COMPOSITIONS AND METHODS OF TREATING DISEASE WITH FGFR FUSION PROTEINS

Abstract
The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
Description
TECHNICAL FIELD

The present invention relates to fusion molecules comprising an extracellular domain of a fibroblast growth factor receptor (FGFR). It relates to polypeptide and polynucleotide sequences, vectors, host cells, compositions, kits, and animals comprising FGFR fusion proteins. The invention also relates to methods of making and using FGFR fusion molecules and variants and fragments thereof to diagnose, prevent, determine the prognosis for, and treat proliferative diseases, including cancer and disorders of angiogenesis.


BACKGROUND ART

Fibroblast growth factors (FGFs) and their receptors (FGFR) are a highly conserved group of proteins with instrumental roles in angiogenesis, vasculogenesis, and wound healing, as well as tissue patterning and limb formation in embryonic development. FGFs and FGFRs affect cell migration, proliferation, and survival, providing wide-ranging impacts on health and disease.


The FGFR family comprises four major types of receptors, FGFR1, FGFR2, FGFR3, and FGFR4. These receptors are transmembrane proteins having an extracellular domain, a transmembrane domain, and an intracytoplasmic domain. Each of the extracellular domains contains either two or three immunoglobulin (Ig) domains. Some FGFRs exist in different isoforms which differ in specific segments of the molecule, such as FGFR1-IIIb and FGFR1-IIIc, which differ in the C-terminal region of the third Ig domain. Transmembrane FGFRs are monomeric tyrosine kinase receptors, activated by dimerization, which occurs at the cell surface in a complex of FGFR dimers, FGF ligands, and heparin glycans or proteoglycans. Extracellular FGFR activation by FGF ligand binding to an FGFR initiates a cascade of signaling events inside the cell, beginning with the receptor tyrosine kinase activity.


To date, there are 23 known FGFs, each with the capacity to bind one or more FGFRs (Zhang et al., J. Biol. Chem. 281:15, 694-15,700 (2006)). Several FGFs can bind to and activate each of one or more FGFRs, often with large differences, for example, order of magnitude differences in their affinities for the different FGFRs. Many FGFs bind their respective FGFRs with very high affinities, some in the picomolar range. Heparin is required for the binding of FGFs to FGFRs under some circumstances (Ornitz et al., Mol. Cell Biol. 12:240 (1992)). For example, the mitogenic response to FGF-2 (also known as basic FGF (bFGF)) mediated by FGFR1 has been shown to depend on the presence of heparin (Ornitz et al., Mol. Cell Biol. 12:240 (1992)).


Previously proposed therapeutic approaches using specific antibodies to block FGF function do not address the issue of redundancy within the FGF family in activating multiple FGFRs, since cancers or other proliferative cells may express upregulated levels of more than one FGF or FGFR. Antisense oligonucleotide or related siRNA therapies have potential problems with specificity, serum half-life, and intracellular delivery. Gene transfer therapies, including those using adenovirus, have raised issues of patient safety and a number of clinical gene therapy studies have been halted due to patient death. Small molecule tyrosine kinase inhibitor therapies suffer from issues of target specificity, toxicity, and manifestations of drug resistance. To date, no drug which targets an FGFR signaling pathway has been approved for treating any human disease.


SUMMARY

The invention provides an FGFR fusion protein comprising a first polypeptide that comprises an extracellular domain of an FGFR polypeptide and a fusion partner, wherein the extracellular domain comprises a C-terminus, wherein the C-terminus comprises a variant of a wildtype FGFR extracellular domain C-terminus, wherein the variant comprises a deletion of 1-22 amino acid residues present in a wildtype FGFR1, FGFR2, FGFR3, or FGFR4 extracellular domain C-terminus, and wherein the FGFR fusion protein binds at least one FGF ligand or a biologically active fragment thereof. In an embodiment, the deletion is C-terminal to a valine residue situated at the C-terminus of the IgIII domain and commonly aligned among the wildtype FGFR1, FGFR2, FGFR3, and FGFR4 extracellular domain C-termini. In an embodiment, the FGFR fusion protein is less susceptible to cleavage.


The invention also provides an FGFR fusion protein comprising a first polypeptide that comprises an extracellular domain of an FGFR polypeptide and a fusion partner; wherein the extracellular domain comprises a C-terminus, wherein the C-terminus comprises a variant of a wildtype FGFR extracellular domain C-terminus, wherein the variant comprises at least one point mutation compared to a wildtype FGFR1, FGFR2, FGFR3, or FGFR4 extracellular domain C-terminus; and wherein the point mutation renders the FGFR fusion protein less susceptible to cleavage.


Any of these FGFR fusion proteins may comprise an FGFR1 polypeptide, an FGFR2 polypeptide, an FGFR3 polypeptide, and/or an FGFR4 polypeptide. Any of these FGFR fusion proteins may comprise an Fc polypeptide.


In an embodiment, the extracellular domain of the FGFR fusion protein comprises an amino acid sequence of any of SEQ ID NO: 100, SEQ ID NO: 97 to SEQ ID NO.: 99, SEQ ID NO.: 101 to SEQ ID NO: 122, SEQ ID NO: 127 to SEQ ID NO: 132, SEQ ID NO: 137 to SEQ ID NO: 141, SEQ ID NO: 146 to SEQ ID NO: 150, SEQ ID NO: 162 to SEQ ID NO: 166, SEQ. ID. NOS.:178 to SEQ ID NO: 182, SEQ ID NO: 199 to SEQ ID NO: 203, SEQ ID NO: 206 to SEQ ID NO: 210, SEQ ID NO: 230 to SEQ ID NO: 234, and SEQ ID NO: 238 to SEQ ID NO: 242. These FGFR fusion proteins may lack a native leader sequence. In an embodiment, the Fc polypeptide comprises an amino acid sequence of any of SEQ ID NO: 171 to SEQ ID NO: 173.


The invention further provides an FGFR fusion protein produced in a CHO cell or a 293 cell comprising a first polypeptide comprising an extracellular domain of an FGFR polypeptide or a variant thereof and a fusion partner, wherein the FGFR fusion protein can bind to one or more FGF ligand. In an embodiment, this FGFR fusion protein comprises an amino acid sequence of any of SEQ ID NO.: 100, SEQ ID NO.: 95 to SEQ ID NO.: 99, SEQ ID NO: 102 to SEQ ID NO.: 126, SEQ ID NO: 156 to SEQ ID NO: 157, SEQ ID NO: 162 to SEQ ID NO: 166, SEQ ID NO: 176 to SEQ ID NO: 182, SEQ ID NO: 198 to SEQ ID NO: 202, SEQ ID NO: 205 to SEQ ID NO: 210, SEQ ID NO: 228 to SEQ ID NO: 234, and SEQ ID NO: 236 to SEQ ID NO: 242. In an embodiment, this FGFR fusion protein lacks a native leader sequence. In an embodiment, it is produced using a CHEF expression system.


The invention yet further provides the use of any of the above-described FGFR fusion proteins as a medicament. It provides a composition comprising an effective amount of any of the above-described FGFR fusion proteins and a pharmaceutically acceptable carrier. The invention provides a kit comprising this composition in a container and instructions for its administration into a subject in need of such a composition. In an embodiment the kit comprises either a single dose or multiple doses of the FGFR fusion protein.


The invention provides a nucleic acid molecule comprising a polynucleotide that encodes any of the above-described FGFR fusion proteins. In an embodiment, a vector comprises this nucleic acid molecule and a promoter which regulates the expression of the nucleic acid molecule. The invention also provides a recombinant host cell comprising any of the above-described FGFR fusion proteins, this nucleic acid molecule, and/or this vector. In an embodiment, this recombinant host cell is a prokaryotic cell. In an embodiment, this recombinant host cell is a eukaryotic cell, for example, one of CHO or 293 lineage. In an embodiment, the invention provides a polypeptide expressed from such a recombinant host cell.


In another aspect, the invention provides a method of producing an FGFR fusion protein comprising providing the recombinant host cell described above and culturing it to express the FGFR, fusion protein. In an embodiment, the method further comprises isolating the FGFR fusion protein from the cell culture. In an embodiment, the isolation procedure comprises contacting the expressed FGFR fusion protein with an affinity matrix, for example, Protein A, Protein G, Protein A/G, anti-Fc antibody, and anti-FGFR antibody. In an embodiment, the isolation further comprises contacting the FGFR fusion protein with a hydrophobic matrix.


In a further aspect, the invention provides a method of detecting the level of FGFR expression in a subject comprising providing a ligand to FGFR, providing a tissue sample from the subject, allowing the ligand and the sample to interact under conditions that permit specific FGFR binding, measuring the specific binding; and comparing the amount of specific binding to that of a control sample, wherein the ligand binds to at least one of FGFR1, FGFR2, FGFR3, FGFR4, and a fragment of any of these. The tissue sample may comprise a blood, serum, or plasma sample. In an embodiment, the tissue sample comprises a sample of a diseased tissue. In an embodiment, the tissue sample comprises a sample of a tumor tissue. In an embodiment, the testing comprises a protein-antibody binding or competition assay, or a nucleic acid hybridization assay. In an embodiment, the ligand comprises an FGF ligand or an antibody ligand.


The invention also provides a method of detecting the level of FGF expression in a subject comprising providing an FGFR or fragment thereof; providing a tissue sample from the subject; allowing the ligand and the sample to interact under conditions that permit specific binding; measuring the specific binding; and comparing the amount of specific binding to that of a control sample, wherein the FGFR or fragment thereof binds to the FGF. In an embodiment, the FGF is at least one of FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, FGF-16, FGF-17, FGF-18, FGF-19 and FGF-20.


The invention further provides a method of inhibiting the viability or proliferation of a proliferative cell in vitro, in vivo, or ex vivo comprising providing a composition comprising an effective amount of an FGFR fusion protein, as described above, and a pharmaceutically acceptable carrier, and contacting the proliferative cell with an amount of the composition effective to inhibit the viability or proliferation of the proliferative cell. In an embodiment, the proliferative cell is present in a subject and the subject expresses a higher level of one or more FGF ligand than normal. In an embodiment, a tissue of this subject expresses a higher level of the FGF ligand than normal. In an embodiment, the FGF ligand binds to at least one of FGFR1-Fc, FGFR2-Fc, FGFR3-Fc, or FGFR4-Fc, or a variant of any of these, as determined by measuring binding interactions in real time. For example, this FGF may be selected from FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-8, FGF-9, FGF-16, FGF-17, FGF-18, FGF-19 and FGF-20. In an embodiment, this method is performed wherein the proliferative cell is present in a subject and the subject expresses a higher level of an FGFR polypeptide than normal. In an embodiment, a tissue in the subject also expresses a higher level of the FGFR polypeptide, for example, FGFR1, FGFR2, FGFR3, or FGFR4, than normal. In an embodiment, this method inhibits the viability and/or proliferation of a proliferative cancer cell, a proliferative dysplastic cell, or a proliferative endothelial cell. In an embodiment, the proliferative cell comprises a breast cell, a pancreatic cell, a prostate cell, a lung cell, an ovarian cell, a kidney cell, a brain cell, a colorectal cell, a retinal cell, or another cell selected from any of Table 5-Table 11. In an embodiment, the subject expresses a higher level of an FGFR polypeptide than normal and a higher level of an FGF ligand than normal.


In yet a further aspect, the invention provides a method of treating cancer in a subject, comprising providing any of the above-described FGFR fusion proteins and administering an effective amount of the FGFR fusion protein to the subject. In an embodiment, the cancer comprises at least one subpopulation of cells that is dependent on or responsive to growth stimulation by an FGF ligand. In an embodiment, the cancer comprises at least one subpopulation of cells that is dependent on or responsive to an angiogenic factor for production of blood vessels for growth. In an embodiment, the cancer is resistant to VEGF signaling pathway inhibition. In an embodiment, the cancer comprises metastasizing cancer, for example bone metastasis. In an embodiment, the cancer comprises a hematologic cancer, for example, chronic myelogenous leukemia, chronic lymphocytic leukemia, acute myelocytic leukemia, or hairy cell leukemia. In an embodiment, the cancer comprises a solid tumor. In an embodiment, the cancer comprises breast cancer, pancreatic cancer, pituitary cancer, prostate cancer, lung cancer, ovarian cancer, renal cell cancer, oral squamous cell cancer, colorectal cancer, bladder cancer, retinal cancer, brain cancer, or another cancer listed in Table 5-Table 11.


In an embodiment, this method further comprises administering a second anti-cancer therapeutic to the subject, for example, one comprising a cytostatic agent, a cytotoxic agent, an anti-angiogenic agent, a second FGFR fusion protein, an inhibitor of PDGF signaling, an inhibitor of VEGF signaling, or an inhibitor of EGF signaling. The second anti-cancer therapeutic may be administered before, after, or contemporaneously with the administration of the FGFR fusion protein.


The invention also provides a method of inhibiting angiogenesis in a subject comprising providing any of the above-described FGFR fusion proteins and administering an amount of the FGFR fusion protein to the subject effective to inhibit angiogenesis. In an embodiment, this method further comprises administering a second therapeutic agent to the subject, for example, a cytostatic agent, a cytotoxic agent, or a second anti-angiogenic agent.


In an embodiment of this method, the subject is treated for macular degeneration. In an embodiment, the subject is treated for cancer. In an embodiment, the second therapeutic agent comprises an anti-cancer therapeutic agent, for example, a second FGFR fusion protein, an inhibitor of PDGF signaling, an inhibitor of VEGF signaling, an inhibitor of EGF signaling, an antibody, or an siRNA. In an embodiment, the invention provides a method of treating angiogenesis in a subject that has been or is being treated with Avastin®.


The invention provides a method of inhibiting the viability or proliferation of a proliferative cell in vitro, in vivo, or ex vivo; a method of treating cancer, and an method of treating angiogenesis by administering a composition comprising an effective amount of any of the above-described FGFR fusion proteins intravenously, intramuscularly, subcutaneously, topically, orally, intraperitoneally, intraorbitally, by implantation, by inhalation, intrathecally, intraventricularly, and/or intranasally. In an embodiment, the method further comprises administering a second, anti-cancer therapeutic agent to the subject, wherein the second agent comprises surgery, chemotherapy, radiation therapy, and/or the administration of another biologic.


The invention also provides the use of any of the above-described FGFR fusion proteins for the manufacture of a medicament for treatment of a proliferative disease, for example, cancer or macular degeneration. In an embodiment, the cancer comprises a hematologic cancer or a solid cancer. In an embodiment, the cancer comprises breast cancer, pancreatic cancer, pituitary cancer, prostate cancer, lung cancer, ovarian cancer, renal cancer, oral cancer, colorectal cancer, bladder cancer, retinal cancer, brain cancer, or another cancer identified in Table 5-Table 11.


The invention provides a product comprising an FGFR fusion protein as described above and at least one anti-cancer therapeutic as a combined preparation for simultaneous, separate, or sequential use to treat cancer.





BRIEF DESCRIPTION OF THE DRAWINGS AND TABLES
Brief Description of the Drawings

The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate several embodiments consistent with the invention. Together with the description, they serve to explain the principles of the invention, but do not limit the invention.



FIG. 1A shows an amino acid sequence alignment of a portion of the extracellular and transmembrane domains of the seven FGFR isoforms, FGFR3-IIIb, FGFR3-IIIc, FGFR1-IIIb, FGFR1-IIIc, FGFR2-IIIb, FGFR2-IIIc, and FGFR4, denoting the immunoglobulin (Ig) III domain, the truncation locations of the FGFR1 mutants R1Mut1, R1Mut2, R1Mut3, R1Mut4, and R1Mut5 variants, and the position of the Fc portion of the fusion protein.



FIG. 1B shows the same amino acid sequence alignment as FIG. 1A, denoting the locations of the FGFR1 mutants R1Mut6, R1Mut7, R1Mut8, R1Mut9 and R1Mut10.


HG. 2 shows the same amino acid sequence alignment as FIG. 1, denoting the truncation locations of the FGFR4 mutants R4Mut1, R4Mut2, R4Mut3, R4Mut4, R4Mut5, and R4Mut6.



FIG. 3A shows a Western blot demonstrating that R1Mut1, R1Mut2, R1Mut3, R1Mut4, and R1Mut5 were more resistant to proteolytic cleavage by MMP-2 than the parental FGFR1-IIIc-Fc.



FIG. 3B shows a quantitative Western blot demonstrating that R1Mut4 is more resistant to MMP-2 cleavage, compared to parental FGFR1-IIIc-Fc. Quantitative standards of FGFR1-IIIc-Fc are shown on the left and cell culture medium from FGFR1-IIIc-Fc and R1Mut4 are shown on the right.



FIG. 4 shows a Western blot demonstrating that R4Mut1, R4Mut2, R4Mut3, R4Mut4, and R4Mut5 were more resistant to proteolytic cleavage by MMP-2 than the full-length parental FGFR4-Fc.



FIG. 5A shows a competition ELISA assay measuring the binding of increasing concentrations (ug/ml) of FGFR4 mutants to FGF-1 by measuring changes in OD450. R4Mut1, R4Mut2, R4Mut3, R4Mut4, R4Mut5, and R4Mut6 each has a higher affinity for FGF-1 than the parental FGFR4-Fc, whereas human IgG did not bind to FGF-1.



FIG. 5B shows a competition ELISA assay measuring the binding of increasing concentrations (ug/ml) of FGFR4 mutants to FGF-2 by measuring changes in OD450. R4Mut1, R4Mut2, R4Mut3, R4Mut4, and R4Mut5 each has a higher affinity for FGF-2 than the parental FGFR4-Fc, whereas human IgG did not bind to FGF-2.



FIG. 5C shows a competition ELISA assay measuring the binding of increasing concentrations (ug/ml) of FGFR4 mutants to FGF-8b by measuring changes in OD450. R4Mut1, R4Mut2, R4Mut3, R4Mut4, R4Mut5, and R4Mut6 each has a higher affinity for FGF-8b than parental FGFR4-Fc, whereas human IgG did not bind to FGF-1.



FIG. 6 shows a direct ELISA assay measuring the binding of increasing concentrations (ug/ml) of FGFR4 mutants to FGF-2 by measuring changes in OD450. R1Mut1, R1Mut2, R1Mut3, and R1Mut4, but not R1Mut5, were able to bind FGF-2 as well as or better than parental FGFR1-IIIc-Fc.



FIG. 7 shows a competition ELISA assay measuring the binding of increasing concentrations (ug/ml) of FGFR1 fusion proteins, produced in either 293-6E cells or CHO cells, to FGF-2. FGFR1-IIIc-Fc produced by either 293-6E or by CHO host cells was able to bind and sequester FGF-2 to approximately the same extent, whereas human IgG was not able to bind FGF-2.



FIG. 8A shows a competition ELISA assay measuring the binding of increasing concentrations (ug/ml) of parental FGFR1-IIIc-Fc and R1Mut4, both produced by DG44 host cells, to FGF-1. Both FGFR1-IIIc-Fc and R1Mut4 were able to bind and sequester FGF-1 to approximately the same extent. Human IgG was not able to bind FGF-1.



FIG. 8B shows a competition ELISA assay measuring the binding of increasing concentrations (ug/ml) of parental FGFR1-IIIc-Fc and R1Mut4, both produced by DG44 host cells, to FGF-2. Both FGFR1-IIIc-Fc and R1Mut4 were able to bind and sequester FGF-2 to approximately the same extent. Human IgG was not able to bind FGF-2.



FIG. 9 shows a competition ELISA assay measuring the binding of increasing concentrations (ug/ml) of parental FGFR1-IIIc-Fc and R1Mut4, both produced by DG44 host cells, to FGF-8b. Both FGFR1-IIIc and R1Mut4 were able to bind and sequester FGF-8b to approximately the same extent. Human IgG was not able to bind FGF-8b.



FIG. 10 shows a competition ELISA assay measuring the ability of increasing concentrations (ug/ml) of parental FGFR1-IIIc-Fc, FGFR3-IIIc-Fc, and FGFR4-Fc to inhibit FGF-1 binding to FGFR1-IIIc-Fc.



FIG. 11 shows a competition ELISA assay, as described in FIG. 10, measuring the ability of parental FGFR1-IIIc-Fc, FGFR3-IIIc-Fc, and FGFR4-Fc to inhibit FGF-2 binding to FGFR1-IIIc-Fc.



FIG. 12 shows a competition ELISA assay, as described in FIG. 11, measuring the ability of FGFR1-IIIc-Fc, FGFR3-IIIc-Fc, and FGFR4-Fc to inhibit FGF-8 binding to FGFR1-IIIc-Fc.



FIG. 13 shows a competition phospho-Erk ELISA assay, measuring changes in OD450 induced by increasing concentrations (ug/ml) of parental FGFR1-IIIc-Fc made by 293 cells or by CHO cells. Both parental constructs inhibited FGF-2 activated Erk phosphorylation, while human IgG was unable to do so.



FIG. 14 shows a competition phospho-Erk ELISA assay, measuring changes in OD450 induced by increasing concentrations (ug/ml) of parental FGFR1-IIIc-Fc, R1Mut4, and R1Mut5. Parental FGFR1-IIIc-Fc and R1Mut4, but not R1Mut5 or human IgG, inhibited FGF-2 activated Erk phosphorylation.



FIG. 15 shows a CellTiterGlo™ viability assay demonstrating the dose-dependent inhibitory effect of FGFR1-IIIc-Fc at concentrations of 20 ug/ml, 4.0 ug/ml, and 0.8 ug/ml on the viability and proliferation of U251 malignant glioblastoma cells plated at a concentration of 1000 cells per well in 10% FCS. Human IgG had no effect. The positive control, TRAIL, induced maximum inhibition.



FIG. 16 shows a CellTiterGlo™ viability assay demonstrating the dose-dependent inhibitory effect of FGFR1-IIIc-Fc at concentrations of 20 ug/ml, 4.0 ug/ml, and 0.8 ug/ml on the viability and proliferation of U251 malignant glioblastoma cells plated at a concentration of 5000 cells per well in 1.0% FCS. Human IgG had no effect. The positive control, TRAIL, induced maximum inhibition.



FIG. 17 shows a CellTiterGlo™ viability assay demonstrating the dose-dependent inhibitory effect of FGFR1-IIIc-Fc at concentrations of 20 ug/ml, 4.0 ug/ml, and 0.8 ug/ml on the viability and proliferation of U251 malignant glioblastoma cells plated at a concentration of 10,000 cells per well in 0.1% FCS. Human IgG had no effect. The positive control, TRAIL, induced maximum inhibition.



FIG. 18 lists cancer cell lines which were tested for their sensitivity to inhibition of their viability and proliferation by FGFR1-IIIc-Fc. Their malignancy origins and their sensitivity to FGFR1-IIIc-Fc is shown.



FIG. 19 shows a CellTiterGlo™ viability assay demonstrating the dose-dependent inhibitory effect of both FGFR1-IIIc-Fc and FGFR4-Fc on the viability and proliferation of A549 lung carcinoma cells.



FIG. 20 compares the inhibitory effect of FGFR1-IIIb-Fc, FGFR1-IIIc-Fc, FGFR2-IIIb-Fc, FGFR2-IIIc-Fc, FGFR3-IIIb-Fc, FGFR3-IIIc-Fc, and FGFR4-Fc on the viability and proliferation of tumor cells from tumor cell lines, showing increasing inhibition (% inhibition) with increased concentration of the fusion proteins (treatment protein (ug/ml)). Data is shown for A549 cells (FIG. 20A), U118 cells (FIG. 20B), U251 cells (FIG. 20C), SF268 cells (FIG. 20D), T47D cells (FIG. 20E), and Caki-1 cells (FIG. 20F). FIG. 20G shows the concentration-dependent inhibitory effect of parental FGFR1-IIIc and R1Mut4, but not R1Mut5, on the viability and proliferation of A549 cells and U251 cells.



FIG. 21 summarizes the results shown in FIG. 20 by listing the percent inhibition of the viability and proliferation of A549, U118, U251, SF268, T47D, and Caki-1 tumor cells induced by FGFR1-IIIb-Fc, FGFR1-IIIc-Fc, FGFR2-IIIb-Fc, FGFR2-IIIc-Fc, FGFR3-IIIb-Fc, FGFR3-IIIc-Fc, and FGFR4-Fc, respectively.


HG. 22 shows the concentration of FGFR1-IIIc-Fc (ug/ml) in the sera of three mice injected with “mini-circle” vector cDNA encoding FGFR1-IIIc-Fc using the hydrodynamic tail vein injection method, as measured by direct ELISA assay and monitored for about 45 days post injection.



FIG. 23 shows the presence of functional, circulating FGFR1-IIIc-Fc in sera of mice injected with “mini-circle” vector cDNA encoding FGFR1-IIIc-Fc using the hydrodynamic tail vein injection method, compared to sera from control mice, as measured by a quantitative competition ELISA assay.



FIG. 24 shows of the serum concentration of functional, circulating R1Mut4 in the sera of each of four mice by mice injected with “mini-circle” vector cDNA encoding R1Mut4 using the hydrodynamic tail vein injection method, measured by a quantitative competition ELISA assay on days 2 and 7 post-injection.



FIG. 25 shows the inhibitory effect of FGFR1-IIIc-Fc on Caki-1 tumor growth in an in vivo xenograft mouse model of tumor growth in which mice were injected with “mini-circle” vector cDNA encoding FGFR1-IIIc-Fc using the hydrodynamic tail vein injection method. The tumor volume increased more slowly in the animals treated with FGFR1-IIIc-Fc than with saline.



FIG. 26 shows a Western blot of sera taken from mice 5 min, 30 min, 24 hr, 48 hr, and 72 hr after injection with purified FGFR1-IIIc-Fc produced from 293 cells or from CHO cells, compared to control mouse serum. The blot shows immunoreactivity with anti-human Fc antibody and demonstrates that FGFR1-IIIc-Fc from CHO cells persisted in the circulation longer (more than 72 hours after injection) and thus was more stable in vivo than FGFR1-IIIc-Fc from 293-6E cells, which was undetectable after 24 hours.



FIG. 27 shows a chromatographic analysis of the N-labeled glycans of FGFR1-IIIc-Fc expressed from 293-6E cells (upper panel) and CHO cells (lower panel).



FIG. 28 shows the amount of FGFR1-IIIc-Fc in mouse serum measured for 25 days following injection of FGFR1-IIIc-Fc protein, as detected by quantitative direct ELISA.



FIG. 29 shows the amount of functional FGFR1-IIIc-Fc present in the sera of mice 30 min, 5 hours, 1 day, 2 days, 3 days, 4 days, 5 days, 7 days, 14 days, and 25 days following injection with FGFR1-IIIc-Fc protein, as measured by a quantitative FGF-2 competition ELISA assay. The decrease in functional FGFR1-IIIc-Fc is measured as a decrease in OD450 resulting from an increasing volume of serum (up. Functional FGFR1-IIIc-Fc remains in mouse serum more than 14 days following injection with FGFR1-IIIc-Fc.



FIG. 30A shows the inhibitory effect of three concentrations of FGFR1-IIIc-Fc on Caki-1 tumor growth in an in vivo xenograft mouse model of tumor growth in which mice were injected intravenously with FGFR1-IIIc-Fc fusion protein.



FIG. 30B shows the concentration-dependent inhibitory effect of FGFR1-IIIc-Fc and the inhibitory effect of R1Mut4 on Caki-1 tumor growth, as described in FIG. 30A.



FIG. 31 shows a quantitative Western blot of sera from mice injected with either FGFR1-IIIc-Fc or R1Mut4 proteins at 4 hr, 3 days, and 7 days after injection, blotted with an anti-human Fc antibody, and compared to a set of FGFR1-IIIc-Fc standards. FGFR1-IIIc-Fc and R1 Mut4 were both stable in vivo in mice up to at least about 7 days following injection with “mini-circle” vector cDNA encoding FGFR1-IIIc-Fc or R1Mut4 by hydrodynamic tail vein injection.



FIG. 32 shows the real-time ligand binding profiles of FGFR1-IIIc-Fc and R1Mut4 to FGF-1, FGF-2, FGF-4, and FGF-5, measured by surface plasmon resonance.





DEFINITIONS

The terms used herein have their ordinary meanings, and, more specifically, as set forth below, and as can be further understood in the context of the specification.


The terms “nucleic acid molecule” and “polynucleotide” may be used interchangeably to refer to a polymer of nucleotides, such as DNA; RNA; RNAi; siRNA, whether genomic or cDNA or cRNA or anti-sense RNA; and may contain natural or non-natural nucleic acids or polynucleotides or active fragments thereof.


The terms “polypeptide” and “protein” are used interchangeably to refer to a polymer of amino acid residues, comprising natural or non-natural amino acid residues, and are not limited to a minimum length. Thus, peptides, oligopeptides, dimers, multimers, and the like are included within the definition. Both full-length proteins and fragments thereof are encompassed by the definition. The terms also include post-translational modifications of the polypeptide, including, for example, glycosylation, sialylation, acetylation, and phosphorylation. Furthermore, a “polypeptide” herein also refers to a modified protein such as single or multiple amino acid residue deletions, additions, and substitutions to the native sequence, as long as the protein maintains a desired activity. For example, a serine residue may be substituted to eliminate a single reactive cysteine or to remove disulfide bonding or a conservative amino acid substitution may be made to eliminate a cleavage site. These modifications may be deliberate, as through site-directed mutagenesis, or may be accidental, such as through mutations of hosts which produce the proteins or errors due to polymerase chain reaction (PCR) amplification.


An “extracellular domain” (“ECD”) is the portion of a polypeptide that extends beyond the transmembrane domain into the extracellular space. The term “extracellular domain,” as used herein, may comprise a complete extracellular domain or may comprise a truncated extracellular domain missing one or more amino acids. The extracellular domains of FGFRs (defined below) bind to one or more FGFs. The composition of the extracellular domain may depend on the algorithm used to determine which amino acids are in the membrane. Different algorithms may predict, and different systems may express, different extracellular domains for a given FGFR. For example, a tyrosine (Y) residue may be considered as the first amino acid residue in the transmembrane domain or the last amino acid residue of the extracellular domain, depending on the method used to determine the extracellular domain.


A “fibroblast growth factor receptor” (FGFR) polypeptide, as used herein, is a polypeptide comprising the entirety or a portion of FGFR1, FGFR2, FGFR3, or FGFR4 including all its naturally occurring isoforms or allelic variants. An “FGFR 1 polypeptide,” for example, refers to a polypeptide having the amino acid sequence of any one of the known FGFR1 polypeptides, such as FGFR1-IIIb and FGFR1-IIIc, and any fragment thereof, including those described in U.S. Pat. Nos. 6,656,728; 6,384,191; 5,229,501; 6,255,454; 6,344,546; 5,474,914; and 5,288,855. FGFR1-IIIb and FGFR1-IIIc differ from each other in their Tell domains (defined below). An FGFR2 polypeptide, for example, refers to a polypeptide having the amino acid sequence of any one of the known FGFR2 polypeptides, for example, FGFR2-IIIb and FGFR2-IIIc, and any fragments thereof. FGFR2-IIIb and FGFR2-IIIc differ from each other also in the IgIII domains. An “FGFR3 polypeptide,” for example, refers to a polypeptide having the amino acid sequence of any one of the known FGFR3 polypeptides, for example, FGFR3-IIIb and FGFR3-IIIc and any fragments thereof. FGFR3-IIIb and FGFR3-IIIc also differ from each other in their IgIII domains. An “FGFR4 polypeptide,” for example, refers to a polypeptide having the amino acid sequence of any one of the known FGFR4 polypeptides, and any fragments thereof.


An “FGFR fusion protein” is a protein as defined in the Tables and Sequence Listing and typically comprises a sequence of amino acids corresponding to the extracellular domain of an FGFR polypeptide or a biologically active fragment thereof, and a fusion partner. The fusion partner may be joined to either the N-terminus or the C-terminus of the FGFR polypeptide and the FGFR may be joined to either the N-terminus or the C-terminus of the fusion partner. An FGFR fusion protein can be a product resulting from splicing strands of recombinant DNA and expressing the hybrid gene. It can be made by genetic engineering, for example, by removing the stop codon from the DNA sequence of the first protein, then appending the DNA sequence of the second protein in frame, so that the DNA sequence is expressed as a single protein. Typically, this is accomplished by cloning a cDNA into an expression vector in frame with an existing gene. An FGFR fusion protein may comprise a fusion partner comprising amino acid residues that represent all of, or more than one fragment of, more than one gene. An FGFR fusion protein may also comprise a fusion partner which is not a polypeptide, but which is chemically attached.


The “valine residue that is situated at the C-terminus of the IgIII domain and commonly aligned among the wildtype FGFR1, FGFR2, FGFR3, and FGFR4 ECD C-termini” is the valine (V) residue shown in bold below.













R1-IIIb
348
ANQSAWLTVTRPVAKALEERPAVMTSPLYLE







R1-IIIc
348
SHHSAWLTVL----EALEERPAVMTSPLYLE







R2-IIIb
349
ANQSAWLTVLPK-QQAPGREKEITASPDYLE







R2-IIIC
351
SFHSAWLTVLP----APGREKEITASPDYLE







R3-IIIb
347
AEKAFWLSVHGPRAAEEELVEADEAGSVYAG







R3-IIIc
348
SHHSAWLVVLP---AEEELVEADEAGSVYAG







R4
342
SYQSAWLTVLP---EEDPTWTAAAPEARYTD






A “fusion partner” is any component of a fusion molecule in addition to the extracellular domain of an FGFR or fragment thereof. A fusion partner may comprise a polypeptide, such as a fragment of an immunoglobulin molecule, or a non-polypeptide moiety, for example, polyethylene glycol. The fusion partner may comprise an oligomerization domain such as an Fc domain of a heavy chain immunoglobulin.


An “FGF ligand” is a fibroblast growth factor, or variant or fragment thereof, which binds to an FGFR. Currently, the known FGF ligands include FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, FGF-11, FGF-12, FGF-13, FGF-14, FGF-15, FGF-16, FGF-17, FGF-18, FGF-19, FGF-20, FGF-21, FGF-22, and FGF-23. Each FGF may bind to one or more FGFR. An FGF ligand is “over-expressed” when it is expressed at a higher level than normal for the cell, tissue, or organism expressing the ligand.


A “fragment crystallizable (Fc) polypeptide” is the portion of an antibody molecule that interacts with effector molecules and cells. It comprises the C-terminal portions of the immunoglobulin heavy chains. As used herein, an Fc polypeptide comprises a fragment of the Fc domain with one or more biological activity of an entire Fc polypeptide. An “effector function” of the Fc polypeptide is an action or activity performed in whole or in part by an antibody in response to a stimulus and may include complement fixation or ADCC (antibody-dependent cellular cytotoxicity) induction.


“Wildtype” refers to a non-mutated version of a gene, allele, genotype, polypeptide, or phenotype, or a fragment of any of these. It may occur in nature or be produced recombinantly. A “wildtype FGFR ECD” refers to a protein or a nucleic acid molecule that contains an amino acid sequence or nucleic acid sequence that is identical to that of a wildtype extracellular domain of an FGFR, in whole or in part, including all isoforms of FGFR1, FGFR2, FGFR3, and FGFR4.


A “variant” is a nucleic acid molecule or polypeptide that differs from a referent nucleic acid molecule or polypeptide by single or multiple amino acid substitutions, deletions, and/or additions and substantially retains at least one biological activity of the referent nucleic acid molecule or polypeptide.


A “point mutation” is a mutation that involves a single nucleotide or amino acid residue. The mutation may be the loss of a nucleotide or amino acid, substitution of one nucleotide or amino acid residue for another, or the insertion of an additional nucleotide or amino acid residue.


“Leader sequence” refers to a sequence of amino acid residues or polynucleotides encoding such, which facilitates secretion of a polypeptide of interest and is typically cleaved upon export of the polypeptide to the outside of the cell surface membrane.


A “vector” is a plasmid that can be used to transfer DNA sequences from one organism to another or to express a gene of interest. A vector typically includes an origin of replication and regulatory sequences which regulate the expression of the gene of interest, and may or may not carry a selective marker gene, such as an antibiotic resistance gene. A vector is suitable for the host cell in which it is to be expressed. A vector may be termed a “recombinant vector” when the gene of interest is present in the vector.


A “host cell” is an individual cell or cell culture which can be or has been a recipient of any recombinant vector or isolated polynucleotide. Host cells include the progeny of a single host cell, which may not necessarily be completely identical, for example, in morphology or in total DNA complement, to the original parent cell due to natural, accidental, or deliberate mutation and/or change. A host cell includes a cell transfected or infected in vivo or in vitro with a recombinant vector or a polynucleotide of the invention. A host cell which comprises a recombinant molecule may be called a “recombinant host cell.” Host cells may be prokaryotic cells or eukaryotic cells. Eukaryotic cells suitable for use as host cells include mammalian cells, such as primate or non-primate animal cells; fungal cells; plant cells; and insect cells. For example, host cells may be derived from 293 or CHO cells.


A “promoter” is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (5′ to 3′ direction) coding sequence operably linked thereto. Promoters include those that are naturally contiguous to a nucleic acid molecule and those that are not naturally contiguous to a nucleic acid molecule. Additionally, the term “promoter” includes inducible promoters, conditionally active promoters such as a cre-lox promoter, tet inducible promoters, constitutive promoters, and tissue specific promoters. An “exogenous promoter” is one that is not operatively linked to a gene of interest in the naturally-occurring state.


“CHEF expression system” refers to an expression system utilizing regulatory DNA sequences derived from the hamster elongation factor-1 (EF-1) alpha gene, as described in U.S. Pat. No. 5,888,809 as the regulatory sequences. CHEF expression systems may use Chinese hamster ovary (CHO) cells as host cells.


The CHEF expression system comprises regulatory DNA sequences 5′ to translated regions of the Chinese hamster ovary EF-1alpha gene and includes approximately 3.7 kb DNA extending from a Spe1 restriction site to the initiating methionine (ATG) codon of the EF-1alpha protein. Polynucleotides of less than 3.7 kb are also included in as much as the smaller fragment polynucleotides are capable of increasing transcription of an operatively linked gene. Examples of plasmids containing this regulatory system include pDEF2 and pDEF10. Plasmid pDEF2 in E. coli strain XL-1 Blue was deposited with from American Type Tissue Collection, 10801 University Boulevard, Manassas, Va. 20110 and assigned Accession Number 98343.


“Isolating” a protein from cell culture means separating the protein from the remainder of the materials in the cell culture. “Isolating” can mean achieving a partial or a complete separation of the protein from the culture. “Isolating” and “purifying” are used interchangeably, as are “isolated” and “purified.”


An “affinity matrix” refers to a composition that shows preferential affinity to a polypeptide or polynucleotide of interest and is used for purification or isolation of such from other materials naturally present in its environment, for example, in a cell culture. Materials suitable for use as an affinity matrix include, but are not limited to, Protein A, Protein G, a combination of Protein A and G, and an antibody, such as that attached to a solid substrate.


A “biologically active” entity, or an entity having “biological activity,” is an entity having any function related to or associated with a metabolic or physiological process, and/or having structural, regulatory, or biochemical functions of a naturally-occurring molecule. Biologically active polynucleotide fragments are those exhibiting activity similar, but not necessarily identical, to an activity of a polynucleotide of the present invention. A biologically active polypeptide or fragment thereof includes one that can participate in a biological reaction, including, but not limited to, a ligand-receptor interaction or antigen-antibody binding. The biological activity can include an improved desired activity, or a decreased undesirable activity. An entity may demonstrate biological activity when it participates in a molecular interaction with another molecule, such as hybridization, when it has therapeutic value in alleviating a disease condition, when it has prophylactic value in inducing an immune response, when it has diagnostic and/or prognostic value in determining the presence of a molecule, such as a biologically active fragment of a polynucleotide that may be detected as unique for the polynucleotide molecule, and when it can be used as a primer in a polymerase chain reaction (PCR).


“Subject,” “individual,” “host,” “animal,” and “patient” are used interchangeably herein to refer to mammals, including, but not limited to, rodents, simians, humans, felines, canines, equines, bovines, porcines, ovines, caprines, mammalian laboratory animals, mammalian farm animals, mammalian sport animals, and mammalian pets.


A “tissue sample” is any biological specimen derived from a patient. The term includes, but is not limited to, biological fluids such as blood, serum, plasma, urine, cerebrospinal fluid, tears, saliva, lymph, dialysis fluid, lavage fluid, semen, and other liquid samples, as well as cell and tissues of biological origin. The term also includes cells or cells derived therefrom and the progeny thereof, including cells in culture, cell supernatants, and cell lysates. It further includes organ or tissue culture-derived fluids, tissue biopsy samples, tumor biopsy samples, stool samples, and fluids extracted from physiological tissues, as well as cells dissociated from solid tissues, tissue sections, and cell lysates. This definition encompasses samples that have been manipulated in any way after their procurement, such as by treatment with reagents, solubilization, or enrichment for certain components, such as polynucleotides or polypeptides. Also included in the term are derivatives and fractions of patient samples. A patient sample may be used in a diagnostic, prognostic, or other monitoring assay.


A “growth factor receptor signaling inhibitor,” such as a “PDGF signaling inhibitor,” a “VEGF signaling inhibitor,” or an “EGF signaling inhibitor” is an agent that diminishes the effects of one or more of a series of events, such as in a signaling transduction pathway, beginning with the binding of the growth factor to its receptor and ending with a biological response, such as a proliferative response. A growth factor receptor signaling inhibitor may diminish one or more of many events, occurring both in series and in parallel, including signal transduction, kinase activation, gene activation, and cell cycle modulation.


The terms “antibody” and “immunoglobulin” refer to a protein, generated by the immune system, made synthetically, or made recombinantly, that is capable of recognizing and binding to a specific antigen; antibodies are commonly known in the art. They can be polyclonal antibodies, monoclonal antibodies, single chain antibodies or antigen binding fragments thereof.


“Angiogenesis” is the development of new blood vessels, including capillary vessels. It can take place in health or disease, including cancer. The term includes neovascularization, revascularization, angiopoiesis, and vasculogenesis. New blood vessel growth typically results from stimulation of endothelial cells by angiogenic factors which may be active in proliferative conditions, such as in cancer or macular degeneration. An “angiogenic factor” is one that promotes angiogenesis.


“Cancer” and “tumor” are interchangeable terms that refer to any abnormal cell or tissue growth or proliferation in an animal. As used herein, the terms “cancer” and “tumor” encompass solid and hematological/lymphatic cancers and also encompass malignant, pre-malignant, and benign growth, such as dysplasia.


“Metastasis” is the spread or dissemination of a disease-process, for example cancer, from one part of the body to another. It includes the spread or dissemination from an initial or primary site of disease to another site. “Metastasis” also refers to the process by which such spreading or dissemination occurs. The term is not limited to the mechanism of spread or dissemination. “Metastasis” includes the spread or dissemination of cancer cells by the lymphatics or blood vessels or by direct extension through serous cavities or subarachnoid or other spaces.


“Macular degeneration” is any condition in which the cells of the macula lutea degenerate, eventually resulting in blurred vision and possibly in blindness.


“Treatment,” as used herein, covers any administration or application of a therapeutic for disease in a mammal, including a human, and includes inhibiting the disease, arresting its development, or relieving the disease, for example, by causing regression, or restoring or repairing a lost, missing, or defective function; or stimulating an inefficient process. Treatment may achieved with surgery, radiation, chemotherapy, and/or with a biologic.


A “pharmaceutically acceptable carrier” refers to a non-toxic solid, semisolid, or liquid filler, diluent, encapsulating material, formulation auxiliary, or carrier conventional in the art for use with a therapeutic agent for administration to a subject. A pharmaceutically acceptable carrier is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. The pharmaceutically acceptable carrier is appropriate for the formulation employed. For example, if the therapeutic agent is to be administered orally, the carrier may be a gel capsule. If the therapeutic agent is to be administered subcutaneously, the carrier ideally is not irritable to the skin and does not cause injection site reaction.


A “biologic” is a product which is naturally produced in some form by living organisms, whether modified or unmodified, whether in whole or a fragment thereof. A biologic may be prepared from a living source, such as animal tissue. The term includes, but is not limited to, a polynucleotide, polypeptide, antibody, cell, virus, toxin, vaccine, blood component or derivative, and fusion protein. A “biologic” may be used to treat an animal, including a human.


“Surface plasmon resonance” is a reduction in reflected light intensity which occurs when light is reflected off a thin metal film and a fraction of the incident light energy can interact with delocalised electrons in the metal film (plasmon).


FGFR Extracellular Domain Fusion Molecules

The FGFR fusion molecules of the invention comprise a first polypeptide that comprises an extracellular domain (ECD) of an FGFR polypeptide and a fusion partner. The FGFR polypeptide can be any of FGFR1, FGFR2, FGFR3, and FGFR4, including all their variants and isoforms. Hence, the family of FGFR polypeptides suitable for use in the invention includes FGFR1-IIIb, FGFR1-IIIc, FGFR2-IIIb, FGFR2-IIIc, FGFR3-IIIb, FGFR3-IIIc, and FGFR4, for example. The extracellular domain of the FGFR can be the entire ECD or a portion thereof. The FGFR ECD is modified, as compared to the wildtype FGFR ECD, and possesses ligand binding activity. The modifications may be single or multiple amino acid deletions, additions, or substitutions. FGFR extracellular domains can be attached to fusion partners that provide desired pharmacokinetic properties, for example, increasing their half-life in vivo. The fusion partner of the FGFR fusion molecules of the invention can be any fusion partner conventional in the art, including those having oligomerization domains, such as dimerization domains, for example, an Fc fragment. Fusion partners of the invention also include those made by chemical modifications, such as pegylation.


FGFRs bind their cognate FGFs via their extracellular domains, thus the extracellular domain determines the ligand binding specificity. The FGFR extracellular domain can comprise up to three immunoglobulin-like (Ig-like) domains, IgI, IgII, and IgIII domains. Alternative mRNA splicing produces several forms of the extracellular domains. One splicing event eliminates the amino-terminal Ig-like domain (domain I) resulting in a short form of the receptor with only two Ig-like domains. Another mRNA splicing event takes place in FGFR1, FGFR2, and FGFR3, which results in three alternative versions of Ig-like domain III; namely, IIIa, IIIb, and IIIc. So far, FGFR4 has not been reported to be alternatively spliced in this region. The third immunoglobulin-like domain can produce receptor splice variants with different ligand binding properties.


The invention provides compositions comprising and methods of using such FGFR fusion molecules. FGFR fusion molecules of the invention can include the ECDs of FGFR1, for example those described in U.S. Pat. Nos. 6,384,191; 6,656,728; 5,229,501; 6,344,546; and 5,474,914; including those annotated as NP075594, NP056934, or NP000595, as described by the National Center for Bioinformatics Information (NCBI). FGFR fusion molecules of the invention can also include the ECDs of FGFR2, for example those annotated as 15281415 and NP000132. FGFR fusion molecules of the invention can further include the ECDs of FGFR3, for example, those annotated as NP056934, 17939658, P22607, NP000133, or NP075254. FGFR fusion molecules of the invention can yet further include the ECDs of FGFR4, for example those annotated NP002002, 13991618, 2832350, 31372, and 182571.


The fusion proteins of the invention can comprise an entire ECD or a portion of the ECD of wildtype or variant FGFRs. For example, the fusion proteins of the invention can comprise the entire FGFR1 ECD, including that of wildtype FGFR1-IIIb or wildtype FGFR1-IIIc ECD. The invention can also comprise a variant of the wildtype FGFR1 ECD, such as one having deletion of one or more and up to 22 amino acid residues, counting from the C-terminus of the wildtype FGFR1 ECD, provided that the variant ECD retains at least one of its FGF ligand binding activities. In an embodiment, the FGFR1 ECD has the 22 amino acids at the C-terminus deleted. In an embodiment, the deletion does not extend to or include the valine residue at amino acid residue 356 of the wildtype full length FGFR1-Mb or FGFR1-IIIc. Examples of such variants include those having amino acid residues LYLE deleted (SEQ ID NO: 243), those having amino acid residues PLYLE (SEQ ID NO: 244) deleted, those having amino acid residues MTSPLYLE deleted (SEQ ID NO: 245), those having amino acid residues AVMTSPLYLE deleted (SEQ ID NO: 246), those having amino acid residues VMTSPLYLE (SEQ ID NO: 247) deleted, those having amino acid residues EERPAVMTSPLYLE deleted (SEQ ID NO: 248), those having amino acid residues LEERPAVMTSPLYLE deleted (SEQ ID NO: 249), those having amino acid residues KALEERPAVMTSPLYLE deleted (SEQ ID NO: 250), those having amino acid residues EALEERPAVMTSPLYLE deleted (SEQ ID NO: 251), and those having amino acid residues RPVAKALEERPAVMTSPLYLE deleted (SEQ ID NO: 252), all as compared to wildtype FGFR1-IIIb or FGFR1-IIIc.


In an embodiment, the fusion proteins of the invention can comprise an entire FGFR2 ECD, including that of wildtype FGFR2-IIIb or wildtype FGFR2-IIIc ECD. The invention can also comprise a variant of the wildtype FGFR2 ECD, such as one having deletion of one or more and up to 22 amino acid residues, counting from the C-terminus of the wildtype FGFR2 ECD, provided that the variant ECD retains at least one of its FGF ligand binding activities. In an embodiment, the FGFR2 ECD has the 22 amino acids at the C-terminus deleted. In an embodiment, the deletion does not extend to or include the valine residue at amino acid residue 357 of the wildtype full length FGFR2-IIIb or amino acid residue 359 of the wildtype full length FGFR2-IIIc. Examples of such variants include those having amino acid residues DYLE deleted (SEQ ID NO: 253), those having amino acid residues PDYLE deleted (SEQ ID NO: 254), those having amino acid residues TASPDYLE deleted (SEQ ID NO: 255), those having amino acid residues ITASPDYLE deleted (SEQ ID NO: 256), those having amino acid residues EITASPDYLE deleted (SEQ ID NO: 257), those having amino acid residues GREKEI TASPDYLE deleted (SEQ ID NO: 258), those having amino acid residues PGREKEIT ASPDYLE deleted (SEQ ID NO: 259), those having amino acid residues APGREKEIT ASPDYLE deleted (SEQ ID NO: 260), those having amino acid residues PAPGREKE ITASPDYLE deleted (SEQ ID NO: 261), those having amino acid residues QAPGRE KEITASPDYLE deleted (SEQ ID NO: 262), and those having amino acid residues PKQQAPGREKEITASPDYLE deleted (SEQ ID NO: 263), all as compared to wildtype FGFR2-IIIb or FGFR2-IIIc.


In an embodiment, the fusion proteins of the invention can comprise an entire FGFR3 ECD, including that of wildtype FGFR3-IIIb or wildtype FGFR3-IIIc ECD. The invention can also comprise a variant of the wildtype FGFR3 ECD, such as one having deletion of one or more and up to 22 amino acid residues, counting from the C-terminus of the wildtype FGFR3 ECD, provided that the variant ECD retains at least one of its FGF ligand binding activities. In an embodiment, the FGFR3 ECD has the 22 amino acids at the C-terminus deleted. In an embodiment, the deletion does not extend to or include the valine residue at amino acid residue 355 of the wildtype full length FGFR3-IIIb or amino acid residue 356 of the wildtype full length FGFR3-IIIc. Examples of such variants include those having amino acid residues VYAG deleted (SEQ ID NO: 264), those having amino acid residues SVYAG deleted (SEQ ID NO: 265), those having amino acid residues EAGSVYAG deleted (SEQ ID NO: 266), those having amino acid residues DEAGSVYAG deleted (SEQ ID NO: 267), those having amino acid residues ADEAGSVYAG deleted (SEQ ID NO: 268), those having amino acid residues ELVEADEAGSVYAG deleted (SEQ ID NO: 269), those having amino acid residues EELVEADEAGSVYAG deleted (SEQ ID NO: 270), those having amino acid residues AEEELVEADEAGSVYAG deleted (SEQ ID NO: 271), those having amino acid residues PAEEELVEADEAGSVYAG deleted (SEQ ID NO: 272), and those having amino acid residues GPRAAEEE LVEADEAGSVYAG deleted (SEQ ID NO: 273), all as compared to wildtype FGFR3-IIIb or FGFR3-IIIc.


In an embodiment, the fusion proteins of the invention can comprise an entire FGFR3 ECD, including that of wildtype FGFR4 ECD. The invention can also comprise a variant of the wildtype FGFR4 ECD, such as one having deletion of one or more and up to 22 amino acid residues, counting from the C-terminus of the wildtype FGFR4 ECD, provided that the variant ECD retains at least one of its FGF ligand binding activities. In an embodiment, the FGFR4 ECD has the 22 amino acids at the C-terminus deleted. In an embodiment, the deletion does not extend to or include the valine residue at amino acid residue 351 of the wildtype full length FGFR4. Examples of such variants include those having amino acid residues RYTD deleted (SEQ ID NO: 274), those having amino acid residues ARYTD deleted (SEQ ID NO: 275), those having amino acid residues APEARYTD deleted (SEQ ID NO: 276), those having amino acid residues AAPEARYTD deleted (SEQ ID NO: 277), those having amino acid residues AAAPEARYTD deleted (SEQ ID NO: 278), those having amino acid residues PTWTAAAPEARYTD deleted (SEQ ID NO: 279), those having amino acid residues DPTWTAAAPEARYTD deleted (SEQ ID NO: 280), those having amino acid residues EEDPTWTAAAPE ARYTD deleted (SEQ ID NO: 281), and those having amino acid residues PEEDPTWTAAAPEARYTD deleted (SEQ ID NO: 282), all as compared to wildtype FGFR4.


In an embodiment, the fusion proteins of the invention can comprise variants that are point mutants, provided that they retain at least one FGF ligand binding activity. The point mutants can include any one or more of the amino acid residue additions, deletions, or substitutions in the same regions of the C-terminus mentioned previously, that is, up to the valine residue at position 356 of FGFR1-IIIb or FGFR1-IIIc; position 357 of FGFR2-IIIb; position 359 of FGFR2-IIIc; position 355 of FGFR3-IIIb; position 356 of FGFR3-IIIc; and position 350 of FGFR4. For example, any one or more of the amino acid residues PAVM at positions 364-367 of the full length FGFR1-IIIb or FGFR1-IIIc may be added, deleted, or substituted.


The C-terminus of the extracellular and transmembrane domains of the FGFR polypeptides may differ, depending on the method used to identify the extracellular domain. Different algorithms predict different start residues for the transmembrane domain, thus different end residues for the extracellular domain. For example, the extracellular domain of FGFR1-IIIc, is shown in the sequence listing (SEQ ID NO: 92) as ending with the amino acid sequence “YLE.” Table 2 indicates that the transmembrane regions of FGFR1-IIIc NP056934, NP075594, and NP000595 begin with amino acid residues 373, which corresponds to the “L” in the “YLE” sequence. Thus, the “LE” residues may be considered as belonging either to the extracellular domain or the transmembrane domain of FGFR1-IIIc depending on the algorithm used for the prediction. This concept applies to all of the FGFRs described herein. Thus, with respect to FIG. 1, the extracellular domain of FGFR3-IIIb may end in “VYAG” or “VY,” the ECD of FGFR3-IIIc may end in “VYAG” or “VY,” the ECD of FGFR1-IIIb may end in “LYLE” or “LE,” the ECD of FGFR1-IIIc may end in “LYLE” or “LY,” the ECD of FGFR2-IIIb may end in “DYLE” or “DY,” the ECD of FGFR2-IIIc may end in “DYLE” or “DY,” and the ECD of FGFR4 may end in “RYTD” or “RY.”


The invention provides FGFR fusion proteins comprising a fusion partner. The fusion partner can be a molecule having a dimerization domain, such as an Fc fragment of an immunoglobulin heavy chain. The Fc fragment may be a wildtype Fc found in a naturally occurring antibody, a variant thereof, or a fragment thereof. In an embodiment, the Fc fragment belongs to the IgG1, IgG2, or IgG4 class. In an embodiment, the invention provides fusion molecules including, but not limited to, an Fc fragment of an immunoglobulin molecule belonging to the IgG1 class and/or having a C237S mutation.


