COMPOSITIONS COMPRISING CURONS AND USES THEREOF

Abstract
This invention relates generally to pharmaceutical compositions and preparations of curons and uses thereof.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 13, 2018, is named V2057-7000WO_SL.txt and is 1,066,292 bytes in size.


BACKGROUND

Existing viral systems for delivering therapeutic agents utilize viruses that can be associated with diseases or disorders, and can be highly immunogenic. There exists a need in the art for improved delivery vehicles that are substantially non-immunogenic and non-pathogenic.


SUMMARY

The present disclosure provides a curon, e.g., a synthetic curon, that can be used as a delivery vehicle, e.g., for delivering a therapeutic agent to a eukaryotic cell. In some embodiments, a curon comprises a particle comprising a genetic element encapsulated in a proteinaceous exterior, which is capable of introducing the genetic element into a cell (e.g., a human cell). In some instances, the genetic element comprises a payload, e.g., it encodes an exogenous effector (e.g., a nucleic acid effector, such as a non-coding RNA, or a polypeptide effector, e.g., a protein) that is expressed in the cell. For example, the curon can deliver an exogenous effector into a cell by contacting the cell and introducing a genetic element encoding the exogenous effector into the cell, such that the exogenous effector is made or expressed by the cell. The exogenous effector can, in some instances, modulate a function of the cell or modulate an activity or level of a target molecule in the cell. For example, the exogenous effector may decrease viability of a cancer cell (e.g., as described in Example 22) or decrease levels of a target protein, e.g., interferon, in the cell (e.g., as described in Examples 3 and 4). In another example, the exogenous effector may be a protein expressed by the cell (e.g., as described in Example 9).


A synthetic curon has at least one structural difference compared to a wild-type virus, e.g., a deletion, insertion, substitution, enzymatic modification, relative to a wild-type virus. Generally, synthetic curons include an exogenous genetic element enclosed within a proteinaceous exterior, which can be used as substantially non-immunogenic vehicles for delivering the genetic element, or an effector (e.g., an exogenous effector or an endogenous effector) encoded therein (e.g., a polypeptide or nucleic acid effector), into eukaryotic cells. Curons can be used for treatment of diseases and disorders, e.g., by delivering a therapeutic agent to a desired cell or tissue. The genetic element of a synthetic curon of the present disclosure can be a circular single-stranded DNA molecule, and generally includes a protein binding sequence that binds to the proteinaceous exterior, or a polypeptide attached thereto, which may facilitate enclosure of the genetic element within the proteinaceous exterior and/or enrichment of the genetic element, relative to other nucleic acids, within the proteinaceous exterior.


In an aspect, the invention features a synthetic curon comprising (i) a genetic element comprising a promoter element, a sequence encoding an exogenous effector, (e.g., a payload), and a protein binding sequence (e.g., an exterior protein binding sequence, e.g., a packaging signal). In some embodiments, the genetic element is a single-stranded DNA. Alternatively or in combination, the genetic element has one or both of the following properties: is circular and/or integrates into the genome of a eukaryotic cell at a frequency of less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, or 2% of the genetic element that enters the cell; and (ii) a proteinaceous exterior. In some embodiments, the genetic element is enclosed within the proteinaceous exterior. In some embodiments, the synthetic curon is capable of delivering the genetic element into a eukaryotic cell.


In an aspect, the invention features a synthetic curon comprising: (i) a genetic element comprising a promoter element and a sequence encoding an exogenous effector (e.g., a payload), and a protein binding sequence (e.g., an exterior protein binding sequence); and (ii) a proteinaceous exterior; wherein the genetic element is enclosed within the proteinaceous exterior; and wherein the synthetic curon is capable of delivering the genetic element into a eukaryotic cell. In some embodiments, the genetic element comprises a nucleic acid sequence (e.g., a nucleic acid sequence of between 300-4000 nucleotides, e.g., between 300-3500 nucleotides, between 300-3000 nucleotides, between 300-2500 nucleotides, between 300-2000 nucleotides, between 300-1500 nucleotides) having at least 75% (e.g., at least 75, 76, 77, 78, 79, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to a sequence of a wild-type Anellovirus (e.g., a wild-type Torque Teno virus (TTV), Torque Teno mini virus (TTMV), or TTMDV sequence, e.g., a wild-type Anellovirus sequence as listed in any of Tables 1, 3, 5, 7, 9, 11, or 13). In some embodiments, the genetic element comprises a nucleic acid sequence (e.g., a nucleic acid sequence of at least 300 nucleotides, 500 nucleotides, 1000 nucleotides, 1500 nucleotides, 2000 nucleotides, 2500 nucleotides, 3000 nucleotides or more) having at least 75% (e.g., at least 75, 76, 77, 78, 79, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to a sequence of a wild-type Anellovirus (e.g., a wild-type Torque Teno virus (TTV), Torque Teno mini virus (TTMV), or TTMDV sequence, e.g., a wild-type Anellovirus sequence as listed in any of Tables 1, 3, 5, 7, 9, 11, or 13).


In an aspect, the invention features a method of treating a disease or disorder in a subject, the method comprising administering to the subject a curon, e.g., a synthetic curon, e.g., as described herein. In some embodiments, the curon comprises: (i) a genetic element comprising a promoter element and a sequence encoding an effector, e.g., a payload, and an exterior protein binding sequence. In some embodiments, the genetic element is a single-stranded DNA, and wherein the genetic element is circular and/or integrates at a frequency of less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, or 2% of the genetic element that enters the cell; and (ii) a proteinaceous exterior; wherein the genetic element is enclosed within the proteinaceous exterior; and wherein the curon is capable of delivering the genetic element into a eukaryotic cell.


In an aspect, the invention features a method of delivering a payload to a cell, tissue or subject, the method comprising administering to the subject a curon, e.g., a synthetic curon, e.g., as described herein, wherein the curon comprises a nucleic acid sequence encoding the payload. In some embodiments, the curon comprises: (i) a genetic element comprising a promoter element and a sequence encoding an effector, e.g., a payload, and an exterior protein binding sequence. In some embodiments, the genetic element is a single-stranded DNA, and wherein the genetic element is circular and/or integrates at a frequency of less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, or 2% of the genetic element that enters the cell; and (ii) a proteinaceous exterior; wherein the genetic element is enclosed within the proteinaceous exterior; and wherein the curon is capable of delivering the genetic element into a eukaryotic cell. In embodiments, the payload is a nucleic acid. In embodiments, the payload is a protein.


In an aspect, the invention features a method of delivering a synthetic curon to a cell, comprising contacting the synthetic curon described herein, e.g., of any of the aspects herein (e.g., the preceding aspects) with a cell, e.g., a eukaryotic cell, e.g., a mammalian cell.


In an aspect, the invention features a pharmaceutical composition comprising a curon (e.g., a synthetic curon) as described herein. In embodiments, the pharmaceutical composition further comprises a pharmaceutically acceptable carrier or excipient. In embodiments, the pharmaceutical composition comprises a dose comprising about 105-1014 genome equivalents of the curon per kilogram.


In an aspect, the invention features a nucleic acid molecule comprising a genetic element comprising a promoter element and a sequence encoding an effector, e.g., a payload, and an exterior protein binding sequence. In embodiments, the genetic element is a single-stranded DNA, and wherein the genetic element is circular and/or integrates at a frequency of less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, or 2% of the genetic element that enters the cell. In embodiments, the effector does not originate from TTV and is not an SV40-miR-S1. In embodiments, the nucleic acid molecule does not comprise the polynucleotide sequence of TTMV-LY. In embodiments, the promoter element is capable of directing expression of the effector in a eukaryotic cell.


In an aspect, the invention features a genetic element comprising one, two, or three of: (i) a promoter element and a sequence encoding an effector, e.g., a payload; wherein the effector is exogenous relative to a wild-type Anellovirus sequence; (ii) at least 72 contiguous nucleotides (e.g., at least 72, 73, 74, 75, 76, 77, 78, 79, 80, 90, 100, or 150 nucleotides) having at least 75% (e.g., at least 75, 76, 77, 78, 79, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to a wild-type Anellovirus sequence; or at least 100 (e.g., at least 300, 500, 1000, 1500) contiguous nucleotides having at least 72% (e.g., at least 72, 73, 74, 75, 76, 77, 78, 79, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to a wild-type Anellovirus sequence; and (iii) a protein binding sequence, e.g., an exterior protein binding sequence, and wherein the nucleic acid construct is a single-stranded DNA; and wherein the nucleic acid construct is circular and/or integrates at a frequency of less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, or 2% of the genetic element that enters the cell.


In an aspect, the invention features a method of manufacturing a synthetic curon composition, comprising:


a) providing a host cell comprising, e.g., expressing one or more components (e.g., all of the components) of a curon, e.g., a synthetic curon, e.g., as described herein;


b) producing a preparation of curons from the host cell, wherein the synthetic curons of the preparation comprise a proteinaceous exterior and a genetic element comprising a promoter element, a sequence encoding an exogenous effector, (e.g., a payload), and a protein binding sequence (e.g., an exterior protein binding sequence, e.g., a packaging signal), thereby making a preparation of synthetic curon; and


c) formulating the preparation of synthetic curons, e.g., as a pharmaceutical composition suitable for administration to a subject.


In an aspect, the invention features a method of manufacturing a synthetic curon composition, comprising: a) providing a plurality of synthetic curon described herein, or a pharmaceutical composition described herein; and b) formulating the synthetic curons, e.g., as a pharmaceutical composition suitable for administration to a subject.


In an aspect, the invention features a method of making a host cell, e.g., a first host cell or a producer cell (e.g., as shown in FIG. 12), e.g., a population of first host cells, comprising a synthetic curon, the method comprising introducing a genetic element, e.g., as described herein, to a host cell and culturing the host cell under conditions suitable for production of the synthetic curon. In embodiments, the method further comprises introducing a helper, e.g., a helper virus, to the host cell. In embodiments, the introducing comprises transfection (e.g., chemical transfection) or electroporation of the host cell with the synthetic curon.


In an aspect, the invention features a method of making a synthetic curon, comprising providing a host cell, e.g., a first host cell or producer cell (e.g., as shown in FIG. 12), comprising a synthetic curon, e.g., as described herein, and purifying the curon from the host cell. In some embodiments, the method further comprises, prior to the providing step, contacting the host cell with a synthetic curon, e.g., as described herein, and incubating the host cell under conditions suitable for production of the synthetic curon. In embodiments, the host cell is the first host cell or producer cell described in the above method of making a host cell. In embodiments, purifying the curon from the host cell comprises lysing the host cell.


In some embodiments, the method further comprises a second step of contacting the synthetic curon produced by the first host cell or producer cell with a second host cell, e.g., a permissive cell (e.g., as shown in FIG. 12), e.g., a population of second host cells. In some embodiments, the method further comprises incubating the second host cell inder conditions suitable for production of the synthetic curon. In some embodiments, the method further comprises purifying a synthetic curon from the second host cell, e.g., thereby producing a curon seed population. In embodiments, at least about 2-100-fold more of the synthetic curon is produced from the population of second host cells than from the population of first host cells. In embodiments, purifying the curon from the second host cell comprises lysing the second host cell.


In some embodiments, the method further comprises a second step of contacting the synthetic curon produced by the second host cell with a third host cell, e.g., permissive cells (e.g., as shown in FIG. 12), e.g., a population of third host cells. In some embodiments, the method further comprises incubating the third host cell inder conditions suitable for production of the synthetic curon. In some embodiments, the method further comprises purifying a synthetic curon from the third host cell, e.g., thereby producing a curon stock population. In embodiments, purifying the curon from the third host cell comprises lysing the third host cell. In embodiments, at least about 2-100-fold more of the synthetic curon is produced from the population of third host cells than from the population of second host cells.


In some embodiments, the method further comprises evaluating one or more synthetic curons from the curon seed population or the curon stock population for one or more quality control parameters, e.g., purity, titer, potency (e.g., in genomic equivalents per curon particle), and/or the nucleic acid sequence, e.g., from the genetic element comprised by the synthetic curon. In some embodiments, the evaluated nucleic acid sequence comprises the nucleic acid sequence encoding an exogenous effector.


In an aspect, the invention comprises evaluating one or more synthetic curons, e.g., from a curon seed population or a curon stock population, for one or more quality control parameters, e.g., purity, titer, potency, and/or the nucleic acid sequence, e.g., from the genetic element comprised by the synthetic curon. In some embodiments, the evaluated nucleic acid sequence comprises the nucleic acid sequence encoding an exogenous effector.


In an aspect, the invention features a reaction mixture comprising a synthetic curon described herein and a helper virus, wherein the helper virus comprises a polynucleotide, e.g., a polynucleotide encoding an exterior protein, (e.g., an exterior protein capable of binding to the exterior protein binding sequence and, optionally, a lipid envelope), a polynucleotide encoding a replication protein (e.g., a polymerase), or any combination thereof.


In some embodiments, a curon (e.g., a synthetic curon) is isolated, e.g., isolated from a host cell and/or isolated from other constituents in a solution (e.g., a supernatant). In some embodiments, a curon (e.g., a synthetic curon) is purified, e.g., from a solution (e.g., a supernatant). In some embodiments, a curon is enriched in a solution relative to other constituents in the solution.


In some embodiments of any of the aforesaid curons, compositions or methods, the genetic element comprises a minimal curon genome, e.g., as identified according to the method described in Example 9. In some embodiments, the minimal curon genome comprises a minimal Anellovirus genome sufficient for replication of the curon (e.g., in a host cell). In embodiments, the minimal curon genome comprises a TTV-tth8 nucleic acid sequence, e.g., a TTV-tth8 nucleic acid sequence shown in Table 5, having deletions of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or 100% of nucleotides 3436-3707 of the TTV-tth8 nucleic acid sequence. In embodiments, the minimal curon genome comprises a TTMV-LY2 nucleic acid sequence, e.g., a TTMV-LY2 nucleic acid sequence shown in Table 11, having deletions of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or 100% of nucleotides 574-1371, 1432-2210, 574-2210, and/or 2610-2809 of the TTMV-LY2 nucleic acid sequence. In embodiments, the minimal curon genome is a minimal curon genome capable of self-replication and/or self-amplification. In embodiments, the minimal curon genome is a minimal curon genome capable of replicating or being amplified in the presence of a helper, e.g., a helper virus.


Additional features of any of the aforesaid curons, compositions or methods include one or more of the following enumerated embodiments.


Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following enumerated embodiments.


Enumerated Embodiments

1. A synthetic curon comprising:


(i) a genetic element comprising a promoter element, a nucleic acid sequence (e.g., a DNA sequence) encoding an exogenous effector, (e.g., a payload), and a protein binding sequence (e.g., an exterior protein binding sequence, e.g., a packaging signal), wherein the genetic element is a single-stranded DNA, and has one or both of the following properties: is circular and/or integrates into the genome of a eukaryotic cell at a frequency of less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, or 2% of the genetic element that enters the cell; and


(ii) a proteinaceous exterior;


wherein the genetic element is enclosed within the proteinaceous exterior; and


wherein the synthetic curon is capable of delivering the genetic element into a eukaryotic cell.


2. A synthetic curon comprising:


(i) a genetic element comprising a promoter element and a nucleic acid sequence (e.g., a DNA sequence) encoding an exogenous effector (e.g., a payload), and a protein binding sequence (e.g., an exterior protein binding sequence),


wherein the genetic element has at least 75% (e.g., at least 75, 76, 77, 78, 79, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to a wild-type Anellovirus sequence (e.g., a wild-type Torque Teno virus (TTV), Torque Teno mini virus (TTMV), or TTMDV sequence, e.g., a wild-type Anellovirus sequence, e.g., as listed in any of Tables 1, 3, 5, 7, 9, 11, or 13); and


(ii) a proteinaceous exterior;


wherein the genetic element is enclosed within the proteinaceous exterior; and


wherein the synthetic curon is capable of delivering the genetic element into a eukaryotic cell.


3. A synthetic curon comprising:


(i) a genetic element comprising a promoter element and a nucleic acid sequence (e.g., a DNA sequence) encoding an effector (e.g., an exogenous effector or endogenous effector, e.g., endogenous miRNA), and a protein binding sequence (e.g., an exterior protein binding sequence),


wherein the genetic element has at least 75% (e.g., at least 75, 76, 77, 78, 79, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to a wild-type Anellovirus sequence (e.g., a wild-type Torque Teno virus (TTV), Torque Teno mini virus (TTMV), or TTMDV sequence, e.g., a wild-type Anellovirus sequence, e.g., as listed in any of Tables 1, 3, 5, 7, 9, 11, or 13); and


wherein the genetic element is not a naturally occurring sequence (e.g., comprises a deletion, substitution, or insertion relative to a wild-type Anellovirus sequence (e.g., a wild-type Torque Teno virus (TTV), Torque Teno mini virus (TTMV), or TTMDV sequence, e.g., a wild-type Anellovirus sequence, e.g., as listed in any of Tables 1, 3, 5, 7, 9, 11, or 13);


(ii) a proteinaceous exterior;


wherein the genetic element is enclosed within the proteinaceous exterior; and


wherein the synthetic curon is capable of delivering the genetic element into a eukaryotic cell.


4. A synthetic curon comprising:


(i) a genetic element comprising a promoter element and a nucleic acid sequence (e.g., a DNA sequence) encoding an exogenous effector (e.g., a payload), and a protein binding sequence (e.g., an exterior protein binding sequence),


wherein the protein binding sequence has at least 75% (e.g., at least 75, 76, 77, 78, 79, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to the Consensus 5′ UTR sequence shown in Table 16-1, or to the Consensus GC-rich sequence shown in Table 16-2, or both of the Consensus 5′ UTR sequence shown in Table 16-1 and to the Consensus GC-rich sequence shown in Table 16-2; and


(ii) a proteinaceous exterior;


wherein the genetic element is enclosed within the proteinaceous exterior; and


wherein the synthetic curon is capable of delivering the genetic element into a eukaryotic cell.


5. A synthetic curon comprising:


(i) a genetic element comprising a promoter element and a nucleic acid sequence encoding an exogenous effector, and a protein binding sequence, wherein the genetic element comprises one or both of:

    • (a) a sequence having at least 85% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of nucleotides 323-393 of the nucleic acid sequence of Table 11, or
    • (b) a sequence having at least 85% sequence identity to the Anellovirus GC-rich region of nucleotides 2868-2929 of the nucleic acid sequence of Table 11; and


(ii) a proteinaceous exterior; wherein the genetic element is enclosed within the proteinaceous exterior; and


wherein the synthetic curon is capable of delivering the genetic element into a eukaryotic cell.


6. A synthetic curon comprising:


(i) a genetic element comprising a promoter element and a nucleic acid sequence encoding an exogenous effector, and a protein binding sequence, wherein the genetic element comprises one or both of:

    • (a) a sequence having at least 85% sequence identity to the Anellovirus 5′ UTR conserved domain of the nucleic acid sequence of Table 1, 3, 5, 7, 9 or 13; or
    • (b) a sequence having at least 85% sequence identity to the Anellovirus GC-rich region of the nucleic acid sequence of Table 1, 3, 5, 7, 9 or 13; and


(ii) a proteinaceous exterior; wherein the genetic element is enclosed within the proteinaceous exterior; and


wherein the synthetic curon is capable of delivering the genetic element into a eukaryotic cell.


7. The synthetic curon of any of the preceding embodiments, wherein the promoter element comprises an RNA polymerase II-dependent promoter, an RNA polymerase III-dependent promoter, a PGK promoter, a CMV promoter, an EF-1α promoter, an SV40 promoter, a CAGG promoter, or a UBC promoter, TTV viral promoters, Tissue specific, U6 (pollIII), minimal CMV promoter with upstream DNA binding sites for activator proteins (TetR-VP16, Gal4-VP16, dCas9-VP16, etc).


8. The synthetic curon of any of the preceding embodiments, wherein the promoter element comprises a TATA box.


9. The synthetic curon of any of the preceding embodiments, wherein the promoter element is endogenous to a wild-type Anellovirus, e.g., a wild-type Anellovirus sequence as listed in any of Tables 1, 3, 5, 6, 9, 11, or 13.


10. The synthetic curon of any of embodiments 1-8, wherein the promoter element is exogenous to wild-type Anellovirus.


11. The synthetic curon of any of the preceding embodiments, wherein the exogenous effector encodes a therapeutic agent, e.g., a therapeutic peptide or polypeptide or a therapeutic nucleic acid.


12. The synthetic curon of any of the preceding embodiments, wherein the exogenous effector comprises a regulatory nucleic acid, e.g., an miRNA, siRNA, mRNA, lncRNA, RNA, DNA, an antisense RNA, gRNA; a fluorescent tag or marker, an antigen, a peptide, a synthetic or analog peptide from a naturally-bioactive peptide, an agonist or antagonist peptide, an anti-microbial peptide, a pore-forming peptide, a bicyclic peptide, a targeting or cytotoxic peptide, a degradation or self-destruction peptide, a small molecule, an immune effector (e.g., influences susceptibility to an immune response/signal), a death protein (e.g., an inducer of apoptosis or necrosis), a non-lytic inhibitor of a tumor (e.g., an inhibitor of an oncoprotein), an epigenetic modifying agent, an epigenetic enzyme, a transcription factor, a DNA or protein modification enzyme, a DNA-intercalating agent, an efflux pump inhibitor, a nuclear receptor activator or inhibitor, a proteasome inhibitor, a competitive inhibitor for an enzyme, a protein synthesis effector or inhibitor, a nuclease, a protein fragment or domain, a ligand, an antibody, a receptor, or a CRISPR system or component.


13. The synthetic curon of any of the preceding embodiments, wherein the exogenous effector comprises a miRNA.


14. The synthetic curon of any of the preceding embodiments, wherein the effector, e.g., miRNA, targets a host gene, e.g., modulates expression of the gene, e.g., increases or decreases expression of the gene.


15. The synthetic curon of any of the preceding embodiments, wherein the exogenous effector comprises an miRNA, and decreases expression of a host gene.


16. The synthetic curon of any of the preceding embodiments, wherein the exogenous effector comprises a nucleic acid sequence about 20-200, 30-180, 40-160, 50-140, or 60-120 nucleotides in length.


17. The synthetic curon of any of the preceding embodiments, wherein the nucleic acid sequence encoding the exogenous effector is about 20-200, 30-180, 40-160, 50-140, or 60-120 nucleotides in length.


18. The synthetic curon of any of the preceding embodiments, wherein the sequence encoding the exogenous effector has a size of at least about 100 nucleotides.


19. The synthetic curon of any of the preceding embodiments, wherein the sequence encoding the exogenous effector has a size of about 100 to about 5000 nucleotides.


20. The synthetic curon of any of the preceding embodiments, wherein the sequence encoding the exogenous effector has a size of about 100-200, 200-300, 300-400, 400-500, 500-600, 600-700, 700-800, 800-900, 900-1000, 1000-1500, or 1500-2000 nucleotides.


21. The synthetic curon of any of the preceding embodiments, wherein the sequence encoding the exogenous effector is situated at, within, or adjacent to (e.g., 5′ or 3′ to) one or more of the ORF1 locus (e.g., at the C-terminus of the ORF1 locus), the miRNA locus, the 5′ noncoding region upstream of the TATA box, the 5′ UTR, the 3′ noncoding region downstream of the poly-A region, or a noncoding region upstream of the GC-rich region of the genetic element.


22. The synthetic curon of embodiment 21, wherein the sequence encoding the exogenous effector is located between the poly-A region and the GC-rich region of the genetic element.


23. The synthetic curon of any of the preceding embodiments, which comprises (e.g., in the proteinaceous exterior) one or more of an amino acid sequence chosen from ORF2, ORF2/2, ORF2/3, ORF1, ORF1/1, or ORF1/2 of Table 12, or an amino acid sequence having at least 85% sequence identity thereto.


24. The synthetic curon of any of the preceding embodiments, which comprises (e.g., in the proteinaceous exterior) one or more of an amino acid sequence chosen from ORF2, ORF2/2, ORF2/3, ORF2t/3, ORF1, ORF1/1, or ORF1/2 of any of Tables 2, 4, 6, 8, 10, or 14, or an amino acid sequence having at least 85% sequence identity thereto.


25. The synthetic curon of any of the preceding embodiments, wherein the protein binding sequence comprises a nucleic acid sequence having at least 75% (e.g., at least 75, 76, 77, 78, 79, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to the 5′ UTR conserved domain or the GC-rich domain of a wild-type Anellovirus, e.g., a wild-type Anellovirus sequence as listed in any of Tables 1, 3, 5, 6, 9, 11, 13, A, or B.


26. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the Consensus 5′ UTR nucleic acid sequence shown in Table 16-1.


27. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the exemplary TTV 5′ UTR nucleic acid sequence shown in Table 16-1.


28. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-CT30F 5′ UTR nucleic acid sequence shown in Table 16-1.


29. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-HD23a 5′ UTR nucleic acid sequence shown in Table 16-1.


30. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-JA20 5′ UTR nucleic acid sequence shown in Table 16-1.


31. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-TJN02 5′ UTR nucleic acid sequence shown in Table 16-1.


32. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-tth8 5′ UTR nucleic acid sequence shown in Table 16-1.


33. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the Consensus GC-rich region shown in Table 16-2.


34. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the exemplary TTV GC-rich region shown in Table 16-2.


35. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-CT30F GC-rich region shown in Table 16-2.


36. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-HD23a GC-rich region shown in Table 16-2.


37. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-JA20 GC-rich region shown in Table 16-2.


38. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-TJN02 GC-rich region shown in Table 16-2.


39. The synthetic curon of any of the preceding embodiments, wherein the genetic element, e.g., protein binding sequence of the genetic element, comprises least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-tth8 GC-rich region shown in Table 16-2.


40. The synthetic curon of any of the preceding embodiments, wherein at least 60% (e.g., at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%) of the protein binding sequence consists of G or C.


41. The synthetic curon of any of the preceding embodiments, wherein the genetic element comprises a sequence of at least 80, 90, 100, 110, 120, 130, or 140 nucleotides in length, which consists of G or C at least 70% (e.g., at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) or about 70-100%, 75-95%, 80-95%, 85-95%, or 85-90% of the positions.


42. The synthetic curon of any of the preceding embodiments, wherein the genetic element comprises a sequence having at least 85% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of nucleotides 1-393 of the nucleic acid sequence of Table 11 and a sequence having at least 85% sequence identity to the Anellovirus GC-rich region of nucleotides 2868-2929 of the nucleic acid sequence of Table 11.


43. The synthetic curon of any of the preceding embodiments, wherein the protein binding sequence is capable of binding to an exterior protein, e.g., a capsid protein, e.g., an Anellovirus capsid protein, e.g., a capsid protein comprising an amino acid sequence having at least 75% (e.g., at least 75, 76, 77, 78, 79, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to any of the sequences listed in Table 1-14, 16, or 18.


44. The synthetic curon of any of the preceding embodiments, wherein the genetic element comprises at least 75% identity to the nucleotide sequence of Table 11.


45. The synthetic curon of any of the preceding embodiments, wherein the protein binding sequence binds an arginine-rich region of the proteinaceous exterior.


46. The synthetic curon of any of the preceding embodiments, wherein the proteinaceous exterior comprises an exterior protein capable of specifically binding to the protein binding sequence.


47. The synthetic curon of embodiment 46, wherein the exterior protein comprises a capsid protein e.g., an Anellovirus capsid protein, e.g., a capsid protein comprising an amino acid sequence having at least 75% (e.g., at least 75, 76, 77, 78, 79, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to any of the sequences listed in any of Tables 1-14, 16, or 18 or an amino acid sequence encoded by any of the sequences listed in Table 1-14, 15, 17, or 19, or a fragment thereof.


48. The synthetic curon of any of the preceding embodiments, wherein the proteinaceous exterior comprises one or more of the following: one or more glycosylated proteins, a hydrophilic DNA-binding region, an arginine-rich region, a threonine-rich region, a glutamine-rich region, a N-terminal polyarginine sequence, a variable region, a C-terminal polyglutamine/glutamate sequence, and one or more disulfide bridges.


49. The synthetic curon of any of the preceding embodiments, wherein the proteinaceous exterior comprises one or more of the following characteristics: an icosahedral symmetry, recognizes and/or binds a molecule that interacts with one or more host cell molecules to mediate entry into the host cell, lacks lipid molecules, lacks carbohydrates, is pH and temperature stable, is detergent resistant, and is substantially non-immunogenic or substantially non-pathogenic in a host.


50. The synthetic curon of any of the preceding embodiments, wherein the proteinaceous exterior comprises at least one functional domain that provides one or more functions, e.g., species and/or tissue and/or cell selectivity, genetic element binding and/or packaging, immune evasion (substantial non-immunogenicity and/or tolerance), pharmacokinetics, endocytosis and/or cell attachment, nuclear entry, intracellular modulation and localization, exocytosis modulation, propagation, and nucleic acid protection.


51. The synthetic curon of any of the preceding embodiments, wherein the portions of the genetic element excluding the effector have a combined size of about 2.5-5 kb (e.g., about 2.8-4 kb, about 2.8-3.2 kb, about 3.6-3.9 kb, or about 2.8-2.9 kb), less than about 5 kb (e.g., less than about 2.9 kb, 3.2 kb, 3.6 kb, 3.9 kb, or 4 kb), or at least 100 nucleotides (e.g., at least 1 kb).


52. The synthetic curon of any of the preceding embodiments, wherein the genetic element is single-stranded.


53. The synthetic curon of any of the preceding embodiments, wherein the genetic element is circular.


54. The synthetic curon of any of the preceding embodiments, wherein the genetic element is DNA.


55. The synthetic curon of any of the preceding embodiments, wherein the genetic element is a negative strand DNA.


56. The synthetic curon of any of the preceding embodiments, wherein the genetic element comprises an episome.


57. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon has a lipid content of less than 10%, 5%, 2%, or 1% by weight, e.g., does not comprise a lipid bilayer.


58. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon is resistant to degradation by a detergent (e.g., a mild detergent, e.g., a biliary salt, e.g., sodium deoxycholate) relative to a viral particle comprising an external lipid bilayer, e.g., a retrovirus.


59. The synthetic curon of embodiment 58, wherein at least about 50% (e.g., at least about 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 99.9%) of the synthetic curon is not degraded after incubation the detergent (e.g., 0.5% by weight of the detergent) for 30 minutes at 37° C.


60. The synthetic curon of any of the preceding embodiments, wherein the genetic element has at least 75% (e.g., at least 75, 76, 77, 78, 79, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to a wild-type Circoviridae sequence or a wild-type Anellovirus sequence, e.g., a wild-type Torque Teno virus (TTV), Torque Teno mini virus (TTMV), or TTMDV sequence, e.g., a sequence as listed in any of Tables 1, 3, 5, 7, 9, 11, or 13.


61. The synthetic curon of embodiment 60, wherein the genetic element comprises a deletion of at least one element, e.g., an element as listed in any of Tables 1, 3, 5, 7, 9, 11, or 13, relative to a wild-type Anellovirus sequence, e.g., a wild-type TTV sequence or a wild-type TTMV sequence.


62. The synthetic curon of embodiment 61, wherein the genetic element comprises a deletion comprising a nucleic acid sequence corresponding to nucleotides 3436-3607 of a TTV-tth8 sequence, e.g., the nucleic acid sequence shown in Table 5.


63. The synthetic curon of embodiment 61, wherein the genetic element comprises a deletion comprising a nucleic acid sequence corresponding to nucleotides 574-1371 and/or nucleotides 1432-2210 of a TTMV-LY2 sequence, e.g., the nucleic acid sequence shown in Table 11.


64. The synthetic curon of embodiment 61 or 62, wherein the genetic element comprises a deletion comprising a nucleic acid sequence corresponding to nucleotides 1372-1431 of a TTMV-LY2 sequence, e.g., the nucleic acid sequence shown in Table 11.


65. The synthetic curon of embodiment 61, 63, or 64, wherein the genetic element comprises a deletion comprising a nucleic acid sequence corresponding to nucleotides 2610-2809 of a TTMV-LY2 sequence, e.g., the nucleic acid sequence shown in Table 11.


66. The synthetic curon of any of the preceding embodiments, wherein the genetic element comprises at least 72 nucleotides (e.g., at least 73, 74, 75, etc. nt, optionally less than the full length of the genome) of a wild-type Anellovirus sequence, e.g., a wild-type Torque Teno virus (TTV), Torque Teno mini virus (TTMV), or TTMDV sequence, e.g., a sequence as listed in any of Tables 1, 3, 5, 7, 9, 11, or 13.


67. The synthetic curon of any of the preceding embodiments, wherein the genetic element further comprises one or more of the following sequences: a sequence that encodes one or more miRNAs, a sequence that encodes one or more replication proteins, a sequence that encodes an exogenous gene, a sequence that encodes a therapeutic, a regulatory sequence (e.g., a promoter, enhancer), a sequence that encodes one or more regulatory sequences that targets endogenous genes (siRNA, lncRNAs, shRNA), a sequence that encodes a therapeutic mRNA or protein, and a sequence that encodes a cytolytic/cytotoxic RNA or protein.


68. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon further comprises a second genetic element, e.g., a second genetic element enclosed within the proteinaceous exterior.


69. The synthetic curon of embodiment 68, wherein the second genetic element comprises a protein binding sequence, e.g., an exterior protein binding sequence, e.g., a packaging signal, e.g., a 5′ UTR conserved domain or GC-rich region, e.g., as described herein.


70. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon does not detectably infect bacterial cells, e.g., infects less than 1%, 0.5%, 0.1%, or 0.01% of bacterial cells.


71. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon is capable of infecting mammalian cells, e.g., human cells, e.g., immune cells, liver cells, epithelial cells, e.g., in vitro.


72. The synthetic curon of any of the preceding embodiments, wherein the genetic element integrates at a frequency of less than 10%, 8%, 6%, 4%, 3%, 2%, 1%, 0.5%, 0.2%, 0.1% of the curons that enters the cell, e.g., wherein the synthetic curon is non-integrating.


73. The synthetic curon of any of the preceding embodiments, wherein the genetic element is capable of replicating, e.g., capable of generating at least 102, 2×102, 5×102, 103, 2×103, 5×103, or 104 genomic equivalents of the genetic element per cell, e.g., as measured by a quantitative PCR assay.


74. The synthetic curon of any of the preceding embodiments, wherein the genetic element is capable of replicating, e.g., capable of generating at least 102, 2×102, 5×102, 103, 2×103, 5×103, or 104 more genomic equivalents of the genetic element in a cell, e.g., as measured by a quantitative PCR assay, than were present in the synthetic curon prior to delivery of the genetic element into the cell.


75. The synthetic curon of any of the preceding embodiments, wherein the genetic element is not capable of replicating, e.g., wherein the genetic element is altered at a replication origin or lacks a replication origin.


76. The synthetic curon of any of the preceding embodiments, wherein the genetic element is not capable of self-replicating, e.g., capable of being replicated without being integrated into a host cell genome.


77. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon is substantially non-pathogenic, e.g., does not induce a detectable deleterious symptom in a subject (e.g., elevated cell death or toxicity, e.g., relative to a subject not exposed to the curon).


78. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon is substantially non-immunogenic, e.g., does not induce a detectable and/or unwanted immune response, e.g., as detected according to the method described in Example 4.


79. The synthetic curon of embodiment 78, wherein the substantially non-immunogenic curon has an efficacy in a subject that is a least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% of the efficacy in a reference subject lacking an immune response.


80. The synthetic curon of embodiment 78 or 79, wherein the immune response comprises one or more of an antibody specific to the curon; a cellular response (e.g., an immune effector cell (e.g., T cell- or NK cell) response) against the curon or cells comprising the curon; or macrophage engulfment of the curon or cells comprising the curon.


81. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon is less immunogenic than an AAV, elicits an immune response below that detected for a comparable quantity of AAV, e.g., as measured by an assay described herein, induces an antibody prevalence of less than 70% (e.g., less than about 60%, 50%, 40%, 30%, 20%, or 10% antibody prevalence) as measured by an assay described herein, or is substantially non-immunogenic.


82. The synthetic curon of any of the preceding embodiments, wherein a population of at least 1000 of the synthetic curons is capable of delivering at least 100 copies of the genetic element into one or more of the eukaryotic cells.


83. The synthetic curon of any of the preceding embodiments, wherein a population of the synthetic curons is capable of delivering the genetic element into at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or more of a population of the eukaryotic cells.


84. The synthetic curon of any of the preceding embodiments, wherein a population of the synthetic curons is capable of delivering at least 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 8,000, 1×104, 1×105, 1×106, 1×107 or greater copies of the genetic element per cell to a population of the eukaryotic cells.


85. The synthetic curon of any of the preceding embodiments, wherein a population of the synthetic curons is capable of delivering 1×104-1×105, 1×104-1×106, 1×104-1×107, 1×105-1×106, 1×105-1×107, or 1×106-1×107 copies of the genetic element per cell to a population of the eukaryotic cells.


86. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon is present after at least two passages.


87. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon was produced by a process comprising at least two passages.


88. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon selectively delivers the exogenous effector to a desired cell type, tissue, or organ (e.g., photoreceptors in the retina, epithelial linings, or pancreas).


89. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon shows greater selectivity in vitro for an embryonic kidney cell line (e.g., HEK293T) than a lung epithelial carcinoma cell line (e.g., A549).


90. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon is present at higher levels in (e.g., preferentially accumulates in) a desired organ or tissue relative to other organs or tissues.


91. The synthetic curon of embodiment 90, wherein the desired organ or tissue comprises bone marrow, blood, heart, GI, or skin.


92. The synthetic curon of any of the preceding embodiments, wherein the eukaryotic cell is a mammalian cell, e.g., a human cell.


93. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon, or copies thereof, are detectable in a cell 24 hours (e.g., 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 30 days, or 1 month) after delivery into the cell.


94. The synthetic curon of any of the preceding embodiments, wherein the synthetic curon is produced in the cell pellet and the supernatant at least about 108-fold (e.g., about 105-fold, 106-fold, 107-fold, 108-fold, 109-fold, or 1010-fold) genomic equivalents/mL, e.g., relative to the quantity of the synthetic curon used to infect the cells, after 3-4 days post infection, e.g., using an infectivity assay, e.g., an assay according to Example 7.


95. A composition comprising the synthetic curon of any of the preceding embodiments.


96. A pharmaceutical composition comprising the synthetic curon of any of the preceding embodiments, and a pharmaceutically acceptable carrier or excipient.


97. The composition or pharmaceutical composition of embodiment 95 or 96, which comprises at least 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or more curons, e.g., synthetic curons.


98. The composition or pharmaceutical composition of any of embodiments 95-97, which comprises at least 103, 104, 105, 106, 107, 108, or 109 synthetic curons.


99. A pharmaceutical composition comprising

    • a) at least 103, 104, 105, 106, 107, 108, or 109 curons (e.g., synthetic curons described herein) comprising:
      • (i) a genetic element described herein, e.g., a genetic element comprising a promoter element, a nucleic acid sequence (e.g., a DNA sequence) encoding an exogenous effector, (e.g., a payload), and a protein binding sequence (e.g., an exterior protein binding sequence, e.g., a packaging signal), wherein the genetic element is a single-stranded DNA, and has one or both of the following properties: is circular and/or integrates into the genome of a eukaryotic cell at a frequency of less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, or 2% of the genetic element that enters the cell; and
      • (ii) a proteinaceous exterior,
      • wherein the genetic element is enclosed within the proteinaceous exterior; and
      • wherein the synthetic curon is capable of delivering the genetic element into a eukaryotic cell;
    • b) a pharmaceutical excipient, and, optionally,
    • c) less than a pre-determined amount of: mycoplasma, endotoxin, host cell nucleic acids (e.g., host cell DNA and/or host cell RNA), animal-derived process impurities (e.g., serum albumin or trypsin), replication-competent agents (RCA), e.g., replication-competent virus or unwanted curons, free viral capsid protein, adventitious agents, and/or aggregates.


100. A pharmaceutical composition comprising

    • a) at least 103, 104, 105, 106, 107, 108, or 109 curons (e.g., synthetic curons described herein) comprising:
      • (i) a genetic element described herein, e.g., a genetic element comprising a promoter element and a nucleic acid sequence (e.g., a DNA sequence) encoding an exogenous effector (e.g., a payload), and a protein binding sequence (e.g., an exterior protein binding sequence),
      • wherein the genetic element has at least 75% (e.g., at least 75, 76, 77, 78, 79, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to a wild-type Anellovirus sequence (e.g., a wild-type Torque Teno virus (TTV), Torque Teno mini virus (TTMV), or TTMDV sequence, e.g., a wild-type Anellovirus sequence, e.g., as listed in any of Tables 1, 3, 5, 7, 9, 11, or 13); and
      • (ii) a proteinaceous exterior;
      • wherein the genetic element is enclosed within the proteinaceous exterior; and
      • wherein the synthetic curon is capable of delivering the genetic element into a eukaryotic cell
    • b) a pharmaceutical excipient, and, optionally,
    • c) less than a pre-determined amount of: mycoplasma, endotoxin, host cell nucleic acids (e.g., host cell DNA and/or host cell RNA), animal-derived process impurities (e.g., serum albumin or trypsin), replication-competent agents (RCA), e.g., replication-competent virus or unwanted curons, free viral capsid protein, adventitious agents, and/or aggregates.


101. The composition or pharmaceutical composition of any of embodiments 95-100, having one or more of the following characteristics:


a) the pharmaceutical composition meets a pharmaceutical or good manufacturing practices (GMP) standard;


b) the pharmaceutical composition was made according to good manufacturing practices (GMP);


c) the pharmaceutical composition has a pathogen level below a predetermined reference value, e.g., is substantially free of pathogens;


d) the pharmaceutical composition has a contaminant level below a predetermined reference value, e.g., is substantially free of contaminants;


e) the pharmaceutical composition has a predetermined level of non-infectious particles or a predetermined ratio of particles:infectious units (e.g., <300:1, <200:1, <100:1, or <50:1), or


f) the pharmaceutical composition has low immunogenicity or is substantially non-immunogenic, e.g., as described herein.


102. The composition or pharmaceutical composition of any of embodiments 95-101, wherein the pharmaceutical composition has a contaminant level below a predetermined reference value, e.g., is substantially free of contaminants.


103. The composition or pharmaceutical composition of embodiment 102, wherein the contaminant is selected from the group consisting of: mycoplasma, endotoxin, host cell nucleic acids (e.g., host cell DNA and/or host cell RNA), animal-derived process impurities (e.g., serum albumin or trypsin), replication-competent agents (RCA), e.g., replication-competent virus or unwanted curons (e.g., a curon other than the desired curon, e.g., a synthetic curon as described herein), free viral capsid protein, adventitious agents, and aggregates.


104. The composition or pharmaceutical composition of embodiment 103, wherein the contaminant is host cell DNA and the threshold amount is about 500 ng of host cell DNA per dose of the pharmaceutical composition.


105. The composition or pharmaceutical composition of any of embodiments 95-104, wherein the pharmaceutical composition comprises less than 10% (e.g., less than about 10%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.1%) contaminant by weight.


106. Use of the synthetic curon, composition, or pharmaceutical composition of any of the preceding embodiments for treating a disease or disorder in a subject.


107. The use of embodiment 106, wherein the disease or disorder is chosen from an immune disorder, an interferonopathy (e.g., Type I interferonopathy), infectious disease, inflammatory disorder, autoimmune condition, cancer (e.g., a solid tumor, e.g., lung cancer), and a gastrointestinal disorder.


108. The synthetic curon, composition, or pharmaceutical composition of any of the preceding embodiments for use in treating a disease or disorder in a subject.


109. A method of treating a disease or disorder in a subject, the method comprising administering a synthetic curon of any of the preceding embodiments or the pharmaceutical composition of any of embodiments 95-105 to the subject.


110. The method of embodiment 109, wherein the disease or disorder is chosen from an immune disorder, an interferonopathy (e.g., Type I interferonopathy), infectious disease, inflammatory disorder, autoimmune condition, cancer (e.g., a solid tumor, e.g., lung cancer), and a gastrointestinal disorder.


111. A method of modulating, e.g., enhancing, a biological function in a subject, the method comprising administering a synthetic curon of any of the preceding embodiments or the pharmaceutical composition of any of embodiments 95-105 to the subject.


112. A method of treating a disease or disorder in a subject, the method comprising administering to the subject a curon, e.g., synthetic curon, comprising:

    • (i) a genetic element comprising a promoter element and a sequence encoding an effector, e.g., a payload, and an exterior protein binding sequence;
    • wherein the genetic element is a single-stranded DNA, and wherein the genetic element is circular and/or integrates at a frequency of less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, or 2% of the genetic element that enters a cell; and


(ii) a proteinaceous exterior;


wherein the genetic element is enclosed within the proteinaceous exterior; and


wherein the curon, e.g., synthetic curon, is capable of delivering the genetic element into a eukaryotic cell.


113. The method of embodiment 112, wherein the disease or disorder is chosen from an immune disorder, an interferonopathy (e.g., Type I interferonopathy), infectious disease, inflammatory disorder, autoimmune condition, cancer (e.g., a solid tumor, e.g., lung cancer), and a gastrointestinal disorder.


114. The method of any of embodiments 109-113, wherein the effector is not an SV40-miR-S1, e.g., wherein the effector is a protein-encoding payload.


115. The method of any of embodiments 109-114, wherein the curon does not comprise an exogenous effector.


116. The method of any of embodiments 109-115, wherein the curon comprises a wild-type Circovirus or a wild-type Anellovirus, e.g., TTV or TTMV.


117. The method of any of embodiments 109-116, wherein the administration of the curon, e.g., synthetic curon, results in delivery of the genetic element into at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or more of a population of target cells in the subject.


118. The method of any of embodiments 109-117, wherein the administration of the curon, e.g., synthetic curon, results in delivery of the exogenous effector into at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or more of a population of target cells in the subject.


119. The method of embodiment 117 or 118, wherein the target cells comprise mammalian cells, e.g., human cells, e.g., immune cells, liver cells, lung epithelial cells, e.g., in vitro.


120. The method of any of embodiments 117-119, wherein the target cells are present in the liver or lung.


121. The method of any of embodiments 117-120, wherein the target cells into which the genetic element is delivered each receive at least 10, 50, 100, 500, 1000, 10,000, 50,000, 100,000, or more copies of the genetic element.


122. The method of any of embodiments 109-121, wherein the effector comprises a miRNA and wherein the miRNA reduces the level of a target protein or RNA in a cell or in a population of cells, e.g., into which the curon is delivered, e.g., by at least 10%, 20%, 30%, 40%, or 50%.


123. A method of delivering a synthetic curon to a cell, comprising contacting the synthetic curon of any of the preceding embodiments with a cell, e.g., a eukaryotic cell, e.g., a mammalian cell.


124. The method of embodiment 123, further comprising contacting a helper virus with the cell, wherein the helper virus comprises a polynucleotide, e.g., a polynucleotide encoding an exterior protein, e.g., an exterior protein capable of binding to the exterior protein binding sequence and, optionally, a lipid envelope.


125. The method of embodiment 124, wherein the helper virus is contacted with the cell prior to, concurrently with, or after contacting the synthetic curon with the cell.


126. The method of embodiment 123, further comprising contacting a helper polynucleotide with the cell.


127. The method of embodiment 126, wherein the helper polynucleotide comprises a sequence polynucleotide encoding an exterior protein, e.g., an exterior protein capable of binding to the exterior protein binding sequence and a lipid envelope.


128. The method of embodiment 126, wherein the helper polynucleotide is an RNA (e.g., mRNA), DNA, plasmid, viral polynucleotide, or any combination thereof.


129. The method of any of embodiments 126-128, wherein the helper polynucleotide is contacted with the cell prior to, concurrently with, or after contacting the synthetic curon with the cell.


130. The method of any of embodiments 123-129, further comprising contacting a helper protein with the cell.


131. The method of embodiment 130, wherein the helper protein comprises a viral replication protein or a capsid protein.


132. A host cell comprising the synthetic curon of any of the preceding embodiments.


133. A nucleic acid molecule comprising a promoter element, a sequence encoding an effector (e.g., a payload), and an exterior protein binding sequence,


wherein the nucleic acid molecule is a single-stranded DNA, and wherein the nucleic acid molecule is circular and/or integrates at a frequency of less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, or 2% of the nucleic acid molecule that enters a cell;


wherein the effector does not originate from TTV and is not an SV40-miR-S1;


wherein the nucleic acid molecule does not comprise the polynucleotide sequence of TTMV-LY;


wherein the promoter element is capable of directing expression of the effector in a eukaryotic cell.


134. A nucleic acid molecule comprising a promoter element and a nucleic acid sequence encoding an exogenous effector, and a protein binding sequence, wherein the genetic element comprises one or both of:

    • (a) a sequence having at least 85% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of nucleotides 323-393 of the nucleic acid sequence of Table 11, or
    • (b) a sequence having at least 85% sequence identity to the Anellovirus GC-rich region of nucleotides 2868-2929 of the nucleic acid sequence of Table 11.


135. A nucleic acid molecule comprising a promoter element and a nucleic acid sequence encoding an exogenous effector, and a protein binding sequence, wherein the genetic element comprises one or both of:

    • (a) a sequence having at least 85% sequence identity to the Anellovirus 5′ UTR conserved domain of the nucleic acid sequence of Table 1, 3, 5, 7, 9 or 13; or
    • (b) a sequence having at least 85% sequence identity to the Anellovirus GC-rich region of the nucleic acid sequence of Table 1, 3, 5, 7, 9 or 13.


136. A genetic element comprising:


(i) a promoter element and a sequence encoding an effector, e.g., a payload, wherein the effector is exogenous relative to a wild-type Anellovirus sequence;


(ii) at least 72 contiguous nucleotides (e.g., at least 72, 73, 74, 75, 76, 77, 78, 79, 80, 90, 100, or 150 nucleotides) having at least 75% sequence identity to a wild-type Anellovirus sequence; or at least 100 contiguous nucleotides having at least 72% (e.g., at least 72, 73, 74, 75, 76, 77, 78, 79, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to a wild-type Anellovirus sequence; and


(iii) a protein binding sequence, e.g., an exterior protein binding sequence, and


wherein the nucleic acid construct is a single-stranded DNA; and


wherein the nucleic acid construct is circular and/or integrates at a frequency of less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, or 2% of the genetic element that enters a cell.


137. A method of manufacturing a synthetic curon composition, comprising:


a) providing a host cell comprising one or more nucleic acid molecules encoding the components of a synthetic curon, e.g., a synthetic curon described herein, wherein the synthetic curon comprises a proteinaceous exterior and a genetic element, e.g., a genetic element comprising a promoter element, a sequence encoding an exogenous effector, (e.g., a payload), and a protein binding sequence (e.g., an exterior protein binding sequence, e.g., a packaging signal);


b) producing a synthetic curon from the host cell, thereby making a synthetic curon; and


c) formulating the synthetic curons, e.g., as a pharmaceutical composition suitable for administration to a subject.


138. A method of manufacturing a synthetic curon composition, comprising:

    • a) providing a plurality of synthetic curons according to any of the preceding embodiments, or a composition or pharmaceutical composition of any of embodiments 95-105;
    • b) optionally evaluating the plurality for one or more of: a contaminant described herein, an optical density measurement (e.g., OD 260), particle number (e.g., by HPLC), infectivity (e.g., particle:infectious unit ratio); and
    • c) formulating the plurality of synthetic curons, e.g., as a pharmaceutical composition suitable for administration to a subject, e.g., if one or more of the parameters of (b) meet a specified threshold.


139. The method of embodiment 138, wherein the synthetic curon composition comprises at least 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, or 1015 synthetic curons.


140. The method of embodiment 138 or 139, wherein the synthetic curon composition comprises at least 10 ml, 20 ml, 50 ml, 100 ml, 200 ml, 500 ml, 1 L, 2 L, 5 L, 10 L, 20 L, or 50 L.


141. A reaction mixture comprising the synthetic curon of any of the preceding embodiments and a helper virus, wherein the helper virus comprises a polynucleotide, e.g., a polynucleotide encoding an exterior protein, e.g., an exterior protein capable of binding to the exterior protein binding sequence and, optionally, a lipid envelope.


142. A reaction mixture comprising the synthetic curon of any of the preceding embodiments and a second nucleic acid sequence encoding one or more of an amino acid sequence chosen from ORF2, ORF2/2, ORF2/3, ORF1, ORF1/1, or ORF1/2 of Table 12, or an amino acid sequence having at least 85% sequence identity thereto.


143. A reaction mixture comprising the synthetic curon of any of the preceding embodiments and a second nucleic acid sequence encoding one or more of an amino acid sequence chosen from ORF2, ORF2/2, ORF2/3, ORF2t/3, ORF1, ORF1/1, or ORF1/2 of any of Tables 2, 4, 6, 8, 10, or 14, or an amino acid sequence having at least 85% sequence identity thereto.


144. The reaction mixture of embodiment 142 or 143, wherein the second nucleic acid sequence is part of the genetic element.


145. The reaction mixture of embodiment 144, wherein the second nucleic acid sequence is not part of the genetic element, e.g., the second nucleic acid sequence is comprised by a helper cell or helper virus.


146. A synthetic curon comprising:

    • a genetic element comprising (i) a sequence encoding a non-pathogenic exterior protein, (ii) an exterior protein binding sequence that binds the genetic element to the non-pathogenic exterior protein, and (iii) a sequence encoding an effector, e.g., a regulatory nucleic acid; and
    • a proteinaceous exterior that is associated with, e.g., envelops or encloses, the genetic element.


147. A pharmaceutical composition comprising

    • a) a curon comprising:
      • a genetic element comprising (i) a sequence encoding a non-pathogenic exterior protein, (ii) an exterior protein binding sequence that binds the genetic element to the non-pathogenic exterior protein, and (iii) a sequence encoding an effector, e.g., a regulatory nucleic acid; and
      • a proteinaceous exterior that is associated with, e.g., envelops or encloses, the genetic element; and
    • b) a pharmaceutical excipient.


148. A pharmaceutical composition comprising

    • a) at least 103, 104, 105, 106, 107, 108, or 109 curons (e.g., synthetic curons described herein) comprising:
      • a genetic element comprising (i) a sequence encoding a non-pathogenic exterior protein, (ii) an exterior protein binding sequence that binds the genetic element to the non-pathogenic exterior protein, and (iii) a sequence encoding an effector, e.g., a regulatory nucleic acid; and
      • a proteinaceous exterior that is associated with, e.g., envelops or encloses, the genetic element;
    • b) a pharmaceutical excipient, and, optionally,
    • c) less than a pre-determined amount of: mycoplasma, endotoxin, host cell nucleic acids (e.g., host cell DNA and/or host cell RNA), animal-derived process impurities (e.g., serum albumin or trypsin), replication-competent agents (RCA), e.g., replication-competent virus or unwanted curons, free viral capsid protein, adventitious agents, and/or aggregates.


149. The curon or composition of any one of the previous embodiments, further comprising at least one of the following characteristics: the genetic element is a single-stranded DNA; the genetic element is circular; the curon is non-integrating; the curon has a sequence, structure, and/or function based on an anellovirus or other non-pathogenic virus, and the curon is non-pathogenic.


150. The curon or composition of any one of the previous embodiments, wherein the proteinaceous exterior comprises the non-pathogenic exterior protein.


151. The curon or composition of any one of the previous embodiments, wherein the proteinaceous exterior comprises one or more of the following: one or more glycosylated proteins, a hydrophilic DNA-binding region, an arginine-rich region, a threonine-rich region, a glutamine-rich region, a N-terminal polyarginine sequence, a variable region, a C-terminal polyglutamine/glutamate sequence, and one or more disulfide bridges.


152. The curon or composition of any one of the previous embodiments, wherein the proteinaceous exterior comprises one or more of the following characteristics: an icosahedral symmetry, recognizes and/or binds a molecule that interacts with one or more host cell molecules to mediate entry into the host cell, lacks lipid molecules, lacks carbohydrates, is pH and temperature stable, is detergent resistant, and is non-immunogenic or non-pathogenic in a host.


153. The curon or composition of any one of the previous embodiments, wherein the sequence encoding the non-pathogenic exterior protein comprise a sequence at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identical to one or more sequences or a fragment thereof listed in Table 15.


154. The curon or composition of any one of the previous embodiments, wherein the non-pathogenic exterior protein comprises a sequence at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identical to one or more sequences or a fragment thereof listed in Table 16 or Table 17.


155. The curon or composition of any one of the previous embodiments, wherein the non-pathogenic exterior protein comprises at least one functional domain that provides one or more functions, e.g., species and/or tissue and/or cell tropism, viral genome binding and/or packaging, immune evasion (non-immunogenicity and/or tolerance), pharmacokinetics, endocytosis and/or cell attachment, nuclear entry, intracellular modulation and localization, exocytosis modulation, propagation, and nucleic acid protection.


156. The curon or composition of any one of the previous embodiments, wherein the effector comprises a regulatory nucleic acid, e.g., an miRNA, siRNA, mRNA, lncRNA, RNA, DNA, an antisense RNA, gRNA; a therapeutic, e.g., fluorescent tag or marker, antigen, peptide therapeutic, synthetic or analog peptide from naturally-bioactive peptide, agonist or antagonist peptide, anti-microbial peptide, pore-forming peptide, a bicyclic peptide, a targeting or cytotoxic peptide, a degradation or self-destruction peptide, and degradation or self-destruction peptides, small molecule, immune effector (e.g., influences susceptibility to an immune response/signal), a death protein (e.g., an inducer of apoptosis or necrosis), a non-lytic inhibitor of a tumor (e.g., an inhibitor of an oncoprotein), an epigenetic modifying agent, epigenetic enzyme, a transcription factor, a DNA or protein modification enzyme, a DNA-intercalating agent, an efflux pump inhibitor, a nuclear receptor activator or inhibitor, a proteasome inhibitor, a competitive inhibitor for an enzyme, a protein synthesis effector or inhibitor, a nuclease, a protein fragment or domain, a ligand or a receptor, and a CRISPR system or component.


157. The curon or composition of any one of the previous embodiments, wherein the effector comprises a sequence at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identical to one or more miRNA sequences listed in Table 18.


158. The curon or composition of the previous embodiment, wherein the effector, e.g., miRNA, targets a host gene, e.g., modulates expression of the gene.


159. The curon or composition of the previous embodiment, wherein the miRNA, e.g., has at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identity to one or more sequences listed in Table 16.


160. The curon or composition of any one of the previous embodiments, wherein the genetic element further comprises one or more of the following sequences: a sequence that encodes one or more miRNAs, a sequence that encodes one or more replication proteins, a sequence that encodes an exogenous gene, a sequence that encodes a therapeutic, a regulatory sequence (e.g., a promoter, enhancer), a sequence that encodes one or more regulatory sequences that targets endogenous genes (siRNA, lncRNAs, shRNA), a sequence that encodes a therapeutic mRNA or protein, and a sequence that encodes a cytolytic/cytotoxic RNA or protein.


161. The curon or composition of any one of the previous embodiments, wherein the genetic element has one or more of the following characteristics: is non-integrating with a host cell's genome, is an episomal nucleic acid, is a single stranded DNA, is about 1 to 10 kb, exists within the nucleus of the cell, is capable of being bound by endogenous proteins, and produces a microRNA that targets host genes.


162. The curon or composition of any one of the previous embodiments, wherein the genetic element comprises at least one viral sequence or at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identity to one or more sequences or a fragment thereof listed in Table 19 or Table 20.


163. The curon or composition of the previous embodiment, wherein the viral sequence is from at least one of a single stranded DNA virus (e.g., Anellovirus, Bidnavirus, Circovirus, Geminivirus, Genomovirus, Inovirus, Microvirus, Nanovirus, Parvovirus, and Spiravirus), a double stranded DNA virus (e.g., Adenovirus, Ampullavirus, Ascovirus, Asfarvirus, Baculovirus, Fusellovirus, Globulovirus, Guttavirus, Hytrosavirus, Herpesvirus, Iridovirus, Lipothrixvirus, Nimavirus, and Poxvirus), a RNA virus (e.g., Alphavirus, Furovirus, Hepatitis virus, Hordeivirus, Tobamovirus, Tobravirus, Tricornavirus, Rubivirus, Birnavirus, Cystovirus, Partitivirus, and Reovirus).


164. The curon or composition of the previous embodiment, wherein the viral sequence is from one or more non-anelloviruses, e.g., adenovirus, herpes virus, pox virus, vaccinia virus, SV40, papilloma virus, an RNA virus such as a retrovirus, e.g., lenti virus, a single-stranded RNA virus, e.g., hepatitis virus, or a double-stranded RNA virus e.g., rotavirus.


165. The curon or composition of any one of the previous embodiments, wherein the protein binding sequence interacts with the arginine-rich region of the proteinaceous exterior.


166. The curon or composition of any one of the previous embodiments, wherein the curon is capable of replicating in a mammalian cell, e.g., human cell.


167. The curon or composition of the previous embodiment, wherein the curon is non-pathogenic and/or non-integrating in a host cell.


168. The curon or composition of any one of the previous embodiments, wherein the curon is non-immunogenic in a host.


169. The curon or composition of any one of the previous embodiments, wherein the curon inhibits/enhances one or more viral properties, e.g., selectivity, e.g., infectivity, e.g., immunosuppression/activation, in a host or host cell.


170. The curon or composition of the previous embodiment, wherein the curon is in an amount sufficient to modulate (e.g., phenotype, virus levels, gene expression, compete with other viruses, disease state, etc. at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more).


171. The composition of any one of the previous embodiments further comprising at least one virus or vector comprising a genome of the virus, e.g., a variant of the curon, e.g., a commensal/native virus.


172. The composition of any one of the previous embodiments further comprising a heterologous moiety, at least one small molecule, antibody, polypeptide, nucleic acid, targeting agent, imaging agent, nanoparticle, and a combination thereof.


173. A vector comprising a genetic element comprising (i) a sequence encoding a non-pathogenic exterior protein, (ii) an exterior protein binding sequence that binds the genetic element to the non-pathogenic exterior protein, and (iii) a sequence encoding an effector, e.g., a regulatory nucleic acid.


174. The vector of the previous embodiment, wherein the genetic element fails to integrate with a host cell's genome.


175. The vector of any one of the previous embodiments, wherein the genetic element is capable of replicating in a mammalian cell, e.g., human cell.


176. The vector of any one of the previous embodiments further comprising an exogenous nucleic acid sequence, e.g., selected to modulate expression of a gene, e.g., a human gene.


177. A pharmaceutical composition comprising the vector of any one of the previous embodiments and a pharmaceutical excipient.


178. The composition of the previous embodiment, wherein the vector is non-pathogenic and/or non-integrating in a host cell.


179. The composition of any one of the previous embodiments, wherein the vector is non-immunogenic in a host.


180. The composition of the previous embodiment, wherein the vector is in an amount sufficient to modulate (phenotype, virus levels, gene expression, compete with other viruses, disease state, etc. at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more).


181. The composition of any one of the previous embodiments further comprising at least one virus or vector comprising a genome of the virus, e.g., a variant of the curon, a commensal/native virus, a helper virus, a non-anellovirus.


182. The composition of any one of the previous embodiments further comprising a heterologous moiety, at least one small molecule, antibody, polypeptide, nucleic acid, targeting agent, imaging agent, nanoparticle, and a combination thereof.


183. A method of producing, propagating, and harvesting the curon of any one of the previous embodiments.


184. A method of designing and making the vector of any one of the previous embodiments.


185. A method of administering to a subject an effective amount of the composition of any one of the previous embodiments.


186. A method of identifying dysvirosis in a subject comprising:

    • analyzing genetic information from a sample obtained from a subject in need thereof, wherein viral genetic information is isolated from the subject's genetic information and other microorganisms;
    • comparing the viral genetic information to a reference, e.g., a control, a healthy subject; and
    • identifying dysvirosis in the subject if comparison of the viral genetic information yields an imbalance or irregular ratio of viral genetic information in the subject.


187. A method of delivering a nucleic acid or protein payload to a target cell, tissue or subject, the method comprising contacting the target cell, tissue or subject with a nucleic acid composition that comprises (a) a first DNA sequence derived from a virus wherein the first DNA sequence is sufficient to enable the production of a particle capable of infecting the target cell, tissue or subject and (a) a second DNA sequence encoding the nucleic acid or protein payload, the improvement comprising:


the first DNA sequence comprises at least 500 (at least 600, 700, 800, 900, 1000, 1200, 1400, 1500, 1600, 1800, 2000) nucleotides having at least 80% (at least 85%, 90%, 95%, 97%, 99%, 100%) sequence identity to a corresponding sequence listed in any of Tables 1, 3, 5, 7, 9, 11, or 13, or


the first DNA sequence encodes a sequence having at least 80% (at least 85%, 90%, 95%, 97%, 99%, 100%) sequence identity to an ORF listed in Table 2, 4, 6, 8, 10, 12, or 14, or


the first DNA sequence comprises a sequence having at least 90% (at least 95%, 97%, 99%, 100%) sequence identity to a consensus sequence listed in Table 14-1.


Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.





BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description of the embodiments of the invention will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments, which are presently exemplified. It should be understood, however, that the invention is not limited to the precise arrangement and instrumentalities of the embodiments shown in the drawings.



FIG. 1A is an illustration showing percent sequence similarity of amino acid regions of capsid protein sequences.



FIG. 1B is an illustration showing percent sequence similarity of capsid protein sequences.



FIG. 2 is an illustration showing one embodiment of a curon.



FIG. 3 depicts a schematic of a kanamycin vector encoding the LY1 strain of TTMiniV (“Curon 1”).



FIG. 4 depicts a schematic of a kanamycin vector encoding the LY2 strain of TTMiniV (“Curon 2”).



FIG. 5 depicts transfection efficiency of synthetic curons in 293T and A549 cells.



FIGS. 6A and 6B depict quantitative PCR results that illustrate successful infection of 293T cells by synthetic curons.



FIGS. 7A and 7B depict quantitative PCR results that illustrate successful infection of A549 cells by synthetic curons.



FIGS. 8A and 8B depict quantitative PCR results that illustrate successful infection of Raji cells by synthetic curons.



FIGS. 9A and 9B depict quantitative PCR results that illustrate successful infection of Jurkat cells by synthetic curons.



FIGS. 10A and 10B depict quantitative PCR results that illustrate successful infection of Chang cells by synthetic curons.



FIGS. 11A-11B are a series of graphs showing luciferase expression from cells transfected or infected with TTMV-LY2Δ574-1371,Δ1432-2210,2610::nLuc. Luminescence was observed in infected cells, indicating successful replication and packaging.



FIG. 11C is a diagram depicting the phylogenetic tree of alphatorquevirus (Torque Teno Virus; TTV), with clades highlighted. At least 100 Anellovirus strains are represented, divided into five clades. Exemplary sequences from each of the five clades is provided herein, e.g., in Tables 1-14. Top box=clade 1; Top middle box=clade 2; Middle box=clade 3, Lower middle box=clade 4; Bottom box=clade 5.



FIG. 12 is a schematic showing an exemplary workflow for production of curons (e.g., replication-competent or replication-deficient curons as described herein).



FIG. 13 is a graph showing primer specificity for primer sets designed for quantification of TTV and TTMV genomic equivalents. Quantitative PCR based on SYBR green chemistry shows one distinct peak for each of the amplification products using TTMV or TTV specific primer sets, as indicated, on plasmids encoding the respective genomes.



FIG. 14 is a series of graphs showing PCR efficiencies in the quantification of TTV genome equivalents by qPCR. Increasing concentrations of primers and a fixed concentration of hydrolysis probe (250 nM) were used with two different commercial qPCR master mixes. Efficiencies of 90-110% resulted in minimal error propagation during quantification.



FIG. 15 is a graph showing an exemplary amplification plot for linear amplification of TTMV (Target 1) or TTV (Target 2) over a 7 log 10 of genome equivalent concentrations. Genome equivalents were quantified over 7 10-fold dilutions with high PCR efficiencies and linearity (R2 TTMV: 0.996; R2 TTV: 0.997).



FIGS. 16A-16B are a series of graphs showing quantification of TTMV genome equivalents in a curon stock. (A) Amplification plot of two stocks, each diluted 1:10 and run in duplicate. (B) The same two samples as shown in panel A, here shown in the context of the linear range. Shown are the upper and lower limits in the two representative samples. PCR Efficiency: 99.58%, R2: 0988.



FIGS. 17A and 17B are a series of graphs showing the functional effects of a synthetic curon comprising an exogenous miRNA, miR-625. (A) Impact on cell viability of non-small cell lung cancer (NSCLC) cells when infected with curons expressing miR-625 in three different NSCLC cell lines (A549 cells, NCI-H40 cells, and SW900 cells). (B) Impact of curons expressing miR-625 on expression of a YFP reporter by HEK293T cells.



FIG. 17C is a graph showing quantification of p65 immunoblot analysis normalized to total protein for SW900 cells, either contacted with the indicated curons or left untreated.



FIG. 18 is a diagram showing pairwise identity for alignments of viral DNA sequences within the five alphatorquevirus clades. DNA sequences for viruses from each TTV clade were aligned. Pairwise percent identity across a 50-bp sliding window is shown along the length of the alignments for each clade. Average pairwise identity is indicated.



FIG. 19 is a diagram showing pairwise identity for alignments of representative sequences from each alphatorquevirus clade. DNA sequences for TTV-CT30F, TTV-TJN02, TTV-tth8, TTV-JA20, and TTV-HD23a were aligned. Pairwise percent identity across a 50-bp sliding window is shown along the length of the alignment. Brackets above indicate non-coding and coding regions with pairwise identities are indicated. Brackets below indicate regions of high sequence conservation.



FIG. 20 is a diagram showing pairwise identity for amino acid alignments for putative proteins across the five alphatorquevirus clades. Amino acid sequences for putative proteins from TTV-CT30F, TTV-TJN02, TTV-tth8, TTV-JA20, and TTV-HD23a were aligned. Pairwise percent identity across a 50-aa sliding window is shown along the length of each alignment. Pairwise identity for both open reading frame DNA sequence and protein amino acid sequence is indicated.



FIG. 21 is a diagram showing that a domain within the 5′ UTR is highly conserved across the five alphatorquevirus clades. The 71-bp 5′UTR conserved domain sequences for each representative alphatorquevirus were aligned. The sequence has 96.6% pairwise identity between the five clades. The sequences shown in FIG. 21 (SEQ ID NOS 703-708, respectively, in order of appearance) are also listed, e.g., in Table 16-1 herein.



FIG. 22 is a diagram showing an alignment of the GC-rich domains from the five alphatorquevirus clades. Each anellovirus has a region downstream of the ORFs with greater than 70% GC content. Shown is an alignment of the GC-rich regions from TTV-CT30F, TTV-TJN02, TTV-tth8, TTV-JA20, and TTV-HD23a. The regions vary in length, but where they align, they show a 81.8% pairwise identity. The sequences shown in FIG. 22 (SEQ ID NOS 709-714, respectively, in order of appearance) are also listed, e.g., in Table 16-2 herein.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS
Definitions

The wording “compound, composition, product, etc. for treating, modulating, etc.” is to be understood to refer a compound, composition, product, etc. per se which is suitable for the indicated purposes of treating, modulating, etc. The wording “compound, composition, product, etc. for treating, modulating, etc.” additionally discloses that, as an embodiment, such compound, composition, product, etc. is for use in treating, modulating, etc.


The wording “compound, composition, product, etc. for use in . . . ” or “use of a compound, composition, product, etc in the manufacture of a medicament, pharmaceutical composition, veterinary composition, diagnostic composition, etc. for . . . ” indicates that such compounds, compositions, products, etc. are to be used in therapeutic methods which may be practiced on the human or animal body. They are considered as an equivalent disclosure of embodiments and claims pertaining to methods of treatment, etc. If an embodiment or a claim thus refers to “a compound for use in treating a human or animal being suspected to suffer from a disease”, this is considered to be also a disclosure of a “use of a compound in the manufacture of a medicament for treating a human or animal being suspected to suffer from a disease” or a “method of treatment by administering a compound to a human or animal being suspected to suffer from a disease”. The wording “compound, composition, product, etc. for treating, modulating, etc.” is to be understood to refer a compound, composition, product, etc. per se which is suitable for the indicated purposes of treating, modulating, etc.


If hereinafter examples of a term, value, number, etc. are provided in parentheses, this is to be understood as an indication that the examples mentioned in the parentheses can constitute an embodiment. For example, if it stated that “in embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 nucleotide sequence of Table 1 (e.g., nucleotides 571-2613 of the nucleic acid sequence of Table 1)”, then some embodiments relate to nucleic acid molecules comprising a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to nucleotides 571-2613 of the nucleic acid sequence of Table 1.


As used herein, the term “curon” refers to a vehicle comprising a genetic element, e.g., an episome, e.g., circular DNA, enclosed in a proteinaceous exterior. A “synthetic curon,” as used herein, generally refers to a curon that is not naturally occurring, e.g., has a sequence that is modified relative to a wild-type virus (e.g., a wild-type Anellovirus as described herein). In some embodiments, the synthetic curon is engineered or recombinant, e.g., comprises a genetic element that comprises a modification relative to a wild-type viral genome (e.g., a wild-type Anellovirus genome as described herein). In some embodiments, enclosed within a proteinaceous exterior encompasses 100% coverage by a proteinaceous exterior, as well as less than 100% coverage, e.g., 95%, 90%, 85%, 80%, 70%, 60%, 50% or less. For example, gaps or discontinuities (e.g., that render the proteinaceous exterior permeable to water, ions, peptides, or small molecules) may be present in the proteinaceous exterior, so long as the genetic element is retained in the proteinaceous exterior, e.g., prior to entry into a host cell. In some embodiments, the curon is purified, e.g., it is separated from its original source and/or substantially free (>50%, >60%, >70%, >80%, >90%) of other components.


As used herein, a nucleic acid “encoding” refers to a nucleic acid sequence encoding an amino acid sequence or a functional polynucleotide (e.g., a non-coding RNA, e.g., an siRNA or miRNA).


As used herein, the term “dysvirosis” refers to a dysregulation of the virome in a subject.


An “exogenous” agent (e.g., an effector, a nucleic acid (e.g., RNA), a gene, payload, protein) as used herein refers to an agent that is either not comprised by, or not encoded by, a corresponding wild-type virus, e.g., an Anellovirus as described herein. In some embodiments, the exogenous agent does not naturally exist, such as a protein or nucleic acid that has a sequence that is altered (e.g., by insertion, deletion, or substitution) relative to a naturally occurring protein or nucleic acid. In some embodiments, the exogenous agent does not naturally exist in the host cell. In some embodiments, the exogenous agent exists naturally in the host cell but is exogenous to the virus. In some embodiments, the exogenous agent exists naturally in the host cell, but is not present at a desired level or at a desired time.


As used herein, the term “genetic element” refers to a nucleic acid sequence, generally in a curon. It is understood that the genetic element can be produced as naked DNA and optionally further assembled into a proteinaceous exterior. It is also understood that a curon can insert its genetic element into a cell, resulting in the genetic element being present in the cell and the proteinaceous exterior not necessarily entering the cell.


As used herein, a “substantially non-pathogenic” organism, particle, or component, refers to an organism, particle (e.g., a virus or a curon, e.g., as described herein), or component thereof that does not cause or induce a detectable disease or pathogenic condition, e.g., in a host organism, e.g., a mammal, e.g., a human. In some embodiments, administration of a curon to a subject can result in minor reactions or side effects that are acceptable as part of standard of care.


As used herein, the term “non-pathogenic” refers to an organism or component thereof that does not cause or induce a detectable disease or pathogenic condition, e.g., in a host organism, e.g., a mammal, e.g., a human.


As used herein, a “substantially non-integrating” genetic element refers to a genetic element, e.g., a genetic element in a virus or curon, e.g., as described herein, wherein less than about 0.01%, 0.05%, 0.1%, 0.5%, or 1% of the genetic element that enter into a host cell (e.g., a eukaryotic cell) or organism (e.g., a mammal, e.g., a human) integrate into the genome. In some embodiments the genetic element does not detectably integrate into the genome of, e.g., a host cell. In some embodiments, integration of the genetic element into the genome can be detected using techniques as described herein, e.g., nucleic acid sequencing, PCR detection and/or nucleic acid hybridization.


As used herein, a “substantially non-immunogenic” organism, particle, or component, refers to an organism, particle (e.g., a virus or curon, e.g., as described herein), or component thereof, that does not cause or induce an undesired or untargeted immune response, e.g., in a host tissue or organism (e.g., a mammal, e.g., a human). In embodiments, the substantially non-immunogenic organism, particle, or component does not produce a detectable immune response. In embodiments, the substantially non-immunogenic curon does not produce a detectable immune response against a protein comprising an amino acid sequence or encoded by a nucleic acid sequence shown in any of Tables 1-14. In embodiments, an immune response (e.g., an undesired or untargeted immune response) is detected by assaying antibody presence or level (e.g., presence or level of an anti-curon antibody, e.g., presence or level of an antibody against a synthetic curon as described herein) in a subject, e.g., according to the anti-TTV antibody detection method described in Tsuda et al. (1999; J. Virol. Methods 77: 199-206; incorporated herein by reference) and/or the method for determining anti-TTV IgG levels described in Kakkola et al. (2008; Virology 382: 182-189; incorporated herein by reference). Antibodies against an Anellovirus or a curon based thereon can also be detected by methods in the art for detecting anti-viral antibodies, e.g., methods of detecting anti-AAV antibodies, e.g., as described in Calcedo et al. (2013; Front. Immunol. 4(341): 1-7; incorporated herein by reference).


As used herein, the term “proteinaceous exterior” refers to an exterior component that is predominantly protein.


As used herein, the term “regulatory nucleic acid” refers to a nucleic acid sequence that modifies expression, e.g., transcription and/or translation, of a DNA sequence that encodes an expression product. In embodiments, the expression product comprises RNA or protein.


As used herein, the term “regulatory sequence” refers to a nucleic acid sequence that modifies transcription of a target gene product. In some embodiments, the regulatory sequence is a promoter or an enhancer.


As used herein, the term “replication protein” refers to a protein, e.g., a viral protein, that is utilized during infection, viral genome replication/expression, viral protein synthesis, and/or assembly of the viral components.


As used herein, “treatment”, “treating” and cognates thereof refer to the medical management of a subject with the intent to improve, ameliorate, stabilize, prevent or cure a disease, pathological condition, or disorder. This term includes active treatment (treatment directed to improve the disease, pathological condition, or disorder), causal treatment (treatment directed to the cause of the associated disease, pathological condition, or disorder), palliative treatment (treatment designed for the relief of symptoms), preventative treatment (treatment directed to preventing, minimizing or partially or completely inhibiting the development of the associated disease, pathological condition, or disorder); and supportive treatment (treatment employed to supplement another therapy).


As used herein, the term “virome” refers to viruses in a particular environment, e.g., a part of a body, e.g., in an organism, e.g. in a cell, e.g. in a tissue.


This invention relates generally to curons, e.g., synthetic curons, and uses thereof. The present disclosure provides synthetic curons, compositions comprising synthetic curons, and methods of making or using synthetic curons. Synthetic curons are generally useful as delivery vehicles, e.g., for delivering a therapeutic agent to a eukaryotic cell. Generally, a synthetic curon will include a genetic element comprising an exogenous nucleic acid sequence (e.g., encoding an exogenous effector) enclosed within a proteinaceous exterior. Synthetic curons can be used as a substantially non-immunogenic vehicle for delivering the genetic element, or an effector encoded therein (e.g., a polypeptide or nucleic acid effector, e.g., as described herein), into eukaryotic cells, e.g., to treat a disease or disorder in a subject comprising the cells.


Curon

In some aspects, the invention described herein comprises compositions and methods of using and making a synthetic curon. In some embodiments, a curon comprises a genetic element (e.g., circular DNA, e.g., single stranded DNA), which comprise at least one exogenous element relative to the remainder of the genetic element and/or the proteinaceous exterior (e.g., an exogenous element encoding an effector, e.g., as described herein). A curon may be a delivery vehicle (e.g., a substantially non-pathogenic delivery vehicle) for a payload into a host, e.g., a human. In some embodiments, the curon is capable of replicating in a eukaryotic cell, e.g., a mammalian cell, e.g., a human cell. In some embodiments, the curon is substantially non-pathogenic and/or substantially non-integrating in the mammalian (e.g., human) cell. In some embodiments, the curon is substantially non-immunogenic in a mammal, e.g., a human. In some embodiments, the curon has a sequence, structure, and/or function that is based on an Anellovirus (e.g., an Anellovirus as described, e.g., an Anellovirus comprising a nucleic acid or polypeptide comprising a sequence as shown in any of Tables 1-14) or other substantially non-pathogenic virus, e.g., a symbiotic virus, commensal virus, native virus. Generally, an Anellovirus-based curon comprises at least one element exogenous to that Anellovirus, e.g., an exogenous effector or a nucleic acid sequence encoding an exogenous effector disposed within a genetic element of the curon. In some embodiments, the curon is replication-deficient. In some embodiments, the curon is replication-competent.


In an aspect, the invention includes a synthetic curon comprising (i) a genetic element comprising a promoter element, a sequence encoding an exogenous effector, (e.g., a payload), and a protein binding sequence (e.g., an exterior protein binding sequence, e.g., a packaging signal), wherein the genetic element is a single-stranded DNA, and has one or both of the following properties: is circular and/or integrates into the genome of a eukaryotic cell at a frequency of less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, or 2% of the genetic element that enters the cell; and (ii) a proteinaceous exterior; wherein the genetic element is enclosed within the proteinaceous exterior; and wherein the synthetic curon is capable of delivering the genetic element into a eukaryotic cell.


In some embodiments of the synthetic curon described herein, the genetic element integrates at a frequency of less than about 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, or 2% of the genetic element that enters a cell. In some embodiments, less than about 0.01%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, or 5% of the genetic elements from a plurality of the synthetic curons administered to a subject will integrate into the genome of one or more host cells in the subject. In some embodiments, the genetic elements of a population of synthetic curons, e.g., as described herein, integrate into the genome of a host cell at a frequency less than that of a comparable population of AAV viruses, e.g., at about a 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, or more lower frequency than the comparable population of AAV viruses.


In an aspect, the invention includes a synthetic curon comprising: (i) a genetic element comprising a promoter element and a sequence encoding an exogenous effector (e.g., a payload), and a protein binding sequence (e.g., an exterior protein binding sequence), wherein the genetic element has at least 75% (e.g., at least 75, 76, 77, 78, 79, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) sequence identity to a wild-type Anellovirus sequence (e.g., a wild-type Torque Teno virus (TTV), Torque Teno mini virus (TTMV), or TTMDV sequence, e.g., a wild-type Anellovirus sequence as listed in any of Tables 1, 3, 5, 7, 9, 11, or 13); and (ii) a proteinaceous exterior; wherein the genetic element is enclosed within the proteinaceous exterior; and wherein the synthetic curon is capable of delivering the genetic element into a eukaryotic cell.


In one aspect, the invention includes a synthetic curon comprising:


a) a genetic element comprising (i) a sequence encoding a non-pathogenic exterior protein, (ii) an exterior protein binding sequence that binds the genetic element to the non-pathogenic exterior protein, and (iii) a sequence encoding a regulatory nucleic acid; and


b) a proteinaceous exterior that is associated with, e.g., envelops or encloses, the genetic element.


In some embodiments, the curon includes sequences or expression products from (or having >70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, 100% homology to) a non-enveloped, circular, single-stranded DNA virus. Animal circular single-stranded DNA viruses generally refer to a subgroup of single strand DNA (ssDNA) viruses, which infect eukaryotic non-plant hosts, and have a circular genome. Thus, animal circular ssDNA viruses are distinguishable from ssDNA viruses that infect prokaryotes (i.e. Microviridae and Inoviridae) and from ssDNA viruses that infect plants (i.e. Geminiviridae and Nanoviridae). They are also distinguishable from linear ssDNA viruses that infect non-plant eukaryotes (i.e. Parvoviridiae).


In some embodiments, the curon modulates a host cellular function, e.g., transiently or long term. In certain embodiments, the cellular function is stably altered, such as a modulation that persists for at least about 1 hr to about 30 days, or at least about 2 hrs, 6 hrs, 12 hrs, 18 hrs, 24 hrs, 2 days, 3, days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 16 days, 17 days, 18 days, 19 days, 20 days, 21 days, 22 days, 23 days, 24 days, 25 days, 26 days, 27 days, 28 days, 29 days, 30 days, 60 days, or longer or any time therebetween.


In certain embodiments, the cellular function is transiently altered, e.g., such as a modulation that persists for no more than about 30 mins to about 7 days, or no more than about 1 hr, 2 hrs, 3 hrs, 4 hrs, 5 hrs, 6 hrs, 7 hrs, 8 hrs, 9 hrs, 10 hrs, 11 hrs, 12 hrs, 13 hrs, 14 hrs, 15 hrs, 16 hrs, 17 hrs, 18 hrs, 19 hrs, 20 hrs, 21 hrs, 22 hrs, 24 hrs, 36 hrs, 48 hrs, 60 hrs, 72 hrs, 4 days, 5 days, 6 days, 7 days, or any time therebetween.


In some embodiments, the genetic element comprises a promoter element. In embodiments, the promoter element is selected from an RNA polymerase II-dependent promoter, an RNA polymerase III-dependent promoter, a PGK promoter, a CMV promoter, an EF-1α promoter, an SV40 promoter, a CAGG promoter, or a UBC promoter, TTV viral promoters, Tissue specific, U6 (pollIII), minimal CMV promoter with upstream DNA binding sites for activator proteins (TetR-VP16, Gal4-VP16, dCas9-VP16, etc). In embodiments, the promoter element comprises a TATA box. In embodiments, the promoter element is endogenous to a wild-type Anellovirus, e.g., as described herein.


In some embodiments, the genetic element comprises one or more of the following characteristics: single-stranded, circular, negative strand, and/or DNA. In embodiments, the genetic element comprises an episome. In some embodiments, the portions of the genetic element excluding the effector have a combined size of about 2.5-5 kb (e.g., about 2.8-4 kb, about 2.8-3.2 kb, about 3.6-3.9 kb, or about 2.8-2.9 kb), less than about 5 kb (e.g., less than about 2.9 kb, 3.2 kb, 3.6 kb, 3.9 kb, or 4 kb), or at least 100 nucleotides (e.g., at least 1 kb).


The curons, compositions comprising curons, methods using such curons, etc., as described herein are, in some instances, based in part on the examples which illustrate how different effectors, for example miRNAs (e.g. against IFN or miR-625), shRNA, etc and protein binding sequences, for example DNA sequences that bind to capsid protein such as Q99153, are combined with proteinaceous exteriors, for example a capsid disclosed in Arch Virol (2007) 152: 1961-1975, to produce curons which can then be used to deliver an exogenous effector to cells (e.g., animal cells, e.g., human cells or non-human animal cells such as pig or mouse cells). In embodiments, the exogenous effector can silence expression of a factor such as an interferon. The examples further describe how curons can be made by inserting exogenous effectors into sequences derived, e.g., from Anellovirus. It is on the basis of these examples that the description hereinafter contemplates various variations of the specific findings and combinations considered in the examples. For example, the skilled person will understand from the examples that the specific miRNAs are used just as an example of an exogenous effector and that other exogenous effectors may be, e.g., other regulatory nucleic acids or therapeutic peptides. Similarly, the specific capsids used in the examples may be replaced by substantially non-pathogenic proteins described hereinafter. The specific Anellovirus sequences described in the examples may also be replaced by the Anellovirus sequences described hereinafter. These considerations similarly apply to protein binding sequences, regulatory sequences such as promoters, and the like. Independent thereof, the person skilled in the art will in particular consider such embodiments which are closely related to the examples.


In some embodiments, a curon, or the genetic element comprised in the curon, is introduced into a cell (e.g., a human cell). In some embodiments, the exogenous effector (e.g., an RNA, e.g., an miRNA), e.g., encoded by the genetic element of a curon, is expressed in a cell (e.g., a human cell), e.g., once the curon or the genetic element has been introduced into the cell, e.g., as described in Example 19. In embodiments, introduction of the curon, or genetic element comprised therein, into a cell modulates (e.g., increases or decreases) the level of a target molecule (e.g., a target nucleic acid, e.g., RNA, or a target polypeptide) in the cell, e.g., by altering the expression level of the target molecule by the cell (e.g., as described in Example 22). In embodiments, introduction of the curon, or genetic element comprised therein, decreases level of interferon produced by the cell, e.g., as described in Examples 3 and 4. In embodiments, introduction of the curon, or genetic element comprised therein, into a cell modulates (e.g., increases or decreases) a function of the cell. In embodiments, introduction of the curon, or genetic element comprised therein, into a cell modulates (e.g., increases or decreases) the viability of the cell. In embodiments, introduction of the curon, or genetic element comprised therein, into a cell decreases viability of a cell (e.g., a cancer cell), e.g., as described in Example 22.


In some embodiments, a curon (e.g., a synthetic curon) described herein induces an antibody prevalence of less than 70% (e.g., less than about 60%, 50%, 40%, 30%, 20%, or 10% antibody prevalence). In embodiments, antibody prevalence is determined according to methods known in the art. In embodiments, antibody prevalence is determined by detecting antibodies against an Anellovirus (e.g., as described herein), or a curon based thereon, in a biological sample, e.g., according to the anti-TTV antibody detection method described in Tsuda et al. (1999; J. Virol. Methods 77: 199-206; incorporated herein by reference) and/or the method for determining anti-TTV IgG seroprevalence described in Kakkola et al. (2008; Virology 382: 182-189; incorporated herein by reference). Antibodies against an Anellovirus or a curon based thereon can also be detected by methods in the art for detecting anti-viral antibodies, e.g., methods of detecting anti-AAV antibodies, e.g., as described in Calcedo et al. (2013; Front. Immunol. 4(341): 1-7; incorporated herein by reference).


Anelloviruses

In some embodiments, a synthetic curon, e.g., as described herein, comprises sequences or expression products derived from an Anellovirus. Generally, a synthetic curon includes one or more sequences or expression products that are exogenous relative to the Anellovirus. The Anellovirus genus was once classified as a clade within the Circoviridae family, and has more recently been classified as a separate family. Anelloviruses generally have single-stranded circular DNA genomes with negative polarity. Anellovirus has not been linked to any human disease. However, attempts to link Anellovirus infection with human disease are confounded by the high incidence of asymptomatic Anellovirus viremia in control cohort population(s), the remarkable genomic diversity within the anellovirus viral family, the historical inability to propagate the agent in vitro, and the lack of animal model(s) of Anellovirus disease (Yzebe et al., Panminerva Med. (2002) 44:167-177; Biagini, P., Vet. Microbiol. (2004) 98:95-101).


Anellovirus appears to be transmitted by oronasal or fecal-oral infection, mother-to-infant and/or in utero transmission (Gerner et al., Ped. Infect. Dis. J. (2000) 19:1074-1077). Infected persons are characterized by a prolonged (months to years) Anellovirus viremia. Humans may be co-infected with more than one genogroup or strain (Saback, et al., Scad. J. Infect. Dis. (2001) 33:121-125). There is a suggestion that these genogroups can recombine within infected humans (Rey et al., Infect. (2003) 31:226-233). The double stranded isoform (replicative) intermediates have been found in several tissues, such as liver, peripheral blood mononuclear cells and bone marrow (Kikuchi et al., J. Med. Virol. (2000) 61:165-170; Okamoto et al., Biochem. Biophys. Res. Commun. (2002) 270:657-662; Rodriguez-lnigo et al., Am. J. Pathol. (2000) 156:1227-1234).


In some embodiments, a curon as described herein comprises one or more nucleic acid molecules (e.g., a genetic element as described herein) comprising a sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to an Anellovirus sequence, e.g., as described herein, or a fragment thereof. In embodiments, the Anellovirus sequence is selected from a sequence as shown in any of Tables 1, 3, 5, 7, 9, 11, or 13. In some embodiments, a curon as described herein comprises one or more nucleic acid molecules (e.g., a genetic element as described herein) comprising a sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to a TATA box, cap site, transcriptional start site, 5′ UTR conserved domain, ORF1, ORF1/1, ORF1/2, ORF2, ORF2/2, ORF2/3, ORF2t/3, three open-reading frame region, poly(A) signal, GC-rich region, or any combination thereof, of any of the Anelloviruses described herein (e.g., an Anellovirus sequence as annotated, or as encoded by a sequence listed, in any of Tables 1-16 or 19). In some embodiments, the nucleic acid molecule comprises a sequence encoding a capsid protein, e.g., an ORF1, ORF1/1, ORF1/2, ORF2, ORF2/2, ORF2/3, ORF2t/3 sequence of any of the Anelloviruses described herein (e.g., an Anellovirus sequence as annotated, or as encoded by a sequence listed, in any of Tables 1-16 or 19). In embodiments, the nucleic acid molecule comprises a sequence encoding a capsid protein comprising an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to an Anellovirus ORF1 or ORF2 protein (e.g., an ORF1 or ORF2 amino acid sequence as shown in any of Tables 2, 4, 6, 8, 10, 12, 14, or 16, or an ORF1 or ORF2 amino acid sequence encoded by a nucleic acid sequence as shown in any of Tables 1, 3, 5, 7, 9, 11, 13, 15, or 19).


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 nucleotide sequence of Table 1 (e.g., nucleotides 571-2613 of the nucleic acid sequence of Table 1). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 nucleotide sequence of Table 1 (e.g., nucleotides 571-587 and/or 2137-2613 of the nucleic acid sequence of Table 1). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 nucleotide sequence of Table 1 (e.g., nucleotides 571-687 and/or 2339-2659 of the nucleic acid sequence of Table 1). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 nucleotide sequence of Table 1 (e.g., nucleotides 299-691 of the nucleic acid sequence of Table 1). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 nucleotide sequence of Table 1 (e.g., nucleotides 299-687 and/or 2137-2659 of the nucleic acid sequence of Table 1). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 nucleotide sequence of Table 1 (e.g., nucleotides 299-687 and/or 2339-2831 of the nucleic acid sequence of Table 1). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 nucleotide sequence of Table 1 (e.g., nucleotides 299-348 and/or 2339-2831 of the nucleic acid sequence of Table 1). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus TATA box nucleotide sequence of Table 1 (e.g., nucleotides 84-90 of the nucleic acid sequence of Table 1). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus Cap site nucleotide sequence of Table 1 (e.g., nucleotides 107-114 of the nucleic acid sequence of Table 1). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus transcriptional start site nucleotide sequence of Table 1 (e.g., nucleotide 114 of the nucleic acid sequence of Table 1). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 1 (e.g., nucleotides 177-247 of the nucleic acid sequence of Table 1). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus three open-reading frame region nucleotide sequence of Table 1 (e.g., nucleotides 2325-2610 of the nucleic acid sequence of Table 1). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus poly(A) signal nucleotide sequence of Table 1 (e.g., nucleotides 2813-2818 of the nucleic acid sequence of Table 1). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 1 (e.g., nucleotides 3415-3570 of the nucleic acid sequence of Table 1).


