COMPOSITIONS AND METHODS RELATED TO HUMAN NEUTRALIZING ANTIBODIES TO HEPATITIS B

Abstract
Provided are broadly neutralizing antibodies (bNAbs) and antigen binding fragments thereof that bind with specificity to epitopes expressed by Hepatitis B vims (HBV). The bNAbs target non-overlapping epitopes on the HBV S antigen (HBsAg). Pharmaceutical compositions that contain the bNAbs, or modified bNAbs, are provided. Combinations of the bNAbs are included, and are useful for prophylaxis and therapy of HBV infection, and for inhibiting development of HBV escape mutations in infected individuals. Expression vectors encoding the bNAbs and antigenic fragments of them are included, as are methods of making the bNAbs and antigenic fragments of them. HBV peptides for use as vaccines are provided, and include at least two non-overlapping epitopes from the HBsAg. Diagnostic reagents comprising the bNAbs or antigenic fragments thereof are provided, as are methods of detecting HBV and diagnosing HBV infection.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Sep. 9, 2020, is named 076091_00092_SL.txt and is 307,317 bytes in size.


BACKGROUND

Despite the existence of effective vaccines, hepatitis B virus (HBV) infection remains a major global health problem with an estimated 257 million people living with the infection. Whereas 95% of adults and 50-75% of children between the ages of 1 and 5 years spontaneously control HBV, only 10% of infants recover naturally. The remainder develop a chronic infection that can lead to liver cirrhosis and hepatocellular carcinoma. Although chronic infection can be suppressed with antiviral medications, there is no effective curative therapy (Dienstag, 2008; Revill et al., 2016; Thomas, 2019).


HBV is an enveloped double-stranded DNA virus of the Hepadnaviridae family. Its genome is the smallest genome among pathogenic human DNA viruses, with only four open reading frames. Infected liver cells produce both infectious HBV virions (Dane particles) and non-infectious subviral particles (Australia antigen) (Dane et al., 1970; Hu and Liu, 2017). The virion is a 42 nm-diameter particle containing the viral genome and HBV core antigen (HBcAg) encapsidated by a lipid membrane containing the hepatitis B surface antigen (HBsAg) (Blumberg, 1964; Venkatakrishnan and Zlotnick, 2016). Subviral particles lack the viral genome.


HBV strains were originally grouped into four HBsAg serotypes (adr, adw, ayw, and ayr). Genetic analysis revealed several highly conserved domains and defined eight genotypes A-H, which are highly correlated with the 4 serotypes (Norder et al., 2004). The HBV surface protein, HBsAg, has 4 putative transmembrane domains and can be subdivided into PreS1-, PreS2- and S-regions. The S domain is a cysteine-rich protein consisting of 226 amino acids that contain all 4 of the transmembrane domains (Abou-Jaoude and Sureau, 2007). In addition, the S-protein can be glycosylated at asparagine residue 146 (Julithe et al., 2014).


Antibodies to HBsAg (anti-HBs) are associated with successful vaccination and recovery from acute infection, while antibodies to HBcAg (anti-HBc) are indicative of past or current HBV infection (Ganem, 1982). Indeed, the most significant difference between chronically infected and naturally recovered individuals is a robust antibody response to HBsAg (Ganem, 1982). Conversely, the inability to produce these antibodies during acute infection is associated with chronicity (Trepo et al., 2014). Whether these associations reflect an etiologic role for anti-HBs antibodies in protecting from or clearing established infection is not known. However, depletion of antibody-producing B lymphocytes in exposed humans by anti-CD20 therapies (e.g. rituximab) is associated with HBV reactivation, indicating that B cells and/or their antibody products play a significant role in controlling the infection (Loomba and Liang, 2017).


Several human antibodies against HBsAg have been obtained using a variety of methods including: phage display (Kim and Park, 2002; Li et al., 2017; Sankhyan et al., 2016; Wang et al., 2016); humanized mice (Eren et al., 1998); Epstein-Barr virus-induced B cell transformation (Heijtink et al., 2002; Heijtink et al., 1995; Sa'adu et al., 1992); hybridoma technology (Colucci et al., 1986); human B cell cultures (Cerino et al., 2015); and microwell array chips (Jin et al., 2009; Tajiri et al., 2010). However, the donors in these studies were not selected for serum neutralizing activity. Thus, there remains a need for improved approaches and compositions of combatting HBV infection. The present disclosure is pertinent to this need.


BRIEF SUMMARY

The disclosure provides in part a description of the human humoral immune response to HBsAg in immunized and spontaneously recovered individuals that had been selected for high levels of serum neutralizing activity. The disclosure demonstrates that these individuals develop closely related bNAbs that target shared non-overlapping epitopes in HBsAg. The crystal structure of one of the antibodies with its peptide target reveals a loop that helps to explain why certain amino acid residues are frequently mutated in escape viruses and why combinations of bNAbs may be needed to control infection. In vivo experiments in humanized mice demonstrate that the bNAbs are protective and can be therapeutic when used in combination.


Any antibody described herein can comprise at least one modification of its constant region. The modification may be made for any one or more amino acids. The modification can have any of a number of desirable effects. In certain approaches, the modification increases in vivo half-life of the antibody, or alters the ability of the antibody to bind to Fc receptors, or alters the ability of the antibody to cross placenta or to cross a blood-brain barrier or to cross a blood-testes barrier, or inhibits aggregation of the antibodies, or a combination of said modifications, or wherein the antibody is attached to a label or a substrate. In embodiments, the modification improves the manufacturability of the antibody. In embodiments, any antibody or combination thereof described herein can be present in an immunological assay, such as an enzyme-linked immunosorbent assay (ELISA) assay, or an ELISA assay control. The ELISA assay can be any of a direct ELISA assay, an indirect ELISA assay, a sandwich ELISA assay, or a competition ELISA assay.


In another aspect the disclosure provides a method for prophylaxis or therapy of a hepatitis viral infection comprising administering to an individual in need thereof an effective amount of at least one antibody described herein, or an antigen binding fragment thereof. The antibody may comprise at least one modification of the constant region. In embodiments, the composition is administered to an individual who is infected with or is at risk of being infected with a hepatitis B virus. In one approach, at least two antibodies are administered, wherein optionally the two antibodies recognize distinct HBV epitopes. In an embodiment, administering at least two distinct antibodies suppresses formation of viruses that are resistant to the antibodies.


In another aspect the disclosure provides vaccine formulations. In an embodiment a vaccine formulation comprises an isolated or recombinant peptide or a polynucleotide encoding the peptide, wherein the peptide is derived from an epitope that is frequently targeted by HepB immune resistance, and which is located in a loop anchored by oppositely charged residues, as further described herein.


In another aspect the disclosure provides one or more recombinant expression vectors, and kits comprising the expression vectors. The expression vectors encode at least the heavy chain and the light chain CDRs of any of the antibodies of described herein. Cells comprising the recombinant expression vectors are included, as are methods of making antibodies by culturing cells that comprise expression vectors that express the antibodies, and separating antibodies from the cells. Cell culture media containing such cells and/or antibodies is also included.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1. Antibody responses in HBV vaccinated and recovered individuals. (A) Donor screen. Sera from 159 volunteers were evaluated for anti-HBs binding by ELISA (x-axis) and HBV serum neutralization capacity using HepG2-NTCP cells (y-axis). Serum neutralization capacity on the y-axis was calculated as the reciprocal of the relative percentage of infected HepG2-NTCP cells. The values for unexposed naïve donors are Neutralization tests were performed at 1:5 serum dilution in the final assay volume. Each dot represents an individual donor. Green indicates unvaccinated and unexposed, black indicates vaccinated, and red indicates spontaneously recovered. The dashed line indicates the no serum control. Top neutralizers (serum neutralization capacity higher than 4) are indicated (top right). Boxed are representative samples shown in FIG. 2A. Spearman's rank correlation coefficient (rs) and significance value (p). (B and C) Dose-dependent HBV neutralization by serum (B) or by purified IgG (C). Two assays were used to measure percent infection: ELISA to measure HBsAg protein in the medium (upper panels) and immunofluorescent staining for HBcAg in HepG2-NTCP cells (lower panels). Dashed line indicates virus-only control. (D) Schematic representation illustrating the three forms of the HBV surface protein: L-, M- and S-protein. These three forms of envelope protein all share the same S-region, with PreS1/PreS2 and PreS2 alone as the N-terminal extensions for L- and M-protein, respectively. (E)S-protein produced in Chinese hamster ovary (CHO) cells blocks serum neutralizing activity. Graphs show infection efficiency as a function of the amount of S-protein added. The concentration of polyclonal IgG antibodies (pAb) is indicated. Upper and lower panels are as in (B) and (C). A representative of at least two experiments is shown. See also FIG. 8 and Table S1.



FIG. 2. S-protein-specific antibodies. (A) Frequency of S-protein-specific memory B cells. Representative flow cytometry plots displaying the percentage of all IgG+ memory B cells that bind to both allophycocyanin- and phycoerythrin-tagged S-protein (S-protein-APC and S-protein-PE). Flow cytometry plots from other individuals are shown in FIG. 9A. Experiments were repeated two times. (B) Dot plot showing the correlation between the frequency of S-protein-binding IgG+ memory B cells and the serum neutralizing activity. Spearman's rank correlation coefficient (rs) and significance value (p). (C) Each pie chart represents the antibodies from an individual donor, and the total number of sequenced antibodies with paired heavy and light chains is indicated in the center. Antibodies with the same combination of IGH and IGL variable gene sequences and closely related CDR3s in each individual are shown. The slices with the same color indicate shared antibodies with the same or similar combination of IGH and IGL variable genes between individuals (FIG. 9B). Grey slices indicate antibodies with closely related sequences that are unique to a single donor. In white are singlets. (D) V(D)J alignments for representative IGHV3-30/IGLV3-21, IGHV3-33/IGLV3-21 and IGHV3-23/IGLV3-21 antibodies from donors #60/#146 (H006 and H008), #146/#13 (H014 and H012), and #13/#60/#146 (H021, H003 and H004) respectively. Boxed grey residues are shared between antibodies. See also FIG. 9 and Table S2. Figure discloses SEQ ID NOS 1438-1451, respectively, in order of appearance.



FIG. 3. Broad cross-reactivity. (A) Binding to S-protein (adr serotype). 50% effective concentration (EC50 in ng/ml) required for binding of the indicated human monoclonal antibodies to the S-protein. Libivirumab (Eren et al., 2000; Eren et al., 1998) and anti-HIV antibody 10-1074 (Mouquet et al., 2012) were used as positive and negative controls, respectively. All antibodies were tested. (B) Comparative binding of the mature and unmutated common ancestor (UCA) of antibodies H006, H019, and H020 to S-protein by ELISA. (C) Anti-HBs antibody binding to 5 different serotypes of HBsAg. Similar to panel (A), EC50 values are color-coded: red, ≤50 ng/ml; orange, 50 to 100 ng/ml; yellow, 100 to 200 ng/ml; and white, >200 ng/ml. The abbreviation b.d. indicates below detection. All antibodies were tested. All experiments were performed at least two times. See also FIG. 10.



FIG. 4. HBsAg epitopes. (A) Competition ELISA defines 3 groups of antibodies. Results of competition ELISA shown as percent of binding by biotinylated antibodies and illustrated by colors: black, 0-25%; dark grey, 26-50%; light grey, 51-75%; white, >76%. Weak binders (H002, H012, H013, H014, H018) were excluded. Representative of two experiments. (B) Results of ELISA on alanine scanning mutants of S-protein. Only the amino acids vital for antibody binding are shown. Binding to mutants relative to wild-type S-protein: black, 0-25%; dark grey, 26-50%; light grey, 51-75%; white, >75%. Additional details are provided in FIG. 11. (C) Results of ELISA on human escape mutations of S-protein. Wild-type S-protein and empty vector serve as a positive and negative controls, respectively. Binding to mutants relative to wild-type S-protein: black, 0-25%; dark grey, 26-50%; light grey, 51-75%; white, >75%. Amino acid mutations in bold represent frequently observed mutations in humans (Ma and Wang, 2012). The antibodies tested in (B and C) were selected from Group-I, -II, -III based on their neutralizing activity (FIG. 5A-5C). All experiments were performed at least two times. See also FIG. 11.



FIG. 5. In vitro neutralization by the monoclonal antibodies. (A and B) In vitro neutralization assays using HepG2-NTCP cells. Percent infection in the presence of the indicated concentrations of bNAbs measured by ELISA of HBsAg in medium (A) and anti-HBcAg immunofluorescence (B). Anti-HIV antibody 10-1074 (Mouquet et al., 2012) and libivirumab (Eren et al., 2000; Eren et al., 1998) were used as negative and positive controls respectively. The corresponding IC50s are shown in the left and middle column of panel (C). All experiments were repeated a minimum of two times. (C) bNAb 50% maximal inhibitory concentration (IC50) calculated based on HBsAg ELISA (left column) and HBcAg immunofluorescence (middle column) for the in vitro neutralization assays using HepG2-NTCP cells, or HBeAg ELISA (right column) for in vitro neutralization using primary human hepatocytes. The abbreviation b.d. and n.d. indicate below detection and not done respectively. (D) In vitro neutralization using primary human hepatocytes. The levels of HBeAg in medium were measured by ELISA. The calculated IC50 values are shown in the right column of panel (C). Experiments were repeated three times. (E) In vitro neutralization assay using HepG2-NTCP cells. IgG antibodies were compared to their corresponding Fab fragments. Concentrations of Fab fragments were adjusted to correspond to IgG. Experiment was performed two times. See also FIG. 12.



FIG. 6. Crystal structure of H015 bound to its recognition motif. A single crystal was used to obtain a high resolution (1.78 Å) structure. (A) Synthetic peptides (SEQ ID NOS 1452-1455, respectively, in order of appearance) spanning the antigenic loop region were subjected to ELISA for antibody binding. Among the tested antibodies, only H015 binds peptides-11 and -12. Experiments were performed three times and details are in FIG. 13A. (B and C) The peptide binds to CDR1 (R31), CDR2 (W52 and F53) and CDR3 (E99, P101, L103, and L104) of H015 heavy chain (green) and CDR3 (P95) of the light chain (cyan) (B). The interacting residues (C) on the heavy chain (green) are R31 (main chain), W52, F53 (main chain), E99, P101 (main chain), L103 (main chain), L104 (hydrophobic). One contact with the light chain (cyan) is with P95. (D) Electron density map of the bound peptide as seen in the 2Fo-Fc map contoured at 1 RMSD indicating high occupancy (92%). (E) The recognition motif, KPSDGN (SEQ ID NO: 1), adopts a sharp hairpin conformation due to the salt-bridge between K141 and D144 and is facilitated by kinks at P142 and G145. Glycine 145 (G145, circled) is the residue that escapes the immune system when mutated to an arginine. See also FIG. 13.



FIG. 7. Anti-HBs bNAbs are protective and therapeutic in vivo. (A and E) Diagram of the prophylaxis and treatment protocols, respectively. (B) Prophylaxis with isotype control antibody 10-1074 (Mouquet et al., 2012). (C and D) Prophylaxis with H020 and H007 respectively. The dashed line in (B-D) indicates the detection limit. (F) Treatment of viremic huFNRG mice with control antibody 10-1074. (G and H) Treatment of viremic huFNRG mice with H020 alone or H007 alone, respectively. HBV DNA levels in serum were monitored on a weekly basis. Two independent experiments comprising a total of 5 to 8 mice were combined and displayed. (I) Mutations in the S-protein sequence from the indicated mice (red arrows) in (G), (H) and (J). S-protein sequence chromotograms are shown in FIG. 14. (J-L) Treatment of viremic huFNRG mice with combination of anti-HBs bNAb H006+H007 (J), or H017+H019 (K), or H016+H017+H019 (L), respectively. Sequencing showed that none of the mice in (K) and (J) carried viruses with escape mutations in the S-protein. See also FIG. 14.



FIG. 8. Characterization of Antibody Immune Response Against HBV, Related to FIG. 1. (A) Schematic representation of different stages of HBV infection. Vaccinated or infected naturally recovered individuals were recruited for this study. (B) Sera (1:50 dilution in the final assay volume) from 159 volunteers were screened, see also FIG. 1A. (C-E) Comparison of anti-HBs ELISA titers (upper panel) and their serum neutralization capacity (lower panel) between different groups of individuals. Vaccinated or recovered individuals show statistically higher anti-HBs titers (upper panel, C) and more potent neutralizing activity (lower panel, C) than the uninfected unvaccinated individuals. Younger individuals (≤45 years old) showed slightly higher antibody immune response against HBsAg (D). No difference was found between genders (E).



FIG. 9. Antibody Cloning and Sequence Analysis of Anti-HBs, Related to FIG. 2. (A) Frequency of S-protein-specific memory B cells in peripheral blood mononuclear cells of all twelve donors. Details are similar to FIG. 2A. (B) Pie charts show the distribution of anti-HBs antibodies. Figure legends are similar to FIG. 2C. VH and VL genes for each slice are shown and the 20 chosen anti-HBs antibodies are labeled. (C) Phylogenetic tree of all cloned anti-HBs antibodies based on IGH Fab region. IGH Fab regions from 244 memory B cells sorted with HBsAg were aligned followed by tree construction.



FIG. 10. Autoreactivity of 20 anti-HBs antibodies, Related to FIG. 3. (A) Autoreactivity of monoclonal antibodies. Positive control antibody efficiently stained the nucleus of HEp-2 cells. Twenty anti-HBs antibodies, as well as anti-HBs antibody libivirumab and anti-HIV antibody 10-1074, were also tested. (B) Polyreactivity profiles of 20 anti-HBs antibodies. ELISA measures antibody binding to the following antigens: double-stranded DNA (dsDNA), insulin, keyhole limpet hemocyanin (KLH), lipopolysaccharides (LPS), and single-stranded DNA (ssDNA). Red and green lines represent positive control antibody ED38 and negative control antibody mGO53 respectively, while dashed lines show cut-off values for positive reactivity (Gitlin et al., 2016).



FIG. 11. Alanine Scanning and Peptide Screening, Related to FIG. 4. (A) Results of ELISA on alanine scanning mutants of HBsAg. Binding to mutants was normalized to wild-type S-protein: black, 0-25%; dark grey, 26-50%; light grey, 51-75%; white, >76%. Experiments were performed three times. Underlined cysteines, alanines, and amino acids known to be critical for S-protein production were not mutated (Salisse and Sureau, 2009). Figure discloses SEQ ID NO: 1456. (B) Schematic diagram of alanine scanning results. Figure discloses the primary amino acid sequence as SEQ ID NO: 1456 and the sequence containing alanine mutations as SEQ ID NO: 1457.



FIG. 12. In Vitro Neutralization Assay of anti-HBs bNAb Unmutated Common Ancestor Antibodies or Combinations, Related to FIG. 5. (A-B) In vitro neutralization assay of anti-HBs bNAbs and their corresponding unmutated common ancestor (UCA) antibodies. The relative infection rates were calculated based on either HBsAg protein level in culture medium (A) or HBcAg staining intracellularly (B). (C) In vitro neutralization assay of anti-HBs bNAbs recognizing different epitopes and the same total amount of antibody combination at 1:1 or 1:1:1 ratio.



FIG. 13. Detailed Information of Crystal Structure of H015 and Its Linear Epitope, Related to FIG. 6. (A) Synthesized peptides (SEQ ID NOS 1458-1476, respectively, in order of appearance) for antigenic loop region were subjected to ELISA for antibody binding. Among the tested antibodies, only H015 binds peptide-11 and -12. (B) Data collection and refinement statistics for H015 Fab are summarized. Statistics for the highest-resolution shell are shown in parentheses. Refinement program PHENIX 1.16. (C) The green/red density is the unbiased omit map. Red is negative density equated to noise. (D) Table of contacts within the peptide and between Fab fragment and peptide.



FIG. 14. HBV DNA levels and S-protein Sequences in Antibody-Treated huFNRG Mice, Related to FIG. 7. (A) HBV DNA levels in representative individual huFNRG mice treated by control antibody 10-1074, anti-HBs bNAb H020, anti-HBs bNAb H007, combination of anti-HBs bNAb (H006+H007), (H017+H019), and (H016+H017+H019). HBV DNA levels in mouse sera were monitored on a weekly basis. The mice without arrows bear no escape mutations at the last time point. (B) Part of the S-protein sequences from the indicated mice (arrows and numbers) are shown below as chromatograms, with mutations marked by arrowheads. (B) discloses the S-protein amino acid and nucleotide sequences as SEQ ID NOS 1477 and 1478, respectively. The sequences represented by the subsequent chromatograms that disclose amino acid residues and nucleotides are SEQ ID NOS 1479, 1480, 1480, 1480-1482, 1479, 1478, 1480, 1480, 1478, 1480, and 1483-1488, respectively, in order of columns. (C-D) HBsAg levels in mouse sera before and after antibody infusion. Mice were treated by anti-HBs combination H017+H019 (C) (see FIG. 7K) and H016+H017+H019 (D) (see FIG. 7L). Each line represents a mouse with concentrations of serum HBsAg level expressed in NCU/ml (national clinical units per milliliter).





DETAILED DESCRIPTION OF THE DISCLOSURE

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.


Every numerical range given throughout this specification includes its upper and lower values, as well as every narrower numerical range that falls within it, as if such narrower numerical ranges were all expressly written herein.


This disclosure includes every nucleotide sequence described herein, and in the tables and figures, and all sequences that are complementary to them, RNA equivalents of DNA sequences, all amino acid sequences described herein, and all polynucleotide sequences encoding the amino acid sequences. Every antibody sequence and functional fragments of them are included. Polynucleotide and amino acid sequences having from 80-99% similarity, inclusive, and including ranges of numbers there between, with the sequences provided here are included in the invention. All of the amino acid sequences described herein can include amino acid substitutions, such as conservative substitutions, that do not adversely affect the function of the protein or polypeptide that comprises the amino acid sequences. It will be recognized that when reference herein is made to an “antibody” it does not necessarily mean a single antibody molecule. For example, “administering an antibody” includes administering a plurality of the same antibodies. Likewise, a composition comprising an “antibody” can comprise a plurality of the same antibodies.


For amino acid and polynucleotide sequences of this disclosure, contiguous segments of the sequences are included, and can range from 2 amino acids, up to full-length protein sequences. Polynucleotide sequences encoding such segments are also included.


The disclosure includes DNA and RNA sequences encoding the antibodies and antigen fragments thereof, and any virus peptides described herein for use in prophylactic and therapeutic approaches as protein or DNA and/or RNA vaccines, which may be formulated and/or delivered according to known approaches, given the benefit of this disclosure. The disclosure includes a cDNA sequences encoding the antibodies, antigen binding fragments thereof, and any viral proteins or peptides described herein. Expression vectors that contain cDNAs are also included, and encode said antibodies, antigen binding fragments thereof, and viral proteins and peptides.


All sequences from the figures, text, and tables of this application or patent include every amino acid sequence associated with every Donor ID, and all possible combinations of the amino acid sequences given for all complementarity determining regions (CDRs), e.g., all combinations of heavy chain CDR1, CDR2, CDR3 sequences, and all combinations of light chain CDR1, CDR2, and CDR3 sequences, including heavy chain sequences, and light chain sequences that are either lambda or kappa light chain sequences.


The disclosure includes all combinations of antibodies described herein. One or more antibodies may also be excluded from any combination of antibodies.


The disclosure includes antibodies described herein, which are present in an in vitro complex with one or more hepatitis B proteins.


In embodiments, the disclosure provides an isolated or recombinant antibody that binds with specificity to a hepatitis B virus epitope, and wherein the antibody optionally comprises a modification of its amino acid sequence, including but not limited to a modification of its constant region.


In embodiments, one or more antibodies described herein bind with specificity to an epitope present in the HBsAg protein or the S-protein in the unmutated, or mutated form.


In embodiments, the antibodies described herein bind to a hepatitis B protein that comprises one or more HepB escape mutations. In embodiments, the antibodies bind to a hepatitis B virus protein that comprises a mutation that is a substitution of a large positively charged residue for a small neutral residue. In embodiments, the mutation is present in the so-called “a” determinant area, which is known in the art. In embodiments, the epitope is present in the major hydrophilic region of the HBsAg protein. In embodiments, the epitope to which the antibodies bind is present in the S-protein, including but not necessarily limited to the predicted or actual extracellular domain of the S-protein.


In embodiments, the epitope to which the described antibodies bind is common to HBsAg L-protein, M-protein, or S-protein. In embodiments, the antibodies bind to an epitope present in the L-protein version of HBsAg, which comprises the amino acid sequence that is accessible via Accession number: AAL66340.1 as that amino acid sequence exists in the database as of the filing date of this application or patent. In an embodiment, this amino acid sequence is:









(SEQ ID NO: 2)


MGGWSSKPRQGMGTNLSVPNPLGFFPDHQLDPAFGANSNNPDWDFNPNKD





HWPEANQVGAGAFGPGFTPPHGGLLGWSPQAQGILTTVPVAPPPASTNRQ





SGRQPTPISPPLRDSHPQAMQWNSTTFHQALLDPRVRGLYFPAGGSSSGT





VNPVPTTASPISSIFSRTGDPAPNMESTTSGFLGPLLVLQAGFFLLTRIL





TIPQSLDSWWTSLNFLGGAPTCPGQNSQSPTSNHSPTSCPPICPGYRWMC





LRRFIIFLFILLLCLIFLLVLLDYQGMLPVCPLLPGTSTTSTGPCKTCTS





PAQGTSMFPSCCCTKPSDGNCTCIPIPSSWAFARFLWEWASVRFSWLSLL





VPFVQWFVGLSPTVWLSVIWMMWYWGPCLYNILSPFLPLLPIFFCLW





VYI.






In embodiments, the disclosure includes use of only two proteins, or at least two proteins. In an embodiment, the S proteins may be used as bait to sort B cells purified from Chinese hamster ovary (CHO) cells, or any other suitable cell type, including but not limited to human cell cultures. In embodiments, the S protein comprises or consists of the amino acid sequence available under Uniprot ID P30019, the amino acid sequence of which is incorporated herein as it exists in the database at the filing date of this application or patent. In an embodiment, the S protein comprises the sequence:









(SEQ ID NO: 3)


MENTASGFLGPLLVLQAGFFLLTRILTIPQSLDSWWTSLNFLGGAPTCPG





QNSQSPTSNHSPTSCPPICPGYRWMCLRRFIIFLFILLLCLIFLLVLLDY





HGMLPVCPLLPGTSTTSTGPCKTCTIPAQGTSMFPSCCCTKPSDGNCTCI





PIPSSWAFARFLWEWASVRFSWLSLLVPFVQWFVGLSPTVWLSVIWMMWY





WGPSLYNILSPFLPLLPIFFCLWVYI.






In non-limiting embodiments, the S polynucleotide sequence used for alanine scanning comprises:









(SEQ ID NO: 4)


ATGGAGAACATCACATCAGGATTCCTAGGACCCCTGCTCGTGTTACAGGC





GGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACT





CGTGGTGGACTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGC





CAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTCCTCC





AATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTTTATCATATTCC





TCTTCATCCTGCTGCTATGCCTCATCTTCTTATTGGTTCTTCTGGATTAT





CAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGGATCAACAACAACCAG





TACGGGACCATGCAAAACCTGCACGACTCCTGCTCAAGGCAACTCTATGT





TTCCCTCATGTTGCTGTACAAAACCTACGGATGGAAATTGCACCTGTATT





CCCATCCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCCTC





AGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTCAGTGGTTCG





TAGGGCTTTCCCCCACTGTTTGGCTTTCAGCTATATGGATGATGTGGTAT





TGGGGGCCAAGTCTGTACAGCATCGTGAGTCCCTTTATACCGCTGTTACC





AATTTTCTTTTGTCTCTGGGTATACATTTAA.






The amino acid sequence encoded by the DNA sequence immediately above is:









(SEQ ID NO: 5)


MENITSGFLGPLLVLQAGFFLLTRILTIPQSLDSWWTSLNFLGGSPVCLG





QNSQSPTSNHSPTSCPPICPGYRWMCLRRFIIFLFILLLCLIFLLVLLDY





QGMLPVCPLIPGSTTTSTGPCKTCTTPAQGNSMFPSCCCTKPTDGNCTCI





PIPSSWAFAKYLWEWASVRFSWLSLLVPFVQWFVGLSPTVWLSAIWMMWY





WGPSLYSIVSPFIPLLPIFFCLWVYI.






In embodiments, antibodies of this disclosure bind to an epitope present in any of the foregoing amino sequences, including linear and confirmation epitopes that may be formed by proteins comprising or consisting of said sequences.


In an embodiment, the isolated or recombinant antibody or antigen binding fragment thereof binds with specificity to an epitope comprised by a structurally defined peptide loop, as further described herein. In embodiments, the loop is as generally depicted in FIG. 6, which comprises a partial structure of HepB surface protein, and demonstrates the existence of a loop that includes the most frequently targeted residue found in human escapes G145. Without intending to be bound by any particular theory, it is considered that this structure explains why this mutant can escape, and also why additional commonly found escape mutants exist. Further, the structure and the antibody peptide complex represents a new and previously undiscovered target for drug discovery. Thus, in embodiments, the disclosure provides for screening drug candidates that can interfere with formation of this structure, and thus which may also interfere with the viability of the virus. Those skilled in the art will recognize from the present disclosure how to design an assay to determine whether or not drug candidates could interfere with the complex, and how antibodies described in herein may be used in such an assay.


In embodiments, antibodies described herein bind with specificity to an amino acid sequence comprised by any peptide sequence described herein. In embodiments, the peptide comprises the sequence KPSDG (SEQ ID NO: 6), or mutants thereof. In embodiments, antibodies described herein bind with specificity to an epitope in an amino acid sequence that comprises the sequence PSSSSTKPSDGNSTS (SEQ ID NO: 7), or mutants thereof. Additional and non-limiting examples of peptides of this disclosure include those shown on FIG. 6, e.g., peptide-11 and peptide-12.


In embodiments, the disclosure comprises compositions and methods that involve use of more than one distinct antibody or antigen binding fragment thereof. In embodiments, the methods of this disclosure comprise administering a combination of antibodies or antigen binding fragment thereof which bind distinct hepatitis B epitopes. In embodiments, distinct antibodies recognize epitopes present in two dominant non-overlapping antigenic sites on the HBsAg, or epitopes present on the S-protein. In embodiments, the disclosure provides for use of a combination of the Group-I and Group-II antibodies described herein. Thus, the disclosure comprises co-administration or sequential administration of a combination of antibodies. In an embodiment, administration of a combination of distinct antibodies suppresses formation of viruses that are resistant to the effects of any one of the antibodies alone. In embodiments, the disclosure includes administering a combination comprising at least one Group I antibody and at least one Group II antibody, wherein at least one of the antibodies is G145R mutation resistant. In non-limiting embodiments, antibodies that are provided by the present disclosure, and which can be administered to an individual in need thereof, comprise at least one of H006, H007, H0017, H0019, or H020. Further, H005, H008 and H009 are similar to H006, and therefore may be used as alternatives to H006.


All combinations of H and L chains described herein are included, including all kappa and lambda light chains. In embodiments, a single antibody of this disclosure may comprise an H+L chain from one antibody, and an H+L chain from another antibody. In embodiments, the antibodies comprise modifications that are not coded for in any B cells obtained from an individual, and/or the antibodies are not produced by immune cells in an individual from which a biological sample from the individual is used at least in part to identify and/or generate and/or characterize the antibodies of this disclosure. In embodiments, antibodies provided by this disclosure can be made recombinantly, and can be expressed with a constant region of choice, which may be different from a constant region that was coded for in any sample from which the amino acid sequences of the antibodies were deduced.


As discussed above, in embodiments, the disclosure includes a combination of antibodies or antigen binding fragments thereof, or a composition comprising or consisting of said antibodies or antigen binding fragments thereof. In embodiments, a combination of antibodies of this disclosure are effective in preventing viral escape by mutation. In this regard, the disclosure includes data demonstrating that not all antibody combinations are effective in preventing escape by mutation, such as the combination of H006 and H007, which are ineffective. Thus, in embodiments, a combinations of antibodies or antigen binding fragments collectively target more than one commonly occurring escape mutation, examples of which escape mutations are known in the art and are described herein. Accordingly, combinations of antibodies and antigen binding fragments thereof of this disclosure may target non-overlapping groups of common escape mutations. In embodiments, the disclosure thus includes a proviso that excludes any combination of antibodies that collectively only target separate epitopes but have overlapping sensitivity to commonly occurring escape mutations.


