev
GCTCAGTCTGACAGGGATCT
1923







Fev
GAATCCTATGGAAACTGGGA
1924







Fev
GCATATATTGGCTGTGAGAC
1925







Fev
GCAGGGAGAAGAGTTCAGAG
1926







Fev
GATGGCTAGAAAGAGGGCTC
1927







Fev
GAGGGAGATGGCTAGAAAGA
1928







Fev
GCCAGACGAGACAGGAAACC
1929







Fev
GACTCTCA6CAAACATCGGT
1930







Fgf3
GTTCAACGGCTACATCCTGT
1931







Fgf3
GGATAGACCACTCCCACTTA
1932







Fgf3
GCAGAGACAGAAATAAAGGT
1933







Fgf3
GACTGCTTAAGATTTCTCAG
1934







Fgf3
GGATTCATTTGTGACATCTT
1935







Fgf3
GCATCCTTCATTTGAGTCCC
1936







Fgf3
GTCACAGAGCCTTAGAGCCC
1937







Fgf3
GGCAGAGACA6AAATAAAGG
1938







Fgf3
GAAGGACCACACCAGGGTGC
1939







Fgf3
GCCAGGCACAGGAAGGTAAC
1940







Figla
GGAAATATTTGCATGCATTC
1941







Figla
GGAACAAAGCCCGTAGACCA
1942







Figla
GGGCCAAATAAATAATGGAA
1943







Figla
GCTGCGACTTCTTACTTTCC
1944







Figla
GGCTGAGGGTGTGACTGCTG
1945







Figla
GTTGAGATCATTTCCTCACA
1946







Figla
GGACTCTAGGACAGGAAGAG
1947







Figla
GGCATCTGAAACCAGGAGGA
1948







Figla
GCACGTGTGCAGCCTGAACA
1949







Figla
GACTTAACCTGACTCACCTG
1950







Fli1
GTAAACCGAGTCTCAATTGC
1951







Fli1
GGAAAGAGGCCAGAGGCGTT
1952







Fli1
GCTGCCATTCCTGAGCTGCA
1953







Fli1
GGCGTTTGGCTTTGGATTTG
1954







Fli1
GGTGGTAACCACATTAAACA
1955







Fli1
GCTGGCCAGGAACAATGACG
1956







Fli1
GAGGGTCTCCTTCCAGGCAC
1957







Fli1
GAAGGGAAGAGCAAGAGGGC
1958







Fli1
GCTTAACCCTTTCCTGCCTG
1959







Fli1
GAGGGTGTGCACCACTGTGT
1960







Fos
GGATGGACTTCCTACGTCAC
1961







Fos
GATCTAAGGATGGAGTAGCA
1962







Fos
GCAGTTATGAGTGGAAGGCA
1963







Fos
GAGGGTTCAAGACAGGACTC
1964







Fos
GAGAGGATTAGGACAGCGGA
1965







Fos
GGCCGGTCCCTGTTGTTCTG
1966







Fos
GAAAGATGTATGCCAAGACG
1967







Fos
GATCCAAACCCAGCGGGAGC
1968







Fos
GTAAAGGAO6GAGGGATTGA
1969







Fosb
GGTGAGTCTTCAGGCTTTGA
1970







Fosb
GAATCCGTGACAAAGCTAGT
1971







Fosb
GTCACGGATTCTGTGTGACT
1972







Fosb
GTCTCCTGAGCTAAGTGGGA
1973







Fosb
GATATCTCCAGGTGTAGGGA
1974







Fosb
GAGTTGCACCTTCTCCAACC
1975







Fosb
GCGGGAAGGGAGAGTTTGGG
1976







Fosb
GTATAAGCAGACCTGGGATC
1977







Fosl1
GTTCCCAATGAAGACAGCCC
1978







Fosl1
GGAGTGTGTGTACGTGAcTT
1979







Fosl1
GCTTTAATCCAGGCCTCTAC
1980







Fosl1
GCTCTCTGCCTGTAGAGGCC
1981







Fos11
GAGAGGAGCGGTCTTAAGTC
1982







Fosl1
GAGCATCACCTCCTGCTCCC
1983







Fosl1
GAGCGCCTACAGAAGGACAT
1984







Fosl1
GCTTGTGATAGCTCCAGAGA
1985







Fosl1
GCTGTCTTCATTGGGAACAA
1986







Fosl1
GTCCTGAGACACAGTCAGTA
1987







Fosl2
GGTAATCCCAAACAGTACTA
1988







Fosl2
GTACAGATAAGCGCTGTACC
1989







Fosl2
GGGCTGGAGAATAAAGAGTG
1990







Fosl2
GGAAACGCAGGCGCTTTATA
1991







Fosl2
GCGCCCTTGGTCTGTTCCAT
1992







Fosl2
GCCTGAGTTTCCCGGCGACT
1993







Fosl2
GGATACAGATGCACTGCATA
1994







Fosl2
GTACACGCACGCACCAGCCT
1995







Fosl2
GAGTCGCCGGGAAACTCAGG
1996







Foxa1
GCACGGAGTGTGTGTGTGTT
1997







Foxa1
GGAGTGACTTCTAGTCACAG
1998







Foxa1
GTACGTTCCCGCAATGCCGG
1999







roxa1
GCCCTGTCTTCTATGTCATA
2000







Foxa1
GCCTTCACTTTCTGCTTAGT
2001







Foxa1
GCTTAGTTGGTACCCAGATA
2002







Foxa1
GGGTCAAGAATCAGGATGAG
2003







Foxa1
GCAGGAACAAGGAAGCTTCT
2004







Foxa1
GCAGATGCGTTCCAGCACCC
2005







Foxa1
GATCAGTAGGAGAGCAGAGA
2006







Foxa2
GAAGTAGTGCTGGCGGCAAT
2007







Foxa2
GAAATAGTTGGCCCAAATCC
2008







Foxa2
GTTTAGCTGCAGCCAATACC
2009







Foxa2
GTGTGAGCTGATTATTCAAA
2010







Foxa2
GGCTGGTCACTGAATGCCAG
2011







Foxa2
GACCCATTTGAGTAGAAGGA
2012







Foxa2
GAATTGCACAGCGTTAAGCA
2013







Foxa2
GGAGCACTTGGGTGGAGATG
2014







Foxa2
GATTATTCAAATGGGCTGCC
2015







Foxa3
GTGTGGTCGAACTTGTTATT
2016







Foxa3
GATCCACTCTTTAGGATAAC
2017







Foxa3
GGTGGAGGAGGAGGAGGTGA
2018







Foxa3
GCTCCCGCTCTGTTGCTCTA
2019







Foxa3
GGAAGGAGGGAGGCAAACGG
2020







Foxa3
GCTCCGTACAGAGTCAGGGT
2021







Foxa3
GGAAACGTGCTGTTATCCTT
2022







Foxa3
GAAGCCAAAGAAGGCAAGGA
2023







Foxa3
GCGGATTTGAGGAAGGAGGG
2024







Foxa3
GCTTCGCACACGGCCAGTCT
2025







Foxb1
GATAGATATATTTGGACAGC
2026







Foxb1
GTATTTAACCTAGTGGCATG
2027







Foxb1
GTATCTTACTGGTTGCCATT
2028







Foxb1
GAAAGAAACCAGCGCTGGCC
2029







Foxb1
GAAGCATTGACCCGTCTCTG
2030







Foxb1
GATTGGATGGGTTGTTCAAA
2031







Foxb1
GCAATCGCGGCTTTAAGCCA
2032







Foxb1
GGTCCAACTGATTTAATCTT
2033







Foxb1
GAAGCTTGGTGGAGGTGGGA
2034







Foxb2
GGTCTGCTGTTCCACAGCAA
2035







Foxb2
GGTGTATCCTCTTGTTTCTT
2036







Foxb2
GGATGACTAGACTTGAGCTC
2037







Foxb2
GACCAGTGGAAATGGAGAAG
2038







Foxb2
GCCTCTCAGCTGTAAGGTTT
2039







Foxb2
GGGAAGTGAAAGCGAAGGGT
2040







Foxb2
GGCTGCAGCTGCAGCTCAGA
2041







Foxb2
GGAGCCAGAAGGTTCCCTGC
2042







Foxb2
GCCAAACAGCAGGAGCCAGA
2043







Foxb2
GGGCGTCCTAGGAATTCCTC
2044







Foxc1
GACGGCAAAGTGATTGCCCG
2045







Foxc1
GAGTCTGGGAGTGAGTGGGT
2046







Foxc1
GGAAAGGAGAGGACAAGGGA
2047







Foxc1
GTGGTGACACCACAGGAATG
2048







Foxc1
GAGGGATATTCGGAAAGGAG
2049







Foxc1
GCGGTATTGGAGGATCTGAG
2050







Foxc1
GAACGTGAAGATGCAGTCTT
2051







Foxc1
GTGTGTTAGTGAGGGAAAGA
2052







Foxc1
GTTTCCACATTCCAGCGGGC
2053







Foxc2
GAGTCGCTGTGCGTCAAGGT
2054







Foxc2
GAGGGAAGGAGCACGCTTGA
2055







Foxc2
GAGTCCTCCAAACAATTTCG
2056







Foxc2
GAAAGCGCTGTCTGGAGGTT
2057







Foxc2
GGTTTAAATTTGGCATACGC
2058







Foxc2
GGCTGGGAGGGAAGGCTTAG
2059







Foxc2
GTCCGGTGTAGATCTGGGTA
2060







Foxc2
GAGATCTGGCTAAGAGCATC
2061







Foxc2
GCTGGGAGGGAAGGCTTAGT
2062







Foxc2
GTGGGAATGCCAAACTGGGA
2063







Foxd1
GATCTAGTAGTCTCCTCTGA
2064







Foxd1
GAGAAAGTTCACCCGCAGGA
2065







Foxd1
GATCAATGAAGGTACAGAAC
2066







Foxd1
GATTCTGAGAGCTAGGGACC
2067







Foxd1
GGAGAAGAAGCCTGTTGTGC
2068







Foxd1
GCTTTCAGGCCAAGGAGTGG
2069







Foxd1
GGTAGGGTGTCCCAGCTCTC
2070







Foxd1
GCAGACAGGCGTCCTAACCA
2071







Foxd1
GGGCCTGTGACAAAGATGAA
2072







Foxd1
GAAACAGCCCTTTAACCCTT
2073







Foxd2
GGAGTGCACAGCAGGTATTG
2074







Foxd2
GGGATGAGGTTAAGTTTCTT
2075







Foxd2
GTGGCCAAGGCTCCAGCATA
2076







Foxd2
GCAACACTGGCCCAGGGATG
2077







Foxd2
GCGGTGCACACCAGGAAAGT
2078







Foxd2
GCCAGAACATTCCACTTCCA
2079







Foxd2
GCCCTATTCTCTGGGAGGGA
2080







Foxd2
GGGTGCCCTATTCTCTGGGA
2081







Foxd2
GCCTAAGGCGGAAGAACTGT
2082







Foxd2
GCCACTGTGAGGCGCTGTTG
2083







Foxd3
GACTTTGTCCGCCTCGTTGA
2084







Foxd3
GCTGGAAACGGAGCAGGCAT
2085







Foxd3
GTTATGACGTCTTTGTTTAT
2086







Foxd3
GGGAAATCCCAGAGATGCTG
2087







Foxd3
GGGCTCCAAGCAGCTCTGGA
2088







Foxd3
GTTCAGGGAATTGTCAACAA
2089







Foxd3
GCGGTCTTGGGTAAGTGGAG
2090







Foxd3
GGCTTAATATCGATTTCTAG
2091







Foxd3
GCTGACTAGACAGTCTTCTC
2092







Foxd4
GCTGGCCTCTGACCTCTACA
2093







Foxd4
GAACTTCCACAGTTTATGCT
2094







Foxd4
GTAGTTGGTAAAGACAACGA
2095







Foxd4
GGAACCGAGTCTCTCCAGCA
2096







Foxd4
GAGGGAAGGAGCCATTTCTC
2097







Foxd4
GCAGTGTGGATGCCTTACCA
2098







Foxd4
GAACCGAGTCTCTCCAGCAG
2099







Foge1
GCCAGTACCTTTCCTGAGCA
2100







Foxe1
GGGTAAGAACTGGACTAAAG
2101







Foxe1
GTCTACAGCTGAAGACGACG
2102







Foge1
GGTGGAAGGTACAACCCAAG
2103







Foxe1
GAATTCTGCTTCCCTCTGCT
2104







Foge1
GAAAGCCTCCTCGCCGCATC
2105







Foxe1
GAAGCAGAATTCTGGAAGAA
2106







Foxe1
GCCGCATCAGGGTCCTTAGG
2107







Foxe1
GTTTGCTGGCGCCTTTAAGG
2108







Foxe1
GGAAAGAGACACACTGTGGA
2109







Foxe3
GCTAGCAAAGACTGCTGGAG
2110







Foxe3
GAGCGGGAACTAGAAGCATG
2111







Doxe3
GCATCCTATGTAGCTGGTCA
2112







Foxe3
GGGATGGTACTTACTGAGAC
2113







Foxe3
GGGCTGGGAAAGCAAATTAG
2114







Foxe3
GGGAAAGCAAATTAGAGGGC
2115







Foxe3
GAGGAAAGCGAGAAAGGCTA
2116







Foxe3
GGACAGTTACACACAGGGAA
2117







Foxe3
GACTGACTCAGGGATGAGGG
2118







Foxe3
GACCCAGAGGGACTAGACCA
2119







Foxf1
GCGGATTTCAGAGTTAAGCG
2120







Foxf1
GCAAGCCTGCGCGTCTAAGT
2121







Foxf1
GGACAGACTTTAGAACTCTG
2122







Foxf1
GAGCCCACTGAATAGCTACG
2123







Foxf1
GGTGATTAGAGGATTCGCTT
2124







Foxf1
GAGCCACAGGATCACAAGAA
2125







roxf1
GGGTGTGGGAATGTGTGGCC
2126







Foxf1
GGCACATCTGTGCGAGGGTC
2127







Foxf1
GTCTGTCCTGGAGAAAGGAA
2128







Foxf1
GACCCTCGCACAGATGTGCC
2129







Foxf2
GGCACGGATCGCTAGGTTGG
2130







roxf2
GGGCACGGATCGCTAGGTTG
2131







Foxf2
GGGTCTGAGGAACAGAGGAA
2132







Foxf2
GGGATCAGCATGAAATAAAT
2133







Foxf2
GGAGCTTTGTGGGCAGACTT
2134







Foxf2
GGAGTAATCGAGTCTGGCCA
2135







Foxf2
GCTCAGAGAGAGATGGCCCT
2136







Foxf2
GCCTGGGAAGATGGGAGACA
2137







Foxf2
GTTGACAGATGGTGTCAGTT
2138







Foxg1
GAATGCGAGTCTCTCAAAGC
2139







Foxg1
GCTTTATGTGCAGAGGGAAG
2140







Foxg1
GCCCAGCATTTCCCAGGGAT
2141







Foxg1
GATTACCTTCAGAAGACAGA
2142







Foxg1
GTGAAATGATTCGGTGTAAC
2143







Foxg1
GTAGGAAGAGATCCAAGCAG
2144







Foxg1
GCGCGCCACGTTGTAAGCAG
2145







Foxg1
GCTAGAGAGATCTGTGAGCC
2146







Foxg1
GGTGCCAAAGGTTGATTTCT
2147







Foxg1
GCTCACAGATCTCTCTAGCT
2148







Foxh1
GTGAGGGTCGGGTCTATCTG
2149







Foxh1
GACTTTCCTGTGCTTCATGT
2150







Foxh1
GCTTTAACTGGAACCAAGGA
2151







Foxhl
GTCATCCACTGTAGATTGAC
2152







Foxh1
GTCATGGTGATGGGACTTTC
2153







Foxh1
GAGGTTCCAGGIGAGAAGGC
2154







Foxh1
GGTACAGTCATGAGTGGAGG
2155







Foxh1
GCAGCAGTTTGGGTGATGGT
2156







Foxh1
GGAGTCTGCTCAGGACTTGA
2157







Foxh1
GATGGATTTGCCCGACCAAC
2158







Foxi1
GCTTACTTACTTTGAACCTC
2159







Foxi1
GGCAAATGAAAGCAATTCTG
2160







Foxi1
GAGCATGTGTCAGTGCCTGG
2161







Foxi1
GGATAAGCCACCTTTAAGCT
2162







Foxi1
GTGACCTGGCACAACTGTCC
2163







Foxi1
GAAGATGATGGCACCAAGAG
2164







Foxi1
GTAAAGCAGAGAGAGAGGTT
2165







Foxi1
GCCTAGCTCCCTCAGTGCCA
2166







Foxh1
GAAATCGTCCTTGCTGAGGG
2167







Foxh1
GACTCAGGAGAAGAAAGTAG
2168







Foxi2
GTTAACGAGGCAGTATGACA
2169







Foxi2
GTGCCTAAGGCAAGGGCATC
2170







Foxi2
GAGTTCCAAGACTGTTTGTC
2171







Foxi2
GACCTGTTTGTCATGTAGCC
2172







Foxi2
GGTTACAGCTGTGGCACAGA
2173







Foxi2
GCCCAGGCTACATGACAAAC
2174







Foxi2
GGTTGGTTAAGTAAAGGCAG
2175







Foxi2
GTCCAATCTGGCCTGGCTTC
2176







Foxi2
GAGAGAGAGGCTGGTGGCTT
2177







Foxi2
GAGAGCAGAGCCTTAGGAGC
2178







Foxi2
GGCCACTTCCCTGCAGTGCT
2179







Foxj1
GGGAAGCAGGGTGTTCAGAA
2180







Foxj1
GAATGAGCAAGGCAGAGCAA
2181







Foxj1
GAGACTTGGTCTGCAGAATC
2182







Foxj1
GGGCAAAGACTTCAAGGGCA
2183







FoKj1
GGCAGATGCAGAAGCAGGTA
2184







Foxj1
GGCAACTCTCTGGAACTCTC
2185







Foxj1
GGGAGGAATGCACTAGGGTA
2186







Foxj1
GCTTCCAACCAATAGTTCGG
2187







Foxj1
GACTTGGTCTGCAGAATCCG
2188







Foxj2
GCTGTCTGGAAGAGAAAGAG
2189







Foxj2
GTCAGTGAAAGATTGGATCG
2190







Foxj2
GTAGTGAGACCTGAAGGACC
2191







Foxj2
GATGCCAGCGTCCACGCTAA
2192







Foxj2
GGAAGGGTAGTGAGACCTGA
2193







Foxj2
GTCACTTGACTTTAGCACAA
2194







Foxj2
GGTCTCACTCCGGGTCCTTC
2195







Foxj2
GGGAGGGAAGAGGCTTTGTT
2196







Foxj2
GAGAAAGGGAGCCATGCCTG
2197







Foxj2
GGTCCTGGCTTGTGCGTATC
2198







Foxk1
GACACAGACCTTCCAGTGCT
2199







Foxk1
GATGAATCCAAGCACCCTTC
2200







Foxk1
GGTGGAGCAATTGAGCACAC
2201







Foxk1
GGGAATTAGCATCCCAGTGC
2202







Foxk1
GAGGCTGGAGTTTAAAGTCC
2203







Foxk1
GCACTGGAAGGTCTGTGTCT
2204







Foxk1
GCTGACGGCCAAGTGIGGGA
2205







Foxk1
GAGGGTGAGCTGGCACAGGT
2206







Foxl1
GAGGCAGGATGTGGAGGGAC
2207







Foxl1
GAAACACACTCCGACCCTCT
2208







Foxl1
GAACAGAGACTGCCTCCTCA
2209







Foxl1
GTTGAAGTCACAGAGGAAAG
2210







Foxl1
GAATCTACAGCGGAATGTGG
2211







Foxkl1
GGTTGGACACTTAAGGAATC
2212







Foxkl1
GCACCGCCCACTTTAGTCGT
2213







Foxkl1
GTGGGTGGGTGTGTGTGTGG
2214







Foxl2
GCAGAGCCTCTAACTTCTGC
2215







Foxl2
GACTTCTTGCTGTCCTTTGC
2216







Foxl2
GATGAGACCCAGGGTCAGCT
2217







Foxl2
GGTGGAGTGGCCGAACTTTG
2218







Foxl2
GAGAGGTGATCCAAGCCTCT
2219







Foxl2
GCATCTTCTCCTTCCAGCAT
2220







Foxl2
GCTTCCCACTTTGAGATGAA
2221







Foxl2
GCACAAGTGTCACGCGTGGA
2222







Foxl2
GAAGTCAGCCTCTGGCCATC
2223







Foxl2
GAAGGAGAAGATGCAGGTAA
2224







Foxm1
GTTGAGTGTGGAGAATAATG
2225







Foxm1
GCCTTCTAGTACACAATGGC
2226







Foxm1
GCCACGTAACCGCAAGTCTA
2227







Foxm1
GTATGAAGAGAGCTGCAGGG
2228







Foxm1
GCAAGICACTTGCAATGACT
2229







Foxm1
GCCAAGGCGTTGTCACAGAA
2230







Foxm1
GGGAAGAAGGTCTGAGCCTC
2231







Foxm1
GAAGAGAGCTGCAGGGTGGA
2232







Foxm1
GCAAGCTTTGACCCTGAGGA
2233







Foxn1
GACATGGGAGGGAAGTCACA
2234







Foxn1
GCAGGCATGCCCACAGACAT
2235







Foxn1
GTTAACCATCGTGTACAGAT
2236







Foxn1
GGGTTCTGGGAAGCAGCACA
2237







Foxn1
GAGGGAAGTCACATGGATTT
2238







Foxn1
GTGCATGTCCCAACAGGCCT
2239







Foxn1
GCTACACACTGCCACACATA
2240







Foxn1
GGAGACACAAGCCTGAGTAC
2241







Foxn1
GAGTCAATTCACCGTTCTCT
2242







Foxnl
GGACATGCTGTGTATGGATG
2243







Foxn2
GGAGATTCTTGTATACCAAG
2244







Foxn2
GTATTGCCTACACTGTATTG
2245







Foxn2
GGTCTGGGTGTGGTCAGTCA
2246







Foxn2
GCTTCATTTGGTTCCTGATG
2247







Foxn2
GCTTTGTTGAGCAAGCAGAC
2248







Foxn2
GGTGTGGTCAGTCACGGCAG
2249







Foxn2
GCTCCACTTAGTTCAAAGTC
2250







Foxn2
GGCAACAGTGATGCTATGTA
2251







Foxn2
GACAAAGGTGCCCAGGCTTG
2252







Foxn2
GCCCGGAAGGACCTATGGGA
2253







Foxn4
GCCACGGTCGCATGTTGAAG
2254







Foxn4
GCAGTGCATGACCCAGCCAG
2255







Foxn4
GACCGGTTTACGTATTACTC
2256







roxn4
GAGTTGGACAGCTCCAGAGA
2257







Foxn4
GTGCAGTGCATGACCCAGCC
2258







Foxn4
GAAGCAACGGGCTCTTTCTG
2259







Foxc8
GCGAGCTCGGGAGACGAAAG
2260







Foxn4
GATCAATCCTGTTAGGGAAC
2261







Foxn4
GCCTGAACTTAAGGGTTCCC
2262







Foxo1
GGTTCAGGATGAGTGGAGGC
2263







Foxo1
GAAGACTTCACTCATCTTGG
2264







Foxo1
GAGGCGGCAGTAGGTTGGTG
2265







Foxo1
GCACCTTAAACGGTTCATAG
2266







Foxo1
GGTGAAGACCCGTCGCTCTG
2267







Foxo1
GTCCTCGGCACCTCTGGTTC
2268







Foxo1
GCAGGTGTGCACAGGTAGGG
2269







Foxo1
GACGTCACTGAGCATCTTAC
2270







Foxo1
GCGAAGGCCAAATTCACAGC
2271







Foxo3
GTCTGGAGCCCAGAGACTGG
2272







Foxo3
GGGAGGAGGGAAAGGAGGTA
2273







Foxo3
GTGCACACACCTGGACCACA
2274







Foxo3
GCGTCGAACTAGCTTGGTGC
2275







Foxo3
GGCAATATAGATGGTGATGT
2276







Foxo3
GCATTCTGACCCTGAAGGTA
2277







Foxo3
GAAGAGGAGCGAGAGGCGTC
2278







Foxo3
GAGGCACGGATCGTGGGATA
2279







Foxo3
GACAGCGGGAGGACTAGAGG
2280







Foxo4
GAAGTAGCAAGTTACAGAAG
2281







Foxo4
GGGATTCAGTTCTGGAGTTG
2282







Foxo4
GTTTCCTCTGTCAGCTATGC
2283







Foxo4
GTAGTCTTCGAGAACGACCA
2284







Foxo4
GGTGGAACTTTAATGATTAG
2285







Foxo4
GGTAAACAGAGACGTCTGGC
2286







Foxo4
GGTCACTCTTGAGAGGGTCA
2287







Foxo4
GTCTCTGTTTACCACTCGCT
2288







Foxo4
GAAGGCCCAGTGTATGAAGA
2289







Foxp1
GGGAAGGAATCACACCACCA
2290







Foxp1
GCAGTGAGGGTTTCTAACCG
2291







Foxp1
GGTGGCCTCTGGATCCGCAA
2292







Foxp1
GACAGTCTTCTGAAGCAGGC
2293







Foxp1
GTAATTTGTCTGTAGAACCC
2294







Foxp1
GCAATTAAGAATTCACTCCA
2295







Foxp1
GAAGGCTAGGAATCTTCTTC
2296







Foxp1
GCTTTGGTGTTGATGACAGT
2297







Foxp1
GTAGAGTAGTAGGGTCTCAG
2298







Foxp2
GAGCTGCTGGCAAATGAAAC
2299







Foxp2
GAAACTCTAACTGCTTGCTT
2300







Foxp2
GTAGAGAAGAATGACTACAG
2301







Foxp2
GACCACATACCTTGCCACGG
2302







Foxp2
GGGTCTTGTGACTTGAATCT
2303







Foxp2
GAGGACCCTGTCAGAATGAA
2304







Foxp2
GTAGCCTAGCAGGGTTGGTG
2305







Foxp2
GGCGCACACACAGGAGAGAA
2306







Foxp2
GACCCTGTCAGAATGAAAGG
2307







Foxp2
GAGAGAGGCGACTTGAGCAG
2308







Foxp3
GGGTCTGTGGAAGCTGAGAC
2309







Foxp3
GAGCAGGGACCATTAACTTT
2310







Foxp3
GCTAAGGAAATACTGAGGTT
2311







Foxp3
GAGAAGACAGACCCATGCTG
2312







Foxp3
GGGATGAGGTCCTCTTACTT
2313







Foxp3
GGCAGAGAGGTATTGAGGGT
2314







Foxp3
GCCATTGACGTCATGGCGGC
2315







Foxp3
GGCAACAAGGAGGAAGAGAA
2316







Foxp3
GTAGCCTTTCTTTCCACAGA
2317







Foxp3
GCCCAAGTGTACAGGGAGCA
2318







Foxp4
GGAGGACTAAATTGGGTAGC
2319







Foxp4
GGATGAACTGGGTAAGGACT
2320







Foxp4
GAGCTTGTGTTTAGCACTTC
2321







Foxp4
GGACCACGTGGACCAAACTT
2322







Foxp4
GTAGCAATGAGAGACTGACT
2323







Foxp4
GTTCCTTCCTTGCTCCCACA
2324







Foxp4
GAGTTAATAAAGCCTCCCAT
2325







Foxp4
GCCTCAATTAGGACAAGATG
2326







Foxp4
GACTGAGTAGGCCTGAGTAG
2327







Foxp4
GTGGGCCAGGAGCTGAAAGG
2328







Foxq1
GAGAATTCATTCACCTTCTA
2329







Foxq1
GGCCATAGAGAGGAAGTAAG
2330







Foxq1
GGCCGAGGGACTGGTTGCAT
2331







Foxq1
GACAAAGCATTGATTTGGCC
2332







Foxq1
GATGGATTGATAAGTGCCTG
2333







Foxq1
GCCTAACCAAGATCAAGGTA
2334







Foxq1
GCACGGGTGTCAAACAGGAA
2335







Foxq1
GAAGCCGGCTAAGAAACAAG
2336







Foxq1
GAAGCTGGCGTGGTAGGCAT
2337







Foxs1
GCTGCCCTGAGCCTGAGCTT
2338







Foxs1
GTTCTGTCCTCAGGGCAGAC
2339







Foxs1
GTACTGGGAGTTCTGTGAAC
2340







Foxs1
GTACCAGCACCAATACCTAG
2341







Foxs1
GCCTGAATAGTATAGCCCGG
2342







Foxs1
GAAGGAAAGAGAGAGAGAGA
2343







Foxs1
GAGAGTGGGAGACACAGCAG
2344







Foxs1
GTAGACTTTGGAGGGCTACA
2345







Foxs1
GATAGTTGTGTGGAGATGGG
2346







Gab1
GAGTTGACTGATGTGATGCT
2347







Gab1
GGTAGAACAGCTCCTGGGTC
2348







Gab1
GGAGAATTCACCCTTCAAGA
2349







Gab1
GTTCCTCTCTGGCTGCCTCG
2350







Gab1
GTGTGTTTGAAACAAAGCCT
2351







Gab1
GCTTGAGTGAGTTCTCCTCC
2352







Gab1
GACCTCTTCCTTAAAGCATA
2353







Gab2
GCTGGCTATTAATTCCTCTT
2354







Gab2
GAGTTAACTTACAGTGAAGC
2355







Gab2
GTAGATCAAAGGGTGCTTGG
2356







Gab2
GCTTCGCTAGATTGTAATTT
2357







Gab2
GAGGATTTGTGGCCAGCAGC
2358







Gab2
GCGCTCTCCCATAGTGCCTC
2359







Gab2
GCCATCTCCTCCACAAAGCC
2360







Gab2
GGACTCATTTCAGCCAGAAT
2361







Gab2
GCATGTCCTTGCAGGGCTTA
2362







Gab2
GAGTGTGGCTTTGAATGTTA
2363







Gabpa
GATGGCGGAGTCTTAGCTGA
2364







Gabpa
GCCTCCTGGGACTGAGCTTC
2365







Gabpa
GGGTTGTGTGGCCTTTATCA
2366







Gabpa
GGATATCATAGAAGTGCGGT
2367







Gabpa
GCTGTGCTACAGTGCTTACG
2368







Gabpa
GAGTACGCTAAATTAGACGT
2369







Gabpa
GCGATCTGTTCATGATCACA
2370







Gabpa
GACAGAAGCCAAACAGGAGG
2371







Gabpa
GGACTCAGTGCAAGGTGACT
2372







Gabpa
GGTTTCTTCACGAGGAGAGA
2373







Gabpb1
GAGACAACCGAGAATAACCT
2374







Gabpb1
GGCCAGTAGGCTGATGTCTA
2375







Gabpb1
GCAAAGGGAGAGGACTGCTA
2376







Gabpb1
GTTCATTCCTTCAGCAGTGC
2377







Gabpb1
GGTGAAGGCCATCCAGTCGA
2378







Gabpb1
GTACCCGGAATCGCTGGTTG
2379







Gabpb1
GGCATGGAGAAGCAGTAGTT
2380







Gabpb1
GTTAGGTTTGGTTGGTTGGT
2381







Gabpbl
GATTTAACTTACCGTGGTCC
2382







Gata1
GTGTATCTGAAGTTTGTTAC
2383







Gata1
GAGGGCTAAATATAATCCCA
2384







Gata1
GTCAGTCGGACCACTTAACA
2385







Gata1
GTGATCTTATCCCAATCCTC
2386







Gata1
GCCCTGGAAATCCGTAGGCT
2387







Gata1
GCAAGGGTGAGAATTGGAGG
2388







Gata1
GTGCCATTGGTGTGAGGATG
2389







Gata1
GCCTAGCCTACGGATTTCCA
2390







Gata1
GTGGAGGGACAATGGCTGGT
2391







Gata1
GATCCTGATACTAATAGCAG
2392







Gata2
GCAGTATGAGGCCCAGAACT
2393







Gata2
GCGTCTGATGCGGGTCTGCT
2394







Gata2
GTTCTTTGAATTTCTCAGAG
2395







Gata2
GAGGTTCCTAAGATACCTTC
2396







Gata2
GAATAACCGTTCTAATGAGG
2397







Gata2
GACCACCAGGCTGAACTGCC
2398







Gata2
GCTGAATAACCGTTCTAATG
2399







Gata2
GTCGTCCGTAGCAGTGGAGG
2400







Gata2
GGAGTCAGTTGGATTTGGGC
2401







Gata2
GTCCGTAATTGGGTAACTGG
2402







Gata3
GGTGCAGGGIGAACTCAGAA
2403







Gata3
GGACGCCCGCGTTATTGTTA
2404







Gata3
GGGCTTCCTCTTCCCTTGGC
2405







Gata3
GTAGCAAAGCCGATTCATTC
2406







Gata3
GGCACTGGATCCAGCCTGTA
2407







Gata3
GGTCTGAGGTAGTTTAGGGT
2408







Gata3
GCTTGGCTTTAGAGGGTTAC
2409







Gata3
GTCTCTGGGACAGGGTCTGG
2410







Gata3
GGGACACGATCCTCAGCACA
2411







Gata3
GTTGCAGTTTCCTTGTGCTG
2412







Gata4
GATTCTGACTGGCATTGTTT
2413







Gata4
GCAGTCAGTCCTCGAACCTA
2414







Gata4
GTCTCTAGGCACTGACCTTA
2415







Gata4
GTTTCCAATACAAGATTAGA
2416







Gata4
GAAAGCTACAGACTTAAGGC
2417







Gata4
GGGAGGCCAAAGAGAGGAGG
2418







Gata4
GAAGGAAAGCACTCAGTGCC
2419







Gata4
GCACAGAGGTCGCCTAGTTC
2420







Gata4
GCAACGCTGAGGATCAGACT
2421







Gata4
GTGCCATCCCGAGCCTTCTC
2422







Gata5
GATGGAGCTAGAAGGACCTA
2423







Gata5
GTCAGTGCCCAGGTCTAGAC
2424







Gata5
GGGAGCCTCAGCCAGTCTTT
2425







Gata5
GTCCTCCAACTTGGCCACTC
2426







Gata5
GCATTGACCAGTGGGCAGCA
2427







Gata5
GGATTAAACTCAGTTCAGAT
2428







Gata5
GGGTGCTGCAGACAGATACG
2429







Gata5
GGACCGACTAGAAGAGAGAA
2430







Gata5
GGGAGCTCGGAATAGACGTG
2431







Gata5
GGGACCGACTAGAAGAGAGA
2432







Gata6
GAAGGTGGCACACCAACCTA
2433







Gata6
GATAACGCGTTGAGAAGGAG
2434







Gata6
GTATATCACTGCTGCTGCCT
2435







Gata6
GCTAAAGGACACCAAGGGAG
2436







Gata6
GAACGGTTTATAGACCTACT
2437







Gata6
GTTACAGCGCTGGATGATTA
2438







Gata6
GGCGAGGTAGGGAATACACA
2439







Gata6
GAGAAGGGAAATGACTTACT
2440







Gata6
GTCAGTTACTAGCAACTGCG
2441







Gata6
GACCTGAGCATCCCGAAACA
2442







Gbx1
GCTTCCTCTCTCAAACACAG
2443







Gbx1
GATTGATGAGGCCGGACCCG
2444







Gbx1
GGACTCGGTTCTCTAAGCTC
2445







Gbx1
GTAGCTAGTATCATGTGTTG
2446







Gbx1
GAATACCTGCCCAATCAGAA
2447







Gbx1
GACCTCACTGTAAATGGAGG
2448







Gbx1
GAGGACAGAGCTGGGCTGAA
2449







Gbx1
GGACAGTCAAGGCGGAATGG
2450







Gbx1
GCTTTGTGAAAGTTTGCGGC
2451







Gbx1
GAGCCAGGGAGATAGAGTGA
2452







Gbx2
GATTGCGCCGAAAGGAAAGT
2453







Gbx2
GCCTCTCATGAGGCCTCCAC
2454







Gbx2
GAAGCTTCGGTCTGAGCAAG
2455







Gbx2
GGCTGGCGGTGAAAGGGAAG
2456







Gbx2
GAGCAGGGATCGCTCACGGA
2457







Gbx2
GTATTATTATTACCTGGAGG
2458







Gbx2
GAAAGGCACTGGCCAGCAGG
2459







Gbx2
GTTGCGGCACACACTGTCCC
2460







Gbx2
GTTATTTCCCAACTATGGCC
2461







Gbx2
GCGGCTGAACTTCCCTGGTG
2462







Gcm1
GTTATGAATGCCACAGAGAG
2463







Gcm1
GAGCTTCAGACTCTTGGACT
2464







Gcm1
GGTAAGGTCAGCTACTCCAC
2465







Gcm1
GATGAGGCATGGCAGAACTG
2466







Gcm1
GGAATCCCAGGTAGTCTGCT
2467







Gcm1
GCTTTCAGCCAGGGACAGGT
2468







Gcm1
GGAGTGTCTCTGCAAATTCA
2469







Gcm1
GTCACCCATAGCATGCCTGA
2470







Gcm1
GTCTAAAGGTGAGACTGGAA
2471







Gcm1
GAGATGGCTTTCAGTGTTTC
2472







Gcm2
GTCACTCTTAGACTCAGCGG
2473







Gcm2
GCAGGTCACTGTTAGAGGAG
2474







Gcm2
GCAAATCTGAAGGTTGGGAC
2475







Gcm2
GGTTGAGGCTCTGGAAGCAA
2476







Gcm2
GCTAAGGCTGACAATGGAAT
2477







Gcm2
GCTGGTGCGCTTTACAGCCA
2478







Gcm2
GTTTCCAACTTGGTCTGTTT
2479







Gcm2
GAAGTTAAGCAGTAGGCAGT
2480







Gcm2
GGTTTCCAACTTGGTCTGTT
2481







Gcm2
GTGACCCAAACAGACCAAGT
2482







Gfi1
GAAATGAGATCCTGGAGGAC
2483







Gfi1
GTGAGCAGTTTAAGTGCTGC
2484







Gfi1
GCGACGAACAGAAGCGAAAG
2485







Gfi1
GCAGAAAGAAACCTGCGCCT
2486







Gfi1
GGGAGCATAGGAGGAAGGCA
2487







Gfi1
GCATAGGAGGAAGGCAGGGA
2488







Gfi1
GAAGGCAGGGAAGGGAGAAG
2489







Gfi1
GGACTATGTGCTGCAGTGGC
2490







Gfi1
GACGAACAGAAGCGAAAGAG
2491







Gfi1
GTTTCTCCTGGGACAAGTGT
2492







Gfi1b
GAGCATGGAACTTTGGAACA
2493







Gfi1b
GGTTTGGGTCAGGGCTGTAT
2494







Gfi1b
GGACTGGACCAGGAGTTCTC
2495







Gfi1b
GATGGATGCCTCCAGAGATG
2496







Gfi1b
GTTTGAGGCCTTTCTGCTGA
2497







Gfi1b
GATTGAATACCCAAGTACCA
2498







Gfi1b
GTGTAGCACAACCAGTTCAA
2499







Gfi1b
GAAATGCCCTGCGCTGGCCT
2500







Gfi1b
GAACATGGACCCAGATGTGG
2501







Gfi1b
GCTTTAGACAAGGAACCGGT
2502







Gli1
GTCACAGTAGAAACAGATAA
2503







Gli1
GTGCGACCTATGGAACATGA
2504







Gli1
GTATAGGGTCCCTCAAGGGA
2505







Gli1
GTGGTCCAGGGCTGGAAACT
2506







Gli1
GGCAGTATAGGGTCCCTCAA
2507







Gli1
GGTGACTGGACACAGAGAGA
2508







Gli1
GGATATACGAGGGAAGTGAG
2509







Gli1
GATATACGAGGGAAGTGAGC
2510







Gli1
GGGTGGATAGAAGCTAGAGA
2511







Gli2
GGTTTGTTTACATGTATTGG
2512







Gli2
GGTAACAAGAAAGGAAGAAT
2513







Gli2
GATCCAATCAGTGAGTAACA
2514







Gli2
GGGTTTGTTTACATGTATTG
2515







Gli2
GAAGGAGCTTTCTCTAAGGC
2516







Gli2
GTCCACTCCAAGAAGCAAGC
2517







Gli2
GAACAACCAGCGGAGGGCTG
2518







Gli2
GCTACGGCGCACAGAGGATC
2519







Gli2
GTAGCTGGAACTTTCTGGTA
2520







Gli3
GGCCTGGATGTGTCTGTGTG
2521







Gli3
GAAACATCCTTCACTCATCT
2522







Gli3
GATACATTGITTCTGGCATT
2523







Gli3
GTTATCTCTTAACTCAGTAG
2524







Gli3
GGAAGTTTCAGGCTTGGCCT
2525







Gli3
GAGAGGTGGGCAACTCAGAT
2526







Gli3
GTTCTGATTTGGTTCAACCG
2527







Gli3
GTTCTGATAGCGTGGTGGGA
2528







Gli3
GAAACAAGAGGAATTCTTGA
2529







Gli3
GTGAACATGGTTTACAGAAA
2530







Glis1
GGAATGGGTACAGGAGAACG
2531







Glis1
GCCTGAACTCTCCATTCAAT
2532







Glis1
GGCCTGGGTTCAGATGACAA
2533







Glis1
GGCAGCAGGGTCTCAACTGT
2534







Glis1
GAAGACACTGGCGTGGGAGT
2535







Glis1
GTCTGCTACAGCAGGTAGCC
2536







Glis1
GTGTGTTTCTGCAACCGGCC
2537







Glis1
GTGCAGGCGATGAGCTGTTA
2538







Glis1
GGGTCCACACTTTAGAATTG
2539







Glis1
GTAAATGAGTTTGTTGCTGT
2540







Glis2
GTCCTGGATCTGGACTGGGC
2541







Glis2
GATAATGTCGCAGTGCTGCC
2542







Glis2
GGATAATGTCGCAGTGCTGC
2543







Glis2
GCACATCGGTAGTGTGAAAC
2544







Glis2
GTAGTTCAGCACGTGTTCCT
2545







Glis2
GTGAGATACTGCACTAGGGC
2546







Glis2
GGCCTTGTGCTTATTTCACC
2547







Glis2
GCCTACCTTCGCACCAGACC
2548







Glis2
GGTCCTGGATCTGGACTGGG
2549







Glis3
GCTAAAGTTCCAAGCATCAC
2550







Glis3
GGTAACTGGCATGAAGCTGA
2551







Glis3
GACCACTGGAGTGTACAATG
2552







Glis3
GCTGGAATAAATTCCATGTG
2553







Glis3
GGACCTGTTGTCAACTCTCA
2554







Glis3
GAAGGTGATGGCCAAAGGTA
2555







Glis3
GGTACAGIACGAAGGCCAGG
2556







Glis3
GTCAAGAGGGAGACACTGGC
2557







Glis3
GGCAAGCTCTCTGAGGTAAC
2558







Glis3
GCTAGCTAAAGTGAACAATG
2559







Gm4736
GTGACTGAAGTACTATATAG
2560







Gm4736
GGCCTACAAAGTCATCATGA
2561







Gm4736
GGAAGGCCACAGTCTTTATA
2562







Gm4736
GGCCACAGTCTTTATAAGGA
2563







Gmeb1
GTCAGCTCGAAGGAGCACAT
2564







Gmeb1
GGCAGTGAATGGAGCTTGTA
2565







Gmeb1
GTGGAGTCCTCTCTGAGGCT
2566







Gmeb1
GGTCAGCCACTGGGTTCAGC
2567







Gmeb1
GAAAGCCTAGGTCAGCCACT
2568







Gmeb1
GTGTGAGGAGGGAAGTAGGT
2569







Gmeb1
GATGTCCTCTGTAAAGGATG
2570







Gmeb1
GGCAATGTGGTCAGGCCTTG
2571







Gmeb1
GTGGTGGAACTCAGGTGGTC
2572







Gmeb1
GGTGGGTAAGTGCTCTGACA
2573







Gsc
GAACCTATCGGCACCCACGC
2574







Gsc
GTGAACAGCCTCTTCCTTCT
2575







Gsc
GTTTGCCAGGTGGCAATGTT
2576







GsC
GTTAGGAGCTAGGGAGAGTC
2577







Gsc
GCGCAGAACTAGGCAGTGCG
2578







GSc
GCCACTCAATATGTTGAGAA
2579







Gsc
GGGTCCGGGAGCTTCTTTCT
2580







Gsc
GATAGAGACCGGCTTCAGTT
2581







Gsc
GGAGAGATGCCAAGAGGAGG
2582







Gsc2
GCCAAGTATTTGTTCTCAGT
2583







Gsc2
GCAGCCATTCTGTAACCATG
2584







Gsc2
GAGGGAATGAGGGAAGCCAG
2585







Gsc2
GGAGGGAATGAGGGAAGCCA
2586







Gsc2
GCCAGGCTCTGTGCACTTGG
2587







Gsc2
GAAGCCCATAGAGTCCTCAC
2588







Gsc2
GCACCATGTCATCTTCCTAC
2589







Gsc2
GGACTTGGTAAAGTGGGAGA
2590







Gsc2
GGGATTAGCACGCGCGAACG
2591







Gsc2
GGGATTAGCACGCGCGAACG
2592







Gsx1
GAGCAATTAGAACGGGAATT
2593







Gsx1
GGGAGTGAGAGCCGAATTCG
2594







Gsx1
GTTGCCAGCGCCTTCTCTTC
2595







Gsx1
GGAACGCAGAGGCAGAAGGC
2596







Gsx1
GAAGCTGTGTACACAGAGCG
2597







Gsx1
GAGAGAAGAGACTCCACAGG
2598







Gsx1
GATCGCCAGCGCAAAGCCAA
2599







Gsx1
GTAACAGAAAGAAAGGGACC
2600







Gsx1
GGAAGAAGTAACAGAAAGAA
2601







Gsx1
GAGTGCACCGGCGTGTCTAG
2602







Gsx2
GCCGAATAAATCCTTCCACG
2603







GsX2
GAGGGAGAAGACAGATATAG
2604







Gsx2
GAGCTCTAATTGCCAGGACT
2605







Gsx2
GTGGTCACAGAGATGGAAAG
2606







Gsx2
GGGCAGGGAACAGCAGTTGG
2607







Gsx2
GAGAGTGATGGAGGGAGAGG
2608







Gsx2
GCCTACCTTCCTCCCTCGCT
2609







Gsx2
GAGAGTAGGTTGGTCGGAGC
2610







Gsx2
GCTGGTTAGAAAGATGCACA
2611







Gsx2
GGTAGGTTATCTACAGTCCT
2612







Gft2a2
GCGTGAAAGGCTTCAGTGTG
2613







Gtf2a2
GGTTGGTATCAGTCTCCACC
2614







Gtf2a2
GACTGCAGTGTAGGGAAACC
2615







Gtf2a2
GCAGCTATAGGTACTGCAGA
2616







Gtf2a2
GCAAGAGGTGCCAGGAAGTG
2617







Gtf2a2
GTTTACCAGCCGTGAAGGGT
2618







Gtf2a2
GAGCCAAAGTATAACAGAGA
2619







Gtf2a2
GTCTATATACAAAGGTACCA
2620







Gtf2a2
GGTAGCTGTCAGTTACTCCA
2621







Gtf2a2
GAAACAGATCACGTATGGTG
2622







Gtf2f2
GTCCTGACGTAGTCGTGCGC
2623







Gtf2f2
GTTTGAAAGAGGCTCTGAAA
2624







Gtf2f2
GTGTAAAGATCAGGGAAAGC
2625







Gtf2f2
GCAGGTGGATGGGCTTGGTG
2626







Gtf2f2
GCATCACACACTATCATATG
2627







Gtf2f2
GCAGTAAGGTATTGGAAGAA
2628







Gtf2f2
GAACCGTGCGTTTACAGCAA
2629







Gtf2h1
GGTGGAAGCAAGAAGGCACG
2630







Gtf2h1
GCCCAGTATGTAAAGATCTT
2631







Gtf2h1
GATGACAGGTGGAAGCAAGA
2632







Gtf2h1
GTTCAGGATAGCTGAATAAT
2633







Gtf2h1
GTTCTTCCGCTGGGAGGGAC
2634







Gtf2h1
GCCTTCGGGCAGTAGATTAA
2635







Gtf2h1
GCCAGCGTTTGTTAGGAGGG
2636







Gtf2h1
GCCTCACTTCCTTCGTTCTC
2637







Gtf2h1
GGTAAGTTGAGACCGAAGAA
2638







Gtf2h1
GGCGTGATCGTCACGTGACG
2639







Gtf2h2
GCCAGGCTTGCTCTTTGCTT
2640







Gtf2h2
GTTCTCTTGAACACAAGGAA
2641







Gtf2h2
GACAGATCACCTCCCACATG
2642







Gtf2h2
GAGGGCAACTACGTATGGTG
2643







Gtf2h2
GACTGCCGGTACTTCCGGTG
2644







Gtf2h2
GTTCACCAATATTTCTGCTG
2645







Gtf2h2
GTGTAGACAAGTGTGAGACC
2646







Gtf2h2
GGGAGGTGATCTGTCCTGCC
2647







Gtf2h2
GCTGCCAGAAGAGGGAGCTA
2648







Gtf2i
GGCCTGCTGGAGAAGGAAGG
2649







Gtf2i
GTTCATGCCGCAAGGCTGTC
2650







Gtf2i
GGGTTCAGAACTACAACTCC
2651







Gtf2i
GTGGCCTGCTGGAGAAGGAA
2652







Gtf2i
GTTTACTTTCTTTGTAGCTG
2653







Gtf2i
GTAAACTTAAGACCCTCCTC
2654







Gtf2i
GAGGGCGCCCGAATATTCGG
2655







Gtf2i
GGCGGACATAAGCGGTGGGA
2656







Gtf2i
GGACAGGCAACGGATGGGAG
2657







Gtf2i
GTCGCCTGATTTGCAGAGGG
2658







Gtf2ird1
GGGATCAGAAACAAGGCCAT
2659







Gtf2ird1
GTAGCTGGCAGAGAGGCTAT
2660







Gtf2ird1
GGACAGGATCAGTAGAGGGA
2661







Gtf2ird1
GGCTAGGCCTTTGCTGGGAT
2662







Gtf2ird1
GTGTCCAAGGTCAGAAGGGA
2663







Gtf2ird1
GATGAGGGATGATGGAGATG
2664







Gtf2ird1
GTAGAGGGAGGGAGGGAAGG
2665







Gtf2ird1
GGGACAGGATCAGTAGAGGG
2666







Gtf2ird1
GTAGTATACAGGAGGTCAGA
2667







Gtf2ird1
GATCTAGAAGGAGACCAGGT
2668







Gzf1
GGTAAAGCAATGATTTACCG
2669







Gzf1
GGTGGGTCAAGTCTTGGCGT
2670







Gzf1
GCAGAGCTATTTGACAAAGT
2671







Gzf1
GTGTGAGGGACAAAGCGCTG
2672







Gzf1
GTGTTATGGAGCCAACCACA
2673







Gzf1
GCCTGAGTCTCCCAGTGTGA
2674







Gzf1
GGAGACTCAGGCAGCCACTG
2675







Gzf1
GCTAAGGCGCAACCAAAGGA
2676







Gzf1
GTGGGTCAAGTCTTGGCGTA
2677







Hand1
GAGGTGGAAGTGGGAGGGAA
2678







Hand1
GTAACTTAGGAGACTGAAGC
2679







Hand1
GTTGTGCAAGAGATTGTGAG
2680







Hand1
GTGTAAGACAATTACCAGGC
2681







Hand1
GTTCAGTACAGGGAGTGAGC
2682







Hand1
GAAGTGGGAGGGAAAGGGAG
2683







Hand1
GTGAGTGTCCATTGTCCTTG
2684







Hand1
GTGATCTGGGATCTCAGGCA
2685







Hand1
GGGCACTGACCAGTTTGTTC
2686







Handl
GTGGGAGCCTGAAGGCCATT
2687







Hand2
GCCAGGTAAACTTGCTGCTT
2688







Hand2
GCTTGTACAGCCCAAGAGTG
2689







Hand2
GGCTGTACAAGCAGGCCCTC
2690







Hand2
GTCTGGAAGGCCACATCAGA
2691







Hand2
GTAGCTGGACCTAGTCTTGC
2692







Hand2
GGACCTGAGGAGGCAAGCAG
2693







Hand2
GTACCCTGGGAGCAAGAAGA
2694







Hand2
GAAGAAGGTCCCTGTGTAAT
2695







Hand2
GTGCTGTCAGTGAGGAGTGA
2696







Hand2
GTGATTATGAGGGAACTAAC
2697







Hbp1
GTTGCATCATCAAAGATTTG
2698







Hbp1
GTATCTGAAAGTTGTACACT
2699







Hbp1
GGTGCTGAAATACCCAACCA
2700







Hbp1
GTTTCTCTTTCTACTTTGTT
2701







Hbp1
GGCCTAGAGCGTCCTTGGTT
2702







Hbp1
GTTGGCGGCGTATTGAGTCA
2703







Hbp1
GCCAAGTGCCATGTACTGTA
2704







Hbp1
GGCTGTGTCTCAACTAATTC
2705







Hdac2
GTTGGACACAGTTTCACAAG
2706







Hdac2
GGAAGAAGACTAGCATGAGT
2707







Hdac2
GGGAAGAAGACTAGCATGAG
2708







Hdac2
GAGTAATTCTAAGTCTCTTG
2709







Hdac2
GGTTGGGTCAGGGACCACAG
2710







Hdac2
GTGTTTATTACGAGCAGGTA
2711







Hdac2
GATAAAGTAGACAAAGCACG
2712







Hdac2
GGAGTAATTCTAAGTCtCTT
2713







Hdac2
GGTAGCGGGTGTGTGTGTGG
2714







Hdx
GCACTTATCTGCTAAATCTG
2715







Hdx
GCAATCACCTGTGAATTACA
2716







Hdx
GGAAGAGGCAGCCCTACTAC
2717







Hdx
GGACCCAGTTTGAGCACACT
2718







Hdx
GTTGTACACTTACTTTGTTC
2719







Hdx
GAATATGGCAAAGTGAAAGA
2720







Hdx
GTAGTAGGGCTGCCTCTTCC
2721







Hdx
GAAAGCAAAGTACAAATTGT
2722







Helt
GGGAGAGCTTCTGGAGACGG
2723







Helt
GCTGTGAGATGCAGGACTTC
2724







Helt
GGATGTCCGGACAAATAAAG
2725







Helt
GTTAGACAGTGAGACTGGGT
2726







Helt
GCAGCACCTAGGAAGCTCCG
2727







Helt
GTAAATCACCCGGAGATCCA
2728







Helt
GTATATTCACTCGCACACAA
2729







Helt
GTGCCTGGAGGGTGTGGAAT
2730







Helt
GGTATATTCACTCGCACACA
2731







Helt
GAAGTTGATCCTCTTACTGT
2732







Hes1
GGCTTTCTGGACAATGCTTG
2733







Hes1
GTTCTATAACTGAGGACATC
2734







Hes1
GAGAGGAAGGGAGCTACCGA
2735







Hes1
GCAGTTTGACATCAGCCGGC
2736







Hes1
GCTGATGTCAAACTGCAGCT
2737







Hes1
GATATATATAGAGGCCGCCA
2738







Hes1
GAGAGGAATGAATGGGCTAG
2739