The invention provides FGFR fusion proteins comprising a linker which connects the first polypeptide and fusion partner. The fusion proteins of the invention may be used interchangeably with or without such a linker. In an embodiment, the linker comprises the amino acids GS or any nucleotide sequence encoding GS. The linker may be convenient for constructing at least the first DNA construct in attaching the nucleic acid encoding the fusion protein to the nucleic acid encoding the FGFR ECD. Any linker conventional in the art may be used for this purpose to the extent that it does not diminish the desired properties of the fusion protein.


The invention also provides multimeric FGFR fusion proteins that comprise more than one FGFR extracellular domain. For example, the invention provides FGFR fusion proteins, where the fusion partner comprises a second FGFR extracellular domain which is the same as the first polypeptide, forming a homodimer; or an a second FGFR extracellular domain which is different from the first polypeptide, forming a heterodimer, or a biologically active fragment of either of these. Such a fusion protein may increase the affinity of the fusion protein to FGF ligand binding or expand the range of FGF ligands that can bind to the fusion protein. Its components may include two FGFR1 extracellular domains, two FGFR2 extracellular domains, two FGFR3 extracellular domains, two FGFR4 extracellular domains, or biologically active fragments of any of these. It may also include heterologous combinations of FGFR1, FGFR2, FGFR3, and FGFR4 extracellular domains, or biologically active fragments of any of these.


The sequences of the FGFR fusion molecules of the invention are provided in the Sequence Listing and are further described in the Tables. Their sequence designations include both published sequences and the novel fusion proteins of the invention. The types of sequences include extracellular domains, linkers, fusion partners, deletion mutants, and other mutants.


Table 1 shows the FGFR sequences of the Sequence Listing. Column 1 shows the internally designated identification number (Patent ID). Column 2 shows the nucleotide sequence ID number for the nucleic acids encoding the open reading frames of some of the polypeptides listed in column 3 (SEQ. ID. NO. (N1)). Column 3 shows the amino acid sequence ID number for the polypeptide sequences (SEQ. ID. NO. (P1)). Column 4 provides a description of the polypeptides, including the NCBI accession numbers when applicable (Protein ID). Column 5 provides a brief description of the encoded protein, designating the FGFR family (Protein). Column 6 provides an annotation of the protein, including a description of the variant FGFR, when applicable (Annotation). Column 7 provides a description of the variant or parental construct, including amino acid residues deleted or changed, when applicable (Description).









TABLE 1







SEQ ID NOS and Protein Identification













Patent
SEQ. ID.
SEQ. ID.






ID
NO. (N1)
NO. (P1)
Protein ID
Protein
Annotation
Description





HG1020122
SEQ ID
SEQ ID
NP_056934_1-374
FGFR1IIIc
ECD only




NO: 1
NO: 92





HG1020123
SEQ ID
SEQ ID
NP_075594_1-285
FGFR1IIIc
ECD only



NO: 2
NO: 93





HG1020124
SEQ ID
SEQ ID
NP_000595_1-376
FGFR1IIIc
ECD only



NO: 3
NO: 94





HG1021602
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
FGFR1 + linker +
parental



NO: 4
NO: 95
374_GS_17939658_233-

Fc
construct





464_C237S





HG1020125
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut6
del GS



NO: 5
NO: 96
374_17939658_233-





464_C237S





HG1020127
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut1
del LYLEGS



NO: 6
NO: 97
370_17939658_233-





464_C237S





HG1020126
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut2
del



NO: 7
NO: 98
366_17939658_233-


MTSPLYLEGS





464_C237S





HG1020128
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut3
del



NO: 8
NO: 99
365_17939658_233-


VMTSPLYLEGS





464_C237S





HG1020129
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut4
del



NO: 9
NO: 100
360_17939658_233-


EERPAVMTSPL





464_C237S


YLEGS





HG1020130
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut5
del



NO: 10
NO: 101
355_17939658_233-


VLEALEERPAV





464_C237S


MTSPLYLEGS





HG1020131
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut7
del PA



NO: 11
NO: 102
374_D364-





D365_17939658_233-





464_C237S





HG1020132
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut8
P364G



NO: 12
NO: 103
374_P364G_17939658_233-





464_C237S





HG1020133
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut9
P364M



NO: 13
NO: 104
374_P364M_17939658_233-





464_C237S





HG1020134
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut10
M367N



NO: 14
NO: 105
374_M367N_17939658_233-





464_C237S





HG1020135
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut11
P364M M367N



NO: 15
NO: 106
374_P364M_M367N_17939658_233-





464_C237S





HG1020136
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut6
del GS



NO: 16
NO: 107
285_17939658_233-





464_C237S





HG1020138
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut1
del LYLEGS



NO: 17
NO: 108
281_17939658_233-





464_C237S





HG1020137
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut2
del



NO: 18
NO: 109
277_17939658_233-


MTSPLYLEGS





464_C237S





HG1020139
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut3
del



NO: 19
NO: 110
276_17939658_233-


VMTSPLYLEGS





464_C237S





HG1020140
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut4
del



NO: 20
NO: 111
271_17939658_233-


EERPAVMTSPL





464_C237S


YLEGS





HG1020141
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut7
del PA



NO: 21
NO: 112
285_D275-





D276_17939658_233-





464_C237S





HG1020142
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut8
P275G



NO: 22
NO: 113
285_P275G_17939658_233-





464_C237S





HG1020143
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut9
P275M



NO: 23
NO: 114
285_P275M_17939658_233-





464_C237S





HG1020144
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut10
M278N



NO: 24
NO: 115
285_M278N_17939658_233-





464_C237S





HG1020145
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut11
P275M M278N



NO: 25
NO: 116
285_P275M_M278N_17939658_233-





464_C237S





HG1020146
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut6
del GS



NO: 26
NO: 117
376_17939658_233-





464_C237S





HG1020148
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut1
del LYLEGS



NO: 27
NO: 118
372_17939658_233-





464_C237S





HG1020147
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut2
del



NO: 28
NO: 119
368_17939658_233-


MTSPLYLEGS





464_C237S





HG1020149
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut3
del



NO: 29
NO: 120
367_17939658_233-


VMTSPLYLEGS





464_C237S





HG1020150
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut4
del



NO: 30
NO: 121
362_17939658_233-


EERPAVMTSPL





464_C237S


YLEGS





HG1020151
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut7
del PA



NO: 31
NO: 122
376_D366-





D367_17939658_233-





464_C237S





HG1020152
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut8
P366G



NO: 32
NO: 123
376_P366G_17939658_233-





464_C237S





HG1020153
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut9
P366M



NO: 33
NO: 124
376_P366M_17939658_233-





464_C237S





HG1020154
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut10
M369N



NO: 34
NO: 125
376_M369N_17939658_233-





464_C237S





HG1020155
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut11
P366M M369N



NO: 35
NO: 126
376_P366M_M369N_17939658_233-





464_C237S





HG1020157
SEQ ID
SEQ ID
NP_056934_1-370
FGFR1IIIc
R1Mut1
del LYLEGS



NO: 36
NO: 127





HG1020156
SEQ ID
SEQ ID
NP_056934_1-366
FGFR1IIIc
R1Mut2
del



NO: 37
NO: 128



MTSPLYLEGS





HG1020158
SEQ ID
SEQ ID
NP_056934_1-365
FGFR1IIIc
R1Mut3
del



NO: 38
NO: 129



VMTSPLYLEGS





HG1020159
SEQ ID
SEQ ID
NP_056934_1-360
FGFR1IIIc
R1Mut4
del



NO: 39
NO: 130



EERPAVMTSPL








YLEGS





HG1020160
SEQ ID
SEQ ID
NP_056934_1-355
FGFR1IIIc
R1Mut5
del



NO: 40
NO: 131



VLEALEERPAV








MTSPLYLEGS





HG1020161
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut7
del PA



NO: 41
NO: 132
374_D364-D365





HG1020162
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut8
P364G



NO: 42
NO: 133
374_P364G





HG1020163
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut9
P364M



NO: 43
NO: 134
374_P364M





HG1020164
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut10
M367N



NO: 44
NO: 135
374_M367N





HG1020165
SEQ ID
SEQ ID
NP_056934_1-
FGFR1IIIc
R1Mut11
P364M M367N



NO: 45
NO: 136
374_P364M_M367N





HG1020167
SEQ ID
SEQ ID
NP_075594_1-281
FGFR1IIIc
R1Mut1
del LYLEGS



NO: 46
NO: 137





HG1020166
SEQ ID
SEQ ID
NP_075594_1-277
FGFR1IIIc
R1Mut2
del



NO: 47
NO: 138



MTSPLYLEGS





HG1020168
SEQ ID
SEQ ID
NP_075594_1-276
FGFR1IIIc
R1Mut3
del



NO: 48
NO: 139



VMTSPLYLEGS





HG1020169
SEQ ID
SEQ ID
NP_075594_1-271
FGFR1IIIc
R1Mut4
del



NO: 49
NO: 140



EERPAVMTSPL








YLEGS





HG1020170
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut7
del PA



NO: 50
NO: 141
285_D275-D276





HG1020171
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut8
P275G



NO: 51
NO: 142
285_P275G





HG1020172
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut9
P275M



NO: 52
NO: 143
285_P275M





HG1020173
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut10
M278N



NO: 53
NO: 144
285_M278N





HG1020174
SEQ ID
SEQ ID
NP_075594_1-
FGFR1IIIc
R1Mut11
P275M M278N



NO: 54
NO: 145
285_P275M_M278N





HG1020176
SEQ ID
SEQ ID
NP_000595_1-372
FGFR1IIIc
R1Mut1
del LYLEGS



NO: 55
NO: 146





HG1020175
SEQ ID
SEQ ID
NP_000595_1-368
FGFR1IIIc
R1Mut2
del



NO: 56
NO: 147



MTSPLYLEGS





HG1020177
SEQ ID
SEQ ID
NP_000595_1-367
FGFR1IIIc
R1Mut3
del



NO: 57
NO: 148



VMTSPLYLEGS





HG1020178
SEQ ID
SEQ ID
NP_000595_1-362
FGFR1IIIc
R1Mut4
del



NO: 58
NO: 149



EERPAVMTSPL








YLEGS





HG1020179
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut7
del PA



NO: 59
NO: 150
376_D366-D367





HG1020180
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut8
P366G



NO: 60
NO: 151
376_P366G





HG1020181
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut9
P366M



NO: 61
NO: 152
376_P366M





HG1020182
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut10
M369N



NO: 62
NO: 153
376_M369N





HG1020183
SEQ ID
SEQ ID
NP_000595_1-
FGFR1IIIc
R1Mut11
P366M M369N



NO: 63
NO: 154
376_P366M_M369N





HG1020184
SEQ ID
SEQ ID
182571_1-369
FGFR4
FGFR4 ECD



NO: 64
NO: 155





HG1020185
SEQ ID
SEQ ID
182571_1-
FGFR4
FGFR4 ECD +
parental



NO: 65
NO: 156
369_17939658_233-

linker + Fc
construct





464_C237S





HG1021610
SEQ ID
SEQ ID
182571_1-
FGFR4
FGFR4 ECD +
no linker



NO: 66
NO: 157
369_nolinker_17939658_233-

Fc





464_C237S





HG1020186
SEQ ID
SEQ ID
13991618_1-159
FGFR4
other FGFR4



NO: 67
NO: 158


ECD





HG1020187
SEQ ID
SEQ ID
NP_002002_1-369
FGFR4
other FGFR4



NO: 68
NO: 159


ECD





HG1020188
SEQ ID
SEQ ID
31372_1-369
FGFR4
other FGFR4



NO: 69
NO: 160


ECD





HG1020189
SEQ ID
SEQ ID
2832350_1-369
FGFR4
other FGFR4



NO: 70
NO: 161


ECD





HG1021616
SEQ ID
SEQ ID
182571_1-
FGFR4
R4Mut1
del ARYTD



NO: 71
NO: 162
364_17939658_233-





464_C237S





HG1021617
SEQ ID
SEQ ID
182571_1-
FGFR4
R4Mut2
del



NO: 72
NO: 163
359_17939658_233-


AAAPEARYTD





464_C237S





HG1021618
SEQ ID
SEQ ID
182571_1-
FGFR4
R4Mut3
del



NO: 73
NO: 164
354_17939658_233-


DPTWTAAAPEA





464_C237S


RYTD





HG1021619
SEQ ID
SEQ ID
182571_1-
FGFR4
R4Mut4
del



NO: 74
NO: 165
352_17939658_233-


EEDPTWTAAAP





464_C237S


EARYTD





HG1021620
SEQ ID
SEQ ID
182571_1-
FGFR4
R4Mut5
del



NO: 75
NO: 166
351_17939658_233-


PEEDPTWTAAA





464_C237S


PEARYTD





HG1020190
SEQ ID
SEQ ID
NP_056934_1-19
FGFR1
leader seq for



NO: 76
NO: 167


FGFR1 (all







three variants)





HG1020191
SEQ ID
SEQ ID
182571_1-19
FGFR4
leader seq for



NO: 77
NO: 168


FGFR4





HG1020192
SEQ ID
SEQ ID
2832350_1-21
FGFR4
leader seq for



NO: 78
NO: 169


FGFR4





HG1020118
SEQ ID
SEQ ID
linker_sequence
linker



NO: 79
NO: 170





HG1020119
SEQ ID
SEQ ID
17939658_233-
Fc



NO: 80
NO: 171
464_C237S





HG1020120
SEQ ID
SEQ ID
34528298_241-
Fc



NO: 81
NO: 172
468





HG1020121
SEQ ID
SEQ ID
19684073_245-
Fc



NO: 82
NO: 173
473





HG1020374
SEQ ID
SEQ ID
NP_000133_1-375
FGFR3IIIc
ECD only
FGFR3IIIc



NO: 83
NO: 174





HG1020375
SEQ ID
SEQ ID
NP_075254_1-310
FGFR3IIIc
ECD only



NO: 84
NO: 175





HG1021603
SEQ ID
SEQ ID
NP_000133_1-
FGFR3IIIc
FGFR3IIIc +
with linker



NO: 85
NO: 176
375_GS_17939658_233-

GS + Fc





464_C237S





HG1021604
SEQ ID
SEQ ID
NP_000133_1-
FGFR3IIIc
FGFR3IIIc + Fc
no linker



NO: 86
NO: 177
375_17939658_233-





464_C237S





HG1021605
SEQ ID
SEQ ID
NP_000133_1-
FGFR3IIIc
R3Mut1
del VYAGGS



NO: 87
NO: 178
371_17939658_233-





464_C237S





HG1021606
SEQ ID
SEQ ID
NP_000133_1-
FGFR3IIIc
R3Mut2
del



NO: 88
NO: 179
367_17939658_233-


EAGSVYAGGS





464_C237S





HG1021607
SEQ ID
SEQ ID
NP_000133_1-
FGFR3IIIc
R3Mut3
del



NO: 89
NO: 180
366_17939658_233-


DEAGSVYAGGS





464_C237S





HG1021608
SEQ ID
SEQ ID
NP_000133_1-
FGFR3IIIc
R3Mut4
del



NO: 90
NO: 181
361_17939658_233-


ELVEADEAGSV





464_C237S


YAGGS





HG1021609
SEQ ID
SEQ ID
NP_000133_1-
FGFR3IIIc
R3Mut5
del



NO: 91
NO: 182
355_17939658_233-


VLPAEEELVEA





464_C237S


DEAGSVYAGGS





HG1021621
SEQ ID
SEQ ID
NP_056934_1-374
FGFR1IIIb
ECD only



NO: 183
NO: 197





HG1021622
SEQ ID
SEQ ID
FGFR1IIIb_1-
FGFR1IIIb
ECD + Fc
no linker



NO: 184
NO: 198
374_17939658_233-





464_C237S





HG1021623
SEQ ID
SEQ ID
FGFR1IIIb_1-
FGFR1IIIb
R1Mut1
del LYLE



NO: 185
NO: 199
370_17939658_233-





464_C237S





HG1021624
SEQ ID
SEQ ID
FGFR1IIIb_1-
FGFR1IIIb
R1Mut2
del MTSPLYLE



NO: 186
NO: 200
366_17939658_233-





464_C237S





HG1021625
SEQ ID
SEQ ID
FGFR1IIIb_1-
FGFR1IIIb
R1Mut3
del VMTSPLYLE



NO: 187
NO: 201
365_17939658_233-





464_C237S





HG1021626
SEQ ID
SEQ ID
FGFR1IIIb_1-
FGFR1IIIb
R1Mut4
del



NO: 188
NO: 202
361_17939658_233-


ERPAVMTSPLY





464_C237S


LE





HG1021627
SEQ ID
SEQ ID
FGFR1IIIb_1-
FGFR1IIIb
R1Mut5
del



NO: 189
NO: 203
355_17939658_233-


VLEALEERPAV





464_C237S


MTSPLYLE





HG1021628
SEQ ID
SEQ ID
P22607_1-375
FGFR3IIIb
ECD only



NO: 190
NO: 204





HG1021629
SEQ ID
SEQ ID
P22607_1-
FGFR3IIIb
ECD + Fc
no linker



NO: 191
NO: 205
375_17939658_233-





464_C237S





HG1021630
SEQ ID
SEQ ID
P22607_1-
FGFR3IIIb
R3Mut1
del VYAG



NO: 192
NO: 206
371_17939658_233-





464_C237S





HG1021631
SEQ ID
SEQ ID
P22607_1-
FGFR3IIIb
R3Mut2
del EAGSVYAG



NO: 193
NO: 207
367_17939658_233-





464_C237S





HG1021632
SEQ ID
SEQ ID
P22607_1-
FGFR3IIIb
R3Mut3
del DEAGSVYAG



NO: 194
NO: 208
366_17939658_233-





464_C237S





HG1021633
SEQ ID
SEQ ID
P22607_1-
FGFR3IIIb
R3Mut4
del



NO: 195
NO: 209
362_17939658_233-


LVEADEAGSVY





464_C237S


AG





HG1021634
SEQ ID
SEQ ID
P22607_1-
FGFR3IIIb
R3Mut5
del



NO: 196
NO: 210
355_17939658_233-


VLPAEEELVEA





464_C237S


DEAGSVYAG





HG1021635
SEQ ID
SEQ ID
15281415_1-378
FGFR2b
ECD only



NO: 211
NO: 227





HG1021636
SEQ ID
SEQ ID
15281415_1-
FGFR2b
ECD + Fc



NO: 212
NO: 228
378_17939658_233-





464_C237S





HG1021637
SEQ ID
SEQ ID
15281415_1-
FGFR2b
ECD + GS + Fc



NO: 213
NO: 229
378_GS_17939658_233-





464_C237S





HG1021638
SEQ ID
SEQ ID
15281415_1-
FGFR2b
R2Mut1
del DYLE



NO: 214
NO: 230
374_17939658_233-





464_C237S





HG1021639
SEQ ID
SEQ ID
15281415_1-
FGFR2b
R2Mut2
del TASPDYLE



NO: 215
NO: 231
370_17939658_233-





464_C237S





HG1021640
SEQ ID
SEQ ID
15281415_1-
FGFR2b
R2Mut3
del ITASPDYLE



NO: 216
NO: 232
369_17939658_233-





464_C237S





HG1021641
SEQ ID
SEQ ID
15281415_1-
FGFR2b
R2Mut4
del



NO: 217
NO: 233
365_17939658_233-


REKEITASPDYLE





464_C237S





HG1021642
SEQ ID
SEQ ID
15281415_1-
FGFR2b
R2Mut5
del



NO: 218
NO: 234
356_17939658_233-


VLPKQQAPGRE





464_C237S


KEITASPDYLE





HG1021643
SEQ ID
SEQ ID
NP_000132_1-377
FGFR2c
ECD only



NO: 219
NO: 235





HG1021644
SEQ ID
SEQ ID
NP_000132_1-
FGFR2c
ECD + Fc



NO: 220
NO: 236
377_17939658_233-





464_C237S





HG1021645
SEQ ID
SEQ ID
NP_000132_1-
FGFR2c
ECD + GS + Fc



NO: 221
NO: 237
377_GS_17939658_233-





464_C237S





HG1021646
SEQ ID
SEQ ID
NP_000132_1-
FGFR2c
R2Mut1
del DYLE



NO: 222
NO: 238
373_17939658_233-





464_C237S





HG1021647
SEQ ID
SEQ ID
NP_000132_1-
FGFR2c
R2Mut2
del TASPDYLE



NO: 223
NO: 239
369_17939658_233-





464_C237S





HG1021648
SEQ ID
SEQ ID
NP_000132_1-
FGFR2c
R2Mut3
del ITASPDYLE



NO: 224
NO: 240
368_17939658_233-





464_C237S





HG1021649
SEQ ID
SEQ ID
NP_000132_1-
FGFR2c
R2Mut4
del



NO: 225
NO: 241
364_17939658_233-


REKEITASPDYLE





464_C237S





HG1021650
SEQ ID
SEQ ID
NP_000132_1-
FGFR2c
R2Mut5
del



NO: 226
NO: 242
358_17939658_233-


VLPAPGREKEIT





464_C237S


ASPDYLE





HG1021651

SEQ ID
R1_delfragment_1
FGFR1
deleted
LYLE




NO: 243


fragment





HG1021652

SEQ ID
R1_delfragment_2
FGFR1
deleted
PLYLE




NO: 244


fragment





HG1021653

SEQ ID
R1_delfragment_3
FGFR1
deleted
MTSPLYLE




NO: 245


fragment





HG1021654

SEQ ID
R1_delfragment_4
FGFR1
deleted
AVMTSPLYLE




NO: 246


fragment





HG1021655

SEQ ID
R1_delfragment_5
FGFR1
deleted
VMTSPLYLE




NO: 247


fragment





HG1021656

SEQ ID
R1_delfragment_6
FGFR1
deleted
EERPAVMTSPL




NO: 248


fragment
YLE





HG1021657

SEQ ID
R1_delfragment_7
FGFR1
deleted
LEERPAVMTSP




NO: 249


fragment
LYLE





HG1021658

SEQ ID
R1_delfragment_8
FGFR1
deleted
KALEERPAVMT




NO: 250


fragment
SPLYLE





HG1021659

SEQ ID
R1_delfragment_9
FGFR1
deleted
EALEERPAVMT




NO: 251


fragment
SPLYLE





HG1021660

SEQ ID
R1_delfragment_10
FGFR1
deleted
RPVAKALEERP




NO: 252


fragment
AVMTSPLYLE





HG1021661

SEQ ID
R2_delfragment_1
FGFR2
deleted
DYLE




NO: 253


fragment





HG1021662

SEQ ID
R2_delfragment_2
FGFR2
deleted
PDYLE




NO: 254


fragment





HG1021663

SEQ ID
R2_delfragment_3
FGFR2
deleted
TASPDYLE




NO: 255


fragment





HG1021664

SEQ ID
R2_delfragment_4
FGFR2
deleted
ITASPDYLE




NO: 256


fragment





HG1021665

SEQ ID
R2_delfragment_5
FGFR2
deleted
EITASPDYLE




NO: 257


fragment





HG1021666

SEQ ID
R2_delfragment_6
FGFR2
deleted
GREKEITASPDY




NO: 258


fragment
LE





HG1021667

SEQ ID
R2_delfragment_7
FGFR2
deleted
PGREKEITASPD




NO: 259


fragment
YLE





HG1021668

SEQ ID
R2_delfragment_8
FGFR2
deleted
APGREKEITASP




NO: 260


fragment
DYLE





HG1021669

SEQ ID
R2_delfragment_9
FGFR2
deleted
PAPGREKEITAS




NO: 261


fragment
PDYLE





HG1021670

SEQ ID
R2_delfragment_10
FGFR2
deleted
QAPGREKEITAS




NO: 262


fragment
PDYLE





HG1021671

SEQ ID
R2_delfragment_11
FGFR2
deleted
PKQQAPGREKEI




NO: 263


fragment
TASPDYLE





HG1021672

SEQ ID
R3_delfragment_1
FGFR3
deleted
VYAG




NO: 264


fragment





HG1021673

SEQ ID
R3_delfragment_2
FGFR3
deleted
SVYAG




NO: 265


fragment





HG1021674

SEQ ID
R3_delfragment_3
FGFR3
deleted
EAGSVYAG




NO: 266


fragment





HG1021675

SEQ ID
R3_delfragment_4
FGFR3
deleted
DEAGSVYAG




NO: 267


fragment





HG1021676

SEQ ID
R3_delfragment_5
FGFR3
deleted
ADEAGSVYAG




NO: 268


fragment





HG1021677

SEQ ID
R3_delfragment_6
FGFR3
deleted
ELVEADEAGSV




NO: 269


fragment
YAG





HG1021678

SEQ ID
R3_delfragment_7
FGFR3
deleted
EELVEADEAGS




NO: 270


fragment
VYAG





HG1021679

SEQ ID
R3_delfragment_8
FGFR3
deleted
AEEELVEADEA




NO: 271


fragment
GSVYAG





HG1021680

SEQ ID
R3_delfragment_9
FGFR3
deleted
PAEEELVEADE




NO: 272


fragment
AGSVYAG





HG1021681

SEQ ID
R3_delfragment_10
FGFR3
deleted
GPRAAEEELVE




NO: 273


fragment
ADEAGSVYAG





HG1021682

SEQ ID
R4_delfragment_1
FGFR4
deleted
RYTD




NO: 274


fragment





HG1021683

SEQ ID
R4_delfragment_2
FGFR4
deleted
ARYTD




NO: 275


fragment





HG1021684

SEQ ID
R4_delfragment_3
FGFR4
deleted
APEARYTD




NO: 276


fragment





HG1021685

SEQ ID
R4_delfragment_4
FGFR4
deleted
AAPEARYTD




NO: 277


fragment





HG1021686

SEQ ID
R4_delfragment_5
FGFR4
deleted
AAAPEARYTD




NO: 278


fragment





HG1021687

SEQ ID
R4_delfragment_6
FGFR4
deleted
PTWTAAAPEAR




NO: 279


fragment
YTD





HG1021688

SEQ ID
R4_delfragment_7
FGFR4
deleted
DPTWTAAAPEA




NO: 280


fragment
RYTD





HG1021689

SEQ ID
R4_delfragment_8
FGFR4
deleted
EEDPTWTAAAP




NO: 281


fragment
EARYTD





HG1021690

SEQ ID
R4_delfragment_9
FGFR4
deleted
PEEDPTWTAAA




NO: 282


fragment
PEARYTD









Table 2 shows information characterizing sequences relating to full-length FGFR1, FGFR3, and FGFR4 proteins. Column 1 shows the NCBI accession number (Protein ID). Column 2 designates whether the sequence relates to FGFR1, FGFR3, or FGFR4. Column 3 shows the predicted length of the polypeptide encoded by each protein (Protein Length). Column 4 (Treevote) shows the result of an algorithm that predicts whether the predicted amino acid sequence is secreted, A Treevote at or near 0 indicates a low probability that the protein is secreted while a Treevote at or near 1.00 indicates a high probability that the protein is secreted. Column 5 shows the predicted signal peptide coordinates (Signal Peptide Coords). Column 6 shows the mature protein coordinates, which refer to the coordinates of the amino acid residues of the mature polypeptide after cleavage of the secretory leader or signal peptide sequence (Mature Protein Coords). Column 7 shows alternate predictions of the signal peptide coordinates (Altern Signal Peptide Coords). Column 8 specifies the coordinates of an alternative form of the mature protein (Altern Mature Protein Coords). The alternate coordinates result from alternative predictions of the signal peptide cleavage site; their presence may, for example, depend on the host used to express the polypeptides. Column 9 specifies the number of transmembrane domains (TM). Columns 10 and 11 provide the coordinates of the transmembrane and non-transmembrane sequences of the polypeptides. The transmembrane coordinates (TM Coords) designate the transmembrane domains of the molecule. The non-transmembrane coordinates (non-TM Coords) refer to the protein segments not located in the membrane; these can include extracellular, cytoplasmic, and luminal sequences. Coordinates are listed in terms of the amino acid residues beginning with “1” for the first amino acid residue at the N-terminus of the full-length polypeptide.









TABLE 2







Characterization of FGFR Sequences





















Signal
Mature









Protein

Peptide
Protein
Altern Signal
Altern Mature

TM
Non-TM


Protein ID
Protein
Length
Treevote
Coords
Coords
Peptide Coords
Protein Coords
TM
Coords
Coords




















NP_056934
FGFR1
820
0
(1-19)
(20-820)
(11-23)
(24-820)
1
(373-395)
(1-372)








 (9-21)
(22-820)


(396-820)


NP_075594
FGFR1
731
0
(1-19)
(20-731)
(11-23)
(24-731)
1
(284-306)
(1-283)








 (9-21)
(22-731)


(307-310)


NP_000595
FGFR1
822
0
(1-19)
(20-822)
(11-23)
(24-822)
1
(375-397)
(1-374)








 (9-21)
(22-822)


(398-822)


NP_075254
FGFR3
694
0.93
(1-19)
(20-694)
(3-15) (8-20)
(16-694)
0

(1-694)








(10-22)
(21-694)












(23-694)





NP_000133
FGFR3
806
0.03
(1-19)
(20-806)
(3-15) (8-20)
(16-806) (21-806)
2
(373-395)
(1-372)








(10-22)
(23-806)

(537-559)
(396-536)












(560-806)


FGFR3-
FGFR3
606
0.99
(1-16)
(17-606)
(8-20) (6-18)
(21-606) (19-606)
0
(370-392)
(1-606)


IIIc-Fc





(3-15) (2-14)
(16-606) (15-606)





182571
FGFR4
802
0.99
(1-18)
(19-802)
 (1-13)
(14-802)
0

(1-802)








 (4-16)
(17-802)











 (3-15)
(16-802)





13991618
FGFR4
592
0

 (1-592)


0

(1-592)


NP_002002
FGFR4
802
1
(1-18)
(19-802)
(1-13) (4-16)
(14-802) (17-802)
0

(1-802)








 (3-15)
(16-802)





2832350
FGFR4
802
0.98
(1-18)
(19-802)
(1-13) (3-15)
(14-802) (16-802)
0

(1-802)








 (4-16)
(17-802)





31372
FGFR4
802
1
(1-18)
(19-802)
(1-13) (4-16)
(14-802) (17-802)
0

(1-802)








 (3-15)
(16-802)












Nucleic Acid Molecules Encoding FGFR Fusion Molecules

The present invention provides nucleic acid molecules that comprise polynucleotide sequences that encode the FGFR fusion proteins of the invention. These nucleic acid molecules can be constructed with recombinant DNA techniques conventional in the art. The nucleic acid molecules include molecules relevant to the FGFR1-IIIb ECD, such as those provided in SEQ ID NOS: 183-189; those relevant to FGFR1-IIIc ECD, such as those provided in SEQ ID NOS: 1-63; those relevant to FGFR2-IIIb ECD, such as those provided in SEQ ID NOS: 211-218; those relevant to FGFR2-IIIc ECD, such as those provided in SEQ ID NOS: 219-226; those relevant to FGFR3-IIIb ECD, such as those provided in SEQ ID NOS: 190-196; those relevant to FGFR3-IIIc ECD, such as those provided in SEQ ID NOS: 83-91; and those relevant to FGFR4 ECD, such as those provided in SEQ ID NOS: 64-78.


The nucleic acid molecules of the invention can include polynucleotide sequences that encode all or part of the ECD of an FGFR polypeptide, with or without its native homologous secretory leader sequence. If a homologous secretory leader sequence is not used in the construction of the nucleic acid molecule, then another secretory leader sequence may be used, for example, any one of the leader sequences described in PCT US06/02951.


Typically, the nucleic acid molecule encoding the gene of interest, the FGFR ECD, is inserted into an expression vector, suitable for expression in a selected host cell, at a linker site and the nucleic acid molecule encoding the fusion partner is inserted at the site following the FGFR ECD such that they are in-frame when the nucleic acid molecule is transcribed and translated.


FGFR Fusion Molecule Expression and Production

Vectors


The invention provides genetically engineered recombinant vectors comprising nucleic acid molecules encoding the fusion proteins of the invention, recombinant host cells comprising the recombinant vectors, the nucleic acid molecules encoding the fusion proteins of the invention, and the production of FGFR fusion proteins and fragments thereof. Vectors of the invention include those that are suitable for expression in a selected host, whether prokaryotic or eukaryotic, for example, phage, plasmid, and viral vectors. Viral vectors may be either replication competent or replication defective retroviral vectors. Viral propagation generally will occur only in complementing host cells comprising replication defective vectors. Vectors of the invention may comprise Kozak sequences (Lodish et al., Molecular Cell Biology, 4th ed., 1999) and may also contain the ATG start codon of an FGFR extracellular domain. Vectors of the invention include “minicircle” vectors, which are described in greater detail below.


Copy number and positional effects are considered in designing transiently and stably expressed vectors. Copy number can be increased by, for example, dihydrofolate reductase amplification. Positional effects can be optimized by, for example, Chinese hamster elongation factor-1 vector pDEF38 (CHEF1), ubiquitous chromatin opening elements (UCOE), scaffold/matrix-attached region of human (S/MAR), and artificial chromosome expression (ACE) vectors, as well as by using site-specific integration methods known in the art. The expression constructs containing the vector and gene of interest will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs can include a translation initiating codon at the beginning and a termination codon (UAA, UGA, or UAG) appropriately positioned at the end of the polypeptide to be translated.


Considering the above-mentioned factors, vectors suitable for expressing FGFR fusion molecules in bacteria include pTT vectors, available from Biotechnology Research Institute (Montreal, Canada), pQE70, pQE60, and pQE-9, available from Qiagen (Mississauga, Ontario, Canada); vectors derived from pcDNA3, available from Invitrogen (Carlsbad, Calif.); pBS vectors, Phagescript vectors, Bluescript vectors, pNH8A, pNH6a, pNH18A, pNH46A, available from Stratagene (La Jolla, Calif.); and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia (Peapack, N.J.). Among suitable eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1, and pSG available from Stratagene (La Jolla, Calif.); and pSVK3, pBPV, pMSG and pSVL, available from Pharmacia (Peapack, N.J.).


Vectors for expressing FGFR fusion molecules include those comprising a pTT vector backbone (Durocher et al., Nucl. Acids Res. 30:E9 (2002)). Briefly, the backbone of a pTT vector may be prepared by obtaining pIRESpuro/EGFP (pEGFP) and pSEAP basic vector(s), for example from Clontech (Palo Alto, Calif.), and pcDNA3.1, pcDNA3.1/Myc-(His)6 and pCEP4 vectors can be obtained from, for example, Invitrogen (Carlsbad, Calif.). As used herein, the pTT5 backbone vector can generate a pTT5-Gateway vector and be used to transiently express proteins in mammalian cells. The pTT5 vector can be derivatized to pTT5-A, pTT5-B, pTT5-D, pTT5-E, pTT5-H, and pTT5-I, for example. As used herein, the pTT2 vector can generate constructs for stable expression in mammalian cell lines.


A pTT vector can be prepared by deleting the hygromycin (BsmI and SalI excision followed by fill-in and ligation) and EBNA1 (ClaI and NsiI excision followed by fill-in and ligation) expression cassettes. The ColEI origin (FspI-SalI fragment, including the 3′ end of the β-lactamase open reading frame (ORF) can be replaced with a FspI-SalI fragment from pcDNA3.1 containing the pMBI origin (and the same 3′ end of β-lactamase ORF). A Myc-(His)6 C-terminal fusion tag can be added to SEAP (HindIII-HpaI fragment from pSEAP-basic) following in-frame ligation in pcDNA3.1/Myc-His digested with HindIII and EcoRV. Plasmids can subsequently be amplified in E. coli (DH5α) grown in LB medium and purified using MAXI prep columns (Qiagen, Mississauga, Ontario, Canada). To quantify, plasmids can be subsequently diluted in, for example, 50 mM Tris-HCl pH 7.4 and absorbencies can be measured at 260 nm and 280 nm. Plasmid preparations with A260/A280 ratios between about 1.75 and about 2.00 are suitable for producing the FGFR constructs.


The expression vector pTT5 allows for extrachromosomal replication of the cDNA driven by a cytomegalovirus (CMV) promoter. The plasmid vector pcDNA-pDEST40 is a Gateway-adapted vector which can utilize a CMV promoter for high-level expression. SuperGlo GFP variant (sgGFP) can be obtained from Q-Biogene (Carlsbad, Calif.). Preparing a pCEP5 vector can be accomplished by removing the CMV promoter and polyadenylation signal of pCEP4 by sequential digestion and self-ligation using SalI and XbaI enzymes resulting in plasmid pCEP4Δ. A GblII fragment from pAdCMV5 (Massie et al., J. Virol. 72:2289-2296 (1998)), encoding the CMV5-poly(A) expression cassette ligated in BglII-linearized pCEP4Δ, resulting in the pCEP5 vector.


Vectors for expressing FGFR fusion molecules can include those comprising vectors optimized for use in CHO-S or CHO-S-derived cells, such as pDEF38 (CHEF1) and similar vectors (Running Deer et al., Biotechnol. Prog. 20:880-889 (2004). The CHEF vectors contain DNA elements that lead to high and sustained expression in CHO cells and derivatives thereof. They may include, but are not limited to, elements that prevent the transcriptional silencing of transgenes.


FGFR polynucleotide vectors may be joined to a selectable marker for propagation in a host. Generally, a selectable marker allows the selection of transformed cells based on their ability to thrive in the presence or absence of a chemical or other agent that inhibits an essential cell function. The selectable markers confer a phenotype on a cell expressing the marker, so that the cell can be identified under appropriate conditions. Suitable markers, therefore, include genes coding for proteins which confer drug resistance or sensitivity thereto, impart color to, or change the antigenic characteristics of those cells transfected with a molecule encoding the selectable marker, when the cells are grown in an appropriate selective medium.


Suitable selectable markers include dihydrofolate reductase or G418 for neomycin resistance in eukaryotic cell culture; and tetracycline, kanamycin, or ampicillin resistance genes for culturing in E. coli and other bacteria. Suitable selectable markers also include cytotoxic markers and drug resistance markers, whereby cells are selected by their ability to grow on media containing one or more of the cytotoxins or drugs; auxotrophic markers, by which cells are selected for their ability to grow on defined media with or without particular nutrients or supplements, such as thymidine and hypoxanthine; metabolic markers for which cells are selected, for example, for ability to grow on defined media containing a defined substance, for example, an appropriate sugar as the sole carbon source; and markers which confer the ability of cells to form colored colonies on chromogenic substrates or cause cells to fluoresce.


As mentioned above, vectors for the expression of FGFR fusion proteins can also be constructed in proteins retroviral vectors. One such vector, the ROSAβgeo retroviral vector, which maps to mouse chromosome six, was constructed with the reporter gene in reverse orientation with respect to retroviral transcription, downstream of a splice acceptor sequence (U.S. Pat. No. 6,461,864; Zambrowicz et al., Proc. Natl. Acad. Sci. 94:3789-3794 (1997)). Infecting embryonic stem (ES) cells with ROSAβgeo retroviral vector resulted in the ROSAβgeo26 (ROSA26) mouse strain by random retroviral gene trapping in the ES cells.


A DNA insert comprising an FGFR fusion molecule can be operatively linked to an appropriate promoter, such as the phage lambda PL promoter; the E. coli lac, trp, phoA, and tac promoters; the SV40 early and late promoters; and promoters of retroviral LTRs. Suitable promoters also include the pCMV vector with an enhancer, pcDNA3.1; the pCMV vector with an enhancer and an intron, pCIneo; the pCMV vector with an enhancer, an intron, and a tripartate leader, pTT2, and CHEF1. Other suitable promoters will be known to the skilled artisan. The promoter sequences include the minimum number of bases or elements necessary to initiate transcription of a gene of interest at levels detectable above background. Within the promoter sequence may be a transcription initiation site, as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. Eukaryotic promoters of the invention will often, but not always, contain “TATA” boxes and “CAT” boxes.


The invention provides vectors for the in vivo expression of FGFR fusion molecules in animals, including humans, under the control of a promoter that functions in a tissue-specific manner. For example, promoters that drive the expression of FGFR fusion proteins of the invention may be liver-specific, as described in PCT/US06/00668.


A region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence in the host cell purification throughout and subsequent handling and storage. Also, amino acid moieties may be added to the polypeptide to facilitate purification. Such amino acids may or may not be removed prior to the final preparation of the polypeptide. The FGFR fusion proteins of the invention can be fused to marker sequences, such as a peptide, that facilitates purification of the fused polypeptide. The marker amino acid sequence may be a hexa-histidine peptide such as the tag provided in a pQE vector (Qiagen, Mississauga, Ontario, Canada), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the hemagglutinin HA tag, corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., Cell 37:767-778 (1984)). Any of the above markers can be engineered using the polynucleotides or the polypeptides of the present invention.


The expression constructs of the invention will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs can include a translation initiating codon at the beginning and a termination codon (UAA, UGA, or UAG) appropriately positioned at the end of the polypeptide to be translated.


Host Cells

FGFR fusion proteins of the invention can be expressed by and produced from prokaryotic cells, such as bacterial cells and eukaryotic cells, such as fungal cells, plant cells, insect cells, and mammalian cells, according to procedures known in the art, for example, as shown in the examples and figures that follow. FGFR fusion proteins can be expressed by and produced from bacterial E. coli cells; Cos 7 cells; mammalian kidney epithelial 293 cells; and Chinese Hamster Ovary (CHO) cells, including CHO-S and DG44 cells, which are derived from CHO cells. They can also be produced in vivo in animals, engineered or transfected with the nucleic acid molecules encoding the fusion proteins. For example, mice injected with DNA encoding FGFR fusion molecules can express FGFR fusion molecules following tail vein transfection (TVT).


Introduction of the FGFR fusion proteins into the host cell can be accomplished by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other known methods. Such methods are described in many standard laboratory manuals, such as Sambrook et al., Molecular Cloning, A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press (2001). FGFR fusion proteins of the invention can be transiently or stably transfected into the host cells, as described in greater detail below. FGFR fusion proteins of the invention can be purified from host cells grown either in adherent culture or in suspension, and, as shown in greater detail below, can retain the biological properties of FGFR.


Host cells of the invention can express proteins and polypeptides in accordance with conventional methods, the method depending on the purpose for expression. For large scale production of the protein, a unicellular organism, such as E. coli, B. subtilis, S. cerevisiae; insect cells in combination with baculovirus vectors; or cells of a higher organism such as vertebrates, for example mammalian 293 (including 293-6E), CHO (including DG44), or COS 7 cells, can be used as the expression host cells. In some situations, it is desirable to express eukaryotic genes in eukaryotic cells, where the encoded protein will benefit from native folding and post-translational modifications, such as glycosylation.


Accordingly, the invention provides a recombinant host cell that comprises nucleic acid molecules encoding the FGFR fusion proteins, vectors comprising such nucleic acid molecules, or FGFR fusion proteins and cultures containing such. These host cells may produce FGFR1, FGFR2, FGFR3, and FGFR4 fusion proteins of the invention. For example, they may produce FGFR-Fc fusion proteins and variants and fragments thereof. The host cells may be suitable for transient transfection and for stable transfection. FGFR fusion proteins expressed by any of the methods described herein may be detected by methods known in the art.


The post-translational glycosylation of the fusion proteins of the invention may vary according to their production source, as described in greater detail below. The glycosylation profile of a protein can affect its properties and/or function. Accordingly, the invention provides recombinant FGFR fusion proteins with or without altered glycosylation profiles compared to the naturally-occurring forms. They may be produced in different host cells. For example, unglycosylated FGFR fusion proteins can be produced from E. coli. A form of glycosylated FGFR fusion protein can be produced in yeast cells, such as Saccharomyces cerevisae or Pichia pastoris, or fungal cells such as Aspergillus. A form of glycosylated FGFR fusion protein can be produced in plants, such as rice, wheat, oats, etc. form of glycosylated FGFR protein can be produced in mammalian cells, such as 293 cells or CHO cells or derivatives thereof. For example, the invention provides mutant constructs with additional arginine residues for the attachment of N-linked sugars. These constructs may comprise point mutations with arginine residues or may have larger substitutions with regions that include arginine residues. The invention also provides mutant constructs with omitted arginine residues. Glycosylation mutants of the invention can be made by altering the naturally-occurring sequences using methods known to those of skill in the art.


Recombinant host cells of the invention are cultured under conditions conventional in the art, including both inducible and non-inducible conditions. The FGFR fusion proteins may be made inside the cells, such as in inclusion bodies, for example, when the host cell is an E. coli cell, or they may be secreted into the cell culture, such as when the host cells are mammalian cells and the proteins are expressed using mammalian expression systems, for example, using a secretory leader sequence. The invention provides cell cultures comprising the FGFR fusion protein whether the FGFR fusion protein is present in the culture medium or residing inside the cells.


Purification of FGFR Fusion Proteins

The invention provides methods of purifying FGFR fusion proteins using a combination of techniques, each of which is conventional in the art. These techniques include, but are not limited to, the use of affinity matrices and hydrophobic interaction chromatography, for example, affinity chromatography. Suitable affinity ligands include any ligands of the FGFR extracellular domain or of the fusion partner, or antibodies thereto. For example, a Protein A, Protein G, Protein A/G, or an antibody affinity column may be used to bind to an Fc fusion partner to purify the FGFR fusion proteins. Antibodies to the FGFR portion of the fusion protein or to the fusion partner may also be used to purify the fusion protein. Hydrophobic interactive chromatography is also suitable for purifying FGFR fusion proteins of the invention. For example, a butyl or phenyl column may be used. Other methods of purification known to those skilled in the art may also be suitable for purifying the FGFR fusion molecules of the invention.


Protein A affinity chromatography may be used to purify FGFR fusion proteins of the invention comprising an Fc domain. Protein A is a cell wall component produced by several strains of Staphylococcus aureus and can be made in a recombinant fashion. It consists of a single polypeptide chain weighing approximately 42,000 daltons and contains little or no carbohydrate. Protein A binds specifically to the Fc region of most immunoglobulin molecules, including IgG (Sjoquist et al., Eur. J. Biochem. 29:572-578 (1972); Hjelm et al., Eur. J. Biochem. 57:395-403 (1975)).


Protein G affinity chromatography may also be used to purify FGFR fusion proteins of the invention comprising an Fc domain. Protein G is a bacterial cell wall protein produced by group G streptococci and can also be made in a recombinant fashion. Like Protein A, Protein G binds to most mammalian immunoglobulins, primarily through their Fc regions (Bjorck et al., J. Immunol. 133:969-974 (1984); Guss et al., EMBO J. 5:1567-1575 (1986) Akerstrom et al., J. Biol. Chem. 261:10,240-10,247 (1986)). Affinity chromatography using chimeric Fc binding molecules may further be used to purify FGFR fusion proteins of the invention comprising an Fc domain. For example, Protein A/G is a genetically engineered protein that combines the IgG binding profiles of both Protein A and Protein G. Protein A/G is a gene fusion product, which can be secreted from, inter alia, nonpathogenic Bacillus. Protein A/G typically weighs approximately 50,000 daltons and was designed to contain four Fc binding domains from Protein A and two from Protein G (Sikkema, Amer. Biotech. Lab. 7:42 (1989); Eliasson et al., J. Biol. Chem. 263:4323-4327 (1988).


Hydrodynamic Tail Vein Transfection (TVT)

The invention provides expression of FGFR fusion proteins in animals, following a hydrodynamics-based procedure of tail vein injection (Liu, F. et al., Gene Then 6:1258-1266 (1999); U.S. Pat. No. 6,627,616; and Zhang et al., Hum. Gene Ther. 10:1735 (1999). This technique provides for production of the FGFR fusion protein in vivo after administering the nucleic acid molecule encoding the fusion protein produced in a mini-circle vector construct. Serum from such injected animals containing the fusion protein may be used to further characterize the protein, without first having to produce and purify the fusion protein from cell culture expression systems.


In an embodiment, the invention provides vectors comprising nucleic acid molecules encoding an FGFR fusion protein for administration to animals and FGFR fusion proteins made thereby, following hydrodynamic injection of minicircle DNA comprising such nucleic acid molecules. Vectors for injection can be constructed, for example, by the system described in Chen et al., Mol. Ther. 8:495-500 (2003) and U.S. Pat. Appl. No. 2004/0214329 A1. In brief, an expression cassette for an FGFR gene is flanked by attachment sites for a recombinase, which is expressed in an inducible fashion in a portion of the vector sequence outside of the expression cassette. Following recombination, the E. coli produce a minicircle vector comprising an expression cassette with an FGFR fusion protein gene. The vector as described in Chen et al. can be modified by inserting the nucleic acid molecule encoding the FGFR fusion protein following the intron present in the vector, instead of in the midst of the introns.


Minicircle DNA vectors can be prepared with plasmids similar to pBAD.φC31.hFIX and pBAD.φC31.RHB and used to transform E. coli, Recombinases known in the art, for example, lambda and cre, are useful in the minicircle vectors. The expression cassettes may contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs can include a translation initiating codon at the beginning and a termination codon (UAA, UGA, or UAG) appropriately positioned at the end of the polypeptide to be translated. The plasmids may include at least one selectable marker, for example, dihydrofolate reductase, G418, or a marker of neomycin resistance for eukaryotic cell culture; and tetracycline, kanamycin, or ampicillin resistance genes for culturing in E. coli and other prokaryotic cell culture. The minicircle producing plasmids may include at least one origin of replication to allow for the multiplication of the vector in a suitable eukaryotic or a prokaryotic host cell. Origins of replication are known in the art, as described, for example, in Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985). The FGFR fusion proteins produced from minicircles can also be fused to marker sequences, as described above.


Fusion Partners and Conjugates

Gene manipulation techniques have enabled the development and use of recombinant therapeutic proteins with fusion partners that impart desirable pharmacokinetic properties. FGFR polypeptides, including their immunogenic epitopes and other fragments, can be combined with heterologous molecules, resulting in therapeutically useful fusion molecules. The invention provides fusion molecules comprising the extracellular domain of any of FGFR1, FGFR2, FGFR3, and FGFR4. It provides fusion partners capable of imparting favorable pharmacokinetics and/or pharmacodynamics to the FGFR. In an embodiment, the invention provides a fusion molecule comprising all or a part of the extracellular domain of FGFR1-IIIb, FGFR IIIc, FGFR2-IIIb, FRFR2-IIIc, FGFR3-IIIb, FGFR3-IIIc, FGFR4, or fragments thereof and a fusion partner, such as an antibody Fc domain.


FGFRs are expressed in many normal tissues and many cell types express more than one FGFR. In view of this, it is not obvious how a therapeutic which targets FGFR can be devised to last long enough in the circulation of a treated subject without causing harm to the normal tissues.


Fusion molecules of the invention have an increased half-life in vivo, as compared to FGFR extracellular domains. The prolonged half-life of the FGFR fusion molecules described herein can require lower doses and a less-frequent dosing regimen than FGFRs alone. The resulting decreased fluctuation of FGFR serum levels can improve the safety and tolerability of FGFR therapeutics.


The fusion partner can be linked to the C-terminus of the FGFR, or, alternatively, the FGFR can be linked to the C-terminus of the fusion partner. The fusion partner may comprise a linker, for example, a peptide linker, which may or may not comprise an enzyme cleavage site. The fusion partner may also comprise a molecule that extends the in vivo half-life by imparting improved receptor binding to FGFR within an acidic intracellular compartment, for example, an acid endosome or a lysosome.


Fusion partners of the invention include polymers, polypeptides, lipophilic moieties, and succinyl groups. Examples of polypeptide fusion partners include serum albumin and the antibody Fc domain. Polymer fusion partners may comprise one or more polyethylene glycol moieties, branched or linear chains. Lipophilic fusion partners may increase the skin permeability of the fusion molecule.


Oligomerization Domain Fusion Proteins


Oligomerization offers functional advantages to a fusion protein, including multivalency, increased binding strength, and the combined function of different domains. These features are seen in natural proteins and may also be introduced by protein engineering. Accordingly, the invention provides an FGFR fusion molecule, wherein the fusion partner comprises an oligomerization domain, for example, a dimerization domain. Suitable oligomerization domains include coiled-coil domains, including alpha-helical coiled-coil domains; collagen domains; collagen-like domains, and dimeric immunoglobulin domains. Suitable coiled-coil polypeptide fusion partners of the invention include tetranectin coiled-coil domain, the coiled-coil domain of cartilage oligomeric matrix protein; angiopoietin coiled-coil domains; and leucine zipper domains. FGFR fusion molecules with collagen or collagen-like oligomerization domains as fusion partner may comprise, for example, those found in collagens, mannose binding lectin, lung surfactant proteins A and D, adiponectin, ficolin, conglutinin, macrophage scavenger receptor, and emilin.


Antibody Fc Domain Fusion Proteins


In an embodiment, the invention provides fusion molecules having an Fc immunoglobulin domain. The FGFR fusion proteins of the invention can comprise Fc, various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins and/or the first two domains of the human CD4 polypeptide.


In an embodiment, the human Fc domain fusion partner comprises the entire Fc domain. In an embodiment it comprises one or more fragments of the Fc domain. For example, it may comprise a hinge and the CH2 and CH3 constant domains of a human IgG, for example, human IgG1, IgG2, or IgG4. The invention provides an FGFR fusion protein wherein the fusion partner is a variant Fc polypeptide or a fragment of a variant Fc polypeptide. The variant Fc may comprise a hinge, CH2, and CH3 domains of human IgG2 with a P331S mutation, as described in U.S. Pat. No. 6,900,292.


In an embodiment, a fusion protein of the invention may be a homodimeric protein linked through cysteine residues in the hinge region of IgG Fc, resulting in a molecule similar to an IgG molecule, but without CH1 domains and light chains.


Methods of making fusion proteins are well-known to the skilled artisan. In an embodiment, the Fc fusion partner of the invention comprises an amino acid sequence of any of SEQ ID NO: 171, SEQ ID NO: 172, and SEQ ID NO: 173.


Albumin Fusion Proteins


The invention provides an FGFR fusion molecule with an albumin fusion partner comprising albumin from human serum (human serum albumin or “HSA”), one or more fragments of albumin, a peptide that binds albumin, and/or a molecule that conjugates with a lipid or other molecule that binds albumin. In an embodiment, an FGFR-HSA fusion molecule may be prepared as described herein and as further described in U.S. Pat. No. 6,686,179 with respect to an interferon alpha-HSA fusion molecule.


Dimeric FGFR Fusion Proteins


The invention provides FGFR fusion proteins, wherein the fusion partner comprises an FGFR extracellular domain or active fragment thereof. For example, the fusion protein may comprise two FGFR1, FGFR2, FGFR3, or FGFR4 extracellular domains or biologically active fragments thereof. The fusion molecule may also comprise heterologous combinations of two different FGFR extracellular domains or biologically active fragments thereof, as described in greater detail above.


In an embodiment, the FGFR fusion protein comprises an extracellular domain of an FGFR and/or one of its active fragments and further comprises a fusion partner comprising a dimerization domain as well as an FGFR extracellular domain. When the fusion partner comprises a dimerization domain, such as an Fc domain or an active fragment thereof, the FGFR fusion protein expressed in a mammalian cell expression system may naturally form a dimer during the production process.


Fusion Proteins with Pegylated Moieties


In addition to the recombinant molecules described above, the invention provides an FGFR fusion molecule, wherein the fusion partner comprises a polymer, such as a polyethylene glycol (PEG) moiety. PEG moieties of the invention may be branched or linear chain polymers. In an embodiment, the present invention contemplates a chemically derivatized polypeptide which includes mono- or poly- (e.g., 2-4) PEG moieties. Pegylation may be carried out by any of the pegylation reactions known in the art. Methods for preparing a pegylated protein product are generally known in the art. Optimal reaction conditions will be determined on a case by case basis, depending on known parameters and the desired result.


There are a number of PEG attachment methods available to those skilled in the art, for example, EP 0 401 384; Malik et al., Exp. Hematol., 20:1028-1035 (1992); Francis, Focus on Growth Factors, 3:4-10 (1992); EP 0 154 316; EP 0 401 384; WO 92/16221; WO 95/34326; and the other publications cited herein that relate to pegylation.