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 nucleotide sequence of Table 3 (e.g., nucleotides 599-2839 of the nucleic acid sequence of Table 3). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 nucleotide sequence of Table 3 (e.g., nucleotides 599-727 and/or 2381-2839 of the nucleic acid sequence of Table 3). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 nucleotide sequence of Table 3 (e.g., nucleotides 599-727 and/or 2619-2813 of the nucleic acid sequence of Table 3). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 nucleotide sequence of Table 3 (e.g., nucleotides 357-731 of the nucleic acid sequence of Table 3). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 nucleotide sequence of Table 3 (e.g., nucleotides 357-727 and/or 2381-2813 of the nucleic acid sequence of Table 3). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 nucleotide sequence of Table 3 (e.g., nucleotides 357-727 and/or 2619-3021 of the nucleic acid sequence of Table 3). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 nucleotide sequence of Table 3 (e.g., nucleotides 357-406 and/or 2619-3021 of the nucleic acid sequence of Table 3). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus TATA box nucleotide sequence of Table 3 (e.g., nucleotides 89-90 of the nucleic acid sequence of Table 3). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus Cap site nucleotide sequence of Table 3 (e.g., nucleotides 107-114 of the nucleic acid sequence of Table 3). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus transcriptional start site nucleotide sequence of Table 3 (e.g., nucleotide 114 of the nucleic acid sequence of Table 3). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 3 (e.g., nucleotides 174-244 of the nucleic acid sequence of Table 3). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus three open-reading frame region nucleotide sequence of Table 3 (e.g., nucleotides 2596-2810 of the nucleic acid sequence of Table 3). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus poly(A) signal nucleotide sequence of Table 3 (e.g., nucleotides 3017-3022 of the nucleic acid sequence of Table 3). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 3 (e.g., nucleotides 3691-3794 of the nucleic acid sequence of Table 3).


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 nucleotide sequence of Table 5 (e.g., nucleotides 599-2830 of the nucleic acid sequence of Table 5). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 nucleotide sequence of Table 5 (e.g., nucleotides 599-715 and/or 2363-2830 of the nucleic acid sequence of Table 5). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 nucleotide sequence of Table 5 (e.g., nucleotides 599-715 and/or 2565-2789 of the nucleic acid sequence of Table 5). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 nucleotide sequence of Table 5 (e.g., nucleotides 336-719 of the nucleic acid sequence of Table 5). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 nucleotide sequence of Table 5 (e.g., nucleotides 336-715 and/or 2363-2789 of the nucleic acid sequence of Table 5). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 nucleotide sequence of Table 5 (e.g., nucleotides 336-715 and/or 2565-3015 of the nucleic acid sequence of Table 5). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 nucleotide sequence of Table 5 (e.g., nucleotides 336-388 and/or 2565-3015 of the nucleic acid sequence of Table 5). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus TATA box nucleotide sequence of Table 5 (e.g., nucleotides 83-88 of the nucleic acid sequence of Table 5). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus Cap site nucleotide sequence of Table 5 (e.g., nucleotides 104-111 of the nucleic acid sequence of Table 5). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus transcriptional start site nucleotide sequence of Table 5 (e.g., nucleotide 111 of the nucleic acid sequence of Table 5). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 5 (e.g., nucleotides 170-240 of the nucleic acid sequence of Table 5). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus three open-reading frame region nucleotide sequence of Table 5 (e.g., nucleotides 2551-2786 of the nucleic acid sequence of Table 5). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus poly(A) signal nucleotide sequence of Table 5 (e.g., nucleotides 3011-3016 of the nucleic acid sequence of Table 5). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 5 (e.g., nucleotides 3632-3753 of the nucleic acid sequence of Table 5).


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 nucleotide sequence of Table 7 (e.g., nucleotides 590-2899 of the nucleic acid sequence of Table 7). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 nucleotide sequence of Table 7 (e.g., nucleotides 590-712 and/or 2372-2899 of the nucleic acid sequence of Table 7). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 nucleotide sequence of Table 7 (e.g., nucleotides 590-712 and/or 2565-2873 of the nucleic acid sequence of Table 7). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 nucleotide sequence of Table 7 (e.g., nucleotides 354-716 of the nucleic acid sequence of Table 7). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 nucleotide sequence of Table 7 (e.g., nucleotides 354-712 and/or 2372-2873 of the nucleic acid sequence of Table 7). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 nucleotide sequence of Table 7 (e.g., nucleotides 354-712 and/or 2565-3075 of the nucleic acid sequence of Table 7). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 nucleotide sequence of Table 7 (e.g., nucleotides 354-400 and/or 2565-3075 of the nucleic acid sequence of Table 7). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus TATA box nucleotide sequence of Table 7 (e.g., nucleotides 86-90 of the nucleic acid sequence of Table 7). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus Cap site nucleotide sequence of Table 7 (e.g., nucleotides 107-114 of the nucleic acid sequence of Table 7). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus transcriptional start site nucleotide sequence of Table 7 (e.g., nucleotide 114 of the nucleic acid sequence of Table 7). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 7 (e.g., nucleotides 174-244 of the nucleic acid sequence of Table 7). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus three open-reading frame region nucleotide sequence of Table 7 (e.g., nucleotides 2551-2870 of the nucleic acid sequence of Table 7). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus poly(A) signal nucleotide sequence of Table 7 (e.g., nucleotides 3071-3076 of the nucleic acid sequence of Table 7). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 7 (e.g., nucleotides 3733-3853 of the nucleic acid sequence of Table 7).


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 nucleotide sequence of Table 9 (e.g., nucleotides 577-2787 of the nucleic acid sequence of Table 9). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 nucleotide sequence of Table 9 (e.g., nucleotides 577-699 and/or 2311-2787 of the nucleic acid sequence of Table 9). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 nucleotide sequence of Table 9 (e.g., nucleotides 577-699 and/or 2504-2806 of the nucleic acid sequence of Table 9). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 nucleotide sequence of Table 9 (e.g., nucleotides 341-703 of the nucleic acid sequence of Table 9). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 nucleotide sequence of Table 9 (e.g., nucleotides 341-699 and/or 2311-2806 of the nucleic acid sequence of Table 9). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 nucleotide sequence of Table 9 (e.g., nucleotides 341-699 and/or 2504-2978 of the nucleic acid sequence of Table 9). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 nucleotide sequence of Table 9 (e.g., nucleotides 341-387 and/or 2504-2978 of the nucleic acid sequence of Table 9). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus TATA box nucleotide sequence of Table 9 (e.g., nucleotides 83-87 of the nucleic acid sequence of Table 9). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus Cap site nucleotide sequence of Table 9 (e.g., nucleotides 104-111 of the nucleic acid sequence of Table 9). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus transcriptional start site nucleotide sequence of Table 9 (e.g., nucleotide 111 of the nucleic acid sequence of Table 9). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 9 (e.g., nucleotides 171-241 of the nucleic acid sequence of Table 9). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus three open-reading frame region nucleotide sequence of Table 9 (e.g., nucleotides 2463-2784 of the nucleic acid sequence of Table 9). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus poly(A) signal nucleotide sequence of Table 9 (e.g., nucleotides 2974-2979 of the nucleic acid sequence of Table 9). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 9 (e.g., nucleotides 3644-3758 of the nucleic acid sequence of Table 9).


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 nucleotide sequence of Table 11 (e.g., nucleotides 612-2612 of the nucleic acid sequence of Table 11). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 nucleotide sequence of Table 11 (e.g., nucleotides 612-719 and/or 2274-2612 of the nucleic acid sequence of Table 11). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 nucleotide sequence of Table 11 (e.g., nucleotides 612-719 and/or 2449-2589 of the nucleic acid sequence of Table 11). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 nucleotide sequence of Table 11 (e.g., nucleotides 424-723 of the nucleic acid sequence of Table 11). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 nucleotide sequence of Table 11 (e.g., nucleotides 424-719 and/or 2274-2589 of the nucleic acid sequence of Table 11). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 nucleotide sequence of Table 11 (e.g., nucleotides 424-719 and/or 2449-2812 of the nucleic acid sequence of Table 11). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus TATA box nucleotide sequence of Table 11 (e.g., nucleotides 237-243 of the nucleic acid sequence of Table 11). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus Cap site nucleotide sequence of Table 11 (e.g., nucleotides 260-267 of the nucleic acid sequence of Table 11). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus transcriptional start site nucleotide sequence of Table 11 (e.g., nucleotide 267 of the nucleic acid sequence of Table 11). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 11 (e.g., nucleotides 323-393 of the nucleic acid sequence of Table 11). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus three open-reading frame region nucleotide sequence of Table 11 (e.g., nucleotides 2441-2586 of the nucleic acid sequence of Table 11). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus poly(A) signal nucleotide sequence of Table 11 (e.g., nucleotides 2808-2813 of the nucleic acid sequence of Table 11). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 11 (e.g., nucleotides 2868-2929 of the nucleic acid sequence of Table 11).


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 nucleotide sequence of Table 13 (e.g., nucleotides 432-2453 of the nucleic acid sequence of Table 13). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 nucleotide sequence of Table 13 (e.g., nucleotides 432-584 and/or 1977-2453 of the nucleic acid sequence of Table 13). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 nucleotide sequence of Table 13 (e.g., nucleotides 432-584 and/or 2197-2388 of the nucleic acid sequence of Table 13). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 nucleotide sequence of Table 13 (e.g., nucleotides 283-588 of the nucleic acid sequence of Table 13). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 nucleotide sequence of Table 13 (e.g., nucleotides 283-584 and/or 1977-2388 of the nucleic acid sequence of Table 13). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 nucleotide sequence of Table 13 (e.g., nucleotides 283-584 and/or 2197-2614 of the nucleic acid sequence of Table 13). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus TATA box nucleotide sequence of Table 13 (e.g., nucleotides 21-25 of the nucleic acid sequence of Table 13). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus Cap site nucleotide sequence of Table 13 (e.g., nucleotides 42-49 of the nucleic acid sequence of Table 13). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus transcriptional start site nucleotide sequence of Table 13 (e.g., nucleotide 49 of the nucleic acid sequence of Table 13). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 13 (e.g., nucleotides 117-187 of the nucleic acid sequence of Table 13). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus three open-reading frame region nucleotide sequence of Table 13 (e.g., nucleotides 2186-2385 of the nucleic acid sequence of Table 13). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus poly(A) signal nucleotide sequence of Table 13 (e.g., nucleotides 2676-2681 of the nucleic acid sequence of Table 13). In embodiments, the nucleic acid molecule comprises a nucleic acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 13 (e.g., nucleotides 3054-3172 of the nucleic acid sequence of Table 13).


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 2. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 2. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 2. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 2. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 2. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 2. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 amino acid sequence of Table 2.


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 4. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 4. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 4. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 4. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 4. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 4. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 amino acid sequence of Table 4.


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 6. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 6. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 6. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 6. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 6. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 6. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 amino acid sequence of Table 6.


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 8. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 8. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 8. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 8. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 8. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 8. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 amino acid sequence of Table 8.


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 10. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 10. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 10. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 10. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 10. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 10. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 amino acid sequence of Table 10.


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 12. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 12. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 12. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 12. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 12. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 12.


In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 14. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 14. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 14. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 14. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 14. In embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 14.


In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 2. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 2. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 2. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 2. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 2. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 2. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 amino acid sequence of Table 2.


In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 4. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 4. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 4. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 4. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 4. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 4. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 amino acid sequence of Table 4.


In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 6. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 6. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 6. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 6. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 6. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 6. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 amino acid sequence of Table 6.


In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 8. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 8. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 8. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 8. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 8. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 8. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 amino acid sequence of Table 8.


In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 10. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 10. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 10. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 10. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 10. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 10. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2t/3 amino acid sequence of Table 10.


In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 12. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 12. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 12. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 12. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 12. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 12.


In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1 amino acid sequence of Table 14. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/1 amino acid sequence of Table 14. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF1/2 amino acid sequence of Table 14. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2 amino acid sequence of Table 14. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/2 amino acid sequence of Table 14. In embodiments, the curon described herein comprises a protein having an amino acid sequence having at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus ORF2/3 amino acid sequence of Table 14.









TABLE 1





Exemplary Anellovirus nucleic acid sequence


(Alphatorquevirus, Clade 1)
















Name
TTV-CT30F





Genus/Clade

Alphatorquevirus , Clade 1






Accession Number
AB064597.1





Full Sequence:
3570 bp










1        10        20        30        40        50


|        |         |         |         |         |


ATTTTGTGCAGCCCGCCAATTCTCGTTCAAACAGGCCAATCAGGAGGCTC


TACGTACACTTCCTGGGGTGTGTCTTCGAAGAGTATATAAGCAGAGGCGG


TGACGAATGGTAGAGTTTTTCCTGGCCCGTCCGCGGCGAGAGCGCGAGCG


GAGCGAGCGATCGAGCGTCCCGTGGGCGGGTGCCGTAGGTGAGTTTACAC


ACCGCAGTCAAGGGGCAATTCGGGCTCGGGACTGGCCGGGCTATGGGCAA


GATTCTTAAAAAATTCCCCCGATCCCTCTGTCGCCAGGACATAAAAACAT


GCCGTGGAGACCGCCGGTGCATAGTGTCCAGGGGCGAGAGGATCAGTGGT


TCGCGAGCTTTTTTCACGGCCACGCTTCATTTTGCGGTTGCGGTGACGCT


GTTGGCCATCTTAATAGCATTGCTCCTCGCTTTCCTCGCGCCGGTCCACC


AAGGCCCCCTCCGGGGCTAGAGCAGCCTAACCCCCCGCAGCAGGGCCCGG


CCGGGCCCGGAGGGCCGCCCGCCATCTTGGCGCTGCCGGCTCCGCCCGCG


GAGCCTGACGACCCGCAGCCACGGCGTGGTGGTGGGGACGGTGGCGCCGC


CGCTGGCGCCGCAGGCGACCGTGGAGACCGAGACTACGACGAAGAAGAGC


TAGACGAGCTTTTCCGCGCCGCCGCCGAAGACGATTTGTAAGTAGGAGAT


GGCGCCGGCCTTACAGGCGCAGGAGGAGACGCGGGCGACGCAGACGCAGA


CGCAGACGCAGACATAAGCCCACCCTAGTACTCAGACAGTGGCAACCTGA


CGTTATCAGACACTGTAAGATAACAGGACGGATGCCCCTCATTATCTGTG


GAAAGGGGTCCACCCAGTTCAACTACATCACCCACGCGGACGACATCACC


CCCAGGGGAGCCTCCTACGGGGGCAACTTCACAAACATGACTTTCTCCCT


GGAGGCAATATACGAACAGTTTCTGTACCACAGAAACAGGTGGTCAGCCT


CCAACCACGACCTCGAACTCTGCAGATACAAGGGTACCACCCTAAAACTG


TACAGGCACCCAGATGTAGACTACATAGTCACCTACAGCAGAACGGGACC


CTTTGAGATCAGCCACATGACCTACCTCAGCACTCACCCCCTTCTCATGC


TGCTAAACAAACACCACATAGTGGTGCCCAGCCTAAAGACTAAGCCCAGG


GGCAGAAAGGCCATAAAAGTCAGAATAAGACCCCCCAAACTCATGAACAA


CAAGTGGTACTTCACCAGAGACTTCTGTAACATAGGCCTCTTCCAGCTCT


GGGCCACAGGCTTAGAACTCAGAAACCCCTGGCTCAGAATGAGCACCCTG


AGCCCCTGCATAGGCTTCAATGTCCTTAAAAACAGCATTTACACAAACCT


CAGCAACCTACCTCAGCACAGAGAAGACAGACTTAACATTATTAACAACA


CATTACACCCACATGACATAACAGGACCAAACAATAAAAAATGGCAGTAC


ACATATACCAAACTCATGGCCCCCATTTACTATTCAGCAAACAGGGCCAG


CACCTATGACTTACTACGAGAGTATGGCCTCTACAGTCCATACTACCTAA


ACCCCACAAGGATAAACCTTGACTGGATGACCCCCTACACACACGTCAGG


TACAATCCACTAGTAGACAAGGGCTTCGGAAACAGAATATACATACAGTG


GTGCTCAGAGGCAGATGTAAGCTACAACAGGACTAAATCCAAGTGTCTCT


TACAAGACATGCCCCTGTTTTTCATGTGCTATGGCTACATAGACTGGGCA


ATTAAAAACACAGGGGTCTCCTCACTAGCGAGAGACGCCAGAATCTGCAT


CAGGTGTCCCTACACAGAGCCACAGCTGGTGGGCTCCACAGAAGACATAG


GGTTCGTACCCATCACAGAGACCTTCATGAGGGGCGACATGCCGGTACTT


GCACCATACATACCGTTGAGCTGGTTTTGCAAGTGGTATCCCAACATAGC


TCACCAGAAGGAAGTACTTGAGGCAATCATTTCCTGCAGCCCCTTCATGC


CCCGTGACCAGGGCATGAACGGTTGGGATATTACAATAGGTTACAAAATG


GACTTCTTATGGGGCGGTTCCCCTCTCCCCTCACAGCCAATCGACGACCC


CTGCCAGCAGGGAACCCACCCGATTCCCGACCCCGATAAGCACCCTCGCC


TCCTACAAGTGTCGAACCCGAAACTGCTCGGACCGAGGACAGTGTTCCAC


AAGTGGGACATCAGACGTGGGCAGTTTAGCAAAAGAAGTATTAAAAGAGT


GTCAGAATACTCATCGGATGATGAATCTCTTGCGCCAGGTCTCCCATCAA


AGCGAAACAAGCTCGACTCGGCCTTCAGAGGAGAAAACCCAGAGCAAAAA


GAATGCTATTCTCTCCTCAAAGCACTCGAGGAAGAAGAGACCCCAGAAGA


AGAAGAACCAGCACCCCAAGAAAAAGCCCAGAAAGAGGAGCTACTCCACC


AGCTCCAGCTCCAGAGACGCCACCAGCGAGTCCTCAGACGAGGGCTCAAG


CTCGTCTTTACAGACATCCTCCGACTCCGCCAGGGAGTCCACTGGAACCC


CGAGCTCACATAGAGCCCCCACCTTACATACCAGACCTACTTTTTCCCAA


TACTGGTAAAAAAAAAAAATTCTCTCCCTTCGACTGGGAAACGGAGGCCC


AGCTAGCAGGGATATTCAAGCGTCCTATGCGCTTCTATCCCTCAGACACC


CCTCACTACCCGTGGTTACCCCCCAAGCGCGATATCCCGAAAATATGTAA


CATAAACTTCAAAATAAAGCTGCAAGAGTGAGTGATTCGAGGCCCTCCTC


TGTTCACTTAGCGGTGTCTACCTCTTAAAGTCACCAAGCACTCCGAGCGT


CAGCGAGGAGTGCGACCCTCCACCAAGGGGCAACTTCCTCGGGGTCCGGC


GCTACGCGCTTCGCGCTGCGCCGGACGCCTCGGACCCCCCCCCGACCCGA


ATCGCTCGCGCGATTCGGACCTGCGGCCTCGGGGGGGGTCGGGGGCTTTA


CTAAACAGACTCCGAGTTGCCACTGGACTCAGGAGCTGTGAATCAGTAAC


GAAAGTGAGTGGGGCCAGACTTCGCCATAGGGCCTTTAACTTGGGGTCGT


CTGTCGGTGGCTTCCGGGTCCGCCTGGGCGCCGCCATTTTAGCTTTAGAC


GCCATTTTAGGCCCTCGCGGGCACCCGTAGGCGCGTTTTAATGACGTCAC


GGCAGCCATTTTGTCGTGACGTTTGAGACACGTGATGGGGGCGTGCCTAA


ACCCGGAAGCATCCCTGGTCACGTGACTCTGACGTCACGGCGGCCATTTT


GTGCTGTCCGCCATCTTGTGACTTCCTTCCGCTTTTTCAAAAAAAAAGAG


GAAGTATGACAGTAGCGGCGGGGGGGCGGCCGCGTTCGCGCGCCGCCCAC


CAGGGGGTGCTGCGCGCCCCCCCCCGCGCATGCGCGGGGCCCCCCCCCGG


GGGGGCTCCGCCCCCCCGGCCCCCCCCCGTGCTAAACCCACCGCGCATGC


GCGACCACGCCCCCGCCGCC (SEQ ID NO: 1)











Annotations:



Putative Domain
Base range


TATA Box
84-90


Cap Site
107-114


Transcriptional Start Site
114


5′ UTR Conserved Domain
177-247


ORF2
299-691


ORF2/2
299-687; 2137-2659


ORF2/3
299-687; 2339-2831


ORF2t/3
299-348; 2339-2831


ORF1
571-2613


ORF1/1
571-687; 2137-2613


ORF1/2
571-687; 2339-2659


Three open-reading frame region 
2325-2610


Poly(A) Signal
2813-2818


GC-rich region
3415-3570
















TABLE 2





Exemplary Anellovirus amino acid sequences (Alphatorquevirus, Clade 1)


TTV-CT30F (Alphatorquevirus Clade 1)
















ORF2
MPWRPPVHSVQGREDQWFASFFHGHASFCGCGDAVGHLNSIAPRFPRAGPPRPPPG



LEQPNPPQQGPAGPGGPPAILALPAPPAEPDDPQPRRGGGDGGAAAGAAGDRGDRD



YDEEELDELFRAAAEDDL (SEQ ID NO: 2)





ORF2/2
MPWRPPVHSVQGREDQWFASFFHGHASFCGCGDAVGHLNSIAPRFPRAGPPRPPPG



LEQPNPPQQGPAGPGGPPAILALPAPPAEPDDPQPRRGGGDGGAAAGAAGDRGDRD



YDEEELDELFRAAAEDDFQSTTPASREPTRFPTPISTLASYKCRTRNCSDRGQCSTSG



TSDVGSLAKEVLKECQNTHRMMNLLRQVSHQSETSSTRPSEEKTQSKKNAILSSKH



SRKKRPQKKKNQHPKKKPRKRSYSTSSSSRDATSESSDEGSSSSLQTSSDSARESTGT



PSSHRAPTLHTRPTFSQYW (SEQ ID NO: 3)





ORF2/3
MPWRPPVHSVQGREDQWFASFFHGHASFCGCGDAVGHLNSIAPRFPRAGPPRPPPG



LEQPNPPQQGPAGPGGPPAILALPAPPAEPDDPQPRRGGGDGGAAAGAAGDRGDRD



YDEEELDELFRAAAEDDLSPIKAKQARLGLQRRKPRAKRMLFSPQSTRGRRDPRRR



RTSTPRKSPERGATPPAPAPETPPASPQTRAQARLYRHPPTPPGSPLEPRAHIEPPPYIP



DLLFPNTGKKKKFSPFDWETEAQLAGIFKRPMRFYPSDTPHYPWLPPKRDIPKICNIN



FKIKLQE (SEQ ID NO: 4)





ORF2t/3
MPWRPPVHSVQGREDQWSPIKAKQARLGLQRRKPRAKRMLFSPQSTRGRRDPRRR



RTSTPRKSPERGATPPAPAPETPPASPQTRAQARLYRHPPTPPGSPLEPRAHIEPPPYIP



DLLFPNTGKKKKFSPFDWETEAQLAGIFKRPMRFYPSDTPHYPWLPPKRDIPKICNIN



FKIKLQE (SEQ ID NO: 5)





ORF1
TAWWWGRWRRRWRRRRPWRPRLRRRRARRAFPRRRRRRFVSRRWRRPYRRRRR



RGRRRRRRRRRHKPTLVLRQWQPDVIRHCKITGRMPLIICGKGSTQFNYITHADDIT



PRGASYGGNFTNMTFSLEAIYEQFLYHRNRWSASNHDLELCRYKGTTLKLYRHPD



VDYIVTYSRTGPFEISHMTYLSTHPLLMLLNKHHIVVPSLKTKPRGRKAIKVRIRPPK



LMNNKWYFTRDFCNIGLFQLWATGLELRNPWLRMSTLSPCIGFNVLKNSIYTNLSN



LPQHREDRLNIINNTLHPHDITGPNNKKWQYTYTKLMAPIYYSANRASTYDLLREY



GLYSPYYLNPTRINLDWMTPYTHVRYNPLVDKGFGNRIYIQWCSEADVSYNRTKSK



CLLQDMPLFFMCYGYIDWAIKNTGVSSLARDARICIRCPYTEPQLVGSTEDIGFVPIT



ETFMRGDMPVLAPYIPLSWFCKWYPNIAHQKEVLEAIISCSPFMPRDQGMNGWDITI



GYKMDFLWGGSPLPSQPIDDPCQQGTHPIPDPDKHPRLLQVSNPKLLGPRTVFHKW



DIRRGQFSKRSIKRVSEYSSDDESLAPGLPSKRNKLDSAFRGENPEQKECYSLLKALE



EEETPEEEEPAPQEKAQKEELLHQLQLQRRHQRVLRRGLKLVFTDILRLRQGVHWN



PELT (SEQ ID NO: 6)





ORF 1/1
TAWWWGRWRRRWRRRRPWRPRLRRRRARRAFPRRRRRRFPIDDPCQQGTHPIPDP



DKHPRLLQVSNPKLLGPRTVFHKWDIRRGQFSKRSIKRVSEYSSDDESLAPGLPSKR



NKLDSAFRGENPEQKECYSLLKALEEEETPEEEEPAPQEKAQKEELLHQLQLQRRH



QRVLRRGLKLVFTDILRLRQGVHWNPELT (SEQ ID NO: 7)





ORF 1/2
TAWWWGRWRRRWRRRRPWRPRLRRRRARRAFPRRRRRRFVSHQSETSSTRPSEE



KTQSKKNAILSSKHSRKKRPQKKKNQHPKKKPRKRSYSTSSSSRDATSESSDEGSSS



SLQTSSDSARESTGTPSSHRAPTLHTRPTFSQYW (SEQ ID NO: 8)
















TABLE 3





Exemplary Anellovirus nucleic acid sequence


(Alphatorquevirus, Clade 2)
















Name
TTV-TJN02





Genus/Clade

Alphatorquevirus , Clade 2






Accession Number
AB028669.1





Full Sequence:
3794 bp










1        10        20        30        40        50


|        |         |         |         |         |


CCCGAAGTCCGTCACTAACCACGTGACTCCTGTCGCCCAATCAGAGTGTA


TGTCGTGCATTTCCTGGGCATGGTCTACATCCTGATATAACTAAGTGCAC


TTCCGAATGGCTGAGTTTTCCACGCCCGTCCGCAGCGAGGGAGCGACGGA


GGAGCTCCCGAGCGTCCCGAGGGCGGGTGCCGGAGGTGAGTTTACACACC


GCAGTCAAGGGGCAATTCGGGCTCGGGACTGGCCGGGCTATGGGCAAGGC


TCTTAGGGTCTTCATTCTTAATATGTTTCTTGGCAGAGTTTACCGCCACA


AGAAAAGGAAAGTGCTACTGTCCACACTGCGAGCTCCACAGGCGTCTCGC


AGGGCTATGAGTTGGCGACCCCCGGTACACGATGCACCCGGCATCGAGCG


CAATTGGTACGAGGCCTGTTTCAGAGCCCACGCTGGAGCTTGTGGCTGTG


GCAATTTTATTATGCACCTTAATCTTTTGGCTGGGCGTTATGGTTTTACT


CCGGGGTCAGCGCCGCCAGGTGGTCCTCCTCCGGGCACCCCGCAGATAAG


GAGAGCCAGGCCTAGTCCCGCCGCACCAGAGCAGCCCGCTGCCCTACCAT


GGCATGGGGATGGTGGAGATGGCGGCGCCGCTGGCCCGCCAGACGCTGGA


GGAGACGCCGTCGCCGGCGCCCCGTACGGAGAACAAGAGCTCGCCGACCT


GCTCGACGCTATAGAAGACGACGAACAGTAAGAACCAGGCGAAGGCGGTG


GGGGCGCAGACGGTACAGACGGGGCTGGAGACGCAGGACTTATGTGAGAA


AGGGGCGACACAGAAAAAAGAAAAAGAGACTGATACTGAGACAGTGGCAA


CCAGCCACAAGACGCAGATGTACCATAACTGGGTACCTGCCCATAGTGTT


CTGCGGCCACACTAGGGGCAATAAAAACTATGCACTACACTCTGACGACT


ACACCCCCCAAGGACAACCATTTGGAGGGGCTCTAAGCACTACCTCATTC


TCTTTAAAAGTACTATTTGACCAGCATCAGAGAGGACTAAACAAGTGGTC


TTTTCCAAACGACCAACTAGACCTCGCCAGATATAGAGGCTGCAAATTTA


TATTTTATAGAACAAAACAAACTGACTGGGTGGGCCAGTATGACATATCA


GAACCCTACAAGCTAGACAAATACAGCTGCCCCAACTATCACCCTGGAAA


CATGATTAAGGCAAAGCACAAATTTTTAATACCAAGCTATGACACTAATC


CTAGAGGCAGACAAAAAATTATAGTTAAAATTCCCCCCCCAGACCTCTTT


GTAGACAAGTGGTACACTCAAGAGGATCTGTGTTCCGTTAATCTTGTGTC


ACTTGCGGTTTCTGCGGCTTCCTTTCTCCACCCATTCGGCTCACCACAAA


CTGACAACCCTTGCTACACCTTCCAGGTGTTGAAAGAGTTCTACTATCAG


GCAATAGGCTTCTCTGCAAGCACACAAGCAATGACATCAGTATTAGACAC


GCTATACACACAAAACAGTTATTGGGAATCTAATCTAACTCAGTTTTATG


TACTTAATGCAAAAAAAGGCAGTGATACAACACAGCCTTTAACTAGCAAT


ATGCCAACTCGTGAAGAGTTTATGGCAAAAAAAAATACCAATTACAACTG


GTATACATACAAGGCCGCGTCAGTAAAAAATAAACTACATCAAATGAGAC


AAACCTATTTTGAGGAGTTAACCTCTAAGGGGCCACAAACAACAAAAAGT


GAGGAAGGCTACAGTCAGCACTGGACCACCCCCTCCACAAACGCCTACGA


ATATCACTTAGGAATGTTTAGTGCAATATTTCTAGCCCCAGACAGGCCAG


TACCTAGATTTCCATGCGCCTACCAAGATGTAACTTACAACCCCTTAATG


GACAAAGGGGTGGGAAACCACATTTGGTTTCAGTACAACACAAAGGCAGA


CACTCAGCTAATAGTCACAGGAGGGTCCTGCAAAGCACACATACAAGACA


TACCACTGTGGGCGGCCTTCTATGGATACAGTGACTTTATAGAGTCAGAA


CTAGGCCCCTTTGTAGATGCAGAGACGGTAGGCTTAGTGTGTGTAATATG


CCCTTATACAAAACCCCCCATGTACAACAAGACAAACCCCGCCATGGGCT


ACGTGTTCTATGACAGAAACTTTGGTGACGGAAAATGGACTGACGGACGG


GGCAAAATAGAGCCCTACTGGCAAGTTAGGTGGAGGCCCGAAATGCTTTT


CCAAGAAACTGTAATGGCAGACCTAGTTCAGACTGGGCCCTTTAGCTACA


AAGACGAACTTAAAAACAGCACCCTAGTGTGCAAGTACAAATTCTATTTC


ACCTGGGGAGGTAACATGATGTTCCAACAGACGATCAAAAACCCGTGCAA


GACGGACGGACAACCCACCGACTCCAGTAGACACCCTAGAGGAATACAAG


TGGCGGACCCGGAACAAATGGGACCCCGCTGGGTGTTCCACTCCTTTGAC


TGGCGAAGGGGCTATCTTAGCGAGAAAGCTCTCAAACGCCTGCAAGAAAA


ACCTCTTGACTATGACGAATATTTTACACAACCAAAAAGACCTAGAATCT


TTCCTCCAACAGAATCAGCAGAGGGAGAGTTCCGAGAGCCCGAAAAAGGC


TCGTATTCAGAGGAAGAAAGGTCGCAAGCCTCTGCCGAAGAGCAGACGCA


GGAGGCGACAGTACTCCTCCTCAAGCGACGACTCAGAGAGCAACAGCAGC


TCCAGCAGCAGCTCCAATTCCTCACCCGAGAAATGTTCAAAACGCAAGCG


GGTCTCCACCTAAACCCTATGTTATTAAACCAGCGATAAACCAAGTGTAC


CTGTTTCCAGAGAGGGCCCCAAAACCCCCTCCTAGCAGCCAAGACTGGCA


GCAGGAGTACGAGGCCTGCGCAGCCTGGGACAGGCCCCCTAGATACAATC


TGTCCTCTCCTCCTTTCTACCCCAGCTGCCCTTCAAAATTCTGTGTAAAA


TTCAGCCTTGGCTTTAAATAAATGGCAACTTTACTGTGCAAGGCCGTGGG


AGTTTCACTGGTCGGTGTCTACCTCTAAAGGTCACTAAGCACTCCGAGCG


TTAGCGAGGAGTGCGACCCTTCCCCCTGACTCAACTTCTTCGGAGCCGCG


CGCTACGCCTTCGGCTGCGCGCGGCACCTCAGACCCCCGCTCGTGCTGAC


ACGCTCGCGCGTGTCAGACCACTTCGGGCTCGCGGGGGTCGGGAATTTTG


CTAAACAGACTCCGAGTTGCTCTTGGACACTGAGGGGGCATATCAGTAAC


GAAAGTGAGTGGGGCCAGACTTCGCCATAAGGCCTTTATCTTCTTGCCAT


TGGATAGTATCGAGGGTTGCCATAGGCTTCGACCTCCATTTTAGGCCTTC


CGGACTACAAAAATGGCCGTTTTAGTGACGTCACGGCCGCCATTTTAAGT


AAGGCGGAAGCAGCTCGGCGTACACAAAATGGCGGCGGAGCACTTCCGGC


TTGCCCAAAATGGTGGGCAACTTCTTCCGGGTCAAAGGTCACAGCTACGT


CACAAGTCACGTGGGGAGGGTTGGCGTTTAACCCGGAAGCCAATCCTCTT


ACGTGGCCTGTCACGTGACTTGTACGTCACGACCACCATTTTGTTTTACA


AAATGGCCGACTTCCTTCCTCTTTTTTAAAAATAACGGTTCGGCGGCGGC


GCGCGCGCTACGCGCGCGCGCCGGGGGGCTGCCGCCCCCCCCCCGCGCAT


GCGCGGGGCCCCCCCCCGCGGGGGGCTCCGCCCCCCGGCCCCCC


(SEQ ID NO: 9)











Annotations:



Putative Domain
Base range


TATA Box
89-90


Cap Site
107-114


Transcriptional Start Site
114


5′ UTR Conserved Domain
174-244


ORF2
357-731


ORF2/2
357-727; 2381-2813


ORF2/3
357-727; 2619-3021


ORF2t/3
357-406; 2619-3021


ORF1
599-2839


ORF1/1
599-727; 2381-2839


ORF1/2
599-727; 2619-2813


Three open-reading frame region
2596-2810


Poly(A) Signal
3017-3022


GC-rich region
3691-3794
















TABLE 4





Exemplary Anellovirus amino acid sequences (Alphatorquevirus, Clade 2)


TTV-TJN02 (Alphatorquevirus Clade 2)
















ORF2
MSWRPPVHDAPGIERNWYEACFRAHAGACGCGNFIMHLNLLAGRYGFTPGSAPPG



GPPPGTPQIRRARPSPAAPEQPAALPWHGDGGDGGAAGPPDAGGDAVAGAPYGEQ



ELADLLDAIEDDEQ (SEQ ID NO: 10)





ORF2/2
MSWRPPVHDAPGIERNWYEACFRAHAGACGCGNFIMHLNLLAGRYGFTPGSAPPG



GPPPGTPQIRRARPSPAAPEQPAALPWHGDGGDGGAAGPPDAGGDAVAGAPYGEQ



ELADLLDAIEDDEQRSKTRARRTDNPPTPVDTLEEYKWRTRNKWDPAGCSTPLTGE



GAILARKLSNACKKNLLTMTNILHNQKDLESFLQQNQQRESSESPKKARIQRKKGR



KPLPKSRRRRRQYSSSSDDSESNSSSSSSSNSSPEKCSKRKRVST (SEQ ID



NO: 11)





ORF2/3
MSWRPPVHDAPGIERNWYEACFRAHAGACGCGNFIMHLNLLAGRYGFTPGSAPPG



GPPPGTPQIRRARPSPAAPEQPAALPWHGDGGDGGAAGPPDAGGDAVAGAPYGEQ



ELADLLDAIEDDEHRGRVPRARKRLVFRGRKVASLCRRADAGGDSTPPQATTQRAT



AAPAAAPIPHPRNVQNASGSPPKPYVIKPAINQVYLFPERAPKPPPSSQDWQQEYEA



CAAWDRPPRYNLSSPPFYPSCPSKFCVKFSLGFK (SEQ ID NO: 12)





ORF2t/3
MSWRPPVHDAPGIERNCRGRVPRARKRLVFRGRKVASLCRRADAGGDSTPPQATT



QRATAAPAAAPIPHPRNVQNASGSPPKPYVIKPAINQVYLFPERAPKPPPSSQDWQQ



EYEACAAWDRPPRYNLSSPPFYPSCPSKFCVKFSLGFK (SEQ ID NO: 13)





ORF1
MAWGWWRWRRRWPARRWRRRRRRRPVRRTRARRPARRYRRRRTVRTRRRRWG



RRRYRRGWRRRTYVRKGRHRKKKKRLILRQWQPATRRRCTITGYLPIVFCGHTRG



NKNYALHSDDYTPQGQPFGGALSTTSFSLKVLFDQHQRGLNKWSFPNDQLDLARY



RGCKFIFYRTKQTDWVGQYDISEPYKLDKYSCPNYHPGNMIKAKHKFLIPSYDTNP



RGRQKIIVKIPPPDLFVDKWYTQEDLCSVNLVSLAVSAASFLHPFGSPQTDNPCYTF



QVLKEFYYQAIGFSASTQAMTSVLDTLYTQNSYWESNLTQFYVLNAKKGSDTTQPL



TSNMPTREEFMAKKNTNYNWYTYKAASVKNKLHQMRQTYFEELTSKGPQTTKSE



EGYSQHWTTPSTNAYEYHLGMFSAIFLAPDRPVPRFPCAYQDVTYNPLMDKGVGN



HIWFQYNTKADTQLIVTGGSCKAHIQDIPLWAAFYGYSDFIESELGPFVDAETVGLV



CVICPYTKPPMYNKTNPAMGYVFYDRNFGDGKWTDGRGKIEPYWQVRWRPEMLF



QETVMADLVQTGPFSYKDELKNSTLVCKYKFYFTWGGNMMFQQTIKNPCKTDGQ



PTDSSRHPRGIQVADPEQMGPRWVFHSFDWRRGYLSEKALKRLQEKPLDYDEYFT



QPKRPRIFPPTESAEGEFREPEKGSYSEEERSQASAEEQTQEATVLLLKRRLREQQQL



QQQLQFLTREMFKTQAGLHLNPMLLNQR (SEQ ID NO: 14)





ORF1/1
MAWGWWRWRRRWPARRWRRRRRRRPVRRTRARRPARRYRRRRTTIKNPCKTDG



QPTDSSRHPRGIQVADPEQMGPRWVFHSFDWRRGYLSEKALKRLQEKPLDYDEYF



TQPKRPRIFPPTESAEGEFREPEKGSYSEEERSQASAEEQTQEATVLLLKRRLREQQQ



LQQQLQFLTREMFKTQAGLHLNPMLLNQR (SEQ ID NO: 15)





ORF1/2
MAWGWWRWRRRWPARRWRRRRRRRPVRRTRARRPARRYRRRRTQRESSESPKK



ARIQRKKGRKPLPKSRRRRRQYSSSSDDSESNSSSSSSSNSSPEKCSKRKRVST (SEQ



ID NO: 16)
















TABLE 5





Exemplary Anellovirus nucleic acid sequence


(Alphatorquevirus, Clade 3)
















Name
TTV-tth8





Genus/Clade

Alphatorquevirus , Clade 3






Accession Number
AJ620231.1





Full Sequence:
3753 bp










1        10        20        30        40        50


|        |         |         |         |         |


TGCTACGTCACTAACCCACGTGTCCTCTACAGGCCAATCGCAGTCTATGT


CGTGCACTTCCTGGGCATGGTCTACATAATTATATAAATGCTTGCACTTC


CGAATGGCTGAGTTTTTGCTGCCCGTCCGCGGAGAGGAGCCACGGCAGGG


GATCCGAACGTCCTGAGGGCGGGTGCCGGAGGTGAGTTTACACACCGAAG


TCAAGGGGCAATTCGGGCTCAGGACTGGCCGGGCTTTGGGCAAGGCTCTT


AAAAATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAAGTGCTACTGC


TTTGCGTGCCAGCAGCTAAGAAAAAACCAACTGCTATGAGCTTCTGGAAA


CCTCCGGTACACAATGTCACGGGGATCCAACGCATGTGGTATGAGTCCTT


TCACCGTGGCCACGCTTCTTTTTGTGGTTGTGGGAATCCTATACTTCACA


TTACTGCACTTGCTGAAACATATGGCCATCCAACAGGCCCGAGACCTTCT


GGGCCACCGGGAGTAGACCCCAACCCCCACATCCGTAGAGCCAGGCCTGC


CCCGGCCGCTCCGGAGCCCTCACAGGTTGATTCGAGACCAGCCCTGACAT


GGCATGGGGATGGTGGAAGCGACGGAGGCGCTGGTGGTTCCGGAAGCGGT


GGACCCGTGGCAGACTTCGCAGACGATGGCCTCGATCAGCTCGTCGCCGC


CCTAGACGACGAAGAGTAAGGAGGCGCAGACGGTGGAGGAGGGGGAGACG


AAAAACAAGGACTTACAGACGCAGGAGACGCTTTAGACGCAGGGGACGAA


AAGCAAAACTTATAATAAAACTGTGGCAACCTGCAGTAATTAAAAGATGC


AGAATAAAGGGATACATACCACTGATTATAAGTGGGAACGGTACCTTTGC


CACAAACTTTACCAGTCACATAAATGACAGAATAATGAAAGGCCCCTTCG


GGGGAGGACACAGCACTATGAGGTTCAGCCTCTACATTTTGTTTGAGGAG


CACCTCAGACACATGAACTTCTGGACCAGAAGCAACGATAACCTAGAGCT


AACCAGATACTTGGGGGCTTCAGTAAAAATATACAGGCACCCAGACCAAG


ACTTTATAGTAATATACAACAGAAGAACCCCTCTAGGAGGCAACATCTAC


ACAGCACCCTCTCTACACCCAGGCAATGCCATTTTAGCAAAACACAAAAT


ATTAGTACCAAGTTTACAGACAAGACCAAAGGGTAGAAAAGCAATTAGAC


TAAGAATAGCACCCCCCACACTCTTTACAGACAAGTGGTACTTTCAAAAG


GACATAGCCGACCTCACCCTTTTCAACATCATGGCAGTTGAGGCTGACTT


GCGGTTTCCGTTCTGCTCACCACAAACTGACAACACTTGCATCAGCTTCC


AGGTCCTTAGTTCCGTTTACAACAACTACCTCAGTATTAATACCTTTAAT


AATGACAACTCAGACTCAAAGTTAAAAGAATTTTTAAATAAAGCATTTCC


AACAACAGGCACAAAAGGAACAAGTTTAAATGCACTAAATACATTTAGAA


CAGAAGGATGCATAAGTCACCCACAACTAAAAAAACCAAACCCACAAATA


AACAAACCATTAGAGTCACAATACTTTGCACCTTTAGATGCCCTCTGGGG


AGACCCCATATACTATAATGATCTAAATGAAAACAAAAGTTTGAACGATA


TCATTGAGAAAATACTAATAAAAAACATGATTACATACCATGCAAAACTA


AGAGAATTTCCAAATTCATACCAAGGAAACAAGGCCTTTTGCCACCTAAC


AGGCATATACAGCCCACCATACCTAAACCAAGGCAGAATATCTCCAGAAA


TATTTGGACTGTACACAGAAATAATTTACAACCCTTACACAGACAAAGGA


ACTGGAAACAAAGTATGGATGGACCCACTAACTAAAGAGAACAACATATA


TAAAGAAGGACAGAGCAAATGCCTACTGACTGACATGCCCCTATGGACTT


TACTTTTTGGATATACAGACTGGTGTAAAAAGGACACTAATAACTGGGAC


TTACCACTAAACTACAGACTAGTACTAATATGCCCTTATACCTTTCCAAA


ATTGTACAATGAAAAAGTAAAAGACTATGGGTACATCCCGTACTCCTACA


AATTCGGAGCGGGTCAGATGCCAGACGGCAGCAACTACATACCCTTTCAG


TTTAGAGCAAAGTGGTACCCCACAGTACTACACCAGCAACAGGTAATGGA


GGACATAAGCAGGAGCGGGCCCTTTGCACCTAAGGTAGAAAAACCAAGCA


CTCAGCTGGTAATGAAGTACTGTTTTAACTTTAACTGGGGCGGTAACCCT


ATCATTGAACAGATTGTTAAAGACCCCAGCTTCCAGCCCACCTATGAAAT


ACCCGGTACCGGTAACATCCCTAGAAGAATACAAGTCATCGACCCGCGGG


TCCTGGGACCGCACTACTCGTTCCGGTCATGGGACATGCGCAGACACACA


TTTAGCAGAGCAAGTATTAAGAGAGTGTCAGAACAACAAGAAACTTCTGA


CCTTGTATTCTCAGGCCCAAAAAAGCCTCGGGTCGACATCCCAAAACAAG


AAACCCAAGAAGAAAGCTCACATTCACTCCAAAGAGAATCGAGACCGTGG


GAGACCGAGGAAGAAAGCGAGACAGAAGCCCTCTCGCAAGAGAGCCAAGA


GGTCCCCTTCCAACAGCAGTTGCAGCAGCAGTACCAAGAGCAGCTCAAGC


TCAGACAGGGAATCAAAGTCCTCTTCGAGCAGCTCATAAGGACCCAACAA


GGGGTCCATGTAAACCCATGCCTACGGTAGGTCCCAGGCAGTGGCTGTTT


CCAGAGAGAAAGCCAGCCCCAGCTCCTAGCAGTGGAGACTGGGCCATGGA


GTTTCTCGCAGCAAAAATATTTGATAGGCCAGTTAGAAGCAACCTTAAAG


ATACCCCTTACTACCCATATGTTAAAAACCAATACAATGTCTACTTTGAC


CTTAAATTTGAATAAACAGCAGCTTCAAACTTGCAAGGCCGTGGGAGTTT


CACTGGTCGGTGTCTACCTCTAAAGGTCACTAAGCACTCCGAGCGTAAGC


GAGGAGTGCGACCCTCCCCCCTGGAACAACTTCTTCGGAGTCCGGCGCTA


CGCCTTCGGCTGCGCCGGACACCTCAGACCCCCCCTCCACCCGAAACGCT


TGCGCGTTTCGGACCTTCGGCGTCGGGGGGGTCGGGAGCTTTATTAAACG


GACTCCGAAGTGCTCTTGGACACTGAGGGGGTGAACAGCAACGAAAGTGA


GTGGGGCCAGACTTCGCCATAAGGCCTTTATCTTCTTGCCATTTGTCAGT


GTCCGGGGTCGCCATAGGCTTCGGGCTCGTTTTTAGGCCTTCCGGACTAC


AAAAATCGCCATTTTGGTGACGTCACGGCCGCCATCTTAAGTAGTTGAGG


CGGACGGTGGCGTGAGTTCAAAGGTCACCATCAGCCACACCTACTCAAAA


TGGTGGACAATTTCTTCCGGGTCAAAGGTTACAGCCGCCATGTTAAAACA


CGTGACGTATGACGTCACGGCCGCCATTTTGTGACACAAGATGGCCGACT


TCCTTCCTCTTTTTCAAAAAAAAGCGGAAGTGCCGCCGCGGCGGCGGGGG


GCGGCGCGCTGCGCGCGCCGCCCAGTAGGGGGAGCCATGCGCCCCCCCCC


GCGCATGCGCGGGGCCCCCCCCCGCGGGGGGCTCCGCCCCCCGGCCCCCC


CCG (SEQ ID NO: 17)











Annotations:



Putative Domain
Base range


TATA Box
83-88


Cap Site
104-111


Transcriptional Start Site
111


5′ UTR Conserved Domain
170-240


ORF2
336-719


ORF2/2
336-715; 2363-2789


ORF2/3
336-715; 2565-3015


ORF2t/3
336-388; 2565-3015


ORF1
599-2830


ORF1/1
599-715; 2363-2830


ORF1/2
599-715; 2565-2789


Three open-reading frame region
2551-2786


Poly(A) Signal
3011-3016


GC-rich region
3632-3753
















TABLE 6





Exemplary Anellovirus amino acid sequences (Alphatorquevirus, Clade 3)


TTV-tth8 (Alphatorquevirus Clade 3)
















ORF2
MSFWKPPVHNVTGIQRMWYESFHRGHASFCGCGNPILHITALAETYGHPTGPRPSG



PPGVDPNPHIRRARPAPAAPEPSQVDSRPALTWHGDGGSDGGAGGSGSGGPVADFA



DDGLDQLVAALDDEE (SEQ ID NO: 18)





ORF2/2
MSFWKPPVHNVTGIQRMWYESFHRGHASFCGCGNPILHITALAETYGHPTGPRPSG



PPGVDPNPHIRRARPAPAAPEPSQVDSRPALTWHGDGGSDGGAGGSGSGGPVADFA



DDGLDQLVAALDDEELLKTPASSPPMKYPVPVTSLEEYKSSTRGSWDRTTRSGHGT



CADTHLAEQVLRECQNNKKLLTLYSQAQKSLGSTSQNKKPKKKAHIHSKENRDRG



RPRKKARQKPSRKRAKRSPSNSSCSSSTKSSSSSDRESKSSSSSS (SEQ ID NO: 19)





ORF2/3
MSFWKPPVHNVTGIQRMWYESFHRGHASFCGCGNPILHITALAETYGHPTGPRPSG



PPGVDPNPHIRRARPAPAAPEPSQVDSRPALTWHGDGGSDGGAGGSGSGGPVADFA



DDGLDQLVAALDDEEPKKASGRHPKTRNPRRKLTFTPKRIETVGDRGRKRDRSPLA



REPRGPLPTAVAAAVPRAAQAQTGNQSPLRAAHKDPTRGPCKPMPTVGPRQWLFP



ERKPAPAPSSGDWAMEFLAAKIFDRPVRSNLKDTPYYPYVKNQYNVYFDLKFE



(SEQ ID NO: 20)





ORF2t/3
MSFWKPPVHNVTGIQRMWPKKASGRHPKTRNPRRKLTFTPKRIETVGDRGRKRDR



SPLAREPRGPLPTAVAAAVPRAAQAQTGNQSPLRAAHKDPTRGPCKPMPTVGPRQ



WLFPERKPAPAPSSGDWAMEFLAAKIFDRPVRSNLKDTPYYPYVKNQYNVYFDLK



FE (SEQ ID NO: 21)





ORF1
MAWGWWKRRRRWWFRKRWTRGRLRRRWPRSARRRPRRRRVRRRRRWRRGRRK



TRTYRRRRRFRRRGRKAKLIIKLWQPAVIKRCRIKGYIPLIISGNGTFATNFTSHINDR



IMKGPFGGGHSTMRFSLYILFEEHLRHMNFWTRSNDNLELTRYLGASVKIYRHPDQ



DFIVIYNRRTPLGGNIYTAPSLHPGNAILAKHKILVPSLQTRPKGRKAIRLRIAPPTLFT



DKWYFQKDIADLTLFNIMAVEADLRFPFCSPQTDNTCISFQVLSSVYNNYLSINTFN



NDNSDSKLKEFLNKAFPTTGTKGTSLNALNTFRTEGCISHPQLKKPNPQINKPLESQ



YFAPLDALWGDPIYYNDLNENKSLNDIIEKILIKNMITYHAKLREFPNSYQGNKAFC



HLTGIYSPPYLNQGRISPEIFGLYTEIIYNPYTDKGTGNKVWMDPLTKENNIYKEGQS



KCLLTDMPLWTLLFGYTDWCKKDTNNWDLPLNYRLVLICPYTFPKLYNEKVKDY



GYIPYSYKFGAGQMPDGSNYIPFQFRAKWYPTVLHQQQVMEDISRSGPFAPKVEKP



STQLVMKYCFNFNWGGNPIIEQIVKDPSFQPTYEIPGTGNIPRRIQVIDPRVLGPHYSF



RSWDMRRHTFSRASIKRVSEQQETSDLVFSGPKKPRVDIPKQETQEESSHSLQRESR



PWETEEESETEALSQESQEVPFQQQLQQQYQEQLKLRQGIKVLFEQLIRTQQGVHV



NPCLR (SEQ ID NO: 22)





ORF1/1
MAWGWWKRRRRWWFRKRWTRGRLRRRWPRSARRRPRRRRIVKDPSFQPTYEIPG



TGNIPRRIQVIDPRVLGPHYSFRSWDMRRHTFSRASIKRVSEQQETSDLVFSGPKKPR



VDIPKQETQEESSHSLQRESRPWETEEESETEALSQESQEVPFQQQLQQQYQEQLKL



RQGIKVLFEQLIRTQQGVHVNPCLR (SEQ ID NO: 23)





ORF1/2
MAWGWWKRRRRWWFRKRWTRGRLRRRWPRSARRRPRRRRAQKSLGSTSQNKK



PKKKAHIHSKENRDRGRPRKKARQKPSRKRAKRSPSNSSCSSSTKSSSSSDRESKSSS



SSS (SEQ ID NO: 24)
















TABLE 7





Exemplary Anellovirus nucleic acid sequence


(Alphatorquevirus, Clade 4)
















Name
TTV-JA20





Genus/Clade

Alphatorquevirus, Clade 4






Accession Number
AF122914.3





Full Sequence:
3853 bp










1        10        20        30        40        50


|        |         |         |         |         |


GGCTTAGTGCGTCACCACCCACGTGACCCGCCTCCGCCAATTAACAGGTA


CTTCGTACACTTCCTGGGCGGGCTTATAAGACTAATATAAGTAGCTGCAC


TTCCGAATGGCTGAGTTTTCCACGCCCGTCCGCAGCGGTGAAGCCACGGA


GGGAGCTCAGCGCGTCCCGAGGGCGGGTGCCGGAGGTGAGTTTACACACC


GCAGTCAAGGGGCAATTCGGGCTCGGGACTGGCCGGGCTTTGGGCAAGGC


TCTTAAAAAAGCTATGTTTATTGGCAGGCACTACCGAAAGAAAAGGGCGC


TGCTACTGCTATCTGTGCATTCTACAAAGACAAAAGGGAAACTTCTAATA


GCTATGTGGACTCCCCCACGCAATGATCAACAATACCTTAACTGGCAATG


GTACACTTCTGTACTTAGCTCCCACTCTGCTATGTGCGGGTGTTCCGACG


CTATCGCTCATCTTAATCATCTTGCTAATCTGCTTCGTGCCCCGCAAAAT


CCGCCCCCGCCTGATAATCCAAGACCCCTACCCGTGCGAGCACTGCCTGC


TCCCCCGGCTGCCCACGAGGCAGCCGGTGATCGAGCACCATGGCCTATGG


GTGGTGGAGGAGACGCCGGAGGCGCTGGCGCAGGTGGAGACGCCGACCAT


GGAGGCGCCGCTGGAGGACCCGCAGACGCAGACCTGCTAGACGCCGTGGC


CGCCGCAGAAACGTAAGGAGACGGCGCAGAGGGAGGTGGAGAAGGAGGTA


CAGGAGGTGGAAAAGAAAGGGCAGACGTAGAAGAAAAGCAAAAATAATAA


TAAGACAGTGGCAGCCAAACTACAGAAGAAGATGTAATATAGTGGGCTAC


CTCCCTATACTTATCTGTGGTGGAAATACTGTTTCTAGAAACTATGCCAC


ACACTCAGACGATACTAACTATCCAGGACCCTTTGGGGGAGGCATGACCA


CAGACAAATTCAGCCTTAGAATACTATATGATGAATACAAAAGATTTATG


AACTACTGGACAGCCTCAAATGAGGACCTAGATCTCTGTAGATATCTAGG


ATGCACTTTTTACTTCTTTAGACACCCTGAAGTAGACTTTATTATAAAAA


TAAACACCATGCCCCCATTCTTAGATACAACCATAACAGCACCTAGCATA


CACCCAGGCCTCATGGCCCTAGACAAAAGAGCCAGATGGATTCCTTCTCT


TAAAAATAGACCAGGTAAAAAACACTATATAAAAATTAGAGTAGGGGCTC


CTAAAATGTTCACAGATAAATGGTACCCTCAAACAGACCTCTGTGACATG


ACACTGCTAACTATCTATGCAACCGCAGCGGATATGCAATATCCGTTCGG


CTCACCACTAACTGACACTGTGGTTGTTAACTCCCAAGTTCTGCAATCCA


TGTATGATGAAACAATTAGCATATTACCTGATGAAAAAACTAAAAGAAAT


AGCCTTCTTACTTCTATAAGAAGCTACATACCTTTTTATAATACTACACA


AACAATAGCTCAATTAAAACCATTTGTAGATGCAGGAGGACACACAACAG


GCTCAACAACAACTACATGGGGACAACTATTAAACACAACTAAATTTACC


ACTACCACAACAACCACATACACATACCCTGGCACCACAAATACAGCAGT


AACATTTATAACAGCCAATGATACCTGGTACAGGGGAACAGCATATAAAG


ATAACATTAAAGATGTACCACAAAAAGCAGCACAATTATACTTTCAAACA


ACACAAAAACTACTAGGAAACACATTCCATGGCTCAGATGAAACACTTGA


ATACCATGCAGGCCTATACAGCTCTATCTGGCTATCACCAGGTAGATCCT


ACTTTGAAACACCAGGTGCATACACAGACATTAAATATAACCCTTTTACA


GACAGAGGAGAAGGCAACATGCTGTGGATAGACTGGCTAAGTAAAAAAAA


CATGAAATATGACAAAGTGCAAAGTAAGTGCCTAGTAGCAGACCTACCAC


TGTGGGCAGCAGCATATGGTTATGTAGAATTCTGCTCTAAAAGCACAGGA


GACACAAACATACACATGAATGCCAGACTACTAATAAGAAGTCCTTTTAC


AGACCCCCAGCTAATAGTACACACAGACCCCACTAAAGGCTTTGTACCCT


ATTCTTTAAACTTTGGAAATGGTAAAATGCCAGGAGGTAGCAGCAATGTT


CCCATAAGAATGAGAGCTAAGTGGTACCCCACTTTATCCCACCAACAAGA


AGTTCTAGAGGCCTTAGCACAGTCAGGACCCTTTGCTTATCACTCAGACA


TTAAAAAAGTATCTCTAGGCATAAAATACCGTTTTAAGTGGATCTGGGGT


GGAAACCCCGTTCGCCAACAGGTTGTTAGAAATCCCTGCAAGGAACCCCA


CTCCTCGGGCAATAGAGTCCCTAGAAGCATACAAATCGTTGACCCGAGAT


ACAACTCACCGGAACTTACCATCCATGCCTGGGACTTCAGACGTGGCTTC


TTTGGCCCGAAAGCTATTCAAAGAATGCAACAACAACCAACTGCTACTGA


ATTTTTTTCAGCAGGCCGCAAGAGACCCAGAAGGGACACAGAAGTGTATC


AGTCCGACCAAGAAAAGGAGCAAAAAGAAAGCTCGCTTTTCCCCCCAGTC


AAGCTCCTCCGAAGAGTCCCCCCGTGGGAGGACTCGGAACAGGAGCAAAG


CGGGTCGCAAAGCTCAGAGGAAGAGACGGCGACCCTCTCCCAGCAGCTCA


AACAGCAGCTGCAGCAGCAGCGAGTCTTGGGAGTCAAACTCAGACTCCTG


TTCAACCAAGTCCAAAAAATCCAACAAAATCAAGATATCAACCCTACCTT


GTTACCAAGGGGGGGGGATCTAGTATCCTTCTTTCAGGCTGTACCATAAA


TATGTTTCCAGACCCTAAACCTTACTGCCCCTCCAGCAATGACTGGAAAG


AAGAGTATGAGGCCTGTAAATATTGGGATAGACCTCCCAGACACAACCTT


AGAGACCCCCCCTTTTACCCCTGGGCCCCTAAAAACAATCCTTGCAATGT


AAGCTTTAAACTTGGCTTCAAATAAACTAGGCCGTGGGAGTTTCACTTGT


CGGTGTCTACCTCTATAAGTCACTAAGCACTCCGAGCGCAGCGAGGAGTG


CGACCCTTCCCCCTGGTGCAACGCCCTCGGCGGCCGCGCGCTACGCCTTC


GGCTGCGCGCGGCACCTCGGACCCCCGCTCGTGCTGACACGCTTGCGCGT


GTCAGACCACTTCGGGCTCGCGGGGGTCGGGAAATTTGCTAAACAGACTC


CGAGTTGCCATTGGACACTGTAGCTATGAATCAGTAACGAAAGTGAGTGG


GGCCAGACTTCGCCATAAGGCCTTTATCTTCTTGCCATTTGTCAGTATTG


GGGGTCGCCATAAACTTTGGGCTCCATTTTAGGCCTTCCGGACTACAAAA


ATCGCCATATTTGTGACGTCAGAGCCGCCATTTTAAGTCAGCTCTGGGGA


GGCGTGACTTCCAGTTCAAAGGTCATCCTCACCATAACTGGCACAAAATG


GCCGCCAACTTCTTCCGGGTCAAAGGTCACTGCTACGTCATAGGTGACGT


GGGGGGGGACCTACTTAAACACGGAAGTAGGCCCCGACACGTCACTGTCA


CGTGACAGTACGTCACAGCCGCCATTTTGTTTTACAAAATAGCCGACTTC


CTTCCTCTTTTTTAAAAAAAGGCGCCAAAAAACCGTCGGCGGGGGGGCCG


CGCGCTGCGCGCGCGGCCCCCGGGGGAGGCACAGCCTCCCCCCCCCGCGC


GCATGCGCGCGGGTCCCCCCCCCTCCGGGGGGCTCCGCCCCCCGGCCCCC


CCC (SEQ ID NO: 25)





Annotations:


Putative Domain Base range


TATA Box 86-90


Cap Site 107-114


Transcriptional Start Site 114


5′ UTR Conserved Domain 174-244


ORF2 354-716


ORF2/2 354-712; 2372-2873


ORF2/3 354-712; 2565-3075


ORF2t/3 354-400; 2565-3075


ORF1 590-2899


ORF1/1 590-712; 2372-2899


ORF1/2 590-712; 2565-2873


Three open-reading frame region 2551-2870


Poly(A) Signal 3071-3076


GC-rich region 3733-3853













TABLE 8





Exemplary Anellovirus amino acid sequences (Alphatorquevirus, Clade 4)


TTV-JA20 (Alphatorquevirus Clade 4)
















ORF2
MWTPPRNDQQYLNWQWYTSVLSSHSAMCGCSDAIAHLNHLANLLRAPQNPPPPD



NPRPLPVRALPAPPAAHEAAGDRAPWPMGGGGDAGGAGAGGDADHGGAAGGPA



DADLLDAVAAAET (SEQ ID NO: 26)





ORF2/2
MWTPPRNDQQYLNWQWYTSVLSSHSAMCGCSDAIAHLNHLANLLRAPQNPPPPD



NPRPLPVRALPAPPAAHEAAGDRAPWPMGGGGDAGGAGAGGDADHGGAAGGPA



DADLLDAVAAAETLLEIPARNPTPRAIESLEAYKSLTRDTTHRNLPSMPGTSDVASL



ARKLFKECNNNQLLLNFFQQAARDPEGTQKCISPTKKRSKKKARFSPQSSSSEESPR



GRTRNRSKAGRKAQRKRRRPSPSSSNSSCSSSESWESNSDSCSTKSKKSNKIKISTLP



CYQGGGI (SEQ ID NO: 27)





ORF2/3
MWTPPRNDQQYLNWQWYTSVLSSHSAMCGCSDAIAHLNHLANLLRAPQNPPPPD



NPRPLPVRALPAPPAAHEAAGDRAPWPMGGGGDAGGAGAGGDADHGGAAGGPA



DADLLDAVAAAETPQETQKGHRSVSVRPRKGAKRKLAFPPSQAPPKSPPVGGLGTG



AKRVAKLRGRDGDPLPAAQTAAAAAASLGSQTQTPVQPSPKNPTKSRYQPYLVTK



GGGSSILLSGCTINMFPDPKPYCPSSNDWKEEYEACKYWDRPPRHNLRDPPFYPWA



PKNNPCNVSFKLGFK (SEQ ID NO: 28)





ORF2t/3
MWTPPRNDQQYLNWQWPQETQKGHRSVSVRPRKGAKRKLAFPPSQAPPKSPPVG



GLGTGAKRVAKLRGRDGDPLPAAQTAAAAAASLGSQTQTPVQPSPKNPTKSRYQP



YLVTKGGGSSILLSGCTINMFPDPKPYCPSSNDWKEEYEACKYWDRPPRHNLRDPP



FYPWAPKNNPCNVSFKLGFK (SEQ ID NO: 29)





ORF1
MAYGWWRRRRRRWRRWRRRPWRRRWRTRRRRPARRRGRRRNVRRRRRGRWRR



RYRRWKRKGRRRRKAKIIIRQWQPNYRRRCNIVGYLPILICGGNTVSRNYATHSDD



TNYPGPFGGGMTTDKFSLRILYDEYKRFMNYWTASNEDLDLCRYLGCTFYFFRHPE



VDFIIKINTMPPFLDTTITAPSIHPGLMALDKRARWIPSLKNRPGKKHYIKIRVGAPK



MFTDKWYPQTDLCDMTLLTIYATAADMQYPFGSPLTDTVVVNSQVLQSMYDETISI



LPDEKTKRNSLLTSIRSYIPFYNTTQTIAQLKPFVDAGGHTTGSTTTTWGQLLNTTKF



TTTTTTTYTYPGTTNTAVTFITANDTWYRGTAYKDNIKDVPQKAAQLYFQTTQKLL



GNTFHGSDETLEYHAGLYSSIWLSPGRSYFETPGAYTDIKYNPFTDRGEGNMLWID



WLSKKNMKYDKVQSKCLVADLPLWAAAYGYVEFCSKSTGDTNIHMNARLLIRSPF



TDPQLIVHTDPTKGFVPYSLNFGNGKMPGGSSNVPIRMRAKWYPTLSHQQEVLEAL



AQSGPFAYHSDIKKVSLGIKYRFKWIWGGNPVRQQVVRNPCKEPHSSGNRVPRSIQI



VDPRYNSPELTIHAWDFRRGFFGPKAIQRMQQQPTATEFFSAGRKRPRRDTEVYQS



DQEKEQKESSLFPPVKLLRRVPPWEDSEQEQSGSQSSEEETATLSQQLKQQLQQQR



VLGVKLRLLFNQVQKIQQNQDINPTLLPRGGDLVSFFQAVP (SEQ ID NO: 30)





ORF1/1
MAYGWWRRRRRRWRRWRRRPWRRRWRTRRRRPARRRGRRRNVVRNPCKEPHSS



GNRVPRSIQIVDPRYNSPELTIHAWDFRRGFFGPKAIQRMQQQPTATEFFSAGRKRP



RRDTEVYQSDQEKEQKESSLFPPVKLLRRVPPWEDSEQEQSGSQSSEEETATLSQQL



KQQLQQQRVLGVKLRLLFNQVQKIQQNQDINPTLLPRGGDLVSFFQAVP (SEQ ID



NO: 31)





ORF1/2
MAYGWWRRRRRRWRRWRRRPWRRRWRTRRRRPARRRGRRRNAARDPEGTQKCI



SPTKKRSKKKARFSPQSSSSEESPRGRTRNRSKAGRKAQRKRRRPSPSSSNSSCSSSE



SWESNSDSCSTKSKKSNKIKISTLPCYQGGGI (SEQ ID NO: 32)
















TABLE 9






ExemplaryAnellovirusnucleicacidsequence




(Alphatorquevirus,Clade5)


















Name


TTV-HD23a







Genus/Clade


Alphatorquevirus,Clade5







AccessionNumber


FR751500.1







FullSequence:


3758bp











1        10        20        30        40        50


|        |         |         |         |         |



AAAGTACGTCACTAACCACGTGACTCCCACAGGCCAACCACAGTCTACGT




CGTGCATTTCCTGGGCATGGTCTACATCATAATATAAGAAGGCGCACTTC




CGAATGGCTGAGTTTTCCACGCCCGTCCGCAGCGAGAACGCCACGGAGGG




AGATCCTCGCGTCCCGAGGGCGGGTGCCGGAGGTGAGTTTACACACCGCA




GTCAAGGGGCAATTCGGGCTCGGGACTGGCCGGGCCCTGGGCAAGGCTCT




TAAAAAATGCGCTTTCGCAGGGTTGCGGAGAAAAGGAAAGTGCTTCTGCA




AACTCTGCGAGCTGCAAAGCAGGCTAGGCGGCTTCTAGGTATGTGGCAGC




CCCCCGCGCACAATGTCCCCGGCATCGAGAGAAACTGGTACGAGAGCTGC




TTCAGGTCTCACGCTGCTGTTTGTGGCTGTGGCGACTTTGTTGGCCATAT




TAATCATTTGGCAACTACTCTGGGTCGTCCTCCGCGTCCTGGGCCCCCAG




GCGGACCCCGCACGCCGCAAATAAGAAACCTGCCAGCGCTCCCGGCGCCC




CAGGGCGAGCCCGGTGACAGAGCGCCATGGCGTGGGGTTTCTGGGGCCGA




CGCCGCCGGTGGAGACGGTGGAGAGCGCGGCGCAGACGGTGGAGACCCCG




GAGACGTAGGAGACGACGCCCTGCTCGCCGCTTTCGAGCTCGTCGAAGAG




TAAGGAGACGCGGGGGGAGGTGGCGCAGACGCTACAGAAAATGGCGACGG




GGCAGACGCAGACGGACTCACAGAAAAAAGATAATTATAAAACAGTGGCA




ACCAAACTTTATTAGACGCTGCTACATAATAGGATGCCTACCTCTCGTTT




TCTGTGGCGAAAATACAACCGCCCAGAACTATGCCACTCACTCAGACGAT




CCCCCCCC(SEQIDNO:33)






Annotations:


Putative Domain Base range


TATA Box 83-87


Cap Site 104-111


Transcriptional Start Site 111


5′ UTR Conserved Domain 171-241


ORF2 341-703


ORF2/2 341-699; 2311-2806


ORF2/3 341-699; 2504-2978


ORF2t/3 341-387; 2504-2978


ORF1 577-2787-2787


ORF1/1 577-699; 2311


ORF1/2 577-699; 2504-2806


Three open-reading frame region 2463-2784


Poly(A) Signal 2974-2979


GC-rich region 3644-3758













TABLE 10





Exemplary Anellovirus amino acid sequences (Alphatorquevirus, Clade 5)


TTV-HD23a (Alphatorquevirus Clade 5)
















ORF2
MWQPPAHNVPGIERNWYESCFRSHAAVCGCGDFVGHINHLATTLGRPPRPGPPGGP



RTPQIRNLPALPAPQGEPGDRAPWRGVSGADAAGGDGGERGADGGDPGDVGDDA



LLAAFELVEE (SEQ ID NO: 34)





ORF2/2
MWQPPAHNVPGIERNWYESCFRSHAAVCGCGDFVGHINHLATTLGRPPRPGPPGGP



RTPQIRNLPALPAPQGEPGDRAPWRGVSGADAAGGDGGERGADGGDPGDVGDDA



LLAAFELVEESSGIPAPTPAPPRPIEDLAAYKRLTRNTIPQKSLGTRGTSDEDSLAKQ



VLKECNKNQMLFTFLQDHSRGLAETPTPKTRKSKTKAHVSESSSDSRGSTPAKRRK



APKKRRRRRGRYKTNYSSSSESSEYSDSSSNNSHPKSSKFKQDTAYTPYYPPKHKQS



LYV (SEQ ID NO: 35)





ORF2/3
MWQPPAHNVPGIERNWYESCFRSHAAVCGCGDFVGHINHLATTLGRPPRPGPPGGP



RTPQIRNLPALPAPQGEPGDRAPWRGVSGADAAGGDGGERGADGGDPGDVGDDA



LLAAFELVEETTQEASQRHQRPRPGKAKRKLTFRSPAATPVGPLQPRDAKLRRRDA



GAGVGTRPTTPPAPRAASTPTPAPTTRTPSPQSSSRTQPTPPIILPSINKAYMFEPQGPK



PIQGYNDWLEEYTSCKFRDRPPRMLHTDLPFYPWAPKPQDQVRVTFKLNFQ (SEQ



ID NO: 36)





ORF2t/3
MWQPPAHNVPGIERNWTTQEASQRHQRPRPGKAKRKLTFRSPAATPVGPLQPRDA



KLRRRDAGAGVGTRPTTPPAPRAASTPTPAPTTRTPSPQSSSRTQPTPPIILPSINKAY



MFEPQGPKPIQGYNDWLEEYTSCKFRDRPPRMLHTDLPFYPWAPKPQDQVRVTFKL



NFQ (SEQ ID NO: 37)





ORF1
MAWGFWGRRRRWRRWRARRRRWRPRRRRRRRPARRFRARRRVRRRGGRWRRR



YRKWRRGRRRRTHRKKIIIKQWQPNFIRRCYIIGCLPLVFCGENTTAQNYATHSDDM



ISKGPYGGGMTTTKFTLRILYDEFTRFMNFWTVSNEDLDLCRYVGCKLIFFKHPTVD



FMVQINTQPPFLDTSLTAASIHPGIMMLSKRRILIPSLKTRPSRKHRVVVRVGAPRLF



QDKWYPQSDLCDTVLLSIFATARDLQYPFGSPLTDNPCVNFQILGPQYKKHLSISST



MDDTNKQHYNSNLFNKTALYNTFQTIARLKETGQTANISPSWSEVQNTKLLDHTG



ANATASRDTWYKGNTYNDYIQQLAEKTRERFKKATMSALPNYPTIMSTDLYEYHS



GIYSSIFLSAGRSYFETTGAYSDITYNPLTDKGTGNIIWIDYLTKDDTIFVKNKSKCEI



MDMPLWAAGTGYTEFCAKYTGDSAIIYNARILIRCPYTEPMLIDHSDPNKGFVPYSF



NFGNGKMPGGSSNVPIRMRAKWYVNIFHQKEVLESIVQSGPFGYRGDIKSAVLSMK



YRFHWKWGGNPISKQVVRNPCSNSSTSAAHRGPRSVQAVDPKYNTPEVTWHSWDI



RRGLFGKAGIKRMQQESDALYVPAGPLKRPRRDTNAQDPEKQNESSRFGVQQRLP



WVHSSQETQSSEEETQAQGSVQDQLLLQLREQRVLRLQLQQLAPQVLKVQAGHSL



HPLLSSQA (SEQ ID NO: 38)





ORF1/1
MAWGFWGRRRRWRRWRARRRRWRPRRRRRRRPARRFRARRRVVRNPCSNSSTS



AAHRGPRSVQAVDPKYNTPEVTWHSWDIRRGLFGKAGIKRMQQESDALYVPAGPL



KRPRRDTNAQDPEKQNESSRFGVQQRLPWVHSSQETQSSEEETQAQGSVQDQLLLQ



LREQRVLRLQLQQLAPQVLKVQAGHSLHPLLSSQA (SEQ ID NO: 39)





ORF1/2
MAWGFWGRRRRWRRWRARRRRWRPRRRRRRRPARRFRARRRDHSRGLAETPTP



KTRKSKTKAHVSESSSDSRGSTPAKRRKAPKKRRRRRGRYKTNYSSSSESSEYSDSS



SNNSHPKSSKFKQDTAYTPYYPPKHKQSLYV (SEQ ID NO: 40)
















TABLE 11





Exemplary Anellovirus nucleic acid sequence


(Betatorquevirus)
















Name
TTMV-LY2





Genus/Clade

Betatorquevirus






Accession Number
JX134045.1





Full Sequence:
2797 bp










1        10        20        30        40        50


|        |         |         |         |         |


TAATAAATATTCAACAGGAAAACCACCTAATTTAAATTGCCGACCACAAA


CCGTCACTTAGTTCCCCTTTTTGCAACAACTTCTGCTTTTTTCCAACTGC


CGGAAAACCACATAATTTGCATGGCTAACCACAAACTGATATGCTAATTA


ACTTCCACAAAACAACTTCCCCTTTTAAAACCACACCTACAAATTAATTA


TTAAACACAGTCACATCCTGGGAGGTACTACCACACTATAATACCAAGTG


CACTTCCGAATGGCTGAGTTTATGCCGCTAGACGGAGAACGCATCAGTTA


CTGACTGCGGACTGAACTTGGGCGGGTGCCGAAGGTGAGTGAAACCACCG


AAGTCAAGGGGCAATTCGGGCTAGTTCAGTCTAGCGGAACGGGCAAGAAA


CTTAAAATTATTTTATTTTTCAGATGAGCGACTGCTTTAAACCAACATGC


TACAACAACAAAACAAAGCAAACTCACTGGATTAATAACCTGCATTTAAC


CCACGACCTGATCTGCTTCTGCCCAACACCAACTAGACACTTATTACTAG


CTTTAGCAGAACAACAAGAAACAATTGAAGTGTCTAAACAAGAAAAAGAA


AAAATAACAAGATGCCTTATTACTACAGAAGAAGACGGTACAACTACAGA


CGTCCTAGATGGTATGGACGAGGTTGGATTAGACGCCCTTTTCGCAGAAG


ATTTCGAAGAAAAAGAAGGGTAAGACCTACTTATACTACTATTCCTCTAA


AGCAATGGCAACCGCCATATAAAAGAACATGCTATATAAAAGGACAAGAC


TGTTTAATATACTATAGCAACTTAAGACTGGGAATGAATAGTACAATGTA


TGAAAAAAGTATTGTACCTGTACATTGGCCGGGAGGGGGTTCTTTTTCTG


TAAGCATGTTAACTTTAGATGCCTTGTATGATATACATAAACTTTGTAGA


AACTGGTGGACATCCACAAACCAAGACTTACCACTAGTAAGATATAAAGG


ATGCAAAATAACATTTTATCAAAGCACATTTACAGACTACATAGTAAGAA


TACATACAGAACTACCAGCTAACAGTAACAAACTAACATACCCAAACACA


CATCCACTAATGATGATGATGTCTAAGTACAAACACATTATACCTAGTAG


ACAAACAAGAAGAAAAAAGAAACCATACACAAAAATATTTGTAAAACCAC


CTCCGCAATTTGAAAACAAATGGTACTTTGCTACAGACCTCTACAAAATT


CCATTACTACAAATACACTGCACAGCATGCAACTTACAAAACCCATTTGT


AAAACCAGACAAATTATCAAACAATGTTACATTATGGTCACTAAACACCA


TAAGCATACAAAATAGAAACATGTCAGTGGATCAAGGACAATCATGGCCA


TTTAAAATACTAGGAACACAAAGCTTTTATTTTTACTTTTACACCGGAGC


AAACCTACCAGGTGACACAACACAAATACCAGTAGCAGACCTATTACCAC


TAACAAACCCAAGAATAAACAGACCAGGACAATCACTAAATGAGGCAAAA


ATTACAGACCATATTACTTTCACAGAATACAAAAACAAATTTACAAATTA


TTGGGGTAACCCATTTAATAAACACATTCAAGAACACCTAGATATGATAC


TATACTCACTAAAAAGTCCAGAAGCAATAAAAAACGAATGGACAACAGAA


AACATGAAATGGAACCAATTAAACAATGCAGGAACAATGGCATTAACACC


ATTTAACGAGCCAATATTCACACAAATACAATATAACCCAGATAGAGACA


CAGGAGAAGACACTCAATTATACCTACTCTCTAACGCTACAGGAACAGGA


TGGGACCCACCAGGAATTCCAGAATTAATACTAGAAGGATTTCCACTATG


GTTAATATATTGGGGATTTGCAGACTTTCAAAAAAACCTAAAAAAAGTAA


CAAACATAGACACAAATTACATGTTAGTAGCAAAAACAAAATTTACACAA


AAACCTGGCACATTCTACTTAGTAATACTAAATGACACCTTTGTAGAAGG


CAATAGCCCATATGAAAAACAACCTTTACCTGAAGACAACATTAAATGGT


ACCCACAAGTACAATACCAATTAGAAGCACAAAACAAACTACTACAAACT


GGGCCATTTACACCAAACATACAAGGACAACTATCAGACAATATATCAAT


GTTTTATAAATTTTACTTTAAATGGGGAGGAAGCCCACCAAAAGCAATTA


ATGTTGAAAATCCTGCCCACCAGATTCAATATCCCATACCCCGTAACGAG


CATGAAACAACTTCGTTACAGAGTCCAGGGGAAGCCCCAGAATCCATCTT


ATACTCCTTCGACTATAGACACGGGAACTACACAACAACAGCTTTGTCAC


GAATTAGCCAAGACTGGGCACTTAAAGACACTGTTTCTAAAATTACAGAG


CCAGATCGACAGCAACTGCTCAAACAAGCCCTCGAATGCCTGCAAATCTC


GGAAGAAACGCAGGAGAAAAAAGAAAAAGAAGTACAGCAGCTCATCAGCA


ACCTCAGACAGCAGCAGCAGCTGTACAGAGAGCGAATAATATCATTATTA


AAGGACCAATAACTTTTAACTGTGTAAAAAAGGTGAAATTGTTTGATGAT


AAACCAAAAAACCGTAGATTTACACCTGAGGAATTTGAAACTGAGTTACA


AATAGCAAAATGGTTAAAGAGACCCCCAAGATCCTTTGTAAATGATCCTC


CCTTTTACCCATGGTTACCACCTGAACCTGTTGTAAACTTTAAGCTTAAT


TTTACTGAATAAAGGCCAGCATTAATTCACTTAAGGAGTCTGTTTATTTA


AGTTAAACCTTAATAAACGGTCACCGCCTCCCTAATACGCAGGCGCAGAA


AGGGGGCTCCGCCCCCTTTAACCCCCAGGGGGCTCCGCCCCCTGAAACCC


CCAAGGGGGCTACGCCCCCTTACACCCCC (SEQ ID NO: 41)





Annotations:


Putative Domain Base range


TATA Box 237-243


Cap Site 260-267


Transcriptional Start Site 267


5′ UTR Conserved Domain 323-393


ORF2 424-723


ORF2/2 424-719; 2274-2589


ORF2/3 424-719; 2449-2812


ORF1 612-2612


ORF1/1 612-719; 2274-2612


ORF1/2 612-719; 2449-2589


Three open-reading frame region 2441-2586


Poly(A) Signal 2808-2813


GC-rich region 2868-2929













TABLE 12





Exemplary Anellovirus amino acid sequences (Betatorquevirus)


TTMV-LY2 (Betatorquevirus)
















ORF2
MSDCFKPTCYNNKTKQTHWINNLHLTHDLICFCPTPTRHLLLALAEQQETIEVSKQE



KEKITRCLITTEEDGTTTDVLDGMDEVGLDALFAEDFEEKEG (SEQ ID NO: 42)





ORF2/2
MSDCFKPTCYNNKTKQTHWINNLHLTHDLICFCPTPTRHLLLALAEQQETIEVSKQE



KEKITRCLITTEEDGTTTDVLDGMDEVGLDALFAEDFEEKEGFNIPYPVTSMKQLRY



RVQGKPQNPSYTPSTIDTGTTQQQLCHELAKTGHLKTLFLKLQSQIDSNCSNKPSNA



CKSRKKRRRKKKKKYSSSSATSDSSSSCTESE (SEQ ID NO: 43)





ORF2/3
MSDCFKPTCYNNKTKQTHWINNLHLTHDLICFCPTPTRHLLLALAEQQETIEVSKQE



KEKITRCLITTEEDGTTTDVLDGMDEVGLDALFAEDFEEKEGARSTATAQTSPRMP



ANLGRNAGEKRKRSTAAHQQPQTAAAAVQRANNIIIKGPITFNCVKKVKLFDDKPK



NRRFTPEEFETELQIAKWLKRPPRSFVNDPPFYPWLPPEPVVNFKLNFTE (SEQ ID



NO: 44)





ORF1
MPYYYRRRRYNYRRPRWYGRGWIRRPFRRRFRRKRRVRPTYTTIPLKQWQPPYKR



TCYIKGQDCLIYYSNLRLGMNSTMYEKSIVPVHWPGGGSFSVSMLTLDALYDIHKL



CRNWWTSTNQDLPLVRYKGCKITFYQSTFTDYIVRIHTELPANSNKLTYPNTHPLM



MMMSKYKHIIPSRQTRRKKKPYTKIFVKPPPQFENKWYFATDLYKIPLLQIHCTACN



LQNPFVKPDKLSNNVTLWSLNTISIQNRNMSVDQGQSWPFKILGTQSFYFYFYTGA



NLPGDTTQIPVADLLPLTNPRINRPGQSLNEAKITDHITFTEYKNKFTNYWGNPFNK



HIQEHLDMILYSLKSPEAIKNEWTTENMKWNQLNNAGTMALTPFNEPIFTQIQYNP



DRDTGEDTQLYLLSNATGTGWDPPGIPELILEGFPLWLIYWGFADFQKNLKKVTNID



TNYMLVAKTKFTQKPGTFYLVILNDTFVEGNSPYEKQPLPEDNIKWYPQVQYQLEA



QNKLLQTGPFTPNIQGQLSDNISMFYKFYFKWGGSPPKAINVENPAHQIQYPIPRNE



HETTSLQSPGEAPESILYSFDYRHGNYTTTALSRISQDWALKDTVSKITEPDRQQLLK



QALECLQISEETQEKKEKEVQQLISNLRQQQQLYRERIISLLKDQ (SEQ ID NO: 45)





ORF1/1
MPYYYRRRRYNYRRPRWYGRGWIRRPFRRRFRRKRRIQYPIPRNEHETTSLQSPGE



APESILYSFDYRHGNYTTTALSRISQDWALKDTVSKITEPDRQQLLKQALECLQISEE



TQEKKEKEVQQLISNLRQQQQLYRERIISLLKDQ (SEQ ID NO: 46)





ORF1/2
MPYYYRRRRYNYRRPRWYGRGWIRRPFRRRFRRKRRSQIDSNCSNKPSNACKSRK



KRRRKKKKKYSSSSATSDSSSSCTESE (SEQ ID NO: 47)
















TABLE 13





Exemplary Anellovirus nucleic acid sequence


(Gammatorquevirus)
















Name
TTMDV-MD1-073





Genus/Clade

Gammatorquevirus






Accession Number
AB290918.1





Full Sequence:
3242 bp










1        10        20        30        40        50


|        |         |         |         |         |


AGGTGGAGACTCTTAAGCTATATAACCAAGTGGGGTGGCGAATGGCTGAG


TTTACCCCGCTAGACGGTGCAGGGACCGGATCGAGCGCAGCGAGGAGGTC


CCCGGCTGCCCGTGGGCGGGAGCCCGAGGTGAGTGAAACCACCGAGGTCT


AGGGGCAATTCGGGCTAGGGCAGTCTAGCGGAACGGGCAAGAAACTTAAA


AATATTTCTTTTACAGATGCAAAACCTATCAGCCAAAGACTTCTACAAAC


CATGCAGATACAACTGTGAAACTAAAAACCAAATGTGGATGTCTGGCATT


GCTGACTCCCATGACAGTTGGTGTGACTGTGATACTCCTTTTGCTCACCT


CCTGGCTAGTATTTTTCCTCCTGGTCACACAGATCGCACACGAACCATCC


AAGAAATACTTACCAGAGATTTTAGGAAAACATGCCTTTCTGGTGGGGCC


GACGCAACAAATTCTGGTATGGCCGAAACTATAGAAGAAAAAAGAGAAGA


TTTCCAAAAAGAAGAAAAAGAAGATTTTACAGAAGAACAAAATATAGAAG


ACCTGCTCGCCGCCGTCGCAGACGCAGAAGGAAGGTAAGAAGAAAAAAAA


AAACTCTTATAGTAAGACAATGGCAGCCAGACTCTATTGTACTCTGTAAA


ATTAAAGGGTATGACTCTATAATATGGGGAGCTGAAGGCACACAGTTTCA


ATGTTCTACACATGAAATGTATGAATATACAAGACAAAAGTACCCTGGGG


GAGGAGGATTTGGTGTACAACTTTACAGCTTAGAGTATTTGTATGACCAA


TGGAAACTTAGAAATAATATATGGACTAAAACAAATCAACTCAAAGATTT


GTGTAGATACTTAAAATGTGTTATGACCTTTTACAGACACCAACACATAG


ATTTTGTAATTGTATATGAAAGACAACCCCCATTTGAAATAGATAAACTA


ACATACATGAAATATCATCCATATATGTTATTACAAAGAAAGCATAAAAT


AATTTTACCTAGTCAAACAACTAATCCTAGAGGTAAATTAAAAAAAAAGA


AAACTATTAAACCTCCCAAACAAATGCTCAGCAAATGGTTTTTTCAACAA


CAATTTGCTAAATATGATCTACTACTTATTGCTGCAGCAGCATGTAGTTT


AAGATACCCTAGAATAGGCTGCTGCAATGAAAATAGAATGATAACCTTAT


ACTGTTTAAATACTAAATTTTATCAAGATACAGAATGGGGAACTACAAAA


CAGGCCCCCCACTACTTTAAACCATATGCAACAATTAATAAATCCATGAT


ATTTGTCTCTAACTATGGAGGTAAAAAAACAGAATATAACATAGGCCAAT


GGATAGAAACAGATATACCTGGAGAAGGTAATCTAGCAAGATACTACAGA


TCAATAAGTAAAGAAGGAGGTTACTTTTCACCTAAAATACTGCAAGCATA


TCAAACAAAAGTAAAGTCTGTAGACTACAAACCTTTACCAATTGTTTTAG


GTAGATATAACCCAGCAATAGATGATGGAAAAGGCAACAAAATTTACTTA


CAAACTATAATGAATGGCCATTGGGGCCTACCTCAAAAAACACCAGATTA


TATAATAGAAGAGGTCCCTCTTTGGCTAGGCTTCTGGGGATACTATAACT


ACTTAAAACAAACAAGAACTGAAGCTATATTTCCACTACACATGTTTGTA


GTGCAAAGCAAATACATTCAAACACAACAAACAGAAACACCTAACAATTT


TTGGGCATTTATAGACAACAGCTTTATACAGGGCAAAAACCCATGGGACT


CAGTTATTACTTACTCAGAACAAAAGCTATGGTTTCCTACAGTTGCATGG


CAACTAAAAACCATAAATGCTATTTGTGAAAGTGGACCATATGTACCTAA


ACTAGACAATCAAACATATAGTACCTGGGAACTAGCAACTCATTACTCAT


TTCACTTTAAATGGGGTGGTCCACAGATATCAGACCAACCAGTTGAAGAC


CCAGGAAACAAAAACAAATATGATGTGCCCGATACAATCAAAGAAGCATT


ACAAATTGTTAACCCAGCAAAAAACATTGCTGCCACGATGTTCCATGACT


GGGACTACAGACGGGGTTGCATTACATCAACAGCTATTAAAAGAATGCAA


CAAAACCTCCCAACTGATTCATCTCTCGAATCTGATTCAGACTCAGAACC


AGCACCCAAGAAAAAAAGACTACTACCAGTCCTCCACGACCCACAAAAGA


AAACGGAAAAGATCAACCAATGTCTCCTCTCTCTCTGCGAAGAAAGTACA


TGCCAGGAGCAGGAAACGGAGGAAAACATCCTCAAGCTCATCCAGCAGCA


GCAGCAGCAGCAGCAGAAACTCAAGCACAACCTCTTAGTACTAATCAAGG


ACTTAAAAGTGAAACAAAGATTATTACAACTACAAACGGGGGTACTAGAA


TAACCCTTACCAGATTTAAACCAGGATTTGAGCAAGAAACTGAAAAAGAG


TTAGCACAAGCATTTAACAGACCCCCTAGACTGTTCAAAGAAGATAAACC


CTTTTACCCCTGGCTACCCAGATTTACACCCCTTGTAAACTTTCACCTTA


ATTTTAAAGGCTAGGCCTACACTGCTCACTTAGTGGTGTATGTTTATTAA


AGTTTGCACCCCAGAAAAATTGTAAAATAAAAAAAAAAAAAAAAAATAAA


AAATTGCAAAAATTCGGCGCTCGCGCGCGCTGCGCGCGCGAGCGCCGTCA


CGCGCCGGCGCTCGCGCGCCGCGCGTATGTGCTAACACACCACGCACCTA


GATTGGGGTGCGCGCGTAGCGCGCGCACCCCAATGCGCCCCGCCCTCGTT


CCGACCCGCTTGCGCGGGTCGGACCACTTCGGGCTCGGGGGGGCGCGCCT


GCGGCGCTTATTTACTAAACAGACTCCGAGTCGCCATTGGGCCCCCCCTA


AGCTCCGCCCCCCTCATGAATATTCATAAAGGAAACCACAAAATTAGAAT


TGCCGACCACAAACTGCCATATGCTAATTAGTTCCCCTTTTACACAGTAA


AAAGGGGAAGTGGGGGGGCAGAGCCCCCCCACACCCCCCGCGGGGGGGGC


AGAGCCCCCCCCGCACCCCCCCTACGTCACAGGCCACGCCCCCGCCGCCA


TCTTGGGTGCGGCAGGGCGGGGACTAAAATGGCGGGACCCAATCATTTTA


TACTTTCACTTTCCAATTAAAACCCGCCACGTCACACAAAAG


(SEQ ID NO: 48)





Annotations:


Putative Domain Base range


TATA Box 21-25


Cap Site 42-49


Transcriptional Start Site 49


5′ UTR Conserved Domain 117-187


ORF2 283-588


ORF2/2 283-584; 1977-2388


ORF2/3 283-584; 2197-2614


ORF1 432-2453


ORF1/1 432-584; 1977-2453


ORF1/2 432-584; 2197-2388


Three open-reading frame region 2186-2385


Poly(A) Signal 2676-2681


GC-rich region 3054-3172













TABLE 14





Exemplary Anellovirus amino acid sequences (Gammatorquevirus)


TTMDV-MD1-073 (Gammatorquevirus)
















ORF2
MWMSGIADSHDSWCDCDTPFAHLLASIFPPGHTDRTRTIQEILTRDFRKTCLSGGAD



ATNSGMAETIEEKREDFQKEEKEDFTEEQNIEDLLAAVADAEGR (SEQ ID NO: 49)





ORF2/2
MWMSGIADSHDSWCDCDTPFAHLLASIFPPGHTDRTRTIQEILTRDFRKTCLSGGAD



ATNSGMAETIEEKREDFQKEEKEDFTEEQNIEDLLAAVADAEGRYQTNQLKTQETK



TNMMCPIQSKKHYKLLTQQKTLLPRCSMTGTTDGVALHQQLLKECNKTSQLIHLSN



LIQTQNQHPRKKDYYQSSTTHKRKRKRSTNVSSLSAKKVHARSRKRRKTSSSSSSSS



SSSSRNSSTTS (SEQ ID NO: 50)





ORF2/3
MWMSGIADSHDSWCDCDTPFAHLLASIFPPGHTDRTRTIQEILTRDFRKTCLSGGAD



ATNSGMAETIEEKREDFQKEEKEDFTEEQNIEDLLAAVADAEGRTSTQEKKTTTSPP



RPTKENGKDQPMSPLSLRRKYMPGAGNGGKHPQAHPAAAAAAAETQAQPLSTNQ



GLKSETKIITTTNGGTRITLTRFKPGFEQETEKELAQAFNRPPRLFKEDKPFYPWLPRF



TPLVNFHLNFKG (SEQ ID NO: 51)





ORF1
MPFWWGRRNKFWYGRNYRRKKRRFPKRRKRRFYRRTKYRRPARRRRRRRRKVR



RKKKTLIVRQWQPDSIVLCKIKGYDSIIWGAEGTQFQCSTHEMYEYTRQKYPGGGG



FGVQLYSLEYLYDQWKLRNNIWTKTNQLKDLCRYLKCVMTFYRHQHIDFVIVYER



QPPFEIDKLTYMKYHPYMLLQRKHKIILPSQTTNPRGKLKKKKTIKPPKQMLSKWFF



QQQFAKYDLLLIAAAACSLRYPRIGCCNENRMITLYCLNTKFYQDTEWGTTKQAPH



YFKPYATINKSMIFVSNYGGKKTEYNIGQWIETDIPGEGNLARYYRSISKEGGYFSPK



ILQAYQTKVKSVDYKPLPIVLGRYNPAIDDGKGNKIYLQTIMNGHWGLPQKTPDYII



EEVPLWLGFWGYYNYLKQTRTEAIFPLHMFVVQSKYIQTQQTETPNNFWAFIDNSFI



QGKNPWDSVITYSEQKLWFPTVAWQLKTINAICESGPYVPKLDNQTYSTWELATH



YSFHFKWGGPQISDQPVEDPGNKNKYDVPDTIKEALQIVNPAKNIAATMFHDWDY



RRGCITSTAIKRMQQNLPTDSSLESDSDSEPAPKKKRLLPVLHDPQKKTEKINQCLLS



LCEESTCQEQETEENILKLIQQQQQQQQKLKHNLLVLIKDLKVKQRLLQLQTGVLE



(SEQ ID NO: 52)





ORF1/1
MPFWWGRRNKFWYGRNYRRKKRRFPKRRKRRFYRRTKYRRPARRRRRRRRKISD



QPVEDPGNKNKYDVPDTIKEALQIVNPAKNIAATMFHDWDYRRGCITSTAIKRMQQ



NLPTDSSLESDSDSEPAPKKKRLLPVLHDPQKKTEKINQCLLSLCEESTCQEQETEEN



ILKLIQQQQQQQQKLKHNLLVLIKDLKVKQRLLQLQTGVLE (SEQ ID NO: 53)





ORF1/2
MPFWWGRRNKFWYGRNYRRKKRRFPKRRKRRFYRRTKYRRPARRRRRRRRKISD



QPVEDPGNKNKYDVPDTIKEALQIVNPAKNIAATMFHDWDYRRGCITSTAIKRMQQ



NLPTDSSLESDSDSEPAPKKKRLLPVLHDPQKKTEKINQCLLSLCEESTCQEQETEEN



ILKLIQQQQQQQQKLKHNLLVLIKDLKVKQRLLQLQTGVLE (SEQ ID NO: 54)









In some embodiments, a synthetic curon comprises a minimal Anellovirus genome, e.g., as identified according to the method described in Example 9. In some embodiments, a synthetic curon comprises an Anellovirus sequence, or a portion thereof, as described in Example 13.