In embodiments, at least one antibody or antigen binding fragment thereof included in this disclosure, and in the combinations and methods of this disclosure, has greater virus neutralizing activity than a control neutralizing activity value, such as the neutralizing capability of libivirumab. In embodiments, at least one antibody or antigen binding fragment of this disclosure exhibits a viral neutralizing activity with an IC50 values that is less than 128 ng/ml, or less than 35 ng/ml, or less than 5 ng/ml, and including all integers and ranges of integers between 128 and 5 ng/ml. Such neutralizing activity can be determined using known approaches, such as by ELISA or immunofluorescence assays, and as further described in Example 5 of this disclosure. In embodiments, an antibody or antigen binding fragment thereof that is encompassed by this disclosure includes but is not limited to antibodies or antigen binding fragments selected from the H016, H017 and H019 antibodies, as defined by their CDRs. In an embodiment, the disclosure includes combinations of these antibodies, and can include antigen binding fragments thereof. In embodiments, the combination of antibodies comprises the H017 and H019 antibodies, and/or antigen binding fragments thereof. In an embodiment, the combination optionally further comprises the H016 antibody or an antigen binding fragment thereof. In embodiments, a combination of the disclosure comprises a combination that consists of only the H017 and H019 antibodies or antigen binding fragments thereof. In embodiments, a combination of the disclosure comprises a combination that consists of only the H016, H017, and H019 antibodies or antigen binding fragments thereof. Methods of administration of the described antibody combinations, and all other antibodies and antigen binding fragments thereof described herein, sequentially and concurrently are included within the scope of this disclosure. Thus, the disclosure includes administering to an individual in need concurrently or sequentially a combination of antibodies or antigen binding fragments thereof, which in certain embodiments comprise or consist of H017 and H019, or H016, H017, and H019 and antigen binding fragments thereof. Additional antibodies and antibody combinations, including antigen binding fragments thereof, include but are not limited to antibodies and antigen binding fragments thereof that comprise the heavy and light chain CDRs of H004, H005, and H009, and H020.


With respect to the H016, H017, and H019 antibodies, as can been seen from Table S2, the H016 antibody comprises a heavy chain CDR1 with the amino acid sequence GFTFPSHT (SEQ ID NO: 8), a heavy chain CDR2 with the amino acid sequence ISTTSEAI (SEQ ID NO: 9), and a heavy chain CDR3 with the amino acid sequence ARVGLALTISGYWYFDL (SEQ ID NO: 10). The H016 antibody comprises a kappa light chain CDR1 with the amino acid sequence QSISSN (SEQ ID NO: 11), a kappa light chain with the CDR2 amino acid sequence RAS, and a kappa light chain with the CDR3 amino acid sequence QQYDHWPLT (SEQ ID NO: 12).


As can be seen from Table S2, the H017 antibody comprises a heavy chain CDR1 with the amino acid sequence GFTFSNYW (SEQ ID NO: 13), a heavy chain CDR2 with the amino acid sequence ISTDGSST (SEQ ID NO: 14), and a heavy chain CDR3 with the amino acid sequence ARGSTYYFGSGSVDY (SEQ ID NO: 15). The H017 antibody comprises a lambda light chain with the CDR1 sequence SSDIGVYNY (SEQ ID NO: 16), a lambda light chain with the CDR2 sequence DVT, and a lambda light chain with the CDR3 sequence SSYRGSSTPYV (SEQ ID NO: 17).


As can be seen from Table S2, the H019 antibody comprises a heavy chain CDR1 with the amino acid sequence GGSITTGDYY (SEQ ID NO: 18), a heavy chain CDR2 with the amino acid sequence IYYSGST (SEQ ID NO: 19), and a heavy chain CDR3 with the amino acid sequence AIYMDEAWAFE (SEQ ID NO: 20). The H019 antibody comprises a lambda light chain CDR1 with the amino acid sequence QSIGNY (SEQ ID NO: 21), a lambda light chain with the CDR2 amino acid sequence AVS, and a lambda light chain with the CDR3 amino acid sequence QQSYTISLFT (SEQ ID NO: 22).


In certain embodiments, the antibodies contain one or more modifications, such as non-naturally occurring mutations. As non-limiting examples, in certain approaches the Fc region of the antibodies can be changed, and may be of any isotype, including but not limited to any IgG type, or an IgA type, etc. Antibodies of this disclosure can be modified to improve certain biological properties of the antibody, e.g., to improve stability, to modify effector functions, to improve or prevent interaction with cell-mediated immunity and transfer across tissues (placenta, blood-brain barrier, blood-testes barrier), and for improved recycling, half-life and other effects, such as manufacturability and delivery.


In embodiments, an antibody of this disclosure can be modified by using techniques known in the art, such as those described in Buchanan, et al., Engineering a therapeutic IgG molecule to address cysteinylation, aggregation and enhance thermal stability and expression mAbs 5:2, 255-262; March/April 2013, and in Zalevsky J. et al., (2010) Nature Biotechnology, Vol. 28, No. 2, p 157-159, and Ko, S-Y, et al., (2014) Nature, Vol. 514, p 642-647, and Horton, H. et al., Cancer Res 2008; 68: (19), Oct. 1, 2008, from which the descriptions are incorporated herein by reference. In certain embodiments an antibody modification increases in vivo half-life of the antibody (e.g. LS mutations), or alters the ability of the antibody to bind to Fc receptors (e.g. GRLR mutations), or alters the ability to cross the placenta or to cross the blood-brain barrier or to cross the blood-testes barrier. Thus, in certain embodiments an antibody modification comprises a change of G to R, L to R, M to L, or N to S, or any combination thereof.


In embodiments bi-specific antibodies are provided by modifying and/or combining segments of antibodies as described herein, such as by combining heavy and light chain pairs from distinct antibodies into a single antibody. Suitable methods of making bispecific antibodies are known in the art, such as in Kontermann, E. et al., Bispecific antibodies, Drug Discovery Today, Volume 20, Issue 7, July 2015, Pages 838-847, the description of which is incorporated herein by reference.


In embodiments, any antibody described herein comprises a modified heavy chain, a modified light chain, a modified constant region, or a combination thereof, thus rendering them distinct from antibodies produced by humans. In embodiments, the modification is made in a hypervariable region, and/or in a framework region (FR).


In embodiments, mutations to an antibody described herein, including but not limited to the antibodies described, comprise modifications relative to the antibodies originally produced in humans. Such modifications include but are not necessarily limited to the heavy chain to increase the antibody half-life.


In embodiments, antibodies of this disclosure have variable regions that are described herein, and may comprise or consist of any of these sequences, and may include sequences that have from 80-99% similarity, inclusive, and including ranges of numbers there between, with the sequences expressly disclosed herein, provided antibodies that have differing sequences retain the same or similar binding affinity as an antibody with an unmodified sequence. In embodiments, the sequences are at least 95%, 96%, 97%, 98% or 99% similar to an expressly disclosed sequence herein.


Antibodies comprising the sequences described in Table S2 have been isolated and characterized for at least binding affinity, and as otherwise described herein, such as for virus neutralizing activity. Thus, in embodiments the disclosure provides neutralizing antibodies. The term “neutralizing antibody” refers to an antibody or a plurality of antibodies that inhibits, reduces or completely prevents viral infection. Whether any particular antibody is a neutralizing antibody can be determined by in vitro assays described in the examples below, and as is otherwise known in the art. The term “broadly neutralizing” antibody refers to an antibody that can neutralize more than one strain or serotype of a virus.


Antibodies of this disclosure can be provided as intact immunoglobulins, or as antigen binding fragments of immunoglobulins, including but not necessarily limited to antigen-binding (Fab) fragments, Fab′ fragments, (Fab′)2 fragments, Fd (N-terminal part of the heavy chain) fragments, Fv fragments (the two variable domains), dAb fragments, single domain fragments or single monomeric variable antibody domains, isolated CDR regions, single-chain variable fragment (scFv), and other antibody fragments that retain virus-binding capability and preferably virus neutralizing activity as further described below. In embodiments, the variable regions, including but not necessarily limited to the described CDRs, may be used as a component of a Bi-specific T-cell engager (BiTE), bispecific killer cell engager (BiKE), or a chimeric antigen receptor (CAR), such as for producing chimeric antigen receptor T cells (e.g. CAR T cells). In embodiments, the disclosure includes tri-valent antibodies, which can bind with specificity to three different epitopes.


Antibodies and antigens of this disclosure can be provided in pharmaceutical formulations. It is considered that administering a DNA or RNA polynucleotide encoding any protein described herein (including peptides and polypeptides), such as antibodies and antigens described herein, is also a method of delivering such proteins to an individual, provided the protein is expressed in the individual. Methods of delivering DNA and RNAs encoding proteins are known in the art and can be adapted to deliver the protein, particularly the described antigens, given the benefit of the present disclosure. Similarly, the antibodies of this disclosure can be administered as DNA molecules encoding for such antibodies using any suitable expression vector(s), or as RNA molecules encoding the antibodies.


Pharmaceutical formulations containing antibodies or viral antigens or polynucleotides encoding them can be prepared by mixing them with pharmaceutically acceptable carriers. Pharmaceutically acceptable carriers include solvents, dispersion media, isotonic agents and the like. The carrier can be liquid, semi-solid, e.g. pastes, or solid carriers. Examples of carriers include water, saline solutions or other buffers (such as phosphate, citrate buffers), oil, alcohol, proteins (such as serum albumin, gelatin), carbohydrates (such as monosaccharides, disaccharides, and other carbohydrates including glucose, sucrose, trehalose, mannose, mannitol, sorbitol or dextrins), gel, lipids, liposomes, resins, porous matrices, binders, fillers, coatings, stabilizers, preservatives, liposomes, antioxidants, chelating agents such as EDTA; salt forming counter-ions such as sodium; non-ionic surfactants such as TWEEN, PLURONICS or polyethylene glycol (PEG), or combinations thereof. In embodiments, a pharmaceutical/vaccine formulation exhibits an improved activity relative to a control, such as antibodies that are delivered without adding additional agents, or a particular added agent improves the activity of the antibodies.


The formulation can contain more than one antibody type or antigen, and thus mixtures of antibodies, and mixtures of antigens, and combinations thereof as described herein can be included. These components can be combined with a carrier in any suitable manner, e.g., by admixture, solution, suspension, emulsification, encapsulation, absorption and the like, and can be made in formulations such as tablets, capsules, powder (including lyophilized powder), syrup, suspensions that are suitable for injections, ingestions, infusion, or the like. Sustained-release preparations can also be prepared.


The antibodies and vaccine components of this disclosure are employed for the treatment and/or prevention of hepatitis B virus infection in a subject, as well as for inhibition and/or prevention of their transmission from one individual to another.


The term “treatment” of viral infection refers to effective inhibition of the viral infection so as to delay the onset, slow down the progression, reduce viral load, and/or ameliorate the symptoms caused by the infection.


The term “prevention” of viral infection means the onset of the infection is delayed, and/or the incidence or likelihood of contracting the infection is reduced or eliminated.


In embodiments, to treat and/or prevent viral infection, a therapeutic amount of an antibody or antigen vaccine disclosed herein is administered to a subject in need thereof. The term “therapeutically effective amount” means the dose required to effect an inhibition of infection so as to treat and/or prevent the infection.


The dosage of an antibody or antigen vaccine depends on the disease state and other clinical factors, such as weight and condition of the subject, the subject's response to the therapy, the type of formulations and the route of administration. The precise dosage to be therapeutically effective and non-detrimental can be determined by those skilled in the art. As a general rule, a suitable dose of an antibody for the administration to adult humans parenterally is in the range of about 0.1 to 20 mg/kg of patient body weight per day, once a week, or even once a month, with the typical initial range used being in the range of about 2 to 10 mg/kg. Since the antibodies will eventually be cleared from the bloodstream, re-administration may be required. Alternatively, implantation or injection of the antibodies provided in a controlled release matrix can be employed.


The antibodies can be administered to the subject by standard routes, including oral, transdermal, and parenteral (e.g., intravenous, intraperitoneal, intradermal, subcutaneous or intramuscular). In addition, the antibodies and/or the antigen vaccines can be introduced into the body, by injection or by surgical implantation or attachment such that a significant amount of an antibody or the vaccine is able to enter blood stream in a controlled release fashion. In certain embodiments antibodies described herein are incorporated into one or more prophylactic compositions or devices to, for instance, neutralize a virus before it enters cells of the recipient's body. For example, in certain embodiments a composition and/or device comprises a polymeric matrix that may be formed as a gel, and comprises at least one of hydrophilic polymers, hydrophobic polymers, poly(acrylic acids) (PAA), poly(lactic acids) (PLA), carageenans, polystyrene sulfonate, polyamides, polyethylene oxides, cellulose, poly(vinylpyrrolidone) (PVP), poly(vinyl alcohol) (PVA), chitosan, poly(ethylacrylate), methylmethacrylate, chlorotrimethyl ammonium methylmethacrylate, hydroxyapatite, pectin, porcine gastric mucin, poly(sebacic acid) (PSA), hydroxypropyl methylcellulose (HPMC), cellulose acetate phthalate (CAP), magnesium stearate (MS), polyethylene glycol, gum-based polymers and variants thereof, poly (D,L)-lactide (PDLL), polyvinyl acetate and povidone, carboxypolymethylene, and derivatives thereof. In certain aspects the disclosure comprises including antibodies in micro- or nano-particles formed from any suitable biocompatible material, including but not necessarily limited to poly(lactic-co-glycolic acid) (PLGA). Liposomal and microsomal compositions are also included. In certain aspects a gel of this disclosure comprises a carbomer, methylparaben, propylparaben, propylene glycol, sodium carboxymethylcellulose, sorbic acid, dimethicone, a sorbitol solution, or a combination thereof. In embodiments a gel of this disclosure comprises one or a combination of benzoic acid, BHA, mineral oil, peglicol 5 oleate, pegoxol 7 stearate, and purified water, and can include any combination of these compositions.


Antibodies of this disclosure can be produced by utilizing techniques available to those skilled in the art. For example, one or distinct DNA molecules encoding one or both of the H and L chains of the antibodies can be constructed based on the coding sequence using standard molecular cloning techniques. The resulting DNAs can be placed into a variety of suitable expression vectors known in the art, which are then transfected into host cells, which are preferably human cells cultured in vitro, but may include E. coli or yeast cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, and human embryonic kidney 293 cells, etc. Antibodies can be produced from a single, or separate expression vectors, including but not limited to separate vectors for heavy and light chains, and may include separate vectors for kappa and lambda light chains as appropriate.


In embodiments, the antibodies may be isolated from cells. In embodiments, the antibodies are recombinant antibodies. “Recombinant” antibodies mean the antibodies are produced by expression within cells from one or more expression vectors.


In certain approaches the disclosure includes neutralizing antibodies as discussed above, and methods of stimulating the production of such antibodies.


In certain approaches the disclosure includes vaccinating an individual using a composition described herein, and determining the presence, absence, and/or an amount of neutralizing antibodies produced in response to the vaccination. Thus, methods of determining and monitoring efficacy of a vaccination at least in terms of neutralizing antibody production are included. In an embodiment, subsequent to determining an absence of neutralizing antibodies, and/or an amount of neutralizing antibodies below a suitable reference value, the invention includes administering a composition disclosed herein to the individual. Subsequent administrations and measurements can be made to track the treatment efficacy and make further adjustments to treatment accordingly.


Antibodies and proteins of this disclosure can be detectably labeled and/or attached to a substrate. Any substrate and detectable label conventionally used in immunological assays and/or devices is included. In embodiments the substrate comprises biotin, or a similar agent that binds specifically with another binding partner to facilitate immobilization and/or detection and/or quantification of antibodies and/or viral proteins.


In embodiments any type of enzyme-linked immunosorbent (ELISA) assay can be used, and can be performed using polypeptides and/or antibodies of this disclosure for diagnostic purposes, and can include direct, indirect, and competitive ELISA assays, and adaptations thereof that will be apparent to those skilled in the art given the benefit of this disclosure.


Any diagnostic result described herein can be compared to any suitable control. Further, any diagnostic result can be fixed in a tangible medium of expression and communicated to a health care provider, or any other recipient. In one aspect the disclosure comprises diagnosing an individual as infected with hepatitis B virus and administering a composition of this invention to the individual.


In certain embodiments the disclosure includes one or more recombinant expression vectors encoding at least H and L chains of an antibody or antigen binding fragment of this disclosure, cells and cell cultures comprising the expression vectors, methods comprising culturing such cells and separating antibodies from the cell culture, the cell culture media that comprises the antibodies, antibodies that are separated from the cell culture, and kits comprising the expression vectors encoding an antibody and/or a polypeptide of this disclosure. Products containing the antibodies and/or the polypeptides are provided, wherein the antibodies and/or the polypeptides are provided as a pharmaceutical formulation contained in one or more sealed containers, which may be sterile and arranged in any manner by which such agents would be suitable for administration to a human or non-human subject. The products/kits may further comprise one or more articles for use in administering the compositions.


The following Examples are intended to illustrate but not limit the invention.


Example 1

Serologic Responses Against HBV


To select individuals with outstanding antibody responses to HBsAg, we performed ELISA assays on serum obtained from 159 volunteers. These included 15 uninfected and unvaccinated controls (HBsAg, anti-HBs, anti-HBc), 20 infected and spontaneously recovered (HBsAg, anti-HBs+/−, anti-HBO, and 124 vaccinated (HBsAg, anti-HBs+/−, anti-HBc) volunteers. These individuals displayed a broad spectrum of anti-HBs titers (x-axis in FIG. 1A and FIG. 8B; Table S1). To determine their neutralizing activity, we tested their ability to block HBV infection in sodium taurocholate co-transporting polypeptide (NTCP)-overexpressing HepG2 cells (Michailidis et al., 2017; Yan et al., 2012) (y-axis in FIG. 1A and FIGS. 8B and 8C; Table S1). Sera or antibodies purified from individuals with high levels of neutralizing activity were then compared across a wide range of dilutions (FIGS. 1B and 1C). Although anti-HBs ELISA titers positively correlated with neutralizing activity (rs=0.492, p<0.001, Spearman's rank correlation), there were notable exceptions as exemplified by volunteers #99 and #49, whose sera failed to neutralize HBV despite high anti-HBs ELISA titers (FIG. 1A). Thus, ELISA titers against HBsAg are not entirely predictive of neutralizing activity in vitro.


The HBV surface protein, HBsAg can be subdivided into PreS1-, PreS2- and S-regions (FIG. 1D). To determine which of these regions is the dominant target of the neutralizing response in the selected top neutralizers, we used S-protein to block neutralizing activity in vitro. The neutralizing activity in volunteers that received the HBV vaccine, which is composed of S-protein, was completely blocked by S-protein (black lines in FIG. 1E). The same was true for the spontaneously recovered individuals in our cohort despite a reported ability of this population to produce anti-PreS1 or anti-PreS2 antibodies (Coursaget et al., 1988; Li et al., 2017; Sankhyan et al., 2016) (red lines in FIG. 1E). These results suggest that the neutralizing antibody response in the selected individuals is directed primarily against the S-protein irrespective of immunization or infection.


Example 2

Human Monoclonal Antibodies to HBV


To characterize the antibodies responsible for neutralizing activity in the selected individuals, we purified S-protein binding class-switched memory B cells (Escolano et al., 2019; Scheid et al., 2009a). Unexposed naïve controls and vaccinated individuals with low anti-HBs ELISA titers showed background levels of S-protein specific memory B cells (FIGS. 2A and 9A). In contrast, individuals with high neutralizing activity displayed a distinct population of S-antigen binding B cells constituting 0.03-0.07% of the IgG+ memory compartment (CD19-MicroBeads+ CD20-PECy7+ IgG-Bv421+ S-protein-PE+ S-protein-APC+ ovalbumin-Alexa Fluor 488) (FIGS. 2A and 9A). Consistent with the findings in elite HIV-1 neutralizers (Rouers et al., 2017), the fraction of S-protein specific cells was directly correlated to the neutralization titer of the individual (rs=0.699, p=0.0145, Spearman's rank correlation) (FIG. 2B).


Immunoglobulin heavy (IGH) and light (IGL or IGK) chain genes were amplified from single memory B cells by PCR (Robbiani et al., 2017; Scheid et al., 2009b; von Boehmer et al., 2016). Overall, we obtained 244 paired heavy and light chain variable regions from S-protein-binding memory B cells from eight volunteers with high anti-HBs ELISA titers (FIGS. 9B and 9C; Table S2). Expanded clones composed of cells producing antibodies encoded by the same Ig variable gene segments with closely related CDR3s were found in each of the top neutralizers #146, #60 and #13 (FIG. 2C). Moreover, IGHV3-30/IGLV3-21 was present in #146 and #60; IGHV3-33/IGLV3-21 in #146 and #13; and IGHV3-23/IGLV3-21 in #146, #60 and #13. The variable diversity and joining (V(D)J) region of these antibodies was approximately 80% identical at the amino acid level (FIG. 2D). Antibodies with related Ig heavy and light chains were also identified between volunteer #55 (HBV infected but recovered) and vaccinated individuals (FIGS. 2C and 9B). We conclude that top HBV neutralizers produce clones of antigen-binding B cells that express related Ig heavy and light chains.


Example 3

Breadth of Reactivity


Twenty representative antibodies from 5 individuals, designated as H001 to H020, were selected for expression and further testing (FIG. 9B). All 20 antibodies showed reactivity to the S-protein antigen used for B cell selection (HBsAg adr CHO) by ELISA with 50% effective concentration (EC50) values ranging from 18-350 ng/ml (FIG. 3A). These antibodies carried somatic mutations that enhanced antigen binding as determined by reversion to the inferred unmutated common ancestor (UCA) (FIG. 3B). Thus, affinity maturation was essential for their high binding activity.


Four major serotypes of HBV exist as defined by a constant “a” determinant and two variable and mutually exclusive determinants “d/y” and “w/r” (Bancroft et al., 1972; Le Bouvier, 1971) with a highly statistically significant association between serotypes and genotypes (Kramvis et al., 2008; Norder et al., 2004). To determine whether our antibodies cross-react to different HBsAg serotypes, we performed ELISAs with 5 additional HBsAg antigens: yeast-expressed serotype “adr”, “adw”, and “ayw”, as well as “ad” and “ay” antigen purified from human blood (FIG. 3C). Many of the antibodies tested displayed broad cross-reactivity and EC50 values lower than libivirumab, a human anti-HBs monoclonal antibody that was isolated from HBV-immunized humanized mice and then tested clinically (Eren et al., 2000; Eren et al., 1998; Galun et al., 2002). These antibodies were not polyreactive or autoreactive when tested in polyreactivity ELISA and HEp-2 immunofluorescence assays respectively (FIGS. 10A and 10B). We conclude that the antibodies tested are broadly cross-reactive with different HBV serotypes.


Example 4

Antigenic Epitopes on S-Protein


To determine whether the selected antibodies bind to overlapping or non-overlapping epitopes, we performed competition ELISA assays, in which the S-protein was pre-incubated with a selected antibody followed by a second biotinylated antibody. Antibodies that showed weak levels of binding in ELISA (H002, H012, H013, H014, H018) were excluded. As expected, all of the antibodies tested blocked the binding of the autologous biotinylated monoclonal (yellow boxes in FIG. 4A), while control human anti-HIV antibody 10-1074 failed to block any of the anti-HBs antibodies. The competition ELISA identified three mutually exclusive groups of monoclonal antibodies, suggesting that there are at least three dominant non-overlapping antigenic sites on HBsAg (red box for Group-I, blue box for Group-II, and H017 in Group-III, FIG. 4A). Each of the individuals that had 2 or more antibodies tested in the competition ELISA expressed monoclonal antibodies that targeted 2 of the 3 non-overlapping epitopes (FIGS. 4A and 9B).


To further define these epitopes, we produced a series of alanine mutants spanning most of the predicted extracellular domain of the S-protein with the exception of cysteines, alanines, and amino acid residues critical for S-protein production (Salisse and Sureau, 2009) (FIG. 1D). ELISA assays with the representative antibodies from each antibody group and the mutant proteins revealed a series of binding patterns partially corresponding to the three groups defined in the competition assays (FIGS. 4B and 11). For example, mutations I110A and T148A interfered with binding by Group-I antibodies exemplified by H004, H006, H019, and H020, but had little measurable effect on Group-II antibodies exemplified by H007, H015, and H016 or Group-III antibody H017 (FIGS. 4B and 11).


However alanine scanning suggested that some residues such as D144 and G145 are critical for binding of monoclonals in both Group-I and Group-II despite their inability to compete with each other for binding to the native antigen (FIGS. 4B and 11). Without intending to be constrained by any particular theory, it is considered that D144A and G145A mutations alter the overall structure of HBsAg thereby interfering with binding of antibodies that normally target independent sites on the protein.


In addition to alanine scanning, we also produced 44 common naturally occurring escape variants found in chronically infected individuals (Hsu et al., 2015; Ijaz et al., 2012; Ma and Wang, 2012; Salpini et al., 2015). Whereas alanine scanning showed that some of the antibodies in Group-I and -II were resistant to G145A, the corresponding naturally occurring mutations at the same position, G145E and G145R, revealed decreased binding by most antibodies (FIG. 4C). Among the antibodies tested, H017 and H019, in Groups-I and -III respectively, showed the greatest resistance to G145 mutations and the greatest breadth and complementarity (FIG. 4C). We conclude that human anti-HBs monoclonals obtained from the selected individuals recognize distinct epitopes on HBsAg, most of which appear to be non-linear conformational epitopes spanning different regions of the protein.


Example 5

In Vitro Neutralizing Activity


To determine whether the new monoclonals neutralize HBV in vitro, we performed neutralization assays using HepG2-NTCP cells (FIGS. 5A and 5B). The 50% inhibitory concentration (IC50) values were calculated based on HBsAg/HBeAg ELISA or immunofluorescence staining for HBcAg expression (Michailidis et al., 2017) (FIG. 5C). Neutralizing activity was further verified by in vitro neutralization assays using primary human hepatocytes (Michailidis et al., 2020) (FIGS. 5C and 5D). Fourteen of the 20 antibodies tested showed neutralizing activity with IC50 values as low as 5 ng/ml (FIG. 5C). By comparison, libivirumab had an IC50 of 35 and 128 ng/ml in the neutralization assays based on ELISA and immunofluorescence assays respectively (FIG. 5C). Somatic mutations were essential for potent neutralizing activity as illustrated by the reduced activity of the inferred UCAs (FIGS. 12A and 12B). In addition, optimal activity required bivalent binding since the IC50 values for Fab fragments were 2 orders of magnitude higher than intact antibodies (FIG. 5E). Finally, there was no overt synergy when Group-I, -II, and -III antibodies were combined (FIG. 12C). We conclude that half of the new monoclonals were significantly more potent than libivirumab including Group-I H004, H005, H006, H008, H009, H019, and H020 and Group-II H007, H015, and H016 (FIG. 5C).


Example 6

Structure of the H015 Antibody/Peptide Complex


H015 differed from other antibodies in that its binding was inhibited by 5 consecutive alanine mutations spanning positions K141-G145 indicating the existence of a linear epitope. This idea was verified by ELISA against a series of overlapping peptides comprising the predicted extracellular domain of S-protein (FIGS. 6A and 13A). The data showed that H015 binds to KPSDGN (SEQ ID NO: 23), which is near the center of the putative extracellular domain and contains some of the most frequently mutated amino acids during natural infection.


To examine the molecular basis for H015 binding, its Fab fragment was co-crystallized with the target peptide epitope PSSSSTKPSDGNSTS (SEQ ID NO: 24), where all cysteine residues that flank the recognition sequence were substituted with serine to avoid non-physiological cross-linking. The 1.78 Å structure (FIGS. 6B and 13B) revealed that the peptide is primarily bound to the immunoglobulin heavy chain (FIGS. 6B and 6C), interacting with residues from CDR1 (R31), CDR2 (W52, F53) and CDR3 (E99, P101, L103, L104) of IgH with only one contact with CDR3 (P95) of IgL. The peptide adopts a three-residue beta hairpin (class 3) of the 3:5 type involving residues K141 through G145 as only one hydrogen bond is seen, between K141 and G145 (Milner-White and Poet, 1986), and they are not part of a beta sheet. The peptide is further stabilized by a salt-bridge formed between K141 and D144 (FIGS. 6D and 13C). Interestingly, the distance between the Cαs of the two residues (C139 and C147) flanking the recognition residues is 6.4 Å and are poised to form a disulfide bond between C139 and C147 found in the native HBsAg structure (Ito et al., 2010). The H015 Fab appears to stabilize the conformation of the peptide via the Fab-peptide contacts (FIG. 13D) including a large binding surface (866 Å2; antibody-antigen buried surface of 600-900 Å2 (Braden and Poljak, 1995)) comprised primarily of a single salt-bridge (lysine to aspartate; 0.9±0.3 Kcal/mol) (White et al., 2013) and five hydrogen bonds (1-2 Kcal/mol/bond) (Sheu et al., 2003). Moreover, the peptide further restricts loop through intra-peptide contacts (FIG. 13D) even in the absence of the disulfides.


The residues that form the hairpin are important for anti-HBs antibody recognition as determined by alanine scanning (FIGS. 4B and 11). In addition, each of these residues has been identified as important for immune recognition during natural infection (Ma and Wang, 2012). G145R, the most common naturally occurring S-protein escape mutation substitutes a large positively charged residue for a small neutral residue (circled residue in FIG. 6E) potentially altering the antigenic binding surface. G145 adopts a positive phi angle of 77.9 and by doing so introduces a kink in the beta-strand, a structure that would be disrupted with the substitution to arginine.


HBsAg can be glycosylated at N146 and this site is also strictly conserved. However, some studies have suggested that this glycosylation site is never fully occupied, resulting in a nearly 1:1 ratio of glycosylated and non-glycosylated isoforms on the surface of viral envelope (Julithe et al., 2014). The glycosylation may be either NAG-NAG-MAN or NAG-(FUC)-NAG-MAN (Hyakumura et al., 2015). We have modeled both fucosylated and non-fucosylated options by grafting a 7mer and 11mer glycan conjugated at N146 of peptide in the presence of the Fab. We found that both glycosylation forms are tolerated at that location with only minimal torsional adaptations without clashes with the Fab, though the fucosylated (branched) glycan required some additional torsional angle changes to the Fab, as well.


Example 7

Protection and Therapy in Humanized Mice


HBV infection is limited to humans, chimpanzees, tree shrews, and human liver chimeric mice (Sun and Li, 2017). To determine whether our anti-HBs bNAbs prevent infection in vivo we produced human liver chimeric Fah−/− NODRag1−/− IL2rgnull (huFNRG) mice (de Jong et al., 2014) and injected them with control or H020 (Group-I) or H007 (Group-II) antibodies before infection with HBV (FIG. 7A-7D). These two antibodies were chosen because they bind to non-overlapping sites, and have broad and potent neutralizing activity. Whereas all six control animals in two independent experiments were infected, pre-exposure prophylaxis with either H007 or H020 was fully protective (FIG. 7B-7D). We conclude that single anti-HBs bNAbs targeting different epitopes on the major virus surface antigen can prevent infection in vivo.


To determine whether bNAbs can also control established infections, we infused control antibody or bNAb H020 (Group-I) or H007 (Group-II) into huFNRG mice with HBV viral loads of 106-108 copies/ml of serum (FIG. 7E-7H and FIG. 14A). Fah−/− NODRag1−/− IL2rgnull mice are highly immunodeficient and unable to mount adaptive immune responses due to absence of T and B lymphocytes. In addition, the IL2rgnull mutation prevents cytokine signaling through multiple receptors, leading to a deficiency in innate immune function including antibody-dependent cellular cytotoxicity. Thus, elimination of viremia of 106-108 DNA copies/ml in huFNRG mice by antibody therapy alone would not be expected.


Animals that received the control antibodies further increased viremia to as high as ˜1011 DNA copies/ml (FIG. 7F). In contrast, the 5 mice that received H020 maintained stable levels of viremia for around 30 days (FIG. 7G), after which time 2 mice showed increased viremia (arrow-1/3 in FIG. 7G). A similar result was observed in the 5 mice that received H007 (FIG. 7H), where only one showed a slight increase viremia at around day 50 (arrow-5 in FIG. 7H).


To determine whether the animals that showed increased HBV DNA levels during antibody monotherapy developed escape mutations, we sequenced the viral DNA recovered from mouse blood. All three mice that escaped H020 (Group-I) or H007 (Group-II) monotherapy developed viruses that carried a G145R mutation in the S-protein (arrow-1/3 in FIG. 7G, arrow-5 in FIG. 7H, FIG. 7I, and FIG. 14). This mutation represents a major immune escape mutation in humans (Zanetti et al., 1988). Furthermore, mutations at the same position in the S-protein were also identified in mice that maintained low level viremia (arrow-2/4 in FIG. 7G, arrow-6/7 in FIG. 7H, FIG. 7I, and FIG. 14), but not in control animals (FIG. 14). These results show that anti-HBs bNAb monotherapy leads to the emergence of escape mutations that are consistent with bNAb binding properties in vitro (FIG. 4C).


