COMPOSITIONS AND METHODS RELATED TO RECEPTOR PAIRINGS

Information

  • Patent Application
  • 20240026014
  • Publication Number
    20240026014
  • Date Filed
    August 05, 2021
    2 years ago
  • Date Published
    January 25, 2024
    5 months ago
Abstract
Provided herein are receptor binding proteins that bind to either natural cytokine receptor pairs or non-natural cytokine receptor pairs to create signaling diversity beyond natural receptor pairings.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jan. 30, 2023, is named 106249-1361943-001141US_SL.txt and is 725,670 bytes in size.


BACKGROUND OF THE DISCLOSURE

Cytokine and growth-factor ligands typically signal through homodimeric or heterodimeric cell surface receptors via Janus Kinase (JAK/TYK), or Receptor Tyrosine Kinase (RTK)-mediated transphosphorylation. However, the number of receptor dimer pairings occurring in nature is limited to those driven by natural ligands encoded within the genome.


In some instance, cytokines act as multispecific (e.g., bispecific or trispecific) ligands. Cytokines determine which receptors are included in the dimers by binding to the extracellular domain of each of the two receptors. Cytokines thus act to bridge or crosslink the receptors in a signaling complex. Cytokine receptor domain or subunit association leads to, among other effects, the activation of an intracellular JAK/STAT signaling pathway, which includes one or more of the four Janus Kinases (JAK1-3 and TYK2) (Ihle, Nature 377(6550):591-4, 1995; O'Shea and Plenge, Immunity 36(4):542-50, 2012) and several signal transducer and activator of transcription (STATs 1-6) proteins (Delgoffe, et al., Curr Opin Immunol. 23(5):632-8, 2011; Levy and Darnell, Nat Rev Mol Cell Biol. 3(9):651-62, 2002; Murray, J Immunol. 178(5):2623-9, 2007). While cytokines typically bind specifically to the extracellular domains of cell surface receptors, the JAK/TYK/STAT signaling modules are found in many combinations in endogenous cytokine receptor signaling complexes.


Given that the a ligand determines the composition of receptor domains or subunits in a receptor complex and the intracellular JAK/TYK and RTK enzymes are degenerate, the number of cytokine and growth factor receptor dimer pairings that occur in nature represents only a fraction of the total number of signaling-competent receptor pairings theoretically allowed by the system. For example, the human genome encodes for approximately forty different JAK/STAT cytokine receptors. In principle, approximately 1600 unique homodimeric and heterodimeric cytokine receptor pairs could be generated with the potential to signal through different JAK/TYK/STAT combinations (Bazan, Proc Natl Acad Sci USA. 87(18):6934-8, 1990; Huising et al., J Endocrinol. 189(1):1-25, 2006). However, as of the present knowledge, the human genome encodes for less than fifty different cytokine ligands (Bazan, Proc Natl Acad Sci USA. 87(18):6934-8, 1990; Huising et al., J Endocrinol. 189(1):1-25, 2006), limiting the scope of cytokine receptor complexes signaling to those that can be assembled by the natural ligands.


SUMMARY OF THE DISCLOSURE

In one aspect, provided herein is an IL12 receptor (IL12R) binding protein that specifically binds to IL12Rβ1 and IL12Rβ2, wherein the binding protein causes the multimerization of IL12Rβ1 and IL12Rβ2 and the multimerization results in the association of intracellular domains of IL12Rβ1 and IL12Rβ2 and intraceullar signaling, and wherein the binding protein comprises a single-domain antibody (sdAb) that specifically binds to IL12Rβ1 (an anti-IL12Rβ1 sdAb) and a sdAb that specifically binds to IL12Rβ2 (an anti-IL12Rβ2 sdAb).


In some embodiments, the anti-IL12Rβ1 sdAb is a VHH antibody (an anti IL12Rβ1 VHH antibody) and/or the anti-IL12Rβ2 sdAb is a VHH antibody (an anti IL12Rβ2 VHH antibody). In some embodiments, the anti-IL12Rβ1 sdAb and the anti-IL12Rβ2 sdAb are joined directly or via a peptide linker. In some embodiments, the peptide linker comprises between 1 and 50 amino acids. In some embodiments, the IL12R binding protein has a reduced Emax compared to IL12. In some embodiments, the IL12R binding protein has an increased Emax compared to IL12. In some embodiments, the IL12R binding protein has a similar potency compared to that of IL12.


In another aspect, the disclosure provides a method for treating neoplastic diseases, such as cancer in a subject in need thereof, the method comprising the step of administering to the subject the IL12R binding protein as described herein, wherein the IL12R binding protein binds to and activates natural killer, CD4+ T cells, and/or CD8+ T cells. In some embodiments, the cancer is a solid tumor cancer.


In another aspect, the disclosure provides an IL27 receptor (IL27R) binding protein that specifically binds to IL27Rα subunit (IL27Rα) and glycoprotein 130 subunit (gp130), wherein the binding protein causes the multimerization of IL27Rα and gp130 and the multimerization results in the association of intracellular domains of IL27Rα and gp130 and intraceullar signaling, and wherein the binding protein comprises a single-domain antibody (sdAb) that specifically binds to IL27Rα (an anti-IL27Rα sdAb) and a sdAb that specifically binds to gp130 (an anti-gp130 sdAb).


In some embodiments, the anti-IL27Rα sdAb is a VHH antibody (an anti IL27Rα VHH antibody) and/or the anti-gp130 sdAb is a VHH antibody (an anti gp130 VHH antibody). In some embodiments, the anti-IL27Rα sdAb and the anti-gp130 sdAb are joined directly or via a peptide linker. In some embodiments, the peptide linker comprises between 1 and 50 amino acids.


In another aspect, the disclosure provides a method for treating neoplastic diseases, such as cancer in a subject in need thereof, comprising administering to the subject the IL27R binding protein described herein, wherein the IL27R binding protein binds to and activates CD8+ T cells, CD4+ T cells, and/or T regulatory (Treg) cells. In some embodiments, the IL27R binding protein binds to and activates CD8+ T cells. In some embodiments, the IL27R binding protein binds to and activates CXCR5+ CD8+ T cells. In some embodiments, the cancer is a solid tumor cancer.


In another aspect, the disclosure provides an IL10 receptor (IL10R) binding protein that specifically binds to IL10Rα subunit (IL10Rα, also referred to herein as IL10R1) and IL10Rβ (also referred to herein as IL10R2), wherein the binding protein causes the multimerization of IL10Rα and IL10Rβ and the multimerization results in the association of intracellular domains of IL10Rα and IL10Rβ and intraceullar signaling, and wherein the binding protein comprises a single-domain antibody (sdAb) that specifically binds to IL10Rα (an anti-IL10Rα sdAb) and a sdAb that specifically binds to IL10Rβ (an anti-IL10Rβ sdAb).


In some embodiments, the anti-IL10Rα sdAb is a VHH antibody (an anti IL10Rα VHH antibody) and/or the anti-IL10Rβ sdAb is a VHH antibody (an anti IL10Rβ VHH antibody). In some embodiments, the anti-IL10Rα sdAb and the anti-IL10Rβ sdAb are joined by a peptide linker. In some embodiments, the peptide linker comprises between 1 and 50 amino acids.


In another aspect, the disclosure provides a method for treating neoplastic diseases, such as cancer in a subject in need thereof, comprising administering to the subject the IL10R binding protein described herein, wherein the IL10R binding protein binds to and activates CD8+ T cells, CD4+ T cells, macrophages, and/or Treg cells. In some embodiments, the IL10R binding protein provides longer therapeutic efficacy than a pegylated IL10. In some embodiments, the cancer is a solid tumor cancer.


In other aspects, the IL10R binding proteins described herein can also be used to treat inflammatory diseases, such as Crohn's disease and ulcerative colitis, and autoimmune diseases, such as psoriasis, rheumatoid arthritis, and multiple sclerosis.


In another aspect, the disclosure provides an interferon (IFN) λ receptor (IFNλR) binding protein that specifically binds to IL10Rβ and IL28 receptor (IL28R) α subunit (IL28Rα), wherein the binding protein causes the multimerization of IL10Rβ and IL28Rα and downstream signaling, and wherein the binding protein comprises a single-domain antibody (sdAb) that specifically binds to IL10Rβ (an anti-IL10Rβ sdAb) and a sdAb that specifically binds to IL28Rα (an anti-IL28Rα sdAb).


In some embodiments, the anti-IL10Rβ sdAb is a VHH antibody (an anti-IL10Rβ VHH antibody) and/or the anti-IL28Rα sdAb is a VHH antibody (an anti IL28Rα VHH antibody). In some embodiments, the anti-IL10Rβ sdAb and the anti-IL28Rα sdAb are joined directly or via a peptide linker. In some embodiments, the peptide linker comprises between 1 and 50 amino acids.


In another aspect, the disclosure features a method for treating an infectious disease in a subject in need thereof, comprising administering to the subject an IFNλR binding protein described herein, wherein the IFNλR binding protein binds to and activates macrophages, CD8+ T cells, CD4+ T cells, Treg cells, dendritic cells, and/or epithelial cells. In some embodiments, the IFNλR binding protein binds to and activates macrophages. In some embodiments, the infectious disease is influenza, hepatitis B, hepatitis C, or human immunodeficiency virus (HIV) infection.


In another aspect, the disclosure provides a binding protein that specifically binds to IL10Rα and IL2Rγ, wherein the binding protein causes the multimerization of IL10Rα and IL2Rγ and downstream signaling, and wherein the binding protein comprises a sdAb that specifically binds to IL10Rα (an anti-IL10Rα sdAb) and a sdAb that specifically binds to IL2Rγ (an anti-IL2Rγ sdAb).


In some embodiments, the anti-IL10Rα sdAb is a VHH antibody (an anti-IL10Rα VHH antibody) and/or the anti-IL2Rγ sdAb is a VHH antibody (an anti IL2Rγ VHH antibody). In some embodiments, the anti-IL10Rα sdAb and the anti-IL2Rγ sdAb are joined directly or via a peptide linker. In some embodiments, the peptide linker comprises between 1 and 50 amino acids.


In another aspect, the disclosure provides a method for treating neoplastic diseases, such as cancer in a subject in need thereof, comprising administering to the subject the binding protein that specifically binds to IL10Rα and IL2Rγ described herein, wherein the binding protein binds to and activates CD8+ T cells and/or CD4+ T cells. In some embodiments, the method does not cause anemia.


In another aspect, the disclosure provides a binding protein that specifically binds to a first receptor and a second receptor, wherein the first receptor is interferon γ receptor 1 (IFNγR1) or IL28Rα and the second receptor is preferentially expressed on myeloid cells and/or T cells, wherein the binding protein causes the multimerization of the first receptor and the second receptor and their downstream signaling, and wherein the binding protein comprises a single-domain antibody (sdAb) that specifically binds to the first receptor and a sdAb that specifically binds to the second receptor.


In some embodiments, the sdAb that specifically binds to a first receptor is an anti-IFNγR1 VHH antibody. In some embodiments, the sdAb that specifically binds to a first receptor is an anti-IL28Rα VHH antibody. In some embodiments, the first receptor is IFNγR1 and the second receptor is IL2Rγ. In some embodiments, the first receptor is IL28Rα and the second receptor is IL2Rγ. In some embodiments, the sdAb that specifically binds to the first receptor and the sdAb that specifically binds to the second receptor are joined directly or via a peptide linker. In some embodiments, the peptide linker comprises between 1 and 50 amino acids.


In another aspect, the disclosure provides a method for treating neoplastic diseases, such as cancer in a subject in need thereof, comprising administering to the subject the binding protein that binds to a first receptor (e.g., IFNγR1 or IL28Rα) and a second receptor (e.g., a receptor preferentially expressed on myeloid cells and/or T cells) described herein, wherein the binding protein binds to and activates myeloid cells and/or T cells. In some embodiments, the binding protein binds to and activates macrophages. In some embodiments, the binding protein binds to and activates CD8+ T cells and/or CD4+ T cells.







DETAILED DESCRIPTION OF THE DISCLOSURE
I. Introduction

The present disclosure provides compositions useful in the pairing of cellular receptors to generate desirable effects useful in treatment of diseases. In general, binding proteins are provided that comprise at least a first domain that binds to a first receptor and a second domain that binds to a second receptor, such that upon contacting with a cell expressing the first and second receptors, the binding protein causes the functional association of the first and second receptors, thereby triggering their interaction and resulting in downstream signaling. In some embodiments, the first and second receptors occur in proximity in response to certain cytokine binding and are referred to herein as “natural” cytokine receptor pairs. In other embodiments, the binding proteins described herein bind to two receptors that do not naturally interact via binding to a naturally occurring cytokine and are referred to herein as “unnatural” cytokine receptor pairs.


Several advantages flow from the binding proteins described herein. In the case of natural cytokine receptor pairs, the natural cytokines cause the natural cytokine receptor pairs to come into proximity (i.e., by their simultaneous binding of a cytokine). However, when some of these natural cytokines are used as therapeutics in mammalian, particularly human, subjects they may also trigger a number of adverse and undesirable effects by a variety of mechanisms including the presence of the natural cytokine receptor on other cell types and the binding to those same receptor pairs on the other cell types can cause unwanted effects or trigger undesired signaling. The present disclosure is directed to manipulating the multiple effects of cytokines so that desired therapeutic signaling occurs, particularly in a desired cellular or tissue subtype, while minimizing undesired activity and/or intracellular signaling.


In some embodiment, the binding proteins described herein are designed such that the binding proteins provide the maximal desired signaling from the natural cytokine receptor pairs on the desired cell types, while the signaling from the receptors on other undesired cell types is weak such that reduced or no toxic effects result from the other undesired cell types. This can be achieved, for example, by selection of binding proteins having differing affinities or causing different Emax for their target receptors as compared to the affinity of a natural cytokine for the same receptors. Because different cell types respond to the binding of ligands to its cognate receptor with different sensitivity, by modulating the affinity of the ligand for the receptor compared to natural cytokine binding facilitates the stimulation of desired activities while reducing undesired activities on non-target cells. To measure downstream signaling activity, a number of methods are available. For example, in some embodiments, one can measure JAK/STAT signaling by the presence of phosphorylated receptors and/or phosphorylated STATs. In other embodiments, the expression of one or more downstream genes, whose expression levels can be affected by the level of downstream signaling caused by the binding protein, can also be measured.


In other embodiments, the binding proteins described herein provide novel signaling including, but not limited to, by bringing two receptors into proximity that generally do not interact to a significant or measurable degree under natural conditions, or signaling in specific target cell types, by binding to unnatural cytokine receptor pairs. As an example of the latter, one can obtain beneficial signaling caused by binding to the interferon γ receptor 1 (IFNγR1) or IL28Rα and a second receptor that is uniquely or preferentially expressed on myeloid or T-cells, while avoiding or reducing binding of the same receptors (e.g., IFNγR1 or IL28Rα) expressed in other cells in a human by contacting the target cells with a binding protein that comprises a first domain that specifically binds to IFNγR1 or IL28Rα and a second domain that specifically binds to a receptor uniquely or preferentially expressed on myeloid or T-cells, thereby targeting activation of IFNγR1 or IL28Rα by targeting the binding protein to these target cells (myeloid or T-cells) and limiting binding to other cells. The various receptor binding proteins described herein can be designed and tailored to bind to specific receptors, or domains or subunits thereof, that are highly expressed on the cell surface of different cell types. By binding two separate receptors, these receptor binding proteins provide a way to selectively activate or inhibit specific cell types that provide therapeutic and/or prophylactic activity useful in the treatment and/or prevention of diseases such as neoplastic diseases, such as cancer, and infectious diseases.


II. Definitions

As used herein, the term “antibody” refers collectively to: (a) glycosylated and non-glycosylated immunoglobulins (including but not limited to mammalian immunoglobulin classes IgG1, IgG2, IgG3 and IgG4) that specifically binds to target molecule and (b) immunoglobulin derivatives including but not limited to IgG(1-4)deltaCH2, F(ab′)2, Fab, ScFv, VH, VL, tetrabodies, triabodies, diabodies, dsFv, F(ab′)3, scFv-Fc and (scFv)2 that competes with the immunoglobulin from which it was derived for binding to the target molecule. The term antibody is not restricted to immunoglobulins derived from any particular mammalian species and includes murine, human, equine, and camelids antibodies (e.g., human antibodies).


The term antibody also includes so called “single-domain antibodies” or “sdAbs,” as well as “heavy chain antibodies” or “VHHs,” which are further defined herein. VHHs can be obtained from immunization of camelids (including camels, llamas, and alpacas (see, e.g., Hamers-Casterman, et al. (1993) Nature 363:446-448) or by screening libraries (e.g., phage libraries) constructed in VHH frameworks. Antibodies having a given specificity may also be derived from non-mammalian sources such as VHHs obtained from immunization of cartilaginous fishes including, but not limited to, sharks. The term “antibody” encompasses antibodies isolatable from natural sources or from animals following immunization with an antigen and as well as engineered antibodies including monoclonal antibodies, bispecific antibodies, trispecific, chimeric antibodies, humanized antibodies, human antibodies, CDR-grafted, veneered, or deimmunized (e.g., to remove T-cell epitopes) antibodies. The term “human antibody” includes antibodies obtained from human beings as well as antibodies obtained from transgenic mammals comprising human immunoglobulin genes such that, upon stimulation with an antigen the transgenic animal produces antibodies comprising amino acid sequences characteristic of antibodies produced by human beings.


The term antibody includes both the parent antibody and its derivatives such as affinity matured, veneered, CDR grafted, humanized, camelized (in the case of VHHs), or binding molecules comprising binding domains of antibodies (e.g., CDRs) in non-immunoglobulin scaffolds.


The term “antibody” should not be construed as limited to any particular means of synthesis and includes naturally occurring antibodies isolatable from natural sources and as well as engineered antibodies molecules that are prepared by “recombinant” means including antibodies isolated from transgenic animals that are transgenic for human immunoglobulin genes or a hybridoma prepared therefrom, antibodies isolated from a host cell transformed with a nucleic acid construct that results in expression of an antibody, antibodies isolated from a combinatorial antibody library including phage display libraries. In one embodiment, an “antibody” is a mammalian immunoglobulin. In some embodiments, the antibody is a “full length antibody” comprising variable and constant domains providing binding and effector functions.


The term antibody includes antibody conjugates comprising modifications to prolong duration of action such as fusion proteins or conjugation to polymers (e.g., PEGylated).


As used herein, the term “binding protein” refers to a protein that can bind to one or more cell surface receptors or domains or subunits thereof. In some embodiments, a binding protein specifically binds to two different receptors (or domains or subunits thereof) such that the receptors (or domains or subunits) are maintained in proximity to each other such that the receptors (or domains or subunits), including domains thereof (e.g., intracellular domains) interact with each other and result in downstream signaling.


As used herein, the term “CDR” or “complementarity determining region” is intended to mean the non-contiguous antigen combining sites found within the variable region of both heavy and light chain immunoglobulin polypeptides. CDRs have been described by Kabat et al., J. Biol. Chem. 252:6609-6616 (1977); Kabat et al., U.S. Dept. of Health and Human Services, “Sequences of proteins of immunological interest” (1991) (also referred to herein as Kabat 1991); by Chothia et al., J Mol. Biol. 196:901-917 (1987) (also referred to herein as Chothia 1987); and MacCallum et al., J. Mol. Biol. 262:732-745 (1996), where the definitions include overlapping or subsets of amino acid residues when compared against each other. Nevertheless, application of either definition to refer to a CDR of an antibody or grafted antibodies or variants thereof is intended to be within the scope of the term as defined and used herein. For purposes of the present disclosure, unless otherwise specifically identified, the positioning of CDRs2 and 3 in the variable region of an antibody follows Kabat numbering or simply, “Kabat.” The positioning of CDR1 in the variable region of an antibody follows a hybrid of Kabat and Chothia numbering schemes.


As used herein, the term “conservative amino acid substitution” refers to an amino acid replacement that changes a given amino acid to a different amino acid with similar biochemical properties (e.g., charge, hydrophobicity, and size). For example, the amino acids in each of the following groups can be considered as conservative amino acids of each other: (1) hydrophobic amino acids: alanine, isoleucine, leucine, tryptophan, phenylalanine, valine, proline, and glycine; (2) polar amino acids: glutamine, asparagine, histidine, serine, threonine, tyrosine, methionine, and cysteine; (3) basic amino acids: lysine and arginine; and (4) acidic amino acids: aspartic acid and glutamic acid.


As used herein, the term “interferon λ receptor” or “IFNλR” refers to a heterodimeric receptor formed by IL10Rβ receptor and IL28 receptor α (IL28Rα) and bound by the ligand IFNλ. Subunit IL28Rα is also referred to as IFNLR1 (IFNλ receptor 1). The human sequence of IL10Rβ is listed as UniProt ID NO. Q08334. The human sequence of IL28Rα is listed as UniProt ID NO. Q8IU57.


As used herein, the term “interferon γ receptor 1” or “IFNγR1” refers to a subunit of the heterodimeric IFNγR that is formed by subunit IFNγR1 and subunit IFNγR2 and bound by the ligand IFNγ. The amino acid sequence of the human IFNγR1 polypeptide is known and listed as UniProt ID NO. P15260.


As used herein, the term “interleukin 12 receptor” or “IL12R” refers to a heterodimeric receptor formed by subunit IL12R β1 (IL12Rβ1) and subunit IL12R β2 (IL12Rβ2) and bound by its cognate ligand IL12. The amino acid sequence of human IL12Rβ1 is known and listed as UniProt ID NO. P42701. The amino acid sequence of human IL12Rβ2 is known and listed as UniProt ID NO. Q99665.


As used herein, the term “interleukin 27 receptor” or “IL27R” refers to a heterodimeric receptor formed by subunits IL27Rα (IL27Rα) and glycoprotein 130 (gp130) and bound by the ligand IL27. The human sequence of IL27Rα is listed as UniProt ID NO. Q6UWB1. The human sequence of gp130 is listed as UniProt ID NO. Q13514.


As used herein, the term “interleukin 10 receptor” or “IL10R” refers to a tetrameric receptor formed by two IL10R α subunits (IL10Rα) and two IL10R β subunits (IL10Rβ) and bound by the ligand IL10. The amino acid sequence of human IL10Rα is listed as UniProt ID NO. Q13651. The amino acid sequence of human IL10Rβ is listed as UniProt ID NO. Q08334.


As used herein, the term “interleukin 2 receptor γ” or “IL2Rγ” refers to the γ subunit of the trimeric IL2R. IL2Rγ is also known as CD132. The amino acid sequence of human IL2Rγ is listed as UniProt ID NO. P31785.


As used herein, the term “linker” refers to a linkage between two elements, e.g., protein domains. A linker can be a covalent bond or a peptide linker. The term “bond” refers to a chemical bond, e.g., an amide bond or a disulfide bond, or any kind of bond created from a chemical reaction, e.g., chemical conjugation. The term “peptide linker” refers to an amino acid or polypeptide that may be employed to link two protein domains to provide space and/or flexibility between the two protein domains.


As used herein, the term “multimerization” refers to two or more cell surface receptors, or domains or subunits thereof, being brought in close proximity to each other such that the receptors, or domains or subunits thereof, can interact with each other and cause downstream signaling.


As used herein, the term “proximity” refers to the spatial proximity or physical distance between two cell surface receptors, or domains or subunits thereof, after a binding protein described herein binds to the two cell surface receptors, or domains or subunits thereof. In some embodiments, after the binding protein binds to the cell surface receptors, or domains or subunits thereof, the spatial proximity between the cell surface receptors, or domains or subunits thereof, can be, e.g., less than about 500 angstroms, such as e.g., a distance of about 5 angstroms to about 500 angstroms. In some embodiments, the spatial proximity amounts to less than about 5 angstroms, less than about 20 angstroms, less than about 50 angstroms, less than about 75 angstroms, less than about 100 angstroms, less than about 150 angstroms, less than about 250 angstroms, less than about 300 angstroms, less than about 350 angstroms, less than about 400 angstroms, less than about 450 angstroms, or less than about 500 angstroms. In some embodiments, the spatial proximity amounts to less than about 100 angstroms. In some embodiments, the spatial proximity amounts to less than about 50 angstroms. In some embodiments, the spatial proximity amounts to less than about 20 angstroms. In some embodiments, the spatial proximity amounts to less than about 10 angstroms. In some embodiments, the spatial proximity ranges from about 10 to 100 angstroms, from about 50 to 150 angstroms, from about 100 to 200 angstroms, from about 150 to 250 angstroms, from about 200 to 300 angstroms, from about 250 to 350 angstroms, from about 300 to 400 angstroms, from about 350 to 450 angstroms, or about 400 to 500 angstroms. In some embodiments, the spatial proximity amounts to less than about 250 angstroms, alternatively less than about 200 angstroms, alternatively less than about 150 angstroms, alternatively less than about 120 angstroms, alternatively less than about 100 angstroms, alternatively less than about 80 angstroms, alternatively less than about 70 angstroms, or alternatively less than about 50 angstroms.


As used herein, the term “downstream signaling” refers to the cellular signaling process that is caused by the interaction of two or more cell surface receptors that are brought into proximity of each other.


As used herein, the term “percent (%) sequence identity” used in the context of nucleic acids or polypeptides, refers to a sequence that has at least 50% sequence identity with a reference sequence. Alternatively, percent sequence identity can be any integer from 50% to 100%. In some embodiments, a sequence has at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the reference sequence as determined with BLAST using standard parameters, as described below.


For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.


A comparison window includes reference to a segment of any one of the number of contiguous positions, e.g., a segment of at least 10 residues. In some embodiments, the comparison window has from 10 to 600 residues, e.g., about 10 to about 30 residues, about 10 to about 20 residues, about 50 to about 200 residues, or about 100 to about 150 residues, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.


Algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1990) J Mol. Biol. 215: 403-410 and Altschul et al. (1977) Nucleic Acids Res. 25: 3389-3402, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (NCBI) web site. The algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a word size (W) of 28, an expectation (E) of 10, M=1, N=−2, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a word size (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)).


The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, an amino acid sequence is considered similar to a reference sequence if the smallest sum probability in a comparison of the test amino acid sequence to the reference amino acid sequence is less than about 0.01, more preferably less than about 10−5, and most preferably less than about 10−20.


As used herein, the term “single-domain antibody” or “sdAb” refers to an antibody having a single monomeric variable antibody domain. A sdAb is able to bind selectively to a specific antigen. A VHH antibody, further defined below, is an example of a sdAb.


As used herein, the term “specifically bind” refers to the degree of selectivity or affinity for which one molecule binds to another. In the context of binding pairs (e.g., a binding protein described herein/receptor, a ligand/receptor, antibody/antigen, antibody/ligand, antibody/receptor binding pairs), a first molecule of a binding pair is said to specifically bind to a second molecule of a binding pair when the first molecule of the binding pair does not bind in a significant amount to other components present in the sample. A first molecule of a binding pair is said to specifically bind to a second molecule of a binding pair when the affinity of the first molecule for the second molecule is at least two-fold greater, alternatively at least five times greater, alternatively at least ten times greater, alternatively at least 20-times greater, or alternatively at least 100-times greater than the affinity of the first molecule for other components present in the sample.


In a particular embodiment, a VHH in a bispecific VHH2 binding protein described herein binds to a receptor (e.g., the first receptor or the second receptor of the natural or non-natural receptor pairs) if the equilibrium dissociation constant between the VHH and the receptor is greater than about 106 M, alternatively greater than about 108 M, alternatively greater than about 1010 M, alternatively greater than about 1011 M, alternatively greater than about 1010 M, greater than about 1012 M as determined by, e.g., Scatchard analysis (Munsen, et al. 1980 Analyt. Biochem. 107:220-239). Specific binding may be assessed using techniques known in the art including but not limited to competition ELISA, BIACORE® assays and/or KINEXA® assays.


As used herein, the term “subject”, “recipient”, “individual”, or “patient”, refers to any mammalian subject for whom diagnosis, treatment, or therapy is desired, particularly humans. These terms can also be used interchangeably herein. “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, sheep, goats, pigs, etc. In some embodiments, the mammal is a human being.


The terms “treat”, “treating”, treatment” and the like refer to a course of action (such as administering a binding protein described herein, or a pharmaceutical composition comprising same) initiated with respect to a subject after a disease, disorder or condition, or a symptom thereof, has been diagnosed, observed, or the like in the subject so as to eliminate, reduce, suppress, mitigate, or ameliorate, either temporarily or permanently, at least one of the underlying causes of such disease, disorder, or condition afflicting a subject, or at least one of the symptoms associated with such disease, disorder, or condition. The treatment includes a course of action taken with respect to a subject suffering from a disease where the course of action results in the inhibition (e.g., arrests the development of the disease, disorder or condition or ameliorates one or more symptoms associated therewith) of the disease in the subject.


As used herein the terms “prevent”, “preventing”, “prevention” and the like refer to a course of action initiated with respect to a subject prior to the onset of a disease, disorder, condition or symptom thereof so as to prevent, suppress, inhibit or reduce, either temporarily or permanently, a subject's risk of developing a disease, disorder, condition or the like (as determined by, for example, the absence of clinical symptoms) or delaying the onset thereof, generally in the context of a subject predisposed due to genetic, experiential or environmental factors to having a particular disease, disorder or condition. In certain instances, the terms “prevent”, “preventing”, “prevention” are also used to refer to the slowing of the progression of a disease, disorder or condition from a present its state to a more deleterious state.


As used herein, the term “VHH” is a type of sdAb that has a single monomeric heavy chain variable antibody domain. Such antibodies can be found in or produced from Camelid mammals (e.g., camels, llamas) which are naturally devoid of light chains.


As used herein, the term “VHH2” refers to two VHHs that are joined together by way of a linker (e.g., a covalent bond or a peptide linker). A “bispecific VHH2” refers to a VHH2 that has a first VHH binding to a first receptor, or domain or subunit thereof, and a second VHH binding to a second receptor, or domain or subunit thereof.


III. Compositions and Methods

The disclosure describes various receptor binding proteins that bind to either natural cytokine receptor pairs or domains or subunits thereof, or non-natural cytokine receptor pairs or domains or subunits thereof to create signaling diversity not observed with natural receptor pairings. The various receptor binding proteins can be screened for binding to receptor pairs or domains or subunits thereof and for signal transduction in therapeutically relevant cell types.


Receptor Binding Proteins that Bind to Natural Receptor Pairs


IL12 Receptor Binding Proteins

TheIL12 receptor (IL12R) includes subunits IL12Rβ1 and IL12Rβ2. Provided herein is an IL12R binding protein that specifically binds to IL12Rβ1 and IL12Rβ2. In some embodiments, the IL12R binding protein binds to a mammalian cell expressing both IL12Rβ1 and IL12Rβ2. In some embodiments, the IL12R binding protein can be a bispecific VHH2 as described below. In other embodiments, the IL12R binding protein can include a first domain that is a VHH and a second domain which can be a fragment of IL12 or, for example, a scFv.


The IL12R binding protein can be a bispecific VHH2 that has a first VHH binding to IL12Rβ1 (an anti-IL12Rβ1 VHH antibody) and a second VHH binding to IL12Rβ2 (an anti-IL12Rβ2 VHH antibody) and causes the dimerization of the two receptor subunits and downstream signaling when bound to a cell expressing IL12Rβ1 and IL12Rβ2, e.g., a natural killer or a T cell (e.g., a CD4+ T cells, and/or a CD8+ T cell).


A linker can be used to join the anti-IL12Rβ1 VHH antibody and the anti-IL12Rβ2 VHH antibody. For example, a linker can simply be a covalent bond or a peptide linker. A peptide linker can include between 1 and 50 amino acids (e.g., between 2 and 50, between 5 and 50, between 10 and 50, between 15 and 50, between 20 and 50, between 25 and 50, between 30 and 50, between 35 and 50, between 40 and 50, between 45 and 50, between 2 and 45, between 2 and 40, between 2 and 35, between 2 and 30, between 2 and 25, between 2 and 20, between 2 and 15, between 2 and 10, between 2 and 5 amino acids). A peptide linker joining the anti-IL12Rβ1 VHH antibody and the anti-IL12Rβ2 VHH antibody can be a flexible glycine-serine linker. A linker can also be a chemical linker, such as a synthetic polymer, e.g., a polyethylene glycol (PEG) polymer.


The anti-IL12Rβ1 VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:105-111.


The anti-IL12Rβ2 VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:58-63.


The anti-IL12Rβ2 VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:112-117.


In some embodiments, an IL12 receptor binding protein described herein can have an anti-IL12Rβ1 VHH, a linker, and an anti-IL12Rβ2 VHH as listed in Table 1 below.









TABLE 1







IL12 Receptor Binding Protein Constructs










SEQ ID NO of anti-

SEQ ID NO of anti-
Sequence of IL12 receptor


IL12Rβ1 VHH
SEQ ID NO of
IL12Rβ2 VHH at C-
binding protein


at N-terminus
linker
terminus
(SEQ ID NO)





105
23
112
131


105
23
113
132


105
23
114
133


105
23
115
134


105
23
116
135


105
23
117
136


106
23
112
137


106
23
113
138


106
23
114
139


106
23
115
140


106
23
116
141


106
23
117
142


107
23
112
143


107
23
113
144


107
23
114
145


107
23
115
146


107
23
116
147


107
23
117
148


108
23
112
149


108
23
113
150


108
23
114
151


108
23
115
152


108
23
116
153


108
23
117
154


109
23
112
155


109
23
113
156


109
23
114
157


109
23
115
158


109
23
116
159


109
23
117
160


112
23
105
161


112
23
106
162


112
23
107
163


112
23
108
164


112
23
109
165


113
23
105
166


113
23
106
167


113
23
107
168


113
23
108
169


113
23
109
170


114
23
105
171


114
23
106
172


114
23
107
173


114
23
108
174


114
23
109
175


115
23
105
176


115
23
106
177


115
23
107
178


115
23
108
179


115
23
109
180


116
23
105
181


116
23
106
182


116
23
107
183


116
23
108
184


116
23
109
185


117
23
105
186


117
23
106
187


117
23
107
188


117
23
108
189


117
23
109
190









In some embodiments, the IL12R binding protein has a reduced Emax compared to the Emax caused by IL12. Emax reflects the maximum response level in a cell type that can be obtained by a ligand (e.g., a binding protein described herein or the native cytokine (e.g., IL12)). In some embodiments, the IL12R binding protein described herein has at least 1% (e.g., between 1% and 100%, between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 1% and 90%, between 1% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax caused by IL12. In some embodiments, by varying the linker length of the IL12R binding protein, the Emax of the IL12R binding protein can be changed. The IL12R binding protein can cause Emax in the most desired cell types (e.g., CD8+ T cells), and a reduced Emax in other cell types (e.g., natural killer cells). In some embodiments, the Emax in natural killer cells caused by an IL12R binding protein described herein is between 1% and 100% (e.g., between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 10% and 90%, between 10% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax in T cells (e.g., CD8+ T cells) caused by the IL12R binding protein. In other embodiments, the Emax of the IL12R binding protein described herein is greater (e.g., at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% greater) than the Emax of the natural ligand, IL12.


An IL12R binding protein described herein are useful in the treatment of neoplastic diseases, such as cancer (e.g., a solid tumor cancer; e.g., non-small-cell lung carcinoma (NSCLC), renal cell carcinoma (RCC), or melanoma) in a subject in need thereof. The IL12R binding protein binds to and activates natural killer, CD4+ T cells, and/or CD8+ T cells. The IL12R binding protein can trigger different levels of downstream signaling in different cell types. For example, by varying the length of the linker between the anti-IL12Rβ1 VHH antibody and the anti-IL12Rβ2 VHH antibody in the IL12R binding protein, the IL12R binding protein can cause a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments, by varying the linker length, an IL12R binding protein can cause a higher level of downstream signaling in T cells (e.g., CD8+ T cells) compared to the level of downstream signaling in natural killer cells, a cell type that expresses both IL12Rβ1 and IL12Rβ2 receptors but when activated too potently can give rise to toxicities. In other embodiments, different anti-IL12Rβ1 VHH antibodies with different binding affinities and different anti-IL12Rβ2 VHH antibodies with different binding affinities can be combined to make different IL12R binding proteins. Further, the orientation of the two antibodies in the binding protein can also be changed to make a different binding protein (i.e., anti-IL12Rβ1 VHH antibody-linker-anti-IL12Rβ2 VHH antibody, or anti-IL12Rβ2 VHH antibody-linker-anti-IL12Rβ1 VHH antibody). Different IL12R binding proteins can be screened to find the ideal binding protein that causes a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments, IL12R binding proteins can be partial agonists that have different activities on different cell types, e.g., T cells versus natural killer cells. For example, the selective activation of T cells over natural killer cells is desirable to avoid the toxicity associated with IL12 activated natural killer cells. In some embodiments IL12R binding protein is a partial agonist, where the partial agonist activates T cells selectively over NK cells. In some embodiments, the level of downstream signaling in T cells (e.g., CD8+ T cells) is at least 1.1, 1.5, 2, 3, 5, or 10 times of the level of downstream signaling in natural killer cells.


IL27 Receptor Binding Proteins

The IL27 receptor (IL27R) includes IL27Rα subunit (IL27Rα) and glycoprotein 130 subunit (gp130). Provided herein is an IL27R binding protein that specifically binds to IL27Rα and gp130. In some embodiments, the IL27R binding protein binds to a mammalian cell expressing both IL27Rα and gp130. In some embodiments, the IL27R binding protein can be a bispecific VHH2 as described below. In other embodiments, the IL27R binding protein can include a first domain that is a VHH and a second domain which can be a fragment of IL27 or, for example, a scFv.


The IL27R binding protein can be a bispecific VHH2 that has a first VHH binding to IL27Rα (an anti-IL27Rα VHH antibody) and a second VHH binding to gp130 (an anti-gp130 VHH antibody) and causes the dimerization of the two receptor subunits and downstream signaling when bound to a cell expressing IL27Rα and gp130, e.g., a CD8+ T cells, a CD4+ T cells, and/or a T regulatory (Treg) cell.


A linker can be used to join the anti-IL27Rα VHH antibody and the anti-gp130 VHH antibody. For example, a linker can simply be a covalent bond or a peptide linker. A peptide linker can include between 1 and 50 amino acids (e.g., between 2 and 50, between 5 and 50, between 10 and 50, between 15 and 50, between 20 and 50, between 25 and 50, between 30 and 50, between 35 and 50, between 40 and 50, between 45 and 50, between 2 and 45, between 2 and 40, between 2 and 35, between 2 and 30, between 2 and 25, between 2 and 20, between 2 and 15, between 2 and 10, between 2 and 5 amino acids). A peptide linker joining the anti-IL27Rα VHH antibody and the anti-gp130 VHH antibody can be a flexible glycine-serine linker. A linker can also be a chemical linker, such as a synthetic polymer, e.g., a polyethylene glycol (PEG) polymer.


The anti-IL27Rα VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:70-75.


The anti-IL27Rα VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:125-130.


The anti-gp130 VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:24-29.


The anti-gp130 VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:83-89.


In some embodiments, the IL27R binding protein has a reduced Emax compared to the Emax caused by IL27. Emax reflects the maximum response level in a cell type that can be obtained by a ligand (e.g., a binding protein described herein or the native cytokine (e.g., IL27)). In some embodiments, the IL27R binding protein described herein has at least 1% (e.g., between 1% and 100%, between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 1% and 90%, between 1% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax caused by IL27. In other embodiments, the Emax of the IL27R binding protein described herein is greater (e.g., at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% greater) than the Emax of the natural ligand, IL27. In some embodiments, by varying the linker length of the IL27R binding protein, the Emax of the IL27R binding protein can be changed. The IL27R binding protein can cause Emax in the most desired cell types, and a reduced Emax in other cell types.


An IL27R binding protein described herein are useful in the treatment of neoplastic diseases, such as cancer (e.g., a solid tumor cancer; e.g., non-small-cell lung carcinoma (NSCLC), renal cell carcinoma (RCC), or melanoma) and/or infectious diseases (e.g., bacterial infections and viral infections (e.g., viral infections caused by hepatitis C virus (HCV), human papillomavirus (HPV), or human immunodeficiency virus (HIV)) in a subject in need thereof. The IL27R binding protein binds to and activates CD8+ T cells, CD4+ T cells, and/or T regulatory (Treg) cells. The IL27R binding protein can trigger different levels of downstream signaling in different cell types. For example, by varying the length of the linker between the anti-IL27Rα VHH antibody and the anti-gp130 VHH antibody in the IL27R binding protein, the IL27R binding protein can cause a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments, by varying the linker length, an IL27R binding protein can cause a higher level of downstream signaling in T cells (e.g., CD8+ T cells) compared to the level of downstream signaling in other cells. In other embodiments, different anti-IL27Rα VHH antibodies with different binding affinities and different anti-gp130 VHH antibodies with different binding affinities can be combined to make different IL27R binding proteins. Further, the orientation of the two antibodies in the binding protein can also be changed to make a different binding protein (i.e., anti-IL27Rα VHH antibody-linker-anti-gp130 VHH antibody, or anti-gp130 VHH antibody-linker-anti-IL27Rα VHH antibody). Different IL27R binding proteins can be screened to find the ideal binding protein that causes a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments, the level of downstream signaling in T cells (e.g., CD8+ T cells) is at least 1.1, 1.5, 2, 3, 5, or 10 times of the level of downstream signaling in other cells.


In particular, the IL27R binding protein binds to and activates CD8+ T cells. In some embodiments, the IL27R binding protein binds to and activates CXCR5+ CD8+ T cells. It is known that IL27 can promote and sustain a rapid division of memory-like CXCR5+ CD8+ T cells during, for example, viral infection. The CXCR5+ CD8+ T cells can sustain T cell responses during persistent infection or cancer and drive the proliferative burst of CD8+ T cells after anti-PD1 treatment. Accordingly, an IL27R binding protein described herein is useful to sustain and augment self-renewing T cells in chronic infections and neoplastic diseases, such as cancer.


IL10 Receptor Binding Proteins

The IL10 receptor (IL10R) includes IL10Rα subunit (IL10Rα) and IL10Rβ subunit (IL10Rβ). Provided herein is an IL10R binding protein that specifically binds to IL10Rα and IL10Rβ. In some embodiments, the IL10R binding protein binds to a mammalian cell expressing both IL10Rα and IL10Rβ. In some embodiments, the IL10R binding protein can be a bispecific VHH2 as described below. In other embodiments, the IL10R binding protein can include a first domain that is a VHH and a second domain which can be a fragment of IL10 or, for example, a scFv.


The IL10R binding protein can be a bispecific VHH2 that has a first VHH binding to IL10Rα (an anti-IL10Rα VHH antibody) and a second VHH binding to IL10Rβ (an anti-IL10Rβ VHH antibody) and causes the dimerization of the two receptor subunits and downstream signaling when bound to a cell expressing IL10Rα and IL10Rβ, e.g., a T cell (e.g., a CD8+ T cell or a CD4+ T cell), a macrophage, and/or a Treg cell.


A linker can be used to join the anti-IL10Rα VHH antibody and the anti-IL10Rβ VHH antibody. For example, a linker can simply be a covalent bond or a peptide linker. A peptide linker can include between 1 and 50 amino acids (e.g., between 2 and 50, between 5 and 50, between 10 and 50, between 15 and 50, between 20 and 50, between 25 and 50, between 30 and 50, between 35 and 50, between 40 and 50, between 45 and 50, between 2 and 45, between 2 and 40, between 2 and 35, between 2 and 30, between 2 and 25, between 2 and 20, between 2 and 15, between 2 and 10, between 2 and 5 amino acids). A peptide linker joining the anti-IL10Rα VHH antibody and the anti-IL10Rβ VHH antibody can be a flexible glycine-serine linker. A linker can also be a chemical linker, such as a synthetic polymer, e.g., a polyethylene glycol (PEG) polymer.


The anti-IL10Rα VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:44-50.


The anti-IL10Rα VHH antibody can have a sequence comprising: a CDR1 having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity, or having 0, 1, 2, or 3 amino acid changes, optionally conservative amino acid changes relative, to the sequence of any one of SEQ ID NOS: 388, 391, 394, 397, 400, 403, and 406; a CDR2 having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity, or having 0, 1, 2, or 3 amino acid changes, optionally conservative amino acid changes relative, to the sequence of any one of SEQ ID NOS: 389, 392, 395, 398, 401, 404, and 407; and a CDR3 having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity, or having 0, 1, 2, or 3 amino acid changes, optionally conservative amino acid changes relative, to the sequence of any one of SEQ ID NOS: 390, 393, 396, 399, 402, 405, and 408.


The anti-IL10Rβ VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:51-57.


The anti-IL10Rβ VHH antibody can have a sequence comprising: a CDR1 having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity, or having 0, 1, 2, or 3 amino acid changes, optionally conservative amino acid changes relative, to the sequence of any one of SEQ ID NOS: 409, 412, 415, 418, 421, 424, and 427; a CDR2 having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity, or having 0, 1, 2, or 3 amino acid changes, optionally conservative amino acid changes relative, to the sequence of any one of SEQ ID NOS: 410, 413, 416, 419, 422, 425, and 428; and a CDR3 having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity, or having 0, 1, 2, or 3 amino acid changes, optionally conservative amino acid changes relative, to the sequence of any one of SEQ ID NOS: 411, 414, 417, 420, 423, 426, and 429.


The anti-IL10Rβ VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:99-104.


In some embodiments, the IL10R binding protein has a reduced Emax compared to the Emax caused by IL10. Emax reflects the maximum response level in a cell type that can be obtained by a ligand (e.g., a binding protein described herein or the native cytokine (e.g., IL10)). In some embodiments, the IL10R binding protein described herein has at least 1% (e.g., between 1% and 100%, between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 1% and 90%, between 1% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax caused by IL10. In some embodiments, by varying the linker length of the IL10R binding protein, the Emax of the IL10R binding protein can be changed. The IL10R binding protein can cause Emax in the most desired cell types (e.g., CD8+ T cells), and a reduced Emax in other cell types (e.g., marcophages). In some embodiments, the Emax in macrophages caused by an IL10R binding protein described herein is between 1% and 100% (e.g., between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 1% and 90%, between 1% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax in T cells (e.g., CD8+ T cells) caused by the IL10R binding protein. In other embodiments, the Emax of the IL10R binding protein described herein is greater (e.g., at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% greater) than the Emax of the natural ligand, IL10.


In some embodiments, the present disclosure provides examples of IL10 receptor binding proteins comprising anti-IL10Rα VHH, an optional linker, and an anti-IL10Rβ2 VHH. In some embodiments, the N-terminal VHH of the IL-10 binding molecule is anti-IL10Rα VHH and the C-terminal VHH of the IL-10 receptor binding protein is anti-IL10Rβ VHH, optionally comprising a linker between the VHHs. In some embodiments, the N-terminal VHH of the IL-10 receptor binding protein is an anti-IL10Rβ VHH and the C-terminal VHH of the IL-10 receptor binding protein is anti-IL10Rα VHH, optionally comprising a linker between the VHH. In some embodiments, the IL-10 receptor binding protein may provide a purification handle such as but not limited to the Ala-Ser-His-His-His-His-His-His (“ASH6”, SEQ ID NO:430) purification handle to facilitate purification of the receptor binding protein by chelating peptide immobilized metal affinity chromatography (“CP-IMAC, as described in U.S. Pat. No. 4,569,794).


As series of ninety-eight IL10 receptor binding proteins comprising anti-IL10Rα VHH, a linker, and an anti-IL10Rβ2 VHH and an ASH6 (SEQ ID NO: 430) purification handle (SEQ ID NOs:192-289) were prepared in substantial accordance with Examples 1-4 herein and evaluated for IL-10 activity in substantial accordance with Examples 5 and 6 herein. The arrangement of VHH, linker and purification handle elements of these ninety-eight IL-10 receptor binding proteins is provided in Table 2 below.









TABLE 2







IL10 Receptor Binding Proteins















C-terminal


IL10 Receptor
N-terminal

C-terminal
purification


Binding Protein
anti-IL10 VHH
Linker
anti-IL10 VHH
handle


(SEQ ID NO:)
(SEQ ID NO:)
(SEQ ID NO:)
(SEQ ID NO:)
(SEQ ID NO:)





192
44
23
51
430


193
44
23
52
430


194
44
23
53
430


195
44
23
54
430


196
44
23
55
430


197
44
23
56
430


198
44
23
57
430


199
45
23
51
430


200
45
23
52
430


201
45
23
53
430


202
45
23
54
430


203
45
23
55
430


204
45
23
56
430


205
45
23
57
430


206
46
23
51
430


207
46
23
52
430


208
46
23
53
430


209
46
23
54
430


210
46
23
55
430


211
46
23
56
430


212
46
23
57
430


213
47
23
51
430


214
47
23
52
430


215
47
23
53
430


216
47
23
54
430


217
47
23
55
430


218
47
23
56
430


219
47
23
57
430


220
48
23
51
430


221
48
23
52
430


222
48
24
53
430


223
48
24
54
430


224
48
24
55
430


225
48
24
56
430


226
48
24
57
430


227
49
24
51
430


228
49
24
52
430


229
49
24
53
430


230
49
24
54
430


231
49
24
55
430


232
49
24
56
430


233
49
24
57
430


234
50
24
51
430


235
50
24
52
430


236
50
24
53
430


237
50
24
54
430


238
50
24
55
430


239
50
24
56
430


240
50
24
57
430


241
51
24
44
430


242
51
24
45
430


243
51
24
46
430


244
51
24
47
430


245
51
24
48
430


246
51
24
49
430


247
51
24
50
430


248
52
24
44
430


249
52
24
45
430


250
52
24
46
430


251
52
24
47
430


252
52
24
48
430


253
52
24
49
430


254
52
24
50
430


255
53
24
44
430


256
53
24
45
430


257
53
24
46
430


258
53
24
47
430


259
53
24
48
430


260
53
24
49
430


261
53
24
50
430


262
54
24
44
430


263
54
24
45
430


264
54
24
46
430


265
54
24
47
430


266
54
24
48
430


267
54
24
49
430


268
54
24
50
430


269
55
24
44
430


270
55
24
45
430


271
55
24
46
430


272
55
24
47
430


273
55
24
48
430


274
55
24
49
430


275
55
24
50
430


276
56
24
44
430


277
56
24
45
430


278
56
24
46
430


279
56
24
47
430


280
56
24
48
430


281
56
24
49
430


282
56
24
50
430


283
57
24
44
430


284
57
24
45
430


285
57
24
46
430


286
57
24
47
430


287
57
24
48
430


288
57
24
49
430


289
57
24
50
430









As provided in more detail in the Example 3 herein, nucleic acid sequences encoding SEQ ID Nos: 192-289 were synthesized as SEQ ID Nos: 290-387 respectively and were inserted into a recombinant expression vector and expressed in HEK293 cells in 24 well place format and purified in substantial accordance with Example 4. The supernatants containing the IL-10 receptor binding proteins of SEQ ID Nos: 192-298 were evaluated for activity with unstimulated and wild-type human IL-10 as controls in substantial accordance with Examples 5 and 6 herein. The results of these experiments are provided in Table 3 below.