Hes1
GTAAGGGCATGTTTAGCGTG
2740







Hes1
GGCTCCTAAGTGGCACAGGT
2741







Hes1
GCTTCTAGTAGGGCTACTGG
2742







Hes2
GGTTGTTCGGGTCTCGCCTT
2743







Hes2
GTGCTTGAGGAGCGGAGCCA
2744







Hes2
GTCTTTGATCAGTGTAGGGT
2745







Hes2
GCTTGTACAAAGTAACTCCT
2746







Hes2
GCTCCATTGAGGGCTTTGGT
2747







Hes2
GTCACATGACAGACGAGTGG
2748







Hes2
GGGACACTGGACTGAGTTGG
2749







Hes2
GATCAGTGTAGGGTGGGCTT
2750







Hes2
GCGTCTGTCAGGAGCCTTTC
2751







Hes3
GACAGACTCATCACTGCCCT
2752







Hes3
GCACAAACTGGTATGGGTGC
2753







Hes3
GAAGCCCTGAAATGACTCAG
2754







Hes3
GACTGGGACGAGAGCTTCCT
2755







Hes3
GGCTTCTTCCCTTCCCGCTC
2756







Hes3
GTGTGGTTTGACAGGGAGCA
2757







Hes3
GGGATACAGTCACACAGAGA
2758







Hes3
GAGCTCCGAGGAATTCTAAG
2759







Hes3
GCTCAGTGGTTAGCACATTC
2760







Hes3
GAAACCCTGCTTATGCAAAC
2761







Hesx1
GAGAGATACACGTTTACATG
2762







Hesx1
GCAACAGGGACTGAGCGAGC
2763







Hesx1
GAATATGAGAGTGCAAGTGG
2764







Hesx1
GGCATTTGACAAAGCTTTGC
2765







Hesx1
GCACTCTGTGTTAATAACAC
2766







Hey1
GTGGATGGAGAACTGGACCT
2767







Hey1
GTCATCTGCAGCTCAGAAAG
2768







Hey1
GGGATTGCAGGCTCCAAGAG
2769







Hey1
GTGATATGAGGCTCTGAAGA
2770







Hey1
GCAGATTGGCAGCCGCATGG
2771







Hey1
GTGTTAGATGGAGATGTAAT
2772







Hey1
GATAAGGAGAAGGGAGAGAA
2773







Hey1
GCACCTTCTGATAAGGAGAA
2774







Hey1
GAAACATGGGATGGCGTCAA
2775







Hey1
GGGTGCTCCGTCACTTTAGG
2776







Hey2
GCACACACCGGAGAAACTGG
2777







Hey2
GTGAGCGTGTGTGACGTCTA
2778







Hey2
GACACAGAAACTGGAGGGAG
2779







Hey2
GGCTGTCTGCTCTGTCCCTG
2780







Hey2
GAGTTCAAAGTTCTCGGATT
2781







Hey2
GCGTGTGTGACGTCTAGGGT
2782







Hey2
GGTGTGTTTAGACAGGAGAC
2783







Hey2
GCTGCACACACCGGAGAAAC
2784







Hey2
GACTGGACTGGGCGCAGATT
2785







Hey2
GCAAATCACAGGATCATCGG
2786







Heyl
GAAATGCCTAGTGCACACAT
2787







Heyl
GGCAGGGAGATGGTGGAGGT
2788







Heyl
GTGCTATGCTGTCAGTTCAG
2789







Heyl
GGCAGAAGAAGAAGGAGAGC
2790







Heyl
GACTGAAGAATTACTTCCAA
2791







Heyl
GAGCCTTCGGCTTCTCTTTC
2792







Heyl
GGCACCAGGGAGAGGAAGAG
2793







Heyl
GTAGGGTGTGGTGGTTGGTG
2794







Heyl
GTGCAGAGGGAAGCTGAGGG
2795







Hhex
GAGTTGGGCAGTTTCTGCTA
2796







Hhex
GAGAAGCGATGGGACTCTGC
2797







Hhex
GACTGCGACCGTCGAAGAGG
2798







Hhex
GCAGTGTTCTTCGATCCAAT
2799







Hhex
GGCTTAGTAGTAAGGGTTAC
2800







Hhex
GTGAACTACTGGAAGGTTGC
2801







Hhex
GGCCAGAAGGCTGCGCTTCT
2802







Hhex
GATTCCGTTAGCATCCAGGG
2803







Hhex
GAATCTGAAGCCAGCGCCAT
2804







Hhex
GTTCGTTTCCTGCTTCCACC
2805







Hic1
GACCGGCAAGACAGACCGAC
2806







Hic1
GTGTCTTCCCTAGAGGACTC
2807







Hic1
GTGTGGAGCATGCAGGACGG
2808







Hic1
GGGCTCAATAGCTTGGCAGA
2809







Hic1
GTGGTATCCTCGCTCTCTCC
2810







Hic1
GGGACTCCGGAGTGAGGATG
2811







Hic1
GCTCTCTCCTGGTGTGTGTG
2812







Hic1
GAGTGAATAAACACAGAACG
2813







Hic1
GTAAGTGGATTAGATGGAGG
2814







Hic1
GACCACCAACAGTCGGAGAT
2815







Hif1a
GCCATAAATAGATACCACCA
2816







Hif1a
GCAGTCCTGTCAAGGTCTGT
2817







Hif1a
GACACAACTGAGTCTGAATC
2818







Hif1a
GTAAGGTCTGCAAAGTGAGT
2819







Hif1a
GGCACTTTAACAGTTGAAAC
2820







Hif1a
GCTGAGAGCAACGTGGGCTG
2821







Hif1a
GCTCTCAGCCAATCAGGAGG
2822







Hif1a
GTTGCTCTCAGCCAATCAGG
2823







Hif1a
GTTGTGCAGATTGTGAAATG
2824







Hira
GCGCATTTATTAGAAGAGCG
2825







Hira
GTGTCTGACGTGTGCCTGGC
2826







Hira
GGAACTTTGGATGCTTTCTT
2827







Hira
GGTCTGGGATTCCGAGAGGC
2828







Hira
GAAATCTGCTTGCTAACCCA
2829







Hira
GAAGTGAACGTGCTGAACTA
2830







Hira
GGGTGATGCTGTGTGCTGCG
2831







Hira
GTCTGCCGCTAGATGCATGC
2832







Hira
GTCCACTGTCTTCCCGAGGA
2833







Hira
GGGCGCATTTATTAGAAGAG
2834







Hivep1
GGGCGTGAGAGGAAACGCTG
2835







Hivep1
GGGCTGGGTTGTTGACTTGG
2836







Hivep1
GTGGGCGTGAGAGGAAACGC
2837







Hivep1
GCTTAGGCTCTGGGAAGCAC
2838







Hivep1
GGTTCAAACAGCTCGGCTGG
2839







Hivep1
GCTTGGCTTGGGAAGAGCCC
2840







Hivep1
GAACTTTGGAAGCCGAAGAG
2841







Hivep1
GGAACTTTGGAAGCCGAAGA
2842







Hivep1
GGAATAACCTTGGCTTTCCT
2843







Hivep1
GAGAGCATCGGTCCAACCCG
2844







Hivep2
GAAGTTCTCTGATCCTACAA
2845







Hivep2
GACTCGCCAGTGTTTCTGCG
2846







Hivep2
GAACGCTCGAATCCAAAGAG
2847







Hivep2
GAAGGGAATCCCAAGCGAGT
2848







Hivep2
GCGAGAAATCCTTGGTACGC
2849







Hivep2
GGCTAGAGAGGGAAGGGAAT
2850







Hivep2
GAGAACCAGAAGCGCGCAGC
2851







Hivep2
GGACTCGTGTGCACCCTCAA
2852







Hivep3
GTGGGCTTCAGAGTGCATGA
2853







Hivep3
GGAGAAACATATGCAAATAC
2854







Hivep3
GTTGGATCAGAATGAGGTCA
2855







Hivep3
GCGGTCTTGACGTTGAGCGC
2856







Hivep3
GAACCTCCAACTTAACCTCT
2857







Hivep3
GGGATTAAGCTGGAGGTGGA
2858







Hivep3
GTAGTTGGCATGCACAGTTT
2859







Hivep3
GTGATGGAGGAGCCTGCTGA
2860







Hivep3
GTATTGGAGAATAGCAGCCT
2861







Hivep3
GGATCCCTAGCTATTGAAAG
2862







Hltf
GTCAGACGCTCCCTATCTGA
2863







Hltf
GGCTTCTTGAGTGAGCCACA
2864







Hltf
GCTCAAGGTTCTGACGGACT
2865







Hltf
GTATGCGAGACCCTGAGTTC
2866







Hltf
GCTAAGAATAAATAGAGTCA
2867







Hltf
GTTCACGAGGTGAAGGGCTG
2868







Hltf
GAGGCACCAATGCATTGTCG
2869







Hltf
GAAATGCAGGTATCCCACCC
2870







Hltf
GTAAGGTCCGAGGTGGTGGC
2871







Hltf
GTGGTGTGGACACGTCTCAC
2872







Hlx
GATGTCCCAGTATCAGGGAC
2873







Hlx
GCTATGATGTCCCAGTATCA
2874







Hlx
GGCTACTATCAGCTCAGGAT
2875







Hlx
GTAGACTTGGGTCGGGATTC
2876







Hlx
GGCTATGATGTCCCAGTATC
2877







Hlx
GTCTAGCAGGGAGCAGAGGG
2878







Hlx
GCCTGTGGTCTGTTTGGGAG
2879







Hlx
GGGAGCTCCGATTAGGCCTC
2880







Hlx
GCCAAAGCGACTGGTCTACA
2881







Hlx
GTTGCGTTGTGCACCTAGTC
2882







Hmbox1
GTCTAGCATCCATGGTATTC
2883







Hmbox1
GCTGGAAGCTGTAGTTCCCT
2884







Hmbox1
GATGGAAAGGAAGGATGAAT
2885







Hmbox1
GCGGCGGCGATGAATTTGAG
2886







Hmbox1
GACTTTCACAGGTGCACATG
2887







Hmbox1
GTTTCCACTACTAAGTCAGA
2888







Hmbox1
GTTTATTCAAACCCTTTGGT
2889







Hmbox1
GAAGACCTCCTGACAGATGC
2890







Hmbox1
GAATCTTCCTAATTGCTACG
2891







Hmga1
GTGTTTGCCTACTTCTAGAG
2892







Hmga1
GGATACCCTTCCTTCCTGGA
2893







Hmga1
GGCGGCCCTGCTGTTTAAGT
2894







Hmga1
GGTTCGAGTTTCCCGCCTCT
2895







Hmga1
GAGATCCCAACTGGAATGTC
2896







Hmga1
GGGCACAAAGATGGAGGGCG
2897







Hmga1
GCTCCTTTGAAGCCTGCACC
2898







Hmga1
GTTGCAAGGAAGTCCTGTTC
2899







Hmga1
GTAGGAGATGCAGGAAGCAC
2900







Hmga1
GAAGACCAGACAAGAGGCAG
2901







Hmga2
GAAGTTTCCGGAAGCATTCA
2902







Hmga2
GAGTTCTGAGTCTTCTCATT
2903







Hmga2
GTTATGGGCGTCCCAGCACG
2904







Hmga2
GGCATTTCTCAGTGGAGCGG
2905







Hmga2
GTGCACGCTTGTTTGTGCGC
2906







Hmga2
GACAGCAGGTGAAGGAGAAA
2907







Hmga2
GCTTGGAGAGGGAAGAGACT
2908







Hmga2
GCGGCACTGCACAGATGCAG
2909







Hmga2
GCACCCAAATTTATAAAGCA
2910







Hmga2
GGTAGAAGCCAAGCTCTCCA
2911







Hmx1
GAAGTCTGGGTTACCCTCTG
2912







Hmx1
GATGGAATGCTCTCATATCC
2913







Hmx1
GGATAGGTGAGACAGAAACA
2914







Hmx1
GCTTGGGAGCACTAGAAAGA
2915







Hmx1
GTCTTACCCAGCACTCCCTC
2916







Hmx1
GGACCAGGCAGACTCTGCTA
2917







Hmx1
GGAGAGCCTTGCTCACCCTC
2918







Hmx1
GATCCAATCGCGCAGATTTA
2919







Hmx1
GATCTGTCAGGAAACCTGCC
2920







Hmx1
GTTGCCTTCTCCTGGACAGT
2921







Hmx2
GATCAGGTAACAGGTGCTCT
2922







Hmx2
GAGAGCACTGACTGGTGTTG
2923







Hmx2
GCGACACTAAGAAGTTTGCC
2924







Hmx2
GGGAGTGAAGTTTGGTCACG
2925







Hmx2
GTGTGGGAAGGCGAGCTGTG
2926







Hmx2
GCATCCTGAAACAGAAAGCC
2927







Hmx2
GGAGTCTGAAAGAGGAGGTG
2928







Hmx2
GTCACCGCATTAACCTCTTC
2929







Hmx2
GGAGCTTTGCTGCTCTGGGC
2930







Hmx2
GGGAGAGGCCACAAGAAGGA
2931







Hmx3
GCCGAGATICICCAGGGACT
2932







Hmx3
GAAAGATAAAGAACGGGCTG
2933







Hmx3
GATTTCGTATAAGGCTTTAC
2934







Hmx3
GCTACTTACAAGGCAATAGT
2935







Hmx3
GCGGGCCTCTGAGGAATAGC
2936







Hmx3
GCCGGAAATCAGACCATAAA
2937







Hmx3
GGAGAGAACTCTTCCAAAGG
2938







Hmx3
GGCCAAGGAACTATCACCAG
2939







Hmx3
GCTGCCTCTTAACTCTTCTT
2940







Hmx3
GACACCTGCAGCATGTCCCA
2941







Hnf1a
GCTGGGACAGCAGGAAGCTC
2942







Hnf1a
GCTAGAGACCTGCATAGGAA
2943







Hnf1a
GGGAGTCATGGCCTGCAATT
2944







Hnf1a
GTGGTTGGTGGCACGATTGT
2945







Hnf1a
GCCTGTTTCTTTGGGCCGCT
2946







Hnf1a
GAGTGAGCAGAAGGGAGGGT
2947







Hnf1a
GCAATTGGGAGTGAGCAGAA
2948







Hnf1a
GCCCAACATCAGACTTCCCA
2949







Hnf1a
GGCAGTTTCCAGAATCTTCA
2950







Hnf1b
GATCACCTGTGGGAGGACTC
2951







Hnf1b
GCAGTAACTCCTCCAAGGCC
2952







Hnf1b
GAAGACCACCTGTGCAAAGC
2953







Hnf1b
GGAGCCGACTTAGGGAAGCC
2954







Hnf1b
GTGCCTCCTTGCTTCCTCTC
2955







Hnf1b
GGACGGCAGTAACTCCTCCA
2956







Hnf1b
GAACCTAAGGGACAGTCCAA
2957







Hnf1b
GTCTGAAAGCTAAAGGGTGG
2958







Hnf1b
GCTCTGGCAAGTCCCAATCC
2959







Hnf1b
GTTTGGCTGATAAACAGAAT
2960







Hnf4a
GGGTGCCTGCCTTGGAAGAT
2961







Hnf4a
GAAAGACCCAAGTGTGGGCT
2962







Hnf4a
GAGAACCACAAATCCACTTG
2963







Hnf4a
GCAGGACCTTAGGAAGCTTC
2964







Hnf4a
GTGAGTTTAGAAACTCTCTG
2965







Hnf4a
GACTATTAATGAGCGGGAGG
2966







Hnf4a
GTTGGTTTCTGACTGACACC
2967







Hnf4a
GTCCTCTGGGAGACTCAGCC
2968







Hnf4a
GACTCCCACTAGCTGGAGAA
2969







Hnf4g
GACATATTGTTGGACTTGAA
2970







Hnf4g
GGCTGTAAACAGCACACCTG
2971







Hnf4g
GGGTAAGAACATTAAGGGAG
2972







Hnf4g
GACATGCCAATGTTGCAGAG
2973







Hnf4g
GATTTCCATCATATGATCAT
2974







Hnf4g
GCCTAAGAGATCCAGATGAA
2975







Hnf4g
GCATCTGCAGTCCTGCTCCC
2976







Hnf4g
GATCCTCTGAGAGCTTTCTG
2977







Hnf4g
GTGTTGCAGTCACTGAGGGA
2978







HnF4g
GCTTTGTTCTGCAAGAGTTC
2979







Homez
GGGAACCAAACACCTGACTC
2980







Homez
GGGAAGAGTCTGTGCTTGAA
2981







Homez
GAGATCTGAAGGTGACCTCT
2982







Homez
GCCAATC3CGGACCTCTGCT
2983







Homez
GGAAGGAGATCCACACAATT
2984







Homez
GAGTTCGTGAAATGAGGAAA
2985







Homez
GTCTTCCGAGGGCCTTCCTG
2986







Homez
GCTCTTCTGATTAATGGACT
2987







Homez
GGGCTGGGAACATGTCTTCC
2988







Homez
GGAAGGACCACAGGATGCAG
2989







Hoxa1
GAGGCCTCCTGGCTCTCTTG
2990







Hoxa1
GTAATTTACGTGTGAGTTTG
2991







Hoxa1
GTCCCTCTACATTCCGAGGC
2992







Hoxa1
GGTGAAGAAAGAGGGCTTGG
2993







Hoxa1
GCCTCCTGGCTCTCTTGTGG
2994







Hoxa1
GAGCATGCTCACTCTAAAGT
2995







Hoxa1
GAGCCTCCTCGGGAAAGCTT
2996







Hoxa1
GCAGAGGATTATTTCACTCA
2997







Hoxa1
GGGAGGGACAGATGACTGAG
2998







Hoxa1
GTGGATGGGACCCTTTCCAA
2999







Hoxa10
GAACTGTGGTTTGGGAGGTC
3000







Hoxa10
GCTGCCTCAAAGTGGAGGTT
3001







Hoxa10
GATGAGGAAGTCCATTCCCT
3002







Hoxa10
GACCAGCAATAGAAGCCTGA
3003







Hoxa10
GTGTGAGATCCAGACAGGGA
3004







Haxa10
GAGCGAGAGAGAAAGCAGTG
3005







Hoxa10
GATAGCACTCTGAGAGGGAG
3006







Hoxa10
GCAAAGAGTGAGAGGGCGAT
3007







Hoxa10
GCCAGATCTCTCATGCTGAA
3008







Hoxa10
GGAATGAGGGATTTGGGAGG
3009







Hoxa11
GAAGAAAGGGAGGTCTCTGA
3010







Hoxa11
GCTACTATTGAGCAGCCTTA
3011







Hoxa11
GCTTTGCCTGTTGGCGGTTT
3012







Hoxa11
GTGTGCTCTTATCCCTAGTT
3013







Hoxa11
GGCTGACAGAGCAATTCGAC
3014







Hoxa11
GAAGCCGCCTCTTCTAGAAA
3015







Hoxa11
GTGGGTGAGGGATACTCTCT
3016







Hoxa11
GAAAGGAAGCCGAGGAGGGA
3017







Hoxa11
GAGAGTATCCCTCACCCACC
3018







Hoxa11
GCTACAAAGAAAGGAAGCCG
3019







Hoxa13
GGGTCCCAGGACATTTCTCT
3020







Hoxa13
GTAGTGGGTTCAAGGTGCCG
3021







Hoxa13
GAATGCAACAGTGGATTGCC
3022







Hoxa13
GATGCAGCAGCTATTCTCTC
3023







Hoxa13
GGGCAAATCAATATTTACCC
3024







Hoxa13
GCGGTGTTTACAGGCTGGAC
3025







Hoxa13
GAACTGGTCAGACATCCAGA
3026







Hoxa13
GCTAGACCCTCCCAAGGATG
3027







Hoxa13
GCAGTAAGAAGGTAAACTCG
3028







Hoxa13
GAAAGGACTCCCTGGGTGTG
3029







Hoxa2
GAGGCAAGGAGGAAGCCAAA
3030







Hoxa2
GTTTCATACCCGTAGGGCTC
3031







Hoxa2
GTTCAAATGCTGATTATCTC
3032







Hoxa2
GAAGGTGCTTTGCAGATGGA
3033







Hoxa2
GATGGAAGGGTGGTGGCTTT
3034







Hoxa2
GAAGCTGAGATGTGTTCTTA
3035







Hoxa2
GACCTGCGTGTGGAGATTGG
3036







Hoxa2
GGAGGGTAGACGACGACGTG
3037







Hoxa2
GCTCCTAAACGCTGCTCTCT
3038







Hoxa2
GTGGGTAGAGGCCATGATGA
3039







Hoxa3
GTAGGAAAGACATGGAATTC
3040







Hoxa3
GATAAGAATGGAGACCTTCG
3041







Hoxa3
GGTATTGGCCGGGTGTGTGA
3042







Hoxa3
GGACATGAAGGAGGCTTCTT
3043







Haxa3
GCCAGAGAAAGAGGGATTCT
3044







Hoxa3
GAAACTGGCCCAGCCTAGTC
3045







Hoxa3
GGACGGGACATGAGGAGACA
3046







Hoxa3
GCATCAAGGTCCAGCCTGGG
3047







Hoxa3
GGCACTCCCAAACTACCTAT
3048







Hoxa3
GCCATTAACCCTACTTCAGG
3049







Hoxa4
GCAGTGCATGTGTATTTGTA
3050







Hoxa4
GACCGATTGACAATTAGACC
3051







Hoxa4
GAAGGCAAGAGATGCTTCTT
3052







Hoxa4
GGCTGTGGAAGGTTCAGGAA
3053







Hoxa4
GAGGTTCTATTAAGGAGGAT
3054







Hoxa4
GCTCTGGAAAGGAGAGAGAA
3055







Hoxa4
GTTCTGAAACGCGAAGTTAC
3056







Hoxa4
GCTCGCTTCTCCCACCCTGA
3057







Hoxa4
GCAGGGACTCCCTAACAGCC
3058







Hoxa5
GGGTCCTGAAAGCTGCGAGG
3059







Hoxa5
GGTGCCGTGTATGGGAGTCA
3060







Hoxa5
GGCTGCTTGGAAGCTGGGAT
3061







Hoxa5
GTCTGTGAAAGACGCTATCC
3062







Hoxa5
GCAGTGCCCTGTTTGGTGCC
3063







Hoxa5
GCGCGTTAGCGATCTCGATG
3064







Hoxa5
GGCTGCTACTCTCCCACTGA
3065







Hoxa5
GAGGACTGTGTTGGGCTGTC
3066







Hoxa5
GCCAGGTGTGAGGTTCAGGC
3067







Hoxa5
GGCACCTGTGGGCAGAAATG
3068







Hoxa6
GAGCCTGGCTTGCAGGTGTG
3069







Hoxa6
GCTTGTCAGGTTTCCTGTTT
3070







Hoxa6
GTCCTGACAGAGTGGAGACC
3071







Hoxa6
GCCGATGGTCAAGGTAATTC
3072







Hoxa6
GGAGGGCGGTACTGAGAAGA
3073







Hoxa6
GCGTCCCAAAGGCGTCCTGA
3074







Hoxa6
GAGATTTGACTGGATGGAGG
3075







Hoxa6
GATCCTTTGAGTGAAGCTCT
3076







Hoxa6
GCCTGTACAAACAGTCTCCA
3077







Hoxa6
GGAAGGCCCTGGCTTTGGTG
3078







Hoxa7
GCTTAGAAAGGTGAAGCCGC
3079







Hoxa7
GGGAACCACTTAGTCCTTTC
3080







Hoxa7
GAGACCTGACAACCAGAGTT
3081







Hoxa7
GGCTGTCTTGTGTAGATCTT
3082







Hoxa7
GACCCTAAGGCGGCAATATC
3083







Hoxa7
GAGTAAGAGAGAGAAAGAGA
3084







Hoxa7
GCTGCTGAGATTGGCGGAGG
3085







Hoxa7
GAGCCGCCAGGAGTGTATGA
3086







Hoxa7
GCCAACAGATATACTAACAT
3087







Hoxa7
GCAGTTTATGAGGCGTTTAG
3088







Hoxa9
GGTGGAGAGCCTAATATTTG
3089







Hoxa9
GTAGAGACCCAGCCAGAGAC
3090







Hoxa9
GTTAGGGTGGTGTCTCTGTC
3091







Hoxa9
GAAGGGTAAGCAACAAGGCC
3092







Hoxa9
GATCAGGGAGGGCACAAACT
3093







Hoxa9
GTCTCTGGCTGGGTCTCTAC
3094







Hoxa9
GTCCTGCCTTGTGCAACTGA
3095







Hoxa9
GGAGCCCTCTTCATCCACCA
3096







Hoxa9
GTGTCGTGCTGTCGAGAGAA
3097







Hoxb1
GAACCTATTGAAGGCCTTGG
3098







Hoxb1
GTGATCTCTCCCAGGCCAAT
3099







Hoxb1
GGTAACCCTTGAAACTTCTC
3100







Hoxb1
GCCTGAGCTAGGGCAAGTCC
3101







Hoxb1
GCGGAGGAAGCCAAAGCAGG
3102







Hoxb1
GATGAGTTGATGGATAGGTA
3103







Hoxb1
GATGCCGCATGGAAAGAGGA
3104







Hoxb1
GAGAGGCTGAGGGAGAGAAA
3105







Hoxb1
GGAGGGCAAGAGTTCAGGGA
3106







Hoxb1
GCCTCAAATACATAAATCCA
3107







Hoxb13
GGGAAATAGAGCCAATGTCT
3108







Hoxb13
GTCCCAAGATTGCAGGAGCT
3109







Hoxb13
GGTGAACAACAACCTGGATT
3110







Hoxb13
GAAGGGCTGGGAGGCCACTT
3111







Hoxb13
GGGAGCCAAGGCTGGITTCG
3112







Hoxb13
GGGAGCAAAGCAGGAATCCT
3113







Hoxb13
GCCAATCAGCGCTCATGCCC
3114







Hoxb13
GGGTCTGGATTTCCGTTTAA
3115







Hoxb13
GCTGCCTCAAAGGAGAACCC
3116







Hoxb13
GGCTGCCTCAAAGGAGAACC
3117







Hoxb3
GGCGACGCAGCTTTAAACAG
3118







Hoxb3
GAACCGAGATTGGAGTCATA
3119







Hoxb3
GTCCTGCGATGGTTTCGTTT
3120







Hoxb3
GTCTTCTGGTTTCATTCTAA
3121







Hoxb3
GGAACAGCGAGCACCGAAGG
3122







Hoxb3
GAGGCAACGTAGCTGCATCC
3123







Hoxb3
GCCAAGCATCCTAGAGGGTA
3124







Hoxb3
GAAGCAGAGAGGCCTCCCTA
3125







Hoxb3
GTTGCCTGTAGCCCTGGAGG
3126







Hoxb3
GCTGCATCCTGGGCCATGAC
3127







Hoxb4
GGGATAGAGAGATGCAAAGC
3128







Hoxb4
GAACAAGGACCCAAGCTTCC
3129







Hoxb4
GGAGAGGTGTCTGGGTGTGA
3130







Hoxb4
GCTCCCACCTGCAGGCAACT
3131







Hoxb4
GTCTTCTTGAAGGCAGTCAC
3132







Hoxb4
GGCCTTGTGGGTTAAAGGGA
3133







Hoxb4
GATCACAAACTAAAGGCTGT
3134







Hoxb4
GCAGTTCATTTCCGAATGAA
3135







Hoxb4
GACAGAGGCGGCGGCTTTAG
3136







Hoxb4
GAGCTCCAAGGGAGAGGAAT
3137







Hoxb5
GAGAGACACAACCAACGCTG
3138







Hoxb5
GCCAGAATCTATCATCGAGT
3139







Hoxb5
GCATCTGGCGAGCTTGTTAA
3140







Hoxb5
GTCTTTCAGGTCCCTGCTGA
3141







Hoxb5
GCGAAGGGAGAGGTCTGTGG
3142







Hoxb5
GACGCGAAGGGAGAGGTCTG
3143







Hoxb5
GGTAGTGTCTCACAGCTCCC
3144







Hoxb5
GTTGCACAGAGCCAGCAAAG
3145







Hoxb5
GTCTCAGCTCAGTGCGGAGG
3146







Hoxb5
GAGTCCAGGAGGGAATCTGG
3147







Hoxb6
GAGCAAGCATGCCAGTTTGA
3148







Hoxb6
GAAGCTGTCTTTGTGAACTG
3149







Hoxb6
GGGTTGCAGCGGTCAGTTCT
3150







Hoxb6
GAGGCCAGGCCAGCAAGTAG
3151







Hoxb6
GCTGCAAACCGCACAGGTGG
3152







Hoxb6
GTTGGATACACTGTTTGTCT
3153







Hoxb6
GAACCACCTCGGAGCTCTTA
3154







Hoxb6
GCACACACACACACAGGAGG
3155







Hoxb6
GGATTTATTTGGCTGCAATG
3156







Hoxb7
GTAGTAACTAGATGTGACCA
3157







Hoxb7
GGAAGGGAGGAAGGAGGCTT
3158







Hoxb7
GCAACTTGGTGGGTGGGTGC
3159







Hoxb7
GAGTCAGATAGGGATTAAAT
3160







Hoxb7
GGAGAAAGAGAAGCTGGAGC
3161







Hoxb7
GGGAAGAGATCTACCCAGGC
3162







Hoxb7
GCCGTCATACCATTGGCCGA
3163







Hoxb7
GAACTCCTTCTCCAGCTCCA
3164







Hoxb7
GGAGGAGAGAGGATCGAGGG
3165







Hoxb7
GAGGAGAGAGGATCGAGGGA
3166







Hoxb8
GGAAGCCGCAGCTCTCACCT
3167







Hoxh8
GGAATAAAGTGCAGGACAAT
3168







Hoxb8
GACAATGGGTCAGGTGAGAC
3169







Hoxb8
GGAAAGAGAAGAAGCCACAC
3170







Hoxb8
GGAAGCCAGTCCTTCTGGGA
3171







Hoxb8
GAAATAATAGGCACAAATCA
3172







Hoxb8
GATTCTCTCTTCAGCAGGTG
3173







Hpxh8
GTCATGATTTGAGGACTCAC
3174







Hoxb8
GCTGAAATGAGACCGATTAT
3175







Hoxb8
GCATAAcACAGCAGTAACCA
3176







Hoxb9
GACTGTGTGTGTGCTCTCGG
3177







Hoxb9
GGAGGCTAAGGAGGGAGTCA
3178







Hoxb9
GGCCCTGGAACTAGAGTTTC
3179







Hoxb9
GCAGCTGAGAGAGGCGAAAG
3180







Hoxb9
GGATGGAAAGGAAGGTAACC
3181







Hoxb9
GGAGCGAATGAATCATAGTT
3182







Hoxb9
GCAAAGCCCGGGAGAGGAAT
3183







Hoxb9
GCCCGACAGGGTAATTAAAG
3184







Haxb9
GGGAGGACCAGCATACAGGG
3185







Hoxb9
GTTAAGTATCTGTAGGTCCT
3186







Hoxc10
GCCAGGCAGGGACAATAGGA
3187







Hoxc10
GACTGTCCCAAGTCTGGTCT
3188







Hoxc10
GAGAGCGCTTGTGTGGGTCC
3189







Hoxc10
GCAGGAAGCATTTCTCCTGA
3190







Hoxc10
GGACTGTCCCAAGTCTGGTC
3191







Hoxcl0
GAAAGTGTAAGGTGAAGAGA
3192







Hoxc10
GGTCTAGCCGTCACATGGTG
3193







Hoxc10
GTGTTATTCAGGGCAAGGTT
3194







Hoxc10
GTGGAGTGT6TGGCCAGCAG
3195







Hoxc10
GAGTCTCCAGTGTCTGGAGT
3196







Hoxc11
GTAATAGCCAAAGGGACTGG
3197







Hoxc11
GGAAGTCTCTTCTACAATAT
3198







Hoxc11
GCACAGCCTTGGAGAGAGGT
3199







Haxc11
GCTAGACAAAGTTGGGACAC
3200







Hoxc11
GCAAGGAGGGTTTATAGACT
3201







Hoxc11
GGAGGAGAGAGAGAGAGGGT
3202







Hoxc11
GACTTGGAGAAGGGCAGGGT
3203







Hoxc11
GAGCACTTCGCAGACGTAGG
3204







Hoxc11
GCAACAGAATCTTCTGTTTC
3205







Hoxc11
GCTCTGATTCTTCAGGTAGA
3206







Hoxc12
GAACATCTGCAAGTCAACAT
3207







Hoxc12
GGCTAAGGGAGGGAACCAGG
3208







Hoxc12
GGTGATAAGATAATACATCT
3209







Hoxc12
GGAGATTAGCATTGTCGGAA
3210







Hoxc12
GCGTCCIGTAGAGGAGAGAG
3211







Hoxc12
GTGTTGCACAGAAGGAAGAG
3212







Hoxc12
GAGAAATCCACGTCTGAAGA
3213







Hoxc12
GGTTGCAGAGAGAATGAGAA
3214







Hoxc12
GAAGGAGAACCGGCCAAGCG
3215







Hoxc12
GAGATTACCCTACAACCTGC
3216







Hoxc13
GACTACCGAAGTCTCTAAAT
3217







Hoxc13
GTAATTACATCTCATTTCGG
3218







Hoxc13
GTAGCAGGCACGGAAGGTCT
3219







Hoxc13
GCTGCTGGAGTCCAAGGTCA
3220







Hoxc13
GGTCTAGGATTAGTCTTGAT
3221







Hoxc13
GCGTAGTGGGAATGCGGCTA
3222







Hoxc13
GGCTCCGGTTCTCAAACAGA
3223







Hoxc13
GTGATAAGCGCTAAGGAGCC
3224







Hoxc13
GCTGTGGTCACGTGGGAACC
3225







Hoxc13
GGGAGCTTGGCACAATTCCA
3226







Hoxc4
GACTTGAGGATCCGTGAATG
3227







Hoxc4
GAACTACAAGTTGCTGGAAG
3228







Hoxc4
GGGAAGGACAGTGGGTAGCA
3229







Hoxc4
GACAGGGTCCCAGCAGTACT
3230







Hoxc4
GGGCTTCAGTGCAGGTTGGA
3231







Hoxc4
GATGTCATTTCTGGAAGTCT
3232







Hoxc4
GTGTGTGGGTGACAGAGGGA
3233







Hoxc4
GGGAAAGCAGCCAGAGGCAC
3234







Hoxc4
GCCCACACAGGCTTCCCTTG
3235







Hoxc5
GCAGGAAGAAAGGCCCGCGT
3236







Hoxc5
GATGACTGAGAAAGAGAGTT
3237







Hoxc5
GAAGCTTGAGTGAGCCGGGT
3238







Hoxc5
GGGAGGTTAGTGATGGAAGC
3239







Hoxc5
GATGAGCAAGGGAGAAGAGA
3240







Hoxc5
GCCTTCTAGCAGTCAGTTTG
3241







Hoxc5
GGTCTCCTAGGCCTAGGCGA
3242







Hoxc5
GAAGTCTACCCAAGTTCACC
3243







Hoxc5
GAGACCTTGACCTTTAGTTT
3244







Hoxc5
GCTCAGAAGCCGAAGATCCC
3245







Hoxc6
GCTGTTGGAAACCTCTGCCC
3246







Hoxc6
GCATCCCGAAAGAGGAAATT
3247







Hoxc6
GAAATGGACTTTCTCCCTTT
3248







Hoxc6
GTTTCCCTGGAGTGTCACTA
3249







Hoxc6
GGACCCTCTTTCTACTGGGA
3250







Hoxc6
GCCTTACAACTCAGGTCCAG
3251







Hoxc6
GCAAGCCAGATGTCAAGAAA
3252







Hoxc6
GAAACATGGTGCACAGAGGA
3253







Hoxc8
GCTCTTTCCTCTAACAGCCC
3254







Hoxc8
GTCATCAAAGAAAGAATGGC
3255







Hoxc8
GGGTACATGATCACCATGCT
3256







Hoxc8
GCTGACATTTCTGGCCAGAG
3257







Hoxc8
GTGTGCTTCTAAGCCCAGGC
3258







Hoxc8
GTTTGCAGGTTAGGCAAGGA
3259







Hoxc8
GAGATGGGTCCTCACTCTAC
3260







Hoxc8
GGTGGCCTCACATACTGTAG
3261







Hoxc8
GAGGGTCCAGATCCTCTCTG
3262







Hoxc8
GCTCAGTACAGAACTGAACA
3263







Hoxc9
GTGACGTGAAGGCGGCAAAC
3264







Hoxc9
GGCGAGACATCTCAGAGATC
3265







Hoxc9
GCTTTGTGTGGGTCCTTGCT
3266







Hoxc9
GAAGTGGAGCAAGGTCTCAT
3267







Hoxc9
GTCTCAGACAGACAGGCAAG
3268







Hoxc9
GTCCAGAGCAGGTTGTCCGC
3269







Hoxc9
GGATTCTCTGAAACTCGGCA
3270







Hoxc9
GATGATGGATTTAAAGGAGG
3271







Hoxc9
GCACACAGCCAGTTTGGGTA
3272







Hoxc9
GGTGAAGGAAGATATGTATA
3273







Hoxd1
GAGCCCTGGACATCAGCTCC
3274







Hoxd1
GAATGAAATGACCAGAGGTT
3275







Hoxd1
GCTCCTGGGACAGGTATTGC
3276







Hoxd1
GTTTATAATCATCTGAGGAG
3277







Hoxd1
GGGCTCACTCCTGGACTATG
3278







Hoxd1
GGCTAAGTTGGCAGCAAGGC
3279







Hoxd1
GTGTGCTTAAGTATCTCCCA
3280







Hoxd1
GTCCACCTCACTAGCATAAT
3281







Hoxd1
GACCTTCTCAGAGGGAGGGC
3282







Hoxd1
GGTATTGCGGGAGAAAGGCA
3283







Hoxd10
GAAGGACGGCTCCCACACAC
3284







Hoxd10
GTGGAGGCTCTGGGCCTAAG
3285







Hoxd10
GGCCGGGAGAAATTCCTTTA
3286







Hoxd10
GGAGAGACGCTTTCGCGAAT
3287







Hoxd10
GGTGCTAATCAGTGGTTGTT
3288







Hoxd10
GTCTTCCGTTTCCTCTGGTG
3289







Hoxd10
GTCTCTGGGCCTGAAATCCA
3290







Hoxd10
GGGCAAGAAGGGAATAAAGA
3291







Hoxd10
GTGGTTGTTCTTTAATGAGC
3292







Hoxd10
GGGCTGGTTAATTTAGTACT
3293







Hoxd11
GAAGGGAGTGGTACTAAGCC
3294







Hoxd11
GAGATTGCTCAGGGCTTAGT
3295







Hoxd11
GATTTCTGTGGATCAGTAAA
3296







Hoxd11
GCCATGTCGTTGAACTTGAA
3297







Hoxd11
GAGAACCAACCGATCTCCCT
3298







Hoxd11
GATGTTGTGCATCTTGCTAA
3299







Hoxd11
GATAGGTGAGGCTGGAGCAG
3300







Hoxd11
GCCAGCAGACTTCACTTTAG
3301







Hoxd11
GGACTAGGTGTGAGAGTGTG
3302







Hoxd11
GAAGCATTTCTCTCTCTACG
3303







Hoxd12
GTTCAACTAACTTGCACATC
3304







Hoxd12
GAACAGCGTGAAGATTCCTT
3305







Hoxd12
GAGGGAAGGTGGGAGGAGGA
3306







Hoxd12
GGAATGAAGTGGGTCGATTA
3307







Hoxd12
GGGTCAGTTGCTACAACCTC
3308







Hoxd12
GCAGCCTGCGAAATAAGGGC
3309







Hoxd12
GAGCCAAAGCCTGTTGAGGG
3310







Hoxd12
GGTCCTGCTTTAGGCTAGCG
3311







Hoxdl2
GTGATGTGCTTCCCTTTCCA
3312







Hoxd13
GTGAGCTCTGATTTGAATCT
3313







Hoxd13
GTGGCTGCAAAGTCAACTCC
3314







Hoxd13
GGATGAGCTGTCTCGAATTT
3315







Hoxd13
GGGTGCGTGAGCCTCAAAGT
3316







Hoxd13
GGTTAGTCAAGAGTGCTGGG
3317







Hoxd13
GCTCTGATTTGAATCTAGGT
3318







Hoxd13
GACTGCTGAGGCTGATTATG
3319







Hoxd13
GGATTTGGAGTTCTACCTGT
3320







Hoxd13
GTGTAGGTTATGAGAGGTAC
3321







Hoxd13
GATTGCGCGACGGCCCATCT
3322







Hoxd3
GGGCTGCTTAGTTCTGGGTC
3323







Hoxd3
GAATTTACTGCAATTCCTTG
3324







Hoxd3
GTCCTCTTTGGAGATACCGC
3325







Hoxd3
GTTTCCAAATAAAGACCTTG
3326







Hoxd3
GAAGTCCGATGGGTTGAGTG
3327







Hoxd3
GGTTATCAGGATGCTCAAAC
3328







Hoxd3
GGTTAGAGGGACAGGAAAGG
3329







Hoxd3
GCCTTTCTGGAACAGGGCTA
3330







Hoxd3
GGCTCTGGGAAAGCAGAATG
3331







Hoxd3
GTGTCCATGGGRGAAAGGGC
3332







Hoxd4
GGCGGTGATGGTACTCACAG
3333







Hoxd4
GAGGCAATACCCAGTTTACT
3334







Hoxd4
GATTGAAATAAAGGCGGTGA
3335







Hoxd4
GGCTCTAGCTAAATGAGAAG
3336







Hoxd4
GGATTTATGCTTAAGTACAC
3337







Hoxd4
GTTCCTACTGGGAGTTGCAA
3338







Hoxd4
GGAGTTGCAATGGCAGCGGA
3339







Hoxd4
GCCTTCCTGCAGCATCTGTA
3340







Hoxd4
GTGTACTTAAGCATAAATCC
3341







Hoxd4
GAAGTGGGTTTGCAAATGGC
3342







Hoxd8
GGGTGGCATTTCCTAGGGCA
3343







Hoxd8
GTCCTCAAGATCAGAGAGCC
3344







Hoxd8
GGGAAGAAGGAATCATGCCG
3345







Hoxd8
GTGCTGAACCCTTTATCCTT
3346







Hoxd8
GAATAGGTCTGGGAATGGAA
3347







Hoxd8
GCCTCCGCCAGCCTTAAAGG
3348







Hoxd8
GGAGCCGGAGAGGAAACTGG
3349







Hoxd8
GTTTCCTCTCCGGCTCCAGG
3350







Hoxd8
GCAGATTTGCACAGGTGCCA
3351







Hoxd8
GGAGGCGAGAGAATGTGGGA
3352







Hoxd9
GTTCCTTCTGCTTTCTGAAA
3353







Hoxd9
GGGAAAGAGAAAGGGACTTG
3354







Hoxd9
GGAGATCGCAGGACCCAGAG
3355







Hoxd9
GTTATGAAGACTGAGCTCTC
3356







Hoxd9
GTTGCTTGTTCCTGCAATGG
3357







Hoxd9
GGAACCGCATCTCCGAGGGT
3358







Hoxd9
GGAGCCGACAGTGATGGCCA
3359







Hoxd9
GTTCTTACTTACCAGGCTCA
3360







Hoxd9
GCAGTGGGTTCTTACTTACC
3361







Hoxd9
GGTTCCTGCAGGCCTCTCTG
3362







Hsbp1
GAAGGCGGAGCTAAGAACTG
3363







Hsbp1
GTTTAGTAAAGGAGAGAAAC
3364







Hsbp1
GAATTGTACAGGCACATGGA
3365







Hsbp1
GGAACATGGAGAACTCTGGC
3366







Hsbp1
GCGCCGAGAAACCGAAGTGT
3367







Hsbp1
GTGTCCTAGGAAGGAAAGAG
3368







Hsbp1
GTAATTCCCATCTCTGTGTT
3369







Hsbp2
GGCGTAGCTTATCCGCAGGC
3370







Hsf1
GCTTTCCGACTTGTCCGTCA
3371







Hsf1
GGAGCTCAAATGTGTGACGA
3372







Hsf1
GTGTCAGTTTCAGGACCCTT
3373







Hsf1
GAAAGAGGAAGTGCCTGCCT
3374







Hsf1
GCAGCGATGCCGGTGACATG
3375







Hsf1
GGGTGAGGGACCAGCTTCCA
3376







Hsf1
GGCTCTCCTGCACATGAGGA
3377







Hsf1
GTCCACAGAGGCAGGAGAGG
3378







Hsf1
GGTCTTGCCAAGTGCCTGCA
3379







Hsfl
GCTCTGATTGGTGAGCAGCC
3380







Hsf2
GTGCATCCGAAGCCTTGGAT
3381







Hsf2
GCAGAGTGCAGAGAAGCCCA
3382







Hsf2
GCGAGTCCAATCCAAGGCTT
3383







Hsf2
GGATTGGACTCGCTGAGACC
3384







Hsf2
GCACTACAGAGCAAAGCGAT
3385







Hsf2
GGATTCGCATGGAAAGGGTT
3386







Hsf2
GTCTCAGCGAGTCCAATCCA
3387







Hsf2
GATTCGCATGGAAAGGGTTT
3388







Hsf4
GAATTTATGGTGCCTGAGAT
3389







Hsf4
GCAGGTCGAGGTGGCGAAGT
3390







Hsf4
GACTCGAGATCACAGGACGC
3391







Hsf4
GGAAATACACAAAGGCTGGA
3392







Hsf4
GACATTCAAGGAGACCTCAA
3393







Hsf4
GCCTTTGTACTGTGACTGTG
3394







Hsf4
GACACATTGAAGCCTAGGTA
3395







Hsf4
GGCCTTTGTACTGTGACTGT
3396







Hsf4
GGGCCTTTGTACTGTGACTG
3397







Hsp90ab1
GAAGGTCTCTGTGAATAATG
3398







Hsp90ab1
GCTGACCTGGATCGGTCACA
3399







Hsp90ab1
GGTCGTTCAACCCTGGCCCA
3400







Hsp90ab1
GATCTGCTACCATGACGTCA
3401







Hsp90ab1
GCAGGCCACCTTTAGAACAG
3402







Hsp90ab1
GGACTGAAAGAGAATGGAGG
3403







Hsp90ab1
GGAGCATGCATATGCAATTA
3404







Hsp90ab1
GAGAGGCTAACAGACAGTGC
3405







Hsp90ab1
GGCCTCCTTAAAGTTGGACA
3406







Hsp90ab1
GTACAGCACAGCTTCAGGCT
3407







Id1
GAGTGTGAGGAGCTGAGGAG
3408







Id1
GACGCTGACACAGACCAGCC
3409







Id1
GAACGTTCTGAACCCGCCCT
3410







Id1
GGTCTCTTTCTCACTTCTCC
3411







Id1
GCGAAGGAATCCAACTCAGC
3412







Id1
GGCTCAAGAACTGAAAGGGT
3413







Id1
GCATAGGTAGAGCAGCTAGT
3414







Id1
GATCCAGAGGTGGGACCCAG
3415







Id1
GGCTCAGACCGTTAGACGCC
3416







Id1
GACCAGCCCGGGAAAGGAAA
3417







Id2
GACGTGCCCAGCTGCAGTAA
3418







Id2
GTCTTAAGTTTCGAGTGATT
3419







Id2
GTAACCCTGCCTCATTCTTG
3420







Id2
GGGTGGTGGGAAGGTGTGAA
3421







Id2
GGGCATCCCTGAATTGCCAT
3422







Id2
GCAGCCAATGCCTGTAGGGT
3423







Id2
GCCTCCTTAGAGAGAAGCCC
3424







Id2
GATCCCGCCCTTACTGCAGC
3425







Id2
GCCTCATTACCCCAACAGAA
3426







Id2
GCTCATTATCATCCAGCCCA
3427







Id3
GCTGATACCGAGGAGAGGCG
3428







Id3
GCTGATACCGAGGAGAGGCG
3429







Id3
GCTTTCTTAATCAATCAGCC
3430







Id3
GCTTACCTGTGATGTGATAC
3431







Id3
GGCGTGGAAAGGACTGAATG
3432







Id3
GTGCAAAGTGTGCAAAGGGA
4433







Id3
GTTCTATGTATGCCCGTGGA
3434







Id3
GCAGGCAAGAGAGAGTCTTT
3435







Id3
GAACGCATGACGTCCCACCC
3436







Id3
GAGTGTGCAAAGTGTGCAAA
3437







Id4
GTTACATCCATCTATGAAAC
3438







Id4
GGGAATGACGCTCGGGCCAA
3439







Id4
GGGACTCTGAGCCTTGTTTG
3440







Id4
GGTGGCACTGTCCTCCTGAT
3441







Id4
GAGCTTAAAGGTAGCAGTAT
3442







Id4
GCCTTCTCTATAGACAGCGT
3443







Id4
GAGGAGCATGAAGCCCATCC
3444







Id4
GCCTTCTGACCCTCCAAAGG
3445







Id4
GCCTCTAAGGATTTAGAGGG
3446







Id4
GACGCTCGGGCCAATGGGAA
3447







Ikzf1
GGAAGGCTCTGGGCCTCAAA
3448







Ikzf1
GTGCACACGCCAGCGTGGAA
3449







Ikzf1
GCTAGACTGGTGGTAAGGAA
3450







Ikzf1
GCTCAGGGTTAACGCCTGTC
3451







Ikzf1
GAGGAGTGAGCCACAGGGAC
3452







Ikzf1
GCGCCAACCCAAAGTTTGCA
3453







Ikzf1
GGCTGCAAAGTTTGTGTGCG
3454







Ikzf1
GGGCTTTCTGATATCATCTT
3455







Ikzf1
GCTGGTGGAAAGGAAGACAC
3456







Ikzf2
GTTGGCCTAGGTTCCTTGCT
3457







Ikzf2
GGCAGTGGATCTGTAGCTAA
3458







Ikzf2
GGTTATCCAATCTTTCTTCT
3459







Ikzf2
GGGAAGTTCTCTCTCTGGCC
3460







Ikzf2
GCTCCGCCGGATCGGTTTCT
3461







Ikzf2
GCCACATCCACCCGAGTCAA
3462







Ikzf2
GTCGATTCTTAAGGAACCGG
3463







Ikzf2
GCAGTGCACAAACACACGTT
3464







Ikzf2
GGTTTCTCAGAAATGTTGTT
3465







Ikzf2
GAGGATCTGGGACACTGAGC
3466







Ikzf3
GTCAGATGACAAGGTTTGTC
3467







Ikzf3
GCACTAGTTAATGTGAGCTC
3468







Ikzf3
GCATTTCTAACGATGCCAAC
3469







Ikzf3
GAGGAACTGTACACTTTCAC
3470







Ikzf3
GGGTAGAGGGACTAAGTCAA
3471







Ikzf3
GTTCCAGGTCCTTCCGTGTC
3472







Ikzf3
GAAAGCATTTGACAGGAGGG
3473







Ikzf3
GACGTCTACTTGAGAAACAC
3474







Il6
GAGAAAGCCTCTTCCAGATG
3475







Il6
GAAAGCACACGGCAGGGAAT
3476







Il6
GCAGAGAATAGGCTTGGACT
3477







Il6
GAACTCTTGTCAGCCTCATC
3478







Il6
GAAGCCCTGGTCTTCACAAA
3479







Il6
GAGAATGCAGAGAATAGGCT
3480







Il6
GTGAAGACCAGGGCTTCACA
3481







Il6
GTAACCCAGTGTAAACACAC
3482







Il6
GGTCATGCAAGGAGGCTTGA
3483







Il6
GTCTGTAGCTCATTCTGCTC
3484







Ilf2
GTGAATGGTAAGCTCTTCTA
3485







Ilf2
GGAGTAGATCCTAAGGACCC
3486







Ilf2
GGCTTCTTTCACTTGTCCCA
3487







Ilf2
GACTCACCTGGACTTGGCTG
3488







Ilf2
GAACAGGTAGAAGACTCACC
3489







Ilf2
GAGGGAATAGTGGTGGTAAG
3490







Ilf2
GCCAATAAGAAGACATAACA
3491







Ilf2
GTGAGTCTTCTACCTGTTCC
3492







Ilf3
GGTGGATCGCCCACGTGATG
3493







Ilf3
GGTCCGGAGCTCTTCATATC
3494







Ilf3
GGGAACACCGGCAAGGTAAG
3495







Ilf3
GCACATGCGGTTGTCAACAC
3496







Ilf3
GCCAAGAGGACGCTAGTGAC
3497







Ilf3
GTGGATCGCCCACGTGATGC
3498







Ilf3
GATGGAAGAGCCGAGCGAAG
3499







Ilf3
GATATGAAGAGCTCCGGACC
3500







Ilf3
GACCTGAGGTGCTTCTGATC
3501







Insm1
GCCTGTGGAGTTGACCCAAG
3502







Insm1
GGCTCCCTCTGAGGACAGAT
3503







Insm1
GGTGTCCACTTGGGACACTT
3504







Insm1
GGACCGCAGCTGCATCCATA
3505







Insm1
GGGTGAGCTTTGCTCTTCTC
3506







Insm1
GAAGGAGGAGACCCACAGGT
3507







Insm1
GACAGGGACGCGTCCATGAA
3508







Insm1
GTACATCTGCCGCACCTACC
3509







Insm1
GAGCAGCAGACCGTGAAGGG
3510







Irf1
GTTCTAGCTAGCGGTGACCA
3511







Irf1
GAGCGATTCGCAGAGGGTGC
3512







Irf1
GACGAAGGAGTGGTGCGCAC
3513







Irf1
GCTGGGAGTCTGCAGAAAGA
3514







Irf1
GCTTTCAGTAGGGTCTCTGT
3515







Irf1
GCACGGGACACCAGGAAGTG
3516







Irf1
GCGAAAGATGCCCGAGATGC
3517







Irf1
GAGACACTCTGACCAGCCAA
3518







Irf2
GCAGGTGTAACTAAATGTAA
3519







Irf2
GAACTTCCGCACCTCCAGGC
3520







Irf2
GTTCTGAGCACTTAAGCCAC
3521







Irf2
GTCTTCTCTTCCCTAGAACA
3522







Irf2
GATTCCACAGACAGGGATAA
3523







Irf2
GTGGTGGCCGTAGGGAAGGA
3524







Irf2
GCCTTTCCTCTCCCTGTTCT
3525







Irf2
GCTAGACCGTGTGGGAAAGA
3526







Irf2
GCAGGAACGTTGTTAGTTCC
3527







Irf3
GAACTCACCTGGGTGGAGTT
3528







Irf3
GGTGCTTGGAAGTCACAGCT
3529







Irf3
GGTGTGACAAAGACTTGAAA
3530







Irf3
GGTCACTTGTGAAACTTTCA
3531







Irf3
GTCAGATTACCAACTGGCCA
3532







Irf3
GAAGAGGGCGCCTAACTCCA
3533







Irf3
GATCTTCCATGAAAGGATGA
3534







Irf3
GTTCCCAGCATGCCTGTAGG
3535







Irf3
GAGCAATTCCGTGGTTGACC
3536







Irf3
GAGACCCAACTCTTCAGAGC
3537







Irf4
GTGGTTGTCAGGGCTCACAG
3538







Irf4
GAAGTGATAGTTTAACAGTG
3539







Irf4
GTTGCCATGATTGAAACTTT
3540







Irf4
GAAACAAGGTCTCCGTCTCT
3541







Irf4
GGCAGACTGGTTAAAGACAT
3542







Irf4
GAACTTTATAGACCGGGAGG
3543







Irf4
GTTCTTAGTGGTCAGCTAGA
3544







Irf4
GGAGGAGCTGAAGAAAGCCA
3545







Irf4
GCTTCGGACTAGAGCCCACC
3546







Irf4
GGTATGCTGTTTGCAAGGAA
3547







Irf5
GCAATTGTGAACTGGCAGGC
3548







Irf5
GGCAGGAGGGAGCTTCTGTG
3549







Irf5
GATCTCTGAGTTGTCCCATC
3550







Irf5
GCTTTGCAGGTTCTCTGGAC
3551







Irf5
GAAGGCCCGTTTATGGAACC
3552







Irf5
GAGCTGTGTGCCGACAGGGT
3553







Irf5
GTCGATGGAGCCACACTCCA
3554







Irf5
GTTGCCTTGAACTGGGTGTG
3555