To determine whether a combination of bNAbs targeting 2 separate epitopes would interfere with the emergence of resistant strains, we co-administered H006+H007 (Group-I and -II, respectively) to 8 HBV-infected huFNRG mice (FIG. 7J). H006 (Group-I) was chosen for this purpose because of its resistance to D144A and G145A mutation (FIG. 4B). Similar to H007 monotherapy, there was only a slight increase in viremia in animals treated with the H006+H007 anti-HBs bNAb combination during the 60-day observation period (FIGS. 7J and 14A). However, sequence analysis revealed that 3 of the mice developed resistance mutations including K122R/G145R, C137Y, and C137Y/D144V (arrow-8/9/10 in FIG. 7J, FIG. 7I, and FIG. 14). These mutations confer loss of binding to both H006 (Group-I) and H007 (Group-II) (FIG. 4C). Thus, the combination of 2 anti-HBs bNAbs targeting separate epitopes but susceptible to the same clinical escape variants is not sufficient to inhibit emergence of escape mutations.


To attempt to block the emergence of escape mutations, we combined H017+H019 (Group-III and -I, respectively) bNAbs because they displayed complementary sensitivity to commonly occurring natural mutations (FIG. 4C). None of 7 mice treated with the combination of showed increased viremia or escape mutations as assessed by sequence analysis (FIGS. 7K and 14A). Similar effects were also observed in the 9 animals treated with the H016, H017 and H019 (Group-II, -III, -I, respectively) triple antibody combination (FIGS. 7L and 14A). Moreover, both these combinations dramatically reduced the HBsAg levels in serum (FIGS. 14C and 14D). Altogether, these findings suggest that control of HBV infection by bNAbs requires a combination of antibodies targeting non-overlapping groups of common escape mutations.












RESOURCES TABLE









REAGENT or RESOURCE
SOURCE
IDENTIFIER





Experimental Models: Cell Lines




Human Hepatocytes, Cryopreserved, Plateable and Interaction Qualified
Lonza Bioscience
Cat#HUCPI


Hepatocyte Defined Medium
Corning
Cat#05449


HepG2-NTCP
(Michailidis et al., 2017)
N/A


HEK293-6E
National Research Council of Canada
NRCfile 11565


HepDE19 cells
(Cai et al., 2012)
N/A


Huh-7.5
(Robbiani et al., 2017)
N/A


Experimental Models: Mouse Strains




Fah−/−NODRag1−/−IL2rg−/− mouse (huFNRG)
(de Jong et al., 2014)
N/A


Bacteria and Viruses




Subcloning Efficiency ™ DH5α ™ Competent Cells
Thermo Fisher Scientific
Cat#18265017


HBV viruses
(Cai et al., 2012)
N


Antibodies




Human recombinant 10-1074
(Mouquet et al., 2012)
N/A


Human recombinant ED38
(Wardemann et al., 2003)
N/A


Human recombinant mG053
(Yurasov et al., 2005)
N/A


Goat anti-Human IgG (H + L) Secondary Antibody, HRP
Thermo Fisher Scientific
Cat#31410


Alexa Fluor 488 Mouse anti-Human CD19
BD Biosciences
Cat#557697


BV421 Mouse Anti-Human CD 19
BD Biosciences
Cat#562440


anti-CD20-PECy7
BD Biosciences
Cat#335811


Anti-CD27-PE
BD Biosciences
Cat#555441


APC Mouse Anti-Human IgG
BD Pharmingen
Cat#550931


Bv421 Mouse Anti-Human IgG
BD Biosciences
Cat#562581


Anti-Hepatitis B virus core antigen IgG
AUSTRAL Biologicals
Cat#HBP-023-9


Alexa Fluor ® 488 AffiniPure Goat Anti-Human IgG, F(ab')2 fragment specific
Jackson ImmunoResearch
Cat#109-545-006


Goat anti-Rabbit IgG (H + L) Alexa Fluor 594
Thermo Fisher Scientific
Cat#A11037


Chemicals and Proteins




Streptavidin HRP
BD Biosciences
Cat#554066


APC Streptavidin
BD Biosciences
Cat#554067


Strep-PE
eBioscience
Cat# 12-4317-87


Streptavidin, Alexa Fluor ™ 488
Thermo Fisher Scientific
Cat#S32354


Human BD Fc Block ™
BD Biosciences
Cat#564220


Ovalbumin (257-264) chicken
Sigma-Aldrich
Cat#S7951


HBsAg adr CHO
ProSpec
Cat#HBS-875


HBsAg adw
ProSpec
Cat#HBS-872


HBsAg protein adr
Fitzgerald
Cat#30-AH37


HBsAg protein ay
Fitzgerald
Cat#30-1816


HBsAg protein ad
Fitzgerald
Cat#30-AH15


HBsAg protein ayw
Fitzgerald
Cat#30R-AH018


RNAsin Plus RNAse inhibitor
Promega
Cat#N2615


Random Primers
Thermo Fisher Scientific
Cat#48190011


Lipopolysaccharides from E. coli O55:B5
Sigma-Aldrich
Cat#L2637


Insulin solution human
Sigma-Aldrich
Cat#I1927


Deoxyribonucleic acid from calf thymus
Sigma-Aldrich
Cat#4522


Hemocyanin from Megathuracrenulata (keyhole limpet)
Sigma-Aldrich
Cat#H8283


Poly(ethylene glycol)
Sigma-Aldrich
Cat#81268


Normal Goat Serum
Jackson ImmunoResearch
Cat#005-000-121


DAPI, FluoroPure ™ grade
Thermo Fisher Scientific
Cat#D21490


Paraformaldehyde 4% Aqueous Solution
Electron Microscopy Sciences
Cat#157-4


Phusion High-Fidelity DNA Polymerase
Thermo Fisher Scientific
Cat#F-530L


Commercial Assays




ARCHITECT Anti-HBs
Abbott Laboratories
Cat#B7C180


ARCHITECT HBsAg Qualitative
Abbott Laboratories
Cat#BlP970


ARCHITECT Anti-HBc II
Abbott Laboratories
Cat#B8L440


HBsAg CLIA kit
Autobio Diagnostics Co.
Cat#CL0310-2


HBeAg CLIA kit
Autobio Diagnostics Co.
Cat#CL0312-2


Anti-HBs CLIA kit
Autobio Diagnostics Co.
Cat#CL0311-2


LS magnetic columns
Miltenyi Biotech
Cat#130-042-401


CD 19 MicroBeads, human
Miltenyi Biotech
Cat#130-097-05 5


EZ-Link ™ Micro NHS-PEG4- Biotinylation Kit
Thermo Fisher Scientific
Cat#21955


Superscript III Reverse Transcriptase
Thermo Fisher Scientific
Cat# 18080044


QIAamp DNA blood mini kit
Qiagen
Cat#51104


TaqMan Universal PCR Master Mix
Applied Biosystems
Cat#4304437


Antinuclear antibodies (HEp-2) Kit
MBL International
Cat#ANK-120


Centricon Plus-70 Ultracel PL-100
Millipore Sigma
Cat#UFC710008


X-tremeGENE 9 DNA Transfection Reagent
Sigma-Aldrich
Cat#6365787001


Plasmids




IGγ1 expression vector
(von Boehmer et al., 2016)
N/A


IGκ expression vector
(von Boehmer et al., 2016)
N/A


IGλ expression vector
(von Boehmer et al., 2016)
N/A


p1.3xHBV-WT
Laboratory of Charles M. Rice
N/A


Softwares and Websites




PRISM
GraphPad
www.graphpad.com


IgBlast
(Ye et al., 2013)
www.ncbi.nlm.nih.gov/igblast/


IMGT/V-QUEST
(Lefranc et al., 2015)
www.imgt.org/IMGT_vquest/vquest


Geneious Prime
Geneious
www.geneious.com/









Example 8

This Example provides a description of materials, methods, and subjects used to obtain the foregoing results.


Experimental Models and Subjects


Human Subjects


Volunteer recruitment and blood draws were performed at the Rockefeller University Hospital under a protocol approved by the institutional review board (IRB QWA-0947). Study participants ranged in age from 22-65 with a mean of 43, the female:male ratio was 81:78 (FIGS. 8D and 8E; Table 51).


Animals


Fah−/− NODRag1−/− IL2rgnull (FNRG) female mice were produced as reported (de Jong et al., 2014) and maintained in the AAALAC-certified facility of the Rockefeller University. Animal protocols were in accordance with NIH guidelines and approved by the Rockefeller University Institutional Animal Care and Use Committee under protocol #18063. Female littermates were randomly assigned to experimental groups.


Cell Lines


HepG2-NTCP cells (Michailidis et al., 2017) and HepDE19 cells (Cai et al., 2012) were maintained in collagen-coated flasks in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% or 3% fetal bovine serum (FBS) and 0.1 mM non-essential amino acids (NEAA). Huh7.5-NTCP cells were maintained in DMEM supplemented with 10% FBS and 0.1 mM NEAA. All liver cell lines were cultured at 37° C. in 5% CO2. Human embryonic kidney HEK293-6E suspension cells were cultured at 37° C. in 8% CO2 with shaking at 120 rpm.


Viruses


HBV-containing supernatant from HepDE19 cells was collected and concentrated as previously described (Michailidis et al., 2017). The concentrated virus stock was aliquoted and stored at −80° C. For in vivo experiments one aliquot of mouse-passaged genotype C HBV virus, originally launched from patient serum (Billerbeck et al., 2016), was stored at −80° C. and thawed for mouse infection experiments. For protection and treatment experiments, animals were challenged intravenously using 1×104 DNA copies per mouse.


Bacteria



E. coli DH5-alpha were cultured at 37° C. with shaking at 230 rpm.


Methods


Collection of Human Samples


Samples of peripheral blood were collected from volunteers at the Rockefeller University Hospital. Serum was isolated by centrifugation of coagulated whole blood, and aliquoted for storage at −80° C. PBMCs were isolated using a cell separation tube with frit barrier and cryopreserved in liquid nitrogen in 90% heat-inactivated FBS supplemented with 10% dimethylsulfoxide (DMSO).


HBV Stock


HepDE19 cells (Cai et al., 2012) were cultured in the absence of tetracycline to induce HBV replication. After seven days, supernatant was collected every other day for two weeks and fresh medium was added. After each collection, medium was spun down to remove cell debris, passed through a 0.22 μm filter, and kept at 4° C. Collected medium was concentrated 100-fold via centrifugation using Centricon Plus-70 centrifugal filter devices (Millipore-Sigma, Billerica, Mass.). Mouse-passaged genotype C HBV virus (Billerbeck et al., 2016) was used for in vivo mouse experiment.


In Vitro HBV Neutralization Assay


In vitro HBV infection was performed as previously described (Michailidis et al., 2017). Briefly, HepG2-NTCP cells were seeded in 96-well collagen-coated plates in DMEM supplemented with 10% FBS and 0.1 mM NEAA. The medium was changed to DMEM with 3% FBS, 0.1 mM NEAA, and 2% DMSO the next day and cultured for an additional 24 hours before infection. The inoculation was in DMEM supplemented with 3% FBS and 0.1 mM NEAA 4% PEG and 2% DMSO. Antibodies or serum samples were incubated with the virus in the inoculation medium for one hour at 37° C. before adding to cells. Serum neutralization capacity (y-axis in FIGS. 1A and 8B) was calculated as the reciprocal of the relative percentage of infected HepG2-NTCP cells immunostained by rabbit anti-HBV core antibody (AUSTRAL Biologicals). For example, if the relative percentage of infected cells were 100% (no serum added or the sera from unexposed naïve control donors), the serum neutralization capacity would be calculated as 1; but if the relative percentage of infected cells were 50% or 10%, the serum neutralization capacity would be 2 or 10. For the blocking neutralization assay, S-protein antigen at different concentration was incubated with purified polyclonal antibodies for one hour at 37° C. before incubation with HBV virus. The cells were then spinoculated for one hour by centrifugation at 1,000 g at 37° C. After a 24-hour incubation, supernatant was removed, cells were washed five times with PBS, and 100 μl of fresh DMEM supplemented with 3% FBS, 0.1 mM NEAA, and 2% DMSO. Both supernatant and cells were harvested 7 days after infection for analysis. Neutralization assays in primary human hepatocytes were performed as above using hepatocytes from livers of highly humanized mice that were harvested and seeded on collagen-coated plates in hepatocyte defined medium (Corning) (Michailidis et al., 2020).


Chemiluminescence Immunoassay


For quantitative analysis of secreted antigen HBsAg or HBeAg, 50 μl of the collected supernatant was loaded into 96-well plates of a chemiluminescence immunoassay (CLIA) kit (Autobio Diagnostics Co., Zhengzhou, China) according to the manufacturer's instructions. Plates were read using a FLUOstar Omega luminometer (BMG Labtech). The absolute concentrations were measured and the relative values were calculated by normalizing to the virus-only control well in the same lane. For example, the absolute HBsAg/HBeAg level in virus-only control well (considered as reference) was 20 NCU/ml (national clinical units per milliliter), while adding one neutralizing serum sample might reduce this to 5 NCU/ml. Therefore, after normalization, the relative HBsAg/HBeAg level were calculated as 100% in control and 25% for this neutralizing serum. Since many factors (virus concentration, cell concentration, immunofluorescence reading, etc.) vary between different plates or different rounds of experiments, normalization is necessary for combining data for comparison.


Immunofluorescence


Cells were fixed in 4% paraformaldehyde for 20 minutes at room temperature, washed with PBS and permeabilized with 0.1% Triton X-100 in PBS. After blocking with 5% goat serum, the cells were incubated with rabbit anti-HBV core antibody (AUSTRAL Biologicals) overnight at 4° C. and visualized with goat anti-rabbit Alexa Fluor 594 (Thermo Fisher Scientific). Nuclei were stained with DAPI. Cells were imaged using a Nikon Eclipse TE300 fluorescent microscope and processed with ImageJ. For high-content imaging analysis ImageXpress Micro XLS (Molecular Devices, Sunnyvale, Calif.) was used. The absolute HBc+ percentages were obtained and the relative percentage of HBc+ cells was calculated by normalizing to the virus-only control well in the same lane. For example, the absolute HBc+ cell percentage in virus-only control well (considered as reference) was 40%, while adding one neutralizing serum sample might reduce this to 10%. Therefore, after normalization, the relative percentages of HBc+ cells were calculated as 100% in control well and 25% for this neutralizing serum sample. Since many factors (virus concentration, cell concentration, immunofluorescence reading, etc.) vary between different plates or different rounds of experiments, normalization is necessary for combining data for comparison.


ELISA Assays


Blood samples were submitted to Memorial Sloan Kettering Cancer Center for clinical testing. The presence of HBsAg protein and anti-HBc antibody, as well as anti-HBs titers, were determined by ELISA (Abbott Laboratories) as per the manufacturer's instructions.


The binding of serum or recombinant IgG antibodies to HBsAg proteins (see KEY RESOURCES TABLE) was measured by coating ELISA plates with 10 μg/ml of antigen in PBS. Plates were blocked with 2% BSA in PBS and incubated with antibody for one hour at room temperature. Visualization was with HRP-conjugated goat anti-human IgG (Thermo Fisher Scientific). The 50% effective concentration (EC50) needed for maximal binding was determined by non-linear regression analysis in software PRISM.


For competition ELISAs plates were coated with 0.12 μg/m1HBsAg (adr CHO) and incubated with 16.7 μg/ml primary antibody for two hours, followed by directly adding 0.25 μg/ml biotinylated secondary antibody and incubation for 30 minutes all at room temperature. Detection was with streptavidin-HRP (BD Biosciences).


Autoreactivity and Polyreactivity


Autoreactivity and polyreactivity assays were performed as described (Gitlin et al., 2016; Mayer et al., 2017; Robbiani et al., 2017). For the autoreactivity assays, monoclonal antibodies were tested with the Antinuclear antibodies (HEp-2) Kit (MBL International). Antibodies were incubated at 100 μg/ml and were detected with Alexa Fluor 488 AffiniPure F(ab′)2 Fragment Goat Anti-Human IgG (H+L) (Jackson ImmunoResearch) at 10 μg/ml. Fluorescence images were taken with a wide-field fluorescence microscope (Axioplan 2, Zeiss), a 40× dry objective and a Hamamatsu Orca ER B/W digital camera. Images were analyzed with Image J. Human serum containing antinuclear antibodies (MBL International) was used as a positive control. For the polyreactivity ELISA assays, antibody binding to five different antigens, double-stranded DNA (dsDNA), insulin, keyhole limpet hemocyanin (KLH), lipopolysaccharides (LPS), and single-stranded DNA (ssDNA), were measured. ED38 (Wardemann et al., 2003) and mG053 (Yurasov et al., 2005) antibodies were used as positive and negative controls, respectively.


Synthetic Peptides


Eighteen peptides spanning the antigenic loop region of S-protein antigen were synthesized at the Proteomics Resource Center of The Rockefeller University. For peptide ELISAs plates were coated with 10 μg/ml peptide in PBS.


HBsAg-Binding Memory B Cells


S-protein (adr serotype) expressed and purified from Chinese hamster ovary (CHO) cells (ProSpec) and ovalbumin (Sigma-Aldrich) were biotinylated using EZ-Link™ Micro NHS-PEG4-Biotinylation kit (Thermo Fisher Scientific). S-protein-PE and S-protein-APC were prepared by incubating 2-3 μg of biotin-S-protein with streptavidin-PE (eBioscience) or streptavidin-APC (BD Biosciences) in PBS respectively overnight at 4° C. in the dark. Ovalbumin-Alexa Fluor 488 was generated by incubating biotin-ovalbumin with streptavidin-Alexa Fluor 488 (Thermo Fisher Scientific).


B cell purification, labeling, and sorting were as previously described (Escolano et al., 2019; Robbiani et al., 2017; Tiller et al., 2008; von Boehmer et al., 2016). Briefly, PBMCs were thawed and washed with RPMI medium at 37° C. B lymphocytes were positively selected using CD19 MicroBeads (Miltenyi Biotec) followed by incubation with human Fc block (BD Biosciences) and anti-CD20-PECy7 (BD Biosciences), anti-IgG-Bv421 (BD Biosciences), S-protein-PE at 10 μg/ml, S-protein-APC at 10 μg/ml, and ovalbumin-Alexa Fluor 488 at 10 μg/ml at 4° C. for 20 minutes. Single CD20+ IgG+ S-protein-PE+ S-protein-APC+ Ova-Alexa Fluor 488 memory B cells were sorted into 96-well plates using a FACSAriaII (Becton Dickinson) and stored at −80° C.


Antibody Cloning, Sequencing and Production


Antibody cloning, sequencing and production were done as previously reported (Robbiani et al., 2017; Tiller et al., 2008; von Boehmer et al., 2016). Primers are listed in Table S3. Unmutated common ancestor (UCA) antibody sequences of H006, H019 and H020 were synthesized by gBlock IDT (Table S3) and were inserted into antibody vectors for expression. V(D)J gene segment and CDR3 sequences were determined by IgBlast (Ye et al., 2013) and/or IMGT/V-QUEST (Brochet et al., 2008).


S-Protein Mutagenesis


Oligonucleotides fragments with the target point mutations were synthesized by gBlock IDT (Table S3), and were substituted into the antigenic loop region in plasmid p1.3×HBV-WT by Sequence and Ligation-Independent Cloning (SLIC) (Jeong et al., 2012). Mutant plasmids were transfected into Huh-7.5-NTCP cells using X-tremeGENE 9 DNA Transfection Reagent (Sigma-Aldrich) and the culture medium was changed to serum-free DMEM after 24 hours. Supernatants were collected 2 days later and stored at −80° C. Serum-free medium (50 μl) was directly used to coat ELISA plates.


Crystallization, X-Ray Data Collection, Structure Determination and Refinement


Antibody Fab (25 mg/ml) in 50 mM Tris 8.0, 50 mM NaCl was mixed with peptide (5 mg/ml) in the same buffer at 5:1 v/v. Molar ratio of Fab:peptide is around 1:2. Crystals were obtained upon substitution of all peptide-11 cysteine residues with serine in the peptide synthesis (Proteomics Resource Center, RU). The crystallization condition for Fab15/peptide-11Ser was identified from a commercial screen (Morpheus by Molecular Dimensions) by the sitting-drop vapor-diffusion method at room temperature. The crystal used for data collection was obtained directly from the initial setup (position E1) in a precipitant solution consisting of 0.12 M Ethylene glycols (Di, Tri, Tetra and Penta-ethylene glycol), 0.1 M Buffer Mix 1 (Imidazole/MES) at pH 6.5 and 30% Precipitant Mix 1 (20% v/v PEG 500* MME; 10% w/v PEG 20000). The crystals were flash-cooled in liquid nitrogen directly from the mother liquor without additional cryoprotectant. X-ray diffraction data were collected from a single crystal on the Advanced Photon Source (APS) beamline 24-ID-E to 1.78 Å resolution. The data were integrated and scaled with the program XDS (Kabsch, 2010a, b) and other data processing utilities from the CCP4 suite (Collaborative Computational Project, 1994) using RAPD, the software available at the beam-line. Initial phase estimates and electron-density maps were obtained by molecular replacement with Phaser (McCoy et al., 2007) using a single FAB molecule from (PDB: SGGU) as an initial search model in Phenix (Adams et al., 2010). Iterative model building and structural refinement were manually performed using COOT (Emsley et al., 2010) and Phenix, respectively. The peptide density was well defined, and refined to 90% occupancy, for residues STKPSDGNST (SEQ ID NO: 25). All other residues were not visible and the area where they would be is fully solvent, with no crystal contacts involving any of the peptide atoms. The quality of the final model was good as noted in a Ramachandran of 96% of the observed residues within the allowable region. Data-collection and refinement statistics are summarized (FIG. 13B). All molecular graphics were prepared with PyMOL (Version 2.0 Schrödinger, LLC). Atomic coordinates and experimental structure factors have been deposited in the PDB under accession code 6VJT.


Humanized Mice and In Vivo Studies


Six to eight week old Fah−/− NODRag1−/− IL2rgnull (FNRG) female mice were transplanted with one million human hepatocytes from a pediatric female donor HUM4188 (Lonza Bioscience) as previously described (de Jong et al., 2014). Briefly, during isoflurane anesthesia mice underwent skin and peritoneal incision, exposing the spleen. One million hepatocytes were injected in the spleen using a 28-gauge needle. The peritoneum was then approximated using 4.0 VICRYL sutures (Johnson & Johnson), and skin was closed using MikRon Autoclip surgical clips (Becton Dickinson). Mice were cycled off the drug nitisinone (Yecuris) on the basis of weight loss and overall health. Humanization was monitored by human albumin quantification in mouse serum using a human-specific ELISA (Bethyl Labs). Humanized FNRG mice with human albumin values greater than 1 mg/ml were used for infection experiments. The human liver chimeric (huFNRG) mice are extremely immunodeficient. The Rag1−/− renders the mice B and T cell deficient and the IL2rgnull mutation prevents cytokine signaling through multiple receptors, leading to a deficiency in functional NK cells. Moreover, the genetic background is NOD background, with suboptimal antigen presentation, defects in T and NK cell function, reduced macrophage cytokine production, suppressed wound healing, and C5 complement deficiency. Thus the mice would be unable to produce antibody-dependent effector functions, including antibody-dependent cell-mediated cytotoxicity (ADCC), or passive antibody-enhanced adaptive immunity.


Mice were challenged intravenously with 1×104 genome equivalent (GE) of mouse-passaged genotype C HBV viruses diluted in PBS. For prophylaxis experiments, 500 μg of monoclonal antibody was administered intraperitoneally at 20 and again at 6 hours before infection. For therapy experiments, huFNRG mice with established HBV infections (<108 DNA copies/ml of serum) were injected with 500 μg of each monoclonal antibody intraperitoneally 3 times per week.


DNA in mouse serum collected weekly was extracted using a QIAamp DNA Blood Mini Kit (Qiagen). Total HBV DNA was determined by quantitative PCR (Michailidis et al., 2017). PCR was performed using a TaqMan Universal PCR Master Mix (Applied Biosystems), primers and probe (Table S3).


To obtain HBV DNA from serum for sequence analysis the S domain was amplified using primers (Table S3), and Phusion DNA polymerase (Thermo Fisher Scientific). Initial denaturation was at 98° C. for 30 s, followed by 40 amplification cycles (98° C. for 10 s, 60° C. for 30 s, and 72° C. for 30 s), followed by one cycle at 72° C. for 5 min. A ˜700 bp fragment was gel extracted for Sanger sequencing. Sequence alignments were performed using MacVector.


Quantification and Statistical Analysis


The detailed information of statistical analysis could be found in the Result and Figure Legends. Correlation was evaluated by Spearman's rank correlation method (FIGS. 1A and 2B). Statistical significance was calculated by Dunn's Kruskal-Wallis multiple comparisons with p values corrected with the Benjamini-Hochberg procedure (FIG. 8C). The 50% effective concentration (EC50) values by ELISA assays (FIGS. 3A and 3C) and 50% inhibitory concentration (IC50) values by neutralization assays (FIG. 5C) were calculated by nonlinear regression analysis in PRISM software.


DISCUSSION OF EXAMPLES

Previous studies have identified several anti-HBs neutralizing antibodies from a small number of otherwise unselected spontaneously recovered or vaccinated individuals (Cerino et al., 2015; Colucci et al., 1986; Eren et al., 1998; Heijtink et al., 2002; Heijtink et al., 1995; Jin et al., 2009; Kim and Park, 2002; Li et al., 2017; Sa'adu et al., 1992; Sankhyan et al., 2016; Tajiri et al., 2007; Tokimitsu et al., 2007; Wang et al., 2016). In contrast, in the present disclosure, sera from 144 exposed volunteers was screened to identify elite neutralizers. Serologic activity varied greatly among the donors with a small number of individuals demonstrating high levels of neutralizing activity. To understand this activity, we isolated 244 anti-HBs antibodies from single B cells obtained from the top donors. Each of the elite donors tested showed expanded clones of memory B cells expressing bNAbs that targeted 3 non-overlapping sites on the S-protein. Moreover, the amino acid sequence of several of the bNAbs was highly similar in different individuals. These closely related antibodies target the same epitope.


The near identity of clones of HBV bNAbs in unrelated elite individuals is akin to reports for elite responders to HIV-1 (Scheid et al., 2011; West et al., 2012), influenza (Laursen and Wilson, 2013; Pappas et al., 2014; Wrammert et al., 2011), Zika (Robbiani et al., 2017), and malaria (Tan et al., 2018). However, none of the elite anti-HBs bNAbs shares both IgH and IgL with previously reported HBV neutralizing antibodies, the best of which have been tested in the clinic but are less potent than some of the bNAbs of this disclosure (libivirumab IC50: 35 ng/ml, tuvirumab IC50: ˜100 ng/ml) (Galun et al., 2002; Heijtink et al., 2001; van Nunen et al., 2001).


The described alanine scanning and competition binding analyses are consistent with the existence of at least 3 domains that can be recognized concomitantly by bNAbs (Gao et al., 2017; Tajiri et al., 2010; Zhang et al., 2016). However, the domains do not appear to be limited to either of two previously defined circular peptide epitopes, 123-137 and 139-148 (Tajiri et al., 2010; Zhang et al., 2016). Instead, residues spanning most of the external domain can contribute to binding by both Group-I and -II antibodies. For example, alanine scanning indicates that Group-I H020 binding is dependent on I110, K141, D144, G145 and T148, while Group-II H016 binding depends on T123, D144, and G145. Thus, despite having non-overlapping binding sites some of the essential residues are shared by Group-I and II suggesting that the epitopes are conformational. Moreover, the antibody epitopes on S-protein identified using mouse and human antibodies may be distinct (Chen et al., 1996; Ijaz et al., 2003; Paulij et al., 1999; Zhang et al., 2019; Zhang et al., 2016). Finally, G145, a residue that is frequently mutated in infected humans (Ma and Wang, 2012; Tong et al., 2013), is believed to be essential for binding by all the Group-II but not all Group-I or -III antibodies tested.


Crystallization of the Group-II bNAb H015 and its linear epitope revealed a loop that includes P142, S/T143, D144, and G145, all of which are frequently mutated during natural infection to produce well-documented immune escape variants (Hsu et al., 2015; Ijaz et al., 2012; Ma and Wang, 2012; Salpini et al., 2015). In addition to immune escape, the residues that form this structure are also essential for infectivity, possibly by facilitating virus interactions with cell surface glycosaminoglycans (Sureau and Salisse, 2013). Mutations in K141, P142 as well as C139 and C147, all of which contribute to the stability of the structure, decrease viral infectivity (Salisse and Sureau, 2009). Without intending to be bound by any particular theory, it is considered that drugs that destabilize the newly elucidated H015-peptide loop structure may also interfere with infectivity.


The G145R mutation, which is among the most frequent immune escape variants, replaces a small neutral residue with a bulky charged residue that would likely interfere with antigenicity by destroying the salt bridge between K141 and D144 that anchors the peptide loop. However, this drastic structural change does not alter infectivity (Salisse and Sureau, 2009), possibly because the additional charge compensates for otherwise altered interactions between HBV and cell surface glycosaminoglycans (Sureau and Salisse, 2013). Thus, the additional charge may allow G145R to function as a dominant immune escape variant while preserving infectivity.


The present disclosure describes antibodies directed at S-protein antigen in part because this is the antigen used in the currently FDA-approved vaccines, and because purified S-protein blocked nearly all of the neutralizing activity in the serum of the elite neutralizers irrespective of whether they were vaccinated or spontaneously recovered. Nevertheless, individuals who recover from infection also produce antibodies to the PreS1 domain of HBsAg (Li et al., 2017; Sankhyan et al., 2016). The PreS1 domain is essential for the virus to interact with the entry factor NCTP on hepatocytes and potent neutralizing antibodies to PreS1 have been described (Li et al., 2017). However, these are not naturally occurring antibodies but rather randomly paired IgH and IgL chains derived from phage libraries obtained from unexposed or vaccinated healthy donors (Li et al., 2017). Moreover, the phage antibodies required further engineering to enhance their neutralizing activity (Li et al., 2017). Thus, whether the human immune system also produces potent anti-PreS1 bNAbs has not been determined.


Chronic HBV infection remains a major global public health problem in need of an effective curative strategy (Graber-Stiehl, 2018; Lazarus et al., 2018; Revill et al., 2016). Chronically infected individuals produce an overwhelming amount of HBsAg that is postulated to incapacitate the immune system. Consequently, immune cells, which might normally clear the virus, are unable to react to antigen, a phenomenon referred to as exhaustion or anergy (Ye et al., 2015). The appearance of anti-HBs antibodies is associated with spontaneous recovery from the disease, perhaps because they can clear the antigen and facilitate the emergence of a productive immune response (Celis and Chang, 1984; Zhang et al., 2016; Zhu et al., 2016). These findings led to the hypothesis that passively administered antibodies might be used in conjunction with antiviral drugs to further decrease the antigenic burden while enhancing immune responses that maintain long-term control of the disease. The presently described results in huFNRG mice infected with HBV indicate that antibody monotherapy with a potent bNAb can lead to the emergence of the very same escape mutations commonly found in chronically infected individuals. Moreover, not all bNAb combinations are effective in preventing escape by mutation. Combinations that target separate epitopes but have overlapping sensitivity to commonly occurring escape mutations such as H006 and H007 are ineffective. In contrast, combinations with complementary sensitivity to common escape mutations prevent the emergence of escape mutations in huFNRG mice infected with HBV. Thus, as described above, the present disclosure provides immunotherapy for HBV infection with combinations of antibodies with complementary activity to avert this potential problem.


The following reference listing is not an indication that any particular reference(s) is material to patentability.