In some embodiments, a synthetic curon comprises a genetic element comprising a consensus Anellovirus motif, e.g., as shown in Table 14-1. In some embodiments, a synthetic curon comprises a genetic element comprising a consensus Anellovirus ORF1 motif, e.g., as shown in Table 14-1. In some embodiments, a synthetic curon comprises a genetic element comprising a consensus Anellovirus ORF1/1 motif, e.g., as shown in Table 14-1. In some embodiments, a synthetic curon comprises a genetic element comprising a consensus Anellovirus ORF1/2 motif, e.g., as shown in Table 14-1. In some embodiments, a synthetic curon comprises a genetic element comprising a consensus Anellovirus ORF2/2 motif, e.g., as shown in Table 14-1. In some embodiments, a synthetic curon comprises a genetic element comprising a consensus Anellovirus ORF2/3 motif, e.g., as shown in Table 14-1. In some embodiments, a synthetic curon comprises a genetic element comprising a consensus Anellovirus ORF2t/3 motif, e.g., as shown in Table 14-1. In some embodiments, X, as shown in Table 14-1, indicates any amino acid. In some embodiments, Z, as shown in Table 14-1, indicates glutamic acid or glutamine. In some embodiments, B, as shown in Table 14-1, indicates aspartic acid or asparagine. In some embodiments, J, as shown in Table 14-1, indicates leucine or isoleucine.









TABLE 14-1







Consensus motifs in open reading frames (ORFs) of Anelloviruses












Open





Consensus
Reading


SEQ ID


Threshold
Frame
Position
Motif
NO:





50
ORF1
 79
LIJRQWQPXXIRRCXIXGYXPLIXC
55





50
ORF1
111
NYXXHXD
56





50
ORF1
135
FSLXXLYDZ
57





50
ORF1
149
NXWTXSNXDLDLCRYXGC
58





50
ORF1
194
TXPSXHPGXMXLXKHK
59





50
ORF1
212
IPSLXTRPXG
60





50
ORF1
228
RIXPPXLFXDKWYFQXDL
61





50
ORF1
250
LLXIXATA
62





50
ORF1
260
LXXPFXSPXTD
63





50
ORF1
448
YNPXXDKGXGNXIW
64





50
ORF1
519
CPYTZPXL
65





50
ORF1
542
XFGXGXMP
66





50
ORF1
569
HQXEVXEX
67





50
ORF1
600
KYXFXFXWGGNP
68





50
ORF1
653
HSWDXRRG
69





50
ORF1
666
AIKRXQQ
70





50
ORF1
750
XQZQXXLR
71





50
ORF1/1
 73
PRXJQXXDP
72





50
ORF1/1
 91
HSWDXRRG
73





50
ORF1/1
105
AIKRXQQ
74





50
ORF1/1
187
QZQXXLR
75





50
ORF1/2
 97
KXKRRRR
76





50
ORF2/2
158
PIXSLXXYKXXTR
77





50
ORF2/2
189
LAXQLLKECXKN
78





50
ORF2/3
 39
HLNXLA
79





50
ORF2/3
272
DRPPR
80





50
ORF2/3
281
DXPFYPWXP
81





50
ORF2/3
300
VXFKLXF
82





50
ORF2t/3
  4
WXPPVHBVXGIERXW
83





50
ORF2t/3
 37
AKRKLX
84





50
ORF2t/3
140
PSSXDWXXEY
85





50
ORF2t/3
156
DRPPR
86





50
ORF2t/3
167
PFYPW
87





50
ORF2t/3
183
NVXFKLXF
88





50
ORF1
 84
JXXXXWQPXXXXXCXIXGXXXJWQP
89





50
ORF1
149
NXWXXXNXXXXLXRY
90





50
ORF1
448
YNPXXDXG
91









Genetic Element

In some embodiments, the curon comprises a genetic element. In some embodiments, the genetic element has one or more of the following characteristics: is substantially non-integrating with a host cell's genome, an episomal nucleic acid, a single stranded DNA, is circular, is about 1 to 10 kb, exists within the nucleus of the cell, can be bound by endogenous proteins, and produces a microRNA that targets host genes. In one embodiment, the genetic element is a substantially non-integrating DNA. In some embodiments, the genetic element has at least about 70%, 75%, 80%, 8%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to an Anellovirus sequence, e.g., as described herein (e.g., as described in any of Tables 1-14), or a fragment thereof. In embodiments, the genetic element comprises a sequence encoding an exogenous effector (e.g., a payload), e.g., a polypeptide effector (e.g., a protein) or nucleic acid effector (e.g., a non-coding RNA, e.g., a miRNA, siRNA, mRNA, lncRNA, RNA, DNA, an antisense RNA, gRNA).


In some embodiments, the genetic element has a length less than 20 kb (e.g., less than about 19 kb, 18 kb, 17 kb, 16 kb, 15 kb, 14 kb, 13 kb, 12 kb, 11 kb, 10 kb, 9 kb, 8 kb, 7 kb, 6 kb, 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, or less). In some embodiments, the genetic element has, independently or in addition to, a length greater than 1000b (e.g., at least about 1.1 kb, 1.2 kb, 1.3 kb, 1.4 kb, 1.5 kb, 1.6 kb, 1.7 kb, 1.8 kb, 1.9 kb, 2 kb, 2.1 kb, 2.2 kb, 2.3 kb, 2.4 kb, 2.5 kb, 2.6 kb, 2.7 kb, 2.8 kb, 2.9 kb, 3 kb, 3.1 kb, 3.2 kb, 3.3 kb, 3.4 kb, 3.5 kb, 3.6 kb, 3.7 kb, 3.8 kb, 3.9 kb, 4 kb, 4.1 kb, 4.2 kb, 4.3 kb, 4.4 kb, 4.5 kb, 4.6 kb, 4.7 kb, 4.8 kb, 4.9 kb, 5 kb, or greater). In some embodiments, the genetic element has a length of about 2.5-4.6, 2.8-4.0, 3.0-3.8, or 3.2-3.7 kb.


In some embodiments, the genetic element comprises one or more of the features described herein, e.g., a sequence encoding a substantially non-pathogenic protein, a protein binding sequence, one or more sequences encoding a regulatory nucleic acid, one or more regulatory sequences, one or more sequences encoding a replication protein, and other sequences.


In one embodiment, the invention includes a genetic element comprising a nucleic acid sequence (e.g., a DNA sequence) encoding (i) a substantially non-pathogenic exterior protein, (ii) an exterior protein binding sequence that binds the genetic element to the substantially non-pathogenic exterior protein, and (iii) a regulatory nucleic acid. In such an embodiment, the genetic element may comprise one or more sequences with at least about 60%, 70% 80%, 85%, 90% 95%, 96%, 97%, 98% and 99% nucleotide sequence identity to any one of the nucleotide sequences to a native viral sequence.


Proteins, e.g., Substantially Non-Pathogenic Protein


In some embodiments, the genetic element comprises a sequence that encodes a protein, e.g., a substantially non-pathogenic protein. In embodiments, the substantially non-pathogenic protein is a major component of the proteinaceous exterior of the curon. Multiple substantially non-pathogenic protein molecules may self-assemble into an icosahedral formation that makes up the proteinaceous exterior. In embodiments, the protein is present in the proteinaceous exterior.


In some embodiments, the protein, e.g., substantially non-pathogenic protein and/or proteinaceous exterior protein, comprises one or more glycosylated amino acids, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, or more.


In some embodiments, the protein, e.g., substantially non-pathogenic protein and/or proteinaceous exterior protein comprises at least one hydrophilic DNA-binding region, an arginine-rich region, a threonine-rich region, a glutamine-rich region, a N-terminal polyarginine sequence, a variable region, a C-terminal polyglutamine/glutamate sequence, and one or more disulfide bridges.


In some embodiments, the genetic element comprises a nucleotide sequence encoding a capsid protein or a fragment of a capsid protein or a sequence having at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% 95%, 96%, 97%, 98%, 99%, or 100% nucleotide sequence identity to any one of the nucleotide sequences encoding a capsid protein described herein, e.g., as listed in any of Tables 1-16 or 19. In some embodiments, the genetic element comprises a nucleotide sequence encoding a capsid protein or a functional fragment of a capsid protein or a nucleotide sequence having at least about 60%, 70% 80%, 85%, 90% 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of the nucleotide sequences described herein, e.g., as listed in any of Tables 1-16 or 19. In some embodiments, the substantially non-pathogenic protein comprises a capsid protein or a functional fragment of a capsid protein that is encoded by a capsid nucleotide sequence or a sequence having at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% 95%, 96%, 97%, 98%, 99%, or 100% nucleotide sequence identity to any one of the nucleotide sequences described herein, e.g., as listed in any of Tables 1, 3, 5, 7, 9, 11, 13, or 15.









TABLE 15







Examples of viral sequences that encode viral proteins, e.g.,


capsid proteins.










Accession #
Accession #

SEQ


(protein
(nucleotide

ID


sequence)
sequence)
Sequence
NO:





AAD45640.1
AF122917.1
ATGCACTTTTCTAGGATATCCAGGAAGAAAAGGCTACTGCTACTGC
 92




ACACAGTGCCAACTCCACAGAAAACTCTCAAACTTTTAAGAGGTAT





GTGGAGTCCTCCCACTGACGATGAACGTGTCCGCGAGCGAAAATG





GTTTCTCGCAACTGTCTATTCTCACTCTGCTTTCTGTGGCTGCAAT





GATCCTGTCGGTCACCTCTGTCGCCTGGCTACTCTCTCTAACCGT





CCGGAGAACCCGGGACCCTCCGGGGGACGTCGTGCTCCTTCGAT





CGGGGTCCTACCCGCTCTCCCGGCTGCTACCGAGCAGCCAGGTG





ATCGAGCACCATGGCCTATGGGTGGTGGAGGAGACGCCGCAGAA





GGTGGAAGAGATGGAGGAGAAGGCCCAGGTGGAGACGCCCATGG





AGGACCCGCAGACGCAGACCTGCTAGACGCCGTGGACGCCGCGG





AACAGTAA






AAD45641.1
AF122917.2
ATGGCCTATGGGTGGTGGAGGAGACGCCGCAGAAGGTGGAAGAG
 93




ATGGAGGAGAAGGCCCAGGTGGAGACGCCCATGGAGGACCCGCA





GACGCAGACCTGCTAGACGCCGTGGACGCCGCGGAACAGTAAGG





AGACGGAGGCGCGGGAGGTGGAGGAGGCGCTATAGGAGGTGGA





GGAGAAAGGGCAGACGCAGGAGAAAAAAGAAACTTATAATAAGAC





AATGGCAGCCAAACTATACCAGAAAGTGCAACATAGTAGGCTACAT





GCCAGTAATCATGTGTGGAGAAAACACTCTAATAAGAAACTATGCC





ACACACGCAGACGACTGCTACTGGCCGGGACCCTTTGGGGGCGG





CATGGCCACCCAGAAATTCACACCCAGAATCCTGTACGATGACTA





CAAGAGGTTTATGAACTACTGGACCTCCTCAAACGAGGACCTAGA





CCTCTGTAGATACAGGGGAGTCACCCTGTACTTTTTCAGACACCCA





GATGTAGACTTTATCATCTTAATAAACACCACACCTCCATTCGTAGA





TACAGAGATCACAGGACCCAGCATACATCCGGGCATGATGGCCCT





GAACAAGAGAGCCAGGTTCATCCCCAGCCTAAAGACTAGACCTGG





CAGAAGACACATAGTAAAGATTAGAGTGGGGGCCCCCAAACTGTA





CGAGGACAAGTGGTACCCCCAGTCAGAACTCTGTGACGTGCCCCT





GCTAACCGTCTACGCGACCGCAGCGGATATGCAATATCCGTTCGG





CTCACCACTAACTGACACTCCTGTTGTAACCTTCCAAGTGTTGCGC





AGCATGTACAACGACGCCCTCAGCACACTTCCCTCTAACTTTGAAA





ACGCAAGCAGTCCAGGCCAAAAACTTTACAAAGAAATATCTACATA





TTTACCATACTACAACACCACAGAAACAATAGCACAACTAAAGAGA





TATGTAGAAAATACAGAAAAAAATGGCACAACGCCAAACCCGTGG





CAATCAAAATATGTAAACACTACTGCCTTCACCACTGCACTAAATGT





TACAACTGAAAAACCATACACCACCTTCTCAGACAGCTGGTACAGG





GGCACAGTATACAAAGAAACAATCACTGAAGTGCCACTTGCCGCA





GCAAAACTCTATCAAAACCAAACAAAAAAGCTGCTGTCTACAACAT





TTACAGGAGGGTCCGAGTACCTAGAATACCATGGAGGCCTGTACA





GCTCCATATGGCTATCAGCAGGCCGATCCTACTTTGAAACAAAGG





GAGCATACACAGACATCTGCTACAACCCCTACACAGACAGAGGAG





AGGGCAACATGGTGTGGATAGACTGGCTATCAAAAACAGACTCCA





GATATGACAAAACCCGCAGCAAATGCCTTATAGAAAAGCTACCCCT





ATGGGCAGCAGTATACGGGTACCCAGAATACTGTGCCAAGAGCAC





CGGAGACTCAAACATAGACATGAACGCCAGAGTAGTAATAAGGTG





CCCCTACACCGTCCCCCAGATGATAGACACCAGCGACGAACTAAG





GGGCTTCATAGTATACAGCTTTAACTTTGGCAGGGGCAAAATGCC





CGGAGGCAGCAGCGAGGTACCCATAAGAATGAGAGCCAAGTGGT





ACCCCTGCCTGTTTCACCAAAAAGAAGTTCTAGAAGCCTTGGGACA





GTCGGGCCCCTTCGCCTACCACTGCGACCAAAAAAAAGCAGTGCT





AGGTCTAAAATACAGATTTCACTGGATATGGGGCGGAAGCCCCGT





GTTTCCACAGGTTGTTAGAAACCCCTGCAAAGACACACACGGTTC





CTCGGGCCCTAGAAAGCCTCGCTCAATACAAATCATTGACCCGAA





GTACAACACACCAGAGCTCACAATCCACGCGTGGGATTTCAGACG





TGGCTTCTTTGGCTCAAAAGCTATTAAAAGAATGCAACAACAACCA





ACAGATGCTGAACTTCTTCCACCAGGCCGCAAGAGGAGCAGGCGA





GACACAGAAGCCCTCCAAAGCAGCCAAGAAAAGCAAAAAGAAAGC





TTACTTTTCAAACACCTCCAGCTCCAGCGACGAATACCCCCATGGG





AAAGCTCGCAGGCCTCGCAGACAGAGGCAGAGAGCGAAAAAGAG





CAAGAGGGCAGTCTCTCCCAGCAGCTCCGAGAGCAGCTTTACCAG





CAAAAGCTCCTCGGCAAGCAGCTCAGGGAAATGTTCCTACAACTC





CACAAAATCCAACAAAATCAACACGTCAACCCTACCTTATTGCCAA





GGGATCAGGCTTTAATCTGCTGGTCTCAGATTCAGTAA






AAD45642.1
AF122917.1
ATGTTTGGAGACCCTAAACCATACAAACCCTCCAGCAACGACTGG
 94




AAAGAGGAGTACGAGGCCGCTAAGTATTGGGACAGGCCCCCCAG





ATCTAACCTTAGAGATAACCCCTTCTATCCCTGGGCCCCCCCAAGC





AATCCCTACAAAGTAAACTTTAAACTAGGCTTCCAATAA






AAD45646.1
AF122919.1
ATGCACTTTTCTAGGATATCCAGAAAGAAAAGGCTACTGCTACTGC
 95




AAACAGAGCCAGCTCCACAGAAGACTCTCAAACTTTTAAAAGGTAT





GTGGAGTCCTCCCACTGACGATGAACGTGTCCGCGAGCGAAAATG





GTTCCTCGCCACTGTTTATTCTCACTCTGCTTTCTGTGGCTGCAAT





GATCCTGTCGGCCACCTCTGTCGCTTGGCTACTCTATCTAACCGTC





CGGAGAACCCGGGACCCTCCGGGGGACGTCGTGCTCCTTCGATC





GGGATCCTACCCGCTCTCCCGGCTGCTACCGAGCAGCCCGGTGA





TCGAGCACCATGGCCTATGGGTGGTGGAGGAGACGCCGCAGAAG





GTGGAAGAGATGGAGGAGAAGGCCCAGGTGGAGACGCCCATGGA





GGACCCGCAGACGCAGACCTGCTAGACGCCGTGGACGCCGCAGA





ACAGTAA






AAD45647.1
AF122919_2
ATGGCCTATGGGTGGTGGAGGAGACGCCGCAGAAGGTGGAAGAG
 96




ATGGAGGAGAAGGCCCAGGTGGAGACGCCCATGGAGGACCCGCA





GACGCAGACCTGCTAGACGCCGTGGACGCCGCAGAACAGTAAGG





AGACGGAGGCGCGGGAGGTGGAGGAGGCGCTATAGGAGGTGGA





GGAGAAAGGGCAGACGCGGGAGAAAAAAGAAACTTATAATAAAAC





AATGGCAGCCAAACTATACCAGAGAGTGCAACATAGTAGGCTACA





TGCCAGTAATCATGTGTGGAGAGAACACTCTAATAAGAAACTATGC





CACACACGCAGACGACTGCTACTGGCCGGGACCCTTTGGGGGCG





GCATGGCCACCCAGAAATTCACACTCAGAATCCTGTACGATGACTA





CAAGAGGTTTATGAACTACTGGACCTCCTCAAACGAGGACCTAGA





CCTCTGTAGATACAGGGGAGTCACCCTGTACTTTTTCAGAAACCCA





GATGTAGACTTTATCATCCTCATAAACACCACACCTCCGTTCGTAG





ATACAGAGATCACAGGACCCAGCATACATCCGGGCATGATGGCCC





TCAACAAAAGAGCCAGGTTCATCCCCAGCCTAAAAACTAGACCTG





GCAGAAGACACATAGTAAAGATTAAAGTGGGGGCCCCCAAACTGT





ACGAGGACAAGTGGTACCCCCAGTCAGAACTCTGTGACATGCCCC





TACTAACCGTCTACGCCACCGCAGCGGATATGCAATATCCGTTCG





GCTCACCACTAACTGACACTCCTGTTGTAACCTTCCAAGTGTTGCG





CAGCATGTACAACGACGCCCTTAGCATACTTCCCTCTAACTTTCAA





AGCCCAGACAGTCCAGGCCAAAAACTTTACGAACAAATATCTAAGT





ATTTACCATACTACAACACCACAGAAACAATGGCACAACTAAAGAG





ATATATAGAAAATACAGAAAAAAATACCACATCGCCAAACCCATGG





CAAACAAAATATGTAAACACTACTGCCTTCACCACTCCACAAACTG





TTACAACTCAACAGCCATACACCAGCTTCTCAGACAGCTGGTACAG





GGGCACAGTATACACAAACGAAATCACTAAGGTGCCACTTGCCGC





AGCAAAAGTGTATGAAACTCAAACAAAAAACCTGCTGTCTACAACA





TTTACAGGAGGGTCAGAGTACCTAGAATACCATGGAGGCCTGTAC





AGCTCCATATGGCTATCAGCAGGCCGATCCTACTTTGAAACAAAG





GGAGCATACACAGACATCTGCTACAACCCCTACACAGACAGAGGA





GAGGGCAACATGGTGTGGATAGACTGGCTATCAAAAACAGACTCC





AGATATGACAAAACCCGCAGCAAATGCCTTATAGAAAAGCTACCCC





TATGGGCAGCAGTATACGGGTACGCAGAATACTGTGCCAAGAGCA





CCGGAGACTCAAACATAGACATGAACGCCAGAGTAGTAATTAGGT





GCCCCTACACCACCCCCCAGATGATAGACACCAGCGACGAACTAA





GGGGCTTCATAGTATACAGCTTTAACTTTGGCAGGGGCAAAATGC





CCGGAGGCAGCAGCGAGGTACCCATTAGAATGAGAGCCAAGTGG





TACCCCTGCCTACTTCACCAAAAAGGAGTTCTAGAAGCCTTAGGAC





AGTCAGGCCCCTTCGCCTACCACCGCGACCAAAAAAAAGCAGTGC





TAGGTCTAAAATACAGATTTCACTGGATATGGGGCGGAAACCCCG





TGTTTCCACAGGTTGTTAGAAACCCCTGCAAAGACACACACGGTTC





CTCGGGCCCTAGAAAGCCTCGCTCAATACAAATCATTGACCCGAA





GTACAACACACCAGAGCTCACAATCCACGCGTGGGATTTCAGACG





TGGCTTCTTTGGCCCAAAAGCTATTAAGAGAATGCAACAACAACCA





ACAGATGCTGAACTTCTTCCACCAGGCCGCAAGAGGAGCAGGCGA





GACACCGAAGCCCTCCAAAGCAGCCAAGAAAAGCAGAAAGAAAGC





TTACTTTTCAAACAGCTCCAGCTCCGGCGACGAGTACCCCCGTGG





GAAAGCTCGCAGGCCTCGCAGACAGAGGCAGAGAGCGAAAAAGA





GCAAGAGGACAGTCTCTCCCAGCAGCTCCGAGAGCAGCTTCACCA





GCAAAAGCTCCTCGGCAAGCAGCTCAGGGAAATGTTCCTACAACT





CCACAAAATCCAACAAAATCAACACGTCAACCCTACCCTATTGCCA





AAAGATCAGGCTTTAATATGCTGGTCTCAGATTCAGTAA






AAD45648.1
AF122919_3
ATGTTCGGAGACCCTAAACCATACAAACCCTCCAGCAACGACTGG
 97




AAAGAGGAGTACGAGGCCGCTAAATATTGGGACAGGCCCCCCAG





ATTTGACCTTAGAGATAAGCCCTTCTATCCCTGGGCCCCCCCAAG





CAATCCCTACAAAGTAAACTTTAAACTAGGCTTTCAATAA






AAG16247.1
AF298585_1
ATGGCTGAGTTTTCCACGCCCGTCCGCAGCGGTGAAGCCACGGA
 98




GGGACCTCAGCGCGTCCCGAGGGCGGGTGCCGAAGGTGAGTTTA





CACACCGCAGTCAAGGGGCAATTCGGGCTCGGGACTGGCCGGGC





TATGGGCAAGGCTCTTAA






AAG16248.1
AF298585_2
ATGTTTCTCGGTAAACTTTACAGAAAGAAAAGGAAAGTGCTTCTGC
 99




AGACTGTGCCAGACCCACAGAAGGCTAGGCGGCTTCTGATTATGT





GGCAGCCCCCCGTGCACAAAGTACCCGGGATCGAGAGAAACTGG





TACGAGAGTTGCTTTCGATCCCATGCTGCTGTGTGTGGCTGTGGC





GACTTTGTTGGCCATCTTAATCATCTGGCAGCTACTCTGGGTCGCC





CTCCGCGTTCTCGGCACCCCGGGGGCCCCGGCACTCCGCAGATA





AGAAACCTGCCAGCGCTCCCGGCACCCCAGGGTGAGCCCGGTGA





CAGAGCGCCATGGCCTACGGATGGTGGGGCCGCCGGCGCCGCT





GGAGAAGATGGAGGACGCGGCGCAGACCGTGGAGAACCAGGAG





ACGTAGAAGACGACGCGCTCCTCGCCGCTTTCGACCTCGTCGAAG





AGTAA






AAG16249.1
AF298585_3
ATGGCCTACGGATGGTGGGGCCGCCGGCGCCGCTGGAGAAGATG
100




GAGGACGCGGCGCAGACCGTGGAGAACCAGGAGACGTAGAAGAC





GACGCGCTCCTCGCCGCTTTCGACCTCGTCGAAGAGTAAGGAGG





CGCAGGGGGCGGTGGCGCAGACGGTATAGAAAATGGAGGAGACG





CAGGGGCAGACGGACGCACAGAAAAAAGATAATCATAAAACAGTG





GCAGCCGAACTTTATAAGACGCTGCTACATAATAGGCTACCTGCCT





CTCATATTCTGTGGCGAGAACACCACCGCCAATAACTTTGCCACCC





ACTCGGACGACATGATAGCCAAAGGACCGTGGGGGGGGGGCATG





ACTACCACTAAGTTCACTTTGAGAATCCTGTACGACGAGTTTACCA





GGTTTATGAACTTCTGGACTGTCAGTAACGAAGACCTAGACCTGTG





TAGATACGTGAGCTGCAAACTGATATTCTTTAAGCACCCCACGGTA





GACTTTATAGTCAGGATAAACACAGAGCCTCCGTTCCTAGACACTA





ACCTGACCGCGGCACAGATTCACCCGGGCATCATGATGCTAAGCA





AAAAACACATACTCATACCCTCTCTAAAGACCAGGCCTAGCAGAAA





ACACAGGGTGGTCGTCAGGGTGGGCCCACCTAGACTGTTTCAAGA





CAAGTGGTACCCCCAGTCAGACCTGTGTGACACAGTTCTGCTTTC





CGTGTTTGCAACGGCCTGTGACTTGCAATATCCGTTCGGCTCACC





ACTAACTGACAACCCTTGCGTCAACTTCCAGATTCTGGGGCACCA





GTACAAAAACCACCTTAGTATTAGCTCCACAAACGATACCACTAAC





AAACAACACTATGACAACACTTTATTTAACAAAATAGTATTATATAA





CACTTTTCAAACAATAGCTCAGCTCAAAGAAACAGGACAACTCACA





AACTTATGGAACGAAGTACAAAACACAACAGCACTGTCACCAAAAG





GCACAAATGCAACTATAAGCAAAGACACCTGGTACAAAGGAAACA





CATACAAAGACAAGATTAAAGAGTTAGCAGAAAAAACTCGAAGTAG





ATTTGCAGCTGCAACAAAAGCAGCCCTGCCAAACTACCCTACAATC





ATGTCCACAGACCTGTATGAGTACCACTCAGGCATATACTCCAGCA





TATTCCTAGCAGCAGGCAGGAGCTACTTTGAGACCCCGGGGGCCT





ACACAGACGTCATATACAACCCTTTTACAGACAAAGGCACAGGAAA





CATGGTCTGGATAGACTACCTCACAAAACCAGACTCCATATACACA





AAGAACAAAAGCAAATGCGAGATATTTGACGTACCCCTGTGGGCC





ACCTTCACAGGATACTCAGAATTCTGTTCAAAAGTTACAGGAGACA





CCGCCATTCACCTAACTGCCAGAGTAGTAGTCAGATGCCCCTACA





CCGAGCCCATGCTAATAGACCACTCAGACCCCAACAGGGGCTTTG





TACCATACTCCTTTAACTTTGGAGAGGGCAAGATGCCCGGAGGCT





CCTCAAAAGTACCCATAAGAATGAGAGCCAAGTGGTACGTGAACA





TGTTTCACCAGCAAGAATTCATGGAGGCCATAGTTGAGAGCGGAC





CGCTTGCTTACAAGGGCGACATAAAATCAGCGGTACTCACCATGA





AATACAGATTCCACTGGAAATGGGGCGGAAACCCTATATCCAAACA





GGTCGTCCGGAATCCCTGCTCCACCTCCAGCACCTCCGCGGGCC





ATCGAGGACCTCGCAGCATACAAGTCGTTGACCCGAAGCACGTTA





CCCCGGAAGTCACCTGGCACTCGTGGGACATCAAGCGAGGTCTCT





TTGGCAAAGCAGGTATTAAGAGAATGCAACAAGAATCAGATGCTCT





TTACATTCCTACAGGACCACTCAAGAGGCCACGGAGGGACACCAA





CGCCCAAGACCCAGAAGAGCAAAACGAAAGCTCAGGTTTCAGAGT





CCAGCAGCGACTCCCCTGGGTCCACTCCAGCCAAGAAACGCAAA





GCTCCCAAGAGGAGATGCAAGCGGAGGGGACGGTACAAGAACAA





CTCCTCCTCCAGCTCCGAGAGCAGCGAGTACTCCGGTTCCAGCTC





CAACAGCTCGCCAGCCAAGTCCTCAAAGTGCAAGCAGGGCAAGG





CCTACACCCCCTATTATCTTCCCAAGCGTAA






AAG16250.1
AF298585_4
ATGTTTGAGCCCCAGGGTCCCAAACCCATACAGGGCTACAACGAT
101




TGGTTAGAAGAGTACACCTGCTGTAAATTCTGGGACAGGCCTCCC





AGAAAGCTACACACAGATACACCCTTTTACCCCTGGGCACCAAAAC





CCCCAGACCAAGTGAGAGTCTCCTTTAAACTTAACTTCCAATAA






AAL37158.1
AF315076_2
ATGTTTCTTGGCAGGGCCTGGAGAAAGAAAAGGCAAGTGCCACTG
102




CCGACACTGCCAGTGGTGCCGCTTCCACAACCTTCACCTATGAGC





AGCCAGTGGAGACCCCCGGTTCACAATGTCCAGGGGCTGGAGCG





CAATTGGTGGGAGTGCTTCTTCCGTTCTCATGCTTGTTTTTGTGGC





TGTGGTGATGCTATTACTCATATTAATCATCTGGCGACTCGTTTTG





GACGTCCTCCTACTACCTCAACTCCCCGAGGACCGCAGGCACCTC





CAGTGACTCCGTACCCGGCCCTGCCGGCCCCAGAGCCTAGCCCT





GAGCCATGGCGTGGCGCCGGTGGCGATGGCGGCCGTGGTGGAG





ACGCCGGAGGCGCCGCCGGTGGAGAAGGAGACGGAGGAGACCC





AGACGACGCCGCCCTTATCGACGCCGTCGACCTCGCAGAGTAA






AAL37157.1
AF315076_1
ATGGCGTGGCGCCGGTGGCGATGGCGGCCGTGGTGGAGACGCC
103




GGAGGCGCCGCCGGTGGAGAAGGAGACGGAGGAGACCCAGACG





ACGCCGCCCTTATCGACGCCGTCGACCTCGCAGAGTAAGGAGGC





GCAGGGGGCGGTGGAGGCGCGCGTACAGACGTTGGGGGCGACG





CAGACGCAGACGCAGGCACAAAAAGAAACTTGTACTGACTCAGTG





GCAACCAGCAGTAGTTAAGAGGTGCCTAATAGTGGGCTTTGACCC





CCTTATAATATGTGGCATTAACAGAACAATATTTAACTACACTACAC





ACTCTGAAGACTTTACTTTTAACAACGACAGCTTTGGAGGGGGGCT





CTGTACCGCTCAGTACACACTAAGAATCCTTTTCCAAGAAAAGCTG





GCCCAGCACAACTTCTGGTCAGCTAGCAACGAAGACCTAGACCTT





GCCAGGTACCTAGGAGCCACAATAGTACTTTACAGACACCCTACA





GTAGACTTCTTAGTTAGAATTCGCACCAGTCCTCCCTTTGAGGACA





CAGACATGACAGCCATGACACTACATCCAGGCATGATGATGCTAG





CTAAAAAGACAATTAAAATTCCCAGTCTTAAAACAAGACCGTCCAG





AAAACACGTAGTAAGGATTAGAGTAGGGGCCCCTAAACTATTTGAA





GACAAGTGGTACCCCCAGAACGAGCTATGTGATGTAACTCTGCTA





ACCATACAGGCAACCACAGCTGATTTCCAATATCCGTTCGGCTCAC





CACTAACGAACTCCCCCTGTTGCAACTTCCAGGTTCTTAACAGTAA





CTATGACAATGCACATTCCATACTTAACTTGTCAAACGAACCAACA





AACAAATGGCACACCTATAGAAATAACTGCTATAAATTTCTACTAGA





ACAGTACAGCTACTACAACACTAAACAAGTAGTAGCACAACTTAAA





TATAAATGGAACCCTAATCAAAACCCTACTATGCCAAATACAAGCA





ATGCATCACTTTCTAAAAAACCTGATGACCTTACTAAAACCAAAACA





ACAAACGAGTATCCACATTGGGACACCCTATATGGTGGTTTAGCAT





ATGGACACAGCACTGTAACACCTGGCACTACCTCATCACCAACAG





ACCTAAAAACACAAATGCTTACAGGCAACGAATTTTATACAACAGC





AGGCAAAAAGTTAATAGATACATTTCACCCAATTCCTTACTATGAAA





ACGGATCTTCTAAAGCCAACACCAACATATTTGACTACTACACAGG





CATGTACAGTAGTATTTTCCTGTCTTCAGGCAGATCAAACCCAGAA





GTAAAGGGCAGCTACACAGACATCTCTTACAACCCTCTGACAGAC





AAGGGAGTAGGTAACATGATTTGGATAGACTGGCTCACTAAAGGA





GACACAGTATACGACCCCAAAAAAAGCAAGTGCCTACTCTCAGACT





TTCCATTGTGGTCACTTTGTTATGGATACCCAGACTACTGCAGAAA





ACAAACCGGAGACTCAGGTATTTACTATGACTACAGAGTACTTATA





AGATGTCCATACACATACCCTCAATTAATAAAACACAACGACAAAT





ACTTTGGCTTCGTAGTGTACAGCGAAAACTTTGGACTGGGGCGAC





TACCAGGAGGCAACCCTAACCCCCCAACTAGAATGAGACTGCACT





GGTACCCTAATATGTTCCACCAAACAGAAGTACTAGAGTGCATAGC





TCAAAGCGGACCGTTTGCTTATCATGGAGACGAGAGAAAAGCTGT





TCTGACTGCCAAATACAAGTTCAGATGGAAGTGGGGAGGCAATCC





TGTGTTTCAACAGGTTCTCCGAGACCCCTGCACCGGAGGTGCCGT





GGCGCCCCACACCAGTCGACACCCTCGTGCAATACAAGTCCATGA





CCCGAAGTATCAGGCCCCGGAGTACCTCTTCCACAAATGGGACTT





CAGAAGGGGACTGTTTAGCACTAAAGGTATTAAGAGAGTGTCAGA





ACAACCAGTACATGATGAGTATTTTACAGGGAGCAGCAAGAGACC





CAAGAAAGACACCAACCCAAGCCCCCAAGGAGAAGAGCAAAAAGA





AGGCTCGCGTTTCAGAGTCCCAGAGCTCAGACCCTGGCTCCCCTC





CAGCCAGGAAACGCAGAGCCAAAGCGAGCAAGAAGAAACAGCCC





CGAAAACGGTCCAAGAGCAGCTACAAGAACAACTCCAGCAGCAGC





AGCTCATGGGAATCCAGCTCAGAAACGTCTGTCTCCAGCTCGCAA





GAGTCCAAGCGGGGCACAGTCTCCACCCCGTTTTCCAATGCCATG





CATAA






AAL37159.1
AF315076_3
ATGACCCGAAGTATCAGGCCCCGGAGTACCTCTTCCACAAATGGG
104




ACTTCAGAAGGGGACTGTTTAGCACTAAAGGTATTAAGAGAGTGTC





AGAACAACCAGTACATGATGAGTATTTTACAGGGAGCAGCAAGAG





ACCCAAGAAAGACACCAACCCAAGCCCCCAAGGAGAAGAGCAAAA





AGAAGGCTCGCGTTTCAGAGTCCCAGAGCTCAGACCCTGGCTCCC





CTCCAGCCAGGAAACGCAGAGCCAAAGCGAGCAAGAAGAAACAG





CCCCGAAAACGGTCCAAGAGCAGCTACAAGAACAACTCCAGCAGC





AGCAGCTCATGGGAATCCAGCTCAGAAACGTCTGTCTCCAGCTCG





CAAGAGTCCAAGCGGGGCACAGTCTCCACCCCGTTTTCCAATGCC





ATGCATAAACAAAGTTTTTATTTTCCCTGA






AAL37160.1
AF315077_1
ATGTTTCTCGGTAAACTTTACAGAAAGAAAAGGAAACTGCTACTGC
105




AAGCTGTGCGAGCTCCACAGGCGCCATCTTCCATGAGCTCCTCCT





GGCGAGTGCCCCGCGGCGATGTCTCCGCCCGCGAGCTATGTTGG





TACCGCTCAGTTCGAGAGAGCCACGATGCTTTTTGTGGCTGTCGT





GATCCTGTTTTTCATCTTTCTCGTCTGGCTGCACGTTCTAACCATCA





GGGACCTCCGACGCCCCCCACGGACGAGCGCCCGTCGGCGTCTA





CCCCAGTGAGGCGCCTGCTGCCGCTGCCCTCCTACCCCGGCGAG





GGTCCCCAGGCTAGATGGCCTGGTGGAGATGGAGAAGGCGCTGG





TGACGCCCGCGGAGGCGCTGGAGATGGCGGCGCCCGCGCAGGC





GAAGAAGAGTACCGGCCCGAAGACCTCGACGAGCTGTTCGGCGC





TACCGAACAAGAACAGTAA






AAL37161.1
AF315077_2
ATGCCAGTTATCTGGGCGGGCATGGGCACGGGGGGCCAAAACTA
106




CGCCGTCCGCTCAGATGACTTTGTAGTAGACAAGGGCTTCGGGGG





CTCCTTCGCTACAGAGACTTTCTCCTTGAGAGTACTGTATGACCAG





CACCAGAGGGGCTTTAACCGGTGGTCCCACACCAACGAGGACCTA





GACCTTGCCCGTTACAGGGGATGCAAATGGACCTTTTACAGACAC





CCAGACACTGACTTTATAGTGTACTTCACTAACAATCCCCCCATGA





AAACTAACCAGTACACTGCCCCTCTCACCACTCCTGGAATGCTCAT





GAGAAGCAAATATAAGATACTAATACCTAGTTTTAAAACAAAACCCA





AGGGAAAAAAGACAATAAGCTTCAGAGCCAGACCCCCAAAACTAT





TCCAAGACAAGTGGTACACTCAACAAGACCTCTGCCCTGTGCCCC





TCATCCAACTGAACTTAACCGCAGCTGATTTCACACATCCGTTCGG





CTTACCACTAACTGACTCTCCTTGCGTAAGGTTCCAAGTCCTCGGA





GACTTGTACAATAACTGTCTCAATATAGACCTTCCGCAATTTGATGA





CAAGGGTACAATTTCAGACGCATCCTCTTACAGTAGAGATAATAAG





CAGCAGTTAGAAGAATTATATAAAACTCTATTTGTTAAAAAGGGCTG





CGGACACTACTGGCAAACATTCATGACCAATAGCATGGTAAAAGCA





CACATAGATGCTGCACAGGCACAAAACCATCAACAAGACACCTCA





GGCCCTCAAAGTGCAAAAGATCCATTTCCAACAAAACCTGACAGAA





ACCAATTTGAACAATGGAAAAACAAATTCACAGACCCCAGAGACAG





CAACTTTCTCTTTGCCACTTATCACCCAGAAAACATTACACAGACTA





TCAAAACAATGAGAGACAATAACTTTGCTCTAGAAACTGGAAAGAA





TGACCTTTATGGTGATTATCAGGCCCAGTATACTAGAAACACTCAC





CTTCTAGACTACTACCTGGGCTTCTACAGCCCCATATTCTTGTCCA





GTGGCAGATCCAATACTGAATTCTTTACTGCCTACAGAGACATAAT





ATACAATCCACTACTAGACAAAGGCACAGGTAATATGATTTGGTTC





CAATACCACACAAAGACTGACAACATATTTAAAAAACCAGAGTGCC





ACTGGGAAATACTAGACATGCCCCTGTGGGCCCTCTGCAACGGCT





ACAAAGAGTACCTAGAGAGCCAAATAAAATATGGTGATATCTTAGT





AGAAGGCAAAGTCCTCATAAGATGCCCATACACCAAACCTCCCCTA





GCAGACCCCAACAACAGTCTAGCAGGATATGTAGTCTACAACACA





AACTTTGGACAAGGCAAGTGGATCGACGGCAAGGGCTACATACCC





CTAAGACACAGGAGCAAGTGGTATGTCATGCTCATGTACCAGACG





GACGTACTCCATGACCTAGTGACTTGTGGACCCTGGCAATACAGA





GACGATAATAAGAACTCTCAACTGATAGCCAAGTATAGATTTACTTT





CTACTGGGGAGGTAACATGGTACATTCTCAGGTCATCAGGAACCC





GTGCAAAGACACCCAAGTATCCGGCCCCCGTCGACAGCCTAGAGA





GATACAAGTCGTTGACCCGCAACTCATCACCCCGCCGTGGGTCCT





CCACTCGTTCGACCAGAGACGAGGAATGTTTACTGAGACAGCTAT





CAGACGTCTGCTCAGACAACCACTACCTGGCGAGTATGCTCCTCC





AGCACTCAGGGTCCCGCTCCTCTTTCCCTCCTCAGAGTTCCAACG





AGAGGGAGAAGGTGCAGAAAGCGACTTATCTTCCCCGGCCAAAAG





ACCACGACTCTGGCAAGAAGAGGACAGCGAGACGCAGACGCAGT





CCTCGGAGGGGCCGGCGGAGACGACGAGGGAGCTCCTCGAGCG





AAAGCTCAGAGAGCAGCGAGTCCTCAACCTCCAACTCCAGCAATT





CGCCGTACAACTCGCCAAGACCCAAGCGAACCTCCACATAAACCC





CTTATTATACTCCCAGCAGTAA






AAL37162.1
AF315077_3
ATGCTCCTCCAGCACTCAGGGTCCCGCTCCTCTTTCCCTCCTCAG
107




AGTTCCAACGAGAGGGAGAAGGTGCAGAAAGCGACTTATCTTCCC





CGGCCAAAAGACCACGACTCTGGCAAGAAGAGGACAGCGAGACG





CAGACGCAGTCCTCGGAGGGGCCGGCGGAGACGACGAGGGAGC





TCCTCGAGCGAAAGCTCAGAGAGCAGCGAGTCCTCAACCTCCAAC





TCCAGCAATTCGCCGTACAACTCGCCAAGACCCAAGCGAACCTCC





ACATAA






CAF05717.1
AJ620212.1
ATGTACTTTTCCAGAAAAAGAAGACCCAAGAAGGAGAGGCCGCTG
108




CCACTGCGATACGTGTGTGGCCTACCGCCTAGCAGGCCTGATCCG





ATGAGCTGGCGTCCACCTGCCCACGATGTCCCAGGACAAGAGGG





CCTGTGGTACCGATCAGTTTTTACTTCTCATGGCGCTTTTTGTGGT





TGCGGTGATTTTGTGGGTCATCTTCAGAGACTTAGCGAACGCCTG





GGTAGACCCCAACCACCAAGACCACCGGGCGAGCCGCCGGGCCC





TGCTGTGAGAGTTCTGCCTGCCCTGCCGCCTCCAGTACCTGAACC





AAGAAGACACGTCCAGAGAGAGAACCCGGGATGTGGTGGTGGAG





ACGCCGCAGATGGAGGGCCCCATGGAGAAGGAGGCGATGGAGAC





GACGCAGACCTCGGACCAGAAGATTTAGACGAGCTGCTCGACGTC





CTAGACGCCCCAGAGTAA






CAF05718.1
AJ620212.1
ATGTGGTGGTGGAGACGCCGCAGATGGAGGGCCCCATGGAGAAG
109




GAGGCGATGGAGACGACGCAGACCTCGGACCAGAAGATTTAGAC





GAGCTGCTCGACGTCCTAGACGCCCCAGAGTAAGGAGACCTCGG





CGCCGCAGGGGGTGGGCTCGTAGATATAGACTTAGAAGGAGGCG





AAGGAGGAGAAGAAGGAGAAAGCTTATACTAACACAATGGCAGCC





AGCAAAAATAAGAAAATGTCTAGTAATAGGTTATCTTGCTCTAGTAC





TATGTGGGAACGGGACATTCAGTAAAAACTATGCCTCCCACTCAGA





TGACTATGTACAGAAAGGACCCTTTGGAGGGGGACTGAGCAGCAT





GAGATTTAACATGAGAATACTATATGATCAATTTAAAAGACACCTTA





ACTTCTGGACACACACAAACCAGGACCTAGACCTAGTTAGATACAG





AGGCTGCACCATGACATTTTATAGACACCCAGAGGTGGACTTCATA





GTAAAATTCAACAGAAAACCTCCATTCCTAGACACAATAGTATCAG





GTCCAGCCATGCACCCAGGCATGCTAATGACAACAAAACACAAAA





TACTAGTAAAAAGCTTTAAAACAAAACCCAAAGGAAAAGGCACAGT





AAAGGTGCGCATTCGCCCCCCCACACTCTTTGACGACCGTTGGTA





CTTTCAACATGACATCTGCAAAACCACACTGTTCACCATTAGCGCA





ACACCATGTGACCTGCGGTTTCCGTTCTGCTCACCACAAACTGACA





ACCCTTGCGTCAACTTCCTAGTTCTTGCAGGAGTGTATAACGGCAA





ACTTAGCATAGAACCCACAAACGTAGAATCACAATATAATTCACTA





CTTTCAGCTATAGAGACACACACCCAAGGCACTCTATTTAATACAT





TTAAAACACCAGAAATGATAAAGTGCCCCCCAGCAGTAAAAGCCC





CAGAAACTGGAGACATATCCACAAACTGCTACAAAAAACTAGACAT





CGCCTGGGGAGACACTATATGGAACCAAAGCACCATAGGCAACTT





TAAAAAGAACACAGAGAACTTGTGGAATGCAAGACACAATCAAACA





ATGACTGGTAGCAAATACCTAAACTACAGAACAGGAATATACAGTG





CCATATTCCTTTCAGCAGGCAGACTGTCACCAGACTTTCCAGGACT





ATACAATGACATAGTATACAATCCCACCACAGACGAAGGCATAGGA





AACATTGTGTGGATAGACTGGTGTACAAAAGCAGACTGCAACTTCA





ATGAGACACAGTCCAAAGGAGTAATAAAAGACATTCCACTGTGGG





CAGCACTGTTTGGCTATGTAGACTTTCTAAAAAAGACATTTAAAGA





CGACCAGCTAGACAAAACTGCCAGACTCACTCTCATAAGCCCCTAT





ACAAAGCCTCAACTAATAGGACCTACACAACCCAACAAAGGGTTTG





TTCCGTACGACTACAACTTTGGCAGAGCACACATGCCCTCCGGAG





AATCCTACATACCTATGTACTACAGATTTAGATGGTACATCTGCCTA





TTTCACCAACAAAAGTTTATAGACGACATTGTAAGCAGCGGGCCCT





TCGCATACCACGGCTCACAGCCCTCAGCAACTCTCACCACTAAATA





CAAATTCCACTTTCTCTTTGGGGGCAACCCCGTTCCCCAACAGACT





GTCAGAGACCCTTGTAACCAACCAGTCTTTGACATTCCCGGAGCC





GGTGGACTCCCTCGTCCGATACAAGTCGTTGACCCGAAATACGTC





AACGAAGGCTACACGTTCCACGCCTGGGACTTCCGTAGAGGGCTC





TTTGGCCAAGCAGCTATTAAAAGAGTGTCGGGAGAACAAACAAAT





GCTTCACTTTATTCATCAGGTCCAAAACGGCCAAGAACAGAAATTC





CTCCAGAAAATGCAGAAGAAGGCTCATATTCCAGGGAACAAAAAC





TCCAGCCCTGGCTCGACTCGAGCGACCAGGAAGAGAGCGAGACA





GAAGCCCCAGAAGAAGAAGCGACCTCGCCGCCGTCGCTACAGCT





CCAGCTCAAGCAGCAGATCAGGGAGCAGCGACAACTCAGATGTG





GAATCCAACACCTCTTCCAGCAACTAGTGAAAACCCAGCAAAACTT





GCATATCGACCCATGCCTACAATAG






CAF05719.1
AJ620213.1
ATGTACTTTTCCAGAAAAAGAAGACCCAAGAAGGAGAGGCCGCTG
110




CCACTGCGATACGTGTGTGGCCTACCGCCTAGCAGGCCTGATCCG





ATGAGCTGGCGTCCACCTGCCCACGATGTCCCAGGACAAGAGGG





CCTGTGGTACCGATCAGTTTTTACTTCTCATGGCGCTTTTTGTGGT





TGCGGTGATTTTGTGGGTCATCTTCAGAGACTTAGCGAACGCCTG





GGTAGACCCCAACCACCAAGACCACCGGGCGGACCGCCGGGCCC





TGCTGTGAGAGCTCTGCCTGCCCTGCCGCCTCCGGAACCTGAACC





AAGAAGACACGTCCAGAGAGAGAACCCGGGATGTGGTGGTGGAG





ACGCCGCAGATGGAGGGCCCCATGGAGAAGGAGGCGATGGAGAC





GACGCAGACCTCGGACCAGAAGATTTAGACGAGCTGCTCGACGTC





CTAGACGCCCCAGAGTAA






CAF05720.1
AJ620213.1
ATGTGGTGGTGGAGACGCCGCAGATGGAGGGCCCCATGGAGAAG
111




GAGGCGATGGAGACGACGCAGACCTCGGACCAGAAGATTTAGAC





GAGCTGCTCGACGTCCTAGACGCCCCAGAGTAAGGAGACCTCGG





CGCCGCAGGGGGTGGGCTCGTAGATATAGACTTAGAAGGAGGCG





GAGGAGGAGAAGAAGGAGAAAGCTTATACTAACACAATGGCAGTC





AGCAAAAATAAGAAAATGTCTAGTAATAGGTTATCTTGCTCTAGTAC





TATGTGGAAACGGGACATTCAGTAAAAACTATGCCTCGCACTCAGA





TGACTATGTACAGAAAGGACCCTTTGGAGGGGGACTAAGCAGCAT





GAGATTTAACATGAGAATACTATATGATCAATTTAAAAGACACCTTA





ACTTCTGGACACACACAAACCAGGACCTAGACCTAGTTAGATACAG





AGGCTGCACCATGACATTTTATAGACACCCAGAGGTGGACTTCATA





GTAAAATTCAACAGAAAACCTCCATTCCTAGACACAATAGTATCAG





GTCCAGCCATGCACCCAGGCATGCTAATGACAACAAAACACAAAA





TACTAGTAAAAAGCTTTAAAACAAAACCCAAAGGAAAAGGCACAGT





AAAGGTGCGCATTCGCCCCCCCACACTCTTTGACGACCGTTGGTA





CTTTCAACATGACATCTGCAAAACCACACTGTTCACCATTAGCGCA





ACACCATGTGACCTGCGGTTTCCGTTCTGCTCACCACAAACTGACA





ACCCTTGCGTCAACTTCCTAGTTCTTGCAGGAGTGTATAACGGCAA





ACTTAGCATAGAAGCCACAAAGTTAGAATCACAATATAATTCACTA





GTTTCATCTATAGAAATACCCACCCAAGGCACTCTATTTAATACATT





TAAAACACCAGAAATGATAAAGTGCCCCCCAGCAGTAAAAGCCTTA





GAACATTCAGACGTAAACAGAAGCTGCTACAAAAAACTAGACAGC





GCCTGGGGAGACACTATATGGAACCAGAACACCATACAGAACTTT





AAAGAAAACACAGACAAGTTGTGGGAAGCAAGAGGCAACCAAACA





ATGACTGGTAGCAAATACCTAAACTACAGAACAGGAATATACAGTG





CCATATTCCTTTCAGCAGGCAGACTGTCACCAGACTTTGGGGGAC





TATACAATGACATAGTATACAATCCCACCACAGACGAAGGCATAGG





AAACATTGTGTGGATAGACTGGTGTACAAAAGCAGACTGCAACTTC





AATGAGACACAGTCCAAAGGAGTAATAAAAGACATTCCACTGTGG





GCAGCACTGTTTGGCTATGTAGACTTTCTAAAAAAGACATTTAAAG





ACGAACAGCTAGACAAAATTGCCAGACTCACTCTCATAAGCCCCTA





TACAAAGCCTCAACTAATAGGACCTACACAACCCAACAAAGGGTTT





GTTCCGTACGACTACAACTTTGGCAGAGCACACATGCCCTCCGGA





GAATCCTACATACCTATGTACTACAGATTTAGATGGTACATCTGCC





TATTTCACCAACAAAAGTTTATAGACGACATTGTAAGCAGCGGGCC





CTTCGCATACCACGGCTCACAGCCCTCAGCAACTCTCACCACTAA





ATACAAATTCCACTTTCTCTTTGGGGGCAACCCCGTTCCCCAACAG





ACTGTCAGAGACTCTTGTAACCAACCAGTCTTTGACATTCCCGGAG





CCGGTGGACTCCCTCGTCCGATACAAGTCGTTGACCCGAAATACG





TCAACGAAGGCTACACGTTCCACGCCTGGGACTTCCGTAGAGGGC





TCTTTGGCCAAGCAGCTATTAAAAGAGTGTCGGGAGAACAAACAAA





TGCTTCACTTTATTCATCAGGTCCAAAACGGCCAAGAACAGAAATT





CCTCCACAAAATGCAGAAGAAGGCTCATATTCCAGGGAACAAAAA





CTCCAGCCCTGGCTCGACTCGAGCGACCAGGAAGAGAGCGAGAC





AGAAGCCCCAGAAGAAGAAGCGACCTCGCCACCGTCGCTACAGC





TCCAGCTCAAGCAGCAGATCAGGGAGCAGCGACAACTCAGATGTG





GAATCCAACACCTCTTCCAGCAACTAGTGAAAACCCAGCAAAACTT





GCATATCAATCCATGCCTACAGTAG






CAF05775.1
AJ620214.1
ATGTACTTTTCCAGAAAAAGAAGACCCAAGAAGGAGAGGCCGCTG
112




CCACTGCGATACGTGTGTGGCCTACCGCCTAGCAGGCCTGATCCG





ATGAGCTGGCGTCCACCTGCCCACGATGTCCCAGGACAAGAGGG





CCTGTGGTACCGATCAGTTTTTACTTCTCATGGCGCTTTTTGTGGT





TGCGGTGATTTTGTGGGTCATCTTCAGAGACTTAGCGAACGCCTG





GGTAGACCCCAACCACCAAGACCACCGGGCGGACCGCCGGGCCC





TGCTGTGAGAGCTCTGCCTGCCCTGCCGCCTCCGGAGCCTGAAC





CAAGAAGACACGTCCAGAGAGAGAACCCGGGATGTGGTGGTGGA





GACGCCGCAGATGGAGGGCCCCATGGAGAAGGAGGCGATGGAG





ACGACGCAGACCTCGGACCAGAAGATTTAGACGAGCTGCTCGACG





TCCTAGACGCCCCAGAGTAA






CAF05776.1
AJ620214.1
ATGTGGTGGTGGAGACGCCGCAGATGGAGGGCCCCATGGAGAAG
113




GAGGCGATGGAGACGACGCAGACCTCGGACCAGAAGATTTAGAC





GAGCTGCTCGACGTCCTAGACGCCCCAGAGTAAGGAGACCTCGG





CGCCGCAGGGGGTGGGCTCGTAGATATAGACTTAGAAGGAGGCG





GAGGAGGAGAAGAAGGAGAAAGCTTATACTAACACAATGGCAGCC





AGCAAAAATAAGAAAATGTCTAGTAATAGGTTATCTTGCTCTAGTAC





TATGTGGAAACGGGACATTCAGTAAAAACTATGCCTCGCACTCAGA





TGACTATGTACAGAAAGGACCCTTTGGAGGGGGACTAAGCAGCAT





GAGATTTAACATGAGAATACTATATGATCAATTTAAAAGACACCTTA





ACTTCTGGACACACACAAACCAGGACCTAGACCTAGTTAGATACAG





AGGCTGCACCATGACATTTTATAGACACCCAGAGGTGGACTTCATA





GTAAAATTCAACAGAAAACCTCCATTCCTAGACACAATAGTATCAG





GTCCAGCCATGCACCCAGGCATGCTAATGACAACAAAACACAAAA





TACTAGTAAAAAGCTTTAAAACAAAACCCAAAGGAAAAGGCACAGT





AAAGGTACGCATTCGCCCCCCCCACACTCTTTGA






CAF05777.1
AJ620214.1
ATGATAAAGTGCCCCCCAGCAGTAAAAGCCTTAGAACATTCAGAC
114




GTAAACAGAAACTGCTACAAAAAACTAGACAGCGCCTGGGGAGAC





ACTATATGGAACCAGAACACCATACAGAACTTTAAAGAAAACACAG





ACAAGTTGTGGGAAGCAAGAGGCAACCAAACAATGACTGGTAGCA





AATACCTAAACTACAGAACAGGAATATACAGTGCCATATTCCTTTCA





GCAGGCAGACTGTCACCAGACTTTGGGGGACTATACAATGACATA





GTATACAATCCCACCACAGGCGAAGGCATAGAAAACATTGTGTGG





ATAGACTGGTGTACAAAAGCAGACTGCAACTTCAATGAGACACAGT





CCAAAGGAGTAATAAAAGACATTCCACTGTGGGCAGCACTGTTTG





GCTATGTAGACTTTCTAAAAAAGACATTTAAAGACGAACAGCTAGA





CAAAATTGCCAGACTCACTCTCATAAGCCCCTATACAAAGCCTCAA





CTAATAGGACCTACACAACCCAACAAAGGGTTTGTTCCGTACGACT





ACAACTTTGGCAGAGCACACATGCCCTCCGGAGAATCCTACATAC





CTATGTACTACAGATTTAGATGGTACACCTGCCTATTTCACCAACA





AAAGTCTATAGACGACATTGTAAGCAGCGGGCCCTTCGCATACCA





CGGCTCACAGCCCTCAGCAACTCTCACCACTAAATACAAATTCCAC





TTTCTCTTTGGGGGCAACCCCGTTCCCCAACAGACTGTCAGAGAC





CCTTGTAACCAACCAATCTTTGACATTCCCGGAGCCGGTGGACTC





CCTCGTCCGATACAAGTCGTTGACCCGAAATACGTCAACGAAGGC





TACACGTTCCACGCCTGGGACTTCCGTAGAGGGCTCTTTGGCCAA





GCAGCTATTAAAAGAGTGTCGGGAGAACAAACAAATGCTTCACTTT





ATTCATCAGGTCCAAAACGGCCAAGAACAGAAATTCCTCCACAAAA





TGCAGAAGAAGGCTCATATTCCAGGGAACAAAAACTCCAGCCCTG





GCTCGACTCGAGCGACCAGGAAGAAAGCGAGACAGAAGCCCCAG





AAGAAGAAGCGACCTCGCCACCGTCGCTACAGCTCCAGCTCAAGC





AGCAGATCAGGGAGCAGCGACAACTCAGATGTGGAATCCAACACC





TCTTCCAGCAACTAGTGAAAACCCAGCAAAACTTGCATATCAACCC





ATGCCTACAATAG






CAF05721.1
AJ620215.1
ATGTACTTTTCCAGAAAAAGAAGACCCAAGAAGGAGAGGCCGCTG
115




CCACTGCGATACGTGTGTGGCCTACCGCCTAGCAGGCCTGATCCG





ATGAGCTGGCGTCCACCTGCCCACGATGTCCCAGGACAAGAGGG





CCTGTGGTACCGATCAGTTTTTACTTCTCATGGCGCTTTTTGTGGT





TGCGGTGATTTTGTGGGTCATCTTCAGAGACTTAGCGAACGCCTG





GGTAGACCCCAACCACCAAGACCACCGGGCGGACCGCCGGGCCC





TGCTGTGAGAGCTCTGCCTGCCCTGCCGCCTCCGGAGCCTGAAC





CAAGAAGACACGTCCAGAGAGAGAACCCGGGATGTGGTGGTGGA





GACGCCGCAGATGGAGGGCCCCATGGAGAAGAAGGCGATGGAGA





CGACGCAGACCTCGGGCCAGAAGATTTAGACGAGCTGCTCGACG





TCCTAGACGCCCCAGAGTAA






CAF05722.1
AJ620215.1
ATGTGGTGGTGGAGACGCCGCAGATGGAGGGCCCCATGGAGAAG
116




AAGGCGATGGAGACGACGCAGACCTCGGGCCAGAAGATTTAGAC





GAGCTGCTCGACGTCCTAGACGCCCCAGAGTAAGGAGACCTCGG





CGCCGCAGGGGGTGGGCTCGTAGATATAGACTTAGAAGGAGGCG





GAGGAGGAGAAGAAGGAGAAAGCTTATACTAACACAATGGCAGCC





AGCAAAAATAAGAAAATGTCTAGTAATAGGTTATCTCGCTCTAGTA





CTATGTGGAAACGGGACATTCAGTAAAAACTATGCCACGCACTCA





GATGACTATGTACAGAAAGGACCCTTTGGAGGGGGACTAAGCAGC





ATGAGATTTAACATGAGAATACTATATGATCAATTTAAAAGACACCT





TAACTTCTGGACACACACAAACCAGGACCTAGACCTAGTTAGATAC





AGAGGCTGCACCATGACATTTTATAGACACCCAGAGGTGGACTTC





ATAGTAAAATTCAACAGAAAACCTCCATTCCTAGACACAATAGTATC





AGGTCCAGCCATCCACCCAGGCATGCTAATGACAACAAAACACAA





AATACTAGTAAAAAGCTTTAAAACAAAACCCAAAGGAAAAGGCACA





GTAAAGGTGCGCATTCGCCCCCCCACACTCTTTGACGACCGTTGG





TACTTTCAACATGACATCTGCAAAACCACACTGTTCACCATTAGCG





CAACACCATGTGACCTGCGGTTTCCGTTCTGCTCACCACAAACTGA





CAACCCTTGCGTCAACTTCCTAGTTCTTGCAGGAGTGTATAACGGC





AAACTTAGCATAGAAGCCACAAAGTTAGAATCACAATATAATTCACT





AGTTTCATCTATAGAAATACCCACCCAAGGCACTCTATTTAATACAT





TTAAAACACCAGAAATGATAAAGTGCCCCCCAGCAGTAAAAGCCTT





AGAACATTCAGACGTAAACAGAAACTGCTACAAAAAACTAGACAGC





GCCTGGGGAGACACTATATGGAACCAGAACACCATACAGAACTTT





AAAGAAAACACAGACAAGTTGTGGGAAGCAAGAGGCAACCAAACA





ATGACTGGTAGCAAATACCTAAACTACAGAACAGGAATATACAGTG





CCATATTCCTTTCAGCAGGCAGACTGTCACCAGACTTTGGGGGAC





TATACAATGACATAGTATACAATCCCACCACAGACGAAGGCATAGG





AAACATTGTGTGGATAGACTGGTGTACAAAAGCAGACTGCAACTTC





AATGAGACACAGTCCAAAGGAGTAATAAAAGACATTCCACTGTGG





GCAGCACTGTTTGGCTATGTAGACTTTCTAAAAAAGACATTTAAAG





ACGAACAGCTAGACAAAATTGCCAGACTCACTCTCATAAGCCCCTA





TACAAAGCCTCAACTAATAGGACCTACACAACCCAACAAAGGGTTT





GTTCCGTACGACTACAACTTTGGCAGAGCACACATGCCCTCCGGA





GAATCCTACATACCTATGTACTACAGATTTAGATGGTACATCTGCC





TATTTCACCAACAAAAGTTTATAGACGACATTGTAAGCAGCGGGCC





CTTCGCATACCACGGCTCACAGCCCTCAGCAACTCTCACCACTAA





ATACAAATTCCACTTTCTCTTTGGGGGCAACCCCGTTCCCCAACAG





ACTGTCAGAGACCCTTGTAACCAACCAGTCTTTGACATTCCCGGAG





CCGGTGGACTCCCCCGTCCGATACAAGTCGTTGACCCGAAATACG





TCAACGAAGGCTACACGTTCCACGCCTGGGACTTCCGTAGAGGGC





TCTTTGGCCAAGCAGCTATTAAAAGAGTGTCGGGAGAACAAACAAA





TGCTTCACTTTATTCATCAGGTCCAAAACGGCCAAGAACAGAAATT





CCTCCACAAAATGCAGAAGAAGGCTCATATTCCAGGGAACAAAAA





CTCCAGCCCTGGCTCGACTCGAGCGACCAGGAAGAGAGCGAGAC





AGAAGCCCCAGAAGAAGAAGCGACCTCGCCACCGTCGCTACAGC





TCCAGCTCAAGCAGCAGATCAGGGAGCAGCGACAACTCAGATGTG





GAATCCAACACCTCTTCCAGCAACTAGTGAAAACCCAGCAAAACTT





GCATATCAATCCATGCCTACAGTAG






CAF05723.1
AJ620216.1
ATGTACTTTTCCAGAAAAAGAAGACCCAAGAAGGAGAGGCCGCTG
117




CCACTGCGATACGTGTGTGGCCTACCGCCTAGCAGGCCTGATCCG





ATGAGCTGGCGTCCACCTGCCCACGATGTCCCAGGACAAGAGGG





CCTGTGGTACCGATCAGTTTTTACTTCTCATGGCGCTTTTTGTGGT





TGCGGTGATTTTGTGGGTCATCTTCAGAGACTTAGCGAACGCCTG





GGTAGACCCCAACCACCAAGACCACCGGGCGAACCGCCGGGCCC





TGCTGTGAGAGTTCTGCCTGCCCTGCCGCCTCCGGTACCTGAACC





AAGAAGACACGTCCAGAGAGAGAACCCGGGATGTGGTGGTGGAG





ACGCCGCAGATGGAGGGCCCCATGGAGAAGGAGGCGATGGAGAC





GACGCAGACCTCGGACCAGAAGATTTAGACGAGCTGCTCGACGTC





CTAGACGCCCCAGAGTAA






CAF05724.1
AJ620216.1
ATGTGGTGGTGGAGACGCCGCAGATGGAGGGCCCCATGGAGAAG
118




GAGGCGATGGAGACGACGCAGACCTCGGACCAGAAGATTTAGAC





GAGCTGCTCGACGTCCTAGACGCCCCAGAGTAAGGAGACCTCGG





CGCCGCAGGGGGTGGGCTCGTAGATATAGACTTAGAAGGAGGCG





AAGGAGGAGAAGAAGGAGAAAGCTTATACTAACACAATGGCAGCC





AGCAAAAATAAGAAAATGTCTAGTAATAGGTTATCTTGCTCTAGTAC





TATGTGGGAACGGGACATTCAGTAAAAACTATGCCTCCCACTCAGA





TGACTATGTACAGAAAGGACCCTTTGGAGGGGGACTAAGCAGCAT





GAGATTTAACATGAGAATACTATATGATCAATTTAAAAGACACCTTA





ACTTCTGGACACACACGAACCAGGACCTAGACCTAGTTAGATACA





GAGGCTGCACCATGACATTTTATAGACACCCAGAGGTGGACTTCA





TAGTAAAATTCAACAGAAAACCTCCATTCCTAGACACAATAGTATCA





GGTCCAGCCATGCACCCAGGCATGCTAATGACAACAAAACACAAA





ATACTAGTAAAAAGCTTTAAAACAAAACCCAAAGGAAAAGGCACAG





TAAAGGTGCGCATTCGCCCCCCCACACTCTTTGACGACCGTTGGT





ACTTTCAACATGACATCTGCAAAACCACACTGTTCACCATTAGCGC





AACACCATGTGACCTGCGGTTTCCGTTCTGCTCACCACAAACTGAC





AACCCTTGCGTCAACTTCCTAGTTCTTGCAGGAGTGTATAACGGCA





AACTTAGCATAGAACCCACAAACGTAGAATCACAATATAATTCACTA





CTTTCAGCTATAGAGACGAACACCCAAGGCACTCTATTTAATACAT





TTAAAACACCAGAAATGATAAAGTGCCCCGCAGCAGGAAAAGCCC





CAGAAACTGGAGACATATCCACAAACTGCTACAAAAAACTAGACAG





CGCCTGGGGAGACACTATATGGAACCAAAACACCATAGCCAACTT





TAAAAAGAACACAGACAACTTGTGGAATGCAGGACACAATCAAACA





ATGACTGGTAGCAAATACCTAAACTACAGAACAGGAATATACAGTG





CCATATTCCTTTCAGCAGGCAGACTGTCACCAGACTTTCCAGGACT





ATACGATGACATAGTATACAATCCCACCACAGACGAAGGCATAGG





AAACATTGTGTGGATAGACTGGTGTACAAAAGCAGACTGCAACTTC





AATGAGACACAGTCCAAAGGAGTAATAAAAGACATTCCACTGTGG





GCAGCACTGTTTGGCTATGTAGACTTTCTAAAAAAGACATTTAAAG





ACGACCAGCTAGACAAAACTGCCAGACTCACTCTCATAAGCCCCT





ATACAAAGCCTCAACTAATAGGACCTACACAACCCAACAAAGGGTT





TGTTCCGTACGACTACAACTTTGGCAGAGCACACATGCCCTCCGG





AGAATCCTACATACCTATGTACTACAGATTTAGATGGTACATCTGC





CTATTTCACCAACAAAAGTTTATAGACAACATTGTAAGCAGCGGGC





CCTTCGCATACCACGGCTCACAGCCCTCAGCAACTCTCACCACTA





AATACAAATTCCACTTTCTCTTTGGGGGCAACCCCGTTCCCCAACA





GACTGTCAGAGACCCTTGTAACCAACCAGTCTTTGACATTCCCGGA





GCCGGTGGACTCCCTCGTCCGATACAAGTCGTTGACCCGAAATAC





GTCAACGAAGGCTACACGTTCCACGCCTGGGACTTCCGTAGAGGG





CTCTTTGGCCAAGCAGCTATTAAAAGAGTGTCGGGAGAACAAACA





AATGCTTCACTTTATTCATCAGGCCCAAAACGGCCAAGAACAGAAA





TTCCTCCAGAAAATGCAGAAGAAGGCTCATATTCCAGGGAACAAAA





ACTCCAGCCCTGGCTCGACTCGAGCGACCAGGAAGGGAGCGAGA





CAGAAGCCCCAGAAGAAGAAGCGACCTCGCCGCCGTCGCTACAG





CTCCAGCTCAAGCAGCAGATCAGGGAGCAGCGACAACTCAGATGT





GGAATCCAACACCTCTTCCAGCAACTAGTGAAAACCCAGCAAAACT





TGCATATCAACCCATGCCTACAATAG






CAF05725.1
AJ620217.1
ATGTACTTTTCCAGAAAAAGAAGACCCAAGAAGGAGAGGCCGCTG
119




CCACTGCGATACGTGTGTGGCCTACCGCCTAGCAGGCCTGATCCG





ATGAGCTGGCGTCCACCTGCCCACGATGTCCCAGGACAAGAGGG





CCTGTGGTACCGATCAGTTTTTACTTCTCATGGCGCTTTTTGTGGT





TGCGGTGATTTTGTGGGTCATCTTCAGAGACTTAGCGAACGCCTG





GGTAGACCCCAACCACCAAGACCACCGGGCGGACCGCCGGGCCC





TGCTGTGAGAGCTCTGCCTGCCCTGCCGCCTCCGGAGCCTGAAC





CAAGAAGACACGTCCAGAGAGAGAACCCGGGATGTGGTGGTGGA





GACGCCGCAGATGGAGGGCCCCATGGAGAAGGAGGCGATGGAG





ACGACGCAGACCTCGGACCAGAAGATTTAGACGAGCTGCTCGACG





TCCTAGACGCCCCAGAGTAA






CAF05726.1
AJ620217.1
ATGTGGTGGTGGAGACGCCGCAGATGGAGGGCCCCATGGAGAAG
120




GAGGCGATGGAGACGACGCAGACCTCGGACCAGAAGATTTAGAC





GAGCTGCTCGACGTCCTAGACGCCCCAGAGTAAGGAGACCTCGG





CGCCGCAGGGGGTGGGCTCGTAGATATAGACTTAGAAGGAGGCG





GAGGAGGAGAAGAAGGAGAAAGCTTATACTAACACAATGGCAGCC





AGCAAAAATAAGAAAATGTCTAGTAATAGGTTATCTTGCTCTAGTAC





TATGTGGAAACGGGACATTCAGTAAAAACTATGCCTCGCACTCAGA





TGACTATGTACAGAAAGGACCCTTTGGAGGGGGACTAAGCAGCAT





GAGATTTAACATGAGAGTACTATATGATCAATTTAAAAGACACCTTA





ACTTCTGGACACACACAAACCAGGACCTAGACCTAGTTAGATACAG





AGGCTGCACCATGACATTTTATAGACACCCAGAGGTGGACTTCATA





GTAAAATTCAACAGAAAACCTCCATTCCTAGACACAATAGTATCAG





GTCCAGCCATGCACCCAGGCATGCTAATGACAACAAAACACAAAA





TACTAGTAAAAAGCTTTAAAACAAAACCCAAAGGAAAAGGCACAGT





AAAGGTGCGCATTCGCCCCCCCACACTCTTTGACGGCCGTTGGTA





CTTTCAACATGACATCTACAAAACCACACTGTTCACCATTAGCGCA





ACACCGTGTGACCTGCGGTTTCCGTTCTGCTCACCACAAACTGAC





AACCCTTGCGTCAACCTCCTAGTTCTTGCAGGAGTGTATAACGGCA





AACTTAGCATAGAAGCCACAAAGTTAGAATCACAATATAATTCACTA





GTTTCATCTATAGAAATACCCACCCAAGGCACTCTATTTAATACATT





TAAAACACCAGAAATGATAAAGTGCCCCCCAGCAGTAAAAGCCTC





AGAACATTCAGACGTAAACAGAAACTGCTACAAAAAACTAGACAGC





GCCTGGGGAGACACTATATGGAACCCGAGCACCATACAGAACTTT





AAAGAAAACACAGAGAAGTTGTGGGAAGCAAGAGGCAACCAAACA





ATGACTGGTAGCAAATACCTAAACTACAGAACAGGAATATACAGTG





CCATATTCCTTTCAGCAGGCAGACTGTCACCAGACTTTGGGGGAC





TATACAATGACATAGTATACAATCCCACCACAGACGAAGGCATAGG





AAACATTGTGTGGATAGACTGGTGTACAAAAGCAGACTGCAACTTC





AATGAGACACAGTCCAAAGGGGTAATAAAAGACATTCCACCGTGG





GCAGCACTGTTTGGCTATGTAGACTTTCTAAAAAAGACATTTAAAG





ACGAACAGCTAGACAAAATTGCCAGACTCACTCTCATAAGCCCCTA





TACAAAGCCTCAACTAATAGGACCTACACAACCCAACAAAGGGTTT





GTTCCGTACGACTACAACTTTGGCAGAGCACACATGCCCTCCGGA





GAATCCTACATACCTATGTACTACAGATTTAGATGGTACATCTGCC





TATTTCACCAACAAAAGTTTATAGACGACATTGTAAGCAGCGGGCC





CTTCGCATACCACGGCTCACAGCCCTCAGCAACTCTCACCACTAA





ATACAAATTCCACTTTCTCTTTGGGGGCAACCCCGTTCCCCAACAG





ACTGTCAGAGACCCTTGTAACCAACCAGTCTTTGACATTCCCGGAG





CCGGTGGACTCCCTCGTCCGATACAAGTCGTTGACCCGAAATACG





TCAACGAAGGCTACACGTTCCACGCCTGGGACTTCCGTAGAGGGC





TCTTTGGCCAAGCAGCTATTAAAAGAGTGTCGGGAGAACAAACAAA





TGCTTCACTTTATTCATCAGGTCCAAAACGGCCAAGAACAGAAATT





CCTCCACAAAATGCAGAAGAAGGCTCATATTCCAGGGAACAAAAA





CTCCAGCCCTGGCTCGACTCGAGCGACCAGGAAGAGAGCGAGAC





AGAAGCCCCAGAAGAAGAAGCGACCTCGCCACCGTCGCTACAGC





TCCAGCTCAAGCAGCAGATCAGGGAGCAGCGACAACTCAGATGTG





GAATCCAACACCTCTTCCAGCAACTAGTGAAAACCCAGCAAAACTT





GCATATCAACCCATGCCTACAATAG






CAF05727.1
AJ620218.1
ATGCGTTTTCGCAGGGTTGCCCAGAAAAGGAAAGTGCTTTTGCAA
121




ACTGTGCCAGCTGCAAAGAAGGCTAGGCGGCTTCTAGGTATGTGG





CAGCCCCCCACGCACAATGTCCCGGGCATCGAGAGAAACTGGTA





CGAGAGCTGTTTTAGATCCCACGCTGCTGTTTGTGGCTGTGGCGA





TTTTGTTGGCCATCTTAATCATCTGGCAACTACTCTGGGTCGTCCT





CCGCGTCCTGGGCCCCCAGGCGGACCCCGCACGCCGCAAATAAG





AAACCTGCCAGCGCTCCCGGCGCCCCAGGGCGAGCCCGGTGACA





GAGCGTCATGGCGTGGGGCTTCTGGGGCCGACGCCGCCGGTGG





AGACGATGGAGAGCGCGGCGCAGACGGTGGAGACCCCGCAGAC





GTAGGAGACGACGCCCTCCTCGCCGCTTTCGAGCTCGTCGAAGA





GTAA






CAF05728.1
AJ620218.1
ATGGCGTGGGGCTTCTGGGGCCGACGCCGCCGGTGGAGACGAT
122




GGAGAGCGCGGCGCAGACGGTGGAGACCCCGCAGACGTAGGAG





ACGACGCCCTCCTCGCCGCTTTCGAGCTCGTCGAAGAGTAAGGAG





GCGCGGGGGGAGGTGGCGCAGACGCTACAGAAAATGGCGACGG





GGCAGACGCAGACGGACTCACAGAAAAAAGATAGTCATAAAACAG





TGGCAACCTAACTTTATAAGACGCTGCTACATCATAGGGTACTTAC





CACTTATATTCTGCGGCGAAAATACAACCGCCCAGAACTTTGCCAC





TCACTCGGACGACATGATAAGCAAAGGACCGTACGGGGGGGGCA





TGACTACCACCAAATTCACTCTGAGAATACTGTACGACGAGTTTAC





CAGGTTTATGAACTTTTGGACTGTCAGTAACGAAGACCTAGACCTG





TGTAGATACGTGGGCTGCAAACTAATATTTTTTAAACACCCCACGG





TGGACTTTATAGTACAGATAAACACTCAGCCTCCTTTCTTAGACAC





GCACCTCACCGCGGCCAGCATACACCCGGGCATCATGATGCTCA





GCAAGAGACACATACTAATACCCTCTCTAAAGACCCGGCCCAGCA





GAAAACACAGGGTGGTCGTCAGGGTGGGCGCCCCAAGACTTTTTC





AGGACAAGTGGTACCCCCAGTCAGACCTGTGTGACACAGTTCTGC





TTTCCATATTCGCAACCGCCTGCGACTTGCAATATCCGTTCGGCTC





ACCACTAACTGACAACCCTTGCGTCAACTTCCAGATCCTGGGGCC





CCAGTACAAAAAACACCTTAGTATTAGCTCCACTATGGATGACACT





AACAAAGCACATTATGAAGAAAACTTATTTAAGAAAATTGAACTATA





CAACACCTTTCAAACCATAGCTCAGCTTAAAGAGACAGGAACAATT





TCAGGCATGCAACCTTCTTGGACTGAAGTCCAGAATTCAAAAACAC





TTAATGAAACAGGTAGCAATGCCACTGAGAGTAGAGACACTTGGTA





TAAAGGAAATACATACAACGACAAGATACACCAGTTAGCAGAAAAA





ACCAGAAAGAGATTTAAAAATGCAACAAAAGCAGCACTACCAAACT





ACCCCACAATAATGTCCGCAGACTTATATGAATACCACTCAGGCAT





ATACTCCAGCATATATCTATCAGCTGGCAGGAGCTACTTTGAAACC





ACCGGGGCCTACTCTGACATTATATACAACCCTTTCACAGACAAGG





GCACAGGCAACATAATCTGGATAGACTACCTCACAAAAGAAGACA





CCATTTTTGTAAAAAACAAAAGCAAATGCGAGATAATGGACATGCC





CCTGTGGGCGGCCTGCACAGGATACACAGAGTTTTGTGCAAAGTA





TACAGGCGACTCTGCCATTATTTACAATGCAAGAATAGTCATAAGA





TGCCCATACACTGAGCCCATGTTAATAGACCACTCAGACCCAAACA





AAGGCTTCGTTCCCTACTCATTTAGCTTTGGCAACGGAAAGATGCC





CGGAGGCAGCTCCAACGTGCCCATAAGAATGAGAGCCAAGTGGTA





CGTGAACATATTCCACCAAAAAGAAGTATTGGAGAGCATAGTACAG





TCCGGACCGTTTGGGTACAAGGGCGACATAAAATCAGCTGTACTA





GCCATGAAATACAGATTTCACTGGAAGTGGGGCGGAAACCCTATA





TCCAAACAGGTCGTCAGGAATCCCTGCTCCAACTCCAGCTCATCC





GCGGCCCATAGAGGACCTCGCAGCGTACAAGCGGTTGACCCGAA





ATACAATACCCCAGAGGTCACGTGGCACTCGTGGGACATTAGACG





AGGACTCTTTGGCAAAGCAGGTATTAAAAGAATGCAACAGGAATCA





GATGCTCTTTACATTCCTCCAGGACCAATCAAGAGACCTCGCAGG





GACACCAACGCCCAAGACCCAGAAGAGCAAAACGAAAGCTCAGGT





TTCAGAGTCCAGCAGCGACTCCCGTGGGTCCACTCCAGCCAAGAG





ACGCAAAGCTCCCAAGAAGAGACGGAGGCGCAGGGGTCGGTACA





AGACCAACTACTCCTCCAGCTCCGAGAGCAGCGAGTTCTCCGACT





CCAGCTCCAGCAACTCGCAACCCAAGTCCTCAAAGTCCAAGCAGG





GCACAGCCTACACCCCCTATTATCTTCCCAAGCATAA






CAF05729.1
AJ620219.1
ATGCGTTTTCGCAGGGTTGCCCAGAAAAGGAAAGTGCTTTTGCAA
123




ACTGTGCCAGCTGCAAAGAAGGCTAGGCGGCTTCTAGGTATGTGG





CAGCCCCCCACGCATAATGTCCCGGGCATCGAGAGAAACTGGTAC





GAGAGCTGTTTTAGATCCCACGCTGCTGTTTGTGGCTGTGGCGAT





TTTGTTGGCCATCTTAATCATCTGGCAACTACTCTGGGTCGTCCTC





CGCGTCCTGGGCCCCCAGGCGGACCCCGCACGCCGCAAATAAGA





AACCTGCCAGCGCTCCCGGCGCCCCAGGGCGAGCCCGGTGACA





GAGCGTCATGGCGTGGGGCTTCTGGGGCCGACGCCGCCGGTGG





AGACGATGGAGAGCGCGGCGCAGACGGTGGAGACCCCGCAGAC





GTAGGAGACGACGCCCTCCTCGCCGCTTTCGAGCTCGTCGAAGA





GTAA






CAF05730.1
AJ620219.1
ATGGCGTGGGGCTTCTGGGGCCGACGCCGCCGGTGGAGACGAT
124




GGAGAGCGCGGCGCAGACGGTGGAGACCCCGCAGACGTAGGAG





ACGACGCCCTCCTCGCCGCTTTCGAGCTCGTCGAAGAGTAAGGAG





GCGCGGGGGGAGGTGGCGCAGACGCTACAGAAAATGGCGACGG





GGCAGACGCAGACGGACTCACAGAAAAAAGATAGTCATAAAACAG





TGGCAACCTAACTTTATAAGACGCTGCTACATCATAGGGTACTTAC





CACTTATATTCTGCGGCGAAAATACAACCGCCCAGAACTTTGCCAC





TCACTCGGACGACATGATAAGCAAAGGACCGTACGGGGGGGGCA





TGACTACCACCAAATTCACTCTGAGAATACTGTACGACGAGTTTAC





CAGGTTTATGAACTTTTGGACTATCAGTAACGAAGACCTAGACCTG





TGTAGATACGTGGGCTGCAAACTAATATTTTTTAAACACCCCACGG





TGGACTTTATAGTACAGATAAACACTCAGCCTCCTTTCTTAGACAC





GCACCTCACCGCGGCCAGCATACACCCGGGCATCATGATGCTCA





GCAAGAGACACATACTAATACCCTCTCTAAAGACCCGGCCCAGCA





GAAAACACAGGGTGGTCGTCAGGGTGGGCGCCCCAAGACTTTTTC





AGGACAAGTGGTACCCCCAGTCAGACCTGTGTGACACAGTTCTGC





TTTCCATATTCGCAACCGCCTGCGACTTGCAATATCCGTTTGGCTC





ACCACTAACTGACAACCCTTGCGTCAACTTCCAGATCCTGGGGCC





CCAGTACAAAAAACACCTTAGTATTAGCTCCACTATGGATGAAAGT





AACATATCACATTATAAAGAAAACTTATTTAAGAAAACTGAACTATA





CAACACCTTTCAAACCATAGCTCAGCTTAAAGAGACAGGAAACATT





TCAGGCATTAGTCCTAATTGGACTGAAGTCCAGAATTCAACAACAC





TTAATCAAACAGGTGACAATGCCACTAACAGTAGAGACACTTGGTA





TAAAGGAAATACATACAACCACAAGATATGCGACTTAGCAGAAAAA





ACCAGAAACAGATTTAAAAATGCAACCAAAGCAGCACTACCAAACT





ACCCCACAATAATGTCCACAGACCTATATGAATACCACTCAGGCAT





ATACTCCAGCATATATTTATCAGCTGGCAGGAGCTACTTTGAAACC





ACCGGGGCCTACTCTGACATTATATACAACCCTTTCACAGACAAAG





GCACAGGCAACATAATCTGGATAGACTACCTCACAAAAGAAGACA





CCATTTTTGTAAAAAACAAAAGCAAATGCGAGATAATGGACATGCC





CCTGTGGGCGGCCTGCACAGGATACACAGAGTTTTGTGCAAAGTA





TACAGGCGACTCTGCCATTATCTACAATGCAAGAATACTCATAAGA





TGCCCATACACTGAGCCCATGTTAATAGACCACTCAGACCCAAACA





AAGGCTTCGTTCCCTACTCATTTAACTTTGGCAACGGAAAGATGCC





CGGAGGCAGCTCCAACGTACCCATAAGAATGAGAGCCAAATGGTA





CGCGAACATATTCCACCAAAAGGAGGTTCTAGAGGCTATAGTACAA





AGCGGACCGTTCGGGTACAAGGGCGACATAAAATCAGCTGTACTA





GCCATGAAATACAGATTTCACTGGAAGTGGGGCGGAAACCCTATA





TCCAAACAGGTCGTCAGGAATCCCTGCTCCAACTCCAGCTCATCC





GCGGCCCATAGAGGACCTCGCAGCGTACAAGCGGTTGACCCGAA





ATACAATACCCCAGAGGTCACGTGGCACTCGTGGGACATTAGACG





AGGACTCTTTGGCAAAGCAGGTATTAAAAGAATGCAACAGGAATCA





GATGCTCTTTACATTCCTCCAGGACCAATCAAGAGACCTCGCAGG





GACACCAACGCCCAAGACCCAGAAGAGCAAAACGAAAGCTCAGGT





TTCAGAGTCCAGCAGCGACTCCCGTGGGTCCACTCCAGCCAAGAG





ACGCAAAGCTCCCAAGAAGAGACGGAGGCGCAGGGGTCGGTACA





AGACCAACTACTCCTCCAGCTCCGAGAGCAGCGAGTTCTCCGACT





CCAGCTCCAGCAACTCGCAGCCCAAGTCCCCAAAGTCCAAGCAGG





GCACAGCCTACACCCCCTATTATCTTCCCAAGCATAA






CAF05731.1
AJ620220.1
ATGCGTTTTCGCAGGGTTGCCCAGAAAAGGAAAGTGCTTTTGCAA
125




ACTGTGCCAGCTGCAAAGAAGGCTAGGCGGCTTCTAGGTATGTGG





CAGCCCCCCACGCACAATGTCCCGGGCATCGAGAGAAACTGGTA





CGAGAGCTGTTTTAGATCCCACGCTGCTGTTTGTGGCTGTGGCGA





TTTTGTTGGCCATCTTAATCATCTGGCAACTACTCTGGGTCGTCCT





CCGCGTCCTGGGCCCCCAGGCGGACCCCGCACGCCGCAAATAAG





AAACCTGCCAGCGCTCCCGGCGCCCCAGGGCGAGCCCGGTGACA





GAGCGTCATGGCGTGGGGCTTCTGGGGCCGACGCCGCCGGTGG





AGACGATGGAGAGCGCGGCGCAGACGGTGGAGACCCCGCAGAC





GTAGGAGACGACGCCCTCCTCGCCGCTTTCGAGCTCGTCGAAGA





GTAA






CAF05732.1
AJ620220.1
ATGGCGTGGGGCTTCTGGGGCCGACGCCGCCGGTGGAGACGAT
126




GGAGAGCGCGGCGCAGACGGTGGAGACCCCGCAGACGTAGGAG





ACGACGCCCTCCTCGCCGCTTTCGAGCTCGTCGAAGAGTAAGGAG





GCGCGGGGGGAGGTGGCGCAGACGCTACAGAAAATGGCGACGG





GGCAGACGCAGACGGACTCACAGAAAAAAGATAGTCATAAAACAG





TGGCAACCAAACTTTATAAGACGCTGCTACATCATAGGGTACTTAC





CACTTATATTCTGCGGCGAAAATACAACCGCCCAGAACTTTGCCAC





TCACTCGGACGACATGATAAGCAAAGGACCGTACGGGGGGGGCA





TGACTACCACCAAATTCACTCTGAGAATACTGTACGACGAGTTTAC





CAGGTTTATGAACTTTTGGACTGTCAGTAACGAAGACCTAGACCTG





TGTAGATACGTGGGCTGCAAACTAATATTTTTTAAACACCCCACGG





TGGACTTTATAGTACAGATAAACACTCAGCCTCCTTTCTTAGACAC





GCACCTCACCGCGGCCAGCATACACCCGGGCATCATGATGCTCA





GCAAGAGACACATACTAATACCCTCTCTAAAGACCCGGCCCAGCA





GAAAACACAGGGTGGTCGTCAGGGTGGGCGCCCCAAGACTTTTTC





AGGACAAGTGGTACCCCCAGTCAGACCTGTGTGACACAGTTCTGC





TTTCCATATTCGCAACCGCCTGCGACTTGCAATATCCGTTCGGCTC





ACCACTAACTGACAACCCTTGCGTCAACTTCCAGATCCTGGGGCC





CCAGTACAAAAAACACCTTAGTATTAGCTCCACTATGGATGACACT





AACAAAGCACATTATGAAGAAAACTTATTTAATAAAACTGAACTATA





CAACACCTTTCAAACCATAGCTCAGCTTAGAGACACAGGACAAACT





ACAAACGCTAGTCCTAATTGGAATCAGGTCCAGAATACAGCAGCA





CTTGAGTTATCAGGTGCAAATGCCACTAGCAGCAAAGACACTTGGT





ATAAAGGTAATACATACACGAAAGACATATCAAAGTTAGCAGAAAA





AACCAGACAAAGATTTAAAGCTGCAACAATAGCAGCACTACCAAAC





TACCCCACAATAATGTCCACAGACCTATATGAATACCACTCAGGCA





TATACTCCAGCATATATTTATCAGCTGGCAGGAGCTACTTTGAAAC





CACCGGGGCCTACTCTGACATTATATACAACCCTTTCACAGACAAA





GGCACAGGCAACATAATCTGGATAGACTACCTCACAAAAGAAGAC





ACCATTTTTGTAAAAAACAAAAGCAAATGCGAGATAATGGACATGC





CCCTGTGGGCGGCCTGCACAGGATACACAGAGTTTTGTGCAAAGT





ATACAGGCGACTCTGCCATTATCTACAATGCAAGAATACTCATAAG





ATGCCCACACACTGAGCCCATGTTAATAGACCACTCAGACCCAAA





CAAAGGCTTCGTTCCCTACTCATTCGACTTTGGCAATGGAAAGATG





CCCGGAGGCAGCTCCAACGTACCGATAAGAATGAGGGCCAAATG





GTACGTGAACATATTCCACCAAAAGGAGGTTCTAGAGGCTATAGTA





CAAAGCGGACCGTTCGGGTACAAGGGCGACATAAAATCAGCTGTA





CTAGCCATGAAATACAGATTTCACTGGAAGTGGGGCGGAAACCCT





ATATCCAAACAGGTCGTCAGGAATCCCTGCTCCAACTCCAGCTCAT





CCGCGGCCCATAGAGGACCTCGCAGCGTACAAGCGGTTGACCCG





AAATACAATACCCCAGAGGTCACGTGGCACTCGTGGGACATTAGA





CGAGGACTCTTTGGCAAAGCAGGTATTAAAAGAATGCAACAGGAA





TCAGATGCTCTTTACATTCCTCCAGGACCAATCAAGAGACCTCGCA





GGGACACCAACGCCCAAGACCCAGAAGAGCAAAACGAAAGCTCA





GGTTTCAGAGTCCAGCAGCGACTCCCGTGGGTCCACTCCAGCCAA





GAGACGCAAAGCTCCCAAGAAGAGACGGAGGCGCAGGGGTCGGT





ACAAGACCAACTACTCCTCCAGCTCCGAGAGCAGCGAGTTCTCCG





ACTCCAGCTCCAGCAACTCGCAACCCAAGTCCTCAAAGTCCAAGC





AGGGCACAGCCTACACCCCCTATTATCTTCCCAAGCATAA






CAF05733.1
AJ620221.1
ATGCGTTTTCGCAGGGTTGCCCAGAAAAGGAAAGTGCTTTTGCAA
127




ACTGTGCCAGCTGCAAAGAAGGCTAGGCGGCTTCTAGGTATGTGG





CAGCCCCCCACGCACAATGTCCCGGGCATCGAGAGAAACTGGTA





CGAGAGCTGTTTTAGATCCCACGCTGCTGTTTGTGGCTGTGGCGA





TTTTGTTGGCCATCTTAATCATCTGGCAACTACTCTGGGTCGTCCT





CCGTGTCCTGGGCCCCCAGGCGGACCCCGCACGCCGCAAATAAG





AAACCTGCCAGCGCTCCCGGCGCCCCAGGGCGAGCCCGGTGACA





GAGCGCCATGGCGTGGGGCTTCTGGGGCCGACGCCGCCGGTGG





AGACGATGGAGAGCGCGGCGCAGACGGTGGAGACCCCGCAGAC





GTAGGAGACGACGCCCTACTCGCCGCTTTCGAGCTCGTCGAAGA





GTAA






CAF05734.1
AJ620221.1
ATGGCGTGGGGCTTCTGGGGCCGACGCCGCCGGTGGAGACGAT
128




GGAGAGCGCGGCGCAGACGGTGGAGACCCCGCAGACGTAGGAG





ACGACGCCCTACTCGCCGCTTTCGAGCTCGTCGAAGAGTAAGGAG





GCGCGGGGGGAGGTGGCGCAGACGCTACAGAAAATGGCGACGG





GGCAGACGCAGACGGACTCATAGAAAAAAGATAGTCATAAAACAG





TGGCAACCAAACTTTATAAGACGCTGCTACATCATAGGGTACTTAC





CACTTATATTCTGCGGCGAAAATACAACCGCCCAGAACTTTGCCAC





TCGCTCGGACGACATGATAAGCAAAGGACCGTACGGGGGGGGCA





TGACTACCACCAAATTCACTCTGAGAATACTGTACGACGAGTTTAC





CAGGTTTATGAACTTTTGGACTGTCAGTAACGAAGACCTAGACCTG





TGTAGATACGTGGGCTGCAAACTAATATTTTTTAAACACCCCACGG





TGGACTTTATAGTACAGATAAACACTCAGCCTCCTTTCTTAGACAC





GCACCTCACCGCGGCCAGCATACACCCGGGCATCATGATGCTCA





GCAAGAGACACATACTAATACCCTCTCTAAAGACCCGGCCCAGCA





GAAAACACAGGGTGGTCGTCAGGGTGGGCGCCCCAAGACTTTTTC





AGGACAAGTGGTACCCCCAGTCAGACCTGTGTGACACAGTTCTGC





TTTCCATATTCGCAACCGCCTGCGACTTGCAATATCCGTTCGGCTC





ACCACTAACTGACAACCCTTGCGTCAACTTCCAGATCCTGGGGCC





CCAGTACAAAAAACACCTTAGTATTAGCTCCACTATGGATGAAAGT





AACAAAGCACATTATGAACAAAACTTATTTAAGAAAACTGAACTATA





CAACACCTTTCAAACCATAGCTCAGCTTAAAGAGACAGGAAACATT





TCAGGCATTACTCCTACTTGGACTGAAGTCCAGAATTCAACAACAC





TTAATCAAGCAGGTAACAATGCCACTGACAGTAGAGACACTTGGTA





TAAAGGAAATACATACAACGAGAAGATATCCGAGTTAGCACAAATA





ACCAGAAACAGATTTAAAAATGCAACCAAAACAGCACTACCAAACT





ACCCCACAATAATGTCCACAGACCTATATGAATACCACTCAGGCAT





ATACTCCAGCATATATTTATCAGCTGGCAGGAGCTACTTTGAAACC





ACCGGGGCCTACTCTGACATTATATACAACCCTTTCACAGACAAAG





GCACAGGCAACATAATCTGGATAGACTACCTCACAAAAGAAGACA





CCATTTTTGTAAAAAACAAAAGCAAATGCGAGATAATGGACATGCC





CCTGTGGGCGGCCTGCACAGGATACACAGAGTTTTGTGCAAAGTA





TACAGGCGACTCTGCCATTATTTACAATGCAAGAATAGTCATAAGA





TGCCCATACACTGAGCCCATGTTAATAGACCACTCAGACCCAAACA





AAGGCTTCGTCCCCTACTCATTTAACTTTGGCAACGGAAAGATGCC





CGGAGGCAGCTCCAACGTGCCCATAAGAATGAGAGCCAAGTGGTA





CGTGAACATATTCCACCAAAAAGAAGTATTGGAGAGCATAGTACAG





TCCGGACCGTTTGGGTACAAGGGCGACATAAAATCAGCTGTACTA





GCCATGAAATACAGATTTCACTGGAAGTGGGGCGGAAACCCTATA





TCCAAACAGGTCGTCAGGAATCCCTGCTCCAACTCCAGCTCATCC





GCGGCCCATAGAGGACCTCGCAGCGTACAAGCGGTTGACCCGAA





ATACAATACCCCAGAGGTCACGTGGCACTCGTGGGACATTAGACG





AGGACTCTTTGGCAAAGCAGGTATTAAAAGAATGCAACAGGAATCA





GATGCTCTTTACATTCCTCCAGGACCAATCAAGAGACCTCGCAGG





GACACCAACGCCCAAGACCCAGAAGAGCAAAACGAAAGCTCAGGT





TTCAGAGTCCAGCAGCGACTCCCGTGGGTCCACTCCAGCCAAGAG





ACGCAAAGCTCCCAAGAAGAGACGGAGGCGCAGGGGTCGGTACA





AGACCAACTACTCCTCCAGCTCCGAGAGCAGCGAGTTCTCCGACT





CCAGCTCCAGCAACTCGCAACCCAAGTCCTCAAAGTCCAAGCAGG





GCACAGCCTACACCCCCTATTATCTTCCCAAGCATAA






CAF05735.1
AJ620222.1
ATGCGTTTTCGCAGGGTTGCCCAGAAAAGGAAAGTGCTTTTGCAA
129




ACTGTGCCAGCTGCAAAGAAGGCTAGGCGGCTTCTAGGTATGTGG





CAGCCCCCCACGCACAATGTCCCGGGCATCGAGAGAAACTGGTA





CGAGAGCTGTTTTAGATCCCACGCTGCTGTTTGTGGCTGTGGCGA





TTTTGTTGGCCATCTTAATCATCTGGCAACTACTCTGGGTCGTCCT





CCGCGTCCTGGGCCCCCAGGCGGACCCCGCACGCCGCAAATAAG





AAACCTGCCAGCGCTCCCGGCGCCCCAGGGCGAGCCCGGTGACA





GAGCGCCATGGCATGGGGCTTCTGGGGCCGACGCCGCCGGTGG





AGACGATGGAGAGCGCGGCGCAGACGGTGGAGACCCCGCAGAC





GTAGGAGACGACGCCCTACTCGCCGCTTTCGAGCTCGTCGAAGA





GTAA






CAF05736.1
AJ620222.1
ATGGCATGGGGCTTCTGGGGCCGACGCCGCCGGTGGAGACGATG
130




GAGAGCGCGGCGCAGACGGTGGAGACCCCGCAGACGTAGGAGA





CGACGCCCTACTCGCCGCTTTCGAGCTCGTCGAAGAGTAAGGAG





GCGCGGGGGGAGGTGGCGCAGACGCTACAGAAAATGGCGACGG





GGCAGACGCAGACGGACTCATAGAAAAAAGATAGTCATAAAACAG





TGGCAACCAAACTTTATAAGACGCTGCTACGTCATAGGGTACTTAC





CACTTATATTCTGCGGCGAAAATACAACCGCCCAGAACTTTGCCAC





TCACTCGGACGACATGATAAGCAAAGGACCGTACGGGGGGGGCA





TGACTACCACCAAATTCACTCTGAGAATACTGTACGACGAGTTTAC





CAGGTTTATGAACTTTTGGACTGTCAGTAACGAAGACCTAGACCTG





TGTAGATACGTGGGCTGCAAACTAATATTTTTTAAACACCCCACGG





TGGACTTTATAGTACAGATAAACACTCAGCCTCCTTTCTTAGACAC





GCACCTCACCGCGGCCAGCATACACCCGGGCATCATGATGCTCA





GCAAGAGACACATACTAATACCCTCTCTAAAGACCCGGCCCAGCA





GAAAACACAGGGTGGTCGTCAGGGTGGGCGCCCCAAGACTTTTTC





AGGACAAGTGGTACCCCCAGTCAGACCTGTGTGACACAGTTCTGC





TTTCCATATTTGCAACCGCCTGCGACTTGCAATATCCGTTCGGCTC





ACCACTAACTGACAACCCTTGCGTCAACTTCCAGATCCTGGGGCC





CCAGTACAAAAAACACCTTAGTATTAGCTCCACTATGGATCAAACT





AACGAAAACCATTATAAAGAAAACTTATTTAACAAAACTGAACTATA





CAACACCTTTCAAACCATAGCTCAGCTTAAAGAGACAGGACACATT





TCAGGCATTAGTCCTACTTGGAATGAAGTCCAGAATTCAACAACAC





TTACTAAAGGAGGTGACAATGCCACTCAGAGTAGAGACACTTGGT





ATAAAGGAAATACATACAACGAGAAGATATGCGAGTTAGCACAAAT





AACCAGAAACAGATTTAAAAATGCAACCAAAGGAGCACTACCAAAC





TACCCCACAATAATGTCCACAGACCTATATGAATACCACTCAGGCA





TACACTCCAGCATATATCTATCAGCTGGCAGGAGCTACTTTGAAAC





CACCGGGGCCTACTCTGACATTATATACAACCCTTTCACAGACAAA





GGCACAGGCAACATAATCTGGATAGACTACCTCACAAAAGAAGAC





ACCATTTTTGTGAAAAACAAAAGCAAATGCGAGATAATGGACATGC





CCCTGTGGGCGGCCTGCACAGGATACACAGAGTTTTGTGCAAAGT





ATACAGGCGACTCTGCCATTATCTACAATGCAAGAATACTCATAAG





ATGCCCATACACTGAGCCCATGTTAATAGACCACTCAGACCCAAAC





AAAAGCTTCGTTCCCTACTCATTTAACTTTGGCAACGGAAAGATGC





CCGGAGGCAGCTCCAACGTGCCCATAAGAATGAGAGCCAAGTGG





TACGTGAACATATTCCACCAAAAAGAAGTATTAGAGAGCATAGTAC





AGTCCGGACCGTTTGGGTACAAGGGCGACATAAGATCAGCTGTAC





TAGCCATGAAATACAGATTTCACTGGAAGTGGGGCGGAAACCCTA





TATCCAAACAGGTCGTCAGGAATCCCTGCTCCAACTCCAGCTCCT





CCGCGGCCCATAGAGGACCTCGCAGCGTACAAGCGGTTGACCCG





AAATACAATACCCCAGAGGTCACGTGGCACTCGTGGGACATTAGA





CGAGGACTCTTTGGCAAAGCAGGTATTAAAAGAATGCAACAGGAA





TCAGATGCTCTTTACATTCCTCCAGGACCAATCAAGAGACCTCGCA





GGGACACCAACGCCCAAGACCCAGAAGAGCAAAACGAAAGCTCA





GGTTTCAGAGTCCAGCAGCGACTCCCGTGGGTCCACTCCAGCCAA





GAGACGCAAAGCTCCCAAGAAGAGACGGAGGCGCAGGGGTCGGT





ACAAGACCAACTACTCCTCCAGCTCCGAGAGCAGCGAGTTCTCCG





ACTCCAGCTCCAGCAACTCGCAACCCAAGTCCTCAAAGTCCAAGC





AGGGCACAGCCTACACCCCCTATTATCTTCCCAAGCATAA






CAF05737.1
AJ620223.1
ATGCGTTTTCGCAGGGTTGCCCAGAAAAGGAAAGTGCTTTTGCAA
131




ACTGTGCCAGCTGCAAAGAAGGCTAGGCGGCTTCTAGGTATGTGG





CAGCCCCCCACGCACAATGTCCCGGGCATCGAGAGAAACTGGTA





CGAGAGCTGTTTTAGATCCCACGCTGCTGTTTGTGGCTGTGGCGA





TTTTGTTGGCCATCTTAATCATCTGGCAACTACTCTGGGTCGTCCT





CCGCGTCCTGGGCCCCCAGGCGGACCCCGCACGCCGCAAATAAG





AAACCTGCCAGCGCTCCCGGCGCCCCAGGGCGAGCCCGGTGACA





GAGCGCCATGGCATGGGGCTTCTGGGGCCGACGCCGCCGGTGG





AGACGATGGAGAGCGCGGCGCAGACGGTGGAGACCCCGCAGAC





GTAGGAGACGACGCCCTACTCGCCGCTTTCGAGCTCGTCGAAGA





GTAA






CAF05738.1
AJ620223.1
ATGGCATGGGGCTTCTGGGGCCGACGCCGCCGGTGGAGACGATG
132




GAGAGCGCGGCGCAGACGGTGGAGACCCCGCAGACGTAGGAGA





CGACGCCCTACTCGCCGCTTTCGAGCTCGTCGAAGAGTAAGGAG





GCGCGGGGGGAGGTGGCGCAGACGCTACAGAAAATGGCGACGG





GGCAGACGCAGACGGACTCATAGAAAAAAGATAGTCATAAAACAG





TGGCAACCAAACTTTATAAGACGCTGCTACATCATAGGGTACTTAC





CACTTATATTCTGCGGCGAAAATACAACCGCCCAGAACTTTGCCAC





TCACTCGGACGACATGATAAGCAAAGGACCGTACGGGGGGGGCA





TGACTACCACCAAATTCACTCTGAGAATACTGTACGACGAGTTTAC





CAGGTTTATGAACTTTTGGACTGTCAGTAACGGAGACCTAGACCTG





TGTAGATACGTGGGCTGCAAACTAATATTTTTTAAACACCCCACGG





TGGACTTTATAGTACAGATAAACACTCAGCCTCCTTTCTTAGACAC





GCACCTCACCGCGGCCAGCATACACCCGGGCATCATGATGCTCA





GCAAGAGACACATACTAATACCCTCTCTAAAGACCCGGCCCAGCA





GAAAACACAGGGTGGTCGTCAGGGTGGGCGCCCCAAGACTTTTTC





AGGACAAGTGGTACCCCCAGTCAGACCTGTGTGACACAGTTCTGC





TTTCCATATTTGCAACCGCCTGCGACTTGCAATATCCGTTCGGCTC





ACCACTAACTGACAACCCTTGCGTCAACTTCCAGATCCTGGGGCC





CCAGTACAAAAAACACCTTAGTATTAGCTCCACTATGGATCAAACT





AACGAAAACCATTATAAAGAAAACTTATTTAACAAAACTGAACTATA





CAACACCTTTCAAACCATAGCTCAGCTTAAAGAGACAGGACACATT





TCAGGCATTAGTCCTACTTGGAATGAAGTCCAGAATTCAACAACAC





TTACTAAAGAAGGTGACAATGCCACTCAGAGTAGAGACACTTGGTA





TAAAGGAAATACATACAACGGTAAGATATGCCAGTTAGCACAAATA





ACCAGAAACAGGTTTAAAAATGCAACCAAAGGAGCACTACCAAACT





ACCCCACAATAATGTCCACAGACCTATATGAATACCACTCAGGCAT





ATACTCCAGCATATGTCTATCAGCTGGCAGGAGCTACTTTGAAACC





ACCGGGGCCTACTCTGACATTATATACAACCCTTTCACAGACAAAG





GCACAGGCAACATAATCTGGATAGACTACCTCACAAAAGAAGACA





CCATTTTTGTGAAAAACAAAAGCAAATGCGAGATAATGGACATGCC





CCTGTGGGCGGCCTGCACAGGATACACAGAGTTTTGTGCAAAGTA





TACAGGCGACTCTGCCATTATCTACAATGCAAGAATACTCATAAGA





TGCCCATACACTGAGCCCATGTTAATAGACCACTCAGACCCAAACA





AAGGCTTCGTTCCCTACTCATTTAACTTTGGCAACGGAAAGATGCC





CGGAGGCAGCTCCAACGTGCCCATAAGAATGAGAGCCAAGTGGTA





CGTGAACATATTCCACCAAAAAGAAGTATTAGAGAGCATAGTACAG





TCCGGACCGTTTGGGTACAAGGGCGACATAAAATCAGCTGTACTA





GCCATGAAATACAGATTTCACTGGAAGTGGGGCGGAAACCCTATA





TCCAAACAGGTCGTCAGGAATCCCTGCTCCAACTCCAGCTCCTCC





GCGGCCCATAGAGGACCTCGCAGCGTACAAGCGGTTGACCCGAA





ATACAATACCCCAGAGGTCACGTGGCACTCGTGGGACATTAGACG





AGGACTCTTTGGCAAAGCAGGTATTAAAAGAATGCAACAGGAATCA





GATGCTCTTTACATTCCTCCAGGACCAATCAAGAGACCTCGCAGG





GACACCAACGCCCAAGACCCAGAAGAGCAAAACGAAAGCTCAGGT





TTCAGAGTCCAGCAGCGACTCCCGTGGGTCCACTCCAGCCAAGAG





ACGCAAAGCTCCCAAGAAGAGACGGAGGCGCAGGGGTCGGTACA





AGACCAACTACTCCTCCAGCTCCGAGAGCAGCGAGTTCTCCGACT





CCAGCTCCAGCAACTCGCAACCCAAGTCCTCAAAGTCCAAGCAGG





GCACAGCCTACACCCCCTATTATCTTCCCAAGCATAA






CAF05778.1
AJ620224.1
ATGCGTTTTCGCAGGGTTGCCCAGAAAAGGAAAGTGCTTTTGCAA
133




ACTGTGCCAGCTGCAAAGAAGGCTAGGCGGCTTCTAGGTATGTGG





CAGCCCCCCACGCACAATGTCCCGGGCATCGAGAGAAACTGGTA





CGAGAGCTGTTTTAGATCCCACGCTGCTGTTTGTGGCTGTGGCGA





TTTTGTTGGCCATCTTAATCATCTGGCAACTACTCTGGGTCGTCCT





CCGCGTCCTGGGCCCCCAGGCGGACCCCGCACGCCGCAAATAAG





AAACCTGCCAGCGCTCCCGGCGCCCCAGGGCGAGCCCGGTGACA





GAGCGCCATGGCATGGGGCTTCTGGGGCCGACGCCGCCGGTGG





AGACGATGGAGAGCGCGGCGCAGACGGTGGAGATCCCGCAGAC





GTAGGAGACGACGCCCTACTCGCCGCTTTCGAGCTCGTCGAAGA





GTAA






CAF05779.1
AJ620224.1
ATGGCATGGGGCTTCTGGGGCCGACGCCGCCGGTGGAGACGATG
134




GAGAGCGCGGCGCAGACGGTGGAGATCCCGCAGACGTAGGAGA





CGACGCCCTACTCGCCGCTTTCGAGCTCGTCGAAGAGTAAGGAG





GCGCGGGGGGAGGTGGCGCAGACGCTACAGAAAATGGCGACGG





GGCAGACGCAGACGGACTCATAGAAAAAAGATAGTCATAAAACAG





TGGCAACCAAACTTTATAAGACGCTGCTACATCATAGGGTACTTAC





CACTTATATTCTGCGGCGAAAATACAACCGCCCAGAACTTTGCCAC





TCACTCGGACGACATGATAAGCAAAGGACCGTACGGGGGGGGCA





TGACTACCACCAAATTCACTCTGAGAATACTGTACGACGAGTTTAC





CAGGTTTATGAACTTTTGGACTGTCAGTAACGAAGACCTAGACCTG





TGTAGATACGTGGGCTGCAAACTAATATTTTTTAAACACCCCACGG





TGGACTTTATAGTACAGATAAACACTCAGCCTCCTTTCTTAGACAC





GCACCTCACCGCGGCCAGCATACACCCGGGCATCATGATGCTCA





GCAAGAGACACATACTAATACCCTCTCTAAAGACCCGGCCCAGCA





GAAAGCACAGGGTGGTCGTCAGGGTGGGCGCCCCAAGACTTTTT





CAGGACAAGTGGTACCCCCAGTCAGACCTGTGTGACACAGTTCTG





CTTTCCATATTTGCAACCGCCTGCGACTTGCAATATCCGTTCGGCT





CACCACTAACTGACAACCCTTGCGTCAACTTCCAGATCCTGGGGC





CCCAGTACAAAAAACACCTTAGTATTAGCTCCACTATGGATCAAAC





TAACGAAAACCATTATAAAGAAAACTTATTTAACAAAACTGAACTAT





ACAACACCTTTCAAACCATAGCTCAGCTTAAAGAGACAGGACACAT





TTCAGGCATTAGTCCTACTTGGAATGAAGTCCAGAATTCAACAACA





CTTACTAAAGGAGGTGACAATGCCACTCAGAGTAGAGACACTTGG





TATAAAGGAAATACATACAACGAGAACATATGCAAGTTAGCAGAGG





TAACCAGAAACAGATTTAAAAATGCAACCAAAGGAGCACTACCAAA





CTACCCCACAATAATGTCCACAGACCTATATGAATACCACTCAGGC





ATATACTCCAGCATATATCTATCAGCGGGCAGGAGCTACTTTGAAA





CCACCGGGGCCTACTCTGACATTATATACAACCCTTTCACAGACAA





AGGCACAGGCAACATAATCTGGATAGACTACCTCACAAAAGAAGA





CACCATTTTTGTGAAAAACAAAAGCAAATGCGAAATAATGGACATG





CCCCTGTGGGCGGCCTGCACGGGATACACAGAGTTTTGTGCAAAG





TATACAGGCGACTCTGCCATTATCTACAATGCAAGAATACTCATAA





GATGCCCATACACTGAGCCCATGTTAATAGACCACTCAGACCCAAA





CAAAGGCTTCGTTCCCTACTCATTTAACTTTGGCAACGGAAAGATG





CCCGGAGGCAGCTCCAACGTGCCCATAAGAATGAGAGCCAAGTG





GTACGTGAACATATTCCACCAAAAAGAAGTATTAGAGAGCATAGTA





CAGTCCGGACCGTTTGGGTACAAGGGCGACATAAAATCAGCTGTA





CTAGCCATGAAATACAGATTTCACTGGAAGTGGGGCGGAAACCCT





ATATCCAAACAGGTCGTCAGGAATCCCTGCTCCAACTCCAGCCCC





TCCGCGGCCCATAGAGGACCTCGCAGCGTACAAGCGGTTGACCC





GAAATACAATACCCCAGAGGTCACGTGGCACTCGTGGGACATTAG





ACGAGGACTCTTTGGCAAAGCAGGTATTAAAAGAATGCAACAGGA





ATCAGATGCTCTTTACATTCCTCCAGGACCAATCAAGAGACCTCGC





AGGGACACCAACGCCCAAGACCCAGAAGAGCAAAACGAAAGCTC





AGGTTTCAGGGTCCAGCAGCGACTCCCGTGGGTCCACTCCAGCC





AAGAGACGCAAAGCTCCCAAGAAGAGACGGAGGCGCAGGGGTCG





GTACAAGACCAACTACTCCTCCAGCTCCGAGAGCAGCGAGTTCTC





CGACTCCAGCTCCAGCAACTCGCAACCCAAGTCCTCAAAGTCCAA





GCAGGGCACAGCCTACACCCCCTATTATCTTCCCAAGCATAA






CAF05739.1
AJ620225.1
ATGCGTTTTCGCAGGGTTGCCCAGAAAAGGAAAGTGCTTTTGCAA
135




ACTGTGCCAGCTGCAAAGAAGGCTAGGCGGCTTCTAGGTATGTGG





CAGCCCCCCACGCACAATGTCCCGGGCATCGAGAGAAACTGGTA





CGAGAGCTGTTTTAGATCCCACGCTGCTGTTTGTGGCTGTGGCGA





TTTTGTTGGCCATCTTAATCATCTGGCAACTACTCTGGGTCGTCCT





CCGCGTCCTGGGCCCCCAGGCGGACCCCGCACGCCGCAAATAAG





AAACCTGCCAGCGCTCCCGGCGCCCCAGGGCGAGCCCGGTGACA





GAGCGTCATGGCGTGGGGCTTCTGGGGCCGACGCCGCCGGTGG





AGACGATGGAGAGCGCGGCGCAGACGGTGGGGACCCCGCAGAC





GTAGGAGACGACGCCCTCCTC






CAF05740.1
AJ620225.1
ATGGCGTGGGGCTTCTGGGGCCGACGCCGCCGGTGGAGACGAT
136




GGAGAGCGCGGCGCAGACGGTGGGGACCCCGCAGACGTAGGAG





ACGACGCCCTCCTCGCCGCTTTCGAGCTCGTCGAAGAGTAAGGAG





GCGCGGGGGGAGGTGGCGCAGACGCTACAGAAAATGGCGACGG





GGCAGACGCAGACGGACTCACAGAAAAAAGATAGTCATAAAACAG





TGGCAACCAAACTTTATAAGACGCTGCTACATCATAGGGTACTTAC





CACTTATATTCTGCGGCGAAAATACAACCGCCCAGAACTTTGCCAC





TCACTCGGACGACATGATAAGCAAAGGACCGTACGGGGGGGGCA





TGACTACCACCAAATTCACTCTGAGAATACTGTACGACGAGTTTAC





CAGGTTTATGAACTTTTGGACTGTCAGTAACGAAGACCTAGACCTG





TGTAGATACGTGGGCTGCAAACTAATATTTTTTAAACACCCCACGG





TGGACTTTATAGTACAGATAAACACTCAGCCTCCTTTCTTAGACAC





GCACCTCACCGCGGCCAGCATACACCCGGGCATCATGATGCTCA





GCAAGAGACACATACTAATACCCTCTCTAAAGACCCGGCCCAGCA





GAAAACACAGGGTGGTCGTCAGGGTGGGCGCCCCAAGACTTTTTC





AGGACAAGTGGTACCCCCAGTCAGACCTGTGTGACACAGTTCTGC





TTTCCATATTCGCAACCGCCTGCGACTTGCAATATCCGTTCGGCTC





ACCACTAACTGACAACCCTTGCGTCAACTTCCAGATCCTGGGGCC





CCAGTACAAAAAACACCTTAGTATTAGCTCCACTATGGATGACACT





AACAAAGCACATTATGAAGAAAACTTATTTAATAAAACTGAACTATA





CAACACCTTTCAAACCATAGCTCAGCTTAGAGACACAGGACAAACT





GCAAACGCTAGTCCTAATTGGAATGAGGTCCAGAATACAGCAGCA





CTTCAGTTATCAGGTGCAAATGCCACTAGCAGCAAAGACACTTGGT





ATAAAGGTAATACATACACGAAAGACATATCAAAGTTAGCAGAAAA





AACCAGACAAAGATTTAAAGCTGCAACAATAGCAGCACTACCAAAC





TACCCCACAATAATGTCCACAGACCTATATGAATACCACTCAGGCA





TATACTCCAGCATATATTTATCAGCTGGCAGGAGCTACTTTGAAAC





CACCGGGGCCTACTCTGACATTATATACAACCCTTTCACAGACAAA





GGCACAGGCAACATAATCTGGATAGACTACCTCACAAAAGAAGAC





ACCATTTTTGTAAAAAACAAAAGCAAATGCGAGATAATGGACATGC





CCCTGTGGGCGGCCTGCACAGGATACACAGAGTTTTGTGCAAAGT





ATACAGGCGACTCTGCCATTATCTACAATGCAAGAATACTCATAAG





ATGCCCATACACTGAGCCCATGTTAATAGACCACTCAGACCCAAAC





AAAGGCTTCGTTCCCTACTCATTTAACTTTGGCAACGGAAAGATGC





CCGGAGGCAGCTCCAACGTACCGATAAGAATGAGAGCCAAATGGT





ACGTGAACATATTCCACCAAAAGGAGGTTCTAGAGGCTATAGTACA





AAGCGGACCGTTCGGGTACAAGGGCGACATAAAATCAGCTGTACT





AGCCATGAAATACAGATTTCACTGGAAGTGGGGCGGAAACCCTAT





ATCCAAACAGGTCGTCAGGAATCCCTGCTCCAACTCCAGCTCATC





CGCGGCCCATAGAGGACCTCGCAGCGTACAAGCGGTTGACCCGA





AATACAATACCTCAGAGGTCACGTGGCACTCGTGGGACATTAGAC





GAGGACTCTTTGACAAAGCAGGTATTAAAAGAATGCAACAGGAATC





AGATGCTCTTTACATTCCTCCAGGACCAATCAAGAGACCTCGCAG





GGACACCAACGCCCAAGACCCAGAAGAGCAAAACGAAAGCTCAG





GTTTCAGAGTCCAGCAGCGACTCCCGTGGGTCCACTCCAGCCAAG





AGACGCAAAGCTTCCAAGAAGAGACGGAGGCGCAGGGGTCGGTA





CAAGACCAACTACTCCTCCAGCTCCGAGAGCAGCGAGTTCTCCGA





CTCCAGCACCAGCAACTCGCAACCCAAGTCCTCAAAGTCCAAGCA





GGGCACAGCCTACACCCCCTATTATCTTCCCAAGCATAA






CAF05741.1
AJ620226.1
ATGCGTTTTTCCAGGATTGCTCGCTCGAAAAGGAAAGTGCCACTG
137




CCAACACTGCCAATACCACCGCCGCCTGGGACTATGAGCTGGCG





CCCTCCGGTCCACAATGCCGCTGGAATCGACCGTAACTGGTTCGA





ATCCTGTTTCAGATCTCACGCTAGCAGTTGCGGCTGTGGAAATTTT





ATTGGCCATCTTAATACTCTCGCTACTCGCTACGGCTTTACTCCTG





GGCCCGCGCCGCCGCCTGGTGGTCCAGGCCCGCGGCCGCCAGT





ACCAGTGAGGCCCCGGCACCTGGCCGGAGACGGTAACCAGCCCA





GGGCCCTGCCATGGCGTGGGGATGGTGGAGACGCAGACGCTGG





CCCACCTACAGAAGGTGGCGGCGCTGGAGACGCCGCAGGAGAGT





ACCGCGACGAAGACCTCGAAGAGCTGTTCGCCGCTATGGAAAGA





GACGAGTAA






CAF05742.1
AJ620226.1
ATGGTGGAGACGCAGACGCTGGCCCACCTACAGAAGGTGGCGGC
138




GCTGGAGACGCCGCAGGAGAGTACCGCGACGAAGACCTCGAAGA





GCTGTTCGCCGCTATGGAAAGAGACGAGTAAGGAGGCGCCGGTG





GGGAGGCGGCGGTACCGAAGGGGCTACAGACGCAGGGTCGCGG





TCAGACTGAGACGCAGACGCAGACGGGGACGTAAGAGACTTGTA





CTTACTCAGTGGCAGCCCCAGACCCGTAGAAAGTGCACCATCACC





GGGTACCTCCCGGTGGTATGGTGCGGCTACCTCCGGGCCGCCAA





AAACTATGCCTACCACTCTGACGACTCCACAAAGCAGCCGGACCC





CTTTGGGGGCGCGCTGAGCACTACCTCCTTTAACCTTAAGGTGCT





GTACGACCAGCACCAGAGAGGACTCAACAGGTGGTCTTTCCCTAA





CGACCAACTGGACCTAGCTCGCTACAGGGGGTGCACACTTACGTT





CTACAGACAGAAAGCCACTGACTTTATAGCTATTTATGACATCTCC





GCCCCATACAAACTAGACAAGTACAGCTCTCCCAGCTATCACCCC





GGCAACATGATAATGCAGAAAAAGAAAATTCTCATTCCCAGCTACG





ACACTAACCCCAGGGGCCGCCAAAAAATAGTAGTTAAAATCCCCC





CCCCTAAACTGTTCGTGGATAAGTGGTATGCACAGGAGGACCTGT





GCGACGTTAATCTTGTGACACTTGCGGTCAGCGCAGCTTCCTTTAC





ACATCCGTTCGGCTCACCACTAACGAACAACCCTTGTGTAACCTTC





CAGGTACTTGACTCAATATACTATTCCGTAATAGGTTACGGTTCCT





CAGATCAGAAAAAAAAACAAGTACTTGAAACTCTCTATAACGAAAA





TGCATACTGGGCCTCACACTTAACTCCTTACTTTACCACTGGCCTT





AAAATTCCATATCCAGATACTAAGAATCCCAGCACTACTGCATCTG





TTACTCCAAACACGCTATTTACAACAGGTAGCTACGACTCAAACAT





TAAAATAGCAGGAGACAGCAACTACAACTGGTACCCCTACAACCTT





AAAAACAAAATAGACAAACTTCATAAAATTAGAGAACAATACTTTAA





ATGGGAAACAGATGAAGGCCCCCAAGCCACATCTGATTATGGCAA





ACACCACACTTGGACTAAACCCACCGATGACTACTACGAATACCAC





CTAGGTTTATTTAGTCCCATATTCATAGGACCCACCAGAAGCAACA





AACTATTTGCAACCGCCTACCAGGACGTTACTTACAACCCCCTAAA





CGACAAGGCGGTGGGAAACAAGTTCTGGTTTCAGTACAACACAAA





AGCAGACACCCAGGTGGCCAAACAAGGCTGCTACTGCATGCTAGA





AGACATTCCCCTCTGGGCCGCCATGTATGGCTACTCTGACTTTATA





GAGACCGAGCTAGGCCCCTTCCAAGACGCAGAGACGGTGGGCTA





TATCTGTGTAATATGCCCCTACACCGAGCCCCCCATGTACAACAAA





CACAATCCCATGCAGGGTTACGTGTTTTATGACTCGTTTTTTGGCA





ATGGCAAGTGGATAGACGGACGGGGACACATAGAGCCTTACTGG





CTCTGCCGCTGGAGGCCAGAAATGCTTTTCCAGCAGCAGGTTATG





AGAGACATTGTGCAGACCGGGCCCTGGAGCTATAAAGACGAAAGC





AAAAACTGTGTTCTGCCCATGAAGTATAAGTTCAGATTCACATGGG





GCGGCAATATGGTCTCCCAACAGACAATCAGAAACCCCTGCAAGA





CTGACGGACAACTTGCCCCCTCCGGTAGACAGCCTAGAGAAGTAC





AAGTTGTTGACCCACTCACCATGGGTCCCCGCTGGGTTTTCCACT





CCTGGGACTGGAGACGTGGCTACCTTAGTGAGACAGCTCTCAGAC





GCCTGCGAGAAAAACCACTCGACTATGAGGCGTATATGCAAAAAC





CAAAAAGACCTAGACTGTTCCCTGTTACAGAGGGCGACGACCAGT





CCCCGCAGCAAGGCGACGACTGGTGTTCAGAGGAAGAAAAGTCG





CCGCAGTTTACCGAAGAGACGACGCAGACGCTACAGCTCCAGCTC





CAGCGCCAGCTCCGGCGACAGCAGCGACTCGGAGAGCAGCTCCA





ACTCCTACAACACCACCTCCTCAAAACGCAAGCGGGCCTCCAAAT





AAACCCATTATTATTGGTCCGGCAGTAA






CAF05743.1
AJ620227.1
ATGCACTTTTCTCGAATAAGCAGAAAGAAAGGGAAAGTGCTACTGC
139




TTTGCGTGCCAGCAGTTAAGAAAAAACCAACTGCTATGAGCTTCTG





GAGACCTCCGATGCACAATGTCACGGGGATCCAACGCCTGTGGTA





CGAGTCCTTTCACCGTGGCCATGCTGCTTTTTGTGGTTGTGGGGA





TCCTGTACTTCACATTACTGCACTTGCTGAGACATATGGCCATCCA





ACAGGCCCGAGACCTTCTGGGTCATCGGGAATAGATCCCACTCCG





CCCATCCGTAGAGCCAGGCCTGCCCCGGCCGCTCCGGAACCCCC





ACAGGTTGACTCCAGACCGGCCCTGCCATGGCATGGAGATGGTG





GAAGCGACGGAGGCGCTGGTGGCTCCGCAAGCGGTGGACCCGT





GGCAGACTTCGCAGACGATGGCCTAGACCAGCTCGTCGCCGCCC





TAGACGACGAAGAGTAA






CAF05744.1
AJ620227.1
ATGGCATGGAGATGGTGGAAGCGACGGAGGCGCTGGTGGCTCCG
140




CAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTAGAC





CAGCTCGTCGCCGCCCTAGACGACGAAGAGTAAGGAGACGCAGA





CGGTGGAGGAGGGGGCGACCCAGACGCAGGCTGTACCGACGCT





ACAGACGCAAAAAACGTAGGAGACGAAAGCCCAAAATAATCTTAAA





ACAATGGCAGCCAGACATTGTAAAGAGGTGCTACATAGTGGGCTA





CATTCCTGCCATAATATGTGGGGCGGGCACCTGGTCTCACAACTA





CACCAGCCACCTCCTAGACATTATCCCCAAAGGACCCTTTGGAGG





AGGGCACAGCACTATGAGGTTCTCCCTAAAAGTACTCTTTGAAGAA





CACCTCAGACACTTAAACTTTTGGACAAAAAGCAACCAGGACCTAG





AACTCATAAGATACTTTAGATGCTCCTTTAAATTCTATAGAGACCAA





GACACAGACTACATAGTACACTACAGCAGAAAAACTCCCCTGGGA





GGAAACAGACTAACAGCGCCTAGCCTACACCCCGGTGTACAGATG





CTTAGCAAAAACAAAATATTAGTACCTAGCTATGCTACAAAACCCAA





GGGTGGGAGCTATGTAAAAGTAACCATAGCACCCCCCACACTACT





AACTGACAAGTGGTACTTTAGCAAAGACATTTGTGACACAACCTTG





GTTAACTTAGACGTTGTACTCTGCAACTTGCGGTTTCCGTTCTGCT





CACCACAAACTGACAACCCTTGCATCACATTCCAAGTTCTGCATTC





CTTGTACAACGACTTCCTCTCCATAGTAGATACTGAAAATTACAAAA





CCACTTTTGTTACTACACTGACAACAAAATTAGGTACAACATGGGG





TTCAAGACTAAATACATTTAGAACAGAAGGCTGCTACTCACACCCT





AAACTACCTAAAAAACAACTAATTGCTGCAAATGACACAACATACTT





TACATCACCTGATGGGCTCTGGGGAGACGCAGTTTTCGACATCTC





AAAACCTCAAGTAATTACCGAAAATATGGAGTCTTACGCTAACTCA





GCCAAACAAAGAGGGGTGAACGGAGACCCCGCTTTTTGCCACCTA





ACAGGAATATACTCACCTCCCTGGCTAACACCAGGCAGAATATCC





CCTGAAACCCCAGGACTTTACACAGACGTGACTTACAACCCATAC





GCTGACAAAGGAGTAGGCAACAGAATATGGGTCGACTACTGCAGT





AAAAAAGGCAACAAATATGACAATACAAGTAAATGCCTTTTAGAAG





ACATGCCACTATGGATGGTATGCTTTGGATACGTAGACTGGGTAAA





AAAAGAGACTGGCAACTGGGGTATTCCACTATGGGCTAGAGTACT





TATCAGAAGCCCATACGCTGTTCCAAAACTGTATAATGAAGCAGAC





CCAAACTATGGATGGGTACCTATTTCTTACTACTTTGGAGAAGGCA





AAATGCCAAACGGAGACATGTACGTACCATTTAAAATAAGAATGAA





ATGGTACCCTTCAATGTGGAACCAAGAGCCAGTGTTAAATGACTTA





GCAAAGAGCGGACCGTTTGCATACAAAAACACAAAAACAAGCGTG





ACTGTGACTGCCAAATATAAATTTACATTTAACTTCGGGGGCAACC





CCGTACCCTCACAGATTGTACAAGATCCCTGCACACAGTCCACCTA





CGACATCCCCGGCACCGGTAACCTGCCTCGCAGAACACAAGTCAT





TGACCCGAAATTCCTCGGTCCCCACTATTCCTTCCACCGGTGGGA





CTTCAGGCGTGGCCTCTTTGGCTCACAAGCTATTAAGAGAGTGTC





AGAACAACCAACAACTTCTGAGTTTTTATTCTCAGGCCCAAAGAGA





CCCAGAATCGATCAAGGTCCTTACATCCCGCCAGAAAAAGACTCA





GGTTCACTCCAAAGAGAATCGAGACCGTGGAGCAGCTCGGAGAC





CGAGGCAGAGACAGAAGCCCCCTCGGAAGAAGAGCCGGAGAACC





AAGAAGAACAAGTACTCCAGTTGCAGCTCAGACAGCAGCTTCGAG





AACAGCGAAAACTCAGACAGGGAATCCAGTGCCTATTCGAGCAAC





TGATAACAACCCAACAGGGGGTCCACAAAAACCCATTGTTAGAGTA





G






CAF05745.1
AJ620228.1
ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAAGTGCTACTGC
141




TTTGCGTGCCAGCAGTTAAGAAAAAACCAACTGCTATGAGCTTCTG





GAGACCTCCGATGCACAATGTCACGGGGATCCAACGCCTGTGGTA





CGAGTCCCTTCACCGTGGCCATGCTGCTTTTTGTGGTTGTGGGGA





TCCTGTACTTCACATTACTGCACTTGCTGAGACATATGGCCATCCA





ACAGGCCCGAGACCTTCTGGGTCATCGGGAATAGATCCCACTCCG





CCCATCCGTAGAGCCAGGCCTGCCCCGGCCGCTCCGGAACCCCC





ACAGGTTGACTCCAGACCGGCCCTGCCATGGCATGGAGATGGTG





GGAGCGACGGAGGCGCTGGTGGCTCCGCAAGCGGTGGACCCGT





GGCAGACTTCGCAGACGATGGCCTAGACCAGCTCGTCGCCGCCC





TAGACGACGAAGAGTAA






CAF05746.1
AJ620228.1
ATGGCATGGAGATGGTGGGAGCGACGGAGGCGCTGGTGGCTCCG
142




CAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTAGAC





CAGCTCGTCGCCGCCCTAGACGACGAAGAGTAAGGAGACGCAGA





CGGTGGAGGAGGGGGCGACCCAGACGCAGACTGTACCGACGCTA





CAGACGCAAAAAACGTAGGAGACGAAAGCCCAAAATAATCTTAAAA





CAATGGCAGCCAGACATTGTAAAGAGGTGCTACATAGTGGGCTAC





ATTCCTGCCATAATATGTGGGGCGGGCACCTGGTCTCACAACTAC





ACCAGCCACCTCCTAGACATTATCCCCAAAGGACCCTTTGGAGGA





GGGCACAGCACTATGAGGTTCTCCCTAAAAGTACTCTTTGAAGAAC





ACCTCAGACACTTAAACTTTTGGACAAAAAGCAACCAGGACCTAGA





ACTCATAAGATACTTTAGATGCTCCTTTAAATTCTATAGAGACCAAG





ACACAGACTACATAGTACACTACAGCAGAAAAACTCCCCTGGGAG





GAAACAGACTAACAGCGCCTAGCCTACACCCCGGTGTACAGATGC





TTAGCAAAAACAAAATATTAGTACCTAGCTATGCTACAAAACCCAA





GGGTGGGAGCTATGTAAAAGTAACCATAGCACCCCCCACACTACT





AACTGACAAGTGGTACTTTAGCAAAGACATTTGTGACACAACCTTG





GTTAACTTAGACGTTGTACTCTGCAACTTGCGGTTTCCGTTCTGCT





CACCACAAACTGACAACCCTTGCATCACATTCCAAGTTCTGCATTC





CTTGTACAACGACTTCCTCTCTATAGTAGATACTGAAAATTACAAAA





CCACTTTTGTTACTACACTGACAACAAAATTAGGTACAACATGGGG





TTCAAGACTAAATACATTTAGAACAGAAGGCTGCTACTCACACCCT





AAACTACCTAAAAAACAACTAATTGCTGCAAATGACACAACATACTT





TACATCACCTGATGGGCTCTGGGGAGACGCAGTTTTCGACATCTC





AAAACCTCAAGTAATTACCGAAAATATGGAGTCTTACGCTAACTCA





GCCAAACAAAGAGGGGTGAACGGAGACCCCGCTTTTTGCCACCTA





ACAGGAATATACTCACCTCCCTGGCTAACACCAGGCAGAATATCC





CCTGAAACCCCAGGACTTTACACAGACGTGACTTACAACCCATAC





GCTGACAAAGGAGTAGGCAACAGAATATGGGTCGACTACTGCAGT





AAAAAAGGCAACAAATATGACAATACAAGTAAATGCCTTTTAGAAG





ACATGCCACTATGGATGGTATGCTTTGGATACGTAGACTGGGTAAA





AAAAGAGACTGGCAANTGGGGTATTCCACTATGGGCTAGAGTACT





TATCAGAAGCCCATACACTGTTCCAAAACTGTATAATGAAGCAGAC





CCAAACTATGGATGGGTACCTATTTCTTACTACTTTGGAGAAGGCA





AAATGCCAAACGGAGACATGTACGTACCATTTAAAATGAGAATGAA





ATGGCACCCTTCAATGTGGAACCAAGAGCCAGTGTTAAATGACTTA





GCAAAGAGCGGACCGTTTGCATACAAAAACACAAAAACAAGCGTG





ACTGTGACTGCCAAATATAAATTTACATTTAACTTCGGGGGCAACC





CCGTACCCTCACAGATTGTACAAGGTCCCTGCACACAGTCCACCT





ACGACATCCCCGGCACCGGTAACCTGCCTCGCAGAATACAGGTCA





TTGACCCGAAATTCCTCGGTCCCCACTATTCCTTCCACCGGTGGG





ACTTCAGGCGTGGCCTCTTTGGCTCACAAGCTATTAAGAGAGTGT





CAGAACAACCAACAACTTCTGAGTTTTTATTCTCAGGCCCAAAGAG





ACCCAGAATCGATCAAGGTCCTTACATCCCGCCAGAAAAAGACTC





AGGTTCACTCCAAAGAGAATCGAGACCGTGGAGCAGCTCGGAGAC





CGAGGCAGAGACAGAAGCCCCCTCGGAAGAAGAGCCGGAGAACC





AAGAAGAACAAGTACTCCAGTTGCAGCTCAGACAGCAGCTTCGAG





AACAGCGAAAACTCAGACAGGGAATCCAGTGCCTATTCGAGCAAC





TGATAACAACCCAACAGGGGGTCCACAAAAACCCATTGTTAGAGTA





G






CAF05747.1
AJ620229.1
ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAAGTGCTACTGC
143




TTTGCGTGCCAGCAGTTAAGAAAAAACCAACTGCTATGAGCTTCTG





GAGACCTCCGATGCACAATGTCACGGGGATCCAACGCCTGTGGTA





CGAGTCCCTTCACCGTGGCCATGCTGCTTTTTGTGGTTGTGGGGA





TCCTGTACTTCACATTACCGCACTTGCTGAGACATATGGCCATCCA





ACAGGCCCGAGACCTTCTGGGTCATCGGGAATAGATCCCACTCCG





CCCATCCGTAGAGCCAGGCCTGCCCCGGCCGCTCCGGAACCCCC





ACAGGTTGACTCCAGACCGGCCCTGCCATGGCATGGAGATGGTG





GAAGCGACGGAGGCGCTGGTGGCTCCGCAAGCGGTGGACCCGT





GGCAGACTTCGCAGACGATGGCCTAGACCAGCTCGTCGCCGCCC





TAGACGACGAAGAGTAA






CAF05748.1
AJ620229.1
ATGGCATGGAGATGGTGGAAGCGACGGAGGCGCTGGTGGCTCCG
144




CAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTAGAC





CAGCTCGTCGCCGCCCTAGACGACGAAGAGTAAGGAGACGCAGA





CGGTGGAGGAGGGGGCGACCCAGACGCAGACTGTACCGACGCTA





CAGACGCAAAAAACGTAGGAGACGAAAGCCCAAAATAATCTTAAAA





CAATGGCAGCCAGACATTGTAAAGAGGTGCTACATAGTGGGCTAC





ATTCCTGCCATAATATGTGGGGCGGGCACCTGGTCTCACAACTAC





ACCAGCCACCTCCTAGACATTATCCCCAAAGGACTCTTTGGAGGA





GGGCACAGCACTATGAGGTTCTCCCTAAAAGTACTCTTTGAAGAAC





ACCTCAGACACTTAAACTTTTGGACAAAAAGCAACCAGGACCTAGA





ACTCATAAGATACTTTAGATGCTCCTTTAAATTCTATAGAGACCAAG





ACACAGACTACATAGTACACTACAGCAGAAAAACTCCCCTGGGAG





GAAACAGACTAACAGCGCCTAGCCTACACCCCGGTGTACAGTTGC





TTAGCAAAAACAAAATATTAGTACCTAGCTATGCTACAAAACCCAA





GGGTGGGAGCTATGTAAAAGTAACCATAGCACCCCCCACACTACT





AACTGACAAGTGGTACTTTAGCAAAGACATTTGTGACACAACCTTG





GTTAACTTAGACGTTGTACTCTGCAACTTGCGGTTTCCGTTCTGCT





CACCACAAACTGACAACCCTTGCATCACATTCCAAGTTCTGCATTC





CTTGTACAACGACTTCCTCTCTATAGTAGATACTGAAAATTACAAAA





CCACTTTTGTTACTACACTGACAACAAAATTAGGTACAACATGGGG





TTCAAGACTAAATACATTTAGAACAGAAGGCTGCTACTCACACCCT





AAACTACCTAAAAAACAACTAATTGCTGCAAATGACACAACATACTT





TACATCACCTGATGGGCTCTGGGGAGACGCAGTTTTCAACATCTC





AAAACCTCAAGTAATTACCGAAAATATGGAGTCTTACGCTAACTCA





GCCAAACAAAGAGGGGTGAACGGAGACCCCGCTTTTTGCCACCTA





ACAGGAATATACTCACCTCCCTGGCTAACACCAGGCAGAATATCC





CCTGAAACCCCAGGACTTTACACAGACGTGACTTACAACCCATAC





GCTGACAAAGGAGTAGGCAACAGAATATGGGTCGACTACTGCAGT





AAAAAAGGCAACAAATATGACAATACAAGTAAATGCCTTTTAGAAG





ACATGCCACTATGGATGGTATGCTTTGGATACGTAGACTGGGTAAA





AAAAGAGACTGGCAACTGGGGTATTCCACTATGGGCTAGAGTACT





TATCAGAAGCCCATACACTGTTCCAAAACTGTATAATGAAGCAGAC





CCAAACTATGGATGGGTACCTATTTCTTACTACTTTGGAGAAGGCA





AAATGCCAAACGGAGACATGTACGTACCATTTAAAATAAGAATGAA





ATGGCACCCTTCAATGTGGAACCAAGAGCCAGTGTTAAATGACTTA





GCAAAGAGCGGACCGTTTGCATACAAAAACACAAAAACAAGCGTG





ACTGTGACTGCCAAATATAAATTTACATTTAACTTCGGGGGCAACC





CCGTACCCTCACAGATTGTACAAGATCCCTGCACACAGTCCACCTA





CGACATCCCCGGCACCGGTAACCTGCCTCGCAGAATACAAGTCAT





TGACCCGAAATTCCTCGGTCCCCACTATTCCTTCCACCGGTGGGA





CTTCAGGCGTGGCCTCTTTGGCTCACAAGCTATTAAGAGAGTGTC





AGAACAACCAACAACTTCTGAGTTTTTATTCTCAGGCCCAAAGAGA





CCCAGAATCGATCAAGGTCCTTACATCCCGCCAGAAAAAGACTCA





GGTTCACTCCAAAGAGAATCGAGACCGTGGAGCAGCTCGGAGAC





CGAGGCAGAGACAGAAGCCCCCTCGGAAGAAGAGCCGGAGAACC





AAGAAGAACAAGTACTCCAGTTGCAGCTCAGACAGCAGCTTCGAG





AACAGCGAAAACTCAGACAGGGAATCCAGTGCCTATTCGAGCAAC





TGATAACAACCCAACAGGGGGTCCACAAAAACCCATTGTTAGAGTA





G






CAF05780.1
AJ620230.1
ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAAGTGCTACTGC
145




TTTGCGTGCCAGCAGCTAAGAAAAAACCAACTGCTATGAGCTTCTG





GAAACCTCCGGTACACAATGTCACGGGGATCCAACGCATGTGGTA





TGAGTCCTTTCACCGTGGCCACGCTTCTTTTTGTGGTTGTGGGAAT





CCTATACTTCACATTACTGCACTTGCTGAAACATATGGCCATCCAA





CAGGCCCGAGACCTTCTGGGCCACCGGGAGTAGACCCCAACCCC





CACATCCGTAGAGCCAGGCCTGCCCCGGCCGCTCCGGGGCCCTC





ACAGGTTGATTCGAGACCAGCCCTGACATGGCATGGGGATGGTG





GAAGCGACGGAGGCGCTGGTGGTTCCGGAAGCGGTGGACCCGT





GGCAGACTTCGCAGACGATGGCCTCGATCAGCTCGTCGCCGCCC





TAGACGACGAAGAGTAA






CAF05781.1
AJ620230.1
ATGGCATGGGGATGGTGGAAGCGACGGAGGCGCTGGTGGTTCCG
146




GAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTCGAT





CAGCTCGTCGCCGCCCTAGACGACGAAGAGTAAGGAGGCGCAGA





CGGTGGAGGAGGGGGAGACGAAAAACAGGGACTTACAGACGCAG





GAGACGCTTTAGACGCAGGAGACGAAAAGCAAAACTTATAATAAAA





CTGTGGCAACCTGCAGTAATTAAAAGATGCAGAATAAAGGGATACA





TACCACTGATTATAAGTGGGAACGGTACCTTTGCCACAAACTTTAC





CAGTCACATAAATGACAGAATAATGAAAGGCCCCTTCGGGGGAGG





ACACAGCACTATGAGGTTCAGCCTCTACATTTTGTTTGAGGAGCAC





CTCAGACACATGAACTTCTAG






CAF05782.1
AJ620230.1
ATGGCAGTTGAGGCTGACTTGCGGTTTCCGTTCTGCTCACCACAA
147




ACTGACAACACTTGCATCAGCTTCCAGGTCCTTAGTTCCGTTTACA





ACAACTACCTCAGTATTAATACCTTTAATAATGACAACTCAGACTCA





AAGTTAAAAGAATTTTTAAATAAAGCATTTCCGACAACAGGCACAAA





AGGAACAAGTTTAAATGCACTAAATACATTTAGAACAGAAGGATGC





ATAAGTCACCCACAACTAAAAAAACCAAACCCACAAATAAACAAAC





CATTAGAGTCACAATACTTTGCACCTTTAGATGCCCTCTGGGGAGA





CCCCATATACTATAATGATCTAAATGAAAACAAAAGTTTGAACGATA





TCATTGAGAAAATACTAATAAAAAACATGATTACATACCATGCAAAA





CTAAGAGAATTTCCAAATTCATACCAAGGAAACAAGGCCTTTTGCC





ACCTAACAGGCATATACAGCCCACCATACCTAAACCAAGGCAGAAT





ATCTCCAGAAATATTTGGACTGTACACAGAAATAATTTACAACCCTT





ACACAGACAAAGGAACTGGAAACAAAGTATGGATGGACCCACTAA





CTAAAGAGAACAACATATATAAAGAAGGACAGAGCAAATGCCTACT





GACTGACATGCCCCTATGGACTTTACTTTTTGGATATACAGACTGG





TGTAAAAAGGACACTAATAACTGGGACTTACCACTAAACTACAGAC





TAGTACTAATATGCCCTTATACCTTTCCAAAATTGTACAATGAAAAG





GTAAAAGACTATGGGTACATCCCGTACTCCTACAAATTCGGAGCG





GGTCAGATGCCAGACGGCAGCAACTACATACCCTTTCAGTTTAGA





GCAAAGTGGTACCCCACAGTACTACACCAGCAACAGGTAATGGAG





GACATAAGCAGGAGCGGGCCCTTTGCACCTAAGGTAGAAAAACCA





AGCACTCAGCTGGTAATGAAGTACTGTTTTAACTTTAACTGGGGCG





GTAACCCTATCATTGAACAGATTGTTAAAGACCCCAGCTTCCAGCC





CACCTATGAAATACCCGGTACCGGTAACATCCCTAGAAGAATACAA





GTCATCGACCCGCGGGTCCTGGGACCGCACTACTCGTTCCGGTC





ATGGGACATGCGCAGACACACATTTAGCAGAGCAAGTATTAAGAG





AGTGTCAGAACAACAAGAAACTTCTGACCTTGTATTCTCAGGCCCA





AAAAAGCCTCGGGTCGACATCCCAAAACAAGAAACCCAAGAAGAA





AGCTCACATTCACTCCAAAGAGAATCGAGACCGTGGGAGACCGAG





GAAGAAAGCGAGACAGAAGCCCTCTCGCAAGAGAGCCAAGAGGT





CCCCTTCCAACAGCAGTTGCAGCAGCAGTACCAAGAGCAGCTCAA





GCTCAGACAGGGAATCAAAGTCCTCTTCGAGCAGCTCATAAGGAC





CCAACAAGGGGTCCATGTAAACCCATGCCTACAGTAG






CAF05749.1
AJ620231.1
ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAAGTGCTACTGC
148




TTTGCGTGCCAGCAGCTAAGAAAAAACCAACTGCTATGAGCTTCTG





GAAACCTCCGGTACACAATGTCACGGGGATCCAACGCATGTGGTA





TGAGTCCTTTCACCGTGGCCACGCTTCTTTTTGTGGTTGTGGGAAT





CCTATACTTCACATTACTGCACTTGCTGAAACATATGGCCATCCAA





CAGGCCCGAGACCTTCTGGGCCACCGGGAGTAGACCCCAACCCC





CACATCCGTAGAGCCAGGCCTGCCCCGGCCGCTCCGGAGCCCTC





ACAGGTTGATTCGAGACCAGCCCTGACATGGCATGGGGATGGTG





GAAGCGACGGAGGCGCTGGTGGTTCCGGAAGCGGTGGACCCGT





GGCAGACTTCGCAGACGATGGCCTCGATCAGCTCGTCGCCGCCC





TAGACGACGAAGAGTAA






CAF05750.1
AJ620231.1
ATGGCATGGGGATGGTGGAAGCGACGGAGGCGCTGGTGGTTCCG
149




GAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTCGAT





CAGCTCGTCGCCGCCCTAGACGACGAAGAGTAAGGAGGCGCAGA





CGGTGGAGGAGGGGGAGACGAAAAACAAGGACTTACAGACGCAG





GAGACGCTTTAGACGCAGGGGACGAAAAGCAAAACTTATAATAAA





ACTGTGGCAACCTGCAGTAATTAAAAGATGCAGAATAAAGGGATAC





ATACCACTGATTATAAGTGGGAACGGTACCTTTGCCACAAACTTTA





CCAGTCACATAAATGACAGAATAATGAAAGGCCCCTTCGGGGGAG





GACACAGCACTATGAGGTTCAGCCTCTACATTTTGTTTGAGGAGCA





CCTCAGACACATGAACTTCTGGACCAGAAGCAACGATAACCTAGA





GCTAACCAGATACTTGGGGGCTTCAGTAAAAATATACAGGCACCC





AGACCAAGACTTTATAGTAATATACAACAGAAGAACCCCTCTAGGA





GGCAACATCTACACAGCACCCTCTCTACACCCAGGCAATGCCATTT





TAGCAAAACACAAAATATTAGTACCAAGTTTACAGACAAGACCAAA





GGGTAGAAAAGCAATTAGACTAAGAATAGCACCCCCCACACTCTTT





ACAGACAAGTGGTACTTTCAAAAGGACATAGCCGACCTCACCCTTT





TCAACATCATGGCAGTTGAGGCTGACTTGCGGTTTCCGTTCTGCTC





ACCACAAACTGACAACACTTGCATCAGCTTCCAGGTCCTTAGTTCC





GTTTACAACAACTACCTCAGTATTAATACCTTTAATAATGACAACTC





AGACTCAAAGTTAAAAGAATTTTTAAATAAAGCATTTCCAACAACAG





GCACAAAAGGAACAAGTTTAAATGCACTAAATACATTTAGAACAGA





AGGATGCATAAGTCACCCACAACTAAAAAAACCAAACCCACAAATA





AACAAACCATTAGAGTCACAATACTTTGCACCTTTAGATGCCCTCT





GGGGAGACCCCATATACTATAATGATCTAAATGAAAACAAAAGTTT





GAACGATATCATTGAGAAAATACTAATAAAAAACATGATTACATACC





ATGCAAAACTAAGAGAATTTCCAAATTCATACCAAGGAAACAAGGC





CTTTTGCCACCTAACAGGCATATACAGCCCACCATACCTAAACCAA





GGCAGAATATCTCCAGAAATATTTGGACTGTACACAGAAATAATTT





ACAACCCTTACACAGACAAAGGAACTGGAAACAAAGTATGGATGG





ACCCACTAACTAAAGAGAACAACATATATAAAGAAGGACAGAGCAA





ATGCCTACTGACTGACATGCCCCTATGGACTTTACTTTTTGGATAT





ACAGACTGGTGTAAAAAGGACACTAATAACTGGGACTTACCACTAA





ACTACAGACTAGTACTAATATGCCCTTATACCTTTCCAAAATTGTAC





AATGAAAAAGTAAAAGACTATGGGTACATCCCGTACTCCTACAAAT





TCGGAGCGGGTCAGATGCCAGACGGCAGCAACTACATACCCTTTC





AGTTTAGAGCAAAGTGGTACCCCACAGTACTACACCAGCAACAGG





TAATGGAGGACATAAGCAGGAGCGGGCCCTTTGCACCTAAGGTAG





AAAAACCAAGCACTCAGCTGGTAATGAAGTACTGTTTTAACTTTAA





CTGGGGCGGTAACCCTATCATTGAACAGATTGTTAAAGACCCCAG





CTTCCAGCCCACCTATGAAATACCCGGTACCGGTAACATCCCTAG





AAGAATACAAGTCATCGACCCGCGGGTCCTGGGACCGCACTACTC





GTTCCGGTCATGGGACATGCGCAGACACACATTTAGCAGAGCAAG





TATTAAGAGAGTGTCAGAACAACAAGAAACTTCTGACCTTGTATTC





TCAGGCCCAAAAAAGCCTCGGGTCGACATCCCAAAACAAGAAACC





CAAGAAGAAAGCTCACATTCACTCCAAAGAGAATCGAGACCGTGG





GAGACCGAGGAAGAAAGCGAGACAGAAGCCCTCTCGCAAGAGAG





CCAAGAGGTCCCCTTCCAACAGCAGTTGCAGCAGCAGTACCAAGA





GCAGCTCAAGCTCAGACAGGGAATCAAAGTCCTCTTCGAGCAGCT





CATAAGGACCCAACAAGGGGTCCATGTAAACCCATGCCTACGGTA





G






CAF05751.1
AJ620232.1
ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAAGTGCTACTGC
150




TTTGCGTGCCAGCAGCTAAGAAAAAACCAACTGCTATGAGCTTCTG





GAAACCTCCGGTACACAATGTCACGGGGATCCAACGCATGTGGTA





TGAGTCCTTTCACCGTGGCCACGCTTCTTTTTGTGGTTGTGGGAAT





CCTATACTTCACATTACTGCACTTGCTGAAACATATGGCCATCCAA





CAGGCCCGAGACCTTCTGGGCCACCGGGAGTAGACCCCAACCCC





CACATCCGTAGAGCCAGGCCTGCCCCGGCCGCTCCGGAGCCCTC





ACAGGTTGATTCGAGACCAGCCCTGACGTGGCATGGGGATGGTG





GAAGCGACGGAGGCGCTGGTGGTTCCGGAAGCGGTGGACCCGT





GGCAGACTTCGCAGACGATGGCCTCGATCAGCTCGTCGCCGCCC





TAGACGACGAAGAGTAA






CAF05752.1
AJ620232.1
ATGAAAGGCCCCTTCGGGGGAGGACACAGCACTATGAGGTTCAG
151




CCTCTACATTTTGTTTGAGGAGCGCCTCAGACACATGAACTTCTGG





ACCAGAAGCAACGATAACCTAGAGCTAACCAGATACTTGGGGGCT





TCAGTAAAAATATACAGGCACCCAGACCAAGACTTTATAGTAATAT





ACAACAGAAGAACCCCTCTAGGAGGCAACATCTACACAGCACCCT





CTCTACACCCAGGCAATGCCATTTTAGCAAAACACAAAATATTAGT





ACCAAGTTTACAGACAAGACCAAAGGGTAGAAAAGCAATTAGACTA





AGAATAGCACCCCCCACACTCTTTACAGACAAGTGGTACTTTCAAA





AGGACATAGCCGACCTCACCCTTTTCAACATCATGGCAGTTGAGG





CTGACTTGCGGTTTCCGTTCTGCTCACCACAAACTGGCAACACTTG





CATCAGCTTCCAGGTCCTTAATTCCGTTTACAACAACTACCTCAGT





ATTAATACCTTTAATAATGACAACTCAGACTCAAAGTTAAAAGAATT





TTTAAATAAAGCATTTCCAACAACAGGCACAAAAGGAACAAGTTTA





AATGCACTAAATACATTTAGAACAGAAGGATGCATAAGTCACCCAC





AACTAAAAAAACCAAACCCACAAATAAACAAACCATTAGATTCACAA





TACTTTGCACCTTTAGACGCCCTCTGGGGAGACCCCATATACTATA





ATGATCTAAATGAAAAGAAAAGTTTGAAGGATATCATTGAGAACAT





ACTAATAAAAAACATGATTACATACCATGAAAAACTAAGAGAGTTTC





CAAATTCATACCAAGGAAACAAGGCCTTTTGCCACCTAACAGGCAT





ATACAGCCCACCATACCTAAACCAAGGCAGAATATCTCCAGAAATA





TTTGGACTGTACACAGAAATAATTTACAACCCTTACACAGACAAAG





GAACTGGAAACAAAGTATGGATGGACCCACTAACTAAAGAGAACA





ACATATATAAAGAAGGACAGAGCAAATGCCTACTGACTGACATGCC





CCTATGGACTTTACTTTTTGGATATACAGACTGGTGTAAAAAGGAC





ACTAATAACTGGGACTTACCACTAAACTACAGACTAGTACTAATAT





GCCCTTATACCTTTCCAAAATTGTACAATGAAAAGGTAAAAGACTAT





GGGTACATCCCGTACTCCTACAAATTCGGAGCGGGTCAGATGCCA





GACGGCAGCAACTACATACCCTTTCAGTTTAGAGCAAAGTGGTAC





CCCACAGTACTACACCAGCAACAGGTAATGGAGGACATAAGCAGG





AGCGGGCCCTTTGCACCTAAGGTAGAAAAACCAGGCACTCAGCTG





GTAATGAAGTACTGTTTTAACTTTAACTGGGGCGGTAACCCTATCA





TTGAACAGATTGTTAAAGACCCCAGCTTCCAGCCCACCTATGAAAT





ACCCGGTACCGGTGACATCCCTAGAAGAATACAAGTCATCGACCC





GCGGGTCCTGGGACCGCACTACTCGTTCCGGTCATGGGACACGC





GCAGACACACATTTAGCAGAGCAAGTATTAAGAGAGTGTCAGAAC





AACAAGAAGCTTCTGACCTTGTATTCTCAGGCCCAAAAAAGCCTCG





GGTCGACATCCCAAAACAAGAAACCCAAGAAGAAAGCTCACATTC





ACTCCAAAGAGAATCGAGACCGTGGGAGACCGAGGAAGAAAGCG





AGACAGAAGCCCTCTCGCAAGAGAGCCAAGAGGTCCCCTTCCAAC





AGCAGTTGCAGCAGCAGTACCAAGAGCAGCTCAAGCTCAGACAGG





GAATCAAAGTCCTCTTCGAGCAGCTCATAAGGACCCAACAAGGGG





TCCATGTAAACCCATGCCTACAGTAG






CAF05753.1
AJ620233.1
ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAAGTGCTACTGC
152




TTTGCGTGCCAGCAGCTAAGAAAAAACCAACTGCTATGAGCTTCTG





GAAACCTCCGGTACACAATGTCACGGGGATCCAACGCATGTGGTA





TGAGTCCTTTCACCGTGGCCACGCTTCTTTTTGTGGTTGTGGGAAT





CCTATACTTCACATTACTGCACTTGCTGAAACATATGGCCGTCCAA





CAGGCCCGAGACCTTCTGGGCCACCGGGAGTAGACCCCAACCCC





CACATCCGTAGAGCCAGGCCTGCCCCGGCCGCTCCGGAGCCCTC





ACAGGTTGATTCGAGACCAGCCCTGACATGGCATGGGGATGGTG





GAAGCGACGGAGGCGCTGGTGGTTCCGGAAGCGGTGGACCCGT





GGCAGACTTCGCAGACGATGGCCTCGATCAGCTCGTCGCCGCCC





TAGACGACGAAGAGTAA






CAF05754.1
AJ620233.1
ATGGCATGGGGATGGTGGAAGCGACGGAGGCGCTGGTGGTTCCG
153




GAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTCGAT





CAGCTCGTCGCCGCCCTAGACGACGAAGAGTAAGGGGGCGCAGA





CGGTGGAGGAGGGGGAGACGAAAAACAAGGACTTACAGACGCAG





GAGACGCTTTAGACGCAGGAGACGAAAAGCAAAACTTATAGTAAA





ACTGTGGCAACCTGCAGTAATTAAAAGATGCAGAATAAAGGGATAC





ATACCACTGATTATAGGTGGGAACGGTACCTTTGCCACAAACTTTA





CCAGTCACATAAATGACAGAATAATGAAAGGCCCCTTCGGGGGAG





GACACAGCACTATGAGGTTCAGCCTCTACATTTTGTTTGAGGAGCA





CCTCAGACACATGAACTTCTGGACCAGAAGCAACGATAACCTAGA





GCTAACCAGATACTTGGGGGCTTCAGTAAAAATATACAGGCACCC





AGACCAAGACTTTATAGTAATATACAACAGAAGAACCCCTCTAGGA





GGCAACATCTACACAGCACCCTCTCTACACCCAGGCAATGCCATTT





TAGCAAAACACAAAATATTAGTACCAAGTTTACAGACAAGACCAAA





GGGTAGAAAAGCAATTAGACTAAGAATAGCACCCCCCACACTCTTT





ACAGACAAGTGGTACTTTCAAAAGGACATAGCCGACCTCACCCTTT





TCAACATCATGGCAGTTGAGGCTGACTTGCGGTTTCCGTTCTGCTC





ACCACAAACTGACAACACTTGCATCAGCTTCCAGGTCCTTAGTTCC





GTTTACAACAACTACCTCAGTATTAATACCTTTAATAATGACAACTC





AGACTCAAAGTTAAAAGAATTTTTAAATAAAGCATTTCCAACAACAG





GCACAAAAGGAACAAGTTTAAATGCACTAAATACATTTAGAACAGA





AGGATGCATAAGTCACCCACAACTAAAAAAACCAAACCCACAAATA





AACAAACCATTAGAGTCACAATACTTTGCACCTTTAGATGCCCTCT





GGGGAGACCCCATATACTATAATGATCTAAATGAAAACAAAAGTTT





GAACGATATCATTGAGAAAATACTAATAAAAAACATGATTACATACC





ATGCAAAACTAAGAGAATTTCCAAATTCATACCAAGGAAACAAGGC





CTTTTGCCACCTAACAGGCATATACAGCCCACCATACCTAAACCAA





GGCAGAATATCTCCAGAAATATTTGGACTGTACACAGAAATAATTT





ACAACCCTTACACAGACAAAGGAACTGGAAACAAAGTATGGATGG





ACCCACTAACTAAAGAGAACAACATATATAAAGAAGGACAGAGCAA





ATGCCTACTGACTGACATGCCCCTATGGACTTTACTTTTTGGATAT





ACAGACTGGTGTAAAAAGGACACTAATAACTGGGACTTACCACTAA





ACTACAGACTAGTACTAATATGCCCTTATACCTTTCCAAAATTGTAC





AATGAAAAGGTAAAAGACTATGGGTACATCCCGTACTCCTACAAAT





TCGGAGCGGGTCAGATGCCAGACGGCAGCAACTACATACCCTTTC





AGTTTAGAGCAAAGTGGTACCCCACAGTACTACACCAGCAACAGG





TAATGGAGGACATAAGCAGGAGCGGGCCCTTTGTACCTAAGGTAG





AAAAACCAAGCACTCAGCTGGTAATGAAGTACTGTTTTAACTTTAA





CTGGGGCGGTAACCCTATCATTGAACAGATTGTTAAAGACCCCAG





CTTCCAGCCCACCTATGAAATACCCGGTACCGGTAACATCCCTAG





AAGAATACAAGTCATCGACCCGCGGGTCCTGGGACCGCACTACTC





GTTCCGGCCATGGGACATGCGCAGACACACATTTAGCAGAGCAAG





TATTAAGAGAGTGTCAGAACAACAAGAAACTTCTGACCTTGTATTC





TCAGGCCCAAAAAAGCCTCGGGTCGACATCCCAAAACAAGAAACC





CAAGAAGAAAGCTCACATTCACTCCAAAGAGAATCGAGACCGTGG





GAGACCGAGGAAGAAAGCGAGACAGAAGCCCTCTCGCAAGAGAG





CCAAGAGGTCCCCTTCCAACAGCAGTTGCAGCAGCAGTACCAAGA





ACAGCTCAAGCTCAGACAGGGAATCAAAGTCCTCTTCGAGCAGCT





CATAAGGACCCAACAAGGGGTCCATGTAAACCCATGCCTACAGTA





G






CAF05755.1
AJ620234.1
ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAAGTGCTACTGC
154