Pegylation may be performed via an acylation reaction or an alkylation reaction with a reactive polyethylene glycol molecule. Thus, protein products of the present invention include pegylated proteins wherein the PEG groups are attached via acyl or alkyl groups. Such products may be mono-pegylated or poly-pegylated (for example, those containing 2-6 or 2-5 PEG groups). The PEG groups are generally attached to the protein at the α- or ε-amino groups of amino acids, but it is also contemplated that the PEG groups could be attached to any amino group attached to the protein that is sufficiently reactive to become attached to a PEG group under suitable reaction conditions.


Pegylation by acylation generally involves reacting an active ester derivative of PEG with a polypeptide of the invention. For acylation reactions, the polymer(s) selected typically have a single reactive ester group. Any known or subsequently discovered reactive PEG molecule may be used to carry out the pegylation reaction. An example of a suitable activated PEG ester is PEG esterified to N-hydroxysuccinimide (NHS). As used herein, acylation is contemplated to include, without limitation, the following types of linkages between the therapeutic protein and a polymer such as PEG: amide, carbamate, urethane, and the like, see for example, Chamow, Bioconjugate Chem., 5:133-140 (1994). Reaction conditions may be selected from any of those known in the pegylation art or those subsequently developed, but should avoid conditions such as temperature, solvent, and pH that would inactivate the polypeptide to be modified.


Pegylation by acylation will generally result in a poly-pegylated protein. The connecting linkage may be an amide. The resulting product may be substantially only (e.g., >95%) mono, di- or tri-pegylated. However, some species with higher degrees of pegylation may be formed in amounts which depend on the specific reaction conditions used. If desired, more purified pegylated species may be separated from the mixture (particularly unreacted species) by standard purification techniques, including among others, dialysis, salting-out, ultrafiltration, ion-exchange chromatography, gel filtration chromatography, and electrophoresis.


Pegylation by alkylation generally involves reacting a terminal aldehyde derivative of PEG with a polypeptide in the presence of a reducing agent. For the reductive alkylation reaction, the polymer(s) selected should have a single reactive aldehyde group. An exemplary reactive PEG aldehyde is polyethylene glycol propionaldehyde, which is water stable, or mono C1-C10 alkoxy or aryloxy derivatives thereof, see for example, U.S. Pat. No. 5,252,714.


Variant and Mutant Polypeptides

The FGFR fusion proteins of the invention can be made by protein engineering to improve or alter the native characteristics of FGFR fusion proteins. Recombinant DNA technology known to those skilled in the art can be used to create novel mutant proteins or “muteins,” including single or multiple amino acid substitutions, deletions, and additions. Such modified polypeptides can possess properties desirable in a therapeutic agent, such as enhanced activity or increased stability. In addition, they may be purified in higher yields and be more water-soluble than the corresponding natural polypeptide, at least under certain purification and storage conditions.


FGFR ECD Mutants

As mentioned above, the invention provides polypeptide fusion molecules having one or more residues deleted from the amino and/or carboxyl terminus of the amino acid sequences of the FGFR extracellular domains. For example, the invention provides deletion mutations of FGFR extracellular domains with deletions in the C-terminal region. The invention provides deletion mutants missing one or more amino acids in the region N-terminally adjacent to the transmembrane domain.


In an embodiment, the invention provides FGFR fusion proteins comprising variants of the ECD of wildtype FGFR polypeptides, where the variants have deletions or point mutations in the C-terminus of the ECD, for example, in the region of the MMP-2 cleavage site. These variants may be more resistant to cleavage by MMP-2 than wildtype FGFR extracellular domains. In an embodiment, the invention provides FGFR extracellular domains which are deletion mutants that have the MMP-2 cleavage site removed and which are more resistant to cleavage by MMP-2 than wildtype FGFR extracellular domains. For example, the invention provides deletion mutants of the FGFR extracellular domains in that region at the C-terminus of the IgIII domain and N-terminal to the Fc domain. Any one or more amino acids of any of the seven FGFR extracellular domains in this region may be deleted or, otherwise mutated. By way of example, the invention provides deletion mutants of FGFR1, FGFR2, FGFR3, and FGFR4 corresponding to R1Mut1, R1Mut2, R1Mut3, and R1Mut4, shown in FIG. 1A; R1Mut7, as shown in FIG. 1B; and R4Mut1, R4Mut2, R4Mut3, R4Mut4, and R4Mut5, as shown in FIG. 2. These variants, as well as their parental, unmutated polypeptides, all bind at least one FGF ligand. The ligand-binding characteristics of these mutants, as well as their parent FGFRs, can be determined by binding assays known in the art.


In an embodiment, the invention provides an FGFR fusion molecule comprising a first molecule that comprises one or more soluble extracellular domain of an FGFR and/or a biologically active fragment thereof and a second molecule, wherein the second molecule confers an extended half-life to the first molecule in an animal, wherein the second molecule is other than a naturally occurring Fc polypeptide, and wherein the fusion molecule is a variant Fc polypeptide.


When FGFR1-IIIc-Fc fusion protein was produced in host cells, injected into animals, and examined by gel electrophoresis, it was observed that FGFR1-IIIc-Fc was partially cleaved both in vivo and in vitro. Degraded fragments in the cell culture media and serum samples were consistent with the size of fragments predicted following cleavage of the Fc fusion partner from the fusion protein. MMP-2 added exogenously to FGFR1-IIIc-Fc in vitro reproduced the degraded fragments observed in the serum and culture medium.


Accordingly, the invention provides recombinant FGFR fusion proteins resistant to cleavage and with improved pharmacokinetic profiles compared to the naturally-occurring forms. For example, the invention provides FGFR fusion proteins that are more resistant to degradation both in vitro and in vivo. These FGFR fusion protein constructs may have single amino acid changes in the cleavage sites of serum proteases. They may also have global deletions of the cleavage sites. These constructs can be made by altering the naturally-occurring sequences using methods known to those of skill in the art. The invention also provides FGFR constructs wherein the junction between the extracellular domains and transmembrane domains of the receptor are modified to remove proteolytic degradation sites by methods known to those of skill in the art.


In addition to the deletion mutants described above, the invention provides single point mutants, such as substitution mutants resistant to MMP-2 cleavage. Natural substrates of MMP-2 have a preponderance of proline at the third residue N-terminal to the MMP-2 cleavage site, but have not been described to have either methionine or glycine residues at this site. Accordingly, the invention provides for point mutants corresponding to R1Mut8 (P364M), R1Mut9 (M367N), and R1Mut10 (P364G), such as shown in FIG. 1B, for example. P364M is expected to have a similar hydrophobicity profile and P364G is expected to have greater flexibility than wildtype. Also by way of example, the invention provides the M367N substitution mutation of the methionine of the MMP-2 cleavage site. Asparagine (N) has not been described in any natural or synthetic MMP-2 substrate, thus its substitution can be expected to attenuate or prevent cleavage by MMP-2. The M367N mutation also introduces a potential glycosylation site, namely, NTS into the FGFR1 ECD. If this glycosylation site is utilized by the host cell in vitro or in vivo, the N-linked sugars could further shield the FGFR1-IIIb or FGFR1-IIIc extracellular domain from proteolysis. The invention further provides the double variant of FGFR1-IIIb or FGFR1-IIIc, P364G/M367N. Any of the mutants of the invention may, optionally, comprise a linker sequence.


In addition to the deletion and substitution mutants of the FGFR fusion molecules described above, the invention provides insertion, inversion, and repeat mutants. Some amino acid sequences of FGFR fusion molecules can be varied without significant effect on the structure or function of the protein while others are critical for determining activity. Accordingly, the invention includes variations of the FGFR fusion proteins which show substantial FGFR polypeptide activity and/or which include regions of the FGFR extracellular domains. Mutants of the invention may have the receptor activity of wild-type FGFR or may have activities enhanced or reduced, or broadened with respect to FGF ligand binding capability, as compared to wildtype. Methods of making these mutants are generally known in the art.


Variations of the FGFR fusion proteins of the invention can be made and are included herein. Guidance concerning how to make phenotypically silent amino acid substitutions is provided by Bowie et al., Science 247:1306-1310 (1990). Genetic engineering techniques can be used to introduce amino acid changes at specific positions of the FGFR fusion protein and selections, or screens, can be used to identify sequences that maintain functionality.


For example, the art cited herein can be followed to produce proteins tolerant of amino acid substitutions. This art indicates which amino acid changes are likely to be permissive at a certain position of a protein. For example, most buried amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Typically conservative substitutions of the FGFR fusion proteins are tolerated, such as replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gln, exchange of the basic residues Lys and Arg, and replacements between the aromatic residues Phe and Tyr. Substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with desirable improved characteristics, such as less aggregation. Aggregation may not only reduce activity but also be problematic when preparing pharmaceutical formulations, because, for example, aggregates can be immunogenic (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36:838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems, 10:307-377 (1993)). As described above, the binding of FGF ligands to FGFRs is both selective and overlapping. Selected ligands bind to a particular FGFR, but more than one ligand can bind to a receptor and an FGF ligand may bind to multiple FGFR. Mutating amino acids in the FGFR fusion proteins of the invention can change the selectivity of FGF ligand binding to FGFRs.


Transgenic, Knockout, and Other Animals

The invention provides transgenic and knockout animals, respectively expressing exogenous FGFR and lacking endogenous FGFR, as well as animals injected with the FGFR fusion proteins of the invention or the nucleic acid molecules which encode them. Transgenic animals of the invention are generally made by expressing an FGFR fusion molecule as described herein with a vector comprising an exogenous promoter and an FGFR extracellular domain and targeting the vector to a predetermined locus, wherein the expression pattern of the FGFR fusion transgene is determined by the expression pattern of the exogenous promoter. Knockout mice are generally made by selectively inactivating endogenous FGFR and replacing it with a mutant allele.


Nonhuman animals of any species, including, but not limited to, mice, rats, rabbits, hamsters, guinea pigs, pigs, micro-pigs, goats, sheep, cows, and non-human primates, for example, baboons, monkeys, and chimpanzees, may be used to generate transgenic and knockout animals. In a specific embodiment, techniques described herein or otherwise known in the art, are used to express FGFR fusion molecules of the invention in humans, as part of a gene therapy protocol.


Any technique known in the art may be used to introduce an FGFR transgene into animals to produce a founder lines of transgenic animals. Known techniques may also be used to “knock out” endogenous FGFR genes. Techniques for producing transgenic and knockout mice include, but are not limited to, pronuclear microinjection (Paterson et al., Appl. Microbiol. Biotechnol. 40:691-698 (1994); Carver et al., Biotechnology (NY) 11:1263-1270 (1993); Wright et al., Biotechnology (NY) 9:830-834 (1991); and Hoppe et al., U.S. Pat. No. 4,873,191 (1989)); retrovirus mediated gene transfer into germ lines, blastocysts, or embryos (Van der Putten et al., Proc. Natl. Acad. Sci. 82:6148-6152 (1985)); gene targeting in embryonic stem cells (Thompson et al., Cell 56:313-321 (1989)); electroporation of cells or embryos (Lo, Mol. Cell. Biol. 3:1803-1814 (1983)); introduction of the polynucleotides of the invention using a gene gun (Ulmer et al., Science 259:1745 (1993)); introducing nucleic acid constructs into embryonic pluripotent stem cells and transferring the stem cells back into the blastocyst; and sperm-mediated gene transfer (Lavitrano et al., Cell 57:717-723 (1989). For a review of such techniques, see Gordon, Intl. Rev. Cytol. 115:171-229 (1989); U.S. Pat. No. 5,464,764 (Capecchi et al.); U.S. Pat. No. 5,631,153 (Capecchi et al.); U.S. Pat. No. 4,736,866 (Leder et al.); and U.S. Pat. No. 4,873,191 (Wagner et al.). Any technique known in the art may be used to produce transgenic clones containing polynucleotides of the invention, for example, nuclear transfer into enucleated oocytes of nuclei from cultured embryonic, fetal, or adult cells induced to quiescence (Campbell et al., Nature 380:64-66 (1996); Wilmut et al., Nature 385:810-813 (1997)).


Gene targeting can be used to integrate the FGFR transgene into the chromosomal site of an endogenous gene. Briefly, vectors comprising nucleotide sequences homologous to the endogenous gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous gene. The FGFR transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous FGFR gene in only that cell type, by following, for example, the teaching of Gu et al., Science 265:103-106 (1994). The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.


The expression of the recombinant FGFR transgene or knockout allele may be assayed in the animals of the invention using standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to verify that integration of the transgene or null allele has taken place. The level of mRNA expression of the transgene or null allele in animal tissues may be assessed using techniques which include, but are not limited to, Northern blot analysis, in situ hybridization analysis, and reverse transcriptase-PCR (RT-PCR). Samples of FGFR transgene-expressing or FGFR null tissue may also be evaluated immunocytochemically or immunohistochemically using specific antibodies.


The invention provides transgenic animals which carry an FGFR transgene in all their cells, as well as animals which carry the transgene in some of their cells, such as mosaic or chimeric animals. The transgene may be integrated as a single transgene or as multiple copies, such as in concatamers, for example, head-to-head tandems or head-to-tail tandems. An FGFR transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al., Proc. Natl. Acad. Sci. 89:6232-6236 (1992)). The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.


Founder transgenic animals may be bred, inbred, outbred, or crossbred to produce colonies of a particular animal. Examples of such breeding strategies include, but are not limited to, outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels because of the effects of additive expression of each transgene; crossing heterozygous transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the transgene on a distinct background appropriate to an experimental model of interest.


In an embodiment, the FGFR fusion proteins of the invention are expressed in transgenic non-human animals produced by the method described in WO 03/020743. In this method, a cassette including a transgene of interest is targeted to one or more predetermined loci, including loci expressed in most or all cell types. The cassette can function as an autonomous unit, directing the expression of the transgene and optional regulatory or accessory genes in the cassette. The transgene is expressed under the control of the exogenous promoter within the cassette. Thus, the expression pattern of the transgene is determined by the nature of the exogenous promoter.


Transgenic and knock-out animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of FGFRs, studying conditions and/or disorders associated with aberrant expression of FGFRs, and in screening for compounds effective in modifying or ameliorating these conditions and/or disorders.


Animals comprising the nucleic acid molecules or the FGFR fusion proteins of the invention are those that have been injected with either the FGFR fusion protein or the nucleic acid construct, such as by hydrodynamic tail vein transfection method, and such as using the mini-circle vector construct previously described.


FGFR Fusion Proteins as Decoy Receptor Traps

The FGFR fusion proteins of the invention can function as decoy receptors for trapping FGF ligands and inhibiting their interaction with FGFR on cell surfaces. Decoy receptors, such as those of the invention, recognize their ligands with high affinity and specificity but are structurally incapable, of signaling. They compete with wild-type receptors for ligand binding and participate in ligand/receptor interactions, thus modulating the activity of or the number of functioning receptors and/or the cellular activity downstream from the receptors. Decoy receptors can act as molecular traps for agonist ligands and thereby inhibit ligand-induced receptor activation.


Prior to the teachings of the present invention, it was not known whether tumors or proliferative cells are dependent on FGF growth factors in vivo or which FGF ligand may be blocked in order to inhibit tumor progression or cell proliferation. Furthermore, it has not been previously reported that the ability to block FGF-induced proliferation correlates with lowered levels of FGFR activation.


The FGFR fusion proteins of the invention can be used in combination with other decoy receptor traps. Etanercept (Enbrel®) is an example of a genetically engineered decoy receptor trap comprising a fusion protein of the extracellular ligand-binding domain of the human TNF-α receptor and the Fc region of human IgG1. It acts as a decoy by competitively inhibiting TNF-α binding to naturally-occurring TNF-α receptors on the cell-surface, thus inhibiting TNF-α induced proinflammatory activity. Etanercept acts as a cytokine “sponge” and TNF-α antagonist, rendering TNF-α biologically inactive (Goldenberg et al., Clin. Ther. 21:75-87 (1999)). It is used to treat rheumatoid arthritis, juvenile rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis.


The FGFR fusion proteins of the invention can also be used with a VEGF Trap, which is another example of a soluble recombinant decoy fusion protein, and is currently in clinical trials. A genetically engineered fusion protein of one or more extracellular ligand-binding domain of the human vascular endothelial growth factor (VEGF) receptor and the Fc region of human IgG1, the VEGF Trap inhibits angiogenesis by acting as a decoy for naturally-occurring cell surface VEGF receptors. By inhibiting angiogenesis, VEGF decoys can shrink tumors which rely on angiogenesis for their viability. The biological activity of the decoy trap depends on the portion of the receptor used in the trap. For example, a fusion protein of the first three Ig domains of the VEGFR1 receptor isoform and the Fc region of human IgG1 binds to VEGF with an affinity in the picomolar range and has potent anti-tumorigenic activity but a short in vivo half life and significant toxicity (Holash et al., Proc. Natl. Acad. Sci. 99:11,393-11,398 (2002)). VEGF decoy fusion proteins can be engineered to prolong the in vivo pharmacokinetic and pharmacodynamic profiles, minimize toxicities, and potently inhibit growth and vascularization. Removing a highly basic ten amino acid sequence from the third VEGF1 Ig domain, removing the entire first VEGF1 Ig domain, and fusing the second Ig domain of VEGFR1 with the third Ig domain of VEGFR2 have been reported to improve the clinical parameters (Holash et al., Proc. Natl. Acad. Sci. 99:11,393-11,398 (2002)). The combination of an FGFR fusion protein and the VEGF Trap can be more potent than either alone in inhibiting angiogenesis.


The invention provides FGFR decoy receptor trap fusion proteins and demonstrates that they inhibit the binding of ligands to FGFRs, as shown in greater detail below. The decoy fusion proteins sequester the ligands, preventing ligand-receptor binding. The ability of the FGFR receptor trap fusion proteins to inhibit receptor-ligand binding can be demonstrated using assays known in the art, for example, competition ELISA assays, as described in more detail below.


The invention provides FGFR decoy receptor traps as therapeutic agents. The FGFR decoy receptor traps of the invention bind to various FGFs, described in more detail herein, which have been demonstrated to be over-expressed in proliferative disease states, compared to normal. These traps can bind FGF ligand with very high affinity, for example, they may bind FGF-2 with a Kd of approximately 15 picomolar. Furthermore, these traps can interfere with FGF signaling in abnormal tissues. The FGFR1-IIIc-Fc and FGFR4-Fc traps of the invention, for example, can dampen the signaling of FGFR1-IIIc and FGFR4, and perhaps other members of the FGFR family (Zhang et al., J. Biol. Chem. 281:15, 694-15,700 (2006)).


Introducing gene trap vectors into embryonic stem cells has produced transgenic animal lines that reflect the gene expression patterns of receptor domains of interest (Coffin et al., Retroviruses Cold Spring Harbor Lab. Press (1997)). Accordingly, the invention provides the use of FGFR gene trap vectors to identify discrete expression patterns of FGFR genes during signal transduction events associated with normal and disease states. Constructs with a reporter gene but lacking a promoter are designed so that activation of the reporter gene depends on its insertion within an active transcription unit. Integration results in an expression pattern that reflects the pattern of the endogenous transcription unit. The reporter gene provides a molecular tag for cloning the “trapped” gene of the transcription unit. Reporter systems which can be used with gene trap vectors are known in the art. Following insertion, the tagged gene can be detected in space and time by assaying for the reporter gene product.


Real-Time Detection of Ligand-Receptor Binding

As described herein, FGFs are over-expressed in certain disease states. By acting as decoy receptor traps, FGFR fusion proteins attenuate the biological activities of the over-expressed FGFs. The profile of FGFs which bind to a particular FGFR fusion protein in vitro can predict the therapeutic profile of that fusion protein in vivo. Accordingly, the invention provides ligand-binding profiles for FGFR fusion proteins of the invention and methods of using FGFR fusion molecules of the invention to treat diseases that over-express FGF ligands.


The invention provides direct ligand-receptor binding measurements by surface plasmon resonance (SPR) using Biacore technology (Biacore; Piscataway, N.J.), which utilizes biosensor chips to measure binding interactions in real time (Dawson et al., Molec. Cell. Biol. 25:7734-7742 (2005)). The technology is based on SPR optical phenomena and detects changes in refractive index that occur close to a sensor chip's surface. One of the interacting components is immobilized on a flexible dextran layer linked to the sensor chip surface, and an interacting partner flows in solution across the surface. Interaction between the two components immobilizes the interacting partner, increasing the mass at the sensor chip surface. The increased mass results in an optical signal, which is recorded in resonance units (RU). One RU represents approximately one picogram of protein bound to the surface. Biacore technology has been described in U.S. Pat. Nos. 6,999,175 B2; 6,808,938 B2; and 5,641,640.


As described in more detail below, FGF ligand binding to fusion proteins of the invention was measured using the Biacore® X system to measure surface plasmon resonance (SPR). This method provided a ranking of the relative affinities of FGF ligands for the FGFR fusion proteins of the invention, for example, FGFR1-IIIc-Fc, R1Mut4, FGFR3-IIIc-Fc, and FGFR4-Fc. Accordingly, the invention provides a method of treating a disease characterized by one or more FGFs which are expressed at a higher level than normal by administering a binding FGFR fusion protein of the invention.


Biomarkers of FGFR Fusion Molecule Treatment

Biomarkers can be used to monitor the results of treating subjects with FGFR fusion proteins, including demonstrating efficacy as an end point in clinical trials. Suitable biomarkers will indicate that an FGF-FGFR signaling pathway is affected by the FGFR fusion protein. For example, FGF-2 is a suitable biomarker for FGFR1 because a decrease in FGF-2 levels in a subject treated with an FGFR1 fusion protein would indicate that the fusion protein bound FGF-2, sequestered it from active FGFRs, and thus demonstrated treatment efficacy.


Components of the FGFR signaling pathway may also serve as biomarkers to demonstrate treatment efficacy. For example, FGFRs produce intracellular responses to extracellular ligand binding by intracellular signaling. FGF binding to the extracellular domain of the intact transmembrane receptor activates the catalytic tyrosine kinase domain present on the cytoplasmic portion of the receptor. The ligand induces the FGFR to autophosphorylate a cytoplasmic tyrosine residue, which then serves as part of a high-affinity binding site for intracellular signaling proteins. One group of these signaling proteins, the extracellular signal regulated kinases (Erks), also known as mitogen-activated protein (MAP) kinases, become activated when FGFR phosphorylates a threonine and a nearby tyrosine on the Erk protein. Reportedly, ligand binding to cell surface FGFRs initiate a signal transduction cascade that includes the phosphorylation of Erk to phospho-Erk (pErk). Erk activation therefore provides a biomarker for FGFR fusion molecule treatment by providing a measurement of FGFR intracellular signaling activity, which can be quantified by measuring the phosphorylation of the threonine and tyrosine residues. Erk activation can be determined by methods known in the art and demonstrated in more detail below. Commercial reagents are available that detect Erk immunologically from cell lysates. ELISA and/or Western blot analyses can be performed using these reagents to identify and measure phosphorylated Erk by methods well-known in the art.


Other biomarkers may also be used to monitor FGFR fusion protein treatment by providing a measurement of the FGFR signaling pathway. For example, a reduction in phosphorylated FGFR (pFGFR), or a reduction of the basal phosphorylation level of fibroblast growth factor receptor substrate 2 (pFRS2) and/or dual specificity phosphatase (DSP) would indicate efficacious treatment with FGFR fusion proteins.


FGFR Fusion Proteins Inhibit the Viability and/or Proliferation of Proliferative Cells


Proliferative cells often depend on extracellular signaling by growth factors for their survival and growth. The FGFR fusion proteins of the invention can inhibit the viability and/or the proliferation of cancer cells and other proliferative cells both in vitro and in vivo. Accordingly, the invention provides methods of inhibiting viability and/or proliferation of proliferative cells, methods of inhibiting angiogenesis, and methods of treating cancer in a subject by providing an FGFR fusion protein, as described herein, and administering the fusion protein to the subject. The effect of FGFR fusion proteins on cell viability and/or proliferation in vitro was examined on cultured tumor cells and their effects on tumor cell viability and proliferation in vivo was examined in an animal tumor model.


The CellTiter-Glo™ Luminescent Cell Viability Assay (Promega; Madison, Wis.), which was designed to measure the number of viable cells in culture (Sussman et al., Drug Disc. Dev. 5:71-71 (2002), was used herein to determine cell viability and proliferation. Cellular adenosine triphosphate (ATP) levels indicate cell viability; ATP levels drop rapidly when the cell loses viability. The assay uses a stable form of firefly luciferase to measure ATP as an indicator of metabolically active, i.e., viable, cells. The luciferase converts beetle luciferin to luciferin oxide in the presence of ATP, magnesium, and oxygen. The resulting luminescent signal is proportional to the number of viable cells present in the culture and can be detected with a luminometer or CCD camera. Because the signal is proportional to cell number, it measures both viability and proliferation. Under stated media and serum conditions, the assay is linear over a wide range of cell numbers.


The invention provides methods of using the FGFR fusion proteins of the invention to inhibit the viability and/or proliferation of multiple proliferative cell types, whether dysplastic cells, premalignant cells or malignant tumor cells; methods to inhibit the viability and/or proliferation of other cell types, such as endothelial cells; and methods to inhibit angiogenesis, in vitro, ex vivo, or in vivo. As described in more detail below, FGFR fusion proteins of the invention can be used to inhibit a wide variety of cancer cell types, including lung, kidney, brain, breast, liver, ovarian, prostate, and/or colorectal cancer cells, for example. The FGFR fusion proteins of the invention each have different specificities to different cancer cell types, as shown in greater detail below, and can be used to treat different tumor types depending on such specificities.


For example, the FGFR fusion proteins of the invention, such as FGFR1-IIIc-Fc fusion proteins, can be used to inhibit the viability and/or proliferation of malignant human glioma cells (for example, U251 cells); malignant human brain cancer cells (for example, SF268 cells); human lung cancer cells (for example, A549 cells); malignant lung non-squamous carcinoma cells (for example, NCI-H522 and NCI-H226 cells); malignant glioblastoma cells (for example, U118 and WT111 cells); and malignant kidney cells (for example, Caki-1 cells).


The invention also provides methods for using FGFR fusion proteins of the invention to inhibit the proliferation of tumor cells and other proliferative cells, such as endothelial cells, in vivo. This in vivo activity can be demonstrated by administering the FGFR fusion protein of the invention to inhibit in vivo formation of tumors in animal xenograft models. As shown herein, FGFR1-IIIc-Fc effectively inhibited tumor growth in this model. Accordingly, the invention provides a method of inhibiting tumor growth and tumor cell proliferation in a subject by providing a composition comprising an FGFR fusion protein of the invention and administering the composition to the subject.


The invention provides methods of inhibiting viability and/or proliferation of proliferative cells, such as endothelial cells, under conditions in which the proliferation of such cells is not desirable. For example, macular degeneration and tumor angiogenesis are conditions under which excess growth of blood vessels, thus endothelial cells, is undesirable. Accordingly, the invention further provides methods of inhibiting angiogenesis by administering the FGFR fusion proteins of the invention to a subject in need of such treatment. As described in greater detail below, dosing schedules and dosing routes are generally known in the art; the latter may include intravenous, subcutaneous, intraperitoneal, and oral administration.


FGF and FGFR Expression in Human Cancers

Gene amplification is among the mechanisms of oncogene activation that can lead to specific types of cancers. The invention provides an analysis of the gene expression profile of breast cancer tissues residing in the proprietary GeneLogic database, and the finding that the FGFR1 gene was amplified in 10-15% of breast cancer patients. As described herein, such gene amplification has implications for tumor cell growth and/or survival, thus interrupting signaling between an FGFR and an FGF ligand is a useful approach to inhibiting tumor growth.


The invention also provides further analysis of the expression profiles of different tumor types resident in the proprietary GeneLogic database for FGF and FGFR expression, and the finding that certain tumors expressed a higher level of FGFR1, FGFR3, and/or FGFR4. The invention further provides that certain tumors expressed a higher level of certain FGF ligands, implicating active FGF/FGFR signaling pathways in maintaining the viability and/or proliferative capacity of the cancer cells or the endothelial cells feeding the cancer cells. Information relating to the tumor types that over-express an FGFR and/or an FGF is provided in the tables below.


Accordingly, the invention provides methods and compositions for FGFR fusion proteins which are suitable for use in treating proliferative diseases characterized by over-expression of an FGFR, FGF, or both. The analysis performed herein and described in greater detail in the Examples, provides the FGFR and FGF gene expression profiles of various hyperproliferative tissues. Thus, the over-expression of the FGFRs and their ligands are correlated with particular disease states. The FGFR fusion proteins of the invention are efficacious in treating the diseases in which the FGFR component, or its ligand, is over-expressed.


Therapeutic Compositions and Formulations

Routes of Administration and Carriers


The FGFR fusion molecules of the invention can be administered in vivo by a variety of routes, including intravenous, intra-arterial, subcutaneous, parenteral, intranasal, intramuscular, intracardiac, intraventricular, intratracheal, buccal, rectal, intraperitoneal, intradermal, topical, transdermal, and intrathecal, or otherwise by implantation or inhalation. They may be administered in formulations, as described in more detail below. They may be administered in powder form intranasally or by inhalation. They may be administered as suppositories, for example, as formulated by mixing with a variety of bases, such as emulsifying bases, water-soluble bases, cocoa butter, carbowaxes, and polyethylene glycols; which melt at body temperature, yet are solidified at room temperature. Jet injection can be used for intramuscular or intradermal administration (Furth et al., Anal. Biochem. 205:365-368 (1992)). The DNA can be coated onto gold microparticles and delivered intradermally by a particle bombardment device, or “gene gun” as described in the literature (Tang et al., Nature 356:152-154 (1992)), where gold microprojectiles are coated with the DNA, then bombarded into skin cells. These methods of in vivo administration are known in the art.


In some embodiments, fusion molecule compositions are provided in formulation with pharmaceutically acceptable carriers, a wide variety of which are known in the art (Gennaro, Remington; The Science and Practice of Pharmacy with Facts and Comparisons: Drugfacts Plus, 20th ed. (2003); Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery Systems, 7th ed., Lippencott Williams and Wilkins (2004); Kibbe et al., Handbook of Pharmaceutical Excipients, 3rd ed., Pharmaceutical Press (2000)). Pharmaceutically acceptable carriers, such as vehicles, adjuvants, carriers, or diluents, are available to the public. Moreover, pharmaceutically acceptable auxiliary substances, such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are available to the public.


The fusion molecules of the invention may be employed in combination with a suitable pharmaceutical carrier to comprise a pharmaceutical composition for parenteral administration. Accordingly, the invention provides a composition comprising an FGFR fusion molecule of the invention and a pharmaceutically acceptable carrier. Such compositions comprise a therapeutically effective amount of the polypeptide, agonist, or antagonist and a pharmaceutically acceptable carrier. Such a carrier includes, but is not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The formulation should suit the mode of administration.


In pharmaceutical dosage, the FGFR fusion molecule compositions can be administered in the form of their pharmaceutically acceptable salts, either alone or in appropriate association or combination with other pharmaceutically active compounds. The FGFR fusion molecule compositions are formulated in accordance with the mode of administration. Thus, the subject compositions can be formulated into preparations in solid, semi-solid, liquid, or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, enemas, injections, inhalants, and aerosols. The methods and excipients cited herein are merely exemplary and are in no way limiting.


The agents, polynucleotides, and polypeptides can be formulated into preparations for injection by dissolving, suspending, or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives. They may be formulated into preparations for administration via inhalation, for example as formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen, and the like. The FGFR fusion proteins of the invention can be formulated into a sustained release microcapsules, such as with biodegradable or non-biodegradable polymers, using techniques known in the art. An example of a biodegradable formulation suitable for use herein includes poly lactic acid-glycolic acid polymer. An example of a non-biodegradable formulation suitable for use herein includes a polyglycerin fatty acid ester. A method of making these formulations is described in, for example, EP 1 125 584 A1. Other formulations for parenteral delivery can also be used, as conventional in the art.


The FGFR fusion molecule compositions will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual subject, the site of delivery of the fusion molecule composition, the method of administration, the scheduling of administration, and other factors known to practitioners. The effective amount of FGFR fusion molecule for purposes herein is thus determined by such considerations.


The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of effective doses of the pharmaceutical FGFR fusion protein compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals or biological products. Such a notice reflects the agency's approval for manufacture, use, or sale for human administration. In addition, the FGFR fusion molecules of the invention may be employed in conjunction with other therapeutic agents.


Unit dosage forms can be provided wherein each dosage unit contains a predetermined amount of the composition containing one or more agents. In an embodiment, an FGFR fusion molecule composition is supplied in single-use prefilled syringes for injection. The composition may comprise saline, sucrose, or the like; a buffer, such as phosphate, or the like; and be formulated within a stable and effective pH range. In an embodiment, an FGFR fusion molecule composition is provided as a lyophilized powder in a multiple-use vial, which can be reconstituted upon addition of an appropriate liquid, for example, sterile bacteriostatic water. In an embodiment, an FGFR fusion molecule composition comprises one or more substances that inhibit protein aggregation, including, but not limited to, sucrose or arginine. In an embodiment, a composition of the invention comprises heparin and/or a proteoglycan.


These pharmaceutical compositions are administered in an amount effective for treatment and/or prophylaxis of the specific indication. The effective amount is typically dependent on the weight of the subject being treated, his or her physical or health condition, the extensiveness of the condition to be treated, and/or the age of the subject being treated. In general, the FGFR fusion proteins of the invention are to be administered in an amount in the range of about 5 ug/kg body weight to about 10 mg/kg body weight per dose. Optionally, the FGFR fusion proteins of the invention can be administered in an amount in the range of about 10 ug/kg body weight to about 9 mg/kg body weight per dose. Further optionally, the FGFR fusion proteins of the invention can be administered in an amount in the range of about 100 ug/kg body weight to about 8 g/kg body weight per dose. Still optionally, the FGFR fusion proteins of the invention can be administered in an amount in the range of about 1 mg/kg body weight to about 7 mg/kg body weight per dose.


The FGFR fusion protein compositions can be administered as needed to subjects in need of inhibition of FGF ligand/FGFR signaling pathway. Determination of the frequency of administration can be made by persons skilled in the art, such as an attending physician based on considerations of the condition being treated, age of the subject being treated, severity of the condition being treated, general state of health of the subject being treated and the like. In one embodiment, an effective dose of the FGFR fusion protein is administered to a subject one or more times. In one embodiment, the FGFR fusion protein of the invention is administered to the subject at least twice a week for at least a week. In another embodiment, the FGFR fusion protein is administered at least three times a week for at least one week. In a further embodiment, the FGFR fusion protein is administered to the subject for at least two weeks. In yet another embodiment, the FGFR fusion protein of the invention is administered to the subject for at least three weeks. Administration of the FGFR fusion protein can be continuously for at least two or three weeks or can be non-continuous, such as taking a one or two week break from treatment and resuming treatment after such break.


Combination Therapy


FGFR fusion molecules of the invention may be administered alone or with other modes of treatment. They may be provided before, substantially contemporaneous with, or after other modes of treatment, for example, surgery, chemotherapy, radiation therapy, or the administration of a biologic, such as a therapeutic antibody. Accordingly, the invention provides a method of combining treatment which blocks the signaling pathways utilized by fibroblast growth factors and receptors with treatment which blocks the signaling pathways utilized by other growth factors, which can be expected to be more effective in patients with tumors that express FGFs and/or FGFRs, as well as other growth factors and/or their receptors. This therapeutic approach can be applied to rapidly growing tumors and highly vascularized tumors, for example, glioblastomas. FGFR fusion molecules of the invention can be used in combination with fusion molecules of other growth factor receptors. For example, the FGFR fusion protein of the invention can be combined with a soluble VEGFR to inhibit tumor growth and/or to inhibit angiogenesis in tumors.


Further, the invention provides combination therapy that blocks the FGF and other signaling pathways such as PDGF, VEGF, and/or EGF signaling pathways. The FGFR fusion molecules of the invention can be used in such combination therapy. One or more of the agents that inhibit PDGFR-alpha, PDGFR-beta, VEGFR, and/or EGF receptors can be combined with FGFR fusion proteins of the invention for therapeutic use. The compositions that block the FGF signaling pathways may be provided simultaneously or may be provided sequentially in any order with compositions that block the PDGF, VEGF, and/or EGF signaling pathways. Combination therapy may include the use of fusion proteins comprising the extracellular domains of PDGFR-alpha, PDGFR-beta, VEGFR, EGFR, and the FGFR fusion proteins of the invention.


Uses of FGFR Fusion Molecules


FGFR fusion molecules of the invention, and fragments and variants thereof, may be used to diagnose, provide a prognosis for, prevent, treat, and develop treatments for disorders mediated, either directly or indirectly, by hyperactive or excess FGF ligand or FGFR. FGFR fusion molecules of the invention, and fragments and variants thereof, may be administered to a patient at risk for or suffering from such a disorder.


Accordingly, the invention provides a method of diagnosing a disease characterized by the over-expression of one or more FGF and/or FGFR, or a fragment or variant thereof, by measuring the real-time receptor ligand binding of one or more FGF to one or more FGFR. The method can be performed, for example, by providing a biological specimen from a subject, and measuring the binding of an FGF ligand or FGFR in the specimen to one or more cognate FGFR or FGF ligands. The results of the binding measurements can be used to diagnose the presence or absence of a disease characterized by the over-expression of the FGF(s) or FGFR(s).


The invention also provides a method of treating a condition in a subject comprising providing a composition comprising an FGFR fusion molecule of the invention and administering the composition to the subject, wherein the condition comprises a proliferative disease, including cancers and disorders of angiogenesis. The FGFR fusion molecules of the invention are useful for inhibiting cancer cell proliferation and/or viability. The FGFR fusion molecules of the invention can be used accordingly in a variety of settings for the treatment of animal, including human, cancers.


The FGFR fusion molecules of the invention can be used to treat, modulate, or prevent malignant, pre-malignant, and benign tumors. For example, they can treat metastasizing or non-metastasizing malignant tumors, which are typically at an advanced stage of tumor development, and may be life threatening. They can also be used to treat pre-malignant tumors, which are typically at a more advanced stage of tumor development than benign tumors, but have not progressed to malignancy. They can further be used to treat benign tumors, which typically show some abnormal cell characteristics and are at an early stage in tumor development. The benign tumor may or may not progress to a pre-malignant or malignant tumor. The FGFR fusion molecules of the invention can be used to treat solid tumors formed by a collection of cells typically localized in a tissue or organ, for example, sarcomas and carcinomas such as, but not limited to fibrosarcomas, myxosarcomas, liposarcomas, chondrosarcomas, osteogenic sarcomas, chordomas, angiosarcomas, endotheliosarcomas, lymphangiosarcomas, lymphangioendotheliosarcomas, synoviomas, mesotheliomas, Ewing's tumors, leiomyosarcomas, rhabdomyosarcomas, colon carcinomas, colorectal cancers, gastic cancers, pancreatic cancers, breast cancers, ovarian cancers, prostate cancers, squamous cell carcinomas, basal cell carcinomas, adenocarcinomas, sweat gland carcinomas, sebaceous gland carcinomas, papillary carcinomas, papillary adenocarcinomas, cystadenocarcinomas, medullary carcinomas, bronchogenic carcinomas, renal cell carcinomas, hepatomas, liver metastases, bile duct carcinomas, choriocarcinomas, seminomas, embryonal carcinomas, thyroid carcinomas such as anaplastic thyroid cancers, Wilms' tumors, cervical cancers, testicular tumors, lung carcinomas such as small cell lung carcinomas and non-small cell lung carcinomas, bladder carcinomas, epithelial carcinomas, gliomas, astrocytomas, medulloblastomas, craniopharyngiomas, ependymomas, pinealomas, hemangioblastomas, acoustic neuromas, oligodendrogliomas, meningiomas, melanomas, neuroblastomas, and retinoblastomas. Also among the cancers within the scope of the invention are hematologic malignancies, breast cancer, such as infiltrating ductal carcinoma and adenocarcinoma; lung cancer, such as squamous cell carcinoma, non-small cell lung cancer, and lung adenocarcinoma; prostate cancer; bladder cancer; pancreatic cancer; ovarian cancer, salivary cancer; pituitary cancer; renal cell carcinoma; melanoma; glioblastoma; retinoblastoma; and/or cancer metastases in bone, including bone metastasis from prostate cancer.


Tumors comprising dysproliferative changes, such as hyperplasias, metaplasias, and dysplasias, can be treated, modulated, or prevented with the present invention as well, such as those found in epithelial tissues, including the cervix, esophagus, and lung, for example. Hyperplasia is a form of controlled cell proliferation involving an increase in cell number in a tissue or organ, without significant alteration in structure or function. By way of example, endometrial hyperplasia often precedes endometrial cancer. Metaplasia is a form of controlled cell growth in which one type of adult or fully differentiated cell substitutes for another type of adult cell. Metaplasia can occur in epithelial or connective tissue cells. Atypical metaplasia involves a somewhat disorderly metaplastic epithelium. Dysplasia is frequently a forerunner of cancer, and is found mainly in the epithelia; it is a disorderly form of non-neoplastic cell growth, involving losses in individual cell uniformity and in the cell's architectural orientation. Dysplasia characteristically occurs where there exists chronic irritation or inflammation and is often found in the cervix, respiratory passages, oral cavity, and gall bladder. Other examples of benign tumors which can be treated, modulated or prevented in accordance with the present invention include arteriovenous (AV) malformations, particularly in intracranial sites and myoleomas.


The FGFR fusion molecules of the invention, or variants or fragments thereof, can be used to treat cancer patients sensitive to the effects of FGFR signaling. They are useful in a subset of patients that over-express FGFR1 and/or FGF-2, for example, subsets of patients with breast cancer, lung cancer, kidney cancer, prostate cancer, and glioblastoma. Treatment effectiveness can be assessed, for example, by measuring the patient's level of a biomarker, for example, FGF-2, pFGFR, DSP, and/or pFRS2 (Guddo et al., Hum. Pathol. 30:788-794 (1999)), as described above.


The invention also provides compositions and methods for treating glioblastoma, a rapidly growing and highly vascularized tumor. Platelet-derived growth factor (PDGF) is expressed at high levels in many human glioblastomas. Further, in addition to their role in promoting tumor cell growth and survival, FGFs are potent angiogenic factors which may be expected to promote the growth of highly vascular tumors, such as glioblastomas. Blocking the effects of PDGF on cell growth or survival together with blocking the FGF signaling pathway with the FGFR fusion protein of the invention may thus retard the progression of glioblastoma development.


FGF-2 and FGFR1 are expressed in the tumor cells and the tumor-associated stromal cells and vessels of patients with non-small cell lung cancer. The FGFR fusion proteins of the invention, such as FGFR1-IIIc-Fc or R1Mut4, for example, can be administered to such patients to block growth stimulation by FGF-2 binding to FGFR1 and inhibit tumor growth.


Stromal-epithelial interactions are important determinants of malignant vs. benign prostatic growth (Conte et al., Int. J. Cancer 107:1-10 (2003)). Prostate cancer, and also breast cancer, kidney cancer, and multiple myeloma, tend to metastasize to the bone. While breast cancer bone metastases tend to form lytic bone lesions, prostate cancer metastases tend to form blastic lesions characterized by an excess of abnormally dense bone. Further interaction of prostate cancer metastases with the local bone environment may then alter normal bone homeostasis, shifting it toward an osteoblastic phenotype. Kidney metastases may exhibit both lytic and blastic bone lesions.


Since FGFs contribute to normal bone formation and are expressed locally in the bone stromal environment, they may play a role in seeding, growth, and survival of prostate cancer bone metastases. FGFs have been implicated in bone formation, affecting osteoprogenitor cell replication, osteoblast differentiation, and apoptosis. Thus, agents which block FGF/FGFR interactions, including FGFR fusion molecules of the invention, or variants or fragments thereof, can be used to treat bone metastases in prostate cancer. Such agents will not only inhibit local osteoblastic conversion events, but also inhibit initial seeding, growth, and survival of prostate cancer bone metastases.


The invention also provides methods of using FGFR fusion proteins of the invention, or variants or fragments thereof, to inhibit angiogenesis, for example, in tumorigenesis and macular degeneration. By way of example, fusion proteins comprising FGFR1-IIIc and/or FGFR4 may be used to bind undesirable proangiogenic FGFs and decrease angiogenesis. Useful compositions include those comprising fusion molecules comprising the fusion proteins of the invention as described herein, including those with Fc fusion partners.


The invention provides methods of treating cancers resistant to other cancer therapeutic agents. For example, the FGFR fusion proteins of the invention can be used to treat cancers resistant to ErbB oncogene inhibitors, such as Herceptin®. They are also useful in treating cancers resistant to inhibitors of VEGF, such as Avastin®.


The FGFR fusion proteins and the polynucleotide molecules that encode them are useful in treating proliferative diseases and diseases involving angiogenesis, including cancer. They can be used to diagnose, prevent, and treat these diseases.


With respect to ranges of values, the invention encompasses each intervening value between the upper and lower limits of the range to at least a tenth of the lower limit's unit, unless the context clearly indicates otherwise. Further, the invention encompasses any other stated intervening values. Moreover, the invention also encompasses ranges including either or both of the upper and lower limits of the range, unless specifically excluded from the stated range.


Unless defined otherwise, the meanings of all technical and scientific terms used herein are those commonly understood by one of skill in the art to which this invention belongs. One of skill in the art will also appreciate that any methods and materials similar or equivalent to those described herein can also be used to practice or test the invention.


It must be noted that, as used herein and in the appended claims, the singular forms “a,” “or,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a subject polypeptide” includes a plurality of such polypeptides and reference to “the agent” includes reference to one or more agents and equivalents thereof known to those skilled in the art, and so forth.


Further, all numbers expressing quantities of ingredients, reaction conditions, % purity, polypeptide and polynucleotide lengths, and so forth, used in the specification and claims, are modified by the term “about,” unless otherwise indicated. Accordingly, the numerical parameters set forth in the specification and claims are approximations that may vary depending upon the desired properties of the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits, applying ordinary rounding techniques. Nonetheless, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors from the standard deviation of its experimental measurement.


The specification is most thoroughly understood in light of the references cited herein. Each of these references is hereby incorporated by the reference in its entirety.


EXEMPLARY MODES FOR CARRYING OUT THE INVENTION

The examples, which are intended to be purely exemplary of the invention and should therefore not be considered to limit the invention in any way, also describe and detail aspects and embodiments of the invention discussed above. The examples are not intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (for example, amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.


Example 1
Sequence Alignment of Partial IgIII Domains and the Membrane Proximal Regions of FGFRs and FGFR Variants


FIG. 1A shows an alignment of the amino acid sequences of a part of the IgIII domain of each of the seven FGFR family members, FGFR1-IIIb, FGFR1-IIIc, FGFR2-IIIc, FGFR3-IIIb, FGFR3-IIIc, and FGFR4, using the Clustal W version 1.8 program of the European Molecular Biology Laboratory (EMBL) bioinformatics search site.



FIG. 1A also illustrates the organization of the parental FGFR1-IIIc-Fc fusion protein (nucleotide SEQ ID NO: 4, protein SEQ ID NO: 95) and corresponding mutants. The IgIII domain is followed by the C-terminal portion of the ECD, which is followed by the Fc portion of an antibody. The alignment marks the truncation locations of the R1Mut1 (nucleotide SEQ ID NO: 6, protein SEQ ID NO: 97), R1Mut2 (nucleotide SEQ ID NO: 7, protein SEQ ID NO: 98), R1Mut3 (nucleotide SEQ ID NO: 8, protein SEQ ID NO: 99), R1Mut4 (nucleotide SEQ ID NO: 9, protein SEQ ID NO: 100), and R1Mut5 (nucleotide SEQ ID NO: 10, protein SEQ ID NO: 101) variants of FGFR1-IIIc and the position of an Fc portion of an IgG antibody. R1Mut1, R1Mut2, R1Mut3, R1Mut4, and R1Mut5 also had the linker encoding amino acids “GS” removed from between the FGFR1-IIIc and Fc domains.



FIG. 1B illustrates additional variants from the parental FGFR1-IIIc-Fc, which were also made and used in the invention. The variants shown in FIG. 1B all had the linker GS removed. The variant R1Mut6 (nucleotide SEQ ID NO: 5, protein SEQ ID NO: 96), had only the GS linker deleted. Another variant, R1Mut7 (nucleotide SEQ ID NO: 11, protein SEQ ID NO: 102), had a deletion of amino acid residues PA. The variant R1Mut8 (nucleotide SEQ ID NO: 12, protein SEQ ID NO: 103), had an amino acid substitution P364M, in which the proline residue was substituted with methionine. The variant R1Mut9 (nucleotide SEQ ID NO: 13, protein SEQ ID NO: 104) had an amino acid substitution M367N, in which the methionine residue was substituted with asparagine. The variant R1Mut10 (nucleotide SEQ ID NO: 44, protein SEQ ID NO: 135) had an amino acid substitution P364G, in which the proline residue was substituted with glycine.



FIG. 2 shows an alignment of the amino acid sequences of a part of the IgIII domain of each of the seven FGFR family members, using the Clustal W version 1.8 program of EMBL (European Molecular Biology Laboratory) bioinformatics search site. FIG. 2 illustrates the organization of the FGFR4-Fc fusion protein (nucleotide SEQ ID NO: 65, protein SEQ ID NO: 156) and corresponding mutants. The alignment marks the truncation locations of the R4Mut1 (nucleotide SEQ ID NO: 71, protein SEQ ID NO: 162), R4Mut2 (nucleotide SEQ ID NO: 72, protein SEQ ID NO: 163), R4Mut3 (nucleotide SEQ ID NO: 73, protein SEQ ID NO: 164), R4Mut4 (nucleotide SEQ ID NO: 74, protein SEQ ID NO: 165), R4Mut5 (nucleotide SEQ ID NO: 75, protein SEQ ID NO: 166) and R4Mut6 (nucleotide SEQ ID NO: 66, protein SEQ ID NO: 157) variants of FGFR4. FIG. 2 also indicates the position of an Fc portion of an IgG antibody. R4Mut1, R4Mut2, R4Mut3, R4Mut4, R4Mut5, and R4Mut6 also had the linker encoding amino acids ‘GS’ removed from between the FGFR4 and Fc domains.


Example 2
Expression of FGFR Fusion Proteins

The fusion proteins of the invention were expressed in 293-6E host cells using the pTT5 vector (Biotechnology Research Institute; Montreal, Canada) transfected into 293-6E cells (Biotechnology Research Institute; Montreal, Canada), which were then cultured to produce the fusion proteins. An expression vector that comprised the cDNA of FGFR1-IIIc-Fc (SEQ ID NO: 4), encoding the extracellular domain of human FGFR1-IIIc (SEQ ID NO: 1) was constructed from an open-reading frame cDNA library prepared internally. This cDNA was linked at its C-terminus through a linker encoding the amino acids GS to cDNA encoding an Fc fragment of human IgG1 heavy chain (SEQ ID NO: 80) to produce a fusion construct hereafter referenced as “FGFR1-IIIc-Fc cDNA” and the expression product thereof as “FGFR1-IIIc-Fc protein.” The Fc fragment was also obtained from an open-reading frame cDNA library prepared internally. This cDNA fusion construct was inserted into a pTT5 vector by conventional techniques to produce the FGFR1-IIIc-Fc/pTT5 expression vector.


Expression constructs for expressing the FGFR3-IIIc-Fc (nucleotide SEQ ID NO: 85, protein SEQ ID NO: 176) and FGFR4-Fc fusion proteins in 293-6E host cells using the pTT5 vector were made in a manner similar to that described above using cDNAs prepared internally and conventional techniques. Similar expression constructs for expressing FGFR variants, such as R1Mut1, R1Mut2, R1Mut3, R1Mut4, R1Mut5, R1Mut6 (GS deletion), R1Mut7 (PA deletion), R1Mut8 (P364M), R1Mut9 (M367N), R4Mut1, R4Mut2, R4Mut3, R4Mut4, R4Mut5, and R4Mut6 (GS deletion) using the pTT5 vector were each made from the FGFR1-IIIc-Fc cDNA using PCR and conventional mutagenesis techniques.


The variants R1Mut1, R1Mut2, R1Mut3, R1Mut4, and R1Mut5, produced in this manner, each contained the same amino acid sequence as the parent FGFR1-IIIc-Fc fusion protein (protein SEQ ID NO: 95) except for the deletion of the linker amino acids GS and also certain amino acid residues at the C-terminus of the wildtype FGFR1-IIIc extracellular domain, as described in Example 1. R1Mut1 comprised an amino acid sequence ending with amino acid residues MTSP immediately preceding the Fc fragment. R1Mut2 comprised an amino acid sequence ending with amino acid residues RPAV immediately preceding the Fc fragment. R1Mut3 comprised an amino acid sequence ending with amino acid residues ERPA immediately preceding the Fc fragment. R1Mut4 comprised an amino acid sequence ending with amino acid residues LEAL immediately preceding the Fc fragment. R1Mut5 comprised an amino acid sequence ending with amino acid residues AWLT immediately preceding the Fc fragment. The variants R1Mut6, R1Mut7, R1Mut8, and R1Mut9, also produced in this manner, each contained the same amino acid sequence as the parent FGFR1-IIIc-Fc the linker GS removed.


The variants R4Mut1, R4Mut2, R4Mut3, R4Mut4, R4Mut5, and R4Mut6, which were described in Example 1, were also produced from 293-6E host cells using the pTT5 vector in the manner described for FGFR1-IIIc-Fc and the R1 mutants. R4Mut1 comprised an amino acid sequence ending with amino acid residues AAPE immediately preceding the Fc fragment. R4Mut2 comprised an amino acid sequence ending with amino acid residues PTWT immediately preceding the Fc fragment. R4Mut3 comprised an amino acid sequence ending with amino acid residues LPEE immediately preceding the Fc fragment. R4Mut4 comprised an amino acid sequence ending with amino acid residues TVLP immediately preceding the Fc fragment. R4Mut5 comprised an amino acid sequence ending with amino acid residues LTVL immediately preceding the Fc fragment. R4Mut6 comprised an amino acid sequence ending with amino acid residues RYTD immediately preceding the Fc fragment.


The host cell line CHO-S can, in certain embodiments, produce recombinant proteins with higher yields and/or different glycosylation patterns than the 293-6E host cell line. Fusion proteins of the invention were expressed in CHO-S host cells with the vector pcDNA3.1 (Invitrogen; Carlsbad, Calif.). The expression vectors were transfected into the CHO-S host cells (Invitrogen; Carlsbad, Calif.), which were then cultured to produce the fusion proteins. The FGFR1-IIIc-Fc cDNA was subcloned into the pcDNA3.1 vector using PCR and conventional subcloning techniques. Expression constructs for expressing FGFR3-IIIc-Fc and FGFR4-Fc fusion proteins in CHO-S host cells using the pcDNA3.1 vector were made in a manner similar to that described above, using PCR and conventional subcloning techniques.


Similar expression constructs for expressing the FGFR4-Fc variants R4Mut1, R4Mut2, R4Mut3, R4Mut4, R4Mut5, and R4Mut6 in CHO-S host cells using the pcDNA3.1 vector was made from the FGFR4-Fc cDNA using PCR and conventional subcloning techniques. Expression vectors for other FGFR-Fc fusion proteins and variants can also be made in a similar manner and the fusion proteins expressed as discussed herein using methods known in the art.


DG44 is a cell line derivative of the CHO-S cell line and can, in some embodiments, produce higher yields of recombinant proteins than CHO-S cells. The fusion proteins of the invention were expressed in DG44 host cells (Invitrogen; Carlsbad, Calif.) using the pDEF38 vector (ICOS Corporation; Bothell, Wash.) transfected into DG44 cells as host cells, which were then cultured to produce the fusion proteins. For example, FGFR1-IIIc-Fc cDNA was subcloned into the pDEF38 vector using PCR and conventional subcloning techniques.


A similar expression construct for expressing the FGFR1-IIIc-Fc variant R1Mut4 in DG44 host cells using the pDEF38 vector was made using PCR and conventional subcloning techniques. Expression vectors for other FGFR-Fc fusion proteins and variants, for example, FGFR3-IIIc-Fc and FGFR4-Fc, can also be made in a similar manner and fusion proteins expressed as discussed herein.