TABLE 3







IL10 Receptor Binding Protein Activity











TestArticle
Abs 630
Abs 630



(SEQ ID NO:)
(25 nM)
(100 nM)







Unstimulated
0.58
0.59



WildType hIL10
2.08
2.04



192
0.49
0.39



193
0.45
0.36



194
0.49
0.38



195
1.85
1.13



196
0.49
0.39



197
0.44
0.34



198
1.38
0.40



199
1.77
1.02



200
1.52
0.67



201
0.54
0.46



202
0.49
0.39



203
0.75
0.53



204
0.53
0.41



205
0.46
0.37



206
1.41
0.73



207
1.93
1.65



208
0.47
0.38



209
0.52
0.41



210
0.46
0.37



211
0.51
0.36



212
0.46
0.36



213
1.19
1.00



214
1.61
1.18



215
0.49
0.39



216
0.49
0.37



217
0.66
0.69



218
0.44
0.36



219
0.48
0.39



220
0.45
0.34



221
0.48
0.39



222
0.46
0.39



223
0.90
0.51



224
0.50
0.44



225
0.48
0.39



226
0.49
0.37



227
1.73
0.59



228
0.78
0.47



229
0.54
0.43



230
0.49
0.39



231
0.72
0.46



232
0.54
0.38



233
0.46
0.36



234
0.84
0.38



235
0.47
0.37



236
2.08
2.11



237
2.05
1.91



238
1.98
2.09



239
1.92
1.93



240
1.96
2.06



241
0.59
0.35



242
0.69
0.49



243
0.44
0.34



244
0.48
0.39



245
0.45
0.37



246
0.51
0.44



247
0.48
0.40



248
0.48
0.39



249
0.47
0.39



250
0.49
0.42



251
0.51
0.41



252
0.48
0.39



253
0.45
0.38



254
0.50
0.45



255
0.47
0.36



256
0.54
0.41



257
0.46
0.40



258
0.46
0.41



259
0.64
0.38



260
0.61
0.44



261
0.49
0.42



262
0.47
0.56



263
0.52
0.54



264
0.44
0.34



265
0.48
0.39



266
0.45
0.36



267
0.50
0.41



268
0.47
0.36



269
0.49
0.54



270
1.43
1.14



271
0.50
0.44



272
0.54
0.45



273
0.49
0.40



274
0.51
0.41



275
0.49
0.42



276
0.46
0.51



277
0.60
0.48



278
0.45
0.36



279
0.46
0.37



280
0.50
0.43



281
0.52
0.44



282
0.43
0.35



283
0.45
0.35



284
0.46
0.36



285
0.46
0.38



286
0.43
0.35



287
0.43
0.34



288
0.54
0.65



289
0.56
0.61



Unstimulated
0.58
0.59



WildType hIL10
2.08
2.04



192
0.49
0.39



193
0.45
0.36



194
0.49
0.38



195
1.85
1.13



196
0.49
0.39



197
0.44
0.34



198
1.38
0.40



199
1.77
1.02



200
1.52
0.67



201
0.54
0.46



202
0.49
0.39



203
0.75
0.53



204
0.53
0.41



205
0.46
0.37



206
1.41
0.73



207
1.93
1.65



208
0.47
0.38



209
0.52
0.41



210
0.46
0.37



211
0.51
0.36



212
0.46
0.36



213
1.19
1.00



214
1.61
1.18



215
0.49
0.39



216
0.49
0.37



217
0.66
0.69



218
0.44
0.36



219
0.48
0.39



220
0.45
0.34



221
0.48
0.39



222
0.46
0.39



223
0.90
0.51



224
0.50
0.44



225
0.48
0.39



226
0.49
0.37



227
1.73
0.59



228
0.78
0.47



229
0.54
0.43



230
0.49
0.39



231
0.72
0.46



232
0.54
0.38



233
0.46
0.36



234
0.84
0.38



235
0.47
0.37



236
2.08
2.11



237
2.05
1.91



238
1.98
2.09



239
1.92
1.93



240
1.96
2.06



241
0.59
0.35



242
0.69
0.49



243
0.44
0.34



244
0.48
0.39



245
0.45
0.37



246
0.51
0.44



247
0.48
0.40



248
0.48
0.39



249
0.47
0.39



250
0.49
0.42



251
0.51
0.41



252
0.48
0.39



253
0.45
0.38



254
0.50
0.45



255
0.47
0.36



256
0.54
0.41



257
0.46
0.40



258
0.46
0.41



259
0.64
0.38



260
0.61
0.44



261
0.49
0.42



262
0.47
0.56



263
0.52
0.54



264
0.44
0.34



265
0.48
0.39



266
0.45
0.36



267
0.50
0.41



268
0.47
0.36



269
0.49
0.54



270
1.43
1.14



271
0.50
0.44



272
0.54
0.45



273
0.49
0.40



274
0.51
0.41



275
0.49
0.42



276
0.46
0.51



277
0.60
0.48



278
0.45
0.36



279
0.46
0.37



280
0.50
0.43



281
0.52
0.44



282
0.43
0.35



283
0.45
0.35



284
0.46
0.36



285
0.46
0.38



286
0.43
0.35



287
0.43
0.34



288
0.54
0.65



289
0.56
0.61










As can be seen from the data provided above, IL-10 receptor binding proteins demonstrated significant IL-10 activity in the IL-10 activity assay (Example 4). In particular, IL-10 activity was categorized as low (above unstimulated and A630<1), medium (A630 1-1.5) and high (A630>1.5) based on absorbance readings. From the above data, 11 IL10R binding proteins demonstrated high activity (SEQ ID Nos: 194, 209, 210, 211, 213, 218, 226, 233, 238, 244 and 250), 4 with medium activity (SEQ ID Nos: 203, 205, 207, and 269) and 8 VHHs with low activity (SEQ ID Nos: 212, 217, 219, 224, 227, 237, 239, and 249). In some embodiments, the present disclosure provides the IL10R binding protein wherein the IL10R binding protein comprises, from amino to carboxy, a first anti-IL10R sdAb joined via a linker to a second anti-IL10R sdAb, according to the following Table 4:












TABLE 4







first anti-IL10R
second anti-IL10R



sdAb SEQ ID
sdAb SEQ ID









48
57



49
56



50
55



52
46



47
51



51
47



46
55



46
56



47
56



46
54



44
53



55
44



46
52



45
57



45
55



47
55



50
54



48
55



46
57



47
57



50
56



49
51



52
45



53
44



54
47











and wherein the IL10R binding protein further optionally comprises a linker is selected from the group consisting of SEQ ID Nos:1-23.


IL10R binding proteins described herein are useful in the treatment of neoplastic diseases, such as cancer (e.g., a solid tumor cancer; e.g., non-small-cell lung carcinoma (NSCLC), renal cell carcinoma (RCC), or melanoma) in a subject in need thereof. The IL10R binding protein binds to and activates CD8+ T cells, CD4+ T cells, macrophages, and/or Treg cells. In some embodiments, the IL10R binding protein described herein can provide a longer therapeutic efficacy (e.g., lower effective dose, reduced toxicity) than a wild-type or pegylated IL10. The IL10R binding protein can trigger different levels of downstream signaling in different cell types. For example, by varying the length of the linker between the anti-IL10Rα VHH antibody and the anti-IL10Rβ VHH antibody in the IL10R binding protein, the IL10R binding protein can cause a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments the IL10R binding protein can be a partial agonist that selectively activate T cells (e.g., CD8+ T cells) over macrophages. In some embodiments, activated T cells have an upregulation of IFNgamma. In some embodiments, an IL10R binding protein that is a partial agonist can suppress autoimmune inflammatory diseases such as ulcerative colitis and Crohn's disease. In some embodiments, by varying the linker length, an IL10R binding protein can cause a higher level of downstream signaling in T cells (e.g., CD8+ T cells) compared to the level of downstream signaling in macrophages, a cell type that expresses both IL10Rα and IL10Rβ receptors but when activated too potently can cause anemia. When the downstream signaling in macrophages is activated to a high level, these activated macrophages can then eliminate aging red blood cells, causing anemia. An IL10R binding protein can cause a higher level of downstream signaling in T cells (e.g., CD8+ T cells) compared to the level of downstream signaling in macrophages, such that anemia is avoided. In other embodiments, different anti-IL10Rα VHH antibodies with different binding affinities and different anti-IL10Rβ VHH antibodies with different binding affinities can be combined to make different IL10R binding proteins. Further, the orientation of the two antibodies in the binding protein can also be changed to make a different binding protein (i.e., anti-IL10Rα VHH antibody-linker-anti-IL10Rβ VHH antibody, or anti-IL10Rβ VHH antibody-linker-anti-IL10Rα VHH antibody). Different IL10R binding proteins can be screened to find the ideal binding protein that causes a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments, the level of downstream signaling in T cells (e.g., CD8+ T cells) is at least 1.1, 1.5, 2, 3, 5, or 10 times of the level of downstream signaling in macrophages.


IFNλ Receptor Binding Proteins

The interferon (IFN) λ receptor (IFNλR) includes IL10Rβ and IL28 receptor (IL28R) α subunit (IL28Rα). Provided herein is an IFNλR binding protein that specifically binds to IL10Rβ and IL28Rα. In some embodiments, the IFNλR binding protein binds to a mammalian cell expressing both IL10Rβ and IL28Rα. In some embodiments, the IFNλR binding protein can be a bispecific VHH2 as described below. In other embodiments, the IFNλR binding protein can include a first domain that is a VHH and a second domain which can be a fragment of IFNλ or, for example, a scFv.


The IFNλR binding protein can be a bispecific VHH2 that has a first VHH binding to IL10Rβ (an anti-IL10Rβ VHH antibody) and a second VHH binding to IL28Rα (an anti-IL28Rα VHH antibody) and causes the dimerization of the two receptor subunits and downstream signaling when bound to a cell expressing IL10Rβ and IL28R, e.g., a macrophage, a T cell (e.g., a CD8+ T cell or a CD4+ T cell), a Treg cell, a dendritic cell, and/or an epithelial cell.


A linker can be used to join the anti-IL10Rβ VHH antibody and the anti-IL28Rα VHH antibody. For example, a linker can simply be a covalent bond or a peptide linker. A peptide linker can include between 1 and 50 amino acids (e.g., between 2 and 50, between 5 and 50, between 10 and 50, between 15 and 50, between 20 and 50, between 25 and 50, between 30 and 50, between 35 and 50, between 40 and 50, between 45 and 50, between 2 and 45, between 2 and 40, between 2 and 35, between 2 and 30, between 2 and 25, between 2 and 20, between 2 and 15, between 2 and 10, between 2 and 5 amino acids). A peptide linker joining the anti-IL10Rβ VHH antibody and the anti-IL28Rα VHH antibody can be a flexible glycine-serine linker. A linker can also be a chemical linker, such as a synthetic polymer, e.g., a polyethylene glycol (PEG) polymer.


The anti-IL10Rβ VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:51-57.


The anti-IL10Rβ VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:99-104.


The anti-IL28Rα VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:76-82.


In some embodiments, the IFNλR binding protein has a reduced Emax compared to the Emax caused by IFNλ. Emax reflects the maximum response level in a cell type that can be obtained by a ligand (e.g., a binding protein described herein or the native cytokine (e.g., IFNλ)). In some embodiments, the IFNλR binding protein described herein has at least 1% (e.g., between 1% and 100%, between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 1% and 90%, between 1% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax caused by IFNλ. In other embodiments, the Emax of the IFNλR binding protein described herein is greater (e.g., at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% greater) than the Emax of the natural ligand, IFNλ. In some embodiments, by varying the linker length of the IFNλR binding protein, the Emax of the IFNλR binding protein can be changed. The IFNλR binding protein can cause Emax in the most desired cell types (e.g., macrophages), and a reduced Emax in other cell types.


The IFNλR binding proteins of the present disclosure are useful in the treatment of an infectious disease in a subject in need thereof. The IFNλR binding protein binds to and activates macrophages, CD8+ T cells, CD4+ T cells, Treg cells, dendritic cells, and/or epithelial cells. In particular, the IFNλR binding protein binds to and activates macrophages. Examples of infectious diseases include, but are not limited to, influenza, hepatitis B, hepatitis C, and human immunodeficiency virus (HIV) infection. In some embodiments, the IFNλR binding protein can protect Kuppfer cells in the liver against the effects of an infectious disease. The IFNλR binding protein can trigger different levels of downstream signaling in different cell types. For example, by varying the length of the linker between the anti-IL10Rβ VHH antibody and the anti-IL28Rα VHH antibody in the IFNλR binding protein, the IFNλR binding protein can cause a higher level of downstream signaling in desired cell types (e.g., macrophages) compared to undesired cell types. In some embodiments, by varying the linker length, an IFNλR binding protein results in the modulation of downstream signaling in macrophages compared to the level of downstream signaling in other cell types. In other embodiments, different anti-IL10Rβ VHH antibodies with different binding affinities and different anti-IL28Rα VHH antibodies with different binding affinities can be combined to make different IFNλR binding proteins. Further, the orientation of the two antibodies in the binding protein can also be changed to make a different binding protein (i.e., anti-IL10Rβ VHH antibody-linker-anti-IL28Rα VHH antibody, or anti-IL28Rα VHH antibody-linker-anti-IL10Rβ VHH antibody). Different IFNλR binding proteins can be screened to find the ideal binding protein that causes a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments, the level of downstream signaling in macrophages is at least 1.1, 1.5, 2, 3, 5, or 10 times of the level of downstream signaling in other cell types.


IL23 Receptor Binding Proteins

The IL23 receptor (IL23R) includes IL12R β1 subunit (IL12Rβ1) and IL23R subunit. Provided herein is an IL23R binding protein that specifically binds to IL12Rβ1 and IL23R. In some embodiments, the IL23R binding protein binds to a mammalian cell expressing both IL12Rβ1 and IL23R. In some embodiments, the IL23R binding protein can be a bispecific VHH2 as described below. In other embodiments, the IL23R binding protein can include a first domain that is a VHH and a second domain which can be a fragment of IL23 or, for example, a scFv.


The IL23R binding protein can be a bispecific VHH2 that has a first VHH binding to IL12Rβ1 (an anti-IL12Rβ1 VHH antibody) and a second VHH binding to IL23R (an anti-IL23R VHH antibody) and causes the dimerization of the two receptor subunits and downstream signaling when bound to a cell expressing IL12Rβ1 and IL23R, e.g., a T cell (e.g., a CD8+ T cell or a CD4+ T cell), a macrophage, and/or a Treg cell.


A linker can be used to join the anti-IL12Rβ1 VHH antibody and the anti-IL23R VHH antibody. For example, a linker can simply be a covalent bond or a peptide linker. A peptide linker can include between 1 and 50 amino acids (e.g., between 2 and 50, between 5 and 50, between 10 and 50, between 15 and 50, between 20 and 50, between 25 and 50, between 30 and 50, between 35 and 50, between 40 and 50, between 45 and 50, between 2 and 45, between 2 and 40, between 2 and 35, between 2 and 30, between 2 and 25, between 2 and 20, between 2 and 15, between 2 and 10, between 2 and 5 amino acids). A peptide linker joining the anti-IL12Rβ1 VHH antibody and the anti-IL23R VHH antibody can be a flexible glycine-serine linker. A linker can also be a chemical linker, such as a synthetic polymer, e.g., a polyethylene glycol (PEG) polymer.


The anti-IL12Rβ1 VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:105-111.


The anti-IL23R VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:64-69.


The anti-IL23R VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:118-124.


In some embodiments, the IL23R binding protein has a reduced Emax compared to the Emax caused by IL23. Emax reflects the maximum response level in a cell type that can be obtained by a ligand (e.g., a binding protein described herein or the native cytokine (e.g., IL23)). In some embodiments, the IL23R binding protein described herein has at least 1% (e.g., between 1% and 100%, between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 1% and 90%, between 1% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax caused by IL23. In some embodiments, by varying the linker length of the IL23R binding protein, the Emax of the IL23R binding protein can be changed. The IL23R binding protein can cause Emax in the most desired cell types (e.g., CD8+ T cells), and a reduced Emax in other cell types (e.g., marcophages). In some embodiments, the Emax in macrophages caused by an IL23R binding protein described herein is between 1% and 100% (e.g., between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 1% and 90%, between 1% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax in T cells (e.g., CD8+ T cells) caused by the IL23R binding protein. In other embodiments, the Emax of the IL23R binding protein described herein is greater (e.g., at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% greater) than the Emax of the natural ligand, IL23.


An IL23R binding protein described herein are useful in wound healing. Particularly, the IL23R binding protein described herein plays an important role in initiating wound healing, e.g., healing of keratinocyte layer of the skin. The IL23R binding protein binds to and activates CD8+ T cells, CD4+ T cells, macrophages, and/or Treg cells. The IL23R binding protein can trigger different levels of downstream signaling in different cell types. For example, by varying the length of the linker between the anti-IL12Rβ1 VHH antibody and the anti-IL23R VHH antibody in the IL23R binding protein, the IL23R binding protein can cause a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments the IL23R binding protein can be a partial agonist that selectively activate T cells (e.g., CD8+ T cells) over macrophages. In other embodiments, different anti-IL12Rβ1 VHH antibodies with different binding affinities and different anti-IL23R VHH antibodies with different binding affinities can be combined to make different IL23R binding proteins. Further, the orientation of the two antibodies in the binding protein can also be changed to make a different binding protein (i.e., anti-IL12Rβ1 VHH antibody-linker-anti-IL23R VHH antibody, or anti-IL23R VHH antibody-linker-anti-IL12Rβ1 VHH antibody). Different IL23R binding proteins can be screened to find the ideal binding protein that causes a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments, the level of downstream signaling in T cells (e.g., CD8+ T cells) is at least 1.1, 1.5, 2, 3, 5, or 10 times of the level of downstream signaling in macrophages.


IL2 Receptor Binding Proteins

The IL2 receptor (IL2R) includes CD25 subunit (CD25; also called IL2R α subunit), CD122 subunit (CD122; also called IL2R β subunit), and CD132 subunit (CD132; also called IL2R γ subunit). Provided herein is an IL2R binding protein that specifically binds to CD122 and CD132. In some embodiments, the IL2R binding protein binds to a mammalian cell expressing both CD122 and CD132. In some embodiments, the IL2R binding protein can be a bispecific VHH2 as described below. In other embodiments, the IL2R binding protein can include a first domain that is a VHH and a second domain which can be a fragment of IL2 or, for example, a scFv.


The IL2R binding protein can be a bispecific VHH2 that has a first VHH binding to CD122 (an anti-CD122 VHH antibody) and a second VHH binding to CD132 (an anti-CD132 VHH antibody) and causes the dimerization of the two receptor subunits and downstream signaling when bound to a cell expressing CD122 and CD132, e.g., a T cell (e.g., a CD8+ T cell or a CD4+ T cell), a macrophage, and/or a Treg cell.


A linker can be used to join the anti-CD122 VHH antibody and the anti-CD132 VHH antibody. For example, a linker can simply be a covalent bond or a peptide linker. A peptide linker can include between 1 and 50 amino acids (e.g., between 2 and 50, between 5 and 50, between 10 and 50, between 15 and 50, between 20 and 50, between 25 and 50, between 30 and 50, between 35 and 50, between 40 and 50, between 45 and 50, between 2 and 45, between 2 and 40, between 2 and 35, between 2 and 30, between 2 and 25, between 2 and 20, between 2 and 15, between 2 and 10, between 2 and 5 amino acids). A peptide linker joining the anti-CD122 VHH antibody and the anti-CD132 VHH antibody can be a flexible glycine-serine linker. A linker can also be a chemical linker, such as a synthetic polymer, e.g., a polyethylene glycol (PEG) polymer.


The anti-CD122 VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:30-37.


The anti-CD122 VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:90 and 91.


The anti-CD132 VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:38-43.


The anti-CD132 VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:92-98.


In some embodiments, the IL2R binding protein has a reduced Emax compared to the Emax caused by IL2. Emax reflects the maximum response level in a cell type that can be obtained by a ligand (e.g., a binding protein described herein or the native cytokine (e.g., IL2)). In some embodiments, the IL2R binding protein described herein has at least 10% (e.g., between 1% and 100%, between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 1% and 90%, between 1% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax caused by IL2. In some embodiments, by varying the linker length of the IL2R binding protein, the Emax of the IL2R binding protein can be changed. The IL2R binding protein can cause Emax in the most desired cell types (e.g., CD8+ T cells), and a reduced Emax in other cell types (e.g., marcophages). In some embodiments, the Emax in macrophages caused by an IL2R binding protein described herein is between 1% and 100% (e.g., between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 1% and 90%, between 1% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax in T cells (e.g., CD8+ T cells) caused by the IL2R binding protein. In other embodiments, the Emax of the IL2R binding protein described herein is greater (e.g., at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% greater) than the Emax of the natural ligand, IL2.


An IL2R binding protein described herein are useful in the treatment of neoplastic diseases, such as cancer (e.g., a solid tumor cancer; e.g., non-small-cell lung carcinoma (NSCLC), renal cell carcinoma (RCC), melanoma, kidney cancer, or lung cancer) in a subject in need thereof. The IL2R binding protein binds to and activates CD8+ T cells, CD4+ T cells, macrophages, and/or Treg cells. The IL2R binding protein can trigger different levels of downstream signaling in different cell types. For example, by varying the length of the linker between the anti-CD122 VHH antibody and the anti-CD132 VHH antibody in the IL2R binding protein, the IL2R binding protein can cause a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments, the IL2R binding protein can be a partial agonist that selectively activate T cells (e.g., CD8+ T cells) over macrophages. In some embodiments, an IL2R binding protein that is a partial agonist can suppress autoimmune inflammatory diseases such as lupus, type-2 diabetes, ulcerative colitis, and Crohn's disease. In some embodiments, by varying the linker length, an IL2R binding protein can cause a higher level of downstream signaling in T cells (e.g., CD8+ T cells) compared to the level of downstream signaling in other cell types. In other embodiments, different anti-CD122 VHH antibodies with different binding affinities and different anti-CD132 VHH antibodies with different binding affinities can be combined to make different IL2R binding proteins. Further, the orientation of the two antibodies in the binding protein can also be changed to make a different binding protein (i.e., anti-CD122 VHH antibody-linker-anti-CD132 VHH antibody, or anti-CD132 VHH antibody-linker-anti-CD122 VHH antibody). Different IL2R binding proteins can be screened to find the ideal binding protein that causes a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments, the level of downstream signaling in T cells (e.g., CD8+ T cells) is at least 1.1, 1.5, 2, 3, 5, or 10 times of the level of downstream signaling in other cell types.


IL22 Receptor Binding Proteins

The IL22 receptor (IL22R) includes IL22R1 subunit (IL22R1) and IL10Rβ subunit (IL10Rβ). While IL10Rβ is expressed on a wide range of cells and especially immune cells including monocytes, T cells, B cells and NK cells, in contrast, the expression of the IL22R1 subunit of the IL22 receptor complex is primarily observed in non-immune tissues including the skin, small intestine, liver, colon, lung, kidney, and pancreas, see, e.g., Wolk, et al. (2004) Immunity 21(2):241-254. Provided herein is an IL22R binding protein that specifically binds to IL22R1 and IL10Rβ. In some embodiments, the IL22R binding protein binds to a mammalian cell expressing both IL22R1 and IL10Rβ. In some embodiments, the IL22R binding protein can be a bispecific VHH2 as described below. In other embodiments, the IL22R binding protein can include a first domain that is a VHH and a second domain which can be a fragment of IL22 or, for example, a scFv.


The IL22R binding protein can be a bispecific VHH2 that has a first VHH binding to IL22R1 (an anti-IL22R1 VHH antibody) and a second VHH binding to IL10Rβ (an anti-IL10Rβ VHH antibody) and causes the dimerization of the two receptor subunits and downstream signaling when bound to a cell expressing IL22R1 and IL10Rβ, e.g., an epithelial cell. IL22R is expressed on tissue cells, and it is absent on immune cells. IL22R1 is almost exclusively expressed on cells of non-hematopoietic origin such as epithelial, renal tubular, and pancreatic ductal cells.


A linker can be used to join the anti-IL22R1 VHH antibody and the anti-IL10Rβ VHH antibody. For example, a linker can simply be a covalent bond or a peptide linker. A peptide linker can include between 1 and 50 amino acids (e.g., between 2 and 50, between 5 and 50, between 10 and 50, between 15 and 50, between 20 and 50, between 25 and 50, between 30 and 50, between 35 and 50, between 40 and 50, between 45 and 50, between 2 and 45, between 2 and 40, between 2 and 35, between 2 and 30, between 2 and 25, between 2 and 20, between 2 and 15, between 2 and 10, between 2 and 5 amino acids). A peptide linker joining the anti-IL22R1 VHH antibody and the anti-IL10Rβ VHH antibody can be a flexible glycine-serine linker. A linker can also be a chemical linker, such as a synthetic polymer, e.g., a polyethylene glycol (PEG) polymer.


The anti-IL10Rβ VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:51-57.


The anti-IL10Rβ VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:99-104.


In some embodiments, the IL22R binding protein has a reduced Emax compared to the Emax caused by IL22. Emax reflects the maximum response level in a cell type that can be obtained by a ligand (e.g., a binding protein described herein or the native cytokine (e.g., IL22)). In some embodiments, the IL22R binding protein described herein has at least 1% (e.g., between 1% and 100%, between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 1% and 90%, between 1% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax caused by IL22. In some embodiments, by varying the linker length of the IL22R binding protein, the Emax of the IL22R binding protein can be changed.


The IL22R binding protein can cause Emax in the most desired cell types (e.g., epithelial cells, IL22R1 expressing tumor cells, and a reduced Emax in other cell types). In some embodiments, the Emax in macrophages caused by an IL22R binding protein described herein is between 1% and 100% (e.g., between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 1% and 90%, between 1% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax in epithelialis cells caused by the IL22R binding protein. In other embodiments, the Emax of the IL22R binding protein described herein is greater (e.g., at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% greater) than the Emax of the natural ligand, IL22.


The biological activity of IL22 is modulated by a specific endogenous antagonist, IL22 binding protein (IL22BP) which is regarded as a soluble, neutralizing decoy receptor for IL22. As wild-type IL22 possesses a higher affinity with respect to IL22BP as compared with the IL22 receptor complex, IL22BP is supposed to control IL22 biological activity in vivo. In one embodiment, the IL22R binding proteins of the present disclosure may provide preferential binding to the IL22 receptor complex versus the IL22BP avoiding the endogenous antagonism and modulation of IL22 activity derived from the presence of the endogenous IL22BP. In some embodiments, an IL22R binding protein described herein exhibits between 1% and 100% (e.g., between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 1% and 90%, between 1% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the affinity of the natural ligand, IL22, for the IL22BP.


An IL22R binding protein described herein are useful in the treatment of neoplastic diseases, such as cancer (e.g., a solid tumor cancer; e.g., non-small-cell lung carcinoma (NSCLC), renal cell carcinoma (RCC), melanoma, kidney cancer, or lung cancer) in a subject in need thereof. The IL22R binding protein binds to and activates epithelial cells. The IL22R binding protein can trigger different levels of downstream signaling in the target cell. For example, by varying the length of the linker between the anti-IL22R1 VHH antibody and the anti-IL10Rβ VHH antibody in the IL22R binding protein, the IL22R binding protein can cause a differing (e.g., higher or lower) level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments, the IL22R binding protein can be a partial agonist that selectively activate epithelial cells. In some embodiments, an IL22R binding protein that is a partial agonist is useful in the treatment or prevention of diseases such as psoriasis, graft-versus-host disease, inflammatory diseases of the lung and airway such as lung fibrosis, ventilator induced lung injury, neoplastic disease (e.g., IL22R1-expressing tumors), liver fibrosis, diseases associated with liver injury such as alcohol toxicity (acute or chronic) steatosis, and pancreatitis, lupus, type-2 diabetes, ulcerative colitis, and Crohn's disease. In some embodiments, by varying the linker length, an IL22R binding protein can cause a higher level of downstream signaling in epithelial cells compared to the level of downstream signaling in other cell types. In other embodiments, different anti-IL22R1 VHH antibodies with different binding affinities and different anti-IL10Rβ VHH antibodies with different binding affinities can be combined to make different IL22R binding proteins. Further, the orientation of the two antibodies in the binding protein can also be changed to make a different binding protein (i.e., anti-IL22R1 VHH antibody-linker-anti-IL10Rβ VHH antibody, or anti-IL10Rβ VHH antibody-linker-anti-IL22R1 VHH antibody). Different IL22R binding proteins can be screened to find the ideal binding protein that causes a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments, the level of downstream signaling in the target cell is at least 1.1, 1.5, 2, 3, 5, or 10 times of the level of downstream signaling in other cell types or cells derived from different tissues.


Receptor Binding Proteins that Bind to Non-Natural Receptor Pairs


Receptor Binding Proteins that Bind IL10Rα and IL2Rγ


Provided herein is a binding protein that specifically binds to IL10Rα and IL2Rγ. In some embodiments, the binding protein binds to a mammalian cell expressing both IL10Rα and IL2Rγ. In some embodiments, the binding protein is a bispecific VHH2 that has a first VHH that specifically binds to the extracellular domain of IL10Rα (an anti-IL10Rα VHH antibody) and a second VHH that specifically binds to the extracellular domain of IL2Rγ (an anti-IL2Rγ VHH antibody) and causes the dimerization of the two receptor subunits and downstream signaling when bound to a cell expressing IL10Rα and IL2Rγ, e.g., a T cell (e.g., a CD8+ T cell and/or a CD4+ T cell). In some embodiments, a binding protein that specifically binds to IL10Rα and IL2Rγ can be a bispecific VHH2 as described below. In other embodiments, the binding protein can include a first domain that is a VHH and a second domain which can be a fragment of IL10Rα or IL2Rγ or, for example, a scFv.


A linker can be used to join the anti-IL10Rα VHH antibody and the anti-IL2Rγ VHH antibody. For example, a linker can simply be a covalent bond or a peptide linker. A peptide linker can include between 1 and 50 amino acids (e.g., between 2 and 50, between 5 and 50, between 10 and 50, between 15 and 50, between 20 and 50, between 25 and 50, between 30 and 50, between 35 and 50, between 40 and 50, between 45 and 50, between 2 and 45, between 2 and 40, between 2 and 35, between 2 and 30, between 2 and 25, between 2 and 20, between 2 and 15, between 2 and 10, between 2 and 5 amino acids). A peptide linker joining the anti-IL10Rα VHH antibody and the anti-IL2Rγ VHH antibody can be a flexible glycine-serine linker. A linker can also be a chemical linker, such as a synthetic polymer, e.g., a polyethylene glycol (PEG) polymer.


The anti-IL10Rα VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:44-50.


The anti-IL2Rγ VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:38-43.


The anti-IL2Rγ VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:92-98.


In some embodiments, the binding protein that specifically binds to IL10Rα and IL2Rγ has a reduced Emax compared to the Emax of IL10. Emax reflects the maximum response level in a cell type that can be obtained by a ligand (e.g., a binding protein described herein or the native cytokine (e.g., IL10)). In some embodiments, the binding protein that specifically binds to IL10Rα and IL2Rγ described herein has at least 1% (e.g., between 1% and 100%, between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 10% and 90%, between 10% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax caused by IL10. In some embodiments, by varying the linker length of the binding protein that specifically binds to IL10Rα and IL2Rγ, the Emax of the binding protein can be changed. The binding protein can cause Emax in the most desired cell types CD8+ T cells. In some embodiments, the Emax in CD8+ T cells caused by a binding protein that specifically binds to IL10Rα and IL2Rγ is between 10% and 100% (e.g., between 10% and 100%, between 20% and 100%, between 30% and 100%, between 40% and 100%, between 50% and 100%, between 60% and 100%, between 70% and 100%, between 80% and 100%, between 90% and 100%, between 1% and 90%, between 1% and 80%, between 1% and 70%, between 1% and 60%, between 1% and 50%, between 1% and 40%, between 1% and 30%, between 1% and 20%, or between 1% and 10%) of the Emax in other T cells caused by the binding protein. In other embodiments, the Emax of the binding protein that specifically binds to IL10Rα and IL2Rγ is greater (e.g., at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% greater) than the Emax of the natural ligand.


A binding protein that binds to IL10Rα and IL2Rγ as described herein is useful in the treatment of disease in a subject in need thereof including but not limited to the treatment of neoplastic diseases, such as cancer (e.g., a solid tumor cancer; e.g., non-small-cell lung carcinoma (NSCLC), renal cell carcinoma (RCC), or melanoma). The binding protein binds to and activates CD8+ T cells and/or CD4+ T cells. In certain embodiments, the method does not cause anemia. It is known that IL10 has activities on macrophages and T cells. In some embodiments, the method provided herein uses a binding protein of the present disclosure that binds to IL10Rα and IL2Rγ resulting in the selective activation of T cells relative to activation of macrophages. The selective activation of T cells relative to macrophages is beneficial because IL10-activated macrophages can phagocytose aging red blood cells, which manifests itself as anemia in a patient receiving IL10. Binding proteins as described herein that provide for the selective substantial activation of T cells while providing a minimal activation of macrophages result in a molecule that produces lower side effects, such as anemia, relative to the native IL10 ligand. Other problems and toxicities related to IL10 activation are described in, e.g., Fioranelli and Grazia, J Integr Cardiol 1(1):2-6, 2014. Such problems can be avoided by using a binding protein of the present disclosure that specifically binds to IL10Rα and IL2Rγ.


In some embodiments, the binding protein that binds to IL10Rα and IL2Rγ can trigger different levels of downstream signaling in different cell types. For example, by varying the length of the linker between the anti-IL10Rα VHH antibody and the anti-IL2Rγ VHH antibody in the binding protein, the downstream signaling of the binding protein is modulated in CD8+ T cells compared to other T cells. In other embodiments, different anti-IL10Rα VHH antibodies with different binding affinities and different anti-IL2Rγ VHH antibodies with different binding affinities can be combined to make different binding proteins. Further, the orientation of the two antibodies in the binding protein can also be changed to make a different binding protein (i.e., anti-IL10Rα VHH antibody-linker-anti-IL2Rγ VHH antibody, or anti-IL2Rγ VHH antibody-linker-anti-IL10Rα VHH antibody). Different binding proteins can be screened to find the ideal binding protein that causes a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments, the level of downstream signaling in CD8+ T cells is at least 1.1, 1.5, 2, 3, 5, or 10 times of the level of downstream signaling in other T cells.


Receptor Binding Proteins that Bind IFNγR1 or IL28Rα and Myeloid Cells and/or T Cells


Provided herein is also a binding protein that specifically binds to a first receptor and a second receptor, in which the first receptor is interferon γ receptor 1 (IFNγR1) or IL28Rα and the second receptor is preferentially expressed on myeloid cells and/or T cells. In some embodiments, the binding protein binds to a mammalian cell expressing both the first receptor and the second receptor. For example, a binding protein can selectively trigger downstream signaling in T cells if the binding protein binds to IFNγR1 as the first receptor and IL2Rγ as the second receptor expressed on T cells. In some embodiments, the binding protein can be a bispecific VHH2 as described below. In other embodiments, the binding protein can include a first domain that is a VHH and a second domain which can be a fragment of IFNγR1 or IL28Rα or, for example, a scFv.


In one embodiment, the binding protein is a bispecific VHH2 having a first VHH binding that specifically binds to the first receptor (e.g., an anti-IFNγR1 VHH antibody or an anti-IL28Rα VHH antibody) and a second VHH that specifically binds to the second receptor and causes the dimerization of the two receptors and downstream signaling when bound to a cell expressing IFNγR1 or IL28Rα and a cell expressing the second receptor, e.g., a myeloid cell and/or T cell.


A linker can be used to join the two VHHs. For example, a linker can simply be a covalent bond or a peptide linker. A peptide linker can include between 1 and 50 amino acids (e.g., between 2 and 50, between 5 and 50, between 10 and 50, between 15 and 50, between 20 and 50, between 25 and 50, between 30 and 50, between 35 and 50, between 40 and 50, between 45 and 50, between 2 and 45, between 2 and 40, between 2 and 35, between 2 and 30, between 2 and 25, between 2 and 20, between 2 and 15, between 2 and 10, between 2 and 5 amino acids). A peptide linker joining the two VHHs can be a flexible glycine-serine linker. A linker can also be a chemical linker, such as a synthetic polymer, e.g., a polyethylene glycol (PEG) polymer.


The anti-IL28Rα VHH antibody can have a sequence having at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to the sequence of any one of SEQ ID NOS:76-82.


In certain embodiments of the binding protein described herein, the binding protein binds to the first receptor IFNγR1 and the second receptor IL2Rγ. In particular embodiments, the binding protein can activate T cells and avoid activating macrophages. In other embodiments, different antibodies with different binding affinities to the first receptor and different antibodies with different binding affinities to the second receptor can be combined to make different binding proteins. Further, the orientation of the two antibodies in the binding protein can also be changed to make a different binding protein (i.e., VHH antibody to the first receptor-linker-VHH antibody to the second receptor, or VHH antibody to the second receptor-linker-VHH antibody to the first receptor). Different binding proteins can be screened to find the ideal binding protein that causes a higher level of downstream signaling in desired cell types compared to undesired cell types. In some embodiments, the level of downstream signaling in T cells is at least 1.1, 1.5, 2, 3, 5, or 10 times of the level of downstream signaling in macrophages.


In certain embodiments of the binding protein described herein, the binding protein binds to the first receptor IL28Rα and the second receptor IL2Rγ.


The binding protein described herein are useful in the treatment of neoplastic diseases, such as cancer (e.g., a solid tumor cancer; e.g., non-small-cell lung carcinoma (NSCLC), renal cell carcinoma (RCC), or melanoma) in a subject in need thereof. In some embodiments, the binding protein binds to and activates myeloid cells and/or T cells. In particular embodiments, the binding protein binds to and activates macrophages. In particular embodiments, the binding protein binds to and activates CD8+ T cells and/or CD4+ T cells.


IV. Single-Domain Antibody and VHH

A single-domain antibody (sdAb) is an antibody containing a single monomeric variable antibody domain. Like a full-length antibody, it is able to bind selectively to a specific antigen. The complementary determining regions (CDRs) of sdAbs are within a single-domain polypeptide. Single-domain antibodies can be engineered from heavy-chain antibodies found in camelids, which are referred to as VHHs. Cartilaginous fishes also have heavy-chain antibodies (IgNAR, “immunoglobulin new antigen receptor”), from which single-domain antibodies referred to as VNARS can be obtained. The dimeric variable domains from common immunoglobulin G (IgG) from humans or mice can also be split into monomers to make sdAbs. Although most research into sdAbs is currently based on heavy chain variable domains, sdAbs derived from light chains have also been shown to bind specifically to target, see, e.g., Moller et al., J Biol Chem. 285(49):38348-38361, 2010. In some embodiments, a sdAb is composed of a single monomeric light chain variable antibody domain.


A sdAb can be a heavy chain antibody (VHH). A VHH is a type of sdAb that has a single monomeric heavy chain variable antibody domain. Similar to a traditional antibody, a VHH is able to bind selectively to a specific antigen. A binding protein described herein can include two VHHs (e.g., VHH2) joined together by a linker (e.g., a peptide linker). The binding protein can be a bispecific VHH2 that includes a first VHH binding to a first receptor or domain or subunit thereof and a second VHH binding to a second receptor or domain or subunit thereof, in which the two VHHs are joined by a linker.


An exemplary VHH has a molecular weight of approximately 12-15 kDa which is much smaller than traditional mammalian antibodies (150-160 kDa) composed of two heavy chains and two light chains. VHHs can be found in or produced from Camelidae mammals (e.g., camels, llamas, dromedary, alpaca, and guanaco) which are naturally devoid of light chains. Descriptions of sdAbs and VHHS can be found in, e.g., De Greve et al., Curr Opin Biotechnol. 61:96-101, 2019; Ciccarese, et al., Front Genet. 10:997, 2019; Chanier and Chames, Antibodies (Basel) 8(1), 2019; and De Vlieger et al., Antibodies (Basel) 8(1), 2018.


To prepare a binding protein that is a bispecific VHH2, in some embodiments, the two VHHs can be synthesized separately, then joined together by a linker. Alternatively, the bispecific VHH2 can be synthesized as a fusion protein. VHHs having different binding activities and receptor targets can be paired to make a bispecific VHH2. The binding proteins can be screened for signal transduction on cells carrying one or both relevant receptors.


V. Linkers

As previously described, the binding domains of the binding proteins of the present disclosure may be joined contiguously (e.g., the C-terminal amino acid of the first VHH in the binding protein to the N-terminal amino acid of the second VHH in the binding protein) or the binding domains of the binding protein may optionally be joined via a linker. A linker is a linkage between two elements, e.g., protein domains. In a bispecific VHH2 binding protein described herein, a linker is a linkage between the two VHHs in the binding protein. A linker can be a covalent bond or a peptide linker. In some embodiments, the two VHHs in a binding protein are joined directly (i.e., via a covalent bond). The length of the linker between two VHHs in a binding protein can be used to modulate the proximity of the two VHHs of the binding protein. By varying the length of the linker, the overall size and length of the binding protein can be tailored to bind to specific cell receptors or domains or subunits thereof. For example, if the binding protein is designed to bind to two receptors or domains or subunits thereof that are located close to each other on the same cell, then a short linker can be used. In another example, if the binding protein is designed to bind to two receptors or domains or subunits there of that are located on two different cells, then a long linker can be used.


In some embodiments, the linker is a peptide linker. A peptide linker can include between 1 and 50 amino acids (e.g., between 2 and 50, between 5 and 50, between 10 and 50, between 15 and 50, between 20 and 50, between 25 and 50, between 30 and 50, between 35 and 50, between 40 and 50, between 45 and 50, between 2 and 45, between 2 and 40, between 2 and 35, between 2 and 30, between 2 and 25, between 2 and 20, between 2 and 15, between 2 and 10, between 2 and 5 amino acids). A linker can also be a chemical linker, such as a synthetic polymer, e.g., a polyethylene glycol (PEG) polymer.


In some embodiments, a linker joins the C-terminus of the first VHH in the binding protein to the N-terminus of the second VHH in the binding protein. In other embodiments, a linker joins the C-terminus of the second VHH in the binding protein to the N-terminus of the first VHH in the binding protein.


Suitable peptide linkers are known in the art, and include, for example, peptide linkers containing flexible amino acid residues such as glycine and serine. In certain embodiments, a peptide linker can contain motifs, e.g., multiple or repeating motifs, of GS, GGS, GGGGS (SEQ ID NO: 1), GGGGGS (SEQ ID NO:2), GGSG (SEQ ID NO:3), or SGGG (SEQ ID NO:4). In certain embodiments, a peptide linker can contain 2 to 12 amino acids including motifs of GS, e.g., GS, GSGS (SEQ ID NO:5), GSGSGS (SEQ ID NO:6), GSGSGSGS (SEQ ID NO:191), GSGSGSGSGS (SEQ ID NO:7), or GSGSGSGSGSGS (SEQ ID NO:8). In certain other embodiments, a peptide linker can contain 3 to 12 amino acids including motifs of GGS, e.g., GGS, GGSGGS (SEQ ID NO:9), GGSGGSGGS (SEQ ID NO:10), and GGSGGSGGSGGS (SEQ ID NO:11). In yet other embodiments, a peptide linker can contain 4 to 20 amino acids including motifs of GGSG (SEQ ID NO:3), e.g., GGSGGGSG (SEQ ID NO:12), GGSGGGSGGGSG (SEQ ID NO:13), GGSGGGSGGGSGGGSG (SEQ ID NO:14), or GGSGGGSGGGSGGGSGGGSG (SEQ ID NO: 15). In other embodiments, a peptide linker can contain motifs of GGGGS (SEQ ID NO: 1), e.g., GGGGSGGGGS (SEQ ID NO:16) or GGGGSGGGGSGGGGS (SEQ ID NO:17).


VI. Modifications to Extend Duration of Action In Vivo

The binding proteins described herein can be modified to provide for an extended lifetime in vivo and/or extended duration of action in a subject. In some embodiments, the binding protein can be conjugated to carrier molecules to provide desired pharmacological properties such as an extended half-life. In some embodiments, the binding protein can be covalently linked to the Fc domain of IgG, albumin, or other molecules to extend its half-life, e.g., by pegylation, glycosylation, and the like as known in the art.


In some embodiments, the binding protein is conjugated to a functional domain of an Fc-fusion chimeric polypeptide molecule. Fc fusion conjugates have been shown to increase the systemic half-life of biopharmaceuticals, and thus the biopharmaceutical product can require less frequent administration. Fc binds to the neonatal Fc receptor (FcRn) in endothelial cells that line the blood vessels, and, upon binding, the Fc fusion molecule is protected from degradation and re-released into the circulation, keeping the molecule in circulation longer. This Fc binding is believed to be the mechanism by which endogenous IgG retains its long plasma half-life. More recent Fc-fusion technology links a single copy of a biopharmaceutical to the Fc region of an antibody to optimize the pharmacokinetic and pharmacodynamic properties of the biopharmaceutical as compared to traditional Fc-fusion conjugates. The “Fc region” useful in the preparation of Fc fusions can be a naturally occurring or synthetic polypeptide that is homologous to an IgG C-terminal domain produced by digestion of IgG with papain. IgG Fc has a molecular weight of approximately 50 kDa. The binding protein described herein can be conjugated to the entire Fc region, or a smaller portion that retains the ability to extend the circulating half-life of a chimeric polypeptide of which it is a part. In addition, full-length or fragmented Fc regions can be variants of the wild-type molecule. In a typical presentation, each monomer of the dimeric Fc can carry a heterologous polypeptide, the heterologous polypeptides being the same or different.


In some embodiments, when the binding protein described herein is to be administered in the format of an Fc fusion, particularly in those situations when the polypeptide chains conjugated to each subunit of the Fc dimer are different, the Fc fusion may be engineered to possess a “knob-into-hole modification.” The knob-into-hole modification is more fully described in Ridgway, et al. (1996) Protein Engineering 9(7):617-621 and U.S. Pat. No. 5,731,168, issued Mar. 24, 1998. The knob-into-hole modification refers to a modification at the interface between two immunoglobulin heavy chains in the CH3 domain, wherein: i) in a CH3 domain of a first heavy chain, an amino acid residue is replaced with an amino acid residue having a larger side chain (e.g., tyrosine or tryptophan) creating a projection from the surface (“knob”), and ii) in the CH3 domain of a second heavy chain, an amino acid residue is replaced with an amino acid residue having a smaller side chain (e.g., alanine or threonine), thereby generating a cavity (“hole”) at interface in the second CH3 domain within which the protruding side chain of the first CH3 domain (“knob”) is received by the cavity in the second CH3 domain. In one embodiment, the “knob-into-hole modification” comprises the amino acid substitution T366W and optionally the amino acid substitution S354C in one of the antibody heavy chains, and the amino acid substitutions T366S, L368A, Y407V and optionally Y349C in the other one of the antibody heavy chains. Furthermore, the Fc domains may be modified by the introduction of cysteine residues at positions 5354 and Y349 which results in a stabilizing disulfide bridge between the two antibody heavy chains in the Fc region (Carter, et al. (2001) Immunol Methods 248, 7-15). The knob-into-hole format is used to facilitate the expression of a first polypeptide on a first Fc monomer with a “knob” modification and a second polypeptide on the second Fc monomer possessing a “hole” modification to facilitate the expression of heterodimeric polypeptide conjugates.


In some embodiments, the binding protein can be conjugated to one or more water-soluble polymers. Examples of water soluble polymers useful in the practice of the present disclosure include polyethylene glycol (PEG), poly-propylene glycol (PPG), polysaccharides (polyvinylpyrrolidone, copolymers of ethylene glycol and propylene glycol, poly(oxyethylated polyol), polyolefinic alcohol), polysaccharides), poly-alpha-hydroxy acid), polyvinyl alcohol (PVA), polyphosphazene, polyoxazolines (POZ), poly(N-acryloylmorpholine), or a combination thereof.


In some embodiments, binding protein can be conjugated to one or more polyethylene glycol molecules or “PEGylated.” Although the method or site of PEG attachment to the binding protein may vary, in certain embodiments the PEGylation does not alter, or only minimally alters, the activity of the binding protein.


In some embodiments, selective PEGylation of the binding protein, for example, by the incorporation of non-natural amino acids having side chains to facilitate selective PEG conjugation, may be employed. Specific PEGylation sites can be chosen such that PEGylation of the binding protein does not affect its binding to the target receptors.


In certain embodiments, the increase in half-life is greater than any decrease in biological activity. PEGs suitable for conjugation to a polypeptide sequence are generally soluble in water at room temperature, and have the general formula R(O—CH2—CH2)nO—R, where R is hydrogen or a protective group such as an alkyl or an alkanol group, and where n is an integer from 1 to 1000. When R is a protective group, it generally has from 1 to 8 carbons. The PEG conjugated to the polypeptide sequence can be linear or branched. Branched PEG derivatives, “star-PEGs” and multi-armed PEGs are contemplated by the present disclosure.


A molecular weight of the PEG used in the present disclosure is not restricted to any particular range. The PEG component of the binding protein can have a molecular mass greater than about 5 kDa, greater than about 10 kDa, greater than about 15 kDa, greater than about 20 kDa, greater than about 30 kDa, greater than about 40 kDa, or greater than about 50 kDa. In some embodiments, the molecular mass is from about 5 kDa to about 10 kDa, from about 5 kDa to about 15 kDa, from about 5 kDa to about 20 kDa, from about 10 kDa to about 15 kDa, from about 10 kDa to about 20 kDa, from about 10 kDa to about 25 kDa, or from about 10 kDa to about 30 kDa. Linear or branched PEG molecules having molecular weights from about 2,000 to about 80,000 daltons, alternatively about 2,000 to about 70,000 daltons, alternatively about 5,000 to about 50,000 daltons, alternatively about 10,000 to about 50,000 daltons, alternatively about 20,000 to about 50,000 daltons, alternatively about 30,000 to about 50,000 daltons, alternatively about 20,000 to about 40,000 daltons, or alternatively about 30,000 to about 40,000 daltons. In one embodiment of the disclosure, the PEG is a 40 kD branched PEG comprising two 20 kD arms.


The present disclosure also contemplates compositions of conjugates wherein the PEGs have different n values, and thus the various different PEGs are present in specific ratios. For example, some compositions comprise a mixture of conjugates where n=1, 2, 3 and 4. In some compositions, the percentage of conjugates where n=1 is 18-25%, the percentage of conjugates where n=2 is 50-66%, the percentage of conjugates where n=3 is 12-16%, and the percentage of conjugates where n=4 is up to 5%. Such compositions can be produced by reaction conditions and purification methods known in the art. Chromatography may be used to resolve conjugate fractions, and a fraction is then identified which contains the conjugate having, for example, the desired number of PEGs attached, purified free from unmodified protein sequences and from conjugates having other numbers of PEGs attached.


PEGs suitable for conjugation to a polypeptide sequence are generally soluble in water at room temperature, and have the general formula R(O—CH2—CH2)nO—R, where R is hydrogen or a protective group such as an alkyl or an alkanol group, and where n is an integer from 1 to 1000. When R is a protective group, it generally has from 1 to 8 carbons.


Two widely used first generation activated monomethoxy PEGs (mPEGs) are succinimdyl carbonate PEG (SC-PEG; see, e.g., Zalipsky, et al. (1992) Biotehnol. Appl. Biochem 15:100-114) and benzotriazole carbonate PEG (BTC-PEG; see, e.g., Dolence, et al. U.S. Pat. No. 5,650,234), which react preferentially with lysine residues to form a carbamate linkage but are also known to react with histidine and tyrosine residues. Use of a PEG-aldehyde linker targets a single site on the N-terminus of a polypeptide through reductive amination.


Pegylation most frequently occurs at the α-amino group at the N-terminus of the polypeptide, the epsilon amino group on the side chain of lysine residues, and the imidazole group on the side chain of histidine residues. Since most recombinant polypeptides possess a single alpha and a number of epsilon amino and imidazole groups, numerous positional isomers can be generated depending on the linker chemistry. General PEGylation strategies known in the art can be applied herein.