Irf5
GCTAGCTAAAGTGAACAATG
3556







Irf5
GGACCAGAAAGGATGTGGAC
3557







Irf6
GTGACATCCCAAACTGAGCT
3558







Irf6
GTGCAGGGTCACTACGGGAG
3559







Irf6
GGACATTTGCTTGGTTTCAA
3560







Irf6
GGGAAAGCTCAGGTCTTCCC
3561







Irf6
GATGTCACCGGGCAAAGGCT
3562







Irf6
GTGGCACTTGTCAGGCACAC
3563







Irf6
GTGTTGTGATCGACTGAGGG
3564







Irf6
GTCCACCACTCAGGAGACTG
3565







Irf6
GAAGGGTTTGCCTCACTGCC
3566







Irf7
GGCTGCTTTGGCAATGAACA
3567







Irf7
GAATTCCAGAGTCTTAAGGC
3568







Irf7
GCTTTCCTCTTAGCTACAGT
3569







Irf7
GAACGTGCGTGTGGAGTGGA
3570







Irf7
GACAGCTTCACGTGAGGGAG
3571







Irf7
GTGGGTAGACCTTTAGGGAA
3572







Irf7
GCCAGTGCCTCGGGAAGTGA
3573







Irf7
GCATGCCATGACTGCTGTTC
3574







Irf7
GTGTGTAACTACCGTAGCCC
3575







Irf7
GGTGTTTGGGACCCTCATGA
3576







Irf8
GAGCACCGATTCTCCTCAGA
3577







Irf8
GCGCGAGCTAATTGAGGAGC
3578







Irf8
GGGAGAGGTGTTTGTTCATT
3579







Irf8
GCAGGAAATCTGGGAAACCA
3580







Irf8
GCATGTGCAGGGCTTAACTA
3581







Irf8
GGAAACCCTGACCTCAGCAG
3582







Irf8
GCCTGAGCAGCTGACACTCA
3583







Irf8
GGCCTCTAAGGATGAGGGTG
3584







Irf8
GTGGCCCAGGGCTGAATGAA
3585







Irf9
GAAGGACCACCAAGAAGCCT
3586







Irf9
GTGAACATATGCAAGATGGA
3587







Irf9
GCAGTAAGCTGAGGTCTCTG
3588







Irf9
GGCAGTAAGCTGAGGTCTCT
3589







Irf9
GGCAACACGGCTTAGTCATT
3590







Irf9
GGAGAATTGAAACTTAGGGT
3591







Irf9
GAGAATTGAAACTTAGGGTG
3592







Irf9
GATGGGCAATAGCTCCCTGC
3593







Irf9
GCCATAAGATGCCTCTTTAT
3594







Irf9
GGGTTCAGGGATGAAGCTTG
3595







Irx1
GTCGTGGGAGACTCAAAGAC
3596







Irx1
GGGATTGCGTTTCTACAGCT
3597







Irx1
GTGGACTCCCTGGTCAGGTC
3598







Irx1
GCAAGGGTGTGGACTCAGTT
3599







Irx1
GGCCTGGCTGCTCTGTTCTC
3600







Irx1
GAGGAGAGCTCCTAGAGGGT
3601







Irx1
GCTGAGAGGTCGCTGCCTAG
3602







Irx1
GTTTACAGCTGTCTGACACC
3603







Irx1
GCAAGCAAGTGTGCCTTAGC
3604







Irx1
GTTGTGGGAGTAATGACAAG
3605







Irx2
GGACTCTGAAACCTGGCGCG
3606







Irx2
GGGTAGATGCTTGGCAGCCC
3607







Irx2
GCTTCAAGGAGACACCTGTT
3608







Irx2
GCTCTACCTAGCAAGCTTCA
3609







Irx2
GTTGGAAACCAAGAGCAGTT
3610







Irx2
GTCACGGATCTGGCTGCTGC
3611







Irx2
GCTCTGAAGCTAGTAGAGGG
3612







Irx2
GTCCAGGTCCCAGGGAACCA
3613







Irx2
GCTATCTTCAGGGTGATGAG
3614







Irx2
GCCTCAGCCGOGAGTACAGG
3615







Irx3
GAAAGTCATACTGAAATTCC
3616







Irx3
GAACGTGCTGCCTGGGAGTT
3617







Irx3
GGGTTCGATGTCAGCATGTG
3618







Irx3
GGTGCATCGGGAGTTGATTG
3619







Irx3
GGTTGGCTTTAAGGTGAGCC
3620







Irx3
GTGCCTGTTGGGAGAAAGAG
3621







Irx3
GGCGACAGAGCCAGATTGCA
3622







Irx3
GCTTTGTGCACTGTGCCTGT
3623







Irx3
GGAATGGATTTCTTTCTCCC
3624







Irx3
GCTACTTATCAGAACTTTGC
3625







Irx4
GAAGCTAAGGCTCACGGGAG
3626







Irx4
GACTCATTTCATGCTCACCG
3627







Irx4
GCTCTGGAGCCTTCCATGGG
3628







Irx4
GGGAAGCTGCCTTGCACAGT
3629







Irx4
GGAGTCTTCAAGGGAGCGAA
3630







Irx4
GCAAAGTCCAGGTGAGGAGG
3631







Irx4
GATGGTCCGGAAGGGAGAAG
3632







Irx4
GCCCTCACAATGCTATCCTT
3633







Irx4
GCCTGGGTCTTTGTAATCTG
3634







Irx4
GAGTAAGCTCCCGCCCAGAA
3635







Irx5
GGCAAAGCTTGATCATTAGC
3636







Irx5
GGGATGTGATTGTCATCCTG
3637







Irx5
GGGCCGTTCGGGAACACAAA
3638







Irx5
GATTACGTCATCCAGAGGAG
3639







Irx5
GCAAGCAGTTTGCTCGGTTG
3640







Irx5
GCCTCTTCTCGTCGTCTGCC
3641







Irx5
GAAGCCACTGTGGAGCGTGG
3642







Irx5
GTGTTCCGAGAACTCTGCCT
3643







Irx5
GCCTCTCGGGCTGACCATTC
3644







Irx5
GTCAGGTCTGTGGAGCCGGA
3645







Irx6
GGCTGCACCTCGATCTGGAG
3646







Irx6
GGCCAGGTCCTTGACCTCTT
3647







Irx6
GCGTTCTCTGTGGTCCAAAC
3648







Irx6
GATTCATTAAGTTAGTCCCT
3649







Irx6
GAAGGAGTTTATTACACCAT
3650







Irx6
GACAGGGCGACTGAAAGGTA
3651







Irx6
GTCCCGGGAGCTCTTAGGGT
3652







Irx6
GCTGCACCTCGATCTGGAGG
3653







Irx6
GATTCTAACAACCAAGCGCC
3654







Isl1
GAACTCAGTAATAGTAGGAT
3655







Isl1
GTAGCATGCCCTTGTACGGA
3656







Isl1
GTAGGTCCTTCCTGTGAAGC
3657







Isl1
GCTTTCTAATTTGTTTCCTC
3658







Isl1
GTCAACCTGGCTCTATAGAA
3659







Isl1
GAATCTTATATAGGTGAGGG
3660







Isl1
GCTCTCTGACATCCTATGTG
3661







Isl1
GTTCCTCCTGAGCTCCCTGC
3662







Isl1
GGGAGGAAAGGAACCAACCT
3663







Isl1
GGGAACTGCTTCTCTGGGCT
3664







Isl2
GGTGGGCCTGAGCCTTTGTT
3665







Isl2
GTCCAGTGCTGGCATGAGAG
3666







Isl2
GCCCGAGATCTATCTAATTC
3667







Isl2
GGAAAGCCCTGGAGAAAGCC
3668







Isl2
GTAATTTACCGTCTTCCCGG
3669







Isl2
GAGAGGAGAAAGGAGAGGGT
3670







Isl2
GAGATTGGCTGGGAGGAAGT
3671







Isl2
GGCTTTCTCTAGGTAGGAGA
3672







Isl2
GACGAGCTCTCTGTCATACA
3673







Isl2
GCTCCCAGCAAGGGCAAGAA
3674







Isx
GGAGTGACAGGAGGAATTTA
3675







Isx
GTGTAACCAAGGAGGAGGGT
3676







Isx
GAGGTTTATAGGGTGAACCT
3677







Isx
GGTGTTGGGTGGAGAGCTGA
3678







Isx
GCTGTCTTGAAGACAGTAAA
3679







Isx
GCTCCAAGCCCAGAGTTTAC
3680







Isx
GAGCCTCACCCATCACACCC
3681







Isx
GTCTTACTAGTACAAATCCA
3682







Isx
GAAACCGAGGCTCAGAACAA
3683







Jun
GAGAATAAAGTGTTGTGCCG
3684







Jun
GTTTGGCTGTCTAGTGACGG
3685







Jun
GATATGACTCCACCAGTGAG
3686







Jun
GTAAGTGCGTTGAAGTTGAG
3687







Jun
GAGGAACTCGGTTTCCATTT
3688







Jun
GGGCTGCGGAGAGAGGAACT
3689







Jun
GAGGTTTGCTTGGCGAGGGA
3690







Jun
GCTGGAAGCTCAGTTGGGAA
3691







Jun
GCAAGCCAATGGGAAAGCCT
3692







Jun
GCAAATCAGGGAGGGAGGAA
3693







Junb
GTGTCTGCAGGAGACTAACC
3694







Junb
GGACTGTTCCATTGGCCGGC
3695







Junb
GGTAATCGGAGTAGAAAGAT
3696







Junb
GCTAGGCCAAAGCCAAGTCC
3697







Junb
GAAGAGAAGAGTGGGAGGCT
3698







Junb
GGTCTCTGGTAAGATAAAGG
3699







Junb
GGTGAGTCAGTGTGGTCTCC
3700







Junb
GGAAAGGGCCAAGACACAAC
3701







Junb
GGTGACTAAGGGAGGGCTTT
3702







Junb
GTAAACAGCGGCCACGAGCC
3703







Jund
GGAGCCTGCAAATGAGAATC
3704







Jund
GGCAACAACTGGTCAAGGCT
3705







Jund
GCGAAGGTCCTGAGGTGCAA
3706







Jund
GCTCCTGCTGATGGAAGTTC
3707







Jund
GGTGCAAAGGAGCTCCAATG
3708







Jund
GAGTGTGAGGGCAGAGCTTG
3709







Jund
GCTGGGAACGGAGGTGGAAG
3710







Jund
GGATCTCTCACCTTCCAGCT
3711







Jund
GCATACTGTACTAATTAAGA
3712







Jund
GCAACCAAGTTTCCAAATAA
3713







Kat2a
GCTGTTGGTAGTTCTGATGG
3714







Kat2a
GTGTCTGAAGTGACCTGTGA
3715







Kat2a
GACCATCAGCTGATTCTGAA
3716







Kat2a
GGCCAGAATCTGACGGTGAC
3717







Kat2a
GCCCTTCTGGATGGGAAGAG
3718







Kat2a
GTGACAATTACTATCCTCTT
3719







Kat2a
GCCTGATCAGCTGCCAGAGA
3720







Kat2a
GCCTGCCCTATTGTGGCTGC
3721







Kat2b
GGGTGGTATGCTTATGCTCT
3722







Kat2b
GGAAGACCAAGAATGAGCAA
3723







Ktt2b
GTTTGCAGAGTGAATGCTGA
3724







Kat2b
GCATTCACTCTGCAAACATT
3725







Kat2b
GTGGAAGTAAACAGGAGTGA
3726







Kat2b
GAGTCATCTCCCTCCCTCTC
3727







Kat2b
GAACCGAATATGACCAGAGA
3728







Kat2b
GTATCTCATGGAAGAATTCC
3729







Kat2b
GAGGAGGATTGGCCGCTGAC
3730







Kin
GTTGTATATTAGAATGCCCA
3731







Kin
GGCGCTCCAGCACTGAACTA
3732







Kin
GGGAGCAGCGTGACCCTTTA
3733







Kin
GCCTTGAAGGTCGGGCAGAC
3734







Kin
GGTGCTAGAGACTCACCTCA
3735







Kin
GTGAACCTCTCGAGCCTTTA
3736







Kin
GTTTCTGTACCAGCCTCCAG
3737







Kin
GTGTTCACTAGTTAGCTAGT
3738







Klf1
GCCTAACGGCTCATTGTGTG
3739







Klf1
GACCCTCACTGGCTACTGCA
3740







Klf1
GTGCCCTATGAGTCAGGGTA
3741







Klf1
GGGTGCTGGTGGTTGTCTAG
3742







Klf1
GGCTACTGCAIGGAGCTGAA
3743







Klf1
GGTGCCCTATGAGTCAGGGT
3744







Klf1
GATAATGCCTGAAAGGGAGC
3745







Klf1
GGGTGTGTGCGATATGTGTG
3746







Klf1
GTCTGGGTGGCTAAATAGAC
3747







Klf10
GAGTGATCACAGCAGGAAAG
3748







Klf10
GGGTAGGAGAAACTGGGTAG
3749







Klf10
GAAGGACAGTGCTTATTGAA
3750







Klf10
GTACCAAAGAGCTAGTGGCG
3751







Klf10
GCGGTTTCTTGGTAGGGCGT
3752







Klf10
GGAGAACCAGGGCGAGATGG
3753







Klf10
GGAGGACTGAAGGCTAGGGT
3754







Klf10
GGGCGGAGGACTGAAGGCTA
3755







Klf12
GATTTGACCATCTCTTGCCG
3756







Klf12
GAGTCACATTGATCCTGCAA
3757







Klf12
GGCTGTATAGCTCTTCACCA
3758







Klf12
GAAAGTTGCAGGTCATGTTA
3759







Klf12
GCAATCAGCTCTAACTTCTT
3760







Klf12
GGAGTAGGGAAATGCAAGCC
3761







Klf12
GCTGTATAGCTCTTCACCAA
3762







Klf12
GGGAAGCCACCTGACGATGG
3763







Klf13
GAGAGGGTTCTACTGGCCGC
3764







Klf13
GGATATTTCTATCTGGGTTT
3765







Klf13
GGTGAGGAGGTGGCTGGAGA
3766







Klf13
GTGTGTTAAGATTGGTTCAA
3767







Klf13
GTTTGAAGCCTCCAGGACCG
3768







Klf13
GCCACAGACAGTCATCTCAT
3769







Klf13
GATAGAGACAGTCTCTCCTC
3770







Klf13
GGTGGCGTATCGGTCCCTAT
3771







Klf13
GTCTAGACTTTAGAGCAAGG
3772







K1f13
GCCACCAGAGAACTCCGCTG
3773







Klf16
GGTGCTCTGCTGGTACACGA
3774







Klf16
GGTGGCAGAGGTCCTTGCTC
3775







Klf16
GTGCTCTGCTGGTACACGAG
3776







Klf16
GAAGCTGAACCAGGCTTCAT
3777







Klf16
GGGCTGCTACATGCAATGGC
3778







Klf16
GGAACCCAAAGTTCTCAACG
3779







Klf16
GGAGCGATTGGAAACTTCCA
3780







Klf16
GACCTCTGCACAAATCTAGC
3781







Klf16
GGGACCATCATTTCACAACT
3782







Klf16
GCCTTGGGAGGTGACGATCC
3783







Klf2
GAGGAAGTATGTGGTGAGCC
3784







Klf2
GCTGGCTCAGTGCTTAAGAG
3785







Klf2
GAGGGTAATAGAGAGAGGGA
3786







Klf2
GCACTAGAAGGATTTATGTG
3787







Klf2
GTATGTTTGTGGGAGGTGAA
3788







Klf2
GCAAGAGGGTAATAGAGAGA
3789







Klf2
GCGGTATATAAGCCTGGCGG
3790







Klf2
GGCGACGGCGTCAACAAACC
3791







Klf2
GACGGAAACGCGTCCCGGAT
3792







Klf3
GTTTCTTGGGTGACTCAGTT
3793







K1f3
GACGTAGGGACAGGGCATCC
3794







Klf3
GTGGCCTCACGCAGCCTTTC
3795







Klf3
GACCTTTCTATCTGTACCGA
3796







Klf3
GCCTGGGCTGTTTAGGAAGC
3797







Klf3
GATGCCCTGTCCCTACGTCG
3798







Klf3
GAATGAATGGTAAGAGGGTA
3799







Klf3
GAGGATTTAGATAAGCCGGA
3800







Klf3
GAACAGGACATTCGTCATGA
3801







Klf3
GCTTGGTGCTAGGCTAGAGT
3802







Klf4
GGATGACTGCCCAGCTGTGG
3803







Klf4
GGCGTTCCAGATTTACATTG
3804







Klf4
GAAAGGGATGAGTTGTGAGC
3805







Klf4
GGGACCCTAGTGCTCCAAAG
3806







Klf4
GGCAGTAGCCAGAGCTAGGG
3807







Klf4
GTGCGTATGCGAGAGAGGGC
3808







Klf4
GCAGTTGGCAGATGATGTAA
3809







Klf4
GATAATGGAAGGAACAAGGA
3810







Klf4
GAATCTCAGAAGCTAGGAGA
3811







Klf4
GACAAGCGCGTACGCGAGCA
3812







Klf5
GTGCTCAAATAACTCTGAGA
3813







Klf5
GTCAACAGCGGTGTTTGTCT
3814







Klf5
GTAATTTCTGGCATAGAGAT
3815







Klf5
GGGCTGCAATCCTCTTTCTG
3816







Klf5
GTGAATGTTTGTGCCTTCTT
3817







Klf5
GCGGGTGGAATCTAGGAAGA
3818







Klf5
GTGCAGCCAGCCAGTGTGAA
3819







Klf5
GAGAGGAGCGGGTGGAATCT
3820







Klf5
GGCTAGGAGGGTAAGCATAG
3821







Klf5
GGAAGGTGAGTGGTTTGGTT
3822







Klf7
GTCCTCTCCGAGTGCCGCAT
3823







Klf7
GCAAATGGCAGTAAAGGCCT
3824







Klf7
GTTTGGTGGAACCCACACTC
3825







Klf7
GTGACCATGTAAGGTAAACA
3826







Klf7
GTACCCAGTGCAGATCCGAG
3827







Klf7
GTAACTTCATGGAGCAGGTA
3828







Klf7
GACCATGTAAGGTAAACAGG
3829







Klf7
GGCACTCGGAGAGGACCATG
3830







Klf7
GACCATGAATTTGAGAGGGA
3831







Klf7
GATCTCCCTGCTGCCTTACA
3832







Klf9
GAGAGGTGCGTCTAGAACTA
3833







Klf9
GAAGGGCCCTTCTGACTGGC
3834







Klf9
GGATGGGCGTAACTGCCTAG
3835







Klf9
GGGCCTGGATTGTGACGTGA
3836







Klf9
GGGATGGGCGTAACTGCCTA
3837







Klf9
GGCTCCTCTAAAGCAGAGTT
3838







Klf9
GCACTCCTCCCTGTTCCTGC
3839







Klf9
GGCTACCAAAGATTAAGGGC
3840







Lbx1
GGCAGAAATGCTGATAGTAG
3841







Lbx1
GATCCTCCCTATAGGCAGAG
3842







Lbx1
GTGTTATAACAGGGAAGGGC
3843







Lbx1
GCAAGATTGCAGAAGGAGGT
3844







ibx1
GGGAGTGGGACAGAAAGAAT
3845







Lbx1
GGAAGGAACAAGAGGGAGAA
3846







Lbx1
GAGATTGGGAGGTGGGAGGC
3847







Lbx1
GTACCCTGTGCCCTCCTTCA
3848







Lbx1
GAACAGGCTTCTTCGGTGCA
3849







Lbx1
GTAAGAACTGGAGCCCAGGC
3850







Lbx2
GGCCTCAGAATCAGAGGGAA
3851







Lbx2
GCATATTAAGTGAAACCACA
3852







Lbx2
GAGTCCAGTCCTCACTAGCC
3853







Lbx2
GGCTGGTACGACTTGCTCAG
3854







Lbx2
GGCTCAGGTAAGGAAGGGAT
3855







Lbx2
GGCTCCTGGCTAGTGAGGAC
3856







Lbx2
GCTGCTGTCACTGAGCTGAC
3857







Lbx2
GGTCACTCACATCTCCTATT
3858







Lbx2
GAGCTGAAATAAGGCAACTC
3859







Lbx2
GGAGAGGTTGCAGTGTCTGT
3860







Ldb1
GACTCTGACCTATCATTCAA
3861







Ldb1
GGGCAAGTGGTCCCAGGACT
3862







Ldb1
GTCAAGTCCTTCTATGCCCT
3863







Ldb1
GGGACACACTCACATGGCAA
3864







Ldb1
GATTCCGATCACCTACCTGG
3865







Ldb1
GTGGTGCTGTCAGGGTAAGG
3866







Ldb1
GGAAACACACACGCACAGGC
3867







Ldb1
GGCTGTCATACAGCTCAAGA
3868







Ldb1
GGAAGAGTTCTTCCCTTCCA
3869







Ldb2
GGGAAGGGTGTTCCCTAGAA
3870







Ldb2
GTACCTGCTGTACTTCGGAT
3871







Ldb2
GAAGAGGTAAATACAAACTC
3872







Ldb2
GGAGCACAGCTCTCCCTTTG
3873







Ldb2
GATGGTTCCACATTCAGGTC
3874







Ldb2
GTGCCAGTGTTGTTGTGTTT
3875







Ldb2
GGGTGGATGTTTCTTGCAGG
3876







Ldb2
GCTAAGTCAGCGGGTTTAAG
3877







Ldb2
GTGCACAGCTGACCCAAAGG
3878







Ldb2
GCCCGGAGGAATCTTCCAGA
3879







Lef1
GGGTGCTAGGAAATGAACTA
3880







Lef1
GTCGCCAGTGCTATGCCTCT
3881







Lef1
GAACTCTAGCGAACCACTGG
3882







Lef1
GTAGAGTAAATAGAGACACG
3883







Lef1
GAGCATTTAATCTGCTGGAG
3884







Lef1
GGAGGGAGTCTGTTAGGAGG
3885







Lef1
GACTAGAAGTGAGGCGCCGG
3886







Lef1
GGGCAGAAAGTTGCCATTTA
3887







Lef1
GATTGGGCGAGTGGGATCCT
3888







Lef1
GAAGGAAAGAAGCTCTAACG
3889







Lef1
GACTTGTTCTAGGAAGTGTT
3890







Lhx1
GGTATTAATCGACTTGTTCT
3891







Lhx1
GGGTGGGAGAAAGAGTGGGT
3892







Lhx1
GGTGAAGTAACCCAGCAGCG
3893







Lhx1
GCGAGATCTGGAAGCTTGGG
3894







Lhx1
GACTTTGAAGGATGGAGGGT
3895







Lhx1
GGGTGGACTTTGGATGGACA
3896







Lhx1
GCTCGAGTCTAAGGAGAGGT
3897







Lhx1
GACCTTCCCACCTAAAGGGC
3898







Lhxl
GGACTGCACCGTAGCAGCAG
3899







Lhx2
GACGCAATAGTGTCTATTGG
3900







Lhx2
GTGAAGCAGGGTATGGAAGC
3901







Lhx2
GGTGTCTGGTGGAACAGGAA
3902







Lhx2
GACTGCCCTTGGTTTCTTAG
3903







Lhx2
GTAACCGTGCCCAAGAGGCA
3904







Lhx2
GCAGGATGTGCCAGTGGCTC
3905







Lhx2
GAGTGGGAGAGCTAGTGGGA
3906







Lhx2
GACGTCGCTTTGCCCTGTCC
3907







Lhx2
GTGACTTGTCCGAAGTCCCA
3908







Lhx2
GTGCCTGACACCTACTTACC
3909







Lhx3
GTCTAACATGGAGGCTGGGA
3910







Lhx3
GTGGGTTCAGAGACAATCTG
3911







Lhx3
GAAAGGTGCACAGTCTCCAG
3912







Lhx3
GTGAGGACAAGGTAACAGCA
3913







Lhx3
GTAGTAGGAGCCCTCAGTGA
3914







Lhx3
GATGTGGAAATCCAGGTGCA
3915







Lhx3
GGTCACAGTCCTAGGGATGG
3916







Lhx3
GGTCCAGAGTGTCAGAGTTG
3917







Lhx3
GCTTCTAGGCACCTCGGTTC
3918







Lhx3
GCACCTCGGTTCCGGCTGAA
3919







Lhx4
GCTACACTGGTTTGTTTGGT
3920







Lhx4
GATGGGTCTTTACAACCAAA
3921







Lhx4
GAAACCTACCGGGTCAGCCC
3922







Lhx4
GAACTCGGAGCGCCAACCCA
3923







Lhx4
GGTGGCTGTGTGTGCTACTT
3924







Lhx4
GCAACAGTGTCTCCTCAACC
3925







Lhx4
GCCCGGGAGAGCGAGATCAA
3926







Lhx4
GTATAAATACTGCGGCGGGC
3927







Lhx4
GCCCGCCGCAGTATTTATAC
3928







Lhx4
GTCCTCTAGGATCAAGGAGG
3929







Lhx5
GCAGGTGTGTGGGTACCAGC
3930







Lhx5
GGGATTCTCCTCATGGATTA
3931







Lhx5
GGCCATCTGTCAGTGCTGTT
3932







Lhx5
GATTCTCCTCATGGATTAGG
3933







Lhx5
GTCTTGGCACAATTCCTCTA
3934







Lhx5
GACTCTGAAGGGCTGTGTGT
3935







Lhx5
GTTTGTGTGTGTGTGTGTGG
3936







Lhx5
GCGAAGCTGCCTTTGGCTCT
3937







Lhx5
GGTAAATACTTACTTAGCTT
3938







Lhx5
GIGACATCCCTGAGTCAACC
3939







Lhx6
GTGTTTGAGGAAGAAGGCTG
3940







Lhx6
GCTGTTTACATCTGTAAATG
3941







Lhx6
GGTAAATCTTGAAGTGGAAG
3942







Lhx6
GATGAGATTTACATAGTCTG
3943







Lhx6
GGAGCCTGTGCTAGTGAGAG
3944







Lhx6
GCTAGTGAGAGTGGGAGGGT
3945







Lhx6
GATACTACTTCAGATTCTTC
3946







Lhx6
GGTCAGCCCATCTACAAGGC
3947







Lhx6
GAACTCAGTCACGTAAGTGG
3948







Lhx8
GAAATTTCAGTCCAATAGGA
3949







Lhx8
GCTTCCGGGCTTAGAGAAGG
3950







Lhx8
GCTCTTTCAGCGGCTCACGG
3951







Lhx8
GATAATGAAGGGACAAACGA
3952







Lhx8
GGGTTTGGGCTGGAGATGGG
3953







Lhx8
GGAACCTCGCAGAGAGGAGG
3954







Lhx8
GCCTTTGATAGGAATCGCCA
3955







Lhx8
GAATGCTGGCTCCAGCAGGT
3956







Lhx8
GGGAAAGGAAGTGCCGGAGC
3957







Lhx8
GACACAGGCAATTATGCTGC
3958







Lhx9
GCAAGGCAAAGGCAGGCTAG
3959







Lhx9
GTGGCCTCAGAACGGGTGTC
3960







Lhx9
GGCATGGACCAAGGACTGGA
3961







Lhx9
GGGTTTCTAATGCCCAGCTA
3962







Lhx9
GAGGCTACAGTGTCTCAGCT
3963







Lhx9
GGATTATTGAGAGGCTGGCA
3964







Lhx9
GAAAGGTGGGAATGAAGCAG
3965







Lhx9
GTCTATGCGGCTCTGAGTGT
3966







Lhx9
GCAGGAAGTCTTTGGAAAGG
3967







Lhx9
GAAACTAGGTACTGGAGCAG
3968







Lmo1
GTGCTGCCCAGCAAGTCTCC
3969







Lmo1
GGCAGGGAAGTCAGGCTTTG
3970







Lmo1
GTGCAAACCTCATACATTGA
3971







Lmo1
GAGTCTAGGAGGAGAGGCAC
3972







Lmo1
GTGCCTCAGGCTTGGGAAGC
3973







Lmo1
GCTCTAGAATATCTGGGATG
3974







Lmo1
GGCATCTTAGGATTCCACCC
3975







Lmo1
GCTGCACCAGTTGGGCTGAG
3976







Lmo1
GTGGTCTCTCTTAAACTTAT
3977







Lmo1
GAGCTCTAGAATATCTGGGA
3978







Lmo1
GTAGATTTCACATACTAAGA
3979







Lmo2
GGGAGATACTTTCATGACTT
3980







Lmo2
GTTCAGCTGAGTTCACATGA
3981







Lmo2
GGTACCTTCTTCAAGCACCC
3982







Lmo2
GGGCTGTTCTTACTAAACAA
3983







Lmo2
GAGTGGTTACTTTCAGCCTG
3984







Lmo2
GGAGGACTTTGCTCAGTACG
3985







Lmo2
GTCTTTCACAACTCTTTGGA
3986







Lmo2
GCTATTGCTAGGGAGAAATC
3987







Lmo2
GAACTTGTCTTCAAGCTTGA
3988







Lmo3
GGTCCAGTTGGTTTGGGACT
3989







Lmo3
GTGTGATAGGCATGGGTGGG
3990







Lmo3
GAGCTCCAAAGGAGAAGGGT
3991







Lmo3
GAAATGCATTAAAGCTGACA
3992







Lmo3
GACCGGCTATGCCAGGACTT
3993







Lmo3
GAGCTGTTCATTTAATTCCA
3994







Lmo3
GTGGGCGAGTCCTGGAGGTA
3995







Lmo3
GCAGTAGCATAGAGTCACCA
3996







Lmo3
GATCCCTGGAGAACAATACA
3997







Lmo3
GCTTTGTTGCTAATTTCCCA
3998







Lmo4
GGTCTGGTIGGTCTTTGTGG
3999







Lmo4
GAGAAACACTAGGACTTTAT
4000







Lmo4
GAGCAGATAGCTGGGAGCCT
4001







Lmo4
GCAAATGCTCGCATCGCTTT
4002







Lmo4
GAATGTCTTGAGCAGATAGC
4003







Lmo4
GGCTTTATCTGGGATCCATT
4004







Lmo4
GCAGTTTAAAGACCTAGGGC
4005







Lmo4
GAATCTGCATTTCCTGCCCT
4006







Lmo4
GAAACTTACTTTCCCAGAAA
4007







Lmo4
GAGCTCTGCCTAGGGAAGTG
4008







Lmx1a
GTTCGCTCCTGCTCTCTCCC
4009







Lmx1a
GCCTCTCTAGAGGCAGGAAC
4010







Lmx1a
GTCTGCCATCCAGATAGAAC
4011







Lmx1a
GATGTGTTTATTGAGTCACT
4012







Lmy1a
GGGAACGTCTGCAGGAGCAA
4013







Lmx1a
GTTAGGAGAACGCAGTTAGG
4014







Lmx1a
GAGTACCATAGTTCTAGTGG
4015







Lmx1a
GGCCACATTAGTATAGGATG
4016







Lmx1a
GGGTTAGGAGAACGCAGTTA
4017







Lmx1a
GGGCAGCAGACTGGAGCATC
4018







Lmx1b
GACAGCCTGGTGTGCTGAGA
4019







Lmx1b
GGATCTGGACCGCCTTCTCT
4020







Lmx1b
GGATCAGATTTGGAGCCTGA
4021







Lmx1b
GGCCTGGCAGAAATAGGGCG
4022







Lmx1b
GAACGCAGCGACTTCTCCAG
4023







Lmx1b
GAGCCGCTCGGTTTAGAGCT
4024







Lmx1b
GGCGACGGCACTATTTGACG
4025







Lmx1b
GGTCCCTTAGCCACAATGAA
4026







Lmx1b
GAGACCAAGAGAGTGTTAAG
4027







Lmx1b
GCTCCTAGGGTCGAGGGATG
4028







Lrrc41
GGTCAACCAAAGAATTCTGA
4029







Lrrc41
GGCTCCCGACATGGGACTAG
4030







Lrrc41
GACTAGTAAGGGTCACTCGA
4031







Lrrc41
GCATTTGTCTTGTCTACTTC
4032







Lrrc41
GCTTTGTTGAGCTAGGTCCC
4033







Lrrc41
GGACCGCTCCATAAGGGATA
4034







Lrrc41
GTAAAGAGCAGAGGTTACAG
4035







Lrrc41
GGGCTCCTGGGATCAAACTC
4036







Lrrc41
GCCCAATTTGTGCGTGTGTT
4037







Lrrc41
GTTAGTCTTTAACGTAGCTT
4038







Lyl1
GGAGGAAATGCCTGGATAGC
4039







Lyl1
GGCTGGGCAAAGACAAAGTG
4040







Lyl1
GAAGGAGCCAGCTGAGGACC
4041







Lyl1
GCTCAGGAGAGCAGTTCATC
4042







Lyl1
GGCCTCAGAGGACCGGAAAG
4043







Lyl1
GCTAGAGGAGTCACTAGGGT
4044







Lyl1
GCAGTTCATCAGGTGGCCAC
4045







Lyl1
GTGGTAATGTTGTAGAAGTG
4046







Lyl1
GCTCCGGAAGGAGACAATTC
4047







Lyl1
GCTGTGCTAGAGGAGTCACT
4048







Maf
GTTATTGCCACAAATCGGGT
4049







Maf
GCTCTTTCAAAGGGCTGGCA
4050







Maf
GGATTCTAGTGTACATTCGA
4051







Maf
GTGCGAAGTTTAGTGCACCA
4052







Maf
GGAGGATGGTTTGCTTTCCT
4053







Maf
GATCACCTCACTTGCAGAGA
4054







Maf
GTGTGCACGTTCGAGCTTTC
4055







Maf
GGGTTTCCGGACTTGTCCGG
4056







Mafa
GATCCCAACCGAAGATAGAA
4057







Mafa
GGAGGAGGAGGGCAGGATTG
4058







Mafa
GACCTCGTGCTCTAACTCAA
4059







Mafa
GTCTCCTTTGGAACAGGCTG
4060







Mafa
GCTGTGGTTCATCTAGGACA
4061







Mafa
GGGATCTGGAATTCTGGAGG
4062







Mafa
GGACACTGAGGGAAGGAGCT
4063







Mafa
GGCCTGGAGTCTCCAGAATG
4064







Mafa
GAGGAACAGAAGGAGGAGGA
4065







Mafa
GGTGTCTCAGATCCATTAGG
4066







Mafb
GGAGGCTGGACCATTGAAAT
4067







Mafb
GGTTTAGATCAGTGAACTGC
4068







Mafb
GGTGAGTGTGTCCTAGCTGC
4069







Mafb
GGAGGAGGAAGGCAGAACAC
4070







Mafb
GAGCCACTGAGTGCACAGAC
4071







Mafb
GTGGCAGCCTGGAGAGAGAA
4072







Mafb
GCAAACCCTCCTGGGAACAC
4073







Mafb
GTGGAAACCTTACAACTCCG
4074







Mafb
GTTGCGCACCGTGGCCACTT
4075







Mafb
GCGGGCCGAGTGAATGTGTG
4076







Maff
GTAAGGACGCGTCAGGGACG
4077







Maff
GATCGGGACCGCAGTTCACT
4078







Maff
GCAAGAACTCCGAGGTTTCA
4079







Maff
GGTTTCACGGGTCCTGGGTC
4080







Maff
GGTTTGTTTACGTCTCCCGG
4081







Maff
GGTGACGTCACTGCATGACT
4082







Maff
GCTCGCCTTACAACTGCGCG
4083







Maff
GACAAGCACGCACTGAGCGC
4084







Maff
GAAACAAGGCTACCAGACCC
4085







Maff
GCTCTGAAGCCTCTTCTCCC
4086







Mafg
GACCTGTGAGTTGGAGGCAA
4087







Mafg
GGCTGATCCTTGCTTGCTGT
4088







Mafg
GGGCTCTGGACCACTCATTC
4089







Mafg
GACCGTGCTCCTGCAGAGAC
4090







Mafg
GCACAGGAAAGTGCAGAGTG
4091







Mafg
GGTGTATGTGTGTTGAGGGT
4092







Mafg
GCCTCAGGGCTCAGGGTTAA
4093







Mafg
GGAGAACGGCTCAGGAAGGG
4094







Mafg
GGAGAGAAGACCTACGTAGG
4095







Mafg
GCCATTCAGGGTCACAGAGA
4096







Mafk
GGTGGTGGCAGTGAGGATGA
4097







Mafk
GTCAGGTTAGAGGCAGAGGG
4098







Mafk
GGAAGGTGCCTGGAAGAAGG
4099







Mafk
GGACTGCCAGGATGTCGTGC
4100







Mafk
GGTGAAGGCACTTAGGGTGA
4101







Mafk
GTTTCTGGTCTCCCAGAATG
4102







Mafk
GAGGCTGACAGCAGGGTGCA
4103







Mafk
GTGCTGAGGAACTGCTTCCG
4104







Mafk
GTAAGGAGGGAGGAGGGATT
4105







Mafk
GACATCACTAATGTTGTTAT
4106







Mapk8ip1
GCTTTGTAGCCAGGATGGGT
4107







Mapk8ip1
GTGTCTATGTCCTCTCAGCA
4108







Mapk8ip1
GATCTAGCCCGTGGTGGCTA
4109







Mapk8ip1
GGATCGAAGCGTCAGCACTT
4110







Mapk8ip1
GGAGAACCACACAGCCTGGC
4111







Mapk8ip1
GAGTCCCAGACCTTACAGGC
4112







Mapk8ip1
GTCCTGCTCCATTTATGTGA
4113







Mapk8ip1
GAACCTAAAGCCAGAGGCCT
4114







Mapk8ip1
GCTCCATTTATGTGAAGGGC
4115







Mapk8ip1
GACGGAGGAGGTCACTACCA
4116







Max
GGACACATCATGCCATTCCT
4117







Max
GTTTCTGCACTCAATAGTCA
4118







Max
GCCAGATTTCAGGGAGGGTG
4119







Max
GACTTGTAGTCCTCGAGCGT
4120







Max
GAGAAACTACAAATCCCATC
4121







Max
GAGATGCCAGATTTCAGGGA
4122







Max
GATACCAGAAGTAGAGACAA
4123







Max
GAATCTAGTTTAGGCTTTGT
4124







Max
GGCTGTAAGGGAGACAAAGA
4125







Maz
GGAAGGCATCTCTGGGAAGC
4126







Maz
GGGACAGGAGGGACTCTAGA
4127







Maz
GGGTTGTTACCTCACTGAAG
4128







Maz
GAAGGGAGTGGACACAGCAC
4129







Maz
GGGTGGATCAAGCTCTCTGC
4130







Maz
GAGGACTTGGAACAGGTGGA
4131







Maz
GTTGCTGGGATCCATGGCGG
4132







Maz
GAAATAACGGCCGCTGGCGG
4133







Maz
GACACACAAGAGGCTGGAGC
4134







Maz
GCAGCCAATCCAAACACAAG
4135







Mbd2
GCCTGTCTCAGAGATGAGTG
4136







Mbd2
GTGTACAGATGGAGAAACCA
4137







Mbd2
GAGTGGCAGAAGTGTACAGA
4138







Mbd2
GACCAGTGACCTTCATGCAG
4139







Mbd2
GTGTCGTGAAGGCAGAGGCT
4140







Mbd2
GGCTCTTGATATAAACCTCC
4141







Mbd2
GTGGCCCTGACTCCAAGGTC
4142







Mbd2
GGGAGTTTGTGCAGGAGTGG
4143







Mbd2
GCAAACAAAGGCTCTGAGCT
4144







Mecom
GATTCTCAGGCAGGGCTCTA
4145







Mecom
GACCAGTTCACTGAAAGATG
4146







Mecom
GGCAGTTCTCTTGCCTAGTG
4147







Mecom
GTAGTTTGGAAGCTCTGAAG
4148







Mecom
GGCTTCCCTGCATTGATCTT
4149







Mecom
GTGTTTCTGTCTTCTCTTGG
4150







Mecom
GATGGCAATCGCCGAGGAGG
4151







Mecom
GTGGTGGGTATTCTTAGATG
4152







Mecom
GTTACTATTGGAGAGAGGCA
4153







Mecom
GGGAAGTGAGAAGGGTGGAT
4154







Mef2a
GATACGAGATTACCAGACAC
4155







Mef2a
GAGGGTTTGTGCCCATTGCA
4156







Mef2a
GATGTGCACAAAGCAGCCAT
4157







Kaf2a
GCAAACAGAAGGCAGGGATG
4158







Mef2a
GAAGTTACAAAGGAAGCTGG
4159







Mef2a
GCTGGATCCTTGCTGTGACC
4160







Mef2a
GCCCGGGAGAGAAGAAAGAG
4161







Mef2a
GGTAATAAGAATGTGATGGC
4162







Mef2a
GAGGACTGCAAACAGAAGGC
4163







Mef2a
GCAGGGACTCAGCATTGCTC
4164







Mef2b
GGGCCAGAGGAAGACCCAAG
4165







Mef2b
GCAGAGGGAAAGTCACTGTG
4166







Mef2b
GACAAAGCTGGAGCTGGCTG
4167







Mef2b
GCTGCACTAGAATGCTGTTG
4168







Mef2b
GTCCTCCCAGTTGCTCCAGT
4169







Mef2b
GAATGTCAGGGTCAGAGGIC
4170







Mef2b
GGAAGTAAGGCCCAGAAATG
4171







Mef2b
GTCATCGCCTCTGGCTATTC
4172







Mef2b
GCTCGCCTCTGGCTTTGCAG
4173







Mef2b
GTGAAGGGCTTTGGGATGTG
4174







Mef2c
GATACTGGGTGATGCCATTC
4175







Mef2c
GTTGGCTTCAGTCTTGGTCG
4176







Mef2c
GCTTGTAACTCTAAGAGACT
4177







Mef2c
GCTAAACCAGGTACATTTAA
4178







Mef2c
GATATCAGCAAGTGTTCAGC
4179







Mef2c
GAAAGCTAGAAGACAGAGGA
4180







Mef2c
GAGTTACAAGCTTTCTAATT
4181







Mef2c
GTGTGATGAGAGAAAGAAAC
4182







Mef2c
GAGAATGTTTCTCTACACTT
4183







Mef2c
GTCATGGCACTTAAACGATT
4184







Mef2d
GCTTCTGGATGTTTCCTGTG
4185







Mef2d
GGAAATGACAGAGTCTGGCG
4186







Mef2d
GAGAGTGAIGGACAAGCAGG
4187







Mef2d
GTCCCTGTTCTGGCTTCTTG
4188







Mef2d
GCCATTGGGTCCCAGCTTGT
4189







Mef2d
GCAGAATAGTCCTATTGAAC
4190







Mef2d
GTCACAGGTAGAGGGAGCAG
4191







Mef2d
GAGGCAAGGGAGGTAGTGGT
4192







Mef2d
GCCTAGCTTGCGAGATGGGA
4193







Mef2d
GAACTCTCCAGATGGCGCAG
4194







Meis1
GTGTAAGACGCGACCTGTTA
4195







Meis1
GCGTCGCCGCTGAAAGAGCT
4196







Meis1
GTCAAAGCCAGAGCAAGAAG
4197







Meis1
GAGCACCGGTGAAATTCCCA
4198







Meis1
GTGAACATATGTCAACCTTC
4199







Meis1
GAGGGCTGCAAGAGAGGAGG
4200







Meis1
GCCGCATTGGTCTGGAGCTG
4201







Meis1
GCCAGAGCAAGAAGAGGAGC
4202







Meis1
GGGAATGCAAACTGCCATTC
4203







Meis1
GCAATCTAAGCCACGAGAGC
4204







Meis2
GAGTGAGTGTCAGTAGGTGT
4205







Meis2
GAACTCGGAGCATAGTCCCT
4206







Meis2
GCTCGTAACCTTCAGTTCGG
4207







Meis2
GCAGGAGCCAAGAGGAGTGG
4208







Meis2
GGGTCCTGGCCTCAATCTGG
4209







Meis2
GTCAGTAGGTGTTGGCAGGT
4210







Meis2
GCTCAAAGGGAGAGAAGGCA
4211







Meis2
GAAAGCAGCGCCTCCTGCAA
4212







Meis2
GATATAAATCCTCTCCTACA
4213







Meis2
GTTGGCAGGTTGGCTGCAGC
4214







Meis3
GTCTGAGCTAGGAAGACTTA
4215







Meis3
GAGAGGCGGTGACTTCGGGA
4216







Meis3
GGCACACTCAGGACAATAAG
4217







Meis3
GTGGTGGTGACAGAAATAAG
4218







Meis3
GACTGCACAGCCATGGCTAA
4219







Meis3
GAGCCACCTCACTCAGTCTA
4220







Meis3
GGCCTGAGAGGCTATGGAGG
4221







Meis3
GAGCTGCTGTGCTTCCCTCA
4222







Meis3
GGCTAGGCAGAGAGGACCTG
4223







Meis3
GCAGTGAGGACCAAGAGGGA
4224







Meox1
GTGAGATGGAAGGAGCCCAC
4225







Meox1
GTTCCCTGTCAAGGCCCTGT
4226







Meox1
GACATGGAGGCAGGAACCCA
4227







Meox1
GCTGACAAATGGGTTGCTGT
4228







Meox1
GAGGTGAGGTGTGCTGTCCC
4229







Meox1
GTGATTAGCCCGGAGAGGTG
4230







Mecx1
GGTAGAGAGTCTTTAAATCA
4231







Meox1
GTCTACGCTATACCTATACC
4232







Meox1
GAGACAAAGATGGATGGAGG
4233







Meox1
GCTTGTGTATGTGCTGTGTT
4234







Meox2
GTCCTGCAATTGCATGACTT
4235







Meox2
GGAACCTATGGGACAGATTG
4236







Meox2
GGGATGTCTGCAGTAGCCTA
4237







Meox2
GGTTCCAGCGTAAACACATT
4238







Meox2
GTTTGCATGTGGTCAGCGCT
4239







Meox2
GCAGCAAGGCTTTGACGGTA
4240







Meox2
GTCCTGCCAGCAATGGGAAC
4241







Meox2
GGAGCTTCCACCACAGCTAG
4242







Meox2
GATTTCATTTCTCAAAGGAT
4243







Meox2
GAGACACTGTGTGCTGGCTT
4244







Mesp2
GTATACAGCAAATTGGCTAA
4245







Mesp2
GAATGACTTCCAGCCCTCCC
4246







Mesp2
GAAGTGGAAATGGAAGGAGG
4247







Mesp2
GAGAGCCCTTGGGCAGTGAC
4248







Mesp2
GGCTGGGAAGTGGAAATGGA
4249







Mesp2
GGAAAGGCCTGGAGGTGGGA
4250







Mesp2
GAAGGGAAAGGCCTGGAGGT
4251







Mesp2
GCAATTTCAGGATTAATCCA
4252







Mesp2
GCATTGTTTCATTAGGGAGA
4253







Mesp2
GAGGCACGGGATAGACATCC
4254







Mga
GAATGTCTGCCCTCACATTC
4255







Mga
GGAAACCAAGAATGTAAGGA
4256







Mga
GGAAAGGAGAGACAGGAGAG
4257







Mga
GAAGCTTCATAAGTTCTTTC
4258







Mga
GTTTGGCCTCCTGATGTTGG
4259







Mga
GAGTCTTCTTGGGAAAGGCC
4260







Mga
GCTCTAGAAATTGTGAGAAG
4261







Mir101a
GTTGGAAAGTACCAGAACAC
4262







Mir101a
GGCTTGAAACTTAACCTTCC
4263







Mir101a
GTTTGAGATGTGACTGACAT
4264







Mir101a
GGCAAATCACAGAATGTCCC
4265







Mir101a
GCAAATCACAGAATGTCCCA
4266







Mir101a
GCTATCTTTGCACTTTGGAG
4267







Mir101a
GCACGTTTATGGTTCTTGAT
4268







Mir101a
GTGTGAGGCTAGAAATCTTT
4269







Mir101a
GTGCATAGGTGTGAGATTGG
4270







Mir101b
GGAGTTCAGCAGGAGCCCAT
4271







Mir101b
GGGCTCTGCAAATGGGCAGA
4272







Mir101b
GAGCCCTCCCTTCCAAATTG
4273







Mir101b
GTTCTGCTGCTCATGACCCT
4274







Mir101b
GGAAGAGGTAAGACGCACTT
4275







Mir101b
GGTGTACTGGGAAGAAGGCA
4276







Mir101b
GAGCCGCTCTTGTCTTCAGC
4277







Mir101b
GTCCCTTTCTAGGAGACCAT
4278







Mir101b
GGTCAGATTTCCTGTTTGTA
4279







Mir101b
GACCTCAATTAATCTAACAC
4280







Mir106a
GGTCCAAGAGGATAGATATT
4281







Mir106a
GTCTGACTCTTAAGAGTAAG
4282







Mir106a
GAGAGTTAACTAAGGTGGGA
4283







Mir106a
GAAGGGCAAGGCTGAGGGAG
4284







Mir124a-2
GTCTTCTTTGTGACCTGTAA
4285







Mir124a-2
GGTGCTTTAGGATGGGCGGT
4286







Mir124a-2
GATGGAAAGAAGAAGAATGA
4287







Mir124a-2
GGCACAGGTTTGGTTCACTG
4288







Mir124a-2
GTTAGATGGGTAAGGGCGCG
4289







Mir124a-2
GAGATTGGAGAATGCGGTTC
4290







Mir124a-2
GTGTTCTCGGAGGAAAGAGG
4291







Mir124a-2
GGTAGAAAGCAGAGACAGTT
4292







Mir124a-2
GACTGGAGAGGAGGGACAGG
4293







Mir124a-2
GCCAGCCTGGACCTTGACTG
4294







Mir124a-3
GCTGCCTGTGCGCTAAGAGA
4295







Mir124a-3
GGGACAGTGCCAAGGAAGCC
4296







Mir124a-3
GGGCCTTTGTTCCTGCAGAC
4297







Mir124a-3
GAAGGGTTGTCCTGGGTGTG
4298







Mir124a-3
GCGGTTCGAGAGTGTCCAAG
4299







Mir124a-3
GCTCTCTTCTCTTACGCCTC
4300







Mir124a-3
GACTGGCACCTGCAAAGGGA
4301







Mir124a-3
GGGTTGGGCATAAGCAAAGG
4302







Mir124a-3
GCTTCTGAGCCTCTCTCTCC
4303







Mir124a-3
GCACTCACGCACTCCTGGTG
4304







Mir125a
GACCTCATTTCTGAGTTGGG
4305







Mir125a
GACAACTGACTTTGGTCTAG
4306







Mir125a
GGCCGGCAGTGTAGCTATGG
4307







Mir125a
GAGACCAGAAGTAGGGAGGG
4308







Mir125a
GCCTGGGATATGAAACCTTT
4309







Mir125a
GAGACTGGAAGATGGGAGGA
4310







Mir125a
GTCTGGGAGGTTGGGAAGGA
4311







Mir125a
GCTTCCCTGGATCTGTGGGA
4312







Mir125a
GCTCTGAGCCAGGTTGGTTG
4313







Mir125a
GTCCAGGTTGCTCTGAGGAC
4314







Mir125b-1
GTTCAATAGGACAGAGAATG
4315







Mir125b-1
GTGTTCAATAGGACAGAGAA
4316







Mir125b-1
GTAGCTGTCTGTGAAGATGG
4317







Mir125b-1
GAGCTAAAGGTGATTAGAGG
4318







Mir125b-1
GTGTGTGGATGCCAAACAAT
4319







Mir125b-1
GAGCTGAACCTACAGAGGTG
4320







Mir125b-1
GGAAGGCTGTTGGGTGGGAG
4321







Mir125b-1
GGGTTGGAGCACGTTCAAGA
4322







Mir125b-1
GGCCATATCAGGACAAGGAG
4323







Mir133a-1
GGGACAGCTGATCTAAGTGC
4324







Mir133a-1
GTTAGTGATACATTGATGTA
4325







Mir133a-1
GAGCAACTGCACTTGCTGAC
4326







Mir133a-1
GAGTATGGAAGTCATCCTCC
4327







Mir133a-1
GCAAATTATAAAGAAGAGGG
4328







Mir133a-1
GTGAGTACATGTTAAACTCT
4329







Mir133a-1
GCTAAAGGAAACTTTCCAGG
4330







Mir133b
GTTGGGTGCTTTAAAGTATG
4331







Mir133b
GGTTCTCTCTGTTACAGGCT
4332







Mir133b
GTACCTTGATGATTCGAGAC
4333







Mir133b
GAGTCTATCGAGGGAAACAG
4334







Mir133b
GAGATCAAGTGTAGGTAAGA
4335







Mir133b
GAGTCCATCTGGAAGAAGCC
4336







Mir133b
GACTTTAGTAGAGTCTATCG
4337







Mir133b
GCATGCCACCCTATTCTTCT
3338







Mir134
GTAGGTCAGAAGTCCTCTGC
4339







Mir134
GAATGATTCGGTGGGCTGCA
4340







Mir134
GCTCTGAAAGGCTGCTAAGA
4341







Mir134
GATGGCAACTTGCAGAAAGA
4342







Mir134
GCTCTAGAAACACACTGGAG
4343







Mir134
GAGCCACAGCTGCCTCACCA
4344







Mir134
GTCTTCCTAAGAATGGATTG
4345







Mir141
GGCTCGCAGGTGGATAGTAG
4346







Mir141
GTGGAGGCCAAGTCGGCTCT
4347







Mir141
GACGCCGATGACACTGGGAC
4348







Mir141
GATCTGCCGCTTCTCTTGAG
4349







mir141
GAGATCTGCCGCTTCTCTTG
4350







Mir141
GGAGGAAGGAGCCGCTGGAA
4351







Mir141
GGAAGCCTCTGCAGGGATCA
4352







Mir141
GAAGAGTTGGCTCCCACCAT
4353







Mir141
GCGGGTCTGGTGCCAGGTAA
4354







Mir141
GGTGGGAGCCAACTCTTCCC
4355







Mir150
GGTATGGTGATACCCATCTT
4356







Mir150
GGAGTAGAGCCACTAAGCAG
4357







Mir150
GGATCCAGGTGTTCTGAGAC
4358







Mir150
GAAGACATTTCCACCGGGAG
4359







Mir150
GTGTGGAACTTTCTTTGGGT
4360







Mir150
GCAGAGGTTATGTATGGTTA
4361







Mir150
GCGGGTGAGGCTTCTCAGCA
4362







Mir150
GTTGCAGAGTCTGTGAGGGA
4363







Mir150
GACCTGTTTCAAACGAAGCC
4364







Mir150
GGCATATCACCATTTCTCTG
4365







Mir150
GCTTGGAAATTTCCAAACCA
4366







Mir155
GCCATATTATTGACCCATTA
4367







Mir155
GCCACATAGTGAATGGGACC
4368







Mir155
GCAGGTGCTGCAAACCAGGA
4369







Mir155
GTGATATGCCACATAGTGAA
4370







Mir155
GTTGCATATATTCTCCCTAA
4371







Mir15a
GTTATCCTAAGATGATGTTC
4372







Mir15a
GTGGTTTATATTCTGGCCTA
4373







Mir15a
GAACATCATCTTAGGATAAC
4374







Mir15a