Long-term expression of fusion proteins in mice using a mini-circle vector with the fusion constructs, was performed as described in Chen et al., Hum. Gene Ther. 16:126-131 (2005); Rui, E. et al., Hum. Gene Ther. 16:558-570 (2005); and WO 04/020605, using a parent vector obtained from Dr. Mark Kay at Stanford University (Stanford, Calif.). This parent vector contained an alpha1-antitrypsin promoter, an apoE enhancer, a human factor IX intron, and a bovine polyA sequence. The parent vector was modified by inserting the FGFR1-IIIc-Fc, FGFR4-Fc, or R1Mut4 cDNA as the gene of interest, placing such cDNA immediately after the human Factor IX intron in the parent vector using PCR and conventional subcloning techniques. Similar expression vectors for other FGFR-Fc fusion proteins, including FGFR3-IIIc-Fc and the variants described herein, can also be made, and fusion proteins expressed, as discussed herein using methods known in the art.


Example 3
Transient Expression of Fusion Proteins in 293-6E Cells and CHO-S Host Cells

The FGFR1-IIIc-Fc/pTT5 expression vector was designed to provide transient expression in 293-6E host cells. The 293-6E cells were previously adapted to serum-free suspension culture in Free-Style medium (Invitrogen; Carlsbad, Calif.). The cells were transfected with the expression vector while in logarithmic growth phase (log phase growth) at a cell density of between 9×105/ml and 1.2×106/ml.


In order to transfect 500 ml of cell suspension, a transfection mixture was first made by mixing 500 micrograms (ug) of the expression vector DNA in 25 milliliters (ml) of sterile phosphate buffered saline (PBS) with 1 milligram (mg) of polyethylenimine (at a concentration of about 1 mg/ml solution in sterile water) in 25 ml of sterile PBS. This transfection mixture was incubated for 15 min at room temperature. Following incubation, the transfection mixture was added to the 293-6E cells in log phase growth to transfect the cells. The cells and the transfection mixture were then incubated at 37° C. in 5% CO2. After 24 hr of incubation, Trypton-N1 (Organotechnie S.A.; La Courneuve, France; 20% solution in sterile FreeStyle medium) was added to a final concentration of 0.5% (v/v). The mixture was maintained at 37° C. and 5% CO2 for about 6-8 days until the cells reached a density of about 3-4×106 cells/ml and demonstrated greater than about 80% viability. To harvest the fusion protein from the cell culture medium, cells were pelleted at 400×g for 15 min at 4° C. and the supernatant decanted then cleared of cell debris by centrifugation at 3,315×g for 15 min at 4° C. The cleared supernatant containing the fusion protein was then purified, as described in more detail below.


The FGFR fusion proteins FGFR3-IIIc-Fc, FGFR4-Fc, and the FGFR fusion variants R1Mut1, R1Mut2, R1Mut3, R1Mut4, R1Mut5, R1Mut6, R1Mut7, R1Mut8, and R1Mut9 were similarly produced by transient expression in 293-6E cells in pTT5 vectors constructed as described in Example 2. Other FGFR-Fc fusion proteins and variants can also be similarly made and expressed in 293-6E host cells using the methods discussed herein.


Small batches (approximately 1-2 mg) of R1Mut4 protein, for example, for use in in vivo studies, were rapidly produced from CHO-S cells grown in suspension and transiently transfected with the plasmid construct R1Mut4/pcDNA3.1. Briefly, suspension CHO-S cells (Invitrogen; Carlsbad, Calif.) were cultured in CD-CHO serum free medium supplemented with L-glutamine, and 1× hypoxanthine/thymidine (HT) (Invitrogen; Carlsbad, Calif.). The day before transfection, CHO-S cells were seeded into a shaker flask at a density of about 5×105/ml and reached a density of about 1×106/ml on the day of transfection. The cells were harvested and about 1×107 cells per transfection reaction were pelleted by centrifugation. Each cell pellet was resuspended in 0.1 ml Nucleofector V solution and transferred to an Amaxa Nucleofector cuvette (Amaxa; Cologne, Germany). About 5 ug of the R1Mut4/pcDNA3.1 plasmid DNA was added and mixed with the suspended CHO-S cells in the cuvette. Cells were then electroporated with an Amaxa Nucleofector using program U-024.


Larger batches can be produced, as well. For example, to produce 200 ml, 12 transfection reactions were carried out and the electroporated cells were cultured in CD-CHO medium (supplemented with L-glutamine, 1× hypoxanthine/thymidine (HT) at density of 0.5×106/ml. After six days, the cell density reached about 6-7×106/ml with a viability of about 95%. The supernatant from the culture was harvested by centrifugation and was suitable for purification. Using this method, one mg of R1Mut4 protein can be produced in about one week from 200 ml of transiently transfected cultured cells.


The FGFR fusion proteins FGFR1-IIIc-Fc, FGFR3-IIIc-Fc, and FGFR4-Fc, and the variants R4Mut1, R4Mut2, R4Mut3, R4Mut4, R4Mut5, and R4Mut6 were similarly produced by transient expression in CHO-S cells in pcDNA3.1 vectors constructed as described in Example 2. Other FGFR-Fc fusion proteins and variants can also be made and expressed in CHO-S host cells using the methods discussed herein.


Example 4
Cell Line Development for Stable Production of Fusion Proteins in CHO-S Host Cells

The FGFR1-IIIc-Fc/pcDNA3.1 expression vector was designed to provide stable expression in appropriate mammalian cells, such as CHO-S. This vector was transfected into CHO-S cells containing the dihydrofolate reductase (DHFR) gene, which were derived from adherent CHO-K1 cells by adaptation to serum-free suspension culture in CD-CHO medium (Invitrogen; Carlsbad, Calif.).


Transfection was carried out using an Amaxa Nucleofector II (Amaxa; Cologne, Germany) according to manufacturer's recommendations. In this process, about 1×106 CHO-S cells were resuspended in 300 ul of Amaxa's Solution V (Amaxa; Cologne, Germany) and transferred into an electroporation cuvette. About 5 ug of plasmid DNA containing the FGFR1-IIIc-Fc/pcDNA3.1 expression vector was added to the cells in the cuvette and DNA transfer was initiated using Amaxa program U-024 in Amaxa's Nucleofector Device H. After the DNA transfer to the CHO-S cells, the cell suspension was immediately transferred into 1 ml of pre-warmed CD-CHO medium and then incubated at 37° C. for 10 min. The cell suspension was then transferred into 10 ml of pre-warmed. CD-CHO medium and cultured for 48 hr in a T-75 flask at 37° C. and 5% CO2. The vector pcDNA3.1 carried the G418-selection gene (Invitrogen; Carlsbad, Calif.). About 48 hr after the DNA transfer with FGFR1-IIIc-Fc/pcDNA3.1, G418 (Invitrogen; Carlsbad, Calif.) selection reagent was added to a final concentration of 400 ug/ml. About 2-3 weeks after introducing selective pressure, and when the cells reached confluency, they were expanded into T-225 flasks with fresh selection medium. The cells were then cryo-preserved until use.


The cryo-preservation medium contained 46.25% CD-CHO medium, 46.25% conditioned CD-CHO medium (usually supernatant from the culture being cryo-preserved) and 7.5% dimethyl sulfoxide (DMSO). About 5-10×106 cells/vial were resuspended in 1 ml of cryo-preservation medium and slowly frozen (about 1° C./min) to about −80° C. The following day, the frozen cells were transferred into liquid N2 (about −190° C.). Upon use, the cells were thawed quickly, by transferring the cryo-vial into a 37° C. water bath and resuspending the thawed cell suspension in at least 10 ml of fresh CD-CHO medium. Usually about 60% of the cells would recover and start proliferating about 24-48 hr after thawing.


Following cryo-preservation and recovery, the cells were plated on 96-well plates at a density of 2 cells/well/200 ul and cultured in CD-CHO medium at 37° C. and 5% CO2 for three weeks. G418 selective pressure (400 ug/ml) was added after cell proliferation resumed. In order to identify transfected cell clones expressing FGFR1-IIIc-Fc fusion protein, the cell culture supernatant of each well was screened by Western blot. FGFR1-IIIc-Fc was detected using a polyclonal goat anti-human IgG Fc gamma-specific antibody (Jackson Immuno Research; West Grove, Pa.) conjugated to horseradish peroxidase (HRP).


FGFR1-IIIc-Fc produced from transfected CHO-S cells had a higher molecular weight than that produced from transfected 293-6E cells, indicating increased glycosylation in the CHO-S cell product. Thirty-one cell clones from wells which produced a distinct Fc-immunoreactive band in Western blot were transferred to T-75 flasks with 10 ml of CD-CHO medium with 400 ug/ml G418. After two weeks, supernatants from each of these cultures was tested by SDS-PAGE and only those transfected cell clones producing a strongly visible band were continued for further analysis. The 14 highest expressing clones were tested for cell specific productivity and ranked accordingly. The two highest producing clones were adapted to suspension culture over a period of one month. A total of ten different culture media were tested regarding volumetric protein productivity and protein integrity.


Stable CHO-S host cell lines producing FGFR4-Fc fusion protein from the pcDNA3.1 expression vector were also created in a manner similar to that described above for FGFR1-IIIc-Fc. Stable CHO-S host cell lines producing other FGFR-Fc fusion proteins and variants can also be created in a manner similar to that described herein, using the pcDNA3.1 expression vector described in Example 2.


Example 5
Cell Line Development for Stable Production of Fusion Proteins in DG44 Cells

The expression vector comprising R1Mut4/pDEF38 described in Example 2 was used to transfect DG44 cells for the stable production of R1Mut4 fusion protein. In this process, the untransfected DHFR-negative CHO cell line, DG44, was cultured in CHO-CD serum free medium (Irvine Scientific; Irvine, Calif.) supplemented with 8 mM L-glutamine, 1× hypoxanthine/thymidine (HT; Invitrogen; Carlsbad, Calif.), and 18 ml/L of Pluronic-68 (Invitrogen; Carlsbad, Calif.). About 50 ug of plasmid DNA containing R1Mut4/pDEF38 was first linearized by digestion with the restriction enzyme PvuI, then precipitated by addition of ethanol, briefly air-dried, and subsequently resuspended in 400 ul of sterile, distilled water. Cultured DG44 cells, as host cells, were seeded into a shaker flask at a cell density of about 4×105/ml the day before transfection, and reached a density of about 0.8×106/ml on the day of transfection. The cells were harvested and about 1×107 cells per transfection unit were pelleted by centrifugation


The cells were transfected by resuspending each cell pellet in 0.1 ml of Nucleofector V solution and transferred the suspension to an Amaxa Nucleofector cuvette (Amaxa; Cologne, Germany). About 5 ug of the resuspended linearized plasmid DNA was added and mixed with the suspended DG44 cells in the cuvette. Cells were then electroporated with an Amaxa Nucleofector Device II using program U-024. Electroporated cells were cultured in CHO-CD medium for two days and then transferred into a selective medium comprising CHO-CD serum free medium supplemented with 8 mM L-glutamine, 18 ml/L Pluronic-68, and 10% dialyzed fetal calf serum (FCS; Invitrogen; Carlsbad, Calif.; without HT). This selective medium was changed once every week. After about 12 days, 1 ug/ml R3 Long IGF I growth factor (Sigma; St. Louis, Mo.) was added to the medium and the culture was continued for another four days until confluent. The supernatants from pools of stably transfected cell lines were assayed by a sandwich FGFR1-IIIc-Fc ELISA to determine the product titer (for details of this sandwich ELISA, see Example 15). This transfection method generated an expression level of about 21 ug/ml for R1Mut4 from the pools of stably transfected cells.


Stable DG44 host cell lines producing FGFR1-IIIc-Fc fusion protein from the pDEF38 expression vector were also created in a manner similar to that described herein for R1Mut4. Stable DG44 host cell lines producing other FGFR-Fc fusion proteins and variants can also be created in a similar manner described herein, using the pDEF38 expression vector described in Example 2.


Example 6
Analysis of In Vitro Cleavage of FGFR1-IIIc-Fc, R1Mut4 And Other FGFR1-IIIc-Fc Variants During Cell Culture Production

The resistance of FGFR1-IIIc-Fc to in vitro cleavage during transient protein expression was compared to the FGFR1-IIIc-Fc variants R1Mut1, R1Mut2, R1Mut3, R1Mut4, R1Mut5, R1Mut6, R1Mut7, R1Mut8 and R1Mut9. Fusion proteins were each expressed in 293-6E cells via transient transfection using the pTT5 vector as described in Example 2. The supernatants of each transfectant were collected on day four post-transfection and about 5 ul of each was separated with SDS-PAGE in a 4-12% acrylamide gel under reducing conditions. The supernatants were from cultures that were matched for cell number, viability, and transfection conditions. The separated proteins were then probed with horseradish-peroxidase conjugated anti-human Fc antibody (anti-human Fc HRP; Jackson ImmunoResearch Laboratories, Inc.; West Grove, Pa.). The results are shown in FIG. 3A, which shows the Fc fragment cleaved from the parental FGFR1-IIIc-Fc migrating between approximately 28 and 39 kD. Much less Fc product was cleared when the fusion protein was made with the truncation variants R1Mut1, R1Mut2, R1Mut3, R1Mut4, and R1Mut5. Similar experiments demonstrated that the variants of FGFR1-IIIc-Fc R1Mut6, R1Mut7, also had less in vitro cleavage during transient protein expression than the parental FGFR1-IIIc-Fc fusion protein.


To compare the in vitro cleavage of FGFR1-IIIc-Fc and R1Mut4 produced from stably transfected DG44 host cells, pooled supernatants from cultures of cells producing FGFR1-IIIc-Fc and R1Mut4 having similar cell viability (82.9% for FGFR1-IIIc-Fc and 79.2% for R1Mut4), the same cultivation period (four days), and having similar cell densities (0.95×106/ml for FGFR1-IIIc-Fc and 0.65×106/ml for R1Mut4). The expressed recombinant proteins were separated on a 4-12% Bis-Tris PAGE gel (Bio-Rad; Hercules, Calif.) and subsequently transferred to a nitrocellulose membrane. The intact molecule, as well as the cleaved product of free human Fc fragment, was visualized by Western blot using goat anti-human Fc antibody (Jackson ImmunoResearch Laboratories, Inc.; West Grove, Pa.). The results are shown in FIG. 3B. The left panel of the Western blot shows 50 ng, 100 ng, and 300 ng of purified FGFR1-IIIc-Fc protein produced from CHO-S cells. The right panel shows a comparison of FGFR1-IIIc-Fc and R1Mut4 supernatants produced from DG44 cells, revealing the presence of an Fc cleavage product from the FGFR1-IIIc-Fc but little or no Fc cleavage product from the R1Mut4. These results indicate that R1Mut4 was more resistant to proteolysis and had less product cleaved during production than its parent molecule FGFR1-IIIc-Fc.


The resistance of parental FGFR4-Fc to in vitro cleavage during transient protein expression was compared to the FGFR4-Fc variants R4Mut1, R4Mut2, R4Mut3, R4Mut4, R4Mut5, and R4Mut6 (delta GS). Fusion proteins were each expressed in 293-6E cells via transient transfection using the pTT5 vector and the techniques described in Example 2. The supernatants of each transfectant were collected on days seven and eight post-transfection and about 5 ul of each was separated by SDS-PAGE in a 4-12% acrylamide gel under reducing conditions. The supernatants were obtained from cultures matched for cell number, viability, and transfection conditions. The separated proteins were then probed with horseradish-peroxidase conjugated anti-human Fc antibody (anti-human Fc HRP; Jackson ImmunoResearch Laboratories, Inc., West Grove, Pa.). The results are shown in FIG. 4. The Fc fragment was cleaved from the parental FGFR4-Fc and migrated between approximately 30 and 43 kD. Much less Fc product cleaved when the fusion protein was made with the truncation variants R4Mut1, R4Mut3, and R4Mut4 compared to the parental construct, R4Mut2, R4Mut5, and R4Mut6.


Example 7
Purification of FGFR1-IIIc-Fc

FGFR1-IIIc-Fc expressed from recombinant host cells was purified from cell culture supernatant using a combination of Protein-A affinity chromatography and butyl hydrophobic interaction chromatography. The components of the media were separated first on a Protein-A Sepharose column, then on a butyl Sepharose column using a GE Healthcare Akta Purifier 100 (GE Healthcare Bio-Sciences; Piscataway, N.J.). The Protein-A Sepharose 4 Fast Flow (GE Healthcare Bio-Sciences; Piscataway, N.J.) was used as an affinity matrix to bind to the Fc region of the fusion molecule. The column was equilibrated with ten column volumes of a sterile buffer of 10 mM potassium phosphate, 500 mM NaCl, pH 7.0; then the cell culture supernatant fluid was applied to the column. The column was washed with eight column volumes of sterile 10 mM potassium phosphate, 500 mM NaCl buffer, pH 7.0; then the bound material, including FGFR1-IIIc-Fc, was eluted at a rate of 1.0 ml/min with a step gradient of the elution buffer (100 mM glycine, 500 mM NaCl, pH 2.7) using sequential steps of two column volumes each of 15%, 30%, 45%, 60%, 75%, and 90% elution buffer, followed by five column volumes of 100% elution buffer. Ten-ml fractions were collected in tubes containing one ml 1 M Tris pH 7.0 (Ambion; Austin, Tex.) to neutralize the eluates. Fractions comprising FGFR1-IIIc-Fc were identified by gel electrophoresis and pooled. FGFR1-IIIc-Fc was eluted at approximately 30-45% gradient-strength elution buffer.


Pooled Protein-A column eluates comprising the bulk of FGFR1-IIIc-Fc were then subjected to further purification by butyl Sepharose hydrophobic interaction chromatography. Following the addition of an equal volume of 2.4 M ammonium sulfate to the eluate from the Protein-A column, the eluate was applied to a Butyl Sepharose 4 Fast Flow column (GE Healthcare Bio-Sciences; Piscataway, N.J.) that had been equilibrated with five column volumes of sterile 10 mM potassium phosphate, 1.2 M ammonium sulfate, pH 7.0. The column was washed with four column volumes of the equilibration buffer and the bound material was eluted at a rate of five ml/min with a linear gradient starting at 100% equilibration buffer and ending at 100% of the elution buffer (10 mM potassium phosphate, 30 mM NaCl, pH 7.0) over a total volume of 13 column volumes followed by an additional five column volumes 100% elution buffer. Fractions (14 ml) were collected and the fractions containing the bulk of FGFR1-IIIc-Fc were identified by gel electrophoresis and pooled. FGFR1-IIIc-Fc was eluted with approximately 20-50% elution buffer.


After purification, endotoxin levels were checked by the limulus amoebocyte lysate (LAL) assay (Cambrex; Walkersville, Md.). When the values were higher than 1 endotoxin unit (EU)/mg of FGFR1-III-Fc protein, further purification was performed by Cellufine™ ETClean chromatography (Chisso Corporation; Tokyo, Japan) following the manufacturer's instructions. FGFR1-IIIc-Fc was dialyzed with PBS and applied to a Cellufine™ ET Clean column (10×0.9 cm (I.D.); 9.6 ml) previously equilibrated with PBS, and the protein was collected in the flow through at a flow rate of 0.5 ml/min. The final FGFR1-IIIc-Fc solution (in PBS without Ca2+/Mg2+) was then re-tested to confirm a value less than or equal to 1 EU/mg of protein as assessed by the LAL assay.


These purification protocols were used to purify other FGFR-Fc fusion proteins and variants, such as FGFR3-IIIc-Fc and R1Mut4. These purification protocols may also be used to purify other FGFR-Fc fusion proteins and variants, and may be adjusted using methods known in the art to substantially purify FGFR-Fc fusion proteins, for example, other FGFR1-Fc fusion protein variants, FGFR2-Fc fusion proteins and variants, FGFR3-IIIc-Fc fusion protein variants, and FGFR4-Fc proteins and variants. For example, components of the cell culture supernatant media may be separated by hydrophobic chromatography either prior to or subsequent to the Protein-A step. Both the Protein-A and hydrophobic chromatography can take place in a column, a slurry, or other similar embodiments. The column size may depend on the amount of FGFR-Fc estimated to be present in the cell culture supernatant, for example, 25 liters of CHO cell supernatant media transfected with FGFR1-IIIc-Fc produced about 8 mg/L, or 200 mg of substantially pure FGFR1-IIIc-Fc, using the protocol described above.


Example 8
Specificity and Affinity of Ligand Binding to FGFR1-IIIc-Fc, R1Mut4, FGFR3-IIIc-Fc, and FGFR4 Measured by Biacore Analysis

The specificity of FGF ligand binding to FGFR1-IIIc-Fc, R1Mut4, FGFR3-IIIc-Fc, and FGFR4-Fc was assessed using Biacore® T100 surface plasmon resonance (SPR) technology (Biacore; Piscataway, N.J.). FGFR1-IIIc-Fc, R1Mut4, and FGFR4-Fc fusion proteins were produced from CHO-S host cells as described in Examples 2, 4, and 5. FGFR3-IIIc-Fc fusion protein was produced from 293-6E host cells as described in Examples 2 and 3. Protein-A was covalently linked to a CM5 chip, according to manufacturer's instructions and then a FGFR fusion protein was bound to the chip by the interaction of the Fc domain with the Protein-A. The FGF ligands were placed in contact with the FGFR fusion protein, also according to manufacturer's instructions, in the presence of HBS-P buffer (Biacore; Piscataway, N.J.) supplemented with 50 ug/ml heparin (Sigma; St. Louis, Mo.).


All the recombinant FGF ligands were from R&D Systems (Minneapolis, Minn.) except for FGF-18 which was from Wako Chemicals (Richmond, Va.). FGF ligands were each tested at six to eight concentrations ranging from 4.5 ng/ml to 10 ug/ml. The FGF ligands were recombinant and of human origin, except for FGF8b and FGF-18, which were of recombinant mouse origin.


The binding of FGFR1-IIIc-Fc, R1Mut4, FGFR3-IIIc-Fc, and FGFR4-Fc to various FGF ligands was measured in real time. FIG. 32 shows several representative binding traces from the experiments with FGFR1-IIIc-Fc and R1Mut4 and Table 3 below shows the resulting association constants (ka), dissociation constants (kd) and equilibrium dissociation constants (KD) that were determined from these studies.


As summarized in Table 8-1, the relative rank of FGF binding affinity to FGFR1-IIIc-Fc was FGF-1>FGF-18>FGF-2, FGF-4>FGF-9, FGF-20>FGF-5>FGF-19. The relative rank of FGF binding affinity to R1Mut4 was FGF-1>FGF-4, FGF-18>FGF-2>FGF20>FGF-9>FGF-5>FGF-19. The relative rank of FGF binding affinity to FGFR3-IIIc-Fc was FGF-18>FGF-1>FGF-9>FGF-2, FGF-4>FGF-20>FGF-5>FGF-7>FGF-19. The relative rank of FGF binding affinity to FGFR4-Fc was FGF-1>FGF-2.


In another binding study between FGFR4-Fc and the various FGFs, conducted in a similar fashion as described above, the resulting equilibrium dissociation constants (KD) and the relative rank of FGF binding affinity for FGFR4-Fc were: FGF-18 (KD of 0.4×10−9M)>FGF-17 (KD of 1.0×10−9M)=FGF-20 (KD of 1.2×10−9 M)>FGF-8 (KD of 3.9×10−9 M)=FGF-4 (KD of 4.6×10−9M)>FGF-9 (KD of 9.8×10−9M)=FGF-16 (KD of 9.7×10−9M)>FGF-19 (KD of 12.3×10−9M)>FGF-1 (KD of 16.3×10−9M)>FGF-6 (KD of 26.2×10−9 M)>FGF-2 (KD of 44.2×10−9>FGF-3 (KD of 51.8×10−9 M). FGF-5 showed no binding in this experiment.


The affinity of R1Mut4 for all the ligands tested except FGF-19 was greater than that of the parental FGFR1-IIIc-Fc molecule. In addition, the relative rankings of ligand affinities were also different between R1Mut4 and the parental FGFR1-IIIc-Fc molecule.









TABLE 3







Real-Time Ligand Binding to FGFRS













Ligand
ka
kd
KD
ka
kd
KD











FGFR1-IIIc-Fc
R1Mut4













FGF-1
2.00 × 106 M
1.99 × 10−4 M
9.95 × 10−11 M
 3.46 × 106 M*
 1.61 × 10−4 M*
 5.07 × 10−11 M*


FGF-2
3.75 × 105 M
2.31 × 10−4 M
6.17 × 10−10 M
4.12 × 105 M
1.80 × 10−4 M
4.38 × 10−10 M


FGF-4
7.15 × 105 M
4.77 × 10−4 M
6.67 × 10−10 M
1.06 × 106 M
2.26 × 10−4 M
2.14 × 10−10 M


FGF-5
1.71 × 105 M
7.85 × 10−4 M
4.58 × 10−9 M
3.71 × 105 M
9.65 × 10−4 M
2.95 × 10−9 M


FGF-7
n.d
n.d
n.d
n.d
n.d
n.d


FGF-9
4.74 × 105 M
5.29 × 10−4 M
1.12 × 10−9 M
5.66 × 105 M
5.20 × 10−4 M
9.19 × 10−10 M


FGF-18
 1.11 × 106 M*
 4.41 × 10−4 M*
 4.18 × 10−10 M*
 1.06 × 106 M*
 2.77 × 10−4 M*
 2.75 × 10−10 M*


FGF-19
5.63 × 104 M
4.43 × 10−1 M
7.87 × 10−6 M
n.m.
n.m.
n.m.


FGF-20
1.62 × 105 M
2.55 × 10−4 M
1.57 × 10−9 M
2.42 × 105 M
1.90 × 10−4 M
7.85 × 10−10 M








FGFR3-IIIc-Fc
FGFR4-Fc













FGF-1
 2.83 × 106 M*
 3.31 × 10−4 M*
 1.26 × 10−10 M*
1.68 × 105 M
5.78 × 10−4 M
3.45 × 10−9 M


FGF-2
3.36 × 105 M
1.37 × 10−3 M
1.06 × 10−9 M
4.16 × 104 M
6.73 × 10−4 M
1.62 × 10−8 M


FGF-4
8.08 × 105 M
1.55 × 10−3 M
1.91 × 10−9 M
n.m.
n.m.
n.m.


FGF-5
2.31 × 105 M
1.69 × 10−3 M
9.70 × 10−9 M
n.d
n.d
n.d


FGF-7
3.19 × 105 M
4.71 × 10−2 M
1.48 × 10−7 M
n.d
n.d
n.d


FGF-9
7.76 × 105 M
4.17 × 10−4 M
5.37 × 10−10 M
n.d
n.d
n.d


FGF-18
 5.16 × 106 M*
 1.80 × 10−4 M*
 3.50 × 10−11 M*
n.d
n.d
n.d


FGF-19
5.63 × 104 M
4.43 × 10−1 M
7.87 × 10−6 M
n.d
n.d
n.d


FGF-20
1.85 × 105 M
4.04 × 10−4 M
2.17 × 10−9 M
n.d
n.d
n.d





* = average of two independent measurements


n.d. = not determined


n.m. = not measurable






Example 9
Specificity and Affinity of Ligand Binding to FGFR4-Fc and FGFR4-Fc Deletion Mutants Measured by Competition ELISA

FGFR4-Fc fusion protein and deletion variants, made as described in Examples 1, 2, and 3, were tested for their ability to sequester the soluble FGF ligands FGF-1, FGF-2, and FGF-8b, and to inhibit ligand binding to FGFR4-Fc fusion protein coated on a plate.


Briefly, HI BIND half-wells were coated with FGFR4-Fc of CHO-S-origin at a concentration of 5 ug/ml in PBS in a volume of 25 ul per well for 1 hr at room temperature. The wells were blocked by adding 150 ul BLOTTO per well and incubating for 2 hr at room temperature. The coated half-well plates were then washed six times with PBS and 0.05% Tween-20 to remove unbound FGFR1-IIIc-Fc and BLOTTO.


Varying amounts of FGFR4-Fc fusion protein and the deletion variants, produced from CHO-S cells, or 10 ug/ml of the negative control human IgG (Caltag; Burlingame, Calif.) were each first pre-incubated in 96-well U-bottom plates with 60 ng/ml recombinant human FGF-1 (from R&D Systems; Minneapolis, Minn.) in 50 ul for 30 min at 37° C. on a shaker in the presence of 20 ug/ml heparin in 0.1×BLOTTO in PBS. About 40 ul of the above fusion proteins pre-incubated with FGF-1 were then added to the washed half-well plates coated with FGFR4-Fc and incubated for 30 min at 37° C. with shaking. After incubation, the plates were washed as before six times with PBS and 0.05% Tween-20 to remove any unbound FGF-1. After washing, about 2 ug/ml of anti-human FGF-1 polyclonal biotinylated antibody (R&D Systems; Minneapolis, Minn.) in 1×BLOTTO was added to each well of the plate, which was then incubated for 30 min at 37° C. with shaking, followed by washing as before to remove any unbound anti-FGF-1 antibody. The bound anti-FGF-1 antibody was detected using a streptavidin-HRP linker provided in the ABC kit (Vector Laboratories; Burlingame, Calif.) according to manufacturer's protocol. After washing as before, reconstituted (OPD) solution (Sigma; St. Louis, Mo.) was added. The detection reaction proceeded for 10 to 20 min at room temperature and was followed by a reading of the absorbance at 450 nm. The binding curves from the competition ELISA and the resulting EC50 values are shown in FIG. 5A.



FIG. 5A showed that the FGFR4 deletion variants R4Mut1, R4Mut2, R4Mut3, R4Mut4, R4Mut5, and R4Mut6 had higher affinities for FGF-1 than did the parental FGFR4-Fc. The FGFR4-Fc deletion variants had EC50 values of about 0.033 ug/ml to about 0.057 ug/ml. In contrast, the parental FGFR4-Fc had an EC50 value of about 0.123 ug/ml. The human IgG1 negative control did not inhibit FGF-1 binding to the FGFR4-Fc coated on the plate.


Similar competition ELISA experiments were conducted comparing the ability of the FGFR4-Fc fusion protein and the FGFR4-Fc deletion variants, produced in CHO-S host cells, to inhibit the binding of recombinant human FGF-2 (used at 200 ng/ml) and recombinant mouse FGF-8b (used at 200 ng/ml) (all from R&D Systems; Minneapolis, Minn.) to FGFR4-Fc derived from CHO-S cells and immobilized on an assay plate.



FIG. 5B showed that the FGFR4 deletion variants R4Mut1, R4Mut2, R4Mut3, R4Mut4, and R4Mut5 had higher affinities for FGF-2 than did the parental FGFR4-Fc. The FGFR4-Fc deletion variants R4Mut1, R4Mut2, R4Mut3, R4Mut4, and R4Mut5 had EC50 values from about 0.091 ug/ml to about 0.457 ug/ml, with R4Mut3 having the highest affinity for FGF-2; the EC50 was about 0.091 ug/ml. In contrast, the parental FGFR4-Fc had an EC50 value of greater than 10 ug/ml, as did the deletion variant R4Mut6. The human IgG1 negative control did not inhibit FGF-1 binding to plate-immobilized FGFR4-Fc.



FIG. 5C showed that the FGFR4 deletion variants R4Mut1, R4Mut2, R4Mut3, R4Mut4, R4Mut5, and R4Mut6 had higher affinities for FGF-8b than did the parental FGFR4-Fc. The FGFR4-Fc deletion variants had EC50 values of about 0.137 ug/ml to about 0.209 ug/ml. In contrast, the parental FGFR4-Fc had an EC50 value of about 0.631 ug/ml. The human IgG1 negative control did not inhibit FGF-1 binding to the FGFR4-Fc coated on the plate.


These experiments demonstrated that the FGFR4 deletion mutants R4Mut1, R4Mut2, R4Mut3, R4Mut4 and R4Mut5 had a higher affinity than the parental FGFR4-Fc in their ability to inhibit FGF-1 (as shown in FIG. 5A), FGF-2 (as shown in FIG. 5B), and FGF-8b (as shown in FIG. 5C) binding to plate-immobilized FGFR4-Fc.


Example 10
Affinity of Ligand Binding to FGFR1-IIIc-Fc Deletion Mutants Measured by Direct ELISA

The R1Mut1, R1Mut2, R1Mut3, R1Mut4, and R1Mut5 fusion proteins were compared to parental FGFR1-IIIc-Fc fusion protein (all produced from 293-6E host cells as described in Example 3) for their ability to bind FGF-2 by a direct FGF-2 binding ELISA assay. Briefly, FGF-2 (R&D Systems; Minneapolis, Minn.) was used to coat half-well HI BIND wells (Becton Dickinson; Franklin Lakes, N.J.) by diluting FGF-2 in PBS at a concentration of 5 ug/ml in 25 ul volume per well and incubating for 1 hr at room temperature while shaking. The wells were then blocked by adding 150 ul of BLOTTO (Pierce Biotechnology; Rockford, Ill.) to each well and incubating for 1 hr at room temperature. The plates were then washed six times with PBS comprising 0.05% Tween-20 to remove the FGF-2 and BLOTTO and the wells were then incubated overnight at 4° C. with varying concentrations of FGFR1-IIIc-Fc, R1Mut1, R1Mut2, R1Mut3, R1Mut4, R1Mut5, or human IgG (as a negative control), in the presence of 10 ug/ml heparin diluted in 0.1×BLOTTO in PBS. The plates were washed as before, and then incubated with 25 ul of anti-human Fc antibody conjugated to HRP at 2.5 ug/ml in BLOTTO for 1 hr at room temperature on a plate shaker. The BLOTTO was then removed and the plates were again washed as before. After washing, the wells were incubated with reconstituted OPD solution (Sigma; Saint Louis, Mo.) for 10 to 20 min at room temperature and the absorbance at 450 nm was measured.


As shown in FIG. 6, R1Mut1, R1Mut2, R1Mut3, and R1Mut4, but not R1Mut5, were each able to bind to FGF-2 as well as or better than the parental FGFR1-IIIc-Fc, with R1Mut4 having the highest apparent affinity of all the fusion proteins tested in this experiment. The MMP-2 cleavage site mutants R1Mut7, R1Mut8, and R1Mut9 (all produced in 293-6E host cells using the expression vector pTT5 as described in Example 2) also bound to FGF-2 with an affinity similar to that of parental FGFR1-IIIc-Fc.


Example 11
FGFR Fusion Proteins Inhibit FGFR1-IIIc-Fc Ligand Binding

FGFR1-IIIc-Fc fusion proteins produced from 293-6E and CHO cells, made as described in Examples 1, 2, and 3, were tested in a competition ELISA assay for their ability to sequester the soluble FGF ligands FGF-1, FGF-2, and FGF-8b, and to inhibit ligand binding to FGFR1-IIIc-Fc fusion protein coated on a plate.


Briefly, HI BIND half-wells were coated with FGFR1-IIIc-Fc of 293-6E-origin at a concentration of 5 ug/ml in PBS in a volume of 25 ul per well for 1 hr at room temperature. The wells were blocked by adding 150 ul BLOTTO per well and incubating for 2 hr at room temperature. The coated half-well plates were then washed six times with PBS and 0.05% Tween-20 to remove unbound FGFR1-IIIc-Fc and BLOTTO.


Varying amounts of FGFR1-IIIc-Fc fusion proteins produced from 293-6E cells or CHO cells, or 10 ug/ml of the negative control human IgG (Caltag; Burlingame, Calif.) were each first pre-incubated in 96-well U-bottom plates with 200 ng/ml recombinant human FGF-2 (from R&D Systems) in 50 ul for 30 min at 37° C. on a shaker in the presence of 20 ug/ml heparin in 0.1×BLOTTO in PBS. About 40 ul of the above fusion proteins pre-incubated with FGF-2 were then added to the washed half-well plates coated with FGFR1-IIIc-Fc and incubated for 30 min at 37° C. with shaking. After incubation, the plates were washed as before six times with PBS and 0.05% Tween-20 to remove any unbound FGF-2. After washing, about 2 ug/ml of anti-human FGF-2 polyclonal biotinylated antibody (from R&D Systems) in 1×BLOTTO was added to each well of the plate, which was then incubated for 30 min at 37° C. with shaking, followed by washing as before to remove any unbound anti-FGF-2 antibody. The bound anti-FGF-2 antibody was detected using a streptavidin-HRP linker provided in the ABC kit (Vector Laboratories, Burlingame, Calif.) according to the manufacturer's protocol. After washing as before, reconstituted OPD solution (Sigma; St. Louis, Mo.) was added. The detection reaction was developed for 10 to 20 min at room temperature followed by a reading of absorbance at 450 nm. Results are shown in FIG. 7.



FIG. 7 showed that FGFR1-IIIc-Fc produced from 293-6E and from CHO cells had approximately equivalent binding potencies in their ability to sequester FGF-2 in an FGF-2 competition assay. Each of the two fusion proteins exhibited an EC50 value of about 0.24 ug/ml. In contrast, the human IgG1 negative control did not inhibit FGF-2 binding to the FGFR1-IIIc-Fc coated on the plate.


Similar competition ELISA experiments were conducted comparing the ability of the FGFR1-IIIc-Fc fusion protein and R1Mut4 fusion protein, both produced in DG44 host cells, to inhibit the binding of recombinant human FGF-1 (at a concentration of 60 ng/ml), recombinant human FGF-2 (a concentration of at 200 ng/ml), and recombinant mouse FGF-8b (a concentration of at 200 ng/ml) (all from R&D Systems; Minneapolis, Minn.) to FGFR1-IIIc-Fc derived from 293 cells and immobilized on an assay plate. These experiments all demonstrated the equivalency of R1Mut4 and the parental FGFR1-IIIc-Fc fusion proteins in their ability to inhibit FGF-1 (as shown in FIG. 8A), FGF-2 (as shown in FIG. 8B), and FGF-8b (as shown in FIG. 9) binding to plate-immobilized FGFR1-IIIc-Fc.


FGFR1-IIIc-Fc produced in DG44 host cells and FGFR3-IIIc-Fc and FGFR4-Fc produced in 293-6E host cells also inhibited ligand binding to FGFR1-IIIc-Fc produced in 293 cells and immobilized on an assay plate. A competition ELISA assay conducted as described above used recombinant human FGF-1, recombinant human FGF-2, and recombinant mouse FGF-8b (all from R&D Systems; Minneapolis, Minn.). Human IgG was used as a negative control. The results are shown in FIG. 10, FIG. 11, and FIG. 12, which demonstrate both the effectiveness of the decoy fusion proteins in blocking ligand-receptor binding and the specificity of the fusion proteins for their respective ligands.



FIG. 10 showed that FGFR1-IIIc-Fc, FGFR3-IIIc-Fc, and FGFR4-Fc all inhibited FGF-1 binding to FGFR1-IIIc-Fc immobilized on an assay plate. FIG. 11 showed that FGFR3-IIIc-Fc and FGFR4-Fc were much less effective than FGFR1-IIIc-Fc in inhibiting FGF-2 binding to FGFR1-IIIc-Fc immobilized on an assay plate. FIG. 12 showed that FGFR1-IIIc-Fc, FGFR3-IIIc-Fc, and FGFR4-Fc were all similarly effective in inhibiting FGF-8 binding to FGFR1-IIIc-Fc immobilized on a plate.


Example 12
FGFR1-IIIc-Fc Inhibited Phospho-Erk Signaling by FGF-2

FGFR1-IIIc-Fc fusion protein derived from 293-6E or CHO cells were approximately equally potent in inhibiting biological signaling by FGF-2. L6 cells transfected with FGFR1-IIIc (ETH; Zurich, Switzerland) growing in a T-175 flask were trypsinized, washed and seeded at a concentration of 10,000 cells/well in a volume of 100 ul in Dulbecco's modified Eagle's medium (DMEM) supplemented with 0.5% FCS and 0.1% bovine serum albumin (BSA) in 96-well flat-bottom plates for 16 hr. Activation medium containing FGFR1-IIIc-Fc fusion proteins or human IgG1, at concentrations from 0.005 to 10 ug/ml, was prepared (in 0.1% BSA DMEM containing 100 ng/ml FGF-2, 10 ug/ml heparin) and incubated for 30 min at 37° C. on a plate shaker. The L6 cells were then exposed to 25 ul of activation medium/well for 5 min at 37° C. The cells were then washed once with 200 ul of ice-cold PBS and lysed with 100 ul of ice-cold 1× lysis buffer for 30 min on ice following the manufacture's recommendations for the PathScan Phospho-p44/42 MAPK (T202/Y204) Sandwich ELISA Kit (Cell Signaling; Danvers, Mass.). At the end of the lysis period, the lysates were pipeted up and down approximately five times while minimizing foaming. About 80 ul of Sample Diluent (from Pathscan Sandwich ELISA kit) was added to each well of the phospho-ERK ELISA plate, then topped by 80 ul of cell lysate and mixed. The plate was sealed with plastic adhesive, incubated for 2 hr at 37° C., and washed six times with PBS containing 0.05% Tween-20. Then 100 ul of phospho-ERK Detection Antibody (from Pathscan Sandwich ELISA kit) was added to each well. The plate was sealed with adhesive cover, incubated for 1 hr at 37° C., washed as before and 100 ul of HRP-linked secondary antibody (from Pathscan Sandwich ELISA kit) was added to each well. The plate was again sealed, incubated for 30 min at 37° C., and then washed as before. About 100 ul of TMB substrate (3,3′,5,5′-tetramethylbenzidine, from Pathscan Sandwich ELISA kit) was then added to each well and the plate was incubated for 30 min at 25° C. The color development was completed by adding 100 ul of STOP Solution (from Pathscan Sandwich ELISA kit) to each well and mixing. The absorbance at 450 nm was recorded and plotted as shown in FIG. 13.



FIG. 13 shows that Erk phosphorylation, as determined by ELISA, was similarly inhibited by FGFR1-IIIc-Fc made from either 293-6E or CHO cells. At the lower doses, FGFR1-IIIc-Fc blunted Erk activation and at higher doses, prevented activation by FGF-2. In the presence of 100 ng/ml FGF-2, the EC50 values of the 293 cells-derived and the CHO cells-derived FGFR1-IIIc-Fc were 0.23 ug/ml and 0.29 ug/ml, respectively. Human IgG1 did not inhibit Erk phosphorylation activated with FGF-2.


FGFR1-IIIc-Fc and R1Mut4 fusion proteins produced by 293-6E cells inhibited Erk phosphorylation with approximately the same potency, in contrast to R1Mut5, which did not inhibit Erk phosphorylation. In the presence of 0.10 ug/ml FGF-2, the EC50 of FGFR1-IIIc-Fc was 0.18 ug/ml and the EC50 of R1Mut4 was 0.29 ug/ml. At low doses, both FGFR1-IIIc-Fc and R1Mut4 blunted Erk activation; and at high doses, both prevented activation. Results are shown in FIG. 14.


Example 13
FGFR1-IIIc-Fc Decreased Cancer Cell Viability and Proliferation

FGFR-Fc fusion proteins of the invention decreased the viability and/or proliferation of cancer cells in culture, as measured with a CellTiter-Glo™ Luminescent Cell Viability Assay according to the manufacturer's instructions (Promega; Madison, Wis.). In this assay, luminescence quantitatively correlates with the number of viable cells.


The effects of FGFR1-IIIc-Fc on U251 malignant glioblastoma brain cancer cells obtained from the American Type Culture Collection (ATCC) (Manassas, Va.) are shown in FIGS. 15-17. The effect of FGFR1-IIIc-Fc on cell viability and proliferation was dependent on the concentration of FGFR1-IIIc-Fc and on the growth conditions of the cells. The negative control human IgG (20 ug/ml) had no effect. The positive control, TRAIL, decreased viability and proliferation. FGF-2 (100 ug/ml) stimulated proliferation and differentiation. At the lower cell concentrations tested, FGF-2 did not blunt the inhibition induced by 20 μg/ml FGFR1-IIIc-Fc.


U251 cells were grown in DMEM with 4 mM L-glutamine adjusted to contain 1.5 grams per liter (g/L) sodium bicarbonate and 4.5 g/L glucose, 10% heat-inactivated FCS with 100 units/ml penicillin and 100 ug/ml streptomycin (pen-strep, Invitrogen; Carlsbad, Calif.) in T-150 flasks until they reached 70% to 90% confluency. The cells were treated with 10 ml per flask of 0.25% trypsin solution in Hanks' Balanced Salt solution (Invitrogen; Carlsbad, Calif.) at room temperature for 3 min at 37° C. and the trypsin-cell suspension mixed with 40 ml of ice-cold 0.1% FCS in DMEM. The cells were pelleted at 900×g for 5 min at room temperature. This wash step was repeated with 50 ml of ice-cold 0.1% FCS in DMEM and the cells resuspended in 5 ml of ice-cold 0.1% FCS in DMEM.


The resuspended U251 cells were plated in a volume of 150 ul per well in 96-well flat-bottom tissue-culture grade plastic plates (Nunc; Rochester, N.Y.) in the presence of 20 ug/ml of porcine intestinal mucosa heparin (Sigma; St. Louis, Mo.). The cells were plated at three culture conditions (1) a concentration of 1000 cells per well in the presence of 10% FCS in DMEM with pen-strep; (2) a concentration of 5000 cells per well in the presence of 1.0% FCS in DMEM with pen-strep; (3) a concentration of 10,000 cells per well in the presence of 0.1% FCS in DMEM with pen-strep. The cells were treated with FGFR1-IIIc-Fc protein or a control protein in four replicate wells per protein and incubated for five days in a humidified incubator at 37° C. with 5% CO2. The FGFR1-IIIc-Fc protein was made from 293-6E cells and substantially purified as described in Examples 2 and 7. The cells were treated with FGHR1-IIIc-Fc at a concentration of 20 ug/ml, 4 ug/ml, or 0.8 ug/ml. Control proteins included 20 ug/ml purified human IgG dialyzed against PBS to remove preservative and then filter-sterilized (Caltag; Burlingame, Calif.) as a negative control, 100 ng/ml FGF-2 (R&D Systems; Minneapolis, Minn.), used either alone or in combination with 20 ug/ml FGFR1-IIIc-Fc as a positive control; and 10 ng/ml TRAIL (APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand) (R&D Systems; Minneapolis, Minn.), used as a positive control.


Cell viability was then determined using the CellTiter-Glo™ Luminescent Cell Viability Assay Kit (Promega; Madison, Wis.), according to the manufacturer's instructions. Briefly, 100 ul/well of reconstituted CellTiter-Glo™ reagent was added to the cells and incubated for 10 min in the dark. The well contents were mixed by pipeting and 100 ul from each well were transferred to opaque, white 96-well plates (Corning; Acton, Mass.). The luminescent output from each well was read using a 0.6 second per well recording time and the average relative luminescence units (RLU) of the four replicates were plotted along with their standard deviations.


As shown in FIG. 15, FGFR1-IIIc-Fc at each of the three concentrations tested reduced the viability and proliferation of cultured U251 malignant glioblastoma cells plated at a concentration of 1000 cells per well in 10% FCS. Untreated cells showed an RLU of about 480. Cells treated with 20 ug/ml, 4 ug/ml, and 0.8 ug/ml FGFR1-IIIc-Fc showed an RLU of about 380, 400, and 400, respectively. Human IgG did not inhibit viability and proliferation, showing an RLU of about 500. FGF-2 alone enhanced viability and proliferation, showing an RLU of about 600. The combination of FGF-2 and 20 ug/ml FGFR1-IIIc-Fc reduced cell viability and proliferation, showing an RLU of about 400. Treatment with TRAIL resulted in almost complete inhibition, with an RLU of about 10.


As shown in FIG. 16, FGFR1-IIIc-Fc at each of the three concentrations tested reduced the viability and proliferation of cultured U251 malignant glioblastoma cells plated at a concentration of 5000 cells per well in 1.0% FCS. Untreated cells showed a RLU of about 360. Cells treated with 20 ug/ml, 4 ug/ml, and 0.8 ug/ml. FGFR1-IIIc-Fc showed an RLU of about 60, 140, and 200, respectively. Human IgG did not inhibit viability and proliferation, showing an RLU of about 400. FGF-2 alone showed an RLU of about 320. The combination of FGF-2 and 20 ug/ml FGFR1-IIIc-Fc reduced cell viability and proliferation, showing an RLU of about 90. Treatment with TRAIL resulted in almost complete inhibition.


As shown in FIG. 17, FGFR1-IIIc-Fc reduced the viability and proliferation of cultured U251 malignant glioblastoma cells plated at a concentration of 10,000 cells per well in 0.1% FCS. These growth conditions generated more variability between wells, but FIG. 17 demonstrates that FGFR1-IIIc-Fc inhibited the viability and proliferation of U251 cells in a fashion similar to that described in FIG. 15 and FIG. 16.


The effect of FGFR1-IIIc-Fc on the viability and proliferation of cancer cells from cancer cell lines representing various solid tumor types obtained from ATCC (Manassas, Va.) or NCl (Bethesda, Md.) was tested using the CellTiter-Glo™ Luminescent Cell Viability Assay. The cells were grown to about 70% to 90% confluency in T-150 flasks using the recommended growth media for each cell line. The cells were harvested and treated in a manner similar to that described above for U251 cells. The cells were plated at a density of 1000 cells per well in the presence of 10% FCS in DMEM, 5000 cells per well in the presence of 1.0% FCS in DMEM, or 10,000 cells per well in the presence of 0.1% FCS in DMEM; with 20 ug/ml FGFR1-IIIc-Fc as the test agent or 20 ug/ml human IgG as the negative control.


The cancer cell lines tested included MDA-MB-435 (breast), MCF7 (breast), MDA-MB-231 (breast), T47D (breast), A549 (lung), NCI-H522 (lung), NCI-H460 (lung), NCI-H23 (lung), NCI-H226 (lung), U118 (brain), U87114 (brain), U251 (brain), SF268 (brain), WT11 (brain), DU145 (prostate), PC-3 (prostate), COLO 205 (colon), Caki-1 (kidney), SK-MEL-2 (skin) and SK-OV-3 (ovary). The results are shown in FIG. 18. Of the 20 cancer cell lines tested, eight were susceptible to inhibition by FGFR1-IIIc-Fc under one or more of the growth conditions tested. The eight susceptible cell lines were A549 (lung), NCI-H522 (lung), NCI-H226 (lung), U118 (brain), U251 (brain), SF268 (brain), WT11 (brain), and Caki-1 (kidney).


Both FGFR1-IIIc-Fc and FGFR4-Fc inhibited the viability and proliferation of A549 lung carcinoma cells, as measured by the CellTiter-Glo™ Luminescent Cell Viability Assay. The FGFR1-IIIc-Fc and FGFR4-Fc proteins tested were produced in 293-6E cells via transient transfection and purified as described in Examples 2 and 7. The effect of FGFR1-IIIc-Fc and FGFR4-Fc on A549 cells was tested using a protocol similar to that described above for U251 cells. The A549 cells were seeded in four replicate wells at a density of 25,000 cells per well in a volume of 150 ul in flat-bottom 96-well plates in the presence of 20 ug/ml porcine intestinal mucosa heparin (Sigma; Saint Louis, Mo.) in 0.1% FCS DMEM with pen-strep. The A549 cells were cultured in the presence of concentrations of FGFR1-IIIc-Fc protein or FGFR4-Fc protein ranging from about 0.0000095 ug/ml to about 10 ug/ml in four-fold serial dilutions for five days at 37° C. in 5% CO2. Human IgG (10 ug/ml) was used as a negative control. As shown in FIG. 19, cell viability and proliferation were expressed as percent inhibition (average RLU for untreated−average RLU for sample)/(average RLU for untreated) times 100. The error bars show the % Error (standard deviation of sample/average sample RLU) times 100.


At the higher concentrations tested, FGFR1-IIIc-Fc inhibited the viability and proliferation of A549 cells up to about 40%, as compared to the IgG control. The IC50 of FGFR1-IIIc-Fc was about 9.4 ng/ml, equivalent to 0.11 nanomolar (nM). At the highest concentration tested, FGFR4-Fc also inhibited the viability and proliferation of A549 cells up to about 40%, as compared to the IgG control. The IC50 of FGFR4-Fc was about 100 ng/ml, equivalent to 1.2 nM; this is higher than that observed for FGFR1-IIIc-Fc, reflecting a greater potency of FGFR1-IIIc-Fc than FGFR4-Fc in inhibiting A549 cell viability and proliferation.


Example 14
FGFR-Fc Fusion Proteins Decreased Cancer Cell Viability and Proliferation

FGFR1-IIIb-Fc, FGFR1-IIIc-Fc, FGFR2-IIIb-Fc, FGFR3-IIIb-Fc, FGFR3-IIIc-Fc, and FGFR4-Fc were tested for the ability to inhibit the viability and/or proliferation of six different cancer cell lines. The seven fusion proteins tested in this assay were obtained from a commercial source (R&D Systems). The cancer cell lines included A549 (lung), U118 (brain), U251 (brain), SF268 (brain), T47D (breast) and Caki-1 (kidney).


The results obtained from the assays described in Example 13 provided the basis for determining the number of cancer cells plated per well and the concentration of FCS in their media. For instance, the A549 lung carcinoma cells were plated at 25,000 cells per well in 150 ul of DMEM with 0.1% FCS and pen-strep in a 96-well format. They were treated with two-fold serial dilutions of FGFR1-IIIc-Fc, FGFR2-IIIc-Fc, FGFR3- or FGFR4-Fc ranging from about 0.078125 ug/ml to about 5.0 ug/ml. Human IgG was used as a positive control, as described in Example 11. Each fusion protein treatment was performed in triplicate wells and each data point represents an average of three wells. After five days of treatment, the cell viability of A549 cells was assayed with the CellTiter-Glo™ Luminescent Cell Viability Assay as described above. The results are shown in FIG. 20 and indicated that the FGFR-Fc fusion protein inhibition of A549 cells was dose-dependent, reaching up to about 42% at the highest concentrations tested (5 ug/ml). The potencies of the fusion proteins were ranked as FGFR1-IIIc-Fc=FGFR2-IIIc-Fc>FGFR3-IIIc-Fc=FGFR1-IIIb-Fc>FGFR2-IIIb-Fc=FGFR4-Fc>FGFR3-IIIb-Fc>human IgG.


Similar experiments testing the effects of FGFR-Fc fusion proteins on viability and proliferation were performed with on the cancer cell lines U118 (FIG. 20B), U251 (FIG. 20C), SF268 (FIG. 20D), T47D (FIG. 20E) and Caki-1 (FIG. 20F). The protocols were similar to those described above, including the use of human IgG as a negative control. All of the cancer cell lines tested were inhibited by one or more of the seven FGFR-Fc fusion proteins. The results are summarized in FIG. 21.


The FGFR1-IIIc-Fc mutant R1Mut4, but not R1Mut5, inhibited the viability and proliferation of the cancer cell lines A549 and U251 (FIG. 20G). The assay protocol was similar to that described above. The cells were treated with three-fold serial dilutions of FGFR1-IIIc-Fc, R1Mut4, R1Mut5, or human IgG at concentrations ranging from about 0.00457 ug/ml to about 10 ug/ml. FGFR1-IIIc-Fc, R1Mut4, and R1Mut5 were expressed in 293-6E cells using the pTT5 vector as described in Example 2 and purified as described in Example 7. Each fusion protein treatment was performed in triplicate wells. After five days of treatment, the viability of the A549 and U251 cells was assayed with CellTiter-Glo™ Luminescent Cell Viability Assay. Each data point represents an average of three wells. The results are shown in FIG. 20G. The A549 cells were inhibited to a similar extent (from approximately 40 RLU to 20 RLU) by both FGFR1-IIIc-Fc and R1Mut4 at all the doses tested. The U251 cells were also inhibited to a similar extent by FGFR1-IIIc-Fc and by R1Mut4. They displayed dose dependence at the concentrations tested, with no inhibition observed at the lowest dose and maximal inhibition (from approximately 100 RLU to 30 RLU) at the highest dose.