The PEG can be bound to a binding protein of the present disclosure via a terminal reactive group (a “spacer”) which mediates a bond between the free amino or carboxyl groups of one or more of the polypeptide sequences and polyethylene glycol. The PEG having the spacer which can be bound to the free amino group includes N-hydroxysuccinylimide polyethylene glycol, which can be prepared by activating succinic acid ester of polyethylene glycol with N-hydroxysuccinylimide.


In some embodiments, the PEGylation of the binding proteins is facilitated by the incorporation of non-natural amino acids bearing unique side chains to facilitate site specific PEGylation. The incorporation of non-natural amino acids into polypeptides to provide functional moieties to achieve site specific PEGylation of such polypeptides is known in the art. See e.g., Ptacin et al., PCT International Application No. PCT/US2018/045257 filed Aug. 3, 2018 and published Feb. 7, 2019 as International Publication Number WO 2019/028419A1.


The PEG conjugated to the polypeptide sequence can be linear or branched. Branched PEG derivatives, “star-PEGs” and multi-armed PEGs are contemplated by the present disclosure. Specific embodiments PEGs useful in the practice of the present disclosure include a 10 kDa linear PEG-aldehyde (e.g., Sunbright® ME-100AL, NOF America Corporation, One North Broadway, White Plains, NY 10601 USA), 10 kDa linear PEG-NHS ester (e.g., Sunbright® ME-100CS, Sunbright® ME-100AS, Sunbright® ME-100GS, Sunbright® ME-100HS, NOF), a 20 kDa linear PEG-aldehyde (e.g., Sunbright® ME-200AL, NOF), a 20 kDa linear PEG-NHS ester (e.g., Sunbright® ME-200CS, Sunbright® ME-200AS, Sunbright® ME-200GS, Sunbright® ME-200HS, NOF), a 20 kDa 2-arm branched PEG-aldehyde the 20 kDA PEG-aldehyde comprising two 10 kDA linear PEG molecules (e.g., Sunbright® GL2-200AL3, NOF), a 20 kDa 2-arm branched PEG-NHS ester the 20 kDA PEG-NHS ester comprising two 10 kDA linear PEG molecules (e.g., Sunbright® GL2-200TS, Sunbright® GL200GS2, NOF), a 40 kDa 2-arm branched PEG-aldehyde the 40 kDA PEG-aldehyde comprising two 20 kDA linear PEG molecules (e.g., Sunbright® GL2-400AL3), a 40 kDa 2-arm branched PEG-NHS ester the 40 kDA PEG-NHS ester comprising two 20 kDA linear PEG molecules (e.g., Sunbright® GL2-400AL3, Sunbright® GL2-400GS2, NOF), a linear 30 kDa PEG-aldehyde (e.g., Sunbright® ME-300AL) and a linear 30 kDa PEG-NHS ester.


In some embodiments, a linker can used to join the binding protein and the PEG molecule. Suitable linkers include “flexible linkers” which are generally of sufficient length to permit some movement between the modified polypeptide sequences and the linked components and molecules. The linker molecules are generally about 6-50 atoms long. The linker molecules may also be, for example, aryl acetylene, ethylene glycol oligomers containing 2-10 monomer units, diamines, diacids, amino acids, or combinations thereof. Suitable linkers can be readily selected and can be of any suitable length, such as 1 amino acid (e.g., Gly), 2, 3, 4, 5, 6, 7, 8, 9, 10, 10-20, 20-30, 30-50 or more than 50 amino acids.


Examples of flexible linkers include glycine polymers (G)n, glycine-alanine polymers, alanine-serine polymers, glycine-serine polymers (for example, (GmSo)n (SEQ ID NO: 431), (GSGGS)n (SEQ ID NO: 432), (GmSoGm)n (SEQ ID NO: 433), (GmSoGmSoGm)n (SEQ ID NO: 434), (GSGGSm)n (SEQ ID NO: 435), (GSGSmG)n (SEQ ID NO: 436) and (GGGSm)n (SEQ ID NO: 437), and combinations thereof, where m, n, and o are each independently selected from an integer of at least 1 to 20, e.g., 1-18, 216, 3-14, 4-12, 5-10, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10), and other flexible linkers. Glycine and glycine-serine polymers are relatively unstructured, and therefore may serve as a neutral tether between components. Examples of flexible linkers include, but are not limited to GGSG (SEQ ID NO:3), GGSGG (SEQ ID NO:18), GSGSG (SEQ ID NO:19), GSGGG (SEQ ID NO:20), GGGSG (SEQ ID NO:21), and GSSSG (SEQ ID NO:22). Other examples of flexible linkers are described in Section V.


Additional examples of flexible linkers include glycine polymers (G)n or glycine-serine polymers (e.g., (GS)n (SEQ ID NO: 438), (GSGGS)n (SEQ ID NO: 439), (GGGS)n (SEQ ID NO: 440) and (GGGGS)n (SEQ ID NO: 441), where n=1 to 50, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10-20, 20-30, 30-50). Exemplary flexible linkers include, but are not limited to GGGS (SEQ ID NO:23), GGGGS (SEQ ID NO:1), GGSG (SEQ ID NO:3), GGSGG (SEQ ID NO:18), GSGSG (SEQ ID NO:19), GSGGG (SEQ ID NO:20), GGGSG (SEQ ID NO:21), and GSSSG (SEQ ID NO:22). A multimer (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10-20, 20-30, or 30-50) of these linker sequences may be linked together to provide flexible linkers that may be used to conjugate two molecules. Alternative to a polypeptide linker, the linker can be a chemical linker, e.g., a PEG-aldehyde linker. In some embodiments, the binding protein is acetylated at the N-terminus by enzymatic reaction with N-terminal acetyltransferase and, for example, acetyl CoA. Alternatively, or in addition to N-terminal acetylation, the binding protein can be acetylated at one or more lysine residues, e.g., by enzymatic reaction with a lysine acetyltransferase. See, for example Choudhary et al. (2009) Science 325 (5942):834-840.


In other embodiments, the binding protein can be modified to include an additional polypeptide sequence that functions as an antigenic tag, such as a FLAG sequence. FLAG sequences are recognized by biotinylated, highly specific, anti-FLAG antibodies, as described herein (see e.g., Blanar et al. (1992) Science 256:1014 and LeClair, et al. (1992) PNAS-USA 89:8145). In some embodiments, the binding protein further comprises a C-terminal c-myc epitope tag.


In some embodiments, the binding protein is expressed as a fusion protein with an albumin molecule (e.g., human serum albumin) which is known in the art to facilitate extended exposure in vivo.


In some embodiment, the binding proteins (including fusion proteins of the binding proteins) of the present disclosure are expressed as a fusion protein with one or more transition metal chelating polypeptide sequences. The incorporation of such a transition metal chelating domain facilitates purification immobilized metal affinity chromatography (IMAC) as described in Smith, et al. U.S. Pat. No. 4,569,794 issued Feb. 11, 1986. Examples of transition metal chelating polypeptides useful in the practice of the present disclosure are described in Smith, et al. supra and Dobeli, et al. U.S. Pat. No. 5,320,663 issued May 10, 1995, the entire teachings of which are hereby incorporated by reference. Particular transition metal chelating polypeptides useful in the practice of the present disclosure are peptides comprising 3-6 contiguous histidine residues (SEQ ID NO: 443) such as a six-histidine peptide (His)6 (SEQ ID NO: 442) and are frequently referred to in the art as “His-tags.”


The foregoing fusion proteins may be readily produced by recombinant DNA methodology by techniques known in the art by constructing a recombinant vector comprising a nucleic acid sequence comprising a nucleic acid sequence encoding the binding protein in frame with a nucleic acid sequence encoding the fusion partner either at the N-terminus or C-terminus of the binding protein, the sequence optionally further comprising a nucleic acid sequence in frame encoding a linker or spacer polypeptide.


VII. Pharmaceutical Composition

The binding proteins of the present disclosure may be administered to a subject in a pharmaceutically acceptable dosage form. The preferred formulation depends on the intended mode of administration and therapeutic application. Pharmaceutical dosage forms of the binding proteins described herein comprise physiologically acceptable carriers that are inherently non-toxic and non-therapeutic. Examples of such carriers include ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts, or electrolytes such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, and PEG. Carriers for topical or gel-based forms of polypeptides include polysaccharides such as sodium carboxymethylcellulose or methylcellulose, polyvinylpyrrolidone, polyacrylates, polyoxyethylene-polyoxypropylene-block polymers, PEG, polymeric amino acids, amino acid copolymers, and lipid aggregates (such as oil droplets or liposomes).


The pharmaceutical compositions may also comprise pharmaceutically-acceptable, non-toxic carriers, excipients, stabilizers, or diluents, which are defined as vehicles commonly used to formulate pharmaceutical compositions for animal or human administration. The diluent is selected so as not to affect the biological activity of the combination. Acceptable carriers, excipients, or stabilizers are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyidimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG).


Formulations to be used for in vivo administration are typically sterile. Sterilization of the compositions of the present disclosure may readily accomplished by filtration through sterile filtration membranes.


Typically, compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared. The preparation also can be emulsified or encapsulated in liposomes or micro particles such as polylactide, polyglycolide, or copolymer for enhanced adjuvant effect, as discussed above (Langer, Science 249: 1527, 1990 and Hanes, Advanced Drug Delivery Reviews 28: 97-119, 1997). The agents of this disclosure can be administered in the form of a depot injection or implant preparation which can be formulated in such a manner as to permit a sustained or pulsatile release of the active ingredient. The pharmaceutical compositions are generally formulated as sterile, substantially isotonic and in full compliance with all Good Manufacturing Practice (GMP) regulations of the U.S. Food and Drug Administration.


Administration of a binding protein described herein may be achieved through any of a variety of art recognized methods including but not limited to the topical, intravascular injection (including intravenous or intraarterial infusion), intradermal injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, intracranial injection, intratumoral injection, intranodal injection, transdermal, transmucosal, iontophoretic delivery, intralymphatic injection (Senti and Kundig (2009) Current Opinions in Allergy and Clinical Immunology 9(6):537-543), intragastric infusion, intraprostatic injection, intravesical infusion (e.g., bladder), respiratory inhalers including nebulizers, intraocular injection, intraabdominal injection, intralesional injection, intraovarian injection, intracerebral infusion or injection, intracerebroventricular injection (ICVI), and the like. In some embodiments, administration includes the administration of the binding protein itself (e.g., parenteral), as well as the administration of a recombinant vector (e.g., viral or non-viral vector) to cause the in situ expression of the binding protein in the subject. Alternatively, a cell, such as a cell isolated from the subject, could also be recombinantly modified to express the binding protein of the present disclosure.


The dosage of the pharmaceutical compositions depends on factors including the route of administration, the disease to be treated, and physical characteristics, e.g., age, weight, general health, of the subject. Typically, the amount of a binding protein contained within a single dose may be an amount that effectively prevents, delays, or treats the disease without inducing significant toxicity. A pharmaceutical composition of the disclosure may include a dosage of a binding protein described herein ranging from 0.01 to 500 mg/kg (e.g., from 0.01 to 450 mg, from 0.01 to 400 mg, from 0.01 to 350 mg, from 0.01 to 300 mg, from 0.01 to 250 mg, from 0.01 to 200 mg, from 0.01 to 150 mg, from 0.01 to 100 mg, from 0.01 to 50 mg, from 0.01 to 10 mg, from 0.01 to 1 mg, from 0.1 to 500 mg/kg, from 1 to 500 mg/kg, from 5 to 500 mg/kg, from 10 to 500 mg/kg, from 50 to 500 mg/kg, from 100 to 500 mg/kg, from 150 to 500 mg/kg, from 200 to 500 mg/kg, from 250 to 500 mg/kg, from 300 to 500 mg/kg, from 350 to 500 mg/kg, from 400 to 500 mg/kg, or from 450 to 500 mg/kg) and, in a more specific embodiment, about 1 to about 100 mg/kg (e.g., about 1 to about 90 mg/kg, about 1 to about 80 mg/kg, about 1 to about 70 mg/kg, about 1 to about 60 mg/kg, about 1 to about 50 mg/kg, about 1 to about 40 mg/kg, about 1 to about 30 mg/kg, about 1 to about 20 mg/kg, about 1 to about 10 mg/kg, about 10 to about 100 mg/kg, about 20 to about 100 mg/kg, about 30 to about 100 mg/kg, about 40 to about 100 mg/kg, about 50 to about 100 mg/kg, about 60 to about 100 mg/kg, about 70 to about 100 mg/kg, about 80 to about 100 mg/kg, or about 90 to about 100 mg/kg). In some embodiments, a pharmaceutical composition of the disclosure may include a dosage of a binding protein described herein ranging from 0.01 to 20 mg/kg (e.g., from 0.01 to 15 mg/kg, from 0.01 to 10 mg/kg, from 0.01 to 8 mg/kg, from 0.01 to 6 mg/kg, from 0.01 to 4 mg/kg, from 0.01 to 2 mg/kg, from 0.01 to 1 mg/kg, from 0.01 to 0.1 mg/kg, from 0.01 to 0.05 mg/kg, from 0.05 to 20 mg/kg, from 0.1 to 20 mg/kg, from 1 to 20 mg/kg, from 2 to 20 mg/kg, from 4 to 20 mg/kg, from 6 to 20 mg/kg, from 8 to 20 mg/kg, from 10 to 20 mg/kg, from 15 to 20 mg/kg). The dosage may be adapted by the physician in accordance with conventional factors such as the extent of the disease and different parameters of the subject.


A pharmaceutical composition containing a binding protein described herein can be administered to a subject in need thereof, for example, one or more times (e.g., 1-10 times or more) daily, weekly, monthly, biannually, annually, or as medically necessary. Dosages may be provided in either a single or multiple dosage regimens. The timing between administrations may decrease as the medical condition improves or increase as the health of the patient declines. A course of therapy may be a single dose or in multiple doses over a period of time. In some embodiments, a single dose is used. In some embodiments, two or more split doses administered over a period of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 28, 30, 60, 90, 120 or 180 days are used. Each dose administered in such split dosing protocols may be the same in each administration or may be different. Multi-day dosing protocols over time periods may be provided by the skilled artisan (e.g., physician) monitoring the administration, taking into account the response of the subject to the treatment including adverse effects of the treatment and their modulation as discussed above.


VIII. Indications

Neoplastic Diseases


The present disclosure provides methods of use of binding proteins in the treatment of subjects suffering from a neoplastic disease by the administration of a therapeutically effective amount of a binding protein (or nucleic acid encoding a binding protein including recombinant vectors encoding binding proteins) as described herein.


The compositions and methods of the present disclosure are useful in the treatment of subject suffering from a neoplastic disease characterized by the presence neoplasms, including benign and malignant neoplasms, and neoplastic disease. Examples benign neoplasms amenable to treatment using the compositions and methods of the present disclosure include but are not limited to adenomas, fibromas, hemangiomas, and lipomas. Examples of pre-malignant neoplasms amenable to treatment using the compositions and methods of the present disclosure include but are not limited to hyperplasia, atypia, metaplasia, and dysplasia. Examples of malignant neoplasms amenable to treatment using the compositions and methods of the present disclosure include but are not limited to carcinomas (cancers arising from epithelial tissues such as the skin or tissues that line internal organs), leukemias, lymphomas, and sarcomas typically derived from bone fat, muscle, blood vessels or connective tissues). Also included in the term neoplasms are viral induced neoplasms such as warts and EBV induced disease (i.e., infectious mononucleosis), scar formation, hyperproliferative vascular disease including intimal smooth muscle cell hyperplasia, restenosis, and vascular occlusion and the like.


The term “neoplastic disease” includes cancers characterized by solid tumors and non-solid tumors including but not limited to breast cancers; sarcomas (including but not limited to osteosarcomas and angiosarcomas and fibrosarcomas), leukemias, lymphomas, genitourinary cancers (including but not limited to ovarian, urethral, bladder, and prostate cancers); gastrointestinal cancers (including but not limited to colon esophageal and stomach cancers); lung cancers; myelomas; pancreatic cancers; liver cancers; kidney cancers; endocrine cancers; skin cancers; and brain or central and peripheral nervous (CNS) system tumors, malignant or benign, including gliomas and neuroblastomas, astrocytomas, myelodysplastic disorders; cervical carcinoma-in-situ; intestinal polyposes; oral leukoplakias; histiocytoses, hyperprofroliferative scars including keloid scars, hemangiomas; hyperproliferative arterial stenosis, psoriasis, inflammatory arthritis; hyperkeratoses and papulosquamous eruptions including arthritis.


The term neoplastic disease includes carcinomas. The term “carcinoma” refers to malignancies of epithelial or endocrine tissues including respiratory system carcinomas, gastrointestinal system carcinomas, genitourinary system carcinomas, testicular carcinomas, breast carcinomas, prostatic carcinomas, endocrine system carcinomas, and melanomas. The term neoplastic disease includes adenocarcinomas. An “adenocarcinoma” refers to a carcinoma derived from glandular tissue or in which the tumor cells form recognizable glandular structures.


The term “hematopoietic neoplastic disorders” refers to neoplastic diseases involving hyperplastic/neoplastic cells of hematopoietic origin, e.g., arising from myeloid, lymphoid or erythroid lineages, or precursor cells thereof. Myeloid neoplasms include, but are not limited to, myeloproliferative neoplasms, myeloid and lymphoid disorders with eosinophilia, myeloproliferative/myelodysplastic neoplasms, myelodysplastic syndromes, acute myeloid leukemia and related precursor neoplasms, and acute leukemia of ambiguous lineage. Exemplary myeloid disorders amenable to treatment in accordance with the present disclosure include, but are not limited to, acute promyeloid leukemia (APML), acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML). Lymphoid neoplasms include, but are not limited to, precursor lymphoid neoplasms, mature B-cell neoplasms, mature T-cell neoplasms, Hodgkin's Lymphoma, and immunodeficiency-associated lymphoproliferative disorders. Exemplary lymphic disorders amenable to treatment in accordance with the present disclosure include, but are not limited to, acute lymphoblastic leukemia (ALL) which includes B-lineage ALL and T-lineage ALL, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia (HLL) and Waldenstrom's macroglobulinemia (WM).


In some instances, the hematopoietic neoplastic disorder arises from poorly differentiated acute leukemias (e.g., erythroblastic leukemia and acute megakaryoblastic leukemia). As used herein, the term “hematopoietic neoplastic disorders” refers malignant lymphomas including, but are not limited to, non-Hodgkins lymphoma and variants thereof, peripheral T cell lymphomas, adult T-cell leukemia/lymphoma (ATL), cutaneous T cell lymphoma (CTCL), large granular lymphocytic leukemia (LGF), Hodgkin's disease and Reed-Steinberg disease.


The determination of whether a subject is “suffering from a neoplastic disease” refers to a determination made by a physician with respect to a subject based on the available information accepted in the field for the identification of a disease, disorder or condition including but not limited to X-ray, CT-scans, conventional laboratory diagnostic tests (e.g., blood count, etc.), genomic data, protein expression data, immunohistochemistry, that the subject requires or will benefit from treatment.


The determination of efficacy of the methods of the present disclosure in the treatment of cancer is generally associated with the achievement of one or more art recognized parameters such as reduction in lesions particularly reduction of metastatic lesion, reduction in metastatsis, reduction in tumor volume, improvement in ECOG score, and the like. Determining response to treatment can be assessed through the measurement of biomarker that can provide reproducible information useful in any aspect of binding protein therapy, including the existence and extent of a subject's response to such therapy and the existence and extent of untoward effects caused by such therapy. The response to treatment may be characterized by improvements in conventional measures of clinical efficacy may be employed such as Complete Response (CR), Partial Response (PR), Stable Disease (SD) and with respect to target lesions, Complete Response (CR),” Incomplete Response/Stable Disease (SD) as defined by RECIST as well as immune-related Complete Response (irCR), immune-related Partial Response (irPR), and immune-related Stable Disease (irSD) as defined Immune-Related Response Criteria (irRC) are considered by those of skill in the art as evidencing efficacy in the treatment of neoplastic disease in mammalian (e.g., human) subjects.


Infectious Diseases


The present disclosure provides methods of use of binding proteins in the treatment of subjects suffering from an infectious disease by the administration of a therapeutically effective amount of a binding protein (or nucleic acid encoding an binding protein including recombinant vectors encoding binding proteins) as described herein.


In some embodiments the infection is a chronic infection, i.e., an infection that is not cleared by the host immune system within a period of up to 1 week, 2 weeks, etc. In some cases, chronic infections involve integration of pathogen genetic elements into the host genome, e.g., retroviruses, lentiviruses, Hepatitis B virus, etc. In other cases, chronic infections, for example certain intracellular bacteria or protozoan pathogens, result from a pathogen cell residing within a host cell. Additionally, in some embodiments, the infection is in a latent stage, as with herpes viruses or human papilloma viruses.


Viral pathogens of interest include without limitation, retroviral, hepadna, lentiviral, etc. pathogens, e.g., HIV-1; HIV-2, HTLV, FIV, SIV, etc., Hepatitis A, B, C, D, E virus, etc. In some embodiments, the methods of the invention involve diagnosis of a patient as suffering from an infection; or selection of a patient previously diagnosed as suffering from an infection; treating the patient with a regimen of variant type III interferon therapy, optionally in combination with an additional therapy; and monitoring the patient for efficacy of treatment. Monitoring may measure clinical indicia of infection, e.g., fever, white blood cell count, etc., and/or direct monitoring for presence of the pathogen. Treatment may be combined with other active agents. Cytokines may also be included, e.g., interferon γ, tumor necrosis factor α, interleukin 12, etc. Antiviral agents, e.g., acyclovir, gancyclovir, etc., may also be used in treatment. Subjects suspected of having an infection, including an HCV infection, can be screened prior to therapy. Further, subjects receiving therapy may be tested in order to assay the activity and efficacy of the treatment. Significant improvements in one or more parameters is indicative of efficacy. It is well within the skill of the ordinary healthcare worker (e.g., clinician) to adjust dosage regimen and dose amounts to provide for optimal benefit to the patient according to a variety of factors (e.g., patient-dependent factors such as the severity of the disease and the like, the compound administered, and the like). For example, HCV infection in an individual can be detected and/or monitored by the presence of HCV RNA in blood, and/or having anti-HCV antibody in their serum. Other clinical signs and symptoms that can be useful in diagnosis and/or monitoring of therapy include assessment of liver function and assessment of liver fibrosis (e.g., which may accompany chronic viral infection).


Subjects for whom the therapy described herein can be administered include naïve individuals (e.g., individuals who are diagnosed with an infection, but who have not been previously treated) and individuals who have failed prior treatment (“treatment failure” patients). For HCV therapy, previous treatment includes, for example, treatment with IFN-α monotherapy (e.g., IFN-α and/or PEGylated IFN-α) or IFN-α combination therapy, where the combination therapy may include administration of IFN-α and an antiviral agent such as ribavirin. Treatment failure patients include non-responders (i.e., individuals in whom the HCV titer was not significantly or sufficiently reduced by a previous treatment for HCV to provide a clinically significant response, e.g., a previous IFN-α monotherapy, a previous IFN-α and ribavirin combination therapy, or a previous pegylated IFN-α and ribavirin combination therapy); and relapsers (i.e., individuals who were previously treated for HCV (e.g., who received a previous IFN-α monotherapy, a previous IFN-α and ribavirin combination therapy, or a previous pegylated IFN-α and ribavirin combination therapy), in whom the HCV titer decreased to provide a clinically significant response, but in whom the decreased HCV titer was not maintained due to a subsequent increase in HCV titer).


Other subjects for whom the therapy disclosed herein is of interest include subject who are“difficult to treat” subjects due to the nature of the HCV infection. “Difficult to treat” subjects are those who 1) have high-titer HCV infection, which is normally defined as an HCV titer of at least about 105, at least about 5×105, or at least about 106 or more genome copies of HCV per milliliter of serum, 2) are infected with HCV of a genotype that is recognized in the field as being associated with treatment failure (e.g., HCV genotype 1, subtypes thereof (e.g., 1a, 1b, etc.), and quasispecies thereof or 3) both.


In other embodiment methods are provided for treating or reducing primary or metastatic cancer in a regimen comprising contacting a subject in need of treatment with a therapeutically effective amount or an effective dose of IFN λ synthekines or IFN λ variant polypeptides. Effective doses for the treatment of cancer vary depending upon many different factors, including means of administration, target site, physiological state of the patient, whether the patient is human or an animal, other medications administered, and whether treatment is prophylactic or therapeutic. Usually, the patient is a human, but nonhuman mammals may also be treated, e.g., companion animals such as dogs, cats, horses, etc., laboratory mammals such as rabbits, mice, rats, etc., and the like. Treatment dosages can be titrated to optimize safety and efficacy.


In prophylactic applications, a relatively low dosage may be administered at relatively infrequent intervals over a long period of time. Some patients continue to receive treatment for the rest of their lives. In other therapeutic applications, a relatively high dosage at relatively short intervals is sometimes required until progression of the disease is reduced or terminated, and preferably until the patient shows partial or complete amelioration of symptoms of disease. Thereafter, the patent can be administered a prophylactic regime.


In still other embodiments, methods of the present invention include treating, reducing or preventing tumor growth, tumor metastasis or tumor invasion of cancers including carcinomas, hematologic cancers, melanomas, sarcomas, gliomas, particularly cancers of epithelial origin that express IFN λR1 and IFNAR1 or IFNAR2, or IL-10Rβ and IFNAR1 or IFNAR2. In some embodiments a cancer is assessed for responsiveness to an IFN λ synthekine by determining whether the cancer expresses the cognate receptors that the synthekine activates, e.g., determining the expression of IFN λR1, and IFNAR1 or IFNAR2. Tissues known to express IFN λR1 include, for example, lung, heart, liver (hepatocytes), prostate, keratinocytes and melanocytes. Cancers responsive to IFN λ and IFN λ synthekines may include, without limitation, melanoma, fibrosarcoma, hepatocellular carcinoma, bladder carcinoma, Burkitt's lymphoma, colorectal carcinoma, glioblastoma, non-small cell lung cancer, esophageal carcinoma, and osteosarcoma, among others.


For prophylactic applications, pharmaceutical compositions or medicaments are administered to a patient susceptible to, or otherwise at risk of disease in an amount sufficient to eliminate or reduce the risk, lessen the severity, or delay the outset of the disease, including biochemical, histologic and/or behavioral symptoms of the disease, its complications and intermediate pathological phenotypes presenting during development of the disease.


EXAMPLES
Example 1—VhH Generation

Camels were acclimated at research facility for at least 7 days before immunization. Antigen was diluted with 1×PBS (antigen total about 1 mg). The quality of the antigen was assessed by SDS-PAGE to ensure purity (e.g., >80%). For the first time, 10 mL CFA (then followed 6 times using IFA) was added into mortar, then 10 mL antigen in 1×PBS was slowly added into the mortar with the pestle grinding. The antigen and CFA/IFA were ground until the component showed milky white color and appeared hard to disperse. Camels were injected with antigen emulsified in CFA subcutaneously at at least six sites on the body, injecting about 2 mL at each site (total of 10 mL per camel). A stronger immune response was generated by injecting more sites and in larger volumes. The immunization was conducted every week (7 days), for 7 times. The needle was inserted into the subcutaneous space for 10 to 15 seconds after each injection to avoid leakage of the emulsion. Alternatively, a light pull on the syringe plunger also prevented leakage. The blood sample was collected three days later after 7th immunization.


After immunization, the library was constructed. Briefly, RNA was extracted from blood and transcribed to cDNA. The VHH regions were obtained via two-step PCR, which fragment about 400 bp. The PCR outcomes and the vector of pMECS phagemid were digested with Pst I and Not I, subsequently, ligated to pMECS/Nb recombinant. After ligation, the products were transformed into Escherichia coli (E. coli) TG1 cells by electroporation. Then, the transformants were enriched in growth medium and planted on plates. Finally, the library size was estimated by counting the number of colonies.


Library biopanning was conducted to screen candidates against the antigens after library construction. Phage display technology was applied in this procedure. Positive colonies were identified by PE-ELISA.


Example 2. Generation of Anti-hIL10R VHHs

Camels were immunized with the extracellular domains of the human IL10Rα (amino acids 22-235, UniProtKB Q13651, hIL-10Rαecd) and IL10Rβ (amino acids 20-220, UniProtKB Q08334, hIL-10βecd) weekly for seven weeks and PBMCs harvested on day 52. Phage display libraries were constructed and biopanning conducted as described in Example 1 above. 50 VHH sequences were obtained after selection on hIL10-R1 and 47 VHH sequences were obtained after selection on hIL10-R2. Sequences were clonotyped using germline assignment and CDR3 sequence similarity.


Example 3. Synthesis of DNA Encoding Synthekines

Seven unique anti-hIL-10Rαecd sequences (SEQ ID Nos: 44-50) and seven unique anti-hIL-10Rβecd sequences (SEQ ID Nos: 51-57) were selected from each cohort and DNA was synthesized consisting of one IL-10Rα VHH encoding DNA and one IL-10Rβ VHH encoding DNA separated by a linker sequence by GGGS (SEQ ID NO:23) encoding DNA. DNA was for each possible VHH combination and in both orientations for a total of 98 7×7×2=98 VHH dimers. An Ala-Ser (“AS”) linker followed by His-6 (SEQ ID NO: 442) DNA (ASH6, SEQ ID NO: 430) was added at the 3′ end of each DNA construct. The codon optimized DNA sequences encoding these constructs are provided as SEQ ID Nos: 290-237 and the orientation of components thereof are described in Table 2 of the specification above.


Example 4. Recombinant Production and Purification

Codon optimized DNA inserts (SEQ ID Nos: 290-237) and cloned into modified pcDNA3.4 (Genscript) for small scale expression in HEK293 cells in 24 well plates. Supernatants The cells The IL2R binding proteins were purified in substantial accordance with the following procedure. Using a Hamilton Star automated system, 96×4 ml of supernatants in 4×24-well blocks were re-arrayed into 4×96-well, 1 mL blocks. PhyNexus micropipette tips (Biotage, San Jose CA) holding 80 uL of Ni-Excel IMAC resin (Cytiva) are equilibrated wash buffer: PBS pH 7.4, 30 mM imidazole. PhyNexus tips were dipped and cycled through 14 cycles of 1 mL pipetting across all 4×96-well blocks. PhyNexus tips were washed in 2×1 mL blocks holding wash buffer. PhyNexus tips were eluted in 3×0.36 mL blocks holding elution buffer: PBS pH 7.4, 400 mM Imidazole. PhyNexus tips were regenerated in 3×1 mL blocks of 0.5 M sodium hydroxide.


The purified protein eluates were quantified using a Biacore® T200 as in substantial accordance with the following procedure. 10 uL of the first 96×0.36 mL eluates were transferred to a Biacore® 96-well microplate and diluted to 60 uL in HBS-EP+ buffer (10 mM Hepes pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.05% Tween 20). Each of the 96 samples was injected on a CM5 series S chip previously functionalized with anti-histidine capture antibody (Cytiva): injection is performed for 18 seconds at 5 uL/min. Capture levels were recorded 60 seconds after buffer wash. A standard curve of known VHH concentrations (270, 90, 30, 10, 3.3, 1.1 μg/mL) was acquired in each of the 4 Biacore chip flow cells to eliminate cell-to-cell surface variability. The 96 captures were interpolated against the standard curve using a non-linear model including specific and unspecific, one-site binding. Concentrations in the first elution block varied from 12 to 452 μg/mL corresponding to a 4-149 μg. SDS-PAGE analysis of 5 randomly picked samples was performed to ensure molecular weight of eluates corresponded to expected values (˜30 KDa).


The concentration of the proteins was normalized using the Hamilton Star automated system in substantial accordance with the following procedure. Concentration values are imported in an Excel spreadsheet where pipetting volumes were calculated to perform dilution to 50 μg/mL in 0.22 mL. The spreadsheet was imported in a Hamilton Star method dedicated to performing dilution pipetting using the first elution block and elution buffer as diluent. The final, normalized plate was sterile filtered using 0.22 μm filter plates (Corning) and the material used for the following in vitro assays.


Example 5. IL10 Activity Assay

HEK-Blue™ IL-10 reporter cell line (Invivogen, San Diego CA) was used for screening the IL10R1/R2 VHHs. HEK-Blue™ IL-10 cells were generated by stable transfection of the human embryonic kidney HEK293 cell line with the genes encoding hIL-10Rα and R chains, human STAT3, and the STAT3-inducible SEAP (secreted embryonic alkaline phosphatase) reporter. Binding of IL-10 to its receptor on the surface of HEK-Blue™ IL-10 cells triggers JAK1/STAT3 signaling and the subsequent production of SEAP. The signal was then detected by quantifying SEAP activity in the cell culture supernatant using a QUANTI-Blue™ development solution (Invivogen, San Diego CA) and the absorbance values were measured spectrophotometrically at 630 nm. Because STAT3 is also implicated in the signaling of cytokines such as IFN-α/β and IL-6, HEK-Blue™ IL-10 cells are knockout for the expression of hIFNAR2 and hIL-6R.


Example 6. Screening of SEQ ID NOs: 192-289

To screen the IL10R1/R2 VHHs, HEK-Blue™ IL-10 cells were seeded in a 96-well plate at 50,000 cells per well and treated with either 25 nM or 100 nM protein (in triplicates) for 24 hours. Recombinant Animal-Free Human IL-10 (Shenandoah Biotechnology, Inc. Warwick, PA Catalog No. 100-83AF) was used as a positive control and unstimulated cells were used as a negative control. 24 hours post treatment, 20 μl of the cell supernatant was transferred to a flat-bottom 96 well plate and the assay was developed by adding 180 μl of the QUANTI-Blue™ (Invivogen) for 2 hours. The absorbance values were measured at 630 nm on the Envision® (PerkinElmer, Waltham MA) multilabel plate reader. The results of this screening are presented in Table 3 of the specification.