  • Abou-Jaoude, G., and Sureau, C. (2007). Entry of hepatitis delta virus requires the conserved cysteine residues of the hepatitis B virus envelope protein antigenic loop and is blocked by inhibitors of thiol-disulfide exchange. J Virol. 81(23), 13057-13066. DOI: 10.1128/JVI.01495-07.
  • Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 66(Pt 2), 213-221. DOI: 10.1107/S0907444909052925.
  • Bancroft, W. H., Mundon, F. K., and Russell, P. K. (1972). Detection of additional antigenic determinants of hepatitis B antigen. J Immunol. 109(4), 842-848.
  • Billerbeck, E., Mommersteeg, M. C., Shlomai, A., Xiao, J. W., Andrus, L., Bhatta, A., Vercauteren, K., Michailidis, E., Dorner, M., Krishnan, A., et al. (2016). Humanized mice efficiently engrafted with fetal hepatoblasts and syngeneic immune cells develop human monocytes and NK cells. J Hepatol. 65(2), 334-343. DOI: 10.1016/j.jhep.2016.04.022.
  • Blumberg, B. S. (1964). Polymorphisms of the Serum Proteins and the Development of Iso-Precipitins in Transfused Patients. Bull N Y Acad Med. 40, 377-386.
  • Braden, B. C., and Poljak, R. J. (1995). Structural features of the reactions between antibodies and protein antigens. FASEB J. 9(1), 9-16. DOI: 10.1096/fasebj.9.1.7821765.
  • Brochet, X., Lefranc, M. P., and Giudicelli, V. (2008). IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 36 (Web Server issue), W503-508. DOI: 10.1093/nar/gkn316.
  • Cai, D., Mills, C., Yu, W., Yan, R., Aldrich, C. E., Saputelli, J. R., Mason, W. S., Xu, X., Guo, J. T., Block, T. M., et al. (2012). Identification of disubstituted sulfonamide compounds as specific inhibitors of hepatitis B virus covalently closed circular DNA formation. Antimicrob Agents Chemother. 56(8), 4277-4288. DOI: 10.1128/AAC.00473-12.
  • Celis, E., and Chang, T. W. (1984). Antibodies to hepatitis B surface antigen potentiate the response of human T lymphocyte clones to the same antigen. Science. 224(4646), 297-299. DOI: 10.1126/science.6231724.
  • Cerino, A., Bremer, C. M., Glebe, D., and Mondelli, M. U. (2015). A Human Monoclonal Antibody against Hepatitis B Surface Antigen with Potent Neutralizing Activity. PLoS One. 10(4), e0125704. DOI: 10.1371/journal.pone.0125704.
  • Chen, Y. C., Delbrook, K., Dealwis, C., Mimms, L., Mushahwar, I. K., and Mandecki, W. (1996). Discontinuous epitopes of hepatitis B surface antigen derived from a filamentous phage peptide library. Proc Natl Acad Sci USA. 93(5), 1997-2001. DOI: 10.1073/pnas.93.5.1997.
  • Collaborative Computational Project, N. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 50(Pt 5), 760-763. DOI: 10.1107/S0907444994003112.
  • Colucci, G., Kohtz, D. S., and Waksal, S. D. (1986). Preparation and characterization of human monoclonal antibodies directed against the hepatitis B virus surface antigen. Liver. 6(3), 145-152.
  • Coursaget, P., Adamowicz, P., Bourdil, C., Yvonnet, B., Buisson, Y., Barres, J. L., Saliou, P., Chiron, J. P., and Mar, I.D. (1988). Anti-pre-S2 antibodies in natural hepatitis B virus infection and after immunization. Vaccine. 6(4), 357-361.
  • Dane, D. S., Cameron, C. H., and Briggs, M. (1970). Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet. 1(7649), 695-698.
  • de Jong, Y. P., Dorner, M., Mommersteeg, M. C., Xiao, J. W., Balazs, A. B., Robbins, J. B., Winer, B. Y., Gerges, S., Vega, K., Labitt, R. N., et al. (2014). Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Sci Transl Med. 6(254), 254ra129. DOI: 10.1126/scitranslmed.3009512.
  • Dienstag, J. L. (2008). Hepatitis B virus infection. N Engl J Med. 359(14), 1486-1500. DOI: 10.1056/NEJMra0801644.
  • Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 66(Pt 4), 486-501. DOI: 10.1107/S0907444910007493.
  • Eren, R., Ilan, E., Nussbaum, O., Lubin, I., Terkieltaub, D., Arazi, Y., Ben-Moshe, O., Kitchinzky, A., Ben, S., Gopher, J., et al. (2000). Preclinical evaluation of two human anti-hepatitis B virus (HBV) monoclonal antibodies in the HBV-trimera mouse model and in HBV chronic carrier chimpanzees. Hepatology. 32(3), 588-596. DOI: 10.1053/jhep.2000.9632.
  • Eren, R., Lubin, I., Terkieltaub, D., Ben-Moshe, O., Zauberman, A., Uhlmann, R., Tzahor, T., Moss, S., Ilan, E., Shouval, D., et al. (1998). Human monoclonal antibodies specific to hepatitis B virus generated in a human/mouse radiation chimera: the Trimera system. Immunology. 93(2), 154-161. DOI: 10.1046/j.1365-2567.1998.00426.x.
  • Escolano, A., Gristick, H. B., Abernathy, M. E., Merkenschlager, J., Gautam, R., Oliveira, T. Y., Pai, J., West, A. P., Jr., Barnes, C. O., Cohen, A. A., et al. (2019). Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 570(7762), 468-473. DOI: 10.1038/s41586-019-1250-z.
  • Galun, E., Eren, R., Safadi, R., Ashour, Y., Terrault, N., Keeffe, E. B., Matot, E., Mizrachi, S., Terkieltaub, D., Zohar, M., et al. (2002). Clinical evaluation (phase I) of a combination of two human monoclonal antibodies to HBV: safety and antiviral properties. Hepatology. 35(3), 673-679. DOI: 10.1053/jhep.2002.31867.
  • Ganem, D. (1982). Persistent infection of humans with hepatitis B virus: mechanisms and consequences. Rev Infect Dis. 4(5), 1026-1047.
  • Gao, Y., Zhang, T. Y., Yuan, Q., and Xia, N. S. (2017). Antibody-mediated immunotherapy against chronic hepatitis B virus infection. Hum Vaccin Immunother. 13(8), 1768-1773. DOI: 10.1080/21645515.2017.1319021.
  • Gilchuk, P., Kuzmina, N., Ilinykh, P. A., Huang, K., Gunn, B. M., Bryan, A., Davidson, E., Doranz, B. J., Turner, H. L., Fusco, M. L., et al. (2018). Multifunctional Pan-ebolavirus Antibody Recognizes a Site of Broad Vulnerability on the Ebolavirus Glycoprotein. Immunity. 49(2), 363-374 e310. DOI: 10.1016/j.immuni.2018.06.018.
  • Gitlin, A. D., von Boehmer, L., Gazumyan, A., Shulman, Z., Oliveira, T. Y., and Nussenzweig, M. C. (2016). Independent Roles of Switching and Hypermutation in the Development and Persistence of B Lymphocyte Memory. Immunity. 44(4), 769-781. DOI: 10.1016/j.immuni.2016.01.011.
  • Graber-Stiehl, I. (2018). The silent epidemic killing more people than HIV, malaria or TB. Nature. 564(7734), 24-26. DOI: 10.1038/d41586-018-07592-7.
  • Heijtink, R. A., Kruining, J., van Bergen, P., de Rave, S., van Hattum, J., Schutten, M., and Osterhaus, A. D. (2002). Characterization of a human monoclonal antibody obtained after immunization with plasma vaccine and a booster with recombinant-DNA hepatitis B vaccine. J Med Virol. 66(3), 304-311.
  • Heijtink, R. A., Kruining, J., Weber, Y. A., de Man, R. A., and Schalm, S. W. (1995). Anti-hepatitis B virus activity of a mixture of two monoclonal antibodies in an “inhibition in solution” assay. Hepatology. 22 (4 Pt 1), 1078-1083.
  • Heijtink, R. A., van Nunen, A. B., van Bergen, P., Ostberg, L., Osterhaus, A. D., and de Man, R. A. (2001). Administration of a human monoclonal antibody (TUVIRUMAB) to chronic hepatitis B patients pre-treated with lamivudine: monitoring of serum TUVIRUMAB in immune complexes. J Med Virol. 64(4), 427-434.
  • Hsu, H. Y., Chang, M. H., Ni, Y. H., Chiang, C. L., Wu, J. F., and Chen, H. L. (2015). Universal infant immunization and occult hepatitis B virus infection in children and adolescents: a population-based study. Hepatology. 61(4), 1183-1191. DOI: 10.1002/hep.27650.
  • Hu, J., and Liu, K. (2017). Complete and Incomplete Hepatitis B Virus Particles: Formation, Function, and Application. Viruses. 9(3), E56. DOI: 10.3390/v9030056.
  • Hyakumura, M., Walsh, R., Thaysen-Andersen, M., Kingston, N.J., La, M., Lu, L., Lovrecz, G., Packer, N. H., Locarnini, S., and Netter, H. J. (2015). Modification of Asparagine-Linked Glycan Density for the Design of Hepatitis B Virus Virus-Like Particles with Enhanced Immunogenicity. J Virol. 89(22), 11312-11322. DOI: 10.1128/JVI.01123-15.
  • Ijaz, S., Ferns, R. B., and Tedder, R. S. (2003). A ‘first loop’ linear epitope accessible on native hepatitis B surface antigen that persists in the face of ‘second loop’ immune escape. J Gen Virol. 84(Pt 2), 269-275. DOI: 10.1099/vir.0.18667-0.
  • Ijaz, S., Szypulska, R., Andrews, N., and Tedder, R. S. (2012). Investigating the impact of hepatitis B virus surface gene polymorphism on antigenicity using ex vivo phenotyping. J Gen Virol. 93(Pt 11), 2473-2479. DOI: 10.1099/vir.0.044305-0.
  • Ito, K., Qin, Y., Guarnieri, M., Garcia, T., Kwei, K., Mizokami, M., Zhang, J., Li, J., Wands, J. R., and Tong, S. (2010). Impairment of hepatitis B virus virion secretion by single-amino-acid substitutions in the small envelope protein and rescue by a novel glycosylation site. J Virol. 84(24), 12850-12861. DOI: 10.1128/JVI.01499-10.
  • Jeong, J. Y., Yim, H. S., Ryu, J. Y., Lee, H. S., Lee, J. H., Seen, D. S., and Kang, S. G. (2012). One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol. 78(15), 5440-5443. DOI: 10.1128/AEM.00844-12.
  • Jin, A., Ozawa, T., Tajiri, K., Obata, T., Kondo, S., Kinoshita, K., Kadowaki, S., Takahashi, K., Sugiyama, T., Kishi, H., et al. (2009). A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood. Nat Med. 15(9), 1088-1092. DOI: 10.1038/nm.1966.
  • Julithe, R., Abou-Jaoude, G., and Sureau, C. (2014). Modification of the hepatitis B virus envelope protein glycosylation pattern interferes with secretion of viral particles, infectivity, and susceptibility to neutralizing antibodies. J Virol. 88(16), 9049-9059. DOI: 10.1128/JVI.01161-14.
  • Kabsch, W. (2010a). Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr. 66(Pt 2), 133-144. DOI: 10.1107/S0907444909047374.
  • Kabsch, W. (2010b). Xds. Acta Crystallogr D Biol Crystallogr. 66(Pt 2), 125-132. DOI: 10.1107/S0907444909047337.
  • Kim, S. H., and Park, S. Y. (2002). Selection and characterization of human antibodies against hepatitis B virus surface antigen (HBsAg) by phage-display. Hybrid Hybridomics. 21(5), 385-392. DOI: 10.1089/153685902761022742.
  • Kramvis, A., Arakawa, K., Yu, M. C., Nogueira, R., Stram, D. O., and Kew, M. C. (2008). Relationship of serological subtype, basic core promoter and precore mutations to genotypes/subgenotypes of hepatitis B virus. J Med Virol. 80(1), 27-46. DOI: 10.1002/jmv.21049.
  • Laursen, N. S., and Wilson, I. A. (2013). Broadly neutralizing antibodies against influenza viruses. Antiviral Res. 98(3), 476-483. DOI: 10.1016/j.antiviral.2013.03.021.
  • Lazarus, J. V., Block, T., Brechot, C., Kramvis, A., Miller, V., Ninburg, M., Penicaud, C., Protzer, U., Razavi, H., Thomas, L. A., et al. (2018). The hepatitis B epidemic and the urgent need for cure preparedness. Nat Rev Gastroenterol Hepatol. 15(9), 517-518. DOI: 10.1038/s41575-018-0041-6.
  • Le Bouvier, G. L. (1971). The heterogeneity of Australia antigen. J Infect Dis. 123(6), 671-675. DOI: 10.1093/infdis/123.6.671.
  • Li, D., He, W., Liu, X., Zheng, S., Qi, Y., Li, H., Mao, F., Liu, J., Sun, Y., Pan, L., et al. (2017). A potent human neutralizing antibody Fc-dependently reduces established HBV infections. Elife. 6, e26738. DOI: 10.7554/eLife.26738.
  • Loomba, R., and Liang, T. J. (2017). Hepatitis B Reactivation Associated With Immune Suppressive and Biological Modifier Therapies: Current Concepts, Management Strategies, and Future Directions. Gastroenterology. 152(6), 1297-1309. DOI: 10.1053/j.gastro.2017.02.009.
  • Ma, Q., and Wang, Y. (2012). Comprehensive analysis of the prevalence of hepatitis B virus escape mutations in the major hydrophilic region of surface antigen. J Med Virol. 84(2), 198-206. DOI: 10.1002/jmv.23183.
  • Mayer, C. T., Gazumyan, A., Kara, E. E., Gitlin, A. D., Golijanin, J., Viant, C., Pai, J., Oliveira, T. Y., Wang, Q., Escolano, A., et al. (2017). The microanatomic segregation of selection by apoptosis in the germinal center. Science. 358(6360), eaao2602. DOI: 10.1126/science.aao2602.
  • McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read,
  • R. J. (2007). Phaser crystallographic software. J Appl Crystallogr. 40(Pt 4), 658-674. DOI: 10.1107/S0021889807021206.
  • Michailidis, E., Pabon, J., Xiang, K., Park, P., Ramanan, V., Hoffmann, H. H., Schneider, W. M., Bhatia, S. N., de Jong, Y. P., Shlomai, A., et al. (2017). A robust cell culture system supporting the complete life cycle of hepatitis B virus. Sci Rep. 7(1), 16616. DOI: 10.1038/s41598-017-16882-5.
  • Michailidis, E., Vercauteren, K., Mancio-Silva, L., Andrus, L., Jahan, C., Ricardo-Lax, I., Zou, C., Kabbani, M., Park, P., Quirk, C., et al. (2020). Expansion, in vivo-ex vivo cycling, and genetic manipulation of primary human hepatocytes. Proc Natl Acad Sci USA. 117(3), 1678-1688. DOI: 10.1073/pnas.1919035117.
  • Milner-White, E. J., and Poet, R. (1986). Four classes of beta-hairpins in proteins. Biochem J. 240(1), 289-292. DOI: 10.1042/bj2400289.
  • Mouquet, H., Scharf, L., Euler, Z., Liu, Y., Eden, C., Scheid, J. F., Halper-Stromberg, A., Gnanapragasam, P. N., Spencer, D. I., Seaman, M. S., et al. (2012). Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc Natl Acad Sci USA. 109(47), E3268-3277. DOI: 10.1073/pnas.1217207109.
  • Norder, H., Courouce, A. M., Coursaget, P., Echevarria, J. M., Lee, S. D., Mushahwar, I. K., Robertson, B. H., Locarnini, S., and Magnius, L. O. (2004). Genetic diversity of hepatitis B virus strains derived worldwide: genotypes, subgenotypes, and HBsAg subtypes. Intervirology. 47(6), 289-309. DOI: 10.1159/000080872.
  • Pappas, L., Foglierini, M., Piccoli, L., Kallewaard, N. L., Turrini, F., Silacci, C., Fernandez-Rodriguez, B., Agatic, G., Giacchetto-Sasselli, I., Pellicciotta, G., et al. (2014). Rapid development of broadly influenza neutralizing antibodies through redundant mutations. Nature. 516(7531), 418-422. DOI: 10.1038/nature13764.
  • Paulij, W. P., de Wit, P. L., Sunnen, C. M., van Roosmalen, M. H., Petersen-van Ettekoven, A., Cooreman, M. P., and Heijtink, R. A. (1999). Localization of a unique hepatitis B virus epitope sheds new light on the structure of hepatitis B virus surface antigen. J Gen Virol. 80 (Pt 8), 2121-2126. DOI: 10.1099/0022-1317-80-8-2121.
  • Revill, P., Testoni, B., Locarnini, S., and Zoulim, F. (2016). Global strategies are required to cure and eliminate HBV infection. Nat Rev Gastroenterol Hepatol. 13(4), 239-248. DOI: 10.1038/nrgastro.2016.7.
  • Robbiani, D. F., Bozzacco, L., Keeffe, J. R., Khouri, R., Olsen, P. C., Gazumyan, A., Schaefer-Babajew, D., Avila-Rios, S., Nogueira, L., Patel, R., et al. (2017). Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico. Cell. 169(4), 597-609 e511. DOI: 10.1016/j.cell.2017.04.024.
  • Rouers, A., Klingler, J., Su, B., Samri, A., Laumond, G., Even, S., Avettand-Fenoel, V., Richetta, C., Paul, N., Boufassa, F., et al. (2017). HIV-Specific B Cell Frequency Correlates with Neutralization Breadth in Patients Naturally Controlling HIV-Infection. EBioMedicine. 21, 158-169. DOI: 10.1016/j.ebiom.2017.05.029.
  • Sa'adu, A., Locniskar, M., Bidwell, D., Howard, C., McAdam, K. P., and Voller, A. (1992). Development and characterization of human anti-HBs antibodies. J Virol Methods. 36(1), 25-34.
  • Salisse, J., and Sureau, C. (2009). A function essential to viral entry underlies the hepatitis B virus “a” determinant. J Virol. 83(18), 9321-9328. DOI: 10.1128/JVI.00678-09.
  • Salpini, R., Colagrossi, L., Bellocchi, M. C., Surdo, M., Becker, C., Alteri, C., Aragri, M., Ricciardi, A., Armenia, D., Pollicita, M., et al. (2015). Hepatitis B surface antigen genetic elements critical for immune escape correlate with hepatitis B virus reactivation upon immunosuppression. Hepatology. 61(3), 823-833. DOI: 10.1002/hep.27604.
  • Sankhyan, A., Sharma, C., Dutta, D., Sharma, T., Chosdol, K., Wakita, T., Watashi, K., Awasthi, A., Acharya, S. K., Khanna, N., et al. (2016). Inhibition of preS1-hepatocyte interaction by an array of recombinant human antibodies from naturally recovered individuals. Sci Rep. 6, 21240. DOI: 10.1038/srep21240.
  • Scheid, J. F., Mouquet, H., Feldhahn, N., Seaman, M. S., Velinzon, K., Pietzsch, J., Ott, R. G., Anthony, R. M., Zebroski, H., Hurley, A., et al. (2009a). Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature. 458(7238), 636-640. DOI: 10.1038/nature07930.
  • Scheid, J. F., Mouquet, H., Feldhahn, N., Walker, B. D., Pereyra, F., Cutrell, E., Seaman, M. S., Mascola, J. R., Wyatt, R. T., Wardemann, H., et al. (2009b). A method for identification of HIV gp140 binding memory B cells in human blood. J Immunol Methods. 343(2), 65-67. DOI: 10.1016/j.jim.2008.11.012.
  • Scheid, J. F., Mouquet, H., Ueberheide, B., Diskin, R., Klein, F., Oliveira, T. Y., Pietzsch, J., Fenyo, D., Abadir, A., Velinzon, K., et al. (2011). Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science. 333(6049), 1633-1637. DOI: 10.1126/science.1207227.
  • Schommers, P., Gruell, H., Abernathy, M. E., Tran, M. K., Dingens, A. S., Gristick, H. B., Barnes, C. O., Schoofs, T., Schlotz, M., Vanshylla, K., et al. (2020). Restriction of HIV-1 Escape by a Highly Broad and Potent Neutralizing Antibody. Cell. 180(3), 471-489 e422. DOI: 10.1016/j.cell.2020.01.010.
  • Sheu, S. Y., Yang, D. Y., Selzle, H. L., and Schlag, E. W. (2003). Energetics of hydrogen bonds in peptides. Proc Natl Acad Sci USA. 100(22), 12683-12687. DOI: 10.1073/pnas.2133366100.
  • Sun, S., and Li, J. (2017). Humanized chimeric mouse models of hepatitis B virus infection. Int J Infect Dis. 59, 131-136. DOI: 10.1016/j.ijid.2017.04.002.
  • Sureau, C., and Salisse, J. (2013). A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus a-determinant. Hepatology. 57(3), 985-994. DOI: 10.1002/hep.26125.
  • Tajiri, K., Kishi, H., Tokimitsu, Y., Kondo, S., Ozawa, T., Kinoshita, K., Jin, A., Kadowaki, S., Sugiyama, T., and Muraguchi, A. (2007). Cell-microarray analysis of antigen-specific B-cells: single cell analysis of antigen receptor expression and specificity. Cytometry A. 71(11), 961-967. DOI: 10.1002/cyto.a.20471.
  • Tajiri, K., Ozawa, T., Jin, A., Tokimitsu, Y., Minemura, M., Kishi, H., Sugiyama, T., and Muraguchi, A. (2010). Analysis of the epitope and neutralizing capacity of human monoclonal antibodies induced by hepatitis B vaccine. Antiviral Res. 87(1), 40-49. DOI: 10.1016/j.antiviral.2010.04.006.
  • Tan, J., Pieper, K., Piccoli, L., Abdi, A., Perez, M. F., Geiger, R., Tully, C. M., Jarrossay, D., Maina Ndungu, F., Wambua, J., et al. (2016). A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature. 529(7584), 105-109. DOI: 10.1038/nature16450.
  • Tan, J., Sack, B. K., Oyen, D., Zenklusen, I., Piccoli, L., Barbieri, S., Foglierini, M., Fregni, C. S., Marcandalli, J., Jongo, S., et al. (2018). A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein. Nat Med. 24(4), 401-407. DOI: 10.1038/nm.4513.
  • Thomas, D. L. (2019). Global Elimination of Chronic Hepatitis. N Engl J Med. 380(21), 2041-2050. DOI: 10.1056/NEJMra1810477.
  • Tiller, T., Meffre, E., Yurasov, S., Tsuiji, M., Nussenzweig, M. C., and Wardemann, H. (2008). Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods. 329(1-2), 112-124. DOI: 10.1016/j.jim.2007.09.017.
  • Tokimitsu, Y., Kishi, H., Kondo, S., Honda, R., Tajiri, K., Motoki, K., Ozawa, T., Kadowaki, S., Obata, T., Fujiki, S., et al. (2007). Single lymphocyte analysis with a microwell array chip. Cytometry A. 71(12), 1003-1010. DOI: 10.1002/cyto.a.20478.
  • Tong, S., Li, J., Wands, J. R., and Wen, Y. M. (2013). Hepatitis B virus genetic variants: biological properties and clinical implications. Emerg Microbes Infect. 2(3), e10. DOI: 10.1038/emi.2013.10.
  • Trepo, C., Chan, H. L., and Lok, A. (2014). Hepatitis B virus infection. Lancet. 384(9959), 2053-2063. DOI: 10.1016/S0140-6736(14)60220-8.
  • van Nunen, A. B., Baumann, M., Manns, M. P., Reichen, J., Spengler, U., Marschner, J. P., de Man, R. A., and International Study, G. (2001). Efficacy and safety of an intravenous monoclonal anti-HBs in chronic hepatitis B patients. Liver. 21(3), 207-212.
  • Venkatakrishnan, B., and Zlotnick, A. (2016). The Structural Biology of Hepatitis B Virus: Form and Function. Annu Rev Virol. 3(1), 429-451. DOI: 10.1146/annurev-virology-110615-042238.
  • von Boehmer, L., Liu, C., Ackerman, S., Gitlin, A. D., Wang, Q., Gazumyan, A., and Nussenzweig, M. C. (2016). Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nat Protoc. 11(10), 1908-1923. DOI: 10.1038/nprot.2016.102.
  • Walker, L. M., Huber, M., Doores, K. J., Falkowska, E., Pejchal, R., Julien, J. P., Wang, S. K., Ramos, A., Chan-Hui, P. Y., Moyle, M., et al. (2011). Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature. 477(7365), 466-470. DOI: 10.1038/nature10373.
  • Wang, W., Sun, L., Li, T., Ma, Y., Li, J., Liu, Y., Li, M., Wang, L., Li, C., Xie, Y., et al. (2016). A human monoclonal antibody against small envelope protein of hepatitis B virus with potent neutralization effect. MAbs. 8(3), 468-477. DOI: 10.1080/19420862.2015.1134409.
  • Wardemann, H., Yurasov, S., Schaefer, A., Young, J. W., Meffre, E., and Nussenzweig, M. C. (2003). Predominant autoantibody production by early human B cell precursors. Science. 301(5638), 1374-1377. DOI: 10.1126/science.1086907.
  • West, A. P., Jr., Diskin, R., Nussenzweig, M. C., and Bjorkman, P. J. (2012). Structural basis for germ-line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1 gp120. Proc Natl Acad Sci USA. 109(30), E2083-2090. DOI: 10.1073/pnas.1208984109.
  • White, A. D., Keefe, A. J., Ella-Menye, J. R., Nowinski, A. K., Shao, Q., Pfaendtner, J., and Jiang, S. (2013). Free energy of solvated salt bridges: a simulation and experimental study. J Phys Chem B. 117(24), 7254-7259. DOI: 10.1021/jp4024469.
  • Wrammert, J., Koutsonanos, D., Li, G. M., Edupuganti, S., Sui, J., Morrissey, M., McCausland, M., Skountzou, I., Hornig, M., Lipkin, W. I., et al. (2011). Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med. 208(1), 181-193. DOI: 10.1084/jem.20101352.
  • Wu, X., Yang, Z. Y., Li, Y., Hogerkorp, C. M., Schief, W. R., Seaman, M. S., Zhou, T., Schmidt, S. D., Wu, L., Xu, L., et al. (2010). Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science. 329(5993), 856-861. DOI: 10.1126/science.1187659.
  • Yan, H., Zhong, G., Xu, G., He, W., Jing, Z., Gao, Z., Huang, Y., Qi, Y., Peng, B., Wang, H., et al. (2012). Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife. 1, e00049. DOI: 10.7554/eLife.00049.
  • Ye, B., Liu, X., Li, X., Kong, H., Tian, L., and Chen, Y. (2015). T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis. 6, e1694. DOI: 10.1038/cddis.2015.42.
  • Ye, J., Ma, N., Madden, T. L., and Ostell, J. M. (2013). IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41 (Web Server issue), W34-40. DOI: 10.1093/nar/gkt382.
  • Yurasov, S., Wardemann, H., Hammersen, J., Tsuiji, M., Meffre, E., Pascual, V., and Nussenzweig, M. C. (2005). Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med. 201(5), 703-711. DOI: 10.1084/jem.20042251.
  • Zanetti, A. R., Tanzi, E., Manzillo, G., Maio, G., Sbreglia, C., Caporaso, N., Thomas, H., and Zuckerman, A. J. (1988). Hepatitis B variant in Europe. Lancet. 2(8620), 1132-1133. DOI: 10.1016/s0140-6736(88)90541-7.
  • Zhang, T. Y., Guo, X. R., Wu, Y. T., Kang, X. Z., Zheng, Q. B., Qi, R. Y., Chen, B. B., Lan, Y., Wei, M., Wang, S. J., et al. (2019). A unique B cell epitope-based particulate vaccine shows effective suppression of hepatitis B surface antigen in mice. Gut. 69(2), 343-354. DOI: 10.1136/gutjnl-2018-317725.
  • Zhang, T. Y., Yuan, Q., Zhao, J. H., Zhang, Y. L., Yuan, L. Z., Lan, Y., Lo, Y. C., Sun, C. P., Wu, C. R., Zhang, J. F., et al. (2016). Prolonged suppression of HBV in mice by a novel antibody that targets a unique epitope on hepatitis B surface antigen. Gut. 65(4), 658-671. DOI: 10.1136/gutjnl-2014-308964.
  • Zhu, D., Liu, L., Yang, D., Fu, S., Bian, Y., Sun, Z., He, J., Su, L., Zhang, L., Peng, H., et al. (2016). Clearing Persistent Extracellular Antigen of Hepatitis B Virus: An Immunomodulatory Strategy To Reverse Tolerance for an Effective Therapeutic Vaccination. J Immunol. 196(7), 3079-3087. DOI: 10.4049/jimmunol.1502061.









TABLE 51







Detailed information of donors, Related to Figure 1.


The anti-HBs ELISA titer (x-axis in Figure 1A and 8B) and relative infection


rate (y-axis in Figure 1A and 8B) of each donor's serum sample were determined by ELISA


assay and in vitro neutralization assay, respectively.





