GAAGCTTTGTCCIATGGATT
4375







Mir15a
GACACTCAAAGGACAGTGTC
4376







Mir15a
GCTGGCACACTTGAAAGCAA
4377







Mir15a
GGAAACAAATAGAGTTGAAG
4378







Mir15a
GCGTGCTGGAGGAAGTGCTT
4379







Mir16-2
GCATATGTGTGTAAAGAGTC
4380







Mir16-2
GTTAAGGGAGAGGCAAAGAG
4381







Mir16-2
GAGGTCTTGTTCGCCTTCCT
4382







Mir16-2
GGCTGAAATTTGTGTTTGCT
4383







Mir16-2
GAGGCTCTAGGTTAAGGGAG
4384







Mir16-2
GCTGGATAACAGAAGTTTAG
4385







Mir16-2
GCTCCTCACCTGGAGGCTCT
4386







Mir16-2
GCTATCTCTGTAGGCGGTTC
4387







Mir181a-1
GCATTGATCTGACAAATGAG
4388







Mir181a-1
GATTCCAGAATGACTGGAGT
4389







Mir181a-1
GCAAAGCACCGCAATGTGAG
4390







Mir181a-1
GATTACAGGACAAGTGTCTC
4391







Mir181a-1
GAATTTCAGGCAGTAGGCAT
4392







Mir181a-1
GTTACAGGCTGTTAAAGACA
4393







Mir181a-1
GTAAGAGAATAACTTCAGGA
4394







Mir181a-1
GATCTGACAAATGAGAGGGA
4395







Mir181b-1
GGTCCTTAGAATATGAGAGC
4396







Mir181b-2
GCAACCAAGCCAGCCTTAAG
4397







Mir181b-2
GAATCCCAAGGTACAGTCAA
4398







Mir181b-2
GAACTCTGGTGTTCAAGTTC
4399







Mir181b-2
GAGCATCACTAGCACTTCTG
4400







Mir181b-2
GTGTCATTCTAGTCAGAAAT
4401







Mir181b-2
GTGCTAATTTAAGGAATTCT
4402







Mir181b-2
GCAACATATCCAACCAATAC
4403







Mir192
GAGTTGCTGTTACAGAGGGT
4404







Mir192
GGAGTTGCTGTTACAGAGGG
4405







Mir194-2
GAAGGCTTGGCTTAGGGCTC
4406







Mir194-2
GGAAGCCTCTAGAGTATGCT
4407







Mir194-2
GCCAACTGGCCGAGAGAGTG
4408







Mir194-2
GATCAAGGCTTAGACAGAGT
4409







Mir194-2
GGCAGCTCTGCTGCTTCTCT
4410







Mir194-2
GGGAGCCTTCAGCAGCCTTC
4411







Mir194-2
GATGGCTTGGCAGGAAGGCT
4412







Mir194-2
GGGTCCAGGAAGTACCAGAC
4413







Mir194-2
GGGATAGATGCCATGTGGGT
4414







Mir194-2
GAGAAGCAGCAGAGCTGCCA
4415







Mir196a-2
GAGAGCAAACTGCAATCTTG
4416







Mir196a-2
GATAGTCTCCCGTTAGTTTC
4417







Mir196a-2
GAGGGTTTAGTCTAGACACT
4418







Mir196a-2
GGAATAAACTTAACTGCCGG
4419







Mir196a-2
GGCTGACAGCAAAGAGCGGA
4420







Mir196a-2
GGGAAAGACAGAGAGAGGGA
4421







Mir196a-2
GTCAAATGCACCCGATTAGA
4422







Mir196a-2
GGAGCAGGACAACTTGGAGG
4423







Mir196a-2
GCGGCAGCAAGAGAAGGAGG
4424







Mir196a-2
GAACCGAGAGAATCGGATCC
4425







Mir196b
GGGCTGGGTTTGCTGCCTCT
4426







Mir196b
GCGTGGGTTCTTCTGGGACC
4427







Mir196b
GGCGCCTAGGAGGGAGAAGA
4428







Mir196b
GGTGTCTGGCCTGAGGTCAA
4429







Mir196b
GAACCCACGCCCGAAATCCG
4430







Mir196b
GGAAACTCAAAGGTGAATGA
4431







Mir196b
GTATGGAAGCATGGACATTC
4432







Mir196b
GAGGACCGGGTGTGGATTTG
4433







Mir199a-2
GCAGGTACAAATAAGTTGTT
4434







Mir199a-2
GGCTTCCTACAATAGCGTGG
4435







Mir199a-2
GGCACATTTGCAGCAGACTA
4436







Mir199a-2
GGCCTCCTTCTCCTTCTTTA
4437







Mir199a-2
GGGTGACATCATCCCATATA
4438







Mir199a-2
GATTCTAGCGGTCTCTCCAG
4439







Mir199a-2
GGGCTGGAGAGTCCATATAT
4440







Mir199a-2
GGACTAGGCATAGAAAGGGA
4441







Mir199a-2
GGACTATTTGAGAGTGGTTA
4442







Mir199a-2
GGGAATGATGACCAAGAGGA
4443







Mir1a-1
GCTCCCATTGCGTCCGCACT
4444







Mir1a-1
GTGTCTCCAGCTCTTTCTGT
4445







Mir1a-1
GTAAAGACTGGAAGCAGACA
4446







Mir1a-1
GTAAGTTTAGCCACAATCTC
4447







Mir1a-1
GGCACTGAGACCTTCTCTCG
4448







Mir1a-1
GGACTGATGGATCAGGAACT
4449







Mir1a-1
GGATGTGACTTCCCTCTGTT
4450







Mir1a-1
GTCGTAAGGAACCGCTCCCA
4451







Mir1a-1
GACACCCACTGCAGGAGAGG
4452







Mir1a-1
GAGTTCTCAGGGAGCCTAAG
4453







Mir200a
GAGGAAGGACTTAGCACCCA
4454







Mir200a
GACGGACTTGGGATGAGGAG
4455







Mir200a
GCATCTACTAGGCTTAGTTT
4456







Mir200a
GATCAAGGCACTCTGGAAAG
4457







Mir200a
GTCCCAAGTATCCTTGGGAC
4458







Mir200a
GGTCTGCTTTGTCCAAAGCA
4459







Mir200a
GCGGCTCCATTGCTGCATGC
4460







Mir200a
GCGGCCTCCATATCCAACTT
4461







Mir200a
GGATACTGGGATGAGGGACC
4462







Mir200a
GATCCGAGGAAATCAGTACA
4463







Mir200b
GTTGGAACTGCGTGTCTTCA
4464







Mir200b
GTCATCTTCAACTCCCTGCT
4465







Mir200b
GCCTGCCTCCCAGCTCTTTC
4466







Mir206
GCGTCACTAACTGTGAGGCC
4467







Mir206
GTCTGACTGATCACCCTGGA
4468







Mir206
GGCAGCTGTTGAGCCATTCA
4469







Mir206
GATCTCAGACTGAAGTGTAT
4470







Mir206
GCCTAACAGGCAGAGCTTGT
4471







Mir206
GACTAGTATGCTAGTATGCC
4472







Mir206
GAACAGCCTTGGATCAGTCC
4473







Mir206
GGCCAAACTTCCTGCACATT
4474







Mir206
GACCAATCCACCAAATGTGC
4475







Mir21
GCAGAGACGGACCTATGCCG
4476







Mir21
GTTAGAGCCCTCCCAGTGTA
4477







Mir21
GTTTCCTCGGTTCAACACTA
4478







Mir21
GAGATCTAAGCGGGACTATG
4479







Mir21
GGCCCTGTGAAGGTATCAGA
4480







Mir21
GGGACAGTCAGAGAGAGGGA
4481







Mir21
GAGCCCTCCCAGTGTAAGGC
4482







Mir21
GTTCTGCTTTCTTTCCTACA
4483







Mir21
GCAGGAGGGATCCTCACCTG
4484







Mir21
GCCTGAGAGAGCTACCTCCA
4485







Mir218-2
GACTAAGAGAAGGAAGGAAA
4486







Mir218-2
GGTCCTGTAAACACCAAGGC
4487







Mir218-2
GTACTAATCACGCTCAGTGG
4488







Mir218-2
GGATCCTTTGGGTACAACAC
4489







Mir218-2
GTGAGGGCCTTGGTATGAGT
4490







Mir218-2
GGACACAACCTCTGATGGGA
4491







Mir218-2
GAAGCCAGACGCCCTACCCA
4492







Mir218-2
GGAGAAGCTGAAGCCAGAGC
4493







Mir218-2
GCTAGGTCACTGCCATGGTG
4494







Mir23b
GACATTATCGCTTGCCATGG
4495







Mir23b
GGGCTAGAGCCACTTTGAAT
4496







Mir23b
GTCTGCAGGAGGCAGTGAAG
4497







Mir23b
GGTTCTCTGACCTGTAGAGT
4498







Mir23b
GACAATGGAGACAGAGTAGA
4499







Mir23b
GAGGGCTGCCAAACGGTCTT
4500







Mir23b
GCAGGTGTGGTGTGTAGGGA
4501







Mir23b
GACAGAGTCAAAGTGAGGGC
4502







Mir23b
GGAGAACAGGGTGTGTCCCA
4503







Mir6a-2
GGCCTAAGGAACACTTGTGC
4504







Mir6a-2
GATGTCTGCATCACTGTCTC
4505







Mir6a-2
GGTCTCTCACCAATGCCTCG
4506







Mir6a-2
GATTGGGCTTACTTCTTGTT
4507







Mir6a-2
GGCAGTTTCCCTTTGAGGCA
4508







Mir6a-2
GTGTTGGCTAGAGGGAAGTG
4509







Mir6a-2
GATGTGGGCTAGGAGGGACT
4510







Mir6a-2
GATCGGACTGTGTGAGACAA
4511







Mir6a-2
GCTGGCTAAGAACTGCTCAG
4512







Mir6a-2
GGGTATCTGTGACTCCAGGG
4513







Mir375
GCCATTGGGAGGTGAGCAGC
4514







Mir375
GGATGCACAAGAAGCTATGT
4515







Mir375
GTTCTTAGTTTGGCCAGTGG
4516







Mir375
GGGCAAATATTGACTCATGG
4517







Mir375
GCTGACACCAGCAAACAGTC
4518







Mir375
GATGTTCTGCCTTCGCTAGG
4519







Mir375
GAGTGCTCTGAGTCCTGGCT
4520







Mir375
GTCAGCATGCACAGGTCAGG
4521







Mir375
GGTGGTAGGGCAATGATGCG
4522







Mir375
GTGGGAAGATTCTATCTCCA
4523







Mir7b
GAAGGCCAACTGGACTGTTT
4524







Mir7b
GGACTCTGAGTCCTTGAACT
4525







Mir7b
GGAGGGTAAGTCAGTGAGTG
4526







Mir7b
GTGAGAGAGACTGTGTTAGA
4527







Mir7b
GCACTTGAGGGTGTTGAACC
4528







Mir7b
GGTGTTGAACCTGGCGGAGG
4529







Mir7b
GGTTCATTCTATACACCCTA
4530







Mir7b
GAGGGACTCGGAGCAGAGTT
4531







Mir92-2
GGAGGGAAACCAAGGTAGGT
4532







Mir92-2
GGCCTCTGATTAAATCACCA
4533







Mir92-2
GTAATGTGTCTCTTGTGTTA
4534







Mir92-2
GAGCGGGTCCTGTGTGTCAC
4535







Mir92-2
GTGGTGCTGCGCGGACACTT
4536







Mir92-2
GCTCTCCTAGCTGGTGGAGG
4537







Mir92-2
GCACTGTTAGCACTTTGACA
4538







Mir92-2
GATGGAATGTTTGTGTTGAT
4539







Mir92-2
GAGCTTTCTCTGGAGGGCTG
4540







Mir92-2
GTTGTGTAGAAGAACAAGCT
4541







Mirlet7a-2
GGAACATACCATGGTACGGC
4542







Mirlet7a-2
GACCCATACAACTCTGCAAG
4543







Mirlet7a-2
GAAGACTGTGCAAGAGACTA
4544







Mirlet7a-2
GAGGCCAGGTTGAAAGATTG
4545







Mirlet7a-2
GGTTTGAGATTGCTCCGTGG
4546







Mirlet7a-2
GTTGTATTGTAGATAACTGC
4547







Mirlet7a-2
GTTTGAGATTGCTCCGTGGT
4548







Mirlet7a-2
GGTCAAAGATTCAAAGAAGC
4549







Mirlet7b
GGAATAGCTAGAGACCACAT
4550







Mirlet7b
GTCTGAGGCCTGAAAGAAGC
4551







Mirlet7b
GCCCAGGTGAGAAGGCTGAG
4552







Mirlet7b
GGTAAAGACATCTAAGCTGA
4553







Mirlet7b
GCTAGTCGTTAGGGACAGAC
4554







Mirlet7b
GCTGCCTGGCTTCCTAGGTC
4555







Mirlet7b
GGCCCAGGTGAGAAGGCTGA
4556







Mirlet7b
GCCTAGAGAAAGGCCAGATG
4557







Mirlet7b
GCAGCAAGGCAGAAGAGGCG
4558







Mirlet7b
GAGGCGTGACAGTAGACGCT
4559







Mirlet7i
GGTGTTGCACTGCCTTATCT
4560







Mirlet7i
GGCGCTGTAAAGATGGCGGC
4561







Mirlet7i
GCAAGGATGCAGAGAGGAGA
4562







Mirlet7i
GTATGTATGAAACGTGTAGG
4563







Mirlet7i
GGACTGGGTGGGTGTGAGGT
4564







Mirlet7i
GGCAGTGCAACACCGGAACC
4565







Mirlet7i
GAGAGTAGGGAAACCAGCCG
4566







Mirlet7i
GGGCGCTGTAAAGATGGCGG
4567







Mitf
GAAGTCAGCAAATGGTGGTG
4568







Mitf
GACACTCCTGAAAGTTGGGC
4569







Mitf
GACACACTGGAAGTGGAATC
4570







Mitf
GCCATAAGCAGTCAGAATAT
4571







Mitf
GTGGGATGGACAGATGGAAA
4572







Mitf
GGGCTGTGTTGGGAAGAAGA
4573







Mitf
GAATTGTTACAGGGAGAACC
4574







Mitf
GTCTGGTCTGGACACCTCTT
4575







Mitf
GTAAGCTGTCTGTTGAGACT
4576







Mitf
GCTGACCTCAGCCTGGTAAA
4577







Mixl1
GCGCCTTTGATGGTGACAGG
4578







Mixl1
GGGAGGCGCGAACTTGAGTC
4579







Mixl1
GAATTCTTCAACCTGCTACG
4580







Mixl1
GTAAGGTCTAGCACATAGCA
4581







Mixl1
GCTTGACCTGTCCACCAGCT
4582







Mixl1
GCTAGGCTGTTTAACCAACC
4583







Mixl1
GAAGAAGAAAGAAAGGGAGA
4584







Mixl1
GGGCAGACAGAAGGTGGCAG
4585







Mixl1
GGATTGGTGGTTGGACTGGC
4586







Mkl1
GAACCACGAGTGTACGCTAT
4587







Mkl1
GGGAAGGATGAGACTGCCCT
4588







Mkl1
GGCAAATAGCAGTTGGATTC
4589







Mkl1
GACCTCCTCCCACCTCTTGG
4590







Mkl1
GTTAGGGCTAGCCCGATTTA
4591







Mkl1
GCTCTTAAACACCGTGTTCT
4592







Mkl1
GGCAGAGAGAGAGGCGTCAT
4593







Mkl1
GTGCTTCACCAGAAAGAGTC
4594







Mkl1
GGCATTTATTGTGTCCTTTC
4595







Mkl1
GAAGTCTGGAACTGGCGGAG
4596







Mlx
GCGGCTTAACTGTCCCACTT
4597







Mlx
GCAATGAGGACACAGCTAAT
4598







Mlx
GATGACACACGGGTCAGGAA
4599







Mlx
GTTCAGGAACTTGTCTGTGG
4600







Mlx
GCATCTGACTGAGTTCCTGG
4601







Mlx
GGCCCATAGGGATCCAGCAG
4602







Mlx
GACTGAGCCTCGCCTCTTCC
4603







Mlx
GAACAGGTACTAGCCAGAGA
4604







Mlx
GGTCCAGATACCTCAGTCTC
4605







Mlx
GAGGCTGAAGCAGGTTTCCC
4606







Mlxip
GGACTCAGTTCCGGGTATGG
4607







Mlxip
GCACTCCACGTGGTGGGTAG
4608







Mlxip
GCTGAAGTTGTTGGGTCTGG
4609







Mlxip
GTTTAAGAGCGGTGATGCCC
4610







Mlxip
GTGGCTGAAGTTGTTGGGTC
4611







Mlxip
GGCACTCCACGTGGTGGGTA
4612







Mlxip
GGAGCTTGGGAATAGCCCTG
4613







Mlxip
GGAGAAAGCTGGCCTAATGT
4614







Mlxip
GAATTGCAGTAAAGACAACT
4615







Mlxip
GCCCAGAAGCCAAATTCCAA
4616







Mlxipl
GTTAGACTGTAGAGAGGCAC
4617







Mlxipl
GGCTGTGAACTCTGGGCATC
4618







Mlxipl
GGACAATCATAAGAGCGCCT
4619







Mlxipl
GGCCTCTCTTTCCCACTAGA
4620







Mlxipl
GGAGAGCAACCGATGGTTGG
4621







Mlxipl
GGCATCGGGTACTAGAGGGC
4622







Mlxipl
GCTAACCTTTCCACTGGGAC
4623







Mlxipl
GAACTTTGCTGTAGAGGCAT
4624







Mlxipl
GACATAGCTAACCTTTCCAC
4625







Mnt
GGAAATGGAGACATGCCAGT
4526







Mnt
GAGGAATAGCACAAGACAGA
4527







Mnt
GCCTGGTGATCTAGCCTAAT
4628







Mnt
GGGAATTGCGACAGACCGGA
4629







Mnt
GTCTGGGTCAGGAGGGCAAC
4630







Mnt
GTATGTTTATAGGTAAGACC
4531







Mnt
GCACTGGAGCTGTAAGTGTG
4632







Mnt
GAAGAGGGAAATGAATGGGA
4633







Mnt
GGGAGGGTAATGTAAAGCAG
4634







Mnt
GGAAGGGTGAGACACCTACA
4635







Msc
GGCTTTGTTAACAAACAGAC
4636







Msc
GAGTAATGAACTTGAATGAC
4637







Msc
GATTGCTTAAACTTGACTGT
4638







Msc
GGTGCAGGCAGAAAGATGGA
4639







Msc
GTAGTGAGCAGCTGCAGCTT
4640







Msc
GAAGTATCATAGCAGGTGGC
4641







Msc
GATGTGTGTTTGCTTATCCA
4642







Msc
GGCAGAAAGATGGAAGGCAG
4643







Msc
GGGCTGCTTGGTAGTCCTTT
4644







Msx1
GTTATTTGTCAGAGTAGCAA
4645







Msx1
GCCGATTTACACTCTGCGCT
4646







Msx1
GGGTAATTATCCGAGCACGG
4647







Msx1
GGAGGTATATCTTTGGTGCA
4648







Msx1
GCAACTGTGTAGACAACTTC
4649







Msx1
GATGCCCACCTGACTTAGCT
4650







Msx1
GAGCCTCACATCTGCCCACA
4651







Msx1
GGGCTGCCGTGGCCATTTAG
4652







Msx1
GAGGTGATTGGCGGCTCACC
4653







Msx1
GAGCAAAGAGGCCTAGCCTC
4654







Msx2
GAGAAGGCTGTAGACGGGCC
4655







Msx2
GCCAGAGCTTGGTACTCTGG
4656







Msx2
GCACCAGAAACACTTTAAAG
4657







Msx2
GAATGTTGGAAATCTGCGGA
4658







Msx2
GCCTAGAGAGGAGACTCAAG
4659







Msx2
GACTGTATCTCTGCCTAACC
4660







Msx2
GGTGCTGGAGGGAGTATTTA
4661







Msx2
GACACTGAAAGGGAAACGGT
4662







Msx2
GTTGGAGAGGCGCCTGGCAA
4663







Msx2
GAGGCGCCTGGCAAAGGGAT
4664







Msx3
GATGAGTGTTTACCAAGGAG
4665







Msx3
GGGCTAGAAAGACGCGTCCT
4666







Msx3
GTCGACAGCAATGACTCATT
4667







Msx3
GATGCAGTCTTTCCTTGACC
4668







Msx3
GTCATCAGTTTGTGGACAAT
4669







Msx3
GTCCATTCCTCCACTCCAGA
4670







Msx3
GCCTCAGCCTTCTGGAGTGG
4671







Msx3
GATCTCTTGAGGTCGAGTTG
4672







Msx3
GGGCTACAGGGTAGGAGTGG
4673







Msx3
GGGCTGAGTCTTCAATGGTG
4674







Mtf1
GCTCAGGTAGAAGAAACAGG
4675







Mtf1
GCCACAAAGGACTAGCTGCC
4676







Mtf1
GAACTGGIGAATAAACTCTT
4677







Mtf1
GCCTTGGAGTTGAGCAGAAA
4678







Mtf1
GATGCTCAGTACGGGATATG
4679







Mtf1
GCTTGGACAGTGGAAGCATC
4680







Mtf1
GTTCTTGAGCTGAAACAGGT
4681







Mtf1
GCAAGGGAGAAGAGAAGGGA
4682







Mtf1
GGTTCCAACCTTCCTTAAGG
4683







Mtf1
GGACTAACTGAAGTCCCTGA
4684







Mxd1
GGCAATGACCTCCACCCAGC
4685







Mxd1
GTTATAGGAGAGGACTGAGC
4686







Mxd1
GTGACGTCATCGTAGCCGGG
4687







Mxd1
GACAGTGGGCAACAGGTCGG
4688







Mxd1
GGGATGGAAGGGATGGCCTC
4689







Mxd1
GCGGTTTGAATTTAGTTCTG
4690







Mxd1
GAGGTGACGTCATCGTAGCC
4691







Mxd1
GAGTATCTAGCGCCATCTAC
4692







Mxd3
GGTAGCCATACCTATGAGTC
4693







Mxd3
GAGCAATCTGTAGCAGGAGA
4694







Mxd3
GGCTGTTACCTATACCTCCT
4695







Mxd3
GCTCCTCCTTCTCTTCCAAG
4696







Mxd3
GCATCAGTTCTACTGCAGCA
4697







Mxd3
GTAACAGTTTGTAGACTGAA
4698







Mxd3
GAAGGACGGGAGAGCTAGGA
4699







Mxd3
GTCCTGTCTGCCTCTGCTAC
4700







Mxd3
GGCCCTATCTACATATTCAT
4701







Mxd4
GCGTTCGGCCAGTCCCTATT
4702







Mxd4
GCAGAATGAGCTGGCTTCCC
4703







Mxd4
GACAGCAAGCCTGCTGCTCA
4704







Mxd4
GATTGTGGGCTTGGTCAGAG
4705







Mxd4
GTAGGCATTGCACGCCGATT
4706







Mxd4
GTGCCATCTTCCCTCACAAA
4707







Mxd4
GATCCGTGAGTGTCTGTTTG
4708







Mxd4
GACATGTGTGGCTCACACCC
4709







Mxd4
GTCTGGGCTCTGTCTATACA
4710







Mxd4
GTTTGCGGTGCTTGGTCTGA
4711







Mxi1
GGTGTGTCCACGCATACATG
4712







Mxi1
GGGCGGGACTACATTTCCCA
4713







Mxi1
GCTAGGATTTGCGGAGAGGC
4714







Mxi1
GTCTCCAGGCTACCCTGTCC
4715







Mxi1
GGAGGGAAGAAGAGGTTCCT
4716







Mxi1
GGAAAGACTACATCTCCCGG
4717







Mxi1
GACTTTATTTACTGAGAGGG
4718







Mxi1
GTCTCTGGGCTGGTGAGGAC
4719







Mxi1
GATCATCCGCACCCGCTCCA
4720







Mxi1
GAATGAACCTACAGGACGGA
4721







Myb
GGATTCAAGAGGCTCAGGAA
4722







Myb
GTCCAGCAAGTGTTTGACGC
4723







Myb
GTGAGTGTCCCAAGTGCTTT
4724







Myb
GGAAGAGAATGCTTCTGTAA
4725







Myb
GGATGCAATAGATGCAACTT
4726







Myb
GGCGTGTGTCTAAGTGAGGG
4727







Myb
GTGGTAGGCACCTCCTAGGG
4728







Myb
GCTCCCGGGTGTGTTGAAGT
4729







Myb
GTTCAAGACTTGTGCTGACT
4730







Mybl1
GCCGTTTGAATCTGCGCACG
4731







Mybl1
GGCCAGTTTCCTTGTCCTTT
4732







Mybl1
GCTGTGAGTCTCGCCACTTA
4733







Mybl1
GGTGACAGGACACGGAACGC
4734







Mybl1
GAGTAACTGAAATCTTGCAT
4735







Mybl1
GCAACTTCTCAACAGTTACA
4736







Mybl1
GAAGAACACTTGAAGTTCTC
4737







Myc
GACGAACGAATGAGTTATCT
4738







Myc
GGATACCGCGGATCCCAAGT
4739







Myc
GAGCTCCTCGAGCTGTTTGA
4740







Myc
GAATTGCCAACCCAGATCTG
4741







Myc
GATGACCGGAAGCTTGTCTT
4742







Myc
GAAGTCCGAACCGGAGGTGC
4743







Myc
GCCCGAACAACCGTACAGAA
4744







Myc
GACGAGCGTCACTGATAGTA
4745







Myc
GCCTTGGCTTCAGAGGCTGA
4746







Mycl
GACTGTTCGAGAGGCTCCCG
4747







Mycl
GTCTAACTACTCAGAACTAC
4748







Mycl
GCTAATGGTTACTGAAGCAA
4749







Mycl
GTGCGTCCCACCCATGACAG
4750







Mycl
GAACACTATCAAGATCTCGC
4751







Mycl
GGGAAGTAGACTAGCAGGGT
4752







Mycl
GGACGCACCTGAACCTGGTG
4753







Mycl
GACCAGTTCAGCCAGGAGGT
4754







Mycl
GAGGATGAATTCTGGGAGGC
4755







Mycs
GACCTGGTGGGTGGATTCAA
4756







Mycs
GCTCTCAAGAGCATCTTCCC
4757







Mycs
GGCACAGGACATGATGCTCC
4758







Mycs
GCACAGGACATGATGCTCCT
4759







Mycs
GTGGATTCAAAGGAGGGTGG
4760







Myef2
GGTTAAGGGAATGATCACTT
4761







Myef2
GCTAGTAATAGTAACCAGAT
4762







Myef2
GGAGAATTTAATTCCCTCAC
4763







Myef2
GCCTTTGGATGAGAGGACTA
4764







Myef2
GCTTATGATAATCTAGAACT
4765







Myef2
GTGAATTCATAAAGAGCTAA
4766







Myef2
GGACACTAGAGCTCTGCTGG
4767







Myef2
GAGTTCAATGTTGCCTTCTG
4768







Myef2
GAACTGAAATGCCTCAGCCG
4769







Myef2
GGGACAATTTAGCTGGAAGA
4770







Myf5
GAACAATAAATCAACCGTGC
4771







Myf5
GGAAGGATGGAAGCTCGGAG
4772







Myf5
GGGAAGGATGGAAGCTCGGA
4773







Myf5
GGAGGTTGGTCCCTGTAGCT
4774







Myf5
GTCCCAAAGGGCCCTCCACA
4775







Myf5
GACACGTGTGCTGGGAAGGA
4776







Myf5
GTTTGTGTACTGGTAACAGT
4777







Myf5
GGTTAGGGCTGTCTTTGGTA
4778







Myf6
GAATCCTAAGCAACCAACTT
4779







Myf6
GAATTCAGTTGAACTCTGGA
4780







My46
GGGCTGGAATTGGAGTGTGT
4781







Myf6
GTGAACTAATGTTTACTGCA
4782







Myf6
GGTATGCAACCGCATTAACT
4783







Myf6
GAATTATGAGAAGACAGAGC
4784







Myf6
GATGACTCTCTGTCTTGATA
4785







Myf6
GCACTAATTAAATGCCATCT
4786







Myf6
GTGTTAACTATAAGCTGTTT
4787







Myocd
GGTACATCTCCAGAACGCGC
4788







Myocd
GATGGATGGGTAGGGAGGCA
4789







Myocd
GCTTACTGCAGGGCTCTGGA
4790







Myocd
GCAGCTGACTTCTGCCCTCC
4791







Myocd
GGAGTGTATCTGCTTGTCCT
4792







Myocd
GTCTTTCTGACCCAGAGGGA
4793







Myocd
GGTCCCTTTCCCACTATGAA
4794







Myocd
GACTAATCTCTGCCCTGATC
4795







Myocd
GTTTCACAGAGTTTCCTCCA
4796







Myocd
GGCAGCCTATGACATCAGCC
4797







Myod1
GCTGGTTATGCTATGCAAGC
4798







Myod1
GCAAAGCCAGAGAAGGTTGC
4799







Myod1
GCATGAACATCCCAGGGTTG
4800







Myod1
GAGCTGGAAAGGGAGGCTGG
4801







Myod1
GGTGCTCATGGCCACTCAGA
4802







Myod1
GGAGCCATTAAGAAGAATGG
4803







Myod1
GGACAGAAAGGTGATCCATT
4804







Myod1
GGTCTCCAGAGTGGAGTCCG
4805







Myod1
GGATGTGGAAATGTCAGTGG
4806







Myod1
GAGATCTGGCAGAGGGCTCT
4807







Myog
GCTGGGTGAAAGGTGGCCAG
4808







Myog
GCTGGTGGACAGGGCAGGAA
4809







Myog
GCGTTGGCTATATTTATCTC
4810







Myog
GTCCAAGGCAGCTGGTGGAC
4811







Myog
GCAGGAAGGGAACAAGAAAG
4812







Myog
GAAAGGAGCAGATGAGACGG
4813







Myog
GATTGAAGTAAGAGAACACA
4814







Myog
GCTTCTTCACTTTGAGGAGG
4815







Myog
GGCAAAGACAGAAACCCAGA
4816







Myog
GAGAGAGTAGGCAGGAGGCC
4817







Mzf1
GTTGTATCTGACCTGAATTC
4818







Mzf1
GCAAACCAGGAAGTCTCTTA
4819







Mzf1
GTGAGACATCGAAACTCTAG
4820







Mzf1
GATTAGAACCACAACTCTCA
4821







Mzf1
GCTTTCTGGGAGTCGTAGTT
4822







Mzf1
GAGGTAATGTTTAAGTAGTC
4823







Mzf1
GCGGGACTCCATGGTAACTA
4824







Mzf1
GTTTGGTCCCTTAGTTACCA
4825







Mzf1
GGAAGAAGAGAGAAGCAGAA
4826







Mzf1
GGTAACTAAGGGACCAAACC
4827







Nab1
GTAAGGTAACAATTATGGAG
4828







Nab1
GTGTCCTCAGAACTTAACTT
4829







Nab1
GTCCTTCCTTGTTTATGTTC
4830







Nab1
GGAGTTGCTGTTGAAGTCAC
4831







Nab1
GGAGCATAAACACTGACAAT
4832







Nab1
GAGTTTAGGAATGGGAAGGA
4833







Nab1
GCCCAGAACATAAACAAGGA
4834







Nab1
GGTATCCTTAAGGCTCTTTC
4335







Nab1
GTGGAAAGGTAGAGGTTAAT
4836







Nab1
GGCCAGCCAGGAAGTGGGAA
4537







Nacc1
GTTGGATCCTGTGAGCGGAA
4838







Nacc1
GAGTCAAGAACAGAAGAGTG
4839







Nacc1
GTTTGTCCGGGTGTGTGTGT
4840







Nacc1
GGAACAGTTTAGGCTCTTTG
4841







Nacc1
GCCTGAACCTCCACTCACTC
4842







Nacc1
GATCACAGCACACCTGGAGG
4843







Nacc1
GTCTGTGTGAATACAACTAC
4844







Nacc1
GCAGTAAGGAAGGGACTTTA
4845







Nacc1
GAGCCACTCAGACTGAGTGT
4846







Nacc1
GAACCGAAGCGCTCGAAGCG
4847







Nanog
GTGGGAAGTTTCAGGTCAAG
4848







Nanog
GGGAAGTTTCAGGTCAAGTG
4849







Nanog
GCTTTCCCTCCCTCCCAGTC
4850







Nanog
GTGAATTCACAGGGCTGGTG
4851







Nanog
GCGCTCTGCGTTTCTCCAGC
4852







Nanog
GGAAGTTTCAGGTCAAGTGG
4853







Nanog
GGGATTAACTGTGAATTCAC
4854







Nanog
GCTGTAAGGTGACCCAGACT
4855







Nanog
GGAGGGAGGGAAAGCTTAGG
4856







Ncoa1
GGGACGCTAAGGGACACTCT
4857







Ncoa1
GTACCACTCACTGTTCTCTC
4858







Ncoa1
GTGGTACTGTAAAGAAGGTG
4859







Ncoa1
GAGAACAGGTAGAAAGAATG
4860







Ncoa1
GACCAGGAAACAGACTCCAC
4861







Ncoa1
GTCTTAAGGAAGTGTGAGAA
4862







Ncoa1
GGAATGAACACAGGGATGGA
4863







Ncoa1
GCTCATTTGTAAGCACCAGA
4864







Ncoa1
GTCCCTTAGCGTCCCTGAGC
4865







Ncoa2
GTCCTCAGCATCTCCCTGGC
4866







Ncoa2
GAAGAAATCTAAGTGGCAAT
4867







Ncoa2
GAGCGGTGACAGCGTTCGCT
4868







Ncoa2
GCTGTAACAAATGTTAACAT
4869







Ncoa2
GGTCTAGGGACCGTGACCTA
4870







Ncoa2
GGGATTGCCTGACAAAGCAA
4871







Ncoa2
GACAGGAGAAGAAATCTAAG
4872







Ncoa2
GCTTAGTCTGGAGAATGAGA
4873







Ncoa2
GTGCACTGAGTAACACAGCA
4874







Ncoa3
GCAGGGATTTAAAGCCAAGT
4875







Ncoa3
GAGGTTCTGCTGTCACCTCA
4876







Ncoa3
GCCTGTGACTTGTGTTTCCT
4877







Ncoa3
GATGGTGGCAAGGGCATGTG
4878







Ncoa3
GGCAGACATGCCGCTGCTTT
4879







Ncoa3
GAGTGAGGTCTCAGAACAGA
4880







Ncoa3
CATGTAAAGAACAGACCACC
4881







Ncoa3
GTACAAGAAGGCTGTGTGCA
4882







Ncoa6
GCTCTTACATGAAGCTACTT
4883







Ncoa6
GGAAACTACCTATAGATATT
4884







Ncoa6
GGCTCTTACATGAAGCTACT
4885







Ncoa6
GCTTTCCTTTCAGTGCAGGT
4886







Ncor1
GTTTGTTCTTTCTCAGATGG
4887







Ncor1
GCATGCTTGCTTACTGTGAG
4888







Ncor1
GTGCCTGACCTGTTATCCTG
4889







Ncor1
GATTCCGCCACCGAGGAGAC
4890







Ncor1
GCCGTGGCTGTCCTGACTTG
4891







Ncor1
GGAACTCAGCGGAACGAATG
4892







Ncor1
GTCCAGTCATCACCATATTT
4893







Ncor1
GTAGGAGGGTCGCTGGGTTA
4894







Ncor1
GTTCCGCTGAGTTCCAAACC
4895







Ncor2
GAAGGAGAAGCCATGGAGGC
4896







Ncor2
GGCTTTGCCTTATAGAGACT
4897







Ncor2
GGAAGTTCATTTCAGCCTTT
4898







Ncor2
GGCAAGGTGTGCTGAGGTGG
4899







Ncor2
GTTAAAGATCTAAGGCAGAG
4900







Nccr2
GTAGGAGCCAGGGAGGACAA
4901







Nccr2
GCTGGGTAGCGGCACTACTC
4902







Ncor2
GAGCCCTCACATTGCCAGCC
4903







Ncor2
GAGTCATCCTCGCCATCCCA
4904







Ncor2
GTTCTAGCTTTAAGCCTGCC
4905







Neurod1
GCATAGTTCTTGGATACCTT
4906







Neurod1
GTTATCTCCGCTTGCCTGAC
4907







Neurod1
GTCGCCAGTTAGAGACTCCG
4908







Neurod1
GCGCATAAGAACAAGGCAGC
4909







Neurod1
GGTAGGAGCAGGTGACCGTT
4910







Neurod1
GGTCGGGCTACCTAACTCCA
4911







Neurod1
GTAACTGCAAGGCCCTTAGA
4912







Neurod1
GAACTATGCTGGGTAACAGT
4913







Neurod1
GTCAGAACCTTGCCTTCTAA
4914







Neurod1
GTGAAAGTATGTGTGTGTTG
4915







Neurod6
GTGCATCTGGGTACCAGGGA
4916







Neurod6
GATTAGAAGAGCCACTCTGG
4917







Neurod6
GTGTCTGTGTGTAAACCTGG
4918







Neurod6
GAGGGTTCATCCAGGATTCA
4919







Neurod6
GAGAGGGAAAGTTTCATATG
4920







Neurod6
GTAGAGCTAAAGTGAGTCTT
4921







Neurod6
GTTGTAACATGGGAGATCCA
4922







Neurod6
GTGTCACCGCTATGATTCTT
4923







Neurod6
GTGCTGCTGCCACATGTCAA
4924







Neurog1
GGCTGCTGGGAGTTGTGCAA
4925







Neurog1
GTGCACTACTGAATCCAAGA
4926







Neurog1
GTCAATCAGTAGCAGGCAAA
4927







Neurog1
GATTGGCCGGCGGTAATTAC
4928







Neurog1
GAATTGTCACAAGGTCAGAC
4929







Neurog1
GAGCAAGATTTCAGGAGAAG
4930







Neurog1
GCATAATTTATGCTCGCGGG
4931







Neurog1
GCTGTCACAGGGACAGAAAG
4932







Neurog1
GGCCCTGTATTTATTTCTTT
4933







Neurog1
GGCTGGCTGTCTATTAAGTC
4934







Neurog2
GAATAAAGGATGGGAACAGT
4935







Neurog2
GTTTCCTCTCAAGTCCAGCA
4936







Neurog2
GTATGACCTCTGCTCCGCTC
4937







Neurog2
GTCACGTACGTGTGCCAGAC
4938







Neurog2
GGACTTCAACACACGCCATC
4939







Neurog2
GATGAAAGGAGAGTCTTGGG
4940







Neurog2
GAGGGCTACGGAGCAGGATT
4941







Neurog2
GCCAAACAGACCCTTAGTGG
4942







Neurog2
GAAACGTGTCTATGACTGTT
4943







Neurog3
GGGAGGTGGTAGGATTGGGT
4944







Neurog3
GGATTCCGGACAAAGGGCAG
4945







Neurog3
GCCCATTAGTCTCACGGGAT
4946







Neurog3
GTGAAGCTGCTAGTCCTCTC
4947







Neurog3
GCATGGGAGGAAGCTATGGC
4948







Neurog3
GGGTAGACCTTCCTGTGAAC
4949







Neurog3
GAGGACAGAGTGACCAGAGA
4950







Neurog3
GCCCTTTAAGTCACTTTCCC
4951







Neurog3
GACAATGTCTTAAGGCTCAC
4952







Nf1
GTATCTTCCTATGTGGCTAA
4953







Nf1
GCCATGCATAGTGGTGTGAC
4954







Nf1
GGGAATTCTAGTCTCCAACT
4955







Nf1
GGCAATGACAGCCTACGCAC
4956







Nf1
GTCCTTCAAACTCTGGTTCT
4957







Nf1
GGCCCAGTGGTGATCCAAGT
4958







Nf1
GTCTCGGACTGTGATGGCTG
4959







Nf1
GATGGTGTGTGTGTGTGTGG
4960







Nf1
GAGCAAGAAGCCAGCAGTGA
4961







Nf1
GAAAGGATCCCACTTCCGGT
4962







Nfat5
GTGTCCTCCTAAGTACACCA
4963







Nfat5
GTGTTATGGGCCAACGTGTT
4964







Nfat5
GGGAATGGAGTTCCACAGCT
4965







Nfat5
GTGAATGGTCGAATTTACTC
4965







Nfat5
GCTAATGTCAATGACAGTTT
4967







Nfat5
GTGTAATGCACACGCGTGCG
4968







Nfat5
GTATCAGAIGTTCAGATGAA
4969







Nfat5
GCTGATCCCGGGCTGGGAAA
4970







Nfat5
GAGCTGATTTGTAGCCAGGA
4971







Nfat5
GACCTGGATGTCAGCCAGGA
4972







Nfatc1
GGGACGAAACGGGAAGGAAA
4973







Nfatc1
GCCGCTTGTTTATGTAAACC
4974







Nfatc1
GGACCCAGTACAGGGCTGAC
4975







Nfatc1
GACTCCTGGGAAAGAGTTGA
4976







Nfatc1
GACCAGCCGGACGCATTGAG
4977







Nfatc1
GGCTAACTTGAGCATCACGT
4978







Nfatc1
GCTAGATGCTGCTGGAAGAG
4979







Nfatc1
GACGGAACGGATTGGAGGGT
4980







Nfatc1
GGCCGTGGGAAAGCACCTTG
4981







Nfatc1
GTCTTGAGACAGCCAGACCC
4982







Nfatc2
GTCTCTTTGGAGGGTGGCCC
4983







Nfatc2
GCTTCTGCTGGTTTCTCTCC
4984







Nfatc2
GTTTGCACGCAGCTCCTGCA
4985







Nfatc2
GAGATAAAGCCAGCTTTGAT
4986







Nfatc2
GCGTAAACACATGCGTTGCC
4987







Nfatc2
GTTTGTAGAAACCTATGCCT
4988







Nfatc2
GGTGATGACTCACTAGCCCT
4989







Nfatc2
GCACAGTAAGAGGAGATTGG
4990







Nfatc3
GAAGTTGGTATGGAGGGATG
4991







Nfatc3
GGAGCTCATGTCGAGGAAGT
4992







Nfatc3
GGTGAAAGGAGTATGCATGT
4993







Nfatc3
GTGAAAGGAGTATGCATGTT
4994







Nfatc3
GCTACAGGAGTAGTAGAAAC
4995







Nfatc3
GCGATAGGTCGGTGAGGAGG
4996







Nfatc3
GATGGTGAGCAAGAGCTTTA
4997







Nfatc3
GCTACTAAGTGAGCCTCAGG
4998







Nfatc3
GCATTCAGATCAGCAGGAAG
4999







Nfatc3
GGGAACCCACGTAGGCCAAT
5000







Nf8tt4
GGAGAACAGACCCGGAAACT
5001







Nfatc4
GGTCTTCCAGACGAGGGAAG
5002







Nfatc4
GGCAGGGAGGAGAAGCTTGG
5003







Nfatc4
GGCTCTGAGCTGCTCTGTAG
5004







Nfatc4
GACAGTGAGGTGCCCTTTCT
5005







Nfatc4
GTGGTGGCTAAGAACTGCAA
5006







Nfatc4
GGAGATTTGCCAGGTTTATT
5007







Nfatc4
GAAACACTGCCCAGGATCAA
5008







Nfatc4
GAACTGCAAAGGCTCCTTGG
5009







Nfatc4
GTAACCTGAGAAGAACCCAA
5010







Nfe2
GATCCTCAAGGAGTGTGTTG
5011







Nfe2
GGGAATATGGAGGCAGGATG
5012







Nfe2
GACAGAGCTCTGCCTTGGGA
5013







Nfe2
GACACTATGGGAACTTGCTA
5014







Nfe2
GGGCAATTTCCGCCAGAACT
5015







Nfe2
GAAGTGGGCTGTAATGCCTC
5016







Nfe2
GCAAATTGGACTCAGATACC
5017







Nfe2
GTCTATGCAATCCACTCAGG
5018







Nfe2
GGGATGGCTTTATAGCAAGA
5019







Nfe2
GTGTCTCCTAAAGACCGACA
5020







Nfe2l1
GTGGGTAACTGGCATATCTG
5021







Nfe2l1
GAATTGTTGGTCATTGTGAT
5022







Nfe2l1
GGGTGGTGCAGTGAGAGTCC
5023







Nfe2l1
GACTAGCCATCGTCTTCTTA
5024







Nfe2l1
GTAAACTCCCTTTAGCTCCT
5025







Nfe2l1
GGCAGCCTAGGTAACAAGTT
5026







Nfe2l1
GCTAGGTAACAGGCGGTGGG
5027







Nfe2l1
GACCCTCAAGGACGGAATCT
5028







Nfe2l1
GGGTACCGGTTTCCGTTGCC
5029







Nfe2l1
GCAGCTAGGTAACAGGCGGT
5030







Nfe2l2
GATGTTTGTATGCGACAGTG
5031







Nfe2l2
GGTTCTGCAGGTCCAAATCA
5032







Nfe2l2
GTGAGACATCTAAGGCAAGA
5033







Nfe2l2
GAGATTACTGTATGACCTTG
5034







Nfe2l2
GGCATTCCTTTCTTCACCTC
5035







Nfe2l2
GAGAGGAGGATCAACAGTGG
5036







Nfe2l2
GGCAGTTAAAGAAGTATGTT
5037







Nfe2l2
GCTCTCCTGCCGACAGAGGT
5038







Nfe2l2
GGAGCTGCCACTCCCTGATT
5039







Nfe2l2
GGGCACGTGGGAGAAGTGGA
5040







Nfe2l3
GTGGTCCAGGTCACTACCAC
5041







Nfe2l3
GGAAAGTTGGAGAAGTTGGG
5042







Nfe2l3
GGGTGGGAGTGGAGGAAAGT
5043







Nfe2l3
GTGCTGCAATGCTGGCAGCT
5044







Nfe2l3
GCTGCCAGCATTGCAGCACT
5045







Nfe2l3
GTCACTACCACAGGGCTGCC
5046







Nfe2l3
GCAATCTCCAACAGCACACG
5047







Nfe2l3
GGAGAAGTTGGGAGGAGACA
5048







Nfe2l3
GGACACACTCATATCTGTTC
5049







Nfia
GATAGGAGAGAAAGCAGGAG
5050







Nfia
GCAAAGGCTGTAGTTGGAAC
5051







Nfia
GCCAACTGAACCAGAAAGCA
5052







Nfia
GTAGTTATATAGGCTAGTGT
5053







Nfia
GATGCCGTAGAAATGAATTC
5054







Nfia
GTTCACAATCTTGAGGAGGG
5055







Nfia
GAAACAACAGTGGTTTAGCT
5056







Nfia
GGATTTACCCTTCCTAACAA
5057







Nfia
GCATAGGACATTCGGGATCC
5058







Nfia
GTTTGCTTAAGCACATCCTG
5059







Nfib
GTTTGAGCATTTCCCTAATG
5060







Nfib
GCTCCATGTCGCCCTAGCTT
5061







Nfib
GAAATAACCTCTCCCTGGGC
5062







Nfib
GAACTTGATTCCCGGGACCC
5063







Nfib
GGGTGCCAGGATTTCGCTGG
5064







Nfib
GTTAAAGCTGGTATTATCAG
5065







Nfib
GAACGCGCGTTTGCAGGAGG
5066







Nfib
GAAGCAATAACAGTGTGGTG
5067







Nfib
GAGAAAGCAGAGGTCTCAGG
5068







Nfib
GAGAGAGTGCCCGCGCGAAA
5069







Nfic
GGGCGCGCATCCAATCTGAC
5070







Nfic
GTGCTGTCCCTAATATAGGG
5071







Nfic
GACTTGTGAGTGGACACTGG
5072







Nfic
GTCACTCACAGGCATCTCCT
5073







Nfic
GTTGGCTCGGTAGTGACACC
5074







Nfic
GCTGCTGCAGGGACTCAGGT
5075







Nfic
GAGCTATCCATTTGTAGAGG
5076







Nfic
GGTGGTTTGGTCAGTATCCG
5077







Nfic
GACATGGGATGTGAGGGCTG
5078







Nfic
GTCACTAACCCAGCAGGGTT
5079







Nfil3
GAAATGGGAGACAGAGCATC
5080







Nfil3
GTGCGTCACTGTCAGGAATA
5081







Nfil3
GATCCCTAAGTAGGTAGAAT
5082







Nfil3
GAAATGTCCCGCTCCTCTCC
5083







Nfil3
GCGTCCGGTGTTACACCCTG
5084







Nfil3
GAACTTGCCTGACTCACCCA
5085







Nfil3
GAGGATAAATCTCCTTTCAC
5086







Nfil3
GGTGGCAAGGTCCTTGAGCT
5087







Nfil3
GTTTCCCGGAGAGLCACAGA
5088







Nfix
GGGAGGAATAGAGCAAATGA
5089







Nfix
GCCATTGAACAGAAAGGCCA
5090







Nfix
GGGAAAGTCCACACAAGTTG
5091







Nfix
GGCCATGTTTGCAATTGTTT
5092







Nfix
GGCGCTGCCTTCCCGTATAT
5093







Nfix
GTGCTGCCCGTTTAGGGTAT
5094







Nfix
GCGTCCATGCTCATAAACCA
5095







Nfix
GTCCCAAACCTCTGAGATGG
5096







Nfix
GTAGGACATAGAGAACTGTT
5097







Nfix
GAAGGCAGAGGGCCTTTAGG
5098







Nfkb1
GACTCTCTAATATACAGTGT
5099







Nfkb1
GAAATTGTAACCTACGGGCC
5100







Nfkb1
GATTTGTAGAAGTTTGAGTG
5101







Nfkb1
GCCATTACTGAGGCGTTGAA
5102







Nfkb1
GATCGCTCCATAGAGCGGAC
5103







Nfkb1
GTCTCACTACTGAGTTCAAG
5104







Nfkb1
GTTGATTACAGGGCTCTTTA
5105







Nfkb1
GTTCTAACCAATGATGCCTA
5106







Nfkb1
GAGGCTCTGGAGAACTCCCA
5107







Nfkb1
GTTTGGTTGTTCCATGGCAG
5108







Nfkb2
GTTTGCTCCAGGCTGCGGAG
5109







Nfkb2
GATGTTTATTCTGTAAGTGG
5110







Nfkb2
GAGGGACCTCCTAGCTGGGA
5111







Nfkb2
GAGGACTTTAGATGACAGGC
5112







Nfkb2
GGGACCTCCTAGCTGGGAAG
5113







Nfkb2
GCTGTGCACAGGCAAGCTAA
5114







Nfkb2
GCCTTTCAAGTCAAATAGTT
5115







Nfkb2
GTGCGCTGTGAGTGCGTGTG
5116







Nfkb2
GGACTTTAGATGACAGGCTG
5117







Nfkb2
GACAGGGTGGTGTGAAACTT
5118







Nfkbib
GTTCTTTGGGTAGAAAGGAA
5119







Nfkbib
GCCGGCGGCCATATTGATAA
5120







Nfkbib
GTACAGGCCTGAGAGCACGA
5121







Nfkbib
GGAGATGCAGTGAAGGTAGG
5122







Nfkbib
GAGCTGTOACAGCCTGCTGT
5123







Nfkbib
GGCGAGACTGGACTGAAGGA
5124







Nfkbib
GCATTCAGTGGTTGTAGGCA
5125







Nfkbib
GTCGTATAAGTGAAGTGATA
5126







Nfkbib
GGAGTACCGGGCAAACTCTG
5127







Nfkbib
GGGAGACAGGATCTACCTGA
5128







Nfya
GCGGTGTCAAATCCAGGAAG
5129







Nfya
GCGCCCGCTCTCGGTAGTAA
5130







Nfya
GCCTGCGTGGTATATAATTC
5131







Nfya
GTAGCTATTCTGAAGAGGGA
5132







Nfya
GCCCTCCTCCAAGCAGGGAA
5133







Nfya
GTTGCCCTCCTTAGGGTAGG
5134







Nfya
GGGTCATCCTTCACCTGCAA
5135







Nfya
GAGAAGCAGGGTTGAAGCAG
5136







Nfya
GCTTAGAAATAGGTGGGCAG
5137







Nfya
GAGGATTGTCGAATGGGTGC
5138







Nfyb
GCTACCATTCTCCCTTGTGG
5139







Nfyb
GGTACAGGGTGGAAGTCGGC
5140







Nfyb
GAGGAGGGTGTCCTAGAATT
5141







Nfyb
GCTGTGTGCCTGAGGTGGCT
5142







Nfyb
GGAAGGCCTTAAATGCACAG
5143







Nfyb
GGTAGTAAGCCAACTTGGTA
5144







Nfyb
GTAAATCTGGCTAGTAAGAA
5145







Nfyb
GGATGAGAACGCCGGCCTCT
5146







Nfyb
GGTAAATCTGGCTAGTAAGA
5147







Nfyc
GCTGCGCACTACGCGTTGCT
5148







Myc
GGAAACAGTCATGCTGTTAC
5149







Nfyc
GTCTACAGTAATATCAGCTA
5150







Nfyc
GGGTTGTGCATTGAGGCAAC
5151







Nfyc
GCAGGAAGGGCTATAGCCCA
5152







Nfyc
GTAATACATGCCTCTAATCT
5153







Nfyc
GATAGTCTGTGATGTAATCT
5154







Nfyc
GGAGCAGGAGGTCTTTCCCA
5155







Nfyc
GAAACATTCTAGGGTGCTGA
5156







Nfyc
GTAATTTCACTGCTTCTGAT
5157







Nhlh1
GGTCCTAGTCCTCCTTATCC
5158







Nhlh1
GACCCAGGTCCCGCAGACTT
5159







Nhlh1
GCACAGTGAGCTACAGTATA
5160







Nhlh1
GCAAAGATGAGGAGAGAGGA
5161







Nhlh1
GAAGAACCTTGAGAGACCAC
5162







Nhlh1
GTTCATCCCAACTCCCTACA
5163







Nhlh1
GGAACGAAGGCCTGAGGAGG
5164







Nhlh1
GTGTTAAGGCGTCATCCAAA
5165







Nhlh1
GGGAAGACAGAGAGGTAGGG
5166







Nhlh2
GGAGGTGGAAGATCCAAGAA
5167







Nhlh2
GGAGTGACGATGTGGGAGAG
5168







Nhlh2
GTCCCTGGTCACCCTCGTGT
5169







Nhlh2
GAAGGCTGGGCATCTGTGAG
5170







Nhlh2
GAGAGGAAGGTTTCCCAGCC
5171







Nhlh2
GAAAGCACAGCTGCTAGGAT
5172







Nh1h2
GGAACAGGGAGACAGGAGGT
5173







Nhlh2
GTGTCACAGCAAGCTGATGA
5174







Nhlh2
GGGAGCCAGGAGTGACGATG
5175







Nhlh2
GGGATACCTGGGTTGAGCAG
5176







Nhlh2
GAGGATGCTCAAACCATGGC
5177







Nkx1-1
GCGGGATCAGTTGGCTGTGG
5178







Nkx1-1
GGCGGGAGTCAAAGCCAGTG
5179







Nkxl-1