INFORMAL SEQUENCE LISTING









SEQ




ID




NO
Notes
Amino Acid or DNA Sequence












1
linker
GGGGS





2
linker
GGGGGS





3
linker
GGSG





4
linker
SGGG





5
linker
GSGS





6
linker
GSGSGS





7
linker
GSGSGSGSGS





8
linker
GSGSGSGSGSGS





9
linker
GGSGGS





10
linker
GGSGGSGGS





11
linker
GGSGGSGGSGGS





12
linker
GGSGGGSG





13
linker
GGSGGGSGGGSG





14
linker
GGSGGGSGGGSGGGSG





15
linker
GGSGGGSGGGSGGGSGGGSG





16
linker
GGGGSGGGGS





17
linker
GGGGSGGGGSGGGGS





18
linker
GGSGG





19
linker
GSGSG





20
linker
GSGGG





21
linker
GGGSG





22
linker
GSSSG





23
linker
GGGS





24
Anti-gp130 VHH
VAAIWPGGGLTVYADSVKGRFTISRDHAKNTLYLQ




MNNLKPEDTAMYYCAAQVQLQESGGGSVQAGGSLR




LSCTASGAIASGYIDSRWCMAWFRQAPGKEREGGS




PRMCPSLEFGFDYWGQGTQVTVSS





25
Anti-gp130 VHH
SDGTTRYADSVKGRFTISQGTAKNTVYLQMNSLQP




EDTAMYYCKTVCVVGSRQVQLQESGGGSVQAGGSL




RLSCVASASTYCTYDMHWYRQAPGKGREFVSAIDW




SDYWGQGTQVTVSS





26
Anti-gp130 VHH
DGTTGYADSVKGRFTISKDKAKDTVYLQMNSLKPE




DTGMYSCKTKDGTIATMQVQLQESGGGSVQAGGSL




RLSCTAPGFTSNSCGMDWYRQAPGKEREFVSSIST




ELCDFGYWGQGTQVTVSS





27
Anti-gp130 VHH
TGDGRTYYADSVKGRFTISRDNAKNTVDLQMSSLK




PEDTAMYYCAARAAPLYQVQLQESGGGSVQAGGSL




RLSCAASGYPYSNGYMGWFRQAPGKEREGVATIYS




SGSPLTRARYNVWGQGTQVTVSS





28
Anti-gp130 VHH
SDGSTYYADSVKGRFTITRDNAKNTVYLQMNSLKP




EDTAIYYCSANCYRRLRNQVQLQESGGGSVQAGGS




LTLSCAASEYAYSTCNMGWYRQAPGKERELVSAFI




YWGQGTQVTVSS





29
Anti-gp130 VHH
SGANAFYADSVKGRFTISRDNAKNTLYLQMNSLKP




EDTATYYCKRGHACAGYQVQLQESGGGLVQPGGSL




RLSCTASGLTFDDSVMGWFRQAPGKGREAVSCISS




YPIPYDDYWGQGTQVTVSS





30
Anti-I12Rb/Anti-
QVQLQESGGGSVQAGGSLRLSCAASGYEYCRIHMT



CD122 VHH
WYRQGPGKEREFVSSIGSDGRKTYANSVTGRFTIS




RDNANHTVYLQMNSLSPEDTAMYYCKTEYLYGLGC




PDGSAYWGQGTQVTVSS





31
Anti-I12Rb/Anti-
QVQLQESGGGSVQAGGSLRLSCAASEYTASRYCMA



CD 122 VHH
WFRQAPGKEREGVAAIHPGGGTTYYADSVKGRFSI




SQDSADNTLYLQMNSLKPEDTAMYYCAAGSLWVPF




GDRCAANYWGQGTQVTVSS





32
Anti-I12Rb/Anti-
QVQLQESGGGLVQPGGSLRLSCVASGFTFSNYWIF



CD122 VHH
WVRQAAGKGLEWLSTSNTGGDTTKYADSVKGRFTI




SRDSAKNTEYLQMNSLKPEDTAVYYCETGRCARSG




GYQGTQVTVSS





33
Anti-I12Rb/Anti-
QVQLQESGGGSVQVGGSLRLSCATSGDTKSIRCMG



CD122 VHH
WFRQTPGKEREGIAAIDREGFATYADSVYDRFTIA




QDNAQNTLYLEMNALKPEDTAMYYCAAQNMCRVVR




GAMTGVDYWGKGTQVTVSS





34
Anti-I12Rb/Anti-
QVQLQESGGGSVQVGGSLKLSCAASGYTYSSYYCM



CD122 VHH
GWFRQAPGKEREGVAAIDSDGSTSYADSVKGRFTI




SQDDAKNTLYLQMNSLKPEDTAMYYCAASYEVVDC




YPSGYGQDYWGKGTQVTVSS





35
Anti-I12Rb/Anti-
QVQLQESGGGSVQAGGSLRLSCVGSGYTYDTSDMS



CD122 VHH
WYRQAPGKEREFVSDIDSGDWAAYADAVKGRFTIS




RDNAKKTVYLQMNSLEPEDTAMYYCKASYWKWGKL




NNFWGPGTQVTVSS





36
Anti-I12Rb/Anti-
QVQLQESGGGLVQPGGSLKLSCAASGFRFSNYGMS



CD122 VHH
WVRQAPGEGLEWVSYINGDGSRTHYADSVKGRFTI




SRDNAKNTLYLQLNSLKTEDTAMYYCEKGLSRDGW




SLSAASRGQGTQVTVSS





37
Anti-I12Rb/Anti-
QVQLQESGGGSVQTGGSLRLSCAVSGYTTYSFNYM



CD122 VHH
GWFRQAPGKEREGVAVIYTGGGSTLYADSVKGRFT




ISQDNAKNTVYLQMNSLKPEDTAMYYCAADDQRFA




SPLYAYFGYWGQGTQVTVSS





38
Anti- IL2Rgamma/
DGGSTAYAASVEGRFTISRDNAKSTLYLQLNSLKT



Anti-CD132
EDTAMYYCTKGYGDGTPQVQLQESGGGLVQPGGSL




RLSCTASGFSFSSYPMTWARQAPGKGLEWVSTIAS




APGQGTQVTVSS





39
Anti- IL2Rgamma/
GGGTFYADSVKGRFTISRDNAKNTLYLQLNSLKAE



Anti-CD132
DTAMYYCATNRLHYYSDQVQLQESGGGLVQPGGSL




RLSCAASGFTFSSAHMSWVRQAPGKGREWIASIYS




DDSLRGQGTQVTVSS





40
Anti- IL2Rgamma/
DGSTYYADSVKGRFTISQDNAKNTVYLQMDSVKPE



Anti-CD132
DTAVYYCAADFMIAIQAQVQLQESGGGSVQAGGSL




RLSCTASGFTFDDREMNWYRQAPGNECELVSTISS




PGAGCWGQGTQVTVSS





41
Anti- IL2Rgamma/
RSIYYADSVKGRFTISQDNAKNTLYLQMNSLKPED



Anti-CD132
IAMYSCAAGGYSWSAGCEQVQLQESGGGSVQAGGS




LRLSCVASGYTSCMGWFRQAPGKEREAVATIYTRG




FNYWGQGTQVTVSS





42
Anti- IL2Rgamma/
DGSTYYADSVKGRFTISQDNAKNTVYLQMNSLKPE



Anti-CD132
DTAVYYCAAEPRGYYSNQVQLQESGGGSVQAGGSL




RLSCTASGFTFDDSDMGWYRQAPGNECELVSTISS




YGGRRECNYWGQGTQVTVSS





43
Anti- IL2Rgamma/
GGSTYYADSVKGRFTISQDNAKNTLYLQMNSLKPE



Anti-CD132
DTAMYYCAAAWVACLEQVQLQESGGGSVQAGGSLR




LSCVASGYTFSSYCMGWFRQAPGKEREGVAALGFG




GSWYDLARYKHWGQGTQVTVSS





44
Anti-IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASRYLYSIDYMA




WFRQSPGKEREPVAVIYTASGATFYPDSVKGRFTI




SQDNAKMTVYLQMNSLKSEDTAMYYCAAVRKTDSY




LFDAQSFTYWGQGTQVTVSS





45
Anti-IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASRFTYSSYCMG




WFRQAPGKEREGVASIDSDGSTSYTDSVKGRFTIS




KDNAKNTLYLQMNSLKPEDTAMYYCALDLMSTVVP




GFCGFLLSAGMDYWGKGTQVTVSS





46
Anti-IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASGYTYSMYCMG




WFRQAPGKEREGVAQINSDGSTSYADSVKGRFTIS




KDNAKNTLYLQMNSLKPEDTAMYYCAADSRVYGGS




WYERLCGPYTYEYNYWGQGTQVTVSS





47
Anti-IL10Rα
QVQLQESGGGSVQAGGSLRLSCAVSGYAYSTYCMG




WFRQAPGKEREGVAAIDSGGSTSYADSVKGRFTIS




KDNAKNTLYLRMNSLKPEDTAMYYCAAVPPPPDGG




SCLFLGPEIKVSKADFRYWGQGTQVTVSS





48
Anti-IL10Rα
QVQLQESGGGSVQAGGSLRLSCTVSGYTYSSNCMG




WFRQAPGKEREGVATIYTGGGNTYYADSVKGRFTI




SQDNAKNTVYLQMNNLKPEDTAMYYCAAEPLSRVY




GGSCPTPTFDYWGQGTQVTVSS





49
Anti-IL10Rα
QVQLQESGGGSVQAGGSLRLSCGASGYTYSSYCMG




WFRQVPGKEREGVAVIDSDGSTSYADSVKGRFTIS




KDNGKNTLYLQMNSLKPEDTAMYYCAADLGHYRPP




CGVLYLGMDYWGKGTQVTVSS





50
Anti-IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASGYSNCSYDMT




WYRQAPGKEREFVSAIHSDGSTRYADSVKGRFFIS




QDNAKNTVYLQMNSLKPEDTAMYYCKTDPLHCRAH




GGSWYSVRANYWGQGTQVTVSS





51
Anti-IL10Rβ
QVQLQESGGGSVQAGGSLRLSCAASGYTYS




SGCMGWFRQAPGKEREAVAAINSDGSTSYA




DSVKGRFTISKDNAKNTLYLQMNSLKPEDT




AMYYCAAEPYCSGGYPRWSVAEFGYWGQGT




QVTVSS





52
Anti-IL10Rβ
QVQLQESGGGSVQAGGSLRLSCAASGYTYS




SYCMGWFRQAPGKEREGVAHIDSDGSTSYA




DSVKGRFTISKDNAKNTLYLQMNSLKPEDT




AMYYCAADPIPGPGYCDGGPNKYWGQGTQV




TVSS





53
Anti-IL10Rβ
QVQLQESGGGSVQAGGSLRLSCAASRYTYN




SYCMGWFRQAPGKEREGVATIDSDGMTRYA




DSVKGRFTISKDNAKNTLYLQMNSLKPEDT




AMYYCAADADCTIAAMTTNPLGQGTQVTVS




S





54
Anti-IL10Rβ
QVQLQESGGGSVQAGGSLRLSCTVSRYTAS




VNYMGWFRQAPGKEREGVATIFTGAGTTYY




ANSVKGRFTISRDNAKNTAYLQMNSLKPED




TAIYYCAVDFRGGLLYRPAYEYTYRGQGTQ




VTVSS





55
Anti-IL10Rβ
QVQLQESGGGSVEAGGSLRLSCAASGYTHS




SYCMGWFRQAPGKEREGVAAIDVDGSTTYA




DSVKGRFTISKDNAKNTLYLQMNSLKPEDT




GMYYCAAEFADCSSNYFLPPGAVRYWGQGT




QVTVSS





56
Anti-IL10Rβ
QVQLQESGGGSVQAGGSLRLSCAASGYSYS




SYCMGWFRQAPGKEREGVATIDSDGMTRYA




DSVKGRFTISKDNAKNTLYLQMNSLKPEDT




AMYYCAAPLYDCDSGAVGRNPPYWGQGTQV




TVSS





57
Anti-IL10Rβ
QVQLQESGGGSVQTGGSLRLSCAASGYTYL




RGCMGWFRQAPGKEREGVAVMDVVGDRRSY




IDSVKGRFTISRDNAANSVYLQMDNLKPED




TAMYYCTAGPNCVGWRSGLDYWGQGTQVTV




SS





58
Anti-IL12Rβ2
QVQLQESGGGSVQAGGSLRLSCAASGFTVT




RYCMGWLRQAPGKQREGVAIIERDGRTGYA




DSVKGRFTISKDNAKNTLYLQMNSLKPEDT




AMYYCGAIEGSCRPDFGYRGQGTQVTVSS





59
Anti-IL12Rβ2
QVQLQESGGGSVQAGGSLRLSCTASGLTFD




DVEMAWYRQGPGDDYDLVSSINTDSRVYYV




DSVKDRFTISRDNAKNTLYLQMNNLKPEDT




AVYYCAADPWGGDLRGYPNYWGQGTQVTVS




S





60
Anti-IL12Rβ2
QVQLQESGGGLVQAGGSLRLSCQASGYTYG




LFCMGWFRQVSGKKREGVAVVDSPGGRHVA




DSLKGRFTISKDNANNILYLDMTNLKSEDT




ATYYCAADPEKYCFLFSDAGYQYWGQGTQV




TVSS





61
Anti-IL12Rβ2
QVQLQESGGGSVQAGGSLRLSCAASGVTYS




RYCMGWFRQAPGLERERVAHIYSRGIITYY




TDSVKGRFTISQDSAKKTVYLQMNSLKPED




TAMYYCAATRETYGGSGDCGYESVYNYWAQ




GTQVTVSS





62
Anti-IL12Rβ2
QVQLQESGGGLVQPGGSLKLSCAASGFTFS




TYAMSWVRQAPGKEPEWISRISSGGGNTYY




ADAVKGRFAISRDNAKNTLYLQLNSLKTED




TAIYVCTMDDYYGGSWHPISRGHGTQVTVS




S





63
Anti-IL12Rβ2
QVQLQESGGGSVQAGGSLRLSCSASGFTVD




DFAMGWYRQAPGNECELVSTISSGGSTYYA




DSVKGRFTISQDSAKNTVYLQMNSLKPEDT




AVYYCAPSSVGCPLGYWGQGTQVTVSS





64
Anti-IL23R
QVQLQESGGGSVQAGGSLRLSCAASGFTVT




RYCMGWLRQAPGKQREGVAIIERDGRTGYA




DSVKGRFTISKDNAKNTLYLQMNSLKPEDT




AMYYCGAIEGSCRPDFGYRGQGTQVTVSS





65
Anti-IL23R
QVQLQESGGGSVQAGGSLRLSCTASGLTFD




DVEMAWYRQGPGDDYDLVSSINTDSRVYYV




DSVKDRFTISRDNAKNTLYLQMNNLKPEDT




AVYYCAADPWGGDLRGYPNYWGQGTQVTVS




S





66
Anti-IL23R
QVQLQESGGGLVQAGGSLRLSCQASGYTYG




LFCMGWFRQVSGKKREGVAVVDSPGGRHVA




DSLKGRFTISKDNANNILYLDMTNLKSEDT




ATYYCAADPEKYCFLFSDAGYQYWGQGTQV




TVSS





67
Anti-IL23R
QVQLQESGGGSVQAGGSLRLSCAASGVTYS




RYCMGWFRQAPGLERERVAHIYSRGIITYY




TDSVKGRFTISQDSAKKTVYLQMNSLKPED




TAMYYCAATRETYGGSGDCGYESVYNYWAQ




GTQVTVSS





68
Anti-IL23R
QVQLQESGGGLVQPGGSLKLSCAASGFTFS




TYAMSWVRQAPGKEPEWISRISSGGGNTYY




ADAVKGRFAISRDNAKNTLYLQLNSLKTED




TAIYVCTMDDYYGGSWHPISRGHGTQVTVS




S





69
Anti-IL23R
QVQLQESGGGSVQAGGSLRLSCSASGFTVD




DFAMGWYRQAPGNECELVSTISSGGSTYYA




DSVKGRFTISQDSAKNTVYLQMNSLKPEDT




AVYYCAPSSVGCPLGYWGQGTQVTVSS





70
Anti-IL27Ralpha
VAYGITSYADSVKGRFTISRDNTKNTLYLQ




LNSLKTEDTAIYYCVKHSGTTIPRQVQLQE




SGGGLVQPGESLRLSCTASGFTFSNYAMSW




VRQAPGKGLEWVSGINGFISYTKRGQGTQV




TVSS





71
Anti-IL27Ralpha
GGDTTLYADSVKGRFTSSRDNAKNTLYLQL




NSLKTEDTAIYYCAKRIDCNSGYQVQLQES




GGGSVQVGGSLRLSCAASGFTFSSYPMSWV




RQAPGKGLEWISTISACYRRNYWGQGTQVT




VSS





72
Anti-IL27Ralpha
WVGGMLYFADSVKGRFTVSQDQAKNTLYLQ




MNSLKPEDTAMYYCAAESVSSQVQLQESGG




GSVQAGGSLRLSCRASGSTYSNYCLGWFRQ




ITGKEREGVAVINFSCGGWLTRPDRVPYWG




QGTQVTVSS





73
Anti-IL27Ralpha
GTGSTSYAASVKGRFTASQDKGKNIAYLQM




NSLKPEDTAMYYCKASCVRGRGQVQLQESG




GGSVQAGGSLRLSCVASGYVSCDYFLPSWY




RQAPGKEREFVSIIDISEYWGQGTQVTVSS





74
Anti-IL27Ralpha
IYTVGGSIFYADSVRGRFTISQDATKNMFY




LQMNTLKPEDTAMYYCAAASGRLQVQLQES




GGGSVQSGGSLRLSCAASGFTYSTSNSWMA




WFRQAPGKEREGVAARGKWFWPYEYNYWGQ




GTQVTVSS





75
Anti-IL27Ralpha
GGASTYYTDSVKGRFTISRDNAKNMLYLQL




NSLKTEDTAMYYCAKGGSGYGDQVQLQESG




GGLVQPGGSLRLSCAASGFTFSHSGMSWVR




QAPGKGLEWVSTINSASRMTSPGSQGTQVT




VSS





76
Anti-IL28Ralpha
DGSTSYADSVKGRFTISKDNAKNTLYLQMN




SLRPEDTAMYYCAADGEYNDYVQVQLQESG




GGSVQSGGSLRLSCAASGFTYSSYCMGWFR




QAPGKEREGVAAIDSCWSTGLRYRGQGTQV




TVSS





77
Anti-IL28Ralpha
RDGSTFYPDSVKGRFTISRDNAKNTLYLQL




NSLKTEDTAMYYCAKEEPGSSSRQVQLQES




GGGLVQPGGSLRLSCVASGFTFSDYAMSWV




RQAPGMGLERVSAIGGQGTQVTVSS





78
Anti-IL28Ralpha
SDGTTSYADSVKERFTISKDNAKNILYLQM




NSLKPEDTARYYCAATALLLGRGQVQLQES




GGGSVQAGGSLRLSCAVSRYTISRSDCMGW




FRQAPGKEREGVARIGSACHKEVSVFSWWG




QGTQVTVSS





79
Anti-IL28Ralpha
SGGDDTFYTDSVKGRFTISRDNAKNTLYLQ




MNSLKTEDTAMYYCAMGASGMIQVQLQESG




GGLVQPGGSLRLSCAASGFTFSNYGMSWVR




QAPGKGLEWVSGINPRGQGTQITVSS





80
Anti-IL28Ralpha
TSGGAVVYADSVKGRFTISQDDAKNTMYLQ




MNSLKPEDTAMYYCAASRAPAPQVQLQESG




GGSVQLGGSLRLSCLVSGSTDNIKYMGWFR




QAPGKEREGVAAVYPRLLLQRALVEYWGQG




TQVTVSS





81
Anti-IL28Ralpha
QVQLQESGGGLVQPGGSLRLSCAASGFTFS




NATMSWVRQAPGKEIEWVSAISNSRGTKYY




AAFVKGRFTISRDNAKNTLYLQLNNLKTED




TAMYYCTKDWKTSYSDYDLSDGQGTQVTVS




S





82
Anti-IL28Ralpha
RDGKTYYGDSVKGRFAISRDNAKNTLYLQM




NSLKPEDTAMYYCAAGPPPCITSQVQLQES




GGGSVQAGGSLRLSCASSGYISSSYCMAWF




RQAPGKEREGAAGVTMPAGGDYGYRYWGQG




TQVTVSS





83
Anti-
QVQLQESGGALVQPGGSLRLSCAASGFTFS



mouseGp130
YYAMKWVRQAPGKGLEWVSSISGGGGATYY




ADSVKGRFTISRDNTNDTLYLQMNSLKTED




TAVYYCAAQNLDYRGQGTQVTVSS





84
Anti-
QVQLQESGGGLVQPGGSLRLSCTASGFTFN



mouseGp130
SAHLKWERQPPGKGLEWVSFITNGGASTGY




ADSVKGRFTISRDDAKNTLYLQMNNLKTED




TAVYYCATGGLRGQGTQVTVSS





85
Anti-
QVQLQESGGGLVQPGGSLRLSCAASGFTLS



mouseGp130
TYWMYWVRQAPGKGPEWVSAVSRGGFNTYY




ADSVKGRFTISRDNAKNTVYLQMNSLKPED




TAVYYCMSSVSFYGWPPDRVPSPTGQGTQV




TVSS





86
Anti-
QVQLQESGGGSVQPGGSLRLSCAASGFTFS



mouseGp130
TYDMSWVRQAPGKGLEWVSTINYSGSSTYY




VDSVLGRFTIARDNAKNTLYLQMNNLQTED




TAVYYCASVKERRSNGHPIVFGDRGQGTQV




TVSS





87
Anti-
QVQLQESGGGLVQPGGSLRLSCAASGFTFR



mouseGp130
NYAMSWVRQAPGKGLEWVSAINSGGGSTYY




ADSVKGRFTISRDNAKNTLYLQMNSLKPED




TAMYYCAKHVTGDYDPSLRYEYNYWSQGTQ




VTVSS





88
Anti-
QVQLQESGGGSVQAGGSLRLSCVISGFTYR



mouseGp130
QTFMGWFRQVVGKEREGVAAISTGGGSTIY




ADSVKGRFTISQDSSKDTVYLEMNGLKLED




TGMYYCAASTVITSESINRNLYQYWGQGTQ




VTVSS





89
Anti-
QVQLQESGGGSVQAGGFLRLSCAFSGYTGC



mouseGp130
MGWFRQGPGQEREGVASINDGGSLTYADSV




KGRFTISKDNAKKTLDLQMNTLKPEDTAMY




YCAASLSYCLNPTLRVDGYNYWGQGTQVTV




SS





90
Anti-
QVQLQESGGGLVQPGGSLRLSCAASGFTFS



IL2Rbeta/anti-
LYDMSWVRQAPGKGLEWVSGINSGGYSTYY



CD122 (mouse)
AASAKGRFTISRDNAKNTLYLQLSSVKTED




TAMYYCAQRGLTSPYVIPNIRLOGTQVTVS




S





91
Anti-
QVQLQESGGGLVQPGGSLRLSCAASEFTFS



IL2Rbeta/anti-
NNWMHWVRQAPGKGFEWVSSIHSGMAITHY



CD 122 (mouse)
RGSVKGRFTISSDIAKNIVSLQMNSLKAED




TAVYYCVGEGNWGQGTQVTVSS





92
Anti-
QVQLQESGGGSVLAGGSLRLSCVASGYGYN



IL2Rgamma/Anti-
YIGWFRQTPGKEREGVAVIYTGGGDTYYAD



CD132
SVKGRFTASRDNAKSTLYLQMNSLEPEDTA



(mouse)
MYYGVARYCVGSVYACLRGGHDEYAHWGQG




TQVTVSS





93
Anti-
QVQLQESGGGSVQPGGSLRLSCAASGSTYA



IL2Rgamma/Anti-
NYLMGWFRQAPGKEREGVAAIYSGGGSTYY



CD132
ADSVKGRFTISQDNAKNTLYLQMNSLKPED



(mouse)
TAMYYCAAASAVKGDKGDIVVVVTGTQRME




YDYWGHGTQVTVSS





94
Anti-
QVQLQESGGGSVQAGASLRLSCSVSGFTFD



IL2Rgamma/Anti-
ESVMSWLRQGPGNECDAVAIISSDDNTYYD



CD132
DSVKGRFTISEDNAKNMVYLQMNSLKPEDT



(mouse)
AVYYCAARRRRPVYDSDYELRPRPLCGDFG




VWGQGTQVTVSS





95
Anti-
QVQLQESGGGSVQAGGSLRLSCIGSGLPFD



IL2Rgamma/Anti-
EDDMGWYRQAPGNECELVSSISSDGTAYYA



CD132
DSVKGRFTISRDNAKNTVLLQMNSLKPEDT



(mouse)
AVYYCAAGVHRQFGGSSSCGDAFYGMDYWG




KGTQVTVSS





96
Anti-
QVQLQESGGGSVQAGGSLRLSCVASGDVYG



IL2Rgamma/Ant
RNSMAWFRQAPGKEREGVAVGYSVVTTTYY



i-CD132
ADSVKGRFTISEDNDKNTVYLEMNSLKPED



(mouse)
TAMYYCAADGNLWRGLRPSEYTYWGQGTQV




TVSS





97
Anti-
QVQLQESGGGSVQAGGSLRLSCTASGFTFD



IL2Rgamma/Anti-
DFDMGWYRQAPGNECELVSTISDDGSTYYA



CD132
DSVKGRSSISRDNAKNTVYLQMNRLKPEDT



(mouse)
GVYYCAAEGALGSKMNCGWVGNFGYWGQGT




QVTVSS





98
Anti-
QVQLQESGGGSVQAGGSLRLSCATSGFPYS



IL2Rgamma/Anti-
RYCMGWFRQAPGKEREGVAAIEPDGSTSYA



CD132
DSVKGRFTISQDNAVNTLYLQMNNLKPEDT



(mouse)
AMYYCAADERCFYLKDYDLRRPAQYRYWGQ




GTQVTVSS





99
Anti-IL10Rbeta
QVQLQESGGGSVQAGGSLRLSCAASGYTYN



(mouse)
RRFMGWFRQAPGKEREGLAIIYTPNSSTFY




ADSVTGRFTISQDSARNTVYLQMNSLKPED




TAMYYCAAARIASMTELSVRDMDYWGKGTQ




VTVSS





100
Anti-IL10Rbeta
QVQLQESGGGSVQAGGSLRLSCTASRYIAL



(mouse)
NACMAWIRQAPGSEREVVATIVTDGSRTYY




ADSVKGRFTISQDNAKNTMYLQMNGLKPED




TAMYYCAADRRCPVSRAPYEYELRYWGQGT




QVTVSS





101
Anti-IL10Rbeta
QVQLQESGGGSVQAGGSLRLSCVASGDTYS



(mouse)
RKYIAWVRQVPGKEREGVAVMYTPGSATYY




TDTVMGRFTISQDNAKNTVYLQMNSLKPED




TAMYFCAAKASGSMFNFRDYTYWGQGTQVT




VSS





102
Anti-IL10Rbeta
QVQLQESGGGSVQAGGALRLSCTASGYTAS



(mouse)
SICMGWFRQAPGKERERVAVITTAASGTYY




ADSVNGRFSISQNNAKNTVYLQMNSLKPDD




TAMYYCAATRRGGDCLDPLQTPAYNTWGQG




TQVTVSS





103
Anti-IL10Rbeta
QVQLQESGGGSVQAGGSLRLSCATSGYASC



(mouse)
SRAMRWYRQAPGKEREFVAYIDGVGSTGYA




DSVKGRFTISQDNAKYTAYLQMNSLKPEDT




AMYYCNRGCRADGSNSLDNYWGQGTQVTVS




S





104
Anti-IL10Rbeta
QVQLQESGGGSVQAGGSLRLSCAASGYTYN



(mouse)
GKCMAWFRQAPGKEREVVAGIYTGGSSTYY




ADSVKGRFTISQDNAKNTVYLQMDSLKPED




TAMYYCATSRSCSDLRRRSIAYWGQGTQVT




VSS





105
Anti-IL12Rbeta1
QVQLQESGGGSVQAGGSLRLSCTASGYTYS



(mouse)
SAFMAWFRQAPGKEREGVAAIYTRDGGTVY




ADSVKGRFTISQDNAKNTLYLQMNSLKAED




TAMYYCAAKIPQPGRASLLDSQTYDYWGQG




TQVTVSS





106
Anti-IL12Rbeta1
QVQLQESGGGSVQAGGSLRLSCAVSGYDYC



(mouse)
GYDVRWYRQAPGKEREFVSGIDSDGSTSYA




DSVKGRFTISQDNAENTSYLHMFSLKPEDT




AMYYCKTESPAGESAWCRNFRGMDYWGKGT




QVTVSS





107
Anti-IL12Rbeta1
QVQLQESGGGSVQAGGSLRLSCVASGYSYC



(mouse)
GYDMMWYRQAPGKEREFVALITSDYSIRYE




DSVEGRFSISRDNAKNTGYLLMSNLTPADT




AIYYCKTSTAARESSWCRSRYRVASWGQGT




QVTVSS





108
Anti-IL12Rbeta1
QVQLQESGGGSVQAGGSLRLSCAASRYTYT



(mouse)
NNFMAWFRQAPGKEREGVAAIYTGDGYAYY




FDSVKGRFTISQDNDKNMLYLQMNSLKPED




TAMYYCAAMERRSGRRRMTENAEYKYWGQG




TQVTVSS





109
Anti-IL12Rbeta1
QVQLQESGGGSVQAGETLRLSCTVSGFTID



(mouse)
DSEMGWYRQAPGHECELVASGSSDDDTYYV




DSVKGRFTISLDNAKNMVYLQMNSLKPEDT




AVYYCATGPTYPPKDGDCAHWGQGTQVTVS




S





110
Anti-IL12Rbeta1
QVQLQESGGGSVQAGGSLRLSCTASGYTYS



(mouse)
SAFMAWFRQAPGKEREGVAAIYTRDGSPVY




ADSLKGRFTISQDNAKNTLHLQMNSLKPED




TAMYYCAAKIPEPGRISLLDSQTYDYWGHG




TQVTVSS





111
Anti-IL12Rbeta1
QVQLQESGGGSVQAGGSLRLSCAVSGYDYC



(mouse)
GYDVRWYRRAPGKEREFVSGIDSDGSTSYA




DSVKGRFTISQDNAENTSYLHMFSLKPEDT




AMYYCKTESPAGESAWCRNFRGMDYWGKGT




QVTVSS





112
Anti-IL12Rbeta2
QVQLQESGGGSVQAGGSLRLSCAASGYTYS



(mouse)
NRHMGWFRQAPGKEREGVAAIYTGGGSTYY




ADSVKDRFTISQDNAKNTLYLQMNSLTPED




TAMYYCAADLTRWYSGGWRDPRGYKYWGQG




TQVTVS(303)





113
Anti-IL12Rbeta2
QVQLQESGGGSVQAGGSLRLSCAASGVTYG



(mouse)
SYYMAAWFRQAPGKEREGVASIYGGSDSTY




YADSVLGRFTISQDNGKNTLYLQMNSLKPD




DTAMYYCAAAPPGKWFLKRLEGHNYSYWGQ




GTQVTVSS





114
Anti-IL12Rbeta2
QVQLQESGGGSVQVGGSLRLSCAASGFTYS



(mouse)
SSCLGWFRQAPGKEREGVATIYPAGGNIFY




ADSVKGRFTISQDNAKNTVYLQMDSLKPED




TAMYYCAARGGQTWGSGGNRCSLWLPAYNY




WGQGTQVTVSS





115
Anti-IL12Rbeta2
QVQLQESGGGSVQVGGSLRLSCAVSGKLYG



(mouse)
GAWFRQAQGKGREGVAAIWIGTGTTFYADS




VKGRFTISRDNAKNTVYLQMDGLKPEDTAL




YYCAADDRPGYRDPLAPVSYNHWGQGTQVT




VSS





116
Anti-IL12Rbeta2
QVQLQESGGGSVQAGGSLRLSCAASGITYR



(mouse)
GVWMGWFRQAPGKEREGVATIYTGSGHTYY




ADSVKGRFTISQDNAKNTVYLQMNSLKPED




TAMYYCAARTVGGTFYTLAADSFNTWGQGT




QVTVSS





117
Anti-IL12Rbeta2
QVQLQESGGGSVQDGGSLRLSCAASGDIYA



(mouse)
RNCMGWFRQAPGKEREKIAVADTGGRSPYY




ADSVKGRFTISRDNAKNTVDLQMNSLKPED




TAVYYCAAGPLVPVVNTAARCVYEYWGQGT




QVTVSS





118
Anti-il23R
QVQLQESGGGSVQAGGSLRLSCAASGYTYS



mouse
SCTMGWYRQAPGKERELVSMLISDGSTFYA




DSVKGRFTFSQEYAKNTVYLQMNSLKPEDT




AMYYCGCATLGSRTVWGQGTQVTVSS





119
Anti-il23R
QVQLQESGGGSVQAGGSLTLSCTAPGFTFR



mouse
LAAMRWVRQAPGKGLEWVSGIDSRGSTIYA




DSVKGRFTISKDNAKNTLYLQLNSLKTEDT




AMYYCAQGVYGDTYSGSQGTQVTVSS





120
Anti-il23R
QVQLQESGGGSVQAGGSLRLSCTASVNTYC



mouse
EYNMSWYRQAPGKEREFVSGVDSDGSTRYS




ESVKGRFTISQDNAKNTMYLQMNGLKPEDT




AMYYCKTYVCTFCSGNSCYYEYKYYYEGQG




TQVTVSS





121
Anti-il23R
QVQLQESGGGSVQAGGSLRLSCAASGYTYS



mouse
NNCMGWFRQAPGKDRERIANIYTGGGRTTY




ADSVKGRFTISQDSAKSTVYLQMNSLKPED




TAMYYCAAGSCGSARSEYSYWGQGTQVTVS




S





122
Anti-il23R
QVQLQESGGGSVQAGGSLRLSCAASGYTFC



mouse
MAWFRQAPGKEREGVARFYTRDGYTYYSDS




VKGRFTISQNNAKNTLYLQMNSLKSEDTAM




YYCAADLARCSSNKNDFRYWGQGTQVTVSS





123
Anti-il23R
QVQLQESGGGSVQAGGSLRLSCAASGYTSG



mouse
NYWMGWFRQAPGKEREGVATLWTGGASTFY




GDSVKGRFTISRDNFKNTLYLQMNSLKVED




TAMYYCAADPALRLGANILRPAEYKYWGQG




TQVTVSS





124
Anti-il23R
QVQLQESGGGLVQPGGSLRLSCAASGFTFS



mouse
RSAMTWVRQAPGKGLDWVSGIDSGGTTVYA




DSVKGRFTISRDSAKNTLYLQMNSLKTEDT




AVYYCAIGLPWGNTWRTRGQGTQVTVSS





125
Anti-il27R
QVQLQESGGGSVQAGGSLRLSCAVSGDSTY



(mouse)
SMGWFRQPPGKEREGVAAITKDITIHADSV




KGRFTISKDNAKNTLYLQMNSLKPEDTAMY




YCAAHRPYGPPLNPRWYTYWGQGTQVTVSS





126
Anti-il27R
QVQLQESGGGSVQAGGSLRLSCTASGYTSS



(mouse)
RYCMGWFRQTPGKKREGVAAIYTGGGTTFY




HGSVKGRFTISQDNTTNTVYLQMHNLKPED




TAMYYCAAGPVTRACDEYNYWGQGTQVTVS




S





127
Anti-il27R
QVQLQESGGGSVQAGGSLRLSCAASGYSIN



(mouse)
RMGWFRQAPGKEREGVAAISIGGGQTYYAD




SVKGRFTISQDNAKNTVDLQMNSLKPEDTA




MYYCAAGLVYGEAWLDSRHYNKWGQGTQVT




VSS





128
Anti-il27R
QVQLQESGGGSVQAGGSLRLSCAGSGYSLS



(mouse)
NYCMGWFRQAPGQGREGVASLRFVSGATFY




ADSVKGRFTIAQDNAKNTLYLQMNSLKPED




TAMYYCGIKSRGICGGRLVDVDFGNWGQGT




QVTVSS





129
Anti-il27R
QVQLQESGGGSVQAGGSLRLSCAASKNSNF



(mouse)
MGWFRQAPGKEREGVAAMMTKNNNTYYADS




VKGRFTISHDNAKNTVYLQMDSLKPEDTAV




YYCAAVYRTRRLRVLEAANFDYWGQGTQVT




VSS





130
Anti-il27R
QVQLQESGGGSVQAGGSLRLSCAASGYTYS



(mouse)
SYCMAWFRQAPGKEREGVAAIDSDGSTSYA




DSVKGRFTISKDNAKNTLYLQMNSLKPEDT




AMYYCAAASGRCLGPGIRSLIWGQGTQVTV




SS





131
IL12Rβ1VHH-
QVQLQESGGGSVQAGGSLRLSCTASGYTYS



GGGS-
SAFMAWFRQAPGKEREGVAAIYTRDGGTVY



IL12Rβ2 VHH
ADSVKGRFTISQDNAKNTLYLQMNSLKAED




TAMYYCAAKIPQPGRASLLDSQTYDYWGQG




TQVTVSSGGGSQVQLQESGGGSVQAGGSLR




LSCAASGYTYSNRHMGWFRQAPGKEREGVA




AIYTGGGSTYYADSVKDRFTISQDNAKNTL




YLQMNSLTPEDTAMYYCAADLTRWYSGGWR




DPRGYKYWGQGTQVTVS




(SEQ ID NO: 131)





132
IL12Rβ1VHH-
QVQLQESGGGSVQAGGSLRLSCTASGYTYS



GGGS-
SAFMAWFRQAPGKEREGVAAIYTRDGGTVY



IL12Rβ2VHH
ADSVKGRFTISQDNAKNTLYLQMNSLKAED




TAMYYCAAKIPQPGRASLLDSQTYDYWGQG




TQVTVSSGGGSQVQLQESGGGSVQAGGSLR




LSCAASGVTYGSYYMAAWFRQAPGKEREGV




ASIYGGSDSTYYADSVLGRFTISQDNGKNT




LYLQMNSLKPDDTAMYYCAAAPPGKWFLKR




LEGHNYSYWGQGTQVTVSS




(SEQ ID NO: 132)





133
IL12Rβ1VHH-
QVQLQESGGGSVQAGGSLRLSCTASGYTYS



GGGS-
SAFMAWFRQAPGKEREGVAAIYTRDGGTVY



IL12Rβ2 VHH
ADSVKGRFTISQDNAKNTLYLQMNSLKAED




TAMYYCAAKIPQPGRASLLDSQTYDYWGQG




TQVTVSSGGGSQVQLQESGGGSVQVGGSLR




LSCAASGFTYSSSCLGWFRQAPGKEREGVA




TIYPAGGNIFYADSVKGRFTISQDNAKNTV




YLQMDSLKPEDTAMYYCAARGGQTWGSGGN




RCSLWLPAYNYWGQGTQVTVSS




(SEQ ID NO: 133)





134
IL12Rβ1VHH-
QVQLQESGGGSVQAGGSLRLSCTASGYTYS



GGGS-
SAFMAWFRQAPGKEREGVAAIYTRDGGTVY



IL12Rβ2 VHH
ADSVKGRFTISQDNAKNTLYLQMNSLKAED




TAMYYCAAKIPQPGRASLLDSQTYDYWGQG




TQVTVSSGGGSQVQLQESGGGSVQVGGSLR




LSCAVSGKLYGGAWFRQAQGKGREGVAAIW




IGTGTTFYADSVKGRFTISRDNAKNTVYLQ




MDGLKPEDTALYYCAADDRPGYRDPLAPVS




YNHWGQGTQVTVSS




(SEQ ID NO: 134)





135
IL12Rβ1VHH-
QVQLQESGGGSVQAGGSLRLSCTASGYTYS



GGGS-
SAFMAWFRQAPGKEREGVAAIYTRDGGTVY



IL12R2 VHH
ADSVKGRFTISQDNAKNTLYLQMNSLKAED




TAMYYCAAKIPQPGRASLLDSQTYDYWGQG




TQVTVSSGGGSQVQLQESGGGSVQAGGSLR




LSCAASGITYRGVWMGWFRQAPGKEREGVA




TIYTGSGHTYYADSVKGRFTISQDNAKNTV




YLQMNSLKPEDTAMYYCAARTVGGTFYTLA




ADSFNTWGQGTQVTVSS




(SEQ ID NO: 135)





136
IL12Rβ1VHH-
QVQLQESGGGSVQAGGSLRLSCTASGYTYS



GGGS-
SAFMAWFRQAPGKEREGVAAIYTRDGGTVY



IL12Rβ2 VHH
ADSVKGRFTISQDNAKNTLYLQMNSLKAED




TAMYYCAAKIPQPGRASLLDSQTYDYWGQG




TQVTVSSGGGSQVQLQESGGGSVQDGGSLR




LSCAASGDIYARNCMGWFRQAPGKEREKIA




VADTGGRSPYYADSVKGRFTISRDNAKNTV




DLQMNSLKPEDTAVYYCAAGPLVPVVNTAA




RCVYEYWGQGTQVTVSS




(SEQ ID NO: 136)


137
IL12Rβ1VHH-
QVQLQESGGGSVQAGGSLRLSCAVSGYDYC



GGGS-
GYDVRWYRQAPGKEREFVSGIDSDGSTSYA



IL12Rβ2 VHH
DSVKGRFTISQDNAENTSYLHMFSLKPEDT




AMYYCKTESPAGESAWCRNFRGMDYWGKGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRL




SCAASGYTYSNRHMGWFRQAPGKEREGVAA




IYTGGGSTYYADSVKDRFTISQDNAKNTLY




LQMNSLTPEDTAMYYCAADLTRWYSGGWRD




PRGYKYWGQGTQVTVS




(SEQ ID NO: 137)





138
IL12Rβ1VHH-
QVQLQESGGGSVQAGGSLRLSCAVSGYDYC



GGGS-
GYDVRWYRQAPGKEREFVSGIDSDGSTSYA



IL12Rβ2 VHH
DSVKGRFTISQDNAENTSYLHMFSLKPEDT




AMYYCKTESPAGESAWCRNFRGMDYWGKGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRL




SCAASGVTYGSYYMAAWFRQAPGKEREGVA




SIYGGSDSTYYADSVLGRFTISQDNGKNTL




YLQMNSLKPDDTAMYYCAAAPPGKWFLKRL




EGHNYSYWGQGTQVTVSS




(SEQ ID NO: 138)





139
IL12Rβ1VHH-
QVQLQESGGGSVQAGGSLRLSCAVSGYDYC



GGGS-
GYDVRWYRQAPGKEREFVSGIDSDGSTSYA



IL12Rβ2 VHH
DSVKGRFTISQDNAENTSYLHMFSLKPEDT




AMYYCKTESPAGESAWCRNFRGMDYWGKGT




QVTVSSGGGSQVQLQESGGGSVQVGGSLRL




SCAASGFTYSSSCLGWFRQAPGKEREGVAT




IYPAGGNIFYADSVKGRFTISQDNAKNTVY




LQMDSLKPEDTAMYYCAARGGQTWGSGGNR




CSLWLPAYNYWGQGTQVTVSS




(SEQ ID NO: 139)





140
IL12Rβ1VHH-
QVQLQESGGGSVQAGGSLRLSCAVSGYDYC



GGGS-
GYDVRWYRQAPGKEREFVSGIDSDGSTSYA



IL12Rβ2 VHH
DSVKGRFTISQDNAENTSYLHMFSLKPEDT




AMYYCKTESPAGESAWCRNFRGMDYWGKGT




QVTVSSGGGSQVQLQESGGGSVQVGGSLRL




SCAVSGKLYGGAWFRQAQGKGREGVAAIWI




GTGTTFYADSVKGRFTISRDNAKNTVYLQM




DGLKPEDTALYYCAADDRPGYRDPLAPVSY




NHWGQGTQVTVSS




(SEQ ID NO: 140)





141
IL12Rβ1VHH-
QVQLQESGGGSVQAGGSLRLSCAVSGYDYC



GGGS-
GYDVRWYRQAPGKEREFVSGIDSDGSTSYA



IL12Rβ2 VHH
DSVKGRFTISQDNAENTSYLHMFSLKPEDT




AMYYCKTESPAGESAWCRNFRGMDYWGKGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRL




SCAASGITYRGVWMGWFRQAPGKEREGVAT




IYTGSGHTYYADSVKGRFTISQDNAKNTVY




LQMNSLKPEDTAMYYCAARTVGGTFYTLAA




DSFNTWGQGTQVTVSS




(SEQ ID NO: 141)





142
IL12Rβ1VHH-
QVQLQESGGGSVQAGGSLRLSCAVSGYDYC



GGGS-
GYDVRWYRQAPGKEREFVSGIDSDGSTSYA



IL12Rβ2 VHH
DSVKGRFTISQDNAENTSYLHMFSLKPEDT




AMYYCKTESPAGESAWCRNFRGMDYWGKGT




QVTVSSGGGSQVQLQESGGGSVQDGGSLRL




SCAASGDIYARNCMGWFRQAPGKEREKIAV




ADTGGRSPYYADSVKGRFTISRDNAKNTVD




LQMNSLKPEDTAVYYCAAGPLVPVVNTAAR




CVYEYWGQGTQVTVSS




(SEQ ID NO: 142)





143
IL12Rβ1VHH-
QVQLQESGGGSVQAGGSLRLSCVASGYSYC



GGGS-
GYDMMWYRQAPGKEREFVALITSDYSIRYE



IL12R2 VHH
DSVEGRFSISRDNAKNTGYLLMSNLTPADT




AIYYCKTSTAARESSWCRSRYRVASWGQGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRL




SCAASGYTYSNRHMGWFRQAPGKEREGVAA




IYTGGGSTYYADSVKDRFTISQDNAKNTLY




LQMNSLTPEDTAMYYCAADLTRWYSGGWRD




PRGYKYWGQGTQVTVS




(SEQ ID NO: 143)





144
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCVASGYSYC



-GGGS-
GYDMMWYRQAPGKEREFVALITSDYSIRYE



IL12Rβ2 VHH
DSVEGRFSISRDNAKNTGYLLMSNLTPADT




AIYYCKTSTAARESSWCRSRYRVASWGQGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRL




SCAASGVTYGSYYMAAWFRQAPGKEREGVA




SIYGGSDSTYYADSVLGRFTISQDNGKNTL




YLQMNSLKPDDTAMYYCAAAPPGKWFLKRL




EGHNYSYWGQGTQVTVSS




(SEQ ID NO: 144)





145
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCVASGYSYC



-GGGS-
GYDMMWYRQAPGKEREFVALITSDYSIRYE



IL12Rβ2 VHH
DSVEGRFSISRDNAKNTGYLLMSNLTPADT




AIYYCKTSTAARESSWCRSRYRVASWGQGT




QVTVSSGGGSQVQLQESGGGSVQVGGSLRL




SCAASGFTYSSSCLGWFRQAPGKEREGVAT




IYPAGGNIFYADSVKGRFTISQDNAKNTVY




LQMDSLKPEDTAMYYCAARGGQTWGSGGNR




CSLWLPAYNYWGQGTQVTVSS




(SEQ ID NO: 145)





146
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCVASGYSYC



-GGGS-
GYDMMWYRQAPGKEREFVALITSDYSIRYE



IL12R2 VHH
DSVEGRFSISRDNAKNTGYLLMSNLTPADT




AIYYCKTSTAARESSWCRSRYRVASWGQGT




QVTVSSGGGSQVQLQESGGGSVQVGGSLRL




SCAVSGKLYGGAWFRQAQGKGREGVAAIWI




GTGTTFYADSVKGRFTISRDNAKNT137VY




LQMDGLKPEDTALYYCAADDRPGYRDPL




APVSYNHWGQGTQVTVSS




(SE138Q ID NO: 149)





147
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCVASGYSYC



-GGGS-
GYDMMWYRQAPGKEREFVALITSDYSIRYE



IL12Rβ2 VHH
DSVEGRFSISRDNAKNTGYLLMSNLTPADT




AIYYCKTSTAARESSWCRSRYRVASWGQGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRL




SCAASGITYRGVWMGWFRQAPGKEREGVAT




IYTGSGHTYYADSVKGRFTISQDNAKNTVY




LQMNSLKPEDTAMYYCAARTVGGTFYTLAA




DSFNTWGQGTQVTVSS




(SEQ ID NO: 147)





148
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCVASGYSYC



-GGGS-
GYDMMWYRQAPGKEREFVALITSDYSIRYE



IL12R2 VHH
DSVEGRFSISRDNAKNTGYLLMSNLTPADT




AIYYCKTSTAARESSWCRSRYRVASWGQGT




QVTVSSGGGSQVQLQESGGGSVQDGGSLRL




SCAASGDIYARNCMGWFRQAPGKEREKIAV




ADTGGRSPYYADSVKGRFTISRDNAKNTVD




LQMNSLKPEDTAVYYCAAGPLVPVVNTAAR




CVYEYWGQGTQVTVSS




(SEQ ID NO: 148)





149
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASRYTYT



-GGGS-
NNFMAWFRQAPGKEREGVAAIYTGDGYAYY



IL12Rβ2 VHH
FDSVKGRFTISQDNDKNMLYLQMNSLKPED




TAMYYCAAMERRSGRRRMTENAEYKYWGQG




TQVTVSSGGGSQVQLQESGGGSVQAGGSLR




LSCAASGYTYSNRHMGWFRQAPGKEREGVA




AIYTGGGSTYYADSVKDRFTISQDNAKNTL




YLQMNSLTPEDTAMYYCAADLTRWYSGGWR




DPRGYKYWGQGTQVTVS




(SEQ ID NO: 149)





150
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASRYTYT



-GGGS-
NNFMAWFRQAPGKEREGVAAIYTGDGYAYY



IL12Rβ2 VHH
FDSVKGRFTISQDNDKNMLYLQMNSLKPED




TAMYYCAAMERRSGRRRMTENAEYKYWGQG




TQVTVSSGGGSQVQLQESGGGSVQAGGSLR




LSCAASGVTYGSYYMAAWFRQAPGKEREGV




ASIYGGSDSTYYADSVLGRFTISQDNGKNT




LYLQMNSLKPDDTAMYYCAAAPPGKWFLKR




LEGHNYSYWGQGTQVTVSS




(SEQ ID NO: 150)





151
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASRYTYT



-GGGS-
NNFMAWFRQAPGKEREGVAAIYTGDGYAYY



IL12Rβ2 VHH
FDSVKGRFTISQDNDKNMLYLQMNSLKPED




TAMYYCAAMERRSGRRRMTENAEYKYWGQG




TQVTVSSGGGSQVQLQESGGGSVQVGGSLR




LSCAASGFTYSSSCLGWFRQAPGKEREGVA




TIYPAGGNIFYADSVKGRFTISQDNAKNTV




YLQMDSLKPEDTAMYYCAARGGQTWGSGGN




RCSLWLPAYNYWGQGTQVTVSS




(SEQ ID NO: 151)





152
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASRYTYT



-GGGS-
NNFMAWFRQAPGKEREGVAAIYTGDGYAYY



IL12Rβ2 VHH
FDSVKGRFTISQDNDKNMLYLQMNSLKPED




TAMYYCAAMERRSGRRRMTENAEYKYWGQG




TQVTVSSGGGSQVQLQESGGGSVQVGGSLR




LSCAVSGKLYGGAWFRQAQGKGREGVAAIW




IGTGTTFYADSVKGRFTISRDNAKNTVYLQ




MDGLKPEDTALYYCAADDRPGYRDPLAPVS




YNHWGQGTQVTVSS




(SEQ ID NO: 152)





153
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASRYTYT



-GGGS-
NNFMAWFRQAPGKEREGVAAIYTGDGYAYY



IL12Rβ2 VHH
FDSVKGRFTISQDNDKNMLYLQMNSLKPED




TAMYYCAAMERRSGRRRMTENAEYKYWGQG




TQVTVSSGGGSQVQLQESGGGSVQAGGSLR




LSCAASGITYRGVWMGWFRQAPGKEREGVA




TIYTGSGHTYYADSVKGRFTISQDNAKNTV




YLQMNSLKPEDTAMYYCAARTVGGTFYTLA




ADSFNTWGQGTQVTVSS




(SEQ ID NO: 153)





154
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASRYTYT



-GGGS-
NNFMAWFRQAPGKEREGVAAIYTGDGYAYY



IL12Rβ2 VHH
FDSVKGRFTISQDNDKNMLYLQMNSLKPED




TAMYYCAAMERRSGRRRMTENAEYKYWGQG




TQVTVSSGGGSQVQLQESGGGSVQDGGSLR




LSCAASGDIYARNCMGWFRQAPGKEREKIA




VADTGGRSPYYADSVKGRFTISRDNAKNTV




DLQMNSLKPEDTAVYYCAAGPLVPVVNTAA




RCVYEYWGQGTQVTVSS




(SEQ ID NO: 154)





155
IL12Rβ1 VHH
QVQLQESGGGSVQAGETLRLSCTVSGFTID



-GGGS-
DSEMGWYRQAPGHECELVASGSSDDDTYYV



IL12Rβ2 VHH
DSVKGRFTISLDNAKNMVYLQMNSLKPEDT




AVYYCATGPTYPPKDGDCAHWGQGTQVTVS




SGGGSQVQLQESGGGSVQAGGSLRLSCAAS




GYTYSNRHMGWFRQAPGKEREGVAAIYTGG




GSTYYADSVKDRFTISQDNAKNTLYLQMNS




LTPEDTAMYYCAADLTRWYSGGWRDPRGYK




YWGQGTQVTVS




(SEQ ID NO: 155)





156
IL12Rβ1 VHH
QVQLQESGGGSVQAGETLRLSCTVSGFTID



-GGGS-
DSEMGWYRQAPGHECELVASGSSDDDTYYV



IL12Rβ2 VHH
DSVKGRFTISLDNAKNMVYLQMNSLKPEDT




AVYYCATGPTYPPKDGDCAHWGQGTQVTVS




SGGGSQVQLQESGGGSVQAGGSLRLSCAAS




GVTYGSYYMAAWFRQAPGKEREGVASIYGG




SDSTYYADSVLGRFTISQDNGKNTLYLQMN




SLKPDDTAMYYCAAAPPGKWFLKRLEGHNY




SYWGQGTQVTVSS




(SEQ ID NO: 156)





157
IL12Rβ1 VHH
QVQLQESGGGSVQAGETLRLSCTVSGFTID



-GGGS-
DSEMGWYRQAPGHECELVASGSSDDDTYYV



IL12R2 VHH
DSVKGRFTISLDNAKNMVYLQMNSLKPEDT




AVYYCATGPTYPPKDGDCAHWGQGTQVTVS




SGGGSQVQLQESGGGSVQVGGSLRLSCAAS




GFTYSSSCLGWFRQAPGKEREGVATIYPAG




GNIFYADSVKGRFTISQDNAKNTVYLQMDS




LKPEDTAMYYCAARGGQTWGSGGNRCSLWL




PAYNYWGQGTQVTVSS




(SEQ ID NO: 157)





158
IL12Rβ1VHH
QVQLQESGGGSVQAGETLRLSCTVSGFTID



-GGGS-
DSEMGWYRQAPGHECELVASGSSDDDTYYV



IL12Rβ2 VHH
DSVKGRFTISLDNAKNMVYLQMNSLKPEDT




AVYYCATGPTYPPKDGDCAHWGQGTQVTVS




SGGGSQVQLQESGGGSVQVGGSLRLSCAVS




GKLYGGAWFRQAQGKGREGVAAIWIGTGTT




FYADSVKGRFTISRDNAKNTVYLQMDGLKP




EDTALYYCAADDRPGYRDPLAPVSYNHWGQ




GTQVTVSS




(SEQ ID NO: 158)





159
IL12Rβ1 VHH
QVQLQESGGGSVQAGETLRLSCTVSGFTID



-GGGS-
DSEMGWYRQAPGHECELVASGSSDDDTYYV



IL12Rβ2 VHH
DSVKGRFTISLDNAKNMVYLQMNSLKPEDT




AVYYCATGPTYPPKDGDCAHWGQGTQVTVS




SGGGSQVQLQESGGGSVQAGGSLRLSCAAS




GITYRGVWMGWFRQAPGKEREGVATIYTGS




GHTYYADSVKGRFTISQDNAKNTVYLQMNS




LKPEDTAMYYCAARTVGGTFYTLAADSFNT




WGQGTQVTVSS




(SEQ ID NO: 159)





160
IL12Rβ1 VHH
QVQLQESGGGSVQAGETLRLSCTVSGFTID



-GGGS-
DSEMGWYRQAPGHECELVASGSSDDDTYYV



IL12Rβ2 VHH
DSVKGRFTISLDNAKNMVYLQMNSLKPEDT




AVYYCATGPTYPPKDGDCAHWGQGTQVTVS




SGGGSQVQLQESGGGSVQDGGSLRLSCAAS




GDIYARNCMGWFRQAPGKEREKIAVADTGG




RSPYYADSVKGRFTISRDNAKNTVDLQMNS




LKPEDTAVYYCAAGPLVPVVNTAARCVYEY




WGQGTQVTVSS




(SEQ ID NO: 160)





161
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGYTYS



-GGGS-
NRHMGWFRQAPGKEREGVAAIYTGGGSTYY



IL12Rβ2VHH
ADSVKDRFTISQDNAKNTLYLQMNSLTPED




TAMYYCAADLTRWYSGGWRDPRGYKYWGQG




TQVTVSGGGSQVQLQESGGGSVQAGGSLRL




SCTASGYTYSSAFMAWFRQAPGKEREGVAA




IYTRDGGTVYADSVKGRFTISQDNAKNTLY




LQMNSLKAEDTAMYYCAAKIPQPGRASLLD




SQTYDYWGQGTQVTVSS




(SEQ ID NO: 161)





162
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGYTYS



-GGGS-
NRHMGWFRQAPGKEREGVAAIYTGGGSTYY



IL12Rβ2 VHH
ADSVKDRFTISQDNAKNTLYLQMNSLTPED




TAMYYCAADLTRWYSGGWRDPRGYKYWGQG




TQVTVSGGGSQVQLQESGGGSVQAGGSLRL




SCAVSGYDYCGYDVRWYRQAPGKEREFVSG




IDSDGSTSYADSVKGRFTISQDNAENTSYL




HMFSLKPEDTAMYYCKTESPAGESAWCRNF




RGMDYWGKGTQVTVSS




(SEQ ID NO: 162)





163
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGYTYS



-GGGS-
NRHMGWFRQAPGKEREGVAAIYTGGGSTYY



IL12Rβ2 VHH
ADSVKDRFTISQDNAKNTLYLQMNSLTPED




TAMYYCAADLTRWYSGGWRDPRGYKYWGQG




TQVTVSGGGSQVQLQESGGGSVQAGGSLRL




SCVASGYSYCGYDMMWYRQAPGKEREFVAL




ITSDYSIRYEDSVEGRFSISRDNAKNTGYL




LMSNLTPADTAIYYCKTSTAARESSWCRSR




YRVASWGQGTQVTVSS




(SEQ ID NO: 163)





164
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGYTYS



-GGGS-
NRHMGWFRQAPGKEREGVAAIYTGGGSTYY



IL12Rβ2 VHH
ADSVKDRFTISQDNAKNTLYLQMNSLTPED




TAMYYCAADLTRWYSGGWRDPRGYKYWGQG




TQVTVSGGGSQVQLQESGGGSVQAGGSLRL




SCAASRYTYTNNFMAWFRQAPGKEREGVAA




IYTGDGYAYYFDSVKGRFTISQDNDKNMLY




LQMNSLKPEDTAMYYCAAMERRSGRRRMTE




NAEYKYWGQGTQVTVSS




(SEQ ID NO: 164)





165
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGYTYS



-GGGS-
NRHMGWFRQAPGKEREGVAAIYTGGGSTYY



IL12Rβ2 VHH
ADSVKDRFTISQDNAKNTLYLQMNSLTPED




TAMYYCAADLTRWYSGGWRDPRGYKYWGQG




TQVTVSGGGSQVQLQESGGGSVQAGETLRL




SCTVSGFTIDDSEMGWYRQAPGHECELVAS




GSSDDDTYYVDSVKGRFTISLDNAKNMVYL




QMNSLKPEDTAVYYCATGPTYPPKDGDCAH




WGQGTQVTVSS




(SEQ ID NO: 165)





166
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGVTYGSYYMAAWFRQ



-GGGS-
APGKEREGVASIYGGSDSTYYADSVLGRFTISQDNGKNTL



IL12Rβ2 VHH
YLQMNSLKPDDTAMYYCAAAPPGKWFLKRLEGHNYSYWGQ




GTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCTASGYT




YSSAFMAWFRQAPGKEREGVAAIYTRDGGTVYADSVKGRF




TISQDNAKNTLYLQMNSLKAEDTAMYYCAAKIPQPGRASL




LDSQTYDYWGQGTQVTVSS




(SEQ ID NO: 166)





167
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGVTYGSYYMAAWFRQ



-GGGS-
APGKEREGVASIYGGSDSTYYADSVLGRFTISQDNGKNTL



IL12Rβ2 VHH
YLQMNSLKPDDTAMYYCAAAPPGKWFLKRLEGHNYSYWGQ




GTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAVSGYD




YCGYDVRWYRQAPGKEREFVSGIDSDGSTSYADSVKGRFT




ISQDNAENTSYLHMFSLKPEDTAMYYCKTESPAGESAWCR




NFRGMDYWGKGTQVTVSS




(SEQ ID NO: 167)





168
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGVTYGSYYMAAWFRQ



-GGGS-
APGKEREGVASIYGGSDSTYYADSVLGRFTISQDNGKNTL



IL12Rβ2 VHH
YLQMNSLKPDDTAMYYCAAAPPGKWFLKRLEGHNYSYWGQ




GTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCVASGYS




YCGYDMMWYRQAPGKEREFVALITSDYSIRYEDSVEGRFS




ISRDNAKNTGYLLMSNLTPADTAIYYCKTSTAARESSWCR




SRYRVASWGQGTQVTVSS




(SEQ ID NO: 168)





169
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGVTYGSYYMAAWFRQ



-GGGS-
APGKEREGVASIYGGSDSTYYADSVLGRFTISQDNGKNTL



IL12Rβ2 VHH
YLQMNSLKPDDTAMYYCAAAPPGKWFLKRLEGHNYSYWGQ




GTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYT




YTNNFMAWFRQAPGKEREGVAAIYTGDGYAYYFDSVKGRF




TISQDNDKNMLYLQMNSLKPEDTAMYYCAAMERRSGRRRM




TENAEYKYWGQGTQVTVSS




(SEQ ID NO: 169)





170
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGVTYGSYYMAAWFRQ



-GGGS-
APGKEREGVASIYGGSDSTYYADSVLGRFTISQDNGKNTL



IL12Rβ2 VHH
YLQMNSLKPDDTAMYYCAAAPPGKWFLKRLEGHNYSYWGQ




GTQVTVSSGGGSQVQLQESGGGSVQAGETLRLSCTVSGFT




IDDSEMGWYRQAPGHECELVASGSSDDDTYYVDSVKGRFT




ISLDNAKNMVYLQMNSLKPEDTAVYYCATGPTYPPKDGDC




AHWGQGTQVTVSS




(SEQ ID NO: 170)





171
IL12Rβ1 VHH
QVQLQESGGGSVQVGGSLRLSCAASGFTYSSSCLGWFRQA



-GGGS-
PGKEREGVATIYPAGGNIFYADSVKGRFTISQDNAKNTVY



IL12Rβ2 VHH
LQMDSLKPEDTAMYYCAARGGQTWGSGGNRCSLWLPAYNY




WGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCTAS




GYTYSSAFMAWFRQAPGKEREGVAAIYTRDGGTVYADSVK




GRFTISQDNAKNTLYLQMNSLKAEDTAMYYCAAKIPQPGR




ASLLDSQTYDYWGQGTQVTVSS




(SEQ ID NO: 171)





172
IL12Rβ1 VHH
QVQLQESGGGSVQVGGSLRLSCAASGFTYSSSCLGWFRQA



-GGGS-
PGKEREGVATIYPAGGNIFYADSVKGRFTISQDNAKNTVY



IL12Rβ2 VHH
LQMDSLKPEDTAMYYCAARGGQTWGSGGNRCSLWLPAYNY




WGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAVS




GYDYCGYDVRWYRQAPGKEREFVSGIDSDGSTSYADSVKG




RFTISQDNAENTSYLHMFSLKPEDTAMYYCKTESPAGESA




WCRNFRGMDYWGKGTQVTVSS




(SEQ ID NO: 172)





173
IL12Rβ1 VHH
QVQLQESGGGSVQVGGSLRLSCAASGFTYSSSCLGWFRQA



-GGGS-
PGKEREGVATIYPAGGNIFYADSVKGRFTISQDNAKNTVY



IL12Rβ2 VHH
LQMDSLKPEDTAMYYCAARGGQTWGSGGNRCSLWLPAYNY




WGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCVAS




GYSYCGYDMMWYRQAPGKEREFVALITSDYSIRYEDSVEG




RFSISRDNAKNTGYLLMSNLTPADTAIYYCKTSTAARESS




WCRSRYRVASWGQGTQVTVSS




(SEQ ID NO: 173)





174
IL12Rβ1 VHH
QVQLQESGGGSVQVGGSLRLSCAASGFTYSSSCLGWFRQA



-GGGS-
PGKEREGVATIYPAGGNIFYADSVKGRFTISQDNAKNTVY



IL12Rβ2 VHH
LQMDSLKPEDTAMYYCAARGGQTWGSGGNRCSLWLPAYNY




WGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAAS




RYTYTNNFMAWFRQAPGKEREGVAAIYTGDGYAYYFDSVK




GRFTISQDNDKNMLYLQMNSLKPEDTAMYYCAAMERRSGR




RRMTENAEYKYWGQGTQVTVSS




(SEQ ID NO: 174)





175
IL12Rβ1 VHH
QVQLQESGGGSVQVGGSLRLSCAASGFTYSSSCLGWFRQA



-GGGS-
PGKEREGVATIYPAGGNIFYADSVKGRFTISQDNAKNTVY



IL12Rβ2 VHH
LQMDSLKPEDTAMYYCAARGGQTWGSGGNRCSLWLPAYNY




WGQGTQVTVSSGGGSQVQLQESGGGSVQAGETLRLSCTVS




GFTIDDSEMGWYRQAPGHECELVASGSSDDDTYYVDSVKG




RFTISLDNAKNMVYLQMNSLKPEDTAVYYCATGPTYPPKD




GDCAHWGQGTQVTVSS




(SEQ ID NO: 175)





176
IL12Rβ1 VHH
QVQLQESGGGSVQVGGSLRLSCAVSGKLYGGAWFRQAQGK



-GGGS-
GREGVAAIWIGTGTTFYADSVKGRFTISRDNAKNTVYLQM



IL12Rβ2 VHH
DGLKPEDTALYYCAADDRPGYRDPLAPVSYNHWGQGTQVT




VSSGGGSQVQLQESGGGSVQAGGSLRLSCTASGYTYSSAF




MAWFRQAPGKEREGVAAIYTRDGGTVYADSVKGRFTISQD




NAKNTLYLQMNSLKAEDTAMYYCAAKIPQPGRASLLDSQT




YDYWGQGTQVTVSS




(SEQ ID NO: 176)





177
IL12Rβ1 VHH
QVQLQESGGGSVQVGGSLRLSCAVSGKLYGGAWFRQAQGK



-GGGS-
GREGVAAIWIGTGTTFYADSVKGRFTISRDNAKNTVYLQM



IL12Rβ2 VHH
DGLKPEDTALYYCAADDRPGYRDPLAPVSYNHWGQGTQVT




VSSGGGSQVQLQESGGGSVQAGGSLRLSCAVSGYDYCGYD




VRWYRQAPGKEREFVSGIDSDGSTSYADSVKGRFTISQDN




AENTSYLHMFSLKPEDTAMYYCKTESPAGESAWCRNFRGM




DYWGKGTQVTVSS




(SEQ ID NO: 177)





178
IL12Rβ1 VHH
QVQLQESGGGSVQVGGSLRLSCAVSGKLYGGAWFRQAQGK



-GGGS-
GREGVAAIWIGTGTTFYADSVKGRFTISRDNAKNTVYLQM



IL12Rβ2VHH
DGLKPEDTALYYCAADDRPGYRDPLAPVSYNHWGQGTQVT




VSSGGGSQVQLQESGGGSVQAGGSLRLSCVASGYSYCGYD




MMWYRQAPGKEREFVALITSDYSIRYEDSVEGRFSISRDN




AKNTGYLLMSNLTPADTAIYYCKTSTAARESSWCRSRYRV




ASWGQGTQVTVSS




(SEQ ID NO: 178)





179
IL12Rβ1 VHH
QVQLQESGGGSVQVGGSLRLSCAVSGKLYGGAWFRQAQGK



-GGGS-
GREGVAAIWIGTGTTFYADSVKGRFTISRDNAKNTVYLQM



IL12Rβ2 VHH
DGLKPEDTALYYCAADDRPGYRDPLAPVSYNHWGQGTQVT




VSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYTYTNNF




MAWFRQAPGKEREGVAAIYTGDGYAYYFDSVKGRFTISQD




NDKNMLYLQMNSLKPEDTAMYYCAAMERRSGRRRMTENAE




YKYWGQGTQVTVSS




(SEQ ID NO: 179)