ANTI-





























HBs


INFECTION RATE


INFECTION RATE





ELISA

BIG
(1:5 SERUM)

NEUTRA
(1:50 SERUM)

NEUTRA


DONOR
TITE
STAT-
BLOOD
PERCENTAGE
AVER-
CAPAC-
PERCENTAGE
AVER-
CAPAC-


ID
R
UE
DRAW
OF HBcAg + CELLS
AGE
ITY
OF HBcAg + CELLS
AGE
ITY























QWA-
9.08
Vacci-

114.00
127.12
133.64
124.92
0.80
118.06
128.90
122.19
123.05
0.81


0947-

nated













001















QWA-
516.12
Vacci-

65.28
77.58
75.13
72.66
1.38
131.60
137.04
133.44
134.03
0.75


0947-

nated













002















QWA-
0
Vacci-

108.59
118.31
118.53
115.14
0.87
132.81
136.65
132.22
133.89
0.75


0947-

nated













003















QWA-
267.1
Vacci-

113.39
121.91
121.67
118.99
0.84
142.69
146.69
153.24
147.54
0.68


0947-

nated













004















QWA-
113.01
Vacci-

82.91
87.48
95.39
88.59
1.13
148.24
149.36
146.75
148.12
0.68


0947-

nated













005















QWA-
325.77
Vacci-

81.19
85.97
96.43
87.86
1.14
117.48
116.83
119.74
118.02
0.85


0947-

nated













006















QWA-
63.54
Vacci-

100.37
105.53
110.73
105.54
0.95
134.11
135.15
138.51
135.92
0.74


0947-

nated













007















QWA-
21.8
Vacci-

40.86
35.60
42.82
39.76
2.52
78.64
84.09
84.79
82.51
1.21


0947-

nated













008















QWA-
>1000
Vacci-
BIG
12.84
14.39
17.20
14.81
6.75
34.66
38.81
33.48
35.65
2.81


0947-

nated
BLOOD












009


DRAW












QWA-
0.33
Vacci-

93.33
93.42
104.91
97.22
1.03
105.41
116.72
115.58
112.57
0.89


0947-

nated













010















QWA-
1.29
Vacci-
BIG
109.40
113.87
94.10
105.79
0.95
95.79
93.25
81.95
90.33
1.11


0947-

nated
BLOOD












011


DRAW












QWA-
12.87
Vacci-

102.04
102.94
108.81
104.60
0.96
142.95
137.95
125.12
135.34
0.74


0947-

nated













012















QWA-
>1000
Vacci-
BIG
9.24
8.31
8.33
8.63
11.59
19.95
20.81
17.29
19.35
5.17


0947-

nated
BLOOD












013


DRAW












QWA-
248.31
Vacci-

80.90
80.65
79.88
80.48
1.24
117.58
120.17
115.37
117.71
0.85


0947-

nated













014















QWA-
76.1
Vacci-

97.26
91.48
86.95
91.90
1.09
112.79
109.82
101.19
107.93
0.93


0947-

nated













015















QWA-
0.36
Non-

100.22
96.77
95.84
97.61
1.02
118.04
120.05
117.34
118.48
0.84


0947-

Vacci-













016

nated













QWA-
0.63
Vacci-

100.30
102.98
101.55
101.61
0.98
122.27
119.42
110.93
117.54
0.85


0947-

nated













017















QWA-
3.24
Vacci-

101.65
113.38
96.98
104.00
0.96
118.18
121.26
107.05
115.50
0.87


0947-

nated













018















QWA-
>1000
Vacci-

47.62
43.35
40.11
43.69
2.29
105.86
100.46
89.54
98.62
1.01


0947-

nated













019















QWA-
1.21
Non-

77.13
75.25
60.04
70.81
1.41
116.28
113.72
108.65
112.88
0.89


0947-

Vacci-













020

nated













QWA-
15.81
Vacci-

33.85
41.39
34.98
36.74
2.72
89.74
89.87
88.60
89.40
1.12


0947-

nated













021















QWA-
2.17
Vacci-

83.52
94.22
93.88
90.54
1.10
100.08
119.88
110.19
110.05
0.91


0947-

nated













022















QWA-
183.37
Vacci-

93.15
119.57
116.08
109.60
0.91
113.43
117.91
103.45
111.60
0.90


0947-

nated













023















QWA-
256.85
Vacci-

55.70
60.03
49.13
54.95
1.82
104.68
116.21
105.17
108.69
0.92


0947-

nated













024















QWA-
709.29
Vacci-

76.18
77.38
75.01
76.19
1.31
100.58
105.57
116.82
107.66
0.93


0947-

nated













025















QWA-
0.49
Non-

83.02
102.42
96.98
94.14
1.06
104.24
117.09
105.73
109.02
0.92


0947-

Vacci-













026

nated













QWA-
0.3
Non-
BIG
103.51
128.79
114.82
115.71
0.86
105.91
126.68
117.03
116.54
0.86


0947-

Vacci-
BLOOD












027

nated
DRAW












QWA-
6.51
Non-

84.03
90.88
87.77
87.56
1.14
107.23
117.89
108.21
111.11
0.90


0947-

Vacci-













028

nated













QWA-
1.67
Non-

103.72
98.68
83.74
95.38
1.05
96.06
102.25
100.20
99.50
1.00


0947-

Vacci-













029

nated













QWA-
0.09
Vacci-
BIG
86.06
84.44
91.73
87.41
1.14
111.74
115.73
102.26
109.91
0.91


0947-

nated
BLOOD












030


DRAW












QWA-
488.3
Core

71.30
66.21
56.71
64.74
1.54
94.99
102.87
94.27
97.38
1.03


0947-

Ab +













031















QWA-
>1000
Vacci-

71.12
67.87
56.53
65.17
1.53
97.45
107.81
106.59
103.95
0.96


0947-

nated













032















QWA-
330.93
Vacci-

99.61
93.60
87.25
93.49
1.07
106.28
116.65
108.45
110.46
0.91


0947-

nated













033















QWA-
588.26
Core

40.92
41.19
35.30
39.14
2.56
99.54
111.16
105.28
105.32
0.95


0947-

Ab +













034















QWA-
365.7
Vacci-

101.52
113.83
94.76
103.37
0.97
129.77
131.60
121.19
127.52
0.78


0947-

nated













035















QWA-
108.83
Vacci-

87.55
85.69
77.65
83.63
1.20
122.28
122.03
107.69
117.33
0.85


0947-

nated













036















QWA-
>1000
Vacci-

23.79
21.09
18.46
21.11
4.74
66.02
59.97
52.64
59.54
1.68


0947-

nated













037















QWA-
11.76
Vacci-

94.89
95.53
96.87
95.76
1.04
119.79
125.09
115.27
120.05
0.83


0947-

nated













038















QWA-
230.99
Vacci-

102.08
99.23
91.54
97.62
1.02
113.01
115.04
98.95
109.00
0.92


0947-

nated













039















QWA-
0.26
Vacci-

54.12
57.38
45.32
52.27
1.91
102.43
107.89
95.37
101.90
0.98


0947-

nated













040















QWA-
0.42
Non-

77.09
78.29
84.91
80.09
1.25
87.59
101.25
101.19
96.68
1.03


0947-

Vaccin













041

ated













QWA-
128.75
Core

97.03
106.51
110.26
104.60
0.96
114.07
149.01
121.98
128.35
0.78


0947-

Ab +













042















QWA-
229.75
Core

78.56
94.35
95.71
89.54
1.12
95.18
144.23
123.82
121.08
0.83


0947-

Ab +













043















QWA-
222.48
Core

45.85
56.61
65.34
55.93
1.79
94.00
133.96
109.86
112.60
0.89


0947-

Ab +













044















QWA-
>1000
Core

51.82
66.02
61.55
59.80
1.67
104.36
122.03
120.96
115.78
0.86


0947-

Ab +













045















QWA-
350.93
Vacci-

89.57
99.40
111.55
100.17
1.00
100.98
129.50
111.79
114.09
0.88


0947-

nated













046















QWA-
0.33
Vacci-

126.88
138.30
142.37
135.85
0.74
112.35
156.77
127.72
132.28
0.76


0947-

nated













047















QWA-
>1000
Vacci-
BIG
35.94
44.44
46.02
42.14
2.37
83.08
109.89
94.60
95.86
1.04


0947-

nated
BLOOD












048


DRAW












QWA-
>1000
Core
BIG
94.21
120.65
119.57
111.48
0.90
113.33
139.10
126.43
126.28
0.79


0947-

Ab +
BLOOD












049


DRAW












QWA-
6.2
Vacci-

93.10
114.26
113.58
106.98
0.93
93.34
121.07
112.91
109.10
0.92


0947-

nated













050















QWA-
228.35
Vacci-

111.78
112.69
115.97
113.48
0.88
104.71
102.64
83.60
96.98
1.03


0947-

nated













051















QWA-
2.77
Vacci-

116.53
115.59
110.83
114.32
0.87
113.48
114.25
125.60
117.78
0.85


0947-

nated













052















QWA-
48.25
Vacci-

114.90
112.78
98.40
108.69
0.92
105.04
116.61
119.01
113.55
0.88


0947-

nated













053















QWA-
24.06
Vacci-

121.56
125.13
111.71
119.47
0.84
99.64
118.99
122.11
113.58
0.88


0947-

nated













054















QWA-
772.43
Core
BIG
8.79
9.33
5.78
7.97
12.55
82.33
95.93
87.80
88.69
1.13


0947-

Ab +
BLOOD












055


DRAW












QWA-
441.12
Vacci-

86.57
86.67
79.10
84.12
1.19
98.81
120.31
116.13
111.75
0.89


0947-

nated













056















QWA-
91.37
Vacci-

120.46
113.18
110.80
114.82
0.87
111.45
107.08
116.80
111.78
0.89


0947-

nated













057















QWA-
>1000
Vacci-

27.66
27.74
26.37
27.26
3.67
82.86
83.73
74.74
80.44
1.24


0947-

nated













058















QWA-
83.28
Vacci-

110.69
109.95
99.34
106.66
0.94
115.21
115.69
99.96
110.29
0.91


0947-

nated













059















QWA-
>1000
Vacci-
BIG
5.68
6.72
5.17
5.86
17.08
25.39
26.65
24.93
25.66
3.90


0947-

nated
BLOOD












060


DRAW












QWA-
104.78
Vacci-

109.98
120.25
131.62
120.61
0.83
107.59
134.01
124.63
122.08
0.82


0947-

nated













061















QWA-
2.56
Vacci-

113.16
140.19
143.78
132.38
0.76
120.58
139.98
135.32
131.96
0.76


0947-

nated













062















QWA-
246.16
Vacci-

101.93
112.01
141.39
118.44
0.84
114.71
134.13
143.18
130.67
0.77


0947-

nated













063















QWA-
Not
Vacci-

128.17
114.29
147.09
129.85
0.77
133.50
133.31
133.23
133.35
0.75


0947-
Avail-
nated













064
able














QWA-
0.28
Core

112.39
133.12
155.43
133.65
0.75
131.76
134.78
150.74
139.09
0.72


0947-

Ab +













065















QWA-
265.6
Vacci-

50.87
68.37
86.59
68.61
1.46
129.24
133.43
119.16
127.28
0.79


0947-

nated













066















QWA-
0
Vacci-

106.36
120.57
150.56
125.83
0.79
122.57
142.42
139.51
134.84
0.74


0947-

nated













067















QWA-
0.25
Vacci-

58.26
87.26
105.25
83.59
1.20
123.65
128.77
124.58
125.67
0.80


0947-

nated













068















QWA-
>1000
Vacci-
BIG
11.42
27.20
22.32
20.31
4.92
50.80
55.44
64.27
56.84
1.76


0947-

nated
BLOOD












069


DRAW












QWA-
7.01
Vacci-

107.39
113.96
138.16
119.84
0.83
118.06
116.97
118.95
117.99
0.85


0947-

nated













070















QWA-
638.24
Vacci-

56.39
48.55
55.42
53.45
1.87
94.83
111.19
117.23
107.75
0.93


0947-

nated













071















QWA-
15.55
Vacci-

128.74
135.08
126.34
130.05
0.77
137.00
132.93
122.94
130.96
0.76


0947-

nated













072















QWA-
225.34
Vacci-

131.87
122.33
137.50
130.57
0.77
137.43
128.35
124.59
130.12
0.77


0947-

nated













073















QWA-
159.52
Core

120.51
119.04
128.75
122.76
0.81
140.98
130.18
124.00
131.72
0.76


0947-

Ab +













074















QWA-
0.37
Vacci-

131.78
125.05
159.51
138.78
0.72
133.08
135.29
117.74
128.70
0.78


0947-

nated













075















QWA-
27.37
Vacci-

137.32
145.89

141.60
0.71
132.06


132.06
0.76


0947-

nated













076















QWA-
52.77
Vacci-

112.72
121.48

117.10
0.85
137.12


137.12
0.73


0947-

nated













077















QWA-
181.6
Vacci-

116.16
107.29

111.72
0.90
138.30
131.27

134.79
0.74


0947-

nated













078















QWA-
>1000
Vacci-

54.73
59.28
71.14
61.72
1.62
130.53
128.66
118.32
125.84
0.79


0947-

nated













079















QWA-
>1000
Vacci-

62.38
53.55
69.34
61.76
1.62
122.37
106.42

114.40
0.87


0947-

nated













080















QWA-
7.23
Vacci-

113.81
111.55
142.59
122.65
0.82
109.38
105.63
116.78
110.60
0.90


0947-

nated













081















QWA-
24.98
Vacci-

120.69
124.58
118.10
121.12
0.83
106.45
118.55
117.79
114.26
0.88


0947-

nated













082















QWA-
90.5
Vacci-

84.79
87.62
99.65
90.69
1.10
91.86
99.93
105.67
99.15
1.01


0947-

nated













083















QWA-
880.92
Core

112.81
125.10
114.29
117.40
0.85
106.78
7.78
147.46
124.01
0.81


0947-

Ab +













084















QWA-
82.25
Vacci-

120.45
148.83
159.96
143.08
0.70
114.14
114.33
136.45
121.64
0.82


0947-

nated













085















QWA-
19.16
Vacci-

147.29
173.59
166.75
162.55
0.62
110.03
128.28
120.46
119.59
0.84


0947-

nated













086















QWA-
88.6
Vacci-

126.58
146.46
145.74
139.59
0.72
105.86
119.12
119.22
114.74
0.87


0947-

nated













087















QWA-
288.42
Core

108.25
120.39
140.09
122.91
0.81
90.55
101.28
115.15
102.33
0.98


0947-

Ab +













088















QWA-
15.74
Vacci-

101.12
94.87
98.43
98.14
1.02
75.70
96.65
111.21
94.52
1.06


0947-

nated













089















QWA-
>1000
Vacci-

54.59
47.73
53.63
51.99
1.92
71.09
87.31
99.22
85.87
1.16


0947-

nated













090















QWA-
>1000
Vacci-

18.28
23.05
19.85
20.39
4.90
48.17
59.50
53.15
53.61
1.87


0947-

nated













091















QWA-
2.64
Vacci-

155.82
147.87
143.25
148.98
0.67
126.83
113.67
124.04
121.51
0.82


0947-

nated













093















QWA-
127.58
Vacci-

160.76
145.63
119.61
142.00
0.70
105.84
110.91
114.14
110.30
0.91


0947-

nated













094















QWA-
23.74
Vacci-

176.74
160.65
159.27
165.55
0.60
110.83
103.36
112.17
108.78
0.92


0947-

nated













095















QWA-
>1000
Vacci-

51.24
50.60
36.36
46.07
2.17
109.95
99.89
100.76
103.54
0.97


0947-

nated













096















QWA-
25.97
Vacci-

151.86
144.37
127.26
141.16
0.71
109.63
109.86
98.50
106.00
0.94


0947-

nated













097















QWA-
>1000
Vacci-

73.82
83.70
70.82
76.11
1.31
88.55
95.98
100.28
94.94
1.05


0947-

nated













098















QWA-
688.28
Vacci-
BIG
110.48
112.47
90.05
104.33
0.96
100.29
103.59
94.65
99.51
1.00


0947-

nated
BLOOD












099


DRAW












QWA-
366.05
Vacci-

85.68
99.38
86.23
90.43
1.11
97.85
101.09
85.62
94.85
1.05


0947-

nated













100















QWA-
1.22
Vacci-

88.54
96.48
92.77
92.60
1.08
107.51
104.47
106.69
106.22
0.94


0947-

nated













101















QWA-
0.65
Vacci-

96.90
94.97
99.88
97.25
1.03
109.63
101.73
102.43
104.60
0.96


0947-

nated













102















QWA-
45.53
Core

100.38
104.13
93.37
99.29
1.01
103.40
95.77
93.83
97.67
1.02


0947-

Ab +













103















QWA-
95.76
Vacci-

95.99
87.67
79.38
87.68
1.14
111.24
105.95
113.01
110.07
0.91


0947-

nated













104















QWA-
1.48
Vacci-

42.47
43.05
47.61
44.38
2.25
102.15
99.45
98.24
99.95
1.00


0947-

nated













105















QWA-
>1000
Vacci-

16.40
16.66
16.15
16.40
6.10
64.77
68.47
66.59
66.61
1.50


0947-

nated













106















QWA-
32.84
Vacci-

148.16
141.65
127.35
139.05
0.72
123.79
119.06
104.81
115.89
0.86


0947-

nated













107















QWA-
352.99
Vacci-

78.23
81.50
84.50
81.41
1.23
109.31
116.46
103.38
109.72
0.91


0947-

nated













108















QWA-
15.04
Vacci-

112.45
103.15
97.70
104.43
0.96
110.85
121.08
117.28
116.40
0.86


0947-

nated













109















QWA-
26.27
Vacci-

86.31
102.24
99.68
96.08
1.04
115.57
130.13
116.61
120.77
0.83


0947-

nated













110















QWA-
40.79
Vacci-

81.44
86.98
87.80
85.40
1.17
109.93
98.54
91.77
100.08
1.00


0947-

nated













111















QWA-
260.82
Core

35.62
36.63
32.67
34.97
2.86
69.44
65.66
65.06
66.72
1.50


0947-

Ab +













112















QWA-
1.97
Vacci-

93.25
98.77
81.76
91.26
1.10
101.75
104.27
100.12
102.05
0.98


0947-

nated













113















QWA-
>1000
Vacci-

32.49
27.64
25.33
28.49
3.51
80.93
61.56
71.59
71.36
1.40


0947-

nated













114















QWA-
798.12
Core

13.86
14.67
15.02
14.52
6.89
45.62
46.82
42.16
44.87
2.23


0947-

Ab +













115















QWA-
459.84
Vacci-

99.96
93.67
81.32
91.65
1.09
107.55
108.08
109.31
108.31
0.92


0947-

nated













116















QWA-
0.46
Vacci-

98.06
92.72
95.42
95.40
1.05
106.12
104.66
111.74
107.51
0.93


0947-

nated













117















QWA-
20.87
Vacci-

151.82
146.04
144.65
147.50
0.68
112.36
109.15
124.29
115.26
0.87


0947-

nated













118















QWA-
91.47
Vacci-

114.36
109.63
108.87
110.96
0.90
108.91
112.79
104.89
108.86
0.92


0947-

nated













119















QWA-
13
Core

44.97
45.06
40.30
43.44
2.30
102.35
110.61
97.70
103.55
0.97


0947-

Ab +













120















QWA-
175.21
Vacci-

91.44
91.91
96.95
93.43
1.07
166.31
164.27
144.97
158.52
0.63


0947-

nated













121















QWA-
51.51
Vacci-

95.47
92.45
100.97
96.30
1.04
180.79
174.92
143.73
166.48
0.60


0947-

nated













122















QWA-
36.81
Vacci-

145.77
156.75
146.88
149.80
0.67
180.84
176.71
135.18
164.24
0.61


0947-

nated













123















QWA-
1.3
Vacci-

147.11
133.31
131.87
137.43
0.73
170.89
169.84
127.57
156.10
0.64


0947-

nated













124















QWA-
1.44
Vacci-

110.99
111.85
118.19
113.68
0.88
178.09
178.48
149.45
168.67
0.59


0947-

nated













125















QWA-
359.06
Core

79.16
76.31
85.67
80.83
1.24
167.98
161.85
154.57
161.47
0.62


0947-

Ab +













126















QWA-
1.23
Non-

128.75
125.40
143.54
132.56
0.75
162.01
157.22
139.08
152.77
0.65


0947-

Vacci-













127

nated













QWA-
>1000
Vacci-

30.63
25.86
36.31
30.94
3.23
69.73
82.09
84.44
78.76
1.27


0947-

nated













128















QWA-
0.17
Non-

166.56
156.86
157.89
160.44
0.62
162.24
168.18
154.52
161.65
0.62


0947-

Vacci-













129

nated













QWA-
11.81
Vacci-

143.14
129.67
114.98
129.26
0.77
156.94
144.37
119.26
140.19
0.71


0947-

nated













131















QWA-
0
Non-

143.37
148.51
134.41
142.09
0.70
170.72
146.03
126.56
147.77
0.68


0947-

Vacci-













132

nated













QWA-
731.27
Core

86.48
85.37
78.16
83.34
1.20
157.64
137.87
131.07
142.20
0.70


0947-

Ab +













133















QWA-
>1000
Vacci-

31.62
30.52
27.60
29.92
3.34
144.36
137.82
115.14
132.44
0.76


0947-

nated













134















QWA-
796.93
Core

81.56
81.84
88.25
83.88
1.19
157.58
142.42
116.84
138.95
0.72


0947-

Ab +













135















QWA-
0
Non-

128.19
132.95
139.91
133.68
0.75
165.85
140.56
137.58
148.00
0.68


0947-

Vacci-













136

nated













QWA-
1.56
Non-

155.09
151.93
137.05
148.02
0.68
175.51
155.22
128.75
153.16
0.65


0947-

Vacci-













137

nated













QWA-
0.74
Non-

160.76
159.87
135.61
152.08
0.66
165.30
137.96
119.52
140.93
0.71


0947-

Vacci-













138

nated













QWA-
0
Non-

143.96
145.71
123.98
137.88
0.73
143.82
125.60
114.22
127.88
0.78


0947-

Vacci-













139

nated













QWA-
609.46
Core

93.61
96.21
89.99
93.27
1.07
125.42
135.92
106.58
122.64
0.82


0947-

Ab +













140















QWA-
>1000
Vacci-

35.14
37.74
36.31
36.40
2.75
90.32
87.71
83.80
87.28
1.15


0947-

nated













141















QWA-
0.01
Non-

72.39
72.79
69.24
71.47
1.40
85.86
89.49
80.98
85.44
1.17


0947-

Vacci-













142

nated













QWA-
51.9
Vacci-

83.85
74.96
78.42
79.07
1.26
89.70
83.02
81.24
84.65
1.18


0947-

nated













143















QWA-
192.41
Vacci-

99.03
103.75
104.69
102.49
0.98
88.00
80.96
100.21
89.73
1.11


0947-

nated













144















QWA-
>1000
Vacci-

35.23
36.75
36.99
36.32
2.75
91.40
83.04
84.37
86.27
1.16


0947-

nated













145















QWA-
>1000
Vacci-
BIG
3.21
3.17
3.47
3.28
30.45
4.66
4.45
3.82
4.31
23.18


0947-

nated
BLOOD












146


DRAW












QWA-
>1000
Vacci-

74.42
79.63
70.02
74.69
1.34
96.43
89.82
90.93
92.39
1.08


0947-

nated













147















QWA-
>1000
Vacci-

48.09
53.38
53.47
51.65
1.94
85.58
89.74
84.49
86.60
1.15


0947-

nated













149















QWA-
>1000
Vacci-

45.84
50.91
49.78
48.84
2.05
97.27
93.55
92.90
94.57
1.06


0947-

nated













150















QWA-
24.03
Vacci-

76.16
78.93
83.53
79.54
1.26
104.49
103.12
97.68
101.76
0.98


0947-

nated













151















QWA-
32.89
Vacci-

76.50
74.31
58.42
69.75
1.43
80.82
81.72
78.43
80.33
1.24


0947-

nated













152















QWA-
0.36
Vacci-

92.38
95.06
83.56
90.33
1.11
81.13
82.29
70.79
78.07
1.28


0947-

nated













153















QWA-
8.02
Vacci-

81.20
78.04
61.49
73.58
1.36
89.89
80.29
72.54
80.90
1.24


0947-

nated













154















QWA-
271.68
Vacci-

83.98
86.99
69.06
80.01
1.25
79.14
80.93
74.47
78.18
1.28


0947-

nated













155















QWA-
>1000
Vacci-

23.65
20.82
15.97
20.15
4.96
78.25
75.10
58.66
70.67
1.42


0947-

nated













156















QWA-
93.05
Vacci-

93.75
95.02
83.23
90.67
1.10
77.02
80.62
70.27
75.97
1.32


0947-

nated













157















QWA-
261.09
Vacci-

78.75
78.50
64.50
73.92
1.35
88.22
86.79
71.09
82.03
1.22


0947-

nated













158















QWA-
61.12
Vacci-

87.14
91.02
76.00
84.72
1.18
80.77
86.19
74.40
80.45
1.24


0947-

nated













159















QWA-
381.69
Vacci-

72.70
68.79
62.46
67.98
1.47
81.13
74.64
66.11
73.96
1.35


0947-

nated













160















QWA-
3.62
Vacci-

91.93
85.42
72.87
83.40
1.20
85.76
80.35
74.62
80.24
1.25


0947-

nated













161















QWA-
198.58
Vacci-

91.35
92.25
79.20
87.60
1.14
112.63
106.14
95.29
104.69
0.96


0947-

nated













162
















SUPPLEMENTAL TABLE S2







Detailed information about cloned antibodies with paired heavy and light chains, Related to FIG. 2.


Variable (V), diversity (D) and joining (J) genes, mutation on the variable gene (V MUT), and CDR3


amino acid sequences of cloned immunoglobulin heavy, kappa light and lambda light chains are listed.


These antibodies are grouped by their IGHV genes, with our 5 selected H001-H020 antibodies indicated.


H021 antibody used for sequence alignment in FIG. 2D is also indicated. The amino acid length of IGH


CDR3 was between 5 and 27 amino acids, with the highest peak at 16 amino acids and the average around


15 amino acids. There are 16 of IGH CDR3 containing cysteines.













HEAVY CHAIN
KAPPA LIGHT CHAIN
LAMBDA LIGHT CHAIN

































DONOR




SEQ ID

SEQ ID

SEQ ID



SEQ ID


SEQ ID



SEQ ID

SEQ ID

SEQ ID



ID
V
D
J
CDR 1
NO:
CDR 2
NO:
CDR 3
NO:
V
J
CDR 1
NO:
CDR 2
CDR 3
NO:
V
J
CDR 1
NO:
CDR 2
NO:
CDR 3
NO:




