Example 15
Sustained Expression of FGFR1-IIIc-Fc in Mice In Vivo

The effect of sustained expression of human FGFR1-IIIc-Fc fusion protein in animal models, for example, animal tumor models, was tested using the hydrodynamic tail vein injection method to express FGFR1-IIIc-Fc in mice. Naked “mini-circle” vector cDNA encoding the FGFR1-IIIc-Fc fusion protein was injected into three-month old C57/Bl6 female mice (Charles River Laboratory; Hollister, Calif.). This “mini-circle” vector contained FGFR1 IIIc-Fc cDNA and was generated as described in Example 2. The animals were injected via their tail veins using the hydrodynamic tail vein injection method as reported in Liu, F. et al., Gene Therapy 6:1258-1266 (1999) and U.S. Pat. No. 6,627,616, at a DNA concentration of about 15 ug/ml in saline. About 2 ml of the DNA composition was injected in 5-8 seconds into each mouse. Three mice were injected with mini-circle DNA containing the FGFR1-IIIc-Fc cDNA and three mice were injected with saline as controls. Serum samples with a volume of about 50 ul were obtained from tail vein nicks on days 2, 9, 16, 24, 30, 37, and 44 post-injection. The concentration of the FGFR1-IIIc-Fc protein in the serum samples was analyzed by direct ELISA and the ligand binding activity of the FGFR1-IIIc-Fc in the mouse sera was analyzed by FGF-2 competition ELISA. Both ELISA methods are described in further detail below.


A direct sandwich ELISA to detect FGFR1-IIIc-Fc was developed and used to detect FGFR1-IIIc-Fc in the serum of the injected mice. Briefly, HI-BIND half-well plates (Corning; Acton, Mass.) were coated with anti-human FGFR1 antibody (QED Bioscience, San Diego, Calif.) diluted in PBS to a concentration of 3 ug/ml for 1 hr at room temperature or overnight at 4° C.; the wells were then blocked with blocking buffer (BLOTTO diluted to 3% in PBS) for 2-5 hr at room temperature. The plates were washed with PBS containing 0.05% Tween-20, and 50 ul of mouse serum from each of the test animals diluted in 0.6×BLOTTO was added, respectively, to each well and incubated for 2 hr at room temperature. The plates were then washed as before and incubated with 50 ul/well peroxidase-conjugated AffiPure goat anti-human Fc antibody (Jackson Immuno-Research Laboratories; West Grove, Pa.) diluted 1:3000 in Blocking Buffer for 60 min at room temperature. The plates were washed as before, and the wells were incubated for 10 to 20 min with reconstituted OPD solution (Sigma; Saint Louis, Mo.) at room temperature and the absorbance at 450 nm determined.


The results are shown in FIG. 22, and demonstrate the amount of FGFR1-IIIc-Fc fusion protein in the sera of each of the three injected mice in the days following injection of the cDNA encoding the fusion protein. The saline-injected mice showed no detectable levels of the fusion protein. Expression of FGFR1-IIIc-Fc in the serum remained high for at least 44 days post-transfection in the highest expresser mouse. FGFR1-IIIc-Fc was detected at about 10 ug/ml on day 2, about 100 ug/ml on day 9, about 80 ug/ml on day 16, about 50 ug/ml on day 24, and about 35 ug/ml on days 30 to 44 in this mouse. The other two mice injected with FGFR1-IIIc-Fc cDNA showed lower but detectable levels of the fusion protein. This study demonstrated that high and sustained expression of a human FGFR1-IIIc-Fc fusion protein could be achieved in mice after hydrodynamic tail vein injection of the cDNA and that these animals could be used to monitor treatment with this fusion protein.


An FGF-2 competition ELISA demonstrated that the FGFR1-IIIc-Fc fusion proteins expressed in these animals was functional. FGFR1-IIIc-Fc in the sera of the above-described cDNA-injected animals was capable of binding and sequestering a known ligand (for example, FGF-2). Briefly, serum from mice injected with FGFR1-IIIc-Fc cDNA was pre-treated with FGF-2 and the amount of free FGF-2 remaining in the pre-treated serum measured the ability of the expressed FGFR1-IIIc-Fc fusion protein to bind its ligand. The amount of free FGF-2 was measured by the ability of the pre-treated serum to bind to FGFR1-IIIc immobilized on an assay plate.


The serum from the injected mice was pre-treated with FGF-2. Briefly, the serum was diluted 1/500, 1/100, and 1/20 with 0.1×BLOTTO (diluted 1:10 in PBS) and added to 96-well U-bottom plates (Nunc; Rochester, N.Y.) with 200 ng/ml recombinant human FGF-2 (R&D Systems; Minneapolis, Minn.) in a volume of 50 ul for 30 min at 37° C. on a shaker, in the presence of 20 ug/ml heparin. The pre-treatment of the serum with FGF-2 sequestered the FGF-2 to the extent that the FGFR1-IIIc-Fc in the serum was able to bind its ligand FGF-2.


The pretreated serum was then incubated with assay plates coated with FGFR1-IIIc-Fc and the binding of free FGF-2 in the serum measured. A high level of free FGF-2 binding indicates that the circulating FGFR1-IIIc-Fc was not able to bind its ligand FGF-2 and a low level of free FGF-2 binding indicates that the FGFR1-IIIc-Fc expressed in the serum of the injected mice functioned to bind its ligand FGF-2.


HI-BIND half-wells (Corning; Acton, Mass.) were coated with FGFR1-IIIc-Fc of 293-6E host cell origin, at a concentration of 5 ug/ml in PBS in a volume of 25 ul per well for 1 hr at room temperature. The wells were blocked by adding 150 ul BLOTTO per well for 2 hr at room temperature. The coated half-well plates were then washed with PBS containing 0.05% Tween-20. The washed, coated, half-well plates were then incubated with 40 ul of the pre-treated serum for 30 min at 37° C. with shaking. The plates were washed as before with PBS containing 0.05% Tween-20. Then 2 ug/ml of biotinylated anti-FGF-2 polyclonal antibody (R&D Systems; Minneapolis, Minn.) in BLOTTO was added to each well and incubated for 30 min at 37° C. with shaking. The plates were washed again as before and bound antibody was detected with the ABC kit according to manufacturer's protocol. After the final wash with PBS containing 0.05% Tween-20, reconstituted OPD solution (Sigma; Saint Louis, Mo.) was added to each well and incubated for 10-20 min at room temperature and the absorbance of the wells at 450 rim determined.


Results from two control mice injected with saline and two experimental mice injected with FGFR1-IIIc-Fc cDNA are shown in FIG. 23. Pretreated sera from control mouse 1 and mouse 2 showed little or no inhibition of FGF-2 binding to the FGFR1-Fc coated plates. Pretreated sera from mouse 3 and mouse 4, which expressed FGFR1-IIIc-Fc, sequestered FGF-2 in a dose-dependent manner, with the highest level of inhibition observed with the most concentrated sera (1/20 dilution). FIG. 23 also shows the standard curve of purified FGFR1-IIIc-Fc used to calculate the amount of circulating FGFR1-IIIc-Fc in the injected mice. The serum of experimental mouse 4 had the functional equivalent of 64 ug/ml of FGFR1-IIIc-Fc and the serum of experimental mouse 3 had the functional equivalent of 45 ug/ml serum FGFR1-IIIc-Fc.


Example 16
In Vivo Expression of R1Mut4 Via Hydrodynamic Transfection

An experiment similar to that described in Example 15 was performed by hydrodynamic transfection of R1Mut4 cDNA into mice using the minicircle vector described in Example 2. Naked “mini-circle” vector cDNA encoding R1Mut4 was injected into four month old CB1.7 SCID mice (Charles River Laboratory; Hollister, Calif.). About 2 ml of the DNA was injected at a concentration of 20 μg/ml in 5 to 8 seconds into each of four control mice and four R1Mut4 experimental mice, Serum samples were collected at day 2 and day 7. The concentration of R1Mut4 in the serum samples was analyzed by direct ELISA (see Example 15), FGF-2 competition ELISA (see Example 15) and Western blot probing.


Results from the direct ELISA test are shown in FIG. 24. M1-M4 represent sera from the four experimental R1Mut4-injected mice. Mouse 1 expressed about 14,000 ug/ml of R1 Mut4 on day 2 and about 22,000 ug/ml of R1Mut4 on day 7; Mouse 2 expressed about 23,000 ug/ml of R1Mut4 on day 2 and about 17,000 ug/ml of R1Mut4 on day 7; Mouse 3 expressed about 14,000 ug/ml of R1Mut4 on day 2 and about 15,000 ug/ml of R1Mut4 on day 7; and Mouse 4 expressed about 5,000 ug/ml of R1Mut4 on day 2 and about 5,000 ug/ml of R1Mut4 on day 7. Thus, the concentration of R1Mut4 fusion protein in the mouse sera ranged from about 5 mg/ml to about 22.5 mg/ml, as measured by direct ELISA. Similar results were found using the FGF-2 competition ELISA and Western blot probing techniques. These results demonstrated a high and sustained systemic expression of R1Mut4 by animals injected using the hydrodynamic method, similar to that observed with FGFR1-IIIc-Fc.


Example 17
In Vivo Comparison of FGFR1-IIIc-Fc Fusion Protein Produced by 293-6E and CHO-S Host Cells

As shown in Example 5, FGFR1-IIIc-Fc expressed by CHO-S host cells showed superior in vitro stability compared to FGFR1-IIIc-Fc expressed by 293-6E host cells. To determine whether FGFR1-IIIc-Fc expressed by CHO-S host cells also showed a superior in vivo stability profile compared to FGFR1-IIIc-Fc expressed by 293-6E host cells, FGFR1-IIIc-Fc protein from both sources was injected into mice and compared over a 72 hour time course by Western blot.


C57BL6 mice were injected via tail vein with a dose of 3 mg/kilogram (kg) FGFR1-III-Fc protein purified either from CHO-S or 293-6E host cells, as described in Examples 7 and 15. Blood was obtained retro-orbitally at 5 min, 30 min, 24 hr, 48 hr, and 72 hr post-injection and heparinized, Serum (100 μl) from each injected mouse and from an uninjected control mouse was separated on reducing 4-12% polyacrylamide gels via SDS-PAGE, transferred onto nitrocellulose membranes, and probed with HRP-conjugated anti-human Fc antibody (anti-human Fc HRP) (Jackson ImmunoResearch Laboratories, Inc.; West Grove, Pa.).


As shown in FIG. 26, FGFR1-IIIc-Fc purified from 293-6E cells and injected into mice was quickly degraded in vivo and was undetectable via Western blot by 24 hr post-injection. FGFR1-IIIc-Fc expressed from CHO-S cells was more stable in vivo and was readily detectable in the serum, even at 72 hr post-injection. This study showed that the CHO-S host cell-derived FGFR1-IIIc-Fc had a longer serum half life than the 293-6E host cell-derived material.


As also shown in FIG. 26, FGFR1-IIIc-Fc demonstrated different electrophoretic properties when expressed by 293-6E cells compared to CHO-S cells. FGFR1-IIIc-Fc produced by CHO-S cells had an apparent molecular weight of approximately 90 kDa on reducing SDS-PAGE gels and migrated to a position 3-4 kD higher than FGFR1-IIIc-Fc produced by 293-6E cells. Also, the appearance of the CHO-S-derived FGFR1-IIIc-Fc in the gel was more compact in comparison to the more diffuse gel band of the FGFR1-IIIc-Fc derived from 293-6E host cells.


Example 18
In Vivo Inhibition of Tumor Growth By FGFR1-IIIc-Fc and R1Mut4

Xenograft models of tumor growth can be used to assess the in vivo inhibitory properties of cancer therapeutic agents. Caki-1 human kidney tumor cells (ATCC; Manassas, Va.) form tumors when injected into severe combined immunodeficient CB17 scid/scid (CB17SCID) mice. Treatment with FGFR1-IIIc-Fc or R1Mut4 following the injection of the tumor cells decreases the size of the tumors which form in the mice.


Treating mice with FGFR1-IIIc-Fc via hydrodynamic tail vein transfection following the injection of Caki-1 tumor cells reduced the volume of the tumors which formed in the mice, as compared to animals mock-transfected with saline. Nine-week old female CB17SCID mice (Charles River Laboratory) were subcutaneously implanted with 1.5×107 Caki-1 cells in a volume of 200 μl. On day 5 post-tumor implantation, “mini-circle” FGFR1-IIIc-Fc cDNA was delivered at a concentration of 7.5 μg/ml by hydrodynamic tail vein transfection to 13 animals, as described in Example 15. Two ml of the FGFR1-IIIc-Fc cDNA composition comprising 15 μg FGFR1-IIIc-Fc cDNA was injected into the tail vein within 5-8 seconds, Saline was injected into 13 control mice. The resulting tumors were measured by caliper at days 20, 25, 29, 36, 46, 57, and 64. The tumor volume (mm3) was calculated by the formula (π/6)*L2*W, in which L (mm) designated the length and W (mm) designated the width of the tumor. The results, shown in FIG. 25, demonstrated that FGFR1-IIIc-Fc expression inhibited Caki-1 tumor growth by about 25% to 50% at all measured time points, as compared to the saline-treated controls.


Recombinant FGFR1-IIIc-Fc also reduced the volume of Caki-1 tumors in mice. FGFR1-IIIc-Fc was expressed by CHO-S host cells and purified as described in Example 7. Forty eight CB17SCID mice were injected subcutaneously in the flank with 1.5×107 human tumor Caki-1 cells in a PBS vehicle with an injection volume of 200 μl and assigned to one of four treatment groups. Group 1 (n=12) received saline only; Group 2 (n=11) received 1 mg/kg FGFR1-IIIc-Fc; Group 3 (n=12) received 5 mg/kg FGFR1-IIIc-Fc; and Group 4 (n=13) received 15 mg/kg FGFR1-IIIc-Fc. Saline or FGFR1-IIIc-Fc treatment began one day after the tumors were injected and was given twice a week by injecting the appropriate dose of FGFR1-IIIc-Fc into the tail vein in a volume of 200 μl with saline vehicle. Group 1 control mice received only PBS vehicle injections.


The length and width of each tumor resulting from the injected Caki-1 cells were measured with a caliper and the tumor volume was calculated using the equation volume=(π/6)*L2*W, as described above. Measurements were made at seven time points between day 14 and day 57 following injection of the Caki-1 cells. The results are shown in FIG. 30A. FGFR1-IIIc-Fc inhibited the growth of the Caki-1 cell-induced tumors by about 50% on day 57. All three doses of FGFR1-IIIc-Fc inhibited growth to approximately the same extent.


The above experiment was also repeated using different a lower dose range of FGFR1-IIIc-Fc and a single dose of R1Mut4. The FGFR1-IIIc-Fc protein was produced in CHO-S host cells and the R1Mut4 protein was produced in DG44 host cells and the proteins purified as described in Example 7.


Ninety CB17SCLD mice were injected subcutaneously in the flank with 1.5×107 human tumor Caki-1 cells in a PBS vehicle with an injection volume of 200 μl and assigned to one of six treatment groups. Group 1 (n=15) received saline only; Group 2 (n=15) received 5 mg/kg FGFR1-IIIc-Fc; Group 3 (n=14) received 1 mg/kg FGFR1-IIIc-Fc; Group 4 (n=14) received 0.3 mg/kg FGFR1-IIIc-Fc; Group 5 (n=15) received 0.1 g/kg FGFR1-IIIc-Fc and Group 6 (n=17) received 5 mg/kg R1Mut4. Saline, FGFR1-IIIc-Fc or R1Mut4 treatment began one day after the tumors were injected and was given twice a week by injecting the appropriate dose of FGFR1-IIIc-Fc into the tail vein in a volume of 200 μl with saline vehicle. Group 1 control mice received only PBS vehicle injections.


The length and width of each tumor resulting from the injected Caki-1 cells were measured with a caliper and the tumor volume was calculated using the equation volume=(π/6)*L2*W, as described above. Measurements were made at three time points between day 14 and day 27 following injection of the Caki-1 cells. The results are shown in FIG. 30B. Twice-weekly doses of 5 mg/ml of FGFR1-IIIc-Fc or R1Mut4 inhibited the growth of the Caki-1 cell-induced tumors by about 50% on day 27. This demonstrated that the R1Mut4 fusion protein was similarly potent in preventing tumor cell growth in vivo as the parental FGFR1-IIIc-Fc molecule. This experiment also demonstrated that doses of FGFR1-IIIc-Fc as low as 0.3 mg/ml, but not 0.1 mg/ml, inhibited tumor cell growth in a xenograft animal model.


Example 19
FGFR1-IIIc-Fc Sialylation and Glycosylation by 293-6E and CHO-S Cells

To investigate the factors responsible for the differences in stability of FGFR1-IIIc-Fc expressed by 293-6E cells and CHO-S cells, the sialic acid content of the two fusion proteins was compared. FGFR1-IIIc-Fc produced by 293-6E cells had a different sialylation pattern than FGFR1-IIIc-Fc produced from CHO-S cells.


FGFR1-IIIc-Fc expressed by 293-6E host cells, FGFR1-IIIc-Fc expressed by CHO-S host cells, and R1Mut4 expressed by CHO-S host cells were analyzed for sialic acid content by high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) at the University of California at San Diego. Briefly, protein was treated with 2 M HOAc at 80° C. for 3 hr. Sialic acids from the samples were collected by ultra-filtration through a 3,000 NMWCO membrane and eluted from a Dionex CarboPac PA-1 HPAEC-PAD column (Dionex; Sunnyvale, Calif.) with a sodium acetate gradient separating the two common forms of mammalian sialic acids, N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc).


As shown in Table 4 below, FGFR1-IIIc-Fc produced from 293-6E host cells, and FGFR1-IIIc-Fc and R1Mut4 from CHO-S host cells are differentially sialated, with higher levels of both the Neu5Acand Neu5Gc types of sialic acid present in CHO-S cell-derived proteins. The increased sialic acid content of CHO-S-derived FGFR1-IIIc-Fc may account, in whole or in part, for the observed differences in molecular weight and in vivo stability.









TABLE 4







Sialic Acid Analysis of FGFR1-IIIc-Fc and R1Mut4









Sample
nMoles/mg Protein
Moles/Mole













1111
Neu5Gc
Neu5Ac



FGFR1-IIIc-Fc (293 origin)
0.05
66.8
4.37


FGFR1-IIIc-Fc (CHO origin)
0.73
190.82
12.47


R1Mut4 (CHO origin)
2.52
117.96
7.71










FIG. 27 (upper panel) shows a chromatographic analysis of the N-labeled glycans of FGFR1-IIIc-Fc expressed from 293-6E cells, following their separation on a Glycosep C column. FIG. 27 (lower panel) shows the same separation performed on FGFR1-IIIc-Fc expressed from CHO-S cells. The chromatographic analysis was performed by Prozyme (San Leandro, Calif.). The N-labeled glycans were identified by comparison to a 2-aminobenzamide (2-AB) labeled bovine fetuin N-linked glycan library. The positions of the neutral glycans, free 2-AB labeled glycans, and mono-, di-, tri-, and tetra-sialylated glycans are indicated.


FGFR1-IIIc-Fc expressed from 293-6E cells predominantly expressed neutral glycans (asialo-glycans). In contrast, FGFR1-IIIc-Fc expressed from CHO cells predominantly expressed negatively charged sialylated glycans (about 86% of their carbohydrates). The negatively charged glycans of FGFR1-IIIc-Fc expressed from 293-6E host cells were mostly monosialylated, whereas the negatively charged glycans of FGFR1-IIIc-Fc expressed from CHO-S host cells comprised mono-, di-, tri-, and tetra-sialylated glycans, with the tetra-sialylated glycans comprising the major component. These results suggest that the differences in the levels of sialylation between FGFR1-IIIc-Fc of 293 cell origin and that of CHO-S cell origin could be responsible for the in vivo stability differences between the two proteins, as shown in Example 18.


Example 20
Pharmacodynamic Studies of FGFR1-IIIc-Fc in Mice

Pharmacodynamic studies of FGFR1-IIIc-Fc in C57B16 mice show that the fusion protein is present in the serum for approximately 25 days post-injection and retains FGF-2 binding activity for approximately 14 days. The studies were performed by injecting mice with a fixed dose of recombinant FGFR1-IIIc-Fc expressed by CHO-S cells. Nine-week old female C57/B16 mice (Charles River Laboratory) were injected with 200 ul of FGFR1-IIIc-Fc protein solution at a final dose of 15 mg/kg. Serum samples (100 ul) were collected retroorbitally at 30 min, 5 hr, and days 1, 2, 3, 4, 5, 7, 14, and 25 post-injection; four mice were examined at each time point. The concentration of FGFR1-IIIc-Fc in the serum samples was analyzed both by direct ELISA and FGF-2 competition ELISA, as described in Example 15.


The results of the FGFR1-IIIc-Fc direct ELISA are shown in FIG. 28. The concentration of FGFR1-IIIc-Fc was about 62 ug/ml at 30 min, 27 ug/ml at 5 hr, 21 ug/ml on day 1, 19 ug/ml on day 2, 18 ug/ml on day 3, 17 ug/ml on day 4, 18 ug/ml on day 5, 18 ug/ml on day 7, 10 ug/ml on day 14, and about 2 ug/ml on day 25. This result showed that the recombinant FGFR1-IIIc-Fc protein was stable in mice and was detectable at least until day 25 post-injection.


The results of the FGF-2 competition ELISA measuring the FGF-2 binding capacity of the serum FGFR1-IIIc-Fc are shown in FIG. 29. The sera were serially diluted and the amount of binding of the FGFR1-IIIc-Fc in the serum to FGF-2 (0.2 μg/ml) was measured. As shown in FIG. 29, FGF-2 binding by FGFR1-IIIc-Fc in the serum of the injected mice diminished with time, as seen by the rightward shift in the binding curves. FGF-2 binding ability roughly paralleled the amounts of FGFR1-IIIc-Fc measured by direct ELISA. FGF-2 binding activity remained detectable by the FGFR1-IIIc-Fc in the mouse sera at day 14 but by day 25, the competition ELISA was not able to detect FGF-2 binding activity in the amounts of mouse serum which were tested.


Example 21
Pharmacodynamic Studies of R1Mut4 in Mice

Pharmacodynamic studies of R1Mut4 in C57 mice show that R1Mut4 has approximately the same in vivo stability as FGFR1-IIIc-Fc. C57 mice (Charles River Laboratory) at 2-3 months of age were injected subcutaneously with a dose of 10 mg/kg FGFR1-IIIc-Fc or R1Mut4 in 200 ul of saline vehicle. The FGFR1-IIIc-Fc and R1Mut4 were both prepared by expression in a pcDNA3.1 vector in CHO-S cells, as described in Example 2. Serum samples (200 ul) were collected at 4 hr, 3 days, and 7 days post-injection. The concentrations of the FGFR1-IIIc-Fc and R1Mut4 proteins in the serum samples were analyzed by Western blot, as described in Example 5 and the results shown in FIG. 31. Four hours after injection, mice treated with FGFR1-IIIc-Fc and R1Mut4 showed about the same amount of reactivity with the anti-Fc antibody, about 6.3 ng or more, determined by comparison with the standards of known quantities of FGFR1-IIIc-Fc prepared from CHO-S cells and shown in the right panel. By day 3, the amount of protein present in the serum of all the animals had decreased to about 3.1 ng or more determined by comparison with the standards. By day 7, the amount of protein present in the serum of all the animals had decreased to about 1.6 ng or more. These results demonstrated that recombinant FGFR1-IIIc-Fc and R1Mut4 proteins had similar stability in vivo.


Example 22
Over-Expression of FGFR1, FGFR3, and FGFR4 in Cancerous Tissues Relative to Normal Tissues

The analysis and sorting of the expression data residing in the proprietary oncology database from GeneLogic (Gaithersburg, Md.) herein identified cancers that over-expressed FGFR1, FGFR3, and FGFR4 compared to corresponding normal tissues. These cancers are therapeutic targets for the FGFR fusion proteins of the invention. The GeneLogic database was generated by hybridizing Affymetrix U133 (Santa Clara, Calif.) microarray chips with cRNAs derived from over 3000 malignant tissue samples and with cRNAs derived from over 4500 normal tissue samples. The Affymetrix U133 microarray chip contains probes corresponding to FGFR1, probes corresponding to FGFR3, and probes corresponding to FGFR4.


Data derived from all malignant tissue samples and from all normal tissue samples were segregated into datasets corresponding to individual cancer types and to their corresponding normal tissues. Over 75 distinct cancer types are represented in the database. Cancer types with datasets containing samples expressing greater than the median expression value of FGFR1 in the corresponding normal tissue dataset, greater than the median expression value of FGFR1 in the corresponding normal tissue dataset, and greater than the median expression value of FGFR4 in the corresponding normal tissue dataset were considered to over-express FGFR1, to over-express FGFR3, or to over-express FGFR4, respectively. The proportion of samples in the dataset for any given cancer type over-expressing FGFR 1, FGFR3, or FGFR4 was calculated as a percentage of the total number of samples in that dataset, as shown in Table 5.









TABLE 5







FGFR1, FGFR2, and FGFR4 Over-expression in Malignant Tissues









Percent of Malignant Tissue



Samples Over-expressing



FGFR1, FGFR3, or FGFR4










Cancer Type
FGFR1
FGFR3
FGFR4













Leukemia





B-cell acute lymphoblastic leukemia
100


Chronic myelomonocytic leukemia
100


Chronic lymphocytic leukemia
100


Chronic myeloid leukemia
75


Lymphoma


Burkitt''s tumor of extranodal site

7


Hodgkin's disease of lymph nodes
6


Malignant lymphoma of extranodal site
12


Malignant lymphoma, non-Hodgkin's type
16

1


Myeloma


Plasmacytoma
50


Sarcoma


Malignant neoplasm of bone
83
35
3


Malignant neoplasm of heart


100


Malignant neoplasm of soft tissues
37
15
7


Neurologic


Malignant neoplasm of brain
89
21


Breast


Malignant neoplasm of female breast
16
24
13


Malignant neoplasm of male breast

25


Digestive tract/Gastrointestinal


Malignant neoplasm of ampulla of Vater
50
25


Malignant neoplasm of appendix
50


Malignant neoplasm of colon
30
17
45


Malignant neoplasm of duodenum
63
18
36


Malignant neoplasm of esophagus
22
18
55


Malignant neoplasm of gallbladder

66
33


Malignant neoplasm of liver
32
55
52


Malignant neoplasm of pancreas
11
28
14


Malignant neoplasm of the peritoneum
35


Malignant neoplasm of rectum
26
14
59


Malignant neoplasm of small intestine
69
30
7


Malignant neoplasm of stomach
30
14
28


Endocrine Cancers


Malignant neoplasm of adrenal gland
50

100


Malignant neoplasm of islets of Langerhans
9
45
45


Malignant neoplasm of thyroid gland
43
3


Eye


Malignant neoplasm of eye
50


Genitourinary


Malignant neoplasm of bladder
8
56


Malignant neoplasm of kidney
77
5
27


Malignant neoplasm of prostate
11
23


Malignant neoplasm of testis
80
100
38


Malignant neoplasm of ureter

100


Gynecologic


Malignant neoplasm of uterine cervix
26
52


Malignant neoplasm of myometrium
100


Malignant neoplasm of ovary
16
13
6


Malignant neoplasm of uterus
60
20


Malignant neoplasm of endometrium
69
16
7


Malignant neoplasm of placenta
100


Malignant neoplasm of vulva
5
5


Head & Neck


Malignant neoplasm of larynx
36
26


Malignant neoplasm of major salivary gland
66


Malignant neoplasm of nasal cavity
100


Malignant neoplasm of oral cavity
20
60


Malignant neoplasm of parotid gland
27
18
9


Malignant neoplasm of tongue
71
14


Malignant neoplasm of tonsil

100


Respiratory/Thoracic


Malignant neoplasm of lung
28
35
4


Malignant neoplasm of thymus
50


Malignant neoplasm of trachea
100


Skin


Malignant neoplasm of skin
22
16
1









FGFR1 was over-expressed in leukemia, including B-cell acute lymphoblastic leukemia, chronic myelomonocytic leukemia, chronic lymphocytic leukemia, and chronic myeloid leukemia; in lymphoma, including Hodgkin's lymphoma, non-Hodgkin's lymphoma, and extranodal lymphoma; in myeloma, including plasmacytoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the ampulla of Vater, appendix, colon, duodenum, esophagus, liver, pancreas, peritoneum, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the adrenal gland, islets of Langerhans, and thyroid gland; in eye cancer, including malignant neoplasms of the eye; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, prostate, and testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, myometrium, ovary, uterus, endometrium, placenta, and vulva; in head and neck cancer, including malignant neoplasms of the larynx, salivary gland, nasal cavity, oral cavity, parotid gland, and tongue; in respiratory/thoracic cancer, including malignant neoplasms of the lung, thymus, and trachea; and in skin cancer, including malignant neoplasms of the skin (Table 5).


FGFR3 was over-expressed in lymphoma, including Burkitt's lymphoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast and male breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the ampulla of Vater, colon, duodenum, esophagus, gallbladder, liver, pancreas, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the islets of Langerhans and thyroid gland; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, prostate, testis, and ureter; in gynecologic cancer, including malignant neoplasms of the uterine cervix, ovary, uterus, endometrium, and vulva; in head and neck cancer, including malignant neoplasms of the larynx, oral cavity, parotid gland, tongue, and tonsil; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 5).


FGFR4 was over-expressed in lymphoma, including non-Hodgkin's lymphoma; in sarcoma, including malignant neoplasms of the bone, heart, and soft tissues; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon, duodenum, esophagus, gallbladder, liver, pancreas, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the adrenal gland and islets of Langerhans; in genitourinary cancer, including malignant neoplasms of the kidney and testis; in gynecologic cancer, including malignant neoplasms of the ovary and endometrium; in head and neck cancer, including malignant neoplasms of the parotid gland; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 5).


Table 4 identifies tumors which over-expressed more than one FGFR, for example, malignant hyphoma, non-Hodgkin's type over-expressed FGFR1 and FGFR4; malignant neoplasm of bone, soft tissues, female breast, colon, duodenum, esophagus, liver, rectum, small intestine, stomach, islets of Langerhans, kidney, testis, ovary, endometrium, parotid gland, lung, and skin over-expressed FGFR1, FGFR3, and FGFR4; malignant neoplasm of brain, ampulla of Vater, thyroid gland, bladder, prostate, uterine cervix, uterus, vulva, larynx, oral cavity, and tongue over-expressed FGFR1 and FGFR3; and malignant neoplasm of the gall bladder over-expressed FGFR3 and FGFR4.


Our analysis indicated that FGFR1, and FGFR3, and/or FGFR4 were often over-expressed in cancer. This over-expression implicates active FGF signaling pathways in maintaining the viability and proliferative capability of the affected tumors. We concluded that blocking these signaling pathways in the affected tumors, such as with decoy receptors like FGFR1-Fc, FGFR3-Fc and FGFR4-Fc fusion proteins, or their variants will reduce the viability and proliferative capacity of these tumors.


Example 23
Over-Expression of FGF-1, FGF-2, FGF-4, and FGF-5 in Cancerous Tissues Relative to Normal Tissues

An analysis of the GeneLogic (Gaithersburg, Md.) database for the expression of FGF-1, FGF-2, FGF-4, and FGF-5 in cancer tissue types and in corresponding normal tissue types was performed essentially as described in Example 22. The Affymetrix U133 microarray chip contains probes corresponding to FGF-1, FGF-2, FGF-4, and FGF-5. The proportion of samples in the dataset of any given cancer type over-expressing FGF-1, FGF-2, FGF-4, or FGF-5 was calculated as a percentage of the total number of samples in that dataset and is shown in Table 6. Cancers which over-expressed FGF-1, FGF-2, FGF-4, and FGF-5 compared to corresponding normal tissues are therapeutic targets for the FGFR fusion proteins of the invention.









TABLE 6







FGF-1, FGF-2, FGF-4, and FGF-5 Over-expression in Malignant Tissues









Percent of Malignant Tissue Samples



Over-expressing FGF-1, FGF-2,



FGF-4, or FGF-5











Cancer Type
FGF-1
FGF-2
FGF-4
FGF-5














Leukemia






Acute monocytic/monoblastic
100


leukemia


Chronic lymphocytic leukemia


Prolymphocytic leukemia


100


Chronic myeloid leukemia
25


Lymphoma


Burkitt''s tumor of extranodal site
100


Hodgkin's disease of lymph nodes
20
6


Malignant lymphoma of extranodal
12
3
3


site


Malignant lymphoma,
10
11
6


non-Hodgkin's type


Myeloma


Plasmacytoma

50


Sarcoma


Malignant neoplasm of bone
29
29
3
6


Malignant neoplasm of heart

100
100


Malignant neoplasm of soft tissues
25
42
4
18


Neurologic


Malignant neoplasm of brain
3
53
3


Breast


Malignant neoplasm of female
19
5
7


breast


Malignant neoplasm of male breast
50


25


Digestive tract/Gastrointestinal


Malignant neoplasm of ampulla

50
25


of Vater


Malignant neoplasm of appendix

50


Malignant neoplasm of colon
11
12
7


Malignant neoplasm of duodenum

18


Malignant neoplasm of esophagus
7
22
3


Malignant neoplasm of gallbladder
33


Malignant neoplasm of liver
20
23
11
8


Malignant neoplasm of pancreas
30
53
8


Malignant neoplasm of the
7

7
7


peritoneum


Malignant neoplasm of rectum
5
8
3


Malignant neoplasm of small
30
53


intestine


Malignant neoplasm of stomach
19
28
9


Endocrine Cancers


Malignant neoplasm of adrenal

50


gland


Malignant neoplasm of islets of
18
63
9


Langerhans


Malignant neoplasm of thyroid
22
30
7
1


gland


Eye


Malignant neoplasm of eye


Genitourinary


Malignant neoplasm of bladder
8
8
4


Malignant neoplasm of kidney
2
48
6


Malignant neoplasm of prostate
8
5
4


Malignant neoplasm of testis
28
52
42


Malignant neoplasm of ureter
33


Gynecologic


Malignant neoplasm of fallopian
33

33


tube


Malignant neoplasm of uterine
17
8
13


cervix


Malignant neoplasm of
11
22
11


myometrium


Malignant neoplasm of ovary
12
9
6
1


Malignant neoplasm of uterus


Malignant neoplasm of
19
12
23
2


endometrium


Malignant neoplasm of placenta

100


Malignant neoplasm of vulva
40
25
5


Head & Neck


Malignant neoplasm of larynx
21
10
15


Malignant neoplasm of major
33
66


salivary gland


Malignant neoplasm of parotid
18
54

9


gland


Malignant neoplasm of tongue
42
28
28


Malignant neoplasm of tonsil


Respiratory/Thoracic


Malignant neoplasm of lung
20
13
8
1


Malignant neoplasm of thymus

50


Malignant neoplasm of trachea

100


Skin


Malignant neoplasm of skin
27
19
3
6









FGF-1 was over-expressed in leukemia, including acute monocytic/monoblastic leukemia and chronic myeloid leukemia; in lymphoma, including Burkitt's lymphoma, Hodgkin's lymphoma and non-Hodgkin's lymphoma, and extranodal lymphoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast and male breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon, esophagus, gallbladder, liver, pancreas, peritoneum, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the islets of Langerhans and thyroid gland; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, prostate, testis, and ureter; in gynecologic cancer, including malignant neoplasms of the fallopian tube, uterine cervix, myometrium, ovary, endometrium, and vulva; in head and neck cancer, including malignant neoplasms of the larynx, salivary gland, parotid gland, and tongue; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 6).


FGF-2 was over-expressed in lymphoma, including Hodgkin's lymphoma, non-Hodgkin's lymphoma, and extranodal lymphoma; in myeloma, including plasmacytoma; in sarcoma, including malignant neoplasms of the bone, heart, and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the ampulla of Vater, appendix, colon, duodenum, esophagus, liver, pancreas, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the adrenal gland, islets of Langerhans and thyroid gland; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, prostate, and testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, myometrium, ovary, endometrium, placenta, and vulva; in head and neck cancer, including malignant neoplasms of the larynx, salivary gland, parotid gland, and tongue; in respiratory/thoracic cancer, including malignant neoplasms of the lung, thymus, and trachea; and in skin cancer, including malignant neoplasms of the skin (Table 6).


FGF-4 was over-expressed in leukemia, including pro-lymphocytic leukemia; in lymphoma, including non-Hodgkin's lymphoma and extranodal lymphoma; in sarcoma, including malignant neoplasms of the bone, heart, and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the ampulla of Vater, colon, esophagus, liver, pancreas, peritoneum, rectum, and stomach; in endocrine cancer, including malignant neoplasms of the islets of Langerhans and thyroid gland; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, prostate, and testis; in gynecologic cancer, including malignant neoplasms of the fallopian tube, uterine cervix, myometrium, ovary, endometrium, and vulva; in head and neck cancer, including malignant neoplasms of the larynx and tongue; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 6).


FGF-5 was over-expressed in sarcoma, including malignant neoplasms of the bone and soft tissues; in breast cancer, including malignant neoplasms of the male breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the liver and peritoneum; in endocrine cancer, including malignant neoplasms of the thyroid gland; in gynecologic cancer, including malignant neoplasms of the ovary and endometrium; in head and neck cancer, including malignant neoplasms of the parotid gland; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 6).


Table 6 demonstrates that FGF-1, FGF-2, FGF-4 and FGF-5, were often over-expressed in cancer. This over-expression implicates active FGF signaling pathways in maintaining viability or proliferative capability of the affected tumors. Blocking these signaling pathways in the affected tumors, such as by blocking the interactions between FGF-1, FGF-2, FGF-4, and FGF-5 and their respective receptors with decoy receptors, such as FGFR-1, FGFR3, FGFR4-Fc fusion proteins, or their variants will reduce the viability and proliferative capacity of these tumors.


Example 24
Over-expression of FGF-8, FGF-17, FGF-18, FGF-9, and FGF-20 in Cancerous Tissues Relative to Normal Tissues

An analysis of the GeneLogic (Gaithersburg, Md.) database for the expression of FGF-8, FGF-17, FGF-18, FGF-9, or FGF-20 in cancer tissue types and in corresponding normal tissue types was performed essentially as described in Example 22. The Affymetrix U133 microarray chip contains probes corresponding to FGF-8, FGF-17, FGF-18, FGF-9, and FGF-20. The proportion of samples in the dataset of any given cancer type over-expressing FGF-8, FGF-17, FGF-18, FGF-9, or FGF-20 was calculated as a percentage of the total number of samples in that dataset and is shown in Table 6. Cancers which over-expressed FGF-8, FGF-17, FGF-18, FGF-9, and FGF-20 compared to corresponding normal tissues are therapeutic targets for the FGFR fusion proteins of the invention.









TABLE 7







FGF-8, FGF-17, FGF-18, FGF-9, and FGF-20 Over-expression in Malignant Tissues









Percent of Malignant Tissue Samples Over-



expressing FGF-8, FGF-17, FGF-18, FGF-9,



or FGF-20












Cancer Type
FGF-8
FGF-17
FGF-18
FGF-9
FGF-20















Leukemia







B-cell acute lymphoblastic leukemia



100


Lymphoma


Burkitt''s tumor of extranodal site



1


Malignant lymphoma of extranodal site


3


Malignant lymphoma, non-Hodgkin's type


1
1


Sarcoma


Malignant neoplasm of bone


6
32


Malignant neoplasm of soft tissues

2
32
16


Neurologic


Malignant neoplasm of brain



32


Breast


Malignant neoplasm of female breast


9
2


Malignant neoplasm of male breast


25


Digestive tract/Gastrointestinal


Malignant neoplasm of ampulla of Vater


25


Malignant neoplasm of appendix


50
50


Malignant neoplasm of colon


12
7
1


Malignant neoplasm of esophagus


22
3


Malignant neoplasm of gallbladder


66
33


Malignant neoplasm of liver


2


Malignant neoplasm of pancreas


22
2


Malignant neoplasm of the peritoneum


85
35


Malignant neoplasm of rectum


21
5


Malignant neoplasm of small intestine



23


Malignant neoplasm of stomach


3
6


Endocrine Cancers


Malignant neoplasm of adrenal gland



50


Malignant neoplasm of islets of Langerhans
9


27
9


Malignant neoplasm of thyroid gland


9

3


Genitourinary


Malignant neoplasm of bladder



8


Malignant neoplasm of kidney


7
9


Malignant neoplasm of testis


28
9


Gynecologic


Malignant neoplasm of fallopian tube


33


Malignant neoplasm of uterine cervix

4
17
21


Malignant neoplasm of myometrium



11


Malignant neoplasm of ovary

1
66
30
3


Malignant neoplasm of uterus


60
20


Malignant neoplasm of endometrium


66
50
12


Head & Neck


Malignant neoplasm of major salivary gland



33


Malignant neoplasm of parotid gland


50
27


Malignant neoplasm of tongue



14


Respiratory/Thoracic


Malignant neoplasm of lung


6
9


Malignant neoplasm of trachea



50


Skin


Malignant neoplasm of skin


4
4









FGF-8 was over-expressed in endocrine cancer, including malignant neoplasms of the islets of Langerhans (Table 7).


FGF-17 was over-expressed in sarcoma, including malignant neoplasms of the soft tissues; and in gynecologic cancer, including malignant neoplasms of the uterine cervix and ovary (Table 7).


FGF-18 was over-expressed in lymphoma, including Hodgkin's lymphoma and extranodal lymphoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in breast cancer, including malignant neoplasms of the female breast and male breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the ampulla of Vater, appendix, colon, esophagus, gallbladder, liver, pancreas, peritoneum, rectum, and stomach; in endocrine cancer, including malignant neoplasms of the thyroid gland; in genitourinary cancer, including malignant neoplasms of the kidney and testis; in gynecologic cancer, including malignant neoplasms of the fallopian tube, uterine cervix, ovary, uterus, and endometrium; in head and neck cancer, including malignant neoplasms of the parotid gland; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 7).


FGF-9 was over-expressed in leukemia, including B-cell acute lymphoblastic leukemia; in lymphoma, including Burkitt's lymphoma and non-Hodgkin's lymphoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the appendix, colon, esophagus, gallbladder, pancreas, peritoneum, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the adrenal gland and islets of Langerhans; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, and testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, myometrium, ovary, uterus, and endometrium; in head and neck cancer, including malignant neoplasms of the salivary gland, parotid gland, and tongue; in respiratory/thoracic cancer, including malignant neoplasms of the lung and trachea; and in skin cancer, including malignant neoplasms of the skin (Table 7).


Table 6 demonstrates that FGF-8, FGF-17, FGF-18, FGF-9 and FGF-20 were often over-expressed in cancer. this over-expression implicates active FGF signaling pathways in maintaining viability or proliferative capability of the affected tumors. Blocking these signaling pathways in the affected tumors, such as by blocking the interactions between FGF-8, FGF-17, FGF-9 and FGF-20 and their respective receptors, using decoy receptors, such as FGFR1-Fc, FGFR3-Fc and FGFR4-Fc fusion proteins, or any of their variants will reduce the viability and proliferative capacity of these tumors.


FGF-20 was over-expressed in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon; in endocrine cancer, including malignant neoplasms of the islets of Langerhans and thyroid gland; and in gynecologic cancer, including malignant neoplasms of the ovary and endometrium (Table 7).


Example 25
Over-Expression of FGF-19, FGF-21, and FGF-23 in Cancerous Tissues Relative to Normal Tissues

An analysis of the GeneLogic (Gaithersburg, Md.) database for the expression of FGF-19, FGF-21, or FGF-23 in cancer tissue types and in corresponding normal tissue types was performed essentially as described in Example 22. The Affymetrix U133 microarray chip contains probes corresponding to FGF-19, FGF-21, and FGF-23. The proportion of samples in the dataset of any given cancer type over-expressing FGF-19, FGF-21, or FGF-23 was calculated as a percentage of the total number of samples in that dataset and is shown in Table 9. Cancers which over-expressed FGF-19, FGF-21, or FGF-23 compared to corresponding normal tissues are therapeutic targets for the FGFR fusion proteins of the invention.









TABLE 8







FGF-19, FGF-21, and FGF-23 Over-expression in Malignant Tissues









Percent of Malignant Tissue



Samples Over-expressing



FGF-19, FGF-21,



or FGF-23










Cancer Type
FGF-19
FGF-21
FGF-23













Sarcoma





Malignant neoplasm of bone
3


Malignant neoplasm of soft tissues
1

1


Neurologic


Malignant neoplasm of brain
3


Digestive tract/Gastrointestinal


Malignant neoplasm of colon
5


Malignant neoplasm of esophagus


3


Malignant neoplasm of gallbladder
33


Malignant neoplasm of liver
11
32


Malignant neoplasm of pancreas
22


Malignant neoplasm of rectum
7
1


Malignant neoplasm of small intestine
7


Malignant neoplasm of stomach
1


Endocrine Cancers


Malignant neoplasm of thyroid gland
3


Genitourinary


Malignant neoplasm of testis
19


Gynecologic


Malignant neoplasm of uterine cervix
8


Malignant neoplasm of myometrium


11


Malignant neoplasm of ovary
5


Malignant neoplasm of endometrium
12


Malignant neoplasm of vulva
5


Head & Neck


Malignant neoplasm of larynx
5


Respiratory/Thoracic


Malignant neoplasm of lung
5


Skin


Malignant neoplasm of skin
9

1









FGF-19 was over-expressed in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon, gallbladder, liver, pancreas, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the thyroid gland; in genitourinary cancer, including malignant neoplasms of the testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, ovary, endometrium, and vulva; in head and neck cancer, including malignant neoplasms of the larynx; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 8).


FGF-21 was over-expressed in digestive tract/gastrointestinal cancer, including malignant neoplasms of the liver and rectum (Table 8).


FGF-23 was over-expressed in sarcoma, including malignant neoplasms of the soft tissues; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the esophagus; in gynecologic cancer, including malignant neoplasms of the myometrium; and in skin cancer, including malignant neoplasms of the skin (Table 8).


Table 8 demonstrates that FGF-19, FGF-21 and FGF-23 were often over-expressed in cancer. This over-expression implicates active FGF signaling pathways in maintaining viability or proliferative capability of the affected tumors. Blocking these signaling pathways in the affected tumors such as by blocking the interactions between FGF-19, FGF-21 and FGF-23 and their respective receptors, using decoy receptors such as FGFR1-Fc, FGFR3-Fc and FGFR4-Fc fusion proteins or their variants will reduce the viability or proliferative capacity of these tumors.


Example 26
Over-Expression of FGFR1 and Over-Expression of FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-19, FGF-20, and FGF-21 in Cancerous Tissues Relative to Normal Tissues

FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-19, FGF-20, and FGF-21 can induce proliferation in cancerous cells expressing FGFR1. An analysis of the GeneLogic (Gaithersburg, Md.) database for the expression of FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-19, FGF-20, and FGF-21 in cancer tissue types and in corresponding normal tissue types was performed essentially as described in Example 22. The Affymetrix U133 microarray chip contains probes corresponding to FGFR1, FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-19, FGF-20, and FGF-21. The proportion of samples in the dataset of any given cancer type over-expressing FGFR1, FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-19, FGF-20, or FGF-21 was calculated as a percentage of the total number of samples in that dataset and is shown in Table 10. Cancers which over-expressed FGFR1, FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-19, FGF-20, and FGF-21 compared to corresponding normal tissues are therapeutic targets for the FGFR fusion proteins of the invention.









TABLE 9







FGFR-1, FGF-1, FGF-2, FGF-4, FGF-8, FGF-9, FGF-17, FGF-19, FGF-20,


and FGF-21 Over-expression in Malignant Tissues









Percent of Malignant Tissue Samples Over-expressing FGFR1,



FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-19,



FGF-20, or FGF-21



















FGF
FGF
FGF
FGF
FGF
FGF
FGF
FGF
FGF
FGF
FGF


Cancer Type
R1
−1
−2
−4
−5
−8
−9
−17
−19
−20
−21





















Leukemia













B-cell acute lymphoblastic
100





100






leukemia













Chronic myeloid leukemia
75
25











Lymphoma













Hodgkin's disease of lymph nodes
6
20
6










Malignant lymphoma of extranodal
12
12
3
3









site













Malignant lymphoma, non-
16
10
11
6


1






Hodgkin's type













Myeloma













Plasmacytoma
50

50










Sarcoma













Malignant neoplasm of bone
83
29
29
3
6

32

3




Malignant neoplasm of soft tissues
37
25
42
4
18

16
2
1




Neurologic













Malignant neoplasm of brain
89
3
53
3


32

3




Breast













Malignant neoplasm of female
16
19
5
7


2






breast













Digestive tract/Gastrointestinal













Malignant neoplasm of ampulla of
50

50
25









Vater













Malignant neoplasm of appendix
50

50



50






Malignant neoplasm of colon
30
11
12
7


7

5
1



Malignant neoplasm of duodenum
63

18










Malignant neoplasm of esophagus
22
7
22
3


3






Malignant neoplasm of liver
32
20
23
11
8



11

32


Malignant neoplasm of pancreas
11
30
53
8


2

22




Malignant neoplasm of the
35
7

7
7

35






peritoneum













Malignant neoplasm of rectum
26
5
8
3


5

7

1


Malignant neoplasm of small
69
30
53



23

7




intestine













Malignant neoplasm of stomach
30
19
28
9


6

1




Endocrine Cancers













Malignant neoplasm of adrenal
50

50



50






gland













Malignant neoplasm of islets of
9
18
63
9

9
27


9



Langerhans













Malignant neoplasm of thyroid
43
22
30
7
1



3
3



gland













Genitourinary













Malignant neoplasm of bladder
8
8
8
4


8






Malignant neoplasm of kidney
77
2
48
6


9






Malignant neoplasm of prostate
11
8
5
4









Malignant neoplasm of testis
80
28
52
42


9

19




Gynecologic













Malignant neoplasm of uterine
26
17
8
13


21
4
8




cervix













Malignant neoplasm of
100
11
22
11


11






myometrium













Malignant neoplasm of ovary
16
12
9
6
1

30
1
5
3



Malignant neoplasm of uterus
60





20






Malignant neoplasm of
69
19
12
23
2

50

12
12



endometrium













Malignant neoplasm of placenta
100

100










Malignant neoplasm of vulva
5
40
25
5




5




Head & Neck













Malignant neoplasm of larynx
36
21
10
15




5




Malignant neoplasm of major
66
33
66



33






salivary gland













Malignant neoplasm of parotid
27
18
54

9

27






gland













Malignant neoplasm of tongue
71
42
28
28


14






Respiratory/Thoracic













Malignant neoplasm of lung
28
20
13
8
1

9

5




Malignant neoplasm of thymus
50

50










Malignant neoplasm of trachea
100

100



50






Skin













Malignant neoplasm of skin
22
27
19
3
6

4

9









FGFR1 and FGF-1 were both over-expressed in leukemia, including chronic myeloid leukemia; in lymphoma, including Hodgkin's lymphoma, non-Hodgkin's lymphoma, and extranodal lymphoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon, esophagus, liver, pancreas, peritoneum, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the islets of Langerhans, and thyroid gland; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, prostate, and testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, myometrium, ovary, endometrium, and vulva; in head and neck cancer, including malignant neoplasms of the larynx, salivary gland, parotid gland, and tongue; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 9).


FGFR1 and FGF-2 were both over-expressed in lymphoma, including Hodgkin's lymphoma, non-Hodgkin's lymphoma, and extranodal lymphoma; in myeloma, including plasmacytoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the ampulla of Vater, appendix, colon, duodenum, esophagus, liver, pancreas, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the adrenal gland, islets of Langerhans, and thyroid gland; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, prostate, and testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, myometrium, ovary, endometrium, placenta, and vulva; in head and neck cancer, including malignant neoplasms of the larynx, salivary gland, parotid gland, and tongue; in respiratory/thoracic cancer, including malignant neoplasms of the lung, thymus, and trachea; and in skin cancer, including malignant neoplasms of the skin (Table 9).


FGFR1 and FGF-4 were both over-expressed in lymphoma, including non-Hodgkin's lymphoma, and extranodal lymphoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the ampulla of Vater, colon, esophagus, liver, pancreas, peritoneum, rectum, and stomach; in endocrine cancer, including malignant neoplasms of the islets of Langerhans, and thyroid gland; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, prostate, and testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, myometrium, ovary, endometrium, and vulva; in head and neck cancer, including malignant neoplasms of the larynx and tongue; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 9).


FGFR1 and FGF-5 were both over-expressed in sarcoma, including malignant neoplasms of the bone and soft tissues; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the liver and peritoneum; in endocrine cancer, including malignant neoplasms of the thyroid gland; in gynecologic cancer, including malignant neoplasms of the ovary and endometrium; in head and neck cancer, including malignant neoplasms of the parotid gland; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 9).


FGFR1 and FGF-8 were both over-expressed in endocrine cancer, including malignant neoplasms of the islets of Langerhans (Table 9).


FGFR1 and FGF-9 were both over-expressed in leukemia, including B-cell acute lymphoblastic leukemia; in lymphoma, including non-Hodgkin's lymphoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the appendix, colon, esophagus, pancreas, peritoneum, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the adrenal gland and islets of Langerhans; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, and testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, myometrium, ovary, uterus, and endometrium; in head and neck cancer, including malignant neoplasms of the salivary gland, parotid gland, and tongue; in respiratory/thoracic cancer, including malignant neoplasms of the lung and trachea; and in skin cancer, including malignant neoplasms of the skin (Table 9).


FGFR1 and FGF-17 were both over-expressed in sarcoma, including malignant neoplasms of the soft tissues; and in gynecologic cancer, including malignant neoplasms of the uterine cervix and ovary (Table 9).


FGFR1 and FGF-19 were both over-expressed in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon, liver, pancreas, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the thyroid gland; in genitourinary cancer, including malignant neoplasms of the testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, ovary, endometrium, and vulva; in head and neck cancer, including malignant neoplasms of the larynx; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 9).


FGFR1 and FGF-20 were both over-expressed in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon; in endocrine cancer, including malignant neoplasms of the islets of Langerhans, and thyroid gland; and in gynecologic cancer, including malignant neoplasms of the ovary and endometrium (Table 9).


FGFR1 and FGF-21 were both over-expressed in digestive tract/gastrointestinal cancer, including malignant neoplasms of the liver and rectum (Table 9).


Table 9 demonstrates that FGFR1 and any one or more of FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-19, FGF-20 and FGF-21 were often over-expressed in cancer. This over-expression implicates active FGF signaling pathways in maintaining viability or proliferative capability of the affected tumors. Blocking these signaling pathways in the affected tumors, such as by blocking the interaction between FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-0, FGF-17, FGF-19 and/or FGF-20 and their respective receptors and between FGFR1 and its binding ligands, using decoy receptors such as FGFR1-Fc, FGFR3-Fc, and FGFR4-Fc fusion proteins, or their variants will reduce the viability or proliferative capacity of these tumors.


Example 27
Over-Expression of FGFR3 and Over-Expression of FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, and FGF-20 in Cancerous Tissues Relative to Normal Tissues

FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, and FGF-20 can induce proliferation in cancerous cells expressing FGFR3. An analysis of the GeneLogic (Gaithersburg, Md.) database for the expression of FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, and FGF-20 in cancer tissue types and in corresponding normal tissue types was performed essentially as described in Example 22. The Affymetrix U133 microarray chip contains probes corresponding to FGFR3, FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, and FGF-20. The proportion of samples in the dataset of any given cancer type over-expressing FGFR3, FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, and FGF-20 was calculated as a percentage of the total number of samples in that dataset and is shown in Table 11. Cancers which over-expressed FGFR3, FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, and FGF-20 compared to corresponding normal tissues are therapeutic targets for the FGFR fusion proteins of the invention.