TTTGCGTGCCAGCAGCTAAGAAAAAACCAACTGCTATGAGCTTCTG





GAAACCTCCGGTACACAATGTCACGGGGATCCAACGCATGTGGTA





TGGGTCCTTTCACCGTGGCCACGCTTCTTTTTGTGGTTGTGGGAAT





CCTATACTTCACATTACTGCACTTGCTGAAACATATGGCCATCCAA





CAGGCCCGAGACCTTCTGGGCCACCGGGAGTAGACCCCAACCCC





CACATCCGTAGAGCCAGGCCTGCCCCGGCCGCTCCGGAGCCCTC





ACAGGTTGATTCGAGACCAGCCCTGACATGGCATGGGGATGGTG





GAAGCGACGGAGGCGCTGGTGGTCCCGGAAGCGGTGGACCCGT





GGCAGACTTCGCAGACGATGGCCTCGATCAGCTCGTCGCCGCCC





TAGACGACGAAGAGTAA






CAF05756.1
AJ620234.1
ATGGCATGGGGATGGTGGAAGCGACGGAGGCGCTGGTGGTCCCG
155




GAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTCGAT





CAGCTCGTCGCCGCCCTAGACGACGAAGAGTAAGGAGGCGCAGA





CGGTGGAGGAGGGGGAGACGAAAAACAAGGACTTACAGACGCAG





GAGACGCTTTAGACGCAGGAGACGAAAAGCAAAACTTATAATAAAA





CTGTGA






CAF05757.1
AJ620234.1
ATGAAAGGCCCCTTCGGGGGAGGACACAGCACTATGAGGTTCAG
156




CCTCTACATTTTGTTTGAGGAGCACCTCAGACACATGAACTTCTGG





ACCAGAAGCAACGATAACCTAGAGCTAACCAGATACTTGGGGGCT





TCAGTAAAAATATACAGGCACCCAGACCAAGACTTTATAGTAATAT





ACAACAGAAGAACCCCTCTAGGAGGCAACATCTACACAGCACCCT





CTCTACACCCAGGCAATGCCATTTTAGCAAAACACAAAATATTAGT





ACCAAGTTTACAGACAAGACCAAAGGGTAGAAAAGCAATTAGACTA





AGAATAGCACCCCCCACACTCTTTACAGACAAGTAG






CAF05758.1

ATGGCAGTTGAGGCTGACTTGCGGTTTCCGTTCTGCTCACCACAA
157




ACTGACAACACTTGCATCAGCTTCCAGGTCCTTAGTTCCGTTTACA





ACAACTACCTCAGTATTAATACCTTTAATAATGACAACTCAGACTCA





AAGTTAAAAGAATTTTTAAATAAAGCATTTCCAACAACAGGCACAAA





AGGAACAAGTTTAAATGCACTAAATACATTTAGAACAGAAGGATGC





ATAAGTCACCCACAACTAAAAAAACCAAACCCACAAACAAACAAAC





CATCAGAGTCACAATACTTTGCACCTTTAGATGCCCTCTGGGGAGA





CCCCATATACTATAATGATCTAAATGAAAAGAAAAGTTTCAAGAATA





TCATTGAGAACATACTAATAAAAAACATGATTACATACCATGAAAAA





CTAACAGAATTTCCAAATTCATACCAAGGAAACAAGGCCTTTTGCC





ACCTAACAGGCATATACAGCCCACCATACCTAAACCAAGGCAGAAT





ATCTCCAGAAATATTTGGACTGTACACAGAAATAATTTACAACCCTT





ACACAGACAAAGGAACTGGAAACAAAGTATGGATGGACCCACTAA





CTAAAGAGAACAACATATATAAAGAAGGACAGAGCAAATGCCTACT





GACTGACATGCCCCTATGGACTTTACTTTTTGGATATACAGACTGG





TGTAAAAAGGACACTAATAACTGGGACTTACCACTAAACTACAGAC





TAGTACTAATATGCCCTTATACCTTTCCAAAATTGTACAATGAAAAG





GTAAAAGACTATGGGTACATCCCGTACTCCTACAAATTCGGAGCG





GGTCAGATGCCAGACGGCAGCAACTACATACCCTTTCAGTTTAGA





GCAAAGTGGTACCCCACAGTACTACACCAGCAACAGGTAATGGAG





GACATAAGCAGGAGCGGGCCCTTTGCACCTAAGGTAGAAAAACCA





AGCACTCAGCTGGTAATGAAGTACTGTTTTAACTTTAACTGGGGCG





GTAACCCTATCATTGAACAGATTGTTAAAGACCCCAGCTTCCAGCC





CACCTATGAAATACCCGGTACCGGTAACATCCCTAGAAGAATACAA





GTCATCGACCCGCGGGTCCTGGGACCGCACTACTCGTTCCGGTC





ATGGGACATGCGCAGACACACATTTAGCAGAGCAAGTATTAAGAG





AGTGTCAGAACAACAAGAAACTTCTGACCTTGTATTCTCAGGCCCA





AAAAAGCCTCGGGTCGACATCCCAAAACAAGAAACCCAAGAAGAA





AGCTCACATTCACTCCAAAGAGAATCGAGACCGTGGGAGACCGAG





GAAGAAAGCGAGACAGAAGCCCTCTCGCAAGAGAGCCAAGAGGT





CCCCTTCCAACAGCAGTTGCAGCAGCAGTACCAAGAGCAGCTCAA





GCTCAGACAGGGAATCAAAGTCCTCTTCGAGCAGCTCATAAGGAC





CCAACAAGGGGTCCATGTAAACCCATGCCTACAGTAG






CAF05759.1

ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAAGTGCTACTGC
158




TTTGCGTGCCAGCAGCTAAGAAAAAACCAACTGCTATGAGCTTCTG





GAAACCTCCGGTACACAATGTCACGGGGATCCAACGCATGTGGTA





TGAGTCCTTTCACCGTGGCCACGCTTCTTTTTGTGATTGTGGGAAT





CCTATACTTCACATTACTGCACTTGCTGAAACATATGGCCATCCAA





CAGGCCCGAGACCTTCTGGGCCACCGGGAGTAGACCCCAACCCC





CACATCCGTAGAGCCAGGCCTGCCCCGGCCGCTCCGGAGCCCTC





ACAGGTTGATTCGAGACCAGCCCTGACATGGCATGGGGATGGTG





GAAGCGACAGAGGCGCTGGTGGTTCCGGAAGCGGTGGACCCGTG





GCAGACTTCGCAGACGATGGCCTCGATCAGCTCGTTGCCGCCCTA





GACGACGAAGAGTAA






CAF05760.1
AJ620234.1
ATGGCATGGGGATGGTGGAAGCGACAGAGGCGCTGGTGGTTCCG
159




GAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTCGAT





CAGCTCGTTGCCGCCCTAGACGACGAAGAGTAAGGAGGCGCAGA





CGGTGGAGGAGGGGGAGACGAAAAACAAGGACTTACAGACGCAG





GAGACGCTTTAGACGCAGGAGACGAAAAGCAAAACTTATAATAAAA





CTGTGGCAACCTGCAGTAATTAAAAGATGCAGAATAAAGGGATACA





TACCACTGATTATAAGTGGGAACGGTACCTTTGCCACAAACTTTAC





CAGTCACATAAATGACAGAATAATGAAGGGCCCCTTCGGGGGAGG





ACACAGCACTATGAGGTTCAGTCTCTACATTTTGTTTGAGGAGCAC





CTCAGACACATGAACTTCTGGACCAGAAGCAACGATAACCTAGAG





CTAACCAGATACTTGGGGGCTTCAGTAAAAATATACAGGCACCCA





GACCAAGACTTTATAGTAATATACAACAGAAGAACCCCTCTAGGAG





GCAACATCTACACAGCACCCTCTCTACACCCAGGCAATGCCATTTT





AGCAAAACACAAAATATTAGTACCAAGTTTACAGACAAGACCAAAG





GGTAGAAAAGCAATTAGACTAAGAATAGCACCCCCCACACTCTTTA





CAGACAAGTGGTACTTTCAAAAGGACATAGCCGACCTCACCCTTTT





CAACATCATGGCAGTTGAGGCTGACTTGCGGTTTCCGTTCTGCTC





ACCACAAACTGACAACACTTGCATCAGCTTCCAGGTCCTTAGTTCC





GTTTACAACAACTACCTCAGTATTAATACCTTTAATAATGACAACTC





AGACTCAAAGTTAAAAGAATTTTTAAATAAAGCATTTCCAACAACAG





GCACAAAAGGAACAAGTTTAAATGCACTAAATACATTTAGAACAGA





AGGATGCATAAGTCACCCACAACTAAAAAAACCAAACCCACAAATA





AACAAACCATTAGAGTCACAATACTTTGCACCTTTAGATGCCCTCT





GGGGAGACCCCATATACTATAATGATCTAAATGAAAACAAAAGTTT





GAACGATATCATTGAGAAAATACTAATAAAAAACATGATTACATACC





ATGCAAAACTAAGAGAATTTCCAAATTCATACCAAGGAAACAAGGC





CTTTTGCCACCTAACAGGCATATACAGCCCACCATACCTAAACCAA





GGCAGAATATCTCCAGAAATATTTGGACTGTACACAGAAATAATTT





ACAACCCTTACACAGACAAAGGAACTGGAAACAAAGTATGGATGG





ACCCACTAACTAAAGAGAACAACATATATAAAGAAGGACAGAGCAA





ATGCCTACTGACTGACATGCCCCTATGGACTTTACTTTTTGGATAT





ACAGACTGGTGTAAAAAGGACACTAATAACTGGGACTTACCACTAA





ACTACAGACTAGTACTAATATGCCCTTATACCTTTCCAAAATTGTAC





AATGAAAAGGTAAAAGACTATGGGTACATCCCGTACTCCTACAAAT





TCGGAGCGGGTCAGATGCCAGACGGCAGCAACTACATACCCTTTC





AGTTTAGAGCAAAGTGGTACCCCACAGTACTACACCAGCAACAGG





TAATGGAGGACATAAGCAGGAGCGGGCCCTTTGCACCTAAGGTAG





AAAAACCAAGCACTCAGCTGGTAATGAAGTACTGTTTTAACTTTAA





CTGGGGCGGTAACCCTATCATTGAACAGATTGTTAAAGACCCCAG





CTTCCAGCCCACCTATGAAATACCCGGTACCGGTAACATCCCTAG





AAGAATACAAGTCATCGACCCGCGGGTCCTGGGACCGCACTACTC





GTTCCGGTCATGGGACATGCGCAGACACACATTTAGCAGAGCAAG





TATTAAGAGAGTGTCAGAACAACAAGAAACTTCTGACCTTGTATTC





TCAGGCCCAAAAAAGCCTCGGGTCGACATCCCAAAACAAGAAACC





CAAGAAGAAAGCTCACATTCACTCCAAAGAGAATCGAGACCGTGG





GAGACCGAGGAAGAAAGCGAGACAGAAGCCCTCTCGCAAGAGAG





CCAAGAGGTCCCCTTCCAACAGCAGTTGCAGCAGCAGTACCAAGA





GCAGCTCAAGCTCAGACAGGGAATCAAAGTCCTCTTCGAGCAGCT





CATAAGGACCCAACAAGGGGTCCATGTAAACCCATGCCTACAGTA





G






AAC28465.1
AF079173.1
ATGGCCTATGGCTGGTGGCGCCGAAGGAGAAGACGGTGGCGCAG
160




GTGGAGACCCAGACCATGGAGGCCCCGCTGGAGGACCCGAAGAC





GCAGACCTGCTAGACGCCGTGGCCACCGCAGAAACGTAAGAAGA





CGCCGCAGAGGAGGGAGGTGGAGGAGGAGATATAGGAGATGGAA





AAGAAAGGGCAGGCGCAGAAAAAAAGCTAAAATAATAATAAGACA





ATGGCAACCAAACTACAGAAGGAGATGTAACATAGTAGGCTACATC





CCTGTACTAATATGTGGCGAAAATACTGTCAGCAGAAACTATGCCA





CACACTCAGACGATACCAACTACCCAGGACCCTTTGGGGGGGGTA





TGACTACAGACAAATTTACTTTAAGAATTCTGTATGACGAGTACAAA





AGGTTTATGAACTACTGGACAGCATCTAACGAAGACCTAGACCTTT





GTAGATATCTAGGAGTAAACCTGTACTTTTTCAGACACCCAGATGT





AGATTTTATCATAAAAATTAATACCATGCCTCCTTTTCTAGACACAG





AACTCACAGCCCCTAGACTACACCCAGGCATGCTAGCCCTAGACA





AAAGAGCAAGATGGATACCTAGCTTAAAATCTATACCAGGAAAAAA





ACACTATATTAAAATAAGAGTAGGGGCACCAAAAATGTTCACTGAT





AAATGGTACCCCCAAACAGATCTTTGTGACATGGTGCTTCTAACTG





TCTATGCAACCGCAGCGGATATACCATATCCGTTCGGCTCACCACT





AACTGACTCTGTGGTTGTGAACTTCCAGGTTCTGCAATCCATGTAT





GATAAATACATTAGCATATTACCAGACCAAAAGTCACAAAGTAAGT





CACTACTTAGTAACATAGCAAATTACATTCCCTTTTATAATACCACA





CAAACTATAGCCCAATTAAAGCCATTTATAGATGCAGGCAATATAA





CATCAGGCACAGCAGCAACAACATGGGGATCATACATAAACACAA





CCAAATTTACTACAACAGCCACAACAACTTATACATATCCAGGCAC





TACAACTAACACAGTTACTATGTATTCCTCTAATGACTCCTGGTACA





GAGGAACAGTATATAACAATCAAATTAAAGAGTTACCAAAAAAAGC





AGCTGAATTATACTCAAAAGCAACAAAAACCTTGCTAGGAAACACC





TTCACAACTGAAGACTGCACACTAGAATACCATGGAGGACTATACA





GCTCAATATGGCTATCCCCTGGTAGATCTTACTTTGAAACACCAGG





AGCATACACAGACATAAAGTACAATCCATTCACAGACAGAGGAGAA





GGCAACATGTTATGGATAGACTGGCTAAGCAAAAAAAACATGAACT





ATGACAAAGTACAAAGTAAATGCTTAGTATCAGACCTACCTCTATG





GGCATCAGCATATGGATATGTAGAATTTTGTGCAAAAAGTACAGGA





GACCAGAACATACACATGAATGCCAGGCTACTAATAAGAAGTCCCT





TTACAGACCCACAGCTACTAGTACACACAGACCCCACAAAAGGCTT





TGTTCCCTACTCTTTAAACTTTGGAAATGGTAAAATGCCAGGAGGT





AGTAGTAATGTGCCTATTAGAATGAGAGCTAAATGGTATCCAACAT





TGTTTCACCAACAAGAAGTACTAGAGGCCTTAGCACAGTCAGGCC





CCTTTGCATACCACTCAGACATTAAAGAAGTATCTCTGGGTATGAA





ATACCGTTTTAAGTGGATCTGGGGTGGAAACCCCGTTCGCCAACA





GGTTGTTAGAAATCCCTGCAAAGAAACCCACTCCTCGGGCAATAG





AGTCCCTAGAAGCTTACAAATCGTTGACCCGAAATACAACTCACCG





GAACTCACATTCCATACCTGGGACTTCAGACGTGGCCTCTTTGGC





CCGAAAGCTATTCAGAGAATGCAACAACAACCAACAACTACTGACA





TTTTTTCAGCAGGCCGCAAGAGACCCAGGAGGGACACCGAGGTGT





ACCACTCCAGCCAAGAAGGGGAGCAAAAAGAAAGCTTACTTTTCC





CCCCAGTCAAGCTCCTCAGACGAGTCCCCCCGTGGGAAGACTCG





CAGCAGGAGGAAAGCGGGTCGCAAAGCTCAGAGGAAGAGACGCA





GACCGTCTCCCAGCAGCTCAAGCAGCAGCTGCAGCAACAGCAAAT





CCTGGGAGTCAAACTCAGACTCCTGTTCGACCAAGTCCAAAAAATC





CAACAAAATCAAGATATCAACCCTACCTTGTTACCAAGGGGGGGG





GATCTAGCATCGTTATTTCAAATAGCACCATAA






AAD20024.1
AF129887.1
ATGGCCTATGGGTTGTGGAGGAGACGGCGAAGGAGGTGGAAGAG
161




GTGGAGACGCAGACGGTGGAGACGCCGCTGGAGGACCCGCCGA





CGCAGACCTGCTGGACGCCGTAGACGCCGCAGAACAGTAAGGAG





ACGGCGCAGGCGCGGGAGGTGGAGGAGGAGATATAGGAGATGG





AGGCGAAAAGGCAGACGCAGGAAAAAGAAAAAACTCATAATAAGA





CAATGGCAGCCAAACTATACCAGAAAGTGCAACATTGTGGGTTATA





TGCCAGTTATAATGTGTGGCGAAAATACTGTCAGCAGAAACTATGC





CACACACTCAGACGATACCAACTACCCAGGACCCTTTGGGGGGGG





TATGACTACAGACAAATTTACTTTAAGAATTCTGTATGACTGGTACA





AAAGGTTTATGAACTACTGGACAGCATCTAACGAAGACCTAGACCT





TTGTAGATATCTAGGAGTGAACCTGTACTTTTTCAGACACCCAGAT





GTAGATTTTATCATAAAAATTAATACCATGCCTCCTTTTCTAGACAC





AGAACTCACAGCCCCTAGCATACACCCAGGCATGCTAGCCCTAGA





CGAAAGAGCAAGATGGATACCTAGCTTAAAATCTAGACCAGGAAA





AAAACACTATATTAAAATAAGAGTAGGGGCACCAAAAATGTTCACT





GATAAATGGTACCCCCAAACAGATCTTTGTGACATGGTGCTTCTAA





CTGTCTATGCAACCGCAGCGGATATGCAATATCCGTTCGGCTACC





CACTAACTGACTCTGTGGTTGTGAACTTCCAGGTTCTGCAATCCAT





GTATGATAAATACATTAGCATATTACCAGACCAAAAGTCACAAAGA





GAGTCACTACTTAGTAACATAGCAAATTACATTCCCTTTTATAATAC





CACACAAACTATAGCCCAATTAAAGCCATTTATAGATGCAGGCAAT





ATAACATCAGGCACAACAGCAACAACATGGGGATCATACATAAACA





CAACCAAATTTACTACAACAGCCACAACAACTTATACATATCCAGG





CACTACAACTAACACAGTTACTATGTTAACCTCTAATGACTCCTGGT





ACAGAGGAACAGTATATAACAATCAAATTAAAGAGTTACCAAAAAA





AGCAGCTGAATTATACTCAAAAGCAACAAAAACCTTGCTAGGAAAC





ACCTTCACAACTGAAGACTGCACACTAGAATACCATGGAGGACTAT





ACAGCTCAATATGGCTATCCCCTGGTAGATCTTACTTTGAAACACC





AGGAGCATACACAGACATGAAGTACAACCCATTCACAGACAGAGG





AGAAGGCAACATGTTATGGATAGACTGGCTAAGCAAAAAAAACATG





AACTATGACAAAGTACAAAGTAAATGCTTAGTATCAGACCTACCTC





TATGGGCAGCAGCATATGGTTATTTAGAATTCTGCTCTAAAAGCAC





AGGAGACACAAACATACACATGAATGCCAGACTACTAATAAGAAGT





CCTTTTACAGACCCCCAGCTAATAGCACACACAGACCCCACTAAAG





GCTTTGTACCCTATTCCTTAAACTTTGGAAATGGTAAAATGCCAGG





AGGTAGCAGCAATGTTCCCATAAGAATGAGAGCTAAGTGGTACCC





CACTTTATTCCACCAACAAGAAGTTCTAGAGGCCTTAGCACAGTCA





GGACCCTTTGCTTATCACTCAGACATTAAAAAAGTATCTCTAGGCA





TAAAATACCGTTTTAAGTGGATCTGGGGTGGAAACCCCGTTCGCC





AACAGGTTGTTAGAAACCCCTGCAAGGAACCCCACTCCTCGGTCA





ATAGAGTCCCTAGAAGCATACAAATCGTTGACCCGAAATACAACTC





ACCGGAACTTACCATCCATGCCTGGGACTTCAGACGTGGCTTCTTT





GGCCCGAAAGCTATTCAAAGAATGCAACAACAACCAACTGCTACT





GAATTTTTTTCAGCAGGCCGCAAGAGACCCAGAAGGGACACAGAA





GTGTATCAGTCCGACCAAGAAAAGGAGCAAAAAGAAAGCTCGCTT





TTCCCCCCAGTCAAGCTCCTCCGAAGAGTCCCCCCATGGGAGGAC





TCGGAACAGGAGCAAAGCGGGTCGCAAAGCTCAGAGGAAGAGAC





CCACACCGTCTCCCAGCAGCTCAAACAGCAGCTTCAGCAGCAGCG





GATCCTCGGCGTCAAGCTCAGAGTCCTGTTCCACCAAGTCCACAA





AATCCAACAAAATCAACATATCAACCCTACCTTATTGCCAAGGGGT





GGGGCCCTAGCATCCTTGTCTCAGATTGCACCATAA






AAD29634.1
AF116842.1
ATGGCCTATGGCTTGTGGCACCGAAGGAGAAGACGGTGGCGCAG
162




GTGGAAACGCACACCATGGAAGCGCCGCTGGAGGACCCGAAGAC





GCAGACCTGCTAGACGCCGTGGCCGCCGCAGAAACGTAAGGAGA





CGCCGCAGAGGAGGGAGGTGGAGGAGGAGATATAGGAGATGGAA





AAGAAAGGGCAGGCGCAGAAAAAAAGCTAAAATAATAATAAGACA





ATGGCAACCAAACTACAGAAGGAGATGTAACATAGTAGGCTACATC





CCTGTACTAATATGTGGCGAAAATACTGTCAGCAGAAATTATGCCA





CACACTCAGACGATACCAACTACCCAGGACCCTTTGGGGGGGGTA





TGACTACAGACAAATTTACTTTAAGAATTCTGTGTGACGAGTACAAA





AGGTTTATGAACTACTGGACAGCATCTAACGAAGACCTAGACCTTT





GTAGATATCTAGGAGTAAACCTGTACTTTTTCAGACACCCAGATGT





AGATTTTATCATAAAAATTAATACCATGCCTCCTTTTCTAGACACAG





AACTCACAGCCCCTAGCATACACCCAGGCATGCTAGCCCTAGACA





AAAGAGCAAGATGGATACCTAGCTTAAAATCTAGACCAGGAAAAAA





ACACTATATTAAAATAAGAGTAGGGGCACCAAAAATGTTCACTGAT





AAATGGTACCCCCAAACAGATCTCTGTGACATGGTGCTTCTAACTG





TCTATGCAACCACAGCGGATATGCAATATCCGTTCGGCTCACCACT





AACTGACTCTGTGGTTGTGAACTTCCAGGTTCTGCAATCCATGTAT





GATAAAACAATTAGCATATTACCAGACGAAAAATCACAAAGAGAAA





TTCTACTTAACAAGATAGCAAGTTACATTCCCTTTTATAATACCACA





CAAACTATAGCCCAATTAAAGCCATTTATAGATGCAGGCAATGTAA





CATCAGGCGCAACAGCAACAACATGGGCATCATACATAAACACAA





CCAAATTTACTACAGCAACCACAACAACTTATGCATATCCAGGCAC





CAACAGACCCCCAGTAACTATGTTAACCTGTAATGACTCCTGGTAC





AGAGGAACAGTATATAACACACAAATTCAACAGTTACCAATAAAAG





CAGCTAAATTATACTTAGAGGCAACAAAAACCTTGCTAGGAAACAA





CTTCACAAATGAGGACTACACACTAGAATATCATGGAGGACTGTAC





AGCTCAATATGGCTATCCCCTGGTAGATCTTACTTTGAAACAACAG





GAGCATACACAGACATAAAGTACAATCCATTCACAGACAGAGGAG





AAGGCAACATGTTATGGATAGACTGGCTAAGCAAAAAAAACATGAA





CTATGACAAAGTACAAAGTAAATGCTTAGTACGAGACCTACCTCTA





TGGGCAGCAGCATATGGATATGTAGAATTCTGTGCAAAAAGTACAG





GAGACAAGAACATATACATGAATGCCAGGCTACTAATAAGAAGTCC





CTTTACAGACCCACAACTACTAGTACACACAGACCCCACAAAAGGC





TTTGTTCCTTACTCTTTAAACTTTGGAAATGGTAAAATGCCAGGAG





GTAGTAGTAATGTGCCTATTAGAATGAGAGCTAAATGGTATCCAAC





ATTATTTCACCAGCAAGAAGTACTAGAGGCCTTAGCACAGTCAGGC





CCCTTTGCATACCACTCAGACATTAAAAAAGTATCTCTGGGTATGA





AATACCGTTTTAAGTGGATCTGGGGTGGAAACCCCGTTCGCCAAC





AGGTTGTTAGAAATCCCTGCAAAGAAACCCACTCCTCGGGCAATA





GAGTCCCTAGAAGCTTACAAATCGTTGACCCGAAATACAACTCACC





GGAACTCACATTCCATACCTGGGACTTCAGACGTGGTCTCTTTGG





CCCAAGAGCTATTCAAAGAATGCAACAACAACCAACAACTACTGAC





ATTCTTTCAGCAGGCCGCAAGAGACCCAGAAAGGACACGGAGGTG





TACCACCCCAGCCAAGAAGGGGAGCAAAAAGAAAGCTTACTTTTC





CCCCCAGTCAAGCTCCTCAGACGAGTCCCCCCGTGGGAAGACTC





GCAGCAGGAGGAAAGCGGGTCGCAAAGCTCAGAGGAAGAGACGC





AGACCGTCTCCCAGCAGCTCAAGCAGCAGCTGCAGCAACAGCAAA





TCCTGGGAGTCAAACTCAGACTCCTGTTCGACCAAGTCCAAAAAAT





CCAACAAAATCAAGATATCAACCCTACCTTGTTACCAAGGGGGGG





GGATCTAGCATCGTTATTTCAAATAGCACCATAA






BAA85662.1
AB026345.1
ATGGCCTATGGCTGGTGGCGCCGAAGGAGAAGACGGTGGCGCAG
163




GTGGAGACGCAGACCATGGAGGCGCCGCTGGAGGACCCGAAGAC





GCAGACCTGCTAGACGCCGTGGCCGCCGCAGAAACGTAAGGAGA





CGCCGCAGAGGAGGGAGGTGGAGGAGGAGATATAGGAGATGGAA





AAGAAAGGGCAGGCGCAGAAAAAAAGCTAAAATAATAATAAGACA





ATGGCAACCAAACTACAGAAGGAGATGTAACATAGTAGGCTACATC





CCTGTACTAATATGTGGCGAAAATACTGTCAGCAGAAACTATGCCA





CACACTCAGACGATACTAACTACCCAGGACCCTTTGGGGGGGGTA





TGACTACAGACAAATTTACTTTAAGAATTCTGTATGACGAGTACAAA





AGGTTTATGAACTACTGGACAGCATCTAACGAAGACCTAGACCTTT





GTAGATATCTAGGAGTAAACCTATACTTTTTCAGACACCCAGATGT





AGATTTTATTATAAAAATTAATACCATGCCTCCTTTTCTAGACACAG





AACTCACAGCCCCTAGCATACACCCAGGCATGCTAGCCCTAGACA





AAAGAGCAAGATGGATACCTAGCTTAAAATCTAGACCAGGAAAAAA





ACACTATATTAAAATAAGAGTAGGGGCACCAAAAATGTTCACTGAT





AAATGGTACCCCCAAACAGATCTTTGTGACATGGTGCTTCTAACTG





TCTATGCAACCGCAGCGGATATGCAATATCCGTTCGGCTCACCAC





TAACTGACTCTGTGGTTGTGAACTTCCAGGTTCTGCAATCCATGTA





TGATGAAAAAATTAGCATATTACCAGACCAAAAATCACAAAGAGAA





AGCCTACTTACTAGCATAGCAAATTACATTCCCTTTTATAATACCAC





ACAAACTATAGCCCAATTAAAGCCATTTATAGATGCAGGCAATGTA





ACATCAGGCACAACAGCAACAACATGGGGGTCATACATAAACACA





ACCAAGTTTACTACAACAGCCACAACAACTTATACATATCCAGGCA





CCACCACAACCACAGTAACTATGTTAACCTCTAATGACTCCTGGTA





CAGAGGAACAGTATATAACAACCAAATTAAAGACTTACCAAAAAAA





GCAGCTGAATTATACTCAAAAGCAACAAAAACCTTGCTAGGAAACA





CCTTCACAACTGAAGACTACACACTAGAATACCATGGAGGACTGTA





CAGCTCAATATGGCTATCCCCTGGTAGATCTTACTTTGAAACACCA





GGAGCATATACAGACATAAAGTACAATCCATTTACAGACAGAGGAG





AAGGCAACATGTTATGGATAGACTGGCTAAGCAAAAAAAACATGAA





CTACGACAAAGTACAGAGTAAATGCTTAATATCAGACCTACCTCTA





TGGGCAGCAGCATATGGATATGTAGAATTTTGTGCAAAAAGTACAG





GAGACCAGAACATACACATGAATGCCAGGCTACTAATAAGAAGTC





CCTTTACAGACCCACAACTACTAGTACACACAGACCCCACAAAAGG





CTTTGTTCCTTACTCTTTAAACTTTGGAAATGGTAAAATGCCAGGAG





GTAGTAGTAATGTGCCTATTAGAATGAGAGCTAAATGGTATCCAAC





ATTATTTCACCAGCAAGAAGTACTAGAGGCCTTAGCACAGTCAGGC





CCCTTTGCATACCACTCAGACATTAAAAAAGTATCTCTGGGTATGA





AATACCGTTTTAAGTGGATCTGGGGTGGAAACCCCGTTCGCCAAC





AGGTTGTTAGAAATCCCTGCAAAGAAACCCACTCCTCGGGCAATA





GAGTCCCTAGAAGCTTACAAATCGTTGACCCGAAATACAACTCACC





GGAACTCACATTCCATACCTGGGACTTCAGACGTGGCCTCTTTGG





CCCGAAAGCTATTCAGAGAATGCAACAACAACCAACAACTACTGAC





ATTTTTTCAGCAGGCCGCAAGAGACCCAGGAGGGACACCGAGGT





GTACCACTCCAGCCAAGAAGGGGAGCAAAAAGAAAGCTTACTTTT





CCCCCCAGTCAAGCTCCTCAGACGAGTCCCCCCGTGGGAAGACT





CGCAGCAGGAGGAAAGCGGGTCGCAAAGCTCAGAGGAAGAGACG





CAGACCGTCTCCCAGCAGCCCAAGCAGCAGCTGCAGCAACAGCG





AATCCTGGGAGTCAAACTCAGACTCCTGTTCAACCAAGTCCAAAAA





ATCCAACAAAATCAAGATATCAACCCTACCTTGTTACCAAGGGGGG





GGGATCTAGCATCCTTATTTCAAGTAGCACCATAA






BAA85664.1
AB026346.1
ATGGCCTATGGCTGGTGGCGCCGAAGGAGAAGACGGTGGCGCAG
164




GTGGAGACGCAGACCATGGAGGCGCCGCTGGAGGACCCGAAGAC





GCAGACCTGCTAGACGCCGTGGCCGCCGCAGAAACGTAAGGAGA





CGCCGCAGAGGAGGGAGGTGGAGGAGGAGATATAGGAGATGGAA





AAGAAAGGGCAGGCGCAGAAAAAAAGCTAAAATAATAATAAGACA





ATGGCAACCAAACTACAGAAGGAGATGTAACATAGTAGGCTACATC





CCTGTACTAATATGTGGCGAAAATACTGTCAGCAGAAACTATGCCA





CACACTCAGACGATACCAACTACCCAGGACCCTTTGGGGGGGGTA





TGACTACAGACAAATTTACTTTAAGAATTCTGTATGACGAGTACAAA





AGGTTTATGAACTACTGGACAGCATCTAACGAAGATCTAGACCTTT





GTAGATATCTAGGAGTAAACCTGTACTTTTTCAGACACCCAGATGT





AGATTTTATCATAAAAATTAATACCATGCCTCCTTTTCTAGACACAG





AACTCACAGCCCCTAGCATACACCCAGACATGCTAGCCCTAGACA





AAAGAGCAAGATGGATACCTAGCTTAAAATCTAGACCGGGAAAAAA





ACACTATATTAAAATAAGAGTTGGGGCACCAAAAATGTTCACTGAT





AAATGGTACCCCCAAACAGATCTTTGTGACATGGTGCTTCTAACTG





TCTATGCAACCACAGCGGATATGCAATATCCGTTCGGCTCACCACT





AACTGACTCTGTGGTTGTGAACTTCCAGGTTCTGCAATCCATGTAT





GATGAAAACATTAGCATATTACCAACCGAAAAATCAAAAAGAGATG





TCCTACATAGTACTATAGCAAATTACACTCCCTTTTATAATACCACA





CAAATTATAGCCCAATTAAGGCCATTTGTAGATGCAGGCAATCTAA





CATCAGCGTCAACAACAACAACATGGGGATCATACATAAACACAAC





CAAGTTTAATACAACAGCCACAACAACTTATACATATCCAGGCAGC





ACGACAACCACAGTAACTATGTTAACCTGTAATGACTCCTGGTACA





GAGGAACAGTATATAACAATCAAATTAGCAAGTTACCAAAACAAGC





AGCTGAATTTTACTCAAAAGCAACAAAAACCTTGCTAGGAAACACG





TTCACAACTGAGGACCACACACTAGAATACCATGGAGGACTGTAC





AGCTCAATATGGCTATCCGCTGGTAGATCTTACTTTGAAACACCAG





GAGCATATACAGACATAAAGTATAATCCATTCACAGACAGAGGAGA





AGGCAACATGTTATGGATAGACTGGCTAAGCAAAAATAACATGAAC





TATGACAAAGTACAAAGTAAATGCTTAATATCAGACCTACCTCTATG





GGCAGCAGCATATGGATATGTAGAATTTTGTGCAAAAAGTACAGGA





GACCAGAACATACACATGAATGCCAGACTACTAATAAGAAGTCCCT





TTACAGACCCACAACTACTAGTACACACAGACCCCACAAAAGGCTT





TGTTCCTTACTCTTTAAACTTTGGAAATGGTAAAATGCCAGGAGGT





AGTAGTAATGTGCCTATTAGAATGAGAGCTAAATGGTATCCAACAT





TATTTCACCAGCAAGAAGTACTAGAGGCCTTAGCACAGTCAGGCC





CCTTTGCATACCACTCAGACATTAAAAAAGTATCTCTGGGTATGAA





ATACCGTTTTAAGTGGATCTGGGGTGGAAACCCCGTTCGCCAACA





GGTTGTTAGAAATCCCTGCAAAGAAACCCACTCCTCGGGCAATAG





AGTCCCTAGAAGCTTACAAATCGTTGACCCGAAATACAACTCACCG





GAACTCACATTCCATACCTGGGACTTCAGACGTGGCCTCTTTGGC





CCGAAAGCTATTCAGAGAATGCAACAACAACCAACAACTACTGACA





TTTTTTCAGCAGGCCGCAAGAGACCCAGGAGGGACACCGAGGTGT





ACCACTCCAGCCAAGAAGGGGAGCAAAAAGAAAGCTTACTTTTCC





CCCCAGTCAAGCTCCTCAGACGAGTCCCCCCGTGGGAAGACTCG





CAGCAGGAGGAAAGCGGGTCGCAAAGCTCAGAGGAAGAGACGCA





GACCGTCTCCCAGCAGCTCAAGCAGCAGCTGCAGCAACAGCGAAT





CCTGGGAGTCAAACTCAGACTCCTGTTCAACCAAGTCCAAAAAATC





CACCAAAATCAAGATATCAACCCTACCTTGTTACCAAGGGGGGGG





GATCTAGCATCCTTATTTCAAATAGCACCATAA






BAA85666.1
AB026347.1
ATGGCCTATGGCTGGTGGCGCCGAAGGAGAAGACGGTGGCGCAG
165




GTGGAGACGCAGACCATGGAGGCGCCGCTGGAGGACCCGAAGAC





GCAGACCTGCTAGACGCCGTGGCCGCCGCAGAAACGTAAGGAGA





CGCCGCAGAGGAGGGAGGTGGAGGAGGAGATATAGGAGATGGAA





AAGAAAGGGCAGGCGCAGAAAAAAAGCTAAAATAATAATAAGACA





ATGGCAACCAAACTACAGAAGGAGATGTAACATAGTAGGCTACATC





CCTGTACTAATATGTGGCGAAAATACTGTCAGCAGAAACTATGCCA





CACACTCAGACGATACCAACTACCCAGGACCCTTTGGGGGGGGTA





TGACTACAGACAAATTTACTTTAAGAATTCTGTATGACGAGTACAAA





AGGTTTATGAACTACTGGACAGCATCTAACGAAGATCTAGACCTTT





GTAGATATCTAGGAGTAAACCTGTACTTTTTCAGACACCCAGATGT





AGATTTTATCATAAAAATTAATACCATGCCTCCTTTTCTAGACACAG





AACTCACAGCCCCTAGCATACACCCAGGCATGCTAGCCCTAGACA





AAAGAGCAAGATGGATACCTAGCTTAAAATCTAGACCGGGAAAAAA





ACACTATATTAAAATAAGAGTTGAGGCACCAAAAATGTTCACTGATA





AATGGTACCCCCAAACAGATCTTTGTGACATGGTGCTTCTAACTGT





CTATGCAACCACAGCGGATATGCAATATCCGTTCGGCTCACCACTA





ACTGACTCTGTGGTTGTGAACTTCCAGGTTCTGCAATCCATGTATG





ATCAAAACATTAGCATATTACCAACCGAAAAATCAAAGAGAACACA





ACTACATGATAATATAACAAGGTACACTCCCTTTTATAATACCACAC





AAACTATAGCCCAATTAAAGCCATTTGTAGATGCAGGCAATGTAAC





ACCAGTGTCACCAACAACAACATGGGGATCATACATAAACACAACC





AAGTTTACTACAACAGCCACAACAACTTATACATATCCAGGCACCA





CGACAACCACAGTAACTATGTTAACCTGTAATGACTCCTGGTACAG





AGGAACAGTATATAACAATCAAATTAGCCAGTTACCAAAAAAAGCA





GCTGAATTTTACTCAAAAGCAACAAAAACCTTGCTAGGAGACACGT





TCACAACTGAGGACTACACACTAGAATACCATGGAGGACTGTACA





GCTCAATATGGCTATCCGCTGGTAGATCTTACTTTGAAACACCAGG





AGTATATACAGACATAAAGTATAATCCATTCACAGACAGAGGAGAA





GGCAACATGTTATGGATAGACTGGCTAAGCAAAAAAAACATGAACT





ATGACAAAGTACAAAGTAAATGCTTAATATCAGACCTACCTCTATG





GGCAGCAGCATATGGATATGTAGAATTTTGTGCAAAAAGTACAGGA





GACCAAAACATACACATGAATGCCAAACTACTAATAAGAAGTCCCT





TTACAGACCCACAACTACTAGTACACACAGACCCCACAAAAGGCTT





TGTTCCTTACTCTTTAAACTTTGGAAATGGTAAAATGCCAGGAGGT





AGTAGTAATGTGCCTATTAGAATGAGAGCTAAATGGTATCCAACAT





TATTTCACCAGCAAGAAGTACTAGAGGCCTTAGCACAGTCAGGCC





CCTTTGCATACCACTCAGACATTAAAAAAGTATCTCTGGGTATGAA





ATACCGTTTTAAGTGGATCTGGGGTGGAAACCCCGTTCGCCAACA





GGTTGTTAGAAATCCCTGCAAAGAAACCCACTCCTCGGGCAATAG





AGTCCCTAGAAGCTTACAAATCGTTGACCCGAAATACAACTCACCG





GAACTCACATTCCATACCTGGGACTTCAGACGTGGCCTGTTTGGC





CCGAAAGCTATTCAGAGAATGCAACAACAACCAACAACTACTGACA





TTTTTTCAGCAGGCCGCAAGAGACCCAGGAGGGACACCGAGGTGT





ACCACTCCAGCCAAGAAGGGGAGCAAAAAGAAAGCTTACTTTTCC





TCCCAGTCAAGCTCCTCAGACGAGTCCCCCCGTGGGAAGACTCGC





AGCAGGAGGAAAGCGGGTCGCAAAGCTCAGAGGAAGAGACGCAG





ACCGTCTCCCAGCAGCTCAAGCAGCAGCTGCAGCAACAGCGAATC





CTGGGAGTCAAACTCAGACTCCTGTTCAACCAAGTCCAAAAAATCC





AACAAAATCAAGATATCAACCCTACCTTGTTACCAAGGGGGGGGG





ATCTGGCATCCTTATTTCAAATAGCACCATAA






BAA90406.1
AB030487.1
ATGGCCTATGGGTGGTGGAGGAGACGCCGCAGAAGGTGGAAGAG
166




ATGGAGGAGAAGGCCCAGGTGGAGACGCCCATGGAGGACCCGCA





GACGCAGACCTGCTAGACGCCGTGGACGCCGCAGAACAGTAAGG





AGACGGGAGCGCGGGAGGTGGAGGAGGCGCTATAGGAGGTGGA





GGAAAAAGGGCAAACGCAGGATAAAAAAGAAACTTATAATAAGACA





GTGGCAGCCAAACTATACCAGAAAGTGCGACATATTAGGCTACAT





GCCTGTAATCATGTGTGGAGAGAACACTCTAATAAGAAACTATGCC





ACACACGCAAACGACTGCTACTGGCCGGGACCCTTTGGGGGCGG





CATGGCCACCCAGAAATTCACACTCAGAATCCTGTACGATGACTAC





AAGAGGTTTATGAACTACTGGACCTCCTCAAACGAGGACCTAGAC





CTCTGTAGATACAGGGGAGTCACCCTGTACTTTTTCAGACACCCAG





ATGTAGACTTTATCATCCTGATAAACACCACACCTCCGTTCGTAGA





TACAGAGATCACAGGACCCAGCATACATCCTGGCATGATGGCCCT





CAACAAGAGAGCCAGGTTCATCCCCAGCCTAAAAACTAGACCTGG





CAGAAGACACATAGTAAAGATTAGAGTGGGGGCCCCCAAACTGTA





CGAGGACAAATGGTACCCCCAGTCAGAACTCTGTGACATGCCCCT





GCTAACCGTCTACGCGACCGCAGCGGATATGCAATATCCGTTCGG





CTCACCACTAACTGACACTCCTGTTGTAACCTTCCAAGTGTTGCGC





AGCATGTACAACGACGCCCTTAGCATACTTCCCTCTAACTTTGAAC





AGGACGACAATGCAGGCCAAAAACTTTACAATGAAATATCATCATA





TTTACCATACTACAACACCACAGAAACAATAGCACAACTAAAGAGA





TATGTAGAAAATACAGAAAAAATTTCCACAACACCAAACCCATGGC





AATCAAATTATGTAAACACTATTACCTTCACCACTGCACAAAGTATT





ACAACTACAACCCCATACACCACCTTCTCAGACAGCTGGTACAGG





GGCACAGTATACAAAAACGCAATCACTAAAGTGCCACTTGCCGCA





GCTAAACTTTATGAAACCCAAACAAAAAACCTGCTGTCTCCAACAT





TTACAGGAGGGTCCGAGTACCTAGAATACCATGGAGGCCTGTACA





GCTCCATATGGCTATCAGCAGGCCGATCCTACTTTGAAACAAAGG





GAGCATACACAGACATATGCTACAACCCCTACACAGACAGGGGAG





AAGGGAACATGTTGTGGATAGACTGGCTATCCAAAGGAGATTCCA





GATATGACAAAGCACGCAGCAAATGTCTAATAGAAAAACTACCTAT





GTGGGCCGCAGTATATGGGTACGCAGAATACTGTGCAAAAGCCAC





AGGAGACTCTAACATAGACATGAACGCCAGAGTAGTAATGAGGTG





TCCATACACCGTACCCCAAATGATAGACACAAGCGATCCCCTCAG





AGGCTTTATACCCTATAGCTTTAACTTTGGAAAGGGAAAAATGCCT





GGAGGAACAAATCAAGTCCCCATAAGAATGAGAGCTAAGTGGTAC





CCTTGTCTCTTTCACCAAAAAGAAGTTCTAGAAGCTATAGGACAGT





CAGGCCCCTTCGCCTACCATAGTGATCAGAAAAAAGCAGTACTAG





GCCTAAAATACAGATTTCACTGGATATGGGGTGGAAACCCCGTGTT





TCCACAGGTTGTTAGAAACCCCTGCAAAGACACCCAAGGTTCCAC





AGGCCCTAGAAAGCCTCGCTCAGTACAAATCATTGACCCGAAGTA





CAACACACCAGAGCTTACCATCCACGCGTGGGATTTCAGACGTGG





CTTCTTTGGCCCAAAAGCTATTAAAAGAATGCAACAACAACCAACA





GATGCTGAACTTCTTCCACCAGGCCGCAAGAGGAGCAGGAGAGA





CACCGAAGTCCTGCAAAGCAGCCAAGAAAGGCAAAAAGAAAGCTT





ACTTTTACAACAGCTCCACCTCCAGGGACGAGTACCCCCGTGGGA





AAGCTTGCAAGGGTTGCAGACAGAAACAGAAAGCCAAAAAGAGCA





CGAGGGCACCCTTTCCCAGCAGATCAGAGAGCAGGTTCAGCAGC





AGAAGCTCCTCGGGAGACAGCTCAGAGAAATGTTCTTACAACTCC





ACAAAATCCTACAAAATCAACACGTCAACCCTACCTTATTGCCAAG





GGATCAGGGTTTAATTTGGTGGTTTCAGATTCAGTAA






BAA90409.1
AB030488.1
ATGGCTTATGGGTGGTGGAGGAGACGCCGCAGGAGGTGGAAGAG
167




ATGGAGGAGAAGGCCCAGGTGGAGACGCCCATGGAGGACCCGCA





GACGCAGACCTGCTGGACGCCGTGGACGCCGCAGAACAGTAAGG





AGACGGAGGCGCGGGAGGTGGAGGAGGCGCTATAGGAGGTGGA





GGAAAAAGGGCAGACGCAGGAGAAAAAAGAAACTTATAATAAGAC





AATGGCAGCCAAACTATACCAGAAAGTGCAACATAGTTGGTTACAT





GCCAGTCATCATGTGTGGAGAGAACACTCTAATCAGAAACTATGCC





ACACACGCATACAACTGCTCCTGGCCGGGACCCTTTGGGGGCGG





CATGGCCACCCAAAAATTTACTCTGAGAATACTGTACGATGACTAC





AAAAGATTTATGAACTACTGGACCTCCTCAAACGAGGACCTAGACC





TGTGCAGATATAGAGGAGCTACACTGTACTTTTTCAGAGACCCAGA





TGTAGACTTTATTATACTGATAAACACCACTCCTCCATTTGTAGACA





CAGAGATTACAGGGCCCAGCATACATCCCGGCATGCTGGCACTCA





ACAAGAGAGCAAGATTTATACCCAGCTTAAAGACTAGACCCAGCA





GAAGACACATAGTAAAGATCAGAGTGGGGGCCCCCAAACTGTATG





AGGACAAGTGGTACCCCCAGTCAGAACTTTGTGACATGCCCCTGC





TAACCGTCTATGCGACCGCAACGGATATGCAATATCCGTTCGGCT





CACCACTAACTGACACTCCTATTGTAACCTTCCAAGTGTTGCGCAG





CATGTACAACGACGCCCTTAGCATACTTCCCTCTAACTTTGAAGGT





GACGACAGTGCAGGCGCAAAACTTTACAAACAAATATCAGAATACA





TACCATACTATAACACCACAGAAACAATAGCACAGTTAAAGGGATA





TGTAGAAAACACAGAAAAAACCCAAACAACACCTAATCCATGGCAA





TCAAAATATGTAAACACAAAACCATTTGACACTGCACAAACAATTAC





AAACCAAAAGCCATACACTCCATTCGCAGACACATGGTACAGGGG





CACAGCATACAAAGAAGAAATTAAAAATGTACCACTAAAAGCAGCC





GAACTGTATGAATTACATACTACACACCTGTTATCTACAACATTCAC





AGGAGGGTCCAAATACTTAGAATACCATGGAGGCTTATACAGCTC





CATATGGCTGTCAGCAGGCCGCTCCTACTTTGAAACAAAAGGAGC





ATACACAGACATTTGCTACAACCCCTACACAGACAGGGGAGAAGG





CAACATGGTGTGGATAGACTGGCTAGTAAAGACAGACTCTAGATAT





GACAAGACACGCAGCAAATGCCTTATAGAAAAACTACCTCTATGGG





CTGCAGTATACGGGTACGCAGAGTACTGCGCCAAGGCCACAGGA





GACTCTAACATAGACATGAACGCCAGAGTAGTTATCAGGAGCCCC





TACACTACACCTCAAATGATAGACACCAACGACTCTCTAAGAGGCT





TTATAGTATACAGCTTTAACTTTGGAAAGGGAAAAATGCCTGGAGG





AACAAATCAAGTCCCCATAAGAATGAGAGCTAAGTGGTACCCTTGC





CTCTTTCACCAAAAAGAAGTTCTAGAAGCTATAGGACAGTCAGGCC





CCTTCGCCTACCATAGTGATCAGAAAAAAGCAGTACTAGGCCTAAA





ATACAGATTTCACTGGATATGGGGTGGAAACCCCGTGTTTCCACA





GGTTGTTAGAAACCCCTGCAAAGACACCCAAGGTTCCACAGGCCC





TAGAAAGCCTCGCTCAGTACAAATCATTGACCCGAAGTACAACACA





CCAGAGCTTACCATCCACGCGTGGGATTTCAGACGTGGCTTCTTT





GGCCCAAAAGCTATTAAAAGAATGCAACAACAACCAACAGATGCT





GAACTTCTTCCACCAGGCCGCAAGAAGAGCAGGAGAGACACCGAA





GTCCTGCAAAGCAGCCAAGAAAGGCAAAAAGAAAGCTTACTTTTCC





AACAGCTCCAGCTCCAGCGACGAGTACCCCCGTGGGAAAGCTCG





CAAGGGTCGCAGACAGAAACAGAAAGCCAAAAAGAGCAGGAGGG





CACCCTCTCCCAGCAGCTCAGAGAGCAGCTTCAGCAGCAGAAGCT





CCTCGGCAGACAGCTCAGGGAAATGTTCCTACAAATCCACAAAAT





CCTACAAAATCAACAAGTCAACCCTATTTTATTGCCAAGGGATCAG





GCTTTAATTTCCTGGTTTCAGATTCAGTAA






BAA90412.1
AB030489.1
ATGGCCTATGGGTGGTGGAGGAGACGCCGCAGGAGGTGGAAGAG
168




ATGGAGGAGAAGGCCCAGGTGGAGACGCCGCTGGAGGACCCGC





AGACGCAGACCTGCTGGACGCCGTAGACGCCGCAGAACAGTAAG





GAGACGCAGGCGCGGGAGGTGGAGGAGCAGATATAGGAGATGGA





GGCGAAAGGGCAGACGCAGGCGAAAAGAAAAACTAATAATAAGAC





AATGGCAGCCAAACTATACCAGAAAGTGCAACATTGTGGGTTACAT





GCCAGTAATCATGTGTGGAGAAAATACTGTTATCAGAAACTATGCC





ACACACACATACGACTGCTCCTGGCCAGGACCCTTTGGGGGCGG





CATGGCCACCCAAAAATTTACTCTGAGAATACTGTACGATGACTAC





AAAAGATTTATGAACTACTGGACCTCCTCAAACGAGGACCTAGATC





TCTGCAGATACAGAGGAGCAACCCTATACTTTTTCAGAGACCCAGA





TGTAGACTTTATTATACTTATAAACACTACTCCTCCATTTGTAGACA





CAGAAATAACAGGGCCCAGCATACACCCAGGCATGCTGGCACTAA





ACAAAAGAGCTAGATTCATTCCCAGTCTAAAAACCAGACCAGGCAG





GAGACACATAGTAAAAATAAAAGTAGGGGCCCCTAGAATGTATGAA





GACAAGTGGTACCCCCAGTCAGAACTTTGTGACATGCCCCTCCTA





ACGATCTATGCAACCGCAACGGATATGCAACATCCGTTCGGCTCA





CCACTAACTGACACTCCTGTTGTAACCTTCCAAGTGTTGCGCAGCA





TGTACAACGACGCCCTTAGCATACTTCCCTCTAACTTTGAAGACGA





TTCAAGTCCAGGGGCTGCACTTTACAAACAAATATCAGAATACATA





CCATACTATAACACCACAGAAACAATAGCACAGCTAAAGAGATATG





TAGAAAACACAGAAAAAACCCAAACAACACTTAATCCATGGCAATC





AAGATATGTAAACACAACACTATTTAACACTGCAGAAACAATTGCA





AACCAAAAGCCATACACTAAATTCGCAGACACATGGTACAGGGGC





ACAGCATACAAAGACGCAATTAAAGACATACCACTAAAAGCAGCC





GAATTGTATGTAAACCAAACCAAATACCTGTTATCTACAACATTCAC





AGGAGGGTCCAAATACTTAGAATACCATGGAGGCTTATACAGCTC





CATATGGCTGTCAGCAGGCCGCTCCTACTTTGAAACAAAAGGAGC





ATACACAGACATTTGCTACAACCCCTACACAGACAGGGGAGAAGG





CAACATGGTGTGGATAGACTGGCTATCGAAAACAGACTCAAAATAT





GACAAGACCCGCAGCAAATGCCTTATAGAAAAACTGCCGCTATGG





GCATCGGTATACGGGTACGCAGAATACTGTGCCAAGGCCACAGGA





GACTCTAACATAGACATGAACGCCAGAGTAGTTATAAGATGCCCCT





ACACTACACCTCAAATGATAGACACCACCGACCCAACTAGAGGGT





TCATAGTATACAGCTTTAACTTTGGTAAGGGCAAAATGCCGGGAGG





TAGCAATGAAGTACCCATAAGAATGAGAGCCAAATGGTACCCCTG





CCTCTTTCACCAAAAAGAGGTCCTAGAAGCCATAGGCCAGTCAGG





CCCCTTTGCTTATCACAGCGATCAAAAAAAAGCAGTTTTAGGTTTA





AAATACAAATTTCACTGGATATGGGGTGGAAACCCCGTGTTCCCAC





AGGTTATTAAAAACCCCTGCAAAAACACTCAATTTTCCACAGGCCC





TAGAAAGCCTCGCTCATTACAAATCATTGACCCGAATTACAACACA





CCAAAGCTTACCATCCACGCTTGGGATTTCAGACTTGGCTTCTTTG





GCCCAAAAGCTATTAAAAGAATGCAACAACAACCAACAGATGCTGA





ACTTCTTCCACCAGGCCGCAAGAGGAGCAGGAGAGACACCGAAG





TCCTGCAAAGCAGCCAAGAAAGGCAAAAAGGAAACTTACTTTTCCA





ACAGTTCCAGCTCCAGCGACGAGTACCCCCGTGGGAAAGCTCGC





AAGGGTCGCAGACAGGAACACAAAGCCAAAAAGAGCAGGAGGGC





ACCCTCTCCCAGCAGCTCAGAGAGCAGCTTCAGCAGCAGAAGCTC





CTCGGCAGACAGCTCAGGGAAATGTTCCTACAACTCCACAAAATC





CAACAAAATCAACACGTCAACCCTACCTTATTGCCAAGGGATCAGG





CTTTAATTTGCTGGTTTCAGATTCAGTAA






BAA90825.1
AB038340.1
ATGGCCTATGGCTGGTGGCGCCGAAGGAGAAGACGGTGGCGCAG
169




GTGGAGACGCAGACCATGGAGGCGCCGCTGGAGGACCCGAAGAC





GCAGACCTGCTAGACGCCGTGGCCGCCGCAGAAACGTAAGGAGA





CGCCGCAGAGGAGGGAGGTGGAGGAGGAGATATAGGAGATGGAA





AAGAAAGGGCAGGCGCAGAAAAAAAGCTAAAATAATAATAAGACA





ATGGCAACCAAACTACAGAAGGAGATGTAACATAGTAGGCTACATC





CCTGTACTAATATGTGGCGAAAATACTGTCAGCAGAAACTATGCCA





CACACTCAGACGATACTAACTACCCAGGACCCTTTGGGGGGGGTA





TGACTACAGACAAATTTACTTTAAGAATTCTGTATGACGAGTACAAA





AGGTTTATGAACTACTGGACAGCATCTAACGAAGACCTAGACCTTT





GTAGATATCTAGGAGTAAACCTATACTTTTTCAGACACCCAGATGT





AGATTTTATTATAAAAATTAATACCATGCCTCCTTTTCTAGACACAG





AACTCACAGCCCCTAGCATACACCCAGGCATGCTAGCCCTAGACA





AAAGAGCAAGATGGATACCTAGCTTAAAATCTAGACCAGGAAAAAA





ACACTATATTAAAATAAGAGTAGGGGCACCAAAAATGTTCACTGAT





AAATGGTACCCCCAAACAGATCTTTGTGACATGGTGCTTCTAACTG





TCTATGCAACCGCAGCGGATATGCAATATCCGTTCGGCTCACCAC





TAACTGACTCTGTGGTTGTGAACTTCCAGGTTCTGCAATCCATGTA





TGATGAAAAAATTAGCATATTACCAGACCAAAAATCACAAAGAGAA





AGCCTACTTACTAGCATAGCAAATTACATTCCCTTTTATAATACCAC





ACAAACTATAGCCCAATTAAAGCCATTTATAGATGCAGGCAATGTA





ACATCAGGCACAACAGCAACAACATGGGGGTCATACATAAACACA





ACCAAGTTTACTACAACAGCCACAACAACTTATACATATCCAGGCA





CCACCACAACCACAGTAACTATGTTAACCTCTAATGACTCCTGGTA





CAGAGGAACAGTATATAACAACCAAATTAAAGACTTACCAAAAAAA





GCAGCTGAATTATACTCAAAAGCAACAAAAACCTTGCTAGGAAACA





CCTTCACAACTGAAGACTACACACTAGAATACCATGGAGGACTGTA





CAGCTCAATATGGCTATCCCCTGGTAGATCTTACTTTGAAACACCA





GGAGCATATACAGACATAAAGTACAATCCATTTACAGACAGAGGAG





AAGGCAACATGTTATGGATAGACTGGCTAAGCAAAAAAAACATGAA





CTACGACAAAGTACAGAGTAAATGCTTAATATCAGACCTACCTCTA





TGGGCAGCAGCATATGGATATGTAGAATTTTGTGCAAAAAGTACAG





GAGACCAGAACATACACATGAATGCCAGGCTACTAATAAGAAGTC





CCTTTACAGACCCACAACTACTAGTACACACAGACCCCACAAAAGG





CTTTGTTCCTTACTCTTTAAACTTTGGAAATGGTAAAATGCCAGGAG





GTAGTAGTAATGTGCCTATTAGAATGAGAGCTAAATGGTATCCAAC





ATTATTTCACCAGCAAGAAGTACTAGAGGCCTTAGCACAGTCAGGC





CCCTTTGCATACCACTCAGACATTAAAAAAGTATCTCTGGGTATGA





AATACCGTTTTAAGTGGATCTGGGGTGGAAACCCCGTTCGCCAAC





AGGTTGTTAGAAATCCCTGCAAAGAAACCCACTCCTCGGGCAATA





GAGTCCCTAGAAGCTTACAAATCGTTGACCCGAAATACAACTCACC





GGAACTCACATTCCATACCTGGGACTTCAGACGTGGCCTCTTTGG





CCCGAAAGCTATTCAGAGAATGCAACAACAACCAACAACTACTGAC





ATTTTTTCAGCAGGCCGCAAGAGACCCAGGAGGGACACCGAGGT





GTACCACTCCAGCCAAGAAGGGGAGCAAAAAGAAAGCTTACTTTT





CCCCCCAGTCAAGCTCCTCAGACGAGTCCCCCCGTGGGAAGACT





CGCAGCAGGAGGAAAGCGGGTCGCAAAGCTCAGAGGAAGAGACG





CAGACCGTCTCCCAGCAGCCCAAGCAGCAGCTGCAGCAACAGCG





AATCCTGGGAGTCAAACTCAGACTCCTGTTCAACCAAGTCCAAAAA





ATCCAACAAAATCAAGATATCAACCCTACCTTGTTACCAAGGGGGG





GGGATCTAGCATCCTTATTTCAAGTAGCACCATAA






BAA93586.1
AB038622.1
ACGGCTTGGTGGTGGGGCAGATGGAGGCGCCGCTGGAGGCCTC
170




GCTATCGCAGACGCACCTGGAGGGTACGAAGAAGACGACCTAGA





CGAACTTTTCGCCGCCGCCGCCGAGGACGATATGTGAGTAGGCG





GAGGCGCCGCCGCTACTACAGGCGCAGACTGAGACGGGGCAGAC





GCAGAGGGCGACGAAAGAGACACAGACAGACTCTAGTCCTCAGA





CAGTGGCAACCAGACATTGTCAGACACTGTAAAATTACAGGATGG





ATGCCCCTTATCATCTGTGGCTCAGGGAGCACACAGAACAATTTTA





TAACTCACATGGACGACTTTCCTCCCATGGGCTACTCCTTCGGGG





GCAACTTTACAAACCTCTCCTTCTCCTTAGAGGGCATTTATGAACA





ATTTCTGTACCACAGAAACAGGTGGTCTCGCTCCAACCATGACCTA





GACCTAGCCAGATACAAAGGCACAACTCTAAAACTCTACAGACACC





ACACCTTAGACTACATAGTCAGCTACAACAGAACAGGCCCTTTCCA





GATCAGTGACATGACCTACCTCAGCACACACCCTGCACTCATGCT





ACTCCAGAAACACAGAATAGTAGTACCCAGCCTACTCACTAAACCT





AAAGGCAAGAGATCCATAAAAGTTAGAATAAAGCCACCAAAACTCA





TGCTCAACAAATGGTACTTCACCAAAGACATATGCAGCATGGGCCT





CTTCCAACTACAGGCCACAGCATGCACCCTATACAACCCCTGGCT





CAGAGACACCACAAAAAGCCCAGTCATAGGCTTCAGAGTACTTAAA





AACAGTATTTATACAAACCTCAGCAACCTACCAGAACATGATCAAA





CCAGACAAGCCATTAGACGAAAACTACACCCAGACTCCTTAACAG





GATCAACTCCATATCAAAAAGGCTGGGAATACAGCTACACAAAACT





AATGGCTCCAATATACTATCAAGCAAATAGAAACAGCACATACAAC





TGGCTAAATTATCAAACAAACTATGCTCAAACATTCACCAAATTTAA





AGAAAAAATGAATGAAAACCTTGCACTAATTCAAAAAGAGTATTCAT





ACCACTATCCCAACAATGTCACTACAGACCTTATTGGCAAAAACAC





CCTCACACATGACTGGGGTATATACAGTCCCTACTGGCTAACACC





CACCAGAATAAGCCTAGACTGGGAAACACCCTGGACATATGTCAG





ATACAATCCACTAGCAGACAAGGGCATAGGCAATGCTGTCTATGC





ACAATGGTGCTCAGAACAGACCAGTAAATTAGATACAAAAAAGAGC





AAGTGCATAATGAAAGACCTGCCACTGTGGTGCATATTTTATGGCT





ATGTAGATTGGATAATAAAATCCACAGGAGTCAGCAGCGCAGTCA





CTGACATGAGAGTAGCCATCATCAGCCCCTACACCGAACCAGCAC





TTATAGGGTCAAGTCCAGACGTAGGCTACATTCCAGTAAGTGACAC





CTTTTGCAATGGAGACATGCCGTTTCTTGCTCCATACATCCCTGTG





GGCTGGTGGATCAAATGGTACCCTATGATTGCACACCAAAAGGAA





GTGTTTGAGGCAATAGTTAACTGTGGACCGTTTGTGCCCAGAGAC





CAGACCACTCCCAGTTGGGAAATTACCATGGGTTACAAAATGGACT





GGTTATGGGGTGGCTCTCCCCTGCCTTCACAGGCAATCGACGACC





CCTGCCAGAAGCCCACCCACGAACTACCCGATCCCGATAGACACC





CTCGCATGTTACAAGTCTCTGACCCGACAAAGCTCGGACCGAAGA





CAGTGTTCCACAAATGGGACTGGAGACGTGGGATGCTTAGCAAAA





GAAGTATTAAAAGAGTCCAGGAGGACTCAACAGATGATGAATATGT





TGCAGGGCCTTTACCAAGAAAAAGAAACAAATTCGATACCAGAGC





CCAAGGGCTGCAAACCCCCGAAAAAGAAAGCTACACTTTACTCCA





AGCCCTCCAAGAGTCGGGGCAAGAGACCAGCTCAGAAGACCAAG





AACAAGCACCCCAAGAAAAAGAGGGTCAGAAGGAAGCGCTCATG





GAGCAGCTCCAGCTCCAGAAACAGCACCAGCGAGTCCTCAAGCG





AGGCCTCAAACTCCTCCTCGGAGACGTCCTCCGACTCCGGAGAG





GAGTCCACTGGGACCCCCTCCTGTCATAA






BAA93589.1
AB038623.1
ACGGCGTGGTGGTGGGGCAGATGGAGGCGTCGATGGAGGCCTC
171




GCTATCGCAAACGCACCTGGAGATTACGGAGACGACGACCTAGAC





GAACTTTTCGCCGCCGCCGCCGAAGACAATATGTGAGTAGGCGGA





GGCGCCGCCGCTACTACAGGCGCAGACTGAGACGGGGCAGACG





CAGAGGGCGACGAAAGAGACACAGACAGACTCTAGTCCTCAGACA





ATGGCAACCAGACGTTGTTAGACACTGTAAAATTACAGGATGGATG





CCCCTTATCATCTGTGGCTCCGGGAGCACACAGAACAATTTTATAA





CTCACATGGACGACTTTCCTCCCATGGGCTACTCCTTTGGGGGCA





ACTTTACAAACCTCACCTTCTCCTTAGAGGGCATATATGAACAATTT





CTGTACCACAGAAACAGGTGGTCTCGCTCCAACCATGACCTAGAC





CTAGCCAGATACAAAGGCACAACTCTAAAACTCTACAGACACCACA





CCTTAGACTACATAGTCAGCTACAACAGAACAGGCCCCTTCCAGAT





CAGTGACATGACCTACCCCAGCACACACCCTGCACTTATGCTACT





CCAGAAACACAGAATAGTAGTGCCCAGCGTACTCACTAAACCTAAA





GGCAAGAGATCCATAAAGGTCAGAATAAAGCCACCAAAACTCATG





CTTAACAAGTGGTACTTCACCAAAGACATATGCAGCATGGGCCTTT





TTCAACTACAGGCCACAGCATGCACCCTATACAATCCCTGGCTCA





GAGACACCACAAAAAGCCCAGTCATAGGCTTCAGGGTACTTAAAA





ACAGTATCTATACAAACCTCAGCAACCTACCAGACCATGAGGGTTC





CAGAGAAGCCATAAGAAAAAAACTACACCCACAATCCTTAACAGGA





CACTCTCCCAACCAAAAAGGCTGGGAATACAGCTATACTAAACTAA





TGGCTCCAATATACTACTCTGCCAACAGAAACAGTACATATAACTG





GCTAAACTATCAAGACAACTATGTAGCCACATATACTAAATTCAAAG





TCAAAATGACAGACAACTTACAACTAATACAAAAAGAATACTCATAC





CACTATCCCAACAATACCACTACAGACCTTATTAAGAACAACACCC





TTACACATGACTGGGGCATATACAGTCCCTACTGGCTAACACCCAC





CAGAATAAGCCTAGACTGGGAAACACCCTGGACATATGTAAGATA





CAACCCACTGGCAGACAAAGGCATAGGCAATGCTGTCTACGCACA





GTGGTGCTCAGAACAGACAAGCAAATTAGACCCAAAAAAGAGCAA





GTGCATAATGAGAGACCTGCCACTGTGGTGCATATTTTATGGCTAT





GTAGATTGGATAGTAAAATCCACAGGAGTCAGCAGCGCAGTCACT





GACATGAGAGTAGCCATTAGAAGCCCCTACACTGAACCAGCACTT





ATAGGGTCAACTGAAGATGTAGGCTTCATTCCAGTAAGTGACACCT





TTTGCAACGGAGACATGCCGTTTCTTGCTCCATACATTCCTGTGGG





CTGGTGGATCAAGTGGTACCCCATGATTGCACACCAAAAGGAAGT





GTTTGAGCAAATAGTAAACTGTGGACCGTTTGTGCCCAGAGACCA





GACCACTCCCAGTTGGGAAATTACCATGGGTTACAAAATGGACTG





GTTATGGGGTGGCTCTCCCCTGCCTTCACAGGCAATCGACGACCC





CTGCCAGAAGCCCACCCACGAACTACCCGATCCCGATAGACACCC





TCGCATGTTACAAGTCTCTGACCCGACAAAGCTCGGACCGAAGAC





AGTGTTCCACAGATGGGACTGGAGACGTGGGATGCTTAGCAAAAG





AAGTATTAAAAGAGTCCAGGAGGACTCAACAGATGATGAATATGTT





GCAGGGCCTTTACCAAGAAAAAGAAACAAGTTCGATACCAGAGCC





CAAGGGCTCCAAAGCCCCGAAAAAGAAAGCTACACTTTACTCCAA





GCCCTCCAAGAGTCGGGGCAAGAGAGCAGCTCAGAAGACCAAGA





ACAAGCACCCCAAGAAAAAGAGGGTCAGAAGGAAGCGCTCATGG





AGCAGCTCCAGCTCCAGAAACAGCACCAGCGAGTCCTCAAGCGA





GGCCTCAAACTCCTCCTCGGAGACGTTCTCCGACTCCGGAGAGGA





GTACACTGGGACCCCCTCCTGTCATAA






BAA93592.1
AB038624.1
ACGGCGTGGTGGTGGGGCAGATGGAGGCGCCGCTGGAGGCCTC
172




GCTATCGCAGACGCACCTGGAGGGTACGCAGAAGACGACCTAGA





CGAACTTTTCGCCGCCGCCGCCGAGGACGATATGTGAGTAGGCG





GAGGCGCCGCCGCTACTACAGGCGCAGACTCAGACGGGGCAGAC





GCAGAGGGCGACGAAAGAGACACAGACAGACTCTAGTCCTCAGA





CAATGGCAACCAGACGTTCTTAGACGCTGTAAAATTACAGGATGGA





TGCCCCTTATCATCTGTGGCTCCGGAAGCACACAGAACAATTTTAT





AACTCACATGGACGACTTTCCTCCCATGGGCTACTCCTACGGGGG





CAACTTTACAAACCTCACCTTCTCCTTAGAGGGCATATATGAACAA





TTTCTGTACCACAGAAACAGGTGGTCTCGCTCCAACCATGACCTAG





ACCTAGCCAGATACAAAGGCACAACTCTAAAACTCTACAGACACCA





CACCTTAGACTACATAGTGAGCTACAATAGAACAGGCCCTTTCCAG





ATCAGTGACATGACCTACCTCAGCACACACCCTGCACTTATGCTAC





TCCAGAAACACAGAATAGTAGTGCCCAGCCTACTCACTAAACCTAA





AGGCAAGAGATCCATAAAAGTTAGAATAAAACCACCAAAACTCATG





CTTAACAAGTGGTACTTCACCAAAGACATATGCAGCATGGGCCTTT





TTCAACTACAGGCCACAGCATGCACCCTATACAACCCCTGGCTCA





GAGACACCACAAAAAGCCCAGTCATAGGCTTCAGGGTACTTAAAA





ACAGTATTTATACAAACCTCAGCAACCTACCAGACCATGAAGGAGC





CAGAGAGGCCATAAGAAAAAAACTACACCCACAATCCTTAACAGG





ATCTGTCCCAAACCAAAAAGGTTGGGAATACAGCTACACAAAACTA





ATGGCTCCCATTTACTACCAAGCCATTAGAAACAGCACATACAACT





GGCTAAACTATCAACAAAATTACTCACAAACATACCAAACCTTTAAA





CAAAAAATGCAAGACAACTTACAACTAATACAAAAAGAATACATGTA





CCACTACCCAAACAATGTAACAACAGACATACTAGGCAAAAACACA





CTTACACATGACTGGGGCATATACAGTCCCTACTGGCTAACACCCA





CCAGAATCAGCCTAGACTGGGAAACACCTTGGACATATGTTAGATA





CAATCCACTAGCAGACAAGGGCATAGGCAATGCTGTCTATGCACA





GTGGTGCTCAGAACAGACCAGTAACTTAGATACAAAAAAGAGCAA





GTGCATAATGAAAGACCTGCCACTGTGGTGCATATTTTATGGCTAT





GTAGATTGGGTAGTAAAATCCACAGGCGTCAGCAGCGCAGTGACT





GACATGAGAGTAGCCATCATTAGCCCCTACACTGAACCAGCACTTA





TAGGGTCAAGTCCAGAGGTAGGCTACATTCCAGTAAGTGACACCT





TTTGCAATGGAGACACGCCGTTTCTTGCTCCATACATCCCTGTGGG





CTGGTGGATCAAGTGGTACCCCATGATTGCACACCAAAAGGAAGT





GTTTGAGGCAATAGTAAACTGTGGACCGTTTGTGCCCAGAGACCA





GACCACTCCCAGTTGGGAAATTACCATGGGTTACAAAATGGACTG





GTTATGGGGTGGCTCTCCCCTGCCTTCACAGGCAATCGACGACCC





CTGCCAGAAGCCCACCCACGAACTACCCGATCCCGATAGACACCC





TCGCATGTTACAAGTCTCTGACCCGACAAAGCTCGGACCGAAGAC





AGTGTTCCACAAATGGGACTGGAGACGTGGGATGCTTAGCAAAAG





AAGTATTAAAAGAGTCCAGGAGGACTCAACAGATGATGAATATGTT





GCAGGGCCTTTACCAAGAAAAAGAAACAAGTTCGATACCAGAGCC





CAAGGGCTCCAAAGCCCCGAAAAAGAAAGCTACACTTTACTCCAA





GCCCTCCAAGAGTCGGGGCAAGAGACGAGCTCAGAAGACCAAGA





ACAAGCACCCCAAGAAAAAGAGGGTCAGAAGGAAGCGCTCATGG





AGCAGCTCCAGCTCCAGAAACAGCACCAGCGAGTCCTCAAGCGA





GGCCTCAAACTCCTCCTCGGAGACGTTCTCCGACTCCGGAGAGGA





GTACACTGGGACCCCCTCCTGTCATAA






AAF71533.1
AF254410.1
ATGGCACAGGGGAGGCGCAGATACAGACGGGGTTGGCAACGCAG
173




GGTGTATCTGAGACGCAGGAGACGCAGGAGACGAAAGAGACTTG





TACTGACTCAGTGGCACCCCGCAGTTAGGAGAAAATGCACCATCA





CGGGGTACATGCCCGTGGTGTGGTGCGGACACGGCAGGGCCAG





CTACAACTACGCCTGGCATTCAGATGACTGTATAAAACAGCCCTGG





CCCTTTGGAGGGTCTCTGTCCACCGTGTCCTTTAACCTTAAAGTAC





TGTATGACGAAAACCAGAGGGGACTTAACAGATGGACGTACCCCA





ACGATCAGCTAGACCTCGGCCGCTACAAGGGCTGCAAACTAACAT





TCTACAGAACCAAAAATACCAACTACCCAGGACCCTTTGGGGGGG





GTATGACTACAGACAAATTTACTTTAAGAATTCTGTATGACGAGTAC





AAAAGGTTTATGAACTACTGGACAGCATCTAACGAAGACCTAGACC





TTTGTAGATATTTAGGAGTAAACCTGTACATTTTCAGACACCCAGAT





GTAGATTTTATCATAAAAATTAATACCATGCCTCCTTTTCTAGACAC





AGAAATCACAGCCGCTAGCATACACCCAGGCATACTAGCCCTAGA





CAAAAGAGCAAGATGGATACCTAGCTTAAAATCTAGACCAGGAAAA





AAACACTATATTAAAATAAGAGTAGGGGCACCAAAAATGTTCACTG





ATAAATGGTACCCCCAAACAGATCTCTGTGACATGGTGCTTCTAAC





TATCTATGCAACCGCAGCGGATATGCAATATCCGTTCGGCTCACCA





CTAACTGACACTGTGGTTGTGAACTTCCAGGTTCTGCAATCCATGT





ATGATGAAAACATTAGCATATTACCAGACCAAAAGACACAAAGAGA





GAAACTACTTACTAGCATATCAAACTACATTCCCTTTTATAATACCA





CACAAACTATAGCCCAATTGAAGCCATTTGTAGATGCAGGCAATAA





AGTATCAGGCACAACAACAACAACATGGGCATCATACATAAACACA





ACCAGATTTACTACAACAGCCACAACAACTTATACATATCCAGGCT





CTACCACTAACACAGTAACTATGTTAACCTCTAATGACTCCTGGTA





CAGAGGAACAGTATATAACAATCAAATTAAAAACTTACCAAAACAA





GCAGCTGAATTATACTCAAAAGCAACAAAAACCTTGCTAGGAAACA





CCTTCACAACTGAAGACTACACACTAGAATACCATGGAGGACTGTA





CAGCTCAATATGGCTATCCCCTGGTAGATCTTACTTTGAAACACCA





GGAGCATACACAGATATAAAGTACAATCCATTTACAGACAGAGGAG





AAGGCAACATGTTATGGATAGACTGGCTAAGCAAAAAAAACATGAA





CTATGACAAAGTACAAAGTAAATGCTTAGTATCAGACCTACCTCTAT





GGGCAGCAGCATATGGATATGTAGAATTTTGTGCAAAAAGTACAG





GAGACCAGAACATACACATGAATGCCAGGCTACTAATAAGAAGTC





CCTTTACAGACCCACAGCTACTAGTACACACAGACCCCACAAAAG





CCTTTGTTCCCTACTCTTTAAACTTTGGAAATGGTAAAATGCCAGG





AGGTAGTAGTAATGTGCCTATTAGAATGAGAGCTAAATGGTATCCC





ACTTTATTCCACCAACAAGAAGTTCTAGAGGCTTTAGCGCAGTCAG





GACCCTTCGCTTATCACTCAGACATTAAAAAAGTATCTCTAGGCAT





AAAATACCGTTTTAAGTGGATCTGGGGTGGAAACCCCGTTCGCCA





ACAGGTTGTTAGAAATCCCTGCAAGGAACCCCACTCCTCGGGCAA





TAGAGTCCCTAGAAGCATACAAATCGTTGACCAGAAATACAACTCA





CCGGAACTTACCATCCATTCCTGGGACTTCAGACGTGGCTTCTTTG





GCCCGAAAGCTATTCAAAGAATGCAACAACAACCAACTGCTACTGA





ATTTTTTTCAGCAGGCCGCAAGAGACCCAGAAGGGACACAGAAGT





ATATCAGTCCGACCAAGAAAAGGAGCAAAAAGAAAGCTCGCTTTTC





CCCCCAGTCAAGCTCCTCCGAAGAGTCCCCCCGTGGGAGGACTC





GGACAGGAAGCAAAGCGGGTCGCAAAGCTCAGAGGAAGAGACGC





AGACCGTCTCCCAGCAGCTCAAGCAGCAGCTGCAGCAACAGCGA





ATCCTGGGAGTCAAACTCAGACTCCTGTTCTACCAAATCCAAAGAA





TCCAACAAAATCAAGATATCAACCCTACCTTGTTACCAAGGGGGGG





GGATCTAGCATCCTTATTTCAAATAGCATAA






BAB19928.1
AB050448.1
ATGGCGTGGACCTGGTGGTGGCAGAGGAGGCGCCGAAGGTGGC
174




CGTGGAGAAGGAGAAGGTGGAGAAGACTACGCACAAGAAGACCT





AGACGCCTTGTTCGACGCCGTCGCAAGAGATACAGAGTAAGGAGA





CGGAGGCGGTGGGGAAGGAGACGTGGGCGACGCACATACCTTAG





ACGCGGACTTAAAAAGAGAAAAAGGAGAAAAAAACTCAGACTGAC





TCAGTGGAACCCTAGCACAATTAGGGGATGTACAATTAAGGGAAT





GGCGCCCCTAATAGTGTGCGGCCACACCATGGCTGGCAATAACTT





TGCCATCCGAATGGAGGACTATGTATCTCAGATTAAACCGTTCGGA





GGGTCCTTCAGTACCACCACCTGGAGCTTAAAAGTACTGTGGGAC





GAGCACACCAGATTCCACAACACCTGGAGCTACCCAAACACTCAG





CTAGACTTAGCCAGGTTCAAAGGAGTAACCTTCTACTTCTACAGAG





ACAAAGACACAGACTTTATTATAACCTATAGCTCCGTGCCACCTTTT





AAAATAGACAAATACTCCTCAGCCATGCTACACCCAGGCATGCTTA





TGCAGAGAAAAAAGAAGATATTATTACCCAGCTTTACAACCAGACC





TAGGGGCAGAAAAAAAGTTAAAGTACACATAAAACCTCCTGTCTTA





TTTGAAGACAAATGGTACACCCAGCAGGACCTGTGCGACGTTAAT





CTTTTGTCACTTGCGGTTTCTGCGGCTTCCTTTAGACATCCGTTCT





GCCCACCACAAACTGACAACATTTGCATAACCTTCCAGGTGTTGAA





AGACAAGTATTACACACAAATGTCAGTTACACCAGATACCGCAGGT





ACAAAAAAAGACGACGAAATTCTTGACCACTTATACTCAACTGCAG





AATACTATCAAACTGTTCACACACAAGGAATAATTAACAAAACACAA





AGAGTAGCTAAATTCTCCACCTCTAATAATACCCTAGGTGACCAAA





GTGAGATATCATTATATTTAAACCAACCAACAACAACTAACATAGGA





AACACGTTATCCACAGGCCATAACTCAGTGTATGGCTTTCCATCAT





ACAACCCACAAAAAGACAAACTTAGAAAAATAGCAGACTGGTTTTG





GACACAGGAAGCCAACAAAGAGAATGTAGTTACAGGCTCATACTC





AATGCCTACTAACAAAGCAGTAGGCTATCACCTAGGAAAATATAGC





CCTATATTCCTAAGTTCATACAGAACCAACCTACAATTTAGAACAGC





ATACACAGACGTTACATACAACCCACTAAATGACAAAGGTAAAGGC





AATGAAATTTGGGTACAATATGTAACAAAACCAGACACTGTGTTCA





ACCCCACACAGTGTAAATGCCATGTAATAGATTTACCCTTGTGGTC





AGCATTCCATGGATACATAGACTTTGTACAAAGTGAACTAGGAATT





CAAGAAGAAATACTAAACATTGCCATTATAGTAGTTATATGTCCATA





CACAAAACCTAAACTAGTACATGAGACAAACCCAAAACAAGGCTTT





GTATTCTATGACACTCAATTTGGAGACGGTAAAATGCCAGAGGGCT





CAGGCCTAGTACCGATATACTACCAAAACAGATGGTATCCTAGAAT





AAAGTTTCAGAGTCAAGTAGTGCATGACTTTATACTAACAGGCCCC





TTTAGCTACAAAGATGACCTAAAAAGCACAGTACTAACAGTAGAAT





ACAAGTTCAAATTCTTATGGGGCGGCAATATGATTCCCGAACAGGT





TATCAGAAACCCTTGTAAAACAGAAGGACACGATCTCCCTCACACC





AGTAGACTCCATCGCGACTTACAAGTTGTTGACCCACACACCGTG





GGCCCCCAATGGGCGCTCCACACCTGGGACTGGCGACGTGGACT





CTTTGGTTCAGAGGCTATCAAAAGAGTGTCTGAACAACAAGTACAT





GATGAACTGTATTACCCACCTTCAAAGAAACCTCGATTCCTCCCTC





CAATATCAGGCCTCCAAGAGCAAGAAAGAGACTACAGTTCGCAGG





AGGAGAAAGAACAGTCCTCCTCAGAAGAAGAGACGGACCCGAAG





AAAAAAGAGCAAAAACAGCAGCAGCGACTCCACCTCCAGTTCCAA





GAGCAGCAGCGACTCGGAAACCAACTCCGACTCATCTTCCGAGAG





CTACAGAAAACCCAAGCGGGTCTCCACTTAAATCCTATGTTATCAA





ACCGGCTGTAA






AAK01940.1
AY026465.1
ATGGCATGGGGATGGTGGAAGCGACGGCGGCGCTGGTGGTTCCG
175




GAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTAGAC





CAGCTCGTCGGCGCCCTAGACGACGAAGAGTAAGGAGACGCAGA





CGATGGAGGAGGGGGCGACCTAGACGCAGACTGTACCGACGCTA





CAGACGCAAAAAACGTAGGAGACGAAAGCCCAAAATAATCTTAAAA





CAATGGCAGCCAGACATTGTAAAGAGGTGCTACATAGTGGGCTAC





ATTCCTGCCATAATATGCGGGGCGGGCACCTGGTCCCACAACTAC





ACCAGCCACCTTCTAGACATTATCCCCAAAGGACCCTTTGGAGGG





GGACACAGCACCATGAGATTCTCTCTAAAAGTGCTCTTCGAAGAG





CACCTCAGACACCTAAACTTTTGGACACGTAGTAACCAGGATCTAG





AACTTGTAAGATACTTCAGATGCTCCTTTAGGTTTTACAGAGACCA





ACACACAGACTACTTAGTGCACTACAACAGAAAAACACCCCTGGG





AGGCAACAGACTGACAGCACCTAGCCTTCACCCAGGGGTGCAGAT





GCTAAGCAAAAACAAAATAATAGTACCCAGCTATGATACTAAACCT





TGTAGACTTTATTATCCTTATAAACACCATGTCGCCCTTCCTCGACA





CCCAGCTCACAGGCCCCAGCATACACCCGGGACTAATGGCCCTTA





ACAAGAGAGCCAGATGGATCCCCAGCCTAAAAAGCAGACCGGGTA





GAAAGCACGTAGTTAAAATTAGAGTAGGCGCTCCCAGAATGTTCAC





AGATAAATGGTACCCCCAGTCAGATCTGTGTGACCTCCCCCTACTA





ACTATCTTTGCCAGTGCAGCGGATATGCAATATCCGTTCGGCTCAC





CACTAACTGACTCTGTGGTTGTGGGTTTCCAGGTTCTGCAATCCAT





GTACAATGACTGCCTTAGCATACTTCCTGAAAATTTTAACGGCAAT





GGCAAAGGCAAAGCTTTACATGACAACATAACTAAGTATCTCCCTA





ACTATAACACTACTCAAACACTAGCTCAGCTAAAACCGTACATAGA





TAACACATCCACAGGAAGCACAAATAACTGGAGCAGCTATGTAAAT





ACATCAAAATTTACAACTGCTTCAAAAACCATTACAACCTCAGCAGA





AGGCCCATACTATACTTTCGCAGATACCTGGTACAGAGGCACTGC





ATACAACAATAGCATTACGAACGTTCCTTTACAGGCAGCACAACTA





TATCACGACACAACCAAAAAACTACTAGGCACAACATTTACAGGAG





GGTCCCCCTACCTAGAATACCACGGAGGCCTTTACTCCTCCATTTG





GCTATCTGCAGGTCGCTCCTACTTTGAAACAAAAGGCACATACACA





GATATAACCTACAACCCTTTTACAGACAGAGGACAAGGTAACATGG





TATGGATAGACTGGGTATCCAAATATGACTCAGTTTACTCTAAAAC





ACAAAGCAAATGCCTTATAGAAAACCTGCCACTGTGGGCATCAGTA





TATGGATACGCAGAATACTGCAGCAAATCCACAGGAGACACAAAC





ATAGAACAAAACTGCAGAGTAGTTATAAGAAGCCCCTTCACTAACC





CTCAGCTGCTAGACCATAACAACCCACTAAGAGGGTACGTTCCCT





ACTCCATAAACTTTGGCAACGGAAAAATGCCTGGGGGAAGCAGTC





AGGTCCCCATAAGAATGAGAAGCAAGTGGTACCCTACTCTATTTCA





CCAAAAAGAAGTGTTAGAGGCCATAGCGCAGGCGGGCCCCTTCG





CGTACCACAGTGATCAGATGAAAGTGTCACTAGGCATGAAATACG





CCTTTAAGTGGGTGTGGGGTGGCAACCCCGTATCCCAACAGGTTG





TTAGAAACCCCTGCAAGGACACCGGTGTTTCCTCGGGCAATAGAG





TCCCTCGATCAGTACAAATCGTTGACCCGAAGTACAACACTCCAGA





ACTTGCAATACATGCCTGGGACTTCAGACGTGCCTGTTTGGCCCA





AAAGCTATTAAGAGAATGCAAACAGAACCGTACCCTACTGAACTTC





TTTCGCCAGGGCGAAAAAGATACAGGAGAGACACAGAAGCTCTAC





TCCCCAGCCAAGAAGAACAACAAAAAGAAAACTTATTTTTCCTCCC





AATCAAGCAGCTCCGACCAATCCCCCGTTGGAGGAGTCGGACCAA





AGCCAAAGCGAGGAAGAGGGGGTCCAACAAGAGACGCAGACACT





CTCCCAGCAGCTCCAGCAGCAGCTCAAGGAGCAGCAGCTCATGG





GGGTCCAACTCCGAGCCCTGTACCAACAATTACAACGGGTCCAAC





AAAACACACATATCGACCCTACCTTTTTGCAAGGGGGGCGGGCGT





AACATCTTTATTTCAAACAGCGTAG






AAK11696.1
AF345521.1
ATGGCGTGGTGGGGCAGATGGAGAAGGTGGCCGCGGCGCCGGT
177




GGAGGAGATGGCGGCGCCGCCGTAGAAGGAGACTACCAACAAGA





AGAACTCGACGAGCTGTTCGCGGCCTTGGAAGACGACCAAGAAAG





ACGGTAAGGAGACGCCGGCGCCGACCCAGACGCACTTACCGACG





GGGGTGGCGACGCAGACGGTACATAAGACGCAGGAGGGGACGC





AGAAAGAAACTGACTCTGACTATGTGGAACCCCAACATAGTGAGG





AGATGTAACATAGAGGGAGGGCTGCCTCTAATACTGTGTGGAGAA





AACAGGGCCGCATTTAACTACGCCTACCACTCAGAGGACTACACA





GAGCAGCCATTCCCCTTCGGTGGAGGAATGAGCACCACCACATTC





TCACTGAGAGGCCTCTATGACCAGTACACAAAACACATGAACAGAT





GGACGTTCTCAAACGACCAGCTAGACCTCGCCAGATACAGGGGCT





GCAAATTCAGGTTTTACAGACACCCCACCTGTGACTTTATAGTGCA





CTACAACCTGGTTCCTCCTCTAAAGATGAACCAGTTCACCAGTCCC





AACACGCACCCGGGACTCCTCATGCTGACTAAACACAAAATAATAA





TACCCAGCTTCTTAACAAGACCAGGGGGTCGCAGATTCGTAAAGA





TCAGACTGCCCCCCCCTAAGCTGTTTGAAGACAAGTGGTACACCC





AGCAGGACTTGTGCAAACAACCGTTAGTTACTCTAACCGCAACCG





CAGCTTCCTTGCGGTATCCGTTCTGCTCACCACAAACGAACAACC





CCAACTGTACCTTCCAGGTACTGCGCAAAAATTACCACAAAGTAAT





AGGTACTTCCTCAACAAACAGTGAGGACGTGACCCCCTTTGAAAA





CTGGCTATATAATACAGCCTCACACTATCAAACTTTTGCCACCGAG





GCACAAGTTGGTAGAATACCAAGCTTTAACCCAGACGGTACAAAAA





ATACAAAAGAATCTGAATGGCAAAATTACTGGTCCAAAAAAGGTGA





ACCATGGAACCCTAATAGTAGTTACCCACATACAACTACAAATCAA





ATGTACAAAATACCTTTTGACAGCAACTATGGCTTTCCAACTTACAA





ACCAATAAAAGAATACATGTTACAAAGAAGAGCATGGAGTTTCAAA





TATGAAACAGACAACCCAGTTAGCAAAAAGATCTGGCCACAACCTA





CCACAACAAAACCAACAATAGACTACTATGAATACCACGCAGGCTG





GTTCAGTAACATCTTCATAGGCCCCAACAGACACAGCTTACAATTC





CAAACAGCATACGTAGACACCACATACAACCCACTGAATGACAAA





GGAAAGGGCAACAAGATATGGTTTCAGTATCACAGCAAAGTAAAC





ACAGACCTCAGAGACAGAGGCATCTACTGCCTCCTAGAAGACATG





CCCCTGTGGTCTATGACCTTTGGATACAGTGACTATGTCAGCACAC





AGCTAGGCCCAAACGTGGACCACGAGACTCAAGGCCTTGTGTGCA





TAATATGCCCGTACACTGAGCCCCCAATGTATGACAAGACCAATCC





AAACAGTGGCTATGTAGCATATGACACAAACTTTGGAAATGGCAAG





ATGCCGTCAGGCAGAAGCCAGGTACCCGTGTACTGGCAGTGCAG





ATGGAGGCCCATGTTGTGGTTCCAGCAGCAAGTACTGAATGACAT





CTCAAAAAGTGGACCGTACGCATACAGAGACGAACTGAAAAACTG





TTGCCTGACTGCTTACTACAACTTCATTTTTGACTGGGGGGGCGAC





ATGTATTACCCGCAGGTCATTAAAAACCCCTGCGCAGACAGCGGA





CTCGTACCCGGTACCAGTAGATTCACTCGAGAAGTACAAGTCGTTA





GCCCGCTGTCCATGGGCCCCCAGTACATCCTCCATCTCTTCGACC





AAAGACGCGGGTTCTTTAGTTCAAACGCTCTTAAAAGAATGCAACA





ACAACAAGAATTTGATGAGTCTTTTACAGTCAAACCTAAGCGACCC





AAACTTTCTACAGCCGCCCACGTCGAGCAGCAAGAAGAAGACTCG





AGTTCAAGGGAAAGAAAATCGGGGTCCTCACAAGAAGAAGTCCAG





GAAGAAGTCCTCCAGACGCCGGAGATCCAGCTTCACCTCCAGCGA





AACATCAGAGAACAGCTGCACATCAAGCAGCAGCTCCAACTCCTG





TTACTCCAATTATTCAAAACACAAGCAAATATCCACCTGAACCCAC





GTTTTATAAGCCCATAA






AAK11698.1
AF345522.1
ATGGCGTGGCGCCGGTGGCGATGGCGGCCGTGGTGGAGACGCC
178




GGAGGCGCCGCCGGTGGAGAAGGAGACGGAGGAGACCCAGACG





ACGCCGCCCTTATCGACGCCGTCGACCTCGCAGAGTAAGGAGGC





GCAGGGGGCGGTGGAGGCGCGCGTACAGACGTTGGGGGCGACG





CAGACGCAGACGCAGGCACAAAAAGAAACTTGTACTGACTCAGTG





GCAACCAGCAGTAGTTAAGAGGTGCCTAATAGTGGGCTTTGACCC





CCTTATAATATGTGGCATTAACAGAACAATATTTAACTACACTACAC





ACTCTGAAGACTTTACTTTTAACAACGACAGCTTTGGAGGGGGGCT





CTGTACCGCTCAGTACACACTAAGAATCCTTTTCCAAGAAAAGCTG





GCCCAGCACAACTTCTGGTCAGCTAGCAACGAAGACCTAGACCTT





GCCAGGTACCTAGGAGCCACAATAGTACTTTACAGACACCCTACA





GTAGACTTCTTAGTTAGAATTCGCACCAGTCCTCCCTTTGAGGACA





CAGACATGACAGCCATGACACTACATCCAGGCATGATGATGCTAG





CTAAAAAGACAATTAAAATTCCCAGTCTTAAAACAAGACCGTCCAG





AAAACACGTAGTAAGGATTAGAGTAGGGGCCCCTAAACTATTTGAA





GACAAGTGGTACCCCCAGAACGAGCTATGTGATGTAACTCTGCTA





ACCATACAGGCAACCACAGCTGATTTCCAATATCCGTTCGGCTCAC





CACTAACGAACTCCCCCTGTTGCAACTTCCAGGTTCTTAACAGTAA





CTATGACAATGCACATTCCATACTTAACTTGTCAAACGAACCAACA





AACAAATGGCACACCTATAGAAATAACTGCTATAAATTTCTACTAGA





ACAGTACAGCTACTACAACACTAAACAAGTAGTAGCACAACTTAAA





TATAAATGGAACCCTAATCAAAACCCTACTATGCCAAATACAAGCA





ATGCATCACTTTCTAAAAAACCTGATGACCTTACTAAAACCAAAACA





ACAAACGAGTATCCACATTGGGACACCCTATATGGTGGTTTAGCAT





ATGGACACAGCACTGTAACACCTGGCACTACCTCATCACCAACAG





ACCTAAAAACACAAATGCTTACAGGCAACGAATTTTATACAACAGC





AGGCAAAAAGTTAATAGATACATTTCACCCAATTCCTTACTATGAAA





ACGGATCTTCTAAAGCCAACACCAACATATTTGACTACTACACAGG





CATGTACAGTAGTATTTTCCTGTCTTCAGGCAGATCAAACCCAGAA





GTAAAGGGCAGCTACACAGACATCTCTTACAACCCTCTGACAGAC





AAGGGAGTAGGTAACATGATTTGGATAGACTGGCTCACTAAAGGA





GACACAGTATACGACCCCAAAAAAAGCAAGTGCCTACTCTCAGACT





TTCCATTGTGGTCACTTTGTTATGGATACCCAGACTACTGCAGAAA





ACAAACCGGAGACTCAGGTATTTACTATGACTACAGAGTACTTATA





AGATGTCCATACACATACCCTCAATTAATAAAACACAACGACAAAT





ACTTTGGCTTCGTAGTGTACAGCGAAAACTTTGGACTGGGGCGAC





TACCAGGAGGCAACCCTAACCCCCCAACTAGAATGAGACTGCACT





GGTACCCTAATATGTTCCACCAAACAGAAGTACTAGAGTGCATAGC





TCAAAGCGGACCGTTTGCTTATCATGGAGACGAGAGAAAAGCTGT





TCTGACTGCCAAATACAAGTTCAGATGGAAGTGGGGAGGCAATCC





TGTGTTTCAACAGGTTCTCCGAGACCCCTGCACCGGAGGTGCCGT





GGCGCCCCACACCAGTCGACACCCTCGTGCAATACAAGTCCATGA





CCCGAAGTATCAGGCCCCGGAGTACCTCTTCCACAAATGGGACTT





CAGAAGGGGACTGTTTAGCACTAAAGGTATTAAGAGAGTGTCAGA





ACAACCAGTACATGATGAGTATTTTACAGGGAGCAGCAAGAGACC





CAAGAAAGACACCAACCCAAGCCCCCAAGGAGAAGAGCAAAAAGA





AGGCTCGCGTTTCAGAGTCCCAGAGCTCAGACCCTGGCTCCCCTC





CAGCCAGGAAACGCAGAGCCAAAGCGAGCAAGAAGAAACAGCCC





CGAAAACGGTCCAAGAGCAGCTACAAGAACAACTCCAGCAGCAGC





AGCTCATGGGAATCCAGCTCAGAAACGTCTGTCTCCAGCTCGCAA





GAGTCCAAGCGGGGCACAGTCTCCACCCCGTTTTCCAATGCCATG





CATAA






AAK11704.1
AF345525.1
ATGGCATGGGGATGGTGGAGACGAAGGCGCAAGTGGTGGTGGAG
179




ACGCCGGTTCGCCCGAAGCAGACTTCGCAGACGACGGATTAGAC





GCCCTCGTCGCCGCACTCGACGAAGAACAGTAAGGAGGCGCAGA





CAATGGAGGAGGGGGCGACCCAGACGCAGACTGTTTAAGAGAAA





GAGACGCTTTAAGAGACGCAGACGAAAAGCTAAGATAAAAATAACT





CAGTGGCAGCCTAGCTCAGTGAAGAGATGTTTTGTTATAGGATACT





TTCCATTAGTAATATGTGGACCCGGAAGGTGGTCAGAAAACTTTAC





TAGTCACATAGAAGACAAAATAAGCAAAGGACCCTTTGGGGGAGG





GCATAGTACTAGCAGATGGTCCTTAAAAGTACTGTACGAAGAGTTC





CAAAGACACCACAACTTTTGGACAAGAAGCAACAAAGACCTAGAG





TTAGTTAGATTCTTTGGAAGTAGTTGGAGATTTTACAGACACGAGG





ACACTGACTATATAGTGTACTACTCTAGAAAGGCTCCCCTTGGAGG





TAACCTTCTAACAGCACCCAGCCTACACCCAGGAGCAGCCATGCT





TAGCAAACACAAAATAGTAGTACCCAGTTTTAAAACCAGACCCGGT





GGAAAACCCACCGTTAAAATTAATATTAAACCCCCTACAACACTAAT





AGACAAATGGTACTTCCAGAAAGACATTTGTGACACAACCTTCCTT





AACTTGAACGTTGTACTCTGCAACCTGCGGTTTCCGTTCTGCTCAC





CACAAACTGACAACATTTGTGTAACCTTCCAGATATTGCATGAGGT





TTACCACAATTACATAAGCATAACTGCAAAAGAGTTACTTACAGGC





ACAGAATGGAGACAGTACTACAAAAACTTTTTAAACGCAGCACTAC





CAAATGACAGATCTGTAAATAAATTAAACACTTTTAGCACAGAAGG





AGCCTACAGCCACCCACAAATAAAAAAACATACAGAAAATATAACA





GGTTCAGGAGACAAATACTTTAGAAAAAAAGATGGACTGTGGGGA





GATGCTATTCACATTACAGACCAACAAAACAGAACAGAAGTTATAG





ACTTAATATTAAAAAATGCAGAAAACTACCTCAAAAAAGTACAACAG





GAATACCAAGGACAGGAAAATTTAAAAAACCTTATACATCCCGTCT





TTTGTCAGTACGTAGGCATATTTGGGCAGCCCACTACTAAACTACC





ACAGAATAAGCCCAGAAATTCCAGGCCTGTACAAAGACATAATATA





TAA






AAK11708.1
AF345527.1
ATGTCCTGGTGGGGATGGCGCCGCCGATGGTGGTGGAAGCCACG
180




GAGGCGATGGAGACGCAGGAGGGCGCGCCGCCCGAGACGACTA





CCGCGACGACGATATAGAAGACCTACTCGCCGCTATCGAGGCAGA





CGAGTAAGGAGGCGCCGCGCGGGGGGCTGGCGGGGGCGACGCA





GATACTCCCGACGCTATAGCAGACGACTGACTGTCAGACGAAAGA





AAAAGAAACTAACTCTTAAGATCTGGCAGCCACAGAATATCAGGAG





ATGTAAGATAAGGGGTCTACTGCCCCTCCTGATATGCGGACACAC





CCGATCTGCCTTTAACTATGCCATCCACTCGGATGACAAGACCCC





CCAACAGCAGAGTTTCGGGGGTGGGCTCAGCACCGTTAGCTTCTC





CCTGAAAGTCCTATTCGACCCGAACCAGAGGGGACTTAACAGGTG





GTCGGCCAGCAACGACCAGCTTGACCTCGCCCGGTACACGGGCT





GCACGTTCTGGTTCTACAGACACAAAAAGACTGACTTTATAGTGCA





GTATGATGTCAGCGCCCCCTTCAAACTAGACAAAAACAGTTGTCCC





AGCTACCACCCCTTCATGCTCATGAAGGCCAAACACAAGGTCCTC





ATCCCCAGTTTTGACACTAAACCCAAAGGCAGAGAAAAGATAAAAC





TAAGGATACAGCCCCCCAAGATGTTCATAGATAAGTGGTACACTCA





GGAGGACCTATGCCCCGTTATTCTTGTGACACTTGTGGCGACCGC





AGCTTCCTTTACACATCCGTTCTGCTCACCACAAACTGCCAACCCT





TGCATCACCTTCCAGGTTTTGAAAGAATTCTATTACCAAGCCATGG





GGTACGGCACACCAGAAACCACAATGAGCACAATATGGAACACCC





TCTACACAACTAGCACCTACTGGCAGTCACACTTAACCCCACAGTT





TGTCAGAATGCCCAAAAACAATCCTGATAACACTGCGAACACTGAG





GCCAATAAGTTTAATGAGTGGGTTGACAAAACGTTTAAAACAGGCA





AGTTAGTTAAATACAACTATAACCAGTATAAACCTGACATAGAGAAA





CTAACCCTACTAAGACAATACTACTTTCGATGGGAGACACAGCATA





CAGGGGTCGCAGTCCCACCTACGTGGACTACCCCCACAACAGACA





GATACGAGTACCACGTAGGCATGTTCAGTCCCATCTTCCTCACCC





CTTATAGATCAGCGGGCCTAGACTTTCCGTACGCCTACGCAGACG





TCACATACAATCCCCTCACAGACAAAGGGGTGGGCAACCGCATGT





GGTACCAGTACAACACTAAGATAGACACCCAGTTCGACGCCAAAT





GCTGTAAGTGCGTCCTAGAGGACATGCCCCTCTATGCCATGGCCT





TCGGCCACGCAGACTTTCTAGAACAGGAGATAGGAGAGTACCAGG





ACCTAGAGGCCAACGGATACGTGTGTGTTATCAGTCCCTACACCA





AGCCCCCCATGTTCAACAAACACAACCCTCAGCAGGGATACGTGT