GGGAGCAAAGACCAAGATGG
5180







Nkx1-1
GTCAAAGCCAGTGAGGATGG
5181







Nkx1-1
GCTCATGTCAGAATATTGAG
5182







Nkx1-1
GAAGTGGAAGGAGGAGCAGA
5183







Nkx1-1
GTCCCACCTGGGTCCTTCAG
5184







Nkx1-1
GAGCCCGGCTTTGGAGGATG
5185







Nkx1-1
GACCTGCCTGCTGATGGGTA
5186







Nkx1-1
GTGGACTGTGCTCTGGCTCC
5187







Nkx1-2
GTAAGAAGTAGGAAGAGGAG
5188







Nkx1-2
GATTTGCACGCATTGTCCCT
5189







Nkx1-2
GGATATGTGTGTGTGTGCGG
5190







Nkx1-2
GGCTGTCCTCCCTGGAGACT
5191







Nkx1-2
GGCAAGGCTTTAAAGTCGGC
5192







Nkx1-2
GCCCTAAGCCTTCAGCTCTC
5193







Nkx1-2
GGCATCACATCCCAAAGCAG
5194







Nkx1-2
GCAATCAGGTCTGGCCTCTG
5195







Nkx1-2
GGACAATCGCTTGAGAAGCC
5196







Nkx1-2
GTTCTGTGTGATCGTGGCTG
5197







Nkx2-1
GTGTGCATACACACTGTATG
5198







Nkx2-1
GGATTAGCTAGGTTAGTGCT
5199







Nkx2-1
GTGCATACACACTGTATGTG
5200







Nkx2-1
GTGTCTAGGAGGCACCTGCC
5201







Nkx2-1
GGTGGTCATAGGAACACCAA
5202







Nkx2-1
GACTCAGTTCCACTCTGCAA
5203







Nkx2-1
GTGTCAGTGACTTAAATAAT
5204







Nkx2-1
GCGTTGTGTCTCTGTAGCTA
5205







Nkx2-1
GGCAAGTGGTAGATCTGGTT
5206







Nkx2-1
GCAGGAGGCACCAGCCATGA
5207







Nkx2-2
GTTGGGAGGGTAGAGGGCCT
5208







Nkx2-2
GGCCCAAGCAGCTGTGAGCT
5209







Nkx2-2
GGTTGAATGCCATGACAACT
5210







Nkx2-2
GTTCTGCTTCGCCTGGACTA
5211







Nkx2-2
GGTTTCCTTAATATTGTGGA
5212







Nkx2-2
GTCACAAGGCTCTAGAAACC
5213







Nkx2-2
GGTGAAGACCCAGAAATCCA
5214







Nkx2-2
GGGCGGTCTAGAGAAGGGAG
5215







Nkx2-2
GCTCTAGCAGTGGCAGGGTT
5216







Nkx2-2
GAGCACTGCTTGGTTGGACC
5217







Nkx2-3
GGTTCACCCACCCAGGGTTC
5218







Nkx2-3
GGAGAGGAGTGTTGTATCTG
5219







Nkx2-3
GAGCCGAATTGCCTCTTCTA
5220







Nkx2-3
GTTTCAGAAAGTTGAGGCCT
5221







Nkx2-3
GTCTGAIGGAGACCACCTTC
5222







Nkx2-3
GGGTGGGTGGAAGTCTCCAG
5223







Nkx2-3
GCCTGGCCTGAGTCAGTATT
5224







Nkx2-3
GCTGTCTGCTCCCTACCTGC
5225







Nkx2-3
GGGTACCCAACAAGGATCCC
5226







Nkx2-3
GGAAAGAAAGAACTGCGGGT
5227







Nkx2-4
GTGAGCTTGATAATAGACTC
5228







Nkx2-4
GTATGGTGCTCCTACTCTCA
5229







Nkx2-4
GGACTTGGGACACTTGAGCT
5230







Nkx2-4
GTGAGGAGAGGAAATGGGAA
5231







Nkx2-4
GTGTTGTGAGGAGAGGAAAT
5232







Nkx2-4
GCGAAGGATGGAGCTAGAAA
5233







Nkx2-4
GAGTCCAGGTTAAACTTTGG
5234







Nkx2-4
GCAAAGAATCTGCCTGTTGT
5235







Nkx2-5
GTTATGCTGAGTCTAAACGC
5236







Nkx2-5
GGGAGTCCTGTTAAGTGAAT
5237







Nkx2-5
GTTGTGCCTTTCAGAGCACA
5238







Nkx2-5
GGGTTCTGAGCTGAATGGAA
5239







Nkx2-5
GATCGGGCTAGAAAGGGTCT
5240







Nkx2-5
GCTGAGTCTAAACGCAGGGT
5241







Nkx2-5
GCGGCTGATTGCAGGAAAGG
5242







Nkx2-5
GATTGAAGATTGGTTTGTGT
5243







Nkx2-5
GTTGAAAGGGACAGAGACAA
5244







Nkx2-5
GATAGTCTCCCACTCCTGCA
5245







Nkx2-6
GGGTTTGGAGGGCTAGTTAG
5246







Nkx2-6
GAAGGCTCAGGGTTAGCACG
5247







Nkx2-6
GCTTAAGAGCAAAGACCTGG
5248







Nkx2-6
GAAAGCAGGGAGCCAGCCAG
5249







Nkx2-6
GGGTTAGCACGTGGTTTCTG
5250







NkX2-6
GTGCTATCTAGACCTGGGAG
5251







Nkx2-6
GAGATCAGTGGACCACTTGA
5252







Nkx2-6
GTACAACAGAGAGCTCCCGA
5253







Nkx2-6
GTGGTTTCTCTGGGAACCAA
5254







Nkx2-6
GGGAGAGTGCTGTTCAAACT
5255







Nkx2-9
GGGCTCAGTTGGGAGGACCA
5256







Nkx2-9
GCAATGTACAAGTCTTCCTT
5257







Nkx2-9
GGACCCTGAGTCTGGGACTC
5258







Nkx2-9
GTCTTGGGAGAAAGCAGGAG
5259







Nkx2-9
GTTTGAGCAGGGAAATGACC
5260







Nkx2-9
GGCACCGACTTGGGAGATGA
5261







Nkx2-9
GCTGAATTCGAACCTGACAA
5262







Nkx2-9
GAGCCAGAGGAAGACTAGAA
5263







Nkx2-9
GCACCGACTTGGGAGATGAA
5264







Nkx2-9
GCCAGAGGCAGAGGATGCAC
5265







Nkx3-1
GGGAAACCAGGAAAGGTTAA
5266







Nkx3-1
GGCATAGCCACTGCACCACT
5267







Nkx3-1
GGAATCAGAACTGAGCAGGC
5268







Nkx3-1
GGTTAAGGGCTCATCAGGGA
5269







Nkx3-1
GCAGTTACTCACTGTTTGGA
5270







Nkx3-1
GGGCTCCAGGTGACCCTCAA
5271







Nkx3-1
GTTGTCTAGATGTGTCCAGC
5272







Nkx3-1
GGTACAGTGCTATTTCAGTT
5273







Nkx3-2
GCTGGAGAAGGAACAGATTG
5274







Nkx3-2
GATGTTAATTTCAGAAGCTG
5275







Nkx3-2
GCGAGGAATTGGAAAGCATT
5276







Nkx3-2
GTGAGGAATGACACTCTGAT
5277







Nkx3-2
GTGAGCTCTGGACATGCTGA
5278







Nkx3-2
GTGTGATGGCCTGTGGACAT
5279







Nkx3-2
GGACCCTGCAGCATCTTCAT
5280







Nkx3-2
GCGAGGCGGACGACTTTGAC
5281







Nkx3-2
GGAATGACACTCTGATGGGA
5282







Nkx3-2
GTGGATTGGCTGGTTCCAAC
5283







Nkx6-1
GCCTGCCAGTCTCTAGGCTC
5284







Nkx6-1
GTGATAATGATCTAGGGAGT
5285







Nkx6-1
GGTTTGAAAGCAGCAAACCC
5286







Nkx6-1
GAGCTAATGGAGCAGGCAGG
5287







Nkx6-1
GCCTCTAGCCAGGTGCTGTC
5288







Nkx6-1
GTGTCACTGACTGCCCTTTC
5289







Nkx6-1
GGGTTTAGGTAGCAGAGGGC
5290







Nkx6-1
GGTCCAGACACCGTTGGAGG
5291







Nkx6-1
GATCATTATCACTTATGAGG
5292







Nkx6-1
GGGCAGTTGATACACCAGTG
5293







Nkx6-2
GGATGAATGAAGCGGGAGTG
5294







Nkx6-2
GAGACAGGGTAGGTGTGCTC
5295







Nkx6-2
GCTTAGTTCAGGGAAGAGCC
5296







Nkx6-2
GTGGGCTGTTGTGAACTTGT
5297







Nkx6-2
GTGCCTAGTGGTCCTGTCCT
5298







Nkx6-2
GGCGAACTATGAGACAGGGT
5299







Nkx6-2
GTTCAGGGAAGAGCCTGGGA
5300







Nkx6-2
GGGCGAATGGAAATTTGTTA
5301







Nkx6-2
GCATCTCCGTAGGTGGGCTG
5302







Nkx6-2
GGTCCTGGCGATTTAAGCAG
5303







Nkx6-3
GAGCAATCACTATTCTCTGG
5304







Nkx6-3
GAACAGAGCTACACAGAAAG
5305







Nkx6-3
GGCATTCCAcTGAAGAATGG
5306







Nkx6-3
GAGACCTAAGCAGGGCAGTC
5307







Nkx6-3
GATGAGCCAAGAAGAAGCGA
5308







Nkx6-3
GTCCACCAATGCCCAGATCC
5309







Nkx6-3
GGCTCATCTTTGGGAGTTCG
5310







Nkx6-3
GCGTCACATTCATTCCGACA
5311







Nkx6-3
GTAGGGACTGGAGGCTCCTG
5312







Nobox
GAGAGACTTCTGACAGGAGT
5313







Nobox
GGGTCAGCACTTCTAAGAAG
5314







Nobox
GACTTCCAATAAGCTGCTGT
5315







Nobox
GTTTAGTCTCCTCCAGGCCT
5316







Nobox
GCTTCCCAAGGAAGGCCTTG
5317







Nobox
GCCTGCTTGATGGAAAGGTA
5318







Nobox
GGAGCAGAACAGCAATGGAA
5319







Nobox
GCTCATATTCAAGGGTCAAG
5320







Nobox
GCATGGTGCTCTTGCTGGTG
5321







Nov
GCTGGAGAGTCAAGTCAAGC
5322







Nov
GGTTGGAACTGTGAGGGCGG
5323







Nov
GGAGCCATATGAGCTGGGCA
5324







Nov
GGAGGCGTCCATCAGGTTAG
5325







Nov
GCTGATTCTTGACCCTCTCC
5326







Nov
GCAAAGTTTAGGCAGAGGTA
5327







Nov
GTGCCATCTTGGAGTATTAG
5328







Nov
GACTAAGCTTTGCCTAAAGG
5329







Nov
GGGAAGAAAGGTGTAATTTA
5330







Npas1
GCTGGCAGAGCTTCCTGATG
5331







Npas1
GAGGCATAGAGACAAGACCT
5332







Npas1
GTGAGGATGCICCTACACTC
5333







Npas1
GGCATCCTGGAATTCTCACT
5334







Npas1
GTTACAGAACCTTCCAACAT
5335







Npas1
GCGATCGTGGTGGGACTCCA
5336







Npas1
GTGTGCTCACACGCATTCCA
5337







Npas1
GGGAACTATCCAGCAGGCAG
5338







Npas1
GTGACAGTTAAAGCTGCGCA
5339







Npas2
GTGTTTCTTCTCACCCAGGA
5340







Npas2
GAGGTGAGTCCTGCGCACTC
5341







Npas2
GATCTCTGGACGCCAGTAGA
5342







Npas2
GGCAGGGTTTGTAGGATGCT
5343







Npas2
GTCCTGGCTCATGGTGTTCT
5344







Npas2
GGCTAGACCAGCCGGAAGAG
5345







Npas2
GGTGCAGGTCCAGTTTGCAC
5346







Npas2
GATAGGTAGCCAGGAGCCAA
5347







Npas2
GTCAGAAACAAGCCTGAGGA
5348







Npas2
GTGAGAGTGAACGCTGTTCG
5349







Npas3
GAGCATTTCTACCTGGGTTA
5350







Npas3
ACAGTCACAGGGAGACTGGG
5351







Npas3
GAAAGATTGCATGGCACTAC
5352







Npas3
GGAGAACTTGATAGTTATCT
5353







Npas3
GTGAGCGGAAGAGTTGGTCT
5354







Npas3
GGGTTTCACTGAGCTAGGGT
5355







Npas3
GCCTGCACAGAGCAAAGGGC
5356







Npas3
GACGCCTGCCTTTCATTAGG
5357







Npas3
GTTTCCAGAATCATCAGGGT
5358







Npas3
GAAATAACCACCATCCGGGC
5359







Nr0b1
GATGCTGGATCGAGGAGCTG
5360







Nr0b1
GTTACTATCCTATGATGGTT
5361







Nr0b1
GAGGTCAGAGTCTAAGTTAA
5362







Nr0b1
GACCTTAAGGTGCAGGACTT
5363







Nr0b1
GGGACACTATCAGGAATAAA
5364







Nr0b1
GAACACTGAGCCAATGGGTA
5365







Nr0b1
GGTGACGAAGGCCAGCAATT
5366







Nr0b1
GGAACACTGAGCCAATGGGT
5367







Nr0b1
GTGGAGTGAAGAAGGAAAGG
5368







Nr0b1
GGATGCTGGATCGAGGAGCT
5369







Nr0b2
GAGACAAATGTCCAGGACAG
5370







Nr0b2
GAGAGAACAAACAGAGCTCA
5371







Nr0b2
GCGATAAGCCACTTCCAGGC
5372







Nr0b2
GTTCTACCCATACTGTAGGT
5373







Nr0b2
GAACCCTGGTCTTATGTGCA
5374







Nr0b2
GTCTCTAGIGGTCAGAGGTA
5375







Nr0b2
GGTTCTACCCATACTGTAGG
5376







Nr0b2
GTGACTGCTCCTTTCCATCA
5377







Nr0b2
GTATGGCCCACCTACAGTAT
5378







Nr0b2
GAGACTGTAAGGTCTTCCTG
5379







Nr1d1
GGGTAGGACTGGCATAGCAC
5380







Nr1d1
GCAAGGGCATGTGAATTCCT
5381







Nr1d1
GGGAGGAGCTAAGACAAACA
5382







Nr1d1
GAGGTAGTACTGGGACTAGG
5383







Nr1d1
GTGAGAAACACAGAGGCCTG
5384







Nr1d1
GTTGGCTGGGAGGAGGGAGA
5385







Nr1d1
GCTCCTCCCAGTTCCTCCCA
5386







Nr1d1
GATCTCAACGTGCCGGCTGC
5367







Nr1d1
GCTGGGAGGAAGGGAAGGAG
5388







Nr1d1
GGCAAGGGCATGTGAATTCC
5389







Nr1d2
GCTCAGAGTCCTGGAAAGCT
5390







Nr1d2
GCAGTAACCATGTGGGACCA
5391







Nr1d2
GGAGCCTGTATAGAGGAAGT
5392







Nr1d2
GAGGTCAGGACCGCTCGTTG
5393







Nr1d2
GGGATAAGCGGCTGCGAGAC
5394







Nr1d2
GGTCCACGGATTGGAAGAAG
5395







Nr1d2
GCGAGACAGGCTGGGAAGGA
5396







Nr1d2
GAGCAAACAACCTCTAGCAG
5397







Nr1d2
GTCACCTCCATGGTCCCACA
5398







Nr1h2
GATTCCCAACTGTCCATAAG
5399







Nr1h2
GCTGCGAGGAAAGTGAGGGA
5400







Nr1h2
GACAGACTTCCGGTCTGCCA
5401







Nr1h2
GGAGATGGCAAGATGGTTAC
5402







Nr1h2
GAGGTTATCTGAGGTTGGAC
5403







Nr1h2
GAGATGCTGGCCCTGGAAGC
5404







Nr1h2
GCGTCACTTCCGGAAGTAGG
5405







Nr1h2
GAGAGCTGCGAGGAAAGTGA
5406







Nr1h2
GGAAGTAACTTCAGAAGCCT
5407







Nr1h3
GAGGGAGCGCCAAGAGTAAA
5408







Nr1h3
GGGTGAAGACAGGCAGGTGC
5409







Nr1h3
GGGAAGGGTGAACATGGTTG
5410







Nr1h3
GAGCCTGTGAGCAGGAAACT
5411







Nr1h3
GACTGGGAACACGTGCAAGA
5412







Nr1h3
GAGGCTGCTGGGATTAGGGT
5413







Nr1h3
GAAGAGATTAGGGAGTCAGG
5414







Nr1h3
GAGGCAGAAGCTGAAGATGG
5415







Nr1h3
GACAGTGCTGCCTCTTCTAC
5416







Nr1h3
GAGGTGTCTTTGGGAGGAGG
5417







Nr1h4
GGAGGAGAAAGAAATGTATT
5418







Nr1h4
GGGATTCTCCAAACTGCTTC
5419







Nr1h4
GATACATGTAGAGGAGCTGA
5420







Nr1h4
GGATGTCAGCAAATTATGGC
5421







Nr1h4
GGAATAATTCCAACCATCAC
5422







Nr1h4
GGATCTTTACCTTTGTAACT
5423







Nr1h4
GCTGGAGGTTAAATGCCACA
5424







Nr1h4
GATCAAGGTGTTTACAAAGG
5425







Nr1h4
GTTCTTAGGAGATTAGAGGG
5426







Nr1h5
GTCCCAGCACCTATGTTAAT
5427







Nr1h5
GATCATTGCTGGCAAGGCAA
5428







Nr1h5
GAACTCCTCACTTACCCTTA
5429







Nr1h5
GATCTTGCTGCTGCGTGTCT
5430







Nr1h5
GAGAGCTGTACAGAAAGAAC
5431







Nr1h5
GAGCTGTACAGAAAGAACAG
5432







Nr1h5
GCACTGCTCTGCAGAGTGTC
5433







Nr1h5
GATGAAATCAAACGGACAGG
5434







Nr1h5
GTCACATCTTCTCTGACGGA
5435







Nr1i2
GGAGGAAATAGCTTCGAGAC
5436







Nr1i2
GAAGAGCATTTCTCTCCTTT
5437







Nr1i2
GAGTCACTCCCACGCATGGC
5438







Nr1i2
GGACAAGACGGGCTCCATTG
5439







Nr1i2
GGGACACTTATTTCCACGAG
5440







Nr1i2
GAGTGACTCAGGTCCTCTCT
5441







Nr1i2
GCCAGAGAACCAGAGAGAAT
5442







Nr1i2
GGGAAATTGAACAAACCAGA
5443







Nr1i2
GCTAGCTCGGGTGCTGGACT
5444







Nr1i2
GGAGTGACTCAGGTCCTCTC
5445







Nr1i3
GTGTTGGTTGGTGGCAGATG
5446







Nr1i3
GTGCCTGCTGAGGTCAGAAG
5447







Nr1i3
GTAGCATTGGGCAAGCTATG
5448







Nr1i3
GTATCAGGGTTGGAGCCTGG
5449







Nr1i3
GACCTCAGCAGGCACAAATA
5450







Nr1i3
GCATGGATCCTGAATAAGCC
5451







Nr1i3
GGATCCCACTTTCTTACGTG
5452







Nr1i3
GCCACCAACCAACACTTCTC
5453







Nr1i3
GGGATCCCACTTTCTTACGT
5454







Nr2c1
GCAGGAACTGTTAACTATCT
5455







Nr2c1
GGAGTCTGTGTAGGATAACA
5456







Nr2r1
GACACCAGAGTTGCAGGTAT
5457







Nr2c1
GTACCCTTCTCCCTCGAATC
5458







Nr2c1
GCCAGTGAGGTTCATCTAAA
5459







Nr2c1
GCAGAATCCTGAGCCGGAGG
5460







Nr2c1
GTGCCCAAGACGGCAGAGAA
5461







Nr2c1
GACTTAAGTCCATGAACTGG
5462







Nr2c1
GAAACTCTGACTCAGCCTCA
5463







Nr2c1
GCTGGAGAGAGCAGAGGCGA
5464







Nr2c2
GGATATCACCTTACTTTGGA
5465







Nr2c2
GGACACCTCAGGAGAGTTTA
5466







Nr2c2
GTTCACCGGTGAAGTTAGCC
5467







Nr2c2
GGCCGTGGCCCTCCTATAAG
5468







Nr2c2
GGCGGGCTTGCTCTTACCTC
5469







Nr2c2
GCTGCTCTTACCCTCAGGGT
5470







Nr2c2
GCATGTTACTGAGCTCTCCC
5471







Nr2c2
GAGCTCCCGGTACCTTCCTT
5472







Nr2c2
GAAAGCTACCATCCATCCCA
5473







Nr2r2
GGTACCTTCCTTGGGATGGA
5474







Nr2e1
GTGGGAAAGAAAGAAGTCCT
5475







Nr2e1
GACGAGTTGAGAGTGAATAC
5476







Nr2el
GTACACGCAATGGAGGCGAG
5477







Nr2e1
GGGAGGAGATGGGAAGAGGG
5478







Nr2e1
GTTCTCTCGGTGTGGAGTGG
5479







Nr2e1
GAGTCAGCAGGCACTGCAGG
5480







Nr2e1
GACCCGGTCCTTGGATCTGC
5481







Nr2e1
GGTCTGACGTCAGCCATGTG
5482







Nr2e1
GTTTGAGCTGTGCCGCGAGC
5483







Nr2e1
GCAAAGATGTGGGCAAGTGG
5484







Nr2e3
GAGGACACTGAGGGTCTTGA
5485







Nr2e3
GCAGAGGGTATTGGGCAGGC
5486







Nr2e3
GAGGGTCTTGAAGGATGGTC
5487







Nr2e3
GCCTGCCCAATACCCTCTGC
5488







Nr2e3
GCAGCCAAGTCAGGGCTTCA
5489







Nr2e3
GCCGAGATGAGGCAGGACCT
5490







Nr2e3
GAGGGTTAAGCCCACTTAGG
5491







Nr2e3
GAGGAAGAGAGACTAGGGTA
5492







Nr2e3
GTCGAGAGCCACCAGGTTAG
5493







Nr2e3
GCAAACAAGTAGAGTGGGTA
5494







Nr2f1
GGAGCCAAGAGAAGGGCTGC
5495







Nr2f1
GTTTGGAGTTTGAGCATCCT
5496







Nr2f1
GGAGGAGAAGAGAAAGTGAG
5497







Nr2f1
GTAACTCCTCATATTGTTGT
5498







Nr2f1
GTACGCAGATGATGGAGAGG
5499







Nr2f1
GATGATGGAGAGGCGGGACA
5500







Nr2f1
GTGTCAAGGAGCCAAGAGAA
5501







Nr2f1
GCGCTGCCTTCCTGAATGGC
5502







Nr2f1
GAAATGGCACAGGCGGCAGC
5503







Nr2f2
GTCTCATCAGTTACAAAGAG
5504







Nr2f2
GATGAGTTGCCAGGTCTAAT
5505







Nr2f2
GACAGAGTGTGAGACAAGGA
5506







Nr2f2
GATGCAGAGTAGGACACTGC
5507







Nr2f2
GCCATCGAAATCAGGAGGAC
5508







Nr2f2
GTATTATTGCCATTTGGAGC
5509







Nr2f2
GCTCTGGTCTTTGTCTTAGA
5510







Nr2f2
GGCTTCAAGACAGAAGTAGG
5511







Nr2f2
GAATTCTCACAATCAACTAG
5512







Nr2f2
GTGGGTTCTACATAATGCGC
5513







Nr2f6
GGTTGGGTCCCAAAGGTTAG
5514







Nr2f6
GACATTTGACCTTGTGGTTG
5515







Nr2f6
GCTTGCTCCAGTAGAATTGG
5516







Nr2f6
GCTTGCCTGAATTCGATTCT
5517







Nr2f6
GTATCCAGGTGGATTCTTCT
5518







Nr2f6
GATTCTGGGCACTGCATGAT
5519







Nr2f6
GAAGAAAGGCTCTGGAAGAG
5520







Nr2f6
GGCCAGAGAGAGGGCTTAGG
5521







Nr3c1
GTCACTGCTCTTTACCAAGA
5522







Nr3c1
GACTCTTCTGCTCAGTTTGC
5523







Nr3c1
GGTGTTATGGTGTTGCTTTG
5524







Nr3c1
GTCCCTGGAACTCAGAAAGA
5525







Nr3c1
GTGATTAAGGAAGCCTTGCG
5526







Nr3c1
GCTCTTCATAACTCCTCTCC
5527







Nr3c1
GATCCCATAATTTACATGAA
5528







Nr3c1
GAGGAAGGTGGAGAGAGGGC
5529







Nr3c1
GTGTTGTTATGGTTTCAGGC
5530







Nr4a1
GCCACCTAGGAGAAGAAGTG
5531







Nr4a1
GCTAACGTGTAGTCTCGTTG
5532







Nr4a1
GACCTTACCCTAGGGTACAC
5533







Nr4a1
GGGTTCATGCTCCACATTGG
5534







Nr4a1
GGCCTGCAAGGATGAAGTGT
5535







Nr4a1
GAGAGGGAGCTGTTGGCACC
5536







Nr4a1
GTGGCITCCATATTTAAACA
5537







Nr4a1
GAGTCCTGGGCTAGTGTTGT
5538







Nr4a1
GCAGCAGAAATCGGGAACCA
5539







Nr4a1
GTGCAGGTCCTGTCTTCACC
5540







Nr4a2
GACTGTCTGAAGATAGCTGC
5541







Nr4a2
GTTCCAGGAGAGCGGGTATC
5542







Nr4a2
GGCCACAAAGATGTAAAGAA
5543







Nr4a2
GAGCCAAATGCCTCAGGCAT
5544







Nr4a2
GTCAAGGCTGCCATCTAAAG
5545







Nr4a2
GTGTGAGGACGCAAGGTCTG
5546







Nr4a2
GACCTCTCATCCTTCGAAGC
5547







Nr4a2
GTCCTTTCTTTACATCTTTG
5548







Nr4a2
GTTCCTATGCCTGAGGCATT
5549







Nr4a2
GTGAAAGGGACTGAAGGGCT
5550







Nr4a3
GCAGGCGATGTTTCTAAATT
5551







Nr4a3
GATTGAAGGAGGATCTTCTC
5552







Nr4a3
GTTCGACCCTGTCTGATGCC
5553







Nr4a3
GGCGATGTTTCTAAATTGGG
5554







Nr4a3
GATTAGCAGCCTGCACAAAC
5555







Nr4a3
GAGGCTGAGAGTGTAGGAGG
5556







Nr4a3
GATAATGCCACTTATGTGTG
5557







Nr4a3
GGAGACATGACATCTTTCCA
5558







Nr4a3
GCGCAAGATACCCTCCAGGT
5559







Nr4a3
GGTGCTTCACTTCTTCTTGG
5560







Nr5a1
GATATGGTCCATTGGTAGCT
5561







Nr5a1
GCTTGTCCCAGATCTGAGTG
5562







Nr5a1
GTTGGTGTTTCTCTTCATTT
5563







Nr5a1
GGCAGCGGCTTGTTAGCGAC
5564







Nr5a1
GAGGCTGGCCATTAGAGGCC
5565







Nr5a1
GGGCATGAGTCCACAAAGTA
5566







Nr5a1
GCCCTTCATCCATCTACCCA
5567







Nr5a1
GGTGTGGCTICAGGGACTTC
5568







Nr5a1
GTTCCTCAACACTCTGGCTT
5569







Nr5a1
GGCACCTAAACCTCAGGGAT
5570







Nr5a2
GGTATCGGTGGTCCTAGCCT
5571







Nr5a2
GCTAAGACTTCTTCTGTGTG
5572







Nr5a2
GAAGAAAGCTCACTGATAGG
5573







Nr5a2
GTATCGGTGGTCCTAGCCTA
5574







Nr5a2
GTAGTGACAGCCCTGAGCAT
5575







Nr5a2
GTGAGCTGTAAAGAGAACCT
5576







Nr5a2
GCTCCTTAGTTTGAGGAAGA
5577







Nr5a2
GAGTCACTGAGTTCAGAAGA
5578







Nr5a2
GGGATGATCTTAAGCTGGGA
5579







Nr5a2
GTCCTCTTATCAACCGGCAC
5580







Nr6a1
GATGACGGTCGGCCGTAGTT
5581







Nr6a1
GAATCAGGAAGGCTGTAGCA
5582







Nr6a1
GAAATGTAGTCCTCCCAACG
5583







Nr6a1
GGAAGACAGAAGAAATGGAA
5584







Nr6a1
GATAGCGTGTATGTGAGAGT
5585







Nr6a1
GAAGAGGCATGGGAGCAACG
5586







Nr6a1
GCTTCGATACGGCCCATTAG
5587







Nr6a1
GGTCCCTCTGTATTCCCAGA
5588







Nr6al
GCTCTCACATACAAATGAAG
5589







Nr6a1
GGCCTGTTTGCCTCTCTACA
5590







Nrf1
GGAGCTAATGCAGAIGTCGC
5591







Nrf1
GTTTGGAGAGATGAAATGAA
5592







Nrf1
GTTGTGTTATTTCCCTGTTT
5593







Nrf1
GTTTGCTAACAGGTGCAcTT
5594







Nrf1
GTTAATGCTGTCTGACACTA
5595







Nrf1
GCAATGCCCAGAACCCAGGC
5596







Nrf1
GTCTTACACAATCTAGGCGC
5597







Nrf1
GATTCAGTGTGCACTCTCCA
5598







Nrf1
GGTTACTACTATCCAGTCTT
5599







Nrl
GCACCTATTTAAACAGCTTC
5600







Nrl
GTATGATTCTCAGGGACCAG
5601







Nrl
GTCGGAGTATCTTTGTGCCT
5602







Nrl
GGCAGGTTTAAACATCTCCT
5603







Nrl
GGGATAGTAGGACTTAGCCA
5604







Nrl
GACGAGTCAGGGTGAAGGTA
5605







Nrl
GCCTCATCCAATAAGATGAA
5606







Nrl
GCGTATATGTCTCCTTGACA
5607







Nrl
GTCAGGGTGAAGGTAGGGCA
5608







Nrl
GGCTGAGAATTGTGTTTCCA
5609







Ntrk1
GCCTGCCTCTTATCAGTCAG
5610







Ntrk1
GGTTTAAACTCAGACTTTAC
5611







Ntrk1
GGGACATTAGGAAGGCGAGC
5612







Ntrk1
GGTGTTCTGGAGGGAGATGG
5613







Ntrk1
GCCACTTCACACTGGAACCT
5614







Ntrk1
GGCGGAGAGAACAGAGAAGT
5615







Ntrk1
GCTGTCCTTGGGATCTGGCC
5616







Ntrk1
GTATCCTCCAGGGAGAAAGG
5617







Ntrk1
GGATACCTGGAAGACAACCA
5618







Ntrk1
GCGCAAGACTTGCCATTTAG
5619







Numb
GGGACTCGACCACTAAGTTT
5620







Numb
GGGCGGTAAAGAGAGGATGA
5621







Numb
GGGCGGTAAAGAGAGGATGA
5621







Numb
GCTATTGTTTCCGATCTGCT
5623







Numb
GGTAATCCTCCTTTGTCAGT
5624







Numb
GAGTCAACCAATCGCAGCAG
5625







Numb
GGTTCCAGAAGATAACTAGG
5626







Numb
GCACACTTAGAACTAACCAA
5627







Numb
GATTTCTAAGAGGCCCTGTG
5628







Numb
GCTTGGAAGTGGTAGTGGTG
5629







Obox3
GCTTCAGGAAGGGCCATATT
5630







Obox5
GGGTGGAGCCAACGTGAAGG
5631







Obox6
GCAGACTGAGCGGAGCTTCT
5632







Obox6
GGCTGAATGGTGTTACAGCC
5633







Obox6
GGAGAGCTTGCTGATGAATA
5634







Obox6
GCTGATGAATAGGGTGAATT
5635







Obox6
GGGAGAGCTTGCTGATGAAT
5636







Obox6
GTGGAAGAGCCCTGCATTGG
5637







Obox6
GTGGCACCAAAGGGTGGGTG
5638







Obox6
GAGGCTTGTATGTATAAGGC
5639







Obox6
GATGGTTTCCTAAGTGTGAA
5640







Olig1
GGAGAGAGCTGAAGGGATAA
5641







Olig1
GGTCAGGTAGACACACACAT
5642







Olig1
GGAGCCCACTTGGGAACAGA
5643







Olig1
GTCCTCCTCCCACGGCAGAA
5644







Olig1
GAGCACAATGGGATTCCTTG
5645







Olig1
GGAAGCTTGGCCAGGAAGAG
5646







Olig1
GGGCAAGGGAGGGAGCTTTA
5647







Olig1
GTGAGCTCAGATAAAGGCGG
5648







Olig1
GTTGCCAGAGAGGGTTATCG
5649







Olig1
GTAGAGACAAACAGGTGCTC
5650







Olig2
GTCCACCCTCGAGTGTCAGT
5651







Olig2
GTTCACTTGCCTAGGCTAAT
5652







Olig2
GGATCTGGGTGAATTGCCTG
5653







Olig2
GCTTGCTGAAATCAATTCCT
5654







Olig2
GATGTTGGAAGTTCAGTGGC
5655







Olig2
GACAGATTCTGCTAATTGAA
5656







Olig2
GTCACTGTAGCGTCAGGCCA
5657







Olig2
GTGACCCTGCCTACCGTGGA
5698







Olig2
GGCATGGCCTTGGAGAGCAC
5699







Olig2
GTGGTCCTCACTCTCTAAGT
5660







Onecut1
GCTTTCTCAGCGGCGCCGAA
5661







Onecut1
GAGGATCATGGATGGCAGTT
5662







Onecut1
GGAACTAGCAACTCAGACTC
5663







Onecut1
GAACTAGCAACTCAGACTCA
5664







Onecut1
GCCCGGGTTCAATTCCGGAT
5665







Onecut1
GACCAAGCTGGCTTGAAGTA
5666







Onecut1
GGTGTGGTCAACCCAGGGTG
5667







Onecut1
GAGTCTGAGTTGCTAGTTCC
5668







Onecut1
GCACATCTGTCCTTTCTCCA
5669







Onecut1
GATTTCAGGTTACCACACCC
5670







Onecut2
GGCGCCGACGTCTTCTGTTT
5671







Onecut2
GCCCTACAAACTTCTCCTGG
5672







Onecut2
GGAGATTTCCGCGAACTGTG
5673







Onecut2
GTCTTCTTGGGACTAGAGAA
5674







Onecut2
GTGGCTGAAGACAGCCAGAG
5675







Onecut2
GCTCCTAGAACCAAGCATCA
5676







Onecut2
GAAGACACATACAGTATTGT
5677







Onecut2
GCTGCCAATGGCTATAGAAG
5678







Onecut2
GTGAGCGGGAGCTGTCCAGA
5679







Onecut2
GGGAAGAAGGGAGGAGAAGG
5680







Osr1
GAGTTCTGTTCTGGAGCTTT
5681







Osr1
GTTTCCCAATGCGCAGGCGC
5682







Osr1
GTTACTAAGGGATTGCTTCT
5683







Osr1
GCACAGTAAAGCTGAGGAGT
5684







Osr1
GGAGCTTTAGAATGGAATTC
5685







Osr1
GAAACTAGTGGATGGAGGGC
5686







Osr1
GTATGCCTAAGGTGCTGGTG
5687







Osr1
GGAGTTTCCTCTTCTTCACT
5688







Osr1
GGGACTGAGGTCACCTCAGT
5689







Osr1
GCTTGCTTCCAGATGCATCC
5690







Osr2
GTCACCTTGGGCTCTGTGTC
5691







Osr2
GGTCTGTCTACCTGGTGAGC
5692







Osr2
GAGAACGCCTAGGAAGAGTT
5693







Osr2
GGACTTCTCTGCGGGCTTGG
5694







Osr2
GAGCTGTCCCAGCTCCCTGT
5695







Osr2
GACACGGAGCTGAGGGTGGA
5696







Osr2
GGTCTTGAGCCTCAGCTCCC
5697







Osr2
GGACACCACGGCTCGTTTGG
5698







Osr2
GGCAGGTTATTGTTTGCCAA
5699







Otp
GCAGAGCGAGAACAGGGAGT
5700







Otp
GTTTGGGAGCAGATCAGAAA
5701







Otp
GGCTCAGTAGGCCAGAGTCT
5702







Otp
GGGAAATCTGAGAATGGGAG
5703







Otp
GGGCTCAGTAGGCCAGAGTC
5704







Otp
GAAGAGCAAGGAGACAAAGG
5705







Otp
GGTGGGATGTGTGTGGGCTG
5706







Otp
GGAAATCTGAGAATGGGAGG
5707







Otp
GTGCTTGTGCTCTGAAGTCT
5708







Otp
GAGCAAGGAGACAAAGGAGG
5709







Otx1
GTTTATTCGGCTGGAAACTG
5710







Otx1
GAGGATGGAGGAGTTTGTGG
5711







Otxl
GGTGAGAACGGCAGAAGATG
5712







Otx1
GGCACTCCTTGATGCTCCCT
5713







Otx1
GAGCGGAGGAGGAGTTGCTG
5714







Otx1
GACAAAGGATCAGGGCCGCC
5715







Otx1
GGCATCTCCTACTGAATACT
5716







Otx1
GAACGAGTTGAGGAGGGCGA
5717







Otx1
GAGGAGTGGCGTCAAGCTGC
5718







Otx1
GCTAGGBAAAGGTACGGGTC
5719







Otx2
GAGCCGGAGGGAAAGGAAGA
5720







Otx2
GCCTGTATTAACATCGATGG
5721







Oxt2
GCAAAGAATGTGTGGGTCAG
5722







Oxt2
GCCCTAGCGGCTTTGAGAAG
5723







Oxt2
GAAAGGAAGAAGGAGGTACG
5724







Otx2
GGACAGCCAGACCTGAGGGT
5725







Oxt2
GCTAATTGCTGTAAATCCCA
5726







Oxt2
GAGCGTGCATTTGGAGGCGT
5727







Oxt2
GTCCCTAAGGCCTTTCATTT
5728







Ovol1
GGGATGGAACCTGCAGTTAA
5729







Oval1
GGAATGGAAACCGGTTCGAC
5730







Ovol1
GAATTGCTCACCCTGGCCTT
5731







Ovol1
GAGAGGTATTTGCTGGGCAC
5732







Ovol1
GCCTGGGTTAGGTTGGACTC
5733







Ovol1
GGTGCTGGCCTGGGTTAGGT
5734







Ovol1
GTCCAAATCAGAGTGAAAGG
5735







Ovol1
GACGATTCATCCCATGAACA
5736







Ovol1
GAAGTGTGGGCTATGACAGA
5737







Ovol2
GGAGGGAAGTGTGTGTGTGT
5738







Ovol2
GCGAGAGGAAACTTGGCGCG
5739







Ovol2
GTGCAGGAAGAGGGCAGGCT
5740







Ovol2
GGCCAAAGTGGCCTGGAAGT
5741







Ovol2
GTTGACACCGTTATGTTGCA
5742







Ovol2
GGGTTCCTACAACGATAGCT
5743







Ovol2
GGAATCTCGGTGGTCGGATG
5744







Ovol2
GGGCTAAATTGCCTGGCGGC
5745







Ovol2
GACCTTCAGGAGCGGTTTAG
5746







Ovol2
GGGATCCTCTCTTCCGACTG
5747







Parp1
GATTACTGATGCCTAGCGGC
5748







Parp1
GCACGTGTCCTTGGGAGGTT
5749







Parp1
GAAATTTAACAAATGGCGTG
5750







Parp1
GTGGGTGAGGTGGAATTATT
5751







Parp1
GGGCTTCAFCACGTGTCCTT
5752







Parp1
GCTGGTCTCTGCCTCTGGGA
5753







Parp1
GATAGATTACTGATGCCTAG
5754







Parp1
GGGCAAGCTGCAGCTGTTTG
5755







Patz1
GGCGTTCGGCACAAAGAAAG
5756







Patz1
GGTAGACCTAGAGAGGGAGG
5757







Patz1
GTCAAGGATGGTCCAGAAGA
5758







Patz1
GTGTTCAACTGTGCTATTGA
5759







Patz1
GAAACTGTGTACCTCAGTCT
5760







Patz1
GGTATTACCATGCAAATGAA
5761







Patz1
GATGCGCACGTGCTGAGTCG
5762







Patz1
GGATCAGGCTGCGCTAGCAT
5763







Patz1
GAAGGTAGACCTAGAGAGGG
5764







Patz1
GTATTACCATGCAAATGAAC
5765







Pax1
GACCAGCTCATTGCTTCCTT
5766







Pax1
GGGCCAGAGGACTAAGGTGA
5767







Pax1
GGAGAGGAATGAGTTCTGGT
5768







Pax1
GAAACCACTACTCGCTCACT
5769







Pax1
GTTCCTGGCTCAGGTATCCC
5770







Pax1
GGGTAAGAGAAAGGCGGAGG
5771







Pax1
GGAAGCCAAGAACTAGGAGG
5772







Pax1
GGCACTCCTGTTATGAGTAC
5773







Pax1
GGAAGGCTGCCCTGTTCTAA
5774







Pax2
GAGAATCATGCGTGCGTGGA
5775







Pax2
GGTAGGAGTCAGTCTGAGAC
5776







Pax2
GAAGCCCTTTGTCTCCTAAC
5777







Pax2
GTATAAGTCACATGCGGCTT
5778







Pax2
GAGTTTGAGAGGCGACACGG
5779







Pax2
GCTGGCGAATCACAGAGTGG
5780







Pax2
GAACCAAGAGAGCTCAGGGC
5781







Pax2
GGCGGTTCTAAATGCCCGGT
5782







Pax2
GCATGCCTTCTCAGGACTCC
5783







Pax2
GGCCAGCCTAATGAATATTC
5784







Pax3
GGCTCCAAGTTGCAAGCAAT
5785







Pax3
GGCAAAGACACGCGCTGATT
5786







Pax3
GGGCAGACAGAGGAAATAAG
5787







Pax3
GGCTTGGGATCCTGCACTCA
5788







Pax3
GAACTGGAGAGTGCTAGGTA
5789







Pax3
GCAACAAGTAGGGATGAAGA
5790







Pax3
GACTTCCCTGGACACATGTG
5791







Pax3
GCAGACCACACATGTGTCCA
5792







Pax4
GTCTGGGTAGGGTAGGGTGC
5793







Pax4
GGAGCTGGAATGGCCTTGGC
5794







Pax4
GGGCTTCAGAGTCCACCTTG
5795







Pax4
GGGTATTCAACATGAACACC
5796







Pax4
GGATCGTTGGCTCCTGCCTT
5797







Pax4
GAGCCTTCACTCAGGAGCAG
5798







Pax4
GTATAATTGTGAGCAGATGG
5799







Pax4
GCTTCACAGAGCCTTCACTC
5800







Pax4
GTTGTAAAGACTGAGAGAGA
5801







Pax5
GCAGTGTGTCAGGCCCAGAC
5802







Pax5
GGCAGAAACGAAATAGTGAT
5803







Pax5
GAAGGAGAACCTGAGTCACA
5804







Pax5
GAGGCGGCATTGCTGCTCTC
5805







Pax5
GGAAGGAGAACCTGAGTCAC
5806







Pax5
GCAAAGGGCTGCAGAAGGGT
5807







Pax5
GCTCTAGGGCCACTGGACAA
5808







Pax5
GGTGTAGGAGAAAGCAGAAA
5809







Pax5
GCCTAGAGTTCGAGGATAGG
5810







Pax6
GAACCTAAGGACAGGCTACG
5811







Pax6
GAGGACCTAAGGCACTGGAT
5812







Pax6
GCTAATGGGCCAGTGAGGAG
5813







Pax6
GTATTGTCCTCCCTGAGGTT
5814







Pax6
GAGGGCTGCTGGAGCTTGTT
5815







Pax6
GGGAAAGGTGGCTGACTAGC
5816







Pax6
GACAGATAGATAAGCTGGCG
5817







Pax6
GAAGAGTCTAAGGCAATGAA
5818







Pax6
GACTTCTCTGATCTGGAACT
5819







Pax6
GAAGTTCTGACTGGAAGGTA
5820







Pax7
GAGGACCAGACCACAGAGTC
5821







Pax7
GGGTCAGTAGCATGCTGAGA
5822







Pax7
GGGAGACAGACAGATAAAGC
5823







Pax7
GTCCACTAGAAAGGGCTCCA
5824







Pax7
GTGGACTCAGAATCTCCTGG
5825







Pax7
GCAGCTATGTGTCCTGTGCA
5826







Pax7
GCGCTGAGAGGAGGGATCGA
5827







Pax7
GAGGCGACATCAGCAAGGCT
5828







Pax7
GGCGATTTCACATCCAGGAG
5829







Pax7
GGGATCTTCTCTGTCCGCTC
5830







Pax8
GGAGAATCTACAGGCCAGTG
5831







Pax8
GAGTGAGAACTTTGGTCTGA
5832







Pax8
GATGCTGCATTTAGGTACCT
5833







Pax8
GAGCTTCTGTTTCTGGAGGA
5834







Pax8
GAGGGACTGTTCTGCCTTGA
5835







Pax8
GGAGATAGGTTGTTAGCTTG
5836







Pax8
GGTTGCCTGCACAATCTTCC
5837







Pax8
GTATGTGGGAGCAAATGTCC
5838







Pax8
GAGTGGGAGATGAAAGCCTG
5839







Pax9
GCCATGTCATCTCCAAGAAG
5840







Pax9
GGCACTGTGTGCCCTTGCTT
5841







Pax9
GGGCTAAACCTCAGTCAAGC
5842







Pax9
GTTCGTGCCCATCCAAAGCT
5843







Pax9
GGAGGTGTGCGACAGCTAAA
5844







Pax9
GGTCTCCTCTGGACAATTAC
5845







Pax9
GGAGGGTCAGAGCAAACAGC
5846







Pax9
GCTAAGACTCCTGGGATCTG
5847







Pax9
GAATTGAGTGCGGGTTACTG
5848







Pax9
GTGGAATCTAGCTCTTCCCA
5849







Pbx1
GCAAACATTTGGCAAGATAA
5850







Pbx1
GTAAGCGCAAGTGGGCTTTG
5851







Pbx1
GAATCTCATAAAGTGTTGCC
5852







Pbx1
GGTGTGAGGGAGAAAGATAA
5853







Pbx1
GAGATCACTCTGGCCCGGAG
5854







Pbx1
GATTTATGTCTTGGCCCACA
5855







Pbx1
GCTGCACAAATCGTCTGAGA
5856







Pbx1
GGCCAGAGTGATCTCAAAGG
5857







Pbx1
GCCAGGTCAAGTATTAAGAG
5858







Pbx1
GCAATAGAAACCGGAAGGCA
5859







Pbx2
GGACTGAAGACTGGTATCTG
5860







Pbx2
GAGGGAGGAGCAGATCTCCA
5861







Pbx2
GCTCTCAGCGATCTGGCCAG
5862







Pbx2
GACATGTGGGACCTAGTGAC
8863







Pbx2
GTCAAACAAGCTGTTTGGGT
5864







Pbx2
GACAGACTCAGCAGCAGGGT
5865







Pbx2
GGGTCAAGATCTTCCAGGGT
5866







Pbx2
GGGAACCAACCCAGGGAGAA
5867







Pbx2
GAGAGGAGGGAGGAGGGAGA
5868







Pbx2
GAGTTGCTGCTGAGAGTTCA
5869







Pbx3
GGCGGGACAGAGCCAAGAAA
5870







Pbx3
GACTTTCGAACGCTCCAATT
5871







Pbx3
GGTAAGCCTTGTAGCTTGCC
5872







Pbx3
GTCCACAGCGGCTGCTGACT
5873







Pbx3
GTGAAGTTGACTACAGCCGA
5874







Pbx3
GCGCAAAGCCCAATGAGAGA
5875







Pbx3
GTCAAGATTATGAGCCTAGA
5876







Pbx3
GCTGTCCTCAGTCTCCTCCG
5877







Pbx3
GCAGTTCTTTAAATGCCAGA
5878







Pbx3
GCTAATAATAGGGAAGGAGC
5879







Pcbp1
GAACTGCTCGCTTGCTCCCT
5880







Pcbp1
GCGCCTTGTGCTTTCTTTGC
5881







Pcbp1
GGACCCGGCAGAGATTGAGA
5882







Pcbp1
GACCTCCTCCAGGCTGACTA
5883







Pcbp1
GCACCGCTCCTCTAAGGTCT
5884







Pcbp1
GAGCCGGCAAAGAAAGCACA
5885







Pcbp1
GTCAGGGCGACCTCCCAAGA
5886







Pcbp1
GGAGCCAGGTGGAGGGAAAT
5887







Pcbp1
GGGACCCGGCAGAGATTGAG
5888







Pcbp2
GCTCAGGCCTAAATACGAAG
5889







Pcbp2
GGATGACAAAGGTGAACCTC
5890







Pcbp2
GCTTTGGGATCAAGATAGGA
5891







Pcbp2
GTTCTTCCGCTAGAGGCCAC
5892







Pcbp2
GTGATACAAGCTGATACCAT
5893







Pcbp2
GAAGAGGTGGCCAATGCTTT
5894







Pcbp2
GGCCAAAGGTAAAGGGTAAA
5895







Pcbp2
GTGGTGGAAAGAAAGACATT
5896







Pcbp2
GTGGCCTCTAGCGGAAGAAC
5897







Pcbp2
GAAAGACATTTGGAGTCACT
5898







Pcbp3
GATGCTTCTCGAAAGTCTGG
5899







Pcbp3
GAGTGGCTGGTTGCACGGAG
5900







Pcbp3
GGTATCTAGGTACTGATGGA
5901







Pcbp3
GGAAGACACACTTAGTCATT
5902







Pcbp3
GAAGGCAGGAAGCCTGCATT
5903







Pcbp3
GGCAACCTGTAATCTGGAGG
5904







Pcbp3
GGCCTCTGCTGACCTTCAGC
5905







Pcbp3
GTCCAGCTGAAGGTCAGCAG
5906







Pcbp3
GCTACTTGGTTACTATGGTG
5907







Pcbp3
GGTGGTTCTGATGGTCGGGC
5908







Pcbp4
GAAAGCTGGAGGAGCCCATG
5909







Pcbp4
GAGCCTGTAGAGGAAGCTTA
5910







Pcbp4
GGTTACAGACTGCCTGCTCT
5911







Pcbp4
GGTTACAGACTGCCTGCTCT
5912







Pcbp4
GATCTCTTGCTGTCTTCTCC
5913







Pcbp4
GAGCCATACAGGGAGGATCC
5914







Pcbp4
GATCCGTGCTTGATTACCTG
5915







Pcbp4
GCCGCGCTGTAATCGGATCC
5916







Pcbp4
GGAGAGACAACGGCAATGAA
5917







Pcbp4
GCAGTTTCCTGAAGGATGGA
5918







Pdx1
GTGGTTGAGCAGTTGGGCAA
5919







Pdx1
GAAATGCGTATCACCCATAA
5920







Pdx1
GAGCTGCTGTTAAATGGCTC
5921







Pdx1
GAGTGTCTCTGATTTCTTCA
5922







Pdx1
GCCTCTGACCTGGTCCTCCA
5923







Pdx1
GGAGGACTGCCTTAAGAAGG
5924







Pdx1
GGTGTTCGGTAGCAACCAAG
5925







Pdx1
GCGAGACTTGGGACAAAGAT
5926







Pdx1
GAAATTCCACTAAAGACGCC
5927







Pgr
GTCATGAGAACACTGTGGAG
5928







Pgr
GCAGATCATCGGTTACTGTG
5929







Pgr
GGTAGTAATGTTGCAAAGAA
5930







Pgr
GCAGGAGAACGAGTAAGAAT
5931







Pgr
GAGAAATGGCTGATTCTAGG
5932







Pgr
GCTGGGATTGTAGAGAACCT
5933







Pgr
GTGTGGGAAGCAAAGAAATG
5934







Pgr
GATCTAGCCAGTGATTGGCT
5935







Pgr
GCCATAGAGACTGTCGCTGC
5936







Phox2a
GGGACAGGATAAGGGACTCT
5937







Phox2a
GGATAAGGGACTCTCGGATT
5938







Phox2a
GTCACAAATCCCAGCTCTCG
5939







Phox2a
GCATCTTGTGTAGAGATCGA
5940







Phox2a
GAGGTCACAAGCTATTGGAG
5941







Phox2a
GACAACAGAGCTGAGAAGCC
5942







Phox2a
GACAGGGATGAGAAAGAGAC
5943







Phox2a
GCCAGGTCATTGACCCTCCA
5944







Phox2b
GTAGGGTGGCAGTGGAGAGC
5945







Phox2b
GCTGCGATGAAAGGCTTGTG
5946







Phox2b
GCTGGTTAGAAGGGAGGATC
5947







Phox2b
GCCCTGTAACATAGCGTAAG
5948







Phox2b
GCAGCTTGGAGCCAGACTAC
5949







Phox2b
GCAGGAAATGCCCTCGGAGG
5950







Phox2b
GAAAGAGAGTGCGAGAGCAA
5951







Phox2b
GAACACAGTGTAGAAATTCG
5952







Phox2b
GGCCTCAGCCCTAACTCCCA
5953







Phox2b
GGTACATTTCGTGCTGGGCT
5954







Pitx1
GGAAAGCTACAATCTTTCTG
5955







Pitx1
GGTAACTTTGCTCCAGTGTG
5956







Pitx1
GACTGATGTCTCACAACCCT
5957







Pitx1
GGAATCACGGATGGCCCTGG
5958







Pitx1
GGATCTATGAGGATAGTGGA
5959







Pitx1
GTGGTAGAGAAGGTAGGAGA
5960







Pitx1
GAGCAAAGTTACCCTAAAGG
5961







Pitx1
GCCGAGTGGAGGACTCTCAT
5962







Pitx1
GACCACTCTTGTGAGCCTAG
5963







Pitx1
GTCGCTTCTCCCAGGAACTC
5964







Pitx2
GTGGGAGAGCCACAGCCGAT
5965







Pitx2
GGGCACAGCAAGGAATTAGT
5966







Pitx2
GGGATGGTAGGAAAGGGACA
5967







Pitx2
GTTCAGGAAGTATTCCGGTG
5968







Pitx2
GTGAGCTAGCGGCAGAAGGT
5969







Pitx2
GCATTGTGGGAGATGGCACT
5970







Pitx2
GAGGTTTGCAGCCAGGGCTG
5971







Pitx2
GAGAAATGCAGTTTAATGGC
5972







Pitx2
GTCATTGGCTGGCAAGTGCC
5973







Pitx2
GTCTGGGTGGCTTACGAGGA
5974







Pitx3
GCATAGACACAGGGAGTTGT
5975







Pitx3
GAAAGACAGACAGCGACAAG
5976







Pitx3
GACAACAGATTTGGTCCTGT
5977







Pitx3
GGAGTCACGAGAAGCAGTGC
5978







Pitx3
GATGCCTCCCTGGCTTCCAG
5979







Pitx3
GAAAGATAGGATGGAAAGGA
5980







Pitx3
GGACAGAGAACCCGGCTGTC
5981







Pitx3
GTCAGGCGGGACAGAGAACC
5982







Pitx3
GAGGCATACCTAGATAGGGA
5983







Pknox1
GTACGCTGCTGCAGATGATC
5984







Pknox1
GGAAGAACAGAGCCGTGCAC
5985







Pknox1
GTCAGACCGCAGTCACTTCA
5985







Pknox1
GCCCTCCAGCAATGTAGTGG
5987







Pknox1
GCCCTGGGACACCAAAGCAC
5988







Pknox1
GAGCTGTCTGTACTAGGAGG
5989







Pknox1
GAGCCGGGACTGGAATCACT
5990







Pknox1
GTGCCAAATGACCACAAACT
5991







Pknox1
GCGCCTCGCAATCAAGGTTC
5992







Pknox1
GAGAGGTCTGACTAGTGAAG
5993







Pknox1