9
IGH
IGH
IGHJ
GYT
26
ISTY
27
ARN
28
IGKV
IGKJ
QSI
29
KAS
QQY
30












V1-
D6-
6*02
FTT

NRNT

GYS

1-5*
1*01
TNW


YSY













18*
13*

YG



SSW

03




PWT













01
01





HGG



























THY



























YYY



























ALD



























F






















55
IGH
IGH
IGHJ
GYS
31
ISTY
32
ARD
33







IGL
IGL
SSD
34
EAS

CSY
35




V1-
D2-
4*02
FNT

NGKT

SVS








V2-
J3*
VGS



SGS





18*
15*

YG



WWN








23*
02
YDL



TTC





01
01





LLF








01





V












KSL



























EKL



























TLD



























Y






















55
IGH
IGH
IGHJ
GYS
36
ISTY
37
ARD
38
IGKV
IGKJ
QSV
39
GAS
QQF
40
IGL
IGL
SSD
41
EVN

NSY
42




V1-
D2-
4*02
FNT

NGKT

SVS

3-20
4*01
SNS


GSS

V2-
J1*
IGG



AGN





18*
15*

YG



WWN

*01

Y


PLT

8*0
01
YNY



NNF





01
01





LLF








1





V












KSL



























EKL



























TLD



























Y






















55
IGH
IGH
IGHJ
GYS
43
ISTY
44
ARD
45
IGKV
IGKJ
QSV
46
DAS
QHR
47












V1-
D2-
4*02
ENT

NGKT

SVS

3-11
1*01
SSY


SNS













18*
15*

YG



WWN

*01




WT













01
01





LLF



























KSL



























EKL



























TLD



























Y






















55
IGH
IGH
IGHJ
GYT
48
ISAH
49
ARD
50







IGL
IGL
ALP
51
KDS

QSA
52




V1-
D4-
4*02
FSS

SGNT

PDF








V3-
J3*
VQF



DST





18*
17*

YG



GDY








25*
02




ATY





01
01





GSD








02





WV












IVD



























Y






















99
IGH
IGH
IGHJ
GYS
53
ISAY
54
ARW
55







IGL
IGL
SLR
56
GKN

GSR
57




V1-
D3-
6*03
FSS

NGDT

GVG








V3-
J3*
TYY



DNS





18*
16*

YG



MTF








19*
02




GYS





01
01





SYH








01


















YHY



























MDV






















99
IGH
IGH
IGHJ
GYT
58
ISGY
59
ARG
60
IGKV
IGKJ
QSV
61
DAS
QQY
62












V1-
D6-
4*02
FGS

SGKT

RGD

3-11
4*01
GSY


NDW













18*
13*

FG



SST

*01




LT













01
01





WYS



























LY






















146
IGH
IGH
IGHJ
DYR
63
ISPF
64
AGD
65
IGKV
IGKJ
ESV
66
WAS
QQY
67












V1-
D1-
1*01
SIN

NGNT

TTS

4-1*
3*01
FFS


YTT













18*
1*

SG



SAA

01

PHN


PS













01
01





LTF



RNY


















146
IGH
IGH
IGHJ
GYN
68
ISPY
69
ARF
70
IGKV
IGKJ
QSI
71
DAS
QQY
72












V1-
D1-
6*02
FIS

NGKK

FGG

1-5*
1*01
KTW


NSY













18*
26*

YA



ATM

01




SGW













01
01





TVY






T




















FYG



























LDV






















146
IGH
IGH
IGHJ
GYK
73
INAY
74
TRS
75







IGL
IGL
NSN
76
ANS

ASW
77




V1-
D6-
4*02
FTN

NGHT

EQW








V1-
J3*
VGN



DDS





18*
19*

YG



RSR








44*
02
NV



LSG





01
01





GEY








01





SWV







146
IGH
IGH
IGHJ
GYT
78
ISAS
79
GRD
80
IGKV
IGKJ
QSV
81
GAS
QQY
82












V1-
D1-
5*02
FSN

SGNT

DSG

3-20
4*01
SGS


XSS













18*
26*

YG



SYP

*01

Y


PLA













01
01





MSP






















146
IGH
IGH
IGHJ
GYT
83
INAH
84
VRD
85







IGL
IGL
TGA
86
RTN

LLY
87




V1-
D1-
4*02
FRN

NGDT

INF








V7-
J3*
VTS



XWS





18*
20*

YG



IFD








43*
02
SYY



SSA





01
01





Y








01





LG







69
IGH
IGH
IGHJ
GYS
88
INVY
89
ARE
90
IGKV
IGKJ
LSV
91
DAS
QQY
92












V1-
D3-
6*03
FTS

NANT

GWF

3-15
1*01
SSN


HEW













18*
10*

YG



GEF

*01




PRT













04
01





RRN



























YNY



























NYY



























MDV






















49
IGH
IGH
IGHJ
GYT
93
FDPD
94
TLV
95
IGKV
IGKJ
QSV
96
AAS
QQS
97












V1-
D4-
3*01
LTE

EGEV

TRV

1-39
2*01
RTY


YFA













24*
11*

LS



DAF

*01




PYT













01
01





DV






















49
IGH
IGH
IGHJ
GYS
98
FDPD
99
TLV
100
IGKV
IGKJ
QNI
101
AAS
QQS
102












V1-
D4-
3*01
HTE

EGET

TRV

1-39
2*01
RNY


YFA













24*
11*

LP



DAF

*01




PYT













01
01





EV






















49
IGH
IGH
IGHJ
GYT
103
FDPD
104
TLV
105
IGKV
IGKJ
QNI
106
TAS
QQS
107












V1-
D2-
3*01
LTE

EGET

TGV

1-39
2*01
RTY


YFA













24*
21*

LP



DAF

*01




PYT













01
02





AV






















49
IGH
IGH
IGHJ
GYI
108
FDPD
109
TSV
110
IGKV
IGKJ
QNI
111
VAS
QQS
112












V1-
D3-
3*01
FSE

EGET

IKA

1-39
2*01
RTY


YFA













24*
16*

LS



DAF

*01




PYT













01
01





EV






















13
IGH
IGH
IGHJ
GYT
113
LNGG
114
ARG
115
IGKV
IGKJ
QSV
116
GAS
QHY
117
IGL
IGL
NIR
118
ADS

QVW
119




V1-
D2-
6*02
FTH

NDDR

GWI

3-20
4*01
SSS


NNP

V3-
J2*
NKN



DGG





3*
21*

YA



IQN

*01

Q


VA

21*
01




SYH





01
01





GGA








02





VI












RYY



























HGM



























DV






















13
IGH
IGH
IGHJ
GYT
120
INAA
121
ARK
122







IGL
IGL
SSD
123
DVN

CSY
124




V1-
D3-
4*02
FTR

NGDT

DYY








V2-
J2*
VGG



AGN





3*
10*

YP



GSG








11*
01
YNY



YIL





01
01





SYE








01





V












FDN






















69
IGH
IGH
IGHJ
GYN
125
INVG
126
AKG
127
IGKV
IGKJ
ENI
128
KAS
QQY
129












V1-
D2-
3*01
FQR

NGNT

RSS

1-5*
2*01
GGW


NSY













3*
2*

SA



HDL

03




SRY













01
01





YDP






T




















FDF






















99
IGH
IGH
IGHJ
GYT
130
INPA
131
ARK
132







IGL
IGL
NSD
133
DVT

SSY
134




V1-
D3-
4*02
FTS

NGDT

NYY








V2-
J3*
VGG



AGK





3*
10*

YP



ASG








11*
02
YNY



YTL





01
01





SYH








01





V












FDL






















146
IGH
IGH
IGHJ
GYT
135
INAG
136
ARV
137
IGKV
IGKJ
QSV
138
TAS
QQS
139












V1-
D1-
3*02
LTS

SGLT

GIP

1-39
4*01
STY


SSV













3*
1*

YA



LRG

*01




PLT













01
01





AGG



























SPF



























DI





















H001
146
IGH
IGH
IGHJ
GYT
140
INAG
141
ARV
142
IGKV
IGKJ
QSI
143
SAS
QQS
144












V1-
D3-
3*02
FTT

NGIT

GIL

1-39
4*01
STY


YST













3*
16*

YA



VRG

*01




PLT













01
01





AGG



























SPF



























DI






















146
IGH
IGH
IGHJ
GYT
145
INAG
146
ARV
147
IGKV
IGKJ
QSI
148
TAS
QQS
149












V1-
D3-
3*02
FTT

NGIT

GIL

1-39
4*01
STY


YST













3*
16*

YA



VRG

*01




PLT













01
01





AGG



























SPF



























DI






















146
IGH
IGH
IGHJ
GYT
150
INIG
151
ARE
152
IGKV
IGKJ
QSV
153
KAS
QLY
154












V1-
D4-
3*01
FSR

NGNT

DYT

1-5*
4*01
STW


NSY













3*
11*

HA



GNY

03




SGT













01
01





YDA






T




















FDF






















146
IGH
IGH
IGHJ
GYS
155
INAA
156
ARD
157







IGL
IGL
SSN
158
GDT

QSY
159




V1-
D6-
6*02
FSN

YGNT

GVK








V1-
J2*
IGK



DSN





3*
13*

YA



EQL








40*
01
NYD



LSG





01
01





VYY








01





SVV












YFG



























MDV






















146
IGH
IGH
IGHJ
TYV
160
INAG
161
ARG
162
IGKV
IGKJ
QGI
163
AAS
QKY
164
IGL
IGL
SSN
165
DNN

GSW
166




V1-
D3-
4*02
FTA

NGDT

ALL

1-27
3*01
SNY


DSA

V1-
J1*
IGN



DSS





3*
10*

YA



WFR

*01




PYT

51*
01
TY



LYS





01
01





DDF








01





FYV












DF






















99
IGH
IGH
IGHJ
GYT
167
INPS
168
ASR
169
IGKV
IGKJ
PNA
170
GAS
QQY
171












V1-
D2-
1*01
FSN

GDST

LDA

3-20
2*01
NSG


GGL













46*
2*

YH



IPF

*01

S


PFT













01
01





QV






















99
IGH
IGH
IGHJ
GYI
172
IDPS
173
ARK
174







IGL
IGL
SSD
175
DVN

SSY
176




V1-
D4-
6*04
VTS

DTYT

GNY








V2-
J3*
VGD



TSS





46*
23*

YR



GSR








14*
02
YSY



STG





01
01





YDW








01





V












YFD



























V






















55
IGH
IGH
IGHJ
GYT
177
INPG
178
TRD
179
IGKV
IGKJ
QGI
180
AAS
LQH
181












V1-
D3-
3*01
FTN

AGTT

PIL

1-17
3*01
RND


NGY













46*
9-

FN



RFY

*01




PIT













03
01





DWQ



























SRD



























AFD



























V






















60
IGH
IGH
IGHJ
GGT
182
IVPI
183
ARV
184
IGKV
IGKJ
QSI
185
GAS
QQS
186
IGL
IGL
SSD
187
EVT

SSY
188




V1-
D3-
6*01
FSS

FGIP

PSV

1-39
3*01
SNY


YST

V2*
J1*
VGG



TGS





69*
3*

YS



ATC

*01




LFS

14*
01
YKY



STR





01
01





NFG








01





YV












CYS



























AMD



























V






















146
IGH
IGH
IGHJ
GGK
189
TIPI
190
ARA
191
IGKV
IGKJ
QGI
192
GAS
LQH
193












V1-
D3-
4*02
FIA

YGTA

SFG

1-17
1*01
SNS


NTY













69*
3*

YG



DLW

*03




PWT













06
01





SGY



























PNQ



























FFD



























H






















13
IGH
IGH
IGHJ
GFS
194
IYGD
195
AHR
196
IGKV
IGKJ
QSI
197
KAS
QQY
198












V2-
D3-
5*02
FST

GDE

LLT

1-5*
1*01
SRW


NSY













5*
9*

GGV



AYY

03




SWA













02
01

G



DH






















55
IGH
IGH
IGHJ
GFS
199
IYWD
200
AHT
201







IGL
IGL
SSN
202
STN

ATW
203




V2-
D6-
5*02
LST

DDK

VAA








V1-
J2*
IGS



DDS





5*
13*

FGV



AAT








44*
01
NT



LNG





02
01

G



FWF








01





LV












DP






















69
IGH
IGH
IGHJ
GFS
204
IYGD
205
AHS
206







IGL
IGL
ALP
207
EDN

YST
208




V2-
D2-
3*02
LST

DDK

SYF








V3-
J3*
RKY



DSS





5*
21*

TAV



DCG








10*
02




GDP





02
02

G



GDC








01





V












SDV



























AFD



























I






















146
IGH
IGH
IGHJ
GFS
209
IYWD
210
ARS
211







IGL
IGL
SSD
212
GVN

CSY
213




V2-
D2-
3*01
LTT

DDK

YCR








V2-
J2*
VGG



AGA





5*
15*

NGM



GGN








11*
01
YDY



YTY





02
01

G



CYS








01





VA












TAF



























NV





















H002
146
IGH
IGH
IGHJ
GFS
214
IDWD
215
ARS
216







IGL
IGL
NIG
217
DNS

QVW
218




V2-
D7-
4*02
LST

DEK

NHW








V3-
J1*
GKT



DTS





70
27*

NTM



GSH








21*
01




GDH





D*
01

R



FDY








02





LYV





04





























55
IGH
IGH
IGHJ
GFT
219
IRGS
220
ARD
221
IGKV
IGKJ
QSL
222
WAS
QQF
223












V3-
D2-
3*01
FSD

HSSV

LPG

4-1*
4*01
LYS


YTA













11*
21*

YY



DEY

01

SNN


PLT













01
01





LDA



KNY























FDL






















60
IGH
IGH
IGHJ
GLT
224
ISH
225
ASG
226







IGL
IGL
KLG
227
QDT

QAW
228




V3-
D6-
6*02
LSD

DGS

AAV








V3-
J2*
DAY



GSS





11*
13*

YY

TI

PYF








1*
01




PAK





01
01





YYG








01





V












VDV






















99
IGH
IGH
IGHJ
GFT
229
IGAA
230
ARA
231







IGL
IGL
SSN
232
SNN

ATW
233




V3-
D3-
4*02
FSS

TDT

VHY








V1-
J2*
IGS



DAS





13*
22*

YD



YDS








44*
01
NT



LKG





01
01





SGH








01





VV












YSG



























YYF



























DY






















55
IGH
IGH
IGHJ
GFT
234
IRSK
235
TTQ
236







IGL
IGL
NIG
237
YDS

QVW
238




V3-
D1-
4*02
FSN

TDGG

NAF








V3-
J1*
SKS



DSS





15*
1*

AW

TA

ES








21*
01




SDH





01
01














01





YV







55
IGH
IGH
IGHJ
GFT
239
IKSI
240
HTL
241
IGKV
IGKJ
QSV
242
GAS
QQY
243












V3-
D2/
6*02
FSN

TDGG

STT

3-20
4*01
TSN


INS













15*
OR1

AY

TI

HYY

*01

Y


PLT













01
5-





GMD





















2a*





V





















01




























146
IGH
IGH
IGHJ
GFT
244
IQRK
245
AAH
246
IGKV
IGKJ
QSI
247
DAS
QQY
248












V3-
D6-
4*02
FSN

TDGG

NRA

1-5*
2*01
SNW


YSY













15*
25*

TY

TA

AY

01




SPL













01
01












T















9
IGH
IGH
IGHJ
GLT
249
ISGS
250
ARA
251







IGL
IGL
SSN
252
DNN

QSY
253




V3-
D3-
4*02
FST

SDYI

RPP








V1*
J2*
IGA



DSS





21*
3*

HS



GTA








40*
01
GYD



LSG





01
02





FGF








01





AL












DH






















13
IGH
IGH
IGHJ
GFT
254
VSSS
255
VRT
256
IGKV
IGKJ
QSV
257
SAS
QQY
258












V3-
D3-
4*02
FSS

SYSI

FYF

3-15
1*01
RTN


DIW













21*
16*

YV



DY

*01




PPR













01
01












T















55
IGH
IGH
IGHJ
GFT
259
ISSS
260
VRD
261







IGL
IGL
SSN
262
TNS

AAW
263




V3-
D4-
1*01
FSS

SRYI

MTT








V1-
J2*
IGS



DDS





21*
17*

FS



VTT








44*
01
HT



LNG





01
01





CXX








01





LV












QH






















146
IGH
IGH
IGHJ
GFT
264
ISSS
265
VRD
266







IGL
IGL
SSN
267
TNS

AAW
268




V3-
D4-
1*01
FSS

SRYI

MTT








V1-
J2*
IGS



DDS





21*
17*

FS



VTT








44*
01
HT



LNG





01
01





CYL








01





LV












QH






















146
IGH
IGH
IGHJ
GFS
274
ISSS
275
ARV
276
IGKV
IGKJ
QSV
277
SAS
QQY
278












V3-
D3-
4*02
FNA

SSYI

PIL

3-15
2*01
NSN


SDW













21*
3*

YS



LAQ

*01




PRY













01
01





GVP






T




















TFD



























L






















9
IGH
IGH
IGHJ
GFT
279
VSGS
280
AKA
281







IGL
IGL
NIA
282
DDN

QVW
283




V3-
D2-
6*03
FTR

GSST

AIL








V3-
J2*
SKS



DSS





23*
2*

YT



GNY








21*
01




ADH





01
02





NYY








02





LVV












MD



























V






















13
IGH
IGH
IGHJ
EFR
284
IIAT
285
VKD
286







IGL
IGL
NIG
287
DDN







V3-
D1-
4*01
FGS

GAKT

AIY








V3-
J2*
SKS









23*
1*

YA



MSN








21*
01










01
01





WPW








02


















YFD



























Y






















13
IGH
IGH
IGHJ
GFT
288
ISGS
289
AKD
290







IGL
IGL
NIG
291
EDS

QVW
292




V3-
D6-
4*02
FTN

GGST

PIY








V3-
J2*
SRG



DSS





23*
13*

YA



SSS








21*
01




SDH





01
01





WPY








02





PEV












YFD














V












Y





















H021
13
IGH
IGH
IGHJ
GFR
293
ISGS
294
AKD
295
IGKV
IGKJ
QSI
296
AAS
QQS
297
IGL
IGL
NIG
298
DDS

QVW
299




V3-
D6-
4*02
FSS

GGST

PIY

1-39
2*03
SSY


YSL

V3-
J2*
SKS



DSS





23*
13*

YA



TSR

*01




YS

21*
01




SDH





01
01





WPY








02





SEV












YFD














I












Y






















13
IGH
IGH
IGHJ
GFR
300
ISGR
301
AKD
302







IGL
IGL
NIG
303
DDT

QVW
304




V3-
D3-
4*02
FSS

DAST

GVL








V3-
J2*
SKS



DNS





23*
10*

YA



GSY








21*
01




SDH





01
01





HQY








02





PGV












YFQ














V












Y






















13
IGH
IGH
IGHJ
GFT
305
ISGS
306
AKG
307
IGKV
IGKJ
QSV
308
GAF
QHY
309












V3-
DS-
4*02
FSS

GGST

SRN

3-15
4*01
SSN


NHW













23*
12*

YA



GPY

*01




SLT













01
01





IVA



























TLH



























FDY






















55
IGH
IGH
IGHJ
GFT
310
VSGN
311
VLS
312







IGL
IGL
SGI
313
YKS
314
MIW
315




V3-
D6-
4*02
FNN

GGST

SSW








V5-
J3*
NVG

DSD

HSS





23*
13*

YA



MDN








45*
02
TYR

K

AWV





01
01





PFD








02


















F






















55
IGH
IGH
IGHJ
GFT
316
ASAS
317
AGF
318
IGKV
IGKJ
QSV
319
DAS
QQR
320












V3-
D1-
4*02
FSS

GRNT

PSG

3-11
1*01
SNH


SNW













23*
26*

YA



THF

*01




WT













01
01





FDY






















55
IGH
IGH
IGHJ
GFT
321
ASAS
322
AGF
323
IGKV
IGKJ
QSV
324
GAS
QQF
325
IGL
IGL
SSD
326
EVN

NSY
327




V3-
D1-
4*02
FSS

GRNT

PSG

3-20
4*01
SNS


GSS

V2-
J1*
IGG



AGN





23*
26*

YA



THF

*01

Y


PLT

8*
01
YNY



NNF





01
01





FDY








01





V







55
IGH
IGH
IGHJ
EFT
328
ISGS
329
ARP
330







IGL
IGL
SSN
331
SNN

AAW
332




V3-
D2-
6*02
FSS

GDTT

DAL








V1-
J3*
IGT



DDR





23*
2*

YA



HCS








44*
02
NT



LIG





01
01





SIT








01





WV












SCS



























LYG



























LAY



























YYG



























MDV






















55
IGH
IGH
IGHJ
GFT
333
ISGN
334
AKR
335
IGKV
IGKJ
QSV
336
GVS
QQY
337












V3-
D1-
4*02
FSS

GGFT

MVE

3-20
2*01
SNS


GSS













23*
26*

HG



ATN

*01

Y


PPY













01
01





RYF






T




















DY






















55
IGH
IGH
IGHJ
GFT
338
ISAN
339
ARD
340







IGL
IGL
SSD
341
DVN

CSY
342




V3-
D1-
4*02
FIN

GIYT

SSE








V2-
J2*
VGG



AGS





23*
26*

YA



WVL








11*
01
YNY



YTV





01
01





GID








01





V












F






















60
IGH
IGH
IGHJ
GFT
343
ITGS
344
AKD
345







IGL
IGL
NIG
346
DDT

QVW
347




V3-
D4/
2*01
FSS

GGST

AVR








V3-
J2*
IKS



DSN





23*
OR

YA



SAN








21*
01




SDH





01
15-





HAW








02





PKV






4a*





YFD














V






01





F






















60
IGH
IGH
IGHJ
GFT
348
ISSN
349
AKG
350
IGKV
IGKJ
QSL
351
GAS
QQY
352












V3-
D5-
4*02
FSS

GAGT

YGL

3-15
1*01
VTN


INW













23*
12*

TA



FDS

*01




PPW













01
01












S














H003
60
IGH
IGH
IGHJ
GFT
353
LTAT
354
AKD
355







IGL
IGL
NIG
356
DDN

QVW
357




V3-
D2-
2*01
FSS

GGNT

AIR








V3-
J2*
SKS



DPT





23*
21*

YA



NSN








21*
01




SDQ





01
01





HAW








02





V












YFD



























V






















60
IGH
IGH
IGHJ
GFT
358
ISGR
359
AKS
360
IGKV
IGKJ
QTI
361
AAS
QQS
362












V3-
D2-
4*02
FSS

GDET

RVT

1-39
5*01
GTY


YST













23*
8*

YG



NSG

*01




SIT













01
01





SID



























H






















60
IGH
IGH
IGHJ
GFR
363
ISGG
364
AKD
365
IGKV
IGKJ
QSV
366
WAS
QQY
367
IGL
IGL
NIG
368
EDS

QVW
369




V3-
D4/
2*01
FNN

DGYT

AIL

4-1*
4*01
LYS


YST

V3-
J3*
TNS



DSS





23*
OR

YA



SAN

01

SNN


PLT

21*
02




SDH





01
15-





HPW



KNY




02





PKV






4a*





YFD














V






01





F






















60
IGH
IGH
IGHJ
GFT
370
IVNS
371
AKD
372







IGL
IGL
NIG
373
DDS

QVW
374




V3-
D2-
2*01
FSS

GGST

AIR








V3-
J2*
SES



DGS





23*
21*

YA



SSN








21*
01




SDH





01
01





HPW








02





PKV












YFH














L












V






















60
IGH
IGH
IGHJ
GFR
375
ITGG
376
AKD
377







IGL
IGL
NIG
378
EDS

QVW
379




V3-
D4/
2*01
FNN

EGYT

AIL








V3-
J3*
TNS



DRS





23*
OR

YA



SAN








21*
02




SDQ





01
15-





HPW








02





SKV






4a*





YFD














V






01





F






















146
IGH
IGH
IGHJ
GFT
380
ISGG
381
AKG
382
IGKV
IGKJ
QSV
383
GPS
QQY
384












V3-
D3/
4*02
FST

SEWS

YGL

3-15
1*01
SSN


INR













23*
OR

HA



FDF

*01




PPW













01
15-












T














3a*



























01




























9
IGH
IGH
IGHJ
GFT
385
IYTG
386
AKV
387
IGKV
IGKJ
QSV
388
DAS
QQR
389












V3-
D1-
4*02
FSN

GSKT

LLG

3-11
4*01
DSY


STW













23*
1*

YA



GWN

*01




PPS













03
01





GVF



























DH





















H004
146
IGH
IGH
IGHJ
GFR
390
FSGS
391
AKD
392







IGL
IGL
NIG
393
EDS

QVW
394




V3-
D3-
6*02
FNN

GSNI

GYF








V3-
J2*
SKS



DSN





23*
10*

YG



GSG








21*
01




HDH





04
01





SLY








02





PGV












GID














V












V






















146
IGH
IGH
IGHJ
GFT
395
ISGS
396
AKD
397







IGL
IGL
NIG
398
DDS

QV
399




V3-
D3-
6*02
FTS

GGST

GYY








V3-
J2*
SKS



WD





23*
10*

YA



GSG








21*
01




STS





04
01





SLY








02





DHP












GMD














GVV












V






















146
IGH
IGH
IGHJ
GFT
400
FSG
401
AKV
402







IGL
IGL
SSN
403
DNN

GTW
404




V3-
D3-
6*02
FSS

SGS

IQY








V1-
J3*
IGN



DSS





23*
9*

YA

ST

PRG








51*
02
NY



LNN





04
01





FWF








01





CV












YGM



























DV






















60
IGH
IGH
IGHJ
GFT
405
ISYD
406
ARD
407







IGL
IGL
SSD
408
EVS

SSY
409




V3-
D3-
6*02
FTS

GSTH

PGV








V2-
J2*
VGG



AGS





30-
10*

YA



PYY








8*
01
YHY



NNY





3*
01





HYA








01





IL





01






MDV






















146
IGH
IGH
IGHJ
EFT
410
ISAD
411
VRD
412
IGKV
IGKJ
QGI
413
AAS
LQH
414
IGL
IGL
GSN
415
SND

STW
416




V3-
D3-
4*02
FST

GNNR

ETD

1-17
2*01
RND


NSY

V1-
J2*
VGG



DDS





30-
3*

YA



WEI

*01




PRT

44*
01
NT



LNG





3*
01





GVV








01





VV





01






VAT



























PEF



























DY






















146
IGH
IGH
IGHJ
GFP
417
LSFN
418
VTG
419







IGL
IGL
NKN
420
RND

AAW
421




V3-
D4-
4*02
FSS

GDYI

IRA








V
J2*
VGN



DSS





30-
23*

HA



RDY








10-
01
EG



LSA





3*
01





GGS








54*





MI





02






TFD








01


















L






















9
IGH
IGH
IGHJ
GFR
422
IRYD
423
AKD
424







IGL
IGL
NIG
425
DDN

QVW
426




V3-
D3-
3*01
FTN

GSKK

GRW








V3-
J2*
NTV



ESS





30*
10*

YG



FGE








21*
01




TDP





02
01





SGG








02





VV












FDV






















9
IGH
IGH
IGHJ
GFT
427
MSYD
428
ARD
429
IGKV
IGKJ
PSV
430
GVS
QQY
431












V3-
D2-
2*01
FTS

GSYE

YCS

3-20
4*01
SSS


GSS













30*
2*

YS



RTN

*01

Y


PLT













03
01





CIN



























WIF



























DL






















60
IGH
IGH
IGHJ
GFR
432
ISND
433
AKD
434







IGL
IGL
NIG
435
DDR

QVW
436




V3-
D2-
6*02
FTG

GSKK

GYL








V3-
J2*
GKS



ETT





30*
8*

YG



SAA








21*
01




SDQ





03
02





RGY








02





LV












GMD



























V






















146
IGH
IGH
IGHJ
GFT
437
ISYD
438
ARD
439







IGL
IGL
NSN
440
GNH

QSY
441




V3-
D4-
4*02
FSN

GSNK

TFG








V1-
J1*
IGA



DSR





30*
17*

YD



DYY








40*
01
GYD



LSV





03
01





FDY








01





PYV







9
IGH
IGH
IGHJ
KFT
442
TSYN
443
ARG
444
IGKV
IGKJ
QSV
445
WAS
QQY
446












V3-
D5-
6*02
FSK

GGSK

GGY

4-1*
3*01
LYS


YST













30*
18*

YA



TYG

01

SNN


PFT













04
01





SYY



KNY























YSM



























DV






















9
IGH
IGH
IGHJ
RFT
447
ISYD
448
ARG
449
IGKV
IGKJ
QSL
450
WAS
QQY
451












V3-
D5-
6*02
FSK

GSSK

GGY

4-1*
3*01
LYS


YST













30*
18*

YA



TYG

01

SNN


PFT













04
01





SYY



KNY























YAM



























DV






















55
IGH
IGH
IGHJ
GFT
452
MSNT
453
ARA
454
IGKV
IGKJ
QSV
455
DAS
QHR
456












V3-
D1-
4*02
FSS

GSTK

LLS

3-11
1*01
SSY


SNS













30*
26*

YS



VVG

*01




WT













04
01





SKS



























YYF



























DF






















55
IGH
IGH
IGHJ
GFT
457
MSNT
458
ARA
459
IGKV
IGKJ
QSV
460
DAS
QHR
461












V3-
D1-
4*02
FSS

GSTK

LLS

3-11
1*01
SSY


SNS













30*
26*

YS



VVG

*01




WT













04
01





SKS



























YYF



























DF






















55
IGH
IGH
IGHJ
GFN
462
ISYD
463
ARD
464







IGL
IGL
NSN
465
NSD

GTW
466




V3-
D1-
6*02
FNV

GSKK

EKY








V1-
J2*
IGN



DSS





30*
26*

YA



SGL








51*
01
NF



LSL





04
01





YSG








01





GV












RTG



























DYY



























YGM



























DV






















55
IGH
IGH
IGHJ
GFT
467
ISYD
468
ARD
469







IGL
IGL
SSD
470
DVN

SSY
471




V3-
D3-
6*02
FSA

GSNR

GKL








V2-
J2*
VGG



TSS





30*
22*

YS



GRT








14*
01
YNY



TSL





04
01





YHD








01





V












SRQ



























SYF



























YIM



























DV






















13
IGH
IGH
IGHJ
GFR
472
TSFD
473
AKD
474







IGL
IGL
NIG
475
DDN

QVW
476




V3-
D3-
6*02
FSS

GSKT

AYY








V3-
J2*
SKS



GSG





30*
10*

YG



FAS








21*
01




GVI





18
01





GSF








02


















FGM



























DV






















13
IGH
IGH
IGHJ
GFT
477
ISYD
478
AKD
479
IGKV
IGKJ
QSI
480
KAS
QQY
481
IGL
IGL
SSN
482
RNN

AAW
483




V3-
D3-
6*02
FSR

GSNK

AYY

1-5*
4*01
SVW


TSF

V1-
J1*
IGS



DDR





30*
10*

YG



YGS

03




ST

47*
01
DY



LSG





18
01





GYG








01





YV












MDV






















60
IGH
IGH
IGHJ
GFT
484
ISSD
485
AKD
486







IGL
IGL
NIG
487
DDS

QVW
488




V3-
D3-
6*02
FRS

GSKK

GYV








V3-
J2*
SKS



DSS





30*
10*

YG



VSG








21*
01




SDH





18
01





SGY








02





VV












GMD



























V





















H009
60
IGH
IGH
IGHJ
RFS
489
ISYD
490
AKT
491







IGL
IGL
NIG
492
DDN

QVW
493




V3-
D1-
6*02
FNT

GSHE

DIK








V3-
J2*
RKS



DGT





30*
26*

YG



WGA








21*
01




RDH





18
01





TNY








02





LVV












GMD



























V






















60
IGH
IGH
IGHJ
GFT
494
TLYD
495
AKD
496
IGKV
IGKJ
QGI
497
AAS
LQH
498
IGL
IGL
SLR
499
NKD

NSR
500




V3-
D5-
4*02
FSN

GSHS

SAG

1-17
1*01
RTD


NSY

V3-
J2*
SFY



DSI





30*
12*

YA



YGL

*01




PWT

19*
01




GNH





18
01





HY








01





VV







60
IGH
IGH
IGHJ
GFR
501
ISND
502
AKD
503







IGL
IGL
NVG
504
DDS

QVW
505




V3-
D3-
6*02
FTG

GSKK

GYL








V3-
J2*
SKS



DTT





30*
22*

YG



SAA








21*
01




TDQ





18
01





RGY








02





LV












GMD



























V






















60
IGH
IGH
IGHJ
GFR
506
ISND
507
AKD
508







IGL
IGL
NIG
509
DDS

QVW
510




V3-
D3-
6*02
FTG

GSKT

GYL








V3-
J2*
GKS



DTT





30*
22*

YG



SAA








21*
01




SDQ





18
01





RGY








02





LV












GMD



























V






















60
IGH
IGH
IGHJ
GFR
511
ISND
512
AKD
513







IGL
IGL
NIG
514
DDN

QVW
515




V3-
D3-
6*02
FTG

GSKK

GYL








V3-
J2*
ALS



DTS





30*
22*

YG



SAA








21*
01




SDQ





18
01





RGY








02





LV












GMD



























V





















H005
60
IGH
IGH
IGHJ
GFR
516
ISND
517
AKD
518







IGL
IGL
NIG
519
DDS

QVW
520




V3-
D3-
6*02
FTG

GSKK

AYL








V3-
J2*
GKS



DTA





30*
16*

YG



SAA








21*
01




SDQ





18
01





RGY








02





LV












GMH



























V






















60
IGH
IGH
IGHJ
GFR
521
ISND
522
AKD
523







IGL
IGL
NIG
524
DDR

QVW
525




V3-
D3-
6*02
FTG

GSKK

GYL








V3-
J2*
GKS



DTT





30*
22*

YG



SAA








21*
01




SDQ





18
01





RGY








02





LV












GMD



























V






















60
IGH
IGH
IGHJ
GFR
526
ISND
527
AKD
528







IGL
IGL
NIG
529
DDT

QVW
530




V3-
D3-
6*02
FTG

GSKK

GYL








V3-
J2*
GKS



DTT





30*
22*

YG



SAA








21*
01




SDQ





18
01





RGY








02





LV












GMD



























V






















60
IGH
IGH
IGHJ
GFR
531
ISND
532
AKD
533







IGL
IGL
NIG
534
DDS

QVW
535




V3-
D3-
6*02
FTG

GSKK

GYL








V3-
J2*
GKS



DTT





30*
22*

YG



SAA








21*
01




SDQ





18
01





RGY








02





LV












GMD



























V






















60
IGH
IGH
IGHJ
GFT
536
ISYD
537
AKT
538







IGL
IGL
NIG
539
DDN

QVW
540




V3-
D1-
6*02
FNT

GSNK

DIR








V3-
J2*
SKS



DGS





30*
26*

YA



WGA








21*
01




SDH





18
01





TNY








02





LVV












GMD



























V





















H010
60
IGH
IGH
IGHJ
GFS
541
ISYD
542
AKG
543







IGL
IGL
NIG
544
DDS

QVW
545




V3-
D3-
4*02
FST

GMIK

PLF








V3-
J2*
DMS



DNS





30*
3*

YG



GLF








21*
01




RNR





18
01





SFD








03





GI












Q






















60
IGH
IGH
IGHJ
GFR
546
ISND
547
AKD
548







IGL
IGL
NIG
549
DDR

QVW
550




V3-
D3-
6*02
FTG

GSKK

GYL








V3-
J2*
GKS



DTT





30*
22*

YG



SAA








21*
01




SDQ





18
01





RGY








02





LV












GMD



























V






















60
IGH
IGH
IGHJ
GFR
551
ISND
552
AKD
553
IGKV
IGKJ
QSL
554
KVS
TQV
555












V3-
D3-
6*02
FTG

GSKR

GYL

2-30
1*01
VYS


TLW













30*
22*

YS



SAA

*01

DGN


PPW













18
01





RGY



TY


T




















GMD



























V





















H006
60
IGH
IGH
IGHJ
GFR
556
ISND
557
AKD
558







IGL
IGL
NIG
559
DDN

QVW
560




V3-
D3-
6*02
FTG

GSKK

GYL








V3-
J2*
GKS



DTT





30*
22*

YG



SAA








21*
01




SDQ





18
01





RGY








02





LV












GMD



























V






















60
IGH
IGH
IGHJ
GFR
561
ISND
562
AKD
563







IGL
IGL
SSD
564
EVS

SSY
565




V3-
D3-
6*02
FTG

GSKK

GYL








V2-
J2*
VGS



TSS





30*
22*

YG



SAA








18*
01
YNR



STL





18
01





RGY








02





V












GMD



























V






















60
IGH
IGH
IGHJ
GFT
566
ISSD
567
AKD
568







IGL
IGL
NIG
569
DDT

QVW
570




V3-
D2-
4*02
FRS

GSKK

PIK








V3-
J2*
SKS



DSN





30*
21*

YG



VSA








21*
01




SDH





18
02





NGW








03





VV












GFD



























Y






















60
IGH
IGH
IGHJ
GFR
571
ISND
572
AKD
573







IGL
IGL
NIG
574
DDS

QVW
575




V3-
D3-
6*02
FTG

GSRK

GYL








V3-
J2*
GKS



DTT





30*
22*

YG



SAA








21*
01




SDQ





18
01





RGF








02





LV












GMD



























V






















60
IGH
IGH
IGHJ
RFS
576
ISYD
577
AKT
578







IGL
IGL
NIG
579
DDN

QVW
580




V3-
D2-
6*02
FST

GSEK

DIM








V3-
J2*
SKS



DDS





30*
15*

YG



WRA








21*
01




RDH





18
01





VNY








02





LVI












GMD



























V






















60
IGH
IGH
IGHJ
RFS
581
ISYD
582
AKT
583







IGL
IGL
NIG
584
DDN

QVW
585




V3-
D2-
6*02
FST

GSEK

DIM








V3-
J2*
SKS



DDS





30*
15*

YG



WRA








21*
01




RDH





18
01





VNY








02





LVI












GMD



























V






















60
IGH
IGH
IGHJ
GFS
586
ISYD
587
AKT
588







IGL
IGL
NIG
589
DDN

QVW
590




V3-
D2-
6*02
FST

GSSK

DIM








V3-
J2*
SKS



DDS





30*
21*

YG



WQA








21*
01




RDH





18
01





VNY








02





LVI












GMD



























V






















60
IGH
IGH
IGHJ
GFR
591
ISND
592
AKD
593







IGL
IGL
NIG
594
DDR

QVW
595




V3-
D3-
6*02
FTG

GSKK

GYL








V3-
J2*
GKS



DTT





30*
22*

YG



SAA








21*
01




SDQ





18
01





RGY








02





LV












GMD



























V






















60
IGH
IGH
IGHJ
RFS
596
ISYD
597
AKT
598







IGL
IGL
NIG
599
DDN

QVW
600




V3-
D2-
6*02
FST

GSEK

DIM








V3-
J2*
SKS



DES





30*
15*

YG



WRA








21*
01




RDH





18
01





VNY








02





LVI












GMD



























V






















60
IGH
IGH
IGHJ
GFR
601
ISND
602
AKD
603







IGL
IGL
NIG
604
DDR

QVW
605




V3-
D3-
6*02
FTG

GSKK

GYL








V3-
J2*
GKS



DTT





30*
22*

YG



SAA








21*
01




SDQ





18
01





RGY








02





LV












GMD



























V





















H008
146
IGH
IGH
IGHJ
GFR
606
IPFD
607
AKD
608







IGL
IGL
DVG
609
DDT

QVW
610




V3-
D1-
6*02
FTM

GRTQ

GIL








V3-
J2*
SKS



DSS





30*
26*

YG



GAR








21*
01




SDH





18
01





RGL








02





VV












YGI



























DV





















H007
146
IGH
IGH
IGHJ
GFT
611
ISYD
612
AKE
613
IGK
IGKJ
QTI
614
GAS
QQY
615












V3-
D3-
6*02
FNN

GSNK

IGG

V3-
2*01
YTT


SSS













30*
3*

YA



FDF

20*

Y


PPG













18
01





RSG

01




YT




















SQR



























SYY



























YYG



























VDV






















146
IGH
IGH
IGHJ
GFT
616
ISYD
617
AKE
618
IGKV
IGKJ
QSV
619
GAS
HQY
620












V3-
D3-
6*02
FSR

GGNK

IGG

3-20
2*01
YST


VTS













30*
3*

HG



FDF

*01

Y


PPG













18
01





RSG






YT




















DQL



























TYY



























YYG



























MDV






















146
IGH
IGH
IGHJ
GFS
621
ISYD
622
AKD
623







IGL
IGL
NIA
624
DDT

QVW
625




V3-
D5-
6*02
FSN

GSNK

AYI








V3-
J2*
SKS



DSS





30*
18*

YG



YAR








21*
01




SND





18
01





GSY








02





PVV












YGM



























DV






