180
IL12Rβ1 VHH
QVQLQESGGGSVQVGGSLRLSCAVSGKLYGGAWFRQAQGK



-GGGS-
GREGVAAIWIGTGTTFYADSVKGRFTISRDNAKNTVYLQM



IL12Rβ2 VHH
DGLKPEDTALYYCAADDRPGYRDPLAPVSYNHWGQGTQVT




VSSGGGSQVQLQESGGGSVQAGETLRLSCTVSGFTIDDSE




MGWYRQAPGHECELVASGSSDDDTYYVDSVKGRFTISLDN




AKNMVYLQMNSLKPEDTAVYYCATGPTYPPKDGDCAHWGQ




GTQVTVSS




(SEQ ID NO: 180)





181
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGITYRGVWMGWFRQA



-GGGS-
PGKEREGVATIYTGSGHTYYADSVKGRFTISQDNAKNTVY



IL12Rβ2 VHH
LQMNSLKPEDTAMYYCAARTVGGTFYTLAADSFNTWGQGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCTASGYTYS




SAFMAWFRQAPGKEREGVAAIYTRDGGTVYADSVKGRFTI




SQDNAKNTLYLQMNSLKAEDTAMYYCAAKIPQPGRASLLD




SQTYDYWGQGTQVTVSS




(SEQ ID NO: 181)





182
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGITYRGVWMGWFRQA



-GGGS-
PGKEREGVATIYTGSGHTYYADSVKGRFTISQDNAKNTVY



IL12Rβ2 VHH
LQMNSLKPEDTAMYYCAARTVGGTFYTLAADSFNTWGQGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAVSGYDYC




GYDVRWYRQAPGKEREFVSGIDSDGSTSYADSVKGRFTIS




QDNAENTSYLHMFSLKPEDTAMYYCKTESPAGESAWCRNF




RGMDYWGKGTQVTVSS




(SEQ ID NO: 182)





183
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGITYRGVWMGWFRQA



-GGGS-
PGKEREGVATIYTGSGHTYYADSVKGRFTISQDNAKNTVY



IL12Rβ2VHH
LQMNSLKPEDTAMYYCAARTVGGTFYTLAADSFNTWGQGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCVASGYSYC




GYDMMWYRQAPGKEREFVALITSDYSIRYEDSVEGRFSIS




RDNAKNTGYLLMSNLTPADTAIYYCKTSTAARESSWCRSR




YRVASWGQGTQVTVSS




(SEQ ID NO: 183)





184
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGITYRGVWMGWFRQA



-GGGS-
PGKEREGVATIYTGSGHTYYADSVKGRFTISQDNAKNTVY



IL12Rβ2 VHH
LQMNSLKPEDTAMYYCAARTVGGTFYTLAADSFNTWGQGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYTYT




NNFMAWFRQAPGKEREGVAAIYTGDGYAYYFDSVKGRFTI




SQDNDKNMLYLQMNSLKPEDTAMYYCAAMERRSGRRRMTE




NAEYKYWGQGTQVTVSS




(SEQ ID NO: 184)





185
IL12Rβ1 VHH
QVQLQESGGGSVQAGGSLRLSCAASGITYRGVWMGWFRQA



-GGGS-
PGKEREGVATIYTGSGHTYYADSVKGRFTISQDNAKNTVY



IL12Rβ2 VHH
LQMNSLKPEDTAMYYCAARTVGGTFYTLAADSFNTWGQGT




QVTVSSGGGSQVQLQESGGGSVQAGETLRLSCTVSGFTID




DSEMGWYRQAPGHECELVASGSSDDDTYYVDSVKGRFTIS




LDNAKNMVYLQMNSLKPEDTAVYYCATGPTYPPKDGDCAH




WGQGTQVTVSS




(SEQ ID NO: 185)





186
IL12Rβ1 VHH
QVQLQESGGGSVQDGGSLRLSCAASGDIYARNCMGWFRQA



-GGGS-
PGKEREKIAVADTGGRSPYYADSVKGRFTISRDNAKNTVD



IL12Rβ2 VHH
LQMNSLKPEDTAVYYCAAGPLVPVVNTAARCVYEYWGQGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCTASGYTYS




SAFMAWFRQAPGKEREGVAAIYTRDGGTVYADSVKGRFTI




SQDNAKNTLYLQMNSLKAEDTAMYYCAAKIPQPGRASLLD




SQTYDYWGQGTQVTVSS




(SEQ ID NO: 186)





187
IL12Rβ1 VHH
QVQLQESGGGSVQDGGSLRLSCAASGDIYARNCMGWFRQA



-GGGS-
PGKEREKIAVADTGGRSPYYADSVKGRFTISRDNAKNTVD



IL12Rβ2 VHH
LQMNSLKPEDTAVYYCAAGPLVPVVNTAARCVYEYWGQGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAVSGYDYC




GYDVRWYRQAPGKEREFVSGIDSDGSTSYADSVKGRFTIS




QDNAENTSYLHMFSLKPEDTAMYYCKTESPAGESAWCRNF




RGMDYWGKGTQVTVSS




(SEQ ID NO: 187)





188
IL12Rβ1 VHH
QVQLQESGGGSVQDGGSLRLSCAASGDIYARNCMGWFRQA



-GGGS-
PGKEREKIAVADTGGRSPYYADSVKGRFTISRDNAKNTVD



IL12Rβ2 VHH
LQMNSLKPEDTAVYYCAAGPLVPVVNTAARCVYEYWGQGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCVASGYSYC




GYDMMWYRQAPGKEREFVALITSDYSIRYEDSVEGRFSIS




RDNAKNTGYLLMSNLTPADTAIYYCKTSTAARESSWCRSR




YRVASWGQGTQVTVSS




(SEQ ID NO: 188)





189
IL12Rβ1 VHH
QVQLQESGGGSVQDGGSLRLSCAASGDIYARNCMGWFRQA



-GGGS-
PGKEREKIAVADTGGRSPYYADSVKGRFTISRDNAKNTVD



IL12Rβ2 VHH
LQMNSLKPEDTAVYYCAAGPLVPVVNTAARCVYEYWGQGT




QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYTYT




NNFMAWFRQAPGKEREGVAAIYTGDGYAYYFDSVKGRFTI




SQDNDKNMLYLQMNSLKPEDTAMYYCAAMERRSGRRRMTE




NAEYKYWGQGTQVTVSS




(SEQ ID NO: 189)





190
IL12Rβ1 VHH
QVQLQESGGGSVQDGGSLRLSCAASGDIYARNCMGWFRQA



-GGGS-
PGKEREKIAVADTGGRSPYYADSVKGRFTISRDNAKNTVD



IL12Rβ2 VHH
LQMNSLKPEDTAVYYCAAGPLVPVVNTAARCVYEYWGQGT




QVTVSSGGGSQVQLQESGGGSVQAGETLRLSCTVSGFTID




DSEMGWYRQAPGHECELVASGSSDDDTYYVDSVKGRFTIS




LDNAKNMVYLQMNSLKPEDTAVYYCATGPTYPPKDGDCAH




WGQGTQVTVSS




(SEQ ID NO: 190)





191
linker
GSGSGSGS





192
IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASRYLYSIDYMAWFRQS



VHH-
PGKEREPVAVIYTASGATFYPDSVKGRFTISQDNAKMTVY



GGGS-
LQMNSLKSEDTAMYYCAAVRKTDSYLFDAQSFTYWGQGTQ



IL10RβVHH-
VTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTYSS



ASH6
GCMGWFRQAPGKEREAVAAINSDGSTSYADSVKGRFTISK




DNAKNTLYLQMNSLKPEDTAMYYCAAEPYCSGGYPRWSVA




EFGYWGQGTQVTVSSASHHHHHH





193
IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASRYLYSIDYMAWFRQS



VHH-
PGKEREPVAVIYTASGATFYPDSVKGRFTISQDNAKMTVY



GGGS-
LQMNSLKSEDTAMYYCAAVRKTDSYLFDAQSFTYWGQGTQ



IL10RβVHH-
VTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTYSS



ASH6
YCMGWFRQAPGKEREGVAHIDSDGSTSYADSVKGRFTISK




DNAKNTLYLQMNSLKPEDTAMYYCAADPIPGPGYCDGGPN




KYWGQGTQVTVSSASHHHHHH





194
IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASRYLYSIDYMAWFRQS



VHH-
PGKEREPVAVIYTASGATFYPDSVKGRFTISQDNAKMTVY



GGGS-
LQMNSLKSEDTAMYYCAAVRKTDSYLFDAQSFTYWGQGTQ



IL10RβVHH-
VTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYTYNS



ASH6
YCMGWFRQAPGKEREGVATIDSDGMTRYADSVKGRFTISK




DNAKNTLYLQMNSLKPEDTAMYYCAADADCTIAAMTTNPL




GQGTQVTVSSASHHHHHH





195
IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASRYLYSIDYMAWFRQS



VHH-
PGKEREPVAVIYTASGATFYPDSVKGRFTISQDNAKMTVY



GGGS-
LQMNSLKSEDTAMYYCAAVRKTDSYLFDAQSFTYWGQGTQ



IL10RβVHH-
VTVSSGGGSQVQLQESGGGSVQAGGSLRLSCTVSRYTASV



ASH6
NYMGWFRQAPGKEREGVATIFTGAGTTYYANSVKGRFTIS




RDNAKNTAYLQMNSLKPEDTAIYYCAVDFRGGLLYRPAYE




YTYRGQGTQVTVSSASHHHHHH





196
IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASRYLYSIDYMAWFRQS



VHH-
PGKEREPVAVIYTASGATFYPDSVKGRFTISQDNAKMTVY



GGGS-
LQMNSLKSEDTAMYYCAAVRKTDSYLFDAQSFTYWGQGTQ



IL10RβVHH-
VTVSSGGGSQVQLQESGGGSVEAGGSLRLSCAASGYTHSS



ASH6
YCMGWFRQAPGKEREGVAAIDVDGSTTYADSVKGRFTISK




DNAKNTLYLQMNSLKPEDTGMYYCAAEFADCSSNYFLPPG




AVRYWGQGTQVTVSSASHHHHHH





197
IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASRYLYSIDYMAWFRQS



VHH-
PGKEREPVAVIYTASGATFYPDSVKGRFTISQDNAKMTVY



GGGS-
LQMNSLKSEDTAMYYCAAVRKTDSYLFDAQSFTYWGQGTQ



IL10RβVHH-
VTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYSYSS



ASH6
YCMGWFRQAPGKEREGVATIDSDGMTRYADSVKGRFTISK




DNAKNTLYLQMNSLKPEDTAMYYCAAPLYDCDSGAVGRNP




PYWGQGTQVTVSSASHHHHHH





198
IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASRYLYSIDYMAWFRQS



VHH-
PGKEREPVAVIYTASGATFYPDSVKGRFTISQDNAKMTVY



GGGS-
LQMNSLKSEDTAMYYCAAVRKTDSYLFDAQSFTYWGQGTQ



IL10RβVHH-
VTVSSGGGSQVQLQESGGGSVQTGGSLRLSCAASGYTYLR



ASH6
GCMGWFRQAPGKEREGVAVMDVVGDRRSYIDSVKGRFTIS




RDNAANSVYLQMDNLKPEDTAMYYCTAGPNCVGWRSGLDY




WGQGTQVTVSSASHHHHHH





199
IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASRFTYSSYCMGWFRQA



VHH-
PGKEREGVASIDSDGSTSYTDSVKGRFTISKDNAKNTLYL



GGGS-
QMNSLKPEDTAMYYCALDLMSTVVPGFCGFLLSAGMDYWG



IL10RβVHH-
KGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGY



ASH6
TYSSGCMGWFRQAPGKEREAVAAINSDGSTSYADSVKGRF




TISKDNAKNTLYLQMNSLKPEDTAMYYCAAEPYCSGGYPR




WSVAEFGYWGQGTQVTVSSASHHHHHH





200
IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASRFTYSSYCMGWFRQA



VHH-
PGKEREGVASIDSDGSTSYTDSVKGRFTISKDNAKNTLYL



GGGS-
QMNSLKPEDTAMYYCALDLMSTVVPGFCGFLLSAGMDYWG



IL10RβVHH-
KGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGY



ASH6
TYSSYCMGWFRQAPGKEREGVAHIDSDGSTSYADSVKGRF




TISKDNAKNTLYLQMNSLKPEDTAMYYCAADPIPGPGYCD




GGPNKYWGQGTQVTVSSASHHHHHH





201
IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASRFTYSSYCMGWFRQA



VHH-
PGKEREGVASIDSDGSTSYTDSVKGRFTISKDNAKNTLYL



GGGS-
QMNSLKPEDTAMYYCALDLMSTVVPGFCGFLLSAGMDYWG



IL10Rα
KGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRY



VHH-
TYNSYCMGWFRQAPGKEREGVATIDSDGMTRYADSVKGRF



ASH6
TISKDNAKNTLYLQMNSLKPEDTAMYYCAADADCTIAAMT




TNPLGQGTQVTVSSASHHHHHH





202
IL10Rα
QVQLQESGGGSVQAGGSLRLSCAASRFTYSSYCMGWFRQA



VHH-
PGKEREGVASIDSDGSTSYTDSVKGRFTISKDNAKNTLYL



GGGS-
QMNSLKPEDTAMYYCALDLMSTVVPGFCGFLLSAGMDYWG



IL10RβVHH-
KGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCTVSRY



ASH6
TASVNYMGWFRQAPGKEREGVATIFTGAGTTYYANSVKGR




FTISRDNAKNTAYLQMNSLKPEDTAIYYCAVDFRGGLLYR




PAYEYTYRGQGTQVTVSSASHHHHHH





203
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASRFTYSSYCMGWFRQA



GGGS-
PGKEREGVASIDSDGSTSYTDSVKGRFTISKDNAKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCALDLMSTVVPGFCGFLLSAGMDYWG



ASH6
KGTQVTVSSGGGSQVQLQESGGGSVEAGGSLRLSCAASGY




THSSYCMGWFRQAPGKEREGVAAIDVDGSTTYADSVKGRF




TISKDNAKNTLYLQMNSLKPEDTGMYYCAAEFADCSSNYF




LPPGAVRYWGQGTQVTVSSASHHHHHH





204
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASRFTYSSYCMGWFRQA



GGGS-
PGKEREGVASIDSDGSTSYTDSVKGRFTISKDNAKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCALDLMSTVVPGFCGFLLSAGMDYWG



ASH6
KGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGY




SYSSYCMGWFRQAPGKEREGVATIDSDGMTRYADSVKGRF




TISKDNAKNTLYLQMNSLKPEDTAMYYCAAPLYDCDSGAV




GRNPPYWGQGTQVTVSSASHHHHHH





205
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASRFTYSSYCMGWFRQA



GGGS-
PGKEREGVASIDSDGSTSYTDSVKGRFTISKDNAKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCALDLMSTVVPGFCGFLLSAGMDYWG



ASH6
KGTQVTVSSGGGSQVQLQESGGGSVQTGGSLRLSCAASGY




TYLRGCMGWFRQAPGKEREGVAVMDVVGDRRSYIDSVKGR




FTISRDNAANSVYLQMDNLKPEDTAMYYCTAGPNCVGWRS




GLDYWGQGTQVTVSSASHHHHHH





206
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSMYCMGWFRQA



GGGS-
PGKEREGVAQINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADSRVYGGSWYERLCGPYTYEYNY



ASH6
WGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAAS




GYTYSSGCMGWFRQAPGKEREAVAAINSDGSTSYADSVKG




RFTISKDNAKNTLYLQMNSLKPEDTAMYYCAAEPYCSGGY




PRWSVAEFGYWGQGTQVTVSSASHHHHHH





207
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSMYCMGWFRQA



GGGS-
PGKEREGVAQINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADSRVYGGSWYERLCGPYTYEYNY



ASH6
WGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAAS




GYTYSSYCMGWFRQAPGKEREGVAHIDSDGSTSYADSVKG




RFTISKDNAKNTLYLQMNSLKPEDTAMYYCAADPIPGPGY




CDGGPNKYWGQGTQVTVSSASHHHHHH





208
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSMYCMGWFRQA



GGGS-
PGKEREGVAQINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADSRVYGGSWYERLCGPYTYEYNY



ASH6
WGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAAS




RYTYNSYCMGWFRQAPGKEREGVATIDSDGMTRYADSVKG




RFTISKDNAKNTLYLQMNSLKPEDTAMYYCAADADCTIAA




MTTNPLGQGTQVTVSSASHHHHHH





209
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSMYCMGWFRQA



GGGS-
PGKEREGVAQINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADSRVYGGSWYERLCGPYTYEYNY



ASH6
WGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCTVS




RYTASVNYMGWFRQAPGKEREGVATIFTGAGTTYYANSVK




GRFTISRDNAKNTAYLQMNSLKPEDTAIYYCAVDFRGGLL




YRPAYEYTYRGQGTQVTVSSASHHHHHH





210
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSMYCMGWFRQA



GGGS-
PGKEREGVAQINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADSRVYGGSWYERLCGPYTYEYNY



ASH6
WGQGTQVTVSSGGGSQVQLQESGGGSVEAGGSLRLSCAAS




GYTHSSYCMGWFRQAPGKEREGVAAIDVDGSTTYADSVKG




RFTISKDNAKNTLYLQMNSLKPEDTGMYYCAAEFADCSSN




YFLPPGAVRYWGQGTQVTVSSASHHHHHH





211
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSMYCMGWFRQA



GGGS-
PGKEREGVAQINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADSRVYGGSWYERLCGPYTYEYNY



ASH6
WGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAAS




GYSYSSYCMGWFRQAPGKEREGVATIDSDGMTRYADSVKG




RFTISKDNAKNTLYLQMNSLKPEDTAMYYCAAPLYDCDSG




AVGRNPPYWGQGTQVTVSSASHHHHHH





212
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSMYCMGWFRQA



GGGS-
PGKEREGVAQINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADSRVYGGSWYERLCGPYTYEYNY



ASH6
WGQGTQVTVSSGGGSQVQLQESGGGSVQTGGSLRLSCAAS




GYTYLRGCMGWFRQAPGKEREGVAVMDVVGDRRSYIDSVK




GRFTISRDNAANSVYLQMDNLKPEDTAMYYCTAGPNCVGW




RSGLDYWGQGTQVTVSSASHHHHHH





213
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAVSGYAYSTYCMGWFRQA



GGGS-
PGKEREGVAAIDSGGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
RMNSLKPEDTAMYYCAAVPPPPDGGSCLFLGPEIKVSKAD



ASH6
FRYWGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSC




AASGYTYSSGCMGWFRQAPGKEREAVAAINSDGSTSYADS




VKGRFTISKDNAKNTLYLQMNSLKPEDTAMYYCAAEPYCS




GGYPRWSVAEFGYWGQGTQVTVSSASHHHHHH





214
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAVSGYAYSTYCMGWFRQA



GGGS-
PGKEREGVAAIDSGGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
RMNSLKPEDTAMYYCAAVPPPPDGGSCLFLGPEIKVSKAD



ASH6
FRYWGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSC




AASGYTYSSYCMGWFRQAPGKEREGVAHIDSDGSTSYADS




VKGRFTISKDNAKNTLYLQMNSLKPEDTAMYYCAADPIPG




PGYCDGGPNKYWGQGTQVTVSSASHHHHHH





215
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAVSGYAYSTYCMGWFRQA



GGGS-
PGKEREGVAAIDSGGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
RMNSLKPEDTAMYYCAAVPPPPDGGSCLFLGPEIKVSKAD



ASH6
FRYWGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSC




AASRYTYNSYCMGWFRQAPGKEREGVATIDSDGMTRYADS




VKGRFTISKDNAKNTLYLQMNSLKPEDTAMYYCAADADCT




IAAMTTNPLGQGTQVTVSSASHHHHHH





216
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAVSGYAYSTYCMGWFRQA



GGGS-
PGKEREGVAAIDSGGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
RMNSLKPEDTAMYYCAAVPPPPDGGSCLFLGPEIKVSKAD



ASH6
FRYWGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSC




TVSRYTASVNYMGWFRQAPGKEREGVATIFTGAGTTYYAN




SVKGRFTISRDNAKNTAYLQMNSLKPEDTAIYYCAVDFRG




GLLYRPAYEYTYRGQGTQVTVSSASHHHHHH





217
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAVSGYAYSTYCMGWFRQA



GGGS-
PGKEREGVAAIDSGGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
RMNSLKPEDTAMYYCAAVPPPPDGGSCLFLGPEIKVSKAD



ASH6
FRYWGQGTQVTVSSGGGSQVQLQESGGGSVEAGGSLRLSC




AASGYTHSSYCMGWFRQAPGKEREGVAAIDVDGSTTYADS




VKGRFTISKDNAKNTLYLQMNSLKPEDTGMYYCAAEFADC




SSNYFLPPGAVRYWGQGTQVTVSSASHHHHHH





218
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAVSGYAYSTYCMGWFRQA



GGGS-
PGKEREGVAAIDSGGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
RMNSLKPEDTAMYYCAAVPPPPDGGSCLFLGPEIKVSKAD



ASH6
FRYWGQGTQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSC




AASGYSYSSYCMGWFRQAPGKEREGVATIDSDGMTRYADS




VKGRFTISKDNAKNTLYLQMNSLKPEDTAMYYCAAPLYDC




DSGAVGRNPPYWGQGTQVTVSSASHHHHHH





219
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAVSGYAYSTYCMGWFRQA



GGGS-
PGKEREGVAAIDSGGSTSYADSVKGRFTISKDNAKNTLYL



IL10RβVHH-
RMNSLKPEDTAMYYCAAVPPPPDGGSCLFLGPEIKVSKAD



ASH6
FRYWGQGTQVTVSSGGGSQVQLQESGGGSVQTGGSLRLSC




AASGYTYLRGCMGWFRQAPGKEREGVAVMDVVGDRRSYID




SVKGRFTISRDNAANSVYLQMDNLKPEDTAMYYCTAGPNC




VGWRSGLDYWGQGTQVTVSSASHHHHHH





220
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCTVSGYTYSSNCMGWFRQA



GGGS-
PGKEREGVATIYTGGGNTYYADSVKGRFTISQDNAKNTVY



IL10RβVHH-
LQMNNLKPEDTAMYYCAAEPLSRVYGGSCPTPTFDYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTY




SSGCMGWFRQAPGKEREAVAAINSDGSTSYADSVKGRFTI




SKDNAKNTLYLQMNSLKPEDTAMYYCAAEPYCSGGYPRWS




VAEFGYWGQGTQVTVSSASHHHHHH





221
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCTVSGYTYSSNCMGWFRQA



GGGS-
PGKEREGVATIYTGGGNTYYADSVKGRFTISQDNAKNTVY



IL10RβVHH-
LQMNNLKPEDTAMYYCAAEPLSRVYGGSCPTPTFDYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTY




SSYCMGWFRQAPGKEREGVAHIDSDGSTSYADSVKGRFTI




SKDNAKNTLYLQMNSLKPEDTAMYYCAADPIPGPGYCDGG




PNKYWGQGTQVTVSSASHHHHHH





222
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCTVSGYTYSSNCMGWFRQA



GGGS-
PGKEREGVATIYTGGGNTYYADSVKGRFTISQDNAKNTVY



IL10RβVHH-
LQMNNLKPEDTAMYYCAAEPLSRVYGGSCPTPTFDYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYTY




NSYCMGWFRQAPGKEREGVATIDSDGMTRYADSVKGRFTI




SKDNAKNTLYLQMNSLKPEDTAMYYCAADADCTIAAMTTN




PLGQGTQVTVSSASHHHHHH





223
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCTVSGYTYSSNCMGWFRQA



GGGS-
PGKEREGVATIYTGGGNTYYADSVKGRFTISQDNAKNTVY



IL10RβVHH-
LQMNNLKPEDTAMYYCAAEPLSRVYGGSCPTPTFDYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCTVSRYTA




SVNYMGWFRQAPGKEREGVATIFTGAGTTYYANSVKGRFT




ISRDNAKNTAYLQMNSLKPEDTAIYYCAVDFRGGLLYRPA




YEYTYRGQGTQVTVSSASHHHHHH





224
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCTVSGYTYSSNCMGWFRQA



GGGS-
PGKEREGVATIYTGGGNTYYADSVKGRFTISQDNAKNTVY



IL10RβVHH-
LQMNNLKPEDTAMYYCAAEPLSRVYGGSCPTPTFDYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVEAGGSLRLSCAASGYTH




SSYCMGWFRQAPGKEREGVAAIDVDGSTTYADSVKGRFTI




SKDNAKNTLYLQMNSLKPEDTGMYYCAAEFADCSSNYFLP




PGAVRYWGQGTQVTVSSASHHHHHH





225
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCTVSGYTYSSNCMGWFRQA



GGGS-
PGKEREGVATIYTGGGNTYYADSVKGRFTISQDNAKNTVY



IL10RβVHH-
LQMNNLKPEDTAMYYCAAEPLSRVYGGSCPTPTFDYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYSY




SSYCMGWFRQAPGKEREGVATIDSDGMTRYADSVKGRFTI




SKDNAKNTLYLQMNSLKPEDTAMYYCAAPLYDCDSGAVGR




NPPYWGQGTQVTVSSASHHHHHH





226
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCTVSGYTYSSNCMGWFRQA



GGGS
PGKEREGVATIYTGGGNTYYADSVKGRFTISQDNAKNTVY



IL10RβVHH-
LQMNNLKPEDTAMYYCAAEPLSRVYGGSCPTPTFDYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVQTGGSLRLSCAASGYTY




LRGCMGWFRQAPGKEREGVAVMDVVGDRRSYIDSVKGRFT




ISRDNAANSVYLQMDNLKPEDTAMYYCTAGPNCVGWRSGL




DYWGQGTQVTVSSASHHHHHH





227
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCGASGYTYSSYCMGWFRQV



GGGS-
PGKEREGVAVIDSDGSTSYADSVKGRFTISKDNGKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADLGHYRPPCGVLYLGMDYWGKGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTYS




SGCMGWFRQAPGKEREAVAAINSDGSTSYADSVKGRFTIS




KDNAKNTLYLQMNSLKPEDTAMYYCAAEPYCSGGYPRWSV




AEFGYWGQGTQVTVSSASHHHHHH





228
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCGASGYTYSSYCMGWFRQV



GGGS-
PGKEREGVAVIDSDGSTSYADSVKGRFTISKDNGKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADLGHYRPPCGVLYLGMDYWGKGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTYS




SYCMGWFRQAPGKEREGVAHIDSDGSTSYADSVKGRFTIS




KDNAKNTLYLQMNSLKPEDTAMYYCAADPIPGPGYCDGGP




NKYWGQGTQVTVSSASHHHHHH





229
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCGASGYTYSSYCMGWFRQV



GGGS-
PGKEREGVAVIDSDGSTSYADSVKGRFTISKDNGKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADLGHYRPPCGVLYLGMDYWGKGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYTYN




SYCMGWFRQAPGKEREGVATIDSDGMTRYADSVKGRFTIS




KDNAKNTLYLQMNSLKPEDTAMYYCAADADCTIAAMTTNP




LGQGTQVTVSSASHHHHHH





230
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCGASGYTYSSYCMGWFRQV



GGGS-
PGKEREGVAVIDSDGSTSYADSVKGRFTISKDNGKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADLGHYRPPCGVLYLGMDYWGKGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCTVSRYTAS




VNYMGWFRQAPGKEREGVATIFTGAGTTYYANSVKGRFTI




SRDNAKNTAYLQMNSLKPEDTAIYYCAVDFRGGLLYRPAY




EYTYRGQGTQVTVSSASHHHHHH





231
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCGASGYTYSSYCMGWFRQV



GGGS-
PGKEREGVAVIDSDGSTSYADSVKGRFTISKDNGKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADLGHYRPPCGVLYLGMDYWGKGT



ASH6
QVTVSSGGGSQVQLQESGGGSVEAGGSLRLSCAASGYTHS




SYCMGWFRQAPGKEREGVAAIDVDGSTTYADSVKGRFTIS




KDNAKNTLYLQMNSLKPEDTGMYYCAAEFADCSSNYFLPP




GAVRYWGQGTQVTVSSASHHHHHH





232
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCGASGYTYSSYCMGWFRQV



GGGS-
PGKEREGVAVIDSDGSTSYADSVKGRFTISKDNGKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADLGHYRPPCGVLYLGMDYWGKGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYSYS




SYCMGWFRQAPGKEREGVATIDSDGMTRYADSVKGRFTIS




KDNAKNTLYLQMNSLKPEDTAMYYCAAPLYDCDSGAVGRN




PPYWGQGTQVTVSSASHHHHHH





233
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCGASGYTYSSYCMGWFRQV



GGGS-
PGKEREGVAVIDSDGSTSYADSVKGRFTISKDNGKNTLYL



IL10RβVHH-
QMNSLKPEDTAMYYCAADLGHYRPPCGVLYLGMDYWGKGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQTGGSLRLSCAASGYTYL




RGCMGWFRQAPGKEREGVAVMDVVGDRRSYIDSVKGRFTI




SRDNAANSVYLQMDNLKPEDTAMYYCTAGPNCVGWRSGLD




YWGQGTQVTVSSASHHHHHH





234
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSNCSYDMTWYRQA



GGGS-
PGKEREFVSAIHSDGSTRYADSVKGRFFISQDNAKNTVYL



IL10RβVHH-
QMNSLKPEDTAMYYCKTDPLHCRAHGGSWYSVRANYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTY




SSGCMGWFRQAPGKEREAVAAINSDGSTSYADSVKGRFTI




SKDNAKNTLYLQMNSLKPEDTAMYYCAAEPYCSGGYPRWS




VAEFGYWGQGTQVTVSSASHHHHHH





235
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSNCSYDMTWYRQA



GGGS-
PGKEREFVSAIHSDGSTRYADSVKGRFFISQDNAKNTVYL



IL10RβVHH-
QMNSLKPEDTAMYYCKTDPLHCRAHGGSWYSVRANYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTY




SSYCMGWFRQAPGKEREGVAHIDSDGSTSYADSVKGRFTI




SKDNAKNTLYLQMNSLKPEDTAMYYCAADPIPGPGYCDGG




PNKYWGQGTQVTVSSASHHHHHH





236
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSNCSYDMTWYRQA



GGGS-
PGKEREFVSAIHSDGSTRYADSVKGRFFISQDNAKNTVYL



IL10RβVHH-
QMNSLKPEDTAMYYCKTDPLHCRAHGGSWYSVRANYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYTY




NSYCMGWFRQAPGKEREGVATIDSDGMTRYADSVKGRFTI




SKDNAKNTLYLQMNSLKPEDTAMYYCAADADCTIAAMTTN




PLGQGTQVTVSSASHHHHHH





237
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSNCSYDMTWYRQA



GGGS-
PGKEREFVSAIHSDGSTRYADSVKGRFFISQDNAKNTVYL



IL10RβVHH-
QMNSLKPEDTAMYYCKTDPLHCRAHGGSWYSVRANYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCTVSRYTA




SVNYMGWFRQAPGKEREGVATIFTGAGTTYYANSVKGRFT




ISRDNAKNTAYLQMNSLKPEDTAIYYCAVDFRGGLLYRPA




YEYTYRGQGTQVTVSSASHHHHHH





238
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSNCSYDMTWYRQA



GGGS-
PGKEREFVSAIHSDGSTRYADSVKGRFFISQDNAKNTVYL



IL10RβVHH-
QMNSLKPEDTAMYYCKTDPLHCRAHGGSWYSVRANYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVEAGGSLRLSCAASGYTH




SSYCMGWFRQAPGKEREGVAAIDVDGSTTYADSVKGRFTI




SKDNAKNTLYLQMNSLKPEDTGMYYCAAEFADCSSNYFLP




PGAVRYWGQGTQVTVSSASHHHHHH





239
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSNCSYDMTWYRQA



GGGS-
PGKEREFVSAIHSDGSTRYADSVKGRFFISQDNAKNTVYL



IL10RβVHH-
QMNSLKPEDTAMYYCKTDPLHCRAHGGSWYSVRANYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYSY




SSYCMGWFRQAPGKEREGVATIDSDGMTRYADSVKGRFTI




SKDNAKNTLYLQMNSLKPEDTAMYYCAAPLYDCDSGAVGR




NPPYWGQGTQVTVSSASHHHHHH





240
IL10Rα VHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSNCSYDMTWYRQA



GGGS-
PGKEREFVSAIHSDGSTRYADSVKGRFFISQDNAKNTVYL



IL10RβVHH-
QMNSLKPEDTAMYYCKTDPLHCRAHGGSWYSVRANYWGQG



ASH6
TQVTVSSGGGSQVQLQESGGGSVQTGGSLRLSCAASGYTY




LRGCMGWFRQAPGKEREGVAVMDVVGDRRSYIDSVKGRFT




ISRDNAANSVYLQMDNLKPEDTAMYYCTAGPNCVGWRSGL




DYWGQGTQVTVSSASHHHHHH





241
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSGCMGWFRQA



GGGS-
PGKEREAVAAINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAEPYCSGGYPRWSVAEFGYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYLYS




IDYMAWFRQSPGKEREPVAVIYTASGATFYPDSVKGRFTI




SQDNAKMTVYLQMNSLKSEDTAMYYCAAVRKTDSYLFDAQ




SFTYWGQGTQVTVSSASHHHHHH





242
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSGCMGWFRQA



GGGS-
PGKEREAVAAINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAEPYCSGGYPRWSVAEFGYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRFTYS




SYCMGWFRQAPGKEREGVASIDSDGSTSYTDSVKGRFTIS




KDNAKNTLYLQMNSLKPEDTAMYYCALDLMSTVVPGFCGF




LLSAGMDYWGKGTQVTVSSASHHHHHH





243
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSGCMGWFRQA



GGGS-
PGKEREAVAAINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAEPYCSGGYPRWSVAEFGYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTYS




MYCMGWFRQAPGKEREGVAQINSDGSTSYADSVKGRFTIS




KDNAKNTLYLQMNSLKPEDTAMYYCAADSRVYGGSWYERL




CGPYTYEYNYWGQGTQVTVSSASHHHHHH





244
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSGCMGWFRQA



GGGS-
PGKEREAVAAINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAEPYCSGGYPRWSVAEFGYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAVSGYAYS




TYCMGWFRQAPGKEREGVAAIDSGGSTSYADSVKGRFTIS




KDNAKNTLYLRMNSLKPEDTAMYYCAAVPPPPDGGSCLFL




GPEIKVSKADFRYWGQGTQVTVSSASHHHHHH





245
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSGCMGWFRQA



GGGS-
PGKEREAVAAINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAEPYCSGGYPRWSVAEFGYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCTVSGYTYS




SNCMGWFRQAPGKEREGVATIYTGGGNTYYADSVKGRFTI




SQDNAKNTVYLQMNNLKPEDTAMYYCAAEPLSRVYGGSCP




TPTFDYWGQGTQVTVSSASHHHHHH





246
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSGCMGWFRQA



GGGS-
PGKEREAVAAINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAEPYCSGGYPRWSVAEFGYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCGASGYTYS




SYCMGWFRQVPGKEREGVAVIDSDGSTSYADSVKGRFTIS




KDNGKNTLYLQMNSLKPEDTAMYYCAADLGHYRPPCGVLY




LGMDYWGKGTQVTVSSASHHHHHH





247
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSGCMGWFRQA



GGGS-
PGKEREAVAAINSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAEPYCSGGYPRWSVAEFGYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYSNC




SYDMTWYRQAPGKEREFVSAIHSDGSTRYADSVKGRFFIS




QDNAKNTVYLQMNSLKPEDTAMYYCKTDPLHCRAHGGSWY




SVRANYWGQGTQVTVSSASHHHHHH





248
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSYCMGWFRQA



GGGS-
PGKEREGVAHIDSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADPIPGPGYCDGGPNKYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYLYSID




YMAWFRQSPGKEREPVAVIYTASGATFYPDSVKGRFTISQ




DNAKMTVYLQMNSLKSEDTAMYYCAAVRKTDSYLFDAQSF




TYWGQGTQVTVSSASHHHHHH





249
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSYCMGWFRQA



GGGS-
PGKEREGVAHIDSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADPIPGPGYCDGGPNKYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRFTYSSY




CMGWFRQAPGKEREGVASIDSDGSTSYTDSVKGRFTISKD




NAKNTLYLQMNSLKPEDTAMYYCALDLMSTVVPGFCGFLL




SAGMDYWGKGTQVTVSSASHHHHHH





250
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSYCMGWFRQA



GGGS-
PGKEREGVAHIDSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADPIPGPGYCDGGPNKYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTYSMY




CMGWFRQAPGKEREGVAQINSDGSTSYADSVKGRFTISKD




NAKNTLYLQMNSLKPEDTAMYYCAADSRVYGGSWYERLCG




PYTYEYNYWGQGTQVTVSSASHHHHHH





251
IL10RVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSYCMGWFRQA



GGGS-
PGKEREGVAHIDSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADPIPGPGYCDGGPNKYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCAVSGYAYSTY




CMGWFRQAPGKEREGVAAIDSGGSTSYADSVKGRFTISKD




NAKNTLYLRMNSLKPEDTAMYYCAAVPPPPDGGSCLFLGP




EIKVSKADFRYWGQGTQVTVSSASHHHHHH





252
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSYCMGWFRQA



GGGS-
PGKEREGVAHIDSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADPIPGPGYCDGGPNKYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCTVSGYTYSSN




CMGWFRQAPGKEREGVATIYTGGGNTYYADSVKGRFTISQ




DNAKNTVYLQMNNLKPEDTAMYYCAAEPLSRVYGGSCPTP




TFDYWGQGTQVTVSSASHHHHHH





253
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSYCMGWFRQA



GGGS-
PGKEREGVAHIDSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADPIPGPGYCDGGPNKYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCGASGYTYSSY




CMGWFRQVPGKEREGVAVIDSDGSTSYADSVKGRFTISKD




NGKNTLYLQMNSLKPEDTAMYYCAADLGHYRPPCGVLYLG




MDYWGKGTQVTVSSASHHHHHH





254
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYTYSSYCMGWFRQA



GGGS-
PGKEREGVAHIDSDGSTSYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADPIPGPGYCDGGPNKYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYSNCSY




DMTWYRQAPGKEREFVSAIHSDGSTRYADSVKGRFFISQD




NAKNTVYLQMNSLKPEDTAMYYCKTDPLHCRAHGGSWYSV




RANYWGQGTQVTVSSASHHHHHH





255
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASRYTYNSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADADCTIAAMTTNPLGQGTQVTVS



ASH6
SGGGSQVQLQESGGGSVQAGGSLRLSCAASRYLYSIDYMA




WFRQSPGKEREPVAVIYTASGATFYPDSVKGRFTISQDNA




KMTVYLQMNSLKSEDTAMYYCAAVRKTDSYLFDAQSFTYW




GQGTQVTVSSASHHHHHH





256
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASRYTYNSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADADCTIAAMTTNPLGQGTQVTVS



ASH6
SGGGSQVQLQESGGGSVQAGGSLRLSCAASRFTYSSYCMG




WFRQAPGKEREGVASIDSDGSTSYTDSVKGRFTISKDNAK




NTLYLQMNSLKPEDTAMYYCALDLMSTVVPGFCGFLLSAG




MDYWGKGTQVTVSSASHHHHHH





257
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASRYTYNSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADADCTIAAMTTNPLGQGTQVTVS



ASH6
SGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTYSMYCMG




WFRQAPGKEREGVAQINSDGSTSYADSVKGRFTISKDNAK




NTLYLQMNSLKPEDTAMYYCAADSRVYGGSWYERLCGPYT




YEYNYWGQGTQVTVSSASHHHHHH





258
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASRYTYNSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADADCTIAAMTTNPLGQGTQVTVS



ASH6
SGGGSQVQLQESGGGSVQAGGSLRLSCAVSGYAYSTYCMG




WFRQAPGKEREGVAAIDSGGSTSYADSVKGRFTISKDNAK




NTLYLRMNSLKPEDTAMYYCAAVPPPPDGGSCLFLGPEIK




VSKADFRYWGQGTQVTVSSASHHHHHH





259
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASRYTYNSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADADCTIAAMTTNPLGQGTQVTVS



ASH6
SGGGSQVQLQESGGGSVQAGGSLRLSCTVSGYTYSSNCMG




WFRQAPGKEREGVATIYTGGGNTYYADSVKGRFTISQDNA




KNTVYLQMNNLKPEDTAMYYCAAEPLSRVYGGSCPTPTFD




YWGQGTQVTVSSASHHHHHH





260
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASRYTYNSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADADCTIAAMTTNPLGQGTQVTVS



ASH6
SGGGSQVQLQESGGGSVQAGGSLRLSCGASGYTYSSYCMG




WFRQVPGKEREGVAVIDSDGSTSYADSVKGRFTISKDNGK




NTLYLQMNSLKPEDTAMYYCAADLGHYRPPCGVLYLGMDY




WGKGTQVTVSSASHHHHHH





261
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASRYTYNSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAADADCTIAAMTTNPLGQGTQVTVS



ASH6
SGGGSQVQLQESGGGSVQAGGSLRLSCAASGYSNCSYDMT




WYRQAPGKEREFVSAIHSDGSTRYADSVKGRFFISQDNAK




NTVYLQMNSLKPEDTAMYYCKTDPLHCRAHGGSWYSVRAN




YWGQGTQVTVSSASHHHHHH





262
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCTVSRYTASVNYMGWFRQA



GGGS-
PGKEREGVATIFTGAGTTYYANSVKGRFTISRDNAKNTAY



IL10Rα VHH-
LQMNSLKPEDTAIYYCAVDFRGGLLYRPAYEYTYRGQGTQ



ASH6
VTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYLYSI




DYMAWFRQSPGKEREPVAVIYTASGATFYPDSVKGRFTIS




QDNAKMTVYLQMNSLKSEDTAMYYCAAVRKTDSYLFDAQS




FTYWGQGTQVTVSSASHHHHHH





263
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCTVSRYTASVNYMGWFRQA



GGGS-
PGKEREGVATIFTGAGTTYYANSVKGRFTISRDNAKNTAY



IL10Rα VHH-
LQMNSLKPEDTAIYYCAVDFRGGLLYRPAYEYTYRGQGTQ



ASH6
VTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRFTYSS




YCMGWFRQAPGKEREGVASIDSDGSTSYTDSVKGRFTISK




DNAKNTLYLQMNSLKPEDTAMYYCALDLMSTVVPGFCGFL




LSAGMDYWGKGTQVTVSSASHHHHHH





264
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCTVSRYTASVNYMGWFRQA



GGGS-
PGKEREGVATIFTGAGTTYYANSVKGRFTISRDNAKNTAY



IL10Rα VHH-
LQMNSLKPEDTAIYYCAVDFRGGLLYRPAYEYTYRGQGTQ



ASH6
VTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTYSM




YCMGWFRQAPGKEREGVAQINSDGSTSYADSVKGRFTISK




DNAKNTLYLQMNSLKPEDTAMYYCAADSRVYGGSWYERLC




GPYTYEYNYWGQGTQVTVSSASHHHHHH





265
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCTVSRYTASVNYMGWFRQA



GGGS-
PGKEREGVATIFTGAGTTYYANSVKGRFTISRDNAKNTAY



IL10Rα VHH-
LQMNSLKPEDTAIYYCAVDFRGGLLYRPAYEYTYRGQGTQ



ASH6
VTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAVSGYAYST




YCMGWFRQAPGKEREGVAAIDSGGSTSYADSVKGRFTISK




DNAKNTLYLRMNSLKPEDTAMYYCAAVPPPPDGGSCLFLG




PEIKVSKADFRYWGQGTQVTVSSASHHHHHH





266
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCTVSRYTASVNYMGWFRQA



GGGS-
PGKEREGVATIFTGAGTTYYANSVKGRFTISRDNAKNTAY



IL10Rα VHH-
LQMNSLKPEDTAIYYCAVDFRGGLLYRPAYEYTYRGQGTQ



ASH6
VTVSSGGGSQVQLQESGGGSVQAGGSLRLSCTVSGYTYSS




NCMGWFRQAPGKEREGVATIYTGGGNTYYADSVKGRFTIS




QDNAKNTVYLQMNNLKPEDTAMYYCAAEPLSRVYGGSCPT




PTFDYWGQGTQVTVSSASHHHHHH





267
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCTVSRYTASVNYMGWFRQA



GGGS-
PGKEREGVATIFTGAGTTYYANSVKGRFTISRDNAKNTAY



IL10Rα VHH-
LQMNSLKPEDTAIYYCAVDFRGGLLYRPAYEYTYRGQGTQ



ASH6
VTVSSGGGSQVQLQESGGGSVQAGGSLRLSCGASGYTYSS




YCMGWFRQVPGKEREGVAVIDSDGSTSYADSVKGRFTISK




DNGKNTLYLQMNSLKPEDTAMYYCAADLGHYRPPCGVLYL




GMDYWGKGTQVTVSSASHHHHHH





268
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCTVSRYTASVNYMGWFRQA



GGGS-
PGKEREGVATIFTGAGTTYYANSVKGRFTISRDNAKNTAY



IL10Rα VHH-
LQMNSLKPEDTAIYYCAVDFRGGLLYRPAYEYTYRGQGTQ



ASH6
VTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYSNCS




YDMTWYRQAPGKEREFVSAIHSDGSTRYADSVKGRFFISQ




DNAKNTVYLQMNSLKPEDTAMYYCKTDPLHCRAHGGSWYS




VRANYWGQGTQVTVSSASHHHHHH





269
IL10RβVHH-
QVQLQESGGGSVEAGGSLRLSCAASGYTHSSYCMGWFRQA



GGGS-
PGKEREGVAAIDVDGSTTYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTGMYYCAAEFADCSSNYFLPPGAVRYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYLYS




IDYMAWFRQSPGKEREPVAVIYTASGATFYPDSVKGRFTI




SQDNAKMTVYLQMNSLKSEDTAMYYCAAVRKTDSYLFDAQ




SFTYWGQGTQVTVSSASHHHHHH





270
IL10RβVHH-
QVQLQESGGGSVEAGGSLRLSCAASGYTHSSYCMGWFRQA



GGGS-
PGKEREGVAAIDVDGSTTYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTGMYYCAAEFADCSSNYFLPPGAVRYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRFTYS




SYCMGWFRQAPGKEREGVASIDSDGSTSYTDSVKGRFTIS




KDNAKNTLYLQMNSLKPEDTAMYYCALDLMSTVVPGFCGF




LLSAGMDYWGKGTQVTVSSASHHHHHH





271
IL10RβVHH-
QVQLQESGGGSVEAGGSLRLSCAASGYTHSSYCMGWFRQA



GGGS-
PGKEREGVAAIDVDGSTTYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTGMYYCAAEFADCSSNYFLPPGAVRYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTYS




MYCMGWFRQAPGKEREGVAQINSDGSTSYADSVKGRFTIS




KDNAKNTLYLQMNSLKPEDTAMYYCAADSRVYGGSWYERL




CGPYTYEYNYWGQGTQVTVSSASHHHHHH





272
IL10RβVHH-
QVQLQESGGGSVEAGGSLRLSCAASGYTHSSYCMGWFRQA



GGGS-
PGKEREGVAAIDVDGSTTYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTGMYYCAAEFADCSSNYFLPPGAVRYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAVSGYAYS




TYCMGWFRQAPGKEREGVAAIDSGGSTSYADSVKGRFTIS




KDNAKNTLYLRMNSLKPEDTAMYYCAAVPPPPDGGSCLFL




GPEIKVSKADFRYWGQGTQVTVSSASHHHHHH





273
IL10RβVHH-
QVQLQESGGGSVEAGGSLRLSCAASGYTHSSYCMGWFRQA



GGGS-
PGKEREGVAAIDVDGSTTYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTGMYYCAAEFADCSSNYFLPPGAVRYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCTVSGYTYS




SNCMGWFRQAPGKEREGVATIYTGGGNTYYADSVKGRFTI




SQDNAKNTVYLQMNNLKPEDTAMYYCAAEPLSRVYGGSCP




TPTFDYWGQGTQVTVSSASHHHHHH





274
IL10RβVHH-
QVQLQESGGGSVEAGGSLRLSCAASGYTHSSYCMGWFRQA



GGGS-
PGKEREGVAAIDVDGSTTYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTGMYYCAAEFADCSSNYFLPPGAVRYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCGASGYTYS




SYCMGWFRQVPGKEREGVAVIDSDGSTSYADSVKGRFTIS




KDNGKNTLYLQMNSLKPEDTAMYYCAADLGHYRPPCGVLY




LGMDYWGKGTQVTVSSASHHHHHH





275
IL10RβVHH-
QVQLQESGGGSVEAGGSLRLSCAASGYTHSSYCMGWFRQA



GGGS-
PGKEREGVAAIDVDGSTTYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTGMYYCAAEFADCSSNYFLPPGAVRYWGQGT



ASH6
QVTVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYSNC




SYDMTWYRQAPGKEREFVSAIHSDGSTRYADSVKGRFFIS




QDNAKNTVYLQMNSLKPEDTAMYYCKTDPLHCRAHGGSWY




SVRANYWGQGTQVTVSSASHHHHHH





276
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSYSSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAPLYDCDSGAVGRNPPYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYLYSID




YMAWFRQSPGKEREPVAVIYTASGATFYPDSVKGRFTISQ




DNAKMTVYLQMNSLKSEDTAMYYCAAVRKTDSYLFDAQSF




TYWGQGTQVTVSSASHHHHHH





277
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSYSSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAPLYDCDSGAVGRNPPYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASRFTYSSY




CMGWFRQAPGKEREGVASIDSDGSTSYTDSVKGRFTISKD




NAKNTLYLQMNSLKPEDTAMYYCALDLMSTVVPGFCGFLL




SAGMDYWGKGTQVTVSSASHHHHHH





278
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSYSSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAPLYDCDSGAVGRNPPYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTYSMY




CMGWFRQAPGKEREGVAQINSDGSTSYADSVKGRFTISKD




NAKNTLYLQMNSLKPEDTAMYYCAADSRVYGGSWYERLCG




PYTYEYNYWGQGTQVTVSSASHHHHHH





279
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSYSSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAPLYDCDSGAVGRNPPYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCAVSGYAYSTY




CMGWFRQAPGKEREGVAAIDSGGSTSYADSVKGRFTISKD




NAKNTLYLRMNSLKPEDTAMYYCAAVPPPPDGGSCLFLGP




EIKVSKADFRYWGQGTQVTVSSASHHHHHH





280
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSYSSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAPLYDCDSGAVGRNPPYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCTVSGYTYSSN




CMGWFRQAPGKEREGVATIYTGGGNTYYADSVKGRFTISQ




DNAKNTVYLQMNNLKPEDTAMYYCAAEPLSRVYGGSCPTP




TFDYWGQGTQVTVSSASHHHHHH





281
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSYSSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAPLYDCDSGAVGRNPPYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCGASGYTYSSY




CMGWFRQVPGKEREGVAVIDSDGSTSYADSVKGRFTISKD




NGKNTLYLQMNSLKPEDTAMYYCAADLGHYRPPCGVLYLG




MDYWGKGTQVTVSSASHHHHHH





282
IL10RβVHH-
QVQLQESGGGSVQAGGSLRLSCAASGYSYSSYCMGWFRQA



GGGS-
PGKEREGVATIDSDGMTRYADSVKGRFTISKDNAKNTLYL



IL10Rα VHH-
QMNSLKPEDTAMYYCAAPLYDCDSGAVGRNPPYWGQGTQV



ASH6
TVSSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYSNCSY




DMTWYRQAPGKEREFVSAIHSDGSTRYADSVKGRFFISQD




NAKNTVYLQMNSLKPEDTAMYYCKTDPLHCRAHGGSWYSV




RANYWGQGTQVTVSSASHHHHHH





283
IL10RβVHH-
QVQLQESGGGSVQTGGSLRLSCAASGYTYLRGCMGWFRQA



GGGS-
PGKEREGVAVMDVVGDRRSYIDSVKGRFTISRDNAANSVY



IL10Rα VHH-
LQMDNLKPEDTAMYYCTAGPNCVGWRSGLDYWGQGTQVTV



ASH6
SSGGGSQVQLQESGGGSVQAGGSLRLSCAASRYLYSIDYM




AWFRQSPGKEREPVAVIYTASGATFYPDSVKGRFTISQDN




AKMTVYLQMNSLKSEDTAMYYCAAVRKTDSYLFDAQSFTY




WGQGTQVTVSSASHHHHHH





284
IL10RβVHH-
QVQLQESGGGSVQTGGSLRLSCAASGYTYLRGCMGWFRQA



GGGS-
PGKEREGVAVMDVVGDRRSYIDSVKGRFTISRDNAANSVY



IL10Rα VHH-
LQMDNLKPEDTAMYYCTAGPNCVGWRSGLDYWGQGTQVTV



ASH6
SSGGGSQVQLQESGGGSVQAGGSLRLSCAASRFTYSSYCM




GWFRQAPGKEREGVASIDSDGSTSYTDSVKGRFTISKDNA




KNTLYLQMNSLKPEDTAMYYCALDLMSTVVPGFCGFLLSA




GMDYWGKGTQVTVSSASHHHHHH





285
IL10RβVHH-
QVQLQESGGGSVQTGGSLRLSCAASGYTYLRGCMGWFRQA



GGGS-
PGKEREGVAVMDVVGDRRSYIDSVKGRFTISRDNAANSVY



IL10Rα VHH-
LQMDNLKPEDTAMYYCTAGPNCVGWRSGLDYWGQGTQVTV



ASH6
SSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYTYSMYCM




GWFRQAPGKEREGVAQINSDGSTSYADSVKGRFTISKDNA




KNTLYLQMNSLKPEDTAMYYCAADSRVYGGSWYERLCGPY




TYEYNYWGQGTQVTVSSASHHHHHH





286
IL10RβVHH-
QVQLQESGGGSVQTGGSLRLSCAASGYTYLRGCMGWFRQA



GGGS-
PGKEREGVAVMDVVGDRRSYIDSVKGRFTISRDNAANSVY



IL10Rα VHH-
LQMDNLKPEDTAMYYCTAGPNCVGWRSGLDYWGQGTQVTV



ASH6
SSGGGSQVQLQESGGGSVQAGGSLRLSCAVSGYAYSTYCM




GWFRQAPGKEREGVAAIDSGGSTSYADSVKGRFTISKDNA




KNTLYLRMNSLKPEDTAMYYCAAVPPPPDGGSCLFLGPEI




KVSKADFRYWGQGTQVTVSSASHHHHHH





287
IL10RβVHH-
QVQLQESGGGSVQTGGSLRLSCAASGYTYLRGCMGWFRQA



GGGS-
PGKEREGVAVMDVVGDRRSYIDSVKGRFTISRDNAANSVY



IL10Rα VHH-
LQMDNLKPEDTAMYYCTAGPNCVGWRSGLDYWGQGTQVTV



ASH6
SSGGGSQVQLQESGGGSVQAGGSLRLSCTVSGYTYSSNCM




GWFRQAPGKEREGVATIYTGGGNTYYADSVKGRFTISQDN




AKNTVYLQMNNLKPEDTAMYYCAAEPLSRVYGGSCPTPTF




DYWGQGTQVTVSSASHHHHHH





288
IL10RβVHH-
QVQLQESGGGSVQTGGSLRLSCAASGYTYLRGCMGWFRQA



GGGS-
PGKEREGVAVMDVVGDRRSYIDSVKGRFTISRDNAANSVY



IL10Rα VHH-
LQMDNLKPEDTAMYYCTAGPNCVGWRSGLDYWGQGTQVTV



ASH6
SSGGGSQVQLQESGGGSVQAGGSLRLSCGASGYTYSSYCM




GWFRQVPGKEREGVAVIDSDGSTSYADSVKGRFTISKDNG




KNTLYLQMNSLKPEDTAMYYCAADLGHYRPPCGVLYLGMD




YWGKGTQVTVSSASHHHHHH





289
IL10RβVHH-
QVQLQESGGGSVQTGGSLRLSCAASGYTYLRGCMGWFRQA



GGGS-
PGKEREGVAVMDVVGDRRSYIDSVKGRFTISRDNAANSVY



IL10Rα VHH-
LQMDNLKPEDTAMYYCTAGPNCVGWRSGLDYWGQGTQVTV



ASH6
SSGGGSQVQLQESGGGSVQAGGSLRLSCAASGYSNCSYDM




TWYRQAPGKEREFVSAIHSDGSTRYADSVKGRFFISQDNA




KNTVYLQMNSLKPEDTAMYYCKTDPLHCRAHGGSWYSVRA




NYWGQGTQVTVSSASHHHHHH





290
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGAAGCGTGCAAG



Sequence
CCGGAGGCTCTCTGAGACTGAGCTGTGCCGCCTCTAGGTA



Encoding
TCTGTACAGCATCGACTACATGGCTTGGTTCAGACAGAGC



SEQ ID NO:
CCCGGCAAGGAGAGGGAGCCAGTGGCTGTCATCTACACTG



192
CCTCCGGCGCCACATTCTATCCAGATAGCGTGAAGGGAAG




GTTCACTATCAGCCAAGATAACGCCAAGATGACAGTGTAT




CTGCAGATGAACTCTCTGAAGAGCGAGGACACTGCCATGT




ACTACTGTGCCGCCGTGAGGAAGACAGATAGCTACCTCTT




CGACGCCCAGAGCTTCACATACTGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAAGTGCAGCTGC




AAGAGAGCGGCGGAGGAAGCGTGCAAGCTGGAGGCTCTCT




GAGGCTGAGCTGTGCTGCCAGCGGCTACACTTATAGCAGC




GGCTGTATGGGCTGGTTCAGACAAGCCCCCGGCAAGGAAA




GGGAAGCCGTGGCCGCCATCAATTCCGATGGCAGCACAAG




CTACGCCGACAGCGTGAAGGGAAGGTTCACAATCAGCAAG




GACAACGCCAAGAACACACTCTATCTGCAGATGAACTCTC




TGAAGCCAGAGGACACAGCCATGTACTACTGCGCCGCTGA




GCCTTACTGTAGCGGCGGCTACCCAAGATGGAGCGTCGCT




GAGTTCGGCTACTGGGGCCAAGGCACACAAGTGACTGTCT




CGTCTGCTAGCCACCATCACCATCACCAC





291
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGAAGCGTGCAAG



Sequence
CCGGAGGCTCTCTGAGACTGAGCTGTGCCGCCTCTAGGTA



Encoding
TCTGTACAGCATCGACTACATGGCTTGGTTCAGACAGAGC



SEQ ID NO:
CCCGGCAAGGAGAGGGAGCCAGTGGCTGTCATCTACACTG



193
CCTCCGGCGCCACATTCTATCCAGATAGCGTGAAGGGAAG




GTTCACTATCAGCCAAGATAACGCCAAGATGACAGTGTAT




CTGCAGATGAACTCTCTGAAGAGCGAGGACACTGCCATGT




ACTACTGTGCCGCCGTGAGGAAGACAGATAGCTACCTCTT




CGACGCCCAGAGCTTCACATACTGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAAGTGCAGCTGC




AAGAGAGCGGAGGAGGCAGCGTCCAAGCCGGAGGCTCTCT




GAGGCTGAGCTGTGCTGCCAGCGGCTACACTTACAGCAGC




TACTGCATGGGCTGGTTCAGACAAGCCCCCGGCAAGGAGA




GAGAGGGCGTGGCTCACATCGACAGCGACGGCTCCACAAG




CTACGCCGATAGCGTGAAGGGAAGGTTCACAATCTCCAAG




GACAACGCCAAGAACACTCTGTACCTCCAGATGAACTCTC




TGAAGCCAGAGGACACTGCCATGTACTACTGTGCCGCCGA




TCCAATTCCCGGCCCCGGCTACTGCGATGGCGGCCCTAAC




AAGTACTGGGGCCAAGGCACACAAGTGACTGTCTCGTCTG




CTAGCCACCATCACCATCACCAC





292
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGAAGCGTGCAAG



Sequence
CCGGAGGCTCTCTGAGACTGAGCTGTGCCGCCTCTAGGTA



Encoding
TCTGTACAGCATCGACTACATGGCTTGGTTCAGACAGAGC



SEQ ID NO:
CCCGGCAAGGAGAGGGAGCCAGTGGCTGTCATCTACACTG



194
CCTCCGGCGCCACATTCTATCCAGATAGCGTGAAGGGAAG




GTTCACTATCAGCCAAGATAACGCCAAGATGACAGTGTAT




CTGCAGATGAACTCTCTGAAGAGCGAGGACACTGCCATGT




ACTACTGTGCCGCCGTGAGGAAGACAGATAGCTACCTCTT




CGACGCCCAGAGCTTCACATACTGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAAGTGCAGCTGC




AAGAGTCCGGAGGAGGAAGCGTGCAAGCCGGCGGATCTCT




GAGACTGAGCTGTGCCGCCTCTAGGTACACTTACAACAGC




TACTGCATGGGCTGGTTCAGACAAGCCCCCGGCAAGGAAA




GAGAGGGCGTGGCCACTATCGATAGCGACGGCATGACTAG




GTACGCTGATAGCGTCAAGGGAAGGTTCACAATCTCCAAG




GACAATGCTAAGAACACTCTGTACCTCCAGATGAACTCTC




TGAAGCCAGAGGACACAGCCATGTACTACTGCGCTGCCGA




TGCCGACTGCACTATCGCCGCCATGACTACTAATCCTCTG




GGCCAAGGCACACAAGTGACTGTCTCGTCTGCTAGCCACC




ATCACCATCACCAC





293
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGAAGCGTGCAAG



Sequence
CCGGAGGCTCTCTGAGACTGAGCTGTGCCGCCTCTAGGTA



Encoding
TCTGTACAGCATCGACTACATGGCTTGGTTCAGACAGAGC



SEQ ID NO:
CCCGGCAAGGAGAGGGAGCCAGTGGCTGTCATCTACACTG



195
CCTCCGGCGCCACATTCTATCCAGATAGCGTGAAGGGAAG




GTTCACTATCAGCCAAGATAACGCCAAGATGACAGTGTAT




CTGCAGATGAACTCTCTGAAGAGCGAGGACACTGCCATGT




ACTACTGTGCCGCCGTGAGGAAGACAGATAGCTACCTCTT




CGACGCCCAGAGCTTCACATACTGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAAGTGCAGCTGC




AAGAGTCCGGCGGAGGCAGCGTCCAAGCCGGAGGATCTCT




GAGGCTGAGCTGTACAGTGAGCAGATACACTGCCAGCGTG




AACTACATGGGCTGGTTCAGACAAGCCCCCGGCAAAGAGA




GAGAGGGCGTGGCCACAATCTTCACTGGCGCCGGCACAAC




ATACTACGCCAACTCCGTCAAGGGAAGGTTCACAATCTCT




AGGGACAACGCCAAGAACACTGCCTATCTGCAGATGAACT




CCCTCAAGCCAGAGGACACTGCCATCTACTACTGCGCCGT




GGATTTCAGAGGCGGACTGCTGTATAGGCCAGCCTACGAG




TACACTTATAGGGGCCAAGGCACACAAGTGACAGTCTCGT




CTGCTAGCCACCATCACCATCACCAC





294
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGAAGCGTGCAAG



Sequence
CCGGAGGCTCTCTGAGACTGAGCTGTGCCGCCTCTAGGTA



Encoding
TCTGTACAGCATCGACTACATGGCTTGGTTCAGACAGAGC



SEQ ID NO:
CCCGGCAAGGAGAGGGAGCCAGTGGCTGTCATCTACACTG



196
CCTCCGGCGCCACATTCTATCCAGATAGCGTGAAGGGAAG




GTTCACTATCAGCCAAGATAACGCCAAGATGACAGTGTAT




CTGCAGATGAACTCTCTGAAGAGCGAGGACACTGCCATGT




ACTACTGTGCCGCCGTGAGGAAGACAGATAGCTACCTCTT




CGACGCCCAGAGCTTCACATACTGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAAGTGCAGCTGC




AAGAGAGCGGAGGAGGCAGCGTCGAAGCTGGAGGATCTCT




GAGGCTGAGCTGTGCTGCCAGCGGCTACACTCACAGCAGC




TACTGTATGGGCTGGTTCAGACAAGCCCCCGGCAAGGAGA




GGGAAGGCGTGGCTGCCATCGACGTGGATGGCAGCACTAC




TTACGCCGACAGCGTGAAGGGAAGGTTCACTATCAGCAAG




GACAACGCCAAGAACACACTCTATCTGCAGATGAACAGCC




TCAAGCCAGAGGACACTGGCATGTACTACTGCGCCGCCGA




GTTCGCCGATTGCAGCAGCAACTACTTTCTGCCTCCCGGC




GCCGTCAGATATTGGGGCCAAGGCACTCAAGTGACAGTCT




CGTCTGCTAGCCACCATCACCATCACCAC





295
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGAAGCGTGCAAG



Sequence
CCGGAGGCTCTCTGAGACTGAGCTGTGCCGCCTCTAGGTA



Encoding
TCTGTACAGCATCGACTACATGGCTTGGTTCAGACAGAGC



SEQ ID NO:
CCCGGCAAGGAGAGGGAGCCAGTGGCTGTCATCTACACTG



197
CCTCCGGCGCCACATTCTATCCAGATAGCGTGAAGGGAAG




GTTCACTATCAGCCAAGATAACGCCAAGATGACAGTGTAT




CTGCAGATGAACTCTCTGAAGAGCGAGGACACTGCCATGT




ACTACTGTGCCGCCGTGAGGAAGACAGATAGCTACCTCTT




CGACGCCCAGAGCTTCACATACTGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAAGTGCAGCTGC




AAGAGAGCGGAGGAGGAAGCGTCCAAGCCGGAGGATCTCT




GAGACTGAGCTGCGCCGCTAGTGGCTACTCCTACAGCAGC




TACTGCATGGGCTGGTTTAGGCAAGCCCCCGGCAAGGAGA




GAGAAGGCGTGGCCACTATCGACAGCGACGGCATGACAAG




GTACGCCGACAGCGTGAAGGGAAGGTTCACAATCAGCAAG




GACAACGCCAAGAACACACTGTATCTGCAGATGAACTCTC




TGAAGCCAGAGGACACTGCCATGTACTACTGTGCCGCTCC




TCTGTACGACTGTGATAGCGGCGCTGTGGGCAGAAATCCA




CCTTATTGGGGCCAAGGCACTCAAGTGACAGTCTCGTCTG




CTAGCCACCATCACCATCACCAC





296
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGAAGCGTGCAAG



Sequence
CCGGAGGCTCTCTGAGACTGAGCTGTGCCGCCTCTAGGTA



Encoding
TCTGTACAGCATCGACTACATGGCTTGGTTCAGACAGAGC



SEQ ID NO:
CCCGGCAAGGAGAGGGAGCCAGTGGCTGTCATCTACACTG



198
CCTCCGGCGCCACATTCTATCCAGATAGCGTGAAGGGAAG




GTTCACTATCAGCCAAGATAACGCCAAGATGACAGTGTAT




CTGCAGATGAACTCTCTGAAGAGCGAGGACACTGCCATGT




ACTACTGTGCCGCCGTGAGGAAGACAGATAGCTACCTCTT




CGACGCCCAGAGCTTCACATACTGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAAGTGCAGCTGC




AAGAGAGCGGAGGCGGCAGCGTGCAGACTGGAGGCTCTCT




GAGACTGAGCTGTGCTGCCAGCGGCTACACTTATCTGAGG




GGCTGTATGGGCTGGTTTAGGCAAGCCCCCGGCAAGGAGA




GAGAGGGCGTGGCCGTCATGGATGTGGTGGGCGATAGGAG




AAGCTACATCGACAGCGTGAAGGGAAGGTTCACAATCTCT




AGGGACAATGCCGCCAACAGCGTCTATCTGCAGATGGACA




ATCTGAAGCCAGAGGACACAGCCATGTACTACTGCACTGC




CGGCCCTAACTGTGTGGGCTGGAGAAGCGGACTGGATTAC




TGGGGCCAAGGCACACAAGTGACAGTCTCGTCTGCTAGCC




ACCATCACCATCACCAC





297
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGAAGCGTGCAAG



Sequence
CCGGAGGCTCTCTGAGGCTGAGCTGTGCCGCCTCTAGGTT



Encoding
CACATACAGCAGCTACTGCATGGGCTGGTTCAGACAAGCC



SEQ ID NO:
CCCGGCAAAGAGAGAGAAGGCGTGGCCAGCATCGATAGCG



199
ATGGCTCCACTAGCTACACTGACAGCGTGAAGGGAAGGTT




CACTATCAGCAAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACAGCCATGTACT




ACTGTGCCCTCGATCTGATGAGCACAGTGGTGCCCGGCTT




CTGTGGCTTTCTGCTGAGCGCTGGCATGGATTACTGGGGC




AAGGGCACTCAAGTGACTGTCTCGAGCGGCGGAGGATCCC




AAGTGCAGCTGCAAGAGAGCGGCGGAGGAAGCGTGCAAGC




TGGAGGCTCTCTGAGGCTGAGCTGTGCTGCCAGCGGCTAC




ACTTATAGCAGCGGCTGTATGGGCTGGTTCAGACAAGCCC




CCGGCAAGGAAAGGGAAGCCGTGGCCGCCATCAATTCCGA




TGGCAGCACAAGCTACGCCGACAGCGTGAAGGGAAGGTTC




ACAATCAGCAAGGACAACGCCAAGAACACACTCTATCTGC




AGATGAACTCTCTGAAGCCAGAGGACACAGCCATGTACTA




CTGCGCCGCTGAGCCTTACTGTAGCGGCGGCTACCCAAGA




TGGAGCGTCGCTGAGTTCGGCTACTGGGGCCAAGGCACAC




AAGTGACTGTCTCGTCTGCTAGCCACCATCACCATCACCA




C





298
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGAAGCGTGCAAG



Sequence
CCGGAGGCTCTCTGAGGCTGAGCTGTGCCGCCTCTAGGTT



Encoding
CACATACAGCAGCTACTGCATGGGCTGGTTCAGACAAGCC



SEQ ID NO:
CCCGGCAAAGAGAGAGAAGGCGTGGCCAGCATCGATAGCG



200
ATGGCTCCACTAGCTACACTGACAGCGTGAAGGGAAGGTT




CACTATCAGCAAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACAGCCATGTACT




ACTGTGCCCTCGATCTGATGAGCACAGTGGTGCCCGGCTT




CTGTGGCTTTCTGCTGAGCGCTGGCATGGATTACTGGGGC




AAGGGCACTCAAGTGACTGTCTCGAGCGGCGGAGGATCCC




AAGTGCAGCTGCAAGAGAGCGGAGGAGGCAGCGTCCAAGC




CGGAGGCTCTCTGAGGCTGAGCTGTGCTGCCAGCGGCTAC




ACTTACAGCAGCTACTGCATGGGCTGGTTCAGACAAGCCC




CCGGCAAGGAGAGAGAGGGCGTGGCTCACATCGACAGCGA




CGGCTCCACAAGCTACGCCGATAGCGTGAAGGGAAGGTTC




ACAATCTCCAAGGACAACGCCAAGAACACTCTGTACCTCC




AGATGAACTCTCTGAAGCCAGAGGACACTGCCATGTACTA




CTGTGCCGCCGATCCAATTCCCGGCCCCGGCTACTGCGAT




GGCGGCCCTAACAAGTACTGGGGCCAAGGCACACAAGTGA




CTGTCTCGTCTGCTAGCCACCATCACCATCACCAC





299
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGAAGCGTGCAAG



Sequence
CCGGAGGCTCTCTGAGGCTGAGCTGTGCCGCCTCTAGGTT



Encoding
CACATACAGCAGCTACTGCATGGGCTGGTTCAGACAAGCC



SEQ ID NO:
CCCGGCAAAGAGAGAGAAGGCGTGGCCAGCATCGATAGCG



201
ATGGCTCCACTAGCTACACTGACAGCGTGAAGGGAAGGTT




CACTATCAGCAAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACAGCCATGTACT




ACTGTGCCCTCGATCTGATGAGCACAGTGGTGCCCGGCTT




CTGTGGCTTTCTGCTGAGCGCTGGCATGGATTACTGGGGC




AAGGGCACTCAAGTGACTGTCTCGAGCGGCGGAGGATCCC




AAGTGCAGCTGCAAGAGTCCGGAGGAGGAAGCGTGCAAGC




CGGCGGATCTCTGAGACTGAGCTGTGCCGCCTCTAGGTAC




ACTTACAACAGCTACTGCATGGGCTGGTTCAGACAAGCCC




CCGGCAAGGAAAGAGAGGGCGTGGCCACTATCGATAGCGA




CGGCATGACTAGGTACGCTGATAGCGTCAAGGGAAGGTTC




ACAATCTCCAAGGACAATGCTAAGAACACTCTGTACCTCC




AGATGAACTCTCTGAAGCCAGAGGACACAGCCATGTACTA




CTGCGCTGCCGATGCCGACTGCACTATCGCCGCCATGACT




ACTAATCCTCTGGGCCAAGGCACACAAGTGACTGTCTCGT




CTGCTAGCCACCATCACCATCACCAC





300
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCCGCCTCTAGGTTCACATACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



202
CCCGGCAAAGAGAGAGAAGGCGTGGCCAGC




ATCGATAGCGATGGCTCCACTAGCTACACT




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCCCTCGATCTGATG




AGCACAGTGGTGCCCGGCTTCTGTGGCTTT




CTGCTGAGCGCTGGCATGGATTACTGGGGC




AAGGGCACTCAAGTGACTGTCTCGAGCGGC




GGAGGATCCCAAGTGCAGCTGCAAGAGTCC




GGCGGAGGCAGCGTCCAAGCCGGAGGATCT




CTGAGGCTGAGCTGTACAGTGAGCAGATAC




ACTGCCAGCGTGAACTACATGGGCTGGTTC




AGACAAGCCCCCGGCAAAGAGAGAGAGGGC




GTGGCCACAATCTTCACTGGCGCCGGCACA




ACATACTACGCCAACTCCGTCAAGGGAAGG




TTCACAATCTCTAGGGACAACGCCAAGAAC




ACTGCCTATCTGCAGATGAACTCCCTCAAG




CCAGAGGACACTGCCATCTACTACTGCGCC




GTGGATTTCAGAGGCGGACTGCTGTATAGG




CCAGCCTACGAGTACACTTATAGGGGCCAA




GGCACACAAGTGACAGTCTCGTCTGCTAGC




CACCATCACCATCACCAC





301
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCCGCCTCTAGGTTCACATACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



203
CCCGGCAAAGAGAGAGAAGGCGTGGCCAGC




ATCGATAGCGATGGCTCCACTAGCTACACT




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCCCTCGATCTGATG




AGCACAGTGGTGCCCGGCTTCTGTGGCTTT




CTGCTGAGCGCTGGCATGGATTACTGGGGC




AAGGGCACTCAAGTGACTGTCTCGAGCGGC




GGAGGATCCCAAGTGCAGCTGCAAGAGAGC




GGAGGAGGCAGCGTCGAAGCTGGAGGATCT




CTGAGGCTGAGCTGTGCTGCCAGCGGCTAC




ACTCACAGCAGCTACTGTATGGGCTGGTTC




AGACAAGCCCCCGGCAAGGAGAGGGAAGGC




GTGGCTGCCATCGACGTGGATGGCAGCACT




ACTTACGCCGACAGCGTGAAGGGAAGGTTC




ACTATCAGCAAGGACAACGCCAAGAACACA




CTCTATCTGCAGATGAACAGCCTCAAGCCA




GAGGACACTGGCATGTACTACTGCGCCGCC




GAGTTCGCCGATTGCAGCAGCAACTACTTT




CTGCCTCCCGGCGCCGTCAGATATTGGGGC




CAAGGCACTCAAGTGACAGTCTCGTCTGCT




AGCCACCATCACCATCACCAC





302
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCCGCCTCTAGGTTCACATACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



204
CCCGGCAAAGAGAGAGAAGGCGTGGCCAGC




ATCGATAGCGATGGCTCCACTAGCTACACT




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCCCTCGATCTGATG




AGCACAGTGGTGCCCGGCTTCTGTGGCTTT




CTGCTGAGCGCTGGCATGGATTACTGGGGC




AAGGGCACTCAAGTGACTGTCTCGAGCGGC




GGAGGATCCCAAGTGCAGCTGCAAGAGAGC




GGAGGAGGAAGCGTCCAAGCCGGAGGATCT




CTGAGACTGAGCTGCGCCGCTAGTGGCTAC




TCCTACAGCAGCTACTGCATGGGCTGGTTT




AGGCAAGCCCCCGGCAAGGAGAGAGAAGGC




GTGGCCACTATCGACAGCGACGGCATGACA




AGGTACGCCGACAGCGTGAAGGGAAGGTTC




ACAATCAGCAAGGACAACGCCAAGAACACA




CTGTATCTGCAGATGAACTCTCTGAAGCCA




GAGGACACTGCCATGTACTACTGTGCCGCT




CCTCTGTACGACTGTGATAGCGGCGCTGTG




GGCAGAAATCCACCTTATTGGGGCCAAGGC




ACTCAAGTGACAGTCTCGTCTGCTAGCCAC




CATCACCATCACCAC





303
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCCGCCTCTAGGTTCACATACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



205
CCCGGCAAAGAGAGAGAAGGCGTGGCCAGC




ATCGATAGCGATGGCTCCACTAGCTACACT




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCCCTCGATCTGATG




AGCACAGTGGTGCCCGGCTTCTGTGGCTTT




CTGCTGAGCGCTGGCATGGATTACTGGGGC




AAGGGCACTCAAGTGACTGTCTCGAGCGGC




GGAGGATCCCAAGTGCAGCTGCAAGAGAGC




GGAGGCGGCAGCGTGCAGACTGGAGGCTCT




CTGAGACTGAGCTGTGCTGCCAGCGGCTAC




ACTTATCTGAGGGGCTGTATGGGCTGGTTT




AGGCAAGCCCCCGGCAAGGAGAGAGAGGGC




GTGGCCGTCATGGATGTGGTGGGCGATAGG




AGAAGCTACATCGACAGCGTGAAGGGAAGG




TTCACAATCTCTAGGGACAATGCCGCCAAC




AGCGTCTATCTGCAGATGGACAATCTGAAG




CCAGAGGACACAGCCATGTACTACTGCACT




GCCGGCCCTAACTGTGTGGGCTGGAGAAGC




GGACTGGATTACTGGGGCCAAGGCACACAA




GTGACAGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





304
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
ATGTACTGCATGGGCTGGTTCAGACAAGCC



206
CCCGGCAAGGAAAGAGAGGGCGTGGCCCAG




ATCAATAGCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCTCC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGCGCTGCCGATTCTAGG




GTGTACGGCGGCAGCTGGTATGAGAGGCTC




TGCGGCCCTTACACATACGAGTACAACTAC




TGGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGAGCGGCGGAGGAAGCGTGCAAGCTGGA




GGCTCTCTGAGGCTGAGCTGTGCTGCCAGC




GGCTACACTTATAGCAGCGGCTGTATGGGC




TGGTTCAGACAAGCCCCCGGCAAGGAAAGG




GAAGCCGTGGCCGCCATCAATTCCGATGGC




AGCACAAGCTACGCCGACAGCGTGAAGGGA




AGGTTCACAATCAGCAAGGACAACGCCAAG




AACACACTCTATCTGCAGATGAACTCTCTG




AAGCCAGAGGACACAGCCATGTACTACTGC




GCCGCTGAGCCTTACTGTAGCGGCGGCTAC




CCAAGATGGAGCGTCGCTGAGTTCGGCTAC




TGGGGCCAAGGCACACAAGTGACTGTCTCG




TCTGCTAGCCACCATCACCATCACCAC





305
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
ATGTACTGCATGGGCTGGTTCAGACAAGCC



207
CCCGGCAAGGAAAGAGAGGGCGTGGCCCAG




ATCAATAGCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCTCC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGCGCTGCCGATTCTAGG




GTGTACGGCGGCAGCTGGTATGAGAGGCTC




TGCGGCCCTTACACATACGAGTACAACTAC




TGGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGAGCGGAGGAGGCAGCGTCCAAGCCGGA




GGCTCTCTGAGGCTGAGCTGTGCTGCCAGC




GGCTACACTTACAGCAGCTACTGCATGGGC




TGGTTCAGACAAGCCCCCGGCAAGGAGAGA




GAGGGCGTGGCTCACATCGACAGCGACGGC




TCCACAAGCTACGCCGATAGCGTGAAGGGA




AGGTTCACAATCTCCAAGGACAACGCCAAG




AACACTCTGTACCTCCAGATGAACTCTCTG




AAGCCAGAGGACACTGCCATGTACTACTGT




GCCGCCGATCCAATTCCCGGCCCCGGCTAC




TGCGATGGCGGCCCTAACAAGTACTGGGGC




CAAGGCACACAAGTGACTGTCTCGTCTGCT




AGCCACCATCACCATCACCAC





306
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
ATGTACTGCATGGGCTGGTTCAGACAAGCC



208
CCCGGCAAGGAAAGAGAGGGCGTGGCCCAG




ATCAATAGCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCTCC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGCGCTGCCGATTCTAGG




GTGTACGGCGGCAGCTGGTATGAGAGGCTC




TGCGGCCCTTACACATACGAGTACAACTAC




TGGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGTCCGGAGGAGGAAGCGTGCAAGCCGGC




GGATCTCTGAGACTGAGCTGTGCCGCCTCT




AGGTACACTTACAACAGCTACTGCATGGGC




TGGTTCAGACAAGCCCCCGGCAAGGAAAGA




GAGGGCGTGGCCACTATCGATAGCGACGGC




ATGACTAGGTACGCTGATAGCGTCAAGGGA




AGGTTCACAATCTCCAAGGACAATGCTAAG




AACACTCTGTACCTCCAGATGAACTCTCTG




AAGCCAGAGGACACAGCCATGTACTACTGC




GCTGCCGATGCCGACTGCACTATCGCCGCC




ATGACTACTAATCCTCTGGGCCAAGGCACA




CAAGTGACTGTCTCGTCTGCTAGCCACCAT




CACCATCACCAC





307
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
ATGTACTGCATGGGCTGGTTCAGACAAGCC



209
CCCGGCAAGGAAAGAGAGGGCGTGGCCCAG




ATCAATAGCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCTCC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGCGCTGCCGATTCTAGG




GTGTACGGCGGCAGCTGGTATGAGAGGCTC




TGCGGCCCTTACACATACGAGTACAACTAC




TGGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGTCCGGCGGAGGCAGCGTCCAAGCCGGA




GGATCTCTGAGGCTGAGCTGTACAGTGAGC




AGATACACTGCCAGCGTGAACTACATGGGC




TGGTTCAGACAAGCCCCCGGCAAAGAGAGA




GAGGGCGTGGCCACAATCTTCACTGGCGCC




GGCACAACATACTACGCCAACTCCGTCAAG




GGAAGGTTCACAATCTCTAGGGACAACGCC




AAGAACACTGCCTATCTGCAGATGAACTCC




CTCAAGCCAGAGGACACTGCCATCTACTAC




TGCGCCGTGGATTTCAGAGGCGGACTGCTG




TATAGGCCAGCCTACGAGTACACTTATAGG




GGCCAAGGCACACAAGTGACAGTCTCGTCT




GCTAGCCACCATCACCATCACCAC





308
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
ATGTACTGCATGGGCTGGTTCAGACAAGCC



210
CCCGGCAAGGAAAGAGAGGGCGTGGCCCAG




ATCAATAGCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCTCC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGCGCTGCCGATTCTAGG




GTGTACGGCGGCAGCTGGTATGAGAGGCTC




TGCGGCCCTTACACATACGAGTACAACTAC




TGGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGAGCGGAGGAGGCAGCGTCGAAGCTGGA




GGATCTCTGAGGCTGAGCTGTGCTGCCAGC




GGCTACACTCACAGCAGCTACTGTATGGGC




TGGTTCAGACAAGCCCCCGGCAAGGAGAGG




GAAGGCGTGGCTGCCATCGACGTGGATGGC




AGCACTACTTACGCCGACAGCGTGAAGGGA




AGGTTCACTATCAGCAAGGACAACGCCAAG




AACACACTCTATCTGCAGATGAACAGCCTC




AAGCCAGAGGACACTGGCATGTACTACTGC




GCCGCCGAGTTCGCCGATTGCAGCAGCAAC




TACTTTCTGCCTCCCGGCGCCGTCAGATAT




TGGGGCCAAGGCACTCAAGTGACAGTCTCG




TCTGCTAGCCACCATCACCATCACCAC





309
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
ATGTACTGCATGGGCTGGTTCAGACAAGCC



211
CCCGGCAAGGAAAGAGAGGGCGTGGCCCAG




ATCAATAGCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCTCC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGCGCTGCCGATTCTAGG




GTGTACGGCGGCAGCTGGTATGAGAGGCTC




TGCGGCCCTTACACATACGAGTACAACTAC




TGGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGAGCGGAGGAGGAAGCGTCCAAGCCGGA




GGATCTCTGAGACTGAGCTGCGCCGCTAGT




GGCTACTCCTACAGCAGCTACTGCATGGGC




TGGTTTAGGCAAGCCCCCGGCAAGGAGAGA




GAAGGCGTGGCCACTATCGACAGCGACGGC




ATGACAAGGTACGCCGACAGCGTGAAGGGA




AGGTTCACAATCAGCAAGGACAACGCCAAG




AACACACTGTATCTGCAGATGAACTCTCTG




AAGCCAGAGGACACTGCCATGTACTACTGT




GCCGCTCCTCTGTACGACTGTGATAGCGGC




GCTGTGGGCAGAAATCCACCTTATTGGGGC




CAAGGCACTCAAGTGACAGTCTCGTCTGCT




AGCCACCATCACCATCACCAC





310
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
ATGTACTGCATGGGCTGGTTCAGACAAGCC



212
CCCGGCAAGGAAAGAGAGGGCGTGGCCCAG




ATCAATAGCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCTCC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGCGCTGCCGATTCTAGG




GTGTACGGCGGCAGCTGGTATGAGAGGCTC




TGCGGCCCTTACACATACGAGTACAACTAC




TGGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGAGCGGAGGCGGCAGCGTGCAGACTGGA




GGCTCTCTGAGACTGAGCTGTGCTGCCAGC




GGCTACACTTATCTGAGGGGCTGTATGGGC




TGGTTTAGGCAAGCCCCCGGCAAGGAGAGA




GAGGGCGTGGCCGTCATGGATGTGGTGGGC




GATAGGAGAAGCTACATCGACAGCGTGAAG




GGAAGGTTCACAATCTCTAGGGACAATGCC




GCCAACAGCGTCTATCTGCAGATGGACAAT




CTGAAGCCAGAGGACACAGCCATGTACTAC




TGCACTGCCGGCCCTAACTGTGTGGGCTGG




AGAAGCGGACTGGATTACTGGGGCCAAGGC




ACACAAGTGACAGTCTCGTCTGCTAGCCAC




CATCACCATCACCAC





311
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCTGTGAGCGGCTACGCCTACTCC



SEQ ID NO:
ACATACTGCATGGGCTGGTTTAGGCAAGCC



213
CCCGGCAAAGAGAGAGAGGGCGTGGCTGCT




ATCGATAGCGGCGGCAGCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




AGGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCTGCTGTGCCTCCT




CCTCCAGATGGCGGCAGCTGTCTGTTTCTG




GGACCAGAGATCAAGGTCAGCAAGGCCGAT




TTTAGGTACTGGGGCCAAGGCACACAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGCGGAGGAAGCGTG




CAAGCTGGAGGCTCTCTGAGGCTGAGCTGT




GCTGCCAGCGGCTACACTTATAGCAGCGGC




TGTATGGGCTGGTTCAGACAAGCCCCCGGC




AAGGAAAGGGAAGCCGTGGCCGCCATCAAT




TCCGATGGCAGCACAAGCTACGCCGACAGC




GTGAAGGGAAGGTTCACAATCAGCAAGGAC




AACGCCAAGAACACACTCTATCTGCAGATG




AACTCTCTGAAGCCAGAGGACACAGCCATG




TACTACTGCGCCGCTGAGCCTTACTGTAGC




GGCGGCTACCCAAGATGGAGCGTCGCTGAG




TTCGGCTACTGGGGCCAAGGCACACAAGTG




ACTGTCTCGTCTGCTAGCCACCATCACCAT




CACCAC





312
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCTGTGAGCGGCTACGCCTACTCC



SEQ ID NO:
ACATACTGCATGGGCTGGTTTAGGCAAGCC



214
CCCGGCAAAGAGAGAGAGGGCGTGGCTGCT




ATCGATAGCGGCGGCAGCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




AGGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCTGCTGTGCCTCCT




CCTCCAGATGGCGGCAGCTGTCTGTTTCTG




GGACCAGAGATCAAGGTCAGCAAGGCCGAT




TTTAGGTACTGGGGCCAAGGCACACAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGAGGCAGCGTC




CAAGCCGGAGGCTCTCTGAGGCTGAGCTGT




GCTGCCAGCGGCTACACTTACAGCAGCTAC




TGCATGGGCTGGTTCAGACAAGCCCCCGGC




AAGGAGAGAGAGGGCGTGGCTCACATCGAC




AGCGACGGCTCCACAAGCTACGCCGATAGC




GTGAAGGGAAGGTTCACAATCTCCAAGGAC




AACGCCAAGAACACTCTGTACCTCCAGATG




AACTCTCTGAAGCCAGAGGACACTGCCATG




TACTACTGTGCCGCCGATCCAATTCCCGGC




CCCGGCTACTGCGATGGCGGCCCTAACAAG




TACTGGGGCCAAGGCACACAAGTGACTGTC




TCGTCTGCTAGCCACCATCACCATCACCAC





313
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCTGTGAGCGGCTACGCCTACTCC



SEQ ID NO:
ACATACTGCATGGGCTGGTTTAGGCAAGCC



215
CCCGGCAAAGAGAGAGAGGGCGTGGCTGCT




ATCGATAGCGGCGGCAGCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




AGGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCTGCTGTGCCTCCT




CCTCCAGATGGCGGCAGCTGTCTGTTTCTG




GGACCAGAGATCAAGGTCAGCAAGGCCGAT




TTTAGGTACTGGGGCCAAGGCACACAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGTCCGGAGGAGGAAGCGTG




CAAGCCGGCGGATCTCTGAGACTGAGCTGT




GCCGCCTCTAGGTACACTTACAACAGCTAC




TGCATGGGCTGGTTCAGACAAGCCCCCGGC




AAGGAAAGAGAGGGCGTGGCCACTATCGAT




AGCGACGGCATGACTAGGTACGCTGATAGC




GTCAAGGGAAGGTTCACAATCTCCAAGGAC




AATGCTAAGAACACTCTGTACCTCCAGATG




AACTCTCTGAAGCCAGAGGACACAGCCATG




TACTACTGCGCTGCCGATGCCGACTGCACT




ATCGCCGCCATGACTACTAATCCTCTGGGC




CAAGGCACACAAGTGACTGTCTCGTCTGCT




AGCCACCATCACCATCACCAC





314
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCTGTGAGCGGCTACGCCTACTCC



SEQ ID NO:
ACATACTGCATGGGCTGGTTTAGGCAAGCC



216
CCCGGCAAAGAGAGAGAGGGCGTGGCTGCT




ATCGATAGCGGCGGCAGCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




AGGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCTGCTGTGCCTCCT




CCTCCAGATGGCGGCAGCTGTCTGTTTCTG




GGACCAGAGATCAAGGTCAGCAAGGCCGAT




TTTAGGTACTGGGGCCAAGGCACACAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGTCCGGCGGAGGCAGCGTC




CAAGCCGGAGGATCTCTGAGGCTGAGCTGT




ACAGTGAGCAGATACACTGCCAGCGTGAAC




TACATGGGCTGGTTCAGACAAGCCCCCGGC




AAAGAGAGAGAGGGCGTGGCCACAATCTTC




ACTGGCGCCGGCACAACATACTACGCCAAC




TCCGTCAAGGGAAGGTTCACAATCTCTAGG




GACAACGCCAAGAACACTGCCTATCTGCAG




ATGAACTCCCTCAAGCCAGAGGACACTGCC




ATCTACTACTGCGCCGTGGATTTCAGAGGC




GGACTGCTGTATAGGCCAGCCTACGAGTAC




ACTTATAGGGGCCAAGGCACACAAGTGACA




GTCTCGTCTGCTAGCCACCATCACCATCAC




CAC





315
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCTGTGAGCGGCTACGCCTACTCC



SEQ ID NO:
ACATACTGCATGGGCTGGTTTAGGCAAGCC



217
CCCGGCAAAGAGAGAGAGGGCGTGGCTGCT




ATCGATAGCGGCGGCAGCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




AGGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCTGCTGTGCCTCCT




CCTCCAGATGGCGGCAGCTGTCTGTTTCTG




GGACCAGAGATCAAGGTCAGCAAGGCCGAT




TTTAGGTACTGGGGCCAAGGCACACAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGAGGCAGCGTC




GAAGCTGGAGGATCTCTGAGGCTGAGCTGT




GCTGCCAGCGGCTACACTCACAGCAGCTAC




TGTATGGGCTGGTTCAGACAAGCCCCCGGC




AAGGAGAGGGAAGGCGTGGCTGCCATCGAC




GTGGATGGCAGCACTACTTACGCCGACAGC




GTGAAGGGAAGGTTCACTATCAGCAAGGAC




AACGCCAAGAACACACTCTATCTGCAGATG




AACAGCCTCAAGCCAGAGGACACTGGCATG




TACTACTGCGCCGCCGAGTTCGCCGATTGC




AGCAGCAACTACTTTCTGCCTCCCGGCGCC




GTCAGATATTGGGGCCAAGGCACTCAAGTG




ACAGTCTCGTCTGCTAGCCACCATCACCAT




CACCAC





316
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCTGTGAGCGGCTACGCCTACTCC



SEQ ID NO:
ACATACTGCATGGGCTGGTTTAGGCAAGCC



218
CCCGGCAAAGAGAGAGAGGGCGTGGCTGCT




ATCGATAGCGGCGGCAGCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




AGGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCTGCTGTGCCTCCT




CCTCCAGATGGCGGCAGCTGTCTGTTTCTG




GGACCAGAGATCAAGGTCAGCAAGGCCGAT




TTTAGGTACTGGGGCCAAGGCACACAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGAGGAAGCGTC




CAAGCCGGAGGATCTCTGAGACTGAGCTGC




GCCGCTAGTGGCTACTCCTACAGCAGCTAC




TGCATGGGCTGGTTTAGGCAAGCCCCCGGC




AAGGAGAGAGAAGGCGTGGCCACTATCGAC




AGCGACGGCATGACAAGGTACGCCGACAGC




GTGAAGGGAAGGTTCACAATCAGCAAGGAC




AACGCCAAGAACACACTGTATCTGCAGATG




AACTCTCTGAAGCCAGAGGACACTGCCATG




TACTACTGTGCCGCTCCTCTGTACGACTGT




GATAGCGGCGCTGTGGGCAGAAATCCACCT




TATTGGGGCCAAGGCACTCAAGTGACAGTC




TCGTCTGCTAGCCACCATCACCATCACCAC





317
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCTGTGAGCGGCTACGCCTACTCC



SEQ ID NO:
ACATACTGCATGGGCTGGTTTAGGCAAGCC



219
CCCGGCAAAGAGAGAGAGGGCGTGGCTGCT




ATCGATAGCGGCGGCAGCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




AGGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCTGCTGTGCCTCCT




CCTCCAGATGGCGGCAGCTGTCTGTTTCTG




GGACCAGAGATCAAGGTCAGCAAGGCCGAT




TTTAGGTACTGGGGCCAAGGCACACAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGCGGCAGCGTG




CAGACTGGAGGCTCTCTGAGACTGAGCTGT




GCTGCCAGCGGCTACACTTATCTGAGGGGC




TGTATGGGCTGGTTTAGGCAAGCCCCCGGC




AAGGAGAGAGAGGGCGTGGCCGTCATGGAT




GTGGTGGGCGATAGGAGAAGCTACATCGAC




AGCGTGAAGGGAAGGTTCACAATCTCTAGG




GACAATGCCGCCAACAGCGTCTATCTGCAG




ATGGACAATCTGAAGCCAGAGGACACAGCC




ATGTACTACTGCACTGCCGGCCCTAACTGT




GTGGGCTGGAGAAGCGGACTGGATTACTGG




GGCCAAGGCACACAAGTGACAGTCTCGTCT




GCTAGCCACCATCACCATCACCAC





318
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTACAGTGTCCGGCTACACTTACAGC



SEQ ID NO:
TCCAATTGCATGGGCTGGTTTAGGCAAGCC



220
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCTACACTGGCGGCGGCAACACATACTAC




GCCGATAGCGTGAAGGGAAGGTTCACTATC




AGCCAAGATAACGCCAAGAACACAGTGTAT




CTGCAGATGAACAATCTGAAGCCAGAGGAC




ACTGCCATGTACTACTGTGCTGCTGAGCCA




CTGTCTAGGGTGTACGGCGGCAGCTGCCCA




ACTCCTACATTCGACTACTGGGGCCAAGGC




ACACAAGTGACTGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGAGCGGCGGA




GGAAGCGTGCAAGCTGGAGGCTCTCTGAGG




CTGAGCTGTGCTGCCAGCGGCTACACTTAT




AGCAGCGGCTGTATGGGCTGGTTCAGACAA




GCCCCCGGCAAGGAAAGGGAAGCCGTGGCC




GCCATCAATTCCGATGGCAGCACAAGCTAC




GCCGACAGCGTGAAGGGAAGGTTCACAATC




AGCAAGGACAACGCCAAGAACACACTCTAT




CTGCAGATGAACTCTCTGAAGCCAGAGGAC




ACAGCCATGTACTACTGCGCCGCTGAGCCT




TACTGTAGCGGCGGCTACCCAAGATGGAGC




GTCGCTGAGTTCGGCTACTGGGGCCAAGGC




ACACAAGTGACTGTCTCGTCTGCTAGCCAC




CATCACCATCACCAC





319
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTACAGTGTCCGGCTACACTTACAGC



SEQ ID NO:
TCCAATTGCATGGGCTGGTTTAGGCAAGCC



221
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCTACACTGGCGGCGGCAACACATACTAC




GCCGATAGCGTGAAGGGAAGGTTCACTATC




AGCCAAGATAACGCCAAGAACACAGTGTAT




CTGCAGATGAACAATCTGAAGCCAGAGGAC




ACTGCCATGTACTACTGTGCTGCTGAGCCA




CTGTCTAGGGTGTACGGCGGCAGCTGCCCA




ACTCCTACATTCGACTACTGGGGCCAAGGC




ACACAAGTGACTGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGAGCGGAGGA




GGCAGCGTCCAAGCCGGAGGCTCTCTGAGG




CTGAGCTGTGCTGCCAGCGGCTACACTTAC




AGCAGCTACTGCATGGGCTGGTTCAGACAA




GCCCCCGGCAAGGAGAGAGAGGGCGTGGCT




CACATCGACAGCGACGGCTCCACAAGCTAC




GCCGATAGCGTGAAGGGAAGGTTCACAATC




TCCAAGGACAACGCCAAGAACACTCTGTAC




CTCCAGATGAACTCTCTGAAGCCAGAGGAC




ACTGCCATGTACTACTGTGCCGCCGATCCA




ATTCCCGGCCCCGGCTACTGCGATGGCGGC




CCTAACAAGTACTGGGGCCAAGGCACACAA




GTGACTGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





320
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTACAGTGTCCGGCTACACTTACAGC



SEQ ID NO:
TCCAATTGCATGGGCTGGTTTAGGCAAGCC



222
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCTACACTGGCGGCGGCAACACATACTAC




GCCGATAGCGTGAAGGGAAGGTTCACTATC




AGCCAAGATAACGCCAAGAACACAGTGTAT




CTGCAGATGAACAATCTGAAGCCAGAGGAC




ACTGCCATGTACTACTGTGCTGCTGAGCCA




CTGTCTAGGGTGTACGGCGGCAGCTGCCCA




ACTCCTACATTCGACTACTGGGGCCAAGGC




ACACAAGTGACTGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGTCCGGAGGA




GGAAGCGTGCAAGCCGGCGGATCTCTGAGA




CTGAGCTGTGCCGCCTCTAGGTACACTTAC




AACAGCTACTGCATGGGCTGGTTCAGACAA




GCCCCCGGCAAGGAAAGAGAGGGCGTGGCC




ACTATCGATAGCGACGGCATGACTAGGTAC




GCTGATAGCGTCAAGGGAAGGTTCACAATC




TCCAAGGACAATGCTAAGAACACTCTGTAC




CTCCAGATGAACTCTCTGAAGCCAGAGGAC




ACAGCCATGTACTACTGCGCTGCCGATGCC




GACTGCACTATCGCCGCCATGACTACTAAT




CCTCTGGGCCAAGGCACACAAGTGACTGTC




TCGTCTGCTAGCCACCATCACCATCACCAC





321
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTACAGTGTCCGGCTACACTTACAGC



SEQ ID NO:
TCCAATTGCATGGGCTGGTTTAGGCAAGCC



223
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCTACACTGGCGGCGGCAACACATACTAC




GCCGATAGCGTGAAGGGAAGGTTCACTATC




AGCCAAGATAACGCCAAGAACACAGTGTAT




CTGCAGATGAACAATCTGAAGCCAGAGGAC




ACTGCCATGTACTACTGTGCTGCTGAGCCA




CTGTCTAGGGTGTACGGCGGCAGCTGCCCA




ACTCCTACATTCGACTACTGGGGCCAAGGC




ACACAAGTGACTGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGTCCGGCGGA




GGCAGCGTCCAAGCCGGAGGATCTCTGAGG




CTGAGCTGTACAGTGAGCAGATACACTGCC




AGCGTGAACTACATGGGCTGGTTCAGACAA




GCCCCCGGCAAAGAGAGAGAGGGCGTGGCC




ACAATCTTCACTGGCGCCGGCACAACATAC




TACGCCAACTCCGTCAAGGGAAGGTTCACA




ATCTCTAGGGACAACGCCAAGAACACTGCC




TATCTGCAGATGAACTCCCTCAAGCCAGAG




GACACTGCCATCTACTACTGCGCCGTGGAT




TTCAGAGGCGGACTGCTGTATAGGCCAGCC




TACGAGTACACTTATAGGGGCCAAGGCACA




CAAGTGACAGTCTCGTCTGCTAGCCACCAT




CACCATCACCAC





322
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTACAGTGTCCGGCTACACTTACAGC