GTGGAGTTGCTGGCAGGACC
5994







Pknox2
GCTGGGCACCGTAAGGTGAG
5995







Pknox2
GCCTGAAACCGCTTCTCAAG
5996







Pknox2
GATTCTCTGGTCCTCTGTGT
5997







Pknox2
GTTGAGAAGCAGGGTGGACA
5998







Pknox2
GGTGGACAGACCCAAAGGGC
5999







Pknox2
GAGCACACACATATTTGTGA
6000







Pknox2
GGAGTTCTTAAGATTCTCCT
6001







Pknox2
GCTAGAGTGTCTCCCTCTAC
6002







Plagl1
GGTTTCAAGGCATGGAGGCC
6003







Plagl1
GGTTGGGAGAGCAGGCTGTT
6004







Plagl1
GTGACAAATCGCAGATGCCG
6005







Plagl1
GTGAATCACTAAGATCGGTG
6006







Plagl1
GCTCGTCAACAGGGAGAATA
6007







Plagl1
GACACTGTAAGAATGCCGTT
6008







Plagl1
GTTACAGGGTTTCTGCCTGT
6009







Plagl1
GTTTGCGATGTGGCCGAGGG
6010







Plagl1
GGGAGAATAAGGTTTCTACA
6011







Plxna2
GAAAGGTTGTACCAGGGTCT
6012







Plxna2
GTTGGCTTTCTAGAATTTGT
6013







Plxna2
GGAGTCTGGCTTTGCATCTC
6014







Plxna2
GGGTCACCTAGGAAAGACAA
6015







Plxna2
GGTCTAGGGACTCATGTCTT
6016







Plxna2
GCCTGGTAAGCCAGCTGGCT
6017







Plxna2
GACAGATCACACTGCAGGCT
6018







Plxna2
GAAGACCCTGAGACCTTGCA
6019







Plxna2
GTAATATAGGAGGCCGGCTG
6020







Plxna2
GGGAGGCTTTGCTTGGTGAC
6021







Pml
GGAACAGAGAATAGGCACAT
6022







Pml
GGCCTATGAGAAGTAACTGT
6023







Pml
GTGGACAAGTTGAAGTCAGA
6024







Pml
GGGAACTTAGAAATGAGCTA
6025







Pml
GTCCCACAGTTACTTCTCAT
6026







Pml
GGTAGACAACAGGGAGGCAA
6027







Pml
GTCTTTCTCTTAACTTTGGA
6028







Pml
GCCAGTTTGGGAAGTAGTCA
6029







Pou1f1
GGTGAAATATGACAATGCAT
6030







Pou1f1
GACACTTAGGAAAGCATTGG
6031







Pou1f1
GACAAAGCAACACTCCTGTG
6032







Pou1f1
GTTGACACTTAGGAAAGCAT
6033







Pou1f1
GGTACGTCCCTTACAGAGAT
6034







Pou1f1
GTAGAGCTCCCATCTCTGTA
6035







Pou1f1
GTAAGTAGAAATAAAGGGAT
6036







Pou1f1
GTGTCTTCTCTGCGTATTCC
6037







Pou2f1
GGTAGGAGGATGTGATGACG
6038







Pou2f1
GGGTAGTCCAGAGTCCTTGC
6039







Pou2f1
GTGTTCCCTTAATACATGAC
6040







Pou2f1
GTTACACATGATGTAAACAA
6041







Pou2f1
GCAATCTTCTCTCAGATGTG
6042







Pou2f1
GTGAGGCTTGAAGAGAGGGC
6043







Pou2f1
GGAGAGAGTACCAGCAGGTG
6044







Pou2f1
ACTTTAGTGTCTCAGCTCTG
6045







Pou2f1
GGGTTGGGTTTCTCTTCAGA
6046







Pou2f1
GAATGTGCATCGTCCTCAAA
6047







Pou2f1
GGTAAGAATAAATAGGTCCT
6048







Pou2f1
GACTGGACAAGTTCTACTAT
6049







Pou2f1
GTTCAAGTCACTGAACCTGG
6050







Pou2f1
GGTAGGGATCTGTTTATTTA
6051







Pou2f1
GGTCCAAGATGCCAGGCCAT
6052







Pou2f1
GAATGAATAGTGTATCCACC
6053







Pou2f1
GCATTTCCGTGGCCCATTTG
6054







Pou2f1
GTGCCAGCATAATAATTAGG
6055







Pou2f2
GAGCTGAGTTCGTTCCTGTC
6056







Pou2f2
GATCCGGCGAGAAATATGAG
6057







Pou2f2
GTGCCACAGGTAAGGCATCC
6058







Pou2f2
GGAGTTGAGAGAGATGAACT
6059







Pou2f2
GCTCGCTGAAAGCGCTCCAC
6060







Pou2f2
GCAGCGTCCAGTCAATGGGC
6061







Pou2f2
GGCACATGGCTTAGATGGTG
6062







Pou2f2
GCCACTGTGCCACTGCTCAT
6063







Pou2f2
GTAATTAAAGGAGACGCAGG
6064







Pou2f2
GACAGCTAGAAGCCTGTCAG
6065







Pou2f3
GAACTCTGCAGCCTATGTGG
6066







Pou2f3
GACCATCCTCGGAAATGACT
6067







Pou2f3
GAGATACGGAAATCACAGAT
6068







Pou2f3
GGACCAGAGGTGATTGATGG
6069







Pou2f3
GTCATTTCCGAGGATGGTCT
6070







Pou2f3
GGACAGGTGTTCCTCAGGGT
6071







Pou2f3
GATTGATGGTGGGAACCGGC
6072







Pou2f3
GACAGGTGTTCCTCAGGGTC
6073







Pou2f3
GTCCCTTCCTTCTTGCCAGG
6074







Pou3f1
GTTGTGGCGCTGAGTCTAGA
6075







Pou3f1
GGTCGCATCGCGTTCTCCCA
6076







Pou3f1
GCTAATGACATCATCCTCAT
6077







Pou3f1
GGTTACGCTGTACAGATTTG
6078







Pou3f1
GATTTCTGGGTGCCGAGCTG
6079







Pou3f1
GACTCTCAGACTGTCAAACT
6080







Pou3f1
GCAGCAGCATGAACTAGGAA
6081







Pou3f1
GTTCTCTCATTCCAGAACCC
6082







Pou3f1
GACTCAGCGCCACAACTAGC
6083







Pou3f1
GGCAACTAACTTTCCTCAGT
6084







Pou3f2
GAGGAAGGACTGAGAAGACT
6085







Pou3f2
GTGTAAGGGATCTTTGTTAC
6086







Pou3f2
GTCTAGCTGTGTGTGTGTGT
6087







Pou3f2
GGATGGTGGAAGAGAAAGAC
6088







Pou3f2
GAGGCTTGGAAGACTTGTAT
6089







Pou3f2
GCCACTTAGGCTGCGCCTTT
6090







Pou3f2
GTTTCCAGATTTCTTTCCGA
6091







Pou3f2
GGCGTGGACATTTCACAACC
6092







Pou3f2
GTCTACTTTCTCTTCCCAAT
6093







Pou3f2
GTTTATGAAAGTGTATGGAG
6094







Pou3f3
GCGTGCCCTTGTGAGTTTGG
6095







Pou3f3
GCCAAGGGAACGCAGACGTT
6096







Pou3f3
GAAGCGGTTCCTTTCTTCCT
6097







Pou3f3
GCTGCAGGTTTCCCAGATGA
6098







Pou3f3
GCGGCTGCACAAAGTTGCAG
6099







Pou3f3
GAAGAGTGCATTGGTGGAGG
6100







Pou3f3
GGCACCCTCCAAACICACAA
6101







Pou3f3
GCTTGCTATTCTTGGGCATG
6102







Pou3f3
GCAATCTGGCCGCTCCTAGT
6103







Pou3f4
GAGAGACCTCTGATGGAAAC
6104







Pou3f4
GGATAACGTTTATTGGATCA
6105







Pou3f4
GCAAATATAATTACACAGCT
6106







Pou3f4
GAGGTCTCTCCACTATGCCA
6107







Pou3f4
GATGCTCCTTAGCTATATAA
6108







Pou3f4
GCCACCAAGATCTCTCTCAC
6109







Pou3f4
GACCTCTGATGGAAACTGGC
6110







Pou3f4
GGGAACCAAAGCCGCTAGCG
6111







Pou4f1
GCCTTTCTATCTGTCATTTA
6112







Pou4f1
GTCTGATTTCTGGGAGTTGA
6113







Pou4f1
GCGGGAAATGGACTATGAGC
6114







Pou4f1
GTTCATTTGCTGGTGCAAGA
6115







Pou4f1
GCAGGTGATGCACCTGTAGC
6116







Pou4f1
GCCCGTTATTGTTGAAGGGT
6117







Pou4f1
GAGGGTGTCCAGCCTTCAGC
6118







Pou4f1
GCTTGTTAGGCACCGGGTAG
6119







Pou4f1
GCAGATCAAGGGCCTCTCTG
6120







Pou4f1
GGGCAACTGCACCCTGTGTC
6121







Pou4f2
GTGCCTAGTGCAGAAAGACG
6122







Pou4f2
GCTAGTGCAAACCACTTTCC
6123







Pou4f2
GAGCAACTGACAGGACGAGA
6124







Pou4f2
GACTTGCCCAAACACTATTG
6125







Pou4f2
GACTGTTCAAGTAAGTGCTT
6126







Pou4f2
GGAGAGCAGGTGGCCAGGTA
6127







Pou4f2
GGTCCCGTGGCAGAGAGAGA
6128







Pou4f2
GAGAGGAAATAGGTTGTGTT
6129







Pou4f2
GACCAGCAAGACACTGGCAA
6130







Pou4f2
GTCCTTGCCCAGGCTTCTTA
6131







Pou4f3
GCTTTCTTGGGTCTTGCTGG
6132







Pou4f3
GGGAAGTAGTGGTATTGTCC
6133







Pou4f3
GTGGCACAAAGCCAGTAATA
6134







Pou4f3
GCGCCACTCTGAGCCTGATG
6135







Pou4f3
GGAAGCGGGAATAAACATGG
6136







Pou4f3
GGGTATAAATGCTGTGGAGG
6137







Pou4f3
GAAGAGCCCAAAGTCAGACA
6138







Pou4f3
GCTCGAGCTGCCTGGATGAA
6139







Pou4f3
GGCAGTCCTGAGGAAAGAGG
6140







Pou4f3
GACCCTTAAGAGGCTCCATG
6141







Pou5f1
GACCCATGTGGTAGAAGGAG
6142







Pou5f1
GGATGGCTGAGTGGGCTGTA
6143







Pou5f1
GAAACCGGCCTGGATTGTTT
6144







Pou5f1
GTGCAATGGCTGTCTTGTCC
6145







Pou5f1
GACTTTGCAGCCTGAGGGCC
6146







Pou5f1
GTCTGGACAGGACAACCCTT
6147







Pou5f1
GCTTCCTCAATAGCAGATTA
6148







Pou5f1
GAGTGCCTGTCTGCAAGGGA
6149







Pou5f1
GAAGCCTGGGATGAGGAGGT
6150







Pou5f1
GTGTCTTCCAGACGGAGGTT
6151







Pou5f1
GCTTCCACTGGAGACGTTTA
6152







Pou6f1
GGCCAGACAGACAGGTAGGC
6153







Pou6f1
GTGCTGCTTGACTAGCCCGC
6154







Pou6f1
GACAGACGTGAACTTGAGGT
6155







Pou6f1
GGAGACTCAGAGGCCGATTA
6156







Pou6f1
GCGAAGAGGGAAACACTGTT
6157







Pou6f1
GGGATCTTGCTCTGCCCTGG
6158







Pou6f1
GTCAAGTGGCTGGGCAGCAG
6159







Pou6f1
GTGAGTCTGTTGTGAATGAA
6160







Pou6f1
GGGAGACTCAGAGGCCGATT
6161







POU6F1
GAAATCTCGTTTGCTCTTGC
6162







POU6F1
GCAGGCTGGACAGTGATCTG
6163







POU6F1
GCCGTCGCTTGCTTTAGTCT
6164







POU6F1
GACAATCCCTACAGCAACTG
6165







POU6F1
GGGGCAGCCACATTGCTGTA
6166







POU6F1
GCATAAGGAGAAGACCTCAA
6167







POU6F1
GATGCTTGCTTGTGCTCAGT
6168







POU6F1
GCCAGCCCTTCAAGAATCAA
6169







POU6F1
GGGAAAGGGAGTACAGTCAA
6170







Ppara
GAGTCCCAGGATGAGAAATG
6171







Ppara
GGAAGGAAGGTGTAACGTGG
6172







Ppara
GGTGAGTGCCAGTCCTAGGA
6173







Ppara
GACAGTGAGGTGGGTGGACA
6174







Ppara
GATGTCACCTGCAAATGTGT
6175







Ppara
GTCTGGGTTGAGCTTTCCTC
6176







Ppara
GCACGCTTCCAGGAGATCAG
6177







Ppara
GAGGGTACATGCCTGACTCT
6178







Ppara
GGCAAGTAGGGAATGTTCTG
6179







Ppara
GAGGCGTTTCCTGAGACCCT
6180







Ppard
GTGCACCCGATGCACTTTCA
6181







Ppard
GTGAGACCTAGAAGAGCAAG
6182







Ppard
GGGCGAGTGCTTAGTTGTGG
6183







Ppard
GCGGCGATTGGCTACTGCTA
6184







Ppard
GCTGATGATGGCAGCTGATG
6185







Ppard
GCCAGAAGGCAATCTGTCAC
6186







Ppard
GCTTGGGAGAGGCATATGGT
6187







Ppard
GGCAGCCTCCACTCCTAGTG
6188







Ppard
GTCAAAGGAGTGGCTCCAGG
6189







Pparg
GTCCTCAAATAATAAGACAC
6190







Pparg
GCACTAAAGTCTGTTGATTA
6191







Pparg
GCTAGGTTGGCAAGGAATTG
6192







Pparg
GGACATCGGTCTGAGGGACA
6193







Pparg
GTAATACATTATTCTCAGGG
6194







Pparg
GTCTTCCCAACCTTCTTCCA
6195







Pparg
GTCTCTGTTATTATCTGGGT
6196







Pparg
GGTTCATATAGGGACTCTAA
6197







Pparg
GACCTGTGTCTTATTATTTG
6198







Ppargc1a
GTCTGAGCACCCAAGTGTTA
6199







Ppacgc1a
GCAGGGCTCCGGTTTAGAGT
6200







Ppargc1a
GTAGTTACTGTGTCAGTAAC
6201







Ppargc1a
GTTTCTCTTTGTCATCCATT
6202







Ppargc1a
GAAGCAAACAGCAAGCTTGT
6203







Ppargc1a
GGACTCCAACCCTAGTGCCT
6204







Ppargc1a
GTCGTTCCTGAGTCAATGAG
6205







Ppargc1a
GGCCCAGTGAGAAATGCACA
6206







Ppargc1a
GAGAGAGAGAGAGACAACCC
6207







Ppargc1a
GGAAACACTTGGCCTTTGGG
6208







Prdm1
GCAAACAGAGGAAGCTGCCG
6209







Prdm1
GGCGAAATAGGCTTGAGTCT
6210







Prdm1
GCTAACAGCCTGTTTCTTCT
6211







Prdm1
GTCCTGGAGCAAATACTTCA
6212







Prdm1
GCTGTGGGTTTGGGCATGAG
6213







Prdm1
GCCTATTTCGCCACCTCGGA
6214







Prdm1
GCTGAATGTATTCAGTTAGC
6215







Prdm1
GGGACAAGAGTAGAATACAC
6216







Preb
GATGGACAAACACTCTAACT
6217







Preb
GCGGAGGATGCTCTCAAAGT
6218







Preb
GGATGGACAAACACTCTAAC
6219







Preb
GTGCTGATAAACACCCACTT
6220







Preb
GTTGATTGGACTCTTTCTTA
6221







Preb
GTCTGTCCTCCACACAACCC
6222







Preb
GAGCATCCTCCGCGGTTGAT
6223







Preb
GTCCTTCCCTCTGCCCTTGT
6224







Preb
GGGAGAACCCATTTCCTCCC
6225







Prkaa1
GCTCTGGATTCTCTCAAGGA
6226







Prkaa1
GCAACATCCTGTTGACGTAA
6227







Prkaa1
GCTATGTGAATTCCAGAAAG
6228







Prkaal
GCTTGCTTACACGTTGCCCG
6229







Prkaa1
GTAAGCAAGCATCGTCCTCC
6230







Prkaa1
GGCGTGCTTTGAAACAAGAC
6231







Prkaa1
GCGTGCTTTGAAACAAGACA
6232







Prkaa1
GGTGTCCCATAGTAATTTAC
6233







Prkaa1
GGATGTTGCCAAGGAGCGAA
6234







Prkar1a
GACAATAAAGGAGACAGAAA
6235







Prkar1a
GAATACCCAGACTATGATAA
6236







Prkar1a
GTCTGGCATAATAGGAGGCT
6237







Prkar1a
GTGGCTGACACAGGAAATGG
6238







Prkar1a
GGTTTGACCCACACACGCTA
6239







Prkar1a
GGATGCTGAGATGCTCCTGA
6240







Prkar1a
GGTGCTTCTGTAGGCACGGT
6241







Prkar1a
GGCCAATGGATAGTTGAGCC
6242







Prkar1a
GGAGACTTCCAAGAGGAGCC
6243







Prkar1a
GTGGGTGCATGCTTCAAAGG
6244







Prkar1b
GCTGGGAAATGCTCATGTCA
6245







Prkar1b
GGTCAGTGTAGATAGACGAG
6246







Prkar1b
GGACGATTGGGCCAGAGACG
6247







Prkar1b
GCCCACATTCCCTATCGTTC
6248







Prkar1b
GTTGGTTCCATAATTCCTGA
6249







Prkar1b
GCACATGAGTTACTTAGGAA
6250







Prkar1b
GAGACATGTGTGTCAGGAGG
6251







Prkar1b
GAGTCAGGACAGGTGAGTGG
6252







Prkar1b
GAATGTGGGCAGGTGAGTGG
6253







Prkar1b
GTGGACTGGAGAATATAGAC
6254







Prkar1a
GCCTTTATGGGCGGTGCTAG
6255







Prkar1a
GCCTTTCAGTTAGCATAAAT
6256







Prkar2a
GCTGGGAACTGAGCTGTGTA
6257







Prkar2a
GCCCTCTGAATGCTGTCTGT
6258







Prkar2a
GTCCTGTAGCTGGACAGGCT
6259







Prkar2a
GAGGAAGACAACATGGGATG
6260







Prkar2a
GACGTCGTGAGATGTCAAAG
6261







Prkar2a
GGTCTACCTAGCTTACAGCC
6262







Prkar2a
GGTTTGTGCCAGGCCTTTAT
6263







Prrx1
GGTGCTTTCGGAGATGCCAA
6264







Prrx1
GATACTCCAGAAGACTGTCA
6265







Prrx1
GTTCTTCCTAGAAGGTCTCC
6266







Prrx1
GGCACTTAATGATATTTCTG
6267







Prrx1
GGCTCTCTACGATCTAAAGA
6268







Prrx1
GACTGATGCTGTCTGGCCTT
6269







Prrx1
GAACATTTGATGCCATCAAA
6270







Prrx1
GCTACAGGTTTCTAGAACAA
6271







Prrxl
GTGCTAATCTGTATCCAGTT
6272







Prrx2
GCAGTGGCACCTGTAATCCC
6273







Prrx2
GTCAGCAATGAATGGATGAT
6274







Prrx2
GGGAACAATGAGGGACAATC
6275







Prrx2
GGTCTTCAGGGTGTCAGAGG
6276







Prrx2
GGATGGGTGGTTGGGTTCTG
6277







Prrx2
GGACTTGCCTCCCAGAGGGA
6278







Prrx2
GTTAAGCCTTGCTACTTACT
6279







Prrx2
GTCTTTCTGGCAGTAGCAAG
6280







Prrx2
GGGAAGTAGAGACAAGCCCT
6281







Prrx2
GGACACCCATAACTGATACA
6282







Ptf1a
GCTGTCTGTTGAGGAACTGC
6283







Ptf1a
GCCCTCTCCAACCTCAAGAA
6284







Ptf1a
GTCTGTGAGAAAGTGTGTCT
6285







Ptf1a
GCCAGTCAGAAAGGTGAAAC
6286







Ptf1a
GGATTCTTGCAAGTTTGCGA
6287







Ptf1a
GTGGACTTTATCAGCTTACT
6288







Ptf1a
GCCCACTGCCCAGATAATTC
6289







Ptf1a
GCCACTTTCTAGTGAGATGG
6290







Ptf1a
GCCCAGATAATTCTGGATTC
6291







Ptf1a
GGTTATATATTCTTCTTGCA
6292







Ptn
GCCTGGTAATGTGTGTACCA
6293







Ptn
GTTAGTTTCTCCCAGCAGGA
6294







Ptn
GTAAGCCATAACAGTTTCCC
6295







Ptn
GCTGTCACAGCCATGTTCAT
6296







Ptn
GATGTGCATAGCCTGGGAGT
6297







Ptn
GCAATTTGTGTGTGGAAAGG
6298







Ptn
GTCATCTTCTTAGCTCACTG
6299







Ptn
GGTATCTGTCACTGAGGGAT
6300







Ptn
GTTTCTCCCAGCAGGAGGGC
6301







Ptn
GAAGAACAATCCCATGAACA
6302







Ptn
GGAGGGCAAGGGAGCTGAAG
6303







Ptx3
GCTTCACTTATTTGAGATCA
6304







Ptx3
GGGAAGGGTCACACTGAACG
6305







Ptx3
GGAGCAGAGGAATTTACCTA
6306







Ptx3
GCCACTCATGAGTCTCTGTC
6307







Ptx3
GGTGAGGAGCACAGAGGTAC
6308







Ptx3
GGTCTTGAGAAAGTATCCAA
6309







Ptx3
GTGAGGAGCACAGAGGTACA
6310







Pura
GAAGCATAACAACCAAGAGT
6311







Pura
GATGGAAGTGATCATCAGGA
6312







Pura
GCCAGCAAACCATGCAGCCT
6313







Pura
GCCAGGAAGTTTCTTCAACA
6314







Pura
GGTCATCGAAAGATAGTTTG
6315







Pura
GTCAACAATAAAGTACAGTT
6316







Pura
GGCAGCGAGCCTTTCATCTC
6317







Purb
GAGGAACATATGTCTCCAGA
5318







Purb
GATTACCCAATACATAGTAC
6319







Purb
GAAACCGTATTTAGAATAGG
6320







Purb
GTGGAGGAGCCACATGGACA
6321







Purb
GGTCAGTCTAGTATTGGGCT
6322







Purb
GATGTTAACAGGTGGAGATA
6323







Purb
GGAGCAATCACATAAAGCAA
6324







Purb
GATTTGAGCAGTGTGTCCTG
6325







random
GACTGTCGTATTGCGAAACT
6326







random
GTTACGATTTGTGCCCGGCC
6327







random
GCACCGCCGTACTCTACACT
6328







random
GGGCGCACGATGTCGTATAG
6329







random
GGGTGCAAAGTAACGCGGCC
6330







random
GTCCGAGGAGTACGAAGGGT
6331







random
GTCAAGTGGACTGCGAGGGT
6332







random
GGTTACGGGCGGAGAGGGAT
6333







random
GCGGTATAACTACCAAGGGT
6334







random
GCGCCAGCGATGTTGAGGGT
6335







Rara
GAAACAGGGTGCCTGGCTGA
6336







Rara
GGAGAGAACTGAGGCACACT
6337







Rara
GACTTCTTGAAACCTGTTTG
6338







Rara
GGCTTGTCTGTAAAGGTTCT
6339







Rara
GGCGGAAATCCAGACGGGAG
6340







Rara
GCACACTCCACTCCACTCCA
6341







Rara
GGTTCTCACACCCTTCAGCC
6342







Rara
GGTGAAGGGCCAGAAGACCA
6343







Rara
GAAGGTAGGTAGCACAGCTC
6344







Rara
GCATAGAACCTGGCTGGGTA
6345







Rarb
GCTGGGCATTCAGAACACAT
6346







Rarb
GGCTCCTGATGGGCAGTTCG
6347







Rarb
GCTTCAATATGCCTTGCCCA
6348







Rarb
GGGACTTCACAAGGAAGCTG
6349







Rarb
GCTGAAGGGAGAGCTCTCAC
6350







Rarb
GATTGGCGTGGGTTCAGACA
6351







Rarb
GAAGGTTAGCAGCCCGGGAA
6352







Rarb
GCTGGGAATTCTCCCACAGG
6353







Rarb
GCAGCAGCCTCCTGGAGAAA
6354







Rarb
GGGAAGGACACTGACACACA
6355







Rarg
GGCAAAGAAGGCGGGAACGG
6356







Rarg
GACCTTTCAGATTTCGGAGG
6357







Rarg
GTAGACTCCGCTGCGCTGGA
6358







Rarg
GAGTTTGGCCTGGACTGGGT
6359







Rarg
GATGGTCACGACTCCAGAAG
6360







Rarg
GAAGAAAGGGTTGAAGGGAG
6361







Rarg
GCATCTGCTGGAGAGAAAGG
6362







Rarg
GCGTAGCGCAAGGCATCTCA
6353







Rarg
GGGTGTGAGGGAGAAAGCCC
6364







Rarg
GTGATATCCTGGAGGTCAGA
6365







Rax
GAGCTTGTGGTTATTACTGC
6366







Rax
GTCCTGTGGGACTGGAACCT
6367







Rax
GACTAACACTTCAGTGAGGC
6368







Rax
GTGGCTGAACCAGTGCATGC
6369







Rax
GTCAGCCACAGGTTGGAGCT
6370







Rax
GTGGGAGGTTTGACAGGAGG
6371







Rax
GATTAAGGGAAGATTCAAAC
6372







Rax
GAATCCTGCATCTCTGAGGC
6373







Rax
GAGCCAGTCAGGACCATTGT
6374







Rb1
GGCTACATACAGTCTAGGTT
6375







Rb1
GAGGAATCGAGAACTTAATT
6376







Rb1
GGAATGTAGCCCAGGAGAGG
6377







Rb1
GGCTGTCCTGTGTTCTCATG
6378







Rb1
GGTGAAGGAGAAATGGAGGC
6379







Rb1
GACAGCCGGTCAAACTGGGA
6380







Rb1
GCTCAGGCTACATACAGTCT
6381







Rb1
GTTCACTTTGTCCCAGATTT
6382







Rb1
GTTTCTGGTAGTTTGCCACC
6383







Rb1
GGAGGTGTCCAATAGCCAGG
6384







Rbl1
GCTTTGACCCTCGATGGAGG
6385







Rbl1
GTCTTACATGACGTATCGGA
6386







Rbl1
GGATGCAGGGACAAGGGTTT
6387







Rbl1
GGTCCTCGCGCTTACCTGAA
6388







Rbl1
GATGCAGGGACAAGGGTTTG
6389







Rbl1
GGGTCCACAGGACAGTGTCA
6390







Rbl1
GGGTCAAAGCTCAGTGAGAG
6391







Rbl1
GGGATGCAGGGACAAGGGTT
6392







Rbl1
GAACTAGCTTGATATTCCCA
6393







Rbl2
GCAACACATGTGAGTTATAC
6394







Rbl2
GTCAACGCTATCAATGGCAA
6395







Rbl2
GAGTTATACAGGTTGATCTC
6396







Rbl2
GTATAACTCACATGTGTTGC
6397







Rbl2
GCCATTGATAGCGTTGACAT
6398







Rbl2
GACATCAAGAGCAGGGCTGT
6399







Rbl2
GCTAAGGCAGCCCAGACACC
6400







Rbl2
GATTACATGCCATTAAGCTC
6401







Rbmxl1
GGAGTTCCTGCTGACGTGTG
6402







Rbmxl1
GACTTGCTCTGCTGCATGTC
6403







Rbmxl1
GACCACATCAGAGGTTAGTT
6404







Rbmxl1
GCTTGGCCGTGTATGCACGG
6405







Rbmxl1
GTAATGTGACCTGTGGACAC
6406







Rbmxl1
GTCGGGATAGTGGTGGCGAT
6407







Rbmxl1
GTTAGGGAACAATGGAAACC
6408







Rbmxl1
GAGATTATTGGCGGGAGCGG
6409







Rbmxl1
GAGTCACGGGCTGCACTAAC
6410







Rbp3
GTTTACCAAGTGGTTTAGGA
6411







Rbp3
GGTGTAGAAAGCATATCACA
6412







Rbp3
GCCTGGAGTTGGATTCTTCC
6413







Rbp3
GGCTCCATTGCTCTTAGGCC
6414







Rbp3
GTCTGACAGGCACTATGACA
6415







Rbp3
GAAACCTACAAGTCAGTTTC
6416







Rbp3
GGCACACAGAGGCCTCTGTG
6417







Rbp3
GGGAGAGGGTGAAGACTACC
6418







Rbpj
GTTGTGTCTGAGCCGAGCGG
6419







Rbpj
GATGAAACAGTACCTAGAAC
6420







Rbpj
GGAAAGTACCAGGCTCGGGA
6421







Rbpj
GGCTTGTAGTGGTGGCTCTG
6422







Rbpj
GCAGCCAGCTTGCAGGATGT
6423







Rbpj
GCAGGGAGGATCAGCAGGTA
6424







Rbpj
GTCGTGCGGGAGCAAATGAA
6425







Rbpj
GGAAAGCAAAGGGCCGGGAA
6426







Rbpj
GAAAGCAAAGGGCCGGGAAG
6427







Rbpj
GAGCAGATCCCTTAGTCCGC
6428







Rbpjl
GCCCACTAGGAACTGCCTCA
6429







Rbpjl
GGTCTGGCTTCTACTGCCGT
6430







Rbpjl
GGAAGGATGGGTGTGTGTAT
6431







Rbpjl
GCTCCAGTCTGCAGGTGAGT
6432







Rbpjl
GGGCAGATGTAGGCTTCCCA
6433







Rbpjl
GTCTTGGTCATCGTGACAGA
6434







Rbpjl
GAGTTTGGCCTGCAGTTCCA
6435







Rbpjl
GCTCCCTTCCTCCCATGGTG
6436







Rbpjl
GAGAGAGTGGCCAGCAGCAG
6437







Rbpjl
GCATCTGCATTGCCTGAGCT
6438







Rel
GTGACGTCATGCTGGCCGAG
6439







Rel
GATATTCCACATCATAGACC
6440







Rel
GAGAGCGCCGCTTAAAGCCG
6441







Rel
GAGATTGGCCGAGATACCCA
6442







Rel
GCATTAGTATGCAGTATGCA
6443







Rel
GCCTCAGGCCGTGGGTATCT
6444







Rel
GCTCTCAAGGACTCTGGAGG
6445







Rel
GCATACTAATGCTGAGAGAA
6446







Rela
GCTGCCTCCACTATGCCAGA
6447







Rela
GCTGAAACCTCCTGTGGCCC
6448







Rela
GCTGCATCCGACAGGCCTTA
6449







Rela
GGCCTTGAAGGAGATGTTCA
6450







Rela
GAAACTGAAATGAGTGGGAG
6451







Rela
GTTCATGTGAGGACCAATGA
6452







Rela
GATGGGAAGAGCCTGAACTC
6453







Rela
GCGCAGCCGGATCTAGGTTG
6454







Rela
GAGAAACTGAAATGAGTGGG
6455







Relb
GACGTCACGTCAAAGGGAAT
6456







Relb
GTACCAGTGGGCAGAGCCTC
6457







Relb
GTTGGTTTGCGTTGAGACAA
6458







Relb
GGCTGCTAACTTCCCACTCC
6459







Relb
GGTGTGTGTGTGTGTGTGAC
6460







Relb
GACAGTACATGGTGCATCCA
6461







Relb
GACATATCCAGTGCCCTTAT
6462







Relb
GACAAGGGCCTGCTATGCAG
6463







Rest
GATCTCAGCGCCGTGCGGAA
6464







Rest
GGAGCCGCACATTCCAGCAC
6465







Rest
GCATAAAGATCTGTGTAGGC
6466







Rest
GCGTCCTGTGCTGGAATGTG
6467







Rest
GAGGTTCACACATTTAGATC
6468







Rest
GAAATAGTAACAAAGTAGCC
6469







Rest
GGAAACTTACCTAATCCGCC
6470







Rest
GACAATACTTCTCAAGAGGG
6471







Rest
GTACCTGACGTCTTATAATG
6472







Rest
GAGGCTGGAAGCAGAGCTTC
6473







Rfx1
GACTGCATTTGTTTGACATT
6474







Rfx1
GAAGTACAACCAAGTCTTCT
6475







Rfx1
GCAGCCCTGAGAATTACAAG
6476







Rfx1
GCTGCAACTGACCTATCTCT
6477







Rfx1
GCTCTCTTGCACAGGTCCAC
6478







Rfx1
GGCGTGTGACGTAGTAGGGT
6479







Rfx1
GGCCACAGATAGAGCCTGTA
6480







Rfx1
GTGACAGGTGAACACATACA
6481







Rfxl
GTCTTCACAGAAGTGGCAGT
6482







Rfx1
GCCAGGCTGTGACCTTTCCG
6483







Rfx2
GGAGGCGCTCACCGTCTAAG
6484







Rfx2
GTGCCACAACACCACTTTGT
6485







Rfx2
GGTCTTTAGCAAGGAGACTG
6486







Rfx2
GAGGACAGAGAAGCGAGATG
6487







Rfx2
GTAACTATCATGGAGGCAAA
6488







Rfx2
GGTTTCCAACCCATGAGCTC
6489







Rfx2
GGGAAGGGTTGGCTCTAAGG
6490







Rfx2
GCCTTGCGCCTGCTCTTTCA
6491







Rfx2
GGGCACTATGAAAGCCAATG
6492







Rfx2
GAGGTCATGGGTTGGAAACC
6493







Rfx3
GTCGCCAGTGTGGTGTTTCC
6494







Rfx3
GAGAAAGCGGAATTCGATGG
6495







Rfx3
GCGCGCGTCTCACACAGTGT
6496







Rfx3
GAACGGTGACCCATCTCGCT
6497







Rfx3
GTTAAGTGATGGGGAGGTAA
6498







Rfx3
GTGTGTGTGTGAGAGAGGGC
6499







Rfx3
GCACTCACAAGGTTGACATA
6500







Rfx3
GGTAACTTCTTACTCTGGTA
6501







Rfx3
GCGCTTGATTCACAAGGCAA
6502







Rfx3
GTGACTGACAGCTCGGAGCC
6503







Rfx5
GACCACGCAGAACGAGGCAC
6504







Rfx5
GCGTGTATCCAGGCAGATCG
6505







Rfx5
GAGATCTCTTTGGGTATACA
6506







Rfx5
GGAAAGGGTTCTGTTCTTAA
6507







Rfx5
GGATGTCGTGGGATGACGTA
6508







Rfx5
GGGAACAGGGTCCCAGATTC
6509







Rfx5
GGCTGGAGGTGTTGCAGCAC
6510







Rfx5
GGCTGCCTCAGGTCTTGGTT
6511







Rfx5
GATCGACCGCGGGCTTTACT
6512







Rfx5
GAAACATGAATAGGCAAAGG
6513







Rfx7
GAGAATTGACAAAGTGGCTG
6514







Rfx7
GAGTGCGTTTACGGCGACTT
6515







Rfx7
GCTTCCAGTCTGTATGAACC
6516







Rfx7
GCCTCACATTGCCACATTCG
6517







Rfx7
GTCTGTATGAACCAGGCCTG
6518







Rfx7
GTTACCTTAAACCTTGGGTA
6519







Rfx7
GAGCTGTGTGTCTCCGAGCC
6520







Rfx7
GCTGTCTATGAATGGGAAGG
6521







Rfxank
GCAGTCCTATGCGAGCGTGT
6522







Rfxank
GGGATGGTCTCTAGACAGCA
6523







Rfxank
GTAGCAGGGAGTCCTTGACG
6524







Rfxank
GGAGTTAGAGAGGAGCCGCC
6525







Rfxank
GCTGTGTGGGAACAGCTCTG
6526







Rfxank
GGTGTTGCGGGACCCTAGAG
6527







Rfxank
GTCATCTGCAGGTCCAGGGA
6528







Rfxank
GTCATCTGCCACCATTAGCC
6529







Rfxank
GTATGCTCCAGTTATAAAGG
6530







Rfxank
GAGTTAGAGAGGAGCCGCCA
6531







Rfxap
GACAGCTGCGCATGCGCAAT
6532







Rfxap
GGCACGTTCTTTAGCTTCCT
6533







Rfxap
GCCATCCGCAAGCGATTCCT
6534







Rfxap
GTGCAGGCTGACCAAGAACC
6535







Rfxap
GAACAGTGCCTAGTGAAGTT
6536







Rhox11
GGAGGCACTTCCCTTGTCTG
6537







Rhox11
GACAATGATCACTCTGGAGA
6538







Rhox11
GCTAATGCTACTGACTGTCT
6539







Rhox11
GATTTCCCAAACAGGCTTAC
6540







Rhox11
GAATAAGTCACCCATATTGA
6541







Rhox11
GTACCTGAAAGTTCTGTATT
6542







Rhox5
GAGGTCTTCAGGAAGCTGTT
6543







Rhox5
GAACATTGGGATGATGTCAT
6544







Rhox5
GTAATTGCCTCCCATTCACT
6545







Rhox5
GGCTAAAGAGGAGAGAACAT
6546







Rhox5
GGTCTCTCTTCCTTTGTCTA
6547







Rhox5
GGATGTGGCAATGTATCTCA
6548







Rhox5
GTCTCTCTTCCTTTGTCTAT
6549







Rhox5
GAAGAAGGAGGAGGAGGAGG
6550







Rhox5
GAAAGTGTGCACTTTCTCAA
6551







Rhox6
GCCCTAACTACACAGGCTAT
5552







Rhox6
GCTGACACTAGCTGCAAGCC
5553







Rhox6
GGCTTGCAGCTAGTGTCAGC
6554







Rhox6
GAAATGTATCTCAGAATCCA
6555







Rhox6
GCACGAGGAGTTATGCTTAG
6556







Rhox6
GATTAGCTGCTCTACAAGCC
6557







Rhox6
GCTTTCCTTTAGGACTTGGT
6558







Rhox6
GCAGAGGTGCTAGGGCTACA
6559







Rhxo9
GGAGACTCTGATGGGCGAGT
6560







Rhox9
GGTTGTGCAAGCTCAGTATG
6561







Rhox9
GCTTCTTCCCTGAGGCGCAC
6562







Rhox9
GAGATGGCAATGAACAGACT
6563







Rhox9
GGCCTGAGCAGTGACTGTGA
6564







Rhox9
GCTAGAAATTTCGGAGCCCG
6565







Rohx9
GAGATTCAACTGGATCCTGG
6566







Rnf2
GAACATTCCGCTTTGATGGA
6567







Rnf2
GGTCGATATAAAGAGTAGCA
6568







Rnf2
GTTCCTCCATCCTCTGGAGA
6569







Rnf2
GAGTAGCAAGGAGATCATTA
6570







Rnf2
GAGGGAAGGCGCAAACCTGT
6571







Rnf2
GAACACTGAAAGCGTCAAGG
6572







Rnf2
GCGCCTATTTCCAGAGTTGA
6573







Rnf2
GTTTCTGCTGCAGAACTTTC
6574







Rnf2
GACTACCCGTCTCCAGAGGA
6575







Rnf2
GGAGCTCGGGAAATACAACA
6576







Rnf6
GACTCTGAGCTTCGCGCCTC
6577







Rnf6
GGACACTGAAATACGAGAAG
6578







Rnf6
GTGTTTAACATGTCCCTGGA
6579







Rnf6
GTTGCTGCTCGGAGTCGACC
6580







Rnf6
GAGCTATGTGATGGAGACAG
6581







Rnf6
GGCATTTCCAAAGGGRGGAA
6582







Rnf6
GGAGAGGAGGACGTGCTAGG
6583







Rnf6
GTTTCTGCCTGTGCCCGGTT
6584







Rnf6
GTTCCGCATCTGCTGTGCGC
6585







Rnps1
GATTGTGAGAACTGAATCTT
6586







Rnps1
GGATCTAAGGCACCCTGCTG
6587







Rnps1
GTGTTGGCAAAGTCGGGAGG
6588







Rnps1
GGACAGCAACTGTGTGTGGG
6589







Rnps1
GTCAGAGGTGAGAAGCGGGA
6590







Rnps1
GCGCGCGATGATTGGCTGAC
6591







Rnpsl
GCCTACCGGATCTGTGTGGA
6592







Rnps1
GACTTCAGCCGTTCTTCGTA
6593







Rnps1
GGAGCATAGAGTACTTACCA
6594







Rora
GAGACTGTAGCTTCCTCAGA
6595







Rora
GTTGGCTAATCTCAGCCAAG
6596







Rora
GAGATAAAGTCTGCTCCCTT
6597







Rora
GACGTTATTAATACCTCTCC
6598







Rora
GAATTTCAAGACTACTTACC
6599







Rora
GAAAGATCCCAGAGAAGGGT
6600







Rora
GCCTTGTGTAGCTCCCGGTC
6601







Rora
GAGTCAGAAGTCTGGCGGGC
6602







Rora
GAGGTGGAGAAGAGGGAGGC
6603







Rora
GAAGCTGACTGACAACCCTC
6604







Rorc
GTCAGAGATGACCTAGTCAG
6605







Rorc
GAATATTGGATGCCTCAGTT
6606







Rorc
GCGACTCTCAAGCCAGGACC
6607







Rorc
GAACAAATAGTTGAAGCTGT
6608







Rorc
GAATGGAATGCTGGGAGCGA
6609







Rorc
GAAGAGCAAATTGAGAGGTG
6610







Rorc
GTTGGGTAAGCAGGAAAGCC
6611







Rorc
GGCACAGCTAATCAAACTCT
6612







Rorc
GATATACTTCCCTGCAGCTT
6613







Rorc
GCAGAAGAGAGCAACTGCAC
6614







Runx1
GCAGCTGGGACTCTACCGAG
6615







Runx1
GGGTCGATCTTGTGAGTTTG
6616







Runx1
GAAGTCCAAGCAAGACTGCA
6617







Runxl
GCACAGAGACTTGAATAATG
6618







Runx1
GAGCACAGATGAAAGTGGAG
6619







Runx1
GTTTGCATAGAGGAGACCGA
6620







Runx1
GAATCCCACCCTGTCCTCCC
6621







Runx1
GGATCTCTCCAAGGCAGAGC
6622







Runx1
GCAGCTACAGGCTTGGATCC
6623







Runx1
GTGAGCCCTGCAGTCTTGCT
6624







Runx2
GATAGTGTCGATAGTGGGAG
6625







Runx2
GTAAGTGGTGCAAGCAGAAA
6626







Runx2
GTACAAGGAATCGCAGCACT
6627







Runx2
GAGGGAGACTGAGTGGCTCA
6628







Runx2
GCGCTAGGGAGGGTCATGAC
6629







Runx2
GCGAGGATACAAGTTAGTTT
6630







Runx2
GCTCAGAATTTGAGGCTGGT
6631







Runx2
GGCGGATTTCCCGGCTTCTG
6632







Runx2
GGAAGTCGGGTGGGAGATGT
6633







Runx2
GCGGATTTCCCGGCTTCTGT
6634







Runx3
GCAGCTCAGGACCAGAGGTT
6635







Runx3
GATGTCTGCCCAGGTCGCAG
6636







Runx3
GAAACAGCCACTGCTGGGAG
6637







Runx3
GAAACAGCCTCTGGACCAGA
6638







Runx3
GCTATAACCCTCGGAAGACG
6639







Runx3
GTTGACCATCACTAGGCCTT
6640







Runx3
GGTGTCAGGGTAGTGGTAGA
6641







Runx3
GGCCTGGCCTTGTGGTTCTG
6642







Runx3
GGCGGCGCCTTTCTGTTGAA
6643







Runx3
GGTGAGAAGTTAGAAAGTGG
6644







Rxra
GCTGAAGACTGTAGTCAGGC
6645







Rxra
GGTTTGAACTCAGTGCGAGA
6646







Rxra
GAGCTAAAGCACCATCAACA
6647







Rsra
GAGGAGATCAAGGTCCTATG
6648







Rxra
GGGTACCCACGTTAACACGA
6649







Rxra
GATTAGGGTTCAGGGATTCC
6650







Rxra
GGTGTGTCATCCTGACTCAA
6651







Rxra
GCCACTATGACCCTAGAAAT
6652







Rxra
GAGTTGTTAGGGCTGACTGC
6653







Rxra
GACTGCAGAAGCCTTGGATC
6654







Rxrb
GGGACTGGTGTGCTGGGAAA
6655







Rxrb
GATTGTCGCCTTCCTCGTGG
6656







Rxrb
GCCATGTTGGTAAAGGTATC
6657







Rxrb
GGGACTGGTTCTTAATCGGT
6658







Rxrb
GCAGTGGACAGTGACGTGGC
6659







Rxrb
GACTCTCAATCTACCTATTC
6660







Rxrb
GCCGCCATCTTTGTACAGAC
6661







Rxrb
GACGGTGGGAGTCTAGGAAA
6662







Rxrb
GGCCGCCATCTTTGTACAGA
6663







Rxrg
GACACAGGGACTAGCAGGCT
6664







Rxrg
GAGTTCTCTGATATGGCCTT
6665







Rxrg
GGCATAGTGCAGCTCGCCAG
6666







Rxrg
GTAACAAGGGCCAATGTCAC
6667







Rxrg
GTTGCTAGTTTGATTAACTC
6668







Rxrg
GGACTAGAGAGGCCATTCCA
6669







Rxrg
GAGTTGGTTGGCTCTAACCA
6670







Rxrg
GGCATACGGCCCAGGAATAG
6671







Rxrg
GCTCCTTTAGCCTAAGACAC
6672







Rxrg
GTTATTTGATCTGTGAAAGG
6673







Sall1
GGGTGCTCAAACTGCACAGA
6674







Sall1
GGGACACAGCCAGAGCGCTT
6675







Sall1
GGAAACCCTGTCTTGCCGCG
6676







Sall1
GTTCCAAGGCTCTGCTGTGA
6677







Sall1
GAATTGGTCTTTATTGTTGG
6678







Sall1
GGTGGCGATACATCAATTAC
6679







Sall1
GCTGATTGCTGGAGAAGTGA
6680







Sall1
GACATGGGTCCTGAGTTCCA
6681







Sebox
GGAACTGGCATGGTGTGCCA
6682







Sebox
GCCTCTGGAGGGAAGAGGCT
6683







Sebox
GCCTAACACAGCAGAAGGAG
6684







Sebox
GGGACTGAGTTGTGTGTCTT
6685







Sebox
GTACTCAGGGTGGAGGAGAA
6686







Sebox
GTTAGGCAAAGTCCAAGGTA
6687







Sebox
GTCTATTTCTTCTCTGGAGG
6688







Sebox
GGCCTTCCTAGTTAACTTCA
6689







Sebox
GCACTTTGCCTTGCTTCAGC
6690







Sebox
GGAAGAATTTCACAAAGTAC
6691







Setdb1
GGGAAACAGCGTGAGGAGGC
6692







Setdb1
GAAGACAGTGTACTTGAGTT
6693







Setdb1
GCAAACTGAAGGAGAGACGG
6694







Setdb1
GCAGCGCTATGCAATAAATT
6695







Setdb1
GCCAAACCCAGGCAAACTGA
6696







Setdb1
GTCTCTCCTTCAGTTTGCCT
6697







Setdb1
GAGACTGTGGTACACCTCTG
6698







Setdb1
GTAGGGCATTTCCAGATAAG
6699







Setdb1
GGAGTTTACTTACACAGCAG
6700







Shh
GGTTCAGCTATTCCTCCTGC
6701







Shh
GACCAAGTACAGATTCTTAG
6702







Shh
GGCGAACTATTTATGTGGAA
6703







Shh
GCATTTCTGCAACCTGGAAC
6704







Shh
GGAAGCAGGACTAGGCTCTT
6705







Shh
GAAATTCTGCAGTCTCCAGT
6706







Shh
GGGATGTACACAGAGGATAC
6707







Shh
GCAAGCTGTCCCTGGGTACG
6708







Shh
GCCTCTGGGAGTTAAATGGC
6709







Shh
GGTAAAGGIGGGTGGGAGGG
6710







Shox2
GCAGGGTGCAGGGAGTTGTT
6711







Shox2
GCATTGCAATCAGAGTCAGT
6712







Shox2
GCAGCGGCTTGGAGCAAGAA
6713







Shox2
GGGTCTCCTGATCTCTTACC
6714







Shox2
GAACTGGATAGACTTCTCGG
6715







Shox2
GATGGCGAGGAAGGGAATGG
6716







Shox2
GGGAAATGTTTCTAGAAGGA
6717







Shox2
GATGCTAAATAATTAAGGGC
6718







Shox2
GATCCAGGCTGGAGTCCACC
6719







Shox2
GGGATGGCGAGGAAGGGAAT
6720







Sin3a
GAGGTTCCAGCCACTAGCCT
6721







Sin3a
GCCAAGCCAAGCCCTGTTCC
6722







Sin3a
GAAGGATGCTAAAGGCTGGA
6723







Sin3a
GTAAATCTCTTCCTAGTTCA
6724







Sin3a
GAGGCAGCTCCATGTTTGCG
6725







Sin3a
GTTACTAGATGAAAGAGGGT
6726







Sin3a
GCTCCGCGCCCTTAGTTAGG
6727







Sin3a
GTAGATGAGGTTTACATTTG
6728







Sin3a
GTGATTGGCTAAACCATTGA
6729







Sin3a
GACTGAACCTCAGCCTTCCA
6730







Sin3b
GTGCAAGAATTCAGTCCACA
6731







Sin3b
GTGGTCAAGGTAGACACCTA
6732







Sin3b
GGAGACTCGTGGCGTCAAAT
6733







Sin3b
GTCACTCTGAGAGGAGTTAA
6734







Sin3b
GCTTTCTGGGACAAGGACTT
6735







Sin3b
GGAAGGAGAGTATACCAGGT
6736







Sin3b
GCTTGCTCTAAGCAAGCAGG
6737







Sin3b
GACAGAATCCTAGAGCAAGG
6738







Sin3b
GGTTTGCACACATTTGTGAA
6739







Six1
GAAGCTACCGAGTGCTGCCT
6740







Six1
GGAGAGGTGGGAAGTGAGGT
6741







Six1
GCAAGTAGGTCCCAGATACA
6742







Six1
GTGCTGCCTAGGATAAGAAG
6743







Six1
GTGACACGTGGGAAGAGGAG
6744







Six1
GGCTACTTACAATCTCTCCA
6745







Six1
GTATAACTCACAGATAAGGA
6746







Six1
GTGGAGATAAGGGAAGGTGG
6747







Six1
GTCTCTATGCTACAGTGCCA
6748







Six2
GGCAGTCTGCGGGTCTATGC
6749







Six2
GTCTGTGCCTCCTTGGATCT
6750







Six2
GAGGCCCTAGGCAGGATTGG
6751







Six2
GTCCTGCCAATGCTGACAGT
6752







Six2
GGGTAATTGTCGCACTTCCC
6753







Six2
GTGGACTTCCTCTGTGGGTA
6754







Six2
GGTGCAAATTCTGGGAAGGA
6755







Six2
GAGCAGCTGCTTAAGAGGCC
6756







Six2
GGCCTTAGAAAGTGGGTAGG
6757







Six2
GAGCATAGGCTGTCTGGGTA
6758







Six3
GTTTCAATACGCGTTGTACA
5759







Six3
GGGTTTAAGGAGGAGCCGAG
6760







Six3
GGCCAGAAACCTAGGGACTC
6761







Six3
GATGACTTGCGACTAACTTC
6762







Six3
GGGCCTAAACTCGCTGACCA
6763







Six3
GGCTAAGATTAACAAGCAGG
6764







Six3
GAGCACAATTTCCCAGGCAA
6765







Six3
GGGAGGCAGCATAGGGCTTC
6766







Six3
GTCACCGTAGCAAGCTGCTG
6767







Six3
GAGATTCTCAATCTCCAATG
6768







Six4
GGTGTGGTGGGAAGAGCAAG
6769







Six4
GCAACCGGAGGAGTCACGTT
6770







Six4
GGTCTTAGCTCAGAGAGGGA
6771







Six4
GTTCCTAGTAGATTCAAACA
6772







Six4
GGGTTGAGGCTGAAGGGAGG
6773







Six4
GTAGCCCACCGAGATGACAA
6774







Six4
GAAAGGCCCAGTGATTCCCA
6775







Six4
GATCTTGAAGAGTGGAAGAG
6776







Six4
GAGCTAAATTATAATGGACT
6777







Six5
GCCCATCTATGGGTATAGGC
6778







Six5
GACCCAGGCTCACAGAAGTG
6779







Six5
GGTCCGAAACCGAGACCTGG
6780







Six5
GTTTAGGGTCCATTCTCCTT
6781







Six5
GGGTAGGCGGTGGATCTAGC
6782







Six5
GGTGAGAACCTCTTCTTCCA
6783







Six5
GGCGCATGTTCGGCAGCTAC
6784







Six5
GGATCTGCAGGAGAGAAGGT
6785







Six5
GTGGGTAGCATATCTAAGAT
6786







Six5
GACAGACCCGAGTGCAGAGC
6787







Six6
GTTCATCCCTGAATTGGACT
6788







Six6
GGGAGGTGCTGAAACGACCG
6789







Six6
GAAATGATAGGAATGGTTGC
6790







Six6
GTTGGTAGAAAGGAAACACT
6791







Six6
GACTTGCTTACAAAGGTTAA
6792







Six6
GGCAGAGCTTGGCAGAGTGA
6793







Six6
GCAGCATCCTACCTCTCTGG
6794







Six6
GATTCTCCCTCTCCCTCAAG
6795







Six6
GGGCTTATTAGTTGGTAGAA
6796







Six6
GAGTGAGGGCCCTAGAGGAA
6797







Smad1
GTGTATGGCCATACCCTCCC
6798







Smad1
GAGGTGTCCAGGATGGCACT
6799







Smad1
GAGGATCCCTAAGCGGCAGC
6800







Smad1
GCCTGGCTTAAAGCCACTCA
6801







Smad1
GTCTCTGGGAAGGGCTGTCC
6802







Smad1
GTTTCTTGTTTAAGICCTGA
6803







Smad1
GCCCTGAGTGGCTTTAAGCC
6804







Smad1
GAAGGCGCGGGCCGGTAATT
6805







Smad1
GCTCATAGTAGACAAAGCCA
6806







Smadl
GCTCATGCTACATGAAGGGC
6807







Smad2
GGTGGGTAATAGATGATTCT
6808







Smad2