146
IGH
IGH
IGHJ
GFR
626
ISFD
627
AKD
628







IGL
IGL
NIR
629
DDN

QVW
630




V3-
D1-
6*02
FTK

GSTQ

GIL








V3-
J2*
SKN



DSY





30*
26*

YG



GAR








21*
01




SDH





18
01





RGX








02





VV












YGI



























DV






















146
IGH
IGH
IGHJ
GFT
631
ISFD
632
AKE
633
IGKV
IGKJ
QTV
634
GAS
QQY
635












V3-
D3-
6*02
FSN

GSNK

IGG

3-20
2*01
YNT


GNS













30*
3*

YA



FDF

*01

Y


PPG













18
01





RSG






YT




















KQR



























SYY



























YYG



























VDV






















146
IGH
IGH
IGHJ
GFR
636
VSYD
637
AKD
638







IGL
IGL
NIG
639
DDS

QVW
640




V3-
D3-
4*02
FTI

GSKQ

AYY








V3-
J3*
SQS



DSS





30*
10*

YG



YGS








21*
02




SMG





18
01





GSH








02





V












NNP



























DY






















146
IGH
IGH
IGHJ
GFT
641
ISYD
642
AKG
643







IGL
IGL
NSN
644
ANS

ASW
645




V3-
D3-
4*02
FSN

GRDK

YDY








V1-
J3*
VGN



DDS





30*
16*

YG



IWG








44*
02
NV



LSG





18
02





TYR








01





SWV












PRP



























DLD



























S






















146
IGH
IGH
IGHJ
GFT
646
VSYD
647
AKD
648







IGL
IGL
NIG
649
DDR

QVW
650




V3-
D6-
4*02
FSD

GTSE

PVQ








V3-
J2*
SKT



HST





30*
13*

YG



RSN








21*
01




TEP





18
01





WYY








02





VV












FDY






















146
IGH
IGH
IGHJ
GFT
651
TSYD
652
AKD
653







IGL
IGL
YIG
654
DDR

QVW
655




V3-
D1-
4*02
FSN

GINK

PVH








V3-
J2*
SKT



YSN





30*
20*

YG



RSN








21*
01




SEP





18
01





WFY








02





VV












FDH






















146
IGH
IGH
IGHJ
GTS
656
ISPN
657
AKG
658
IGKV
IGKJ
QSI
659
KAS
QYY
660
IGL
IGL
NIG
661
DDN

QVW
662




V3-
D3-
6*02
FST

AFDK

SPI

1-5*
1*01
DTW


SVY

V3-
J3*
SKN



DNN





30*
3*

SG



IRF

03




ST

21*
02




SDH





18
01





LMM








02





VV












DV






















13
IGH
IGH
IGHJ
GFT
663
IWSD
664
ARE
665







IGL
IGL
NIR
666
ADS

QVW
667




V3-
D6-
4*02
FSS

GSNK

AGI








V3-
J2*
GKS



DSS





33*
13*

YG



AAP








21*
01




SDH





01
01





ASL








02





VV












DF






















13
IGH
IGH
IGHJ
GFT
668
IWSD
669
TRE
670







IGL
IGL
NIG
671
DDN

QVW
672




V3-
D6-
4*02
FSN

GTNK

AGI








V3-
J2*
NKN



DSS





33*
13*

YG



AAP








21*
01




SYH





01
01





AAL








02





VV












DY





















H011
13
IGH
IGH
IGHJ
GFT
673
VWYD
674
VRD
675
IGKV
IGKJ
QSI
676
GTS
QHR
677












V3-
D1-
3*01
FSN

GSYK

NWS

3-11
2*03
SSY


NSW













33*
7*

YG



YNA

*01




PYS













01
01





FDV






















13
IGH
IGH
IGHJ
GFI
678
IWKD
679
VRE
680
IGKV
IGKJ
QGI
681
TAS
LQH
682












V3-
D6-
4*02
FSD

GSNK

NSG

1-17
4*01
RNN


DSY













33*
19*

YG



WYY

*01




PFT













01
01





FDY





















H012
13
IGH
IGH
IGHJ
GFA
683
IWHD
684
ARE
685







IGL
IGL
NIR
686
ADS

QVW
687




V3-
D6-
4*02
FRS

GSNK

GAI








V3-
J2*
SRN



DSG





33*
13*

YG



AAP








21*
01




TDH





01
01





ASL








02





VI












DV






















13
IGH
IGH
IGHJ
GFT
688
IWSD
689
ARE
690







IGL
IGL
NIR
691
ADS

QVW
692




V3-
D6-
4*02
FSS

GSNQ

GGI








V3-
J2*
NKN



DGG





33*
13*

FG



AAP








21*
01




SYH





01
01





AAL








02





VI












DF






















13
IGH

IGHJ
GVT
693
IWYD
694
ARE
695
IGKV
IGKJ
QNI
696
DAS
QHS
697












V3-

4*02
FNS

GTNK

SKA

1-39
2*03
SIF


SFP













33*


YG



YPY

*01




PQD













01






YFD






S




















Y






















13
IGH
IGH
IGHJ
GFT
698
IWYD
699
ARE
700
IGKV
IGKJ
QGI
701
AAS
LQH
702












V3-
D1-
4*02
FSN

GTYK

SNG

1-17
1*01
RNN


NSF













33*
1*

YA



FGS

*01




PRT













01
01





DF






















13
IGH
IGH
IGHJ
GFV
703
VWYD
704
VRD
705
IGKV
IGKJ
QSI
706
ATS
QHR
707












V3-
D3-
3*02
FSS

GSYK

NWS

3-11
2*03
SSY


NSW













33*
10*

YG



YNA

*01




PYS













01
01





FDI






















13
IGH
IGH
IGHJ
GFT
708
IWYD
709
ARD
710
IGKV
IGKJ
QSV
711
DAS
QHR
712












V3-
D1-
3*02
FSN

GSYK

NWK

3-11
2*03
SSY


SNW













33*
20*

YG



YNA

*01




PYS













01
01





FDI






















13
IGH
IGH
IGHJ
GFT
713
IWSD
714
ARE
715







IGL
IGL
SSD
716
EGS

CLY
717




V3-
D6-
4*02
FSR

GSNQ

SSG








V2-
J1*
VGN



AGS





33*
19*

YG



WYY








23*
01
YNF



SIS





01
01





FDY








01





YV







13
IGH
IGH
IGHJ
GFT
718
IWYD
719
ARE
720







IGL
IGL
NIG
721
ADS

QVW
722




V3-
D6-
5*02
FSS

GSNE

ERI








V3-
J2*
RKN



DSS





33*
13*

FG



AAP








21*
01




TYH





01
01





ASL








02





VV












DL






















13
IGH
IGH
IGHJ
GFT
723
IWHD
724
ARE
725







IGL
IGL
NIA
726
ADS

QVW
727




V3-
D6-
4*02
FSS

GTNQ

LRI








V3-
J2*
NKN



DSG





33*
25*

YG



AAP








21*
01




SDH





01
01





AAL








02





VL












DY






















49
IGH
IGH
IGHJ
GFT
728
IWYD
729
ARQ
730
IGKV
IGKJ
QGV
731
DAS
QHY
732












V3-
D3-
4*02
FSS

GSHK

MFT

3-15
1*01
SSN


NNW













33*
16*

FN



GHF

*01




PRT













01
01





DY






















60
IGH
IGH
IGHJ
GFT
733
IWND
734
ARE
735
IGKV
IGKJ
QSV
736
GAS
QQY
737












V3-
D2-
6*02
FSG

GSFK

GRG

3-20
3*01
SSS


GRS













33*
2*

YG



QLL

*01

Y


QGF













01
01





FHG






T




















MDV






















60
IGH
IGH
IGHJ
GFT
738
IWSS
739
ARD
740







IGL
IGL
SSD
741
EGT

CSF
742




V3-
D2-
4*02
FSG

GSKT

GHC








V2-
J3*
VGN



AGS





33*
21*

HG



DGG








23*
02
YNL



RWV





01
02





CYS








01


















ALY



























DY





















H015
60
IGH
IGH
IGHJ
GFS
743
IWFD
744
ARE
745
IGKV
IGKJ
QGL
746
SAS
QQS
747












V3-
D6-
4*02
FSR

GTND

DPH

1-39
4*01
TSF


YGT













33*
6*

HG



LLI

*01




PAL













01
01





ATL






A




















DL






















60
IGH
IGH
IGHJ
GFT
748
IWAD
749
ARE
750
IGKV
IGKJ
QSI
751
TAS
QQS
752












V3-
D4-
2*01
FRS

GTKQ

TTI

1-39
4*01
NKY


FSI













33*
11*

YG



FNW

*01




PPT













01
01





YFD



























L






















60
IGH
IGH
IGHJ
GFT
753
IWSD
754
ARE
755







IGL
IGL
SSD
756
DVS

CSY
757




V3-
DS-
4*02
FSD

GSNK

RRG








V2-
J2*
VGG



AGR





33*
18*

YG



FSY








11*
01
YNS



YTF





01
01





GLD








01





VV












DN






















60
IGH
IGH
IGHJ
GFT
758
IWKD
759
ARE
760
IGKV
IGKJ
QRI
761
AAS
QQA
762












V3-
D6-
3*01
FSR

GTND

QAE

1-39
4*01
GDF


YNA













33*
19*

YG



IAV

*01




PPL













01
01





ASF






T




















DF






















60
IGH
IGH
IGHJ
GFT
763
IWKD
764
ARE
765







IGL
IGL
RSN
766
GND

GSW
767




V3-
D6-
4*02
FSN

GTNK

SHY








V1-
J3*
IGS



DGS





33*
19*

YG



SAW








51*
02
NY



LSV





01
01





YVL








01





GV












DY






















60
IGH
IGH
IGHJ
GFT
768
IWYD
769
ARE
770
IGKV
IGKJ
QTI
771
ATS
QQS
772












V3-
D2-
4*02
FSR

GSNK

DPN

1-39
4*01
TRS


DST













33*
8*

HG



VFI

*01




PAL













01
01





ATL






A




















DL






















60
IGH
IGH
IGHJ
GFT
773
IWND
774
ARE
775







IGL
IGL
SSD
776
DVS

CSY
777




V3-
D3-
4*02
FSR

GSTK

DPY








V2-
J3*
VGG



AGS





33*
16*

YG



VFM








11*
02
YNY



YTW





01
01





ATL








01





V












DS






















60
IGH
IGH
IGHJ
GFT
778
IWAD
779
ARE
780
IGKV
IGKJ
QSI
781
GAS
QQS
782












V3-
D2-
2*01
FRN

GTNQ

TTI

1-39
4*01
NNY


FSI













33*
21*

YG



FQW

*01




PPT













01
01





YFD



























L






















69
IGH
IGH
IGHJ
GFT
783
IWYD
784
ARE
785
IGKV
IGKJ
QSL
786
QIS
MQA
787












V3-
D2-
6*02
FSS

GSLK

TTF

2-24
1*01
VHS


AQF













33*
15*

YG



GRF

*01

DGN


PWT













01
01





CSG



TY























GSC



























YSD



























YYY



























GMD



























V






















69
IGH
IGH
IGHJ
GFV
788
IWAD
789
ARE
790







IGL
IGL
SSN
791
DNN







V3-
D6-
4*02
FSN

GTNS

GGI








V1-
J1*
IGN









33*
13*

YG



VAA








51*
01
NY









01
01





DK








01












H014
146
IGH
IGH
IGHJ
GFS
792
IWRD
793
ARE
794







IGL
IGL
KIV
795
DDD

QVW
796




V3-
D4/
4*02
FSD

GSNS

ARV








V3-
J3*
NKN



DNG





33*
OR

YG



AAP








21*
02




SNH





01
15-





ASY








02





VV






4a*





DY





















01




























146
IGH
IGH
IGHJ
GFT
797
IWAD
798
ARE
799







IGL
IGL
NIR
800
DDD

QVW
801




V3-
D6-
4*02
FSS

GTNK

ALI








V3-
J2*
SKN



DNN





33*
13*

CG



AAP








21*
01




SRH





01
01





ATF








02





VV












DY






















146
IGH
IGH
IGHJ
GFT
802
IWAD
803
ARE
804







IGL
IGL
NIR
805
DDD

QVW
806




V3-
D6-
5*02
FRN

GSNK

GHI








V3-
J2*
NKN



DSS





33*
13*

YG



AAP








21*
01




SEH





01
01





AAL








02





VV












DL





















H013
146
IGH
IGH
IGHJ
GFT
807
IWSD
808
ARE
809







IGL
IGL
NIR
810
DDN

QVW
811




V3-
D6-
4*02
FSG

GSNK

ANI








V3-
J2*
SKN



DSY





33*
13*

NG



AAP








21*
01




SDH





01
01





AIY








02





VV












DH






















146
IGH
IGH
IGHJ
GFT
812
IWAD
813
ARE
814
IGKV
IGKJ
QSI
815
VAS
QQS
816












V3-
D2-
5*02
FTT

GSNQ

GHV

1-39
4*01
ANY


YSM













33*
15*

YG



ATP

*01




PTL













01
01





ILD 






T




















L






















146
IGH
IGH
IGHJ
GFT
817
IWYD
818
VRD
819
IGKV
IGKJ
QSV
820
EAT
QHR
821












V3-
D3-
3*01
FSS

GSIK

NFG

3-11
2*01
TRY


SNW













33*
10*

YG



LNA

*01




PYT













01
01





FDV






















146
IGH
IGH
IGHJ
GFT
822
IWHD
823
ATE
824







IGL
IGL
SGI
825
SXS
826
MIX
827




V3-
D6-
4*02
FSN

GSNQ

RRI








V5-
J2*
SVD

DK

HSS





33*
13*

YG



AAP








48*
01
RSR



AMW





01
01





GCL








02


















DY






















146
IGH
IGH
IGHJ
GFT
828
IWYD
829
ARE
830
IGKV
IGKJ
QSI
831
KAS
QYY
832
IGL
IGL
NIG
833
DDN

QVW
834




V3-
D6-
4*02
FSS

GSTK

ALI

1-5*
1*01
DTW


SVY

V3-
J3*
SKN



DNN





33*
13*

HG



AAP

03




ST

21*
02




SDH





01
01





ATF








02





VV












DY






















60
IGH
IGH
IGHJ
GFS
835
IWYD
836
AGG
837
IGKV
IGKJ
QDI
838
DAS
QQY
839
IGL
IGL


EDN

YST
840




V3-
D5-
6*02
FSR

GSTR

GYS

1-33
4*01
SNY


DNL

V3-
J2*




DRS





33*
12*

YG



SRG

*01




PPL

10*
01




GDQ





02
01





YYN






T

01





RV












YGL



























DV






















99
IGH
IGH
IGHJ
GFT
841
IWSD
842
AKA
843







IGL
IGL
SSN
844
GNS

QSY
845




V3-
D2-
4*02
FSR

GSNK

TCG








V1-
J3*
IGA



DSN





33*
15*

YG



DGS








40*
02
GYD



LSG





06
01





CGL








01





WV












YYF



























DY






















55
IGH
IGHD
IGHJ


INGN
846
AKD
847
IGKV
IGKJ
QSL
848
KVS
MQQ
849












V3-
2-21
5*02


GRDT

IWI

2-30
1*01
VYS


THW













43*
*01





FDG

*01

DGN


PWA













02






RRW



TY























IAG



























SPD



























A






















49
IGH
IGH
IGHJ
GFS
850
ITSN
851
ARA
852
IGKV
IGKJ
QSL
853
WAS
QQY
854












V3-
D1-
6*02
FSS

SATI

GPP

4-1*
4*01
LYR


YTA













48*
1*

YS



SPP

01

SNN


PLL













01
01





NYG



KNY























MDV





















H016
69
IGH
IGH
IGHJ
GFT
855
ISTT
856
ASV
857
IGKV
IGKJ
QSI
858
RAS
QQY
859












V3-
D3/
2*01
FPS

SEAI

GLD

3-15
4*01
SSN


DHW













48*
OR

HT



SKI

*01




PLT













02
15-





SGY





















3a*





WYF





















01





DL






















69
IGH
IGH
IGHJ
GFT
860
ISSS
861
ARV
862
IGKV
IGKJ
QSV
863
GAS
QQY
864












V3-
D3/
2*01
FST

GDTI

GLA

3-15
4*01
SSN


NDW













48*
OR

YT



LTI

*01




PLT













02
15-





SGY





















3a*





WYF





















01





DL






















146
IGH
IGH
IGHJ
GFT
865
ISTT
866
ARA
867
IGKV
IGKJ
QSV
868
AAS
QQY
869












V3-
D7-
2*01
FSS

SAAI

KLG

3-15
4*01
GSN


NNW













48*
27*

SV



SGS

*01




PLT













02
01





YWY



























FDL






















13
IGH
IGH
IGHJ
GIT
870
ISSD
871
ARD
872







IGL
IGL
SGI
873
YRS
874
MIW
875




V3-
D1-
3*02
LRT

DKTI

TGI








V5-
J1*
NVG

DSD

HST





48*
1*

YK



WNG








45*
01
TYR

M

AYV





03
01





AYD








02


















AFD



























I






















13
IGH

IGHJ
GFT
876
ISNS
877
VGF
878
IGKV
IGKJ
RSL
879
WAS
QQY
880












V3-

4*02
FSS

GNTI

DH

4-1*
5*01
LYT


YSP













48*


YE





01

SVN


PIT













03










KNH


















55
IGH
IGH
IGHJ
GFT
881
ISSS
882
AGH
883







IGL
IGL
SSN
884
RNS

QSY
885




V3-
D2-
4*02
FSN

GSVM

CSS








V1-
J2*
IGA



DSS





48*
2*

NE



NKC








40*
01
GYD



LSG





03
02





YKY








01





SI







69
IGH
IGH
IGHJ
GFT
886
IKPK
887
ARD
888
IGKV
IGKJ
QSL
889
WAS
QQY
890












V3-
D3-
4*02
FGD

AYGG

LTI

4-1*
5*01
LYS


YST













49*
22*

YG

AT

NKI

01

SNN


PIT













03
01





IVA



KNY























NDF






















146
IGH
IGH
IGHJ
GFT
891
IRSK
892
ARV
893
IGKV
IGKJ
QSV
894
WAS
QQY
895












V3-
D6-
4*02
FGD

GYGG

PYS

4-1*
4*01
LYS


YST













49*
13*

YA

TR

SSW

01

FNN


PLT













03
01





YVA



KNY























WAD



























Y






















99
IGH
IGH
IGHJ
GFT
896
IRRK
897
TRG
898
IGKV
IGKJ
QSL
899
ELS
MQS
900












V3-
D3-
4*02
FGD

ANRG

DYY

2D-
1*01
LYS


IQL













49*
10*

YG

TT

GSR

29*

DGK


RT













04
01





NSY

01

TY























FWL



























FDY






















69
IGH
IGH
IGHJ
GFT
901
IYSG
902
ARV
903







IGL
IGL
SGT
904
STT

LLY
905




V3-
D6-
4*02
VIS

VNT

IAV








V7-
J3*
VTT



CSG





53*
19*

NY



AGT








43*
02
ANY



VRV





01
01





NRG








01


















GPR



























WRS



























TYY



























FDY






















9
IGH
IGH
IGHJ
GLT
906
INEE
907
ASE
908







IGL
IGL
SSN
909
DSY

GTW
910




V3-
D3-
4*02
FSR

GSHS

LWT








V1-
J3*
VGK



DSS





7*
3*

YW



AFN








51*
02
NY



LKV





01
01





KDW








01





VV












SGY



























NDY






















9
IGH
IGH
IGHJ
GFT
911
IKQD
912
TRD
913
IGKV
IGKJ
QGI
914
ASS
LQH
915












V3-
D1-
4*02
FTN

GSEK

TWV

1-17
3*01
SKY


QSY













7*
26*

FK



DS

*03




PFT













01
01




























13
IGH
IGH
IGHJ
GFS
916
IKED
917
ASS
918







IG
IGL
NKN
919
RHN

SAW
920




V3-
D2-
4*02
FSN

GSEK

HYS








LV
J3*
VGN



DFS





7*
21*

YW



AGD








10-
02
KG



LRA





01
01





VSY








54*





WV












NFD








01


















Y






















55
IGH
IGH
IGHJ
GFI
921
IKQD
922
ARS
923
IGKV
IGKJ
QSV
924
DAS
QHR
925












V3-
D6-
5*02
FSS

GSDK

HVA

3-11
2*01
SSY


SK













7*
13*

SW



AGV

*01


















03
01





TRW



























FDP






















55
IGH
IGH
IGHJ
SFT
926
INQD
927
ARS
928
IGKV
IGKJ
QNI
929
DAS
HHR
930












V3-
D6-
5*01
FST

GSER

HVA

3-11
2*01
NSQ


IN













7*
13*

SW



AGG

*01


















03
01





TRW



























IDS






















55
IGH
IGH
IGHJ
GFT
931
INQD
932
ARL
933







IGL
IGL
SSN
934
INN

AAW
935




V3-
D3-
3*01
FSD

GSEY

DRG








V1-
J2*
IGS



DDS





7*
16*

YVV



TGE








44*
01
RS



LNG





03
02





SGY








01





VV












RSS



























DV






















55
IGH
IGH
IGHJ
GFI
936
INQD
937
ARS
938
IGKV
IGKJ
QSV
939
DAS
QHR
940












V3-
D1-
5*02
FSS

GSDI

HVA

3-11
2*01
SSY


SY













7*
7*

NW



ASG

*01


















03
01





TRW



























FDP






















55
IGH
IGH
IGHJ
GFT
941
TRNK
942
ARD
943
IGKV
IGKJ
QSV
944
DAS
QHR
945












V3-
D3-
4*02
FSD

ANSY

GYD

3-11
2*01
SSY


SY













72*
9*

HF

TT

ILN

*01


















01
01





HFV



























RFD



























F






















60
IGH
IGH
IGHJ
GFT
946
IRNK
947
ARE
948







IGL
IGL
SSD
949
EVT

SSY
950




V3-
D3-
3*02
FSD

AKSY

GLG








V2-
J3*
VGG



TTS





72*
16*

HY

TT

SPT








14*
02
YNY



STL





01
01





SDA








01





V












FDI






















60
IGH
IGH
IGHJ
GFT
951
IRSK
952
TSQ
953
IGKV
IGKJ
QNI
954
GAS
QHY
955












V3-
D4-
6*02
LSG

ANNY

YGD

3-15
3*01
RNN


NNW













73*
17*

SA

AT

GYY

*01




PLF













02
01





YAM






T




















DV






















9
IGH

IGHJ


ISDD
956
VRG
957







IGL
IGL
NSD
958
DVT

CSF
959




V3-

6*02


ERST

LNH








V2-
J3*
VGG



TTR





74*






AMD








14*
02
YNF



NTW





01






V








01





V







13
IGH
IGH
IGHJ
GFT
960
IKYD
961
ARV
962
IGKV
IGKJ
QSL
963
WAS
QQY
964












V3-
D3-
4*02
FST

GSST

YRD

4-1*
4*01
LYS


YDI













74*
22*

YR



SRD

01

SNK


PYT













01
01





GSD



KNY























FRH



























FDS





















H017
55
IGH
IGH
IGHJ
GFT
965
ISTD
966
ARG
967







IGL
IGL
SSD
968
DVT

SSY
969




V3-
D3-
4*02
FSN

GSST

STY








V2-
J1*
IGV



RGS





74*
10*

YW



YFG








14*
01
YNY



STP





01
01





SGS








01





YV












VDY






















55
IGH
IGH
IGHJ
GFT
970
IESD
971
ARG
972







IGL
IGL
RSD
973
DVS

YSY
974




V3-
D1-
4*02
FSD

GSGT

SLD








V2-
J2*
VGA



TTS





74*
26*

YW



F








14*
01
YNY



NTL





01
01














01





V







55
IGH
IGH
IGHJ
GFT
975
IDDG
976
SRG
977







IGL
IGL
RSD
978
DVS

YSY
979




V3-
D1-
4*02
FSD

GSAT

SLD








V2-
J2*
VGA



TTS





74*
26*

YW



Y








14*
01
YNY



NTL





01
01














01





V







99
IGH
IGH
IGHJ
GFT
980
INSD
981
ACL
982







IGL
IGL
TGA
983
DAS

LLS
984




V3-
D4/
4*02
FSN

GTNT

RVP








V7-
J2*
VTS



YSG





74*
OR

YW



DRN








46*
01
GHY



AQV





01
15-














01












4a*



























01




























13
IGH
IGH
IGHJ
GFI
985
ISWN
986
VKA
987
IGKV
IGKJ
QSV
988
DAS
QQY
989












V3-
D2-
4*02
FDD

SEFM

NVK

3-20
1*01
SSS


SGS













9*
2*

YS



KGS

*01

Y


SPR













01
01





TSC






T




















FDY






















60
IGH
IGH
IGHJ
GFN
990
ISYN
991
VKD
992







IGL
IGL
NSN
993
DDS

GTW
994




V3-
D6-
4*01
FNM

GGAR

KSQ








V1-
J2*
IGN



DSS





9*
19*

YA



GIP








51*
01
NY



LSA





01
01





VAG








01





A












LEY






















60
IGH
IGH
IGHJ
GFT
995
ISFN
996
VKD
997







IGL
IGL
SSN
998
DDS

ATW
999




V3-
D6-
4*02
FNM

GGAR

KSQ








V1-
J2*
IGN



DSS





9*
19*

YA



GIP








51*
01
NY



LTA





01
01





LAG








01





A












LEY





















H018
60
IGH
IGH
IGHJ
GFN
1000
ISYN
1001
VKD
1002







IGL
IGL
NSN
1003
DDS

GTW
1004




V3-
D6-
4*01
FNM

GGAR

KSQ








V1-
J2*
IGN



DSS





9*
19*

YA



GIP








51*
01
NF



LSA





01
01





VAG








01





A












LEY






















69
IGH
IGH
IGHJ
GGS
1005
IYYS
1006
AIY
1007
IGKV
IGKJ
QSI
1008
AVS
QQS
1009












V4-
D2-
3*02
ITT

GST

MDE

1-39
2*01
GNY


YTI













30-
2*

GDY



AWA

*01




SLF













4*
03

Y



FEI






T













01




























H019
69
IGH
IGH
IGHJ
GGS
1010
IYYS
1011
AIY
1012
IGKV
IGKJ
QSV
1013
AVS
QQS
1014












V4-
D2-
3*02
ITT

GST

MDE

1-39
2*01
GNY


YTI













30-
2*

GDY



AWA

*01




SLF













4*
03

Y



FEI






T













01





























146
IGH
IGH
IGHJ
GGS
1015
IYYS
1016
VRE
1017







IGL
IGL
SSD
1018
EVT

SSY
1019




V4-
D3-
4*02
ISG

GNT

NYI








V2-
J3*
VGG



AGS





30-
10*

GDY



TSP








8*
02
YNY



NDV





4*
01

Y



LSR








01





V





01





























146
IGH
IGH
IGHJ
GGS
1020
VYSS
1021
ASY
1022







IGL
IGL
ALP
1023
EDH

YST
1024




V4-
D4-
4*02
INS

GST

TVT








V3-
J3*
KKY



DSS





30-
17*

GDY



TWG








10*
02




GNY





4*
01

Y



GFD








01





RV





01






Y






















99
IGH
IGH
IGHJ
GGS
1025
IHYS
1026
ARG
1027
IGKV
IGKJ
QSV
1028
GVS
QQY
1029












V4-
D4/
4*02
ISS

GST

VLH

3-20
2*01
SSS


GSS













31*
OR

GNY





*01

Y


PYT













02
15-

Y

























4a*



























01




























13
IGH
IGH
IGHJ
GGS
1030
IYYS
1031
ARV
1032
IGKV
IGKJ
QGI
1033
SAS
QKY
1034












V4-
D3-
4*02
ISS

DTTY

VSS

1-27
1*01
SNY


WT













31*
22*

GGY

YSGS

GHR

*01


















03
01

Y

T

HYY



























FDY






















60
IGH
IGH
IGHJ
RGS
1035
ILNT
1036
AQS
1037
IGKV
IGKJ
SIN
1038
DAS
QQY
1039
IGL
IGL
SGS
1040
EDN

QSY
1041




V4-
D1-
5*02
VGW

GID

RRL

3-15
2*03
IN


DKW

V6-
J3*
IAS



DSS





31*
1*

GEN



VGP

*01




PRS

57*
02
NY



NHG





03
01

F



FVS








01





V







99
IGH
IGH
IGHJ
GGS
1042
ISYS
1043
ARG
1044
IGKV
IGKJ
QSV
1045
GAS
QQY
1046












V4-
D2-
4*02
ISS

GST

VLV

3-20
2*01
SRA


DSS













31*
8*

GGY





*01

Y


PYT













03
02

Y


























146
IGH
IGH
IGHJ
GGS
1047
IYYD
1048
ARV
1049
IGKV
IGKJ
QGI
1050
AAS
LQD
1051
IGL
IGL
SSN
1052
DNY

GTW
1053




V4-
D3-
3*01
INS

GSA

VHA

1-6*
4*01
RND


YNY

V1-
J3*
IGN



DSS





31*
10*

DDY



SAN

01




PLT

51*
02
TF



LNG





03
01

Y



AFD








01





WV












V






















146
IGH
IGH
IGHJ
GGS
1054
IYYD
1055
ARV
1056
IGKV
IGKJ
QSI
1057
DAS
QQT
1058












V4-
D3-
3*01
ISN

GSA

VHA

1-39
5*01
NKF


YST













31*
10*

DNY



SAN

*01




PT













03
01

Y



AFD



























V






















146
IGH
IGH
IGHJ
GVP
1059
IHAS
1060
ARV
1061
IGKV
IGKJ
QSV
1062
GAS
QQY
1063












V4-
D4-
3*02
INN

GAT

PLR

3-15
4*01
SSD


KNW













31*
11*

AGF



DFY

*01




PPL













03
01

Y



SNY






T




















SPS



























AFD



























I






















9
IGH
IGH
IGHJ
RGS
1064
INHS
1065
AGG
1066
IGKV
IGKJ
QSL
1067
LGS
MQA
1068












V4-
D3-
5*02
FSD

GST

RFT

2-28
4*01
LHS


LQT













34*
16*

YY



NDF

*01

NGY


LLL













01
02





VWG



NY


T




















SYR



























YES






















60
IGH
IGH
IGHJ
GGS
1069
ISHS
1070
VRG
1071







IGL
IGL
SSN
1072
SNN

AAW
1073




V4-
D6-
4*02
FIG

GSA

GYS








V1-
J3*
IGS



DDS





34*
19*

HY



SAP








44*
02
NT



LNG





01
01





YPR








01





WV












EWR



























Y






















69
IGH
IGH
IGHJ
GGS
1074
INQS
1075
ARG
1076
IGKV
IGKJ
QSV
1077
DGS
QQR
1078












V4-
D5-
6*03
FSG

GST

RDG

3-11
1*01
TNY


SNW













34*
24*

DF



YNY

*01




QWT













01
01





VGY



























YYY



























YYM



























DV






















146
IGH
IGH
IGHJ
GGT
1079
IDHS
1080
ARG
1081
IGKV
IGKJ
QTI
1082
GAS
QQY
1083
IGL
IGL
SLR
1084
GRN

SSR
1085




V4-
D3-
6*02
FSG

GGT

IFE

3-15
3*01
SNN


NNW

V3-
J2*
SYY



SGN





34*
3*

YY



VVI

*01




PPF

19*
01




RLV





01
01





IPY






T

01


















YSY



























RVD



























V






















9
IGH
IGH
IGHJ
GGP
1086
INHS
1087
GRG
1088







IGL
IGL
SRQ
1089
EVN

RSY
1090




V4-
D6-
5*02
FSG

GST

LGR








V2-
J3*
DGR



ISN





34*
13*

YY



EYS








14*
02
YX



NXX





02
01





SSW








01





WV












YGG



























RRF



























DP






















9
IGH
IGH
IGHJ
GYS
1091
MYHS
1092
ARD
1093
IGKV
IGKJ
QSV
1094
GAS
QQY
1095












V4-
D3-
3*02
IRN

GST

RSG

3-20
4*01
SSS


GSS













38-
22*

RYY



YVF

*01

Y


PLT













2*
01





FYD




















02






AFD



























I






















146
IGH
IGH
IGHJ
GYS
1096
FSHS
1097
GGG
1098







IGL
IGL
SSN
1099
TND

AVW
1100




V4-
D2-
4*02
ISR

GTT

VTR








V1-
J3*
IGK



DDN





38-
21*

DYY



ADY








47*
02
NY



LSA





2*
02














02





WE





02





























60
IGH
IGH
IGHJ
GGS
1101
IDYY
1102
ARR
1103
IGKV
IGKJ
QSI
1104
KAS
HQY
1105












V4-
D2-
4*02
ISS

GST

IQL

1-5*
1*01
SSW


NTY













39*
8*

SSY



MVF

03




PWT













01
01

Y



DF






















60
IGH
IGH
IGHJ
GGS
1106
IYYS
1107
ARH
1108







IGL
IGL
SST
1109
LNN

ASW
1110




V4-
D3-
2*01
ISN

GST

PYY








V1-
J2*
IGS



DDS





39*
3*

SNY



NFW








44*
01
NT



LNG





01
01

Y



IYW








01





LVV












YFD



























L






















99
IGH
IGH
IGHJ
GGS
1111
VSSK
1112
TRH
1113







IGL
IGL
SSN
1114
ANN

AVW
1115




V4-
D3-
3*01
IRS

GKT

WLG








V1-
J3*
IGV



DDS





39*
10*

SGY



GDK








44*
02
NT



LNT





01
01

F



WSQ








01





WV












SPF



























LAV






















99
IGH
IGH
IGHJ
GGS
1116
IYYG
1117
AKG
1118







IGL
IGL


SNN

AAW
1119




V4-
D5-
3*02
IST

GST

RYS








V1-
J3*




DDS





39*
12*

SNY



GYN








47*
02




PEW





01
01

Y



DYN








02





LG












AFD



























I






















146
IGH
IGH
IGHJ
GGS
1120
IYYS
1121
TRP
1122
IGKV
IGKJ
QSV
1123
GAS
QQY
1124












V4-
D3-
3*01
ISS

GTT

ASG

3-20
5*01
SSS


GSS













39*
10*

MSY



AHD

*01

Y


SIT













01
01

Y



YVS



























RSY



























YPG



























QGA



























FGV






















146
IGH
IGH
IGHJ
GGS
1125
LYYT
1126
ARL
1127







IG
IGL
SNN
1128
RNN

STW
1129




V4-
D6-
4*02
IIS

GIT

LGI








LV
J3*
IDN



DSS





39*
13*

YTY



AAT








10-
02
QG



LST





01
01

Y



GHF








54*





WL












DS








01













146
IGH
IGH
IGHJ
GGS
1130
IYYS
1131
TRP
1132
IGKV
IGKJ
QSV
1133
GAS
QQY
1134












V4-
D3-
3*02
ISS

GTP

ASG

3-20
5*01
STT


GSS













39*
10*

ISY



AHD

*01

Y


STT













01
01

Y



YAS



























RSY



























YPG



























LGA



























FGI






















146
IGH-
IGH
IGHJ
GGS
1135
IYYS
1136
ARP
1137
IGKV
IGKJ
QSV
1138
GAS
QQH
1139












V4-
D3-
3*02
ITS

GTT

LLN

3-20
4*01
SSK


DNS













39*
3*

LSY



PMT

*01

C


LS













01
01

W



LYG



























VTP



























GIG



























PFE



























I






















146
IGH
IGH
IGHJ
GDS
1140
INYN
1141
AAH
1142
IGKV
IGKJ
QNI
1143
AAS
QQS
1144












V4-
D6-
4*02
MSR

GIT

RVS

1-39
1*01
DDY


YNT













39*
6*

NSF



SSY

*01




PT













01
01

Y



PAD



























Y






















146
IGH
IGH
IGHJ
GGS
1145
IYYS
1146
ARP
1147
IGKV
IGKJ
QSI
1148
GAS
QQY
1149












V4-
D3-
3*02
SIS

GTA

LLN

3D-
1*01
RSN


INW













39*
3*

LSY



PST

15*




PPW













01
01

Y



IYG

01




T




















VTP



























GIG



























PFE



























M






















146
IGH
IGH
IGHJ
GYS
1150
IYHI
1151
ARG
1152
IGKV
IGKJ
QSI
1153
LAS
QRS
1154












V4-
D3-
6*02
VST

GST

NYD

1-39
2*01
DNY


YST













4*
16*

SNW



YVW

*01




PYT













02
02





GSY



























RSD



























QGY



























GLD



























V






















49
IGH
IGH
IGHJ
GAS
1155
VHSS
1156
ARE
1157







IGL
IGL
SSD
1158
DVT

SSY
1159




V4-
D6-
6*03
IRS

GGT

GGS








V2-
J2*
VGS



AGI





4*
13*

HY



SYY








8*
01
YNY



NSY





07
01





YYY








01





VI












YMD



























V






















13
IGH
IGH
IGHJ
GGS
1160
IYYN
1161
ARS
1162
IGKV
IGKJ
QSV
1163
GAS
QQY
1164












V4-
D2-
5*02
IST

GGT

KNQ

3-15
4*01
GSD


NDW













59*
2*

YF



LLL

*01




PPL













01
01





FDP






T















13
IGH
IGH
IGHJ
GDS
1165
VYHT
1166
ARS
1167
IGKV
IGKJ
QDI
1168
DAS
QQY
1169












V4-
D4-
5*01
IGT

GGT

KNQ

1-33
4*01
SNY


DNL













59*
23*

YF



LLL

*01




PLT













01
01





FEF






















55
IGH
IGH
IGHJ
GAS
1170
MYSS
1171
ART
1172
IGKV
IGKJ
QNI
1173
KAS
QQY
1174
IGL
IGL
NNN
1175
ED

SAW
1176




V4-
D7-
3*01
ISS

GSV

NWA

1-5*
1*01
NSW


YSY

V1-
J2*
IGR



DFS





59*
27*

NY



YDP

03




ST

36*
01
SA



LSV





01
01





FNV








01





QV







60
IGH
IGH
IGHJ
GGS
1177
IYDS
1178
ARD
1179
IGKV
IGKJ
QSI
1180
KAS
QQY
1181












V4-
D2-
6*02
ISS

GST

RGY

1-5*
4*01
SRW


NSY













59*
15*

YY



CSG

03




FPL













01
01





GSC






T




















LGG



























MDV






















60
IGH
IGH
IGHJ
GGS
1182
IYDS
1183
VRD
1184
IGKV
IGKJ
QSI
1185
KAS
QQY
1186












V4-
D2-
6*02
ISG

GNT

RGF

1-5*
1*01
SSW


NSY













59*
8*

SY



CTG

03




RT













01
02





KSC



























LGG



























MDV






















60
IGH
IGH
IGHJ
GGS
1187
VYSS
1188
ARL
1189







IGL
IGL
TSN
1190
INN

AAW
1191




V4-
D2-
4*02
ISN

GTT

RRR








V1-
J2*
IGD



DDS





59*
8*

YF



GLT








44*
01
NN



LNG





01
02





GTD








01





PNV












FDY














V







69
IGH
IGH
IGHJ
GGS
1192
IYYS
1193
ARS
1194







IGL
IGL
KLG
1195
QDT

QAW
1196




V4-
D3-
6*03
IRS

GST

YYY








V3-
J2*
DKY



DSS





59*
22*

YY



DSS








1*
01




VV





01
01





GYR








01


















PSF



























YYY



























YMD



























V






















146
IGH
IGH
IGHJ
GGS
1197
IYYS
1198
ARG
1199
IGKV
IGKJ
QSI
1200
ATS
HQS
1201












V4-
D1-
6*02
ISG

GTT

ILG

1-39
2*01
SSY


YSS













59*
26*

YY



STW

*01




PYT













01
01





YYY



























YGL



























DV






















55
IGH
IGH
IGHJ
GGS
1202
IHSK
1203
ARH
1204
IGKV
IGKJ
QGI
1205
AAS
QQA
1206












V4-
D5-
4*02
ISN

GDT

LYR

1-12
4*01
SSG


NSF













59*
18*

DY



YGY

*01




PLT













08
01





RNY



























FDY





















H020
55
IGH
IGH
IGHJ
GGS
1207
IHSK
1208
ARH
1209
IGKV
IGKJ
QGI
1210
AAS
QQA
1211












V4-
D5-
4*02
ISN

GDT

LYR

1-12
4*01
SSG


NSF













59*
18*

DY



YGY

*01




PLT













08
01





RNY



























FDY






















69
IGH
IGH
IGHJ
GGS
1212
IYTG
1213
ARM
1214
IGKV
IGKJ
QTI
1215
EAS
QEY
1216












V4-
D6-
3*02
VRS

GAT

TSF

1-5*
2*01
GTY


NSY













61*
13*

TGY



KQS

01




SYT













08
01

F



GGW



























YRG



























RHD



























GFD



























I






















69
IGH
IGH
IGHJ
RGS
1217
VYYT
1218
ARL
1219
IGKV
IGKJ
QSI
1220
DGS
QEY
1221












V4-
D6-
3*02
VSN

GSS

TSY

1-5*
2*01
STL


SSY













61*
19*

GGY



KQR

01




SYT













08
01

Y



GGW



























YRG



























RHD



























AFD



























I






















9
IGH
IGH
IGHJ
GYS
1222
IQSG
1223
ARR
1224







IGL
IGL
SSD
1225
DVT

SSY
1226




V5-
D3-
4*02
FTS

DYNT

ARN








V2-
J3*
VGR



ISS





51*
22*

YW



VGN








14*
02
YNY



NTL





01
01





YGT








01





WV












SDF



























YPY



























FDH






















60
IGH
IGH
IGHJ
GYT
1227
INPP
1228