TCTATGACTCACAGTGGGGCAATGGCAAATGGATAGACGGCACCG





GGTTCGTCCCAGTGTACTGGCTGACCAGATGGAGAGTAGAACTGC





TATTTCAAAAGCAAGTACTCTCAGACCTCGCCATGTCAGGGCCCTT





CAGCTATCCAGACGAACTTAAGAACACAGTACTGACGGCCAAGTA





CAGATTTGACTTTAAGTGGGGTGGCAATCTCTTCCACCAACAGACC





ATTAGAAACCCCTGCAAACCCGAAGAGACCTCGACCGGTAGAATC





CCTCGCGATGTACAAGTCGTTGACCCGGTCACCATGGGCCCCCGA





TTCGTCTTTCACTCCTGGGACTGGAGGAGAGGGTTCCTTAGTGAC





AGAGCTCTCAAAAGAATGTTTGAGAAACCGCTCGATTTTGAGGGAT





TTACAGCGACTCCAAAACGACCTCGCATACTCCCTCCCACAGAGG





GACAGCTCGCCCGAGAGCAAAAAGAGCAAGAAGAAAGCTCAGATT





CGCAGGAAGAAAGCAGCCTTACCCCGCTCGAAGAAGTCCCGCAA





GAGACGAAGCTACGACTCCACCTCAGAAAGCAGCTCCGAGAGCA





GCGAAGCATCAGACACCAACTCAGAACCATGTTCCAGCAGCTTGT





CAAGACGCAAGCGGGCCTACACCTAAACCCCCTTTTATCTTCCCA





GCTGTAA






AAK11710.1
AF345528.1
ATGTGGAATCCATCCACAATTAGAGCATGTAACATAAAGGGTGCTA
181




TAAACCTTGTAATGTGCGGACACACTCAGGCAGGCAGAAACTATG





CCATTAGAAGTGAAGACTTTTATCCTCAAATACAAAGCTTTGGTGG





GTCATTTAGTACAACTACATGGAGCCTTAGAGTACTGTTTGATGAA





TACCAAAAGTTCCACAACTTTTGGACATATCCTAATACTCAGCTAGA





TCTATGTAGATATAAATATGCTATATTTACCTTTTACAGAGACCCTA





AAGTAGACTACATTGTTATATACAACACAAATCCACCATTTAAAATT





AACAAATACAGTAGTCCCTTTTTACACCCCGGACTTATGATGTTAC





AAAAAAAAAAAATACTAATACCTAGCTTTCAAACAAAACCAGGGGG





CAAATCTAGAATTAAGGTTAAAATTAAGCCCCCTGCTCTATTTGAAG





ACAAGTGGTACACTCAACAAGACTTGTGTCCAGTAAACCTGTTGTC





ACTTGCGGTTTCCGCCTGCAGCTTTATACATCCGTTCTGCTCACCA





GAAAGTGACACAATATGCATGACATTTCAGGTATTGCGAGAGTTTT





ACTACACACACCTAACTGTCACTCCAACCACAACTACCTCCACACC





AGAAAAAGACAAAAAAATATTTAATGACCAATTATACTCCAACGCTA





ACTTTTATCAATCGCTACACGCATCAGCGTTCTTAAACATTGCTCA





GGCACCTGCTATACATGGCCACAATGGAATACCAAACAACAGTAG





GTATTTAAGTTCCACAGGTACAGAAACAAGTTTTAGAACTGGAAAC





AATAGTATATATGGACAACCAAATTATAAACCAATTCCAGAGAAATT





AACAGAAATAAGAAAGTGGTTTTTCAAACAAGCTACAACACCTAAT





GAAATTCATGGCACATATGGAAAACCAACATATGATGCAGTAGACT





ACCACTTAGGCAAATACAGTCCAATATTCTTAAGTCCATACAGAAC





TAACACACAATTTCCCACTGCATACATGGATGTAACTTATAATCCAA





ATGTAGATAAAGGAAAAGGCAACAAAATATGGCTTCAATCAGTAAC





AAAAGAAACATCTGATTTTGACTCACGTAGCTGCAGATGTATAATA





GAAAACTTACCCATGTGGGCCATGGTTAACGGGTACTCAGACTTT





GCAGAGTCTGAATTAGGATCTGAAGTACACGCTGTATATGTTTGCT





GTATTATTTGTCCTTACACAAAACCTATGCTATATAACAAAACAAAC





CCAGCAATGGGCTATATATTTTATGATACTTTATTTGGCGACGGAA





AACTACCATCAGGTCCAGGTCTTGTTCCATTTTATTGGCAAAGCAG





ATGGTATCCAAAACTAGCTTGGCAACAACAAGTACTACATGATTTTT





ATTTGTGTGGCCCCTTTAGCTACAAAGATGACCTCAAAAGCTTTAC





TATAAACACAACTTACAAGTTTAAATTCTTATGGGGTGGAAATATGA





TTCCCGAACAGGTTATCAAAAACCCGTGCAAAACAACAGATCCAAC





ATACACCCTGTCCGATAGACAGCGTCGCGACCTACAAGTTGTTGA





CCCAATTACCATGGGCCCGCAGTGGGAATTCCACACCTGGGACTG





GCGACGCGGACTGTTTGGACAAAATGCTCTTAGAAGAGTGTCAGA





AAAACCAGGAGATGATGCAGAGTATTATGCGCCTCCAAAAAAACCT





AGATTTTTCCCACCAACAGACCTCGAAGAGCAAGAAAAAGACTCAG





ATTCACAGGAGGAGACGAGACTCCTATTCCACCCGTCGCCGCCAA





GGAGCCAAGAAGAGATCCAGCAAGAGCAGCAGCGAGACATCCAC





CTCAGACTCGGACAACAACTCAGAATCAGACAGCAGCTCCAGCAA





GTGTTCTTACAAGTCCTCAAAACGCAAGCGAACCTCCACATAAATC





CATTATTCTTAAACCAACAATAA






AAK11712.1
AF345529.1
ATGGCATGGGGATGGTGGAGACGGTGGCGCCGGTGGCCCACCA
182




GACGCTGGAGGAGACGCCGTCGCCGGCGCCCCGTACGGAGAAC





AAGAGCTCGCCGACCTGCTCGACGCTATAGAAGACGACGAACAGT





AAGAACCAGGCGGAGGCGGTGGGGGCGCAGACGGTACAGACGG





GGCTGGAGACGAAGGACTTATGTAAGGAAGGGGCGACACAGAAA





AAAGAAAAAGAGACTCGTACTGAGACAGTGGCAGCCAGCCACCAG





ACGCAGATGCACTATAACTGGGTACCTGCCCATAGTGTTCTGCGG





ACACACTAAGGGCAATAAAAACTATGCACTACACTCTGACGACTAC





ACCCCCCAAGGACAGCCATTTGGAGGGGCCCTTAGCACTACCTCT





TTCTCCCTAAAAGTGTTGTATGACCAGCACCAGAGGGGACTAAACA





AGTGGTCTTTTCCCAACGACCAGCTAGACCTTGCCAGATACAGAG





GCTGCAAATTCTACTTCTATAGAACCAAACAGACTGACTGGGTGGG





CCAGTATGACATATCAGAACCCTACAAGCTAGACAAGTACAGCTGC





CCTAACTACCACCCGGGAAACATGATTAAGGCAAAGCACAAATTTT





TAATTCCAAGCTATGATACTAATCCCAGAGGGAGACAAAAAATTAT





AGTTAAAATTCCCCCCCCAGACCTTTTTGTAGACAAGTGGTACACT





CAGGAAGACCTGTGTGACGTTAATCTTGTGTCATTTGCGGTTTCTG





CGGCTTCCTTTCTCCACCCATTCGGCTCACCACAAACTGACAACCC





TTGCTACACCTTCCAGGTGTTGAAAGAATTCTACTATCAGGCAATA





GGCTTTAGTGCAACAGAGGAAAAAATACAAAATGTTTTTAACATATT





ATACGAAAACAACTCATACTGGGAATCAAACATAACTCCCTTTTATG





TAATTAATGTTAAAAAAGGGTCTAACACAGCACAGTACATGTCACC





TCAAATTTCAGACGCAGATTTTAGAAATAAAGTAAATACTAACTACA





ACTGGTATACCTACAATGCCAAAACCCATAAAGAAAAATTAAAAAC





GCTAAGACAAGCATACTTTAAACAATTAACCTCTGAAGGTCCGCAA





CACACATCCTCTCACGCAGGCTACGCCACTCAGTGGACCACCCCC





AGCACAGACGCCTACGAATACCACCTAGGCATGTTTAGTACCATCT





TTCTAGCCCCAGACAGACCAGTACCTCGCTTTCCCTGCGCCTACC





AAGATGTCACCTACAATGCCTTAATGGACAAAGGGGTGGGCAACC





ACGTGTGGTTTCAGTACAACACAAAGGCAGACACTCAACTAATACT





CACCGGAGGGTCCTGCAAAGCACACATAGAAAACATACCCCTGTG





GGCAGCCTTCTATGGCTACAGCGACTTCATAGAGTCAGAGCTAGG





CCCCTTTGTAGACGCAGAGACAGTAGGCCTTATATGTGTAATCTGC





CCCTACACTAAACCCCCCATGTACAACAAGACAAATCCCATGATGG





GGTACGTGTTTTATGACAGAAATTTTGGTGACGGCAAATGGACTGA





CGGACGGGGCAAAATAGAGCCCTACTGGCAGGTTAGGTGGAGGC





CAGAAATGCTTTTTCAAGAGACTGTAATGGCAGACATAGTTCAAAC





CGGGCCCTTTAGCTACAAGGACGAACTTAAAAACAGCACACTAGT





GTGCAAATACAAATTCTATTTCACCTGGGGAGGTAACGTGATGTTC





CAACAGACGATCAAAAACCCATGCAAGACGGACGAACAACCCACC





GACTCCGGTAGACACCCTAGAGGAATACAAGTGGCGGACCCGGA





ACAAATGGGACCCCGTTGGGTGTTCCACTCCTTTGACTGGCGAAG





GGGCTATCTTAGCGAGAAAGCTCTCAAACGCCTGCAAGAAAAACC





TCTTGACTATGACGAATATTTTACACAACCAAAAAGACCTAGAATGT





TTCCTCCAACAGAATCAGCAGAAGGAGAGTTCCGAGAGCCCGAAA





AAGGCTCGTATTCAGAGGAAGAAAGGTCGCAAGCCTCTGCCGAAG





AGCAGACGAAAGAGGCGACAGTACTTCTCCTTAAACGACGACTCA





GAGAGCAACAGCAGCTCCAGCAGCAGCTCCAATTTCTCACCCGAG





AAATGTTCAAAACGCAAGCGGGTCTCCACCTAAACCCTATGTTATT





AAACCAGCGGTGA






AAK54731.1
AF371370.1
ATGCGCTTTTCCAGAATCTACAGGCCAAAGAAAGGGCCACTGCCA
183




CTGCCTCTGGTGCGAGCAGAACAGAAAAAACAGCCTAGTGATATG





AGTTGGCGCCCTCCGCTTCACAATGGGGCAGGAATCGAGCGTCA





GTTTTTCGAAGGCTGCTTTCGATTCCACGCTAGTTGTTGCGGCTGT





GGCAATTTTGTTACTCATATTACTCTACTGGCTGCTCGCTATGGTTT





TACTGGGGGGCCGACGCCGCCAGGTGGTCCTGGGGCGCTACCCT





CGCTAAGGAGAGCGCTGCCACCTCCTCCGGCCCCCCAAGACCAG





GCTGAACCAGAGCTATGGCGTGGTCGTGGTGGTGGAGGCGAAGG





AAACGCTGGTGGCCGCGCAGAAGGAGGCGATGGAGAAGGCTACG





AACCCGAAGAACTGGAAGAGCTGTTCCGCGCCGCCGCCGCCGAC





GACGAGTAA






BAB69916.1
AB060596.1
ATGGCGTTCCGGTGGTGGTGGTGGAGACGCCGCCCGCAGCGACG
184




ATGGACCCGGCGCCGATGGAGGAGACTACGAACCCGCCGACCTA





GACGCACTGTACGACGCCGTCGCCGCAGACCAAGAGTAAGGAGA





AGGCGGTGGGGCAGGAGACGTGGGCGACGCAGACTGTACAGAC





GCACATATAGAAAAAGGCGCAAAAGACGAAAAAAAATGACCTTAAA





AATGTGGAATCCATCCACAATTCGCGCCTGTAACATTAGGGGCTTC





ATAGCACTAGTAGTCTGTGGACACACTCGTGCAGGCTGTAACTAT





GCCATACACAGCGAAGACTACATACCTCAACTAAGACCCTACGGA





GGGTCTTTCAGCACTACTACTTGGAGTCTAAAACTACTATTTGACG





AATATCTGAAATTTAGAAACAAATGGAGCTACCCCAACACAGAACT





AAACCTTGCTAGATACAGGGGAGCCACATTTACATTTTACAGAGAC





CCCAAAGTAGACTATATAGTAGTATACAACACAGTACCTCCATTTAA





ACTTAACAAATACAGCTGCCCCATGCTGCACCCAGGTATGATGATG





CAGTACAAAAAGAAAGTTTTAATACCAAGCTATCAGACAAAACCAA





AGGGAAAAGCCAAAATAAGACTTAGAATAAAACCTCCAGTTTTATTT





GAAGACAAATGGTACACCCAGCAAGACCTGTGTCCCGTTAATCTTT





TGTCACTTGCGGTTAGCGCATGTTCCTTCCTGCATCCGTTTATACC





ACCAGAAAGTGACAACATATGCATAACGTTCCAGGTGTTGCGAGA





CTTTTATTACACACAAATGTCAGTTACACCCACAACAACCACTTCCC





TAAATCAGAAAGATGAAAAAATATTTAGTGACCACTTATATAAAAAC





CCTGAATACTGGCAATCACATCACACAGCTGCTAGACTATCTACCT





CTCAAAAACCTGCACTACGAAATAAAGAAGAAATACCTAATGATCA





CGGATACTTAAACACAACACCAACTGACAGTACTTTTAGAACTGGA





AACAATACAATATATGGCCAACCAAGCTACAGACCAAACTATACCA





AACTAACTAAGATTAGAGAATGGTACTTTACACAAGAAAACACAGA





CAACCCAATACATGGCAGCTACTTAAAACCAACACTAAACTCTGTA





GACTACCACCTAGGAAAATACAGTGCTATATTCTTAAGTCCCTATA





GAACAAACACTCAATTTGATACAGCATACCAAGATGTAACCTACAA





TCCTAACACAGACAAAGGCAAAGGCAATAAAATATGGATTCAGAGC





TGTACAAAAGAATCCACCATACTAGACAACGCATGCAGATGTGTAA





TAGAAGACATGCCATTATGGGCTATGGTAAATGGCTACTTAGAATT





CTGTGACTCAGAGCTTCCAGGAGCCAACATCTACAATACATACATA





GTAGTTGTTATATGCCCTTACACCAAACCTCAACTACTAAACAAAAC





TAATCCAAAACAAGGCTATGTATTTTATGACACTCTATTTGGAGACG





GAAAAATGCCCACAGGAACAGGCCTAGTACCGTTCTGGCTGCAGA





GCAGATGGTACCCCAGAGCAGAGTTCCAACAACAAGTACTACATG





ACCTTTACCTTACAGGCCCATTTAGCTACAAAGATGACCTAAAATC





CTTTAGCTTTAATGCTAAATACAAATTCTCATTCTTATGGGGCGGCA





ATATGATTCCCCAACAGATTATCAAAAACCCGTGTAAAAAAGAAGA





ATCCACATTCACCTATCCCAGTAGAGAGCCTCGCGACCTACAAGTT





GTTGACCCACTCACCATGGGCCCAGAATGGGTCTTCCACACATGG





GACTGGAGACGTGGACTTTTTGGTAAAAATGCTGTCGACAGAGTG





TCAAAAAAACCAGACGATGATGCAGAATATTATCCAGTACCAAAAA





GGCCTCGATTCTTCCCTCCAACAGACACACAGTCAGAGCCAGAAA





AAGACTTCGGTTTCACACCGGAGAGCCAAGAGTTACAGCAAGAAG





ACTTACGAGCACCCCAAGAAGAAAGCCAAGAGGTACAGCAGCAGC





GACTGCTCCAGCTCAGACTCTCACAGCAGTTCAGACTCAGACAGC





AGCTCCAGCACCTGTTCGTACAAGTCCTCAAAACCCAAGCAGGTC





TCCACATAAACCCATTATTTTTAAACCATGCATAA






BAB69900.1
AB060592.1
ATGGCGTGGACCTGGTGGTGGCAGAGGAGGCGCCGAAGGTGGC
185




CGTGGAGAAGGAGAAGGTGGAGAAGACTACGCACCAGAAGACCT





AGACGACTTGTTCGCCGCCGTCGCAAGAGATACAGAGTAAGGAGA





CGGAGGCGGTGGGGAAGGAGACGTGGGCGACGCACATACCTTAG





ACGCAGACTTAAAAAAAGAAAGAGACGCAAAAAGCTAAGACTGAC





TCAATGGAACCCTAGCACAATTAGAGGATGTACAATTAAGGGAATG





GCTCCCCTAATTATCTGTGGCCACACTATGGCAGGCAATAACTTTG





CCATCCGAATGGAGGACTATGTCTCTCAAATTAGACCATTCGGAG





GGTCGTTTAGCACCACAACCTGGAGCCTTAAAGTACTTTGGGACG





AGCACACCAGATTCCATAACACCTGGAGCTACCCAAACACTCAGC





TAGATCTCGCAAGGTTTAAAGGAGTAAACTTTTACTTCTACAGAGA





CAAAGACACAGACTTTATAGTAACATACAGCTCAGTCCCGCCATTT





AAAATGGACAAATACTCATCAGCCATGCTACATCCAGGCACGCTCA





TGCAGAGAAAGAAAAAGATATTAATACCCAGCTTTACAACAAGACC





AAGGGGCCGAAAAAAAGTTAAACTGCATATAAAACCTCCTGTTTTA





TTTGAAGACAAATGGTACACCCAGCAGGACCTCTGCGACGTTAAT





CTTTTGTCACTTGCGGTTTCTGCGGCTTCCTTTAGACATCCGTTCT





GCCCACCACAAACTGACAACATTTGCATCACTTTCCAGGTGTTGAA





AGACTTCTATTACACACAAATGTCAGTTACACCGGACACAGCAGGC





CAAGAAAAAGACATTGAAATATTTGAAAAACACTTATTTAAAAATCC





ACAATTCTATCAAACTGTCCACACACAAGGAATAATTAGCAAAACA





CGAAGAACAGCTAAATTTTCAACCTCAAATAATACCCTAGGAAGTG





ACACGAATATAACGCCATACCTAGAACAACCAACAGCAACAAACCA





CAAAAACACATTATCCACAGGTAACAACTCAATATATGGCCTTCCA





TCTTACAACCCAATACCAGATAAACTTAAAAAAATTCAAGAATGGTT





TTGGAAACAAGAAACTGACAAAGAAAATTTAGTTACTGGCTCCTAT





CAAACACCTACTAACAAATCAGTAAGCTACCATCTAGGAAAATACA





GCCCCATATTTTTAAGCTCATATAGAACTAATCTACAGTTTATAACT





GCATACACAGATGTAACATACAATCCCCTAAATGACAAAGGAAAAG





GCAACCAAATATGGGTACAGTATGTAACAAAACCAGATACTATATT





TAATGAAAGACAGTGCAAATGCCACATAGTAGATATTCCTTTGTGG





GCAGCATTCCATGGCTATATTGACTTTATACAAAGTGAACTAGGCA





TACAAGAAGAAATACTAAACATTGCCATAATAGTAGTTATATGTCCA





TACACAAAACCCAAACTAGTACACGACCCACCAAACCAAAACCAAG





GCTTTGTATTCTATGACACACAATTTGGAGACGGTAAAATGCCAGA





GGGCTCGGGCCTAGTACCCATATACTACCAAAACAGATGGTATCC





TAGAATAAAGTTCCAGAGTCAAGTAGTGCATGACTTTATACTAACA





GGCCCCTTTAGCTACAAAGATGATCTAAAGAGCACAGTACTAACAG





TAGAATACAAGTTTAAATTCTTATGGGGCGGCAATATGATTCCCGA





ACAGGTTATCAGAAACCCTTGTAAAACAGAAGGACACGATCTCCCT





CACACCAGTAGACTCCATCGCGACTTACAAGTTGTTGACCCACACA





CCGTGGGCCCCCAATGGGCGCTCCACACCTGGGACTGGCGACGT





GGACTCTTTGGTTCAGAGGCTATCAAAAGAGTGTCTGAACAACAAG





TACATGATGAACTGTATTACCCAGCTTCAAAGAAACCTCGATTCCT





CCCTCCAATATCAGGCCTCCAAGAGCAAGAAAGAGACTACAGTTC





GCAGGAGGAAAAAGACCAGTCCTCCTCAGAAGAAGAGAAGGACC





CGAAGAAAAAAGAGCAAAAACAGCAGCAGCGACTCCACCTCCAGT





TCCAAGAGCAGCAGCGACTCGGAAACCAACTCCGACTCATCTTCC





GAGAGCTACAGAAAACCCAAGCGGGTCTCCACATAAATCCTATGTT





ATCAAACCGGCTATAA






BAB69904.1
AB060593.1
ATGGCCTGGAGATGGTGGTGGAGACGGCGCTGGAAGCCAAGAAG
186




GCGGCCAGCGTGGACCAAGTACCGCAGACGCAGGTGGAGACGAC





TTCGACCCCGCAGACCTAGAAGACTTGCTCGCGGCCGTCGAAGAA





GACGAACAGTAAGGAGGCGGAGGGTCAGGAGACTCAGACGGAGG





AGGGGGTGGACTAGGAGACGGTACTTGAGACGCAGAAAGAGACG





AAAGCTAATACTGACTCAGTGGAACCCCAATATTGTCAGACGATGC





TCTATAAAGGGTATAATCCCCCTCACAATGTGCGGCGCTAACACC





GCCAGTTTTAACTATGGGATGCACAGCGACGACAGCACCCCTCAG





CCAGAGAAATTTGGGGGAGGCATGAGCACAGTGACCTTTAGCCTG





TATGTACTGTATGACCAGTTCACTAGACACATGAACCGGTGGTCTT





ATTCCAACGACCAGCTAGACCTGGCCAGATACAGGGGCTGCTCAT





TCAAACTGTACAGAAACCCCACAACTGACTTTATAGTGCAGTATGA





CAATAATCCTCCTATGAAAAACACTATACTGAGCTCACCTAACACT





CACCCAGGTATGCTCATGCAGCAGAAACACAGGATACTAGTGCCC





AGCTGGCAGACCTTTCCCAGGGGGAGAAAATATGTTAAAGTTAAG





ATACCCCCACCTAAACTCTTTGAGGACCACTGGTACACTCAGCCA





GACTTATGCAAAGTTCCGCTCGTTACTCTGCGGTCAACCGCAGCT





GACTTCAGACATCCGTTCTGCTCACCACAAACGAACAACCCTTGCA





CCACCTTCCAGGTGTTGCGAGAGAACTATAACGAAGTCCTAGGAC





TTCCCTATGCTAACACCGGGTCTAACAATGAAGTCAAAATTAAAATT





GATAACTTTGAAAACTGGCTTTATAACTCCAGTGTACACTATCAAAC





ATTCCAAACAGAGCAAATGTTCAGACCCAAACAATACAATGCAGAT





GGCTCTACCTGGAAAGACTACAAAAGCATGTTATCTACATGGACAT





CACAAATATATAACAAGAAAACAGACAGCAACTATGGGTATGCCTC





CTATGACTTTAGTAAAGGTAAAGAGTTTGCTACACAAATGAGACAG





CATTACTGGGTACAACTAACACAACTAACAGCCACAGTCCCACACA





TAGGACCTACTTACAGCAACACAACCACACCAGAATACGAATATCA





CGCAGGCTGGTACTCTCCAGTGTTCATAGGCCCCAACAGACACAA





CATACAGTTCAGAACAGCATACATGGACGTTACCTACAACCCACTA





AATGACAAAGGCCAGTTTAACAGAGTATGGTTCCAGTACAGCACTA





AACCCACCACAGACTTCAACAACACACAGTGCAAATGTGTTCTAGA





AAACATTCCACTGTGGTCAGCCCTATTTGGATACTCTGAATATGTA





GAGAGCCAGCTAGGCCCCTTCCAGGACCACGGGACCGTGGGTGT





AGTAGTAGTACAATGTCCTTACACAGTGCCACCCATGTATAACAAA





GAGAAACCAGACATGGGCTACGTATTCTATGACACACATTTTGGCA





ATGGCAAATTGGGCAACGGCAGCGGCCAGGTACCCAGGTACTGG





CAGATGAGATGGTACCCCATACTCAAAAGACAAAAACAAGTAATGA





ATGACATTTGCAAGACTGGACCGTTCAGCTACAGAGACGAACTGC





TTCAGGTGGACTTAGCAAGCCCCTACACCTTCAGATTTAACTGGG





GGGGCGACTTACTCTACCACCAGGTCATCAAAGACCCGTGCAGCT





CCTCAGGACTGGCACCTACCGACTCCAGTAGATTCAAGCGGGATG





TACAAGTCGTTAGCCCGCTCACAATGGGGCCCCGACTGCTATTCC





ACTCGTTCGACCAAAGACGAGGGTTCTTTACTCCAGGAGCTATCAA





ACGAATGCATGATGAACAAATTAATGTTCCAGACTTTACACAAAAA





CCTAAAATCCCGCGAATTTTCCCACCAGTCGAGCTCCGAGAAAGA





GCAGAAGCCGAAGAAGACTCAGGTTCGGAAAAAGCGTCGTTCACC





TCGTCGCAAGAGAGAGAAGCCGAAGCCCAAGAAAAGTTACCGATA





CAGCTCCAGCTCAGACAGCAGCTCAGACAACAACAGCAGCTCCGA





GTCCACTTGCAGCAAGTCTTCCTCCAACTCCAAAAAACGAAGGCA





CATTTACATATAAACCCACTATTTTTGGCCCAAGGGAACATGTAA






BAB69912.1
AB060595.1
ATGGCCTACTCCTACTGGTGGCGCCGCCGGAGGTGGCCGTGGAG
187




AGGCCGATGGAGGCGCTGGAGGCGCCGCAGACGAATACCGCGC





CGAAGACCTAGACGACCTGTTCGCCGCTATCGAAGGAGACCAGTA





AGGAGAAAGCGTCGGTGGGGGAGGCGAGGGCGACGGCGCCGGT





ACACTAGACGGTACAGACGCAGACTGACTGTCAGACGAAAGAGAA





ACAAACTCAGACTGAGCGTATGGCAGCCCCAGAATATCAGATACT





GTGCCATAAAAGGCCTCTTTCCCATCCTCATCTGCGGGCACGGAA





AGAGCGCCGGCAACTATGCCATCCACTCGGATGACTTTATCACAA





GCAGATTCTCTTTCGGAGGTGGTCTCAGCACGACCTCCTACTCTCT





GAAGCTGCTATTCGACCAAAACCTCAGGGGACTAAACAGATGGAC





CGCTAGCAACGACCAGCTAGACCTAGCTAGGTACCTGGGGGCCAT





ATTCTGGTTCTACAGAGACCAGAAAACAGACTACATAGTCCAGTAT





GACATCTCAGAGCCCTTCAAGATAGACAAAGACAGCTCCCCTTCCT





TCCATCCAGGCATACTGATGAAAAGCAAACACAAAGTACTGGTACC





CAGCTTCCAGACTTGGCCCAAGGGTCGCTCTAAAGTAAAGCTAAA





GATAAAGCCCCCCAAGATGTTCGTTGACAAATGGTACACACAAGA





GGATCTCTGTACCGTTACTCTTGTGTCACTTGTGGTCAGCCTAGCT





TCCTTTCAACATCCGTTCTGCCGACCACTAACTGACAACCCTTGCG





TCACCTTCCAAGTTCTGCAAAATTTCTACAACAACGTAATAGGCTA





CTCCTCATCAGACACACTAGTAGATAATGTCTTTACGAGTCTGTTAT





ACTCTAAAGCCTCCTTCTGGCAGAGCCATCTGACCCCCTCTTATGT





CAAAAAAATTAACAACAACCCCGATGGCAGCTCAATTAGTCAGCGA





GTAGGCACAATGCCTGACATGACGGAGTATAACAAGTGGGTATCC





AACACAAATATAGGAACAGGATTCGTAAACTCAAATGTTAGTGTAC





ACTATAATTATTGTCAGTACAACCCTAACCATACTCATTTAACAACA





CTGAGACAGTACTACTTCTTTTGGGAAACACACCCAGCAGCGGCC





AACAAAACACCTGTAACACACGTCCCCATCACCACCACAAAACCCA





CCAAAGACTGGTGGGAGTACAGATTAGGCCTGTTCAGTCCCATCT





TCCTATCTCCACTCAGAAGCAGCAACATAGAGTGGCCCTTCGCATA





CAGAGACATAATATACAACCCACTCATGGACAAGGGGGTAGGTAA





CATGATGTGGTACCAGTACAACACAAAACCAGATACCCAGTTCTCC





CCCACCTCTTGCAGAGCAGTGCTAGAAGACAAACCCATATGGTCC





ATGGCATATGGGTATGCAGACTTTCTGCTGTCCATACTAGGTGAAC





ACGACGATGTAGACTTCCATGGATTAGTCTGTATCATATGCCCCTA





CACCAGACCGCCCCTCTTCGACAAGGATAACCCCAAGATGGGCTA





TGTCTTCTACGATGCTAAATTTGGCAATGGCAAATGGATAGACGGT





ACGGGATTCATCCCGGTAGAGTTCCAGAGTAGATGGAAACCAGAG





CTGGCCTTCCGGAAAGACGTACTGACTGACTTAGCCATGTCAGGC





CCCTTCTCCTACAGCGACGACCTTAAAAACACCACAATCCAGGCC





AAGTACAAATTCAAATTCAAATGGGGCGGTAATCTCTCTTACCACC





AGACGATCAGAAACCCGTGCACCTCGGACGGACAGACGCCCACA





ACCAGTAGACAGTCTAGAGAGGTACAAATCGTTGACCCGCTCACC





ATGGGACCCCGATACGTATTCCACTCGTGGGACTGGCGACGTGG





GTGGCTTAATGACAGAACTCTCAAACGCTTGTTCCAAAAACCGCTC





GATTTTGAAGAGTATCCAAAATCTCCAAAGAGACCTAGAATTTTCC





CACCCACAGAGCAGCTCCAAGAAGACCCGCAAGAGCAAGAAAGA





GACTCCTCTTCTTCGGAAGAAAGTCTCCCTACATCGTCAGAAGAGA





CACCGCCAGCCCACCTACTCAGAGTACACCTCAGAAAGCAGCTCC





GGCAACAGCGAGACCTCCGAGTCCAGCTCAGAGCCCTGTTCGCC





CAAGTCCTCAAAACGCAAGCGGGCCTACACATAAACCCCCTCTTAT





TGGCCCCGCAGTAA






BAB79314.1
AB064596.1
ACGGCCTGGTGGTGGGGAAGACGGTGGCGACGCCGCCCGTGGG
188




GCCGCTGGCGCCGCCGAAGGCGCGTATGGAGAAGAAGACCTAGA





ACTGCTGTTCGCCGCCGCCGAGGAAGACGATATGTGAGTAGAAG





GCGCCGCTACAGGCGCAGACTCAGACGAAGGGGCAGACGGAGAT





ACAGGGGGCGACGAAAGAAGAGACAGACCCTAGTACTCAAACAAT





GGCAACCCGACGTTAACAGACTGTGCAGAATCACAGGATGGCTAC





CTCTTATAGTTTGTGGCACCGGCAGGGCCCAGGACAACTTTATAG





TACACTCAGAGGACATAACCCCCCGAGGAGCCGCCTACGGGGGC





AACCTCACACACATAACATGGTGCTTAGAAGCTATATACCAAGAAT





TCCTCATGCACAGAAACAGATGGTCCAGAAGTAACCATGACCTGG





ACCTCTGCAGATACCAAGGAGTAGTTTTTAAGGCCTATAGACACCC





CAAAGTTGACTACATACTAGCATACACAAGAACACCTCCATTTCAA





GCAACAGAACTTAGCTACATGTCCTGCCATCCACTACTCATGCTGA





CAGCAAAACACAGGATAGTAGTAAAGAGCCAAGAGACCAAAAAAG





GGGGCAAAAAATATGTAAAATTTAGAATAAAGCCCCCCAGACTAAT





GTTAAACAAGTGGTACTTCACTCATGACTTTTGTAAAGTCCCACTAT





TCAGCATGTGGGCCTCAGCCTGTGATCTAAGAAATCCCTGGCTAA





GAGAGGGAGCCCTAAGCCCCACAGTAGGCTTTTTTGCCTTAAAGC





CTGACTTCTACCCTAATTTAAGCATTTTACCAAATGAAGTCAGTCAA





CAATTCGACTTCTTTTTAAACTCTGCTCACCCACCAAGCATACAATC





AGAAAAAGATGTTAGATGGGAATATACATACACAAACTTAATGAGG





CCTATATACAACCAGACCCCATCACTAAAGGCCTCCACATATGACT





GGCAAAACTATAGCAATCCAAACAACTATCAAGCATGCCACCAACA





ATTCATAGCATTTAAAGCACAAAGATTTGCCAAAATTAAAGCAGAAT





ATCAAACAGTATATCCTACACTAACAACACAGACACCCCAATCAGA





AGCACTAACACAAGAATTTGGACTATACTCTCCATACTATTTAACAC





CAACAAGAATCAGCCTAGACTGGCACACAGTATTCCACCACATCA





GATACAACCCGATGGCAGACAAAGGCCTAGGAAACATGATTTGGG





TCGACTGGTGTTCCAGAAAAGAAGCCACCTACGACCCCACAAGAT





CCAAGTGCATGCTAAAAGACCTACCACTATACATGCGCTTCTATGG





CTACTGTGACTGGGTAACTAAATCAATAGGCTCAGAAACAGCCTG





GAGAGACATGAGATTAATGGTGGTCTGCCCTTATACAGAACCCCA





ACTAATGAAAAAAAATGACAAAACCTGGGGCTATGTAATCTATGGC





TACAACTTTGCAAACGGAAACATGCCGTGGTTACAGCCATATATCC





CAATCTCGTGGTTTTGCCGTTGGTTCCCTTGCATCACTCACCAACG





TGAAGCAATGGAGTCAGTTGTGGCCACAGGACCGTTCATGGTCAG





AGACCAAGACCGCAACAGTTGGGACATAACTATAGGCTACAAATTC





TTATGGAGATGGGGGGGCTCTCCTCTGCCCACTCAGGCAATCGAC





GACCCCTGCCAGCAGGGAACCCACCCGCTTCCCGAGCCCGGTAC





GTTGCCTAGAATCTTACAAGTCAGCGACCCGACGCAACTCGGACC





GAAAACCATATTCCACCTCTGGGACCAGAGGCGTGGACTTTTTAG





CAAAAGAAGTATTGAAAGAATGTCAGAATACAAAGGAACTGATGAC





TTATTTTCACCAGGTCGCCCAAAGCGCCCAAAGCTCGACACACGT





CCCGAAGGACTACCAGAGGAGCAAAGAGGAGCTTACAATTTACTC





CAAGCCCTCGAAGACTCAGCCCAGTCGGAAGAAAGCGACCAAGA





AGAAATGCCTCCCCTCGAAGAAGAACAAGTACTCCACGAGCAAAA





GAAAGAGGCGCTCCTCCAGCAGCTCCAGCAGCAGAAACACCACC





AGCGAGTCCTCAAGCGAGGCCTCAGACTCCTCCTCGGAGACGTC





CTGAAACTCCGCCGGGGTCTACACATAGACCCGGTCCTTACATAG






BAB79318.1
AB064597.1
ACGGCGTGGTGGTGGGGACGGTGGCGCCGCCGCTGGCGCCGCA
189




GGCGACCGTGGAGACCGAGACTACGACGAAGAAGAGCTAGACGA





GCTTTTCCGCGCCGCCGCCGAAGACGATTTGTAAGTAGGAGATGG





CGCCGGCCTTACAGGCGCAGGAGGAGACGCGGGCGACGCAGAC





GCAGACGCAGACGCAGACATAAGCCCACCCTAGTACTCAGACAGT





GGCAACCTGACGTTATCAGACACTGTAAGATAACAGGACGGATGC





CCCTCATTATCTGTGGAAAGGGGTCCACCCAGTTCAACTACATCAC





CCACGCGGACGACATCACCCCCAGGGGAGCCTCCTACGGGGGCA





ACTTCACAAACATGACTTTCTCCCTGGAGGCAATATACGAACAGTT





TCTGTACCACAGAAACAGGTGGTCAGCCTCCAACCACGACCTCGA





ACTCTGCAGATACAAGGGTACCACCCTAAAACTGTACAGGCACCC





AGATGTAGACTACATAGTCACCTACAGCAGAACGGGACCCTTTGA





GATCAGCCACATGACCTACCTCAGCACTCACCCCCTTCTCATGCT





GCTAAACAAACACCACATAGTGGTGCCCAGCCTAAAGACTAAGCC





CAGGGGCAGAAAGGCCATAAAAGTCAGAATAAGACCCCCCAAACT





CATGAACAACAAGTGGTACTTCACCAGAGACTTCTGTAACATAGGC





CTCTTCCAGCTCTGGGCCACAGGCTTAGAACTCAGAAACCCCTGG





CTCAGAATGAGCACCCTGAGCCCCTGCATAGGCTTCAATGTCCTT





AAAAACAGCATTTACACAAACCTCAGCAACCTACCTCAGCACAGAG





AAGACAGACTTAACATTATTAACAACACATTACACCCACATGACATA





ACAGGACCAAACAATAAAAAATGGCAGTACACATATACCAAACTCA





TGGCCCCCATTTACTATTCAGCAAACAGGGCCAGCACCTATGACTT





ACTACGAGAGTATGGCCTCTACAGTCCATACTACCTAAACCCCACA





AGGATAAACCTTGACTGGATGACCCCCTACACACACGTCAGGTAC





AATCCACTAGTAGACAAGGGCTTCGGAAACAGAATATACATACAGT





GGTGCTCAGAGGCAGATGTAAGCTACAACAGGACTAAATCCAAGT





GTCTCTTACAAGACATGCCCCTGTTTTTCATGTGCTATGGCTACAT





AGACTGGGCAATTAAAAACACAGGGGTCTCCTCACTAGCGAGAGA





CGCCAGAATCTGCATCAGGTGTCCCTACACAGAGCCACAGCTGGT





GGGCTCCACAGAAGACATAGGGTTCGTACCCATCACAGAGACCTT





CATGAGGGGCGACATGCCGGTACTTGCACCATACATACCGTTGAG





CTGGTTTTGCAAGTGGTATCCCAACATAGCTCACCAGAAGGAAGTA





CTTGAGGCAATCATTTCCTGCAGCCCCTTCATGCCCCGTGACCAG





GGCATGAACGGTTGGGATATTACAATAGGTTACAAAATGGACTTCT





TATGGGGCGGTTCCCCTCTCCCCTCACAGCCAATCGACGACCCCT





GCCAGCAGGGAACCCACCCGATTCCCGACCCCGATAAGCACCCT





CGCCTCCTACAAGTGTCGAACCCGAAACTGCTCGGACCGAGGACA





GTGTTCCACAAGTGGGACATCAGACGTGGGCAGTTTAGCAAAAGA





AGTATTAAAAGAGTGTCAGAATACTCATCGGATGATGAATCTCTTG





CGCCAGGTCTCCCATCAAAGCGAAACAAGCTCGACTCGGCCTTCA





GAGGAGAAAACCCAGAGCAAAAAGAATGCTATTCTCTCCTCAAAG





CACTCGAGGAAGAAGAGACCCCAGAAGAAGAAGAACCAGCACCC





CAAGAAAAAGCCCAGAAAGAGGAGCTACTCCACCAGCTCCAGCTC





CAGAGACGCCACCAGCGAGTCCTCAGACGAGGGCTCAAGCTCGT





CTTTACAGACATCCTCCGACTCCGCCAGGGAGTCCACTGGAACCC





CGAGCTCACATAG






BAB79326.1
AB064599.1
ACGGCGTGGTGGAGATACAGACGGAGACCGTGGAGAAGATGGAG
190




GAGACGCCGCTGGGGCCTACGAACCCGAAGACCTAGAAGAACTTT





TCGCCGCCGCCGAGCAAGACGATATGTGAGTAGAGGGCGGCGCC





GCCGATACAGGCGCAGACGCAGACGGGGGCGACGCAGACGGGG





ACGCAGACGCAGGCACAGAAAGACTCTCATTGTCAGGCAATGGCA





ACCAGACGTTATAAAGAGATGCTTTATCACAGGGTGGCTGCCCCT





CATTATCTGTGGAAACGGACACACCCAATTTAACTTTATAACTCACA





TGGATGACATTCCACCCAAGAATGCATCCTACGGGGGCAACTTCA





CCAACTTGACCTTTAACCTAGCCTGCTTCTATGACGAATTCATGCA





CCACAGAAACAGATGGTCAGCCTCTAACCATGACCTAGAGCTAGT





GAGATACATCAGAACCAGCCTTAAACTCTACAGACACGAGTCAGTA





GACTATATAGTGTGCTACACCACCACAGGCCCCTTCGAGACAAAT





GAAATGTCCTACATGCTCACTCACCCTCTGGCCATGCTCCTCAGCA





AAAGACACGTAGTTGTGCCTAGCCTAAAAACAAAACCACACGGCA





GAAAGTACAAAAAGATAACAATTAAGCCCCCAAAACTGATGCTAAA





CAAGTGGTACTTTGCTACAGACCTCTGCCACATAGGCCTCTTCCAG





CTCTGGGCCACAGGCCTAGAGCTTAGAAATCCATGGCTCAGATCA





GGCACAAACAGCCCTGTTATAGGCTTCTATGTCCTTAAAAACCAAG





TTTACAAAAACAGATACAGCAACCTAAACACAACAGAAGCACACAA





CGCCAGACAAGACGCATGGAACGAACTAACCCAAACAAAAACTAA





CGACAAATGGTACAATTGGCAATATACATACAATAAACTTATGAAG





CCAATTTACTATGCAGCTTCAAATGAAAGTAGTAATTCAGCCATGA





AAGGAAAAACATATAATTGGAAACATTACAAAGAATATTTTAGCAAC





ACACAAACTAAGTGGAAAACAATTATTAAAGACGCCTATGACTTAG





TAAGAGAGGAATACCAACAATTATACACCACAACTATGGCATATCC





ACCACCATGGCAATCAACCACTTCTAATACAGGCAGACAATACCTA





GAACATGACTGTGGCATTTACAGCCCATACTTTCTAACACCACAAA





TATATAGCCCAGAATGGCACACAGCCTGGTCCTACATCAGATACAA





TCCCCTCACAGACAAAGGCATAGGAAACAGAGTCTGTGTCCAGTA





CTGCAGCGAGGCCAGCAGCGACTACAACCCAATAAAGAGCAAGTG





TATGTTACAAGACATGCCCTTGTGGATGATGCTGTATGGCTACGCA





GACTATGTAGTAAAGAGCACAGGCATACAGTCAGCCTGGACAGAC





ATGAGAGTGGCCATCAGATGTCCCTACACAGACCCTAAGCTTGTG





GGCAGCACAGAAAACACCATGTTTATCCCCATAGGCCTAGAATTCA





TGAACGGAGACATTCCAGACAAAAGGCCCTACATTCCGTTAACCT





GGTGGTTTAAGTGGTACCCCATGATTACACACCAGAAAACCGCAAT





TGAGGCAATAGTTTCCTGCAGCCCCTTCATGCCCAGAGATCAGGA





ACAAGCTAGTTGGGACATAACTGTAGGTTACAAAGCAACCTTCTTA





TGGGGCGGGTCCCCGTTACCTCCACAGCCCATTGACGACCCCTG





CCAAAAAGGAAAACACGACATTCCCGACCCCGATACAAACCCTCC





AAGAATACAAATATCAGACCCGCAACACCTCGGACCGGCGACGCT





GTTCCACTCGTGGGACCTCAGACGTGGATATATTAATACAAAAAGT





ATTAAAAGAATCTCAGAACACCTCGATGCTAATGAATATTTTTCGAC





AGGCGTCGTGTCCAAAAAACCCCGATTCGACACTCCCCACCACGG





GCAGCTATCAAACCAAGAAGAAGACGCCTTGTCTATCCTCAGACAA





CCCCAAAAAGAGCAAGAAGAGACCACCTCCGAGGAAGAACAAGCA





CTCCAAAAAGAAGAGGAGCAAAAAGAAAAGCTCCTACAGCAACTC





AGAGTCCAGCGACAGCACCAGCGAGTCCTCAGACAGGGAATCAAA





CACCTCATGGGAGACGTCCTCCGACTCAGACAGGGAGTCCACTG





GAACCCAGTCCTATAA






BAB79330.1
AB064600.1
ACGGCCTGGGGATGGTACCGGAGAAGAAGATGGCGCCCATGGAG
191




AAGGAGAAGGTGGGCGATACGCAGAAGAAGACCTAGAAGAACTG





TTCGCCGCCGCGGCAGAAGACGATATGTGAGTAGATGGCCGCGC





CGCCGATACAGGCGCAGACGCAGACGAACCAGACGTAGGGGGG





GACGCAAAAGGAGACACAGACAGACTCTTATACTCAGACAGTGGC





AACCAGATGTTATGAAAAAATGTTTTATTACTGGCTGGATGCCCCT





CATTATATGTGGCACTGGGAACACTCAATTTAACTTTATAACCCATG





AAGACGATGTGCCACCAAAAGGAGCCTCCTATGGAGGCAACCTCA





CTAACCTCACCTTCACTCTAGAAGGACTGTATGACGAACACCTACT





CCACAGAAACAGGTGGTCCAGATCAAACTTTGATCTAGACCTCAG





CAGATACCTCTACACTATAATAAAGCTATACAGACACGAGTCTGTA





GACTACATAGTCACCTACAACAGAACAGGCCCCTTTGAAATAAGCC





CACTCAGCTACATGAACACACACCCTATGCTAATGCTCCTAAACAA





GCACCACGTAGTGGTGCCAAGCCCAAAAACAAAGCCCAAAGGCAA





GAGGGCCATTAAAATTAAAATAAAGCCACCTAAACTAATGCTAAAC





AAATGGTACTTTGCAAGAGACACGTGTAGAATAGGCCTCTTTCAGC





TCTATGCCACAGGGGCTAACCTAACAAACCCCTGGCTCAGGTCAG





GCACAAACAGCCCTGTAGTGGGATTCTATGTAATTAAAAACTCCAT





ATATCAAGACGCCTTTGATAACCTGGCAGACACAGAACATACAAAC





CAAAGAAAAAATGTATTTGAAAACAAACTATATCCCACTACAACAAC





TAACAAAGACAACTGGCAATACACATACACATCCCTCATGAAAAAC





ATATACTTTAAAACAAAACAAGAAGCAGAAAACCAAACAATGAGTA





GCACATACAACTTTGACACATACAAAACAAACTATGACAAAGTAAG





AACTAAATGGATAAAAATAGCTGAAGATGGCTATAAACTAGTATCA





AAAGAATACAAAGAAATATACATCAGTACAGCCACATACCCTCCAC





AATGGAATTCAAGAAACTACCTTAGCCATGACTATGGCATTTATAG





TCCTTACTTTTTAACACCCCAAAGATACAGCCCCCAATGGCACACA





GCATGGACATATGTCAGATACAACCCACTAACAGACAAAGGCATA





GGCAACAGAATATTTGTTCAGTGGTGCTCAGAAAAAAACAGCTCAT





ACAACAGCACAAAAAGCAAGTGCATGCTACAAGACATGCCCCTTTT





TATGCTAACCTATGGGTACCTAGACTATGTACTAAAATGCGCAGGC





TCTAAATCAGCCTGGACAGACATGAGAGTCTGTATCAGAAGCCCAT





ACACAGAACCACAGCTTACAGGCAACACAGATGATATTAGTTTTGT





TATAATATCAGAGGCCTTCATGAACGGGGACATGCCCTACCTAGCT





CCACACATACCCGTTAGTCTGTGGTTTAAGTGGTACCCCATGATAT





TACACCAGAAGGCAGCTTTAGAAACCATAGTTTCCTGTGGACCGTT





TATGCCCAGAGACCAGGAAGCCAACTCTTGGGACATAACCGCAGG





TTACAAAGCAGTTTTTAAGTGGGGTGGGTCCCCTCTGCCTCCACA





GCCTATCGACGACCCCTACCAAAAACCCACCCACGAAATACCCGA





CCCCGATAAGCACCCTCCAAGACTACAAATTGCAGACCCGAAAAT





CCTCGGACCGTCGACAGTCTTCCACACATGGGACATCAGACGTGG





CCTCTTTAGCACAGCAAGTCTTAAGAGAGTGTCAGAATACCAACCG





CCTGATGACCTTTTTTCAACAGGCGTCGCATCCAAAAGACCCCGAT





TCGACACTCCAGTCCAAGGGCAGCTCGAAAGCCAAGAAGAAGAAA





GCTATCGTTTACTCAGAGCACTCCAAAAAGAGCAAGAGACAAGCA





GCTCGGAAGAGGAGCAGCCACAAAACCAAGAGATCCAAGAAAAAC





TACTCCTCCAGCTCCAGCAGCAGCGACAACAGCAGCGACTCCTCG





CAAAGGGAATCAAGCACCTCCTCGGAGATGTCCTCCGACTCCGAA





AAGGAGTCCACTGGGACCCGGTCCTTACATAG






BAB79334.1
AB064601.1
ACGGCGTGGTACAGAAGAAGAAGGTGGAGACCGTGGAGAAGACG
192




CCGCAGACCGTGGACCCTACGCAGAAGAAGAGCTAGAAGATTTGT





TCGCCGCCGCCCGAGAAGACGATATGTGAGTAGATGGCGGCGCC





GCCGATACAGGCGCAGACTAAGACGGGGGAGACGACGAAGGGG





ACGCAGACGCAGAAAAGAAACTATAATAGTGAGACAGTGGCAGCC





AGATGTAATGAGAAACTGTTATATTACTGGCTTCCTACCTCTCATAG





TCTGTGGCTCAGGCAACACTCAATTTAACTTTATCACACATGAGAA





TGACATACCCCCAAGGGGAGCCTCCTATGGGGGCAACCTCACCAA





CATAACCTTCACCCTAGCGGCACTATATGACCAGTACTTGCTACAC





AGAAACAGGTGGTCCAGGTCAAACTTTGACCTAGACCTAGCCAGA





TACATTAACACAAAACTAAAACTATACAGACATGACTCAGTAGACTA





CATAGTAACCTACAACAGAACAGGTCCCTTTGAGGTGAATCCACTA





ACATACATGCACACTCACCCCCTACTCATGCTCGTGAACAGGCAC





CACATAGTGGTGCCCAGTTTAAAAACAAAACCCAGAGGCAAAAGA





TACATAAAAGTAAAAATAAAGCCTCCAAAACTAATGCTAAACAAGT





GGTACTTTGCGAAAGACATCTGCCCACTAGGCCTCTTCCAGCTATA





TGCTACCGGCCTAGAACTCAGAAACCCCTGGATCAGAGAGGGCAC





AAACAGCCCCATAGTAGGGTTTTATGTTTTAAAACCCTCACTATATA





ATGGAGCCATGTCAAACTTAGCAGACACAGAACATTTAAACCAAAG





ACAAACCCTATTTAACAAACTACTTCCAACACAAAACCAAAAAGAC





GAATGGCAATACACATACAACAAACCAATGCAAAAAATATATTATG





AAGCAGCAAACAAGCAAGATAGTGGCTTTAAAAATACAACATATAA





CTGGACAAACTACAAAACTAACTACCAAAAAGTACAATCACAATGG





CAAACTGTAGCACAACAAAACTACAACCAAGTATACAATGAATTTA





AAGAGGTATACCCACTAACAGCTACATGGCCACCGCAATGGAATG





CTAGACAATACATGTCACACGACTTTGGCATATACAGCCCATACTT





TTTGTCACCTGCAAGATTTACAGACTACTGGCACAGTGCATACACC





TATGTCAGATACAACCCCATGTCAGACAAAGGCATAGGTAACATAA





TCTGCATACAATGGTGCAGTGAAAAAAACAGTGAATTTAATGAGAC





TAAAAACAAGTGCATACTAAGAGACATGCCACTTTACATGCTAACA





TATGGCTACCTAGACTATACCACAAAATGCACAGGCTCCAACTCCA





TCTGGACAGACGCCAGAGTAGCCATCAGATGTCCATACACAGATC





CCCCACTATCAAATCCAACTAACAAAAACACACTTTATATTCCACTA





TCTACATCTTTCATGCAAGGAGACATGCCCTGGCCAACCACAAACA





TTCCGTTAAAGATGTGGTTTAAGTGGTATCCCATGATCATGCACCA





GAGGGCCTGTTTAGAAACCATAGTTTCCTGTGGACCGTTTATGCCC





AGAGACCAAACCGCAAGCAGTTGGGACATAACTATTGCATACAGA





GCCTTTTTTAAATGGGGTGGCAATCCTCTGCCTCCACAGCCCATC





GACGACCCCTGCCAAAAAGACACCCACGAAATACCCGACCCCGAT





AAACACCCTAGAGGAATACAAATATCAGACCCGAAGGTACTCGGA





CCACCCACAGTCTTCCACACATGGGACATCAGACGTGGACTGTTT





AGCTCGACGAGTCTTAAAAGAGTGTCAGAATACCAACCGCCTGAT





GACCCTTTTTCAACAGGCGTCGTCTTCAAAAGACCCCGACTGGAA





ACCCAGTACAAAGGAACCCAAGAAACCCCAGAAGAAGACGCCTAC





ACTTTACTCAAAGCACTCCAAAAAGAGCAAGAGAGCAGCAGCTCG





GAAGAAGAACTCCCACAAGAAGAGCAAGAGATCCAAAAAACACAA





CTCCTCAAGCAGCTCCAACTCCAGCAGCAGCAACAGCGAATCCTC





AAGAGGGGAATCAGACACCTCTTCGGAGACGTCCTCCGACTCAGA





AAAGGAGTCCACTCCAACCCAGACCTATTATAA






BAB79338.1
AB064602.1
ACGGCCTGGTACCGGTACAGAAGAAGGCCATGGCGCCGAAGGAG
193




GCGACCGAGGTGGGGCCTACGCAGAAGAAGATTTAGAAGATCTTT





TCGCGGCCGCGGAAGAAGACGATATGTGAGTAGATGGTCGCGCC





GCCGATACAGGCGCAGACGGAGAAGGGGGCGACGTAGACGGGG





ACGCAGACGAAGAAAGAGACAGACTCTTATACCGAGACAGTGGCA





GCCAGATGTTACTAAAAAGTGCTTCATTACTGGCTGGATGCCCTTA





ATAATCTGTGGGACTGGACACACACAATTTAACTTTATAACCCACG





AAGAGGATATCCCCGGTGCAGGAGCCTCCTATGGAGGAAACCTTA





CAAACATTACCATTACTCTGGGAGGGCTATATGAACAATATATGCT





TCACAGAAACCACTGGTCCAGAAGCAACTATGACCTAGAGCTGGC





CAGATACCTAGGCTTCACCCTAAAATGCTACAGACATGCAACAGTA





GACTATATACTTACATACAGCAGAACAACACCCTTTGAGACCAATG





AACTGAGCCACATGCTAACTCACCCCTTACTAATGCTACTAAACAA





ACATCACAGAGTAATACCCAGCTTAAAAACAAGGCCAAAAGGAAAA





AGGTCAGTTAGAATCCACATTAAACCCCCAAAACTAATGATAAACA





AATGGTACTTTGCAAAAGACCTCTGTAACATAGGACCCTGTCAAAT





ATATGCCACAGGCCTAGAACTCTCAAACCCCTGGCTAAGATCAGG





CACAAACAGCCCTGTAATAGGCTTTTGGGTACTTAAAAATCACCTA





TATGATGGCAACCTCTCAAACATAGCCTCAGGTGAACAATTAACAG





CCAGACAAACTCTATTTACAACTAAATTACTCCCAAGTAATAACACC





AAAGACGAATGGCAATACGCCTATACCCCACTAATGAAAACATTCT





ACACACAAGCAGCCAACACAGCAGCACATAACATAACAGACAAAA





CATACAACTGGAAAAACTACAAAACTCACTATGACAAAGTACAACA





AACATGGACAACAAAAGCACAATTTAATTATGACTTAGTTAAAGAA





GAATACAAAACGGTATATCCAACCACAGCTACATTCCCACCAGAGT





GGTCAAACAGACAATATCTAGAACATGACTATGGCTTATTCAGCCC





TTATTTTCTAACACCAAACAGATACAGCACAGAGTGGCACATGCCA





ATTACCTATGTTAGATACAACCCACTAGCAGACAAAGGCATAGGCA





ACAGAATATACATGCAGTGGTGCTCAGAAAGCAGCAGCAGCTTTG





AGCCCACCAAAAGCAAGTGCATGCTACAAGACATGCCACTATACAT





GCTCACATATGGATACCTAGACTATGTTGTTAAATGCACAGGTGTT





AAATCAGCCTGGACAGACATGAGAGTGGCCATTAGAAGCCCCTAC





ACCTTTCCTCAACTAATAGGCAGCACAGATAAAGTGGGCTTCATCC





CCCTAGGTGAAAAATTCATGAGCGGAGACACAGACCCCGTTAAAA





ACTTTATACCGTTAAAGTATTGGTACAGATGGTATCCGTTTGCGGC





TAACCAAAAGTCAGTTTTAGAAACCATAGTTTCCTGTGGCCCCTTC





ATGCCCAGAGATCAGGAAGCAGGCTCTTGGGACATAACTGTAGGT





TACAAAGCAACCTTTAAACGGGGGGGCTCCCCTCTACCTCCACAG





CCCATCGACGACCCATGCCAAAAGCCCACCCACGACCTTCCCGAC





CCCGATAGACACCCCCCAAGAATACAAATCTCGGACCCGGCAAGA





CTCGGACCGGAGACGCTCTTCCACTCATGGGACATCAGACGTGGA





TACATTAACACAAAAGCTATTAAAAGAATCTCAGATTACACAGAATC





TAATGACTATTTTTCAACAGGCGTCGTGTCAAAAAGACCCCGATTG





GAAACCCAGTACCACGGCCAACACGAAAGCCAAGAAGAAGACGC





CTATCTTTTACTCAAACAACTCCAGGAAGAGCAAGAAACGAGCAGT





TCGGAGGGAGAACAAGCACCCCAAGAAAAAACACTCCAAAAAGAA





AAGCTCCTCAAGCAGCTGCAGCTCCACAAGCAGCAGCAGCAACTC





CTCAGAAAAGGAATCAGACACCTCCTCGGGGACGTCCTCCGACTC





AGACGGGGAGTCCACTGGGACCCAGGCCTATAG






BAB79342.1
AB064603.1
ACGGCGTGGTGGTGGGGCCGATGGAGACAGCGCCGCTGGGGCC
194




GCCGCCGCCGCAGACCATGGAGGGTACGACGAAGGAGACCTAGA





AGATCTTTTCGCCGCCGCCGCCGAGGACGATATGTGAGTAGGCG





GAGGCGCCGCCGCTACTACAGGCGCAGACTAAGACGGGGCAGAC





GCAGAGGGCGACGAAAGAGACACAGACCGACCCTAATACTGAGG





CAGTGGCAACCTGACGTTGTTAAACACTGTAAGATAACAGGATGG





ATGCCCCTCATTATCTGTGGCTCTGGCAGCACACAGATGAACTTTA





TAACCCACATGGACGATACTCCTCCCATGGGATACACCTACGGGG





GCAACTTTGTAAATGTGACTTTCAGCTTAGAGGCCATCTATGAACA





GTTCCTATATCACAGAAACAGATGGTCCAGATCTAACCATGACTTA





GACCTAGCCAGGTACCAAGGAACCACCTTAAAACTCTACAGACAC





GCCACAGTAGACTACATACTTTCCTACAACAGGACAGGACCCTTCC





AGATCAGTGAGATGACATACATGAGCACTCACCCAGCAATAATGCT





ACTAATGAAACACAGAATAGTTGTGCCCAGCCTTAGAACAAAGCCT





AAAGGCAGGCGCTCCATAAAAATTAGAATAAAGCCCCCCAAACTTA





TGCTAAACAAGTGGTACTTTACCAAAGACATATGCTCCATGGGCCT





CTTCCAACTAATGGCCACCGGAGCAGAACTCACTAACCCCTGGCT





CAGAGACACCACAAAAAGCCCAGTAATAGGCTTCAGAGTTCTAAAA





AACAGTGTTTACACCAACTTATCTAACCTAAAAGACGTATCCATATC





AGGAGAAAGAAAATCCATCTTAAACAAAATTCACCCAGAAACTCTC





ACAGGATCAGGCAATGCATCTAAAGGGTGGGAATACTCATACACA





AAACTAATGGCGCCCATATACTATTCAGCAGTTAGAAACAGCACAT





ACAACTGGCAAAACTACCAAACACACTGCGCAACAACAGCTATCAA





ATTTAAAGAAAAACAAACCAGTACTCTAACTCTTATTAAAGCAGAGT





ACTTATACCACTACCCAAACAATGTCACACAGGTAGACTTCATAGA





TGACCCCACACTCACACATGACTTTGGCATATACAGCCCATACTGG





ATAACACCTACCAGAATAAGCCTAGACTGGGACACACCATGGACA





TATGTCAGATACAACCCACTCTCAGACAAAGGCATAGGCAACAGAA





TCTATGCACAGTGGTGCTCAGAAAAAAGCAGCAAATTAGACACCAC





AAAGAGCAAATGCATACTAAAAGACTTTCCACTATGGTGCATGGCC





TATGGCTACTGTGACTGGGTAGTAAAATGTACAGGAGTGTCCAGT





GCATGGACAGACATGAGAGTAGCCATCATCTGCCCGTACACAGAA





CCGGCACTTATAGGGTCAGATGAAAATGTAGGCTTTATTCCAGTAA





GTGACACCTTTTGCAACGGAGACATGCCGTTTCTTGCACCATACAT





CCCTATTACATGGTGGATCAAGTGGTACCCCATGATTACACACCAA





AAGGAAGTTCTTGAGGCAATAGTAAACTGTGGACCGTTTGTCCCC





CGAGACCAAAGTTCCCCAGCTTGGGAAATCACCATGGGTTACAAA





ATGGATTGGAAATGGGGCGGCTCTCCCCTGCCTTCACAGGCAATC





GACGACCCCTGCCAGAAGCCCACCCATGAGCTACCCGATCCCGAT





AGACACCCTCGCATGTTACAAGTCTCTGACCCGACAAAGCTCGGA





CCGAAGACAGTGTTCCACAAATGGGACTGGAGACGTGGGCAACTT





AGCAAAAGAAGTATTAAAAGAGTCCAAGAAGACTCAACGGATGAT





GAATATGTTACAGGGCCTTTATCAAGAAAAAGAAACAAGCTCGACA





CAAAGATGCCAGGCCCCCCAACCCCCGAAAAAGAAAGCTACACTT





TACTCCAAGCCCTCCAAGAGTCGGGCCAGGAGAGCAGCTCCCAG





GACGAAGAACAAGCACCCCAAAAAGAAGAGAACCAGAAAGAAGCG





CTCGTGGAGCAGCTCCAGCTCCAGAAACAGCACCAGCGAGTCCTC





AAGCGAGGCCTCAAACTCCTCTTGGGAGACGTCCTCCGACTCCGC





CGCGGAGTCCACTGGGACCCCCTCCTATCCTAA






BAB79346.1
AB064604.1
ATGGCATGGGGATGGTGGAAACGAAAGCGGCGCTGGTGGTGGAG
195




AAAGCGGTGGACCCGTGGCCGACTTCGCAGACGATGGCCTAGAC





GATCTCGTCGCCGCCCTCGACGAAGAAGAGTAAGGAGGCGGAGG





AGGTGGAGGAGAGGGCGACCGAGACGCAGACTGTACAGACGCG





GGAGACGGTACAGACGAAAACGGAAGAGGGCTAAGATAACTATAA





GACAATGGCAGCCAGCCATGACGAGACGCTGTTTTATAAGGGGAC





ACATGCCCGCTTTAATATGTGGCTGGGGGGCGTACGCCAGCAACT





ACACCAGCCACCTGGAGGACAAAATAGTTAAAGGACCCTACGGAG





GGGGACACGCCACTTTTAGATTCTCCCTACAAGTACTGTGCGAGG





AGCATCTAAAACACCACAATTACTGGACTAGAAGTAACCAAGACCT





AGAACTAGCTCTGTACTACGGAGCCACTATTAAATTTTACAGAAGC





CCAGACACAGACTTTATAGTAACATACCAGAGAAAATCCCCCCTTG





GAGGCAACATACTAACAGCTCCTTCACTACACCCAGCAGAGGCCA





TGCTAAGCAAAAACAAAATACTAATACCGAGCTTACAAACAAAACC





CAAAGGAAAAAAGACTGTAAAAGTTAACATACCACCCCCCACCCTT





TTTGTACATAAGTGGTACTTTCAGAAGGACATATGTGACCTAACAC





TGTTTAACTTGAACGTTGTTGCGGCTGACTTGCGGTTTCCGTTCTG





CTCACCACAAACTGACAACGTTTGCATCACCTTCCAGGTACTAGCC





GCAGAGTACAACAACTTCCTCTCTACAACTTTAGGCACTACAAATG





AATCCACTTTTATAGAAAACTTTTTAAAAGTTGCATTTCCAGATGAC





AAACCTAGGCATTCAAACATTTTAAACACATTTAGAACAGAAGGAT





GCATGTCTCACCCCCAACTACAAAAATTTAAACCACCAAACACAGG





ACCAGGCGAAAACAAATACTTTTTTACACCAGACGGACTATGGGGA





GACCCCATATACATATACAATAACGGAGTACAACAACAAACTGCAC





AACAAATTAGAGAAAAAATTAAAAAAAACATGGAAAATTACTATGCC





AAAATAGTAGAAGAAAACACAATAATAACAAAAGGATCAAAAGCAC





ACTGCCATCTAACAGGCATATTTTCACCACCATTCTTAAACATAGGT





AGAGTAGCCAGAGAATTTCCAGGACTATACACAGACGTTGTCTATA





ATCCATGGACAGATAAAGGCAAAGGAAACAAAATATGGTTAGACA





GCCTAACAAAAAGCGACAATATATATGACCCAAGACAAAGCATTCT





ACTAATGGCAGACATGCCACTATACATAATGTTAAATGGATATATA





GACTGGGCAAAAAAAGAAAGAAACAACTGGGGCTTAGCTACACAA





TACAGACTACTACTAACATGTCCCTACACATTCCCAAGACTATACG





TAGAAACAAACCCAAACTATGGATATGTACCATATTCAGAATCATTT





GGAGCAGGCCAAATGCCAGACAAAAACCCCTACGTACCAATTACA





TGGAGAGGCAAATGGTACCCTCACATACTTCATCAAGAGGCAGTT





ATAAATGACATAGTAATATCAGGCCCATTCACACCAAAAGACACAA





AACCAGTAATGCAATTAAACATGAAATACTCGTTTAGATTCACATGG





GGCGGCAATCCTATTTCCACACAGATTGTTAAAGACCCCTGCACC





CAGCCCACCTTTGAAATACCCGGTGGCGGTAACATCCCTCGCAGA





ATACAAGTCATCAATCCGAAAGTCCTCGGACCCAGCTACAGTTTCA





GATCCTTTGACCTCAGACGTGACATGTTTAGCGGCTCGAGTCTTAA





AAGAGTCTCAGAACAACAAGAGACTTCTGAGTTTTTATTCTCCGGC





GGCAAACGCCCCAGGATCGACCTTCCCAAGTACGTCCCGCCAGAA





GAAGACTTCAATATCCAAGAGAGACAACAAAGAGAACAGAGACCG





TGGACGAGCGAAAGCGAGAGCGAAGCAGAAGCCCAAGAAGAGAC





GCAGGCGGGCTCGGTCCGAGAGCAGCTCCAGCAGCAGCTCCAAG





AGCAGTTTCAACTCCGAAGAGGGCTCAAGTGCCTCTTCGAGCAGT





TAGTCAGAACCCAACAGGGAGTCCACGTAGATCCCTGCCTCGTGT





AG






BAB79354.1
AB064606.1
ATGGCATGGGGATGGTGGAAGCGACGGCGGCGCTGGTGGTTCCG
196




GAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTCGAT





CAGCTCGTCGCCGCCCTAGACGACGAAGAGTAAGGAGACGCAGA





CGATGGAGGAGGGGGCGACCTAGACGCAGACTGTACCGACGCTA





CAGACGCAAAAAACGTAGGAGACGAAAGCCCAAAACAGTTTTAAA





ACAATGGCAGCCAGACATTACAAAGAGGTGCTACATAATAGGCTA





CATTCCTGCCATAATATGCGGGGCGGGCACCTGGTCTCACAACTA





CACCAGCCACCTGCTAGATATTATCCCCAAGGGACCGTTTGGAGG





GGGACACAGCACCATGAGATTCTCCCTAAAAGTGCTCTTCGAAGA





GCACCTGAGACACCTAAACTTTTGGACACGTAGTAACCAGGATTTA





GAACTTGTAAGATACTTTAGATGCTCCTTTAGGTTCTACAGAGACC





AACACACAGACTATCTTGTACACTACAGCAGAAAAACACCCCTGGG





AGGCAACAGACTGACAGCACCTAGCCTTCACCCAGGGGTACAGAT





GCTAAGCAAAAACAAAATAATAGTACCCAGCTATGATACTAAACCT





AAGGGCAAAAGCTATGTAAAAGTAACTATAGCACCCCCCACTCTAC





TAACTGACAAGTGGTACTTTAGCAAAGACATTTGTGACACAACCTT





GGTTAACTTAGACGTTGTACTCTGCAACTTGCGGTTTCCGTTCTGC





TCACCACAAACTGACAACCCTTGCATCACGTTTTCCGTTCTTCACT





CCATCTACAACGACTTCCTCTCTATAGTAGATACTGGAAACTATAAA





ACACAATTTGTGTCAAACTTATCTACAAAAGTAGGTACTGACTGGG





GAAAAAGACTAAACACATTTAGAACAGAAGGCTGCTACTCTCACCC





TAAATTACCCAAAAAGGCAGTAACACCTGGAAATGACAAAACATAC





TTTACTGTACCCGATGGCTTATGGGGAGACGCTGTATTTAATGCAG





AGGCAAGCAATATAATTACTAAAAACATGGAGTCATACAGCGAGTC





TGCAAAAGCCAGAGGAGTGCAAGGAGACCCTGCATTTTGCCACCT





TACAGGCATATACTCACCTCCCTGGCTAACACCAGGTAGAATATCC





CCGGAGACTCCAGGACTTTACACAGACGTGACTTACAACCCATAC





GCAGACAAAGGAGTGGGTAACAGAATATGGGTTGACTACTGCAGT





AAAAAAGGCAATAAATATGACAATACAAGTAAATGCCTTTTAGAAG





ACATGCCACTATGGATGGTCACCTTTGGCTATGTAGACTGGGTAAA





AAAAGAAACTGGCAACTGGGGTATTCCACTGTGGGCCAGAGTACT





GATAAGATGCCCTTACACAGTACCAAAACTTTACAATGAAGCAGAC





CCAAACTACGGATGGGTCCCTTACTCCTACTACTTTGGAGAAGGAA





AAATGCCAAACGGAGACCTGTACGTACCCTTTAAAATTAGAATGAA





GTGGTACCCGTCCATGTGGAACCAAGAACCAGTACTAAATGACTTA





GCAAAGAGCGGACCGTTTGCATACAAAGACACAAAAACCAGTGTG





ACTGTGACTGCTAAATACAAATTTACATTTAACTTCGGGGGCAACC





CCGTACCCTCACAGATTGTACAAGATCCCTGCACACAGTCCACCTA





TGACATCCCCGGCACCGGTAACTTGCCTCGCAGAATACAAGTCAT





TGACCCGAAAGTCCTCGGTCCCCACTACTCATTCCACCGCTGGGA





CTTCAGGCGTGGCCTCTTTGGCCAACAAGCTATTAAGAGAGTGTC





AGAACAACCAACAACTTCTGAGTTTTTATTCTCAGGTCCAAAGAGA





CCCAGAATCGATCAAGGGCCTTACATCCCGCCAGAAAAAGGCTCA





GATTCACTCCAAAGAGAATCGAGACCGTGGAGCAACTCGGAGACC





GAGGCAGAGACAGAAGCCCCCTCGGAAGAAGAGCCGGAGAACCA





AGAAGAACAAGTACTCCAGTTGCAGCTCCGACAGCAGCTCCGAGA





ACAGCGAAAACTCAGACAGGGAATCCAGTGCCTCTTCGAGCAACT





GATAACAACCCAACAGGGGGTTCACAAAAACCCATTGCTAGAGTA





G






ABD34286.1
DQ186994.1
ATGGCGTGGTCGTGGTGGTGGAGGCGACGGAAACGCTGGTGGCC
197




GCGCAGAAGGAGGCGATGGAGGAGATTTCGCACCCGAAGAGCTA





GACGAGCTGTTCCGCGCCGTCGCCGCCGACGAAGAGTAAGGAGG





CGCCGGTGGGGGAGGCGAAGACGTAGGAGACGGGTTTTTTATAA





GAGACGCAGACGAAAGACTGGCAGACTGTACAGAAAGCCCAAAAA





GAAACTAGTACTGACTCAGTGGCACCCCACTACCGTCCGCAACTG





CTCCATCCGAGGCCTTGTGCCTCTAGTACTCTGCGGACACACTCA





GGGCGGCAGAAACTTTGCTCTCAGGAGCGATGACTACCCCAAGCA





GGGGTCTCCTTACGGAGGCAGTTTTAGCACTACAACCTGGAACTT





GAGGGTCCTTTTTGACGAACACCAAAAACACCACAACACGTGGAG





CTACCCCAATAACCAGCTAGACCTGGGCAGATACAAGGGCTGCAC





CTTCTACTTTTACAGAGACAAAAAGACAGACTACATAGTAAAGTTTC





AGAGGAGGGGACCCTTTAAAATAAACAAGTACAGCAGTCCCATGG





CCCATCCGGGCATGATGATGCTAGATAAGATGAAAATCCTGGTGC





CCAGCTTTGATACCAGGCCCGGGGGTCGCAGAAGAGTAAAAGTAA





CTATCCGCCCCCCCACTCTGTTAGAGGACAAGTGGTACACCCAGC





AAGACCTGGCGCCCGTTAATCTTGTGTCACTTGTGGTTTCTGCGG





CTAGCTTCATACATCCGTTTAGCCAACCACAAACGAACAACATTTG





CACAACCTTCCAGGTGTTGAAAGACATGTACTATGACTGCATAGGA





ATTAATTCCACTTTAACAACCAAGTATGAAAACTTATTTAATAAACTA





TATTCCAAATGCTGCTACTTTGAAACCTTTCAAACAATAGCCCAGCT





AAATCCTGGCTTTAAAGCTGCTAAAAAGACTACTAATGGTTCTGGT





TCTACAGCTGCAACACTAGGAGACGCAGTAACTGAACTTAAAAACC





CAAATGGTACTTTTTACACAGGCAACAATAGCACCTTTGGCTGCTG





CACATATAAACCCACTAAAGAAATAGGTAGTAATGCCAATAAGTGG





TTCTGGCATCAGTTAACAGCCACAGATTCAGACACACTAGGCCAAT





ACGGCCGTGCCTCCATTAAGTATATGGAGTACCACACAGGCATTTA





CAGCTCAATTTTTCTTAGCCCACTAAGAAGCAATCTAGAATTCCCTA





CAGCATACCAAGATGTAACATATAATCCACTAACTGACAGAGGTAT





AGGTAACAGAATCTGGTACCAGTACAGTACCAAAGAAAACACTACA





TTTAATGAAACACAGTGCAAATGTGTACTATCAGACTTGCCACTGT





GGAGCATGTTTTATGGCTATGTAGATTTTATAGAGTCAGAACTAGG





CATCTCAGCAGAGATACACAACTTTGGCATAGTATGTGTCCAGTGC





CCCTACACGTTTCCCCCAATGTTTGACAAATCCAAACCAGATAAAG





GCTACGTGTTCTATGACACCCTTTTTGGCAACGGAAAGATGCCAGA





CGGGAGCGGACACGTACCCACCTACTGGCAGCAGAGGTGGTGGC





CCAGATTCAGCTTCCAGAGACAAGTGATGCACGACATTATCCTCAC





CGGGCCCTTCAGCTACAAAGATGACTCTGTAATGACTGGCATAAC





CGCAGGCTACAAGTTTAAATTCTCATGGGGCGGTGATATGGTCTC





CGAACAGGTCATTAAAAACCCAGAGAGAGGGGACGGACGAGACT





CCACCTATCCCGATAGACAGCGCCGCGACTTACAAGTTGTTGACC





CACGCTCCATGGGCCCCCAATGGGTATTCCACACCTTTGACTACA





GACGGGGGCTTTTTGGAAAGGACGCTATTAAGCGAGTGTCAGAAA





AACCGACAGATCCTGACTACTTTACAACACCTTACAAAAAACCAAG





ATTTTTCCCTCCAACAGCAGGAGAAGAAAAACTGCAAGAAGAAGA





CTCCGCTTTACAGGAGAAAAGAAGCCCGCTCTCGTCAGAAGAGGG





GCAGACGAGGGCGCAAGTCCTCCAGCAGCAGGTCCTCCAGTCGG





AGCTCCAGCAGCAGCAGGAGCTCGGGGAGCAGCTCAGATTCCTC





CTCAGGGAAATGTTCAAAACCCAAGCGGGCATACACATGAACCCC





CGCGCATTTCAGGAGCTGTAA






ABD34288.1
DQ186995.1
ATGGCGTGGTCGTGGTGGTGGAGGCGACGGAAACGCTGGTGGCC
198




GCGCAGAAGGAGGCGATGGAGGAGATTTCGCACCCGAAGAGCTA





GACGAGCTGTTCCGCGCCGTCGCCGCCGACGAAGAGTAAGGAGG





CGCCGGTGGGGGAGGCGAAGACGTAGGAGACGGGTTTTTTATAA





GAGACGCAGACGAAAGACTGGCAGACTGTACAGAAAGCCCAAAAA





GAAACTAGTACTGACTCAGTGGCACCCCACTACCGTCCGCAACTG





CTCCATCCGAGGCCTTGTGCCTCTAGTACTCTGCGGACACACTCA





GGGCGGCAGAAACTTTGCTCTCAGGAGCGATGACTACCCCAAGCA





GGGGTCTCCTTACGGAGGCAGTTTTAGCACTACAACCTGGAACTT





GAGGGTCCTTTTTGACGAACACCAAAAACACCACAACACGTGGAG





CTACCCCAATAACCAGCTAGACCTGGGCAGATACAAGGGCTGCAC





CTTCTACTTTTACAGAGACAAAAAGACAGACTACATAGTAAAGTTTC





AGAGGAGGGGACCCTTTAAAATAAACAAGTACAGCAGTCCCATGG





CCCATCCGGGCATGATGATGCTAGATAAGATGAAAATCCTGGTGC





CCAGCTTTGATACCAGGCCCGGGGGTCGCAGAAGAGTAAAAGTAA





CTATCCGCCCCCCCACTCTGTTAGAGGACAAGTGGTACACCCAGC





AAGACCTGGCGCCCGTTAATCTTGTGTCACTTGTGGTTTCTGCGG





CTAGCTTCATACATCCGTTTAGCCAACCACAAACGAACAACATTTG





CACAACCTTCCAGGTGTTGAAAGACATGTACTATGACTGCATAGGA





ATTAATTCCACTTTAACAACCAAGTATGAAAACTTATTTAATAAACTA





TATTCCAAATGCTGCTACTTTGAAACCTTTCAAACAATAGCCCAGCT





AAATCCTGGCTTTAAAGCTGCTAAAAAGACTACTAATGGTTCTGGT





TCTACAGCTGCAACACTAGGAGACGCAGTAACTGAACTTAAAAACC





CAAATGGTACTTTTTACACAGGCAACAATAGCACCTTTGGCTGCTG





CACATATAAACCCACTAAAGAAATAGGTAGTAATGCCAATAAGTGG





TTCTGGCATCAGTTAACAGCCACAGATTCAGACACACTAGGCCAAT





ACGGCCGTGCCTCCATTAAGTATATGGAGTACCACACAGGCATTTA





CAGCTCAATTTTTCTTAGCCCACTAAGAAGCAATCTAGAATTCCCTA





CAGCATACCAAGATGTAACATATAATCCACTAACTGACAGAGGTAT





AGGTAACAGAATCTGGTACCAGTACAGTACCAAAGAAAACACTACA





TTTAATGAAACACAGTGCAAATGTGTACTATCAGACTTGCCACTGT





GGAGCATGTTTTATGGCTATGTAGATTTTATAGAGTCAGAACTAGG





CATCTCAGCAGAGATACACAACTTTGGCATAGTATGTGTCCAGTGC





CCCTACACGTTTCCCCCAATGTTTGACAAATCCAAACCAGATAAAG





GCTACGTGTTCTATGACACCCTTTTTGGCAACGGAAAGATGCCAGA





CGGGAGCGGACACGTACCCACCTACTGGCAGCAGAGGTGGTGGC





CCAGATTCAGCTTCCAGAGACAAGTGATGCACGACATTATCCTCAC





CGGGCCCTTCAGCTACAAAGATGACTCTGTAATGACTGGCATAAC





CGCAGGCTACAAGTTTAAATTCTCATGGGGCGGTGATATGGTCTC





CGAACAGGTCATTAAAAACCCAGAGAGAGGGGACGGACGAGACT





CCACCTATCCCGATAGACAGCGCCGCGACTTACAAGTTGTTGACC





CACGCTCCATGGGCCCCCAATGGGTATTCCACACCTTTGACTACA





GACGGGGGCTTTTTGGAAAGGACGCTATTAAGCGAGTGTCAGAAA





AACCGACAGATCCTGACTACTTTACAACACCTTACAAAAAACCAAG





ATTTTTCCCTCCAACAGCAGGAGAAGAAAAACTGCAAGAAGAAGA





CTCCGCTTTACAGGAGAAAAGAAGCCCGCTCTCGTCAGAAGAGGG





GCAGACGAGGGCGCAAGTCCTCCAGCAGCAGGTCCTCCAGTCGG





AGCTCCAGCAGCAGCAGGAGCTCGGGGAGCAGCTCAGATTCCTC





CTCAGGGAAATGTTCAAAACCCAAGCGGGCATACACATGAACCCC





CGCGCATTTCAGGAGCTGTAA






ABD34290.1
DQ186996.1
ATGGCATGGGGATGGTGGAGATGGCGGCGCCGCTGGCCCGCCA
199




GACGCTGGAGGAGACGCCGTCGCCGGCGCCCCGTACGGAGAAC





AAGAGCTCGCCGACCTGCTCGACGCTATAGAAGACGACGAACAGT





AAGAACCAGGCGGAGGCGGTGGGGGCGCAGACGGTACAGACGG





GGCTGGAGACGCAGGACTTATGTGAGGAAGGGGCGACACAGAAA





AAAGAAAAAGAGACTCATACTGAGACAGTGGCAGCCCGCCACCAG





ACGCAGATGCACCATAACAGGGTACCTGCCCATAGTGTTCTGCGG





CCACACTAAGGGCAATAAAAACTACGCCCTACACTCTGACGACTAC





ACCCCCCAAGGACAGCCATTTGGAGGGGCTCTAAGCACTACCTCA





TTCTCTTTAAAAGTACTGTTTGACCAGCATCAGAGAGGACTGAATA





AGTGGTCGTTCCCCAACGACCAACTAGACCTGGCCAGATACAGGG





GCTGCAAATTCTACTTTTACAGGACAAAACAGACTGACTGGATAGG





CCAGTATGATATATCAGAGCCCTACAAGCTAGACAAGTACAGCTGC





CCCAACTACCACCCGGGAAACATGATTAAAGCAAAGCACAAATTTT





TAATTCCCAGCTATGACACTAATCCCAGGGGCAGACAAAAAATTAT





AGTTAAAATTCCCCCCCCAGACCTCTTTGTAGACAAGTGGTACACT





CAGGAAGACCTGTGTTCCGTTAATCTTGTGTCACTTGCGGTTTCTG





CGGCTTCCTTTCTCCACCCATTCGGCTCACCACAAACTGACAACCC





TTGCTACACCTTCCAGGTGTTGAAAGAGTTCTACTACCAGGCAATA





GGCTTCTCAGCAACAGATCAACAAAGAGAAAAAGTTTTTGATATAT





TATACAAAAACAACTCATACTGGGAATCAAACATAACTCCCTTTTAT





GTAATTAATGTTAAAAAAGGGTCTAACACAACACAGTACATGTCAC





CTCAAATTTCAGACTCATCTTTTAGAAAGAAAGTAAATACTAACTAC





AACTGGTATACCTACGATGCCAAAACTAATGCATCACAATTAAAGC





AACTAAGAAATGCATACTTTAAACAATTAACCTCTGAAGGCCCACA





ACACACATACTCTGACAATGGCTACGCCAGTCAGTGGACCACCCC





CAGCACAGACGCCTACGAATACCACTTAGGCATGTTTAGTACTATA





TTTTTAGCCCCAGACAGACCAGTACCTCGCTTTCCCTGCGCTTACC





AAGATGTTACTTACAACCCACTAATGGACAAAGGAGTGGGCAACC





ATGTATGGTTTCAATACAACACAAAGGCAGACACACAGCTAATAGT





TACAGGAGGGTCCTGCAAAGCACACATACAAGACATACCCCTATG





GGCAGCCTTCTATGGATACAGTGACTTTATAGAGTCAGAGCTAGG





CCCCTTTGTAGACGCAGACACAGTAGGCCTTATCTGTGTAATATGC





CCTTACACTAAACCTCCCATGTACAACAAGACAAATCCCATGATGG





GGTACGTGTTTTATGACAGAAACTTTGGTGACGGCAAATGGACTGA





CGGACGGGGCAAAATAGAGCCCTACTGGCAAGTTAGGTGGAGGC





CCGAAATGCTTTTCCAAGAAACTGTAATGGCAGACATAGTACAGAC





AGGGCCCTTTAGCTACAAAGATGAACTTAAAAACAGCACACTAGTA





TGCAAGTACAAATTCTATTTTACCTGGGGAGGTAACATGATGTTCC





AACAGACGATCAAAAACCCGTGCAAGACGGACGGACAACCCACC





GACTCCAGTAGACACCCTAGAGGAATACAAGTGGCGGACCCGGAA





CAAATGGGACCCCGCTGGGTGTTCCACTCCTTTGACTGGCGAAGG





GGCTATCTTAGCGAGAAAGCTCTCAAACGCCTGCAAGAAAAACCT





CTTGACTATGACGAATATTTTACACAACCAAAAAGACCTAGAATCTT





TCCTCCAACAGAATCAGCAGAGGGAGAGTTCCGAGAGCCCGAAAA





AGGCTCGTATTCAGAGGAAGAAAGGTCGCAAGCCTCTGCCGAAGA





GCAGACGGAGGAGGCGACAGTACTCCTCCTCAAGCGACGACTCA





GAGAGCAACAGCAGCTCCAGCAGCAGCTCCAATTCCTCACCCGAG





AAATGTTCAAAACGCAAGCGGGTCTCCACATAAACCCTATGTTATT





AAACCAGCGATAA






ABD34292.1
DQ186997.1
ATGGCATGGGGATGGTGGAGATGGCGGCGCCGCTGGCCCGCCA
200




GACGCTGGAGGAGACGCCGTCGCCGGCGCCCCGTACGGAGAAC





AAGAGCTCGCCGACCTGCTCGACGCTATAGAAGACGACGAACAGT





AAGAACCAGGCGGAGGCGGTGGGGGCGCAGACGGTACAGACGG





GGCTGGAGACGCAGGACTTATGTAAGGAAGGGGCGACACAGAAA





AAAGAAAAAGAGACTGATACTGAGACAGTGGCAGCCCGCCACCAG





ACGCAGATGCACCATAACAGGGTACCTGCCCATAGTGTTCTGCGG





CCACACTAAGGGCAATAAAAACTACGCCCTACACTCTGACGACTAC





ACCCCCCAAGGACAGCCATTTGGAGGGGCTCTAAGCACTACCTCA





TTCTCTTTAAAAGTACTGTTTGACCAGCATCAGAGAGGACTGAATA





AGTGGTCGTTCCCCAACGACCAACTAGACCTGGCCAGATACAGGG





GCTGCAAATTCTACTTTTACAGGACAAAACAGACTGACTGGATAGG





CCAGTATGATATATCAGAGCCCTACAAGCTAGACAAGTACAGCTGC





CCCAACTACCACCCGGGAAACATGATTAAAGCAAAGCACAAATTTT





TAATTCCCAGCTATGACACTAATCCCAGGGGCAGACAAAAAATTAT





AGTTAAAATTCCCCCCCCAGACCTCTTTGTAGACAAGTGGTACACT





CAGGAAGACCTCTGTTCCGTTAATCTTGTGTCACTTGCGGTTTCTG





CGGCTTCCTTTCTCCACCCATTCGGCTCACCACAAACTGACAACCC





TTGCTACACCTTCCAGGTGTTGAAAGAGTTCTACTACCAGGCAATA





GGCTTCTCAGCAACAGATGAACAAAGAGAAAAAGTTTTTGATATAT





TATACAAAAACAACTCATACTGGGAATCAAACATAACTCCCTTTTAT





GTAATTAATGTTAAAAAAGGGTGTAACACAACACAGTACATGTCAC





CTCAAATTTCAGACTCATCTTTTAGAAAGAAAGTAAATACTAACTAC





AACTGGTATACCTACGATGCCAAAACTAATGCATCACAATTAAAGC





AACTAAGAAATGCATACTTTAAACAATTAACCTCTGAAGGCCCACA





ACACACATACTCTGACAATGGCTACGCCAGTCAGTGGACCACCCC





CAGCACAGACGCCTACGAATACCACTTAGGCATGTTTAGTACTATA





TTTTTAGCCCCAGACAGACCAGTACCTCGCTTTCCCTGCGCTTACC





AAGATGTTACTTACAACCCACTAATGGACAAAGGAGTGGGCAACC





ATGTATGGTTTCAGTACAACACAAAGGCAGACACACAGCTAATAGT





TACAGGAGGGTCCTGCAAAGCACACATACAAGACATACCCCTATG





GGCAGCCTTCTATGGATACAGTGACTTTATAGAGTCAGAGCTAGG





CCCCTTTGTAGACGCAGACACAGTAGGCCTTATCTGTGTAATATGC





CCTTACACTAAACCCCCCATGTACAACAAGACAAATCCCATGATGG





GGTACGTGTTTTATGACAGAAACTTTGGTGACGGCAAATGGACTGA





CGGACGGGGCAAAATAGAGCCCTACTGGCAAGTTAGGTGGAGGC





CCGAAATGCTTTTCCAAGAAACTGTAATGGCAGACATAGTACAGAC





AGGGCCCTTTAGCTACAAAGATGAACTTAAAAACAGCACACTAGTA





TGCAAGTACAAATTCTATTTTACCTGGGGAGGTAACATGATGTTCC





AACAGACGATCAAAAACCCGTGCAAGACGGACGGACAACCCACC





GACTCCAGTAGACACCCTAGAGGAATACAAGTGGCGGACCCGGAA





CAAATGGGACCCCGCTGGGTGTTCCACTCCTTTGACTGGCGAAGG





GGCTATCTTAGCGAGAAAGCTCTCAAACGCCTGCAAGAAAAACCT





CTTGACTATGACCAATATTTTACACAACCAAAAAGACCTAGAATCTT





TCCTCCAACAGAATCAGCAGAGGGAGAGTTCCGAGAGCCCGAAAA





AGGCTCGTATTCAGAGGAAGAAAGGTTGCAAGCCTCTGCCGAAGA





GCAGACGGAGGAGGCGACAGTACTCCTCCTCAAGCGACGACTCA





GAGAGCAACAGCAGCTCCAGCAGCAGCTCCAATTCCTCACCCGAG





AAATGTTCAAAACGCAAGCGGGTCTCCACATAAACCCTATGTTATT





AAACCAGCGATAA






ABD34294.1
DQ186998.1
ATGGCATGGGGATGGTGGAGATGGCGGCGCCGCTGGCCCGCCA
201




GACGCTGGAGGAGACGCCGTCGCCGGCGCCCCGTACGGAGAAC





AAGAGCTCGCCGACCTGCTCGACGCTATAGAAGACGACGAACAGT





AAGAACCAGGCGGAGGCGGTGGGGGCGCAGACGGTACAGACGG





GGCTGGAGACGCAGGACTTATGTAAGGAAGGGGCGACACAGAAA





AAAGAAAAAGAGACTGATACTGAGACAGTGGCAGCCCGCCACCAG





ACGCAGATGCACCATAACAGGGTACCTGCCCATAGTGTTCTGCGG





CCACACTAAGGGCAATAAAAACTACGCCCTACACTCTGACGACTAC





ACCCCCCAAGGACAGCCATTTGGAGGGGCTCTAAGCACTACCTCA





TTCTCTTTAAAAGTACTGTTTGACCAGCATCAGAGAGGACTGAATA





AGTGGTCGTTCCCCAACGACCAACTAGACCTGGCCAGATACAGGG





GCTGCAAATTCTACTTTTACAGGACAAAACAGACTGACTGGATAGG





CCAGTATGATATATCAGAGCCCTACAAGCTAGACAAGTACAGCTGC





CCCAACTACCACCCGGGAAACATGATTAAAGCAAAGCACAAATTTT





TAATTCCCAGCTATGACACTAATCCCAGGGGCAGACAAAAAATTAT





AGTTAAAATTCCCCCCCCAGACCTCTTTGTAGACAAGTGGTACACT





CAGGAAGACCTGTGTTCCGTTAATCTTGTGTCACTTGCGGTTTCTG





CGGCTTCCTTTCTCCACCCATTCGGCTCACCACAAACTGACAACCC





TTGCTACACCTTCCAGGTGTTGAAAGAGTTCTACTACCAGGCAATA





GGCTTCTCAGCAACAGATGAACAAAGAGAAAAAGTTTTTGATATAT





TATACAAAAACAACTCATACTGGGAATCAAACATAACTCCCTTTTAT





GTAATTAATGTTAAAAAAGGGTGTAACACAACACAGTGCATGTCAC





CTCAAATTTCAGACTCATCTTTTAGAAAGAAAGTAAATACTAACTAC





AACTGGTATACCTACGATGCCAAAACTAATGCATCACAATTAAAGC





AACTAAGAAATGCATACTTTAAACAATTAACCTCTGAAGGCCCACA





ACACACATACTCTGACAATGGCTACGCCAGTCAGTGGACCACCCC





CAGCACAGACGCCTACGAATACCACTTAGGCATGTTTAGTACTATA





TTTTTAGCCCCAGACAGACCAGTACCTCGCTTTCCCTGCGCGTAC





CAAGATGTTACTTACAACCCACTAATGGACAAAGGAGTGGGCAAC





CATGTATGGTTTCAGTACAACACAAAGGCAGACACACAGCTAATAG





TTACAGGAGGGTCCTGCAAAGCACACATACAAGACATACCCCTAT





GGGCAGCCTTCTATGGATACAGTGACTTTATAGAGTCAGAGCTAG





GCCCCTTTGTAGACGCAGACACAGTAGGCCTTATCTGTGTAATATG





CCCTTACACTAAACCCCCCATGTACAACAAGACAAATCCCATGATG





GGGTACGTGTTTTATGACAGAAACTTTGGTGACGGCAAATGGACT





GACGGACGGGGCAAAATAGAGCCCTACTGGCAAGTTAGGTGGAG





GCCCGAAATGCTTTTCCAAGAAACTGTAATGGCAGACATAGTACAG





ACAGGGCCCTTTAGCTACAAAGATGAACTTAAAAACAGCACACTAG





TATGCAAGTACAAATTCTATTTTACCTGGGGAGGTAACATGATGTT





CCAACAGACGATCAAAAACCCGTGCAAGACGGACGGACAACCCAC





CGACTCCAGTAGACACCCTAGAGGAATACAAGTGGCGGACCCGG





AGCAAATGGGACCCCGCTGGGTGTTCCACTCCTTTGACTGGCGAA





GGGGCTATCTTAGCGAGAAAGCTCTCAAACGCCTGCAAGAAAAAC





CTCTTGACTATGACCAATATTTTACACAACCAAAAAGACCTAGAATC





TTTCCTCCAACAGAATCAGCAGAGGGAGAGTTCCGAGAGCCCGAA





AAAGGCTCGTATTCAGAGGAAGAAAGGTCGCAAGCCTCTGCCGAA





GAGCGGACGGAGGAGGCGACAGTACTCCTCCTCAAGCGACGACT





CAGAGAGCAACAGCAGCTCCAGCAGCAGCTCCAATTCCTCACCCG





AGAAATGTTCAAAACGCAAGCGGGTCTCCACATAAACCCTATGTTA





TTAAACCAGCGATAA






ABD34296.1
DQ186999.1
ATGGCATGGAGATGGTGGAAGCGACGGAGGCGCTGGTGGTTCCG
202




CAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTCGAC





CAGCTCGTCGCCGACCTAGACGACGAAGAGTAAGGAGACGCAGA





CGTTGGAGGAGGGGGCGACCCAGACGTAGACTGTACCGACGCTA





CAGACGCAAAAAACGTAGGAGACGAAAGCCCAAAATAATCTTAAAA





CAATGGCAGCCAGACATTGTAAAGAGGTGCTACATAGTGGGCTAC





ATTCCTGCCATAATATGTGGGGCGGGCACCTGGTCTCACAACTAC





ACCAGCCACCTTCTAGACATTATCCCCAAGGGACCCTTTGGAGGA





GGGCACAGCACTATGAGGTTCTCCCTAAAAGTACTCTCTGAAGAA





CACCTCAGACACTTAAACTTTTGGACAAAGAGTAACCAGGACCTAG





AACTGATAAGATACTTTAGATGCTCCTTTAAATTTTATAGAGACCAA





GACACAGACTACATAGTACACTACAGCAGAAAAACTCCCCTGGGA





GGCAACAGACTGACAGCACCTAACCTGCACCCAGGGGTACAAATG





CTTAGCAAAAACAAAATAATAGTACCTAGCTATGCTACAAAACCCA





AGGGTCCTAGCTATATAAAAGTAACCATAGCACCCCCCACACTGCT





AACTGACAAGTGGTACTTTAGCAAAGACGTTTGTGACACAACCTTG





GTTAACTTAGACGTTGTACTCTGCAACCTGCGGTTTCCGTTCTGCT





CACCACAAACTGACAACCCTTGCATCACATTCCAAGTTCTGCATTC





CATCTACAACGACTTCCTCTCTATAGTAGATACTAACAACTATAAAG





AATCTTTTGTTAGTGCATTACCAACAAAAGTATCTACTGACTGGGG





CAAAAGACTAAACACCTTTAGAACAGAAGGATGCTATTCACACCCC





AAATTACATAAAAAAGCTGTAACAGCTGCTACAGATACAGAATACTT





TACAAAGCCAGATGGTCTGTGGGGAGACACTATATTTGATGTAGAA





AATGGACAAAAAATTATAAAAAATATGGAGTCATATGCTAAGTCAG





CCAAAGAAAGAGGGATCAATGGAGACCCTGCTTTCTGTCACTTAAC





AGGAATATACTCACCTCCCTGGTTAACACCAGGGAGAATATCTCCA





GAAACACCTGGACTTTACACAGACGTGACTTACAACCCTTACGCTG





ACAAAGGAGTGGGCAACAGAATATGGGTTGACTACTGCAGTAAAA





AAGGCAACAAATATGACAATACAAGTAAATGCCTTTTAGAAGACAT





GCCACTATGGATGGTATGCTTTGGCTATGTAGACTGTGTAAAAAAA





GAAACCGGCAACTGGGGCATTCCACTATGGGCTAGAGTACTTATA





AGAAGCCCATATACTGTTCCCAAACTATATAATGAAGCAGACCCAA





ACTATGGATGGGTACCTATTTTTTACTATTTTGGAGAAGGCAAAAT





GCCAAACGGAGACATGTACATACCATTTAAAATAAGAATGAAATGG





TACCCTTCAATGTGGAACCAAGAGCCAGTATTAAATGACTTAGCAA





AGAGCGGACCGTTTGCATACAAAAACACCAAAACAAGTGTGACTG





TGACTGCCAAATATAAATTCACATTTAACTTCGGTGGCAACCCCGT





ACCCTCACAGATTGTACAAGATCCCTGCACACAGCCCACCTACGA





CATCCCCGGCACCGGTAACCTGCCTCGCAGAATACAAGTCATTGA





CCCGAAAGTCCTCAGTCCCCACTATTCCTTCCACCGGTGGGACTT





CAGACGTGGCCTGTTTGGCTCACAAGCTATTAAGAGAGTGTCAGA





ACAATCAACAACTTCTGAGTTTTTATTCTCAGGCCCAAAGAAACCC





AGAATCGATCAAGGTCCTTACATCCCGCCAGAAAAAGGCTCAGGT





TCACTCCAAAGAGAACCGAGACCGTGGAGCAGCTCGGAGACCGA





GGCAGAGACAGAAGCCCCCTCGGAAGAAGAGCCGGAGAACCAAG





AAGAACAAGTACTCCAGTTGCAGCTCAGACAGCAGCTCCGAGAAC





AGCGAAAACTCAGACAGGGAATCCAGTGCCTATTCGAGCAACTAA





TAACAACTCAGCAGGGGGTCCACAAAAACCCATTGTTAGAGTAG






ABD34298.1
DQ187000.1
ATGGCATGGAGATGGTGGAAGCGACGGAGGCGCTGGTGGTTCCG
203




CAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTCGAC





CAGCTCGTCGCCGACCTAGACGACGAAGAGTAAGGAGACGCAGA





CGTTGGAGGAGGGGGCGACCCAGACGTAGACTGTACCGACGCTA





CAGACGCAAAAAACATAGGAGACGAAAGCCCAAAATAATCTTAAAA





CAATGGCAGCCAGACATTGTAAAGAGGTGCTACATAGTGGGCTAC





ATTCCTGCCATAATATGTGGGGCGGGCACCTGGTCTCACAACTAC





ACCAGCCACCTTCTAGACATTATCCCCAAGGGACCCTTTGGAGGA





GGGCACAGCACTATGAGGTTCTCCCTAAAAGTACTCTTTGAAGAAC





ACCTCAGACACTTAAACTTTTGGACAAAGAGTAACCAGGACCTAGA





ACTGATAAGATACTTTAGATGCTCCTTTAAATTTTATAGAGACCAAG





ACACAGACTACATAGTACACTACAGCAGAAAAACTCCCCTGGGAG





GCAACAGACTGACAGCACCTAACCTGCACCCAGGGGTACAAATGC





TTAGCAAAAACAAAATAATGGTACCTAGCTATGCTACAAAACCCAA





GGGTCCTAGCTATATAAAAGTAACCATAGCACCCCCCACACTGCTA





ACTGACAAGTGGTACTTTAGCAAAGACGTTTGTGACACAACCTTGG





TTAACTTAGACGTTGTACTCTGCAACCTGCGGTTTCCGTTCTGCTC





ACCACAAACTGACAACCCTTGCATCACATTCCAAGTTCTGCATTCC





ATCTACAACGACTTCCTCTCTATAGTAGATACTAACAACTATAAAGA





ATCTTTTGTTAGTGCATTACCAACAAAAGTATCTACTGACTGGGGC





AAAAGACTAAACACCTTTAGAACAGAAGGATGCTATTCACACCCCA





AATTACATAAAAAAGCTGTAACAGCTGCTACAGATACAGAATACTTT





ACAAAGCCAGATGGTCTGTGGGGAGACACTATATTTGATGTAGAAA





ATGGACAAAAAATTATAAAAAATATGGAGTCATATGCTAAGTCAGC





CAAAGAAAGAGGGATCAATGGAGACCCTGCTTTCTGTCACTTAACA





GGAATATACTCACCTCCCTGGTTAACACCAGGGAGAATATCTCCAG





AAACACCTGGACTTTACACAGACGTGACTTACAACCCTTACGCTGA





CAAAGGAGTGGGCAACAGAATATGGGTTGACTACTGCAGTAAAAA





AGGCAACAAATATGACAATACAAGTAAATGCCTTTTAGAAGACATG





CCACTATGGATGGTATGCTTTGGCTATGTAGACTGGGTAAAAAAAG





AAACCGGCAACTGGGGCATTCCACTATGGGCTAGAGTACTTATAA





GAAGCCCATATACTGTTCCCAAACTATATAATGAAGCAGACCCAAA





CTATGGATGGGTACCTATTTCTTACTATTTTGGAGAAGGCAAAATG





CCAAACGGAGACATGTACATACCATTTAAAATAAGAATGAAGTGGT





ACCCTTCAATGTGGAACCAAGAGCCAGTATTAAATGACTTAGCAAA





GAGCGGACCGTTTGCATACAAAAACACCAAAACAAGTGTGACTGT





GACTGCCAAATATAAATTCACATTTAACTTCGGTGGCAACCCCGTA





CCCTCACAGATTGTACAAGATCCCTGCACACAGCCCACCTACGAC





ATCCCCGGCACCGGTAACCTGCCTCGCAGAATACAAGTCATTGAC