GTGCGGTTGGTATTAGGGCT
6809







Smad2
GTCTCCAGGAACATTGAAAT
6810







Smad2
GTTTCTCCAGCCCGAGCCGT
6811







Smad2
GAGCTCAAAGTCTGACACTT
6812







Smad2
GGAAGTAGGCTGGAAACAGT
6813







Smad2
GATGAAGAAGCTTGGAGGGT
6814







Smad2
GGTGACCCGGTACCTTTAGT
6815







Smad2
GGATGAAGAAGCTTGGAGGG
6816







Smad2
GTAGTGCTAGTGAGGCTTGC
6817







Smad3
GGGAGAGAATTAACATTTCA
6818







Smad3
GGAGGGCAGAGGACAGAAAG
6819







Smad3
GCTGAGGTCTACTGAGCCTC
6820







Smad3
GGCCATACCCAAAGAAACCT
6821







Smad3
GTCTCTAGCAGCAAGTGGAA
6822







Smad3
GCTTGGTTCACTGGGCCCAA
6823







Smad3
GTGGCCAGAGCTGCTTTAGG
6824







Smad3
GCAAGCAGGGCTGGGATCAT
6825







Smad3
GGAGTGCAGCCAGCCCTTGA
6826







Smad3
GGGATGAAGGTTTGCTTAGG
6827







Smad4
GGACCACAGGGCATGAACAC
6828







Smad4
GACAGCTCGGGATGAGCGAT
6829







Smad4
GCTAAATAGGTTGTGCAGGC
6830







Smad4
GGACACAGCTGGACCGAGTG
6831







Smad4
GACCACATCCGGGTAATTTC
6832







Smad4
GGCCAAACCCTGAAATTACC
6833







Smad4
GTCAGCTAGAGGTCCTCCCA
6834







Smad4
GGGAATGAGTCTTCTTTCCT
6835







Smad4
GAGAAAGGAGCGCTGCGGGA
6836







Smad5
GCGAGCCTGGAAGTGGCACT
6837







Smad5
GCAAGACTTCTTTATGCCTC
6838







Smad5
GGAATTACACTCCGGCCAGC
6839







Smad5
GTCCAAGCTGACCGTTTGGA
6840







Smad5
GAGATTAAATAAATGCCGTG
6841







Smad5
GGAAATGTAATCAAGTACAA
6842







Smad5
GGCATAAAGAAGTCTTGCTT
6843







Smad5
GTTTCCTGGCTGACAACTGC
6844







Smad5
GGGAGTTGTAAATCCATGCC
6845







Smad5
GGTGCTCGAGCTGTCTTACA
6846







Smad6
GGCATAAGGTAAATCCTCGA
6847







Smad6
GCATCCAATTCAGGTTGTCA
6848







Smad6
GTGAATATGAGTAGCTGTCC
6849







Smad6
GAAGCCTGCTACCTTAAGCT
6850







Smad6
GGCCTTGGCACTCTATATAA
6851







Smad6
GTGGGTTCACCCAGCAGAGC
6852







Smad6
GAATTTCTTTCATTGAGCTC
6853







Smad6
GTGGTGTGCAAGTCCAGGAA
6854







Smad6
GTGTTTGTTAGCGCGTGTGC
6855







Smad7
GTCTAAATCGGGCCACTAAC
6856







Smad7
GAGGGCACAGGCTAGTGTGG
6857







Smad7
GACAGCAGTCAAGAAGACCA
6858







Smad7
GCAGCATCCTGGAGGGAGGA
6859







Smad7
GACATTTACACCGGCCAGGA
6860







Smad7
GCTGGTGCTTTATGGTTCCC
6861







Smad7
GGCGACAGCAGCAACAGCAG
6862







Smad7
GTGTGTCTTGTGCACAGCTC
6863







Smad7
GACACACATTTAGAGGGCTG
6864







Smad7
GCAGTCAAGAAGACCAAGGA
6865







Smarca4
GCTACTGCCTCTTAAACGCT
6866







Smarca4
GAACTGAGCTGTGTGTGTTG
6867







Smarca4
GAGGCATGAATCTACAGATT
6868







Smarca4
GCTAATTACTGGGCCTCAGC
6869







Smarca4
GTTCTGCAGGAAATGTGGCC
6870







Smarca4
GCACGCGTACTAGTCCTTTG
6871







Smarca4
GAGTTGCCCACTCAATAGAC
6872







Smarca4
GTTCTATGCTCCAAGGCTAA
6873







Smarca4
GAAATTAAAGTCCTCAGGCT
6874







Smarca4
GGTCCAGATGGGAGATAGTA
6875







Snai1
GTGTTGGAACGTTCACAGGG
6876







Snail
GGAGGCAGAGCTAGAAACTT
6877







Snai1
GGCAGAGGTAGCAAGGACCA
6878







Snai1
GCTGTATGGTCTTCTATTGT
6879







Snai1
GCTGGCATGCCGCTTAGGAA
6880







Snai1
GGGAGGTGTGATTTGATGAA
6881







Snai1
GAACAGGCTTTCCTACCACG
6882







Snai1
GCAGGTGTGAGGTTGTGAAC
6883







Snai1
GCTGCTGACCTTTGGGCGCT
6884







Snai3
GATGCAGTCTGTTTATGCCT
6885







Snai3
GGAACTGGCCAGCGATCCCT
6886







Snai3
GCCTGAGTGGTTAGCAACGA
6887







Snai3
GTCTGGTGGGACAGTCTCTG
6888







Snai3
GGGATCTCCAATTTCCTTCA
6889







Snai3
GGAACTGCCAGTTTCATGAA
6890







Snai3
GATGACATCCIGAAAGCATT
6891







Snai3
GGCAGCGTAGGAGACAGTGG
6892







Snai3
GAACTCTGCTCTTTCATCCA
6893







Snai3
GCTCAGAATGAGGGTGGAGG
6894







Sox1
GAAACCCAGCAGAGGTACTT
6895







Sox1
GCAGAATAACAGCGGTGCGG
6896







Sox1
GGCACAGAGTTGGCTGGCTG
6897







Sox1
GAGGAAGAAAGAATCGCTGT
6898







Sox1
GCTGACTTGCCCTAACACAG
6899







Sox1
GAACTCGGGTTTGCGAGGGT
6900







Sox1
GCTCCGAATGATTAACGATT
6901







Sox1
GAATCTGTAAAGGCCTTTGC
6902







Sox1
GAAGAACTTGTAGACTCTAA
6903







Sox1
GTGCTTCGGGAGGTTGCTGG
6904







Sox10
GTTGAGTGGCTAGGCGGAAC
6905







Sox10
GGGTGTGAGTGTGTGTGTGG
6906







Sox10
GTCCTTACCCGGTCCTAATG
6907







Sox10
GGCATAGAGGAGTGCTGTGG
6908







Sox10
GACACACTGGCCCAATTGTC
6909







Sox10
GCCAAACCCAAGCTGAGTCC
6910







Sox10
GTGTCTCTCACTTCCATGAA
6911







Sox10
GAGATAGTCACATAGGGCAA
6912







Sox10
GAGACACAGGAGGCTGAGGC
6913







Sox10
GTTGTATGTGTACAGGGCAA
6914







Sox11
GGCCTATGGAGTAGAAAGTG
6915







Sox11
GAAAGAGGATCCCAAATAAG
6916







Sox11
GCGGTTCGGAAAGGAGTTCA
6917







Sox11
GACCGTTACTCCAGCCGAAC
6918







Sox11
GGTTTCAGGACCGAGCTGCA
6919







Sox11
GTGCAGTACACCAACCTGAA
6920







Sox11
GGAAAGGAGTTCACGGATTC
6921







Sox11
GTCGAAGCGCCACCTTCTGC
6922







Sox11
GCGACCGGGCTCTAGAAAGA
6923







Sox12
GGATGCTAGAGCCTGGGTGT
6924







Sox12
GAGGTCACCTTCATGGCGCC
6925







Sox12
GAGTGATCTGGAAGGCAGGC
6926







Sox12
GCTGCACCTGGAGTTGAGTG
6927







Sox12
GTCTCTTACTGGGACACTGA
6928







Sox12
GATCCGGGCTGGAGTGAAGT
6929







Sox12
GAGCCAGTTGTAGCACCGCC
6930







Sox12
GCTGTTAGCATGGATTTCCA
6931







Sox12
GCTGGACCCTGTGTGTAGTA
6932







Sox12
GACCGCCAGACTAGCTAGAA
6933







Sox13
GTCCTAAAGCAGGCTTGTGT
6934







Sox13
GACACACGATTGCCACGTAT
6935







Sox13
GTGATCCCTGGCATCTGcTT
6936







Sox13
GCCAGGTCCTTGTGTGCTAC
6937







Sox13
GGTGCACAGACATGCTGTCT
6938







Sox13
GGGCTGGGAGGTGCTTTGTT
6939







Sox13
GACACAGTGGCAGCCCTTTC
6940







Sox13
GTACACTTCAGTTCCCAGGC
6941







Sox13
GCTCGTACACTTCAGTTCCC
6942







Sox14
GGGTCCAGGGAATGAGGTCT
6943







Sox14
GGAGTGTGTTCCAGACTTAT
6944







Sox14
GGCCGATGCGAAATGCCCTT
6945







Sox14
GGACGTAACACAACTCGTGC
6946







Sox14
GGTGCACAGTCTGCATTTGA
6947







Sox14
GTGAAGAGTCCTAGTGGCAA
6948







Sox14
GCGAAGTTCAAAGGCGAGGT
6949







Sox14
GeCGCCTCCACCTGTAATCC
6950







Sox14
GAGCTCTGGGCTTGCTGGCT
6951







Sox14
GCTTCATGCGGGCTTCGCAG
6952







Sox15
GTAGGGTGGACAAGAGGGAG
6953







Sox15
GGCAGGTTGTATTTCTGGCC
6954







Sox15
GGCCTCCGGTGGAACGTTAG
6955







Sox15
GGAGCTGCTCTTATCTACGG
6956







Sox15
GCTGGAGCTGCTCTTATCTA
6997







Sox15
GCCTCCGGTGGAACGTTAGG
6958







Sox15
GAGTTGGGTAGTTTGGTGAA
6959







Sox15
GAACACTACCTCTCCGGTAA
6960







Sox15
GGGTAGGGTGGACAAGAGGG
6961







Sox15
GGATTCTCTTTCAGGACAGA
6962







Sox17
GTCCTACCCAGTTTGCTCTC
6963







sox17
GAGTCAGTAGTGATGGATTA
6964







Sox17
GGTACATCCTTGGAATGTTA
6965







Sox17
GGACTTGAATGTCCTTTAAC
6966







Sox17
GTTTACTTCCTGCTTCGCCG
6967







Sox17
GAGTCGCCAGCTGCTAGGGT
6968







Sox17
GTCGATTGGCACCTTTCACC
6969







Sox17
GGAGAGCAAGTTCATGAGGG
6970







Sox17
GAGACAAATTGGAATTTACA
6971







Sox17
GGCTCATTCCGCACACCGTT
6972







Sox18
GTCCTGAAAGCATTTCACCT
6973







Sox18
GAACAACTGGTACAGGAGGA
6974







Sox18
GTTTCTGAACACTCTTGCCA
6975







Sox18
GCTCTGGTGGCTGGATTTGG
6976







Sox18
GCCCTACCATTCCAACTTTC
6977







Sox18
GTCCCATCTGGAAGGAGGGT
6978







Sox18
GGAATTCTGGGATCTCTCCA
6979







Sox18
GAATAGGGTGCTGAACCAGA
6980







Sox18
GCTACTTCCCTGGCTAAGTC
6981







Sox18
GCTCCTCAGACTAAAGGATG
6982







Sox2
GTGACAATAACAGCCAAGCC
6983







Sox2
GCTGGCGACAAGGTTGGAAG
6984







Sox2
GGCTGTGGGAGAATGGGCTG
6985







Sox2
GGAAAGAAGCTCCCGAGTGC
6986







Sox2
GACTGTCCAACTAGTATTTC
6987







Sox2
GCCTTTGCACCCTTTGGATG
6988







Sox2
GGCAGTTTCAGAGGAAACCT
6989







Sox2
GGGTTGGGAGTTAGAAAGAG
6990







Sox2
GATAAACAGGGCAGTTTGTA
6991







Sox2
GCAGCCACATCTCAGAAACT
6992







Sox21
GAGTCACACCTGGCCCTCCA
6993







Sox21
GGCCTCAGTGGAGACTGTCC
6994







Sox21
GTAGGTTATAGGAAAGGGAA
6995







Sox21
GTGGATCCCACCATGAGGCT
6996







Sox21
GGAAAGGAGAGCAATTATGA
6997







Sox21
GCGAGGAAGAGGGTTGAGCC
6998







Sox21
GAAGCTTTCGGGACTGGGAA
6999







Sox21
GCTATATCACCTGAGATCGC
7000







Sox21
GTGGGATCCACGTGGAATCG
7001







Sox3
GACAAACAGCTAATCTGCTT
7002







Sox3
GGAGCGGGTTTAGGATGCAA
7003







Sox3
GGGCTCGGTGTTGATTGGCC
7004







Sox3
GTCACCGCAGAGAAGCCAAG
7005







Sox3
GAGACAGAAGCCGGGAGTAC
7006







Sox3
GCCATGCCACTTGCTTGAGC
7007







Sox3
GGTGTCTTAGTCTTCAGTGC
7008







Sox3
GGTCTGCGCCCTGCAAACGT
7009







Sox3
GAGCTTTCCAGGTGGGCCAT
7010







Sox4
GATGTTCGAGAGACTAAGGT
7011







Sox4
GAGTGTGTGATTATAAACCA
7012







Sox4
GTCACACATTCAGAGTATTT
7013







Sox4
GCTCTTTGAGACAAGGACTT
7014







Sox4
GCATCGGGTTCCAAGCCAAT
7015







Sox4
GTCTATGTTTCTCTTAGACC
7016







Sox4
GCACGATGTTCGAGAGACTA
7017







Sox4
GACAATGGGTAAGAAAGAGA
7018







Sox4
GTAATAGTATATGCCATCAA
7019







SoX5
GGACCTAATCAAACTGCGGT
7020







Sox5
GGTAAAGCGAATCATAGGAG
7021







Sox5
GAGTGTGCGGCTGTGCAGAG
7022







Sox5
GCAATCCTGAAGGTCAGCAC
7023







Sox5
GCTCACAGCATCTCACCTTA
7024







Sox5
GTTAATGCTCACAGTTTGAT
7025







Sox5
GTGAGTGACAGCCTGTTTAC
7026







Sox5
GGAAGGTGGAAGGAGTGGAG
7027







Sox5
GGACTGGTCAGGCCATCTTC
7028







Sox5
GGTCAGGCCATCTTCTGGTT
7029







Sox6
GTGTTACATACCTCTGAGTT
7030







Sox6
GGAGTGGGAGAAATGGGCTC
7031







Sox6
GCCTACAAGAAACTGTATAC
7032







Sox6
GGCCCTTGTAGATGGATCGT
7033







Sox6
GAAACAGCTGGGCTGCACAC
7034







Sox6
GTTGTGCCTTACTCCGGAGG
7035







Sox6
GCCACTACGACCCATCATGC
7036







Sox6
GATCAGCTCATCTATAGCTG
7037







Sox6
GCTATTTAGCTGAGAACTCT
7038







Sox6
GGTGGCAAGGGTACTTGGGT
7039







Sox7
GCCATCTGTAGGCTGGAACC
7040







Sox7
GGACGACAATGGATCACAAG
7041







Sox7
GGCCCTTATTTATCAGCTTC
7042







Sox7
GTGGCTGCCCACGTTTACTG
7043







Sox7
GAGAGGCCAGCGCCTGTTTG
7044







Sox7
GTGAGATCAGCCTTATCGCC
7045







Sox7
GGAAAGGTCTTGGGAGATAC
7046







Sox7
GCTTTCTGAGAAAGAGGAAC
7047







Sox7
GATAAGGCTGATCTCACAGG
7048







Sox7
GCAGCGATCACCGGCTTTAA
7049







Sox8
GAGTTACCAGGGTCACCTGG
2050







Sox8
GGAATGCCCAATACAAACTC
7051







Sox8
GCTAGAAAGAACGTTATTCA
7052







Sox8
GTCTGGGTGGCATAGAGCTG
7053







Sox8
GGCTGAGGATGTGAACCAAT
7054







Sox8
GAAAGAACGTTATTCAGGGT
7055







Sox8
GCTAGACAGAGGTGGGAGGG
7056







Sox8
GTCCTTCCGGGTATGACCTG
7057







Sox8
GTTCTCTGGGCAGCTCTTCC
7058







Sox8
GGAGAAGCAGGCCAAGGCTG
7059







Sox9
GGACAGACTTGGCCTGATCT
7060







Sox9
GCTGGCATTTCTTCCAGAAC
7061







Sox9
GGTTGGGTGACGAGACAGGA
7062







Sox9
GTAGACGCACTTCTATGTTC
7063







Sox9
GTCCACACTTAGCAAATTAG
7064







Sox9
GGAGTGGACTTTACCTGTTC
7065







Sox9
GAGGGCGAAGTTTGCAAAGG
7066







Sox9
GCACACAGGTGGGCGTTCTG
7067







Sox9
GTCCTCTTAGACCTGCACAC
7068







Sox9
GAGGATTGTGGCTCCGGGTT
7069







Sp1
GTGCTAAATGCCTATTTAAC
7070







Sp1
GAGTTGGTTTAGCAGGTCTG
7071







Sp1
GTGGAGGCTGGAACTTGGAA
7072







Sp1
GTCGCCATGTTGGCCCTCCT
7073







Sp1
GCCCAATGAGGGAGGGTGAA
7074







Sp1
GGAGAAAGAAGGCGAAATGG
7075







Sp1
GCTCCGTGAGCGGTAGGGAT
7076







Sp1
GAAATAGGCCGGAATGGGAT
7077







Sp1
GGGCCTTGCAGAGGAAAGGC
7078







Sp100
GTTCCATTGTCTAGAGTCCT
7079







Sp100
GGATGCTTGGATAGTCTGAG
7080







Sp100
GGATGGATGACCACTATAAA
7081







Sp100
GTTCTGACAAAGTGTAGAAT
7082







Sp100
GTAGAGATGGGAGCCGACCT
7083







Sp100
GAACTGAAATTGCTGGTGAT
7084







Sp100
GAGTGGGTAGAAAGCTCAGG
7085







Sp100
GATCTCTTCTGTCTTTCAGA
7086







Sp100
GCTACAGCATCGCTTCCTGC
7087







Sp2
GGGCTGACTATCCTGCTGGG
7088







Sp2
GAGATGTATAAGCTCTTTAC
7089







Sp2
GCCCATACATTCTGTTCCCA
7090







Sp2
GTCTGAAGCTGAGAGGATCA
7091







Sp2
GGAAGCATCTAGAGTGACGT
7092







Sp2
GAGCGCATCGCCTTCACCTC
7093







Sp2
GCTTGACAGGCACCACAGGT
7094







Sp2
GAGAAAGCTAAACCTACCTG
7095







Sp2
GAGACACATACATCCCTGCT
7096







Sp3
GTGTTTAGGACAGCTCAGGC
7097







Sp3
GACTAGCTAGAAACGTTATA
7098







Sp3
GTGTCACAGTGACTCAACTG
7099







Sp3
GCTGCTGCTACTGAGCAAAC
7100







Sp3
GCATTGAGGATGTCAAAGGA
7101







Sp3
GCTCTAAGTGCCCGCCTCCA
7102







Sp3
GGCAAATGAGAGCCGGGAAG
7103







Sp3
GACTTTCTTGGTTAAGAAGC
7104







Sp4
GACAACCTTGTGAGACCTCT
7105







Sp4
GGAACTCTCCAATTCATGCC
7106







Sp4
GAGGAAGGCGGTGCCTCAAT
7107







Sp4
GTTGTCTAAAGAGAACCACA
7108







Sp4
GAGCTGACCCACATGCAGCC
7109







Sp4
GCAAAGAAAGCAGGGCGAAG
7110







Sp4
GGCTCGGCTCTCATTGGATG
7111







Sp4
GTACTGGTATCCAGGAAACA
7112







Sp4
GCGTTCCACATTTATTGACG
7113







Sp4
GTGGTCATTGTACTTCACAT
7114







Sp6
GGATCTCTGGAAACCAGGAG
7115







Sp6
GATGCCATGGAAATCTAACC
7116







Sp6
GCAGGAGAGAATAAAGTGAT
7117







Sp6
GGTTTATTCTGTTCCTAGCA
7118







Sp6
GGTTGGGCGGGCATCTGAAA
7119







Sp6
GCGCACTGGGATCAGAGGGT
7120







Sp6
GGAAACTGAGGAAGACATTG
7121







Sp6
GTGAGGTAGGATGGGCTCCA
7122







Sp6
GCTTAGTGCTGGGTGTGGGC
7123







Sp6
GCTCTTAACTCAGAAGTGGT
7124







Spdef
GCCTGATGCCCTCAAAGGCC
7125







Spdef
GAACGCAACAGATGTGTCCT
7126







Spdef
GAAGAACAGAGACAAATGGA
7127







Spdef
GTAGTCAGCCCAGCCTGCTG
7128







Spdef
GGGAAAGCCACCTGACATTC
7129







Spdef
GCTTCCTGGAGGTGGTGCAG
7130







Spdef
GAGGGATGGACAGAGAGGGT
7131







Spdef
GCCCTCAAAGGCCCGGGAAA
7132







Spdef
GCCTTCCTGGATGTGTGCTA
7133







Spdef
GCTGCCCAAATGTGCCTTCC
7134







Spi1
GATGCTGGCCTCAGGATGAC
7135







Spi1
GAGTTTCTGTTTGTTCTAAG
7136







Spi1
GAGTTCCTAGTGAAGGTCCA
7137







Spi1
GAGATGTGCAGACAGATTGT
7138







Spi1
GGAGGTCTTGGAGCCAGTGG
7139







Spi1
GATGCCAGGCTGCATAGCAA
7140







Spi1
GAAGGCTGAGAAGCCCAGCT
7141







Spi1
GGAGGAAGGAGGGAAGGCTA
7142







Spi1
GCCAAACAGACCATGGAACA
7143







Spi1
GAAGGGTCAGAGCAAGGCCA
7144







Spib
GCGCAAGGACCTGGAAGACC
7145







Spib
GTTCTGTCAGCCACGGGAGT
7146







Spib
GAGCTACACACTGTATCTGC
7147







Spib
GGCTGTGCTCCAGCACAAAC
7148







Spib
GTGTGGTCACCGCCTAGAGG
7149







Spib
GGCTCAAAGATGCGCAAGAG
7150







Spib
GTTGCCCTGAGGTGTGCTAG
7151







Spib
GACTGTGCTCACCAGCAAGG
7152







Spib
GCTGTATATCAGCTGTCACC
7153







Spib
GTTAAGTGCAGAGGCGGGAA
7154







Spz1
GAGCCTAGGAGAGAAGAGAG
7155







Spz1
GTTGTGGGACAGGAATCTAA
7156







Spz1
GGCTGTGGTGTCTGAGTTGT
7157







Spz1
GCTCTTAGAATGAAGAGCCT
7158







Spz1
GGGAGGAGTAAGGTTGGCTG
7159







Spz1
GGAAGTGTTGCTCCAGCTGT
7160







Spz1
GTCACTCTCATACTCTTTCT
7161







Spz1
GGAGGACTGAGGATACAGTT
7162







Spz1
GATTCCCAAGTGGAGGACTG
7163







Spz1
GACAACTAGGCTCAACGTCA
7164







Srebf1
GAGAATGCTGGCCCTAGATG
7165







Srebf1
GTTCCTAAGTCACAGGGCCC
7166







Srebf1
GAGGACCTGAGCCCAGCTAC
7167







Srebf1
GACCTCTGAGTCCTTCTGGC
7168







Srebf1
GCTCCACAGATTGGTTTACT
7169







Srebf1
GTCTGCAGTGCTTAAAGGGT
7170







Srebf1
GCTTCTTCTGTATCAGGCCA
7171







Srebf1
GGAACAGGTAAAGCAAGGGA
7172







Srebf1
GGACTACTCAACTGCAAGCA
7173







Srebf1
GTCCTCTCTGCTCCAATGGT
7174







Srebf2
GGACCTAAGTGTATACTGAG
7175







Srebf2
GGATGGGATAAGTGTGACTT
7176







Srebf2
GAATAACAACCTAGCTCCTG
7177







Srebf2
GGAGCTAGGTGCCAGCTGAA
7178







Srebf2
GAGGTGTGGGACCAGTGTGG
7179







Srebf2
GCTCTCGACAAAGTTGCTCC
7180







Srebf2
GTCGAGAGCCCGGAAATAGA
7181







Srebf2
GATGGGATAAGTGTGACTTA
7182







Srebf2
GACTTGGAAGTTTAGGAGAC
7183







Srebf2
GACATATCTCTGGAGGGCAG
7184







Srf
GCACAGGCCTGAAAGTACAG
7185







Srf
GGCAGACACACATCTGGAGG
7186







Srf
GACCTCGCAGCCAGACTTGT
7187







Srf
GTGTTACAAAGCCCAGGTTA
7188







Srf
GACTCTCAGACCCTTAACCT
7189







Srf
GTGGCAAGTCACAAACTTCC
7190







Srf
GAGGACTGCAGGGCAGAAGA
7191







Srf
GTTGAAACTATCCTAGAGGA
7192







Srf
GTTCTAAGTCCAGATTTAAA
7193







Ssrp1
GCTGGCTTTAATGTAGACTT
7194







Ssrp1
GCCTGAGATGCAGCTGGCTA
7195







Ssrp1
GGTATGTGCTCCTAAGAGGC
7196







Ssrp1
GGCTTATCCTGTCTTTGTGT
7197







Ssrp1
GACTTTGGCAAACAATGGCT
7198







Ssrp1
GCCCTCCTGCACACATACAA
7199







Ssrp1
GCTGCATTAAATTCAAGTGG
7200







Ssrp1
GACTCTAAAGACTCAATGGA
7201







Ssrp1
GCTTGCTATGGAATCCCACG
7202







Ssrp1
GGAAGACCTGCCCAAGAGAA
7203







Stat1
GTTCTGTGATGCCTTTGTGA
7204







Stat1
GACAGTCATCAAAGGCACAA
7205







Stat1
GTGCGGTGCAAACCGCAGAC
7206







Stat1
GACACTTGGTCCTCGAGCCT
7207







Stat1
GGCCAATCTCTGCCGCTGAT
7208







Stat1
GTTCTCTCTGTGTTCTGCCT
7209







Stat1
GGCTTGCGCAAGCTCAGTCT
7210







Stat1
GGCTCGAGGACCAAGTGTCC
7211







Stat1
GGAGCAGCTGCACCATTTCT
7212







Stat1
GACTAAATGGGCAACGTCTA
7213







Stat2
GGAACTACCGAAGCTACCCA
7214







Stat2
GGATTGACATCAGGATGAGT
7215







Stat2
GGATGCCACTTCACACGGAG
7216







Stat2
GGTTGCCTCTCCGTGTGAAG
7217







Stat2
GAGCTGCAGAGCAGAGGACA
7218







Stat2
GAAGAGTGGACACACAGACC
7219







Stat2
GGCTAAGAGCTGCAGAGCAG
7220







Stat2
GCTTATGTTCTGTTTAGCAA
7221







Stat2
GGGAAAGGAAACTGAAACCA
7222







Stat3
GAGCTGCAGTGTAGACAGGG
7223







Stat3
GGAGTGGATCACCCAGGTAA
7224







Stat3
GAGTGGATCACCCAGGTAAT
7275







Stat3
GTTATATATACACCTAGGGA
7226







Stat3
GTGGCAATCAGCCACTTAGG
7227







Stat3
GTGGGAAAGTCAGGAAGAAC
7228







Stat3
GGCCATTCCTTAATTATGCA
7229







Stat3
GGAGAGGCCATAGAATCCAC
7230







Stat3
GTAATTACTAGATTGCGTGG
7231







Stat3
GCCAGAACCATGCTCTTCCT
7232







Stat3
GCTCCAGCAGGTTCAGCTCC
7233







Stat3
GCACCTATGACAAAGGGAAG
7234







Stat3
GTCTAGGATTTCACTGTGTG
7235







Stat3
GACTTCACCAAGAACTTTCC
7236







Stat3
GGCTCAGACTCACTCCTTAT
7237







Stat3
GAGCACCTATGACAAAGGGA
7238







Stat3
GAGTCTCGATCTGGTGGCTT
7239







Stat3
GCCATTCTGGACAGCTTAGG
7240







Stat5a
GGCTTCAGTGTACCTGGGCT
7241







Stat5a
GGAGATAGGGCAGAAGAAAC
7242







Stat5a
GACCTTTCTAGGTCACTGGA
7243







Stat5a
GTCAATGCCTGGAAGTGGGT
7244







Stat5a
GAGAGAGCCAGAAGCAAGGC
7245







Stat5a
GCCCATTGCCTCATGGTAGG
7246







Stat5a
GCATGGGCAGTACCAAAGGA
7247







Stat5a
GGGTTTGCAAGGAGGATCAG
7248







Stat5a
GGCCTGCAAAGCACGTGGTA
7249







Stat5a
GCAGGGAGCCAGCTACCTTT
7250







Stat5b
GCACTTCTGTATCCCAAGGC
7251







Stat5b
GGGCTCTCAGATTCCCTAAG
7252







Stat5b
GTGTTTGGAGCCACAAAGGA
7253







Stat5b
GGGCAATCCACTGATCCAGT
7254







Stat5b
GGACCATACAGCTTCTATGT
7255







Stat5b
GAGGTGATAGCTTACAGGTA
7256







Stat5b
GTTCTTCAACACAAGAGGTA
7257







Stat5b
GGGAGTGACAGGTTTATCCA
7258







Stat5b
GCCTCCTTTCGTCATGATCG
7259







Stat5b
GAGCCTTCAAGTACAACTGG
7260







Stat6
GGGAATGGATCAGTGCTAAG
7261







Stat6
GGAAGTGTGAGTCCAAGAAC
7262







Stat6
GCTCCATTGAACCACACTGG
7263







Stat6
GTGGGCACCTGGAAGCACAT
7264







Stat6
GAACCCTTAGCTCAGAATTC
7265







Stat6
GTGCAAACTTAGATCCACCC
7266







Stat6
GAGGGTAAGTTGTGAGGGTA
7267







Stat6
GATACTGTAGGGAGGAAGTG
7268







Stat6
GATGCACATGCGTGAGTTCA
7269







Stat6
GCAGAGTGGCTTAAGCTGTG
7270







Stra13
GAATAACATTGGCCTCCTGG
7271







Stra13
GGCTTAAGGCATGGTGGCTC
7272







Stra13
GCGTTCCACGTTCATTGGTT
7273







Stra13
GTTGGGATGTGGGAGGGTTC
7274







Stra13
GACCTCACCCAGCTGTTGGA
7275







Stra13
GATCAGTCACAAGGGAGCAG
7276







Stra13
GGCTCTGACAGCCATCAGGT
7277







Stra13
GTTCAGGGCTTAAGGCATGG
7278







Stra13
GCGTGAGGCTACAGGAAGGG
7279







Stra13
GTAGAAAGTAAATGTGGTAG
7280







Sub1
GTGGCCTTCGTGCCATTGGG
7281







Sub1
GTAGACAGGAGTCACGGTGG
7282







Sub1
GGATTTCCTCCGCGAGACTT
7283







Sub1
GTACTTAGCTCCTGTATTCT
7284







Sub1
GGCACGAAGGCCACGTGAAG
7285







Sub1
GGCCCTTTCCAGGGCCTTAA
7286







Sub1
GCTATAATAGTCTCCGTGCC
7287







Sub1
GAGGCGGAACACCAAGTCCA
7288







Sub1
GGAGTAGACAGGAGTCACGG
7289







Sub1
GCTATAGGCTGCCCTGGAGG
7290







Suz12
GAAGCTCTCAAGGCGAGAAA
7291







Suz12
GCTCAGTCTCATCTCCACTG
7292







Suz12
GAAAGGAGAAATGCACCTAA
7293







Suz12
GCGGGTGACTGAGAAACTGA
7294







Suz12
GATTTCGGCCATGGGTGGCT
7295







Suz12
GCCAGACAAGACCAAGCTAG
7296







Suz12
GCCTCTTTGAACTGAATTCG
7297







Suz12
GTCAGGGTTCAGTTGTAGGG
7298







Suz12
GCAACAACCTGTCCAATCAA
7299







T
GAACCTCTGCCGGGAGAGTG
7300







T
GTGATTCTCTTTCACAGTCG
7301







T
GCCTGAGACTTCCTGGAACT
7302







T
GAGTCTCCCTGGGAAGTCTT
7303







T
GCGTTTAACCTCTGGCGTGA
7304







T
GGTGCTCATTGCAGGAGGGT
7305







T
GGAGCACCGAGATCGGGATG
7306







T
GCACCAGCCAGTTTGTGTTG
7307







T
GGAATAAATCTCGGTGGAGG
7308







T
GGGCAGAGGAGGGTAGTCTA
7309







Tal1
GGTGTGATCCTCACCCTGTG
7310







Tal1
GTCGGGTTGTTTGTAGGGAG
7311







Tal1
GGGTTCCTACAATGTACCTA
7312







Tal1
GCCACCTTAGCTGGACAAGA
7313







Tal1
GGAAAGACGGAGGAAACGGA
7314







Tal1
GATAAGCGCCTCGGTCATTA
7315







Tal1
GAATGTTAAAGGAAAGTAGG
7316







Tal1
GAAACGGACGGGCAATTCCA
7317







Tal1
GAGAGATCGAGGCGCTGGTG
7318







Tal1
GAAGTGGCGTCGGTCTGCTT
7319







Tal2
GATGGACATGTATTCAATAT
7320







Tal2
GCGGTGTCCTATAAAGGCTG
7321







Tal2
GGAACAGTTAAGTACAGCTA
7322







Tal2
GATTAAAGTAAGGAGTCCTA
7323







Tal2
GGACATGGTTATTTCAGGGA
7324







Tal2
GTCATGGGCCATCAGGTGGT
7325







Tal2
GTCTCTGCCACAGCCTTTAT
7326







Tal2
GGTAGCATTGGTCTCTCCCA
7327







Tal2
GAAAGATACAGGAGAGAAGA
7328







Tal2
GCCTAGAACCTTGGTGCAGA
7329







Taz
GTTTCCAGACCCACCCAAAG
7330







Taz
GCCTGTAGACACTAGAATTA
7331







Taz
GGGAGGAACTTCAGAAGGAA
7332







Taz
GAATCCTGCGGGTAGGGAAA
7333







Taz
GGTATGAGAATCCTGCGGGT
7334







Taz
GCGCAGTTGGGTGTGTGTGG
7335







Taz
GTGCATAAGGTCCTTTGCTT
7336







Taz
GGTTTCCAGACCCACCCAAA
7337







Taz
GTATGAGAATCCTGCGGGTA
7338







Taz
GGTTTCCAGACACACCCAAA
7339







Tbp
GAGTAGCTGTTTCTGTCGCT
7340







Tbp
GAGCTGGTGTGAATTAGAAC
7341







Tbp
GTGCCGTTTGCTCCAGCAAC
7342







Tbp
GGCGTTCGGTGGATCGAGTC
7343







Tbp
GCCCAGCACTCAGTTGTGCA
7344







Tbp
GGTCCGACTGCCTAAGGCTG
7345







Tbp
GGAAGATTGAGGTGGGAGCC
7346







Tbp
GTTTGAGGAGATACAACCCA
7347







Tbx1
GAGTCCCACGTGAGGATGTA
7348







Tbx1
GCACCTGGGTAAGAGAGCTC
7349







Tbx1
GGACTAAGAGGTGTAAGCTC
7350







Tbx1
GTTGCTGCTACAGCCCGGGA
7351







Tbx1
GAGAAATTCAGACCGCATGG
7352







Tbx1
GAAGGTCTTATACTAGGGTA
7353







Tbx1
GGGAACTTCAGGAATTCTAC
7354







Tbx1
GGTACTGTCAGGCAGAGGTG
7355







Tbx1
GCAACTAAGTGGAAGGATCA
7356







T1x1
GTTAGGCCTTTCGTGTGGGC
7357







Tbx15
GCGGTTGTCCCGGCAGATTC
7358







Tbx15
GAGAGTTAAGAGACCTGCAT
7359







Tbx15
GGTTGTTTGGAATAAGAGCC
7360







Tbx15
GCCAGGTTTGGACTGAGAAA
7361







Tbx15
GCTGCTGAGGGAAGGAGGAA
7362







Tbx15
GGTGTTGATGCTTACCTTGA
7363







Tbx15
GGTTATCTGTGGTGAATGAA
7364







Tbx15
GTTGTTGCTTCCAGCAGCAG
7365







Tbx15
GCCAACAGTTCACCAGGATG
7366







Tbx18
GCTTTCTTCTGGCTTCTCCT
7367







Tbx18
GTGACGAATGCACTGCCACT
7368







Tbx18
GGAGTGTGTTCCTATAACTC
7369







Tbx18
GGTCATTCTCTCCATACAGT
7370







Tbx18
GCTCCATTGGACCATCTATG
7371







Tbx18
GGGTTCAGCTTTCTAGAGAC
7372







Tbx18
GAGAAACCTGCAGTTCCTTC
7373







Tbx18
GGAGCTGTCCATCACCGAAA
7374







Tbx18
GGCTGGGCGCTCTAGCTCAA
7375







Tbx2
GAGGGTGGGAGTATCCACTG
7376







Tbx2
GATTCTCCACACGCGCCAGA
7377







Tbx2
GAATGGATGCGGGAAGGCTG
7378







Tbx2
GACCGATCTGACCCGCCGTA
7379







Tbx2
GCACTTCAGAGGGAGGCTGC
7380







Tbx2
GATCATACACTTGCCTGTTT
7381







Tbx2
GGTCCATGCACTTCAGAGGG
7382







Tbx2
GAGCCCTCATAGAATGGATG
7383







Tbx2
GGCGGGCAAATCAGGAGGCT
7384







Tbx2
GCCATGGCAGAACCCTGATG
7385







Tbx20
GCTGCATCGCTTTGCTCCTG
7386







Tbx20
GCGCCTTAATTTGCTGGCGG
7387







Tbx20
GTTTGTTTCCCTTCTAGTCT
7388







Tbx20
GATGAGGAATTTGCTCTACT
7389







Tbx20
GCAGATAGATGGTTCCGTGT
7390







Tbx20
GGAGTCATCGTCGTTACTTA
7391







Tbx20
GGTTTGTTTCCCTTCTAGTC
7392







Tbx20
GAAGTGGCCTGAAGCAAGGA
7393







Tbx20
GCTGACAGGCTTGTGTGTTC
7394







Tbx20
GGGAATGACTGGGACATGGT
7395







Tbx22
GTGCCAGCAGTGTCAGTCCT
7396







Tbx22
GAGGAGCAGTTCGTGGAGGA
7397







Tbx22
GGCTGTTGACTGTCCCTAGA
7398







Tbx22
GGTGGTGGGTTGCCAGCCTA
7399







Tbx22
GGATGAGGACATCTGTGGAG
7400







Tbx22
GCCAGTTGTTGGCTTCTGAC
7401







Tbx22
GCTGCTTGAGTGTACTTACC
7402







Tbx22
GGAGATGCAGCCTGAGCTGC
7403







Tbx22
GGGACATTAATGCTCTGGTG
7404







Tbx22
GCCATTTAACATCAAGTTCC
7405







Tbx3
GGAGAATCTACAAGGTTAGC
7406







Tbx3
GTGTTCTGCCAGGGAGGCCA
7407







Tbx3
GAGGCGCCTTCCCGTTTCTC
7408







Tbx3
GCGAGAGAATATTTCTGCTA
7409







Tbx3
GCGAGGGAGGATCAAGAAGA
7410







Tbx3
GGGAATTCTAGAGGCGGAGG
7411







Tbx3
GTTTATCACCCACCAGGAGG
7412







Tbx3
GCAGTTCCTTCTCCCAGGTA
7413







Tbx3
GCCCTGAGCTTTCCCTGGTG
7414







Tbx3
GTCTCCGCTCATCCTAGGGT
7415







Tbx4
GAGGGCAGCCAGGATATCTG
7416







Tbx4
GAGGAAAGGGATGGTCGGAA
7417







Tbx4
GTAACCGTGAACTCCGTGCC
7418







Tbx4
GTGTCATTAGGAACTTCCTC
7419







Tbx4
GACACATTGATGAGGATTGC
7420







Tbx4
GCTTGTGCGAATGTGAGGAC
7421







Tbx4
GCTAGGATAAGCTTCCTCCA
7422







Tbx4
GTGTGTGCTCTCTTAAGGGC
7423







Tbx4
GGAGACCTCCGTAGAGCAGC
7424







Tbx4
GGGCATACTCTGAAACACCA
7425







Tbx5
GCGACTATCTCACCAGCCGC
7426







Tbx5
GGATGCAATGGGTCCCAGAG
7427







Tbx5
GAACCAAGACTGGATGCATT
7428







Tbx5
GGAAGGAAGTGTTTCTGGCT
7429







Tbx5
GGGCCTGCTGATTATTTATG
7430







Tbx5
GAGGGAAACAGAATGTGATT
7431







Tbx5
GGCAGGCCTAGCTTATTGCC
7432







Tbx5
GGACAATGAGTCTGAAGTGG
7433







Tbx5
GATGTCAAGGCAGCTAGTCC
7434







Tbx6
GGGACGCAGTTTGGCGCTTC
7435







Tbx6
GTTTATCTTGTGGGAGGGCC
7436







Tbx6
GGGAATTGTAGTTCAGACTG
7437







Tbx6
GGGTCACCTTCCAGAAAGTC
7438







Tbx6
GCTGTGATCTCTGGTTTGGA
7439







Tbx6
GCTAAGACAGGGACGCAGTT
7440







Tbx6
GGGAGCATAAAGCCACTACC
7441







Tbx6
GCTCACATGGAATACAGAGA
7442







Tbx6
GCAACCTGTGCTGGGATCCC
7443







Tbx6
GCCTTTACGTGCGACTGGCG
7444







Tceb2
GCCACAAAGCATGGCTGAAT
7445







Tceb2
GGAAGGTGAGCTGTTGACCC
7446







Tceb2
GACTTCTGCTGTAGTTATTA
7447







Tceb2
GCTCTTGCAGGGAATGTGAG
7448







Tceb2
GGCTTCCGGATCGCTTAAGA
7449







Tceb2
GAGTAGTGTTAGGCAAGGTA
7450







Tceb2
GTCCTCTCCCTCCAGGAACC
7451







Tceb2
GGATATTGTCCTCTCCCTCC
7452







Tcf12
GCGCAGTGAGCTTGAGGAGA
7453







Tcf12
GGTGAGCAAGCTGATGAGCG
7454







Tcf12
GTATATTGCATAACCCAAAG
7455







Tcf12
GAGGAGGTTTAGGAACTGCC
7456







Tcf12
GGGTTTGGTTATCCGTAATT
7457







Tcf12
GAGCACAGAGAAGACCAGCC
7458







Tcf12
GAGATTGTACCACAGAAATA
7459







Tcf12
GGGATTTGTTGGCAGGTCGG
7460







Tcf12
GGAAGTTAAGGTTTACTTGA
7461







Tcf15
GGGATATGCTCACTTTGGGA
7462







Tcf15
GGTCGTCGCCTTATAGCCGG
7463







Tcf15
GAAGTGACAGGATCAGCTAT
7464







Tef15
GTAGTTATTAAGTGACTGAA
7465







Tcf15
GCTGTCCAGGAGCGCAGATC
7466







Tcf15
GACAGGATCAGCTATAGGTA
7467







Tcf15
GAAGACATCTTCCAGCTCCA
7468







Tcf15
GCTCAGTTCAAGGCCAGCAG
7469







Tcf15
GGAGACCACTCAGCAAGAGA
7470







Tcf15
GATATGATGTGAGGGCTGGC
7471







Tcf3
GGTGTGATGGTAATCTTTGT
7472







Tcf3
GTGAAGACTGAGCAGAAGCT
7473







Tcf3
GCCCTTCCTGTGTGATGCTG
7474







Tcf3
GTGCGTGTATACCGCCGCGT
7475







Tcf3
GAGGCCGCGAGAAACTCAAC
7476







Tcf3
GACAGTGGGCGTGGTCACTT
7477







Tcf3
GGCGGGCAGACATAGAAGGA
7478







Tcf3
GAAGGTGAGGGAGAGGGAGC
7479







Tcf3
GATGAATTCCCACAGAAAGG
7480







Tcf7
GTGAAACGGGCATCCCGGCT
7481







Tcf7
GTTTCAACTGCTTTCCCAAG
7482







Tcf7
GGTGAATGAGTCCGAAGGCG
7483







Tcf7
GATCATCCCTGTGCCGATTA
7484







Tcf7
GAGGTTGTCCCGGCTAACTT
7485







Tcf7
GGCACAGCAGCTTTGGGAGC
7486







Tcf7
GAAGAAGGCGCTAGAACCGG
7487







Tcf7
GGTTGTCCCGGCTAACTTTG
7488







Tcf7
GAGGTCGAGAGACCCGGAAT
7489







Tcf7
GAAGCCTCTCAGCGTCTCAG
7490







Tcf7l2
GGGCAGCCTGGGAGTTGAGA
7491







Tcf7l2
GGCGGCCAACAATGATCCTT
7492







Tcf7l2
GATGCTTTGGCCGCTAACTT
7493







Tcf7l2
GAGGTGGTGGTGGACACCAG
7494







Tcf7l2
GTGGTGGTATCCAGATGGGT
7495







Tcf7l2
GGGTGGTCAGTGGGTGTTGA
7496







Tcf7l2
GGGTTGATAATGGCATTAGA
7497







Tcf7l2
GCACAATATAGACTATGCCA
7498







Tcf7l2
GGGATAAGCATAAACAGTTG
7499







Tcf7l2
GGCCATCTACAGGGAGGGTA
7500







Tead1
GCCATAGGAAATGGGTCTTA
7501







Tead1
GTGTTCTCTGAATGATGGCT
7502







Tead1
GGCTCCTTTCTGGGAAACTA
7503







Tead1
GTCTTATTCGCTGGTGTTAA
7504







Tead1
GCTGGTCAGGCCATAGGAAA
7505







Tead1
GATGTAGGCATTGATCTTTG
7506







Tead1
GGATGCAGTTGGTAGAGTGA
7507







Tead1
GAAGGGTAACTGGCCTGTCA
7508







Tead1
GGACAGACATGCTGGCAGTT
7509







Tead1
GTGAAACCATAGACCAAGCC
7510







Tead2
GAGACCCAGAGAAAGTTGCC
7511







Tead2
GCAAACACCCAGGGTGACCC
7512







Tead2
CCTTAGACTTGGGATTTCTT
7513







Tead2
GCAAGCAGGGACTGAGTGAG
7514







Tead2
GGGCAGAGAGTTGGAACCCA
7515







Tead2
GCCAGGCTCTGCCTCTAAGT
7516







Tead2
GTCCATCTAAGGACTGGGTA
7517







Tead2
GATGAGTCCATCTAAGGACT
7518







Tead2
GTGGATCTTCAGAAACGCAG
7519







Tef
GTCAGGTTGCCCACTGATTT
7520







Tef
GGTCCCTAGGATGGTCGTTA
7521







Tef
GGCTGGAATCAAGAGGGAGC
7522







Tef
GGTTATGGTTCCCAGACTGG
7523







Tef
GTTACATTTGTGTGTGCAAG
7524







Tef
GAGCAACTGGATAATTCCCA
7525







Tef
GAATTATCCAGTTGCTCCAC
7526







Tef
GACTGGCCTGTTGTGTTGTT
7527







Tef
GCTCCACTCTTGGAAGGCTG
7528







Tef
GCGGAGCGATACTCCTCACC
7529







Tfam
GGGATGGATGGATGATGATG
7530







Tfam
GTACAGGTAGGCAGCAGAAG
7531







Tfam
GCTTCGTGACGCTGGTGCTG
7532







Tfam
GCCCAGGAGAACACATGGCA
7533







Tfam
GTCCCACAATTTCAGTGGTT
7534







Tfam
GATGGTAAACTGGGCTTAGA
7535







Tfam
GCAGCATTCCTCCTCAGCAG
7536







Tfam
GAAACATGCAGTTTGCTGTT
7537







Tfam
GATCTCTAACTTCAGTAGCC
7538







Tfam
GTTGTGACAGGAGGTTTGAA
7539







Tfap2a
GTCAGCTCTGGTCTTGTCTC
7540







Tfap2a
GTCGTTGATCCACAATTAGC
7541







Tfap2a
GGACGAAAGGCAGATAGTGG
7542







Tfap2a
GAGTTGTGGTAATGAAGCTC
7543







Tfap2a
GCGGTTTGGCTCACTCCAGA
7544







Tfap2a
GCAGTGTGGGCGCTGATGAA
7545







Tfap2a
GGACCCGAAGACAGGCGAAG
7546







Tfap2a
GTTGTTGTCCACGTTGCACC
7547







Tfap2a
GAGCGGAGGCGATCTCTAGT
7548







Tfap2a
GATTTGGCTGAGACTCTGCA
7549







Tfap2b
GAGGCTCCGTGAGTAGGAGA
7550







Tfap2b
GAGTCCTCAGCTTGGCTGTT
7551







Tfap2b
GCCGGAGCTCTAGAATGCAC
7552







Tfap2b
GTTCAGATTTCTTTCAGAAC
7553







Tfap2b
GCCAGTGCTATGTTTACTAT
7554







Tfap2b
GTGCCTCCCTACTGACTCCA
7555







Tfap2b
GGAGACTTTGCTCTCCAGAA
7556







Tfap2b
GTGCATTCTAGAGCTCCGGC
7557







Tfab2b
GAGGTGAGTGCATTCATGTG
7558







Tfap2b
GATTTCTGATCGGGTTTCTG
7559







Tfap2c
GGTATCAAGAATTGTGTAAT
7560







Tfap2c
GTCTCACATTTGGGCATTTA
7561







Tfap2c
GTGGTGGCAGGATAGGAGAC
7562







Tfap2c
GGGTAGCAGGGACACAGGAG
7563







Tfap2c
GTGAGAACCTTGACCATGGC
7564







Tfap2c
GGAAGTGACACTCTCAGGTA
7565







Tfap2c
GAGATATGGGAGTGGAAGGA
7566







Tfap2c
GAAGAGGATTGCGAGGTGAG
7567







Tfap2c
GCTCCGGTGCAGAAAGCACT
7568







Tfap2c
GCTTCAAACAGTGGAATTGG
7569







Tfap2d
GAGGGTGCTGGAAAGGGACA
7570







Tfap2d
GTGGGAAGATGATATAAAGA
7571







Tfap2d
GTACTTGCTGAGAATTTCTT
7572







Tfap2d
GGAGCATCTGTCTTCAGTTA
7573







Tfap2d
GTTAGTTGCTGAACACTCTT
7574







Tfap2d
GTCTGTAAGCTGCATGTATT
7575







Tfap2d
GGCCTGTCACTCAGAGCTAT
7576







Tfap2d
GCAATCAGTCTTGCCCAGTT
7577







Tfap2d
GGACTTGGTCTTTAAGTAGG
7578







Tfap2e
GAGGGAAGCAGGCACAGACA
7579







Tfap2e
GACTGGGAAGGACACATTTG
7580







Tfap2e
GGCTAGAACGAAGCCGAGGC
7581







Tfap2e
GCTGTGAAGCCTTTCTCTTC
7582







Tfap2e
GGAACCAGCAGCTATGATGG
7583







Tfap2e
GTTAGGAGACTCCATATTAA
7584







Tfap2e
GCGGGCAGAGTAAGAGGAGC
7585







Tfap2e
GACTCCTACTCTCTGTGCCT
7586







Tfap2e
GACAAATGGTCATTAGACTT
7587







Ifap4
GAAAGAGGCAAGACAGGACC
7588







Tfap4
GGCAGCCACCTGGGTAAAGA
7589







Tfap4
GCAAGGTACCTCGGATGTTT
7590







Tfap4
GCAAGTGGGAAGGAAGGGAA
7591







Tfap4
GGAAGAGAGAGCAAGTGGGA
7592







Tfap4
GACCCATTCGCTGCCTTCCA
7593







Tfap4
GATTTGGGTGGAACCTTGGA
7594







Tfap4
GAGAGAGCAAGTGGGAAGGA
7595







Tfap4
GCGCTAGAATTCTGGATTAC
7596







Tfcp2
GTAATTAATCCTCAGGAGCA
7597







Tfcp2
GAGTTTAGGACTGGAGACAC
7598







Tfcp2
GTCTCTTCTTCATTGGTAGA
7599







Tfcp2
GCCGTAGCGGACGTCCTGAT
7600







Tfcp2
GTCCTGATTGGTTGGCGCTG
7601







Tfcp2
GAAGATAAGGGAAGGCAAAT
7602







Tfcp2
GTTAGAGTCCTTTCAGTGAG
7603







Tfcp2
GTGATAGGCTATCGACGCGA
7604







Tfcp2l1
GCAGAGCCAGCAAAGGAAGG
7605







Tfcp2l1
GGGAGAGCTGGGAAGGGAAG
7606







Tfcp2l1
GTCAGGTGGGCGTGGCATTA
7607







Tfcp2l1
GAGTTGGGTGTGATAGCTAC
7608







Tfcp2l1
GTTCCTAGAGGTGAACCCAC
7609







Tfcp2l1
GTCAGCTGTGACCTGAGTGG
7610







Tfcp2l1
GTGGATGTGTGACAATGCAA
7611







Tfcp2l1
GTGCCTATGCTTGCAGGCCC
7612







Tfcp2l1
GCAAGTGCCAGCTCCCAGAA
7613







Tfcp2l1
GGAGATGGGATGAAGTGTCC
7614







Tfdp1
GATGCTAAAGAAGGGCTGTT
7615







Tfdp1
GCATATCTGTGTGCATGCGC
7616







Tfdp1
GTCAGTAGTTGAGCAGAGGT
7617







Tfdp1
GACAAGACTTGCCACCTCCC
7618







Tfdp1
GTCATGGGACTGAGGCAGCC
7619







Tfdp1
GTGCATGCGCAGGGAGTAGA
7620







Tfdp1
GCTATTGACACACTCATGCC
7621







Tfdp1
GCTTCAGCAATAAGCAGCTG
7622







Tfdp1
GGGAGCATTTCCATTTAGAG
7623







Tfdp1
GCCTGGGCTGTCAGTGATTC
7624







Tfdp2
GTTTCATGGATCCTTTGGTT
7625







Tfdp2
GACAGACACCTTAGTTATGT
7626







Tfdp2
GGCTGGCACATTAAATGTTT
7627







Tfdp2
GCAAACACTGGTTTCACAGC
7628







Tfdp2