ARR
1229







IGL
IGL
SSD
1230
EVN

SSY
1231




V5-
D1-
3*02
FAS

NSDT

RVS








V2-
J2*
VGG



AGT





51*
14*

YW



VTG








8*
01
YNY



NTF





01
01





TDA








01





VV












FDI






















60
IGH
IGH
IGHJ
GYT
1232
INPP
1233
ARR
1234







IGL
IGL
SSD
1235
EVN

SSY
1236




V5-
D1-
3*02
FAS

NSDT

RVS








V2-
J2*
VGG



AGT





51*
14*

YW



VTG








8*
01
YNY



NTF





01
01





TDA








01





VV












FDI






















69
IGH
IGH
IGHJ
GDT
1237
ILLS
1238
ARA
1239







IGL
IGL
SSD
1240
DVT

SSY
1241




V5-
D1-
4*02
FGN

DSDT

TPG








V2-
J1*
VGA



TDS





51*
1*

YW



NYY








14*
01
YNY



SPN





01
01





FDS








01





CV







99
IGH
IGH
IGHJ
GYS
1242
IYPG
1243
ARP
1244
IGKV
IGKJ
QSV
1245
GAS
QQY
1246












V5-
D2-
1*01
FSN

DSDT

SRS

3-20
4*01
SSR


ANS













51*
2*

FW



RDI

*01

S


PLT













01
01





NKW



























YLS



























TSE



























YFH



























Y






















9
IGH
IGH
IGHJ
GDS
1247
TYYR
1248
AVG
1249







IGL
IGL
SSD
1250
EVS

SSH
1251




V6-
D1-
4*02
VSN

SKWF

HHW








V2-
J1*
VGG



AGS





1*
1*

NTA

N

HFK








8*
01
YSH



NYG





01
01

V



Y








01





V







9
IGH
IGH
IGHJ
GDS
1252
TYYR
1253
AVG
1254







IGL
IGL
SSD
1255
EVS

SSH
1256




V6-
D1-
4*02
VSN

SKWF

HHW








V2-
J1*
VGG



AGS





1*
1*

NTA

N

HFK








8*
01
YSH



NYG





01
01

V



Y








01





V







55
IGH
IGH
IGHJ
GSS
1257
TYYR
1258
ARD
1259
IGKV
IGKJ
ESI
1260
AAS
QQS
1261












V6-
D3-
4*02
IFT

SKWY

TYY

1-39
5*01
RSN


YRT













1*
10*

NSA

N

YTS

*01




PIT













01
01

G



ASY



























YNV



























DY






















55
IGH
IGH
IGHJ
GYT
1262
INTD
1263
ARL
1264







IGL
IGL
SSN
1265
GNN

QSY
1266




V7-
D1-
4*02
FTS

TGNP

GEY








V1-
J2*
IGA



DRS





4-
7*

YG



SWN








40*
01
GYD



LIL





1*
01





SIG








01





VV





02






YFD



























Y






















99
IGH
IGH
IGHJ
GYV
1267
INTN
1268
ARS
1269
IGKV
IGKJ
QNI
1270
EAS
QQS
1271












V7-
D3-
4*02
FTN

TGNP

YAY

1-39
1*01
AIR


DTL













4-
10*

YA



GDF

*01




PWT













1*
01


























02





























99
IGH
IGH
IGHJ
GYT
1272
INTN
1273
ARG
1274
IGKV
IGKJ
QSV
1275
WAS
QQY
1276












V7-
D3-
4*02
FSN

TGNP

ARS

4-1*
1*01
LYR


YNT













4-
22*

YA



YYD

01

SNN


LTW













1*
01





SSG



KNY


A













02






YYS



























WSD



























Y
















TABLE S3







Primers and synthesized nucleotide sequences.








Single-Cell Antibody Cloning Primers



A2
SEQ ID NO:












F1-HC
5′-ACAGGTGCCCACTCCCAGGTGCAG
1277





F2-HC
5′-AAGGTGTCCAGTGTGARGTGCAG
1278





F3-HC
5′-CCCAGATGGGTCCTGTCCCAGGTGCAG
1279





F4-HC
5′-CAAGGAGTCTGTTCCGAGGTGCAG
1280





R-1st-HC
5′-GGAAGGTGTGCACGCCGCTGGTC
1281





R-2nd-HC
5′-GTTCGGGGAAGTAGTCCTTGAC
1282





F1-Kappa
5′-ATGAGGSTCCCYGCTCAGCTGCTGG
1283





F2-Kappa
5′-CTCTTCCTCCTGCTACTCTGGCTCCCAG
1284





F3-Kappa
5′-ATTTCTCTGTTGCTCTGGATCTCTG
1285





F4-Kappa
5′-ATGACCCAGWCTCCABYCWCCCTG
1286





R-1st-Kappa
5′-GTTTCTCGTAGTCTGCTTTGCTCA
1287





R-2nd-
5′-GTGCTGTCCTTGCTGTCCTGCT
1288


Kappa







F1-Lambda
5′-GGTCCTGGGCCCAGTCTGTGCTG
1289





F2-Lambda
5′-GGTCCTGGGCCCAGTCTGCCCTG
1290





F3-Lambda
5′-GCTCTGTGACCTCCTATGAGCTG
1291





F4-Lambda
5′-GGTCTCTCTCSCAGCYTGTGCTG
1292





F5-Lambda
5′-GTTCTTGGGCCAATTTTATGCTG
1293





F6-Lambda
5′-GGTCCAATTCYCAGGCTGTGGTG
1294





F7-Lambda
5′-GAGTGGATTCTCAGACTGTGGTG
1295





R-1st-
T-CACCAGTGTGGCCTTGTTGGCTTG
1296


Lambda







R-2nd-
5′-CTCCTCACTCGAGGGYGGGAACAGAGTG
1297


Lambda







F-Vector
5′-GCTTCGTTAGAACGCGGCTAC
1298


Seq Primer












Antibody Cloning Primers for Each Antibody









F-H001-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1299



CAGGTCCAGCTTGTGCAGTCTGG






R-H001-HC
5′-CCGATGGGCCCTTGGTCGACGC
1300



TGAAGAGACGGTGACCATTGTCCCTT






F-H001-
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT GACATCCAGATGA
1301


Kappa
CCCAGTCTCCA






R-H001-
5′-GAAGACAGATGGTGCAGCCACCGTACG TTTGATCTCCACCTTG
1302


Kappa
GTCCCTCC






F-H002-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1303



CAGGTCACCTTGAAGGAGTCTGG






R-H002-HC
5′-CCGATGGGCCCTTGGTCGACGC
1304



TGAGGAGACGGTGACCAGGGTG






F-H002-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCC TCCTATGTGCTGA
1305


Lambda
CCCAGGCGC






F-H003-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1306



GAGATGCAGCTGCTGGAGTCTGG






R-H003-HC
5′-CCGATGGGCCCTTGGTCGACGC
1307



TGAGGAGACAGTGACCAGGGTGC






F-H003-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCC TCCTATATGCTGA
1308


Lambda
CTCAGGCACCC






F-H004-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1309



GAGATGCAACTGGTGGAGTCTGG






R-H004-HC
5′-CCGATGGGCCCTTGGTCGACGC
1310



TGAGGAGACGATGACCGTGGTCC






F-H004-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCC TCCTATGTGCTGA
1311


Lambda
CTCAGCCACC






F-H005-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1312



CAGATGCGTCTGGTGGAATCTGG






R-H005-HC
5′-CCGATGGGCCCTTGGTCGACGC
1313



TGAGGAGACGGTGACCGGGGT






F-H005-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCC TCCTATGTGCTGA
1314


Lambda
CTCAGCCACC






F-H006-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1315



CAGATGCGTCTGGTGGAATCGGG






R-H006-HC
5′-CCGATGGGCCCTTGGTCGACGC
1316



TGAGGAGACGGTGACCGGGATC






F-H006-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCC TCCTATGTGCTGA
1317


Lambda
CTCAGCCACC






F-H007-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1318



CAGGTGCACCTGGTGGAGTCTG






R-H007-HC
5′-CCGATGGGCCCTTGGTCGACGC
1319



TGAGGAGACGGTGACCGTGGTC






F-H007-
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT GAAATTGTGTTG
1320


Kappa
ACGCAGTCTCCAG






R-H007-
5′-GAAGACAGATGGTGCAGCCACCGTACG TTTGATCTCCAACTTG
1321


Kappa
GTCCCCTGG






F-H008-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1322



CAGATGCACCTATTGGAGTCTGGG






R-H008-HC
5′-CCGATGGGCCCTTGGTCGACGC
1323



TGACGAGACGGTGACCCTGGTC






F-H008-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCC TCCTATGTGCTGA
1324


Lambda
CTCAGCCACC






F-H009-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1325



CAGATGAAGTTGGTGGAGTCTGGG






R-H009-HC
5′-CCGATGGGCCCTTGGTCGACGC
1326



TGAGGAGACGGTGACCGTGGTC






F-H009-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCC TCCTATGTGCTGA
1327


Lambda
CTCAGCCACC






F-H010-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1328



CAGGTGCAGCTGGTGGAGTCTG






R-H010-HC
5′-CCGATGGGCCCTTGGTCGACGC
1329



TGAGGAGACGGTGACCAGGGTT






F-H010-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCC TCCTATGTGCTGA
1330


Lambda
CTCAGCCACC






F-H011-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1331



CAGGTTCACTTGGCGGAGTCTGG






R-H011-HC
5′-CCGATGGGCCCTTGGTCGACGC
1332



TGAAGAGACGGTGACCAATGTCCC






F-H011-
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT GAAGTTGTGTTGA
1333


Kappa
CACAGTCTCCAGC






R-H011-
5′-GAAGACAGATGGTGCAGCCACCGTACG TTTGATCTCCAGCTTG
1334


Kappa
GTCCCCTG






F-H012-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1335



CAGCTGCAGCTGGTGGAGTCTG






R-H012-HC
5′-CCGATGGGCCCTTGGTCGACGC
1336



TGAGGAGACGGTGACCAGGGTTC






F-H012-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCC TCCTATGTGCTGA
1337


Lambda
CTCAGCCACC






F-H013-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1338



CAGGTGCAGCTGGTGGAGTCTG






R-H013-HC
5′-CCGATGGGCCCTTGGTCGACGC
1339



TGAGGAGACGGTGACCAGGGCT






F-H013-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCC TCCTATGTGCTGA
1340


Lambda
CTCAGCCACC






F-H014-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1341



CAGGTACAACTGATGGAGTCTGGG






R-H014-HC
5′-CCGATGGGCCCTTGGTCGACGC
1342



TGAGGAGACGGTGACCAGGGCT






F-H014-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCC TCCTATGTGCTGA
1343


Lambda
CTCAGACACCC






F-H015-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1344



CAGGTGCAGCTGGTGGAGTCTG






R-H015-HC
5′-CCGATGGGCCCTTGGTCGACGC
1345



TGAGGAGACGGTGACCAGGGTTC






F-H015-
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT GACATCCAGGTGA
1346


Kappa
CCCAGTCAC






R-H015-
5′-GAAGACAGATGGTGCAGCCACCGTACG TTTGATGTCCACCTTG
1347


Kappa
GTCCCTCC






F-H016-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1348



GAGATGCACCTGGTGGAGTCTGG






R-H016-HC
5′-CCGATGGGCCCTTGGTCGACGC
1349



TGAGGAGACAGTGACCAGGGTGC






F-H016-
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT GAAATACTGCTGA
1350


Kappa
CGCAGTCTCCAG






R-H016-
5′-GAAGACAGATGGTGCAGCCACCGTACG TTTGATCTCCACCTTG
1351


Kappa
GTCCCTCC






F-H017-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1352



GAGGTGCAGCTGGTGGAGTCC






R-H017-HC
5′-CCGATGGGCCCTTGGTCGACGC
1353



TGAGGAGACGGTGACCAGGGTTC






F-H017-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCC CAGTCTGCCCTGA
1354


Lambda
CTCAGCCTG






F-H018-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1355



GAAGGACAGCTGGTGGAGTCTGG






R-H018-HC
5′-CCGATGGGCCCTTGGTCGACGC
1356



TGAGGAGACGGTGACCAGGGTTC






F-H018-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCC CAGTCTGTGTTGA
1357


Lambda
CGCAGCCGC






F-H019-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1358



CAGGTGGTGCTGCAGGAGTCG






R-H019-HC
5′-CCGATGGGCCCTTGGTCGACGC
1359



TGAAGAGACGGCGACCAGTGTCC






F-H019-
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT GACATCCAGATGA
1360


Kappa
CCCAGTCTCCG






R-H19-
5′-GAAGACAGATGGTGCAGCCACCGTACG TTTGATCTCCAGCTTG
1361


Kappa
GTCCCCTG






F-H020-HC
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT
1362



CAGGTGCAGCTGCAGGAGTCG






R-H020-HC
5′-CCGATGGGCCCTTGGTCGACGC
1363



TGAGGAGACGGTGACCAGGTTTCC






F-H020-
5′-CTAGTAGCAACTGCAACCGGTGTACATTCT GACATCCAGATGA
1364


Kappa
CCCAGTCTCCA






R-H020-
5′-GAAGACAGATGGTGCAGCCACCGTACG TTTGAACTCCACCTTG
1365


Kappa
GTCCCTCC






R-Lambda
5′-GGCTTGAAGCTCCTCACTCGAGGGYGGGAACAGAGTG
1366










gBlock Synthesis for Alanine Mutations









101Q
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1367



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATGCAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






102G
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1368



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGCAATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






103M
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1369



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTGCATTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






104L
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1370



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGGCACCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






105P
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1371



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGGCAGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






106V
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1372



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGCATGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






108P
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1373



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTGCACT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






109L
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1374



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTGC




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






110I
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1375



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AGCACCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






111P
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1376



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTGCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






112G
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1377



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGCATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






113S
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1378



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGAGCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






114T
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1379



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAGCAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






115T
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1380



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAGCAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






116T
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1381



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAGCAAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






117S
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1382



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCGCAACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






118T
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1383



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTGCAGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






119G
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1384



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGCACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






120P
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1385



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGAGCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






122K
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1386



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCGCAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






123T
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1387



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAGCA




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






125T
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1388



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCGCAACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






126T
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1389



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGGCACCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






127P
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1390



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTGCAGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






129Q
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1391



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTGCAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






130G
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1392



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGCAAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






131N
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1393



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCGCATCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






132S
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1394



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACGCAATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






133M
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1395



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTGCATTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






134F
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1396



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGGCACCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






135P
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1397



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTGCATCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






136S
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1398



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCGCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






140T
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1399



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTGCAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






141K
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1400



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAGCACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






142P
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1401



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAAGCAACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






143T
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1402



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTGCAGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






144D
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1403



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGCAGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






145G
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1404



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGCAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






146N
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1405



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAGCATGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






148T
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1406



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCGCATGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






150I
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1407



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTGCACCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






151P
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1408



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTGCAAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






152I
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1409



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCGC




ACCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






153P
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1410



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CGCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






154S
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1411



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCAGCATCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






155S
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1412



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGGCATGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






156W
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1413



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCGCAGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






158F
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1414



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTGCAGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






160K
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1415



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAGCATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






161Y
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1416



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAAGCACTATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






162L
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1417



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACGCATGGGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






163W
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1418



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTAGCAGAGTGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






164E
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1419



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGCATGGGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






165W
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1420



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGGCAGCC




TCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






167S
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1421



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




GCAGTCCGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






168V
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1422



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGCACGTTTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






169R
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1423



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCGCATTCTCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






170F
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1424



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTGCATCTTGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






171S
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1425



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCGCATGGCTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG






172W
5′-ACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGA
1426



CTTCTCTCAATTTTCTAGGGGGATCTCCCGTGTGTCTTGGCCA




AAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCCTGTC




CTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTT




TATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTAT




TGGTTCTTCTGGATTATCAAGGTATGTTGCCCGTTTGTCCTCT




AATTCCAGGATCAACAACAACCAGTACGGGACCATGCAAAACC




TGCACGACTCCTGCTCAAGGCAACTCTATGTTTCCCTCATGTT




GCTGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCAT




CCCATCGTCCTGGGCTTTCGCAAAATACCTATGGGAGTGGGCC




TCAGTCCGTTTCTCTGCACTCAGTTTACTAGTGCCATTTGTTC




AGTGGTTCGTAGGG











gBlock Synthesis for Germline Antibodies









H006-
5′-CTAGTAGCAACTGCAACCGGTGTACATTCTCAGGTGCAGCTGG
1427


HC_GL
TGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAG




ACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGGC




ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGG




TGGCAGTTATATCATATGATGGAAGTAATAAATACTATGCAG




ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAA




GAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGAC




ACGGCTGTGTATTACTGTGCGAAAGATGCTTATCTTTCTGCAG




CGAGAGGATACGGTATGGACGTCTGGGGCCAAGGGACCACGGT




CACCGTCTCCTCAGCGTCGACCAAGGGCCCATCGG






H006-
5′-CTAGTAGCAACTGCAACCGGTTCCTGGGCCTCCTATGTGCTGA
1428


Lambda_GL
CTCAGCCACCCTCGGTGTCAGTGGCCCCAGGACAGACGGCCAG




GATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGTGCAC




TGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCGTCT




ATGATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTC




TGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGG




GTCGAAGCCGGGGATGAGGCCGACTATTACTGTCAGGTGTGGG




ATAGTAGTAGTGATCATGTGGTATTCGGCGGAGGGACCAAGCT




GACCGTCCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGT




TCCCACCCTCGAGTGAGGAGCTTCAAGCC






H019-
5′-CTAGTAGCAACTGCAACCGGTGTACATTCTCAGGTGCAGCTGC
1429


HC_GL
AGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACAGACCCTGTC




CCTCACCTGCACTGTCTCTGGTGGCTCCATCAGCAGTGGTGAT




TACTACTGGAGTTGGATCCGCCAGCCCCCAGGGAAGGGCCTGG




AGTGGATTGGGTACATCTATTACAGTGGGAGCACCTACTACAA




CCCGTCCCTCAAGAGTCGAGTTACCATATCAGTAGACACGTCC




AAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGCCGCAG




ACACGGCCGTGTATTACTGTGCCATCTACATGGATGAGGCCTG




GGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCT




TCAGCGTCGACCAAGGGCCCATCGG






H019-
5′-CTAGTAGCAACTGCAACCGGTGTACATTCTGACATCCAGATGA
1430


Kappa_GL
CCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTC




ACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAA




ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGAT




CTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTC




AGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCA




GTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAG




TTACAGTATTTCCTTATTCACTTTTGGCCAGGGGACCAAGCTG




GAGATCAAACGTACGGTGGCTGCACCATCTGTCTTC






H020-
5′-CTAGTAGCAACTGCAACCGGTGTACATTCTCAGGTGCAGCTGC
1431


HC_GL
AGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTC




CCTCACCTGCACTGTCTCTGGTGGCTCCATCAGTAGTTACTACT




GGAGCTGGATCCGGCAGCCCCCAGGGAAGGGACTGGAGTGGAT




TGGGTATATCTATTACAGTGGGAGCACCAACTACAACCCCTCC




CTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACC




AGTTCTCCCTGAAGCTGAGCTCTGTGACCGCCGCAGACACGGC




CGTGTATTACTGTGCGAGACACCTTTATCGCTATGGTTATAGG




AACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCT




CCTCAGCGTCGACCAAGGGCCCATCGG






H020-
5′-CTAGTAGCAACTGCAACCGGTGTACATTCTGACATCCAGATGA
1432


Kappa_GL
CCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGT




CACCATCACTTGTCGGGCGAGTCAGGGTATTAGCAGCTGGTTA




GCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGA




TCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTT




CAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC




AGCCTGCAGCCTGAAGATTTTGCAACTTACTATTGTCAACAGG




CTAACAGTTTCCCGCTCACTTTCGGCGGAGGGACCAAGGTGGA




GATCAAACGTACGGTGGCTGCACCATCTGTCTTC











HBV TaqMan PCR









F-sense
5′-CCGTCTGTGCCTTCTCATCTG
1433





R-anti-
5′-AGTCCAAGAGTCCTCTTATGTAAGACCTT
1434


sense







Probe
5-/56 FAM/CCGTGTGCA/ZEN/CTTCGCTTC ACCTCT
1435



GC/3IABkFQ/-3











S-protein PCR









F-S-protein
5′-CCCTGCGCTGAACATGGAGAACA
1436


R-S-protein
5′-AAATGTATACCCAAAGACAAAAGAAAA
1437









It will be recognized from the foregoing that the present disclosure describes screening individuals who were either vaccinated or had spontaneously recovered from HBV infection. Antibody cloning from memory B cells revealed that all 5 of the top individuals produced clones of broadly neutralizing antibodies (bNAbs) that targeted 3 non-overlapping epitopes on the HBV S antigen (HBsAg). Clones with the same immunoglobulin variable, diversity and joining heavy and light chain genes were shared among elite neutralizers. Single bNAbs protected humanized mice against infection, but selected for resistance mutations in mice with established infection. In contrast, infection was controlled in the absence of detectable escape mutations by a combination of bNAbs targeting non-overlapping epitopes with complementary sensitivity to mutations that commonly emerge during human infection. The co-crystal structure of one of the bNAbs with a peptide epitope containing residues frequently mutated in human immune escape variants revealed a loop anchored by oppositely charged residues. The structure provides a molecular explanation for why immunotherapy for chronic HBV infection may require combinations of complementary bNAbs, as described herein.


While the disclosure has been described through specific embodiments, routine modifications will be apparent to those skilled in the art and such modifications are intended to be within the scope of the present disclosure.

Claims
  • 1. An isolated or recombinant antibody or antigen binding fragment thereof, said isolated or recombinant antibody or antigen binding fragment thereof comprising complementarity determining regions (CDRs), the CDRs comprising heavy and light chain amino acid sequences CDR1, CDR2 and CDR3 selected from the antibody heavy and light chain CDRs of Table S2.
  • 2. The recombinant or isolated antibody or antigen binding fragment thereof of claim 1, comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody H017 from Table S2, or the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody H019 from Table S2, the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody H016 from Table S2.
  • 3. The recombinant or isolated antibody or antigen binding fragment thereof of claim 1, comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of H004 from Table S2, or the heavy and light chain CDR1, CDR2 and CDR3 sequences of H005 from Table S2, or the heavy and light chain CDR1, CDR2 and CDR3 sequences of H008 from Table S2, or the heavy and light chain CDR1, CDR2 and CDR3 sequences of H009 from Table S2.
  • 4. The recombinant or isolated antibody of claim 1, comprising at least one modification of its constant region, wherein the modification increases in vivo half-life of the antibody, or alters the ability of the antibody to bind to Fc receptors, or inhibits aggregation of the antibodies, or a combination of said modifications, or wherein the antibody is attached to a detectable label or a substrate.
  • 5. The recombinant or isolated antibody of claim 4, comprising the modification that increases in vivo half-life of the antibody.
  • 6. The recombinant or isolated antibody of claim 4, comprising the modification that alters the ability of the antibody to bind to Fc receptors.
  • 7. A pharmaceutical composition comprising an antibody or an antigen binding fragment thereof, or a combination of antibodies or antigen binding fragment thereof, of claim 1.
  • 8. The pharmaceutical composition of claim 7, comprising the combination of the antibodies.
  • 9. The pharmaceutical composition of claim 8, wherein the combination of the antibodies includes the H017 and H019 antibodies.
  • 10. The composition of claim 9, wherein the composition further comprises the H016 antibody.
  • 11. A method for prophylaxis or therapy of a Hepatitis B virus infection comprising administering to an individual in need thereof an effective amount of at least one antibody or antigen binding fragment thereof of claim 1, wherein optionally the at least one antibody comprises at least one modification of the constant region.
  • 12. The method of claim 11, wherein the administering comprises administering a combination of antibodies that include the H017 and H019 antibodies.
  • 13. The method of claim 12, wherein the administration further comprises administering the H016 antibody.
  • 14. The method of claim 11, comprising administering a combination of at least two of the antibodies, and wherein administering the combination of at the least two antibodies provides a therapeutic and/or prophylactic effect against infection by a hepatitis B virus that comprises one or more escape mutations in at least one of the HBsAg or the S-protein of the hepatitis B virus.
  • 15. The method of claim 14, wherein the combination of at least two of the antibodies comprises the H017 and H019 antibodies.
  • 16. The method of claim 15, wherein the combination of at least two of the antibodies further comprises the H016 antibody.
  • 17. One or more recombinant expression vectors encoding the heavy chain and the light chain of any one of the antibodies or antigen binding fragments thereof of claim 1.
  • 18. Cells comprising one or more recombinant expression vectors of claim 17.
  • 19. A method comprising culturing cells of claim 18 and separating antibodies from the cells.
  • 20. A kit comprising one or more expression vectors encoding according to claim 17.
  • 21. A method for detecting Hepatitis B virus comprising: contacting a biological sample from an individual with an antibody of claim 1, and detecting the presence of a complex comprising the antibody and a Hepatitis B virus protein.
  • 22. A method comprising testing one or more candidate drug agents for the capability to target an antigenic loop region of the hepatitis B virus S-protein by interfering with a complex formed by the peptide and an antibody of claim 1.
  • 23. A vaccine comprising at least two non-overlapping epitopes from the Hepatitis B virus S antigen (HBsAg), wherein optionally at least one of the non-overlapping epitopes does not comprise a commonly occurring escape mutation.
  • 24. The vaccine of claim 23, comprising at least three, non-overlapping epitopes from the HBsAg.
  • 25. A method for prophylaxis and/or therapy for Hepatitis B virus infection comprising administering a vaccine of claim 23 to an individual in need thereof.
  • 26. The method of claim 25, wherein the administering comprises at least three, non-overlapping epitopes from the HBsAg.
  • 27. The method of claim 26, wherein the Hepatitis B virus in the individual does not develop Hepatitis B virus comprising escape mutations subsequent to administering the vaccine.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. provisional patent application No. 62/898,735, filed Sep. 11, 2019, and to U.S. provisional patent application no. 62/982,276, filed Feb. 27, 2020, the entire disclosures of each of which are incorporated herein by reference in their entireties.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under grant no. UL1TR001866 awarded by The National Institutes of Health. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/050509 9/11/2020 WO
Provisional Applications (2)
Number Date Country
62982276 Feb 2020 US
62898735 Sep 2019 US