SEQ ID NO:
TCCAATTGCATGGGCTGGTTTAGGCAAGCC



224
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCTACACTGGCGGCGGCAACACATACTAC




GCCGATAGCGTGAAGGGAAGGTTCACTATC




AGCCAAGATAACGCCAAGAACACAGTGTAT




CTGCAGATGAACAATCTGAAGCCAGAGGAC




ACTGCCATGTACTACTGTGCTGCTGAGCCA




CTGTCTAGGGTGTACGGCGGCAGCTGCCCA




ACTCCTACATTCGACTACTGGGGCCAAGGC




ACACAAGTGACTGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGAGCGGAGGA




GGCAGCGTCGAAGCTGGAGGATCTCTGAGG




CTGAGCTGTGCTGCCAGCGGCTACACTCAC




AGCAGCTACTGTATGGGCTGGTTCAGACAA




GCCCCCGGCAAGGAGAGGGAAGGCGTGGCT




GCCATCGACGTGGATGGCAGCACTACTTAC




GCCGACAGCGTGAAGGGAAGGTTCACTATC




AGCAAGGACAACGCCAAGAACACACTCTAT




CTGCAGATGAACAGCCTCAAGCCAGAGGAC




ACTGGCATGTACTACTGCGCCGCCGAGTTC




GCCGATTGCAGCAGCAACTACTTTCTGCCT




CCCGGCGCCGTCAGATATTGGGGCCAAGGC




ACTCAAGTGACAGTCTCGTCTGCTAGCCAC




CATCACCATCACCAC





323
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTACAGTGTCCGGCTACACTTACAGC



SEQ ID NO:
TCCAATTGCATGGGCTGGTTTAGGCAAGCC



225
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCTACACTGGCGGCGGCAACACATACTAC




GCCGATAGCGTGAAGGGAAGGTTCACTATC




AGCCAAGATAACGCCAAGAACACAGTGTAT




CTGCAGATGAACAATCTGAAGCCAGAGGAC




ACTGCCATGTACTACTGTGCTGCTGAGCCA




CTGTCTAGGGTGTACGGCGGCAGCTGCCCA




ACTCCTACATTCGACTACTGGGGCCAAGGC




ACACAAGTGACTGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGAGCGGAGGA




GGAAGCGTCCAAGCCGGAGGATCTCTGAGA




CTGAGCTGCGCCGCTAGTGGCTACTCCTAC




AGCAGCTACTGCATGGGCTGGTTTAGGCAA




GCCCCCGGCAAGGAGAGAGAAGGCGTGGCC




ACTATCGACAGCGACGGCATGACAAGGTAC




GCCGACAGCGTGAAGGGAAGGTTCACAATC




AGCAAGGACAACGCCAAGAACACACTGTAT




CTGCAGATGAACTCTCTGAAGCCAGAGGAC




ACTGCCATGTACTACTGTGCCGCTCCTCTG




TACGACTGTGATAGCGGCGCTGTGGGCAGA




AATCCACCTTATTGGGGCCAAGGCACTCAA




GTGACAGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





324
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTACAGTGTCCGGCTACACTTACAGC



SEQ ID NO:
TCCAATTGCATGGGCTGGTTTAGGCAAGCC



226
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCTACACTGGCGGCGGCAACACATACTAC




GCCGATAGCGTGAAGGGAAGGTTCACTATC




AGCCAAGATAACGCCAAGAACACAGTGTAT




CTGCAGATGAACAATCTGAAGCCAGAGGAC




ACTGCCATGTACTACTGTGCTGCTGAGCCA




CTGTCTAGGGTGTACGGCGGCAGCTGCCCA




ACTCCTACATTCGACTACTGGGGCCAAGGC




ACACAAGTGACTGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGAGCGGAGGC




GGCAGCGTGCAGACTGGAGGCTCTCTGAGA




CTGAGCTGTGCTGCCAGCGGCTACACTTAT




CTGAGGGGCTGTATGGGCTGGTTTAGGCAA




GCCCCCGGCAAGGAGAGAGAGGGCGTGGCC




GTCATGGATGTGGTGGGCGATAGGAGAAGC




TACATCGACAGCGTGAAGGGAAGGTTCACA




ATCTCTAGGGACAATGCCGCCAACAGCGTC




TATCTGCAGATGGACAATCTGAAGCCAGAG




GACACAGCCATGTACTACTGCACTGCCGGC




CCTAACTGTGTGGGCTGGAGAAGCGGACTG




GATTACTGGGGCCAAGGCACACAAGTGACA




GTCTCGTCTGCTAGCCACCATCACCATCAC




CAC





325
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGGAGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTTAGGCAAGTG



227
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTG




ATCGATTCCGATGGCAGCACAAGCTACGCT




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGGCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGATCTGGGC




CACTATAGGCCTCCTTGTGGCGTGCTGTAT




CTGGGCATGGATTACTGGGGCAAGGGCACA




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA




AGCGTGCAAGCTGGAGGCTCTCTGAGGCTG




AGCTGTGCTGCCAGCGGCTACACTTATAGC




AGCGGCTGTATGGGCTGGTTCAGACAAGCC




CCCGGCAAGGAAAGGGAAGCCGTGGCCGCC




ATCAATTCCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGAGCCTTAC




TGTAGCGGCGGCTACCCAAGATGGAGCGTC




GCTGAGTTCGGCTACTGGGGCCAAGGCACA




CAAGTGACTGTCTCGTCTGCTAGCCACCAT




CACCATCACCAC





326
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGGAGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTTAGGCAAGTG



228
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTG




ATCGATTCCGATGGCAGCACAAGCTACGCT




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGGCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGATCTGGGC




CACTATAGGCCTCCTTGTGGCGTGCTGTAT




CTGGGCATGGATTACTGGGGCAAGGGCACA




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC




AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG




AGCTGTGCTGCCAGCGGCTACACTTACAGC




AGCTACTGCATGGGCTGGTTCAGACAAGCC




CCCGGCAAGGAGAGAGAGGGCGTGGCTCAC




ATCGACAGCGACGGCTCCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCTCC




AAGGACAACGCCAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCCGATCCAATT




CCCGGCCCCGGCTACTGCGATGGCGGCCCT




AACAAGTACTGGGGCCAAGGCACACAAGTG




ACTGTCTCGTCTGCTAGCCACCATCACCAT




CACCAC





327
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGGAGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTTAGGCAAGTG



229
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTG




ATCGATTCCGATGGCAGCACAAGCTACGCT




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGGCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGATCTGGGC




CACTATAGGCCTCCTTGTGGCGTGCTGTAT




CTGGGCATGGATTACTGGGGCAAGGGCACA




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGTCCGGAGGAGGA




AGCGTGCAAGCCGGCGGATCTCTGAGACTG




AGCTGTGCCGCCTCTAGGTACACTTACAAC




AGCTACTGCATGGGCTGGTTCAGACAAGCC




CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCGATAGCGACGGCATGACTAGGTACGCT




GATAGCGTCAAGGGAAGGTTCACAATCTCC




AAGGACAATGCTAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCTGCCGATGCCGAC




TGCACTATCGCCGCCATGACTACTAATCCT




CTGGGCCAAGGCACACAAGTGACTGTCTCG




TCTGCTAGCCACCATCACCATCACCAC





328
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGGAGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTTAGGCAAGTG



230
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTG




ATCGATTCCGATGGCAGCACAAGCTACGCT




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGGCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGATCTGGGC




CACTATAGGCCTCCTTGTGGCGTGCTGTAT




CTGGGCATGGATTACTGGGGCAAGGGCACA




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGTCCGGCGGAGGC




AGCGTCCAAGCCGGAGGATCTCTGAGGCTG




AGCTGTACAGTGAGCAGATACACTGCCAGC




GTGAACTACATGGGCTGGTTCAGACAAGCC




CCCGGCAAAGAGAGAGAGGGCGTGGCCACA




ATCTTCACTGGCGCCGGCACAACATACTAC




GCCAACTCCGTCAAGGGAAGGTTCACAATC




TCTAGGGACAACGCCAAGAACACTGCCTAT




CTGCAGATGAACTCCCTCAAGCCAGAGGAC




ACTGCCATCTACTACTGCGCCGTGGATTTC




AGAGGCGGACTGCTGTATAGGCCAGCCTAC




GAGTACACTTATAGGGGCCAAGGCACACAA




GTGACAGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





329
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGGAGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTTAGGCAAGTG



231
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTG




ATCGATTCCGATGGCAGCACAAGCTACGCT




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGGCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGATCTGGGC




CACTATAGGCCTCCTTGTGGCGTGCTGTAT




CTGGGCATGGATTACTGGGGCAAGGGCACA




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC




AGCGTCGAAGCTGGAGGATCTCTGAGGCTG




AGCTGTGCTGCCAGCGGCTACACTCACAGC




AGCTACTGTATGGGCTGGTTCAGACAAGCC




CCCGGCAAGGAGAGGGAAGGCGTGGCTGCC




ATCGACGTGGATGGCAGCACTACTTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACT




GGCATGTACTACTGCGCCGCCGAGTTCGCC




GATTGCAGCAGCAACTACTTTCTGCCTCCC




GGCGCCGTCAGATATTGGGGCCAAGGCACT




CAAGTGACAGTCTCGTCTGCTAGCCACCAT




CACCATCACCAC





330
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGGAGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTTAGGCAAGTG



232
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTG




ATCGATTCCGATGGCAGCACAAGCTACGCT




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGGCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGATCTGGGC




CACTATAGGCCTCCTTGTGGCGTGCTGTAT




CTGGGCATGGATTACTGGGGCAAGGGCACA




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA




AGCGTCCAAGCCGGAGGATCTCTGAGACTG




AGCTGCGCCGCTAGTGGCTACTCCTACAGC




AGCTACTGCATGGGCTGGTTTAGGCAAGCC




CCCGGCAAGGAGAGAGAAGGCGTGGCCACT




ATCGACAGCGACGGCATGACAAGGTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCTCCTCTGTAC




GACTGTGATAGCGGCGCTGTGGGCAGAAAT




CCACCTTATTGGGGCCAAGGCACTCAAGTG




ACAGTCTCGTCTGCTAGCCACCATCACCAT




CACCAC





331
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGGAGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTTAGGCAAGTG



233
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTG




ATCGATTCCGATGGCAGCACAAGCTACGCT




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGGCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGATCTGGGC




CACTATAGGCCTCCTTGTGGCGTGCTGTAT




CTGGGCATGGATTACTGGGGCAAGGGCACA




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGCGGC




AGCGTGCAGACTGGAGGCTCTCTGAGACTG




AGCTGTGCTGCCAGCGGCTACACTTATCTG




AGGGGCTGTATGGGCTGGTTTAGGCAAGCC




CCCGGCAAGGAGAGAGAGGGCGTGGCCGTC




ATGGATGTGGTGGGCGATAGGAGAAGCTAC




ATCGACAGCGTGAAGGGAAGGTTCACAATC




TCTAGGGACAATGCCGCCAACAGCGTCTAT




CTGCAGATGGACAATCTGAAGCCAGAGGAC




ACAGCCATGTACTACTGCACTGCCGGCCCT




AACTGTGTGGGCTGGAGAAGCGGACTGGAT




TACTGGGGCCAAGGCACACAAGTGACAGTC




TCGTCTGCTAGCCACCATCACCATCACCAC





332
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCCGCCAGCGGCTACTCCAACTGC



SEQ ID NO:
AGCTACGACATGACTTGGTATAGGCAAGCC



234
CCCGGCAAGGAGAGGGAGTTCGTGTCCGCC




ATCCACAGCGACGGCAGCACTAGATACGCC




GACAGCGTGAAGGGAAGGTTCTTCATCAGC




CAAGATAACGCCAAGAACACAGTGTATCTG




CAGATGAACTCCCTCAAGCCAGAGGACACT




GCCATGTACTACTGCAAGACAGACCCACTG




CACTGCAGAGCCCATGGCGGCAGCTGGTAT




AGCGTGAGGGCCAACTACTGGGGCCAAGGC




ACACAAGTGACAGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGAGCGGCGGA




GGAAGCGTGCAAGCTGGAGGCTCTCTGAGG




CTGAGCTGTGCTGCCAGCGGCTACACTTAT




AGCAGCGGCTGTATGGGCTGGTTCAGACAA




GCCCCCGGCAAGGAAAGGGAAGCCGTGGCC




GCCATCAATTCCGATGGCAGCACAAGCTAC




GCCGACAGCGTGAAGGGAAGGTTCACAATC




AGCAAGGACAACGCCAAGAACACACTCTAT




CTGCAGATGAACTCTCTGAAGCCAGAGGAC




ACAGCCATGTACTACTGCGCCGCTGAGCCT




TACTGTAGCGGCGGCTACCCAAGATGGAGC




GTCGCTGAGTTCGGCTACTGGGGCCAAGGC




ACACAAGTGACTGTCTCGTCTGCTAGCCAC




CATCACCATCACCAC





333
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCCGCCAGCGGCTACTCCAACTGC



SEQ ID NO:
AGCTACGACATGACTTGGTATAGGCAAGCC



235
CCCGGCAAGGAGAGGGAGTTCGTGTCCGCC




ATCCACAGCGACGGCAGCACTAGATACGCC




GACAGCGTGAAGGGAAGGTTCTTCATCAGC




CAAGATAACGCCAAGAACACAGTGTATCTG




CAGATGAACTCCCTCAAGCCAGAGGACACT




GCCATGTACTACTGCAAGACAGACCCACTG




CACTGCAGAGCCCATGGCGGCAGCTGGTAT




AGCGTGAGGGCCAACTACTGGGGCCAAGGC




ACACAAGTGACAGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGAGCGGAGGA




GGCAGCGTCCAAGCCGGAGGCTCTCTGAGG




CTGAGCTGTGCTGCCAGCGGCTACACTTAC




AGCAGCTACTGCATGGGCTGGTTCAGACAA




GCCCCCGGCAAGGAGAGAGAGGGCGTGGCT




CACATCGACAGCGACGGCTCCACAAGCTAC




GCCGATAGCGTGAAGGGAAGGTTCACAATC




TCCAAGGACAACGCCAAGAACACTCTGTAC




CTCCAGATGAACTCTCTGAAGCCAGAGGAC




ACTGCCATGTACTACTGTGCCGCCGATCCA




ATTCCCGGCCCCGGCTACTGCGATGGCGGC




CCTAACAAGTACTGGGGCCAAGGCACACAA




GTGACTGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





334
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCCGCCAGCGGCTACTCCAACTGC



SEQ ID NO:
AGCTACGACATGACTTGGTATAGGCAAGCC



236
CCCGGCAAGGAGAGGGAGTTCGTGTCCGCC




ATCCACAGCGACGGCAGCACTAGATACGCC




GACAGCGTGAAGGGAAGGTTCTTCATCAGC




CAAGATAACGCCAAGAACACAGTGTATCTG




CAGATGAACTCCCTCAAGCCAGAGGACACT




GCCATGTACTACTGCAAGACAGACCCACTG




CACTGCAGAGCCCATGGCGGCAGCTGGTAT




AGCGTGAGGGCCAACTACTGGGGCCAAGGC




ACACAAGTGACAGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGTCCGGAGGA




GGAAGCGTGCAAGCCGGCGGATCTCTGAGA




CTGAGCTGTGCCGCCTCTAGGTACACTTAC




AACAGCTACTGCATGGGCTGGTTCAGACAA




GCCCCCGGCAAGGAAAGAGAGGGCGTGGCC




ACTATCGATAGCGACGGCATGACTAGGTAC




GCTGATAGCGTCAAGGGAAGGTTCACAATC




TCCAAGGACAATGCTAAGAACACTCTGTAC




CTCCAGATGAACTCTCTGAAGCCAGAGGAC




ACAGCCATGTACTACTGCGCTGCCGATGCC




GACTGCACTATCGCCGCCATGACTACTAAT




CCTCTGGGCCAAGGCACACAAGTGACTGTC




TCGTCTGCTAGCCACCATCACCATCACCAC





335
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCCGCCAGCGGCTACTCCAACTGC



SEQ ID NO:
AGCTACGACATGACTTGGTATAGGCAAGCC



237
CCCGGCAAGGAGAGGGAGTTCGTGTCCGCC




ATCCACAGCGACGGCAGCACTAGATACGCC




GACAGCGTGAAGGGAAGGTTCTTCATCAGC




CAAGATAACGCCAAGAACACAGTGTATCTG




CAGATGAACTCCCTCAAGCCAGAGGACACT




GCCATGTACTACTGCAAGACAGACCCACTG




CACTGCAGAGCCCATGGCGGCAGCTGGTAT




AGCGTGAGGGCCAACTACTGGGGCCAAGGC




ACACAAGTGACAGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGTCCGGCGGA




GGCAGCGTCCAAGCCGGAGGATCTCTGAGG




CTGAGCTGTACAGTGAGCAGATACACTGCC




AGCGTGAACTACATGGGCTGGTTCAGACAA




GCCCCCGGCAAAGAGAGAGAGGGCGTGGCC




ACAATCTTCACTGGCGCCGGCACAACATAC




TACGCCAACTCCGTCAAGGGAAGGTTCACA




ATCTCTAGGGACAACGCCAAGAACACTGCC




TATCTGCAGATGAACTCCCTCAAGCCAGAG




GACACTGCCATCTACTACTGCGCCGTGGAT




TTCAGAGGCGGACTGCTGTATAGGCCAGCC




TACGAGTACACTTATAGGGGCCAAGGCACA




CAAGTGACAGTCTCGTCTGCTAGCCACCAT




CACCATCACCAC





336
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCCGCCAGCGGCTACTCCAACTGC



SEQ ID NO:
AGCTACGACATGACTTGGTATAGGCAAGCC



238
CCCGGCAAGGAGAGGGAGTTCGTGTCCGCC




ATCCACAGCGACGGCAGCACTAGATACGCC




GACAGCGTGAAGGGAAGGTTCTTCATCAGC




CAAGATAACGCCAAGAACACAGTGTATCTG




CAGATGAACTCCCTCAAGCCAGAGGACACT




GCCATGTACTACTGCAAGACAGACCCACTG




CACTGCAGAGCCCATGGCGGCAGCTGGTAT




AGCGTGAGGGCCAACTACTGGGGCCAAGGC




ACACAAGTGACAGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGAGCGGAGGA




GGCAGCGTCGAAGCTGGAGGATCTCTGAGG




CTGAGCTGTGCTGCCAGCGGCTACACTCAC




AGCAGCTACTGTATGGGCTGGTTCAGACAA




GCCCCCGGCAAGGAGAGGGAAGGCGTGGCT




GCCATCGACGTGGATGGCAGCACTACTTAC




GCCGACAGCGTGAAGGGAAGGTTCACTATC




AGCAAGGACAACGCCAAGAACACACTCTAT




CTGCAGATGAACAGCCTCAAGCCAGAGGAC




ACTGGCATGTACTACTGCGCCGCCGAGTTC




GCCGATTGCAGCAGCAACTACTTTCTGCCT




CCCGGCGCCGTCAGATATTGGGGCCAAGGC




ACTCAAGTGACAGTCTCGTCTGCTAGCCAC




CATCACCATCACCAC





337
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCCGCCAGCGGCTACTCCAACTGC



SEQ ID NO:
AGCTACGACATGACTTGGTATAGGCAAGCC



239
CCCGGCAAGGAGAGGGAGTTCGTGTCCGCC




ATCCACAGCGACGGCAGCACTAGATACGCC




GACAGCGTGAAGGGAAGGTTCTTCATCAGC




CAAGATAACGCCAAGAACACAGTGTATCTG




CAGATGAACTCCCTCAAGCCAGAGGACACT




GCCATGTACTACTGCAAGACAGACCCACTG




CACTGCAGAGCCCATGGCGGCAGCTGGTAT




AGCGTGAGGGCCAACTACTGGGGCCAAGGC




ACACAAGTGACAGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGAGCGGAGGA




GGAAGCGTCCAAGCCGGAGGATCTCTGAGA




CTGAGCTGCGCCGCTAGTGGCTACTCCTAC




AGCAGCTACTGCATGGGCTGGTTTAGGCAA




GCCCCCGGCAAGGAGAGAGAAGGCGTGGCC




ACTATCGACAGCGACGGCATGACAAGGTAC




GCCGACAGCGTGAAGGGAAGGTTCACAATC




AGCAAGGACAACGCCAAGAACACACTGTAT




CTGCAGATGAACTCTCTGAAGCCAGAGGAC




ACTGCCATGTACTACTGTGCCGCTCCTCTG




TACGACTGTGATAGCGGCGCTGTGGGCAGA




AATCCACCTTATTGGGGCCAAGGCACTCAA




GTGACAGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





338
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCCGCCAGCGGCTACTCCAACTGC



SEQ ID NO:
AGCTACGACATGACTTGGTATAGGCAAGCC



240
CCCGGCAAGGAGAGGGAGTTCGTGTCCGCC




ATCCACAGCGACGGCAGCACTAGATACGCC




GACAGCGTGAAGGGAAGGTTCTTCATCAGC




CAAGATAACGCCAAGAACACAGTGTATCTG




CAGATGAACTCCCTCAAGCCAGAGGACACT




GCCATGTACTACTGCAAGACAGACCCACTG




CACTGCAGAGCCCATGGCGGCAGCTGGTAT




AGCGTGAGGGCCAACTACTGGGGCCAAGGC




ACACAAGTGACAGTCTCGAGCGGCGGAGGA




TCCCAAGTGCAGCTGCAAGAGAGCGGAGGC




GGCAGCGTGCAGACTGGAGGCTCTCTGAGA




CTGAGCTGTGCTGCCAGCGGCTACACTTAT




CTGAGGGGCTGTATGGGCTGGTTTAGGCAA




GCCCCCGGCAAGGAGAGAGAGGGCGTGGCC




GTCATGGATGTGGTGGGCGATAGGAGAAGC




TACATCGACAGCGTGAAGGGAAGGTTCACA




ATCTCTAGGGACAATGCCGCCAACAGCGTC




TATCTGCAGATGGACAATCTGAAGCCAGAG




GACACAGCCATGTACTACTGCACTGCCGGC




CCTAACTGTGTGGGCTGGAGAAGCGGACTG




GATTACTGGGGCCAAGGCACACAAGTGACA




GTCTCGTCTGCTAGCCACCATCACCATCAC




CAC





339
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCTGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATAGC



SEQ ID NO:
AGCGGCTGTATGGGCTGGTTCAGACAAGCC



241
CCCGGCAAGGAAAGGGAAGCCGTGGCCGCC




ATCAATTCCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGAGCCTTAC




TGTAGCGGCGGCTACCCAAGATGGAGCGTC




GCTGAGTTCGGCTACTGGGGCCAAGGCACA




CAAGTGACTGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA




AGCGTGCAAGCCGGAGGCTCTCTGAGACTG




AGCTGTGCCGCCTCTAGGTATCTGTACAGC




ATCGACTACATGGCTTGGTTCAGACAGAGC




CCCGGCAAGGAGAGGGAGCCAGTGGCTGTC




ATCTACACTGCCTCCGGCGCCACATTCTAT




CCAGATAGCGTGAAGGGAAGGTTCACTATC




AGCCAAGATAACGCCAAGATGACAGTGTAT




CTGCAGATGAACTCTCTGAAGAGCGAGGAC




ACTGCCATGTACTACTGTGCCGCCGTGAGG




AAGACAGATAGCTACCTCTTCGACGCCCAG




AGCTTCACATACTGGGGCCAAGGCACACAA




GTGACAGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





340
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCTGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATAGC



SEQ ID NO:
AGCGGCTGTATGGGCTGGTTCAGACAAGCC



242
CCCGGCAAGGAAAGGGAAGCCGTGGCCGCC




ATCAATTCCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGAGCCTTAC




TGTAGCGGCGGCTACCCAAGATGGAGCGTC




GCTGAGTTCGGCTACTGGGGCCAAGGCACA




CAAGTGACTGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA




AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG




AGCTGTGCCGCCTCTAGGTTCACATACAGC




AGCTACTGCATGGGCTGGTTCAGACAAGCC




CCCGGCAAAGAGAGAGAAGGCGTGGCCAGC




ATCGATAGCGATGGCTCCACTAGCTACACT




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCCCTCGATCTGATG




AGCACAGTGGTGCCCGGCTTCTGTGGCTTT




CTGCTGAGCGCTGGCATGGATTACTGGGGC




AAGGGCACTCAAGTGACTGTCTCGTCTGCT




AGCCACCATCACCATCACCAC





341
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCTGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATAGC



SEQ ID NO:
AGCGGCTGTATGGGCTGGTTCAGACAAGCC



243
CCCGGCAAGGAAAGGGAAGCCGTGGCCGCC




ATCAATTCCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGAGCCTTAC




TGTAGCGGCGGCTACCCAAGATGGAGCGTC




GCTGAGTTCGGCTACTGGGGCCAAGGCACA




CAAGTGACTGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGTCCGGAGGAGGC




AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG




AGCTGTGCTGCCAGCGGCTACACTTACAGC




ATGTACTGCATGGGCTGGTTCAGACAAGCC




CCCGGCAAGGAAAGAGAGGGCGTGGCCCAG




ATCAATAGCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCTCC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGCGCTGCCGATTCTAGG




GTGTACGGCGGCAGCTGGTATGAGAGGCTC




TGCGGCCCTTACACATACGAGTACAACTAC




TGGGGCCAAGGCACACAAGTGACTGTCTCG




TCTGCTAGCCACCATCACCATCACCAC





342
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCTGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATAGC



SEQ ID NO:
AGCGGCTGTATGGGCTGGTTCAGACAAGCC



244
CCCGGCAAGGAAAGGGAAGCCGTGGCCGCC




ATCAATTCCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGAGCCTTAC




TGTAGCGGCGGCTACCCAAGATGGAGCGTC




GCTGAGTTCGGCTACTGGGGCCAAGGCACA




CAAGTGACTGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA




AGCGTGCAAGCCGGAGGATCTCTGAGACTG




AGCTGCGCTGTGAGCGGCTACGCCTACTCC




ACATACTGCATGGGCTGGTTTAGGCAAGCC




CCCGGCAAAGAGAGAGAGGGCGTGGCTGCT




ATCGATAGCGGCGGCAGCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




AGGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCTGCTGTGCCTCCT




CCTCCAGATGGCGGCAGCTGTCTGTTTCTG




GGACCAGAGATCAAGGTCAGCAAGGCCGAT




TTTAGGTACTGGGGCCAAGGCACACAAGTG




ACAGTCTCGTCTGCTAGCCACCATCACCAT




CACCAC





343
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCTGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATAGC



SEQ ID NO:
AGCGGCTGTATGGGCTGGTTCAGACAAGCC



245
CCCGGCAAGGAAAGGGAAGCCGTGGCCGCC




ATCAATTCCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGAGCCTTAC




TGTAGCGGCGGCTACCCAAGATGGAGCGTC




GCTGAGTTCGGCTACTGGGGCCAAGGCACA




CAAGTGACTGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA




AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG




AGCTGTACAGTGTCCGGCTACACTTACAGC




TCCAATTGCATGGGCTGGTTTAGGCAAGCC




CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCTACACTGGCGGCGGCAACACATACTAC




GCCGATAGCGTGAAGGGAAGGTTCACTATC




AGCCAAGATAACGCCAAGAACACAGTGTAT




CTGCAGATGAACAATCTGAAGCCAGAGGAC




ACTGCCATGTACTACTGTGCTGCTGAGCCA




CTGTCTAGGGTGTACGGCGGCAGCTGCCCA




ACTCCTACATTCGACTACTGGGGCCAAGGC




ACACAAGTGACTGTCTCGTCTGCTAGCCAC




CATCACCATCACCAC





344
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCTGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATAGC



SEQ ID NO:
AGCGGCTGTATGGGCTGGTTCAGACAAGCC



246
CCCGGCAAGGAAAGGGAAGCCGTGGCCGCC




ATCAATTCCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGAGCCTTAC




TGTAGCGGCGGCTACCCAAGATGGAGCGTC




GCTGAGTTCGGCTACTGGGGCCAAGGCACA




CAAGTGACTGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA




AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG




AGCTGTGGAGCCAGCGGCTACACTTACAGC




AGCTACTGTATGGGCTGGTTTAGGCAAGTG




CCCGGCAAGGAGAGAGAGGGCGTGGCCGTG




ATCGATTCCGATGGCAGCACAAGCTACGCT




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGGCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGATCTGGGC




CACTATAGGCCTCCTTGTGGCGTGCTGTAT




CTGGGCATGGATTACTGGGGCAAGGGCACA




CAAGTGACAGTCTCGTCTGCTAGCCACCAT




CACCATCACCAC





345
DNA
CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA



Sequence
AGCGTGCAAGCTGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATAGC



SEQ ID NO:
AGCGGCTGTATGGGCTGGTTCAGACAAGCC



247
CCCGGCAAGGAAAGGGAAGCCGTGGCCGCC




ATCAATTCCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGAGCCTTAC




TGTAGCGGCGGCTACCCAAGATGGAGCGTC




GCTGAGTTCGGCTACTGGGGCCAAGGCACA




CAAGTGACTGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA




AGCGTCCAAGCCGGAGGCTCTCTGAGACTG




AGCTGTGCCGCCAGCGGCTACTCCAACTGC




AGCTACGACATGACTTGGTATAGGCAAGCC




CCCGGCAAGGAGAGGGAGTTCGTGTCCGCC




ATCCACAGCGACGGCAGCACTAGATACGCC




GACAGCGTGAAGGGAAGGTTCTTCATCAGC




CAAGATAACGCCAAGAACACAGTGTATCTG




CAGATGAACTCCCTCAAGCCAGAGGACACT




GCCATGTACTACTGCAAGACAGACCCACTG




CACTGCAGAGCCCATGGCGGCAGCTGGTAT




AGCGTGAGGGCCAACTACTGGGGCCAAGGC




ACACAAGTGACAGTCTCGTCTGCTAGCCAC




CATCACCATCACCAC





346
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



248
CCCGGCAAGGAGAGAGAGGGCGTGGCTCAC




ATCGACAGCGACGGCTCCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCTCC




AAGGACAACGCCAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCCGATCCAATT




CCCGGCCCCGGCTACTGCGATGGCGGCCCT




AACAAGTACTGGGGCCAAGGCACACAAGTG




ACTGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGAGGAAGCGTG




CAAGCCGGAGGCTCTCTGAGACTGAGCTGT




GCCGCCTCTAGGTATCTGTACAGCATCGAC




TACATGGCTTGGTTCAGACAGAGCCCCGGC




AAGGAGAGGGAGCCAGTGGCTGTCATCTAC




ACTGCCTCCGGCGCCACATTCTATCCAGAT




AGCGTGAAGGGAAGGTTCACTATCAGCCAA




GATAACGCCAAGATGACAGTGTATCTGCAG




ATGAACTCTCTGAAGAGCGAGGACACTGCC




ATGTACTACTGTGCCGCCGTGAGGAAGACA




GATAGCTACCTCTTCGACGCCCAGAGCTTC




ACATACTGGGGCCAAGGCACACAAGTGACA




GTCTCGTCTGCTAGCCACCATCACCATCAC




CAC





347
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



249
CCCGGCAAGGAGAGAGAGGGCGTGGCTCAC




ATCGACAGCGACGGCTCCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCTCC




AAGGACAACGCCAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCCGATCCAATT




CCCGGCCCCGGCTACTGCGATGGCGGCCCT




AACAAGTACTGGGGCCAAGGCACACAAGTG




ACTGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGAGGAAGCGTG




CAAGCCGGAGGCTCTCTGAGGCTGAGCTGT




GCCGCCTCTAGGTTCACATACAGCAGCTAC




TGCATGGGCTGGTTCAGACAAGCCCCCGGC




AAAGAGAGAGAAGGCGTGGCCAGCATCGAT




AGCGATGGCTCCACTAGCTACACTGACAGC




GTGAAGGGAAGGTTCACTATCAGCAAGGAC




AACGCCAAGAACACTCTGTATCTGCAGATG




AACTCTCTGAAGCCAGAGGACACAGCCATG




TACTACTGTGCCCTCGATCTGATGAGCACA




GTGGTGCCCGGCTTCTGTGGCTTTCTGCTG




AGCGCTGGCATGGATTACTGGGGCAAGGGC




ACTCAAGTGACTGTCTCGTCTGCTAGCCAC




CATCACCATCACCAC





348
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



250
CCCGGCAAGGAGAGAGAGGGCGTGGCTCAC




ATCGACAGCGACGGCTCCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCTCC




AAGGACAACGCCAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCCGATCCAATT




CCCGGCCCCGGCTACTGCGATGGCGGCCCT




AACAAGTACTGGGGCCAAGGCACACAAGTG




ACTGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGTCCGGAGGAGGCAGCGTC




CAAGCCGGAGGCTCTCTGAGGCTGAGCTGT




GCTGCCAGCGGCTACACTTACAGCATGTAC




TGCATGGGCTGGTTCAGACAAGCCCCCGGC




AAGGAAAGAGAGGGCGTGGCCCAGATCAAT




AGCGATGGCAGCACAAGCTACGCCGACAGC




GTGAAGGGAAGGTTCACTATCTCCAAGGAC




AACGCCAAGAACACTCTGTATCTGCAGATG




AACTCTCTGAAGCCAGAGGACACTGCCATG




TACTACTGCGCTGCCGATTCTAGGGTGTAC




GGCGGCAGCTGGTATGAGAGGCTCTGCGGC




CCTTACACATACGAGTACAACTACTGGGGC




CAAGGCACACAAGTGACTGTCTCGTCTGCT




AGCCACCATCACCATCACCAC





349
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



251
CCCGGCAAGGAGAGAGAGGGCGTGGCTCAC




ATCGACAGCGACGGCTCCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCTCC




AAGGACAACGCCAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCCGATCCAATT




CCCGGCCCCGGCTACTGCGATGGCGGCCCT




AACAAGTACTGGGGCCAAGGCACACAAGTG




ACTGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGCGGAGGAAGCGTG




CAAGCCGGAGGATCTCTGAGACTGAGCTGC




GCTGTGAGCGGCTACGCCTACTCCACATAC




TGCATGGGCTGGTTTAGGCAAGCCCCCGGC




AAAGAGAGAGAGGGCGTGGCTGCTATCGAT




AGCGGCGGCAGCACAAGCTACGCCGATAGC




GTGAAGGGAAGGTTCACAATCAGCAAGGAC




AACGCCAAGAACACACTGTATCTGAGGATG




AACTCTCTGAAGCCAGAGGACACAGCCATG




TACTACTGTGCTGCTGTGCCTCCTCCTCCA




GATGGCGGCAGCTGTCTGTTTCTGGGACCA




GAGATCAAGGTCAGCAAGGCCGATTTTAGG




TACTGGGGCCAAGGCACACAAGTGACAGTC




TCGTCTGCTAGCCACCATCACCATCACCAC





350
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



252
CCCGGCAAGGAGAGAGAGGGCGTGGCTCAC




ATCGACAGCGACGGCTCCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCTCC




AAGGACAACGCCAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCCGATCCAATT




CCCGGCCCCGGCTACTGCGATGGCGGCCCT




AACAAGTACTGGGGCCAAGGCACACAAGTG




ACTGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGAGGAAGCGTG




CAAGCCGGAGGCTCTCTGAGGCTGAGCTGT




ACAGTGTCCGGCTACACTTACAGCTCCAAT




TGCATGGGCTGGTTTAGGCAAGCCCCCGGC




AAGGAAAGAGAGGGCGTGGCCACTATCTAC




ACTGGCGGCGGCAACACATACTACGCCGAT




AGCGTGAAGGGAAGGTTCACTATCAGCCAA




GATAACGCCAAGAACACAGTGTATCTGCAG




ATGAACAATCTGAAGCCAGAGGACACTGCC




ATGTACTACTGTGCTGCTGAGCCACTGTCT




AGGGTGTACGGCGGCAGCTGCCCAACTCCT




ACATTCGACTACTGGGGCCAAGGCACACAA




GTGACTGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





351
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



253
CCCGGCAAGGAGAGAGAGGGCGTGGCTCAC




ATCGACAGCGACGGCTCCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCTCC




AAGGACAACGCCAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCCGATCCAATT




CCCGGCCCCGGCTACTGCGATGGCGGCCCT




AACAAGTACTGGGGCCAAGGCACACAAGTG




ACTGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGAGGAAGCGTC




CAAGCCGGAGGCTCTCTGAGGCTGAGCTGT




GGAGCCAGCGGCTACACTTACAGCAGCTAC




TGTATGGGCTGGTTTAGGCAAGTGCCCGGC




AAGGAGAGAGAGGGCGTGGCCGTGATCGAT




TCCGATGGCAGCACAAGCTACGCTGACAGC




GTGAAGGGAAGGTTCACAATCAGCAAGGAC




AACGGCAAGAACACACTCTATCTGCAGATG




AACAGCCTCAAGCCAGAGGACACAGCCATG




TACTACTGCGCCGCTGATCTGGGCCACTAT




AGGCCTCCTTGTGGCGTGCTGTATCTGGGC




ATGGATTACTGGGGCAAGGGCACACAAGTG




ACAGTCTCGTCTGCTAGCCACCATCACCAT




CACCAC





352
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



254
CCCGGCAAGGAGAGAGAGGGCGTGGCTCAC




ATCGACAGCGACGGCTCCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCTCC




AAGGACAACGCCAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCCGATCCAATT




CCCGGCCCCGGCTACTGCGATGGCGGCCCT




AACAAGTACTGGGGCCAAGGCACACAAGTG




ACTGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGAGGAAGCGTC




CAAGCCGGAGGCTCTCTGAGACTGAGCTGT




GCCGCCAGCGGCTACTCCAACTGCAGCTAC




GACATGACTTGGTATAGGCAAGCCCCCGGC




AAGGAGAGGGAGTTCGTGTCCGCCATCCAC




AGCGACGGCAGCACTAGATACGCCGACAGC




GTGAAGGGAAGGTTCTTCATCAGCCAAGAT




AACGCCAAGAACACAGTGTATCTGCAGATG




AACTCCCTCAAGCCAGAGGACACTGCCATG




TACTACTGCAAGACAGACCCACTGCACTGC




AGAGCCCATGGCGGCAGCTGGTATAGCGTG




AGGGCCAACTACTGGGGCCAAGGCACACAA




GTGACAGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





353
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGCGGATCTCTGAGACTG



Encoding
AGCTGTGCCGCCTCTAGGTACACTTACAAC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



255
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCGATAGCGACGGCATGACTAGGTACGCT




GATAGCGTCAAGGGAAGGTTCACAATCTCC




AAGGACAATGCTAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCTGCCGATGCCGAC




TGCACTATCGCCGCCATGACTACTAATCCT




CTGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGAGCGGAGGAGGAAGCGTGCAAGCCGGA




GGCTCTCTGAGACTGAGCTGTGCCGCCTCT




AGGTATCTGTACAGCATCGACTACATGGCT




TGGTTCAGACAGAGCCCCGGCAAGGAGAGG




GAGCCAGTGGCTGTCATCTACACTGCCTCC




GGCGCCACATTCTATCCAGATAGCGTGAAG




GGAAGGTTCACTATCAGCCAAGATAACGCC




AAGATGACAGTGTATCTGCAGATGAACTCT




CTGAAGAGCGAGGACACTGCCATGTACTAC




TGTGCCGCCGTGAGGAAGACAGATAGCTAC




CTCTTCGACGCCCAGAGCTTCACATACTGG




GGCCAAGGCACACAAGTGACAGTCTCGTCT




GCTAGCCACCATCACCATCACCAC





354
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGCGGATCTCTGAGACTG



Encoding
AGCTGTGCCGCCTCTAGGTACACTTACAAC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



256
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCGATAGCGACGGCATGACTAGGTACGCT




GATAGCGTCAAGGGAAGGTTCACAATCTCC




AAGGACAATGCTAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCTGCCGATGCCGAC




TGCACTATCGCCGCCATGACTACTAATCCT




CTGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGAGCGGAGGAGGAAGCGTGCAAGCCGGA




GGCTCTCTGAGGCTGAGCTGTGCCGCCTCT




AGGTTCACATACAGCAGCTACTGCATGGGC




TGGTTCAGACAAGCCCCCGGCAAAGAGAGA




GAAGGCGTGGCCAGCATCGATAGCGATGGC




TCCACTAGCTACACTGACAGCGTGAAGGGA




AGGTTCACTATCAGCAAGGACAACGCCAAG




AACACTCTGTATCTGCAGATGAACTCTCTG




AAGCCAGAGGACACAGCCATGTACTACTGT




GCCCTCGATCTGATGAGCACAGTGGTGCCC




GGCTTCTGTGGCTTTCTGCTGAGCGCTGGC




ATGGATTACTGGGGCAAGGGCACTCAAGTG




ACTGTCTCGTCTGCTAGCCACCATCACCAT




CACCAC





355
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGCGGATCTCTGAGACTG



Encoding
AGCTGTGCCGCCTCTAGGTACACTTACAAC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



257
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCGATAGCGACGGCATGACTAGGTACGCT




GATAGCGTCAAGGGAAGGTTCACAATCTCC




AAGGACAATGCTAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCTGCCGATGCCGAC




TGCACTATCGCCGCCATGACTACTAATCCT




CTGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGTCCGGAGGAGGCAGCGTCCAAGCCGGA




GGCTCTCTGAGGCTGAGCTGTGCTGCCAGC




GGCTACACTTACAGCATGTACTGCATGGGC




TGGTTCAGACAAGCCCCCGGCAAGGAAAGA




GAGGGCGTGGCCCAGATCAATAGCGATGGC




AGCACAAGCTACGCCGACAGCGTGAAGGGA




AGGTTCACTATCTCCAAGGACAACGCCAAG




AACACTCTGTATCTGCAGATGAACTCTCTG




AAGCCAGAGGACACTGCCATGTACTACTGC




GCTGCCGATTCTAGGGTGTACGGCGGCAGC




TGGTATGAGAGGCTCTGCGGCCCTTACACA




TACGAGTACAACTACTGGGGCCAAGGCACA




CAAGTGACTGTCTCGTCTGCTAGCCACCAT




CACCATCACCAC





356
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGCGGATCTCTGAGACTG



Encoding
AGCTGTGCCGCCTCTAGGTACACTTACAAC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



258
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCGATAGCGACGGCATGACTAGGTACGCT




GATAGCGTCAAGGGAAGGTTCACAATCTCC




AAGGACAATGCTAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCTGCCGATGCCGAC




TGCACTATCGCCGCCATGACTACTAATCCT




CTGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGAGCGGCGGAGGAAGCGTGCAAGCCGGA




GGATCTCTGAGACTGAGCTGCGCTGTGAGC




GGCTACGCCTACTCCACATACTGCATGGGC




TGGTTTAGGCAAGCCCCCGGCAAAGAGAGA




GAGGGCGTGGCTGCTATCGATAGCGGCGGC




AGCACAAGCTACGCCGATAGCGTGAAGGGA




AGGTTCACAATCAGCAAGGACAACGCCAAG




AACACACTGTATCTGAGGATGAACTCTCTG




AAGCCAGAGGACACAGCCATGTACTACTGT




GCTGCTGTGCCTCCTCCTCCAGATGGCGGC




AGCTGTCTGTTTCTGGGACCAGAGATCAAG




GTCAGCAAGGCCGATTTTAGGTACTGGGGC




CAAGGCACACAAGTGACAGTCTCGTCTGCT




AGCCACCATCACCATCACCAC





357
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGCGGATCTCTGAGACTG



Encoding
AGCTGTGCCGCCTCTAGGTACACTTACAAC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



259
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCGATAGCGACGGCATGACTAGGTACGCT




GATAGCGTCAAGGGAAGGTTCACAATCTCC




AAGGACAATGCTAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCTGCCGATGCCGAC




TGCACTATCGCCGCCATGACTACTAATCCT




CTGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGAGCGGAGGAGGAAGCGTGCAAGCCGGA




GGCTCTCTGAGGCTGAGCTGTACAGTGTCC




GGCTACACTTACAGCTCCAATTGCATGGGC




TGGTTTAGGCAAGCCCCCGGCAAGGAAAGA




GAGGGCGTGGCCACTATCTACACTGGCGGC




GGCAACACATACTACGCCGATAGCGTGAAG




GGAAGGTTCACTATCAGCCAAGATAACGCC




AAGAACACAGTGTATCTGCAGATGAACAAT




CTGAAGCCAGAGGACACTGCCATGTACTAC




TGTGCTGCTGAGCCACTGTCTAGGGTGTAC




GGCGGCAGCTGCCCAACTCCTACATTCGAC




TACTGGGGCCAAGGCACACAAGTGACTGTC




TCGTCTGCTAGCCACCATCACCATCACCAC





358
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGCGGATCTCTGAGACTG



Encoding
AGCTGTGCCGCCTCTAGGTACACTTACAAC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



260
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCGATAGCGACGGCATGACTAGGTACGCT




GATAGCGTCAAGGGAAGGTTCACAATCTCC




AAGGACAATGCTAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCTGCCGATGCCGAC




TGCACTATCGCCGCCATGACTACTAATCCT




CTGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGAGCGGAGGAGGAAGCGTCCAAGCCGGA




GGCTCTCTGAGGCTGAGCTGTGGAGCCAGC




GGCTACACTTACAGCAGCTACTGTATGGGC




TGGTTTAGGCAAGTGCCCGGCAAGGAGAGA




GAGGGCGTGGCCGTGATCGATTCCGATGGC




AGCACAAGCTACGCTGACAGCGTGAAGGGA




AGGTTCACAATCAGCAAGGACAACGGCAAG




AACACACTCTATCTGCAGATGAACAGCCTC




AAGCCAGAGGACACAGCCATGTACTACTGC




GCCGCTGATCTGGGCCACTATAGGCCTCCT




TGTGGCGTGCTGTATCTGGGCATGGATTAC




TGGGGCAAGGGCACACAAGTGACAGTCTCG




TCTGCTAGCCACCATCACCATCACCAC





359
DNA
CAAGTGCAGCTGCAAGAGTCCGGAGGAGGA



Sequence
AGCGTGCAAGCCGGCGGATCTCTGAGACTG



Encoding
AGCTGTGCCGCCTCTAGGTACACTTACAAC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTCAGACAAGCC



261
CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCGATAGCGACGGCATGACTAGGTACGCT




GATAGCGTCAAGGGAAGGTTCACAATCTCC




AAGGACAATGCTAAGAACACTCTGTACCTC




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGCGCTGCCGATGCCGAC




TGCACTATCGCCGCCATGACTACTAATCCT




CTGGGCCAAGGCACACAAGTGACTGTCTCG




AGCGGCGGAGGATCCCAAGTGCAGCTGCAA




GAGAGCGGAGGAGGAAGCGTCCAAGCCGGA




GGCTCTCTGAGACTGAGCTGTGCCGCCAGC




GGCTACTCCAACTGCAGCTACGACATGACT




TGGTATAGGCAAGCCCCCGGCAAGGAGAGG




GAGTTCGTGTCCGCCATCCACAGCGACGGC




AGCACTAGATACGCCGACAGCGTGAAGGGA




AGGTTCTTCATCAGCCAAGATAACGCCAAG




AACACAGTGTATCTGCAGATGAACTCCCTC




AAGCCAGAGGACACTGCCATGTACTACTGC




AAGACAGACCCACTGCACTGCAGAGCCCAT




GGCGGCAGCTGGTATAGCGTGAGGGCCAAC




TACTGGGGCCAAGGCACACAAGTGACAGTC




TCGTCTGCTAGCCACCATCACCATCACCAC





360
DNA
CAAGTGCAGCTGCAAGAGTCCGGCGGAGGC



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGGCTG



Encoding
AGCTGTACAGTGAGCAGATACACTGCCAGC



SEQ ID NO:
GTGAACTACATGGGCTGGTTCAGACAAGCC



262
CCCGGCAAAGAGAGAGAGGGCGTGGCCACA




ATCTTCACTGGCGCCGGCACAACATACTAC




GCCAACTCCGTCAAGGGAAGGTTCACAATC




TCTAGGGACAACGCCAAGAACACTGCCTAT




CTGCAGATGAACTCCCTCAAGCCAGAGGAC




ACTGCCATCTACTACTGCGCCGTGGATTTC




AGAGGCGGACTGCTGTATAGGCCAGCCTAC




GAGTACACTTATAGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAA




GTGCAGCTGCAAGAGAGCGGAGGAGGAAGC




GTGCAAGCCGGAGGCTCTCTGAGACTGAGC




TGTGCCGCCTCTAGGTATCTGTACAGCATC




GACTACATGGCTTGGTTCAGACAGAGCCCC




GGCAAGGAGAGGGAGCCAGTGGCTGTCATC




TACACTGCCTCCGGCGCCACATTCTATCCA




GATAGCGTGAAGGGAAGGTTCACTATCAGC




CAAGATAACGCCAAGATGACAGTGTATCTG




CAGATGAACTCTCTGAAGAGCGAGGACACT




GCCATGTACTACTGTGCCGCCGTGAGGAAG




ACAGATAGCTACCTCTTCGACGCCCAGAGC




TTCACATACTGGGGCCAAGGCACACAAGTG




ACAGTCTCGTCTGCTAGCCACCATCACCAT




CACCAC





361
DNA
CAAGTGCAGCTGCAAGAGTCCGGCGGAGGC



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGGCTG



Encoding
AGCTGTACAGTGAGCAGATACACTGCCAGC



SEQ ID NO:
GTGAACTACATGGGCTGGTTCAGACAAGCC



263
CCCGGCAAAGAGAGAGAGGGCGTGGCCACA




ATCTTCACTGGCGCCGGCACAACATACTAC




GCCAACTCCGTCAAGGGAAGGTTCACAATC




TCTAGGGACAACGCCAAGAACACTGCCTAT




CTGCAGATGAACTCCCTCAAGCCAGAGGAC




ACTGCCATCTACTACTGCGCCGTGGATTTC




AGAGGCGGACTGCTGTATAGGCCAGCCTAC




GAGTACACTTATAGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAA




GTGCAGCTGCAAGAGAGCGGAGGAGGAAGC




GTGCAAGCCGGAGGCTCTCTGAGGCTGAGC




TGTGCCGCCTCTAGGTTCACATACAGCAGC




TACTGCATGGGCTGGTTCAGACAAGCCCCC




GGCAAAGAGAGAGAAGGCGTGGCCAGCATC




GATAGCGATGGCTCCACTAGCTACACTGAC




AGCGTGAAGGGAAGGTTCACTATCAGCAAG




GACAACGCCAAGAACACTCTGTATCTGCAG




ATGAACTCTCTGAAGCCAGAGGACACAGCC




ATGTACTACTGTGCCCTCGATCTGATGAGC




ACAGTGGTGCCCGGCTTCTGTGGCTTTCTG




CTGAGCGCTGGCATGGATTACTGGGGCAAG




GGCACTCAAGTGACTGTCTCGTCTGCTAGC




CACCATCACCATCACCAC





362
DNA
CAAGTGCAGCTGCAAGAGTCCGGCGGAGGC



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGGCTG



Encoding
AGCTGTACAGTGAGCAGATACACTGCCAGC



SEQ ID NO:
GTGAACTACATGGGCTGGTTCAGACAAGCC



264
CCCGGCAAAGAGAGAGAGGGCGTGGCCACA




ATCTTCACTGGCGCCGGCACAACATACTAC




GCCAACTCCGTCAAGGGAAGGTTCACAATC




TCTAGGGACAACGCCAAGAACACTGCCTAT




CTGCAGATGAACTCCCTCAAGCCAGAGGAC




ACTGCCATCTACTACTGCGCCGTGGATTTC




AGAGGCGGACTGCTGTATAGGCCAGCCTAC




GAGTACACTTATAGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAA




GTGCAGCTGCAAGAGTCCGGAGGAGGCAGC




GTCCAAGCCGGAGGCTCTCTGAGGCTGAGC




TGTGCTGCCAGCGGCTACACTTACAGCATG




TACTGCATGGGCTGGTTCAGACAAGCCCCC




GGCAAGGAAAGAGAGGGCGTGGCCCAGATC




AATAGCGATGGCAGCACAAGCTACGCCGAC




AGCGTGAAGGGAAGGTTCACTATCTCCAAG




GACAACGCCAAGAACACTCTGTATCTGCAG




ATGAACTCTCTGAAGCCAGAGGACACTGCC




ATGTACTACTGCGCTGCCGATTCTAGGGTG




TACGGCGGCAGCTGGTATGAGAGGCTCTGC




GGCCCTTACACATACGAGTACAACTACTGG




GGCCAAGGCACACAAGTGACTGTCTCGTCT




GCTAGCCACCATCACCATCACCAC





363
DNA
CAAGTGCAGCTGCAAGAGTCCGGCGGAGGC



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGGCTG



Encoding
AGCTGTACAGTGAGCAGATACACTGCCAGC



SEQ ID NO:
GTGAACTACATGGGCTGGTTCAGACAAGCC



265
CCCGGCAAAGAGAGAGAGGGCGTGGCCACA




ATCTTCACTGGCGCCGGCACAACATACTAC




GCCAACTCCGTCAAGGGAAGGTTCACAATC




TCTAGGGACAACGCCAAGAACACTGCCTAT




CTGCAGATGAACTCCCTCAAGCCAGAGGAC




ACTGCCATCTACTACTGCGCCGTGGATTTC




AGAGGCGGACTGCTGTATAGGCCAGCCTAC




GAGTACACTTATAGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAA




GTGCAGCTGCAAGAGAGCGGCGGAGGAAGC




GTGCAAGCCGGAGGATCTCTGAGACTGAGC




TGCGCTGTGAGCGGCTACGCCTACTCCACA




TACTGCATGGGCTGGTTTAGGCAAGCCCCC




GGCAAAGAGAGAGAGGGCGTGGCTGCTATC




GATAGCGGCGGCAGCACAAGCTACGCCGAT




AGCGTGAAGGGAAGGTTCACAATCAGCAAG




GACAACGCCAAGAACACACTGTATCTGAGG




ATGAACTCTCTGAAGCCAGAGGACACAGCC




ATGTACTACTGTGCTGCTGTGCCTCCTCCT




CCAGATGGCGGCAGCTGTCTGTTTCTGGGA




CCAGAGATCAAGGTCAGCAAGGCCGATTTT




AGGTACTGGGGCCAAGGCACACAAGTGACA




GTCTCGTCTGCTAGCCACCATCACCATCAC




CAC





364
DNA
CAAGTGCAGCTGCAAGAGTCCGGCGGAGGC



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGGCTG



Encoding
AGCTGTACAGTGAGCAGATACACTGCCAGC



SEQ ID NO:
GTGAACTACATGGGCTGGTTCAGACAAGCC



266
CCCGGCAAAGAGAGAGAGGGCGTGGCCACA




ATCTTCACTGGCGCCGGCACAACATACTAC




GCCAACTCCGTCAAGGGAAGGTTCACAATC




TCTAGGGACAACGCCAAGAACACTGCCTAT




CTGCAGATGAACTCCCTCAAGCCAGAGGAC




ACTGCCATCTACTACTGCGCCGTGGATTTC




AGAGGCGGACTGCTGTATAGGCCAGCCTAC




GAGTACACTTATAGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAA




GTGCAGCTGCAAGAGAGCGGAGGAGGAAGC




GTGCAAGCCGGAGGCTCTCTGAGGCTGAGC




TGTACAGTGTCCGGCTACACTTACAGCTCC




AATTGCATGGGCTGGTTTAGGCAAGCCCCC




GGCAAGGAAAGAGAGGGCGTGGCCACTATC




TACACTGGCGGCGGCAACACATACTACGCC




GATAGCGTGAAGGGAAGGTTCACTATCAGC




CAAGATAACGCCAAGAACACAGTGTATCTG




CAGATGAACAATCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCTGCTGAGCCACTG




TCTAGGGTGTACGGCGGCAGCTGCCCAACT




CCTACATTCGACTACTGGGGCCAAGGCACA




CAAGTGACTGTCTCGTCTGCTAGCCACCAT




CACCATCACCAC





365
DNA
CAAGTGCAGCTGCAAGAGTCCGGCGGAGGC



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGGCTG



Encoding
AGCTGTACAGTGAGCAGATACACTGCCAGC



SEQ ID NO:
GTGAACTACATGGGCTGGTTCAGACAAGCC



267
CCCGGCAAAGAGAGAGAGGGCGTGGCCACA




ATCTTCACTGGCGCCGGCACAACATACTAC




GCCAACTCCGTCAAGGGAAGGTTCACAATC




TCTAGGGACAACGCCAAGAACACTGCCTAT




CTGCAGATGAACTCCCTCAAGCCAGAGGAC




ACTGCCATCTACTACTGCGCCGTGGATTTC




AGAGGCGGACTGCTGTATAGGCCAGCCTAC




GAGTACACTTATAGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAA




GTGCAGCTGCAAGAGAGCGGAGGAGGAAGC




GTCCAAGCCGGAGGCTCTCTGAGGCTGAGC




TGTGGAGCCAGCGGCTACACTTACAGCAGC




TACTGTATGGGCTGGTTTAGGCAAGTGCCC




GGCAAGGAGAGAGAGGGCGTGGCCGTGATC




GATTCCGATGGCAGCACAAGCTACGCTGAC




AGCGTGAAGGGAAGGTTCACAATCAGCAAG




GACAACGGCAAGAACACACTCTATCTGCAG




ATGAACAGCCTCAAGCCAGAGGACACAGCC




ATGTACTACTGCGCCGCTGATCTGGGCCAC




TATAGGCCTCCTTGTGGCGTGCTGTATCTG




GGCATGGATTACTGGGGCAAGGGCACACAA




GTGACAGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





366
DNA
CAAGTGCAGCTGCAAGAGTCCGGCGGAGGC



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGGCTG



Encoding
AGCTGTACAGTGAGCAGATACACTGCCAGC



SEQ ID NO:
GTGAACTACATGGGCTGGTTCAGACAAGCC



268
CCCGGCAAAGAGAGAGAGGGCGTGGCCACA




ATCTTCACTGGCGCCGGCACAACATACTAC




GCCAACTCCGTCAAGGGAAGGTTCACAATC




TCTAGGGACAACGCCAAGAACACTGCCTAT




CTGCAGATGAACTCCCTCAAGCCAGAGGAC




ACTGCCATCTACTACTGCGCCGTGGATTTC




AGAGGCGGACTGCTGTATAGGCCAGCCTAC




GAGTACACTTATAGGGGCCAAGGCACACAA




GTGACAGTCTCGAGCGGCGGAGGATCCCAA




GTGCAGCTGCAAGAGAGCGGAGGAGGAAGC




GTCCAAGCCGGAGGCTCTCTGAGACTGAGC




TGTGCCGCCAGCGGCTACTCCAACTGCAGC




TACGACATGACTTGGTATAGGCAAGCCCCC




GGCAAGGAGAGGGAGTTCGTGTCCGCCATC




CACAGCGACGGCAGCACTAGATACGCCGAC




AGCGTGAAGGGAAGGTTCTTCATCAGCCAA




GATAACGCCAAGAACACAGTGTATCTGCAG




ATGAACTCCCTCAAGCCAGAGGACACTGCC




ATGTACTACTGCAAGACAGACCCACTGCAC




TGCAGAGCCCATGGCGGCAGCTGGTATAGC




GTGAGGGCCAACTACTGGGGCCAAGGCACA




CAAGTGACAGTCTCGTCTGCTAGCCACCAT




CACCATCACCAC





367
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCGAAGCTGGAGGATCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTCACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTCAGACAAGCC



269
CCCGGCAAGGAGAGGGAAGGCGTGGCTGCC




ATCGACGTGGATGGCAGCACTACTTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACT




GGCATGTACTACTGCGCCGCCGAGTTCGCC




GATTGCAGCAGCAACTACTTTCTGCCTCCC




GGCGCCGTCAGATATTGGGGCCAAGGCACT




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA




AGCGTGCAAGCCGGAGGCTCTCTGAGACTG




AGCTGTGCCGCCTCTAGGTATCTGTACAGC




ATCGACTACATGGCTTGGTTCAGACAGAGC




CCCGGCAAGGAGAGGGAGCCAGTGGCTGTC




ATCTACACTGCCTCCGGCGCCACATTCTAT




CCAGATAGCGTGAAGGGAAGGTTCACTATC




AGCCAAGATAACGCCAAGATGACAGTGTAT




CTGCAGATGAACTCTCTGAAGAGCGAGGAC




ACTGCCATGTACTACTGTGCCGCCGTGAGG




AAGACAGATAGCTACCTCTTCGACGCCCAG




AGCTTCACATACTGGGGCCAAGGCACACAA




GTGACAGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





368
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCGAAGCTGGAGGATCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTCACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTCAGACAAGCC



270
CCCGGCAAGGAGAGGGAAGGCGTGGCTGCC




ATCGACGTGGATGGCAGCACTACTTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACT




GGCATGTACTACTGCGCCGCCGAGTTCGCC




GATTGCAGCAGCAACTACTTTCTGCCTCCC




GGCGCCGTCAGATATTGGGGCCAAGGCACT




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA




AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG




AGCTGTGCCGCCTCTAGGTTCACATACAGC




AGCTACTGCATGGGCTGGTTCAGACAAGCC




CCCGGCAAAGAGAGAGAAGGCGTGGCCAGC




ATCGATAGCGATGGCTCCACTAGCTACACT




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCCCTCGATCTGATG




AGCACAGTGGTGCCCGGCTTCTGTGGCTTT




CTGCTGAGCGCTGGCATGGATTACTGGGGC




AAGGGCACTCAAGTGACTGTCTCGTCTGCT




AGCCACCATCACCATCACCAC





369
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCGAAGCTGGAGGATCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTCACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTCAGACAAGCC



271
CCCGGCAAGGAGAGGGAAGGCGTGGCTGCC




ATCGACGTGGATGGCAGCACTACTTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACT




GGCATGTACTACTGCGCCGCCGAGTTCGCC




GATTGCAGCAGCAACTACTTTCTGCCTCCC




GGCGCCGTCAGATATTGGGGCCAAGGCACT




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGTCCGGAGGAGGC




AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG




AGCTGTGCTGCCAGCGGCTACACTTACAGC




ATGTACTGCATGGGCTGGTTCAGACAAGCC




CCCGGCAAGGAAAGAGAGGGCGTGGCCCAG




ATCAATAGCGATGGCAGCACAAGCTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCTCC




AAGGACAACGCCAAGAACACTCTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGCGCTGCCGATTCTAGG




GTGTACGGCGGCAGCTGGTATGAGAGGCTC




TGCGGCCCTTACACATACGAGTACAACTAC




TGGGGCCAAGGCACACAAGTGACTGTCTCG




TCTGCTAGCCACCATCACCATCACCAC





370
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCGAAGCTGGAGGATCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTCACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTCAGACAAGCC



272
CCCGGCAAGGAGAGGGAAGGCGTGGCTGCC




ATCGACGTGGATGGCAGCACTACTTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACT




GGCATGTACTACTGCGCCGCCGAGTTCGCC




GATTGCAGCAGCAACTACTTTCTGCCTCCC




GGCGCCGTCAGATATTGGGGCCAAGGCACT




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGCGGAGGA




AGCGTGCAAGCCGGAGGATCTCTGAGACTG




AGCTGCGCTGTGAGCGGCTACGCCTACTCC




ACATACTGCATGGGCTGGTTTAGGCAAGCC




CCCGGCAAAGAGAGAGAGGGCGTGGCTGCT




ATCGATAGCGGCGGCAGCACAAGCTACGCC




GATAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




AGGATGAACTCTCTGAAGCCAGAGGACACA




GCCATGTACTACTGTGCTGCTGTGCCTCCT




CCTCCAGATGGCGGCAGCTGTCTGTTTCTG




GGACCAGAGATCAAGGTCAGCAAGGCCGAT




TTTAGGTACTGGGGCCAAGGCACACAAGTG




ACAGTCTCGTCTGCTAGCCACCATCACCAT




CACCAC





371
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCGAAGCTGGAGGATCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTCACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTCAGACAAGCC



273
CCCGGCAAGGAGAGGGAAGGCGTGGCTGCC




ATCGACGTGGATGGCAGCACTACTTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACT




GGCATGTACTACTGCGCCGCCGAGTTCGCC




GATTGCAGCAGCAACTACTTTCTGCCTCCC




GGCGCCGTCAGATATTGGGGCCAAGGCACT




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA




AGCGTGCAAGCCGGAGGCTCTCTGAGGCTG




AGCTGTACAGTGTCCGGCTACACTTACAGC




TCCAATTGCATGGGCTGGTTTAGGCAAGCC




CCCGGCAAGGAAAGAGAGGGCGTGGCCACT




ATCTACACTGGCGGCGGCAACACATACTAC




GCCGATAGCGTGAAGGGAAGGTTCACTATC




AGCCAAGATAACGCCAAGAACACAGTGTAT




CTGCAGATGAACAATCTGAAGCCAGAGGAC




ACTGCCATGTACTACTGTGCTGCTGAGCCA




CTGTCTAGGGTGTACGGCGGCAGCTGCCCA




ACTCCTACATTCGACTACTGGGGCCAAGGC




ACACAAGTGACTGTCTCGTCTGCTAGCCAC




CATCACCATCACCAC





372
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCGAAGCTGGAGGATCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTCACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTCAGACAAGCC



274
CCCGGCAAGGAGAGGGAAGGCGTGGCTGCC




ATCGACGTGGATGGCAGCACTACTTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACT




GGCATGTACTACTGCGCCGCCGAGTTCGCC




GATTGCAGCAGCAACTACTTTCTGCCTCCC




GGCGCCGTCAGATATTGGGGCCAAGGCACT




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA




AGCGTCCAAGCCGGAGGCTCTCTGAGGCTG




AGCTGTGGAGCCAGCGGCTACACTTACAGC




AGCTACTGTATGGGCTGGTTTAGGCAAGTG




CCCGGCAAGGAGAGAGAGGGCGTGGCCGTG




ATCGATTCCGATGGCAGCACAAGCTACGCT




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGGCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACA




GCCATGTACTACTGCGCCGCTGATCTGGGC




CACTATAGGCCTCCTTGTGGCGTGCTGTAT




CTGGGCATGGATTACTGGGGCAAGGGCACA




CAAGTGACAGTCTCGTCTGCTAGCCACCAT




CACCATCACCAC





373
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGC



Sequence
AGCGTCGAAGCTGGAGGATCTCTGAGGCTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTCACAGC



SEQ ID NO:
AGCTACTGTATGGGCTGGTTCAGACAAGCC



275
CCCGGCAAGGAGAGGGAAGGCGTGGCTGCC




ATCGACGTGGATGGCAGCACTACTTACGCC




GACAGCGTGAAGGGAAGGTTCACTATCAGC




AAGGACAACGCCAAGAACACACTCTATCTG




CAGATGAACAGCCTCAAGCCAGAGGACACT




GGCATGTACTACTGCGCCGCCGAGTTCGCC




GATTGCAGCAGCAACTACTTTCTGCCTCCC




GGCGCCGTCAGATATTGGGGCCAAGGCACT




CAAGTGACAGTCTCGAGCGGCGGAGGATCC




CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA




AGCGTCCAAGCCGGAGGCTCTCTGAGACTG




AGCTGTGCCGCCAGCGGCTACTCCAACTGC




AGCTACGACATGACTTGGTATAGGCAAGCC




CCCGGCAAGGAGAGGGAGTTCGTGTCCGCC




ATCCACAGCGACGGCAGCACTAGATACGCC




GACAGCGTGAAGGGAAGGTTCTTCATCAGC




CAAGATAACGCCAAGAACACAGTGTATCTG




CAGATGAACTCCCTCAAGCCAGAGGACACT




GCCATGTACTACTGCAAGACAGACCCACTG




CACTGCAGAGCCCATGGCGGCAGCTGGTAT




AGCGTGAGGGCCAACTACTGGGGCCAAGGC




ACACAAGTGACAGTCTCGTCTGCTAGCCAC




CATCACCATCACCAC





374
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCCGCTAGTGGCTACTCCTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTTAGGCAAGCC



276
CCCGGCAAGGAGAGAGAAGGCGTGGCCACT




ATCGACAGCGACGGCATGACAAGGTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCTCCTCTGTAC




GACTGTGATAGCGGCGCTGTGGGCAGAAAT




CCACCTTATTGGGGCCAAGGCACTCAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGAGGAAGCGTG




CAAGCCGGAGGCTCTCTGAGACTGAGCTGT




GCCGCCTCTAGGTATCTGTACAGCATCGAC




TACATGGCTTGGTTCAGACAGAGCCCCGGC




AAGGAGAGGGAGCCAGTGGCTGTCATCTAC




ACTGCCTCCGGCGCCACATTCTATCCAGAT




AGCGTGAAGGGAAGGTTCACTATCAGCCAA




GATAACGCCAAGATGACAGTGTATCTGCAG




ATGAACTCTCTGAAGAGCGAGGACACTGCC




ATGTACTACTGTGCCGCCGTGAGGAAGACA




GATAGCTACCTCTTCGACGCCCAGAGCTTC




ACATACTGGGGCCAAGGCACACAAGTGACA




GTCTCGTCTGCTAGCCACCATCACCATCAC




CAC





375
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCCGCTAGTGGCTACTCCTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTTAGGCAAGCC



277
CCCGGCAAGGAGAGAGAAGGCGTGGCCACT




ATCGACAGCGACGGCATGACAAGGTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCTCCTCTGTAC




GACTGTGATAGCGGCGCTGTGGGCAGAAAT




CCACCTTATTGGGGCCAAGGCACTCAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGAGGAAGCGTG




CAAGCCGGAGGCTCTCTGAGGCTGAGCTGT




GCCGCCTCTAGGTTCACATACAGCAGCTAC




TGCATGGGCTGGTTCAGACAAGCCCCCGGC




AAAGAGAGAGAAGGCGTGGCCAGCATCGAT




AGCGATGGCTCCACTAGCTACACTGACAGC




GTGAAGGGAAGGTTCACTATCAGCAAGGAC




AACGCCAAGAACACTCTGTATCTGCAGATG




AACTCTCTGAAGCCAGAGGACACAGCCATG




TACTACTGTGCCCTCGATCTGATGAGCACA




GTGGTGCCCGGCTTCTGTGGCTTTCTGCTG




AGCGCTGGCATGGATTACTGGGGCAAGGGC




ACTCAAGTGACTGTCTCGTCTGCTAGCCAC




CATCACCATCACCAC





376
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCCGCTAGTGGCTACTCCTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTTAGGCAAGCC



278
CCCGGCAAGGAGAGAGAAGGCGTGGCCACT




ATCGACAGCGACGGCATGACAAGGTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCTCCTCTGTAC




GACTGTGATAGCGGCGCTGTGGGCAGAAAT




CCACCTTATTGGGGCCAAGGCACTCAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGTCCGGAGGAGGCAGCGTC




CAAGCCGGAGGCTCTCTGAGGCTGAGCTGT




GCTGCCAGCGGCTACACTTACAGCATGTAC




TGCATGGGCTGGTTCAGACAAGCCCCCGGC




AAGGAAAGAGAGGGCGTGGCCCAGATCAAT




AGCGATGGCAGCACAAGCTACGCCGACAGC




GTGAAGGGAAGGTTCACTATCTCCAAGGAC




AACGCCAAGAACACTCTGTATCTGCAGATG




AACTCTCTGAAGCCAGAGGACACTGCCATG




TACTACTGCGCTGCCGATTCTAGGGTGTAC




GGCGGCAGCTGGTATGAGAGGCTCTGCGGC




CCTTACACATACGAGTACAACTACTGGGGC




CAAGGCACACAAGTGACTGTCTCGTCTGCT




AGCCACCATCACCATCACCAC





377
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCCGCTAGTGGCTACTCCTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTTAGGCAAGCC



279
CCCGGCAAGGAGAGAGAAGGCGTGGCCACT




ATCGACAGCGACGGCATGACAAGGTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCTCCTCTGTAC




GACTGTGATAGCGGCGCTGTGGGCAGAAAT




CCACCTTATTGGGGCCAAGGCACTCAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGCGGAGGAAGCGTG




CAAGCCGGAGGATCTCTGAGACTGAGCTGC




GCTGTGAGCGGCTACGCCTACTCCACATAC




TGCATGGGCTGGTTTAGGCAAGCCCCCGGC




AAAGAGAGAGAGGGCGTGGCTGCTATCGAT




AGCGGCGGCAGCACAAGCTACGCCGATAGC




GTGAAGGGAAGGTTCACAATCAGCAAGGAC




AACGCCAAGAACACACTGTATCTGAGGATG




AACTCTCTGAAGCCAGAGGACACAGCCATG




TACTACTGTGCTGCTGTGCCTCCTCCTCCA




GATGGCGGCAGCTGTCTGTTTCTGGGACCA




GAGATCAAGGTCAGCAAGGCCGATTTTAGG




TACTGGGGCCAAGGCACACAAGTGACAGTC




TCGTCTGCTAGCCACCATCACCATCACCAC





378
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCCGCTAGTGGCTACTCCTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTTAGGCAAGCC



280
CCCGGCAAGGAGAGAGAAGGCGTGGCCACT




ATCGACAGCGACGGCATGACAAGGTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCTCCTCTGTAC




GACTGTGATAGCGGCGCTGTGGGCAGAAAT




CCACCTTATTGGGGCCAAGGCACTCAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGAGGAAGCGTG




CAAGCCGGAGGCTCTCTGAGGCTGAGCTGT




ACAGTGTCCGGCTACACTTACAGCTCCAAT




TGCATGGGCTGGTTTAGGCAAGCCCCCGGC




AAGGAAAGAGAGGGCGTGGCCACTATCTAC




ACTGGCGGCGGCAACACATACTACGCCGAT




AGCGTGAAGGGAAGGTTCACTATCAGCCAA




GATAACGCCAAGAACACAGTGTATCTGCAG




ATGAACAATCTGAAGCCAGAGGACACTGCC




ATGTACTACTGTGCTGCTGAGCCACTGTCT




AGGGTGTACGGCGGCAGCTGCCCAACTCCT




ACATTCGACTACTGGGGCCAAGGCACACAA




GTGACTGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





379
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCCGCTAGTGGCTACTCCTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTTAGGCAAGCC



281
CCCGGCAAGGAGAGAGAAGGCGTGGCCACT




ATCGACAGCGACGGCATGACAAGGTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCTCCTCTGTAC




GACTGTGATAGCGGCGCTGTGGGCAGAAAT




CCACCTTATTGGGGCCAAGGCACTCAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGAGGAAGCGTC




CAAGCCGGAGGCTCTCTGAGGCTGAGCTGT




GGAGCCAGCGGCTACACTTACAGCAGCTAC




TGTATGGGCTGGTTTAGGCAAGTGCCCGGC




AAGGAGAGAGAGGGCGTGGCCGTGATCGAT




TCCGATGGCAGCACAAGCTACGCTGACAGC




GTGAAGGGAAGGTTCACAATCAGCAAGGAC




AACGGCAAGAACACACTCTATCTGCAGATG




AACAGCCTCAAGCCAGAGGACACAGCCATG




TACTACTGCGCCGCTGATCTGGGCCACTAT




AGGCCTCCTTGTGGCGTGCTGTATCTGGGC




ATGGATTACTGGGGCAAGGGCACACAAGTG




ACAGTCTCGTCTGCTAGCCACCATCACCAT




CACCAC





380
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGAGGA



Sequence
AGCGTCCAAGCCGGAGGATCTCTGAGACTG



Encoding
AGCTGCGCCGCTAGTGGCTACTCCTACAGC



SEQ ID NO:
AGCTACTGCATGGGCTGGTTTAGGCAAGCC



282
CCCGGCAAGGAGAGAGAAGGCGTGGCCACT




ATCGACAGCGACGGCATGACAAGGTACGCC




GACAGCGTGAAGGGAAGGTTCACAATCAGC




AAGGACAACGCCAAGAACACACTGTATCTG




CAGATGAACTCTCTGAAGCCAGAGGACACT




GCCATGTACTACTGTGCCGCTCCTCTGTAC




GACTGTGATAGCGGCGCTGTGGGCAGAAAT




CCACCTTATTGGGGCCAAGGCACTCAAGTG




ACAGTCTCGAGCGGCGGAGGATCCCAAGTG




CAGCTGCAAGAGAGCGGAGGAGGAAGCGTC




CAAGCCGGAGGCTCTCTGAGACTGAGCTGT




GCCGCCAGCGGCTACTCCAACTGCAGCTAC




GACATGACTTGGTATAGGCAAGCCCCCGGC




AAGGAGAGGGAGTTCGTGTCCGCCATCCAC




AGCGACGGCAGCACTAGATACGCCGACAGC




GTGAAGGGAAGGTTCTTCATCAGCCAAGAT




AACGCCAAGAACACAGTGTATCTGCAGATG




AACTCCCTCAAGCCAGAGGACACTGCCATG




TACTACTGCAAGACAGACCCACTGCACTGC




AGAGCCCATGGCGGCAGCTGGTATAGCGTG




AGGGCCAACTACTGGGGCCAAGGCACACAA




GTGACAGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





381
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGCGGC



Sequence
AGCGTGCAGACTGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATCTG



SEQ ID NO:
AGGGGCTGTATGGGCTGGTTTAGGCAAGCC



283
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTC




ATGGATGTGGTGGGCGATAGGAGAAGCTAC




ATCGACAGCGTGAAGGGAAGGTTCACAATC




TCTAGGGACAATGCCGCCAACAGCGTCTAT




CTGCAGATGGACAATCTGAAGCCAGAGGAC




ACAGCCATGTACTACTGCACTGCCGGCCCT




AACTGTGTGGGCTGGAGAAGCGGACTGGAT




TACTGGGGCCAAGGCACACAAGTGACAGTC




TCGAGCGGCGGAGGATCCCAAGTGCAGCTG




CAAGAGAGCGGAGGAGGAAGCGTGCAAGCC




GGAGGCTCTCTGAGACTGAGCTGTGCCGCC




TCTAGGTATCTGTACAGCATCGACTACATG




GCTTGGTTCAGACAGAGCCCCGGCAAGGAG




AGGGAGCCAGTGGCTGTCATCTACACTGCC




TCCGGCGCCACATTCTATCCAGATAGCGTG




AAGGGAAGGTTCACTATCAGCCAAGATAAC




GCCAAGATGACAGTGTATCTGCAGATGAAC




TCTCTGAAGAGCGAGGACACTGCCATGTAC




TACTGTGCCGCCGTGAGGAAGACAGATAGC




TACCTCTTCGACGCCCAGAGCTTCACATAC




TGGGGCCAAGGCACACAAGTGACAGTCTCG




TCTGCTAGCCACCATCACCATCACCAC





382
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGCGGC



Sequence
AGCGTGCAGACTGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATCTG



SEQ ID NO:
AGGGGCTGTATGGGCTGGTTTAGGCAAGCC



284
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTC




ATGGATGTGGTGGGCGATAGGAGAAGCTAC




ATCGACAGCGTGAAGGGAAGGTTCACAATC




TCTAGGGACAATGCCGCCAACAGCGTCTAT




CTGCAGATGGACAATCTGAAGCCAGAGGAC




ACAGCCATGTACTACTGCACTGCCGGCCCT




AACTGTGTGGGCTGGAGAAGCGGACTGGAT




TACTGGGGCCAAGGCACACAAGTGACAGTC




TCGAGCGGCGGAGGATCCCAAGTGCAGCTG




CAAGAGAGCGGAGGAGGAAGCGTGCAAGCC




GGAGGCTCTCTGAGGCTGAGCTGTGCCGCC




TCTAGGTTCACATACAGCAGCTACTGCATG




GGCTGGTTCAGACAAGCCCCCGGCAAAGAG




AGAGAAGGCGTGGCCAGCATCGATAGCGAT




GGCTCCACTAGCTACACTGACAGCGTGAAG




GGAAGGTTCACTATCAGCAAGGACAACGCC




AAGAACACTCTGTATCTGCAGATGAACTCT




CTGAAGCCAGAGGACACAGCCATGTACTAC




TGTGCCCTCGATCTGATGAGCACAGTGGTG




CCCGGCTTCTGTGGCTTTCTGCTGAGCGCT




GGCATGGATTACTGGGGCAAGGGCACTCAA




GTGACTGTCTCGTCTGCTAGCCACCATCAC




CATCACCAC





383
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGCGGC



Sequence
AGCGTGCAGACTGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATCTG



SEQ ID NO:
AGGGGCTGTATGGGCTGGTTTAGGCAAGCC



285
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTC




ATGGATGTGGTGGGCGATAGGAGAAGCTAC




ATCGACAGCGTGAAGGGAAGGTTCACAATC




TCTAGGGACAATGCCGCCAACAGCGTCTAT




CTGCAGATGGACAATCTGAAGCCAGAGGAC




ACAGCCATGTACTACTGCACTGCCGGCCCT




AACTGTGTGGGCTGGAGAAGCGGACTGGAT




TACTGGGGCCAAGGCACACAAGTGACAGTC




TCGAGCGGCGGAGGATCCCAAGTGCAGCTG




CAAGAGTCCGGAGGAGGCAGCGTCCAAGCC




GGAGGCTCTCTGAGGCTGAGCTGTGCTGCC




AGCGGCTACACTTACAGCATGTACTGCATG




GGCTGGTTCAGACAAGCCCCCGGCAAGGAA




AGAGAGGGCGTGGCCCAGATCAATAGCGAT




GGCAGCACAAGCTACGCCGACAGCGTGAAG




GGAAGGTTCACTATCTCCAAGGACAACGCC




AAGAACACTCTGTATCTGCAGATGAACTCT




CTGAAGCCAGAGGACACTGCCATGTACTAC




TGCGCTGCCGATTCTAGGGTGTACGGCGGC




AGCTGGTATGAGAGGCTCTGCGGCCCTTAC




ACATACGAGTACAACTACTGGGGCCAAGGC




ACACAAGTGACTGTCTCGTCTGCTAGCCAC




CATCACCATCACCAC





384
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGCGGC



Sequence
AGCGTGCAGACTGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATCTG



SEQ ID NO:
AGGGGCTGTATGGGCTGGTTTAGGCAAGCC



286
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTC




ATGGATGTGGTGGGCGATAGGAGAAGCTAC




ATCGACAGCGTGAAGGGAAGGTTCACAATC




TCTAGGGACAATGCCGCCAACAGCGTCTAT




CTGCAGATGGACAATCTGAAGCCAGAGGAC




ACAGCCATGTACTACTGCACTGCCGGCCCT




AACTGTGTGGGCTGGAGAAGCGGACTGGAT




TACTGGGGCCAAGGCACACAAGTGACAGTC




TCGAGCGGCGGAGGATCCCAAGTGCAGCTG




CAAGAGAGCGGCGGAGGAAGCGTGCAAGCC




GGAGGATCTCTGAGACTGAGCTGCGCTGTG




AGCGGCTACGCCTACTCCACATACTGCATG




GGCTGGTTTAGGCAAGCCCCCGGCAAAGAG




AGAGAGGGCGTGGCTGCTATCGATAGCGGC




GGCAGCACAAGCTACGCCGATAGCGTGAAG




GGAAGGTTCACAATCAGCAAGGACAACGCC




AAGAACACACTGTATCTGAGGATGAACTCT




CTGAAGCCAGAGGACACAGCCATGTACTAC




TGTGCTGCTGTGCCTCCTCCTCCAGATGGC




GGCAGCTGTCTGTTTCTGGGACCAGAGATC




AAGGTCAGCAAGGCCGATTTTAGGTACTGG




GGCCAAGGCACACAAGTGACAGTCTCGTCT




GCTAGCCACCATCACCATCACCAC





385
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGCGGC



Sequence
AGCGTGCAGACTGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATCTG



SEQ ID NO:
AGGGGCTGTATGGGCTGGTTTAGGCAAGCC



287
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTC




ATGGATGTGGTGGGCGATAGGAGAAGCTAC




ATCGACAGCGTGAAGGGAAGGTTCACAATC




TCTAGGGACAATGCCGCCAACAGCGTCTAT




CTGCAGATGGACAATCTGAAGCCAGAGGAC




ACAGCCATGTACTACTGCACTGCCGGCCCT




AACTGTGTGGGCTGGAGAAGCGGACTGGAT




TACTGGGGCCAAGGCACACAAGTGACAGTC




TCGAGCGGCGGAGGATCCCAAGTGCAGCTG




CAAGAGAGCGGAGGAGGAAGCGTGCAAGCC




GGAGGCTCTCTGAGGCTGAGCTGTACAGTG




TCCGGCTACACTTACAGCTCCAATTGCATG




GGCTGGTTTAGGCAAGCCCCCGGCAAGGAA




AGAGAGGGCGTGGCCACTATCTACACTGGC




GGCGGCAACACATACTACGCCGATAGCGTG




AAGGGAAGGTTCACTATCAGCCAAGATAAC




GCCAAGAACACAGTGTATCTGCAGATGAAC




AATCTGAAGCCAGAGGACACTGCCATGTAC




TACTGTGCTGCTGAGCCACTGTCTAGGGTG




TACGGCGGCAGCTGCCCAACTCCTACATTC




GACTACTGGGGCCAAGGCACACAAGTGACT




GTCTCGTCTGCTAGCCACCATCACCATCAC




CAC





386
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGCGGC



Sequence
AGCGTGCAGACTGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATCTG



SEQ ID NO:
AGGGGCTGTATGGGCTGGTTTAGGCAAGCC



288
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTC




ATGGATGTGGTGGGCGATAGGAGAAGCTAC




ATCGACAGCGTGAAGGGAAGGTTCACAATC




TCTAGGGACAATGCCGCCAACAGCGTCTAT




CTGCAGATGGACAATCTGAAGCCAGAGGAC




ACAGCCATGTACTACTGCACTGCCGGCCCT




AACTGTGTGGGCTGGAGAAGCGGACTGGAT




TACTGGGGCCAAGGCACACAAGTGACAGTC




TCGAGCGGCGGAGGATCCCAAGTGCAGCTG




CAAGAGAGCGGAGGAGGAAGCGTCCAAGCC




GGAGGCTCTCTGAGGCTGAGCTGTGGAGCC




AGCGGCTACACTTACAGCAGCTACTGTATG




GGCTGGTTTAGGCAAGTGCCCGGCAAGGAG




AGAGAGGGCGTGGCCGTGATCGATTCCGAT




GGCAGCACAAGCTACGCTGACAGCGTGAAG




GGAAGGTTCACAATCAGCAAGGACAACGGC




AAGAACACACTCTATCTGCAGATGAACAGC




CTCAAGCCAGAGGACACAGCCATGTACTAC




TGCGCCGCTGATCTGGGCCACTATAGGCCT




CCTTGTGGCGTGCTGTATCTGGGCATGGAT




TACTGGGGCAAGGGCACACAAGTGACAGTC




TCGTCTGCTAGCCACCATCACCATCACCAC





387
DNA
CAAGTGCAGCTGCAAGAGAGCGGAGGCGGC



Sequence
AGCGTGCAGACTGGAGGCTCTCTGAGACTG



Encoding
AGCTGTGCTGCCAGCGGCTACACTTATCTG



SEQ ID NO:
AGGGGCTGTATGGGCTGGTTTAGGCAAGCC



289
CCCGGCAAGGAGAGAGAGGGCGTGGCCGTC




ATGGATGTGGTGGGCGATAGGAGAAGCTAC




ATCGACAGCGTGAAGGGAAGGTTCACAATC




TCTAGGGACAATGCCGCCAACAGCGTCTAT




CTGCAGATGGACAATCTGAAGCCAGAGGAC




ACAGCCATGTACTACTGCACTGCCGGCCCT




AACTGTGTGGGCTGGAGAAGCGGACTGGAT




TACTGGGGCCAAGGCACACAAGTGACAGTC




TCGAGCGGCGGAGGATCCCAAGTGCAGCTG




CAAGAGAGCGGAGGAGGAAGCGTCCAAGCC




GGAGGCTCTCTGAGACTGAGCTGTGCCGCC




AGCGGCTACTCCAACTGCAGCTACGACATG




ACTTGGTATAGGCAAGCCCCCGGCAAGGAG




AGGGAGTTCGTGTCCGCCATCCACAGCGAC




GGCAGCACTAGATACGCCGACAGCGTGAAG




GGAAGGTTCTTCATCAGCCAAGATAACGCC




AAGAACACAGTGTATCTGCAGATGAACTCC




CTCAAGCCAGAGGACACTGCCATGTACTAC




TGCAAGACAGACCCACTGCACTGCAGAGCC




CATGGCGGCAGCTGGTATAGCGTGAGGGCC




AACTACTGGGGCCAAGGCACACAAGTGACA




GTCTCGTCTGCTAGCCACCATCACCATCAC




CAC





388
SEQ ID NO:
IDYMA



44 CDR 1






389
SEQ ID NO:
VIYTASGATFYPDSVKG



44 CDR 2






390
SEQ ID NO:
VRKTDSYLFDAQSFTY



44 CDR 3






391
SEQ ID NO:
SYCMG



45 CDR 1






392
SEQ ID NO:
SIDSDGSTSYTDSVKG



45 CDR 2






393
SEQ ID NO:
DLMSTVVPGFCGFLLSAGMDY



45 CDR 3






394
SEQ ID NO:
MYCMG



46 CDR 1






395
SEQ ID NO:
QINSDGSTSYADSVKG



46 CDR 2






396
SEQ ID NO:
DSRVYGGSWYERLCGPYTYEYNY



46 CDR 3






397
SEQ ID NO:
TYCMG



47 CDR 1






398
SEQ ID NO:
AIDSGGSTSYADSVKG



47 CDR 2






399
SEQ ID NO:
VPPPPDGGSCLFLGPEIK VSKADFRY



47 CDR 3






400
SEQ ID NO:
SNCMG



48 CDR 1






401
SEQ ID NO:
TIYTGGGNTYYADSVKG



48 CDR 2






402
SEQ ID NO:
EPLSRVYGGSCPTPTFDY



48 CDR 3






403
SEQ ID NO:
SYCMG



49 CDR 1






404
SEQ ID NO:
VIDSDGSTSYADSVKG



49 CDR 2






405
SEQ ID NO:
DLGHYRPPCGVLYLGMDY



49 CDR 3






406
SEQ ID NO:
SYDMT



50 CDR 1






407
SEQ ID NO:
AIHSDGSTRYADSVKG



50 CDR 2






408
SEQ ID NO:
DPLHCRAHGGSWYSVRANY



50 CDR 3






409
SEQ ID NO:
SGCMG



51 CDR 1






410
SEQ ID NO:
AINSDGSTSYADSVKG



51 CDR 2






411
SEQ ID NO:
EPYCSGGYPR



51 CDR 3






412
SEQ ID NO:
SYCMG



52 CDR 1






413
SEQ ID NO:
HIDSDGSTSYADSVKG



52 CDR 2






414
SEQ ID NO:
DPIPGPGYCDGGPNKY



52 CDR 3






415
SEQ ID NO:
SYCMG



53 CDR 1






416
SEQ ID NO:
TIDSDGMTRYADSVKG



53 CDR 2






417
SEQ ID NO:
DADCTIAAMTTNPL



53 CDR 3






418
SEQ ID NO:
VNYMG



54 CDR 1






419
SEQ ID NO:
TIFTGAGTTYYANSVKG



54 CDR 2






420
SEQ ID NO:
DFRGGLLYRPAYEYTYR



54 CDR 3






421
SEQ ID NO:
VNYMG



55 CDR 1






422
SEQ ID NO:
TIFTGAGTTYYANSVKG



55 CDR 2






423
SEQ ID NO:
DFRGGLLYRPAYEYTYR



55 CDR 3






424
SEQ ID NO:
SYCMG



56 CDR 1






425
SEQ ID NO:
TIDSDGMTRYADSVKG



56 CDR 2






426
SEQ ID NO:
PLYDCDSGAVGRNPPY



56 CDR 3






427
SEQ ID NO:
RGCMG



57 CDR 1






428
SEQ ID NO:
VMDVVGDRRSYIDSVKG



57 CDR 2






429
SEQ ID NO:
GPNCVGWRSGLDY



57 CDR 3






430
ASH6
ASHHHHHH



purification




handle









It is understood that the embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. The sequences of the sequence accession numbers cited herein are hereby incorporated by reference.

Claims
  • 1. An IL12 receptor (IL12R) binding protein that specifically binds to IL12Rβ1 and IL12Rβ2, wherein the binding protein causes the multimerization of IL12Rβ1 and IL12Rβ2 and downstream signaling, andwherein the binding protein comprises a single-domain antibody (sdAb) that specifically binds to IL12Rβ1 (an anti-IL12Rβ1 sdAb) and a sdAb that specifically binds to IL12Rβ2 (an anti-IL12Rβ2 sdAb).
  • 2. The IL12R binding protein of claim 1, wherein the anti-IL12Rβ1 sdAb is a VHH antibody (an anti-IL12Rβ1 VHH antibody) and/or the anti-IL12Rβ2 sdAb is a VHH antibody (an anti-IL12Rβ2 VHH antibody).
  • 3. The IL12R binding protein of claim 1 or 2, wherein the anti-IL12Rβ1 sdAb and the anti-IL12Rβ2 sdAb are joined by a peptide linker.
  • 4. The IL12R binding protein of claim 3, wherein the peptide linker comprises between 1 and 50 amino acids.
  • 5. The IL12R binding protein of any one of claims 1 to 4, wherein the IL12R binding protein has a reduced Emax compared to IL12.
  • 6. The IL12R binding protein of any one of claims 1 to 5, wherein the IL12R binding protein has a similar potency compared to that of IL12.
  • 7. A method for treating cancer in a subject in need thereof, comprising administering to the subject the IL12R binding protein of any one of claims 1 to 6, wherein the IL12R binding protein binds to and activates natural killer, CD4+ T cells, and/or CD8+ T cells.
  • 8. The method of claim 7, wherein the cancer is a solid tumor cancer.
  • 9. An IL27 receptor (IL27R) binding protein that specifically binds to IL27Rα subunit (IL27Rα) and glycoprotein 130 subunit (gp130), wherein the binding protein causes the multimerization of IL27Rα and gp130 and downstream signaling, andwherein the binding protein comprises a single-domain antibody (sdAb) that specifically binds to IL27Rα (an anti-IL27Rα sdAb) and a sdAb that specifically binds to gp130 (an anti-gp130 sdAb).
  • 10. The IL27R binding protein of claim 9, wherein the anti-IL27Rα sdAb is a VHH antibody (an anti-IL27Rα VHH antibody) and/or the anti-gp130 sdAb is a VHH antibody (an anti-gp130 VHH antibody).
  • 11. The IL27R binding protein of any one of claims 9 to 10, wherein the anti-IL27Rα sdAb and the anti-gp130 sdAb are joined by a peptide linker.
  • 12. The IL27R binding protein of claim 11, wherein the peptide linker comprises between 1 and 50 amino acids.
  • 13. A method for treating cancer in a subject in need thereof, comprising administering to the subject the IL27R binding protein of any one of claims 9 to 12, wherein the IL27R binding protein binds to and activates CD8+ T cells, CD4+ T cells, and/or T-regulatory (Treg) cells.
  • 14. The method of claim 13, wherein the IL27R binding protein binds to and activates CD8+ T cells.
  • 15. The method of claim 13 or 14, wherein the IL27R binding protein binds to and activates CXCR5+ CD8+ T cells.
  • 16. The method of any one of claims 13 to 15, wherein the cancer is a solid tumor cancer.
  • 17. An IL10 receptor (IL10R) binding protein that specifically binds to IL10Rα subunit (IL10Rα) and IL10Rβ, wherein the binding protein causes the multimerization of IL10Rα and IL10Rβ and downstream signaling, andwherein the binding protein comprises a single-domain antibody (sdAb) that specifically binds to IL10Rα (an anti-IL10Rα sdAb) and a sdAb that specifically binds to IL10Rβ (an anti-IL10Rβ sdAb).
  • 18. The IL10R binding protein of claim 17, wherein the anti-IL10Rα sdAb is a VHH antibody (an anti-IL10Rα VHH antibody) and/or the anti-IL10Rβ sdAb is a VHH antibody (an anti-IL10Rβ VHH antibody).
  • 19. The IL10R binding protein of any one of claims 17 to 18, wherein the anti-IL10Rα sdAb and the anti-IL10Rβ sdAb are joined by a peptide linker.
  • 20. The IL10R binding protein of claim 19, wherein the peptide linker comprises between 1 and 50 amino acids.
  • 21. A method for treating cancer in a subject in need thereof, comprising administering to the subject the IL10R binding protein of any one of claims 17 to 20, wherein the IL10R binding protein binds to and activates CD8+ T cells, CD4+ T cells, macrophages, and/or Treg cells.
  • 22. The method of claim 21, wherein the IL10R binding protein provides longer therapeutic efficacy than a pegylated IL10.
  • 23. The method of claim 21 or 22, wherein the cancer is a solid tumor cancer.
  • 24. An interferon (IFN) λ receptor (IFNλR) binding protein that specifically binds to IL10Rβ and IL28 receptor (IL28R) α subunit (IL28Rα), wherein the binding protein causes the multimerization of IL10Rβ and IL28Rα and downstream signaling, andwherein the binding protein comprises a single-domain antibody (sdAb) that specifically binds to IL10Rβ (an anti-IL10Rβ sdAb) and a sdAb that specifically binds to IL28Rα (an anti-IL28Rα sdAb).
  • 25. The IFNλR binding protein of claim 24, wherein the anti-IL10Rβ sdAb is a VHH antibody (an anti-IL10Rβ VHH antibody) and/or the anti-IL28Rα sdAb is a VHH antibody (an anti-IL28Rα VHH antibody).
  • 26. The IFNλR binding protein of any one of claims 24 to 25, wherein the anti-IL10Rβ sdAb and the anti-IL28Rα sdAb are joined by a peptide linker.
  • 27. The IFNλR binding protein of claim 26, wherein the peptide linker comprises between 1 and 50 amino acids.
  • 28. A method for treating an infectious disease in a subject in need thereof, comprising administering to the subject an IFNλR binding protein of any one of claims 24 to 27, wherein the IFNλR binding protein binds to and activates macrophages, CD8+ T cells, CD4+ T cells, Treg cells, dendritic cells, and/or epithelial cells.
  • 29. The method of claim 28, wherein the IFNλR binding protein binds to and activates macrophages.
  • 30. The method of claim 28 or 29, wherein the infectious disease is influenza, hepatitis B, hepatitis C, or human immunodeficiency virus (HIV) infection.
  • 31. A binding protein that specifically binds to IL10Rα and IL2Rγ, wherein the binding protein causes the multimerization of IL10Rα and IL2Rγ and downstream signaling, andwherein the binding protein comprises a sdAb that specifically binds to IL10Rα (an anti-IL10Rα sdAb) and a sdAb that specifically binds to IL2Rγ (an anti-IL2Rγ sdAb).
  • 32. The binding protein of claim 31, wherein the anti-IL10Rα sdAb is a VHH antibody (an anti-IL10Rα VHH antibody) and/or the anti-IL2Rγ sdAb is a VHH antibody (an anti-IL2Rγ VHH antibody).
  • 33. The binding protein of any one of claims 31 to 32, wherein the anti-IL10Rα sdAb and the anti-IL2Rγ sdAb are joined by a peptide linker.
  • 34. The binding protein of claim 33, wherein the peptide linker comprises between 1 and 50 amino acids.
  • 35. A method for treating cancer in a subject in need thereof, comprising administering to the subject the binding protein of any one of claims 31 to 34, wherein the binding protein binds to and activates CD8+ T cells and/or CD4+ T cells.
  • 36. The method of claim 35, wherein the method does not cause anemia.
  • 37. A binding protein that specifically binds to a first receptor and a second receptor, wherein the first receptor is interferon γ receptor 1 (IFNγR1) or IL28Rα and the second receptor is preferentially expressed on myeloid cells and/or T cells,wherein the binding protein causes the multimerization of the first receptor and the second receptor and their downstream signaling, andwherein the binding protein comprises a single-domain antibody (sdAb) that specifically binds to the first receptor and a sdAb that specifically binds to the second receptor.
  • 38. The binding protein of claim 37, wherein the sdAb that specifically binds to the first receptor is an anti-IFNγR1 VHH antibody.
  • 39. The binding protein of claim 37, wherein the sdAb that specifically binds to the first receptor is an anti-IL28Rα VHH antibody.
  • 40. The binding protein of any one of claims 37 to 39, wherein the first receptor is IFNγR1 and the second receptor is IL2Rγ.
  • 41. The binding protein of any one of claims 37 to 39, wherein the first receptor is IL28Rα and the second receptor is IL2Rγ.
  • 42. The binding protein of any one of claims 37 to 41, wherein the sdAb that specifically binds to the first receptor and the sdAb that specifically binds to the second receptor are joined by a peptide linker.
  • 43. The binding protein of claim 42, wherein the peptide linker comprises between 5 and 50 amino acids.
  • 44. A method for treating cancer in a subject in need thereof, comprising administering to the subject the binding protein of any one of claims 37 to 43, wherein the binding protein binds to and activates myeloid cells and/or T cells.
  • 45. The method of claim 44, wherein the binding protein binds to and activates macrophages.
  • 46. The method of claim 44, wherein the binding protein binds to and activates CD8+ T cells and/or CD4+ T cells.
  • 47. The IL10R binding protein of any one of claims 17 to 20 wherein the anti-IL10Rα sdAb is selected from the group consisting of SEQ ID NOs: 44-50 and the anti-IL10Rβ sdAb is selected from the group consisting of SEQ ID Nos: 51-57.
  • 48. The IL10R binding protein of claim 47 wherein the anti-IL10Rα sdAb is joined to the anti-IL10Rβ sdAb via a linker selected from the group consisting of SEQ ID Nos: 1-23.
  • 49. The ILR binding protein of claim 47 wherein the IL10R binding protein comprises, from amino to carboxy, a first anti-IL10R sdAb joined via a linker to a second anti-IL10R sdAb, according to the following:
  • 50. The IL-10 receptor binding protein of claim 17 selected from the group consisting of SEQ ID Nos: 194, 209, 210, 211, 213, 218, 226, 233, 238, 244, 250, 203, 205, 207, 269, 212, 217, 219, 224, 227, 237, 239, and 249.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a national stage application under 35 U.S.C. 371 of PCT/US2021/044730, filed Aug. 5, 2021, which claims priority to U.S. Provisional Application No. 63/061,562, filed Aug. 5, 2020, U.S. Provisional Application No. 63/078,745, filed Sep. 15, 2020, and U.S. Provisional Application No. 63/135,884, filed Jan. 11, 2021, the disclosures of which are hereby incorporated by reference in their entirety for all purposes.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/044730 8/5/2021 WO
Provisional Applications (3)
Number Date Country
63061562 Aug 2020 US
63078745 Sep 2020 US
63135884 Jan 2021 US