GCTAAACTGAAACTATGAGT
7629







Tfdp2
GAGCTTTGCTGTATGGAACC
7630







Tfdp2
GAATAAATTGACTTGCTCCA
7631







Tfdp2
GAAGCATGGCCTATCTCAGG
7632







Tfdp2
GTTTGGGTTAATGTGGAGAA
7633







Tfdp2
GCCAACAATGATATGATACA
7634







Tfe3
GAACTGAGAGACCGGCTGGG
7635







Tfe3
GTCTCAGGATGCTGGGAAGT
7636







Tfe3
GGGAGGCAGAGGTGTTATTT
7637







Tfe3
GAGGAGGCAGCGGCAAACAG
7638







Tfe3
GAGGAGGGCAGAGTCATATT
7639







Tfe3
GCTCCATGGCTTAACGGAGG
7640







Tfe3
GCTGCCTTGCTCAGGAGGTA
7641







Tfe3
GAGTCATCACCCGCCCTGAA
7642







Tfe3
GCGGTAGGGAACACCGGCTT
7643







Tfe3
GTAGTGGGAGTGCGTGAGGA
7644







Tfeb
GAGCTTCCAGCAGGAGGGAC
7645







Tfeb
GTTGTCATTGCCTGGGTTGT
7646







Tfeb
GTCAGATTCCTTGGGTCTCG
7647







Tfeb
GTTGAGTCATTTGTATGTAG
7648







Tfeb
GTGAAATGGAGTTGGAAGCC
7649







Tfeb
GACATGGGCAATAACAGGGT
7650







Tfeb
GGTATGAAATACTCAGGATG
7651







Tfeb
GTGGAAGTTGCTAAGGGATA
7652







Tfeb
GATGACACTGAGTAAGTCCC
7653







Tfeb
GGAGTCTTGATTGCAGATAT
7654







Tfec
GAATGGAGACAAACAGCTCG
7655







Tfec
GTGTAATTCCTAACTGAAAG
7656







Tfec
GAATTTACAATGGCAGTATG
7657







Tfec
GTGCTGTGGTCATGCATTTG
7658







Tfec
GTCCTTGCCCACTTTCAGTT
7659







Tfec
GCCATTACTGCAGCAGAACT
7660







Tfec
GCAATAACGGCATCAATGAG
7661







Tfec
GAATGTGTTGCAATAACTGT
7662







Tgfb1
GGCGGCAGGGACAGAATGTA
7663







Tgfb1
GGCACAGTGCACCTTGGTAT
7664







Tgfb1
GGTTTCAATGCTGGGAACCC
7665







Tgfb1
GCAGCAGCAGGCCGATACCA
7666







Tgfb1
GGCCACTAGAAACCTAACGA
7667







Tgfb1
GGGTAGAAAGGGCTGTGGGT
7668







Tgfb1
GTTGGAGGGAGCAGCTAGCA
7669







Tgfb1
GATCGAAGTGGCGCAGCAGC
7670







Tgfb1
GTGGGTGAGAAGGACAGTGG
7671







Tgif1
GAACAACTATTCCTTGTATG
7672







Tgif1
GAGCAGAAGGTGTGCACTGG
7673







Tgif1
GAGTTCCGGATTGGATTGCA
7674







Tgif1
GCTGTGTCTCTGATGGCAGT
7675







Tgif1
GCTCTTTAAACGTCTGGGCT
7676







Tgif1
GCACCAGTGCGGGACATGTG
7677







Tgif1
GGTGCGGTTCATATCCTCAA
7678







Tgif1
GTGTGGGCGCTCTGAGTTGG
7679







Tgif1
GAAGGAATCCTTCAATTGCA
7680







Tgif1
GATCAAAGGGCAGGCTTTAG
7681







Tgif2
GCCACCTCCAAATTGCGACA
7682







Tgif2
GAAGACTGTTCGGATGCTGT
7683







Igif2
GAGGCGAACTTACAAAGGTA
7684







Tgif2
GCCTGGATCGTATGAGATCC
7685







Tgif2
GCGGCATTCCTAAGGTGGGT
7686







Tgif2
GCCCTCTCCCAGAGGAGCTT
7687







Tgif2
GCCAGTGTCCTTTGGCCAGG
7688







Tgif2
GACCCGCTTGGCAGGATCCA
7689







Tgif2
GGCATCTGTCACTCCCAGGC
7690







Tgif2
GGCACATCTCCAGATTCACT
7691







Thra
GGAGCCAGAGAGTGTGTCTG
7692







Thra
GTACAGCGGCAGCTGCAGTG
7693







Thra
GTCTGTTATCAGCCCATATT
7694







Thra
GCTGGAACTAAGATGTGCAA
7695







Thra
GTTGCATGTCCGCTGGGAGC
7696







Thra
GATAGAATCGTTTGCTGAGT
7697







Thra
CATCCTAGCATCTGGCGAGA
7698







Thra
GCAAACGTCTCTGTTCTCCA
7699







Thra
GAAGTAGGCTCTTGGGATTG
7700







Thra
GTGACTAGAAAGAGCTTCCA
7701







Thrb
GAGTTACAACCCAAGCATGG
7702







Thrb
GCTGTAAAGGTCTTAAGCTG
7703







Thrb
GGGTGAGGGAGGAACACATG
7704







Thrb
GTAATCATTFCCTAATCACG
7705







Thrb
GCTCCAACAGGAAATTTGGT
7706







Thrb
GACCTTCGGAACTTGAGGTA
7707







Thrb
GCAAGTGCAGAACCCTTCCA
7708







Thrb
GGGCTGTCTGGTTAGGAACT
7709







Thrb
GACTCTCAGGTGGGAGTCAC
7710







Thrb
GGAGGTGGCAGATTCAGACA
7711







Tle4
GAGCCTGAGGGCTATTGAAA
7712







Tle4
GTTTGTGTGTTCACAAGCCC
7713







Tle4
GGGTTCTGACCCTCTTCCGT
7714







Tle4
GCTGTCAATCAAAGTAACGT
7715







Tle4
GCATCTTTAGAAGCAGGTTT
7716







Tle4
GCCCAATTCAAGGCGTTCTG
7717







Tle4
GCCTGCACTTCGAGTTAAGG
7718







Tle4
GGCACCAGTCAACTTACTCC
7719







Tle4
GATGACTTTGGTGGCACTAA
7720







Tle4
GCACTAGGGAACAGCGGCCA
7721







Tlx1
GGTATGCGGAGTAAATGCCC
7722







Tlx1
GCTAACCACGCAATCTCAGT
7723







Tlx1
GGTGCTTGTCCCAGGGTAGC
7724







tlx1
GCCTTACAGAGTAGCCCTGT
7725







Tlx1
GAAAGAGGTACCTTGAGGAA
7726







Tlx1
GAAGTACAGCACTGGTGGGA
7727







Tlx1
GAACCTTTCCCAGACCTGGT
7728







Tlx1
GACAGACGGACCAAAGGAGA
7729







Tlx1
GTGCTTGTCCCAGGGTAGCT
7730







Tlx1
GACCAGCAGGTGTCAGGAGC
7731







Tlx2
GTAAGCACAGCCGCCCTTTG
7732







Tlx2
GCCAAAGTGGAGCACTGGAT
7733







Tlx2
GCTAGTTCAGGTTGAAGATG
7734







Tlx2
GGTCCAGGCCTGTCATAGTG
7735







Tlx2
GGGAGTGGAGGTGCAGATAG
7736







Tlx2
GTGTTAACCCAGTGGAGGGT
7737







Tlx2
GAAGTCAGGCAACTCAGGGT
7738







Tlx2
GTCACAGGGTGGGAGGTAGA
7739







Tlx2
GGATATTTGGGCATCTGGAC
7740







Tlx2
GGTGTTAACCCAGTGGAGGG
7741







Tlx3
GGAATTGATGGTCAGACTGG
7742







Tlx3
GGTCACCTTTCTCTCGGTCT
7743







Tlx3
GGTATGAGATGACCAGGACA
7744







Tlx3
GTGTCCAGGCCTGGAACCCA
7745







Tlx3
GAACGGTCCTACGAAATCTG
7746







Tlx3
GACCCAGAGTCATTTCTTAG
7747







Tlx3
GCAGAGATGCAACCCAAGAA
7748







Tlx3
GGACCCGAGGTCAACTGGTG
7749







Tlx3
GGTTTGAGAAGCTGCGGTTC
7750







Tlx3
GGAGCTTAGGGACTGTTCCA
7751







Trerf1
GACTTAGGAGAGTCGAGCTG
7752







Trerf1
GCAGGAAGCAATCCTGCAAT
7753







Trerf1
GACAGGGCTATGACAGAAGA
7754







Trerf1
GAACCCTCAGATCCCTTCCT
7755







Trerf1
GGCGATAAGACAGGTACAAG
7756







Trerf1
GTTCCCTGAGCGAGTTGGCT
7757







Trerf1
GCGTTGCAAATCTAACGACT
7758







Trerf1
GTGGGATGGGTCAGGGACAG
7759







Trerf1
GGCTCTGACTGAAGGAAGAG
7760







Trerf1
GTCTCTGAACTGGAGAGGAT
7761







Trim24
GGAGCTTTAGAGAAAGAGTA
7762







Trim24
GCTGGATTAAGGTTTACAGA
7763







Trim24
GAACTACTGCACIATGGGCC
7764







Trim24
GATTTACAGCTTGCCTGCAT
7765







Trim24
GGAGTCATTTGAAGCCACAC
7766







Trim24
GAATTTCCGGTAACAAGCAC
7767







Trim24
GGTGTGTCCAGTGAGGTCAA
7768







Trim24
GTAACAGGTGGCACTTCCCA
7769







Trim24
GGGCAGACTCAGCTGGATTA
7770







Trim28
GCCGAGGAAGGAACAAAGGC
7771







Trim28
GTTCAGCGCTCACCCTTCGG
7772







Trim28
GAACCAGGTGTTCACCCACG
7773







Trim28
GGAAGTGAGAGTCCAGAGGC
7774







Trim28
GGTAGGAAGTGAGAGTCCAG
7775







Trim28
GGAAGCTGGCAAAGCAAGCA
7776







Trim28
GGGACAATACAGGGTGGGCG
7777







Trim28
GTTGCCCGCAAGCAGTTCCA
7778







Trim28
GGTTCACAGGCACCCTATCC
7779







Trp53
GATGGCTATGACTATCTAGC
7780







Trp53
GGAGGATGCGGAGAGCCTAT
7781







Trp53
GGTTGGTCATCACCACCGCA
7782







Trp53
GGCTAGGTTGGTTGTGTCCC
7783







Trp53
GAACGCGCTGAAGTGGATGA
7784







Trp53
GTCTGTCAACAGGTGACGCA
7785







Trp53
GTAAGTGACACTGGAATCTG
7786







Trp53
GGATAGCCTCCCTCCTGACC
7787







Trp53
GCCTAACCCAGGACTATACA
7788







Trp63
GCTGAAAGGGAGGCAGAAGG
7789







Trp63
GACACTAGAAGCCAAGACTT
7790







Trp63
GGAAGTCTGTGTCTTTGCCT
7791







Trp63
GTCAGATTTGGCTGGAGCGC
7792







Trp63
GATGCATGTTGCAGATTTCA
7793







Trp63
GTCTATGGCTGTGGCATGAA
7794







Trp63
GAGGACCACTACCAGGTGCA
7795







Trp63
GAAGCTGAGTTCAGGGCAAC
7796







Trp63
GATAGTACGACCCTCTTCCA
7797







Trp63
GATCCCATGCCAGGGATCCC
7798







Trp73
GGGCAGTGGTATCCACTGTA
7799







Trp73
GTCTTGGGAGATTGAGTGGA
7800







Trp73
GAGGGAGAAGGAAGCTGGTT
7801







Trp73
GATCCCTACGCTGGTCTGAG
7802







Trp73
GAAACCACTGGAAGTGGTGG
7803







Trp73
GAGTCAGGTGTGAGTTCTCA
7804







Trp73
GTGTTGTGGAGAGAACGCCA
7805







Trp73
GTGGACTTGATTCAGAGGTG
7806







Trp73
GGCTCACAGACTCTCAGGCC
7807







Trp73
GCAAGCTCTCTGGAGGGAGA
7808







Tsn
GACACTTGGCTCGTAGAAGG
7809







Tsn
GAGCATGCATAAACTGAATG
7810







Tsn
GAGTATCATGAAGATCTCTC
7811







Tsn
GTCTACCACATCCTGAACTT
7812







Tsn
GGCTGGTGAGAAGTGTTGGG
7813







Tsn
GTTACTGTAACCTTCAACCA
7814







Tsn
GCAGCAACATTTGGGAAGAG
7815







Tsn
GTGGCTCCAGCAGCAACATT
7816







Twist1
GAAAGTACAGTCGGGTTTAC
7817







Twist1
GCAGAAAGCGGTGTCTTACC
7818







Twist1
GAGAGCCCAGACGTTTCTCC
7819







Twist1
GGTGTCATTGGCCTGACGTG
7820







Twist1
GCGGTGTCATTGGCCTGACG
7821







Twist1
GTCGGAAACCTCTAGTCCCA
7822







Twist1
GGAGAACTCCGAGGGATCCC
7823







Twist1
GGCGAATCAACTCTCAGCAA
7824







Twist1
GGTGAGGAGAAATAGTACCC
7825







Twist1
GCAGCCCATCTCAGCTTGTC
7826







Twist2
GAACCTATTCCCAGGTGACC
7827







Twist2
GCTCAGTTCAGCCAGAGGAT
7828







Twist2
GTGGCTCCTTAAACATTCTC
7829







Twist2
GGCGTCTCTATAGATCCTAG
7830







Twist2
GCCTGGGCTCTCCACCTTTG
7831







Twist2
GGCAGGGCCAAATCTGCTCC
7832







Twist2
GGAGCAGATTTGGCCCTGCC
7833







Twist2
GAGCAGATTTGGCCCTGCCA
7834







Ubp1
GGTATCTGTGTGTGTGTGTG
7835







Ubp1
GTTCTTCTCAAAGCTTGTTA
7836







Ubp1
GGGAAGGAAGGCAGCCAAAT
7837







Ubp1
GGACGATCCATGCCTTGGGA
7838







Ubp1
GGACCCACATCCGAATCCTT
7839







Ubp1
GATCCATGCCTTGGGAAGGA
7840







Ubp1
GCAATAATCGAGGGCCGGCT
7841







Ubp1
GGCCAATGAGCTCTTACTTA
7842







Ubp1
GTTCCAGGTCCTACTTCCGT
7843







Ubtf
GGAGCAGATGAGGACTAGGC
7844







Ubtf
GGGTTTCTTCCGTGCGTGTT
7845







Ubtf
GAAGGGCTGCAACCAAGTGC
7846







Ubtf
GGTCATGAGTCTTAAGATGT
7847







Ubtf
GGTTTCTTCCGTGCGTGTTG
7848







Ubtf
GTTACTGAAGCCCAGGGTAA
7849







Ubtf
GGAGCAATGGGAGAGGGAGC
7850







Ubtf
GAAACGCAGAGCGATGGAGG
7851







Ubtf
GCGTTTCTCTTCCAATCAGC
7852







Ubtf
GACACACACCAGTGGCGACA
7853







Uncx
GATGATCAGGCTTCCTTCTG
7854







Uncx
GATGCCACCCCAGAGGAGGA
7855







Uncx
GATGATGAATCTCCCATTAT
7856







Uncx
GGCCCOGACATGAGTGTTGG
7857







Uncx
GCAAACTTGTCACTGTGCCC
7858







Uncx
GCTCCTTCAGAGACAGAGGG
7859







Uncx
GCATCCAGGACCCATATGTG
7860







Uncx
GCTGTGATCAATCCAGCCCG
7861







Uncx
GGGTTAGACTCCTTATAGGT
7862







Usf1
GGGCCACAAGAGGGACAACA
7863







Usf1
GGATCAGGGCATCACTTTGA
7864







Usf1
GGCCACCATTTAGCAATGGT
7865







Usf1
GGATGGAAGTACAATTTAGT
7866







Usf1
GCTACAGCCATCTGAACCAG
7867







Usf1
GCAAGCCCATGTCCAAGGCC
7868







Usf1
GGATCCAGAGCATGTGTTCC
7869







Usf1
GACCTGTATTCTTGTCCCTG
7870







Usf1
GAGGGTGATGATAGGAAGGA
7871







Usf1
GACCTGTCGGACCTGAACTA
7872







Usf2
GGCCACCAACTAATAGAGAC
7873







Usf2
GTCTGTCTTTGGTGACGGCC
7874







Usf2
GGTCCTATACTATATGGAGA
7875







Usf2
GAGTCCCAGAACATGGGAGC
7876







Usf2
GGGAGGACGCATGGGAATCA
7877







Usf2
GGAATCATGGCAGGCGGAGG
7878







Usf2
GAGGCCCAATCCATACATGG
7879







Usf2
GTATAGGAGCCCGGAGGTTG
7880







Usf2
GCCCTCTCCGTCCACTACTT
7881







Usf2
GCCAGCAGCATAAACTGGGA
7882







Utf1
GTTGCCTAAAGTGTCCGAAC
7883







Utf1
GAACCTCACCTAGGATCTCC
7884







Utf1
GAGGAACTAGGTAGGCGAGG
7885







Utf1
GAACCTTACATCTCAGGTCC
7886







Utf1
GTGATGGGATCTGGTGGCTC
7887







Utf1
GGACAGATGCATTAGAGGTG
7888







Utf1
GGGCTTTGGCTCACTGGGAA
7889







Utf1
GCCAATCAGTAGAAACTGGT
7890







Utf1
GTAAGCGGGACTGAGAGCCC
7891







Vav1
GGGCACAAGTGCAAAGGCCC
7892







Vav1
GAATTGTCTTGGTTTACCGT
7893







Vav1
GCAATACTACGTTTATTCAA
7894







Vav1
GCAGTTAGGGTAGGAAGGCC
7895







Vav1
GCGGCGCTAAACGGCTTCAC
7896







Vav1
GGCACAAGTGCAAAGGCCCT
7897







Vav1
GGCCTCTAGGCGGCGCTAAA
7898







Vav1
GACAGTTACAGTCACAGAAG
7899







Vav1
GTTAGAGGAAGTCGAGGGTT
7900







Vax1
GGATTCCTGAGGCTTCGGAT
7901







Vax1
GTTGAGTGATGTTCACTGAG
7902







Vax1
GGAGTTGACTTTATATGATT
7903







Vax1
GTCCTCTGGGAAACCTGTCA
7904







Vax1
GGTGTGTTAAGGAGTCGCTT
7905







Vax1
GCTACCTGATCGCCAGGCTG
7906







Vax1
GAACTAAGTCAGAGCCGACC
7907







Vax1
GGAGGTGACAGCCGGACTGT
7908







Vax1
GCTCACATACTGGCTAAAGG
7909







Vax1
GTTGTGGTTGTCCGACACCC
7910







Vax2
GCTTCTGTTTAGACAGTGTC
7911







Vax2
GAGTGACAACCTCAGAGCTG
7912







Vax2
GCCAGTGAGTGCCACAGTCA
7913







Vax2
GACACCCGCTACCAGATCTT
7914







Vax2
GTGCCTGAGTGTGAGTGCCT
7915







Vax2
GGTGTTTAGAGCCTGGCAAT
7916







Vax2
GCTTGCTGCTTCCCTCTTGC
7917







Vax2
GATGGATGAGGTTGGAAGAG
7918







Vax2
GAGAAATTACAACACAAAGG
7919







Vdr
GTTCTCAACAGCCAACACTT
7920







Vdr
GACGGTAGTGGAAACATTCT
7921







Vdr
GAAGCTACAGCAAGGCTTGC
7922







Vdr
GAGGCAGTGTGAAATGATGG
7923







Vdr
GGTGAGAAACCCTGGGCTAG
7924







Vdr
GTCCCGGGTCAACTCAGGTA
7925







Vdr
GTTAGAAGGTGAGAAACCCT
7926







Vdr
GACCTCACACATACCTGGGT
7927







Vdr
GTATATGTTCCTCTAGCCCA
7928







Vdr
GTTGCCGGGAGATGGTGGAA
7929







Vezf1
GTGGTCTTCCAATTTGAGCA
7930







Vezf1
GGACTTGTCCTCATCACCCA
7931







Vezf1
GAAGGGAATCTTCTAAGGCA
7932







Vezf1
GGAAGCTGACTTGTTTGGGA
7933







Vezf1
GATGGCAAGAGCGCTGAGTG
7934







Vezf1
GAATAGAAACTGAAGAGGTA
7935







Vezf1
GGAATATAATCAAACCAAGC
7936







Vezf1
GTTATAACACTTCAGGTGGA
7937







Vezf1
GCACACACAAGTCAGACTTC
7938







Vsx1
GCCTTCCACAGAACCAGGCT
7939







Vsx1
GCAAGCCAGTAACTTTCCTT
7940







Vsx1
GCAAGGGAGATGCGCTGTGT
7941







Vsx1
GTCTTTATCCACCCAGAGGT
7942







Vsx1
GGCTATCTGTCCGCCTGATT
7943







Vsx1
GGCTGCCAACACACCAGGGT
7944







Vsx1
GGACAGCTGGAGAGAGAAAG
7945







Vsx1
GGGACAGCTGGAGAGAGAAA
7946







Vsxl
GAACCGTCCCTAGATCTTAC
7947







Vsx2
GTCGCAGCTAACCTAGGCAC
7948







Vsx2
GAGCTGAACAGCCAATCACC
7949







Vsx2
GCTTCTCCAGAGGCTCTAGA
7950







Vsx2
GCAACAAGGAGCTAAACTGA
7951







VSx2
GAACATAATGTCCCGTGCTG
7952







Vsx2
GGTGGTGGAGTAAGGAGGAC
7953







Vsx2
GGTTAGCTGCGACAGATCCC
7954







Vsx2
GAGGCTGCTTAGTTAAGGGA
7955







Vsx2
GGGTTAGGATCGAGCCCTCG
7956







Vsx2
GCTAGTCACTTTGAGCAGAA
7957







Wt1
GTTATCCTTTCTGAGGCCCG
7958







Wt1
GAGAACTCTCCTGGGTTCTG
7959







Wt1
GCGCCTTGTTGAGAAGAAAC
7960







Wt1
GCTGTTTGGAATCTTGGAAC
7961







Wt1
GACGCCTTGCTACACTGACT
7962







Wt1
GGCTGTTAATCAGGAAGGGT
7963







Wt1
GAGCAATTGCCGGTTCCTCT
7964







Wt1
GTTTCATTACCAAAGGAAAG
7965







Wt1
GCAAATAACTTTCTGAGCCT
7966







Wt1
GCTGGTGGCAGTCAGGCATC
7967







Xbp1
CCCATGTGCCAAGCACGGAG
7968







Xbp1
GCCTTGGCTAGCATGTAGTA
7969







Xbp1
GTCACGCAGGAGGCTAGAAC
7970







Xbp1
GGACAAAGCCCAAGATGCAG
7971







Xbp1
GCATGTGCCAAGCACGGAGT
7972







Xbp1
GTGCTAGAGCATTAGGTTCT
7973







Xbp1
GTATTCCTTTCATTAGGGAA
7974







Xbp1
GGAGGAGAGCCAGGCTCATT
7975







Ybx1
GGAATAAACGTTAACTGCTG
7976







Ybx1
GGTGGTGACATTACAGGCAA
7977







Ybx1
GCCTATTGGCTCACGCTCCG
7978







Ybx1
GGCTGCAGAGAGAGAAGGGA
7979







Ybx1
GGCCTGAGAAGCTGTGGGTC
7980







Ybx1
GGTGATCCAGTCACCTTGGA
7981







Ybx1
GAGAGAAGGGATGGGAGTGG
7982







Ybx1
GTGCTCACCCAACCAAGAAG
7983







Ybx1
GGCGAATCTCCTCACAATTC
7984







Yy1
GGAGTTGTTAGTGTTGAGGC
7985







Yy1
GCCTGTTGGAACGAAGGGTC
7986







Yy1
GCTTCATCTGTTGAATATTC
7987







Yy1
GCAATTTGATGATTTGAACA
7988







Yy1
GTTCATACAGTGTCTTTCAA
7989







Yy1
GTGTGCTGCCACGGGCTCTT
7990







Yy1
GGACCCTGGTTGGGAGTAGG
7991







Yy1
GCCAGACCCTTCGTTCCAAC
7992







Yy1
GTATGAATGTGGGAAGGCTG
7993







Yy1
GGAGTTGGTATTTGTGTGGA
7994







Zbtb12
GGCAGCAGTGATCCTAAGAT
7995







Zbtb12
GACAAATAATCCUGGCCAAA
7996







Zbtb12
GACAAGCTGAGGGCAAGCGC
7997







Zbtb12
GGACAAATAATCCTGGCCAA
7998







Zbtb12
GCAGTGATCCTAAGATTGGT
7999







Zbtb12
GGAAGAATGCATATTTCACT
8000







Zbtb12
GGATTGAGAAGCTTCCTGGA
8001







Zbtb14
GCAGCAGAGGAAGTGGTGAC
8002







Zbtb14
GGTTGACTCTTGCTATCAGC
8003







Zbtb14
GGATGCCTAAGTAAACATGA
8004







Zbtb14
GGTTGCTTTCCCTGGGTCTA
8005







Zbtb14
GAGAAGTGGAGGATGGTGGA
8006







Zbtb14
GTGTGTGCTCGTGCAGGAGG
8007







Zbtb14
GCAGTAGTTAATAGGGATCA
8008







Zbtb14
GCCACTGAGGCATTGTTTAT
8009







Zbtb14
GCTGGTCCTTGCTTATCATC
8010







Zbtb16
GCGCTCTTGAGTACTGGAGT
8011







Zbtb16
GAACTTTCCATCCAGGTTCC
8012







Zbtb16
GGAATCAAGATACGATTCTG
8013







Zbtb16
GTGGTCAGGCATCAGAGGCC
8014







Zbtb16
GGGATACACCGCATGCCCAG
8015







Zbtb16
GGCCAGCCTTCATCGCTAAG
8016







Zbtb16
GGAGGAGACGGTGCTTTCCG
8017







Zbtb16
GCTAGATGTCAGGAGAAGCC
8018







Zbtb16
GAGTAATGCCTAGATTTAAG
8019







Zbtb16
GCTTACGGAGCCTGGAGCTT
8020







Zbtb18
GAGCAGGAAGACAAGCTGTG
8021







Zbtb18
GCTCTGACATCATGTTCAGA
8022







Zbtb18
GGGTGTGTGTGTGAGGTTCA
8023







Zbtb18
GTCTGCCATTATCTCCGCAG
8024







Zbtb18
GTAAACTGGGTGATTAATGT
8052







Zbtb18
GCCCGAAGACATCCACTCCA
8026







Zbtb18
GCAGACGGCGACTGTTGGGT
8027







Zbtb18
GTTGTGATCACCAGGAGGGT
8028







Zbtb18
GCCATATGGCCACAGTCAGC
8029







Zbtb20
GGTCGTTGAACTGCTCGATT
8030







Zbtb20
GCACCTAAGTGTGGCTCAGA
8031







Zbtb20
GGGCGACTGAAGACCAAGTG
8032







Zbtb20
GATGCCTGCTGGTCAGACCT
8033







Zbtb20
GAGAGGGACAGAGGGAGGAC
8034







Zatb20
GCCTGTTCCTCTATGAGGTA
8035







Zbtb20
GACAGGCTGATCAGACTGCC
8036







Zbtb20
GGCCTAGATCTTTCCAATCA
8037







Zbtb20
GTTGCTTGTCCGAGTCTTCC
8038







Zbtb20
GAGTGACAGAGACAGAGAAA
8039







Xbtb3
GCTTGAGCCAATTAAGATAG
8040







Zbtb3
GGTGGAGAATGACTTAGGGA
8041







Zbtb3
GCAATTAGGGAACTGGTTGA
8042







Zbtb3
GGCTACAGGAACATTATGCT
8043







Zbtb3
GTCATGTGCAATTAGGGAAC
8044







Zbtb3
GCCAATTAAGATAGCGGAGG
8045







Zbtb3
GTCAGCAAGCACAGCTGAGG
8046







Zbtb3
GGGAAATTACCCGCCTGGGT
8047







Zbtb32
GATCAGACAGGGTGTGTCGG
8048







Zbtb32
GGAAGGcATCCTAGGTCTGG
8049







Zbtb32
GTTGTAGCGGGAAAGGCACT
8050







Zbtb32
GTGGGTGAAGCATACTAGTG
8051







Zbtb32
GAAGCTAGGGAGAAACCTCA
8052







Zbtb32
GGAGAGCATTATGAGAGGTG
8053







Zbtb32
GAGGGATAAAGGCAACTACA
8054







Zbtb32
GCACCCAAGCTAGAATCGGA
8055







Zbtb32
GAAGAGTAATCACAGACACT
8056







Zbtb32
GCGACCCTCCTAGATCAGAC
8057







Zbtb33
GGAAGCCGCTTTGACGTCGG
8058







Zbtb33
GCCACTCCTAACAGTGTCAT
8059







Zbtb33
GCAGTCACGGAAAGAGCCGA
8060







Zbtb33
GTCACGGACAGAGCCGAAGG
8061







Zbtb33
GCTTTGACGTCGGCGGAAAC
8062







Zbtb5
GCCTGTGGAGGCGGTGACAT
8063







Zbtb5
GATCTAGGTATAGTGGTGTA
8064







Zbtb5
GTTGTTCTCTGTTGTGAGTG
8065







Zbtb5
GTCTCCGCTTTGATGTTTAT
8066







Zbtb5
GATTGGCCATTGGAGGCCTG
8067







Zbtb5
GTGATTGGTCAGAGCGCTCA
8068







Zbtb5
GTTCTAGTTCTGAGTTAACC
8069







Zbtb5
GAGTTGTTGAAGCTGGTGAA
8070







Zbtb5
GTTAATCTGGAAAGGAAACT
8071







Zbtb5
GAGAGAATGTCAGGAGCTAA
8072







Zbtb7a
GTAATTTAAGGCGCAGATGG
8073







Zbtb7a
GGTAATTTAAGGCGCAGATG
8074







Zbtb7a
GAGTAAACTGAGGTTTATGT
8075







Zbtb7a
GACTCCTCTTCGGCTCTGGC
8076







Zbtb7a
GTCGTGGGAGAGGTCTGGAG
8077







Zbtb7a
GATGCTCGCGACTCCCTTCC
8078







Zbtb7a
GGGAGTCGCGAGCATCATAC
8079







Zbtb7a
GCGAAAGAACTACAGAGCCC
8080







Zbtb7a
GGAGAGGTCTGGAGAGGGAG
8081







Zbtb7a
GGTTTGTCCGAGGGCAAGAG
8082







Zbtb7b
GACAAGAGCTGGCTGAGGAG
8083







Zbtb7b
GTGTATATGGGATTGATATG
8084







Zbtb7b
GTGAAGTCAAGGTAAGGGCA
8085







Zbtb7b
GGCTTAAGGACAGGGTCTTG
8086







Zbtb7b
GTGGCATTGGCAGGACTGGA
8087







Zbtb7b
GTCCTTATTGGGCGGAGGGA
8088







2btb7b
GGAAAGTTCTGAGATGAACT
8089







Zbtb7b
GCAGACTGCTCAGGIGGAGG
8090







Zbtb7b
GACCCTGACAGTAGAAGGAA
8091







Zbtb7b
GGGCAGAGACCTTAGGAGGT
8092







Zc3h11a
GGGACCGGAATTTCTTTCTG
8093







Zc3h11a
GGCATAAGAGCTGGAATGAG
8094







Zc3h11a
GTCACGTGTCACGGAGGCAC
8095







Zc3h11a
GTGGCATAAGAGCTGGAATC
8096







Zc3h11a
GGAATTTCTTTCTGTGGACC
8097







Zc3h11a
GCATTATCCCTTAGATGCCA
8098







Zc3h11a
GGGTATGTTCCTTGTCCATA
8099







Zc3h11a
GGATGGAATTGAGGCATACA
8100







Zc3h11a
GGTCATAGGGTCACGTGTCA
8101







Zeb1
GAAGGAACTAAGTTTCTTCT
8102







Zeb1
GTGACAGGTGATCTAGGCGC
8103







Zeb1
GCTCAGGTGTGGTGGAGTAG
8104







Zeb1
GGAACCTTGTTGCTAGGGCC
8105







Zeb1
GCCAGGTACTCAAGATGCCA
8106







Zeb1
GAGTCTGCCATACCCAAGGA
8107







Zeb1
GAGCAGTTGTCGCACTGGGA
8108







Zeb1
GGAGTAGCGGAGAATAGTGC
8109







Zeb1
GGAGAGCTTACGGTCTAGAA
8110







Zeb1
GTAAGACTGGCTTACAAGTC
8111







2eb2
GAGATCAGTTCTAACCTGCT
8112







Zeb2
GTATGAGGGAATGCACACGG
8113







Zeb2
GTGCACACCATTCACAGAAC
8114







Zeb2
GTAATCCAATCAGGTTACAT
8115







Zeb2
GGCGGCAGAGAAAGGGTTAA
8116







Zeb2
GTACTATGCTGGCCAATCTC
8117







Zeb2
GGGTGACACTAAACTGTGTG
8118







Zeb2
GTGGTACAGGGAAGATCGCG
8119







Zeb2
GTCTCATTGTGCCTTTGCAC
8120







Zeb2
GCAGGCACCCAGGTAGCTAC
8121







Zfhx3
GGCAGCCTGAAGCAGGTCTA
8122







Zfhx3
GGTAACAGACTGCGCCCAAC
8123







Zfhx3
GAGACTGATGGATCAGGGTT
8124







Zfhx3
GCCTGCACCAACCCAGGAAC
8125







Zfhx3
GAAATGGTCTGTGGCTCCTA
8126







Zfhx3
GCTGGCATGCTGACATCCTC
8127







Zfhx3
GTGGATTTCGGAGAAATTGA
8128







Zfhx3
GGGCACTTCTAGGTCTCCCA
8129







Zfhx3
GGACTTTAGCCAATGTGGAC
8130







Zfp105
GGAGAAAGCATTCAAGTGTG
8131







Zfp105
GTCCACAGTCTTTGCGCTCA
8132







Zfp105
GCCTGTGAGTGCAGTGAGTG
8133







Zfp105
GTATTGTGAAACTCATTTGG
8134







Zfp105
GTCGTACACCTCGGTGCCCA
8135







Zfp105
GTTCAGTAAGGTTTCTGTGT
8136







Zfp105
GAAATGATAAACCCAGAGGA
8137







Zfp105
GAAGGCAGCGCCCTTTACTC
8138







Zfp148
GCGTTGCATATTGAGGTTAG
8139







Zfp148
GAGCTGGGAAAGCCACTGAG
8140







Zfp148
GAGGGCGCTCCTAAGAAACC
8141







2fp148
GCCAGAATCAAAGCCACGCT
8142







Zfp148
GACTCAAGAATTACAGTTTC
8143







Zfp148
GCAAACCGCGATGCAGGATG
8144







Zfp148
GACTTCGTTGGCCCAAACCA
8145







Zfp148
GGTGCCCACATCCTGCATCG
8146







Zfp148
GGAAGAAATTTAAGATGGAA
8147







Zfp2
GGACTAGTTGGGAAGGATGG
8148







Zfp2
GCACATGAATGAGGGTCGCT
8149







Zfp2
GGGCATAGTGGACACCAAAG
8150







Zfp2
GTACCTTGGTTCCCTATCCT
8151







Zfp2
GCAACTGGAAGCCCTGTCGA
8152







2fp2
GAAGGACTAGTTGGGAAGGA
8153







Zfp2
GAAGCCCTGTCGAGGGCTCA
8154







Zfp2
GTTCCGAACCAAATGTCGGA
8155







Zfp2
GGCTGTTAGGCCTCTGCCAT
8156







Zfp2
GCCATTGCCTTCCTCCTTCC
8157







Zfp239
GAAAGTGATACCATACATAT
8158







Zfp239
GGCCAACCACAACCTCAAAC
8159







Zfp239
GCCAACCACAACCTCAAACT
8160







Zfp239
GGGCTTTCACAACGTTCCTG
8161







Zfp239
GCTAAGTTTCACTTACCAAC
8162







Zfp239
GAGCTCACTTCCGGCGACGA
8163







Zfp239
GGACCATGTGGGCTACAGAT
8164







Zfp239
GCAGAAACTAGTAACAGAAT
8165







Zfp239
GCTACTTCCGAGCTCACTTC
8166







Zfp281
GTGATTGGTGGCCCTGCTGA
8167







Zfp281
GTTGTTCCTTATTCAGTTGG
8168







Zfp281
GGCTAGCCAGGCGGAAACTG
8169







Zfp281
GCGTGAATGAGAGAAATGAC
8170







Zfp281
GCCCAAGCATGAAGGGCAGT
8171







Ztp281
GTTACGAGTTTAAAGCTTTC
8172







Zfp281
GCTCAAGGTACGACTTCTAA
8173







Zfp281
GACAGTGGCTGAGGGTTTCT
8174







Zfp281
GGTCCTGTGAACTAAATCTA
8175







Zfp35
GACTCCCAGCTTTAGCATAG
8176







Zfp35
GAAGCAGTGCCCAGACCACT
8177







Zfp35
GCTAACCTGCCAAGTGGTCT
8178







Zfp35
GGTCACGAAGAGCTAATAAC
8179







Zfp35
GCCAGGTCTCATCACGGTCT
8180







Zfp35
GACTCCGAGAGAAGGGTGCA
8181







Zfp35
GGTAAATGAAGAAGCTCAGG
8182







Zfp35
GCTGGTAAATGAAGAAGCTC
8183







Zfp35
GCAGGGAAGAAGGGAAAGGG
8184







Zfp36
GGATAGAAGACGGTTTAAGC
8185







Zfp36
GGGCTACTCTCTAAAGGATG
8186







Zfp36
GAGCCAAGGCACAAGGTGTG
8187







Zfp36
GCTTCCTGGAAGCCGTGACG
8188







Zfp36
GGTCTAAGACTTAAAGATCT
8189







Zfp36
GGTTGTGTACGACCAACTGG
8190







Zfp36
GTGCGTTGCGTATCGAGGTA
8191







Zfp36
GGCAGTCGGGAAGAGAACTG
8192







Zfp36
GACTCAGCAGATAGAGGAGG
8193







Zfp384
GAAGGAAGGAGCCGAGGGAG
8194







Zfp384
GCGGCAGCAGGAAAGGAAAG
8195







Zfp384
GTGGGAGGATGGAAGCTAGA
8196







Zfp384
GCTACCTTCACTAATCTGCT
8197







Zfp384
GGCTTCCGGAAGAGACCTCT
8198







Zfp384
GCTGCCTTCACGTCCGGTTT
8199







Zfp384
GAGAGCCGCTCGAGCACATC
8200







Zfp384
GTCACAGTCTTAAGAGAGGT
8201







Zfp384
GTGAAGGCAGCGTGTGTTAA
8202







Zfp410
GAACACTGATCAGTACTCTA
8203







Zfp410
GTTGTGGGAAGGTACCATTG
8204







Zfp410
GAGAAGATAAATGAGTGGTT
8205







Zfp410
GGTAGCTTTCTCCGGAGCTG
8206







Zfp410
GGTCCGCGAAATCTGAAACC
8207







Zfp410
GCATAAGTACATAGGATTTC
8208







Zfp410
GAAATGTTCATGGCCCAAAG
8209







Zfp410
GTGGCAAGGAGATGTTTACT
8210







2fp410
GCATTCCAGTCCATGATGAC
8211







Zfp42
GTTTCCTTTCACCTACAATT
8212







Zfp42
GGAGTAACTAACTCCGAGCT
8213







Zfp42
GAGTCTCAAGGCCAGGCGAT
8214







Zfp42
GCATTCCAGCCTACCCAGCT
8215







Zfp42
GCCTGGACAAGGATTCACGT
8216







Zfp42
GTACAATCTTGTCCTAGGTA
8217







Zfp42
GGAATGAGACCTACCAAAGG
8218







Zfp42
GTGAATCCTTGTCCAGGCCC
8219







Zfp42
GTAGCCTTCAGCAAATTTCG
8220







Zfp42
GAATCCTTGTCCAGGCCCTG
8221







Zfp423
GCTGGACATCTCTAGGCCGT
8222







Zfp423
GGGAGGGAAATGGTCAGGGA
8223







Zfp423
GGCTCGGATCAGACGGAGAG
8224







Zfp423
GCTTGGGCTCTGACAGCACT
8225







Zfp423
GCCTAGGGATGACTGATCCC
8226







Zfp423
GTCCATGGAGGCAGCTAGCG
8227







Zfp423
GGAAGGGAGGGAAATGGTCA
8228







Zfp423
GCCTGCCTCTTTCCACCCTC
8229







Zfp423
GCTGCCTCTCCTAGGTGGAG
8230







Zfp423
GGCCTCAAAGGGCAGTTTAG
8231







Zfp628
GTTCGCCAGATGCAGAATCC
8232







Zfp628
GTCATGACGCACGAAGGCGG
8233







Zfp691
GGCCTTGAAGGCTGATGTTT
8234







Zfp691
GACTCTAAAGACACGGTGTG
8235







Zfp691
GGCGGATCCTCTCTGGGTTC
8236







Zfp691
GTCAAATCTAATAGTCTTGT
8236







Zfp691
GTAGGACGGCCAATAAACAT
8238







Zfp691
GGAATGACCTCCAGCCAGGT
8239







Zfp691
GGTTTAGTGCGCGGCATGCT
8240







Zfp691
GCAGGGAGGGTAGTAAGACT
8241







Zfp691
GAATTCAATAATCTCTGACC
8242







Zfp740
GTTTGGCTAGGTCAAGACTG
8243







Zfp740
GAGGGCAGAACTGTGTTGGA
8244







Zfp740
GTACTGAGTGTTCTTTGAGA
8245







Zfp740
GACTATTCTAAGTGCACACT
8246







Zfp740
GAGCTGGGATTTGCCATCTT
8247







Zfp740
GGGCGCTAGTATTCGAGGAT
8248







Zfp740
GAACTGTCCCGGCTTCTCTT
8249







Zfp740
GGTTCGTAAATTCGCCGCCG
8250







Zfp740
GGGCCGAAAGAGCAGCCAAC
8251







Zfp740
GTGGGACTTGTTGGAATTCA
8252







Zfpm1
GGCTTAGGGTCTGGGAGTCC
8253







Zfpm1
GGTGGAAGATAGAGAAAGGA
8254







Zfpm1
GTTCATGACCAGAGCCAGCA
8255







Zfpm1
GGACCCTGTGTAGGTCTCAA
8256







Zfpm1
GCTGGCATATGGTGAGAGGC
8257







Zfpm1
GTCTATCTAGAAACGAGGGT
8258







Zfpm1
GCTGAGGATTGGACAGACGT
8259







Zfpm1
GCCTTTCAGGGAGCCAGCAG
8260







Zfpm1
GCCACAGTGAACATCTGCCA
8261







Zfpm1
GGGACAGGGTCGACGAAAGG
8262







Zfx
GCCGTAAATGTGTGTGTGTG
8263







Zfx
GTAATCTTCAGCACACTAAA
8264







Zfx
GGATAAAGCAAATTGCAAAC
8265







Zfx
GTGACGTGACGTGCTGACGG
8266







Zfx
GGGCGCTGTCACGGAAACTC
8267







Zfx
GCTCTGGAAACTGAAAGGAA
8268







Zfx
GGAAATTCGGGCTATGATAC
8269







Zhx1
GAGGAGCCGAGAGTGACAGT
8270







Zhx1
GAGCGCGGGACTGTTGACAG
8271







Zhx1
GCTGACTTTGAAAGCTTGTT
8272







Zhx1
GTGCAAGGATGCCAGATAAT
8273







Zhx1
GCCGAGCAATCGCTTGAACG
8274







Zhx1
GACTCTCCCTGACAGAGGGC
8275







Zhx1
GCCCTTGTGGGTTCAGGGAG
8276







Zhx1
GCACTCTGCATTTACATGAA
8277







Zhx1
GGCTTCTAGTGACAGAGGCG
8278







Zhx1
GAGGGCTGAAGGGCAGAGGT
8279







Zic1
GGAAGGGTGGCTGTTGGGAG
8280







Zic1
GTCTCCGAGAGCAGCAGTTG
8281







Zic1
GTTAGGAAGTAGAAATTCTA
8282







Zic1
GTTAAGCATCTATGCCTGTG
8283







Zic1
GGGCAAAGACAGGTTAATCG
8284







Zic1
GTCAAGCGCTTTACAATACC
8285







Zic1
GGTGGGAGCAAGCCACACAA
8286







Zic1
GCGAGTGTTGTATGTTTGCA
8287







Zic1
GGGCAGAGTGAGCGAGTTGG
8288







Zic2
GCCGCGTTGACTTCATTCGG
8289







Zic2
GCACACAAGCTGGCAGGGAG
8290







Zic2
GAACCAATGTGGCTGTGGAC
8291







Zic2
GTTTATTTCGGTGGGCGCTG
8292







Zic2
GAACTCTTGAATTAGCCGGC
8293







Zic2
GGGAGCCTTGGTAGAAAGGT
8294







Zic2
GGCCGAGCCTTGGATAAGGA
8295







Zic2
GGGTTGTGCAGCTGCAGCAG
8296







Zic2
GCCCAGTCTATGGGTGCGTT
8297







Zic2
GCTTGGTGACTCTATAGCTA
8298







Zic3
GCTTGCTGCCGGCTTAGAGC
8299







Zic3
GGCAAAGCACTAGCAAAGGG
8300







Zic3
GCAAAGCCCGGGATGTTAAG
8301







Zic3
GTGGACAGCTACCTCTAGTT
8302







Zic3
GCAGCGCGAAGCGGAGAACA
8303







Zic3
GAGAAGTGGGAAGGTGGGAA
8304







Zic3
GCCCTGACTCTTAGTCGCGA
8305







Zic3
GGTGGGAGTTTCCATATTTG
8306







Zic3
GAGTCTCGAACGCAGGGCAA
8307







Zic3
GCAACGACAAGTATCTTCTT
8308







Zscan26
GTAAAGCCAGAGGAGGAAAC
8309







Zscan26
GGGAGGACCAGGACTCAACT
8310







Zscan26
GCAGGGCCCAAATCTGTCAG
8311







Zscan26
GTAGGATGTCAAAGACTTGC
8312







Zscan26
GTGACTAACAGTTAGACAAA
8313







Zscan26
GCTTGAGAAGGTAAAGCCAG
8314







Zscan26
GATTGGATGGCCTGAGGATG
8315







Zscan26
GGAGCCGGAAACTACTGGGC
8316







Zscan26
GAGACTTTAAACCATTTACC
8317










All publications and patents mentioned in the above specification are herein incorporated by reference as if expressly set forth herein. Various modifications and variations of the described method and system of the disclosure will be apparent to those skilled in the art without departing from the scope and spirit of the disclosure. Although the disclosure has been described in connection with specific preferred embodiments, it should be understood that the disclosure as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the disclosure that are obvious to those skilled in relevant fields are intended to be within the scope of the following claims.

Claims
  • 1-20. (canceled)
  • 21. A method for converting cell fate of a population of cells, the method comprising: regulating an expression level of a first endogenous gene and an expression level of a second endogenous gene in the population of cells, via using (i) a CRISPR-Cas protein, (ii) a first guide ribonucleic acid molecule (first guide RNA) exhibiting specific binding to the first endogenous gene, and (iii) a second guide ribonucleic acid molecule (second guide RNA) exhibiting specific binding to the second endogenous gene, wherein the first endogenous gene and the second endogenous gene are different,wherein the regulating synergistically yields a greater degree of conversion of the cell fate of the population of cells, as compared to that from regulating an expression level of only one of the first endogenous gene and the second endogenous gene.
  • 22. The method of claim 21, wherein the regulating induces expression of a cellular marker indicative of the conversion in the population of cells.
  • 23. The method of claim 22, wherein, upon the regulating, at least 50% of the population is positive for the cellular marker.
  • 24. The method of claim 22, wherein a portion of the population of cells positive for the cellular marker is greater than a sum of (i) a portion of a first control population of cells subjected to regulation of the expression of the first endogenous gene but not that of the second endogenous gene and (ii) a portion of a second control population of cells subjected to regulation of the expression of the second endogenous gene but not that of the first endogenous gene.
  • 25. The method of claim 21, wherein the population of cells is contacted by the first guide RNA and the second guide RNA substantially simultaneously.
  • 26. The method of claim 21, wherein the CRISPR-Cas protein is a nuclease dead CRISPR-Cas protein.
  • 27. The method of claim 21, wherein the CRISPR-Cas protein is CRISPR-Cas9.
  • 28. The method of claim 21, wherein the CRISPR-Cas protein is fused to a gene activator.
  • 29. The method of claim 21, wherein the CRISPR-Cas protein is fused to a gene repressor.
  • 30. The method of claim 21, wherein the first endogenous gene or the second endogenous gene is a non-coding gene.
  • 31. The method of claim 21, wherein the first endogenous gene or the second endogenous gene is a transcription factor.
  • 32. The method of claim 21, wherein the first endogenous gene or the second endogenous gene is a cell differentiation factor.
  • 33. The method of claim 21, wherein at least one of the first guide RNA and the second guide RNA is substantially free of a RNA homopolymer sequence having a length greater than 3 nucleotides.
  • 34. The method of claim 21, wherein at least one of the first guide RNA and the second guide RNA exhibits less than 2 mismatches with a different genomic sequence of the population of cells.
  • 35. The method of claim 21, wherein at least one of the first guide RNA and the second guide RNA comprises a GC content of at least about 30%.
  • 36. The method of claim 21, wherein at least one of the first guide RNA and the second guide RNA comprises a GC content of at most about 70%.
  • 37. The method of claim 21, wherein at least one of the first guide RNA and the second guide RNA comprises a GC content of between about 30% and about 70%.
  • 38. The method of claim 21, wherein the population of cells comprises mammalian cells.
  • 39. The method of claim 21, wherein the population of cells comprises stem cells.
  • 40. The method of claim 21, wherein the conversion comprises a change of cell type in the population of cells.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/863,005, filed Jan. 5, 2018, which claims the benefit of U.S. Provisional Application No. 62/443,401, filed Jan. 6, 2017, both of which are incorporated herein by reference in their entireties.

STATEMENT REGARDING FEDERALLY-SPONSORED RESEARCH

The invention was made with Government support under contract OD017887 awarded by the National Institutes of Health. The Government has certain rights in the invention.

Provisional Applications (1)
Number Date Country
62443401 Jan 2017 US
Continuations (1)
Number Date Country
Parent 15863005 Jan 2018 US
Child 17496275 US