TABLE 10







FGFR-3, FGF-1, FGF-2, FGF-4, FGF-5, FGF-8,FGF-9, FGF-17, FGF-18,


FGF-19, and FGF-20 Over-expression in Malignant Tissues









Percent of Malignant Tissue Samples Over-expressing FGFR3,



FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18,



FGF-19, or FGF-20



















FGF
FGF
FGF
FGF
FGF
FGF
FGF
FGF
FGF
FGF
FGF


Cancer Type
R3
−1
−2
−4
−5
−8
−9
−17
−18
−19
−20





















Lymphoma













Burkitt's tumor of extranodal site
7
100




1






Sarcoma













Malignant neoplasm of hone
35
29
29
3
6

32

6
3



Malignat neoplasm of soft tissues
15
25
42
4
18

16
2
32
1



Neurologic













Malignant neoplasm of brain
21
3
53
3


32


3



Breast













Malignant neoplasm of female
24
19
5
7


2

9




breast













Malignant neoplasm of male breast
25
50


25



25




Digestive tract/Gastrointestinal













Malignant neoplasm of ampulla of
25

50
25




25




Vater













Malignant neoplasm of colon
17
11
12
7


7

12
5
1


Malignant neoplasm of duodenum
18

18










Malignant neoplasm of esophagus
18
7
22
3


3

22




Malignant neoplasm of gallbladder
66
33




33

66
33



Malignant neoplasm of liver
55
20
23
11
8



2
11



Malignant neoplasm of pancreas
28
30
53
8


2

22
22



Malignant neoplasm of rectum
14
5
8
3


5

21
7



Malignant neoplasm of small
30
30
53



23


7



intestine













Malignant neoplasm of stomach
14
19
28
9


6

3
1



Endocrine Cancers













Malignant neoplasm of islets of
45
18
63
9

9
27



9


Langerhans













Malignant neoplasm of thyroid
3
22
30
7
1



9
3
3


gland













Genitourinary













Malignant neoplasm of bladder
56
8
8
4


8






Malignant neoplasm of kidney
5
2
48
6


9

7




Malignant neoplasm of prostate
23
8
5
4









Malignant neoplasm of testis
100
28
52
42


9

28
19



Malignant neoplasm of ureter
100
33











Gynecologic













Malignant neoplasm of uterine
52
17
8
13


21
4
17
8



cervix













Malignant neoplasm of ovary
13
12
9
6
1

30
1
66
5
3


Malignant neoplasm of uterus
20





20

60




Malignant neoplasm of
16
19
12
23
2

50

66
12
12


endometrium













Malignant neoplasm of vulva
5
40
25
5





5



Head & Neck













Malignant neoplasm of larynx
26
21
10
15





5



Malignant neoplasm of parotid
18
18
54

9

27

50




gland













Malignant neoplasm of tongue
14
42
28
28


14






Respiratory/Thoracic













Malignant neoplasm of lung
35
20
13
8
1

9

6
5



Skin













Malignant neoplasm of skin
16
27
19
3
6

4

4
9









FGFR3 and FGF-1 were both over-expressed in lymphoma, including Burkitt's lymphoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast and male breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon, esophagus, gallbladder, liver, pancreas, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the islets of Langerhans and thyroid gland; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, prostate, testis, and ureter; in gynecologic cancer, including malignant neoplasms of the uterine cervix, ovary, endometrium, and vulva; in head and neck cancer, including malignant neoplasms of the larynx, parotid gland, and tongue; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 10).


FGFR3 and FGF-2 were both over-expressed in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the ampulla of Vater, colon, duodenum, esophagus, liver, pancreas, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the islets of Langerhans and thyroid gland; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, prostate, and testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, ovary, endometrium, and vulva; in head and neck cancer, including malignant neoplasms of the larynx, parotid gland, and tongue; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 10).


FGFR3 and FGF-4 were both over-expressed in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the ampulla of Vater, colon, esophagus, liver, pancreas, rectum, and stomach; in endocrine cancer, including malignant neoplasms of the islets of Langerhans and thyroid gland; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, prostate, and testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, ovary, endometrium, and vulva; in head and neck cancer, including malignant neoplasms of the larynx and tongue; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 10).


FGFR3 and FGF-5 were both over-expressed in sarcoma, including malignant neoplasms of the bone and soft tissues; in breast cancer, including malignant neoplasms of the male breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the liver; in endocrine cancer, including malignant neoplasms of the thyroid gland; in gynecologic cancer, including malignant neoplasms of the ovary and endometrium; in head and neck cancer, including malignant neoplasms of the parotid gland; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 10).


FGFR3 and FGF-8 were both over-expressed in endocrine cancer, including malignant neoplasms of the islets of Langerhans (Table 10).


FGFR3 and FGF-9 were both over-expressed in lymphoma, including Burkitt's lymphoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon, esophagus, gallbladder, pancreas, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the islets of Langerhans; in genitourinary cancer, including malignant neoplasms of the bladder, kidney, and testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, ovary, uterus, and endometrium; in head and neck cancer, including malignant neoplasms of the parotid gland and tongue; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 10).


FGFR3 and FGF-17 were both over-expressed in sarcoma, including malignant neoplasms of the soft tissues, and in gynecologic cancer, including malignant neoplasms of the uterine cervix and ovary (Table 10).


FGFR3 and FGF-18 were both over-expressed in sarcoma, including malignant neoplasms of the bone and soft tissues; in breast cancer, including malignant neoplasms of the female breast and male breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the ampulla of Vater, colon, esophagus, gallbladder, liver, pancreas, rectum, and stomach; in endocrine cancer, including malignant neoplasms of the thyroid gland; in genitourinary cancer, including malignant neoplasms of the kidney and testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, ovary, uterus, and endometrium; in head and neck cancer, including malignant neoplasms of the parotid gland; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 10).


FGFR3 and FGF-19 were both over-expressed in sarcoma, including malignant neoplasms of the bone and soft tissues; in neurologic cancer, including malignant neoplasms of the brain; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon; gallbladder, liver, pancreas, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the thyroid gland; in genitourinary cancer, including malignant neoplasms of the testis; in gynecologic cancer, including malignant neoplasms of the uterine cervix, ovary, endometrium, and vulva; in head and neck cancer, including malignant neoplasms of the larynx; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 10).


FGFR3 and FGF-20 were both over-expressed in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon; in endocrine cancer, including malignant neoplasms of the islets of Langerhans and thyroid gland; and in gynecologic cancer, including malignant neoplasms of the ovary and endometrium (Table 10).


Table 11 demonstrates that FGFR3 and any one or more of FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19 and FGF-20 were often over-expressed in cancer. This over-expression implicates active FGF signaling pathways in maintaining viability or proliferative capacity of the affected tumors. Blocking these signaling pathways in the affected tumors, such as by blocking the interactions between FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19 and/or FGF-20 and their respective receptors and between FGFR3 and its binding ligands with decoy receptors such as FGFR1-Fc, FGFR3-Fc and FGFR4-Fc fusion proteins, or their variants will reduce the viability or proliferative capacity of these tumors.


Example 28
Over-Expression of FGFR4 and Over-Expression of FGF-1, FGF-2, FGF-4, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, FGF-20, FGF-21, and FGF-23 in Cancerous Tissues Relative to Normal Tissues

FGF-1, FGF-2, FGF-4, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, FGF-20, FGF-21, and FGF-23 can induce proliferation in cancerous cells expressing FGFR4. An analysis of the GeneLogic (Gaithersburg, Md.) database for the expression of FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, and FGF-20 in cancer tissue types and in corresponding normal tissue types was performed essentially as described in Example 22. The Affymetrix U133 microarray chip contains probes corresponding to FGFR3, FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, and FGF-20. The proportion of samples in the dataset of any given cancer type over-expressing FGFR3, FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, and FGF-20 was calculated as a percentage of the total number of samples in that dataset and is shown in Table 11. Cancers which over-expressed FGFR3, FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, and FGF-20 compared to corresponding normal tissues are therapeutic targets for the FGFR fusion proteins of the invention.









TABLE 11







FGFR-4, FGF-1, FGF-2, FGF-4, FGF-8, FGF-9, FGF-17, FGF48, FGF-18,


FGF-19, FGF-20, FGF-21, and FGF-23 Over-expression in Malignant Tissues









Percent of Malignant Tissue Samples Over-expressing FGFR4, FGF-



1, FGF-2, FGF-4, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, FGF-20,



FGF-21 or FGF-23




















FGF
FGF
FGF
FGF
FGF
FGF
FGF
FGF
FGF
FGF
FGF
FGF


Cancer Type
R4
−1
−2
−4
−8
−9
−17
−18
−19
−20
−21
−23






















Lymphoma














Malignant lymphoma, non-
1
10
11
6

1

1






Hodgkin's type














Sarcoma














Malignant neoplasm of bone
3
29
29
3

32

6
3





Malignant neoplasm of heart
100

100
100










Malignant neoplasm of soft
7
25
42
4

16
2
32
1


1


tissues














Breast














Malignant neoplasm of female
13
19
5
7

2

9






breast














Digestive tract/Gastrointestinal














Malignant neoplasm of colon
45
11
12
7

7

12
5
1




Malignant neoplasm of
36

18











duodenum














Malignant neoplasm of
55
7
22
3

3

22



3


esophagus














Malignant neoplasm of
33
33



33

66
33





gallbladder














Malignant neoplasm of liver
52
20
23
11



2
11

32



Malignant neoplasm of pancreas
14
30
53
8

2

22
22





Malignant neoplasm of rectum
59
5
8
3

5

21
7

1



Malignant neoplasm of small
7
30
53


23


7





intestine














Malignant neoplasm of stomach
28
19
28
9

6

3
1





Endocrine Cancers














Malignant neoplasm of adrenal
100

50


50








gland














Malignant neoplasm of islets of
45
18
63
9
9
27



9




Langerhans














Genitourinary














Malignant neoplasm of kidney
27
2
48
6

9

7






Malignant neoplasm of testis
38
28
52
42

9

28
19





Gynecologic














Malignant neoplasm of ovary
6
12
9
6

30
1
66
5
3




Malignant neoplasm of
7
19
12
23

50

66
12
12




endometrium














Head & Neck














Malignant neoplasm of parotid
9
18
54


27

50






gland














Respiratory/Thoracic














Malignant neoplasm of lung
4
20
13
8

9

6
5





Skin














Malignant neoplasm of skin
1
27
19
3

4

4
9


1









FGFR4 and FGF-1 were both over-expressed in lymphoma, including non-Hodgkin's lymphoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon, esophagus, gallbladder, liver, pancreas, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the islets of Langerhans; in genitourinary cancer, including malignant neoplasms of the kidney and testis; in gynecologic cancer, including malignant neoplasms of the ovary and endometrium; in head and neck cancer, including malignant neoplasms of the parotid gland; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 11).


FGFR4 and FGF-2 were both over-expressed in lymphoma, including non-Hodgkin's lymphoma; in sarcoma, including malignant neoplasms of the bone, heart, and soft tissues; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon, duodenum, esophagus, liver, pancreas, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the adrenal gland and islets of Langerhans; in genitourinary cancer, including malignant neoplasms of the kidney and testis; in gynecologic cancer, including malignant neoplasms of the ovary and endometrium; in head and neck cancer, including malignant neoplasms of the parotid gland; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 11).


FGFR4 and FGF-4 were both over-expressed in lymphoma, including non-Hodgkin's lymphoma; in sarcoma, including malignant neoplasms of the bone, heart, and soft tissues; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon; esophagus, liver, pancreas, rectum, and stomach; in endocrine cancer, including malignant neoplasms of the islets of Langerhans; in genitourinary cancer, including malignant neoplasms of the kidney and testis; in gynecologic cancer, including malignant neoplasms of the ovary and endometrium; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 11).


FGFR4 and FGF-8 were both over-expressed in endocrine cancer, including malignant neoplasms of the islets of Langerhans (Table 12).


FGFR4 and FGF-9 were both over-expressed in lymphoma, including non-Hodgkin's lymphoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon, esophagus, gallbladder, pancreas, rectum, small intestine, and stomach; in endocrine cancer, including malignant neoplasms of the adrenal gland and islets of Langerhans; in genitourinary cancer, including malignant neoplasms of the kidney and testis; in gynecologic cancer, including malignant neoplasms of the ovary and endometrium; in head and neck cancer, including malignant neoplasms of the parotid gland; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 11).


FGFR4 and FGF-17 were both over-expressed in sarcoma, including malignant neoplasms of the soft tissues; and in gynecologic cancer, including malignant neoplasms of the ovary (Table 11).


FGFR4 and FGF-18 were both over-expressed in lymphoma, including non-Hodgkin's lymphoma; in sarcoma, including malignant neoplasms of the bone and soft tissues; in breast cancer, including malignant neoplasms of the female breast; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon, esophagus, gallbladder, liver, pancreas, rectum, and stomach; in genitourinary cancer, including malignant neoplasms of the kidney and testis; in gynecologic cancer, including malignant neoplasms of the ovary and endometrium; in head and neck cancer, including malignant neoplasms of the parotid gland; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 11).


FGFR4 and FGF-19 were both over-expressed in sarcoma, including malignant neoplasms of the bone and soft tissues; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon, gallbladder, liver, pancreas, rectum, small intestine, and stomach; in genitourinary cancer, including malignant neoplasms of the testis; in gynecologic cancer, including malignant neoplasms of the ovary and endometrium; in respiratory/thoracic cancer, including malignant neoplasms of the lung; and in skin cancer, including malignant neoplasms of the skin (Table 11).


FGFR4 and FGF-20 were both over-expressed in digestive tract/gastrointestinal cancer, including malignant neoplasms of the colon; in endocrine cancer, including malignant neoplasms of the islets of Langerhans; and in gynecologic cancer, including malignant neoplasms of the ovary and endometrium (Table 11).


FGFR4 and FGF-21 were both over-expressed in digestive tract/gastrointestinal cancer, including malignant neoplasms of the liver and rectum (Table 11).


FGFR4 and FGF-23 were both over-expressed in sarcoma, including malignant neoplasms of the soft tissues; in digestive tract/gastrointestinal cancer, including malignant neoplasms of the esophagus; and in skin cancer, including malignant neoplasms of the skin (Table 11).


This analysis demonstrated that FGFR4, FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, FGF-20, FGF-21 and FGF-23 are commonly over-expressed in cancer. This over-expression implicates active FGF signaling pathways in maintaining viability and/or proliferative capability of the affected tumors. Blocking these FGFR signaling pathways in the affected tumors, such as with FGFR1-Fc, FGFR3-Fc, or FGFR4-Fc fusion proteins, will reduce the viability and/or proliferative capacity of these tumors.


Table 11 demonstrates that FGFR4 and any of FGF-1, FGF-2, FGF-4, FGF-5, FGF-8, FGF-9, FGF, FGF-17, FGF-18, FGF-19, FGF-20, FGF-21 and FGF-23 were often over-expressed in cancer. This over-expression implicates active FGF signaling pathways in maintaining viability or proliferative capability of the affected tumors. blocking these signaling pathways in the affected tumors, such as by blocking the interactions between FGF-1, FGF-2, FGF-4, FGF-8, FGF-9, FGF-17, FGF-18, FGF-19, FGF-20 and FGF-23; and between FGFR4 and its binding ligands with decoy receptors such as FGFR1-Fc, FGFR3-Fc and FGFR4-Fc fusion proteins, or their variants, will reduce the viability or proliferative capacity of these tumors.


INDUSTRIAL APPLICABILITY

The FGFR fusion proteins and the polynucleotide molecules that encode them are useful in treating proliferative diseases and diseases involving angiogenesis, including cancer. They can be used to diagnose, prevent, and treat these diseases.


SEQUENCE LISTING

A Sequence Listing is provided both in paper format and in computer readable form. It is accompanied by a transmittal sheet.









HG1020122N1


NP_056934_1-374







SEQ. ID. NO. 1







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGCAGTGAT


GACCTCGCCCCTGTACCTGGAG





HG1020123N1


NP_075594_1-285







SEQ. ID. NO. 2







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCTCTCC


CCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGAGAAA


GAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGGACATCCCC


AGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGA


AGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACACTGCGCTGGTTG


AAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAGGT


CCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTCTGACA


AGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCAC


ACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCA


AGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGT


TCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAG


CACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACCTGCCTTATGT


CCAGATCTTGAAGACTGCTGGAGTTAATACCACCGACAAAGAGATGGAGG


TGCTTCACTTAAGAAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGC


TTGGCGGGTAACTCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGT


TCTGGAAGCCCTGGAAGAGAGGCCGGCAGTGATGACCTCGCCCCTGTACC


TGGAG





HG1020124N1


NP_000595_1-376







SEQ. ID. NO. 3







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGC


AGTGATGACCTCGCCCCTGTACCTGGAG





HG1021602N1


NP_056934_1-374_GS_17939658_233-464_C237S







SEQ. ID. NO. 4







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGCAGTGAT


GACCTCGCCCCTGTACCTGGAGggatccGAGCCCAAATCTtctGACAAAA


CTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA


GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGAC


CCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGG


TCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA


AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCT


CACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGG


TCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC


AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGA


TGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCT


ATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC


AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCT


CTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCT


TCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAG


AGCCTCTCCCTGTCTCCGGGTAAA





HG1020125N1


NP_056934_1-374_17939658_233-464_C237S







SEQ. ID. NO. 5







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGCAGTGAT


GACCTCGCCCCTGTACCTGGAGGAGCCCAAATCTtctGACAAAACTCACA


CATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTC


CTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGA


GGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGT


TCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCG


CGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGT


CCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA


ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG


CAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCT


GACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCA


GCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC


AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAG


CAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCAT


GCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTC


TCCCTGTCTCCGGGTAAA





HG1020127N1


NP_056934_1-370_17939658_233-464_C237S







SEQ. ID. NO. 6







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGCAGTGAT


GACCTCGCCCGAGCCCAAATCTtctGACAAAACTCACACATGCCCACCGT


GCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCA


AAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGT


GGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACG


TGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAG


TACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGA


CTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC


CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAA


CCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCA


GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCG


TGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCT


CCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGT


GGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGC


ATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCG


GGTAAA





HG1020126N1


NP_056934_1-366_17939658_233-464_C237S







SEQ. ID. NO. 7







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGCAGTGGA


GCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTG


AACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC


ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGT


GAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG


AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACG


TACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG


CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCG


AGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTAC


ACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGAC


CTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA


GCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGAC


TCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAG


GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC


ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1020128N1


NP_056934_1-365_17939658_233-464_C237S







SEQ. ID. NO. 8







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGCAGAGCC


CAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAC


TCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC


CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAG


CCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGG


TGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTAC


CGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAA


GGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA


AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACC


CTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTG


CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCA


ATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCC


GACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTG


GCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACA


ACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1020129N1


NP_056934_1-360_17939658_233-464_C237S







SEQ. ID. NO. 9







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAGCCCAAATCTtctGACAA


AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT


CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGG


ACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGA


GGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGA


CAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTC


CTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA


GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG


CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG


GATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTT


CTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGA


ACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC


CTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT


CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGA


AGAGCCTCTCCCTGTCTCCGGGTAAA





HG1020130N1


NP_056934_1-355_17939658_233-464_C237S







SEQ. ID. NO. 10







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGAGCCCAAATCTtctGACAAAACTCACACATGCCC


ACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCC


CCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA


TGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTG


GTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGG


AGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCAC


CAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGC


CCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC


GAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAG


AACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACAT


CGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCA


CGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTC


ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGT


GATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT


CTCCGGGTAAA





HG1020131N1


NP_056934_1-374_D364-D365_17939658_233-464_C237S







SEQ. ID. NO. 11







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGGTGATGACCTC


GCCCCTGTACCTGGAGGAGCCCAAATCTtctGACAAAACTCACACATGCC


CACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTC


CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCAC


ATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACT


GGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAG


GAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCA


CCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAG


CCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC


CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAA


GAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACA


TCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC


ACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCT


CACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCG


TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTG


TCTCCGGGTAAA





HG1020133N1


NP_056934_1-374_P364M_17939658_233-464_C237S







SEQ. ID. NO. 12







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGatgGCAGTGAT


GACCTCGCCCCTGTACCTGGAGGAGCCCAAATCTtctGACAAAACTCACA


CATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTC


CTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGA


GGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGT


TCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCG


CGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGT


CCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA


ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG


CAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCT


GACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCA


GCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC


AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAG


CAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCAT


GCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTC


TCCCTGTCTCCGGGTAAA





HG1020134N1


NP_056934_1-374_M367N_17939658_233-464_C237S







SEQ. ID. NO. 13







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCA


CACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCC


CTGGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGAC


CTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACT


GGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCAC


AGGGGAGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTC


TATGCTTGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCT


CCGTCAATGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGA


TGATGACTCCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAAC


CCCGTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGC


ATGCAGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGG


GACCCCAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAA


CCTGACCACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCA


TCATAATGGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCAT


TGTGGAGAATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTC


GTGGAGCGGTCCCCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCA


ACAAAACAGTGGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTA


CAGTGACCCGCAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAAT


GGGAGCAAGATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGA


CTGCTGGAGTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAG


AAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAAC


TCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCC


TGGAAGAGAGGCCGGCAGTGaacACCTCGCCCCTGTACCTGGAGGAGCC


CAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAA


CTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA


CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGT


GAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTG


GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA


CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA


TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCC


ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG


TGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAG


CCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG


TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCG


TGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGA


CAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCAT


GAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG


GTAAA





HG1020132N1


NP_056934_1-374_P364G_17939658_233-464_C237S







SEQ. ID. NO. 14







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCA


CACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCC


CTGGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGAC


CTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACT


GGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCAC


AGGGGAGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTC


TATGCTTGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCT


CCGTCAATGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGA


TGATGACTCCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAAC


CCCGTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGC


ATGCAGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGG


GACCCCAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAA


CCTGACCACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCA


TCATAATGGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCAT


TGTGGAGAATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTC


GTGGAGCGGTCCCCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCA


ACAAAACAGTGGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTA


CAGTGACCCGCAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAAT


GGGAGCAAGATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGA


CTGCTGGAGTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAG


AAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAAC


TCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCC


TGGAAGAGAGGgggGCAGTGATGACCTCGCCCCTGTACCTGGAGGAGCC


CAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAA


CTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA


CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGT


GAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTG


GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA


CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA


TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCC


ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG


TGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAG


CCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG


TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCG


TGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGA


CAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCAT


GAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG


GTAAA





HG1020135N1


NP_056934_1-374_P364M_M367N_17939658_233-464_C237S







SEQ. ID. NO. 15







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCA


CACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCC


CTGGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGAC


CTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACT


GGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCAC


AGGGGAGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTC


TATGCTTGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCT


CCGTCAATGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGA


TGATGACTCCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAAC


CCCGTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGC


ATGCAGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGG


GACCCCAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAA


CCTGACCACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCA


TCATAATGGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCAT


TGTGGAGAATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTC


GTGGAGCGGTCCCCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCA


ACAAAACAGTGGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTA


CAGTGACCCGCAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAAT


GGGAGCAAGATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGA


CTGCTGGAGTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAG


AAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAAC


TCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCC


TGGAAGAGAGGatgGCAGTGaacACCTCGCCCCTGTACCTGGAGGAGCC


CAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAA


CTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA


CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGT


GAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTG


GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA


CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA


TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCC


ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG


TGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAG


CCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG


TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCG


TGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGA


CAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCAT


GAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG


GTAAA





HG1020136N1


NP_075594_1-285_17939658_233-464_C237S







SEQ. ID. NO. 16







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCC


ACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCT


CTCCCCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAG


GAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGG


ACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCC


AAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACA


CTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGAATT


GGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTCT


GTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAG


TACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCC


CCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTG


GCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCG


CAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAG


ATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGA


GTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTC


TCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATC


GGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAA


GAGAGGCCGGCAGTGATGACCTCGCCCCTGTACCTGGAGGAGCCCAAA


TCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTC


CTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC


CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG


AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTG


GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC


ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG


AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCC


CCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCA


CAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAG


GTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC


GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG


CCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTC


ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCC


GTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCC


CTGTCTCCGGGTAAA





HG1020138N1


NP_075594_1-281_17939658_233-464_C237S







SEQ. ID. NO. 17







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCC


ACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCT


CTCCCCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAG


GAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGG


ACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCC


AAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACA


CTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGAATT


GGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTCT


GTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAG


TACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCC


CCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTG


GCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCG


CAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAG


ATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGA


GTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTC


TCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATC


GGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAA


GAGAGGCCGGCAGTGATGACCTCGCCCGAGCCCAAATCTtctGACAAA


ACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCG


TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCC


CGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGAC


CCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAAT


GCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTG


GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAG


TACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAA


ACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACC


CTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACC


TGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAG


AGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG


GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAG


AGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAG


GCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT


AAA





HG1020137N1


NP_075594_1-277_17939658_233-464_C237S







SEQ. ID. NO. 18







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCC


ACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCT


CTCCCCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAG


GAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGG


ACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCC


AAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACA


CTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGAATT


GGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTCT


GTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAG


TACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCC


CCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTG


GCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCG


CAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAG


ATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGA


GTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTC


TCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATC


GGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAA


GAGAGGCCGGCAGTGGAGCCCAAATCTtctGACAAAACTCACACATGC


CCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC


TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAG


GTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAG


TTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAG


CCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTC


ACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAG


GTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAA


GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCC


CGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAA


GGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG


CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGC


TCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAG


CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAAC


CACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1020139N1


NP_075594_1-276_17939658_233-464_C237S







SEQ. ID. NO. 19







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCC


ACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCT


CTCCCCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAG


GAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGG


ACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCC


AAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACA


CTGCGCTGGTTG AAAAATGGCAAAGAATTCAAACCTGACCACAGAAT


TGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGA


GTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTC


CCCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCC


GCAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAA


GATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGG


AGTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGT


CTCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTAT


CGGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGA


AGAGAGGCCGGCAGAGCCCAAATCTtctGACAAAACTCACACATGCCC


ACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTT


CCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGT


CACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTT


CAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCC


GCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCAC


CGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGT


CTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGC


CAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCG


GGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGG


CTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCC


GGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTC


CTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCA


GGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA


CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1020140N1


NP_075594_1-271_17939658_233-464_C237S







SEQ. ID. NO. 20







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCC


ACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCT


CTCCCCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAG


GAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGG


ACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCC


AAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACA


CTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGAATT


GGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTCT


GTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAG


TACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCC


CCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTG


GCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCG


CAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAG


ATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGA


GTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTC


TCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATC


GGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAG


CCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCT


GAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAG


GACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTG


GACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGAC


GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTAC


AACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGAC


TGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTC


CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA


GAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAG


AACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGAC


ATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAG


ACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGC


AAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCA


TGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC


CTCTCCCTGTCTCCGGGTAAA





HG1020141N1


NP_075594_1-285_D275-D276_17939658_233-464_C237S







SEQ. ID. NO. 21







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCC


ACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCT


CTCCCCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAG


GAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGG


ACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCC


AAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACA


CTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGAATT


GGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTCT


GTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAG


TACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCC


CCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTG


GCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCG


CAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAG


ATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGA


GTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTC


TCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATC


GGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAA


GAGAGGGTGATGACCTCGCCCCTGTACCTGGAGGAGCCCAAATCTtct


GACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGG


GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATG


ATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCAC


GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTG


CATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTAC


CGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGC


AAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATC


GAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTG


TACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGC


CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG


TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAACCACGCCTCCCG


TGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGG


ACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGC


ATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTC


CGGGTAAA





HG1020143N1


NP_075594_1-285_P275M_17939658_233-464_C237S







SEQ. ID. NO. 22







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCC


ACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCT


CTCCCCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAG


GAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGG


ACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCC


AAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACA


CTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGAATT


GGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTCT


GTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAG


TACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCC


CCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTG


GCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCG


CAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAG


ATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGA


GTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTC


TCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATC


GGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAA


GAGAGGatgGCAGTGATGACCTCGCCCCTGTACCTGGAGGAGCCCAAA


TCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTC


CTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC


CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG


AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTG


GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC


ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG


AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCC


CCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCA


CAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAG


GTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC


GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG


CCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTC


ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCC


GTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCC


CTGTCTCCGGGTAAA





HG1020144N1


NP_075594_1-285_M278N_17939658_233-464_C237S







SEQ. ID. NO. 23







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCC


ACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCT


CTCCCCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAG


GAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGG


ACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCC


AAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACA


CTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGAATT


GGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTCT


GTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAG


TACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCC


CCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTG


GCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCG


CAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAG


ATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGA


GTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTC


TCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATC


GGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAA


GAGAGGCCGGCAGTGaacACCTCGCCCCTGTACCTGGAGGAGCCCAAA


TCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTC


CTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC


CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG


AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTG


GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC


ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG


AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCC


CCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCA


CAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAG


GTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC


GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG


CCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTC


ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCC


GTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCC


CTGTCTCCGGGTAAA





HG1020142N1


NP_075594_1-285_P275G_17939658_233-464_C237S







SEQ. ID. NO. 24







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCC


ACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCT


CTCCCCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAG


GAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGG


ACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCC


AAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACA


CTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGAATT


GGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTCT


GTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAG


TACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCC


CCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTG


GCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCG


CAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAG


ATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGA


GTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTC


TCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATC


GGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAA


GAGAGGgggGCAGTGATGACCTCGCCCCTGTACCTGGAGGAGCCCAAA


TCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTC


CTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC


CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG


AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTG


GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC


ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG


AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCC


CCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCA


CAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAG


GTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC


GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG


CCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTC


ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCC


GTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCC


CTGTCTCCGGGTAAA





HG1020145N1


NP_075594_1-285_P275M_M278N_17939658_233-464_C237S







SEQ. ID. NO. 25







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCC


ACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCT


CTCCCCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAG


GAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGG


ACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCC


AAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACA


CTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGAATT


GGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTCT


GTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAG


TACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCC


CCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTG


GCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCG


CAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAG


ATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGA


GTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTC


TCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATC


GGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGA


AGAGAGGgggGCAGTGaacACCTCGCCCCTGTACCTGGAGGAGCCCAA


ATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACT


CCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACAC


CCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGT


GAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT


GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAG


CACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCT


GAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGC


CCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACC


ACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCA


GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGC


CGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCAC


GCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCT


CACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTC


CGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTC


CCTGTCTCCGGGTAAA





HG1020146N1


NP_000595_1-376_17939658_233-464_C237S







SEQ. ID. NO. 26







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGC


AGTGATGACCTCGCCCCTGTACCTGGAGGAGCCCAAATCTtctGACAAAA


CTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA


GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGAC


CCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGG


TCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA


AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCT


CACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGG


TCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC


AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGA


TGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCT


ATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC


AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCT


CTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCT


TCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAG


AGCCTCTCCCTGTCTCCGGGTAAA





HG1020148N1


NP_000595_1-372_17939658_233-464_C237S







SEQ. ID. NO. 27







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGC


AGTGATGACCTCGCCCGAGCCCAAATCTtctGACAAAACTCACACATGCC


CACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTC


CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCAC


ATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACT


GGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAG


GAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCA


CCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAG


CCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC


CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAA


GAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACA


TCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC


ACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCT


CACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCG


TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTG


TCTCCGGGTAAA





HG1020147N1


NP_000595_1-368_17939658_233-464_C237S







SEQ. ID. NO. 28







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGC


AGTGGAGCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAG


CACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCC


AAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGT


GGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG


GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC


AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCT


GAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCC


CCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG


GTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAG


CCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGT


GGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG


CTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAA


GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG


CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1020149N1


NP_000595_1-367_17939658_233-464_C237S







SEQ. ID. NO. 29







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGC


AGAGCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCAC


CTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAG


GACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGA


CGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCG


TGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC


ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA


TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA


TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTG


TACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT


GACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG


AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG


GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAG


CAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTC


TGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1020150N1


NP_000595_1-362_17939658_233-464_C237S







SEQ. ID. NO. 30







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAGCCCAAATCTtc


tGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGG


GACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC


TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGA


CCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATG


CCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTC


AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAA


GTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCT


CCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCA


TCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAA


AGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC


CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC


TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGG


GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACA


CGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1020151N1


NP_000595_1-376_D366-D367_17939658_233-464_C237S







SEQ. ID. NO. 31







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGGTGAT


GACCTCGCCCCTGTACCTGGAGGAGCCCAAATCTtctGACAAAACTCACA


CATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTC


CTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGA


GGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGT


TCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCG


CGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGT


CCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA


ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG


CAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCT


GACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCA


GCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC


AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAG


CAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCAT


GCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTC


TCCCTGTCTCCGGGTAAA





HG1020153N1


NP_000595_1-376_P366M_17939658_233-464_C237S







SEQ. ID. NO. 32







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGatgGC


AGTGATGACCTCGCCCCTGTACCTGGAGGAGCCCAAATCTtctGACAAAA


CTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA


GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGAC


CCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGG


TCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA


AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCT


CACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGG


TCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC


AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGA


TGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCT


ATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC


AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCT


CTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCT


TCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAG


AGCCTCTCCCTGTCTCCGGGTAAA





HG1020154N1


NP_000595_1-376_M369N_17939658_233-464_C237S







SEQ. ID. NO. 33







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGC


AGTGaacACCTCGCCCCTGTACCTGGAGGAGCCCAAATCTtctGACAAAA


CTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA


GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGAC


CCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGG


TCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA


AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCT


CACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGG


TCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC


AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGA


TGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCT


ATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC


AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCT


CTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCT


TCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAG


AGCCTCTCCCTGTCTCCGGGTAAA





HG1020152N1


NP_000595_1-376_P366G_17939658_233-464_C237S







SEQ. ID. NO. 34







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGgggGC


AGTGATGACCTCGCCCCTGTACCTGGAGGAGCCCAAATCTtctGACAAAA


CTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA


GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGAC


CCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGG


TCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA


AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCT


CACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGG


TCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC


AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGA


TGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCT


ATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC


AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCT


CTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCT


TCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAG


AGCCTCTCCCTGTCTCCGGGTAAA





HG1020155N1


NP_000595_1-376_P366M_M369N_17939658_233-464_C237S







SEQ. ID. NO. 35







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGatgGC


AGTGaacACCTCGCCCCTGTACCTGGAGGAGCCCAAATCTtctGACAAAA


CTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA


GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGAC


CCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGG


TCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA


AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCT


CACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGG


TCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC


AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGA


TGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCT


ATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC


AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCT


CTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCT


TCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAG


AGCCTCTCCCTGTCTCCGGGTAAA





HG1020157N1


NP_056934_1-370







SEQ. ID. NO. 36







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGCAGTGAT


GACCTCGCCC





HG1020156N1


NP_056934_1-366







SEQ. ID. NO. 37







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGCAGTG





HG1020158N1


NP_056934_1-365







SEQ. ID. NO. 38







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGCA





HG1020159N1


NP_056934_1-360







SEQ. ID. NO. 39







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTG





HG1020160N1


NP_056934_1-355







SEQ. ID. NO. 40







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACC





HG1020161N1


NP_056934_1-374_D364-D365







SEQ. ID. NO. 41







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGGTGATGACCTC


GCCCCTGTACCTGGAG





HG1020163N1


NP_056934_1-374_P364M







SEQ. ID. NO. 42







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGatgGCAGTGAT


GACCTCGCCCCTGTACCTGGAG





HG1020164N1


NP_056934_1-374_M367N







SEQ. ID. NO. 43







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGCAGTGaa


cACCTCGCCCCTGTACCTGGAG





HG1020162N1


NP_056934_1-374_P364G







SEQ. ID. NO. 44







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGgggGCAGTGAT


GACCTCGCCCCTGTACCTGGAG





HG1020165N1


NP_056934_1-374_P364M_M367N







SEQ. ID. NO. 45







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGatgGCAGTGaa


cACCTCGCCCCTGTACCTGGAG





HG1020167N1


NP_075594_1-281







SEQ. ID. NO. 46







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCTCTCC


CCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGAGAAA


GAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGGACATCCCC


AGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGA


AGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACACTGCGCTGGTTG


AAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAGGT


CCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTCTGACA


AGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCAC


ACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCA


AGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGT


TCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAG


CACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACCTGCCTTATGT


CCAGATCTTGAAGACTGCTGGAGTTAATACCACCGACAAAGAGATGGAGG


TGCTTCACTTAAGAAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGC


TTGGCGGGTAACTCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGT


TCTGGAAGCCCTGGAAGAGAGGCCGGCAGTGATGACCTCGCCC





HG1020166N1


NP_075594_1-277







SEQ. ID. NO. 47







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCTCTCC


CCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGAGAAA


GAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGGACATCCCC


AGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGA


AGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACACTGCGCTGGTTG


AAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAGGT


CCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTCTGACA


AGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCAC


ACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCA


AGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGT


TCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAG


CACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACCTGCCTTATGT


CCAGATCTTGAAGACTGCTGGAGTTAATACCACCGACAAAGAGATGGAGG


TGCTTCACTTAAGAAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGC


TTGGCGGGTAACTCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGT


TCTGGAAGCCCTGGAAGAGAGGCCGGCAGTG





HG1020168N1


NP_075594_1-276







SEQ. ID. NO. 48







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCTCTCC


CCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGAGAAA


GAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGGACATCCCC


AGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGA


AGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACACTGCGCTGGTTG


AAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAGGT


CCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTCTGACA


AGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCAC


ACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCA


AGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGT


TCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAG


CACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACCTGCCTTATGT


CCAGATCTTGAAGACTGCTGGAGTTAATACCACCGACAAAGAGATGGAGG


TGCTTCACTTAAGAAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGC


TTGGCGGGTAACTCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGT


TCTGGAAGCCCTGGAAGAGAGGCCGGCA





HG1020169N1


NP_075594_1-271







SEQ. ID. NO. 49







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCTCTCC


CCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGAGAAA


GAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGGACATCCCC


AGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGA


AGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACACTGCGCTGGTTG


AAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAGGT


CCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTCTGACA


AGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCAC


ACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCA


AGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGT


TCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAG


CACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACCTGCCTTATGT


CCAGATCTTGAAGACTGCTGGAGTTAATACCACCGACAAAGAGATGGAGG


TGCTTCACTTAAGAAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGC


TTGGCGGGTAACTCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGT


TCTGGAAGCCCTG





HG1020170N1


NP_075594_1-285_D275-D276







SEQ. ID. NO. 50







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCTCTCC


CCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGAGAAA


GAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGGACATCCCC


AGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGA


AGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACACTGCGCTGGTTG


AAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAGGT


CCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTCTGACA


AGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCAC


ACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCA


AGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGT


TCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAG


CACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACCTGCCTTATGT


CCAGATCTTGAAGACTGCTGGAGTTAATACCACCGACAAAGAGATGGAGG


TGCTTCACTTAAGAAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGC


TTGGCGGGTAACTCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGT


TCTGGAAGCCCTGGAAGAGAGGGTGATGACCTCGCCCCTGTACCTGGAG





HG1020172N1


NP_075594_1-285_P275M







SEQ. ID. NO. 51







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCTCTCC


CCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGAGAAA


GAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGGACATCCCC


AGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGA


AGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACACTGCGCTGGTTG


AAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAGGT


CCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTCTGACA


AGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCAC


ACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCA


AGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGT


TCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAG


CACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACCTGCCTTATGT


CCAGATCTTGAAGACTGCTGGAGTTAATACCACCGACAAAGAGATGGAGG


TGCTTCACTTAAGAAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGC


TTGGCGGGTAACTCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGT


TCTGGAAGCCCTGGAAGAGAGGatgGCAGTGATGACCTCGCCCCTGTACC


TGGAG





HG1020173N1


NP_075594_1-285_M278N







SEQ. ID. NO. 52







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCTCTCC


CCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGAGAAA


GAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGGACATCCCC


AGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGA


AGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACACTGCGCTGGTTG


AAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAGGT


CCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTCTGACA


AGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCAC


ACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCA


AGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGT


TCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAG


CACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACCTGCCTTATGT


CCAGATCTTGAAGACTGCTGGAGTTAATACCACCGACAAAGAGATGGAGG


TGCTTCACTTAAGAAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGC


TTGGCGGGTAACTCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGT


TCTGGAAGCCCTGGAAGAGAGGCCGGCAGTGaacACCTCGCCCCTGTACC


TGGAG





HG1020171N1


NP_075594_1-285_P275G







SEQ. ID. NO. 53







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCTCTCC


CCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGAGAAA


GAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGGACATCCCC


AGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGA


AGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACACTGCGCTGGTTG


AAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAGGT


CCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTCTGACA


AGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCAC


ACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCA


AGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGT


TCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAG


CACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACCTGCCTTATGT


CCAGATCTTGAAGACTGCTGGAGTTAATACCACCGACAAAGAGATGGAGG


TGCTTCACTTAAGAAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGC


TTGGCGGGTAACTCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGT


TCTGGAAGCCCTGGAAGAGAGGgggGCAGTGATGACCTCGCCCCTGTACC


TGGAG





HG1020174N1


NP_075594_1-285_P275M_M278N







SEQ. ID. NO. 54







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCTCTCC


CCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGAGAAA


GAAACAGATAACACCAAACCAAACCCCGTAGCTCCATATTGGACATCCCC


AGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGA


AGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACACTGCGCTGGTTG


AAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAGGT


CCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTCTGACA


AGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCAC


ACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCA


AGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGT


TCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAG


CACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACCTGCCTTATGT


CCAGATCTTGAAGACTGCTGGAGTTAATACCACCGACAAAGAGATGGAGG


TGCTTCACTTAAGAAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGC


TTGGCGGGTAACTCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGT


TCTGGAAGCCCTGGAAGAGAGGgggGCAGTGaacACCTCGCCCCTGTACC


TGGAG





HG1020176N1


NP_000595_1-372







SEQ. ID. NO. 55







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGC


AGTGATGACCTCGCCC





HG1020175N1


NP_000595_1-368







SEQ. ID. NO. 56







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGC


AGTG





HG1020177N1


NP_000595_1-367







SEQ. ID. NO. 57







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


CTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCTG


GGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTGC


TGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCTG


CGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGGA


GGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCTT


GCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAAT


GTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACTC


CTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCCG


TAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCA


GTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCC


AAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACC


ACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATG


GACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAA


TGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGT


CCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTG


GCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCA


GCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTG


GCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAAT


ACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGA


GGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCC


ATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGCA





HG1020178N1


NP_000595_1-362







SEQ. ID. NO. 58







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


TGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTA


ATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTT


GAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTC


CCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTG





HG1020179N1


NP_000595_1-376_D366-D367







SEQ. ID. NO. 59







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGGTGAT


GACCTCGCCCCTGTACCTGGAG





HG1020181N1


NP_000595_1-376_P366M







SEQ. ID. NO. 60







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGatgGC


AGTGATGACCTCGCCCCTGTACCTGGAG





HG1020182N1


NP_000595_1-376_M369N







SEQ. ID. NO. 61







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGC


AGTGaacACCTCGCCCCTGTACCTGGAG





HG1020180N1


NP_000595_1-376_P366G







SEQ. ID. NO. 62







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGgggGC


AGTGATGACCTCGCCCCTGTACCTGGAG





HG1020183N1


NP_000595_1-376_P366M_M369N







SEQ. ID. NO. 63







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCCGGAAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACagaatgCCC


GTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGC


AGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCC


CAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGAC


CACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAAT


GGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGA


ATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGG


TCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGT


GGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGC


AGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATT


GGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAA


TACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTG


AGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCC


CATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGatgGC


AGTGaacACCTCGCCCCTGTACCTGGAG





HG1020184N1


182571_1-369







SEQ. ID. NO. 64







ATGCGGCTGCTGCTGGCCCTGTTGGGGGTCCTGCTGAGTGTGCCTGGGCC


TCCAGTCTTGTCCCTGGAGGCCTCTGAGGAAGTGGAGCTTGAGCCCTGCC


TGGCTCCCAGCCTGGAGCAGCAAGAGCAGGAGCTGACAGTAGCCCTTGGG


CAGCCTGTGCGTCTGTGCTGTGGGCGGGCTGAGCGTGGTGGCCACTGGTA


CAAGGAGGGCAGTCGCCTGGCACCTGCTGGCCGTGTACGGGGCTGGAGGG


GCCGCCTAGAGATTGCCAGCTTCCTACCTGAGGATGCTGGCCGCTACCTC


TGCCTGGCACGAGGCTCCATGATCGTCCTGCAGAATCTCACCTTGATTAC


AGGTGACTCCTTGACCTCCAGCAACGATGATGAGGACCCCAAGTCCCATA


GGGACCCCTCGAATAGGCACAGTTACCCCCAGCAAGCACCCTACTGGACA


CACCCCCAGCGCATGGAGAAGAAACTGCATGCAGTACCTGCGGGGAACAC


CGTCAAGTTCCGCTGTCCAGCTGCAGGCAACCCCACGCCCACCATCCGCT


GGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCGCATTGGAGGCATT


CGGCTGCGCCATCAGCACTGGAGTCTCGTGATGGAGAGCGTGGTGCCCTC


GGACCGCGGCACATACACCTGCCTGGTAGAGAACGCTGTGGGCAGCATCC


GCTATAACTACCTGCTAGATGTGCTGGAGCGGTCCCCGCACCGGCCCATC


CTGCAGGCCGGGCTCCCGGCCAACACCACAGCCGTGGTGGGCAGCGACGT


GGAGCTGCTGTGCAAGGTGTACAGCGATGCCCAGCCCCACATCCAGTGGC


TGAAGCACATCGTCATCAACGGCAGCAGCTTCGGAGCCGACGGTTTCCCC


TATGTGCAAGTCCTAAAGACTGCAGACATCAATAGCTCAGAGGTGGAGGT


CCTGTACCTGCGGAACGTGTCAGCCGAGGACGCAGGCGAGTACACCTGCC


TCGCAGGCAATTCCATCGGCCTCTCCTACCAGTCTGCCTGGCTCACGGTG


CTGCCAGAGGAGGACCCCACATGGACCGCAGCAGCGCCCGAGGCCAGGTA


TACGGAC





HG1020185N1


182571_1-369_17939658_233-464_C237S







SEQ. ID. NO. 65







ATGCGGCTGCTGCTGGCCCTGTTGGGGGTCCTGCTGAGTGTGCCTGGGCC


TCCAGTCTTGTCCCTGGAGGCCTCTGAGGAAGTGGAGCTTGAGCCCTGCC


TGGCTCCCAGCCTGGAGCAGCAAGAGCAGGAGCTGACAGTAGCCCTTGGG


CAGCCTGTGCGTCTGTGCTGTGGGCGGGCTGAGCGTGGTGGCCACTGGTA


CAAGGAGGGCAGTCGCCTGGCACCTGCTGGCCGTGTACGGGGCTGGAGGG


GCCGCCTAGAGATTGCCAGCTTCCTACCTGAGGATGCTGGCCGCTACCTC


TGCCTGGCACGAGGCTCCATGATCGTCCTGCAGAATCTCACCTTGATTAC


AGGTGACTCCTTGACCTCCAGCAACGATGATGAGGACCCCAAGTCCCATA


GGGACCCCTCGAATAGGCACAGTTACCCCCAGCAAGCACCCTACTGGACA


CACCCCCAGCGCATGGAGAAGAAACTGCATGCAGTACCTGCGGGGAACAC


CGTCAAGTTCCGCTGTCCAGCTGCAGGCAACCCCACGCCCACCATCCGCT


GGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCGCATTGGAGGCATT


CGGCTGCGCCATCAGCACTGGAGTCTCGTGATGGAGAGCGTGGTGCCCTC


GGACCGCGGCACATACACCTGCCTGGTAGAGAACGCTGTGGGCAGCATCC


GCTATAACTACCTGCTAGATGTGCTGGAGCGGTCCCCGCACCGGCCCATC


CTGCAGGCCGGGCTCCCGGCCAACACCACAGCCGTGGTGGGCAGCGACGT


GGAGCTGCTGTGCAAGGTGTACAGCGATGCCCAGCCCCACATCCAGTGGC


TGAAGCACATCGTCATCAACGGCAGCAGCTTCGGAGCCGACGGTTTCCCC


TATGTGCAAGTCCTAAAGACTGCAGACATCAATAGCTCAGAGGTGGAGGT


CCTGTACCTGCGGAACGTGTCAGCCGAGGACGCAGGCGAGTACACCTGCC


TCGCAGGCAATTCCATCGGCCTCTCCTACCAGTCTGCCTGGCTCACGGTG


CTGCCAGAGGAGGACCCCACATGGACCGCAGCAGCGCCCGAGGCCAGGTA


TACGGACGGATCCGAGCCCAAATCTTCTGACAAAACTCACACATGCCCAC


CGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC


CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATG


CGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGT


ACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG


CAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCA


GGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCC


TCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA


GAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAA


CCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCG


CCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG


CCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCAC


CGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGA


TGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCT


CCGGGTAAA





HG1021610N1


182571_1-369_nolinker_17939658_233-464_C237S







SEQ. ID. NO. 66







ATGCGGCTGCTGCTGGCCCTGTTGGGGGTCCTGCTGAGTGTGCCTGGGCC


TCCAGTCTTGTCCCTGGAGGCCTCTGAGGAAGTGGAGCTTGAGCCCTGCC


TGGCTCCCAGCCTGGAGCAGCAAGAGCAGGAGCTGACAGTAGCCCTTGGG


CAGCCTGTGCGTCTGTGCTGTGGGCGGGCTGAGCGTGGTGGCCACTGGTA


CAAGGAGGGCAGTCGCCTGGCACCTGCTGGCCGTGTACGGGGCTGGAGGG


GCCGCCTAGAGATTGCCAGCTTCCTACCTGAGGATGCTGGCCGCTACCTC


TGCCTGGCACGAGGCTCCATGATCGTCCTGCAGAATCTCACCTTGATTAC


AGGTGACTCCTTGACCTCCAGCAACGATGATGAGGACCCCAAGTCCCATA


GGGACCCCTCGAATAGGCACAGTTACCCCCAGCAAGCACCCTACTGGACA


CACCCCCAGCGCATGGAGAAGAAACTGCATGCAGTACCTGCGGGGAACAC


CGTCAAGTTCCGCTGTCCAGCTGCAGGCAACCCCACGCCCACCATCCGCT


GGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCGCATTGGAGGCATT


CGGCTGCGCCATCAGCACTGGAGTCTCGTGATGGAGAGCGTGGTGCCCTC


GGACCGCGGCACATACACCTGCCTGGTAGAGAACGCTGTGGGCAGCATCC


GCTATAACTACCTGCTAGATGTGCTGGAGCGGTCCCCGCACCGGCCCATC


CTGCAGGCCGGGCTCCCGGCCAACACCACAGCCGTGGTGGGCAGCGACGT


GGAGCTGCTGTGCAAGGTGTACAGCGATGCCCAGCCCCACATCCAGTGGC


TGAAGCACATCGTCATCAACGGCAGCAGCTTCGGAGCCGACGGTTTCCCC


TATGTGCAAGTCCTAAAGACTGCAGACATCAATAGCTCAGAGGTGGAGGT


CCTGTACCTGCGGAACGTGTCAGCCGAGGACGCAGGCGAGTACACCTGCC


TCGCAGGCAATTCCATCGGCCTCTCCTACCAGTCTGCCTGGCTCACGGTG


CTGCCAGAGGAGGACCCCACATGGACCGCAGCAGCGCCCGAGGCCAGGTA


TACGGACGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCC


CAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAA


CCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT


GGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGG


ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTAC


AACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTG


GCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAG


CCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCA


CAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGT


CAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGG


AGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC


GTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGA


CAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATG


AGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCCGGGT


AAA





HG1020186N1


13991618_1-159







SEQ. ID. NO. 67







ATGGAGAGCGTGGTGCCCTCGGACCGCGGCACATACACCTGCCTGGTAGA


GAACGCTGTGGGCAGCATCCGTTATAACTACCTGCTAGATGTGCTGGAGC


GGTCCCCGCACCGGCCCATCCTGCAGGCCGGGCTCCCGGCCAACACCACA


GCCGTGGTGGGCAGCGACGTGGAGCTGCTGTGCAAGGTGTACAGCGATGC


CCAGCCCCACATCCAGTGGCTGAAGCACATCGTCATCAACGGCAGCAGCT


TCGGAGCCGACGGTTTCCCCTATGTGCAAGTCCTAAAGACTGCAGACATC


AATAGCTCAGAGGTGGAGGTCCTGTACCTGCGGAACGTGTCAGCCGAGGA


CGCAGGCGAGTACACCTGCCTCGCAGGCAATTCCATCGGCCTCTCCTACC


AGTCTGCCTGGCTCACGGTGCTGCCAGAGGAGGACCCCACATGGACCGCA


GCAGCGCCCGAGGCCAGGTATACGGAC





HG1020187N1


NP_002002_1-369







SEQ. ID. NO. 68







ATGCGGCTGCTGCTGGCCCTGTTGGGGGTCCTGCTGAGTGTGCCTGGGCC


TCCAGTCTTGTCCCTGGAGGCCTCTGAGGAAGTGGAGCTTGAGCCCTGCC


TGGCTCCCAGCCTGGAGCAGCAAGAGCAGGAGCTGACAGTAGCCCTTGGG


CAGCCTGTGCGGCTGTGCTGTGGGCGGGCTGAGCGTGGTGGCCACTGGTA


CAAGGAGGGCAGTCGCCTGGCACCTGCTGGCCGTGTACGGGGCTGGAGGG


GCCGCCTAGAGATTGCCAGCTTCCTACCTGAGGATGCTGGCCGCTACCTC


TGCCTGGCACGAGGCTCCATGATCGTCCTGCAGAATCTCACCTTGATTAC


AGGTGACTCCTTGACCTCCAGCAACGATGATGAGGACCCCAAGTCCCATA


GGGACCTCTCGAATAGGCACAGTTACCCCCAGCAAGCACCCTACTGGACA


CACCCCCAGCGCATGGAGAAGAAACTGCATGCAGTACCTGCGGGGAACAC


CGTCAAGTTCCGCTGTCCAGCTGCAGGCAACCCCACGCCCACCATCCGCT


GGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCGCATTGGAGGCATT


CGGCTGCGCCATCAGCACTGGAGTCTCGTGATGGAGAGCGTGGTGCCCTC


GGACCGCGGCACATACACCTGCCTGGTAGAGAACGCTGTGGGCAGCATCC


GCTATAACTACCTGCTAGATGTGCTGGAGCGGTCCCCGCACCGGCCCATC


CTGCAGGCCGGGCTCCCGGCCAACACCACAGCCGTGGTGGGCAGCGACGT


GGAGCTGCTGTGCAAGGTGTACAGCGATGCCCAGCCCCACATCCAGTGGC


TGAAGCACATCGTCATCAACGGCAGCAGCTTCGGAGCCGACGGTTTCCCC


TATGTGCAAGTCCTAAAGACTGCAGACATCAATAGCTCAGAGGTGGAGGT


CCTGTACCTGCGGAACGTGTCAGCCGAGGACGCAGGCGAGTACACCTGCC


TCGCAGGCAATTCCATCGGCCTCTCCTACCAGTCTGCCTGGCTCACGGTG


CTGCCAGAGGAGGACCCCACATGGACCGCAGCAGCGCCCGAGGCCAGGTA


TACGGAC





HG1020188N1


31372_1-369







SEQ. ID. NO. 69







ATGCGGCTGCTGCTGGCCCTGTTGGGGGTCCTGCTGAGTGTGCCTGGGCC


TCCAGTCTTGTCCCTGGAGGCCTCTGAGGAAGTGGAGCTTGAGCCCTGCC


TGGCTCCCAGCCTGGAGCAGCAAGAGCAGGAGCTGACAGTAGCCCTTGGG


CAGCCTGTGCGTCTGTGCTGTGGGCGGGCTGAGCGTGGTGGCCACTGGTA


CAAGGAGGGCAGTCGCCTGGCACCTGCTGGCCGTGTACGGGGCTGGAGGG


GCCGCCTAGAGATTGCCAGCTTCCTACCTGAGGATGCTGGCCGCTACCTC


TGCCTGGCACGAGGCTCCATGATCGTCCTGCAGAATCTCACCTTGATTAC


AGGTGACTCCTTGACCTCCAGCAACGATGATGAGGACCCCAAGTCCCATA


GGGACCCCTCGAATAGGCACAGTTACCCCCAGCAAGCACCCTACTGGACA


CACCCCCAGCGCATGGAGAAGAAACTGCATGCAGTACCTGCGGGGAACAC


CGTCAAGTTCCGCTGTCCAGCTGCAGGCAACCCCACGCCCACCATCCGCT


GGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCGCATTGGAGGCATT


CGGCTGCGCCATCAGCACTGGAGTCTCGTGATGGAGAGCGTGGTGCCCTC


GGACCGCGGCACATACACCTGCCTGGTAGAGAACGCTGTGGGCAGCATCC


GCTATAACTACCTGCTAGATGTGCTGGAGCGGTCCCCGCACCGGCCCATC


CTGCAGGCCGGGCTCCCGGCCAACACCACAGCCGTGGTGGGCAGCGACGT


GGAGCTGCTGTGCAAGGTGTACAGCGATGCCCAGCCCCACATCCAGTGGC


TGAAGCACATCGTCATCAACGGCAGCAGCTTCGGAGCCGACGGTTTCCCC


TATGTGCAAGTCCTAAAGACTGCAGACATCAATAGCTCAGAGGTGGAGGT


CCTGTACCTGCGGAACGTGTCAGCCGAGGACGCAGGCGAGTACACCTGCC


TCGCAGGCAATTCCATCGGCCTCTCCTACCAGTCTGCCTGGCTCACGGTG


CTGCCAGAGGAGGACCCCACATGGACCGCAGCAGCGCCCGAGGCCAGGTA


TACGGAC





HG1020189N1


2832350_1-369







SEQ. ID. NO. 70







ATGCGGCTGCTGCTGGCCCTGTTGGGGATCCTGCTGAGTGTGCCTGGGCC


TCCAGTCTTGTCCCTGGAGGCCTCTGAGGAAGTGGAGCTTGAGCCCTGCC


TGGCTCCCAGCCTGGAGCAGCAAGAGCAGGAGCTGACAGTAGCCCTTGGG


CAGCCTGTGCGGCTGTGCTGTGGGCGGGCTGAGCGTGGTGGCCACTGGTA


CAAGGAGGGCAGTCGCCTGGCACCTGCTGGCCGTGTACGGGGCTGGAGGG


GCCGCCTAGAGATTGCCAGCTTCCTACCTGAGGATGCTGGCCGCTACCTC


TGCCTGGCACGAGGCTCCATGATCGTCCTGCAGAATCTCACCTTGATTAC


AGGTGACTCCTTGACCTCCAGCAACGATGATGAGGACCCCAAGTCCCATA


GGGACCTCTCGAATAGGCACAGTTACCCCCAGCAAGCACCCTACTGGACA


CACCCCCAGCGCATGGAGAAGAAACTGCATGCAGTACCTGCGGGGAACAC


CGTCAAGTTCCGCTGTCCAGCTGCAGGCAACCCCACGCCCACCATCCGCT


GGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCGCATTGGAGGCATT


CGGCTGCGCCATCAGCACTGGAGTCTCGTGATGGAGAGCGTGGTGCCCTC


GGACCGCGGCACATACACCTGCCTGGTAGAGAACGCTGTGGGCAGCATCC


GCTATAACTACCTGCTAGATGTGCTGGAGCGGTCCCCGCACCGGCCCATC


CTGCAGGCCGGGCTCCCGGCCAACACCACAGCCGTGGTGGGCAGCGACGT


GGAGCTGCTGTGCAAGGTGTACAGCGATGCCCAGCCCCACATCCAGTGGC


TGAAGCACATCGTCATCAACGGCAGCAGCTTCGGAGCCGACGGTTTCCCC


TATGTGCAAGTCCTAAAGACTGCAGACATCAATAGCTCAGAGGTGGAGGT


CCTGTACCTGCGGAACGTGTCAGCCGAGGACGCAGGCGAGTACACCTGCC


TCGCAGGCAATTCCATCGGCCTCTCCTACCAGTCTGCCTGGCTCACGGTG


CTGCCAGAGGAGGACCCCACATGGACCGCAGCAGCGCCCGAGGCCAGGTA


TACGGAC





HG1021616N1


182571_1-364_17939658_233-464_C237S







SEQ. ID. NO. 71







ATGCGGCTGCTGCTGGCCCTGTTGGGGGTCCTGCTGAGTGTGCCTGGGCC


TCCAGTCTTGTCCCTGGAGGCCTCTGAGGAAGTGGAGCTTGAGCCCTGCC


TGGCTCCCAGCCTGGAGCAGCAAGAGCAGGAGCTGACAGTAGCCCTTGGG


CAGCCTGTGCGTCTGTGCTGTGGGCGGGCTGAGCGTGGTGGCCACTGGTA


CAAGGAGGGCAGTCGCCTGGCACCTGCTGGCCGTGTACGGGGCTGGAGGG


GCCGCCTAGAGATTGCCAGCTTCCTACCTGAGGATGCTGGCCGCTACCTC


TGCCTGGCACGAGGCTCCATGATCGTCCTGCAGAATCTCACCTTGATTAC


AGGTGACTCCTTGACCTCCAGCAACGATGATGAGGACCCCAAGTCCCATA


GGGACCCCTCGAATAGGCACAGTTACCCCCAGCAAGCACCCTACTGGACA


CACCCCCAGCGCATGGAGAAGAAACTGCATGCAGTACCTGCGGGGAACAC


CGTCAAGTTCCGCTGTCCAGCTGCAGGCAACCCCACGCCCACCATCCGCT


GGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCGCATTGGAGGCATT


CGGCTGCGCCATCAGCACTGGAGTCTCGTGATGGAGAGCGTGGTGCCCTC


GGACCGCGGCACATACACCTGCCTGGTAGAGAACGCTGTGGGCAGCATCC


GCTATAACTACCTGCTAGATGTGCTGGAGCGGTCCCCGCACCGGCCCATC


CTGCAGGCCGGGCTCCCGGCCAACACCACAGCCGTGGTGGGCAGCGACGT


GGAGCTGCTGTGCAAGGTGTACAGCGATGCCCAGCCCCACATCCAGTGGC


TGAAGCACATCGTCATCAACGGCAGCAGCTTCGGAGCCGACGGTTTCCCC


TATGTGCAAGTCCTAAAGACTGCAGACATCAATAGCTCAGAGGTGGAGGT


CCTGTACCTGCGGAACGTGTCAGCCGAGGACGCAGGCGAGTACACCTGCC


TCGCAGGCAATTCCATCGGCCTCTCCTACCAGTCTGCCTGGCTCACGGTG


CTGCCAGAGGAGGACCCCACATGGACCGCAGCAGCGCCCGAGGAGCCCAA


ATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCC


TGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTC


ATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCA


CGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGC


ATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGT


GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA


GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAA


CCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTG


CCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCT


GGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATG


GGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGAC


GGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCA


GCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACC


ACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021617N1


182571_1-359_17939658_233-464_C237S







SEQ. ID. NO. 72







ATGCGGCTGCTGCTGGCCCTGTTGGGGGTCCTGCTGAGTGTGCCTGGGCC


TCCAGTCTTGTCCCTGGAGGCCTCTGAGGAAGTGGAGCTTGAGCCCTGCC


TGGCTCCCAGCCTGGAGCAGCAAGAGCAGGAGCTGACAGTAGCCCTTGGG


CAGCCTGTGCGTCTGTGCTGTGGGCGGGCTGAGCGTGGTGGCCACTGGTA


CAAGGAGGGCAGTCGCCTGGCACCTGCTGGCCGTGTACGGGGCTGGAGGG


GCCGCCTAGAGATTGCCAGCTTCCTACCTGAGGATGCTGGCCGCTACCTC


TGCCTGGCACGAGGCTCCATGATCGTCCTGCAGAATCTCACCTTGATTAC


AGGTGACTCCTTGACCTCCAGCAACGATGATGAGGACCCCAAGTCCCATA


GGGACCCCTCGAATAGGCACAGTTACCCCCAGCAAGCACCCTACTGGACA


CACCCCCAGCGCATGGAGAAGAAACTGCATGCAGTACCTGCGGGGAACAC


CGTCAAGTTCCGCTGTCCAGCTGCAGGCAACCCCACGCCCACCATCCGCT


GGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCGCATTGGAGGCATT


CGGCTGCGCCATCAGCACTGGAGTCTCGTGATGGAGAGCGTGGTGCCCTC


GGACCGCGGCACATACACCTGCCTGGTAGAGAACGCTGTGGGCAGCATCC


GCTATAACTACCTGCTAGATGTGCTGGAGCGGTCCCCGCACCGGCCCATC


CTGCAGGCCGGGCTCCCGGCCAACACCACAGCCGTGGTGGGCAGCGACGT


GGAGCTGCTGTGCAAGGTGTACAGCGATGCCCAGCCCCACATCCAGTGGC


TGAAGCACATCGTCATCAACGGCAGCAGCTTCGGAGCCGACGGTTTCCCC


TATGTGCAAGTCCTAAAGACTGCAGACATCAATAGCTCAGAGGTGGAGGT


CCTGTACCTGCGGAACGTGTCAGCCGAGGACGCAGGCGAGTACACCTGCC


TCGCAGGCAATTCCATCGGCCTCTCCTACCAGTCTGCCTGGCTCACGGTG


CTGCCAGAGGAGGACCCCACATGGACCGAGCCCAAATCTtctGACAAAAC


TCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAG


TCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC


CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT


CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAA


AGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTC


ACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGT


CTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCA


AAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAT


GAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTA


TCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACA


ACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTC


TACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT


CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA


GCCTCTCCCTGTCTCCGGGTAAA





HG1021618N1


182571_1-354_17939658_233-464_C237S







SEQ. ID. NO. 73







ATGCGGCTGCTGCTGGCCCTGTTGGGGGTCCTGCTGAGTGTGCCTGGGCC


TCCAGTCTTGTCCCTGGAGGCCTCTGAGGAAGTGGAGCTTGAGCCCTGCC


TGGCTCCCAGCCTGGAGCAGCAAGAGCAGGAGCTGACAGTAGCCCTTGGG


CAGCCTGTGCGTCTGTGCTGTGGGCGGGCTGAGCGTGGTGGCCACTGGTA


CAAGGAGGGCAGTCGCCTGGCACCTGCTGGCCGTGTACGGGGCTGGAGGG


GCCGCCTAGAGATTGCCAGCTTCCTACCTGAGGATGCTGGCCGCTACCTC


TGCCTGGCACGAGGCTCCATGATCGTCCTGCAGAATCTCACCTTGATTAC


AGGTGACTCCTTGACCTCCAGCAACGATGATGAGGACCCCAAGTCCCATA


GGGACCCCTCGAATAGGCACAGTTACCCCCAGCAAGCACCCTACTGGACA


CACCCCCAGCGCATGGAGAAGAAACTGCATGCAGTACCTGCGGGGAACAC


CGTCAAGTTCCGCTGTCCAGCTGCAGGCAACCCCACGCCCACCATCCGCT


GGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCGCATTGGAGGCATT


CGGCTGCGCCATCAGCACTGGAGTCTCGTGATGGAGAGCGTGGTGCCCTC


GGACCGCGGCACATACACCTGCCTGGTAGAGAACGCTGTGGGCAGCATCC


GCTATAACTACCTGCTAGATGTGCTGGAGCGGTCCCCGCACCGGCCCATC


CTGCAGGCCGGGCTCCCGGCCAACACCACAGCCGTGGTGGGCAGCGACGT


GGAGCTGCTGTGCAAGGTGTACAGCGATGCCCAGCCCCACATCCAGTGGC


TGAAGCACATCGTCATCAACGGCAGCAGCTTCGGAGCCGACGGTTTCCCC


TATGTGCAAGTCCTAAAGACTGCAGACATCAATAGCTCAGAGGTGGAGGT


CCTGTACCTGCGGAACGTGTCAGCCGAGGACGCAGGCGAGTACACCTGCC


TCGCAGGCAATTCCATCGGCCTCTCCTACCAGTCTGCCTGGCTCACGGTG


CTGCCAGAGGAGGAGCCCAAATCTtctGACAAAACTCACACATGCCCACC


GTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCC


CAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGC


GTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTA


CGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGC


AGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAG


GACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCT


CCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAG


AACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAAC


CAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGC


CGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC


CTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACC


GTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGAT


GCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTC


CGGGTAAA





HG1021619N1


182571_1-352_17939658_233-464_C237S







SEQ. ID. NO. 74







ATGCGGCTGCTGCTGGCCCTGTTGGGGGTCCTGCTGAGTGTGCCTGGGCC


TCCAGTCTTGTCCCTGGAGGCCTCTGAGGAAGTGGAGCTTGAGCCCTGCC


TGGCTCCCAGCCTGGAGCAGCAAGAGCAGGAGCTGACAGTAGCCCTTGGG


CAGCCTGTGCGTCTGTGCTGTGGGCGGGCTGAGCGTGGTGGCCACTGGTA


CAAGGAGGGCAGTCGCCTGGCACCTGCTGGCCGTGTACGGGGCTGGAGGG


GCCGCCTAGAGATTGCCAGCTTCCTACCTGAGGATGCTGGCCGCTACCTC


TGCCTGGCACGAGGCTCCATGATCGTCCTGCAGAATCTCACCTTGATTAC


AGGTGACTCCTTGACCTCCAGCAACGATGATGAGGACCCCAAGTCCCATA


GGGACCCCTCGAATAGGCACAGTTACCCCCAGCAAGCACCCTACTGGACA


CACCCCCAGCGCATGGAGAAGAAACTGCATGCAGTACCTGCGGGGAACAC


CGTCAAGTTCCGCTGTCCAGCTGCAGGCAACCCCACGCCCACCATCCGCT


GGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCGCATTGGAGGCATT


CGGCTGCGCCATCAGCACTGGAGTCTCGTGATGGAGAGCGTGGTGCCCTC


GGACCGCGGCACATACACCTGCCTGGTAGAGAACGCTGTGGGCAGCATCC


GCTATAACTACCTGCTAGATGTGCTGGAGCGGTCCCCGCACCGGCCCATC


CTGCAGGCCGGGCTCCCGGCCAACACCACAGCCGTGGTGGGCAGCGACGT


GGAGCTGCTGTGCAAGGTGTACAGCGATGCCCAGCCCCACATCCAGTGGC


TGAAGCACATCGTCATCAACGGCAGCAGCTTCGGAGCCGACGGTTTCCCC


TATGTGCAAGTCCTAAAGACTGCAGACATCAATAGCTCAGAGGTGGAGGT


CCTGTACCTGCGGAACGTGTCAGCCGAGGACGCAGGCGAGTACACCTGCC


TCGCAGGCAATTCCATCGGCCTCTCCTACCAGTCTGCCTGGCTCACGGTG


CTGCCAGAGCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCCC


AGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAAC


CCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTG


GTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGA


CGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACA


ACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG


CTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGC


CCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC


AGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTC


AGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGA


GTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCG


TGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGAC


AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGA


GGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT


AAA





HG1021620N1


182571_1-351_17939658_233-464_C237S







SEQ. ID. NO. 75







ATGCGGCTGCTGCTGGCCCTGTTGGGGGTCCTGCTGAGTGTGCCTGGGCC


TCCAGTCTTGTCCCTGGAGGCCTCTGAGGAAGTGGAGCTTGAGCCCTGCC


TGGCTCCCAGCCTGGAGCAGCAAGAGCAGGAGCTGACAGTAGCCCTTGGG


CAGCCTGTGCGTCTGTGCTGTGGGCGGGCTGAGCGTGGTGGCCACTGGTA


CAAGGAGGGCAGTCGCCTGGCACCTGCTGGCCGTGTACGGGGCTGGAGGG


GCCGCCTAGAGATTGCCAGCTTCCTACCTGAGGATGCTGGCCGCTACCTC


TGCCTGGCACGAGGCTCCATGATCGTCCTGCAGAATCTCACCTTGATTAC


AGGTGACTCCTTGACCTCCAGCAACGATGATGAGGACCCCAAGTCCCATA


GGGACCCCTCGAATAGGCACAGTTACCCCCAGCAAGCACCCTACTGGACA


CACCCCCAGCGCATGGAGAAGAAACTGCATGCAGTACCTGCGGGGAACAC


CGTCAAGTTCCGCTGTCCAGCTGCAGGCAACCCCACGCCCACCATCCGCT


GGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCGCATTGGAGGCATT


CGGCTGCGCCATCAGCACTGGAGTCTCGTGATGGAGAGCGTGGTGCCCTC


GGACCGCGGCACATACACCTGCCTGGTAGAGAACGCTGTGGGCAGCATCC


GCTATAACTACCTGCTAGATGTGCTGGAGCGGTCCCCGCACCGGCCCATC


CTGCAGGCCGGGCTCCCGGCCAACACCACAGCCGTGGTGGGCAGCGACGT


GGAGCTGCTGTGCAAGGTGTACAGCGATGCCCAGCCCCACATCCAGTGGC


TGAAGCACATCGTCATCAACGGCAGCAGCTTCGGAGCCGACGGTTTCCCC


TATGTGCAAGTCCTAAAGACTGCAGACATCAATAGCTCAGAGGTGGAGGT


CCTGTACCTGCGGAACGTGTCAGCCGAGGACGCAGGCGAGTACACCTGCC


TCGCAGGCAATTCCATCGGCCTCTCCTACCAGTCTGCCTGGCTCACGGTG


CTGGAGCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGC


ACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCA


AGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTG


GACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGG


CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACA


GCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG


AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCC


CATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG


TGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGC


CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTG


GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGC


TGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAG


AGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGC


TCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1020190N1


NP_056934_1-19







SEQ. ID. NO. 76







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGC





HG1020191N1


182571_1-19







SEQ. ID. NO. 77







ATGCGGCTGCTGCTGGCCCTGTTGGGGGTCCTGCTGAGTGTGCCTGGGCC


TCCAGTC





HG1020192N1


2832350_1-21







SEQ. ID. NO. 78







ATGCGGCTGCTGCTGGCCCTGTTGGGGATCCTGCTGAGTGTGCCTGGGCC


TCCAGTCTTGTCC





HG1020118N1


linker_sequence







SEQ. ID. NO. 79







GGATCC





HG1020119N1


17939658_233-464_C237S







SEQ. ID. NO. 80







GAGCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACC


TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG


ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC


GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT


GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA


CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT


GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT


CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT


ACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG


ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA


GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG


ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC


AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT


GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1020120N1


34528298_241-468







SEQ. ID. NO. 81







GAGCGCAAATGTTGTGTCGAGTGCCCACCGTGCCCAGCACCACCTGTGGC


AGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGA


TCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCACGAA


GACCCCGAGGTCCAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAA


TGCCAAGACAAAGCCACGGGAGGAGCAGTTCAACAGCACGTTCCGTGTGG


TCAGCGTCCTCACCGTCGTGCACCAGGACTGGCTGAACGGCAAGGAGTAC


AAGTGCAAGGTCTCCAACAAAGGCCTCCCAGCCCCCATCGAGAAAACCAT


CTCCAAAACCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCC


CATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTC


AAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA


GCCGGAGAACAACTACAAGACCACGCCTCCCATGCTGGACTCCGACGGCT


CCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAG


GGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTA


CACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1020121N1


19684073_245-473







SEQ. ID. NO. 82







GTCGTGGAGCGGTCCCCTCACCGCCCCATCCTGCAAGCAGGGTTGCCCGC


CAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGT


ACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAAT


GGGAGCAAGATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGAC


TGCTGGAGTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAA


ATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCT


ATCGGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGA


AGAGAGGCCGGCAGTGATGACCTCGCCCCTGTACCTGGAGATCATCATCT


ATTGCACAGGGGCCTTCCTCATCTCCTGCATGGTGGGGTCGGTCATCGTC


TACAAGATGAAGAGTGGTACCAAGAAGAGTGACTTCCACAGCCAGATGGC


TGTGCACAAGCTGGCCAAGAGCATCCCTCTGCGCAGACAGGTAACAGTGT


CTGCTGACTCCAGTGCATCCATGAACTCTGGGGTTCTTCTGGTTCGGCCA


TCACGGCTCTCCTCCAGTGGGACTCCCATGCTAGCAGGGGTCTCTGAGTA


TGAGCTTCCCGAAGACCCTCGCTGGGAGCTGCCTCGG





HG1020374N1


NP_000133_1-375







SEQ. ID. NO. 83







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGAGGAGCTGGTGGAGGCTGA


CGAGGCGGGCAGTGTGTATGCAGGC





HG1020375N1


NP_075254_1-310







SEQ. ID. NO. 84







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAG





HG1021603N1


NP_000133_1-375_GS_17939658_233-464_C237S







SEQ. ID. NO. 85







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGAGGAGCTGGTGGAGGCTGA


CGAGGCGGGCAGTGTGTATGCAGGCggatccGAGCCCAAATCTtctGACA


AAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCG


TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCG


GACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTG


AGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG


ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGT


CCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA


AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAA


GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCG


GGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT


TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG


AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTT


CCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACG


TCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG


AAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021604N1


NP_000133_1-375_17939658_233-464_C237S







SEQ. ID. NO. 86







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGAGGAGCTGGTGGAGGCTGA


CGAGGCGGGCAGTGTGTATGCAGGCGAGCCCAAATCTtctGACAAAACTC


ACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTC


TTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCC


TGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCA


AGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAG


CCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCAC


CGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT


CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAA


GGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGA


GCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATC


CCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAAC


TACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA


CAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCT


CATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC


CTCTCCCTGTCTCCGGGTAAA





HG1021605N1


NP_000133_1-371_17939658_233-464_C237S







SEQ. ID. NO. 87







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGAGGAGCTGGTGGAGGCTGA


CGAGGCGGGCAGTGAGCCCAAATCTtctGACAAAACTCACACATGCCCAC


CGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC


CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATG


CGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGT


ACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG


CAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCA


GGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCC


TCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA


GAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAA


CCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCG


CCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG


CCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCAC


CGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGA


TGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCT


CCGGGTAAA





HG1021606N1


NP_000133_1-367_17939658_233-464_C237S







SEQ. ID. NO. 88







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGAGGAGCTGGTGGAGGCTGA


CGAGCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCAC


CTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAG


GACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGA


CGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCG


TGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC


ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA


TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA


TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTG


TACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT


GACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG


AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG


GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAG


CAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTC


TGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021607N1


NP_000133_1-366_17939658_233-464_C237S







SEQ. ID. NO. 89







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGAGGAGCTGGTGGAGGCTGA


GCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTG


AACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC


ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGT


GAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG


AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACG


TACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG


CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCG


AGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTAC


ACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGAC


CTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA


GCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGAC


TCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAG


GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC


ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021608N1


NP_000133_1-361_17939658_233-464_C237S







SEQ. ID. NO. 90







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGAGGAGCCCAAATCTtctGA


CAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGAC


CGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCC


CGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCC


TGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCA


AGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC


GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTG


CAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCA


AAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCC


CGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGG


CTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG


AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTC


TTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA


CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC


AGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021609N1


NP_000133_1-355_17939658_233-464_C237S







SEQ. ID. NO. 91







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGAGCCCAAATCTtctGACAAAACTCACACATGCCC


ACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCC


CCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA


TGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTG


GTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGG


AGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCAC


CAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGC


CCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC


GAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAG


AACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACAT


CGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCA


CGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTC


ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGT


GATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT


CTCCGGGTAAA





HG1020122P1


NP_056934_1-374







SEQ. ID. NO. 92







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERPAVMTSPLYLE





HG1020123P1


NP_075594_1-285







SEQ. ID. NO. 93







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEEK


ETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWL


KNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINH


TYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLK


HIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTC


LAGNSIGLSHHSAWLTVLEALEERPAVMTSPLYLE





HG1020124P1


NP_000595_1-376







SEQ. ID. NO. 94







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNRMP


VAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPD


HRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVER


SPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKI


GPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLS


HHSAWLTVLEALEERPAVMTSPLYLE





HG1021602P1


NP_056934_1-374_GS_17939658_233-464_C237S







SEQ. ID. NO. 95







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERPAVMTSPLYLEGSEPKSSDKTHTCPPCPAPELLGGPS


VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT


KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN


NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK


SLSLSPGK





HG1020125P1


NP_056934_1-374_17939658_233-464_C237S







SEQ. ID. NO. 96







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERPAVMTSPLYLEEPKSSDKTHTCPPCPAPELLGGPSVF


LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP


REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY


KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL


SLSPGK





HG1020127P1


NP_056934_1-370_17939658_233-464_C237S







SEQ. ID. NO. 97







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERPAVMTSPEPKSSDKTHTCPPCPAPELLGGPSVFLFPP


KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ


YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE


PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP


PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP


GK





HG1020126P1


NP_056934_1-366_17939658_233-464_C237S







SEQ. ID. NO. 98







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERPAVEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKD


TLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST


YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY


TLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD


SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1020128P1


NP_056934_1-365_17939658_233-464_C237S







SEQ. ID. NO. 99







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERPAEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDT


LMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT


LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS


DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1020129P1


NP_056934_1-360_17939658_233-464_C237S







SEQ. ID. NO. 100







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISR


TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV


LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR


DELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF


LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1020130P1


NP_056934_1-355_17939658_233-464_C237S







SEQ. ID. NO. 101







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT


CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH


QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTK


NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL


TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1020131P1


NP_056934_1-374_D364-D365_17939658_233-464_C237S







SEQ. ID. NO. 102







MWSWKCLLFWAVLVTATLCTARPSFTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERVMTSPLYLEEPKSSDKTHTCPPCPAPELLGGPSVFLF


PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE


EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP


REPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT


TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL


SPGK





HG1020133P1


NP_056934_1-374_P364M_17939658_233-464_C237S







SEQ. ID. NO. 103







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERMAVMTSPLYLEEPKSSDKTHTCPPCPAPELLGGPSVF


LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP


REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY


KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL


SLSPGK





HG1020134P1


NP_056934_1-374_M367N_17939658_233-464_C237S







SEQ. ID. NO. 104







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERMAVNTSPLYLEEPKSSDKTHTCPPCPAPELLGGPSVF


LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP


REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY


KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL


SLSPGK





HG1020132P1


NP_056934_1-374_P364G_17939658_233-464_C237S







SEQ. ID. NO. 105







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERGAVMTSPLYLEEPKSSDKTHTCPPCPAPELLGGPSVF


LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP


REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY


KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL


SLSPGK





HG1020135P1


NP_056934_1-374_P364M_M367N_17939658_233-464_C237S







SEQ. ID. NO. 106







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERMAVNTSPLYLEEPKSSDKTHTCPPCPAPELLGGPSVF


LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP


REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY


KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL


SLSPGK





HG1020136P1


NP_075594_1-285_17939658_233-464_C237S







SEQ. ID. NO. 107







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEEK


ETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWL


KNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINH


TYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLK


HIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTC


LAGNSIGLSHHSAWLTVLEALEERPAVMTSPLYLEEPKSSDKTHTCPPCP


APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD


GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA


PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVE


WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE


ALHNHYTQKSLSLSPGK





HG1020138P1


NP_075594_1-281_17939658_233-464_C237S







SEQ. ID. NO. 108







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEEK


ETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWL


KNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINH


TYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLK


HIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTC


LAGNSIGLSHHSAWLTVLEALEERPAVMTSPEPKSSDKTHTCPPCPAPEL


LGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV


HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK


TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESN


GQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN


HYTQKSLSLSPGK





HG1020137P1


NP_075594_1-277_17939658_233-464_C237S







SEQ. ID. NO. 109







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEEK


ETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWL


KNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINH


TYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLK


HIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTC


LAGNSIGLSHHSAWLTVLEALEERPAVEPKSSDKTHTCPPCPAPELLGGP


SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK


TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK


AKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE


NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ


KSLSLSPGK





HG1020139P1


NP_075594_1-276_17939658_233-464_C237S







SEQ. ID. NO. 110







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEEK


ETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWL


KNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINH


TYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLK


HIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTC


LAGNSIGLSHHSAWLTVLEALEERPAEPKSSDKTHTCPPCPAPELLGGPS


VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT


KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN


NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK


SLSLSPGK





HG1020140P1


NP_075594_1-271_17939658_233-464_C237S







SEQ. ID. NO. 111







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEEK


ETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWL


KNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINH


TYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLK


HIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTC


LAGNSIGLSHHSAWLTVLEALEPKSSDKTHTCPPCPAPELLGGPSVFLFP


PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE


QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR


EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT


PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS


PGK





HG1020141P1


NP_075594_1-285_D275-D276_17939658_233-464_C237S







SEQ. ID. NO. 112







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEEK


ETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWL


KNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINH


TYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLK


HIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTC


LAGNSIGLSHHSAWLTVLEALEERVMTSPLYLEEPKSSDKTHTCPPCPAP


ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV


EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI


EKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWE


SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL


HNHYTQKSLSLSPGK





HG1020143P1


NP_075594_1-285_P275M_17939658_233-464_C237S







SEQ. ID. NO. 113







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEEK


ETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWL


KNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINH


TYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLK


HIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTC


LAGNSIGLSHHSAWLTVLEALEERMAVMTSPLYLEEPKSSDKTHTCPPCP


APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD


GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA


PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVE


WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE


ALHNHYTQKSLSLSPGK





HG1020144P1


NP_075594_1-285_M278N_17939658_233-464_C237S







SEQ. ID. NO. 114







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEEK


ETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWL


KNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINH


TYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLK


HIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTC


LAGNSIGLSHHSAWLTVLEALEERPAVNTSPLYLEEPKSSDKTHTCPPCP


APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD


GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA


PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVE


WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE


ALHNHYTQKSLSLSPGK





HG1020142P1


NP_075594_1-285_P275G_17939658_233-464_C237S







SEQ. ID. NO. 115







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEEK


ETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWL


KNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINH


TYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLK


HIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTC


LAGNSIGLSHHSAWLTVLEALEERGAVMTSPLYLEEPKSSDKTHTCPPCP


APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD


GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA


PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVE


WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE


ALHNHYTQKSLSLSPGK





HG1020145P1


NP_075594_1-285_P275M_M278N_17939658_233-464_C237S







SEQ. ID. NO. 116







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEEK


ETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWL


KNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINH


TYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLK


HIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTC


LAGNSIGLSHHSAWLTVLEALEERMAVNTSPLYLEEPKSSDKTHTCPPCP


APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD


GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA


PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVE


WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE


ALHNHYTQKSLSLSPGK





HG1020146P1


NP_000595_1-376_17939658_233-464_C237S







SEQ. ID. NO. 117







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNRMP


VAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPD


HRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVER


SPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKI


GPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLS


HHSAWLTVLEALEERPAVMTSPLYLEEPKSSDKTHTCPPCPAPELLGGPS


VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT


KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSRDELTKNQVSLTCLVKGEYPSDIAVEWESNGQPEN


NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK


SLSLSPGK





HG1020148P1


NP_000595_1-372_17939658_233-464_C237S







SEQ. ID. NO. 118







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNRMP


VAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPD


HRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVER


SPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKI


GPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLS


HHSAWLTVLEALEERPAVMTSPEPKSSDKTHTCPPCPAPELLGGPSVFLF


PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE


EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP


REPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT


TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL


SPGK





HG1020147P1


NP_000595_1-368_17939658_233-464_C237S







SEQ. ID. NO. 119







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERPAVEPKSSDKTHTCPPCPAPELLGGPS


VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK


TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS


KAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ


PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH


YTQKSLSLSPGK





HG1020149P1


NP_000595_1-367_17939658_233-464_C237S







SEQ. ID. NO. 120







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERPAEPKSSDKTHTCPPCPAPELLGGPSV


FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT


KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK


AKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP


ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY


TQKSLSLSPGK





HG1020150P1


NP_000595_1-362_17939658_233-464_C237S







SEQ. ID. NO. 121







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEPKSSDKTHTCPPCPAPELLGGPSVFLFPP


KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE


QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP


REPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK


TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL


SLSPGK





HG1020151P1


NP_000595_1-376_D366-D367_17939658_233-464_C237S







SEQ. ID. NO. 122







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERVMTSPLYLEEPKSSDKTHTCPPCPAPE


LLGGPSVFLEPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV


EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAP


IEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVE


WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH


EALHNHYTQKSLSLSPGK





HG1020153P1


NP_000595_1-376_P366M_17939658_233-464_C237S







SEQ. ID. NO. 123







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERMAVMTSPLYLEEPKSSDKTHTCPPCPA


PELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD


GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP


APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIA


VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV


MHEALHNHYTQKSLSLSPGK





HG1020154P1


NP_000595_1-376_M369N_17939658_233-464_C237S







SEQ. ID. NO. 124







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERPAVNTSPLYLEEPKSSDKTHTCPPCPA


PELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD


GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP


APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIA


VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV


MHEALHNHYTQKSLSLSPGK





HG1020152P1


NP_000595_1-376_P366G_17939658_233-464_C237S







SEQ. ID. NO. 125







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERGAVMTSPLYLEEPKSSDKTHTCPPCPA


PELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD


GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP


APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIA


VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV


MHEALHNHYTQKSLSLSPGK





HG1020155P1


NP_000595_1-376_P366M_M369N_17939658_233-464_C237S







SEQ. ID. NO. 126







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERMAVNTSPLYLEEPKSSDKTHTCPPCPA


PELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD


GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP


APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIA


VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV


MHEALHNHYTQKSLSLSPGK





HG1020157P1


NP_056934_1-370







SEQ. ID. NO. 127







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


PVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFK


PDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDV


VERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVN


GSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGN


SIGLSHHSAWLTVLEALEERPAVMTSP





HG1020156P1


NP_056934_1-366







SEQ. ID. NO. 128







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


PVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFK


PDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDV


VERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVN


GSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGN


SIGLSHHSAWLTVLEALEERPAV





HG1020158P1


NP_056934_1-365







SEQ. ID. NO. 129







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


PVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFK


PDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDV


VERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVN


GSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGN


SIGLSHHSAWLTVLEALEERPA





HG1020159P1


NP_056934_1-360







SEQ. ID. NO. 130







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


PVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFK


PDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDV


VERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVN


GSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGN


SIGLSHHSAWLTVLEAL





HG1020160P1


NP_056934_1-355







SEQ. ID. NO. 131







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


PVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFK


PDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDV


VERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVN


GSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGN


SIGLSHHSAWLT





HG1020161P1


NP_056934_1-374_D364-D365







SEQ. ID. NO. 132







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


PVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFK


PDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDV


VERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVN


GSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGN


SIGLSHHSAWLTVLEALEERVMTSPLYLE





HG1020163P1


NP_056934_1-374_P364M







SEQ. ID. NO. 133







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


PVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFK


PDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDV


VERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVN


GSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGN


SIGLSHHSAWLTVLEALEERMAVMTSPLYLE





HG1020164P1


NP_056934_1-374_M367N







SEQ. ID. NO. 134







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


PVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFK


PDHRIGGYKVRYATWSIIMDSVVPSDKGNYFCIVENEYGSINHTYQLDV


VERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVN


GSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGN


SIGLSHHSAWLTVLEALEERMAVNTSPLYLE





HG1020162P1


NP_056934_1-374_P364G







SEQ. ID. NO. 135







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


PVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFK


PDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDV


VERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVN


GSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGN


SIGLSHHSAWLTVLEALEERGAVMTSPLYLE





HG1020165P1


NP_056934_1-374_P364M_M367N







SEQ. ID. NO. 136







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


PVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFK


PDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDV


VERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVN


GSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGN


SIGLSHHSAWLTVLEALEERMAVNTSPLYLE





HG1020167P1


NP_075594_1-281







SEQ. ID. NO. 137







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEE


KETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLR


WLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGS


INHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHI


QWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDA


GEYTCLAGNSIGLSHHSAWLTVLEALEERPAVMTSP





HG1020166P1


NP_075594_1-277







SEQ. ID. NO. 138







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEE


KETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLR


WLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGS


INHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHI


QWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDA


GEYTCLAGNSIGLSHHSAWLTVLEALEERPAV





HG1020168P1


NP_075594_1-276







SEQ. ID. NO. 139







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEE


KETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLR


WLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGS


INHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHI


QWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDA


GEYTCLAGNSIGLSHHSAWLTVLEALEERPA





HG1020169P1


NP_075594_1-271







SEQ. ID. NO. 140







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEE


KETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLR


WLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGS


INHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHI


QWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDA


GEYTCLAGNSIGLSHHSAWLTVLEAL





HG1020170P1


NP_075594_1-285_D275-D276







SEQ. ID. NO. 141







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEE


KETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLR


WLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGS


INHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHI


QWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDA


GEYTCLAGNSIGLSHHSAWLTVLEALEERVMTSPLYLE





HG1020172P1


NP_075594_1-285_P275M







SEQ. ID. NO. 142







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEE


KETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLR


WLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGS


INHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHI


QWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDA


GEYTCLAGNSIGLSHHSAWLTVLEALEERMAVMTSPLYLE





HG1020173P1


NP_075594_1-285_M278N







SEQ. ID. NO. 143







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEE


KETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLR


WLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGS


INHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHI


QWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDA


GEYTCLAGNSIGLSHHSAWLTVLEALEERPAVNTSPLYLE





HG1020171P1


NP_075594_1-285_P275G







SEQ. ID. NO. 144







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEE


KETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLR


WLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGS


INHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHI


QWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDA


GEYTCLAGNSIGLSHHSAWLTVLEALEERGAVMTSPLYLE





HG1020174P1


NP_075594_1-285_P275M_M278N







SEQ. ID. NO. 145







MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEE


KETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLR


WLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGS


INHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHI


QWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDA


GEYTCLAGNSIGLSHHSAWLTVLEALEERMAVNTSPLYLE





HG1020176P1


NP_000595_1-372







SEQ. ID. NO. 146







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERPAVMTSP





HG1020175P1


NP_000595_1-368







SEQ. ID. NO. 147







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERPAV





HG1020177P1


NP_000595_1-367







SEQ. ID. NO. 148







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERPA





HG1020178P1


NP_000595_1-362







SEQ. ID. NO. 149







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEAL





HG1020179P1


NP_000595_1-376_D366-D367







SEQ. ID. NO. 150







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERVMTSPLYLE





HG1020181P1


NP_000595_1-376_P366M







SEQ. ID. NO. 151







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERMAVMTSPLYLE





HG1020182P1


NP_000595_1-376_M369N







SEQ. ID. NO. 152







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERPAVNTSPLYLE





HG1020180P1


NP_000595_1-376_P366G







SEQ. ID. NO. 153







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERGAVMTSPLYLE





HG1020183P1


NP_000595_1-376_P366M_M369N







SEQ. ID. NO. 154







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGD


LLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGL


YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPN


RMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKE


FKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQL


DVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIE


VNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLA


GNSIGLSHHSAWLTVLEALEERMAVNTSPLYLE





HG1020184P1


182571_1-369







SEQ. ID. NO. 155







MRLLLALLGVLLSVPGPPVLSLEASEEVELEPCLAPSLEQQEQELTVAL


GQPVRLCCGRAERGGHWYKEGSRLAPAGRVRGWRGRLEIASFLPEDAGR


YLCLARGSMIVLQNLTLITGDSLTSSNDDEDPKSHRDPSNRHSYPQQAP


YWTHPQRMEKKLHAVPAGNTVKFRCPAAGNPTPTIRWLKDGQAFHGENR


IGGIRLRHQHWSLVMESVVPSDRGTYTCLVENAVGSIRYNYLLDVLERS


PHRPILQAGLPANTTAVVGSDVELLCKVYSDAQPHIQWLKHIVINGSSF


GADGFPYVQVLKTADINSSEVEVLYLRNVSAEDAGEYTCLAGNSIGLSY


QSAWLTVLPEEDPTWTAAAPEARYTD





HG1020185P1


182571_1-369_17939658_233-464_C237S







SEQ. ID. NO. 156







MRLLLALLGVLLSVPGPPVLSLEASEEVELEPCLAPSLEQQEQELTVAL


GQPVRLCCGRAERGGHWYKEGSRLAPAGRVRGWRGRLEIASFLPEDAGR


YLCLARGSMIVLQNLTLITGDSLTSSNDDEDPKSHRDPSNRHSYPQQAP


YWTHPQRMEKKLHAVPAGNTVKFRCPAAGNPTPTIRWLKDGQAFHGENR


IGGIRLRHQHWSLVMESVVPSDRGTYTCLVENAVGSIRYNYLLDVLERS


PHRPILQAGLPANTTAVVGSDVELLCKVYSDAQPHIQWLKHIVINGSSF


GADGFPYVQVLKTADINSSEVEVLYLRNVSAEDAGEYTCLAGNSIGLSY


QSAWLTVLPEEDPTWTAAAPEARYTDGSEPKSSDKTHTCPPCPAPELLG


GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH


NAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK


TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWES


NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL


HNHYTQKSLSLSPGK





HG1021610P1


182571_1-369_nolinker_17939658_233-464_C237S







SEQ. ID. NO. 157







MRLLLALLGVLLSVPGPPVLSLEASEEVELEPCLAPSLEQQEQELTVAL


GQPVRLCCGRAERGGHWYKEGSRLAPAGRVRGWRGRLEIASFLPEDAGR


YLCLARGSMIVLQNLTLITGDSLTSSNDDEDPKSHRDPSNRHSYPQQAP


YWTHPQRMEKKLHAVPAGNTVKFRCPAAGNPTPTIRWLKDGQAFHGENR


IGGIRLRHQHWSLVMESVVPSDRGTYTCLVENAVGSIRYNYLLDVLERS


PHRPILQAGLPANTTAVVGSDVELLCKVYSDAQPHIQWLKHIVINGSSF


GADGFPYVQVLKTADINSSEVEVLYLRNVSAEDAGEYTCLAGNSIGLSY


QSAWLTVLPEEDPTWTAAAPEARYTDEPKSSDKTHTCPPCPAPELLGGP


SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNA


KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI


SKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNG


QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN


HYTQKSLSLSPGK





HG1020186P1


13991618_1-159







SEQ. ID. NO. 158







MESVVPSDRGTYTCLVENAVGSIRYNYLLDVLERSPHRPILQAGLPANT


TAVVGSDVELLCKVYSDAQPHIQWLKHIVINGSSFGADGFPYVQVLKTA


DINSSEVEVLYLRNVSAEDAGEYTCLAGNSIGLSYQSAWLTVLPEEDPT


WTAAAPEARYTD





HG1020187P1


NP_002002_1-369







SEQ. ID. NO. 159







MRLLLALLGVLLSVPGPPVLSLEASEEVELEPCLAPSLEQQEQELTVAL


GQPVRLCCGRAERGGHWYKEGSRLAPAGRVRGWRGRLEIASFLPEDAGR


YLCLARGSMIVLQNLTLITGDSLTSSNDDEDPKSHRDLSNRHSYPQQAP


YWTHPQRMEKKLHAVPAGNTVKFRCPAAGNPTPTIRWLKDGQAFHGENR


IGGIRLRHQHWSLVMESVVPSDRGTYTCLVENAVGSIRYNYLLDVLERS


PHRPILQAGLPANTTAVVGSDVELLCKVYSDAQPHIQWLKHIVINGSSF


GADGFPYVQVLKTADINSSEVEVLYLRNVSAEDAGEYTCLAGNSIGLSY


QSAWLTVLPEEDPTWTAAAPEARYTD





HG1020188P1


31372_1-369







SEQ. ID. NO. 160







MRLLLALLGVLLSVPGPPVLSLEASEEVELEPCLAPSLEQQEQELTVAL


GQPVRLCCGRAERGGHWYKEGSRLAPAGRVRGWRGRLEIASFLPEDAGR


YLCLARGSMIVLQNLTLITGDSLTSSNDDEDPKSHRDPSNRHSYPQQAP


YWTHPQRMEKKLHAVPAGNTVKFRCPAAGNPTPTIRWLKDGQAFHGENR


IGGIRLRHQHWSLVMESVVPSDRGTYTCLVENAVGSIRYNYLLDVLERS


PHRPILQAGLPANTTAVVGSDVELLCKVYSDAQPHIQWLKHIVINGSSF


GAVGFPYVQVLKTADINSSEVEVLYLRNVSAEDAGEYTCLAGNSIGLSY


QSAWLTVLPEEDPTWTAAAPEARYTD





HG1020189P1


2832350_1-369







SEQ. ID. NO. 161







MRLLLALLGILLSVPGPPVLSLEASEEVELEPCLAPSLEQQEQELTVAL


GQPVRLCCGRAERGGHWYKEGSRLAPAGRVRGWRGRLEIASFLPEDAGR


YLCLARGSMIVLQNLTLITGDSLTSSNDDEDPKSHRDLSNRHSYPQQAP


YWTHPQRMEKKLHAVPAGNTVKFRCPAAGNPTPTIRWLKDGQAFHGENR


IGGIRLRHQHWSLVMESVVPSDRGTYTCLVENAVGSIRYNYLLDVLERS


PHRPILQAGLPANTTAVVGSDVELLCKVYSDAQPHIQWLKHIVINGSSF


GADGFPYVQVLKTADINSSEVEVLYLRNVSAEDAGEYTCLAGNSIGLSY


QSAWLTVLPEEDPTWTAAAPEARYTD





HG1021616P1


182571_1-364_17939658_233-464_C237S







SEQ. ID. NO. 162







MRLLLALLGVLLSVPGPPVLSLEASEEVELEPCLAPSLEQQEQELTVAL


GQPVRLCCGRAERGGHWYKEGSRLAPAGRVRGWRGRLEIASFLPEDAGR


YLCLARGSMIVLQNLTLITGDSLTSSNDDEDPKSHRDPSNRHSYPQQAP


YWTHPQRMEKKLHAVPAGNTVKFRCPAAGNPTPTIRWLKDGQAFHGENR


IGGIRLRHQHWSLVMESVVPSDRGTYTCLVENAVGSIRYNYLLDVLERS


PHRPILQAGLPANTTAVVGSDVELLCKVYSDAQPHIQWLKHIVINGSSF


GADGFPYVQVLKTADINSSEVEVLYLRNVSAEDAGEYTCLAGNSIGLSY


QSAWLTVLPEEDPTWTAAAPEEPKSSDKTHTCPPCPAPELLGGPSVFLF


PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR


EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN


YKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK


SLSLSPGK





HG1021617P1


182571_1-359_17939658_233-464_C237S







SEQ. ID. NO. 163







MRLLLALLGVLLSVPGPPVLSLEASEEVELEPCLAPSLEQQEQELTVAL


GQPVRLCCGRAERGGHWYKEGSRLAPAGRVRGWRGRLEIASFLPEDAGR


YLCLARGSMIVLQNLTLITGDSLTSSNDDEDPKSHRDPSNRHSYPQQAP


YWTHPQRMEKKLHAVPAGNTVKFRCPAAGNPTPTIRWLKDGQAFHGENR


IGGIRLRHQHWSLVMESVVPSDRGTYTCLVENAVGSIRYNYLLDVLERS


PHRPILQAGLPANTTAVVGSDVELLCKVYSDAQPHIQWLKHIVINGSSF


GADGFPYVQVLKTADINSSEVEVLYLRNVSAEDAGEYTCLAGNSIGLSY


QSAWLTVLPEEDPTWTEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPK


DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN


STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP


QVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP


PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS


PGK





HG1021618P1


182571_1-354_17939658_233-464_C237S







SEQ. ID. NO. 164







MRLLLALLGVLLSVPGPPVLSLEASEEVELEPCLAPSLEQQEQELTVAL


GQPVRLCCGRAERGGHWYKEGSRLAPAGRVRGWRGRLEIASFLPEDAGR


YLCLARGSMIVLQNLTLITGDSLTSSNDDEDPKSHRDPSNRHSYPQQAP


YWTHPQRMEKKLHAVPAGNTVKFRCPAAGNPTPTIRWLKDGQAFHGENR


IGGIRLRHQHWSLVMESVVPSDRGTYTCLVENAVGSIRYNYLLDVLERS


PHRPILQAGLPANTTAVVGSDVELLCKVYSDAQPHIQWLKHIVINGSSF


GADGFPYVQVLKTADINSSEVEVLYLRNVSAEDAGEYTCLAGNSIGLSY


QSAWLTVLPEEEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI


SRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV


VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL


PPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS


DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1021619P1


182571_1-352_17939658_233-464_C237S







SEQ. ID. NO. 165







MRLLLALLGVLLSVPGPPVLSLEASEEVELEPCLAPSLEQQEQELTVAL


GQPVRLCCGRAERGGHWYKEGSRLAPAGRVRGWRGRLEIASFLPEDAGR


YLCLARGSMIVLQNLTLITGDSLTSSNDDEDPKSHRDPSNRHSYPQQAP


YWTHPQRMEKKLHAVPAGNTVKFRCPAAGNPTPTIRWLKDGQAFHGENR


IGGIRLRHQHWSLVMESVVPSDRGTYTCLVENAVGSIRYNYLLDVLERS


PHRPILQAGLPANTTAVVGSDVELLCKVYSDAQPHIQWLKHIVINGSSF


GADGFPYVQVLKTADINSSEVEVLYLRNVSAEDAGEYTCLAGNSIGLSY


QSAWLTVLPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISR


TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVS


VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP


SRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1021620P1


182571_1-351_17939658_233-464_C237S







SEQ. ID. NO. 166







MRLLLALLGVLLSVPGPPVLSLEASEEVELEPCLAPSLEQQEQELTVAL


GQPVRLCCGRAERGGHWYKEGSRLAPAGRVRGWRGRLEIASFLPEDAGR


YLCLARGSMIVLQNLTLITGDSLTSSNDDEDPKSHRDPSNRHSYPQQAP


YWTHPQRMEKKLHAVPAGNTVKFRCPAAGNPTPTIRWLKDGQAFHGENR


IGGIRLRHQHWSLVMESVVPSDRGTYTCLVENAVGSIRYNYLLDVLERS


PHRPILQAGLPANTTAVVGSDVELLCKVYSDAQPHIQWLKHIVINGSSF


GADGFPYVQVLKTADINSSEVEVLYLRNVSAEDAGEYTCLAGNSIGLSY


QSAWLTVLEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRT


PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV


LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS


RDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS


FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1020190P1


NP_056934_1-19







SEQ. ID. NO. 167







MWSWKCLLFWAVLVTATLC





HG1020191P1


182571_1-19







SEQ. ID. NO. 168







MRLLLALLGVLLSVPGPPV





HG1020192P1


2832350_1-21







SEQ. ID. NO. 169







MRLLLALLGILLSVPGPPVLS





HG1020118P1


linker_sequence







SEQ. ID. NO. 170







GS





HG1020119P1


17939658_233-464_C237S







SEQ. ID. NO. 171







EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVV


DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW


LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQ


VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT


VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1020120P1


34528298_241-468







SEQ. ID. NO. 172







ERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH


EDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGK


EYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLT


CLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKS


RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1020121P1


19684073_245-473







SEQ. ID. NO. 173







ESKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


QEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNG


KEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSL


TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDK


SRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK





HG1020374P1


NP_000133_1-375







SEQ. ID. NO. 174







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQL


VFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQVLN


ASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDTGVD


TGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNGREFR


GEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQTYTLDV


LERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWLKHVEVN


GSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGEYTCLAGN


SIGFSHHSAWLVVLPAEEELVEADEAGSVYAG





HG1020375P1


NP_075254_1-310







SEQ. ID. NO. 175







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQL


VFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQVLN


ASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDTGVD


TGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNGREFR


GEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQTYTLDV


LERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWLKHVEVN


GSKVGPDGTPYVTVLK





HG1021603P1


NP_000133_1-375_GS_17939658_233-464_C237S







SEQ. ID. NO. 176







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQL


VFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQVLN


ASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDTGVD


TGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNGREFR


GEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQTYTLDV


LERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWLKHVEVN


GSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGEYTCLAGN


SIGFSHHSAWLVVLPAEEELVEADEAGSVYAGGSEPKSSDKTHTCPPCP


APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYV


DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL


PAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDI


AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS


VMHEALHNHYTQKSLSLSPGK





HG1021604P1


NP_000133_1-375_17939658_233-464_C237S







SEQ. ID. NO. 177







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQL


VFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQVLN


ASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDTGVD


TGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNGREFR


GEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQTYTLDV


LERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWLKHVEVN


GSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGEYTCLAGN


SIGFSHHSAWLVVLPAEEELVEADEAGSVYAGEPKSSDKTHTCPPCPAP


ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDG


VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA


PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAV


EWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM


HEALHNHYTQKSLSLSPGK





HG1021605P1


NP_000133_1-371_17939658_233-464_C237S







SEQ. ID. NO. 178







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQL


VFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQVLN


ASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDTGVD


TGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNGREFR


GEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQTYTLDV


LERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWLKHVEVN


GSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGEYTCLAGN


SIGFSHHSAWLVVLPAEEELVEADEAGSEPKSSDKTHTCPPCPAPELLG


GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH


NAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK


TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWES


NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL


HNHYTQKSLSLSPGK





HG1021606P1


NP_000133_1-367_17939658_233-464_C237S







SEQ. ID. NO. 179







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQL


VFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQVLN


ASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDTGVD


TGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNGREFR


GEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQTYTLDV


LERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWLKHVEVN


GSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGEYTCLAGN


SIGFSHHSAWLVVLPAEEELVEADEPKSSDKTHTCPPCPAPELLGGPSV


FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT


KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK


AKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP


ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY


TQKSLSLSPGK





HG1021607P1


NP_000133_1-366_17939658_233-464_C237S







SEQ. ID. NO. 180







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQL


VFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQVLN


ASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDTGVD


TGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNGREFR


GEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQTYTLDV


LERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWLKHVEVN


GSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGEYTCLAGN


SIGFSHHSAWLVVLPAEEELVEAEPKSSDKTHTCPPCPAPELLGGPSVF


LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK


PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE


NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT


QKSLSLSPGK





HG1021608P1


NP_000133_1-361_17939658_233-464_C237S







SEQ. ID. NO. 181







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQL


VFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQVLN


ASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDTGVD


TGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNGREFR


GEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQTYTLDV


LERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWLKHVEVN


GSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGEYTCLAGN


SIGFSHHSAWLVVLPAEEEPKSSDKTHTCPPCPAPELLGGPSVFLFPPK


PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ


YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR


EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT


TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS


LSPGK





HG1021609P1


NP_000133_1-355_17939658_233-464_C237S







SEQ. ID. NO. 182







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQL


VFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQVLN


ASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDTGVD


TGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNGREFR


GEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQTYTLDV


LERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWLKHVEVN


GSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGEYTCLAGN


SIGFSHHSAWLVEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLM


ISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR


VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT


LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD


SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1021621N1


NP_056934_1-374







SEQ. ID. NO. 183







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCA


CACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCC


CTGGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGAC


CTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACT


GGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCAC


AGGGGAGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTC


TATGCTTGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCT


CCGTCAATGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGA


TGATGACTCCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAAC


CCCGTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGC


ATGCAGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGG


GACCCCAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAA


CCTGACCACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCA


TCATAATGGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCAT


TGTGGAGAATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTC


GTGGAGCGGTCCCCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCA


ACAAAACAGTGGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTA


CAGTGACCCGCAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAAT


GGGAGCAAGATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGA


CTGCTGGAGTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAG


AAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAAC


TCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCC


TGGAAGAGAGGCCGGCAGTGATGACCTCGCCCCTGTACCTGGAG





HG1021622N1


FGFR1IIIb_1-374_17939658_233-464_C237S







SEQ. ID. NO. 184







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCA


CACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCC


CTGGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGAC


CTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACT


GGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCAC


AGGGGAGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTC


TATGCTTGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCT


CCGTCAATGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGA


TGATGACTCCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAAC


CCCGTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGC


ATGCAGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGG


GACCCCAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAA


CCTGACCACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCA


TCATAATGGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCAT


TGTGGAGAATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTC


GTGGAGCGGTCCCCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCA


ACAAAACAGTGGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTA


CAGTGACCCGCAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAAT


GGGAGCAAGATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGA


CTGCTGGAGTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAG


AAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAAC


TCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCC


TGGAAGAGAGGCCGGCAGTGATGACCTCGCCCCTGTACCTGGAGGAGCC


CAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAA


CTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA


CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGT


GAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTG


GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA


CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA


TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCC


ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG


TGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAG


CCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG


TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCG


TGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGA


CAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCAT


GAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG


GTAAA





HG1021623N1


FGFR1IIIb_1-370_17939658_233-464_C237S







SEQ. ID. NO. 185







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCA


CACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCC


CTGGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGAC


CTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACT


GGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCAC


AGGGGAGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTC


TATGCTTGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCT


CCGTCAATGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGA


TGATGACTCCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAAC


CCCGTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGC


ATGCAGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGG


GACCCCAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAA


CCTGACCACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCA


TCATAATGGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCAT


TGTGGAGAATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTC


GTGGAGCGGTCCCCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCA


ACAAAACAGTGGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTA


CAGTGACCCGCAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAAT


GGGAGCAAGATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGA


CTGCTGGAGTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAG


AAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAAC


TCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCC


TGGAAGAGAGGCCGGCAGTGATGACCTCGCCCGAGCCCAAATCTtctGA


CAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGA


CCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCT


CCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGA


CCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAAT


GCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGG


TCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTA


CAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACC


ATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGC


CCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCT


GGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT


GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG


ACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTG


GCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC


AACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021624N1


FGFR1IIIb_1-366_17939658_233-464_C237S







SEQ. ID. NO. 186







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCA


CACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCC


CTGGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGAC


CTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACT


GGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCAC


AGGGGAGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTC


TATGCTTGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCT


CCGTCAATGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGA


TGATGACTCCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAAC


CCCGTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGC


ATGCAGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGG


GACCCCAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAA


CCTGACCACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCA


TCATAATGGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCAT


TGTGGAGAATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTC


GTGGAGCGGTCCCCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCA


ACAAAACAGTGGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTA


CAGTGACCCGCAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAAT


GGGAGCAAGATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGA


CTGCTGGAGTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAG


AAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAAC


TCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCC


TGGAAGAGAGGCCGGCAGTGGAGCCCAAATCTtctGACAAAACTCACAC


ATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTC


CTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTG


AGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAA


GTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAG


CCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCA


CCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGT


CTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC


AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGG


ATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTT


CTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG


AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT


TCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA


CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG


CAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021625N1


FGFR1IIIb_1-365_17939658_233-464_C237S







SEQ. ID. NO. 187







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCA


CACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCC


CTGGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGAC


CTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACT


GGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCAC


AGGGGAGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTC


TATGCTTGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCT


CCGTCAATGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGA


TGATGACTCCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAAC


CCCGTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGC


ATGCAGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGG


GACCCCAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAA


CCTGACCACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCA


TCATAATGGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCAT


TGTGGAGAATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTC


GTGGAGCGGTCCCCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCA


ACAAAACAGTGGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTA


CAGTGACCCGCAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAAT


GGGAGCAAGATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGA


CTGCTGGAGTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAG


AAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAAC


TCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCC


TGGAAGAGAGGCCGGCAGAGCCCAAATCTtctGACAAAACTCACACATG


CCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC


TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGG


TCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTT


CAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCG


CGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCG


TCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTC


CAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAA


GGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATG


AGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTA


TCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC


AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC


TCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT


CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG


AAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021626N1


FGFR1IIIb_1-360_17939658_233-464_C237S







SEQ. ID. NO. 188







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGTTCTGGAAGCCCTGGAGCCCAAATCTtctGACAA


AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT


CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGG


ACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGA


GGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGA


CAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTC


CTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA


GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG


CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG


GATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTT


CTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGA


ACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC


CTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT


CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGA


AGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021627N1


FGFR1IIIb_1-355_17939658_233-464_C237S







SEQ. ID. NO. 189







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCAC


ACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCT


GGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTG


CTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCT


GCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGG


AGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCT


TGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAA


TGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACT


CCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCCCGTAGCT


CCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCC


GGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACC


CCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGA


ATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTC


TGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGT


ACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCT


CACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCT


GGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGC


ACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCA


GACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCAC


CGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACG


CAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCAC


TCTGCATGGTTGACCGAGCCCAAATCTtctGACAAAACTCACACATGCCC


ACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCC


CCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA


TGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTG


GTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGG


AGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCAC


CAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGC


CCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC


GAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAG


AACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACAT


CGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCA


CGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTC


ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGT


GATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT


CTCCGGGTAAA





HG1021628N1


P22607_1-375







SEQ. ID. NO. 190







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGAGGAGCTGGTGGAGGCTGA


CGAGGCGGGCAGTGTGTATGCAGGC





HG1021629N1


P22607_1-375_17939658_233-464_C237S







SEQ. ID. NO. 191







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGAGGAGCTGGTGGAGGCTGA


CGAGGCGGGCAGTGTGTATGCAGGCGAGCCCAAATCTtctGACAAAACTC


ACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTC


TTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCC


TGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCA


AGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAG


CCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCAC


CGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT


CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAA


GGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGA


GCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATC


CCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAAC


TACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA


CAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCT


CATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC


CTCTCCCTGTCTCCGGGTAAA





HG1021630N1


P22607_1-371_17939658_233-464_C237S







SEQ. ID. NO. 192







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGAGGAGCTGGTGGAGGCTGA


CGAGGCGGGCAGTGAGCCCAAATCTtctGACAAAACTCACACATGCCCAC


CGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC


CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATG


CGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGT


ACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG


CAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCA


GGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCC


TCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA


GAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAA


CCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCG


CCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG


CCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCAC


CGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGA


TGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCT


CCGGGTAAA





HG1021631N1


P22607_1-367_17939658_233-464_C237S







SEQ. ID. NO. 193







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGAGGAGCTGGTGGAGGCTGA


CGAGCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCAC


CTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAG


GACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGA


CGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCG


TGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC


ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA


TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA


TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTG


TACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT


GACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG


AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG


GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAG


CAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTC


TGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021632N1


P22607_1-366_17939658_233-464_C237S







SEQ. ID. NO. 194







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGAGGAGCTGGTGGAGGCTGA


GCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTG


AACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC


ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGT


GAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG


AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACG


TACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG


CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCG


AGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTAC


ACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGAC


CTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA


GCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGAC


TCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAG


GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC


ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021633N1


P22607_1-361_17939658_233-464_C237S







SEQ. ID. NO. 195







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGAGGAGCCCAAATCTtctGA


CAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGAC


CGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCC


CGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCC


TGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCA


AGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC


GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTG


CAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCA


AAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCC


CGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGG


CTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG


AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTC


TTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA


CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC


AGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021634N1


P22607_1-355_17939658_233-464_C237S







SEQ. ID. NO. 196







ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGT


GGCCGGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGC


GAGCGGCAGAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTC


TTCGGCAGCGGGGATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGG


TCCCATGGGGCCCACTGTCTGGGTCAAGGATGGCACAGGGCTGGTGCCCT


CGGAGCGTGTCCTGGTGGGGCCCCAGCGGCTGCAGGTGCTGAATGCCTCC


CACGAGGACTCCGGGGCCTACAGCTGCCGGCAGCGGCTCACGCAGCGCGT


ACTGTGCCACTTCAGTGTGCGGGTGACAGACGCTCCATCCTCGGGAGATG


ACGAAGACGGGGAGGACGAGGCTGAGGACACAGGTGTGGACACAGGGGCC


CCTTACTGGACACGGCCCGAGCGGATGGACAAGAAGCTGCTGGCCGTGCC


GGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCAACCCCACTC


CCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGCACCGC


ATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAAG


CGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGT


TTGGCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCG


CACCGGCCCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCT


GGGCAGCGACGTGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCC


ACATCCAGTGGCTCAAGCACGTGGAGGTGAACGGCAGCAAGGTGGGCCCG


GACGGCACACCCTACGTTACCGTGCTCAAGACGGCGGGCGCTAACACCAC


CGACAAGGAGCTAGAGGTTCTCTCCTTGCACAACGTCACCTTTGAGGACG


CCGGGGAGTACACCTGCCTGGCGGGCAATTCTATTGGGTTTTCTCATCAC


TCTGCGTGGCTGGTGGAGCCCAAATCTtctGACAAAACTCACACATGCCC


ACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCC


CCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA


TGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTG


GTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGG


AGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCAC


CAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGC


CCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC


GAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAG


AACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACAT


CGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCA


CGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTC


ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGT


GATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT


CTCCGGGTAAA





HG1021621P1


NP_056934_1-374







SEQ. ID. NO. 197







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERPAVMTSPLYLE





HG1021622P1


FGFR1IIIb_1-374_17939658_233-464_C237S







SEQ. ID. NO. 198







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERPAVMTSPLYLEEPKSSDKTHTCPPCPAPELLGGPSVF


LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP


REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY


KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL


SLSPGK





HG1021623P1


FGFR1IIIb_1-370_17939658_233-464_C237S







SEQ. ID. NO. 199







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERPAVMTSPEPKSSDKTHTCPPCPAPELLGGPSVFLFPP


KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ


YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE


PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP


PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP


GK





HG1021624P1


FGFR1IIIb_1-366_17939658_233-464_C237S







SEQ. ID. NO. 200







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERPAVEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKD


TLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST


YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY


TLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD


SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1021625P1


FGFR1IIIb_1-365_17939658_233-464_C237S







SEQ. ID. NO. 201







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEERPAEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDT


LMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT


LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS


DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1021626P1


FGFR1IIIb_1-360_17939658_233-464_C237S







SEQ. ID. NO. 202







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL


LQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYA


CVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVA


PYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHR


IGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSP


HRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP


DNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHH


SAWLTVLEALEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISR


TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV


LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR


DELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF


LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1021627P1


FGFR1IIIb_1-355_17939658_233-464_C237S







SEQ. ID. NO. 203







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPG


DLLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADS


GLYACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNT


KPNPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNG


KEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHT


YQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWL


KHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGE


YTCLAGNSIGLSHHSAWLTEPKSSDKTHTCPPCPAPELLGGPSVFLFP


PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR


EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE


NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY


TQKSLSLSPGK





HG1021628P1


P22607_1-375







SEQ. ID. NO. 204







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQ


LVFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQV


LNASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDT


GVDTGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNG


REFRGEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQT


YTLDVLERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWL


KHVEVNGSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGE


YTCLAGNSIGFSHHSAWLVVLPAEEELVEADEAGSVYAG





HG1021629P1


P22607_1-375_17939658_233-464_C237S







SEQ. ID. NO. 205







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQ


LVFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQV


LNASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDT


GVDTGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNG


REFRGEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQT


YTLDVLERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWL


KHVEVNGSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGE


YTCLAGNSIGFSHHSAWLVVLPAEEELVEADEAGSVYAGEPKSSDKTH


TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYK


CKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCL


VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR


WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1021630P1


P22607_1-371_17939658_233-464_C237S







SEQ. ID. NO. 206







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQ


LVFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQV


LNASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDT


GVDTGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNG


REFRGEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQT


YTLDVLERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWL


KHVEVNGSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGE


YTCLAGNSIGFSHHSAWLVVLPAEEELVEADEAGSEPKSSDKTHTCPP


CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN


WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS


NKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGF


YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG


NVFSCSVMHEALHNHYTQKSLSLSPGK





HG1021631P1


P22607_1-367_17939658_233-464_C237S







SEQ. ID. NO. 207







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQ


LVFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQV


LNASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDT


GVDTGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNG


REFRGEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQT


YTLDVLERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWL


KHVEVNGSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGE


YTCLAGNSIGFSHHSAWLVVLPAEEELVEADEPKSSDKTHTCPPCPAP


ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD


GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL


PAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD


IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS


CSVMHEALHNHYTQKSLSLSPGK





HG1021632P1


P22607_1-366_17939658_233-464_C237S







SEQ. ID. NO. 208







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQ


LVFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQV


LNASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDT


GVDTGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNG


REFRGEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQT


YTLDVLERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWL


KHVEVNGSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGE


YTCLAGNSIGFSHHSAWLVVLPAEEELVEAEPKSSDKTHTCPPCPAPE


LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDG


VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP


APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDI


AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC


SVMHEALHNHYTQKSLSLSPGK





HG1021633P1


P22607_1-361_17939658_233-464_C237S







SEQ. ID. NO. 209







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQ


LVFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQV


LNASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDT


GVDTGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNG


REFRGEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQT


YTLDVLERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWL


KHVEVNGSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGE


YTCLAGNSIGFSHHSAWLVVLPAEEEPKSSDKTHTCPPCPAPELLGGP


SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHN


AKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK


TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWE


SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVESCSVMHE


ALHNHYTQKSLSLSPGK





HG1021634P1


P22607_1-355_17939658_233-464_C237S







SEQ. ID. NO. 210







MGAPACALALCVAVAIVAGASSESLGTEQRVVGRAAEVPGPEPGQQEQ


LVFGSGDAVELSCPPPGGGPMGPTVWVKDGTGLVPSERVLVGPQRLQV


LNASHEDSGAYSCRQRLTQRVLCHFSVRVTDAPSSGDDEDGEDEAEDT


GVDTGAPYWTRPERMDKKLLAVPAANTVRFRCPAAGNPTPSISWLKNG


REFRGEHRIGGIKLRHQQWSLVMESVVPSDRGNYTCVVENKFGSIRQT


YTLDVLERSPHRPILQAGLPANQTAVLGSDVEFHCKVYSDAQPHIQWL


KHVEVNGSKVGPDGTPYVTVLKTAGANTTDKELEVLSLHNVTFEDAGE


YTCLAGNSIGFSHHSAWLVEPKSSDKTHTCPPCPAPELLGGPSVFLFP


PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR


EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE


NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY


TQKSLSLSPGK





HG1021635N1


15281415_1-378







SEQ. ID. NO. 211







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCA


ACCTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACA


TTAGAGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAA


GTGTACGTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTG


AAAGATGCCGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGG


CCCAACAATAGGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGC


GCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACT


GTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCATC


TCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTC


AGTGAGAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAA


AAGATGGAAAAGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAG


TTTCGCTGCCCAGCCGGGGGGAACCCAATGCCAACCATGCGGTGGCTG


AAAAACGGGAAGGAGTTTAAGCAGGAGCATCGCATTGGAGGCTACAAG


GTACGAAACCAGCACTGGAGCCTCATTATGGAAAGTGTGGTCCCATCT


GACAAGGGAAATTATACCTGTGTGGTGGAGAATGAATACGGGTCCATC


AATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCACCGGCCC


ATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA


GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATC


CAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGAC


GGGCTGCCCTACCTCAAGGTTCTCAAGCACTCGGGGATAAATAGTTCC


AATGCAGAAGTGCTGGCTCTGTTCAATGTGACCGAGGCGGATGCTGGG


GAATATATATGTAAGGTCTCCAATTATATAGGGCAGGCCAACCAGTCT


GCCTGGCTCACTGTCCTGCCAAAACAGCAAGCGCCTGGAAGAGAAAAG


GAGATTACAGCTTCCCCAGACTACCTGGAG





HG1021636N1


15281415_1-378_17939658_233-464_C237S







SEQ. ID. NO. 212







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCA


ACCTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACA


TTAGAGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAA


GTGTACGTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTG


AAAGATGCCGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGG


CCCAACAATAGGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGC


GCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACT


GTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCATC


TCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTC


AGTGAGAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAA


AAGATGGAAAAGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAG


TTTCGCTGCCCAGCCGGGGGGAACCCAATGCCAACCATGCGGTGGCTG


AAAAACGGGAAGGAGTTTAAGCAGGAGCATCGCATTGGAGGCTACAAG


GTACGAAACCAGCACTGGAGCCTCATTATGGAAAGTGTGGTCCCATCT


GACAAGGGAAATTATACCTGTGTGGTGGAGAATGAATACGGGTCCATC


AATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCACCGGCCC


ATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA


GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATC


CAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGAC


GGGCTGCCCTACCTCAAGGTTCTCAAGCACTCGGGGATAAATAGTTCC


AATGCAGAAGTGCTGGCTCTGTTCAATGTGACCGAGGCGGATGCTGGG


GAATATATATGTAAGGTCTCCAATTATATAGGGCAGGCCAACCAGTCT


GCCTGGCTCACTGTCCTGCCAAAACAGCAAGCGCCTGGAAGAGAAAAG


GAGATTACAGCTTCCCCAGACTACCTGGAGGAGCCCAAATCTtctGAC


AAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGA


CCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC


TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAA


GACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCAT


AATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGT


GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG


GAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAG


AAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTAC


ACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTG


ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGG


GAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG


CTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGAC


AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCAT


GAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCG


GGTAAA





HG1021637N1


15281415_1-378_GS_17939658_233-464_C237S







SEQ. ID. NO. 213







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCA


ACCTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACA


TTAGAGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAA


GTGTACGTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTG


AAAGATGCCGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGG


CCCAACAATAGGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGC


GCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACT


GTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCATC


TCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTC


AGTGAGAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAA


AAGATGGAAAAGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAG


TTTCGCTGCCCAGCCGGGGGGAACCCAATGCCAACCATGCGGTGGCTG


AAAAACGGGAAGGAGTTTAAGCAGGAGCATCGCATTGGAGGCTACAAG


GTACGAAACCAGCACTGGAGCCTCATTATGGAAAGTGTGGTCCCATCT


GACAAGGGAAATTATACCTGTGTGGTGGAGAATGAATACGGGTCCATC


AATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCACCGGCCC


ATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA


GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATC


CAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGAC


GGGCTGCCCTACCTCAAGGTTCTCAAGCACTCGGGGATAAATAGTTCC


AATGCAGAAGTGCTGGCTCTGTTCAATGTGACCGAGGCGGATGCTGGG


GAATATATATGTAAGGTCTCCAATTATATAGGGCAGGCCAACCAGTCT


GCCTGGCTCACTGTCCTGCCAAAACAGCAAGCGCCTGGAAGAGAAAAG


GAGATTACAGCTTCCCCAGACTACCTGGAGGGATCCGAGCCCAAATCT


tctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTG


GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTC


ATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGC


CACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG


GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACG


TACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT


GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCC


ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG


GTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTC


AGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTG


GAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCT


CCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACC


GTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTG


ATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTG


TCTCCGGGTAAA





HG1021638N1


15281415_1-374_17939658_233-464_C237S







SEQ. ID. NO. 214







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCA


ACCTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACA


TTAGAGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAA


GTGTACGTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTG


AAAGATGCCGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGG


CCCAACAATAGGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGC


GCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACT


GTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCATC


TCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTC


AGTGAGAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAA


AAGATGGAAAAGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAG


TTTCGCTGCCCAGCCGGGGGGAACCCAATGCCAACCATGCGGTGGCTG


AAAAACGGGAAGGAGTTTAAGCAGGAGCATCGCATTGGAGGCTACAAG


GTACGAAACCAGCACTGGAGCCTCATTATGGAAAGTGTGGTCCCATCT


GACAAGGGAAATTATACCTGTGTGGTGGAGAATGAATACGGGTCCATC


AATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCACCGGCCC


ATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA


GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATC


CAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGAC


GGGCTGCCCTACCTCAAGGTTCTCAAGCACTCGGGGATAAATAGTTCC


AATGCAGAAGTGCTGGCTCTGTTCAATGTGACCGAGGCGGATGCTGGG


GAATATATATGTAAGGTCTCCAATTATATAGGGCAGGCCAACCAGTCT


GCCTGGCTCACTGTCCTGCCAAAACAGCAAGCGCCTGGAAGAGAAAAG


GAGATTACAGCTTCCCCAGAGCCCAAATCTtctGACAAAACTCACACA


TGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTC


CTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT


GAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC


AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA


AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTC


CTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGC


AAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCC


AAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCA


TCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTC


AAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGG


CAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGAC


GGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGG


CAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC


AACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021639N1


15281415_1-370_17939658_233-464_C237S







SEQ. ID. NO. 215







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCA


ACCTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACA


TTAGAGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAA


GTGTACGTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTG


AAAGATGCCGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGG


CCCAACAATAGGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGC


GCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACT


GTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCATC


TCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTC


AGTGAGAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAA


AAGATGGAAAAGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAG


TTTCGCTGCCCAGCCGGGGGGAACCCAATGCCAACCATGCGGTGGCTG


AAAAACGGGAAGGAGTTTAAGCAGGAGCATCGCATTGGAGGCTACAAG


GTACGAAACCAGCACTGGAGCCTCATTATGGAAAGTGTGGTCCCATCT


GACAAGGGAAATTATACCTGTGTGGTGGAGAATGAATACGGGTCCATC


AATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCACCGGCCC


ATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA


GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATC


CAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGAC


GGGCTGCCCTACCTCAAGGTTCTCAAGCACTCGGGGATAAATAGTTCC


AATGCAGAAGTGCTGGCTCTGTTCAATGTGACCGAGGCGGATGCTGGG


GAATATATATGTAAGGTCTCCAATTATATAGGGCAGGCCAACCAGTCT


GCCTGGCTCACTGTCCTGCCAAAACAGCAAGCGCCTGGAAGAGAAAAG


GAGATTGAGCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGC


CCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCA


AAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGC


GTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGG


TACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAG


GAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTG


CACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAAC


AAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG


CAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAG


CTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTAT


CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC


AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC


CTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAAC


GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG


CAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021640N1


15281415_1-369_17939658_233-464_C237S







SEQ. ID. NO. 216







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCA


ACCTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACA


TTAGAGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAA


GTGTACGTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTG


AAAGATGCCGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGG


CCCAACAATAGGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGC


GCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACT


GTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCATC


TCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTC


AGTGAGAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAA


AAGATGGAAAAGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAG


TTTCGCTGCCCAGCCGGGGGGAACCCAATGCCAACCATGCGGTGGCTG


AAAAACGGGAAGGAGTTTAAGCAGGAGCATCGCATTGGAGGCTACAAG


GTACGAAACCAGCACTGGAGCCTCATTATGGAAAGTGTGGTCCCATCT


GACAAGGGAAATTATACCTGTGTGGTGGAGAATGAATACGGGTCCATC


AATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCACCGGCCC


ATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA


GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATC


CAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGAC


GGGCTGCCCTACCTCAAGGTTCTCAAGCACTCGGGGATAAATAGTTCC


AATGCAGAAGTGCTGGCTCTGTTCAATGTGACCGAGGCGGATGCTGGG


GAATATATATGTAAGGTCTCCAATTATATAGGGCAGGCCAACCAGTCT


GCCTGGCTCACTGTCCTGCCAAAACAGCAAGCGCCTGGAAGAGAAAAG


GAGGAGCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCA


GCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAA


CCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTG


GTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC


GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG


CAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCAC


CAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA


GCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG


CCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTG


ACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCC


AGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAAC


TACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTC


TACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTC


TTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG


AAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021641N1


15281415_1-364_17939658_233-464_C237S







SEQ. ID. NO. 217







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCA


ACCTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACA


TTAGAGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAA


GTGTACGTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTG


AAAGATGCCGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGG


CCCAACAATAGGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGC


GCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACT


GTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCATC


TCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTC


AGTGAGAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAA


AAGATGGAAAAGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAG


TTTCGCTGCCCAGCCGGGGGGAACCCAATGCCAACCATGCGGTGGCTG


AAAAACGGGAAGGAGTTTAAGCAGGAGCATCGCATTGGAGGCTACAAG


GTACGAAACCAGCACTGGAGCCTCATTATGGAAAGTGTGGTCCCATCT


GACAAGGGAAATTATACCTGTGTGGTGGAGAATGAATACGGGTCCATC


AATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCACCGGCCC


ATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA


GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATC


CAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGAC


GGGCTGCCCTACCTCAAGGTTCTCAAGCACTCGGGGATAAATAGTTCC


AATGCAGAAGTGCTGGCTCTGTTCAATGTGACCGAGGCGGATGCTGGG


GAATATATATGTAAGGTCTCCAATTATATAGGGCAGGCCAACCAGTCT


GCCTGGCTCACTGTCCTGCCAAAACAGCAAGCGCCTGAGCCCAAATCT


tctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTG


GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTC


ATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGC


CACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG


GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACG


TACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT


GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCC


ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG


GTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTC


AGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTG


GAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCT


CCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACC


GTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTG


ATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTG


TCTCCGGGTAAA





HG1021642N1


15281415_1-356_17939658_233-464_C237S







SEQ. ID. NO. 218







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCA


ACCTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACA


TTAGAGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAA


GTGTACGTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTG


AAAGATGCCGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGG


CCCAACAATAGGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGC


GCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACT


GTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCATC


TCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTC


AGTGAGAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAA


AAGATGGAAAAGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAG


TTTCGCTGCCCAGCCGGGGGGAACCCAATGCCAACCATGCGGTGGCTG


AAAAACGGGAAGGAGTTTAAGCAGGAGCATCGCATTGGAGGCTACAAG


GTACGAAACCAGCACTGGAGCCTCATTATGGAAAGTGTGGTCCCATCT


GACAAGGGAAATTATACCTGTGTGGTGGAGAATGAATACGGGTCCATC


AATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCACCGGCCC


ATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA


GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATC


CAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGAC


GGGCTGCCCTACCTCAAGGTTCTCAAGCACTCGGGGATAAATAGTTCC


AATGCAGAAGTGCTGGCTCTGTTCAATGTGACCGAGGCGGATGCTGGG


GAATATATATGTAAGGTCTCCAATTATATAGGGCAGGCCAACCAGTCT


GCCTGGCTCACTGAGCCCAAATCTtctGACAAAACTCACACATGCCCA


CCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTC


CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTC


ACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTC


AACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCG


CGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACC


GTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTC


TCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC


AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG


GATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGC


TTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG


GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC


TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAG


GGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC


TACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021643N1


NP_000132_1-377







SEQ. ID. NO. 219







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCA


ACCTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACA


TTAGAGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAA


GTGTACGTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTG


AAAGATGCCGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGG


CCCAACAATAGGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGC


GCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACT


GTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCATC


TCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTC


AGTGAGAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAA


AAGATGGAAAAGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAG


TTTCGCTGCCCAGCCGGGGGGAACCCAATGCCAACCATGCGGTGGCTG


AAAAACGGGAAGGAGTTTAAGCAGGAGCATCGCATTGGAGGCTACAAG


GTACGAAACCAGCACTGGAGCCTCATTATGGAAAGTGTGGTCCCATCT


GACAAGGGAAATTATACCTGTGTGGTGGAGAATGAATACGGGTCCATC


AATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCACCGGCCC


ATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA


GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATC


CAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGAC


GGGCTGCCCTACCTCAAGGTTCTCAAGGCCGCCGGTGTTAACACCACG


GACAAAGAGATTGAGGTTCTCTATATTCGGAATGTAACTTTTGAGGAC


GCTGGGGAATATACGTGCTTGGCGGGTAATTCTATTGGGATATCCTTT


CACTCTGCATGGTTGACAGTTCTGCCAGCGCCTGGAAGAGAAAAGGAG


ATTACAGCTTCCCCAGACTACCTGGAG





HG1021644N1


NP_000132_1-377_17939658_233-464_C237S







SEQ. ID. NO. 220







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCAAC


CTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACATTAG


AGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAAGTGTAC


GTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTGAAAGATGC


CGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGGCCCAACAATA


GGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGCGCCACGCCTAGA


GACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACTGTAGACAGTGAAAC


TTGGTACTTCATGGTGAATGTCACAGATGCCATCTCATCCGGAGATGATG


AGGATGACACCGATGGTGCGGAAGATTTTGTCAGTGAGAACAGTAACAAC


AAGAGAGCACCATACTGGACCAACACAGAAAAGATGGAAAAGCGGCTCCA


TGCTGTGCCTGCGGCCAACACTGTCAAGTTTCGCTGCCCAGCCGGGGGGA


ACCCAATGCCAACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCAG


GAGCATCGCATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCAT


TATGGAAAGTGTGGTCCCATCTGACAAGGGAAATTATACCTGTGTGGTGG


AGAATGAATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAG


CGATCGCCTCACCGGCCCATCCTCCAAGCCGGACTGCCGGCAAATGCCTC


CACAGTGGTCGGAGGAGACGTAGAGTTTGTCTGCAAGGTTTACAGTGATG


CCCAGCCCCACATCCAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAA


TACGGGCCCGACGGGCTGCCCTACCTCAAGGTTCTCAAGGCCGCCGGTGT


TAACACCACGGACAAAGAGATTGAGGTTCTCTATATTCGGAATGTAACTT


TTGAGGACGCTGGGGAATATACGTGCTTGGCGGGTAATTCTATTGGGATA


TCCTTTCACTCTGCATGGTTGACAGTTCTGCCAGCGCCTGGAAGAGAAAA


GGAGATTACAGCTTCCCCAGACTACCTGGAGGAGCCCAAATCTtctGACA


AAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCG


TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCG


GACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTG


AGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG


ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGT


CCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA


AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAA


GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCG


GGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT


TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG


AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTT


CCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACG


TCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG


AAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021645N1


NP_000132_1-377_GS_17939658_233-464_C237S







SEQ. ID. NO. 221







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCAAC


CTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACATTAG


AGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAAGTGTAC


GTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTGAAAGATGC


CGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGGCCCAACAATA


GGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGCGCCACGCCTAGA


GACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACTGTAGACAGTGAAAC


TTGGTACTTCATGGTGAATGTCACAGATGCCATCTCATCCGGAGATGATG


AGGATGACACCGATGGTGCGGAAGATTTTGTCAGTGAGAACAGTAACAAC


AAGAGAGCACCATACTGGACCAACACAGAAAAGATGGAAAAGCGGCTCCA


TGCTGTGCCTGCGGCCAACACTGTCAAGTTTCGCTGCCCAGCCGGGGGGA


ACCCAATGCCAACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCAG


GAGCATCGCATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCAT


TATGGAAAGTGTGGTCCCATCTGACAAGGGAAATTATACCTGTGTGGTGG


AGAATGAATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAG


CGATCGCCTCACCGGCCCATCCTCCAAGCCGGACTGCCGGCAAATGCCTC


CACAGTGGTCGGAGGAGACGTAGAGTTTGTCTGCAAGGTTTACAGTGATG


CCCAGCCCCACATCCAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAA


TACGGGCCCGACGGGCTGCCCTACCTCAAGGTTCTCAAGGCCGCCGGTGT


TAACACCACGGACAAAGAGATTGAGGTTCTCTATATTCGGAATGTAACTT


TTGAGGACGCTGGGGAATATACGTGCTTGGCGGGTAATTCTATTGGGATA


TCCTTTCACTCTGCATGGTTGACAGTTCTGCCAGCGCCTGGAAGAGAAAA


GGAGATTACAGCTTCCCCAGACTACCTGGAGGGATCCGAGCCCAAATCTt


ctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGG


GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGAT


CTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG


ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAAT


GCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT


CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACA


AGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATC


TCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCC


ATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA


AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG


CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTC


CTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGG


GGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTAC


ACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021646N1


NP_000132_1-373_17939658_233-464_C237S







SEQ. ID. NO. 222







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCAAC


CTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACATTAG


AGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAAGTGTAC


GTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTGAAAGATGC


CGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGGCCCAACAATA


GGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGCGCCACGCCTAGA


GACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACTGTAGACAGTGAAAC


TTGGTACTTCATGGTGAATGTCACAGATGCCATCTCATCCGGAGATGATG


AGGATGACACCGATGGTGCGGAAGATTTTGTCAGTGAGAACAGTAACAAC


AAGAGAGCACCATACTGGACCAACACAGAAAAGATGGAAAAGCGGCTCCA


TGCTGTGCCTGCGGCCAACACTGTCAAGTTTCGCTGCCCAGCCGGGGGGA


ACCCAATGCCAACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCAG


GAGCATCGCATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCAT


TATGGAAAGTGTGGTCCCATCTGACAAGGGAAATTATACCTGTGTGGTGG


AGAATGAATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAG


CGATCGCCTCACCGGCCCATCCTCCAAGCCGGACTGCCGGCAAATGCCTC


CACAGTGGTCGGAGGAGACGTAGAGTTTGTCTGCAAGGTTTACAGTGATG


CCCAGCCCCACATCCAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAA


TACGGGCCCGACGGGCTGCCCTACCTCAAGGTTCTCAAGGCCGCCGGTGT


TAACACCACGGACAAAGAGATTGAGGTTCTCTATATTCGGAATGTAACTT


TTGAGGACGCTGGGGAATATACGTGCTTGGCGGGTAATTCTATTGGGATA


TCCTTTCACTCTGCATGGTTGACAGTTCTGCCAGCGCCTGGAAGAGAAAA


GGAGATTACAGCTTCCCCAGAGCCCAAATCTtctGACAAAACTCACACAT


GCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC


TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGT


CACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCA


ACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGG


GAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCT


GCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACA


AAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG


CCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGAC


CAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCG


ACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAG


ACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAA


GCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCT


CCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCC


CTGTCTCCGGGTAAA





HG1021647N1


NP_000132_1-369_17939658_233-464_C237S







SEQ. ID. NO. 223







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCAAC


CTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACATTAG


AGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAAGTGTAC


GTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTGAAAGATGC


CGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGGCCCAACAATA


GGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGCGCCACGCCTAGA


GACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACTGTAGACAGTGAAAC


TTGGTACTTCATGGTGAATGTCACAGATGCCATCTCATCCGGAGATGATG


AGGATGACACCGATGGTGCGGAAGATTTTGTCAGTGAGAACAGTAACAAC


AAGAGAGCACCATACTGGACCAACACAGAAAAGATGGAAAAGCGGCTCCA


TGCTGTGCCTGCGGCCAACACTGTCAAGTTTCGCTGCCCAGCCGGGGGGA


ACCCAATGCCAACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCAG


GAGCATCGCATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCAT


TATGGAAAGTGTGGTCCCATCTGACAAGGGAAATCATACCTGTGTGGTGG


AGAATGAATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAG


CGATCGCCTCACCGGCCCATCCTCCAAGCCGGACTGCCGGCAAATGCCTC


CACAGTGGTCGGAGGAGACGTAGAGTTTGTCTGCAAGGTTTACAGTGATG


CCCAGCCCCACATCCAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAA


TACGGGCCCGACGGGCTGCCCTACCTCAAGGTTCTCAAGGCCGCCGGTGT


TAACACCACGGACAAAGAGATTGAGGTTCTCTATATTCGGAATGTAACTT


TTGAGGACGCTGGGGAATATACGTGCTTGGCGGGTAATTCTATTGGGATA


TCCTTTCACTCTGCATGGTTGACAGTTCTGCCAGCGCCTGGAAGAGAAAA


GGAGATTGAGCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCC


CAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAA


CCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT


GGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGG


ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTAC


AACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTG


GCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAG


CCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCA


CAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGT


CAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGG


AGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC


GTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGA


CAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATG


AGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT


AAA





HG1021648N1


NP_000132_1-368_17939658_233-464_C237S







SEQ. ID. NO. 224







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCAAC


CTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACATTAG


AGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAAGTGTAC


GTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTGAAAGATGC


CGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGGCCCAACAATA


GGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGCGCCACGCCTAGA


GACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACTGTAGACAGTGAAAC


TTGGTACTTCATGGTGAATGTCACAGATGCCATCTCATCCGGAGATGATG


AGGATGACACCGATGGTGCGGAAGATTTTGTCAGTGAGAACAGTAACAAC


AAGAGAGCACCATACTGGACCAACACAGAAAAGATGGAAAAGCGGCTCCA


TGCTGTGCCTGCGGCCAACACTGTCAAGTTTCGCTGCCCAGCCGGGGGGA


ACCCAATGCCAACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCAG


GAGCATCGCATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCAT


TATGGAAAGTGTGGTCCCATCTGACAAGGGAAATTATACCTGTGTGGTGG


AGAATGAATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAG


CGATCGCCTCACCGGCCCATCCTCCAAGCCGGACTGCCGGCAAATGCCTC


CACAGTGGTCGGAGGAGACGTAGAGTTTGTCTGCAAGGTTTACAGTGATG


CCCAGCCCCACATCCAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAA


TACGGGCCCGACGGGCTGCCCTACCTCAAGGTTCTCAAGGCCGCCGGTGT


TAACACCACGGACAAAGAGATTGAGGTTCTCTATATTCGGAATGTAACTT


TTGAGGACGCTGGGGAATATACGTGCTTGGCGGGTAATTCTATTGGGATA


TCCTTTCACTCTGCATGGTTGACAGTTCTGCCAGCGCCTGGAAGAGAAAA


GGAGGAGCCCAAATCTtctGACAAAACTCACACATGCCCACCGTGCCCAG


CACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCC


AAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGT


GGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG


GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC


AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCT


GAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCC


CCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG


GTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAG


CCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGT


GGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG


CTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAA


GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG


CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021649N1


NP_000132_1-363_17939658_233-464_C237S







SEQ. ID. NO. 225







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCAAC


CTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACATTAG


AGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAAGTGTAC


GTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTGAAAGATGC


CGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGGCCCAACAATA


GGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGCGCCACGCCTAGA


GACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACTGTAGACAGTGAAAC


TTGGTACTTCATGGTGAATGTCACAGATGCCATCTCATCCGGAGATGATG


AGGATGACACCGATGGTGCGGAAGATTTTGTCAGTGAGAACAGTAACAAC


AAGAGAGCACCATACTGGACCAACACAGAAAAGATGGAAAAGCGGCTCCA


TGCTGTGCCTGCGGCCAACACTGTCAAGTTTCGCTGCCCAGCCGGGGGGA


ACCCAATGCCAACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCAG


GAGCATCGCATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCAT


TATGGAAAGTGTGGTCCCATCTGACAAGGGAAATTATACCTGTGTGGTGG


AGAATGAATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAG


CGATCGCCTCACCGGCCCATCCTCCAAGCCGGACTGCCGGCAAATGCCTC


CACAGTGGTCGGAGGAGACGTAGAGTTTGTCTGCAAGGTTTACAGTGATG


CCCAGCCCCACATCCAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAA


TACGGGCCCGACGGGCTGCCCTACCTCAAGGTTCTCAAGGCCGCCGGTGT


TAACACCACGGACAAAGAGATTGAGGTTCTCTATATTCGGAATGTAACTT


TTGAGGACGCTGGGGAATATACGTGCTTGGCGGGTAATTCTATTGGGATA


TCCTTTCACTCTGCATGGTTGACAGTTCTGCCAGCGCCTGAGCCCAAATC


TtctGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGG


GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATG


ATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGA


AGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATA


ATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTG


GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTA


CAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCA


TCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCC


CCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGT


CAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC


AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGC


TCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCA


GGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT


ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





HG1021650N1


NP_000132_1-358_17939658_233-464_C237S







SEQ. ID. NO. 226







ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCAAC


CTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACATTAG


AGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCAACCAGAAGTGTAC


GTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGCTGCCTGTTGAAAGATGC


CGCCGTGATCAGTTGGACTAAGGATGGGGTGCACTTGGGGCCCAACAATA


GGACAGTGCTTATTGGGGAGTACTTGCAGATAAAGGGCGCCACGCCTAGA


GACTCCGGCCTCTATGCTTGTACTGCCAGTAGGACTGTAGACAGTGAAAC


TTGGTACTTCATGGTGAATGTCACAGATGCCATCTCATCCGGAGATGATG


AGGATGACACCGATGGTGCGGAAGATTTTGTCAGTGAGAACAGTAACAAC


AAGAGAGCACCATACTGGACCAACACAGAAAAGATGGAAAAGCGGCTCCA


TGCTGTGCCTGCGGCCAACACTGTCAAGTTTCGCTGCCCAGCCGGGGGGA


ACCCAATGCCAACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCAG


GAGCATCGCATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCAT


TATGGAAAGTGTGGTCCCATCTGACAAGGGAAATTATACCTGTGTGGTGG


AGAATGAATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAG


CGATCGCCTCACCGGCCCATCCTCCAAGCCGGACTGCCGGCAAATGCCTC


CACAGTGGTCGGAGGAGACGTAGAGTTTGTCTGCAAGGTTTACAGTGATG


CCCAGCCCCACATCCAGTGGATCAAGCACGTGGAAAAGAACGGCAGTAAA


TACGGGCCCGACGGGCTGCCCTACCTCAAGGTTCTCAAGGCCGCCGGTGT


TAACACCACGGACAAAGAGATTGAGGTTCTCTATATTCGGAATGTAACTT


TTGAGGACGCTGGGGAATATACGTGCTTGGCGGGTAATTCTATTGGGATA


TCCTTTCACTCTGCATGGTTGACAGAGCCCAAATCTtctGACAAAACTCA


CACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCT


TCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT


GAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAA


GTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGC


CGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACC


GTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTC


CAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAG


GGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAG


CTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCC


CAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACT


ACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC


AGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTC


ATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC


TCTCCCTGTCTCCGGGTAAA





HG1021635P1


15281415_1-378







SEQ. ID. NO. 227







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKHSGINSSNAEVLALFNVTEADAGEYICKVSNYIGQAN


QSAWLTVLPKQQAPGREKEITASPDYLE





HG1021636P1


15281415_1-378_17939658_233-464_C237S







SEQ. ID. NO. 228







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKHSGINSSNAEVLALFNVTEADAGEYICKVSNYIGQAN


QSAWLTVLPKQQAPGREKEITASPDYLE





HG1021637P1


15281415_1-378_GS_17939658_233-464_C237S







SEQ. ID. NO. 229







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKHSGINSSNAEVLALFNVTEADAGEYICKVSNYIGQAN


QSAWLTVLPKQQAPGREKEITASPDYLEGSEPKSSDKTHTCPPCPAPELL


GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH


NAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKT


ISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNG


QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH


YTQKSLSLSPGK





HG1021638P1


15281415_1-374_17939658_233-464_C237S







SEQ. ID. NO. 230







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKHSGINSSNAEVLALFNVTEADAGEYICKVSNYIGQAN


QSAWLTVLPKQQAPGREKEITASPEPKSSDKTHTCPPCPAPELLGGPSVF


LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP


REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY


KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL


SLSPGK





HG1021639P1


15281415_1-370_17939658_233-464_C237S







SEQ. ID. NO. 231







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKHSGINSSNAEVLALFNVTEADAGEYICKVSNYIGQAN


QSAWLTVLPKQQAPGREKEIEPKSSDKTHTCPPCPAPELLGGPSVFLFPP


KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ


YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE


PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP


PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP


GK





HG1021640P1


15281415_1-369_17939658_233-464_C237S







SEQ. ID. NO. 232







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKHSGINSSNAEVLALFNVTEADAGEYICKVSNYIGQAN


QSAWLTVLPKQQAPGREKEEPKSSDKTHTCPPCPAPELLGGPSVFLFPPK


PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY


NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP


QVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP


VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP


GK





HG1021641P1


15281415_1-364_17939658_233-464_C237S







SEQ. ID. NO. 233







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKHSGINSSNAEVLALFNVTEADAGEYICKVSNYIGQAN


QSAWLTVLPKQQAPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL


MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR


VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL


PPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD


GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1021642P1


15281415_1-356_17939658_233-464_C237S







SEQ. ID. NO. 234







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKHSGINSSNAEVLALFNVTEADAGEYICKVSNYIGQAN


QSAWLTEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV


TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL


HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELT


KNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1021643P1


NP_000132_1-377







SEQ. ID. NO. 235







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKAAGVNTTDKEIEVLYIRNVTFEDAGEYTCLAGNSIGI


SFHSAWLTVLPAPGREKEITASPDYLE





HG1021644P1


NP_000132_1-377_17939658_233-464_C237S







SEQ. ID. NO. 236







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKAAGVNTTDKEIEVLYIRNVTFEDAGEYTCLAGNSIGI


SFHSAWLTVLPAPGREKEITASPDYLEEPKSSDKTHTCPPCPAPELLGGP


SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK


TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK


AKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE


NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ


KSLSLSPGK





HG1021645P1


NP_000132_1-377_GS_17939658_233-464_C237S







SEQ. ID. NO. 237







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKAAGVNTTDKEIEVLYIRNVTFEDAGEYTCLAGNSIGI


SFHSAWLTVLPAPGREKEITASPDYLEGSEPKSSDKTHTCPPCPAPELLG


GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHN


AKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI


SKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ


PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY


TQKSLSLSPGK





HG1021646P1


NP_000132_1-373_17939658_233-464_C237S







SEQ. ID. NO. 238







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKAAGVNTTDKEIEVLYIRNVTFEDAGEYTCLAGNSIGI


SFHSAWLTVLPAPGREKEITASPEPKSSDKTHTCPPCPAPELLGGPSVFL


FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR


EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK


TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS


LSPGK





HG1021647P1


NP_000132_1-369_17939658_233-464_C237S







SEQ. ID. NO. 239







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKAAGVNTTDKEIEVLYIRNVTFEDAGEYTCLAGNSIGI


SFHSAWLTVLPAPGREKEIEPKSSDKTHTCPPCPAPELLGGPSVFLFPPK


PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY


NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP


QVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP


VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP


GK





HG1021648P1


NP_000132_1-368_17939658_233-464_C237S







SEQ. ID. NO. 240







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKAAGVNTTDKEIEVLYIRNVTFEDAGEYTCLAGNSIGI


SFHSAWLTVLPAPGREKEEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKP


KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN


STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ


VYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV


LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1021649P1


NP_000132_1-363_17939658_233-464_C237S







SEQ. ID. NO. 241







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKAAGVNTTDKEIEVLYIRNVTFEDAGEYTCLAGNSIGI


SFHSAWLTVLPAPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLM


ISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV


VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP


PSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1021650P1


NP_000132_1-358_17939658_233-464_C237S







SEQ. ID. NO. 242







MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVY


VAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPR


DSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNN


KRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQ


EHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE


RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSK


YGPDGLPYLKVLKAAGVNTTDKEIEVLYIRNVTFEDAGEYTCLAGNSIGI


SFHSAWLTEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP


EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT


VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDE


LTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY


SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





HG1021651P1


R1_delfragment_1







SEQ. ID. NO. 243







LYLE





HG1021652P1


R1_delfragment_2







SEQ. ID. NO. 244







PLYLE





HG1021653P1


R1_delfragment_3







SEQ. ID. NO. 245







MTSPLYLE





HG1021654P1


R1_delfragment_4







SEQ. ID. NO. 246







AVMTSPLYLE





HG1021655P1


R1_delfragment_5







SEQ. ID. NO. 247







VMTSPLYLE





HG1021656P1


R1_delfragment_6







SEQ. ID. NO. 248







EERPAVMTSPLYLE





HG1021657P1


R1_delfragment_7







SEQ. ID. NO. 249







LEERPAVMTSPLYLE





HG1021658P1


R1_delfragment_8







SEQ. ID. NO. 250







KALEERPAVMTSPLYLE





HG1021659P1


R1_delfragment_9







SEQ. ID. NO. 251







EALEERPAVMTSPLYLE





HG1021660P1


R1_delfragment_10







SEQ. ID. NO. 252







RPVAKALEERPAVMTSPLYLE





HG1021661P1


R2_delfragment_1







SEQ. ID. NO. 253







DYLE





HG1021662P1


R2_delfragment_2







SEQ. ID. NO. 254







PDYLE





HG1021663P1


R2_delfragment_3







SEQ. ID. NO. 255







TASPDYLE





HG1021664P1


R2_delfragment_4







SEQ. ID. NO. 256







ITASPDYLE





HG1021665P1


R2_delfragment_5







SEQ. ID. NO. 257







EITASPDYLE





HG1021666P1


R2_delfragment_6







SEQ. ID. NO. 258







GREKEITASPDYLE





HG1021667P1


R2_delfragment_7







SEQ. ID. NO. 259







PGREKEITASPDYLE





HG1021668P1


R2_delfragment_8







SEQ. ID. NO. 260







APGREKEITASPDYLE





HG1021669P1


R2_delfragment_9







SEQ. ID. NO. 261







PAPGREKEITASPDYLE





HG1021670P1


R2_delfragment_10







SEQ. ID. NO. 262







QAPGREKEITASPDYLE





HG1021671P1


R2_delfragment_11







SEQ. ID. NO. 263







PKQQAPGREKEITASPDYLE





HG1021672P1


R3_delfragment_1







SEQ. ID. NO. 264







VYAG





HG1021673P1


R3_delfragment_2







SEQ. ID. NO. 265







SVYAG





HG1021674P1


R3_delfragment_3







SEQ. ID. NO. 266







EAGSVYAG





HG1021675P1


R3_delfragment_4







SEQ. ID. NO. 267







DEAGSVYAG





HG1021676P1


R3_delfragment_5







SEQ. ID. NO. 268







ADEAGSVYAG





HG1021677P1


R3_delfragment_6







SEQ. ID. NO. 269







ELVEADEAGSVYAG





HG1021678P1


R3_delfragment_7







SEQ. ID. NO. 270







EELVEADEAGSVYAG





HG1021679P1


R3_delfragment_8







SEQ. ID. NO. 271







AEEELVEADEAGSVYAG





HG1021680P1


R3_delfragment_9







SEQ. ID. NO. 272







PAEEELVEADEAGSVYAG





HG1021681P1


R3_delfragment_10







SEQ. ID. NO. 273







GPRAAEEELVEADEAGSVYAG





HG1021682P1


R4_delfragment_1







SEQ. ID. NO. 274







RYTD





HG1021683P1


R4_delfragment_2







SEQ. ID. NO. 275







ARYTD





HG1021684P1


R4_delfragment_3







SEQ. ID. NO. 276







APEARYTD





HG1021685P1


R4_delfragment_4







SEQ. ID. NO. 277







AAPEARYTD





HG1021686P1


R4_delfragment_5







SEQ. ID. NO. 278







AAAPEARYTD





HG1021687P1


R4_delfragment_6







SEQ. ID. NO. 279







PTWTAAAPEARYTD





HG1021688P1


R4_delfragment_7







SEQ. ID. NO. 280







DPTWTAAAPEARYTD





HG1021689P1


R4_delfragment_8







SEQ. ID. NO. 281







EEDPTWTAAAPEARYTD





HG1021690P1


R4_delfragment_9







SEQ. ID. NO. 282







PEEDPTWTAAAPEARYTD





Claims
  • 1-78. (canceled)
  • 79. A nucleic acid molecule comprising a polynucleotide sequence, the polynucleotide sequence encoding an FGFR1 fusion protein comprising a first polypeptide and a fusion partner,wherein the first polypeptide consists of an extracellular domain of FGFR1-IIIc, which has a C-terminal deletion, as compared to wild-type FGFR1-IIIc, consisting of a sequence chosen from VMTSPLYLE (SEQ ID NO: 247), AVMTSPLYLE (SEQ ID NO: 246), EERPAVMTSPLYLE (SEQ ID NO: 248), LEERPAVMTSPLYLE (SEQ ID NO: 249), or EALEERPAVMTSPLYLE (SEQ ID NO: 251),wherein the encoded extracellular domain of FGFR1-IIIc optionally lacks a native leader sequence,and wherein the C-terminus of the wild-type FGFR1-IIIc extracellular domain ends with the amino acids YLE.
  • 80. The nucleic acid molecule of claim 79, wherein the first polypeptide amino acid sequence consists of SEQ ID NO: 129, 130, 139, 140, 148, or 149.
  • 81. The nucleic acid molecule of claim 79, wherein the first polypeptide is encoded by a polynucleotide sequence consisting of SEQ ID NO: 38, 39, 48, 49, 57, or 58.
  • 82. The nucleic acid molecule of claim 79, wherein the encoded extracellular domain of FGFR1-IIIc lacks a leader sequence.
  • 83. The nucleic acid molecule of claim 79, wherein the encoded extracellular domain of FGFR1-IIIc comprises a leader sequence other than a native FGFR1 leader sequence.
  • 84. The nucleic acid molecule of claim 79, wherein the encoded extracellular domain of FGFR1-IIIc comprises a native FGFR1 leader sequence.
  • 85. The nucleic acid molecule of claim 79, wherein the first polypeptide amino acid sequence consists of amino acids 1 to 360 of SEQ ID NO:130.
  • 86. The nucleic acid of claim 85, wherein the first polypeptide is encoded by a polynucleotide sequence consisting of nucleotides 1 to 1080 of SEQ ID NO: 39.
  • 87. The nucleic acid molecule of claim 79, wherein the first polypeptide amino acid sequence consists of a leader sequence other than a native FGFR1 leader sequence followed by amino acids 22 to 360 of SEQ ID NO:130.
  • 88. The nucleic acid molecule of claim 79, wherein the first polypeptide amino acid sequence consists of amino acids 22 to 360 of SEQ ID NO:130.
  • 89. The nucleic acid of claim 88, wherein the fusion partner is an Fc polypeptide.
  • 90. The nucleic acid molecule of claim 79, wherein the FGFR1 fusion protein has an amino acid sequence consisting of amino acids 1 to 592 of SEQ ID NO: 100.
  • 91. The nucleic acid molecule of claim 90, wherein the FGFR1 fusion protein is encoded by a polynucleotide sequence consisting of SEQ ID NO: 9.
  • 92. The nucleic acid molecule of claim 79, wherein the FGFR1 fusion protein has an amino acid sequence consisting of a leader sequence other than a native FGFR1 leader sequence followed by amino acids 22 to 592 of SEQ ID NO: 100.
  • 93. The nucleic acid molecule of claim 79, wherein the FGFR1 fusion protein has an amino acid sequence consisting of amino acids 22 to 592 of SEQ ID NO: 100.
  • 94. The nucleic acid molecule of claim 79, wherein the fusion partner is an Fc polypeptide.
  • 95. A vector comprising a nucleic acid molecule of claim 79.
  • 96. A host cell comprising a nucleic acid molecule of claim 79.
  • 97. The host cell of claim 96, wherein the host cell is a eukaryotic host cell.
  • 98. The host cell of claim 97, wherein the eukaryotic host cell is a CHO cell or a 293 cell.
  • 99. A method of producing an FGFR1 fusion protein comprising culturing the host cell of claim 96.
  • 100. The method of claim 99, wherein the method further comprises isolating the FGFR1 fusion protein expressed in the host cell.
  • 101. A nucleic acid molecule comprising a polynucleotide sequence that encodes an FGFR1 fusion protein having an amino acid sequence comprising residues 22 to 592 of SEQ ID NO:100.
  • 102. The nucleic acid molecule of claim 101, wherein the encoded FGFR1 fusion protein has an amino acid sequence comprising residues 1 to 592 of SEQ ID NO:100.
  • 103. The nucleic acid molecule of claim 101, wherein the encoded FGFR1 fusion protein comprises a leader sequence other than a native FGFR1 leader sequence.
  • 104. A nucleic acid molecule comprising a polynucleotide sequence, the polynucleotide sequence encoding an FGFR1 fusion protein comprising a first polypeptide and a fusion partner,wherein the first polypeptide comprises an amino acid sequence from amino acid 22 to the last amino acid of an FGFR1 extracellular domain chosen from SEQ ID NO: 132-136, 141-145, and 150-154.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a divisional of application Ser. No. 13/157,712, filed Jun. 10, 2011, which is a continuation of application Ser. No. 12/652,720, filed Jan. 5, 2010, now U.S. Pat. No. 7,982,014 B2, which is a continuation of application Ser. No. 11/791,889, now U.S. Pat. No. 7,678,890 B2, whose 35 U.S.C. §371(c) date is May 30, 2007, and which is the National Stage Application of PCT Application No. PCT/US2006/028597, filed Jul. 24, 2006, and claims the benefit of U.S. Provisional Application Nos. 60/701,479, filed Jul. 22, 2005; 60/729,401, filed Oct. 21, 2005; 60/757,398, filed Jan. 10, 2006; and 60/800,005, filed May 15, 2006. All of the above applications are incorporated by reference in their entireties.

Provisional Applications (4)
Number Date Country
60701479 Jul 2005 US
60729401 Oct 2005 US
60757398 Jan 2006 US
60800005 May 2006 US
Divisions (1)
Number Date Country
Parent 13157712 Jun 2011 US
Child 13227398 US
Continuations (2)
Number Date Country
Parent 12652720 Jan 2010 US
Child 13157712 US
Parent 11791889 May 2007 US
Child 12652720 US