CCGAAAGTCCTCGGTCCCCACTATTCCTTCCACCGGTGGGACTTC





AGACGTGGCCTGTTTGGCTCACAAGCTATTAAGAGAGTGTCAGAA





CAATCAACAACTTCTGAGTTTTTATTCTCAGGCCCAAAGAAACCCA





GAATCGATCAAGGTCCTTACATCCCGCCAGAAAAAGGCTCAGGTT





CACTCCAAAGAGAACCGAGACCGTGGAGCAGCTCGGAGACCGAG





GCAGAGACAGAAGCCCCCTCGGAAGAAGAGCCGGAGAACCAAGA





AGAACAAGTACTCCAGTTGCAGCTCAGACAGCAGCTCCGAGAACA





GCGAAAACTCAGACAGGGAATCCAGTGCCTATTCGAGCAACTAAT





AACAACTCAGCAGGGGGTCCACAAAAACCCATTGTTAGAGTAG






ABD34300.1
DQ187001.1
ATGGCACGGAGATGGTGGAAGCGACGGAGGCGCTGGTGGTTCCG
204




CAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTCGAC





CAGCTCGTCGCCGACCTAAACGACGAAGAGTAAGGAGACGCAGA





CGTTGGAGGAGGGGGCGACCCAGACGTAGACTGTACCGACGCTA





CAGACGCAAAAAACGTAGGAGACGAAAGCCCAAAATAATCTTAAAA





CAATGGCAGCCAGACATTGTAAAGAGGTGCTACATAGTGGACTAC





ATTCCTGCCATAATATGTGGGGCGGGCACCTGGTCTCGCAACTAC





ACCAGCCACCTTCTAGACATTATCCCCAAGGGACCCTTTGGAGGA





GGGCACAGCACTATGAGGTTCTCCCTAAAAGTACTCTTTGAAGAAC





ACCTCAGGCACTTAAACTTTTGGACAAAGAGTAACCAGGACCTAGA





ACTGATAAGATACTTTAGATGCTCCTTTAAATTTTATAGAGACCAAG





ACACAGACCACATAGTACACTACAGCAGAAAAACTCCCCTGGGAG





GCAACAGACTGACAGCACCTAACCTGCACCCAGGGGTACAAATGC





TTAGCAAAAACAAAATAATAGTACCTAGCTATGCTACAAAACCCAA





GGGTCCTAGCTATATAAAAGTAACCATAGCACCCCCCACACTGCTA





ACTGACAAGTGGTACTTTAGCAAAGACGTTTGTGACACAACCTTGG





TTAACTTAGACGTTGTACTCTGCAACCTGCGGTTTCCGTTCTGCTC





ACCACAAACTGACAACCCTTGCATCACATTCCAAGTTCTGCATTCC





ATCTACAACGACTTCCTCTCTATAGTAGATACTAACAACTATAAAGA





ATCTTTTGTTGCTGCATTACCAACAAAAGTATCTACTGACTGGGGC





AAAAGACTAAACACCTTTAGAACAGAGGGATGCTATTCACACCCCA





AATTACATAAAAAAGCTGTAACAGCTGCTACAGATACAGAATACTTT





ACAAAGCCAGATGGTCTGTGGGGAGACACTATATTTGATGTAGAAA





ATGGACAAAAAATTATAAAAAATATGGAATCATATGCTAAGTCAGC





CAAAGAAAGAGGGATCAATGGAGACCCTGCTTTCTGTCACTTAACA





GGAATATACTCACCTCCCTGGTTAACACCAGGGAGAATATCTCCAG





AAACACCTGGACTTTACACAGACGTGACTTACAACCCTTACGCTGA





CAAAGGAGTGGGCAACAGAATATGGGTTGACTACTGCAGTAAAAA





AGGCAACAAATATGGCAATACAAGTAAATGCCTTTTAGAAGACATG





CCACTATGGATGGTATGCTTTGGCTATGTAGACTGGGTAAAAAAAG





AAACCGGCAACTGGGGCATTCCACTATGGGCTAGAGTACTTATAA





GAAGCCCATATACTGTTCCCAAACTATATAATGAAGCAGACCCAAA





CTATGGATGGGTACCTATTTCTTACTATTTTGGAGAAGGCAAAATG





CCAAACGGAGACATGTACGTACCATTTAAAATAAGAATGAAATGGT





ACCCTTCAATGTGGAACCAAGAGCCAGTATTAAATGACTTAGCAAA





GAGCGGACCGTTTGCATACAAAAACACCAAAACAAGTGTGACTGT





GACTGCCAAATATAAATTCACATTTAACTTCGGGGGCAACCCCGTA





CCCTCACAGATTGTACAAGATCCCTGCACACAGCCCACCTACGAC





ATCCCCGGCACCGGTAACCTGCCTCGCAGAATACAAGTCATTGAC





CCGAAAGTCCTCGGTCCCCACTATTCCTTCCACCGGTGGGACTTC





AGACGTGGCCTGTTTGGCTCACAAGCTATTAAGAGAGTGTCAGAA





CAATCAACAACTTCTGAGTTTTTATTCTCAGGCCCAAAGAAACCCA





GAATCGATCAAGGTCCTTACATCCCGCCAGAAAAAGGCTCAGGTT





CACTCCAAAGAGAACCGAGACCGTGGAGCAGCTCGGAGACCGAG





GCAGAGACAGAAGCCCCCTCGGAAGAAGAGCCGGAGAACCAAGA





AGAACAAGTACTCCAGTTGCAGCTCAGACAGCAGCTCCGAGAACA





GCGAAAACTCAGACAGGGAATCCAGTGCCTATTCGAGCAACTAAT





AACAACTCAGCAGGGGGTCCACAAAAACCCATTGTTAGAGTAG






ABD34302.1
DQ187002.1
ATGGCATGGAGATGGTGGAAGCGACGGAGGCGCTGGTGGTTCCG
205




CAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTCGAC





CAGCTCGTCGCCGACCTAAACGACGAAGAGTAAGGAGACGCAGA





CGTTGGAGGAGGGAGCGACCCAGACGTAGACTGTACCGACGCTA





CAGACGCAAAAAACGTAGGAGACGAAAGCCCAAAATAATCTTAAAA





CAATGGCAGCCAGACATTGTAAAGAGGTGCTACATAGTGGGCTAC





ATTCCTGCCATAATATGTGGGGCGGGCACCTGGTCTCACAACTAC





ACCAGCCACCTTCTAGACATTATCCCCAAGGGACCCTTTGGAGGA





GGGCACAGCACTATGAGGTTCTCCCTAAAAGTACTCTTTGAAGAAC





ACCTCAGGCACTTAAACTTTTGGACAAAGAGTAACCAGGACCTAGA





ACTGATAAGATACTTTAGATGCTCCTTTAAATTTTATAGAGACCAAG





ACACAGACTACATAGTACACTACAGCAGAAAAACTCCCCTGGGAG





GCAACAGACTGACAGCACCTAACCTGCACCCAGGGGTACAAATGC





TTAGCAAAAACAAAATAATAGTACCTAGCTATGCTACAAAACCCAA





GGGTCCTAGCTATATAAAAGTAACCATAGCACCCCCCACACTGCTA





ACTGACAAGTGGTACTTTAGCAAAGACGTTTGTGACACAACCTTGG





TTAACTTAGACGTTGTACTCTGCAAGCTGCGGTTTCCGTTCTGCTC





ACCACAAACTGACAACCCTTGCATCACATTCCAAGTTCTGCATTCC





ATCTACAACGACTTCCTCTCTATAGTAGATACTAACAACTATAAAGA





ATCTTTTGTTGCTGCATTACCAACAAAAGTATCTACTGACTGGGGC





AAAAGACTAAACACCTTTAGAACAGAAGGATGCTATTCACACCCCA





AATTACATAAAAAAGCTGTAACAGCTGCTACAGATACAGAATACTTT





ACAAAGCCAGATGGTCTGTGGGGAGACACTATATTTGATGTAGAAA





ATGGACAAAAAATTATAAAAAATATGGAATCATATGCTAAGTCAGC





CAAAGAAAGAGGGATCAATGGAGACCCTGCTTTCTGTCACTTAACA





GGAATATACTCACCTCCCTGGTTAACACCAGGGAGAATATCTCCAG





AAACACCTGGACTTTACACAGACGTGACTTACAACCCTTACGCTGA





CAAAGGAGTGGGCGACAGAATATGGGTTGACTACTGCAGTAAAAA





AGGCAACAAATATGACAATACAAGTAAATGCCTTTTAGAAGACATG





CCACTATGGATGGTATGCTTTGGCTATGTAGACTGGGTAAAAAAAG





AAACCGGCAACTGGGGCATTCCACTATGGGCTAGAGTACTTATAA





GAAGCCCATATACTGTTCCCAAACTATATAATGAAGCAGACCCAAA





CTATGGATGGGTACCTATTTCTTACTATTTTGGAGAAGGCAAAATG





CCAAACGGAGACATGTACGTACCATTTAAAATAAGAATGAAATGGT





ACCCTTCAATGTGGAACCAAGAGCCAGTATTAAATGACTTAGCAAA





GAGCGGACCGTTTGCATACAAAAACACCAAAACAAGTGTGACTGT





GACTGCCAAATATAAATTCACATTTAACTTCGGGGGCAACCCCGTA





CCCTCACAGATTGTACAAAATCCCTGCACACAGCCCACCTACGAC





ATCCCCGGCACCGGTAACCTGCCTCGCAGAACACAAGTCATTGAC





CCGAAAGTCCTCGGTCCCCACTATTCCTTCCACCGGTGGGACTTC





AGGCGCGGCCTGTTTGGCTCACAAGCTATTAAGAGAGTGTCAGAA





CAATCAACAACTTCTGAGTTTTTATTCTCAGGCCCAAAGAAACCCA





GAATCGATCAAGGTCCTTACATCCCGCCAGAAAAAGGCTCAGGTT





CACTCCAAAGAGAACCGAGACCGTGGAGCAGCTCGGAGACCGAG





GCAGAGACAGAAGCCCCCTCGGAAGAAGAGCCGGAGAACCAAGA





AGAACAAGTACTCCAGTTGCAGCTCAGACAGCAGCTCCGAGAACA





GCGAAAACTCAGACAGGGAATCCAGTGCCTATTCGAGCAACTAAT





AACAACTCAGCAGGGGGTCCACAAAAACCCATTGTTAGAGTAG






ABD34305.1
DQ187004.1
ATGGCCTGGGGATGGTGGAAACGCAGACGGCGCCGATGGTGGAG
206




AGGCCTCTGGAGGAGACGCCGCTTTGCCAGAAGACGACCTAGAC





GGCCTGCTCGCCGCCCTAGACGACGAAGAGTAAGGAGACGCAGA





CGGTGGAGGAGGGGGCGACTAAGGAGGCGCGTGTACAACAGGA





GACGCAGGATCAGACGAAAGAGACGCAGACAGAAACTGACAATAA





GACAGTGGCAGCCTGACAAACGCAGGATATGTAGAATTAAAGGCT





ACCTTCCTGCCATTATATATGGAGACGGGACGTTTTCTAAAAACTA





TACAAGTCACTTAGAGGACAGAATCTCCAAAGGACCGTTTGGGGG





AGGGCACGGGACTGCTAGAATGTCTCTTAAAGTACTGTATGACGA





CCACCTAAAAGGACTTAACATATGGACGTATAGTAACAAGGACTTG





GAACTGGTCAGATACATGCACACCACAATTACATTTTACAGACACC





CAGACACAGACTTTATAGCAGTATACAACAGAAAAACACCACTAGG





TGGCAACAGATACACAGCACCCTCACTGCACCCTGGTAACATGAT





GCTGCAGAGAACTAAAATACTAATCCCTAGCTTTAAAACCAAACCC





AGAGGGAGCGGCAAAATTAGAGTAGTAATAAAACCCCCCACTCTG





TTAGTAGATAAGTGGTACTTTCAAAAGGACATATGCGACGTTACAC





TGTTTAACCTCAACATTACAGCAGCTAGCCTGCGGTTTCCGTTCTG





CTCACCACAAACGAACAACCCTTGTGTAACATTCCAAGTTCTGCAT





TCTGTGTATGACAAAGCATTAGGCATTAACACATTTGGTACCAAAG





AAACACCAGAAGATCAGCAAATGGAAGATATTAAAAACTGGCTTAC





CAAAGCTCTAAATACTGCAGGCTTTACTGTACTAAATACATTTAGAA





CAGAAGGTATATACTCACACCCACAACTAAAAAAACCACCTGAAGG





AAGTAACAAACCTAGTGCAGAACAGTACTTTGCTCCACTAGACAGC





TTATGGGGAGACAAGATATATGTAAATAATAATACTAGTCCTTCACA





AACAGAAGCAACAATTCCAGGTATATTAGCCAGAAATGCTTGCACA





TACTATCAAAAAGCTAAAACAAGCACACTAAGGCAGCACCTAGGC





GCTATGGCACACTGTCACCTAACAGGAATTTTTAACCCTGCACTAC





TAACACAGGGCAGACTATCACCAGAATTTTTTGGCCTATACAAAGA





AATTATTTATAACCCCTATGATGACAAAGGCAAAGGAAACAGAATA





TGGATAGACCCATTAACAAAACCTGACAACATATTTGATGCTAGAA





GTAAAGTAGAACTAGAAGATATGCCTCTTTGGATGGCATGCTTTGG





ATATAATGACTGGTGTAAAAAAGAGCTAAATAACTGGGGCCTAGAA





GTAGAATACAGAGTACTACTAAGATGCCCTTACACATATCCAAAAC





TGTACAATGATGCTAACCCAAACTATGGCTATGTACCTATATCCTA





CAACTTTAGTGCAGGAAAAACTGTAGAAGGGGATCTTTATGTTCCA





ATAATGTGGAGAACTAAATGGCATCCAACAATGTACAATCAATCTC





CAGTACTAGAAGATTTAGCCATGGCAGGGCCTTTTGCTCCAAAAGA





AAAAATACCTAGCAGCACACTTACAATAAAATACAAAGCTAAATTTA





TATTCGGGGGCAATCCTATATCTGAACAGATTGTCAAGGACCCCTG





CACCCAGCCCACCTACGAAATTCCCGGAGGCGGTACGCTCCCTC





GCAGAATACAAGTCATTAACCCGGAATACATCGGGCCACACTACT





CATTCAAAAGCTTCGACATCAGACGTGGGTACTTTAGCGCGAAGA





GTGTTAAAAGAGTGTCAGAACAATCAGACATTACTGAGTTTATATTC





TCAGGTCCAAAAAAGCCAAGGATCGACCAAGACAGGTACCAAGAA





GCAGAAGAACACTCAGATTCTCGACTCCGAGAAGAGAAACCGTGG





GAGAGCTCGCAAGAAACAGAGAGCGAAGCCCAAGAAGAAGAGAT





ACAAGAGACAAACATCCAGCTCCAGCTGCAGCACCAGCTCAAAGA





GCAACTGCAGCTCAGACGGGGAATCCAGTGCCTCTTCGAGCAACT





AACCAAAACCCAGCAGGGAGTCCACATAAACCCTTCCCTCGTGTA





G






ABD34307.1
DQ187005.1
ATGTCTCTTAAAGTACTGTATGACGACCACCTAAAAGGACTTAACA
207




TATGGACGTATAGTAACAAGGACTTGGAACTGGTCAGATACATGCA





CACCACAATTACATTTTACAGACACCCAGACACAGACTTTATAGCA





GTATACAACAGAAAAACACCACTAGGTGGCAACAGATACACAGCA





CCCTCACTGCACCCTGGTAACATGATGCTGCAGAGAACTAAAATAC





TAATCCCTAGCTTTAAAACCAAACCCAGAGGGAGCGGCAAAATTAG





AGTAGTAATAAAACCCCCCACTCTGTTAGTAGATAAGTGGTACTTT





CAAAAGGACATATGCGACGTTACACTGTTTAACCTCAACATTACAG





CAGCTAGCCTGCGGTTTCCGTTCTGCTCACCACAAACGAACAACC





CTTGTGTAACATTCCAAGTTCTGCATTCTGTGTATGACAAAGCATTA





GGCATTAACACATTTGGTACCAAAGAAACACCAGAAGATCAGCAAA





TGGAAGATATTAAAAACTGGCTTACCAAAGCTCTAAATACTGCAGG





CTTTACTGTACTAAATACATTTAGAACAGAAGGTATATACTCACACC





CACAACTAAAAAAACCACCTGAAGGAAGTAACAAACCTAGTGCAGA





ACAGTACTTTGCTCCACTAGACAGCTTATGGGGAGACAAGATATAT





GTAAATAATAATACTAGTCCTTCACAAACAGAAGCAACAATTCCAG





GTATACTAGCCAGAAATGCTTGCACATACTATCAAAAAGCTAAAAC





AAGCACACTAAGGCAGCACCTAGGCGCTATGGCACACTGTCACCT





AACAGGAATTTTTAACCCTGCACTACTAACACAGGGCAGACTATCA





CCAGAATTTTTTGGCCTATACAAAGAAATTATTTATAACCCCTATGA





TGACAAAGGCAAAGGAAACAGAATATGGATAGACCCATTAACAAAA





CCTGACAACATATTTGATGCTAGAAGTAAAGTAGAACTAGAAGATA





TGCCTCTTTGGATGGCATGCTTTGGATATAATGACTGGTGTAAAAA





AGAGCTAAATAACTGGGGCCTAGAAGTAGAATACAGAGTACTACTA





AGATGCCCTTACACATATCCAAAACTGTACAATGATGCTAACCCAA





ACTATGGCTATGTACCTATATCCTACAACTTTAGTGCAGGAAAAAC





TGTAGAAGGGGATCTTTATGTTCCAATAATGTGGAGAACTAAATGG





TATCCAACAATGTACGATCAATCTCCAGTACTAGAAGATTTAGCCA





TGGCAGGGCCTTTTGCTCCAAAAGAAAAAATACCTAGCAGCACACT





TACAATAAAATACAAAGCTAAATTTATATTCGGGGCAATCCTATATC





TGAACAGATTGTCAAGGACCCCTGCACCCAGCCCACCTACGAAAT





TCCCGGAGGCGGTACGCTCCCTCGCAGAATACAAGTCATTAACCC





GGAATACATCGGGCCACACTACTCATTCAAAAGCTTCGACATCAGA





CGTGGGTACTTTAGCGCGAAGAGTGTTAAAAGAGTGTCAGAACAA





TCAGACATTACTGAGTTTATATTCTCAGGTCCAAAAAAGCCAAGGA





TCGACCAAGACAGGTACCAAGAAGCAGAAGAACACTCAGATTCTC





GACTCCGAGAAGAGAAACCGTGGGAGAGCTCGCAAGAAACAGAG





AGCGAAGCCCAAGAAGAAGAGATACAAGAGACAAACATCCAGCTC





CAGCTGCAGCACCAGCTCAAAGAGCAACTGCAGCTCAGACGGGG





AATCCAGTGCCTCTTCGAGCAACTAA






ABD61942.1
DQ361268.1
ATGGCCTGGAGATGGTGGTGGAGACGCAGGCGCCCGTGGCGATG
208




GAGATGGAGGCGAAGGAGACGACCAGCTAGACGCCGAAGACGTA





GAAGACCTGCTCGGCGTGCTAGACGACCCAGAGTAAGGAGATGG





CGCAGGCGCAGGGTGTGGGCGCCCAGGCCATACATAAGAAGGCG





CAGGCGAAGCTTCCGTAGAAAAAAAATTAAAATAACTCAGTGGAAC





CCCGCTGTTACTAAAAAATGTACTGTAACTGGGTACCTACCAGTTA





TATACTGTGGAACCGGGGACATAGGAACCACTTTTCAGAACTTTGG





CTCTCATATGAATGAGTACAAACAGTATAACGCTGCGGGAGGGGG





CTTTAGCACAATGCTTTTTACCATGCAAAACCTGTATGAAGAGTAC





CAAAAACATAGATGCAGATGGTCTAAAAGCAATCAAGACCTAGACC





TGTGTAGATATCTAGACTGTAAACTAACATTTTACAGATCCCCTAAC





ACAGACTTTATAGTTGGCTACAATAGAAAGCCTCCCTTTATAGACA





CTCAAATAACAAGATGTACTTTACATCCAGGAATGCTAATACAAGA





AAGAAAAAAAGTAATAATACCTAGCTTCCAAACCAGGCCAAAAGGT





AGAATAAAACGCAAAATTAAAGTAAGGCCCCCCACCTTATTCACAG





ACAAATGGTACTTTCAGAGAGACCTCTGTAAAGTTCCTCTTGTAAC





GGTTTCCGCTTCTGCGGCGAGCCTGCGGTTTCCGTTCGGCTCACC





ACAAACAGAAAACTATTGCATATACTTCCAGGTTTTAGATCCCTGG





TACCACACCCGCCTGAGCATAACTGGTGGAAAGCCAGCTGAATAT





TGGACACAGCTAAAAGCTTATTTAACTCAAGGCTGGGGCAGGTCA





ACAAATAATGCAGGATATCAACATGGTCCACTAGGTACTTACTTTA





ATACACTTAAAACATCAGAACATATTAGACAACCCCCAGCAGATAA





CTACAAACAAGCAAATAAAGATACTACATACTATGGAAGAGTAGAC





AGTCACTGGGGAGATCATGTATACCAACAAACAATAATACAAGCCA





TGGAAGAAAACCAAAGCAACATGTACACAAAAAGAGCACTTCACAC





ATTCTTAGGCAGTCAATATCTAAACTTTAAATCAGGTCTATTTAGCA





GTATATTTCTAGATAATGCCAGACTAAGCCCAGACTTTAAAGGTAT





GTACCAAGAAGTTGTTTATAACCCCTTTAATGACAGAGGAGTAGGC





AACAAAGTATGGGTTCAGTGGTGCACAAACGAGGACACAATATTTA





AAGACCTACCAGGCAGAGTTCCTGTGGTAGATTTACCATTGTGGT





GCGCGTTAATGGGCTACTCAGACTACTGCAAAAAATATTTCCACGA





CGATGGCTTCTTAAAAGAGGCCAGAATAACTATAATCAGCCCATAC





ACAAATCCTCCACTAATTAACAACAAAAATACAAATGAGGGCTTTGT





ACCCTACAGTTTCTACTTTGGAAAAGGCAGAATGCCAGACGGCAAT





GGGTACATACCCATAGACTTTAGATTTAACTGGTACCCTTGCATAT





TTCACCAAACAAACTGGATAAATGACATGGTTCAATGCGGACCCTT





TGCCTACCACGGAGATGAAAAGAACTGTTCTCTCACTATGAAATAC





AAGTTTAAATTTCTATTTGGGGGCAATCCTATCTCACAACAGACTAT





CAAAGACCCTTGCCAACAACCCGACTGGCAACTTCCCGGTTCCGG





TAGATTCCCTCGCGATGTACAAGTATCGAACCCGCGCTTGCAAAC





CGAAGGGTCCACGTTCCACGCGTGGGACTTCAGACGGGGTTTCTA





TGGCAAAAGAGCTATTGAAAGACTGCAGGGACAACAAGATGATGT





TACATATATTGCAGGACCTCCAAAAAGGCCCCGCTTCGAGGTCCC





AGCCCTGGCTGCCGAAGGAAGCTCAAATACACGCCGATCAGAGTT





GCCATGGCAAACCTCAGAAGAAGAAAGCTCGCAAGAAGAAAACTC





AGAAGAGACAGAAGAAGAAACCTCGTTATCGCAGCAGCTCAAGCA





GCAGTGCATCGAGCAGAAGCTCCTCAAGCGAACGCTCCACCAACT





CGTCAAGCAATTAGTAAAGACCCAGTATCACCTACACGCCCCCATT





ATCCACTAA






ABU55887.1
EF538879.1
ATGGCATGGAGATGGTGGAAGCGACGGAGGCGCTGGTGGTTCCG
209




CAAGCGGTGGACCCGTGGCAGACTTCGCAGACGATGGCCTCGAC





CAGCTCGTCGCCGCCCTAGACGACGAAGAGTAAGGAGACGCAGA





CGGTGGAGGAGGGGGCGACCCAGACGCAGACTGTACCGACGCTA





CAGACGCAAAAAACGTAGGAGACGAAAGCCCAAAATAATCTTAAAA





CAATGGCAGCCAGACATTGTAAAAAGATGCTATATAATAGGCTACA





TTCCTGCCATAATATGTGGGGCTGGCACCTGGTCCCACAACTACA





CCAGCCACCTGTTAGACATTATCCCCAAGGGACCCTTTGGAGGAG





GGCACAGCACTATGAGATTCTCCCTAAAAGTACTCTTTGAAGAACA





CCTCAGACACTTAAACTTTTGGACAAAAAGCAACCAGGACCTAGAA





CTTATAAGATACTTTAGATGCTCCTTTAAATTCTATAGAGACCAAGA





CACAGACTACATAGTACACTACAGCAGAAAGACTCCCCTAGGAGG





CAACAGACTGACAGCACCTAGCCTACACCCCGGGGTACAGATGCT





TAGCAAAAACAAAATATTAGTACCTAGCTATGCTACAAAACCCAAG





GGTGGTAGCTATGTAAAAGTAACCATAGCACCCCCCACACTACTAA





CTGACAAGTGGTACTTTAGCAAAGACGTTTGTGACACAACCTTGGT





TAACTTAGACGTCGTACTCTGCAACTTGCGGTTTCCGTTCTGCTCA





CCACAAACTGACAACCCTTGCATCACATTCCAAGTTCTGCATTCTT





ACTACAACGACTACCTCTCTATAGTAGACACCGCCTTATACAAAAC





CAGCTTTGTAAACAATTTAAGTACAAAACTAGGTACAACATGGGCA





AACAGACTAAACACATTTAGAACAGAAGGCTGCTACTCACATCCAA





AATTGCTCAAAAAAACAGTAACAGCTGCAAATGACACCAAATATTTT





ACTACACCAGACGGACTCTGGGGAGATGCAGTATTTGATGTTTCA





GACGCAAAAAAACTAACTAAAAACATGGAAAGTTATGCTGCCTCTG





CTAACGAAAGAGGCGTACAAGGAGACCCTGCCTTTTGCCACCTAA





CAGGCATATTCTCACCTCCCTGGCTAACACCAGGCAGAATATCTCC





TGAAACCCCAGGACTTTACACAGACGTGACTTACAACCCATACGCA





GACAAAGGAGTGGGCAACAGAATATGGGTTGACTACTGTAGTAAA





AAAGGCAATAAATATGACAATACAAGTAAATGCGTGTTAGAAGACA





TGCCACTATGGATGTTATGCTTTGGCTATGTAGACTGGGTAAAAAA





AGAGACTGGCAACTGGGGCATTCCACTATGGGCCAGAGTACTTAT





AAGAAGCCCATATACTGTCCCAAAACTATACCATGAAAACGACCCT





GACTACGGATGGGTTCCAATTTCCTACTACTTTGGAGAAGGCAAAA





TGCCAAACGGAGACATGTACGTACCATTTAAAGTAAGAATGAAATG





GTACCCTTCAATGTGGAACCAAGAGCCAGTTTTAAATGACTTAGCA





AAGAGCGGACCGTTTGCATACAAGAACACCAAAACAAGCGTGACT





GTGACTGCCAAATATAAATTCACATTTAACTTCGGGGGCAACCCCG





TACCCTCACAGATTGTACAAGATCCCTGCACACAGCCCACCTACG





ACATCCCCGGCACCGGTAACCTGCCTCGCAGAATACAAGTCATTG





ACCCGAAAGTCCTCGGTCCCCACTATTCCTTCCACCGGTGGGACT





TCAGGCGTGGCCTCTTTGGCACACAAGCTATTAAAAGAGTGTCAG





AACAATCAACAACTTCTGAGTTTTTATTCTCAGGCCCAAAGAAACC





CAGAATCGATCAAGGCCCTTACATCCCGCCAGAAAAAGGCTCAGG





TTCACTCCAAAGAGAATCGAGACCGTGGAGCAGCTCGGAGACCGA





GGCAGAGACAGAAGCCCCCTCGGAAGAGGAGCCGGAGAACCAAG





AAGAACAAGTACTCCAGTTGCAGCTCAGACAGCAGCTCCGAGAAC





AGCGAAAACTCAGACAGGGAATCCAGTGCCTATTCGAGCAACTGA





TAACAACCCAGCAGGGGGTCCACAAAAACCCATTGTTAGAGTAG






ABY26045.1
EU305675.1
ATGGCCTGGTGGGGACGGTGGAGAAGATGGCGCTGGAGGCCCC
210




GTCGCTGGCGGCGCCGTCGCAGACGCCGAGTACCAAGAAGAAGA





GCTCAACGCTCTGTTCGACGCCGTCGAGCAAGAAGAGTAAGGAG





GAGGCGATGGGGGAGGCGGAGGTGGAGACGGGGGTACAGACGC





AGACTGAGACTAAGACGCAAACGCAAACGAAAACGCAGACTTGTA





CTGACTCAGTGGCACCCCGCTAAAGTAAGGAGGTGCAGAATATCT





GGGGTCCTACCCATGATACTGTGCGGTGCTGGCAGGAGTAGCTTT





AACTACGGGCTGCACAGCGATGACTTTACTAAACAGAAACCAAACA





ATCAGAACCCGCACGGCGGGGGCATGAGCACTGTGACTTTTAACC





TAAAGGTGCTCTTTGACCAATACGAAAGATTTATGAACAAGTGGTC





GTACCCCAACGACCAACTAGACCTCGCCAGATACAAAGGCTGTAA





ATTCACCTTCTACAGACACCCAGAAGTTGACTTTCTAGCTCAATAT





GACAACGTTCCCCCTATGAAAATGGACGAACTGACTGCCCCTAAC





ACTCACCCCGCACTGCTGCTACAGAGCAGACACAGGGTAAAGATA





TACAGCTGGAAAACCAGGCCATTTGGCTCTAAAAAAGTAACAGTAA





AAATAGGACCCCCCAAACTGTTTGAAGACAAGTGGTACAGCCAGT





CTGACTTGTGCAAAGTTTCCCTTGTCAGTTGGCGGTTAACCGCATG





TGACTTCAGGTTTCCGTTCTGCTCACCACAAACTGACAACCCTTGT





GTAACCTTCCAGGTGCTAGGAGAACAGTATTACGAAGTCTTTGGAA





CTTCCGTATTGGACGTTCCTGCATCCTATAACTCACAAATAACTAC





ATTTGAACAATGGCTATATAAAAAATGCACCCACTATCAAACATTCG





CCACAGACACCAGATTAGCCCCCCAAAAGAAAGCAACCACATCCA





CCAACCACACATATAACCCCAGTGGCAACACTGAATCATCAACATG





GACACAAAGTAACTACTCCAAATTTAAACCAGGCAACACAGACAGC





AACTATGGCTACTGCAGTTATAAAGTAGACGGCGAAACATTTAAGG





CCATTAAAAATTACAGAAAGCAAAGATTCAAATGGCTAACCGAATA





CACAGGAGAGAATCACATAAACAGCACATTTGCAAAGGGCAAATAT





GATGAATACGAGTACCACCTAGGGTGGTACTCTAACATATTTATAG





GCAACCTTAGACACAACCTGGCATTCCGCTCAGCATACATAGATGT





AACTTACAACCCCACAGTAGACAAAGGCAAAGGCAACATAGTGTG





GTTCCAGTACCTGACAAAACCCACCACACAGCTGATAAGAACACA





GGCAAAATGCGTTATAGAAGACCTGCCACTTTACTGTGCCTTTTTT





GGCTACGAGGACTATATACAGAGAACACTAGGCCCTTACCAGGAC





ATAGAGACAGTAGGCGTCATCTGCTTTATAAGCCCCTACACAGAAC





CTCCATGTATTAGAAAAGAAGAGCAAAAAAAGGACTGGGGCTTTGT





ATTTTATGACACCAACTTTGGAAACGGAAAAACACCAGAGGGCATA





GGCCAAGTTCACCCCTACTGGATGCAGAGGTGGAGAGTAATGGCC





CAGTTTCAAAAAGAAACTCAAAACAGAATTGCCAGGAGCGGACCG





TTTAGCTACAGAGACGACATACCCTCAGCCACACTGACTGCCAACT





ACAAGTTCTACTTTAACTGGGGGGGCGACTCTATATTTCCACAGAT





TATTAAGAACCCCTGCCCCGACACCGGGCTGCGACCCAGTGGCC





ATAGAGAGCCTCGCTCAGTACAAGTCGTTAGCCCGCTCACCATGG





GACCAGAGTTCATATTCCACCGCTGGGACTGGCGACGGGGGTTCT





ATAATCCAAAAGCTCTCAAACGAATGCTTGAAAAATCAGATAATGAT





GCAGAGTCTTCAACAGGCCCAAAAGTGCCTCGGTGGTTTCCAGCA





CACCACGACCAAGAGCAAGAAAGCGACTTCGATTCACAAGAGACA





AGGTCGCAGTCCTCGCAAGAAGAAGCCGCTCAAGAAGCCCTCCAA





GACGTCCAAGAGACGTCGGTACAGCAGTACCTCCTCAAGCAGTTC





CGAGAGCAGCGGCTACTCGGACAGCAACTCCGCCTCCTCATGCTC





CAACTCACCAAGACGCAAAGCAATCTCCACATAAATCCCCGTGTCC





TTGACCATGCATAA






ABY26046.1
EU305676.1
ATGTTCTGGTGGGGATGGCGCCGCCGATGGTGGTGGAAGCCACG
211




GAGGCGATGGAGACGCAGGAGGGCGCGCCGCCCGAGACGAGTA





CCGCGAAGACGATATAGAAGAGCTGCTCGCCGCTATCGAGGCAG





ACGAGTAAGGAGGCGCCGCGCGGGGGGCTGGCGGGGGCGACGT





AGATACTCCCGACACTATAGCAGACGACTGACTGTCAGGCGAAAG





AAAAAGAAACTGACTCTTAAGATCTGGCAGCCACAGAATATCAGGA





AATGTAGAATAAGGGGTCTCCTGCCCCTCCTGATATGCGGGCACA





CCCGTTCGGCCTTTAACTATGCCATCCACTCGGATGACAAGACCC





CCCAACAGGAGAGTTTCGGGGGCGGCCTCAGCACCGTCAGCTTC





TCCTTAAAAGTACTGTTTGACCAGAACCAGAGGGGACTTAATAGGT





GGTCGGCCAGCAACGACCAACTGGACCTTGCTCGGTACCTGGGG





TGCACTTTCTGGTTCTACAGAGACAAAAAGACTGATTTTATAGTGC





AGTATGATATCAGCGCCCCCTTCAAGCTGGACAAAAACAGCAGTC





CCAGCTACCACCCCTTCATGCTCATGAAGGCAAAACACAAGGTGC





TAATTCCCAGCTTTGACACTAAACCCAAGGGCAGGGAAAAAATTAA





AGTTAGAATACAGCCCCCCAAAATGTTCATAGACAAGTGGTACACA





CAAGAGGACCTGTGTCCCGTTATTCTTGTGTCACTTGCGGTTAGC





GTAGCTTCCTTTACACATCCGTTCTGCTCACCACAAACTGCCAATC





CTTGCATCACCTTCCAGGTTTTGAAAGAGTTCTATTACCCAGCCAT





GGGCTATGGGGCCCCTGAAACAACTGTCACTTCTGTATTTAACACT





TTATATACCACAGCCACCTACTGGCAGTCTCACCTTACCCCCCAGT





TTGTCAGAATGCCCACCAAAAACCCAGACAATACTGAAAACAACCA





AGCTCAAGCCTTTAATACCTGGGTTGATAAAGATTTCAAAACAGGC





AAGTTAGTAAAGTATAACTTTCCCCAGTATGCTCCTTCAATAGAGAA





ACTAAAACAATTAAGAACATACTACTTTGAATGGGAAACTAAACACA





CTGGGGTTGCAGCACCACCTACCTGGACCACCCCTACCTCAGACA





GATACGAGTACCATATGGGAATGTTCAGTCCCACTTTCCTCACACC





GTTCAGGTCAGCTGGCCTAGACTTTCCCGGAGCCTACCAGGACGT





CACCTACAATCCCCTCACAGACAAGGGGGTGGGCAACAGAATGTG





GTTCCAATACAACACCAAGATAGACACTCAGTTCGACGCCAGGTC





CTGCAAGTGCGTACTAGAGGACATGCCCCTGTACGCCATGGCCTA





CGGGTATGCAGACTTTTTAGAGCAAGAGATAGGAGAGTACCAGGA





CCTAGAGGCCAACGGGTACGTCTGTGTAATAAGCCCCTACACCAA





ACCCCCAATGTTCAACAAACACAACCCGCAACAGGGGTACGTATT





CTATGACTCTCAGTGGGGCAACGGCAAGTGGATAGACGGAACCG





GGTTCGTGCCCGTCTACTGGCTGACCAGATGGAGAGTAGAGCTGC





TATTTCAGAAAAAAGTACTGTCAGACATCGCCATGTCAGGCCCCTT





CAGCTACCCAGACGAACTTAAAAACACTGTACTGACGGCCAAATAC





AGATTTGACTTTAAGTGGGGTGGCAATCTCTTCCACCAGCAGACCA





TTAGAAACCCCTGCAAACCAGAAGAGACCTCGACCGGTAGAGTCC





CTCGCGATGTACAAGTCGTTGACCCGGTCACCATGGGCCCCAGAT





TCGTCTTTCACTCCTGGGACTGGAGGCGAGGGTTCCTTAGTGACA





GAGCTCTCAAAAGAATGTTTGAAAAACCGCTCGATCTTGAGGGATT





TGCAGCGTCTCCAAAACGACCTCGCATATTCCCTCCCACAGAGGG





ACAGCTCGCCCGAGAGCAAAAAGAGCAAGAAGAAAGCTCAGATTC





GCAGGAAGAAAGCAGCCTTACCTCGCTCGAAGAAGTCCCGGAAGA





GACGAAGCTACGACTCCACCTCAGAAAGCAGCTCAGAGAGCAGC





GAAGCATCAGACAGCAACTCCGAACCATGTTCCAGCAACTTGTCA





AGACGCAAGCGGGCCTACACCTAAACCCCCTTTTATCTTCCCAGC





TGTAA






ACK44071.1
FJ426280.1
ATGGCCTGGCGATGGTGGTGGCAGAGACGATGGCGCCGCCGCCC
212




GTGGCCCCGCAGACGGTGGAGACGCCTACGACGCCGGAGACCTC





GACGACCTGTTCGCCGCCGTCGAAGACGAGCAACAGTAAGGAGG





CGGAGGTGGAGGGGCAGACGTGGGCGACGCACATACACCCGAC





GCGCGGTCAGACGCAGACGCAGACCCAGAAAGAGATTTGTACTGA





CTCAGTGGAGCCCCCAGACAGCCAGAAACTGTTCAATAAGGGGCA





TAGTGCCCATGGTAATATGCGGACACACCAGAGCAGGTAGAAACT





ATGCCCTTCACAGCGAGGACTTTACCACTCAGATAAGACCCTTTGG





AGGCAGCTTCAGCACAACCACCTGGTCCCTAAAAGTACTGTGGGA





CGAACACCAGAAATTCCAAAACAGATGGTCCTACCCAAACACACA





GCTGGACCTAGCCAGGTACAGGGGGGTCACCTTCTGGTTCTACAG





AGACCAGAAAACAGACTATATAGTACAATGGAGCAGAAATCCTCCC





TTTAAACTAAACAAATACAGCAGCCCCATGTACCACCCTGGAATGA





TGATGCAGGCAAAAAAGAAACTGGTGGTCCCCAGTTTCCAGACCA





GACCTAAAGGCAAAAAGAGATACAGAGTCAGAATAAGACCCCCCA





ACATGTTCAATGACAAGTGGTACACTCAAGAGGACCTTTGTCCAGT





ACCTCTTGTGCAAATTGTGGTTTCTGCGGCTACCCAGACAAAAAAG





AACTGCTCACCACAAACGAACAACCCTTGCATCACTTTCCAGGTTT





TGAAAGACAAGTACTTAAACTACATAGGAGTTAACTCTTCCGAGAC





CCGAAGAAACAGTTATAAAACTCTACAAGAGAAACTTTACTCACAA





TGCACATACTTTCAAACCACACAAGTTTTAGCTCAATTATCTCCAGC





ATTTCAGCCCGCAAAGAAACCTAACAGAACCAACAACTCAACCAG





CACAACACTAGGCAACAAAGTCACAGACCTAAAATCCAACAATGG





CAAATTCCACACAGGCAACAACCCAGTGTTTGGCATGTGTTCATAT





AAACCCAGCAAGGACATACTATATAAAGCAAACGAATGGTTGTGG





GACAATCTCATGGTTGAAAATGATTTACATTCCACATATGGCAAGG





CAACCCTTAAATGCATGGAGTACCACACAGGCATTTACAGCTCCAT





ATTCCTAAGTCCTCAAAGGTCCCTAGAATTCCCAGCAGCATACCAA





GATGTCACATACAACCCAAACTGTGACAGAGCCATAGGCAACCGT





GTATGGTTCCAATATGGCACAAAAATGAACACAAACTTTAATGAAC





AACAGTGTAAGTGTGTGTTAACAAACATTCCCCTGTGGGCGGCCTT





TAACGGCTACCCAGACTTTATAGAACAAGAACTCGGTATCAGCACA





GAGGTACACAACTTTGGCATAGTATGTTTCCAGTGCCCCTACACCT





TTCCCCCACTCTATGACAAAAAGAACCCAGATAAAGGCTACGTATT





TTATGACACCACCTTTGGGAACGGAAAAATGCCAGACGGGTCAGG





CCACATTCCCATCTACTGGCAGCAGAGATGGTGGATCAGACTAGC





CTTTCAAGTACAAGTCATGCATGACTTTGTACTCACTGGCCCCTTT





AGCTACAAAGATGACCTAGCAAACACTACACTAACAGCCAGGTAC





AAGTTCAGATTCAAATGGGGCGGTAATATCATCCCCGAACAGATTA





TCAAGAACCCGTGTAAGAGAGAACAGTCCCTCGGTTCCTACCCCG





ATAGACAACGTCGCGACCTACAAGTTGTTGACCCATCAACCATGG





GCCCGATCTACACCTTCCACACATGGGACTGGCGACGGGGGCTTT





TTGGTGCAGATGCTATCCAGAGAGTGTCACAAAAACCGGAAGATG





CTCTCCGCTTTACAAACCCTTTCAAGAGACCCAGATATCTTCCCCC





GACAGACGGAGAAGACTACCGACAAGAAGAAGACTTCGCTTTACA





GGAAAGAAGACGGCGCACATCCACAGAAGAAGTCCAGGACGAGG





AGAGCCCCCCGCAAAACGCGCCGCTCCTACAGCAGCAGCAGCAG





CAGCGGGAGCTCTCAGTCCAGCACGCGGAGCAGCAGCGACTCGG





AGTCCAACTCCGATACATCCTCCAAGAAGTCCTCAAAACGCAAGC





GGGTCTCCACCTAAACCCCCTATTATTAGGCCCGCCACAAACAAG





GTGTATATCTTTGAGCCCCCCAGAGGCCTACTCCCCATAG






ACR20257.1
FJ392105.1
ATGGCAGCCTGGTGGTGGGGCAGGCGGAGACGCTGGCGCAGGT
213




GGAGGCGCCGCCGCCTCCCTCGCCGCCGCCGCTGGCGACGGAG





GAGACGGTGGCCCAGAAGACGCAGGCGGAGATGGCCGCGCAGA





CGCAGACGTCGCAGACCTGCTCGCCGCCCTAGAAGGAGACGCAG





ACGCCGAAGGGTAAGGAGACCTCGCCGGCGCCAAAAACTGGTAC





TGACTCAGTGGAACCCTCAGACAGTTAGAAAGTGCATTATCAGAG





GGTTCGTGCCGCTGTTCCAGTGCAGCAGAACTGCCTACCACAGGA





ACTTTGTAGACCACATGGACGACGTGTACACCACGGGTCCCTTCG





GGGGCGGCACGGGGTCCATGCTTTTCACCCTGAGCTTCTTCTACC





ACGAGTTTAAAAAGCACCACTGCAAGTGGTCCGCCAGCAACAGAG





ACTTTGACTTGTGTAGATACAGGGGCACGGTTCTAAAGTTTTATAG





ACATCCAGACGTAGACTACATAGTTTGGCTGAACAGAAACCCCCCT





TTCCAGGAAAACCTATTAGACGCCATGAGCAGACAGCCCCTCATA





ATGTTACAGACTCACAAGTGCATACTGGTGAGGAGCTTTAAAACGC





ACCCCAGGGGACCCTCGTACGTCAGAATGAAAGTTAGACCCCCGA





GACTACTTACAGACAAGTGGTACTTTCAGTCAGACTTCTGCAACGT





TCCGCTTTTCCAGCTACAGTTTGCTCTTGCGGAACTGCGGTTTCCG





ATCGGCTCACCACAAACGAACACCACTTGTGTAAACTTCCTGGTGT





TAGATAACAGGTACCACTTATTTTTAGATAACAAACCACAACAGTCA





GACAACTCACAAAGAGAAGAGAGGGGGCACGGTTATCCCTTTAAC





GGTAGTGAGGGAGAAGCTGATAGACTAAAATTCTGGCACAGTTTG





TGGAATACAGGCAGATTCCTAAACACCACTCACATTAACACCCTAC





AGCCAAACATCTCTAAATTACAAGAACATAAAGCTGAAGACACAGA





GGCAAAAACTACCTATAAAAGTTTAATTAACGGTAACAAAAAGGTA





TATAACGATAGTCAATACATGCAAAACGTTTGGGCACAAAACAAAA





TAAATACCCTTTATGAGGCTATAGCAGAAGAACAATACAGAAAAAT





ACAAAAGTACTATAACACCACATACGGGCAGTACCAAAGGCAACTA





TTTACAGGCAAGAAGTACTGGGACTACAGAGTAGGCATGTTCAGT





CCCACCTTCCTAAGTCCCAGCAGACTAAATCCAGAGATGCCAGGT





GCCTACACAGAGATAGCCTATAACCCCTGGACAGACGAGGGCACG





GGCAACGTTGTGTGCCTGCAGTACCTAACAAAAGAAACCTCAGAC





TACAAGCCACACGCAGGTAGCAAATTCACCATAGAGGACGTACCC





CTGTGGATAGCCATGAATGGGTACGTGGACATATGTAAAAAAGAG





GGCAAAGATCCAGGCATAAGACTAAACTGCCTTATGTGTATAAGGT





GCCCGTACACCAGGCCCAAACTTTACAACCCCAGATACCCCAAAG





AACTGTTTGTAGTGTACTCTTACAACTTTGCCCACGGGCGCATGCC





CGGGGGGGACAAATACATACCCATGGAGTTTAAGGACAGGTGGTA





CCCGTCGCTCATGCACCAGGAAGAGGTCATAGAGGACATAGTCAG





GAGCGGCCCCTTTGCCCTAAAAGACCAGACAGAGATGGTTACTTG





CATGATGAGGTACTCGGCCCTGTTTAACTGGGGCGGTAATATTATC





CGCGAACAGGCCGTGGAAGACCCCTGTAAAAAGAACACCTTTGCC





CTTCCCGGAGCCAGTGGAGTCGCTCGCCTACTACAAGTCAGCAAC





CCGATCAGGCAGACCCCCAGCACCACCTGGCACTCGTGGGACTG





GAGAAGGTCCCTCTTTACACAAACGGGTATTAAAAGAATGCGCGA





ACAACAACCGTATGATGAAATTACTTATGCAGGGCCTAAGAGGCCA





AAACTCACAGTTCCCGCAGGACCCACCCTCGCTGCCGGAGACGC





CTACAACTACTGGGAAAGAAAACCGCTCACCTCGCCCGGAGAGAC





GCTCCCGACCCAGACGGAGACAGAGACAGAAGCCCCAGAGGAAG





AAGCCCAGCAAGAAGAAGTCCAGGAGGGCCTCCAGCTCCAGCAG





CTCTGGGAGCAGCAACTCCAGCAAAAGCGACAGCTGGGAGTCAT





GTTCCAGCAACTCCTCCGACTCAGAACGGGGGCGGAAATACACCC





GGCCCTCGCATAG






ACR20260.1
FJ392107.1
ATGGCAGCCTGGTGGTGGGGCAGGCGGAGACGCTGGCGCAGGT
214




GGAGGCGCCGCCGCCTCCCTCGCCGCCGCCGCTGGCGACGGAG





GAGACGGTGGCCCAGAAGACGCAGGCGGAGATGGCCGCGCAGA





CGCAGACGTCGCAGACCTGCTCGCCGCCCTAGAAGGAGACGCAG





ACGCCGAAGGGTAAGGAGACCTCGCCGGCGCCAAAAACTGGTAC





TGACTCAGTGGAACCCTCAGACAGTTAGAAAGTGCATTATCAGAG





GGTTCGTGCCGCTGTTCCAGTGCAGCAGAACTGCCTGCCACAGGA





ACTTTGTAGACCACATGGACGACGTGTACACCACGGGTCCCTTCG





GGGGCGGCACGGGGTCCATGCTTTTCACCCTGAGCTTCTTCTACC





ACGAGTTTAAAAAGCACCACTGCAAGTGGTCCGCCAGCAACAGAG





ACTTTGACTTGTGTAGATACAGGGGCACGGTTCTAAAGTTTTATAG





ACATCCAGACGTAGACTACATAGTTTGGCTGAACAGAAACCCCCCT





TTCCAGGAAAACCTATTAGACGCCATGAGCAGACAGCCCCTCATA





ATGTTACAGACTCACAAGTGCATACTGGTGAGGAGCTTTAAAACGC





ACCCCAGGGGACCCTCGTACGTCAGAATGAAAGTTAGACCCCCGA





GACTACTTACAGACAAGTGGTACTTTCAGTCAGACTTCTGCAACGT





TCCGCTTTTCCAGCTACAGTTTGCTCTTGCGGAACTGCGGTTTCCG





ATCGGCTCACCACAAACGAACACCACTTGTGTAAACTTCCTGGTGT





TAGATAACAGGTACCACTTATTTTTAGATAACAAACCACAACAGTCA





GAGAACCTACAAAGAAAAGAGAGGGGGCACGGTTATTCCTTTACG





GGTAATGAGGGAGAAGTTGATAGACTAAAATTCTGGCACAGTTTGT





GGAATACAGGCAGATTCCTAAACACCACTCACATTAACACCCTACT





GCCAAACATCTCTAAATTACAAGAACATAAAGCTGAAGACAGACAG





GCAAATGCTAAGTATAAAAATTTAATTAACGGTAACAAAAAGGTATA





TAACGATAGTCAATACATGCAAAACGTTTGGGAAGAAAACAAAATA





AATACCCTTTATGACGCTATAGCAGAAGAACAATACAGAAAAATAC





AAAAGTACTATAACACCACATACGGGCAGTACCAAAGGCAACTATT





TACAGGCAAGAAGTACTGGGACTACAGAGTAGGCATGTTCAGTCC





CACCTTCCTAAGTCCCAGCAGACTAAATCCAGAGATGCCAGGTGC





CTACACAGAGATAGCCTATAACCCCTGGACAGACGAGGGCACGG





GCAACGTTGTGTGCCTGCAGTACCTAACAAAAGAAACCTCAGACTA





CAAGCCACACGCAGGTAGCAAATTCACCATAGAGGACGTACCCCT





GTGGATAGCCATGAACGGGTACGTGGACATATGTAAAAAAGAGGG





CAAAGATCCAGGCATAAGACTAAACTGCCTTATGTGTATAAGGTGT





CCGTACACCAGGCCCAAACTTTACAACCCCAGATACCCCGAAGAA





CTGTTTGTAGTGTACTCTTACAACTTTGCCCACGGGCGCATGCCC





GGGGGGGACAAATACATACCCATGGAGTTTAAGGACAGGTGGTAC





CCGTCGCTCATGCACCAGGAAGAGGTCATAGAGGACATAGTCAGG





AGCGGCCCCTTTGCCCTAAAAGACCAGACAGAGATGGTTACTTGC





ATGATGAGGTACTCGGCCCTGTTTAACTGGGGCGGTAATATTATCC





GCGAACAGGCCGTGGAAGACCCCTGTAAAAAGAACACCTTTGCCC





TTCCCGGAGCCAGTGGAGTCGCTCGCCTACTACAAGTCAGCAACC





CGATCAGGCAGACCCCCAGCACCACCTGGCACTCGTGGGACTGG





AGAAGGTCCCTCTTTACACAAACGGGTATTAAAAGAATGCGCGAAC





AACAACCGTATGATGAAATTACTTATGCAGGGCCTAAGAGGCCAAA





ACTCACAGTTCCCGCAGGGCCCACCCTCGCTGCCGGAGACGCCT





ACAACTACTGGGAAAGAAAACCGCTCACCTCGCCCGGAGAGACGC





TCCCGACCCAGACGGATACAGAGACAGAAGCCCCAGAGGAAGAA





GCCCAGCAAGAAGAAGTCCAGGAGGGCCTCCAGCTCCAGCAGCT





CTGGGAGCAGCAACTCCAGCAAAAGCGACAGCTGGGAGTCATGTT





CCAGCAACTCCTCCGACTCAGAACGGGGGCGGAAATACACCCGG





CCCTCGCATAG






ACR20262.1
FJ392108.1
ATGGCAGCCTGGTGGTGGGGCAGGCGGAGACGCTGGCGCAGGT
215




GGAGGCGCCGCCGCCTCCCTCGCCGCCGCCGCTGGCGACGGAG





GAGACGGTGGCCCAGAAGACGCAGGCGGAGATGGCCGCGCAGA





CGCAGACGTCGCAGACCTGCTCGCCGCCCTAGAAGGAGACGCAG





ACGCCGAAGGGTAAGGAGACCTCGCCGGCGCCAAAAACTGGTAC





TGACTCAGTGGAACCCTCAGACAGTTAGAAAGTGCATTATCAGAG





GGTTCGTGCCGCTGTTCCAGTGCAGCAGAACTGCCTACCACAGGA





ACTTTGTAGACCACATGGACGACGTGTACACCACGGGTCCCTTCG





GGGGCGGCACGGGGTCCATGCTTTTCACCCTGAGCTTCTTCTACC





ACGAGTTTAAAAAGCACCACTGCAAGTGGTCCGCCAGCAACAGAG





ACTTTGACTTGTGTAGATACAGGGGCACGGTTCTAAAGTTTTATAG





ACATCCAGACGTAGACTACATAGTTTGGCTGAACAGAAACCCCCCT





TTCCAGGAAGACCTATTAGACGCCATGAGCAGACAGCCCCTCATA





ATGTTACAGACTCACAAGTGCATACTGGTGAGGAGCTTTAAAACGC





ACCCCAGGGGACCCTCGTACGTCAGAATGAAAGTTAGACCCCCGA





GACTACTTACAGACAAGTGGTACTTTCAGTCGGACTTCTGCAACGT





TCCGCTTTTCCAGCTACAGTTTGCTCTTGCGGAACTGCGGTTTCCG





ATCGGCTCACCACAAACGAACACCACTTGTGTAAACTTCCTGGTGT





TAGATAACAGGTACCACTTATTTTTAGATAACAAACCACAACAGTCA





GACAACCCACAAAGAAAAGAGAGGGGGCACGGTTATTCCTTTACG





GGTAATGAGGGAGAAATGGATAGAGAAAGATTCTGGCACAGTTTG





TGGAGTACAGGCAGATTCCTAAACACCACTCACATTAACACCCTAC





TGCCAAACATCTCTAAATTACAAGACCATAAAGCTGAAGACAAAGA





CGCAAAAACTACCTATAAAAGTTTAATTAACGATAACAAAAAGGTAT





ATAACGATAGTCAATACATGCAAAACGTTTGGGACCAAAACAAAAT





ACATACCCTTTATATGGCTATAGCAGAAGAACAATACAGAAAAATA





CAAAAGTACTATAACACCACATACGGGCAGTACCAAAGGCAACTAT





TTACAGGCAAGAAGTACTGGGACTACAGAGTAGGCATGTTCAGTC





CCACCTTCCTAAGTCCCAGCAGACTAAATCCAGAGATGCCAGGTG





CCTACACAGAGATAGCCTATAACCCCTGGACAGACGAGGGCACGG





GCAACGTTGTGTGCCTGCAGTACCTAACAAAAGAAACCTCAGACTA





CAAGCCACACGCAGGTAGCAAATTCACCATAGAGGACGTACCCCT





GTGGATAGCCATGAACGGGTACGTGGACATATGTAAAAAAGAGGG





CAAAGATCCAGGCATAAGACTAAACTGCCTTATGTGTATAAGGTGT





CCGTACACCAGGCCCAAACTTTACAACCCCAGATACCCCGAAGAA





CTGTTTGTAGTGTACTCTTACAACTTTGCCCACGGGCGCATGCCC





GGGGGGGACAAATACATACCCATGGAGTTTAAGGACAGGTGGTAC





CCGTCGCTCATGCACCAGGAAGAGGTCATAGAGGACATAGTCAGG





AGCAGCCCCTTTGCCCTAAAAGACCAGACAGAGATGGTTACTTGC





ATGATGAGGTACTCGGCCCTGTTTAACTGGGGCGGTAATATTATCC





GCGAACAGGCCGTGGAAGACCCCTGTAAAAAGAACACCTTTGCCC





TTCCCGGAGCCAGTGGAGTCGCTCGCCTACTACAAGTCAGCAACC





CGATCAGGCAGACCCCCAGCACCACCTGGCACTCGTGGGACTGG





AGAAGGTCCCTCTTTACACAAACGGGTATTAAAAGAATGCGCGAAC





AACAACCGTATGATGAAATTACTTATGCAGGGCCTAAGAGGCCAAA





ACTCACAGTTCCCGCAGGGCCCACCCTCGCTGCCGGAGACGCCT





ACAACTACTGGGAAAGAAAACCGCTCACCTCGCCCGGAGAGACGC





TCCCGACCCAGACGGAGACAGAGACAGAAGCCCCAGAGGAAGAA





GCCCAGCAAGAAGAAGTCCAGGAGGGCCTCCAGCTCCAGCAGCT





CTGGGAGCAGCAACTCCAGCAAAAGCGACAGCTGGGAGTCATGTT





CCAGCAACTCCTCCGGCTCAGAACGGGGGCGGAAATACACCCGG





CCCTCGCATAG






ACR20267.1
FJ392111.1
ATGGCAGCCTGGTGGTGGGGCAGGCGGAGACGCTGGCGCAGGT
216




GGAGGCGCCGCCGCCTCCCTCGCCGCCGCCGCTGGCGACGGAG





GAGACGGTGGCCCAGAAGACGCAGGCGGAGATGGCCGCGCAGA





CGCAGACGTCGCAGACCTGCTCGCCGCCCTAGAAGGAGACGCAG





ACGCCGAAGGGTAAGGAGACCTCGCCGGCGCCAAAAACTGGTAC





TGACTCAGTGGAACCCTCAGACAGTTAGAAAGTGCATTATCAGAG





GGTTCGTGCCGCTGTTCCAGTGCAGCAGAACTGCCTACCACAGGA





ACTTTGTAGACCACATGGACGACGTGTACACCACGGGTCCCTTCG





GGGGCGGCGCGGGGTCCATGCTTTTCACCCTGAGCTTCTTCTACC





ACGAGTTTAAAAAGCACCACTGCAAGTGGTCCGCCAGCAACAGAG





ACTTTGACTTGAGTAGATACAGGGGCGCGGTTCTAAAGTTCTATAG





ACATCCAGACGTAGACTACATAGTTTGGCTGAACAGAAACCCCCCT





TTCCAGGAAAACCTATTAGACGCCATGAGCAGACAGCCCCTCATA





ATGTTACAGACTCACAAGTGCATACTGGTGAGGAGCTTTAAAACGC





ACCCCAGGGGACCCTCGTACGTCAGAATGAAAGTTAGACCCCCGA





GACTACTTACAGACAAGTGGTACTTTCAGTCAGACTTCTGCAACGT





TCCGCTTTTCCAGCTACAGTTTGCTCTTGCGGAACTGCGGTTTCCG





ATCGGCTCACCACAAACGAACACCACTTGTGTAAACTTCCTGGTGT





TAGACAACAGGTACCACTCATTTTTAGATAACAAACCACAACAGTC





AGAGAACTCACAAAGAAAAGAGAGGGGGCACGGTTATTCCTTTAC





GGGTAAAGAGGGAGAACAGGATAGACTAACATTCTGGCAGAGTTT





GTGGAATACAGGCAGATTCCTAAACACCACTCACATTAACACCCTA





CTGCCAAACATCTCTAAATTACAAGACCATAAAGCTGAAGACACAG





ACGCAAATCCTGACTATAAAAGTTTAATTAACGGTAACAAAAAGGT





ATATAACGATAGTCAATACATGCAAAACGTTTGGCAACAAGGCAAA





ATAAATACCCTTTGTAACGCTATAGCACAGGAACAATACAGAAAAA





TACAAAAGTACTATAACACCACATACGGGCAGTACCAAAGGCAACT





ATTTACAGGCAAGAAATACTGGGACTACAGAGTAGGCACGTTCAG





TCCCACCTTCCTAAGTCCCAGCAGACTAAATCCAGAGATGCCAGG





TGCCTACACAGAGATAGCCTATAACCCCTGGACAGACGAGGGCAC





GGGCAACGTTGTGTGCCTGCAGTACCTAACAAAAGAAACCTCAGA





CTACAAGCCACACGCAGGTAGCAAATTCACCATAGAGGACGTACC





CCTGTGGATAGCCATGAACGGGTACGTGGACATATGTAAAAAAGA





GGGCAAAGATCCAGGCATAAGACTAAACTGCCTTATGTGTATAAG





GTGTCCGTACACCAGGCCCAAACTTTACAACCCCAGATACCCCGA





AGAACTGTTTGTAGTGTACTCTTACAACTTTAGCCACGGGCGCATG





CCCGGGGGGGACAAATACATACCCATGGAGTTTAAGGACAGGTG





GTACCCGTCGCTCATGCACCAGGAAGAGGTCATAGAGGACATAGT





CAGGAGCGGCCCCTTTGCCCTAAAAGACCAGACAGACATGGTTAC





TTGCATGATGAGGTACTCGGCCCTGTTTAACTGGGGCGGTAATATT





ATCCGCGAACAGGCCGTGGAAGACCCCTGTAAAAAGAACACCTTT





GCCCTTCCCGGAGCCAGTGGAGTCGCTCGCCTACTACAAGTCAGC





AACCCGATCAGGCAGACCCCCAGCACCACCTGGCACTCGTGGGA





CTGGAGAAGGTCCCTCTTTACACAAACGGGTATTAAAAGAATGCG





CGAACAACAACCGTATGATGAAATTACTTATGCAGGGCCTAAGAG





GCCAAAACTCACAGTTCCCGCAGGGCCCACCCTCGCTGCCGGAG





ACGCCTACAACTACTGGGAAAGAAAACCGCTCACCTCGCCCGGAG





AGACGCTCCCGACCCAGACGGAGACAGAGACAGAAGCCCCAGAG





GAAGAAGCCCAGCAAGAAGAAGTCCAGGAGGGCCTCCAGCTCCA





GCAGCTATGGGAGCAGCAACTCCAGCAAAAGCGACAGCTGGGAG





TCATGTTCCAGCAACTCCTCCGACTCAGAACGGGGGCGGAAATAC





ACCCGGCCCTCGCATAG






ACR20269.1
FJ392112.1
ATGGCAGCCTGGTGGTGGGGCAGGCGGAGACGCTGGCGCAGGT
217




GGAGGCGCCGCCGCCTCCCTCGCCGCCGCCGCTGGCGACGGAG





GAGACGGTGGCCCAGAAGACGCAGGCGGAGATGGCCGCGCAGA





CGCAGACGTCGCAGACCTGCTCGCCGCCCTAGAAGGAGACGCAG





ACGCCGAAGGGTAAGGAGACCTCGCCGGCGCCAAAAACTGGTAC





TGACTCAGTGGAACCCTCAGACAGTTAGAAAGTGCATTATCAGAG





GGTTCGTGCCGCTGTTCCAGTGCAGCAGAACTGCCTACCACAGGA





ACTTTGTAGACCACATGGACGACGTGTACACCACGGGTCCCTTCG





GGGGCGGCACGGGGTCCATGCTTTTCACCCTGAGCTTCTTCTACC





ACGAGTTTAAAAAGCACCACTGCAAGTGGTCCGCCAGCAACAGAG





ACTTTGACTTGTGTAGATACAGGGGCACGGTTCTAAAGTTTTATAG





ACATCCAGACGTAGACTACATAGTTTGGCTGAACAGAAACCCCCCT





TTCCAGGAAAACCTATTAGACGCCATGAGCAGACAGCCCCTCATA





ATGTTACAGACTCACAAGTGCATACTGGTGAGGAGCTTTAAAACGC





ACCCCAGGGGACCCTCGTACGTCAGAATGAAAGTTAGACCCCCGA





GACTACTTACAGACAAGTGGTACTTTCAGTCAGACTTCTGCAACGT





TCCGCTTTTCCAGCTACAGTTTGCTCTTGCGGAACTGCGGTTTCCG





ATCGGCTCACCACAAACGAACACCACTTGTGTAAACTTCCTGGTGT





TAGATAACAGGTACCACTTATTTTTAGATAACAAACCACGACAGTC





AGAGAACTTACAAAGAAAAGAGAGGGGGCACGGTTATGTCTTTAC





GGGTAATGAGGGAGAAGATGATAGACTAAAATTCTGGCACAGTTT





GTGGAGTACAGGCAGATTCCTAAACACCACTCACATTAACACCCTA





CTGCCAAACATCTCTAAATTACAAGACCATGAAGCTGAAGACACAC





AGGCAAAAACTGACTATAAAAGTTTAATTAACGGTAACAAAAAGGT





ATATAACGATAGTCAATACATGCAAGACGTTTGGGAACAAAAGAAA





ATACAAACCCTTTATAAGGTTATAGCAGAAGAACAATACAGAAAAA





TAGAAAAGTACTATAACACCACATACGGGCAGTACCAAAGGCAACT





ATTTACAGGCAAGAAGTACTGGGACTACAGAGTAGGCATGTTCAG





TCCCACCTTCCTAAGTCCCAGCAGACTAAATCCAGAGATGCCAGG





TGCCTACACAGAGATAGCCTATAACCCCTGGACAGACGAGGGCAC





GGGCAACGTTGTGTGCCTGCAGTACCTAACAAAAGAAACCTCAGA





CTACAAGCCACACGCAGGTAGCAAATTCACCATAGAGGACGTACC





CCTGTGGATAGCCATGAACGGGTACGTGGACATATGTAAAAAAGA





GGGCAAAGATCCAGGCATAAGACTAAACTGCCTTATGTGTATAAG





GTGTCCGTACACCAGGCCCAAACTTTACAACCCCAGATACCCCGA





AGAACTGTTTGTAGTGTACTCTTACAACTTTGCCCACGGGCGCATG





CCCGGGGGGGACAAATACATACCCATGGAGTTTAAGGACAGGTG





GTACCCGTCGCTCATGCACCAGGAAGAGGTCATAGAGGACATAGT





CAGGAGCGGCCCCTTTGCCCTAAAAGACCAGACAGAGATGGTTAC





TTGCATGATGAGGTACTCGGCCCTGTTTAACTGGGGCGGTAATATT





ATCCGCGAACAGGCCGTGGAAGACCCCTGTAAAAAGAACACCTTT





GCCCTTCCCGGAGCCAGTGGAGTCGCTCGCCTACTACAAGTCAGC





AACCCGATCAGGCAGACCCCCAGCACCACCTGGCACTCGTGGGA





CTGGAGAAGGTCCCTCTTTACACAAACGGGTATTAAAAGAATGCG





CGAACAACAACCGTATGATGAAATTACTTATGCAGGGCCTAAGAG





GCCAAAACTCACAGTTCCCGCAGGGCCCACCCTCGCTGCCGGAG





ACGCCTACAACTACTGGGAAAGAAAACCGCTCACCTCGCCCGGAG





AGACGCTCCCGACCCAGACGGAGACAGAGACAGAAGCCCCAGAG





GAAGAAGCCCAGCAAGAAGAAGTCCAGGAGGGCCTCCAGCTCCA





GCAGCTCTGGGAGCAGCAACTCCAGCAAAAGCGACAGCTGGGAG





TCATGTTCCAGCAACTCCTCCGACTCAGAACGGGGGCGGAAATAC





ACCCGGCCCTCGCATAG






ACR20272.1
FJ392114.1
ATGGCTGCCTGGTGGTGGGGCAGGAGGCGGCGATGGCGCCGGT
218




GGAGACGGCGCCGTCTCCCTCGCCGCCGCCGCTGGCGACGGAG





GAGACGGTGGCCCAGGAGGCGTAGGCGGAGATGGCCGCGGAGA





CGCAGACGTCGCGGACCTGCTCGCCGCCTTAGAAGGAGACGTCG





ACGCAGAAGGGTAAGGAGACCTCGCCGGCGCCAAAAACTCGTAC





TGACTCAGTGGAACCCCCAGACCCAGAGAAAGTGCGTGGTCAGG





GGGTTTCTGCCCCTGTTCTTTTGCGGACAGGGAGCCTATCACAGA





AACTTTGTGGAACACATGGACGACGTGTTCCCCAAGGGACCCTCG





GGAGGGGGCTTTGGCAGCATGGTGTGGAACCTAGATTTTTTGTAC





CAAGAGTTTAAAAAGCATCACAACAAGTGGTCTTCCAGCAACAGG





GACTTTGACCTAGTGAGGTGCCACGGCACGGTGATTAAATTCTAC





AGACACTCTGACTTTGACTACCTGGTGCACGTCACCAGGACCCCT





CCTTTCAAGGAGGACCTCCTCACCATCGTCAGCCACCAGCCGGGG





CTCATGATGCAGAACTACAGGTGCATACTCGTAAAGAGTTACAAGA





CGCACCCCGGGGGGCGACCCTACATAACACCTAAAATAAGGCCC





CCCAGACTCCTGACGGACAAGTGGTACTTTCGGCCCGACTTCTGC





GGAGTTCCTCTTTTCAAACTGTACGTTACTCTTGCAGAGTTGCGGT





TTCCGATCTGCTCACCACAAACTGACACCAATTGTGTCACCTTCCT





GGTGTTAGACAACACCTACTACGACTACTTAGACAATACTGCAGAC





ACCACTAGAGACCATGAAAGACAGCAGAAATGGACAAACATGAAA





ATGACACCCAGATACCATCTCACCAGTCACATAAATACATTGTTTA





GTGGAACACAACAGATGCAAAGCGCAAAAGAAACAGGCAAAGACA





GTCAGTTTAGAGAAAACATCTGGAAAACAGCTGAGGTTGTTAAAAT





TATTAAAGATATAGCCTCAAAAAACATGCAAAAACAACAAACCTACT





ACACAAAAACCTATGGCGCCTATGCCACCCAGTATTTTACTGGAAA





ACAATACTGGGACTGGAGGGTGGGCCTGTTCAGCCCCATATTCCT





CAGTCCCAGCAGACTGAACCCACAAGAGCCAGGGGCCTACACAG





AAATAGCTTACAATCCATGGACTGACGAGGGCACGGGCAACATAG





TGTGCATTCAGTACCTAACAAAGAAAGACAGTCACTACAAGCCGG





GTGCCGGTAGCAAATTCGCAGTGACGGACGTTCCCCTGTGGGCC





GCCCTGTTCGGGTACTACGACCAGTGTAAGAAAGAAAGCAAAGAC





GCGAACATAAGACTAAACCGCTTGCTGTTAGTCAGGTGCCCTTACA





CCAGGCCTAAACTGTACAATCCCAGAGACCCGGACCAACTGTTTG





TAATGTACAGCTACAACTTTGGGCACGGACGCATGCCGGGGGGC





GACAAGTACGTGCCCATGGAATTTAAGGACAGGTGGTACCCGTGC





ATGCTGCACCAAGAAGAAGTAGTGGAGGAGATAGTAAGGTGCGG





GCCCTTTGCTCCCAAAGACATGACTCCCTCGGTAACATGCATGGC





CAGATACTCATCCCTGTTCACCTGGGGGGGCAATATCATTCGCGA





ACAGGCCGTGGAGGACCCCTGTAAAAAATCCACGTTTGCCATTCC





CGGAGCCGGTGGACTCGCTCGCATTCTACAAGTCAGCAACCCGCA





GAGGCAAGCCCCCACCACCACCTGGCACTCGTGGGGCTGGCGCC





GATCCCTCTTTACAGAGACGGGTCTTAAGCGAATGCAGGAACAAC





AACCTTACGATGAAATGTCCTATACAGGCCCTAAAAGGCCAAAACT





GTCTGTTCCCCCAGCAGCAGAAGGAAACCTCGCTGCAGGAGGAG





GCTTATTCTTCAGGGACGGAAAACAGCCTGCCTCGCCAGGAGGCA





GTCTCCCGACGCAGTCGGAGACAGAAGCAGAAGCCGAAGACGAA





GAAGCCCACCAAGAAGAGACGGAGGAGGGAGCGCAGCTCCAGCA





GCTCTGGGAGCAGCAACTCCAACAGAAGCGAGAGCTGGGAATCG





TTTTCCAACACCTCCTCCGACTCCGACAGGGGGCGGAAATCCACC





CGGGCCTCGTATAA






ACR20274.1
FJ392115.1
ATGGCTGCYTGGTGGTGGGGCAGGAGGCGGCGATGGCGCCGGT
219




GGAGACGGCGCCGTYTCCCTCGCCGCCGCCGCTGGCGACGGAG





GAGACGGTGGCCCAGGAGGCGTAGGCGGAGATGGCCGCGGAGA





CGCAGACGTCGCAGACCTGCTCGCCGCCTTAGAAGGAGACGTCG





ACGCAGAAGGGTAAGGAGACCTCGCCGGCGCCAAAAACTCGTAC





TGACTCAGTGGAACCCCCAGACCCAGAGAAAGTGCGTGGTCAGG





GGGTTTCTGCCCCTGTTCTTCTGCGGACAGGGAGCCTATCACAGA





AACTTTGTGGAACACATGGACGACGTGTTCCCCAAGGGACCCTCG





GGAGGGGGCTTTGGCAGCATGGTGTGGAACCTAGATTTTTTGTAC





CAAGAGTTTAAAAAGCATCACAACAGGTGGTCTTCCAGCAACAGG





GACTTTGACCTAGTGAGGTACCACGGCACGGTGATTAAATTCTACA





GACACTCTGACTTTGACTACCTGGTGCACGTCACCAGGACCCCTC





CTTTCAAGGAGGACCTCCTCACCATCGTCAGCCACCAGCCGGGGC





TCATGATGCAGAACTACAGGTGCATACTCGTAAAGAGTTACAAGAC





GCACCCCGGGGGGCGACCCTACATAACACTTAAAATAAGGCCCCC





CAGACTCCTGACGGACAAGTGGTACTTTCAGCCCGACTTCTGCGG





AGTTCCTCTTTTCAAACTGTACGTTACTCTTGCAGAGTTGCGGTTT





CCGATCTGCTCACCACAAACTGACACCAATTGTGTCACCTTCCTGG





TGTTAGACAACACCTACTACGACTACTTAGACAGTACTGCAGACAC





CACTAGAGACAATGAAAGACACCAGAAATGGAAAAACATGATAATG





ACACCCAGATACCATCTCACCAGTCACATAAATACATTGTTTAGTG





GAACACAACAGATGCAAAACGCAAAAGAAACAGGCAAAGACAGTC





AGTTTAGAGAAAACATCTGGAAAACAGAAGAGGTTGTTAAAATTAT





TCACGATATAGCCTCTAGAAACATGCAAAAACAAATAACCTACTAC





ACAAAAACCTATGGCGCCTATGCCACCCAGTATTTTACTGGAAAAC





AATACTGGGACTGGAGGGTGGGCCTGTTCAGCCCCATATTCCTCA





GTCCCAGCAGACTGAACCCACAAGAGCCAGGGGCCTACACAGAA





ATAGCTTACAATCCATGGACTGACGAGGGCACGGGCAACATAGTG





TGCATTCAGTACCTAACAAAGAAAGACAGTCACTACAAGCCGGGT





GCCGGTAGCAAATTCGCAGTGACGGACGTTCCCCTGTGGGCCGC





CCTGTTCGGGTACTACGACCAGTGTAAGAAAGAAAGCAAAGACGC





GAACATAAGACTAAACTGCTTGCTGTTAGTCAGGTGCCCTTACACC





AGGCCTAAACTGTACAATCCCAGAGACCCGGACCAACTGTTTGTA





ATGTACAGCTACAACTTTGGGCACGGACGCATGCCGGGGGGCGA





CAAGTACGTGCCCATGGAATTTAAGGACAGGTGGTACCCGTGCAT





GCTGCACCAAGAAGAAGTAGTGGAGGAGATAGTAAGGTGCGGGC





CCTTTGCTCCCAAAGACATGACTCCCTCGGTAACATGCATGGCCA





GATACTCATCCCTGTTCACCTGGGGGGGCAATATCATTCGCGAAC





AGGCCGTGGAGGACCCCTGTAAAAAATCCACGTTTGCCATTCCCG





GAGCCGGTGGACTCGCTCGCATTCTACAAGTCAGCAACCCGCAGA





GGCAAGCCCCCACGACCACGTGGCACTTGTGGGACTGGCGCCGA





TCCCTCTTTACAGAGACGGGTCTTAAGCGAATGCAGGAACAACAA





CCTTACGATGAAATGTCTTATACAGGCCCTAAAAGGCCAAAACTGT





CCGTTCCCCCAGCAGCAGAAGGAAACCTCGCTGCAGGAGGAGGC





TTATTCTTCCGGGACAGAAAACAGCCCACCTCGCCAGGAGGCAGT





CTCCCGACGCAGTCGGAGACAGAAGCAGAAGCGGAAGACGAAGA





AGCCCACCAAGAAGAGACGGAGGAGGGAGCGCAGCTCCAGCAGC





TCTGGGAGCAGCAACTCCAACAGAAGCGAGAGCTGGGAATCGTTT





TCCAACACCTCCTCCGACTCCGACAGGGGGCGGAAATCCACCCG





GGCCTCGTATAA






ACR20277.1
FJ392117.1
ATGGCATGGTGGTGGTGGAGAAGGAGACGCCGCCCGTGGAGAAG
220




GCGCTGGCGCTGGAAGAGACGAGCCCGAGTACGAACCAGGAGAC





CTAGACGCGCTGTTCGCCGCCGTCGAAGAAGAGTAAGGAGGCGG





AGGAGGGGGTGGAGGAGACTATACAGACGATGGCGACGAAAGGG





CAGACGCAGACGCAGACGCAAAAAGTTAGTAATGAAACAGTGGAA





CCCCTCCACTGTCAGCAGATGCTATATTGTTGGATACCTGCCTATT





ATTATTATGGGACAGGGGACTGCATCCATGAACTATGCATCTCACT





CAGACGACGTGTACTACCCCGGACCGTTTGGGGGGGGAATAAGC





TCTATGAGGTTTACTTTAAGAATACTGTATGACCAGTTTATGAGAG





GACAGAACTTCTGGACTAAGACAAACGAGGACTTGGACCTAGCTA





GATTTCTAGGCAGCAAATGGAGGTTCTATAGACACAAAGATGTGGA





CTTTATAGTGACTTACGAGACCTCAGCCCCCTTTACAGACTCCCTA





GAGTCAGGACCACACCAACACCCAGGCATACAGATGCTAATGAAA





AACAAAATACTAATCCCTAGCTTTGCCACCAAACCAAAAGGAAGGT





CTAGCATTAAAGTTAGAATACAGCCCCCAAAGCTAATGATAGACAA





GTGGTACCCACAAACTGACTTCTGTGAAGTAACGCTGCTAACCATA





CATGCAACCGCCTGCAACTTGCGGTTTCCGTTCTGCTCACCACAA





ACTGACACTTCCTGTGTTCAGTTTCAAGTGTTGTCATACAACGCTT





ACAGGCAGAGAATTTCAATACTTCCTGAATTATGTACTAGAGAAAA





GCTTAGGGAGTTTATTAAACAAGTAGTAAAACCAAATTTAACATGCA





TAAACACTCTAGCTACTCCATGGTGCTTTAAATTCCCAGAGCTAGA





CAAACTACCACCAGTGGCAAACAATGCAACAGGCTGGTCAGTTAA





CCCAGATAGCGGAGACGGAGATGTAATATACCAGGAAACTACATT





AGAAACCAAATGGATTGCTAACAATGATGTGTGGCATACAAAAGAC





CAAAGAGCACACAACAACATACATAGCCAATATGGCATGCCACAAT





CAGACGCATTAGAACACAAAACAGGTTACTTCAGTCCAGCATTATT





AAGCCCACAAAGACTAAACCCACAGATACCAGGCCTATACATAAAC





ATAGTCTACAATCCACTAACAGACAAAGGAGAAGGCAACAAAATTT





GGTGTGACCCACTAACAAAAAACACATTTGGCTATGATCCCCCTAA





AAGTAAATTCCTTATAGAAAATCTGCCACTGTGGTCTGCAGTAACA





GGATACGTAGACTACTGCACGAAAGCCAGCAAAGATGAAAGCTTT





AAATACAACTACAGAGTACTTATCCAGACCCCATACACAGTACCAG





CACTATACAGTGACTCTGAAACCACCAAAAACAGAGGCTACATTCC





CATAGGCACAGACTTTGCATACGGCCGCATGCCTGGGGGAGTACA





ACAAATACCAATTAGATGGAGAATGAGGTGGTACCCCATGCTATTT





AATCAACAACCAGTACTAGAAGACCTATTCCAGTCAGGCCCCTTTG





CATACCAAGGAGATGCTAAATCAGCCACACTAGTCGGCAAATATG





CCTTTAAATGGCTATGGGGTGGCAATCGTATCTTCCAACAGGTGGT





CAGAGACCCGCGCTCACACCAGCAAGACCAATCAGTTGGTCCCAG





TAGACAGCCTAGAGCAGTACAAGTCTTTGACCCGAAGTACCAAGC





ACCACAATGGACATTCCACGCGTGGGACATCAGACGTGGTCTGTT





TGGCAGACAGGCTATTAAAAGAGTGTCAGCAAAACCAACACCTGA





TGAGCTTATATCAACAGGCCCAAAAAGACCTCGGCTGGAAGTCCC





CGCGTTCCAAGAAGAGCAAGAAAAAGACTTACTTTTCAGACAGAGA





AAACACAAAGCCTGGGAGGACACAACGGAGGAAGAGACAGAAGC





CCCCTCAGAAGAGGAGGAAGAGAACCAAGAGCTCCAGCTCGTCA





GACGCCTCCAGCAGCAACGAGAGCTGGGACGAGGCCTCAGATGC





CTCTTCCAGCAACTAACCCGCACACAGATGGGGCTGCATGTAGAC





CCCCAACTATTGGCCCCTGTATAA






AD051761.1
GU797360.1
ATGGCATGGGGATGGTGGAAACGAAGGCGCAAGTGGTGGTGGAG
221




ACGACGCTGGACTCGTGGCCGACTTCGCAAACGACGGGCTAGAC





GAGCTGGTCGCCGCCCTCGACGAAGAAGAGTAAGGAGACGGAGG





GCTTGGAGGCGTGGGCGACGAAAGAGACGGACTTTCAGACGCAG





ACGCAGACGAAAGGGTAGGAGACACAGAACCAGACTTATAATAAG





ACAATGGCAGCCAGAAATAGTGAGAAAGTGCCTCATAATAGGCTA





CTTTCCCATGATTATATGTGGCCAGGGACGCTGGTCAGAGAACTA





CAGCAGCCACCTAGAGGACCGTGTAGTAAAACAGGCCTTCGGTGG





GGGACACGCGACTACCAGGTGGTCTCTAAAAGTACTGTACGAGGA





GAACCTCAGACACTTGAACTTTTGGACCTGGACTAACAGAGACTTA





GAACTGGCCAGGTACCTCAAAGTGACGTGGACCTTTTACAGACAC





CAAGATGTAGACTTTATAATATACTTTAACAGAAAGAGCCCCATGG





GAGGCAACATATACACAGCACCCATGATGCATCCGGGAGCCCTAA





TGCTCAGCAAACACAAGATACTAGTAAAAAGCTTTAAAACAAAACC





CAAGGGCAAAGCAACAGTTAAAGTGACTATTAAGCCCCCCACTCTA





CTAGTAGACAAGTGGTACTTTCAAAAGGACATTTGCGACATGACAC





TGTTAAACCTCAATGCCGTTGCGGCTGACTTGCGGTTTCCGTTCTG





CTCACCACAAACTGACAACCCTTGCATCAACTTCCAGGTTCTGTCC





TCAGTGTATAACAACTTCCTCTCTATAACTGACAATAGACTAACACC





AGTCACAGATGATGGCCAGGCTTATTATAAAGCTTTTCTAGACGCT





GCATTTACCAAAGACAGAGACTTTAATGCTGTTAATACGTTTAGAA





CAATATCTAACTTTTCCCACCCACAACTAGAACTTCCAACTAAAACC





ACCAACACATCCCAAGATCAATACTTTAACACTCTAGATGGGTACT





GGGGAGACCCCATATATGTACACACACAAAATATAAAACCTGACCA





AAACCTTGATAAATGCAAAGAAATACTTACAAACAACATGAAAAACT





GGCATAAAAAAGTAAAGTCAGAAAACCCAAGTAGCCTGAACCACA





GCTGCTTTGCCCACAATGTAGGCATATTCAGCAGCTCATTCCTATC





CGCAGGCAGACTAGCACCAGAAGTTCCAGGCCTGTACACAGATGT





TATTTACAACCCATACACAGACAAGGGAAAGGGAAACATGCTATGG





GTGGATTACTGTAGCAAAGGAGACAACCTATACAAAGAAGGCCAA





AGCAAGTGTCTACTTGCCAACCTACCCCTCTGGATGGCCACAAAC





GGTTATATAGACTGGGTAAAAAAAGAAACAGATAACTGGGTTATAA





ACACTCAAGCCAGAGTACTCATGGTATGTCCCTACACTTACCCAAA





ACTATACCATGAAATACAGCCATTATATGGCTTTGTAGTATACTCAT





ATAACTTTGGAGAGGGAAAAATGCCAAACGGGGCCACATACATAC





CCTTTAAGTTTAGAAACAAGTGGTATCCAACCATATACATGCAGCA





AGCAGTACTAGAAGATATATCCAGATCGGGCCCCTTTGCACTTAAA





CAACAGATACCCAGCGCCACACTTACTGCCAAATACAAATTCAAAT





TCTTATTTGGCGGTAACCCTACTTCTGAACAGGTTGTTAGAGACCC





CTGCACTCAGCCCACCTTCGAACTGCCCGGAGCCAGTACGCAGC





CTCCACGAATACAAGTCACGGACCCGAAACTCCTCGGTCCCCACT





ACTCATTCCACTCGTGGGACCTCAGACGTGGCTACTATAGCACAA





AGAGTATTAAACGAATGTCAGAACACGAAGAACCTTCTGAGTTTAT





TTTCCCAGGTCCCAAAAAACCCAGGGTCGACCTCGGGCCAATCCA





ACAGCAAGAAAGGCCCTCCGATTCACTCCAAAGAGAATCGAGGCC





GTGGGAGACCAGCGAAGAAGAGAGCGAAGCAGAAGTCCAGCAAG





AAGAGACGGAGGAGGTGCCCCTCAGACAGCAACTCCTCCACAAC





CTCAGAGAGCAGCAGCAACTCCGAAAGGGCCTCCAGTGCGTCTTC





CAGCAGCTAATAAAGACGCAGCAGGGGGTTCACATAGACCCATCC





CTACTGTAG






AAX94182.1
D0003341.1
ATGGCGTGGTCGTGGTGGTGGAGGCGACGGAAACGCTGGTGGCC
222




GCGCAGAAGGAGGCGATGGAGGAGATTTCGCACCCGAAGAGCTA





GACGAGCTGTTCCGCGCCGTCGCCGCCGACGAAGAGTAAGGAGG





CGCCGGTGGGGGAGGCGAGGACGTAGGAGACGGGTTTTTTATAA





GAGACGCAGACGAAAGACTGGCAGACTGTACAGAAAGCCCAAAAA





GAAACTAGTACTGACTCAGTGGCACCCCACTACCGTCCGCAACTG





CTCCATCCGAGGCCTTGTGCCTCTAGTACTCTGCGGACACACTCA





GGGCGGCAGAAACTTTGCTCTCAGGAGCGATGACTACCCCAAGCA





GGGGTCTCCTTACGGAGGCAGTTTTAGCACTACAACCTGGAACTT





GAGGGTCCTTTTTGACGAACACCAAAAACACCACAACACGTGGAG





CTACCCCAATAACCAGCTAGACCTGGGCAGATACAAGGGCTGCAC





CTTCTGCTTTTACAGAGGCAAAAAGACGGACTACATAGTAAAGTTT





CAGAGGAGGGGACCCTTTAAAATAAACAAGTACAGCAGTCCCATG





GCCCATCCGGGCATGATGATGCTAGATAAGATGAAAATCCTGGTG





CCCAGCTTTGATACCAGGCCCGGGGGTCGCTGA






AAX94185.1
DQ003342.1
ATGGCGTGGTCGTGGTGGTGGAGGCGACGGAAACGCTGGTGGCC
223




GCGCAGAAGGAGGCGATGGAGGAGATTTCGCACCCGAAGAGCTA





GACGAGCTGTTCCGCGCCGTCGCCGCCGACGAAGAGTAAGGAGG





CGCCGGTGGGGGAGGCGAGGACGTAGGAGACGGGTTTTTTATAA





GAGACGCAGACGAAAGACTGGCAGACTGTACAGAAAGCCCAAAAA





GAAACTAGTACTGACTCAGTGGCACCCCACTACCGTCCGCAACTG





CTCCATCCGAGGCCTTGTGCCTCTAGTACTCTGCGGACACACTCA





GGGCGGCAGAAACTTTGCTCTCAGGAGCGATGACTACCCCAAGCA





GGGGTCTCCTTACGGAGGCAGTTTTAGCACTACAACCTGGAACTT





GAGGGTCCTTTTTGACGAACACCAAAAACACCACAACACGTGGAG





CTACCCCAATAACCAGCTAGACCTGGGCAGATACAAGGGCTGCAC





CTTCTGCTTTTACAGAGGCAAAAAGACGGACTACATAGTAAAGTTT





CAGAGGAGGGGACCCTTTAAAATAAACAAGTACAGCAGTCCCATG





GCCCATCCGGGCATGATGATGCTAGATAAGATGAAAATCCTGGTG





CCCAGCTTTGATACCAGGCCCGGGGGTCGCTGA






AAX94188.1
DQ003343.1
ATGGCGTGGTCGTGGTGGTGGAGGCGACGGAAACGCTGGTGGCC
224




GCGCAGAAGGAGGCGATGGAGGAGATTTCGCACCCGAAGAGCTA





GACGAGCTGTTCCGCGCCGTCGCCGCCGACGAAGAGTAAGGAGG





CGCCGGTGGGGGAGGCGAAGACGTAGGAGACGGGTTTTTTATAA





GAGACGCAGACGAAAGACTGGCAGACTGTACAGAAAGCCCAAAAA





GAAACTAGTACTGACTCAGTGGCACCCCACTACCGTCCGCAACTG





CTCCATCCGAGGCCTTGTGCCTCTAGTACTCTGCGGACACACTCA





GGGCGGCAGAAACTTTGCTCTCAGGAGCGATGACTACCCCAAGCA





GGGGTCTCCTTACGGAGGCAGTTTTAGCACTACAACCTGGAACTT





GAGGGTCCTTTTTGACGAACACCAAAAACACCACAACACGTGGAG





CTACCCCAATAACCAGCTAGACCTGGGCAGATACAAGGGCTGCAC





CTTCTACTTTTACAGAGACAAAAAGACAGACTACATAGTAAAGTTTC





AGAGGAGGGGACCCTTTAAAATAAACAAGTACAGCAGTCCCATGG





CCCATCCGGGCATGATGATGCTAGATAAGATGAAAATCCTGGTGC





CCAGCTTTGATACCAGGCCCGGGGGTCGCTGA






AAX94191.1
DQ003344.1
ATGGCGTGGTCGTGGTGGTGGAGGCGACGGAAACGCTGGTGGCC
225




GCGCAGAAGGAGGCGATGGAGGAGATTTCGCACCCGAAGAGCTA





GACGAGCTGTTCCGCGCCGTCGCCGCCGACGAAGAGTAAGGAGG





CGCCGGTGGGGGAGGCGAAGACGTAGGAGACGGGTTTTTTATAA





GAGACGCAGACGAAAGACTGGCAGACTGTACAGAAAGCCCAAAAA





GAAACTAGTACTGACTCAGTGGCACCCCACTACCGTCCGCAACTG





CTCCATCCGAGGCCTTGTGCCTCTAGTACTCTGCGGACACACTCA





GGGCGGCAGAAACTTTGCTCTCAGGAGCGATGACTACCCCAAGCA





GGGGTCTCCTTACGGAGGCAGTTTTAGCACTACAACCTGGAACTT





GAGGGTCCTTTTTGACGAACACCAAAAACACCACAACACGTGGAG





CTACCCCAATAACCAGCTAGACCTGGGCAGATACAAGGGCTGCAC





CTTCTACTTTTACAGAGACAAAAAGACAGACTACATAGTAAAGTTTC





AGAGGAGGGGACCCTTTAAAATAAACAAGTACAGCAGTCCCATGG





CCCATCCGGGCATGATGATGCTAGATAAGATGAAAATCCTGGTGC





CCAGCTTTGATACCAGGCCCGGGGGTCGCTGA






AAX94183.1
D0003341.1
ATGTACTATGGCTGCATAGGAATTAATTCCACTTTAACAACCAAGTA
226




TGAAAACTTATTTAATAAACTATATTCCAAATGCTGCTACTTTGAAA





CCTTTCAAACAATAGCCCAGCTAAATCCTGGCTTTAAAGCTGCTAA





AAAGACTACTAATGGTTCTGGTTCTACAGCTGCAACACTAGGAGAC





GCAGTAACTGAACTTAAAAACCCAAATGGTACTTTTTACACAGGCA





ACAATAGCACCTTTGGCTGCTGCACATATAAACCCACTAAACAAAT





AGGTAGTAATGCCAATAAGTGGTTCTGGCATCAGTTAACAGCCACA





GATTCAGACACACTAGGCCAATACGGCCGTGCCTCCATTCAGTAT





ATGGAGTACCACACAGGCATTTACAGCTCAATTTTTCTTAGCCCAC





TAAGAAGCAATCTAGAACTCCCTACAGCATACCAAGATGTAACATA





TAATCCACTAACTGACAGAGGTATAGGTAACAGAATCTGGTACCAG





TACAGTACCAAAGAAAACACTACATTTAATGAAACACAGTGCAAAT





GTGTACTATCAGACTTGCCACTGTGGAGCATGTTTTATGGCTATGT





AGATTTTATAGAGTCAGAACTAGGCATCTCAGCAGAGATACACAAC





TTTGGCATAGTATGTGTCCAGTGCCCCTACACGTTTCCCCCAATGT





TTGACAAATCCAAACCAGATAAAGGCTACGTGTTCTATGACACCCT





TTTTGGCAACGGAAAGATGCCAGACGGGAGCGGACACGTACCCA





CCTACTGGCAGCAGAGGTGGTGGCCCAGATTCAGCTTCCAGAGAC





AAGTGATGCACGACATTATCCTCACCGGGCCCTTCAGCTACAAAG





ATGACTCTGTAATGACTGGCATAACCGCAGGCTACAAGTTTAAATT





CTCATGGGGCGGTGATATGGTCTCCGAACAGGTCATTAAAAACCC





AGAGAGAGGGGACGGACGAGACTCCACCTATCCCGATAGACAGC





GCCGCGACTCACAAGTTGTTGACCCACGCTCCATGGGCCCCCAAT





GGGTGTTCCACACCTTTGACTACAGACGGGGGCTTTTTGGAAAGG





ACGCTATTAAGCGAGTGTCAGAAAAACCGACAGATCCTGACTACTT





TACAACACCTTACAAAAAACCAAGATTTTTCCCTCCAACAGCAGGA





GAAGAAAAACTGCAAGAAGAAGACTCCGCTTTACAGGAGAAAAGA





AGCCCGCTCTCGTCAGAAGAGGGGCAGACGAGGGCGCAAGTCCT





CCAGCAGCAGGTCCTCCAGTCGGAGCTCCAGCAGCAGCAGGAGC





TCGGGGAGCAGCTCAGATTCCTCCTCAGGGAAATGTTCAAAACCC





AAGCGGGCATACACATGAACCCCCGCGCATTTCAGGAGCTGTAA






AAX94186.1
DQ003342.1
ATGTACTATGGCTGCATAGGAATTAATTCCACTTTAACAACCAAGTA
227




TGAAAACTTATTTAATAAACTATATTCCAAATGCTGCTACTTTGAAA





CCTTTCAAACAATAGCCCAGCTAAATCCTGGCTTTAAAGCTGCTAA





AAAGACTACTAATGGTTCTGGTTCTACAGCTGCAACACTAGGAGAC





GCAGTAACTGAACTTAAAAACCCAAATGGTACTTTTTACACAGGCA





ACAATAGCACCTTTGGCTGCTGCACATATAAACCCACTAAACAAAT





AGGTAGTAATGCCAATAAGTGGTTCTGGCATCAGTTAACAGCCACA





GATTCAGACACACTAGGCCAATACGGCCGTGCCTCCATTCAGTAT





ATGGAGTACCACACAGGCATTTACAGCTCAATTTTTCTTAGCCCAC





TAAGAAGCAATCTAGAACTCCCTACAGCATACCAAGATGTAACATA





TAATCCACTAACTGACAGAGGTATAGGTAACAGAATCTGGTACCAG





TACAGTACCAAAGAAAACACTACATTTAATGAAACACAGTGCAAAT





GTGTACTATCAGACTTGCCACTGTGGAGCATGTTTTATGGCTATGT





AGATTTTATAGAGTCAGAACTAGGCATCTCAGCAGAGATACACAAC





TTTGGCATAGTATGTGTCCAGTGCCCCTACACGTTTCCCCCAATGT





TTGACAAATCCAAACCAGATAAAGGCTACGTGTTCTATGACACCCT





TTTTGGCAACGGAAAGATGCCAGACGGGAGCGGACACGTACCCA





CCTACTGGCAGCAGAGGTGGTGGCCCAGATTCAGCTTCCAGAGAC





AAGTGATGCACGACATTATCCTCACCGGGCCCTTCAGCTACAAAG





ATGACTCTGTAATGACTGGCATAACCGCAGGCTACAAGTTTAAATT





CTCATGGGGCGGTGATATGGTCTCCGAACAGGTCATTAAAAACCC





AGAGAGAGGGGACGGACGAGACTCCACCTATCCCGATAGACAGC





GCCGCGACTCACAAGTTGTTGACCCACGCTCCATGGGCCCCCAAT





GGGTGTTCCACACCTTTGACTACAGACGGGGGCTTTTTGGAAAGG





ACGCTATTAAGCGAGTGTCAGAAAAACCGACAGATCCTGACTACTT





TACAACACCTTACAAAAAACCAAGATTTTTCCCTCCAACAGCAGGA





GAAGAAAAACTGCAAGAAGAAGACTCCGCTTTACAGGAGAAAAGA





AGCCCGCTCTCGTCAGAAGAGGGGCAGACGAGGGCGCAAGTCCT





CCAGCAGCAGGTCCTCCAGTCGGAGCTCCAGCAGCAGCAGGAGC





TCGGGGAGCAGCTCAGATTCCTCCTCAGGGAAATGTTCAAAACCC





AAGCGGGCATACACATGAACCCCCGCGCATTTCAGGAGCTGTAA






AAX94189.1
DQ003343.1
ATGTACTATGACTGCATAGGAATTAATTCCACTTTAACAACCAAGTA
228




TGAAAACTTATTTAATAAACTATATTCCAAATGCTGCTACTTTGAAA





CCTTTCAAACAATAGCCCAGCTAAATCCTGGCTTTAAAGCTGCTAA





AAAGACTACTAATGGTTCTGGTTCTACAGCTGCAACACTAGGAGAC





GCAGTAACTGAACTTAAAAACCCAAATGGTACTTTTTACACAGGCA





ACAATAGCACCTTTGGCTGCTGCACATATAAACCCACTAAACAAAT





AGGTAGTAATGCCAATAAGTGGTTCTGGCATCAGTTAACAGCCACA





GATTCAGACACACTAGGCCAATACGGCCGTGCCTCCATTCAGTAT





ATGGAGTACCACACAGGCATTTACAGCTCAATTTTTCTTAGCCCAC





TAAGAAGCAATCTAGAATTCCCTACAGCATACCAAGATGTAACATA





TAATCCACTAACTGACAGAGGTATAGGTAACAGAATCTGGTACCAG





TACAGTACCAAAGAAAACACTACATTTAATGAAACACAGTGCAAAT





GTGTACTATCAGACTTGCCACTGTGGAGCATGTTTTATGGCTATGT





AGATTTTATAGAGTCAGAACTAGGCATCTCAGCAGAGATACACAAC





TTTGGCATAGTATGTGTCCAGTGCCCCTACACGTTTCCCCCAATGT





TTGACAAATCCAAACCAGATAAAGGCTACGTGTTCTATGACACCCT





TTTTGGCAACGGAAAGATGCCAGACGGGAGCGGACACGTACCCA





CCTACTGGCAGCAGAGGTGGTGGCCCAGATTCAGCTTCCAGAGAC





AAGTGATGCACGACATTATCCTCACCGGGCCCTTCAGCTACAAAG





ATGACTCTGTAATGACTGGCATAACCGCAGGCTACAAGTTTAAATT





CTCATGGGGCGGTGATATGGTCTCCGAACAGGTCATTAAAAACTC





AGAGAGAGGGGACGGACGAGACTCCACCTATCCCGATAGACAGC





GCCGCGACTTACAAGTTGTTGACCCACGCTCCATGGGCCCCCAAT





GGGTATTCCACACCTTTGACTACAGACGGGGGCTTTTTGGAAAGG





ACGCTATTAAGCGAGTGTCAGAAAAACCGACAGATCCTGACTACTT





TACAACACCTTACAAAAAACCAAGATTTTTCCCTCCAACAGCAGGA





GAAGAAAAACTGCAAGAAGAAGACTCCGCTTTACAGGAGAAAAGA





AGCCCGCTCTCGTCAGAAGAGGGGCAGACGAGGGCGCAAGTCCT





CCAGCAGCAGGTCCTCCAGTCGGAGCTCCAGCAGCAGCAGGAGC





TCGGGGAGCAGCTCAGATTCCTCCTCAGGGAAATGTTCAAAACCC





AAGCGGGCATACACATGAACCCCCGCGCATTTCAGGAGCTGTAA






AAX94192.1
DQ003344.1
ATGTACTATGACTGCATAGGAATTAATTCCACTTTAACAACCAAGTA
229




TGAAAACTTATTTAATAAACTATATTCCAAATGCTGCTACTTTGAAA





CCTTTCAAACAATAGCCCAGCTAAATCCTGGCTTTAAAGCTGCTAA





AAAGACTACTAATGGTTCTGGTTCTACAGCTGCAACACTAGGAGAC





GCAGTAACTGAACTTAAAAACCCAAATGGTACTTTTTACACAGGCA





ACAATAGCACCTTTGGCTGCTGCACATATAAACCCACTAAACAAAT





AGGTAGTAATGCCAATAAGTGGTTCTGGCATCAGTTAACAGCCACA





GATTCAGACACACTAGGCCAATACGGCCGTGCCTCCATTCAGTAT





ATGGAGTACCACACAGGCATTTACAGCTCAATTTTTCTTAGCCCAC





TAAGAAGCAATCTAGAATTCCCTACAGCATACCAAGATGTAACATA





TAATCCACTAACTGACAGAGGTATAGGTAACAGAATCTGGTACCAG





TACAGTACCAAAGAAAACACTACATTTAATGAAACACAGTGCAAAT





GTGTACTATCAGACTTGCCACTGTGGAGCATGTTTTATGGCTATGT





AGATTTTATAGAGTCAGAACTAGGCATCTCAGCAGAGATACACAAC





TTTGGCATAGTATGTGTCCAGTGCCCCTACACGTTTCCCCCAATGT





TTGACAAATCCAAACCAGATAAAGGCTACGTGTTCTATGACACCCT





TTTTGGCAACGGAAAGATGCCAGACGGGAGCGGACACGTACCCA





CCTACTGGCAGCAGAGGTGGTGGCCCAGATTCAGCTTCCAGAGAC





AAGTGATGCACGACATTATCCTCACCGGGCCCTTCAGCTACAAAG





ATGACTCTGTAATGACTGGCATAACCGCAGGCTACAAGTTTAAATT





CTCATGGGGCGGTGATATGGTCTCCGAACAGGTCATTAAAAACTC





AGAGAGAGGGGACGGACGAGACTCCACCTATCCCGATAGACAGC





GCCGCGACTTACAAGTTGTTGACCCACGCTCCATGGGCCCCCAAT





GGGTATTCCACACCTTTGACTACAGACGGGGGCTTTTTGGAAAGG





ACGCTATTAAGCGAGTGTCAGAAAAACCGACAGATCCTGACTACTT





TACAACACCTTACAAAAAACCAAGATTTTTCCCTCCAACAGCAGGA





GAAGAAAAACTGCAAGAAGAAGACTCCGCTTTACAGGAGAAAAGA





AGCCCGCTCTCGTCAGAAGAGGGGCAGACGAGGGCGCAAGTCCT





CCAGCAGCAGGTCCTCCAGTCGGAGCTCCAGCAGCAGCAGGAGC





TCGGGGAGCAGCTCAGATTCCTCCTCAGGGAAATGTTCAAAACCC





AAGCGGGCATACACATGAACCCCCGCGCATTTCAGGAGCTGTAA









In some embodiments, the genetic element comprises a nucleotide sequence encoding a capsid protein or a functional fragment of a capsid protein or a sequence having at least about 60%, 70% 80%, 85%, 90% 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of the amino acid sequences described herein, e.g., in any of Tables 2, 4, 6, 8, 10, 12, 14, or 16. In some embodiments, the substantially non-pathogenic protein comprises a capsid protein or a functional fragment of a capsid protein or a sequence having at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of the amino acid sequences described herein, e.g., in any of Tables 2, 4, 6, 8, 10, 12, 14, or 16.









TABLE 16







Examples of amino acid sequences of substantially non-pathogenic proteins,


e.g., capsid proteins










Accession #
Accession #

SEQ


(nucleotide
(protein

ID


sequence)
sequence)
Protein Sequence
NO:





AF079173.1
AAC28465.1
MAYGWWRRRRRRWRRWRPRPWRPRWRTRRRRPARR
230




RGHRRNVRRRRRGGRWRRRYRRWKRKGRRRKKAKIIIR





QWQPNYRRRCNIVGYIPVLICGENTVSRNYATHSDDTNY





PGPFGGGMTTDKFTLRILYDEYKRFMNYWTASNEDLDLC





RYLGVNLYFFRHPDVDFIIKINTMPPFLDTELTAPRLHPGM





LALDKRARWIPSLKSIPGKKHYIKIRVGAPKMFTDKWYPQ





TDLCDMVLLTVYATAADIPYPFGSPLTDSVVVNFQVLQSM





YDKYISILPDQKSQSKSLLSNIANYIPFYNTTQTIAQLKPFID





AGNITSGTAATTWGSYINTTKFTTTATTTYTYPGTTTNTVT





MYSSNDSWYRGTVYNNQIKELPKKAAELYSKATKTLLGN





TFTTEDCTLEYHGGLYSSIWLSPGRSYFETPGAYTDIKYN





PFTDRGEGNMLWIDWLSKKNMNYDKVQSKCLVSDLPLW





ASAYGYVEFCAKSTGDQNIHMNARLLIRSPFTDPQLLVHT





DPTKGFVPYSLNFGNGKMPGGSSNVPIRMRAKWYPTLF





HQQEVLEALAQSGPFAYHSDIKEVSLGMKYRFKWIWGG





NPVRQQVVRNPCKETHSSGNRVPRSLQIVDPKYNSPELT





FHTWDFRRGLFGPKAIQRMQQQPTTTDIFSAGRKRPRR





DTEVYHSSQEGEQKESLLFPPVKLLRRVPPWEDSQQEE





SGSQSSEEETQTVSQQLKQQLQQQQILGVKLRLLFDQV





QKIQQNQDINPTLLPRGGDLASLFQIAP*






AF129887.1
AAD20024.1
MAYGLWRRRRRRWKRWRRRRWRRRWRTRRRRPAGR
231




RRRRRTVRRRRRRGRWRRRYRRWRRKGRRRKKKKLII





RQWQPNYTRKCNIVGYMPVIMCGENTVSRNYATHSDDT





NYPGPFGGGMTTDKFTLRILYDWYKRFMNYWTASNEDL





DLCRYLGVNLYFFRHPDVDFIIKINTMPPFLDTELTAPSIHP





GMLALDERARWIPSLKSRPGKKHYIKIRVGAPKMFTDKW





YPQTDLCDMVLLTVYATAADMQYPFGYPLTDSVVVNFQV





LQSMYDKYISILPDQKSQRESLLSNIANYIPFYNTTQTIAQL





KPFIDAGNITSGTTATTWGSYINTTKFTTTATTTYTYPGTT





TNTVTMLTSNDSWYRGTVYNNQIKELPKKAAELYSKATK





TLLGNTFTTEDCTLEYHGGLYSSIWLSPGRSYFETPGAYT





DMKYNPFTDRGEGNMLWIDWLSKKNMNYDKVQSKCLV





SDLPLWAAAYGYLEFCSKSTGDTNIHMNARLLIRSPFTDP





QLIAHTDPTKGFVPYSLNFGNGKMPGGSSNVPIRMRAK





WYPTLFHQQEVLEALAQSGPFAYHSDIKKVSLGIKYRFK





WIWGGNPVRQQVVRNPCKEPHSSVNRVPRSIQIVDPKY





NSPELTIHAWDFRRGFFGPKAIQRMQQQPTATEFFSAGR





KRPRRDTEVYQSDQEKEQKESSLFPPVKLLRRVPPWED





SEQEQSGSQSSEEETHTVSQQLKQQLQQQRILGVKLRV





LFHQVHKIQQNQHINPTLLPRGGALASLSQIAP*






AF116842.1
AAD29634.1
MAYGLWHRRRRRWRRWKRTPWKRRWRTRRRRPARR
232




RGRRRNVRRRRRGGRWRRRYRRWKRKGRRRKKAKIIIR





QWQPNYRRRCNIVGYIPVLICGENTVSRNYATHSDDTNY





PGPFGGGMTTDKFTLRILCDEYKRFMNYWTASNEDLDLC





RYLGVNLYFFRHPDVDFIIKINTMPPFLDTELTAPSIHPGM





LALDKRARWIPSLKSRPGKKHYIKIRVGAPKMFTDKWYP





QTDLCDMVLLTVYATTADMQYPFGSPLTDSVVVNFQVLQ





SMYDKTISILPDEKSQREILLNKIASYIPFYNTTQTIAQLKPF





IDAGNVTSGATATTWASYINTTKFTTATTTTYAYPGTNRP





PVTMLTCNDSWYRGTVYNTQIQQLPIKAAKLYLEATKTLL





GNNFTNEDYTLEYHGGLYSSIWLSPGRSYFETTGAYTDIK





YNPFTDRGEGNMLWIDWLSKKNMNYDKVQSKCLVRDLP





LWAAAYGYVEFCAKSTGDKNIYMNARLLIRSPFTDPQLLV





HTDPTKGFVPYSLNFGNGKMPGGSSNVPIRMRAKWYPT





LFHQQEVLEALAQSGPFAYHSDIKKVSLGMKYRFKWIWG





GNPVRQQVVRNPCKETHSSGNRVPRSLQIVDPKYNSPE





LTFHTWDFRRGLFGPRAIQRMQQQPTTTDILSAGRKRPR





KDTEVYHPSQEGEQKESLLFPPVKLLRRVPPWEDSQQE





ESGSQSSEEETQTVSQQLKQQLQQQQILGVKLRLLFDQV





QKIQQNQDINPTLLPRGGDLASLFQIAP*






AB026345.1
BAA85662.1
MAYGWWRRRRRRWRRWRRRPWRRRWRTRRRRPARR
233




RGRRRNVRRRRRGGRWRRRYRRWKRKGRRRKKAKIIIR





QWQPNYRRRCNIVGYIPVLICGENTVSRNYATHSDDTNY





PGPFGGGMTTDKFTLRILYDEYKRFMNYWTASNEDLDLC





RYLGVNLYFFRHPDVDFIIKINTMPPFLDTELTAPSIHPGM





LALDKRARWIPSLKSRPGKKHYIKIRVGAPKMFTDKWYP





QTDLCDMVLLTVYATAADMQYPFGSPLTDSVVVNFQVLQ





SMYDEKISILPDQKSQRESLLTSIANYIPFYNTTQTIAQLKP





FIDAGNVTSGTTATTWGSYINTTKFTTTATTTYTYPGTTTT





TVTMLTSNDSWYRGTVYNNQIKDLPKKAAELYSKATKTLL





GNTFTTEDYTLEYHGGLYSSIWLSPGRSYFETPGAYTDIK





YNPFTDRGEGNMLWIDWLSKKNMNYDKVQSKCLISDLPL





WAAAYGYVEFCAKSTGDQNIHMNARLLIRSPFTDPQLLV





HTDPTKGFVPYSLNFGNGKMPGGSSNVPIRMRAKWYPT





LFHQQEVLEALAQSGPFAYHSDIKKVSLGMKYRFKWIWG





GNPVRQQVVRNPCKETHSSGNRVPRSLQIVDPKYNSPE





LTFHTWDFRRGLFGPKAIQRMQQQPTTTDIFSAGRKRPR





RDTEVYHSSQEGEQKESLLFPPVKLLRRVPPWEDSQQE





ESGSQSSEEETQTVSQQPKQQLQQQRILGVKLRLLFNQV





QKIQQNQDINPTLLPRGGDLASLFQVAP*






AB026346.1
BAA85664.1
MAYGWWRRRRRRWRRWRRRPWRRRWRTRRRRPARR
234




RGRRRNVRRRRRGGRWRRRYRRWKRKGRRRKKAKIIIR





QWQPNYRRRCNIVGYIPVLICGENTVSRNYATHSDDTNY





PGPFGGGMTTDKFTLRILYDEYKRFMNYWTASNEDLDLC





RYLGVNLYFFRHPDVDFIIKINTMPPFLDTELTAPSIHPDM





LALDKRARWIPSLKSRPGKKHYIKIRVGAPKMFTDKWYP





QTDLCDMVLLTVYATTADMQYPFGSPLTDSVVVNFQVLQ





SMYDENISILPTEKSKRDVLHSTIANYTPFYNTTQIIAQLRP





FVDAGNLTSASTTTTWGSYINTTKFNTTATTTYTYPGSTT





TTVTMLTCNDSWYRGTVYNNQISKLPKQAAEFYSKATKT





LLGNTFTTEDHTLEYHGGLYSSIWLSAGRSYFETPGAYT





DIKYNPFTDRGEGNMLWIDWLSKNNMNYDKVQSKCLISD





LPLWAAAYGYVEFCAKSTGDQNIHMNARLLIRSPFTDPQ





LLVHTDPTKGFVPYSLNFGNGKMPGGSSNVPIRMRAKW





YPTLFHQQEVLEALAQSGPFAYHSDIKKVSLGMKYRFKW





IWGGNPVRQQVVRNPCKETHSSGNRVPRSLQIVDPKYN





SPELTFHTWDFRRGLFGPKAIQRMQQQPTTTDIFSAGRK





RPRRDTEVYHSSQEGEQKESLLFPPVKLLRRVPPWEDS





QQEESGSQSSEEETQTVSQQLKQQLQQQRILGVKLRLLF





NQVQKIHQNQDINPTLLPRGGDLASLFQIAP*






AB026347.1
BAA85666.1
MAYGWWRRRRRRWRRWRRRPWRRRWRTRRRRPARR
235




RGRRRNVRRRRRGGRWRRRYRRWKRKGRRRKKAKIIIR





QWQPNYRRRCNIVGYIPVLICGENTVSRNYATHSDDTNY





PGPFGGGMTTDKFTLRILYDEYKRFMNYWTASNEDLDLC





RYLGVNLYFFRHPDVDFIIKINTMPPFLDTELTAPSIHPGM





LALDKRARWIPSLKSRPGKKHYIKIRVEAPKMFTDKWYPQ





TDLCDMVLLTVYATTADMQYPFGSPLTDSVVVNFQVLQS





MYDQNISILPTEKSKRTQLHDNITRYTPFYNTTQTIAQLKP





FVDAGNVTPVSPTTTWGSYINTTKFTTTATTTYTYPGTTT





TTVTMLTCNDSWYRGTVYNNQISQLPKKAAEFYSKATKT





LLGDTFTTEDYTLEYHGGLYSSIWLSAGRSYFETPGVYTD





IKYNPFTDRGEGNMLWIDWLSKKNMNYDKVQSKCLISDL





PLWAAAYGYVEFCAKSTGDQNIHMNAKLLIRSPFTDPQLL





VHTDPTKGFVPYSLNFGNGKMPGGSSNVPIRMRAKWYP





TLFHQQEVLEALAQSGPFAYHSDIKKVSLGMKYRFKWIW





GGNPVRQQVVRNPCKETHSSGNRVPRSLQIVDPKYNSP





ELTFHTWDFRRGLFGPKAIQRMQQQPTTTDIFSAGRKRP





RRDTEVYHSSQEGEQKESLLFLPVKLLRRVPPWEDSQQ





EESGSQSSEEETQTVSQQLKQQLQQQRILGVKLRLLFNQ





VQKIQQNQDINPTLLPRGGDLASLFQIAP*






AB030487.1
BAA90406.1
MAYGWWRRRRRRWKRWRRRPRWRRPWRTRRRRPAR
236




RRGRRRTVRRRERGRWRRRYRRWRKKGKRRIKKKLIIR





QWQPNYTRKCDILGYMPVIMCGENTLIRNYATHANDCY





WPGPFGGGMATQKFTLRILYDDYKRFMNYVVTSSNEDLD





LCRYRGVTLYFFRHPDVDFIILINTTPPFVDTEITGPSIHPG





MMALNKRARFIPSLKTRPGRRHIVKIRVGAPKLYEDKWYP





QSELCDMPLLTVYATAADMQYPFGSPLTDTPVVTFQVLR





SMYNDALSILPSNFEQDDNAGQKLYNEISSYLPYYNTTET





IAQLKRYVENTEKISTTPNPWQSNYVNTITFTTAQSITTTT





PYTTFSDSWYRGTVYKNAITKVPLAAAKLYETQTKNLLSP





TFTGGSEYLEYHGGLYSSIWLSAGRSYFETKGAYTDICY





NPYTDRGEGNMLWIDWLSKGDSRYDKARSKCLIEKLPM





WAAVYGYAEYCAKATGDSNIDMNARVVMRCPYTVPQMI





DTSDPLRGFIPYSFNFGKGKMPGGTNQVPIRMRAKWYP





CLFHQKEVLEAIGQSGPFAYHSDQKKAVLGLKYRFHWIW





GGNPVFPQVVRNPCKDTQGSTGPRKPRSVQIIDPKYNTP





ELTIHAWDFRRGFFGPKAIKRMQQQPTDAELLPPGRKRS





RRDTEVLQSSQERQKESLLLQQLHLQGRVPPWESLQGL





QTETESQKEHEGTLSQQIREQVQQQKLLGRQLREMFLQ





LHKILQNQHVNPTLLPRDQGLIWWFQIQ*






AB030488.1
BAA90409.1
MAYGWWRRRRRRWKRWRRRPRWRRPWRTRRRRPAG
237




RRGRRRTVRRRRRGRWRRRYRRWRKKGRRRRKKKLII





RQWQPNYTRKCNIVGYMPVIMCGENTLIRNYATHAYNCS





WPGPFGGGMATQKFTLRILYDDYKRFMNYVVTSSNEDLD





LCRYRGATLYFFRDPDVDFIILINTTPPFVDTEITGPSIHPG





MLALNKRARFIPSLKTRPSRRHIVKIRVGAPKLYEDKWYP





QSELCDMPLLTVYATATDMQYPFGSPLTDTPIVTFQVLRS





MYNDALSILPSNFEGDDSAGAKLYKQISEYIPYYNTTETIA





QLKGYVENTEKTQTTPNPWQSKYVNTKPFDTAQTITNQK





PYTPFADTWYRGTAYKEEIKNVPLKAAELYELHTTHLLST





TFTGGSKYLEYHGGLYSSIWLSAGRSYFETKGAYTDICY





NPYTDRGEGNMVWIDWLVKTDSRYDKTRSKCLIEKLPLW





AAVYGYAEYCAKATGDSNIDMNARVVIRSPYTTPQMIDT





NDSLRGFIVYSFNFGKGKMPGGTNQVPIRMRAKWYPCL





FHQKEVLEAIGQSGPFAYHSDQKKAVLGLKYRFHWIWG





GNPVFPQVVRNPCKDTQGSTGPRKPRSVQIIDPKYNTPE





LTIHAWDFRRGFFGPKAIKRMQQQPTDAELLPPGRKKSR





RDTEVLQSSQERQKESLLFQQLQLQRRVPPWESSQGSQ





TETESQKEQEGTLSQQLREQLQQQKLLGRQLREMFLQIH





KILQNQQVNPILLPRDQALISWFQIQ*






AB030489.1
BAA90412.1
MAYGWWRRRRRRWKRWRRRPRWRRRWRTRRRRPAG
238




RRRRRRTVRRRRRGRWRSRYRRWRRKGRRRRKEKLII





RQWQPNYTRKCNIVGYMPVIMCGENTVIRNYATHTYDCS





WPGPFGGGMATQKFTLRILYDDYKRFMNYVVTSSNEDLD





LCRYRGATLYFFRDPDVDFIILINTTPPFVDTEITGPSIHPG





MLALNKRARFIPSLKTRPGRRHIVKIKVGAPRMYEDKWYP





QSELCDMPLLTIYATATDMQHPFGSPLTDTPVVTFQVLRS





MYNDALSILPSNFEDDSSPGAALYKQISEYIPYYNTTETIA





QLKRYVENTEKTQTTLNPWQSRYVNTTLFNTAETIANQK





PYTKFADTWYRGTAYKDAIKDIPLKAAELYVNQTKYLLST





TFTGGSKYLEYHGGLYSSIWLSAGRSYFETKGAYTDICY





NPYTDRGEGNMVWIDWLSKTDSKYDKTRSKCLIEKLPLW





ASVYGYAEYCAKATGDSNIDMNARVVIRCPYTTPQMIDTT





DPTRGFIVYSFNFGKGKMPGGSNEVPIRMRAKWYPCLF





HQKEVLEAIGQSGPFAYHSDQKKAVLGLKYKFHWIWGG





NPVFPQVIKNPCKNTQFSTGPRKPRSLQIIDPNYNTPKLTI





HAWDFRLGFFGPKAIKRMQQQPTDAELLPPGRKRSRRD





TEVLQSSQERQKGNLLFQQFQLQRRVPPWESSQGSQT





GTQSQKEQEGTLSQQLREQLQQQKLLGRQLREMFLQLH





KIQQNQHVNPTLLPRDQALICWFQIQ*






AB038340.1
BAA90825.1
MAYGWWRRRRRRWRRWRRRPWRRRWRTRRRRPARR
239




RGRRRNVRRRRRGGRWRRRYRRWKRKGRRRKKAKIIIR





QWQPNYRRRCNIVGYIPVLICGENTVSRNYATHSDDTNY





PGPFGGGMTTDKFTLRILYDEYKRFMNYVVTASNEDLDLC





RYLGVNLYFFRHPDVDFIIKINTMPPFLDTELTAPSIHPGM





LALDKRARWIPSLKSRPGKKHYIKIRVGAPKMFTDKWYP





QTDLCDMVLLTVYATAADMQYPFGSPLTDSVVVNFQVLQ





SMYDEKISILPDQKSQRESLLTSIANYIPFYNTTQTIAQLKP





FIDAGNVTSGTTATTWGSYINTTKFTTTATTTYTYPGTTTT





TVTMLTSNDSWYRGTVYNNQIKDLPKKAAELYSKATKTLL





GNTFTTEDYTLEYHGGLYSSIWLSPGRSYFETPGAYTDIK





YNPFTDRGEGNMLWIDWLSKKNMNYDKVQSKCLISDLPL





WAAAYGYVEFCAKSTGDQNIHMNARLLIRSPFTDPQLLV





HTDPTKGFVPYSLNFGNGKMPGGSSNVPIRMRAKWYPT





LFHQQEVLEALAQSGPFAYHSDIKKVSLGMKYRFKWIWG





GNPVRQQVVRNPCKETHSSGNRVPRSLQIVDPKYNSPE





LTFHTWDFRRGLFGPKAIQRMQQQPTTTDIFSAGRKRPR





RDTEVYHSSQEGEQKESLLFPPVKLLRRVPPWEDSQQE





ESGSQSSEEETQTVSQQPKQQLQQQRILGVKLRLLFNQV





QKIQQNQDINPTLLPRGGDLASLFQVAP*






AB038622.1
BAA93586.
TAWWWGRWRRRWRPRYRRRTWRVRRRRPRRTFRRR
240




RRGRYVSRRRRRRYYRRRLRRGRRRGRRKRHRQTLVL





RQWQPDIVRHCKITGWMPLIICGSGSTQNNFITHMDDFP





PMGYSFGGNFTNLSFSLEGIYEQFLYHRNRWSRSNHDL





DLARYKGTTLKLYRHHTLDYIVSYNRTGPFQISDMTYLST





HPALMLLQKHRIVVPSLLTKPKGKRSIKVRIKPPKLMLNK





WYFTKDICSMGLFQLQATACTLYNPWLRDTTKSPVIGFR





VLKNSIYTNLSNLPEHDQTRQAIRRKLHPDSLTGSTPYQK





GWEYSYTKLMAPIYYQANRNSTYNWLNYQTNYAQTFTK





FKEKMNENLALIQKEYSYHYPNNVTTDLIGKNTLTHDWGI





YSPYWLTPTRISLDWETPWTYVRYNPLADKGIGNAVYAQ





WCSEQTSKLDTKKSKCIMKDLPLWCIFYGYVDWIIKSTGV





SSAVTDMRVAIISPYTEPALIGSSPDVGYIPVSDTFCNGD





MPFLAPYIPVGWWIKWYPMIAHQKEVFEAIVNCGPFVPR





DQTTPSWEITMGYKMDWLWGGSPLPSQAIDDPCQKPTH





ELPDPDRHPRMLQVSDPTKLGPKTVFHKWDWRRGMLS





KRSIKRVQEDSTDDEYVAGPLPRKRNKFDTRAQGLQTPE





KESYTLLQALQESGQETSSEDQEQAPQEKEGQKEALME





QLQLQKQHQRVLKRGLKLLLGDVLRLRRGVHWDPLLS*






AB038623.1
BAA93589.1
TAWWWGRWRRRWRPRYRKRTWRLRRRRPRRTFRRR
241




RRRQYVSRRRRRRYYRRRLRRGRRRGRRKRHRQTLVL





RQWQPDVVRHCKITGWMPLIICGSGSTQNNFITHMDDFP





PMGYSFGGNFTNLTFSLEGIYEQFLYHRNRWSRSNHDL





DLARYKGTTLKLYRHHTLDYIVSYNRTGPFQISDMTYPST





HPALMLLQKHRIVVPSVLTKPKGKRSIKVRIKPPKLMLNK





WYFTKDICSMGLFQLQATACTLYNPWLRDTTKSPVIGFR





VLKNSIYTNLSNLPDHEGSREAIRKKLHPQSLTGHSPNQK





GWEYSYTKLMAPIYYSANRNSTYNWLNYQDNYVATYTK





FKVKMTDNLQLIQKEYSYHYPNNTTTDLIKNNTLTHDWGI





YSPYWLTPTRISLDWETPWTYVRYNPLADKGIGNAVYAQ





WCSEQTSKLDPKKSKCIMRDLPLWCIFYGYVDWIVKSTG





VSSAVTDMRVAIRSPYTEPALIGSTEDVGFIPVSDTFCNG





DMPFLAPYIPVGWWIKWYPMIAHQKEVFEQIVNCGPFVP





RDQTTPSWEITMGYKMDWLWGGSPLPSQAIDDPCQKPT





HELPDPDRHPRMLQVSDPTKLGPKTVFHRWDWRRGML





SKRSIKRVQEDSTDDEYVAGPLPRKRNKFDTRAQGLQSP





EKESYTLLQALQESGQESSSEDQEQAPQEKEGQKEALM





EQLQLQKQHQRVLKRGLKLLLGDVLRLRRGVHWDPLLS*






AB038624.1
BAA93592.1
TAWWWGRWRRRWRPRYRRRTWRVRRRRPRRTFRRR
242




RRGRYVSRRRRRRYYRRRLRRGRRRGRRKRHRQTLVL





RQWQPDVLRRCKITGWMPLIICGSGSTQNNFITHMDDFP





PMGYSYGGNFTNLTFSLEGIYEQFLYHRNRWSRSNHDL





DLARYKGTTLKLYRHHTLDYIVSYNRTGPFQISDMTYLST





HPALMLLQKHRIVVPSLLTKPKGKRSIKVRIKPPKLMLNK





WYFTKDICSMGLFQLQATACTLYNPWLRDTTKSPVIGFR





VLKNSIYTNLSNLPDHEGAREAIRKKLHPQSLTGSVPNQK





GWEYSYTKLMAPIYYQAIRNSTYNWLNYQQNYSQTYQTF





KQKMQDNLQLIQKEYMYHYPNNVTTDILGKNTLTHDWGI





YSPYWLTPTRISLDWETPWTYVRYNPLADKGIGNAVYAQ





WCSEQTSNLDTKKSKCIMKDLPLWCIFYGYVDWVVKSTG





VSSAVTDMRVAIISPYTEPALIGSSPEVGYIPVSDTFCNGD





TPFLAPYIPVGWWIKWYPMIAHQKEVFEAIVNCGPFVPRD





QTTPSWEITMGYKMDWLWGGSPLPSQAIDDPCQKPTHE





LPDPDRHPRMLQVSDPTKLGPKTVFHKWDWRRGMLSK





RSIKRVQEDSTDDEYVAGPLPRKRNKFDTRAQGLQSPEK





ESYTLLQALQESGQETSSEDQEQAPQEKEGQKEALMEQ





LQLQKQHQRVLKRGLKLLLGDVLRLRRGVHWDPLLS*






AF254410.1
AAF71533.1
MAQGRRRYRRGWQRRVYLRRRRRRRRKRLVLTQWHP
243




AVRRKCTITGYMPVVWCGHGRASYNYAWHSDDCIKQP





WPFGGSLSTVSFNLKVLYDENQRGLNRWTYPNDQLDLG





RYKGCKLTFYRTKNTNYPGPFGGGMTTDKFTLRILYDEY





KRFMNYWTASNEDLDLCRYLGVNLYIFRHPDVDFIIKINT





MPPFLDTEITAASIHPGILALDKRARWIPSLKSRPGKKHYI





KIRVGAPKMFTDKWYPQTDLCDMVLLTIYATAADMQYPF





GSPLTDTVVVNFQVLQSMYDENISILPDQKTQREKLLTSIS





NYIPFYNTTQTIAQLKPFVDAGNKVSGTTTTTWASYINTT





RFTTTATTTYTYPGSTTNTVTMLTSNDSWYRGTVYNNQI





KNLPKQAAELYSKATKTLLGNTFTTEDYTLEYHGGLYSSI





WLSPGRSYFETPGAYTDIKYNPFTDRGEGNMLWIDWLS





KKNMNYDKVQSKCLVSDLPLWAAAYGYVEFCAKSTGDQ





NIHMNARLLIRSPFTDPQLLVHTDPTKAFVPYSLNFGNGK





MPGGSSNVPIRMRAKWYPTLFHQQEVLEALAQSGPFAY





HSDIKKVSLGIKYRFKWIWGGNPVRQQVVRNPCKEPHSS





GNRVPRSIQIVDQKYNSPELTIHSWDFRRGFFGPKAIQR





MQQQPTATEFFSAGRKRPRRDTEVYQSDQEKEQKESSL





FPPVKLLRRVPPWEDSDRKQSGSQSSEEETQTVSQQLK





QQLQQQRILGVKLRLLFYQIQRIQQNQDINPTLLPRGGDL





ASLFQIA*






AB050448.1
BAB19928.1
MAWIWWWQRRRRRWPWRRRRWRRLRTRRPRRLVRR
244




RRKRYRVRRRRRWGRRRGRRTYLRRGLKKRKRRKKLR





LTQWNPSTIRGCTIKGMAPLIVCGHTMAGNNFAIRMEDY





VSQIKPFGGSFSTTTWSLKVLWDEHTRFHNTWSYPNTQL





DLARFKGVTFYFYRDKDTDFIITYSSVPPFKIDKYSSAMLH





PGMLMQRKKKILLPSFTTRPRGRKKVKVHIKPPVLFEDK





WYTQQDLCDVNLLSLAVSAASFRHPFCPPQTDNICITFQV





LKDKYYTQMSVTPDTAGTKKDDEILDHLYSTAEYYQTVH





TQGIINKTQRVAKFSTSNNTLGDQSEISLYLNQPTTTNIGN





TLSTGHNSVYGFPSYNPQKDKLRKIADWFWTQEANKEN





VVTGSYSMPTNKAVGYHLGKYSPIFLSSYRTNLQFRTAY





TDVTYNPLNDKGKGNEIWVQYVTKPDTVFNPTQCKCHVI





DLPLWSAFHGYIDFVQSELGIQEEILNIAIIVVICPYTKPKLV





HETNPKQGFVFYDTQFGDGKMPEGSGLVPIYYQNRWYP





RIKFQSQVVHDFILTGPFSYKDDLKSTVLTVEYKFKFLWG





GNMIPEQVIRNPCKTEGHDLPHTSRLHRDLQVVDPHTVG





PQWALHTWDWRRGLFGSEAIKRVSEQQVHDELYYPPSK





KPRFLPPISGLQEQERDYSSQEEKEQSSSEEETDPKKKE





QKQQQRLHLQFQEQQRLGNQLRLIFRELQKTQAGLHLN





PMLSNRL*






AY026465.1
AAK01940.1
MAWGWWKRRRRWWFRKRWTRGRLRRRWPRPARRRP
245




RRRRVRRRRRWRRGRPRRRLYRRYRRKKRRRRKPKIIL





KQWQPDIVKRCYIVGYIPAIICGAGTWSHNYTSHLLDIIPK





GPFGGGHSTMRFSLKVLFEEHLRHLNFWTRSNQDLELV





RYFRCSFRFYRDQHTDYLVHYNRKTPLGGNRLTAPSLHP





GVQMLSKNKIIVPSYDTKPKGKSYVKVTIAPPTLLTDKWY





FAKDVCDTTLVNLDVVLCNLRFPFCSPQTDNPCITFQVLH





SIYNDFLSIVDTQEYKNNFVTTLSTKLGTTWGSRLNTFRT





EGCYSHPKLPKKQVTAANDSTYFTQPDGLWGDAVFETK





DTTIITKNMESYATSAKQRGVNGDPAFCHLTGIYSPPWLT





PGRISPETPGLYTDVTYNPYADKGVGNRIWVDYCSKKGN





KYDNTSKCLLEDMPLWMVTFGYVDWVKKETGNWGIPLW





ARVLIRSPYTVPKLYNEADPSYGWVPISYYFGEGKMPNG





DMYVPFKVRMKWYPSMWNQEPVLNDLAKSGPFAYKDT





KTSVTVTTKYKFTFNFGGNPVPSQIVQDPCTQPTYDIPGT





GNLPRRIQVIDPKVLGPHYSFHRWDFRRGLFGQQAIKRV





SEQQTTSEFLFSGPKRPRIDQGPYIPPEKGSDSLQRESR





PWSTSESEAETEAPSEEEPENQEEQVLQLQLRQQLREQ





RKLRQGIQCLFEQLITTQQGVHKNPLLE*






AY026466.1
AAK01942.1
MAYGWWARRRRRWRRWKRRPWRRRWRTRRRRPRRR
246




YRRRRHVRRRRRGRWRRRYRKWRRKGRRRGKKKIIIRQ





WQPNYRRRCNIIGYMPVLICGNNTVSRNYATHSDDSYLP





GPFGGGMTTDKFTLRILYDEYCRFMNYWTASNEDLDLC





RYRGCTLWFFRHPDVDFIILINTMSPFLDTQLTGPSIHPGL





MALNKRARWIPSLKSRPGRKHVVKIRVGAPRMFTDKWY





PQSDLCDLPLLTIFASAADMQYPFGSPLTDSVVVGFQVL





QSMYNDCLSILPENFNGNGKGKALHDNITKYLPNYNTTQ





TLAQLKPYIDNTSTGSTNNWSSYVNTSKFTTASKTITTSA





EGPYYTFADTWYRGTAYNNSITNVPLQAAQLYHDTTKKL





LGTTFTGGSPYLEYHGGLYSSIWLSAGRSYFETKGTYTDI





TYNPFTDRGQGNMVWIDWVSKYDSVYSKTQSKCLIENLP





LWASVYGYAEYCSKSTGDTNIEQNCRVVIRSPFTNPQLL





DHNNPLRGYVPYSINFGNGKMPGGSSQVPIRMRSKWYP





TLFHQKEVLEAIAQAGPFAYHSDQMKVSLGMKYAFKWV





WGGNPVSQQVVRNPCKDTGVSSGNRVPRSVQIVDPKY





NTPELAIHAWDFRRACLAQKLLRECKQNRTLLNFFRQGE





KDTGETQKLYSPAKKNNKKKTYFSSQSSSSDQSPVGGV





GPKPKRGRGGPTRDADTLPAAPAAAQGAAAHGGPTPSP





VPTITTGPTKHTYRPYLFARGAGVTSLFQTA*






AF345521.1
AAK11696.1
MAWWGRWRRWPRRRWRRWRRRRRRRLPTRRTRRAV
247




RGLGRRPRKTVRRRRRRPRRTYRRGWRRRRYIRRRRG





RRKKLTLTMWNPNIVRRCNIEGGLPLILCGENRAAFNYAY





HSEDYTEQPFPFGGGMSTTTFSLRGLYDQYTKHMNRWT





FSNDQLDLARYRGCKFRFYRHPTCDFIVHYNLVPPLKMN





QFTSPNTHPGLLMLTKHKIIIPSFLTRPGGRRFVKIRLPPP





KLFEDKWYTQQDLCKQPLVTLTATAASLRYPFCSPQTNN





PNCTFQVLRKNYHKVIGTSSTNSEDVTPFENWLYNTASH





YQTFATEAQVGRIPSFNPDGTKNTKESEWQNYWSKKGE





PWNPNSSYPHTTTNQMYKIPFDSNYGFPTYKPIKEYMLQ





RRAWSFKYETDNPVSKKIWPQPTTTKPTIDYYEYHAGWF





SNIFIGPNRHSLQFQTAYVDTTYNPLNDKGKGNKIWFQY





HSKVNTDLRDRGIYCLLEDMPLWSMTFGYSDYVSTQLGP





NVDHETQGLVCIICPYTEPPMYDKTNPNSGYVAYDTNFG





NGKMPSGRSQVPVYWQCRWRPMLWFQQQVLNDISKS





GPYAYRDELKNCCLTAYYNFIFDWGGDMYYPQVIKNPCA





DSGLVPGTSRFTREVQVVSPLSMGPQYILHLFDQRRGFF





SSNALKRMQQQQEFDESFTVKPKRPKLSTAAHVEQQEE





DSSSRERKSGSSQEEVQEEVLQTPEIQLHLQRNIREQLHI





KQQLQLLLLQLFKTQANIHLNPRFISP*






AF345522.1
AAK11698.1
MAWRRWRWRPWWRRRRRRRWRRRRRRPRRRRPYR
248




RRRPRRVRRRRGRWRRAYRRWGRRRRRRRHKKKLVLT





QWQPAVVKRCLIVGFDPLIICGINRTIFNYTTHSEDFTFNN





DSFGGGLCTAQYTLRILFQEKLAQHNFWSASNEDLDLAR





YLGATIVLYRHPTVDFLVRIRTSPPFEDTDMTAMTLHPGM





MMLAKKTIKIPSLKTRPSRKHVVRIRVGAPKLFEDKWYPQ





NELCDVTLLTIQATTADFQYPFGSPLTNSPCCNFQVLNSN





YDNAHSILNLSNEPTNKWHTYRNNCYKFLLEQYSYYNTK





QVVAQLKYKWNPNQNPTMPNTSNASLSKKPDDLTKTKT





TNEYPHWDTLYGGLAYGHSTVTPGTTSSPTDLKTQMLT





GNEFYTTAGKKLIDTFHPIPYYENGSSKANTNIFDYYTGM





YSSIFLSSGRSNPEVKGSYTDISYNPLTDKGVGNMIWIDW





LTKGDTVYDPKKSKCLLSDFPLWSLCYGYPDYCRKQTG





DSGIYYDYRVLIRCPYTYPQLIKHNDKYFGFVVYSENFGL





GRLPGGNPNPPTRMRLHWYPNMFHQTEVLECIAQSGPF





AYHGDERKAVLTAKYKFRWKWGGNPVFQQVLRDPCTG





GAVAPHTSRHPRAIQVHDPKYQAPEYLFHKWDFRRGLF





STKGIKRVSEQPVHDEYFTGSSKRPKKDTNPSPQGEEQK





EGSRFRVPELRPWLPSSQETQSQSEQEETAPKTVQEQL





QEQLQQQQLMGIQLRNVCLQLARVQAGHSLHPVFQCHA






AF345525.1
AAK11704.1
MAWGWWRRRRKWWWRRRFARSRLRRRRIRRPRRRTR
249




RRTVRRRRQWRRGRPRRRLFKRKRRFKRRRRKAKIKIT





QWQPSSVKRCFVIGYFPLVICGPGRWSENFTSHIEDKISK





GPFGGGHSTSRWSLKVLYEEFQRHHNFWTRSNKDLELV





RFFGSSWRFYRHEDTDYIVYYSRKAPLGGNLLTAPSLHP





GAAMLSKHKIVVPSFKTRPGGKPTVKINIKPPTTLIDKWYF





QKDICDTTFLNLNVVLONLRFPFCSPQTDNICVTFQILHEV





YHNYISITAKELLTGTEWRQYYKNFLNAALPNDRSVNKLN





TFSTEGAYSHPQIKKHTENITGSGDKYFRKKDGLWGDAI





HITDQQNRTEVIDLILKNAENYLKKVQQEYQGQENLKNLI





HPVFCQYVGIFGQPTTKLPQNKPRNSRPVQRHNI*






AF345527.1
AAK11708.1
MSWWGWRRRWWWKPRRRWRRRRARRPRRLPRRRY
250




RRPTRRYRGRRVRRRRAGGWRGRRRYSRRYSRRLTVR





RKKKKLTLKIWQPQNIRRCKIRGLLPLLICGHTRSAFNYAI





HSDDKTPQQQSFGGGLSTVSFSLKVLFDPNQRGLNRWS





ASNDQLDLARYTGCTFWFYRHKKTDFIVQYDVSAPFKLD





KNSCPSYHPFMLMKAKHKVLIPSFDTKPKGREKIKLRIQP





PKMFIDKWYTQEDLCPVILVTLVATAASFTHPFCSPQTAN





PCITFQVLKEFYYQAMGYGTPETTMSTIWNTLYTTSTYW





QSHLTPQFVRMPKNNPDNTANTEANKFNEWVDKTFKTG





KLVKYNYNQYKPDIEKLTLLRQYYFRWETQHTGVAVPPT





WTTPTTDRYEYHVGMFSPIFLTPYRSAGLDFPYAYADVT





YNPLTDKGVGNRMWYQYNTKIDTQFDAKCCKCVLEDMP





LYAMAFGHADFLEQEIGEYQDLEANGYVCVISPYTKPPM





FNKHNPQQGYVFYDSQWGNGKWIDGTGFVPVYWLTRW





RVELLFQKQVLSDLAMSGPFSYPDELKNTVLTAKYRFDF





KWGGNLFHQQTIRNPCKPEETSTGRIPRDVQVVDPVTM





GPRFVFHSWDWRRGFLSDRALKRMFEKPLDFEGFTATP





KRPRILPPTEGQLAREQKEQEESSDSQEESSLTPLEEVP





QETKLRLHLRKQLREQRSIRHQLRTMFQQLVKTQAGLHL





NPLLSSQL*






AF345528.1
AAK11710.1
MWNPSTIRACNIKGAINLVMCGHTQAGRNYAIRSEDFYP
251




QIQSFGGSFSTTTWSLRVLFDEYQKFHNFWTYPNTQLDL





CRYKYAIFTFYRDPKVDYIVIYNTNPPFKINKYSSPFLHPG





LMMLQKKKILIPSFQTKPGGKSRIKVKIKPPALFEDKWYTQ





QDLCPVNLLSLAVSACSFIHPFCSPESDTICMTFQVLREF





YYTHLTVTPTTTTSTPEKDKKIFNDQLYSNANFYQSLHAS





AFLNIAQAPAIHGHNGIPNNSRYLSSTGTETSFRTGNNSIY





GQPNYKPIPEKLTEIRKWFFKQATTPNEIHGTYGKPTYDA





VDYHLGKYSPIFLSPYRTNTQFPTAYMDVTYNPNVDKGK





GNKIWLQSVTKETSDFDSRSCRCIIENLPMWAMVNGYSD





FAESELGSEVHAVYVCCIICPYTKPMLYNKTNPAMGYIFY





DTLFGDGKLPSGPGLVPFYWQSRWYPKLAWQQQVLHD





FYLCGPFSYKDDLKSFTINTTYKFKFLWGGNMIPEQVIKN





PCKTTDPTYTLSDRQRRDLQVVDPITMGPQWEFFITANDW





RRGLFGQNALRRVSEKPGDDAEYYAPPKKPRFFPPTDLE





EQEKDSDSQEETRLLFHPSPPRSQEEIQQEQQRDIHLRL





GQQLRIRQQLQQVFLQVLKTQANLHINPLFLNQQ*






AF345529.1
AAK11712.1
MAWGWWRRWRRWPTRRWRRRRRRRPVRRTRARRPA
252




RRYRRRRTVRTRRRRWGRRRYRRGWRRRTYVRKGRH





RKKKKRLVLRQWQPATRRRCTITGYLPIVFCGHTKGNKN





YALHSDDYTPQGQPFGGALSTTSFSLKVLYDQHQRGLN





KWSFPNDQLDLARYRGCKFYFYRTKQTDWVGQYDISEP





YKLDKYSCPNYHPGNMIKAKHKFLIPSYDTNPRGRQKIIV





KIPPPDLFVDKWYTQEDLCDVNLVSFAVSAASFLHPFGS





PQTDNPCYTFQVLKEFYYQAIGFSATEEKIQNVFNILYEN





NSYWESNITPFYVINVKKGSNTAQYMSPQISDADFRNKV





NTNYNWYTYNAKTHKEKLKTLRQAYFKQLTSEGPQHTSS





HAGYATQWTTPSTDAYEYHLGMFSTIFLAPDRPVPRFPC





AYQDVTYNALMDKGVGNHVWFQYNTKADTQLILTGGSC





KAHIENIPLWAAFYGYSDFIESELGPFVDAETVGLICVICP





YTKPPMYNKTNPMMGYVFYDRNFGDGKWTDGRGKIEP





YWQVRWRPEMLFQETVMADIVQTGPFSYKDELKNSTLV





CKYKFYFTWGGNVMFQQTIKNPCKTDEQPTDSGRHPRG





IQVADPEQMGPRWVFHSFDWRRGYLSEKALKRLQEKPL





DYDEYFTQPKRPRMFPPTESAEGEFREPEKGSYSEEER





SQASAEEQTKEATVLLLKRRLREQQQLQQQLQFLTREMF





KTQAGLHLNPMLLNQR*






AF371370.1
AAK54731.1
MRFSRIYRPKKGPLPLPLVRAEQKKQPSDMSWRPPLHN
253




GAGIERQFFEGCFRFHASCCGCGNFVTHITLLAARYGFT





GGPTPPGGPGALPSLRRALPPPPAPQDQAEPELWRGRG





GGGEGNAGGRAEGGDGEGYEPEELEELFRAAAADDE*






AB060596.1
BAB69916.1
MAFRWWWWRRRPQRRWTRRRWRRLRTRRPRRTVRR
254




RRRRPRVRRRRWGRRRGRRRLYRRTYRKRRKRRKKMT





LKMWNPSTIRACNIRGFIALVVCGHTRAGCNYAIHSEDYI





PQLRPYGGSFSTTTWSLKLLFDEYLKFRNKWSYPNTELN





LARYRGATFTFYRDPKVDYIVVYNTVPPFKLNKYSCPMLH





PGMMMQYKKKVLIPSYQTKPKGKAKIRLRIKPPVLFEDK





WYTQQDLCPVNLLSLAVSACSFLHPFIPPESDNICITFQVL





RDFYYTQMSVTPTTTTSLNQKDEKIFSDHLYKNPEYWQS





HHTAARLSTSQKPALRNKEEIPNDHGYLNTTPTDSTFRT





GNNTIYGQPSYRPNYTKLTKIREWYFTQENTDNPINGSYL





KPTLNSVDYHLGKYSAIFLSPYRTNTQFDTAYQDVTYNPN





TDKGKGNKIWIQSCTKESTILDNACRCVIEDMPLWAMVN





GYLEFCDSELPGANIYNTYIVVVICPYTKPQLLNKTNPKQ





GYVFYDTLFGDGKMPTGTGLVPFWLQSRWYPRAEFQQ





QVLHDLYLTGPFSYKDDLKSFSFNAKYKFSFLWGGNMIP





QQIIKNPCKKEESTFTYPSREPRDLQVVDPLTMGPEWVF





HTANDWRRGLFGKNAVDRVSKKPDDDAEYYPVPKRPRF





FPPTDTQSEPEKDFGFTPESQELQQEDLRAPQEESQEV





QQQRLLQLRLSQQFRLRQQLQHLFVQVLKTQAGLHINPL





FLNHA*






AB060592.1
BAB69900.1
MAWIWWWQRRRRRWPWRRRRWRRLRTRRPRRLVRR
255




RRKRYRVRRRRRWGRRRGRRTYLRRRLKKRKRRKKLR





LTQWNPSTIRGCTIKGMAPLIICGHTMAGNNFAIRMEDYV





SQIRPFGGSFSTTTWSLKVLWDEHTRFHNTWSYPNTQL





DLARFKGVNFYFYRDKDTDFIVTYSSVPPFKMDKYSSAM





LHPGTLMQRKKKILIPSFTTRPRGRKKVKLHIKPPVLFEDK





WYTQQDLCDVNLLSLAVSAASFRHPFCPPQTDNICITFQV





LKDFYYTQMSVTPDTAGQEKDIEIFEKHLFKNPQFYQTVH





TQGIISKTRRTAKFSTSNNTLGSDTNITPYLEQPTATNHKN





TLSTGNNSIYGLPSYNPIPDKLKKIQEWFWKQETDKENLV





TGSYQTPTNKSVSYHLGKYSPIFLSSYRTNLQFITAYTDV





TYNPLNDKGKGNQIWVQYVTKPDTIFNERQCKCHIVDIPL





WAAFHGYIDFIQSELGIQEEILNIAIIVVICPYTKPKLVHDPP





NQNQGFVFYDTQFGDGKMPEGSGLVPIYYQNRWYPRIK





FQSQVVHDFILTGPFSYKDDLKSTVLTVEYKFKFLWGGN





MIPEQVIRNPCKTEGHDLPHTSRLHRDLQVVDPHTVGPQ





WALHTWDWRRGLFGSEAIKRVSEQQVHDELYYPASKKP





RFLPPISGLQEQERDYSSQEEKDQSSSEEEKDPKKKEQK





QQQRLHLQFQEQQRLGNQLRLIFRELQKTQAGLHINPML





SNRL*






AB060593.1
BAB69904.1
MAWRWWWRRRWKPRRRPAWTKYRRRRWRRLRPRRP
256




RRLARGRRRRRTVRRRRVRRLRRRRGWTRRRYLRRRK





RRKLILTQWNPNIVRRCSIKGIIPLTMCGANTASFNYGMH





SDDSTPQPEKFGGGMSTVTFSLYVLYDQFTRHMNRWSY





SNDQLDLARYRGCSFKLYRNPTTDFIVQYDNNPPMKNTIL





SSPNTHPGMLMQQKHRILVPSWQTFPRGRKYVKVKIPPP





KLFEDHWYTQPDLCKVPLVTLRSTAADFRHPFCSPQTNN





PCTTFQVLRENYNEVLGLPYANTGSNNEVKIKIDNFENWL





YNSSVHYQTFQTEQMFRPKQYNADGSTWKDYKSMLST





WTSQIYNKKTDSNYGYASYDFSKGKEFATQMRQHYWVQ





LTQLTATVPHIGPTYSNTTTPEYEYHAGWYSPVFIGPNRH





NIQFRTAYMDVTYNPLNDKGQFNRVWFQYSTKPTTDFN





NTQCKCVLENIPLWSALFGYSEYVESQLGPFQDHGTVGV





VVVQCPYTVPPMYNKEKPDMGYVFYDTHFGNGKLGNGS





GQVPRYWQMRWYPILKRQKQVMNDICKTGPFSYRDELL





QVDLASPYTFRFNWGGDLLYHQVIKDPCSSSGLAPTDSS





RFKRDVQVVSPLTMGPRLLFHSFDQRRGFFTPGAIKRMH





DEQINVPDFTQKPKIPRIFPPVELRERAEAEEDSGSEKAS





FTSSQEREAEAQEKLPIQLQLRQQLRQQQQLRVHLQQVF





LQLQKTKAHLHINPLFLAQGNM*






AB060595.1
BAB69912.1
MAYSYWWRRRRWPWRGRWRRWRRRRRIPRRRPRRP
257




VRRYRRRPVRRKRRWGRRGRRRRYTRRYRRRLTVRRK





RNKLRLSVWQPQNIRYCAIKGLFPILICGHGKSAGNYAIHS





DDFITSRFSFGGGLSTTSYSLKLLFDQNLRGLNRWTASN





DQLDLARYLGAIFWFYRDQKTDYIVQYDISEPFKIDKDSS





PSFHPGILMKSKHKVLVPSFQTWPKGRSKVKLKIKPPKM





FVDKWYTQEDLCTVTLVSLVVSLASFQHPFCRPLTDNPC





VTFQVLQNFYNNVIGYSSSDTLVDNVFTSLLYSKASFWQ





SHLTPSYVKKINNNPDGSSISQRVGTMPDMTEYNKWVSN





TNIGTGFVNSNVSVHYNYCQYNPNHTHLTTLRQYYFFWE





THPAAANKTPVTHVPITTTKPTKDWWEYRLGLFSPIFLSP





LRSSNIEWPFAYRDIIYNPLMDKGVGNMMWYQYNTKPDT





QFSPTSCRAVLEDKPIWSMAYGYADFLLSILGEHDDVDF





HGLVCIICPYTRPPLFDKDNPKMGYVFYDAKFGNGKWID





GTGFIPVEFQSRWKPELAFRKDVLTDLAMSGPFSYSDDL





KNTTIQAKYKFKFKWGGNLSYHQTIRNPCTSDGQTPTTS





RQSREVQIVDPLTMGPRYVFHSWDWRRGWLNDRTLKR





LFQKPLDFEEYPKSPKRPRIFPPTEQLQEDPQEQERDSS





SSEESLPTSSEETPPAHLLRVHLRKQLRQQRDLRVQLRA





LFAQVLKTQAGLHINPLLLAPQ*






AB064596.1
BAB79314.1
TAWWWGRRWRRRPWGRWRRRRRVWRRRPRTAVRRR
258




RGRRYVSRRRRYRRRLRRRGRRRYRGRRKKRQTLVLK





QWQPDVNRLCRITGWLPLIVCGTGRAQDNFIVHSEDITP





RGAAYGGNLTHITWCLEAIYQEFLMHRNRWSRSNHDLDL





CRYQGVVFKAYRHPKVDYILAYTRTPPFQATELSYMSCH





PLLMLTAKHRIVVKSQETKKGGKKYVKFRIKPPRLMLNKW





YFTHDFCKVPLFSMWASACDLRNPWLREGALSPTVGFF





ALKPDFYPNLSILPNEVSQQFDFFLNSAHPPSIQSEKDVR





WEYTYTNLMRPIYNQTPSLKASTYDWQNYSNPNNYQAC





HQQFIAFKAQRFAKIKAEYQTVYPTLTTQTPQSEALTQEF





GLYSPYYLTPTRISLDWHTVFHHIRYNPMADKGLGNMIW





VDWCSRKEATYDPTRSKCMLKDLPLYMRFYGYCDWVTK





SIGSETAWRDMRLMVVCPYTEPQLMKKNDKTWGYVIYG





YNFANGNMPWLQPYIPISWFCRWFPCITHQREAMESVV





ATGPFMVRDQDRNSWDITIGYKFLWRWGGSPLPTQAID





DPCQQGTHPLPEPGTLPRILQVSDPTQLGPKTIFHLWDQ





RRGLFSKRSIERMSEYKGTDDLFSPGRPKRPKLDTRPEG





LPEEQRGAYNLLQALEDSAQSEESDQEEMPPLEEEQVL





HEQKKEALLQQLQQQKHHQRVLKRGLRLLLGDVLKLRR





GLHIDPVLT*






AB064597.1
BAB79318.1
TAWWWGRWRRRWRRRRPWRPRLRRRRARRAFPRRR259





RRRFVSRRWRRPYRRRRRRGRRRRRRRRRHKPTLVLR





QWQPDVIRHCKITGRMPLIICGKGSTQFNYITHADDITPR





GASYGGNFTNMTFSLEAIYEQFLYHRNRWSASNHDLELC





RYKGTTLKLYRHPDVDYIVTYSRTGPFEISHMTYLSTHPL





LMLLNKHHIVVPSLKTKPRGRKAIKVRIRPPKLMNNKWYF





TRDFCNIGLFQLWATGLELRNPWLRMSTLSPCIGFNVLK





NSIYTNLSNLPQHREDRLNIINNTLHPHDITGPNNKKWQY





TYTKLMAPIYYSANRASTYDLLREYGLYSPYYLNPTRINLD





WMTPYTHVRYNPLVDKGFGNRIYIQWCSEADVSYNRTK





SKCLLQDMPLFFMCYGYIDWAIKNTGVSSLARDARICIRC





PYTEPQLVGSTEDIGFVPITETFMRGDMPVLAPYIPLSWF





CKWYPNIAHQKEVLEAIISCSPFMPRDQGMNGWDITIGYK





MDFLWGGSPLPSQPIDDPCQQGTHPIPDPDKHPRLLQVS





NPKLLGPRTVFHKWDIRRGQFSKRSIKRVSEYSSDDESL





APGLPSKRNKLDSAFRGENPEQKECYSLLKALEEEETPE





EEEPAPQEKAQKEELLHQLQLQRRHQRVLRRGLKLVFTD





ILRLRQGVHWNPELT*






AB064599.1
BAB79326.1
TAWWRYRRRPWRRWRRRRWGLRTRRPRRTFRRRRAR
260




RYVSRGRRRRYRRRRRRGRRRRGRRRRHRKTLIVRQW





QPDVIKRCFITGWLPLIICGNGHTQFNFITHMDDIPPKNAS





YGGNFTNLTFNLACFYDEFMHHRNRWSASNHDLELVRYI





RTSLKLYRHESVDYIVCYTTTGPFETNEMSYMLTHPLAML





LSKRHVVVPSLKTKPHGRKYKKITIKPPKLMLNKWYFATD





LCHIGLFQLWATGLELRNPWLRSGTNSPVIGFYVLKNQV





YKNRYSNLNTTEAHNARQDAWNELTQTKTNDKWYNWQ





YTYNKLMKPIYYAASNESSNSAMKGKTYNWKHYKEYFSN





TQTKWKTIIKDAYDLVREEYQQLYTTTMAYPPPWQSTTS





NTGRQYLEHDCGIYSPYFLTPQIYSPEWHTAWSYIRYNPL





TDKGIGNRVCVQYCSEASSDYNPIKSKCMLQDMPLWMM





LYGYADYVVKSTGIQSAWTDMRVAIRCPYTDPKLVGSTE





NTMFIPIGLEFMNGDIPDKRPYIPLTWWFKWYPMITHQKT





AIEAIVSCSPFMPRDQEQASWDITVGYKATFLWGGSPLP





PQPIDDPCQKGKHDIPDPDTNPPRIQISDPQHLGPATLFH





SWDLRRGYINTKSIKRISEHLDANEYFSTGVVSKKPRFDT





PHHGQLSNQEEDALSILRQPQKEQEETTSEEEQALQKEE





EQKEKLLQQLRVQRQHQRVLRQGIKHLMGDVLRLRQGV





HWNPVL*






AB064600.1
BAB79330.1
TAWGWYRRRRWRPWRRRRWAIRRRRPRRTVRRRGRR
261




RYVSRWPRRRYRRRRRRTRRRGGRKRRHRQTLILRQW





QPDVMKKCFITGWMPLIICGTGNTQFNFITHEDDVPPKGA





SYGGNLTNLTFTLEGLYDEHLLHRNRWSRSNFDLDLSRY





LYTIIKLYRHESVDYIVTYNRTGPFEISPLSYMNTHPMLML





LNKHHVVVPSPKTKPKGKRAIKIKIKPPKLMLNKWYFARD





TCRIGLFQLYATGANLTNPWLRSGTNSPVVGFYVIKNSIY





QDAFDNLADTEHTNQRKNVFENKLYPTTTTNKDNWQYT





YTSLMKNIYFKTKQEAENQTMSSTYNFDTYKTNYDKVRT





KWIKIAEDGYKLVSKEYKEIYISTATYPPQWNSRNYLSHD





YGIYSPYFLTPQRYSPQWHTAWTYVRYNPLTDKGIGNRI





FVQWCSEKNSSYNSTKSKCMLQDMPLFMLTYGYLDYVL





KCAGSKSAWTDMRVCIRSPYTEPQLTGNTDDISFVIISEA





FMNGDMPYLAPHIPVSLWFKWYPMILHQKAALETIVSCG





PFMPRDQEANSWDITAGYKAVFKWGGSPLPPQPIDDPY





QKPTHEIPDPDKHPPRLQIADPKILGPSTVFHTWDIRRGL





FSTASLKRVSEYQPPDDLFSTGVASKRPRFDTPVQGQLE





SQEEESYRLLRALQKEQETSSSEEEQPQNQEIQEKLLLQ





LQQQRQQQRLLAKGIKHLLGDVLRLRKGVHWDPVLT*






AB064601.1
BAB79334.1
TAWYRRRRWRPWRRRRRPWTLRRRRARRFVRRRPRR
262




RYVSRWRRRRYRRRLRRGRRRRGRRRRKETIIVRQWQ





PDVMRNCYITGFLPLIVCGSGNTQFNFITHENDIPPRGAS





YGGNLTNITFTLAALYDQYLLHRNRWSRSNFDLDLARYIN





TKLKLYRHDSVDYIVTYNRTGPFEVNPLTYMHTHPLLMLV





NRHHIVVPSLKTKPRGKRYIKVKIKPPKLMLNKWYFAKDIC





PLGLFQLYATGLELRNPWIREGTNSPIVGFYVLKPSLYNG





AMSNLADTEHLNQRQTLFNKLLPTQNQKDEWQYTYNKP





MQKIYYEAANKQDSGFKNTTYNWTNYKTNYQKVQSQW





QTVAQQNYNQVYNEFKEVYPLTATWPPQWNARQYMSH





DFGIYSPYFLSPARFTDYWHSAYTYVRYNPMSDKGIGNII





CIQWCSEKNSEFNETKNKCILRDMPLYMLTYGYLDYTTK





CTGSNSIWTDARVAIRCPYTDPPLSNPTNKNTLYIPLSTSF





MQGDMPWPTTNIPLKMWFKWYPMIMHQRACLETIVSCG





PFMPRDQTASSWDITIAYRAFFKWGGNPLPPQPIDDPCQ





KDTHEIPDPDKHPRGIQISDPKVLGPPTVFHTWDIRRGLF





SSTSLKRVSEYQPPDDPFSTGVVFKRPRLETQYKGTQET





PEEDAYTLLKALQKEQESSSSEEELPQEEQEIQKTQLLKQ





LQLQQQQQRILKRGIRHLFGDVLRLRKGVHSNPDLL*






AB064602.1
BAB79338.1
TAWYRYRRRPWRRRRRPRWGLRRRRFRRSFRGRGRR
263




RYVSRWSRRRYRRRRRRGRRRRGRRRRKRQTLIPRQW





QPDVTKKCFITGWMPLIICGTGHTQFNFITHEEDIPGAGA





SYGGNLTNITITLGGLYEQYMLHRNHWSRSNYDLELARY





LGFTLKCYRHATVDYILTYSRTTPFETNELSHMLTHPLLM





LLNKHHRVIPSLKTRPKGKRSVRIHIKPPKLMINKWYFAKD





LCNIGPCQIYATGLELSNPWLRSGTNSPVIGFWVLKNHLY





DGNLSNIASGEQLTARQTLFTTKLLPSNNTKDEWQYAYT





PLMKTFYTQAANTAAHNITDKTYNWKNYKTHYDKVQQT





WTTKAQFNYDLVKEEYKTVYPTTATFPPEWSNRQYLEH





DYGLFSPYFLTPNRYSTEWHMPITYVRYNPLADKGIGNRI





YMQWCSESSSSFEPTKSKCMLQDMPLYMLTYGYLDYVV





KCTGVKSAWTDMRVAIRSPYTFPQLIGSTDKVGFIPLGEK





FMSGDTDPVKNFIPLKYWYRWYPFAANQKSVLETIVSCG





PFMPRDQEAGSWDITVGYKATFKRGGSPLPPQPIDDPC





QKPTHDLPDPDRHPPRIQISDPARLGPETLFHSWDIRRG





YINTKAIKRISDYTESNDYFSTGVVSKRPRLETQYHGQHE





SQEEDAYLLLKQLQEEQETSSSEGEQAPQEKTLQKEKLL





KQLQLHKQQQQLLRKGIRHLLGDVLRLRRGVHWDPGL*






AB064603.1
BAB79342.1
TAWWWGRWRQRRWGRRRRRPWRVRRRRPRRSFRRR
264




RRGRYVSRRRRRRYYRRRLRRGRRRGRRKRHRPTLILR





QWQPDVVKHCKITGWMPLIICGSGSTQMNFITHMDDTPP





MGYTYGGNFVNVTFSLEAIYEQFLYHRNRWSRSNHDLDL





ARYQGTTLKLYRHATVDYILSYNRTGPFQISEMTYMSTHP





AIMLLMKHRIVVPSLRTKPKGRRSIKIRIKPPKLMLNKWYF





TKDICSMGLFQLMATGAELTNPWLRDTTKSPVIGFRVLKN





SVYTNLSNLKDVSISGERKSILNKIHPETLTGSGNASKGW





EYSYTKLMAPIYYSAVRNSTYNWQNYQTHCATTAIKFKE





KQTSTLTLIKAEYLYHYPNNVTQVDFIDDPTLTHDFGIYSP





YWITPTRISLDWDTPWTYVRYNPLSDKGIGNRIYAQWCS





EKSSKLDTTKSKCILKDFPLWCMAYGYCDWVVKCTGVSS





AWTDMRVAIICPYTEPALIGSDENVGFIPVSDTFCNGDMP





FLAPYIPITWWIKWYPMITHQKEVLEAIVNCGPFVPRDQS





SPAWEITMGYKMDWKWGGSPLPSQAIDDPCQKPTHELP





DPDRHPRMLQVSDPTKLGPKTVFHKWDWRRGQLSKRSI





KRVQEDSTDDEYVTGPLSRKRNKLDTKMPGPPTPEKES





YTLLQALQESGQESSSQDEEQAPQKEENQKEALVEQLQ





LQKQHQRVLKRGLKLLLGDVLRLRRGVHWDPLLS*






AB064604.1
BAB79346.1
MAWGWWKRKRRWWWRKRWTRGRLRRRWPRRSRRR
265




PRRRRVRRRRRWRRGRPRRRLYRRGRRYRRKRKRAKI





TIRQWQPAMTRRCFIRGHMPALICGWGAYASNYTSHLED





KIVKGPYGGGHATFRFSLQVLCEEHLKHHNYWTRSNQD





LELALYYGATIKFYRSPDTDFIVTYQRKSPLGGNILTAPSL





HPAEAMLSKNKILIPSLQTKPKGKKTVKVNIPPPTLFVHKW





YFQKDICDLTLFNLNVVAADLRFPFCSPQTDNVCITFQVL





AAEYNNFLSTTLGTTNESTFIENFLKVAFPDDKPRHSNILN





TFRTEGCMSHPQLQKFKPPNTGPGENKYFFTPDGLWGD





PIYIYNNGVQQQTAQQIREKIKKNMENYYAKIVEENTIITKG





SKAHCHLTGIFSPPFLNIGRVAREFPGLYTDVVYNPWTDK





GKGNKIWLDSLTKSDNIYDPRQSILLMADMPLYIMLNGYID





WAKKERNNWGLATQYRLLLTCPYTFPRLYVETNPNYGY





VPYSESFGAGQMPDKNPYVPITWRGKWYPHILHQEAVIN





DIVISGPFTPKDTKPVMQLNMKYSFRFTWGGNPISTQIVK





DPCTQPTFEIPGGGNIPRRIQVINPKVLGPSYSFRSFDLR





RDMFSGSSLKRVSEQQETSEFLFSGGKRPRIDLPKYVPP





EEDFNIQERQQREQRPWTSESESEAEAQEETQAGSVRE





QLQQQLQEQFQLRRGLKCLFEQLVRTQQGVHVDPCLV*






AB064606.1
BAB79354.1
MAWGWWKRRRRWWFRKRWTRGRLRRRWPRSARRRP
266




RRRRVRRRRRWRRGRPRRRLYRRYRRKKRRRRKPKTV





LKQWQPDITKRCYIIGYIPAIICGAGTWSHNYTSHLLDIIPK





GPFGGGHSTMRFSLKVLFEEHLRHLNFWTRSNQDLELV





RYFRCSFRFYRDQHTDYLVHYSRKTPLGGNRLTAPSLHP





GVQMLSKNKIIVPSYDTKPKGKSYVKVTIAPPTLLTDKWY





FSKDICDTTLVNLDVVLCNLRFPFCSPQTDNPCITFSVLHS





IYNDFLSIVDTGNYKTQFVSNLSTKVGTDWGKRLNTFRTE





GCYSHPKLPKKAVTPGNDKTYFTVPDGLWGDAVFNAEA





SNIITKNMESYSESAKARGVQGDPAFCHLTGIYSPPWLTP





GRISPETPGLYTDVTYNPYADKGVGNRIWVDYCSKKGNK





YDNTSKCLLEDMPLWMVTFGYVDWVKKETGNWGIPLWA





RVLIRCPYTVPKLYNEADPNYGWVPYSYYFGEGKMPNG





DLYVPFKIRMKWYPSMWNQEPVLNDLAKSGPFAYKDTK





TSVTVTAKYKFTFNFGGNPVPSQIVQDPCTQSTYDIPGTG





NLPRRIQVIDPKVLGPHYSFHRWDFRRGLFGQQAIKRVS





EQPTTSEFLFSGPKRPRIDQGPYIPPEKGSDSLQRESRP





WSNSETEAETEAPSEEEPENQEEQVLQLQLRQQLREQR





KLRQGIQCLFEQLITTQQGVHKNPLLE*






DQ186994.1
ABD34286.1
MAWSWWWRRRKRWWPRRRRRWRRFRTRRARRAVPR
267




RRRRRRVRRRRWGRRRRRRRVFYKRRRRKTGRLYRKP





KKKLVLTQWHPTTVRNCSIRGLVPLVLCGHTQGGRNFAL





RSDDYPKQGSPYGGSFSTTTWNLRVLFDEHQKHHNTW





SYPNNQLDLGRYKGCTFYFYRDKKTDYIVKFQRRGPFKI





NKYSSPMAHPGMMMLDKMKILVPSFDTRPGGRRRVKVT





IRPPTLLEDKWYTQQDLAPVNLVSLVVSAASFIHPFSQPQ





TNNICTTFQVLKDMYYDCIGINSTLTTKYENLFNKLYSKCC





YFETFQTIAQLNPGFKAAKKTTNGSGSTAATLGDAVTELK





NPNGTFYTGNNSTFGCCTYKPTKEIGSNANKWFWHQLT





ATDSDTLGQYGRASIKYMEYHTGIYSSIFLSPLRSNLEFPT





AYQDVTYNPLTDRGIGNRIWYQYSTKENTTFNETQCKCV





LSDLPLWSMFYGYVDFIESELGISAEIHNFGIVCVQCPYTF





PPMFDKSKPDKGYVFYDTLFGNGKMPDGSGHVPTYWQ





QRWWPRFSFQRQVMHDIILTGPFSYKDDSVMTGITAGYK





FKFSWGGDMVSEQVIKNPERGDGRDSTYPDRQRRDLQ





VVDPRSMGPQWVFHTFDYRRGLFGKDAIKRVSEKPTDP





DYFTTPYKKPRFFPPTAGEEKLQEEDSALQEKRSPLSSE





EGQTRAQVLQQQVLQSELQQQQELGEQLRFLLREMFKT





QAGIHMNPRAFQEL*






DQ186995.1
ABD34288.1
MAWSWWWRRRKRWWPRRRRRWRRFRTRRARRAVPR
268




RRRRRRVRRRRWGRRRRRRRVFYKRRRRKTGRLYRKP





KKKLVLTQWHPTTVRNCSIRGLVPLVLCGHTQGGRNFAL





RSDDYPKQGSPYGGSFSTTTWNLRVLFDEHQKHHNTW





SYPNNQLDLGRYKGCTFYFYRDKKTDYIVKFQRRGPFKI





NKYSSPMAHPGMMMLDKMKILVPSFDTRPGGRRRVKVT





IRPPTLLEDKWYTQQDLAPVNLVSLVVSAASFIHPFSQPQ





TNNICTTFQVLKDMYYDCIGINSTLTTKYENLFNKLYSKCC





YFETFQTIAQLNPGFKAAKKTTNGSGSTAATLGDAVTELK





NPNGTFYTGNNSTFGCCTYKPTKEIGSNANKWFWHQLT





ATDSDTLGQYGRASIKYMEYHTGIYSSIFLSPLRSNLEFPT





AYQDVTYNPLTDRGIGNRIWYQYSTKENTTFNETQCKCV





LSDLPLWSMFYGYVDFIESELGISAEIHNFGIVCVQCPYTF





PPMFDKSKPDKGYVFYDTLFGNGKMPDGSGHVPTYWQ





QRWWPRFSFQRQVMHDIILTGPFSYKDDSVMTGITAGYK





FKFSWGGDMVSEQVIKNPERGDGRDSTYPDRQRRDLQ





VVDPRSMGPQWVFHTFDYRRGLFGKDAIKRVSEKPTDP





DYFTTPYKKPRFFPPTAGEEKLQEEDSALQEKRSPLSSE





EGQTRAQVLQQQVLQSELQQQQELGEQLRFLLREMFKT





QAGIHMNPRAFQEL*






DQ186996.1
ABD34290.1
MAWGWWRWRRRWPARRWRRRRRRRPVRRTRARRPA
269




RRYRRRRTVRTRRRRWGRRRYRRGWRRRTYVRKGRH





RKKKKRLILRQWQPATRRRCTITGYLPIVFCGHTKGNKNY





ALHSDDYTPQGQPFGGALSTTSFSLKVLFDQHQRGLNK





WSFPNDQLDLARYRGCKFYFYRTKQTDWIGQYDISEPYK





LDKYSCPNYHPGNMIKAKHKFLIPSYDTNPRGRQKIIVKIP





PPDLFVDKWYTQEDLCSVNLVSLAVSAASFLHPFGSPQT





DNPCYTFQVLKEFYYQAIGFSATDQQREKVFDILYKNNSY





WESNITPFYVINVKKGSNTTQYMSPQISDSSFRKKVNTNY





NWYTYDAKTNASQLKQLRNAYFKQLTSEGPQHTYSDNG





YASQWTTPSTDAYEYHLGMFSTIFLAPDRPVPRFPCAYQ





DVTYNPLMDKGVGNHVWFQYNTKADTQLIVTGGSCKAHI





QDIPLWAAFYGYSDFIESELGPFVDADTVGLICVICPYTKP





PMYNKTNPMMGYVFYDRNFGDGKWTDGRGKIEPYWQV





RWRPEMLFQETVMADIVQTGPFSYKDELKNSTLVCKYKF





YFTWGGNMMFQQTIKNPCKTDGQPTDSSRHPRGIQVAD





PEQMGPRWVFHSFDWRRGYLSEKALKRLQEKPLDYDEY





FTQPKRPRIFPPTESAEGEFREPEKGSYSEEERSQASAE





EQTEEATVLLLKRRLREQQQLQQQLQFLTREMFKTQAGL





HINPMLLNQR*






DQ186997.1
ABD34292.1
MAWGWWRWRRRWPARRWRRRRRRRPVRRTRARRPA
270




RRYRRRRTVRTRRRRWGRRRYRRGWRRRTYVRKGRH





RKKKKRLILRQWQPATRRRCTITGYLPIVFCGHTKGNKNY





ALHSDDYTPQGQPFGGALSTTSFSLKVLFDQHQRGLNK





WSFPNDQLDLARYRGCKFYFYRTKQTDWIGQYDISEPYK





LDKYSCPNYHPGNMIKAKHKFLIPSYDTNPRGRQKIIVKIP





PPDLFVDKWYTQEDLCSVNLVSLAVSAASFLHPFGSPQT





DNPCYTFQVLKEFYYQAIGFSATDEQREKVFDILYKNNSY





WESNITPFYVINVKKGCNTTQYMSPQISDSSFRKKVNTNY





NWYTYDAKTNASQLKQLRNAYFKQLTSEGPQHTYSDNG





YASQWTTPSTDAYEYHLGMFSTIFLAPDRPVPRFPCAYQ





DVTYNPLMDKGVGNHVWFQYNTKADTQLIVTGGSCKAHI





QDIPLWAAFYGYSDFIESELGPFVDADTVGLICVICPYTKP





PMYNKTNPMMGYVFYDRNFGDGKWTDGRGKIEPYWQV





RWRPEMLFQETVMADIVQTGPFSYKDELKNSTLVCKYKF





YFTWGGNMMFQQTIKNPCKTDGQPTDSSRHPRGIQVAD





PEQMGPRWVFHSFDWRRGYLSEKALKRLQEKPLDYDQ





YFTQPKRPRIFPPTESAEGEFREPEKGSYSEEERLQASA





EEQTEEATVLLLKRRLREQQQLQQQLQFLTREMFKTQAG





LHINPMLLNQR*






DQ186998.1
ABD34294.1
MAWGWWRWRRRWPARRWRRRRRRRPVRRTRARRPA
271




RRYRRRRTVRTRRRRWGRRRYRRGWRRRTYVRKGRH





RKKKKRLILRQWQPATRRRCTITGYLPIVFCGHTKGNKNY





ALHSDDYTPQGQPFGGALSTTSFSLKVLFDQHQRGLNK





WSFPNDQLDLARYRGCKFYFYRTKQTDWIGQYDISEPYK





LDKYSCPNYHPGNMIKAKHKFLIPSYDTNPRGRQKIIVKIP





PPDLFVDKWYTQEDLCSVNLVSLAVSAASFLHPFGSPQT





DNPCYTFQVLKEFYYQAIGFSATDEQREKVFDILYKNNSY





WESNITPFYVINVKKGCNTTQCMSPQISDSSFRKKVNTN





YNWYTYDAKTNASQLKQLRNAYFKQLTSEGPQHTYSDN





GYASQWTTPSTDAYEYHLGMFSTIFLAPDRPVPRFPCAY





QDVTYNPLMDKGVGNHVWFQYNTKADTQLIVTGGSCKA





HIQDIPLWAAFYGYSDFIESELGPFVDADTVGLICVICPYT





KPPMYNKTNPMMGYVFYDRNFGDGKWTDGRGKIEPYW





QVRWRPEMLFQETVMADIVQTGPFSYKDELKNSTLVCKY





KFYFTWGGNMMFQQTIKNPCKTDGQPTDSSRHPRGIQV





ADPEQMGPRWVFHSFDWRRGYLSEKALKRLQEKPLDY





DQYFTQPKRPRIFPPTESAEGEFREPEKGSYSEEERSQA





SAEERTEEATVLLLKRRLREQQQLQQQLQFLTREMFKTQ





AGLHINPMLLNQR*






DQ186999.1
ABD34296.1
MAWRWWKRRRRWWFRKRWTRGRLRRRWPRPARRRP
272




RRRRVRRRRRWRRGRPRRRLYRRYRRKKRRRRKPKIIL





KQWQPDIVKRCYIVGYIPAIICGAGTWSHNYTSHLLDIIPK





GPFGGGHSTMRFSLKVLSEEHLRHLNFWTKSNQDLELIR





YFRCSFKFYRDQDTDYIVHYSRKTPLGGNRLTAPNLHPG





VQMLSKNKIIVPSYATKPKGPSYIKVTIAPPTLLTDKWYFS





KDVCDTTLVNLDVVLCNLRFPFCSPQTDNPCITFQVLHSI





YNDFLSIVDTNNYKESFVSALPTKVSTDWGKRLNTFRTE





GCYSHPKLHKKAVTAATDTEYFTKPDGLWGDTIFDVENG





QKIIKNMESYAKSAKERGINGDPAFCHLTGIYSPPWLTPG





RISPETPGLYTDVTYNPYADKGVGNRIWVDYCSKKGNKY





DNTSKCLLEDMPLWMVCFGYVDCVKKETGNWGIPLWAR





VLIRSPYTVPKLYNEADPNYGWVPIFYYFGEGKMPNGDM





YIPFKIRMKWYPSMWNQEPVLNDLAKSGPFAYKNTKTSV





TVTAKYKFTFNFGGNPVPSQIVQDPCTQPTYDIPGTGNLP





RRIQVIDPKVLSPHYSFHRWDFRRGLFGSQAIKRVSEQS





TTSEFLFSGPKKPRIDQGPYIPPEKGSGSLQREPRPWSS





SETEAETEAPSEEEPENQEEQVLQLQLRQQLREQRKLR





QGIQCLFEQLITTQQGVHKNPLLE*






DQ187000.1
ABD34298.1
MAWRWWKRRRRWWFRKRWTRGRLRRRWPRPARRRP
273




RRRRVRRRRRWRRGRPRRRLYRRYRRKKHRRRKPKIIL





KQWQPDIVKRCYIVGYIPAIICGAGTWSHNYTSHLLDIIPK





GPFGGGHSTMRFSLKVLFEEHLRHLNFWTKSNQDLELIR





YFRCSFKFYRDQDTDYIVHYSRKTPLGGNRLTAPNLHPG





VQMLSKNKIMVPSYATKPKGPSYIKVTIAPPTLLTDKWYF





SKDVCDTTLVNLDVVLCNLRFPFCSPQTDNPCITFQVLHS





IYNDFLSIVDTNNYKESFVSALPTKVSTDWGKRLNTFRTE





GCYSHPKLHKKAVTAATDTEYFTKPDGLWGDTIFDVENG





QKIIKNMESYAKSAKERGINGDPAFCHLTGIYSPPWLTPG





RISPETPGLYTDVTYNPYADKGVGNRIWVDYCSKKGNKY





DNTSKCLLEDMPLWMVCFGYVDWVKKETGNWGIPLWA





RVLIRSPYTVPKLYNEADPNYGWVPISYYFGEGKMPNGD





MYIPFKIRMKWYPSMWNQEPVLNDLAKSGPFAYKNTKTS





VTVTAKYKFTFNFGGNPVPSQIVQDPCTQPTYDIPGTGNL





PRRIQVIDPKVLGPHYSFHRWDFRRGLFGSQAIKRVSEQ





STTSEFLFSGPKKPRIDQGPYIPPEKGSGSLQREPRPWS





SSETEAETEAPSEEEPENQEEQVLQLQLRQQLREQRKLR





QGIQCLFEQLITTQQGVHKNPLLE*






DQ187001.1
ABD34300.1
MARRWWKRRRRWWFRKRWTRGRLRRRWPRPARRRP
274




KRRRVRRRRRWRRGRPRRRLYRRYRRKKRRRRKPKIIL





KQWQPDIVKRCYIVDYIPAIICGAGTWSRNYTSHLLDIIPK





GPFGGGHSTMRFSLKVLFEEHLRHLNFWTKSNQDLELIR





YFRCSFKFYRDQDTDHIVHYSRKTPLGGNRLTAPNLHPG





VQMLSKNKIIVPSYATKPKGPSYIKVTIAPPTLLTDKWYFS





KDVCDTTLVNLDVVLCNLRFPFCSPQTDNPCITFQVLHSI





YNDFLSIVDTNNYKESFVAALPTKVSTDWGKRLNTFRTE





GCYSHPKLHKKAVTAATDTEYFTKPDGLWGDTIFDVENG





QKIIKNMESYAKSAKERGINGDPAFCHLTGIYSPPWLTPG





RISPETPGLYTDVTYNPYADKGVGNRIWVDYCSKKGNKY





GNTSKCLLEDMPLWMVCFGYVDWVKKETGNWGIPLWA





RVLIRSPYTVPKLYNEADPNYGWVPISYYFGEGKMPNGD





MYVPFKIRMKWYPSMWNQEPVLNDLAKSGPFAYKNTKT





SVTVTAKYKFTFNFGGNPVPSQIVQDPCTQPTYDIPGTG





NLPRRIQVIDPKVLGPHYSFHRWDFRRGLFGSQAIKRVS





EQSTTSEFLFSGPKKPRIDQGPYIPPEKGSGSLQREPRP





WSSSETEAETEAPSEEEPENQEEQVLQLQLRQQLREQR





KLRQGIQCLFEQLITTQQGVHKNPLLE*






DQ187002.1
ABD34302.1
MAWRWWKRRRRWWFRKRWTRGRLRRRWPRPARRRP
275




KRRRVRRRRRWRRERPRRRLYRRYRRKKRRRRKPKIIL





KQWQPDIVKRCYIVGYIPAIICGAGTWSHNYTSHLLDIIPK





GPFGGGHSTMRFSLKVLFEEHLRHLNFWTKSNQDLELIR





YFRCSFKFYRDQDTDYIVHYSRKTPLGGNRLTAPNLHPG





VQMLSKNKIIVPSYATKPKGPSYIKVTIAPPTLLTDKWYFS





KDVCDTTLVNLDVVLCKLRFPFCSPQTDNPCITFQVLHSI





YNDFLSIVDTNNYKESFVAALPTKVSTDWGKRLNTFRTE





GCYSHPKLHKKAVTAATDTEYFTKPDGLWGDTIFDVENG





QKIIKNMESYAKSAKERGINGDPAFCHLTGIYSPPWLTPG





RISPETPGLYTDVTYNPYADKGVGDRIWVDYCSKKGNKY





DNTSKCLLEDMPLWMVCFGYVDWVKKETGNWGIPLWA





RVLIRSPYTVPKLYNEADPNYGWVPISYYFGEGKMPNGD





MYVPFKIRMKWYPSMWNQEPVLNDLAKSGPFAYKNTKT





SVTVTAKYKFTFNFGGNPVPSQIVQNPCTQPTYDIPGTG





NLPRRTQVIDPKVLGPHYSFHRWDFRRGLFGSQAIKRVS





EQSTTSEFLFSGPKKPRIDQGPYIPPEKGSGSLQREPRP





WSSSETEAETEAPSEEEPENQEEQVLQLQLRQQLREQR





KLRQGIQCLFEQLITTQQGVHKNPLLE*






DQ187004.1
ABD34305.1
MAWGWWKRRRRRWWRGLWRRRRFARRRPRRPARRP
276




RRRRVRRRRRWRRGRLRRRVYNRRRRIRRKRRRQKLTI





RQWQPDKRRICRIKGYLPAIIYGDGTFSKNYTSHLEDRIS





KGPFGGGHGTARMSLKVLYDDHLKGLNIWTYSNKDLELV





RYMHTTITFYRHPDTDFIAVYNRKTPLGGNRYTAPSLHPG





NMMLQRTKILIPSFKTKPRGSGKIRVVIKPPTLLVDKWYFQ





KDICDVTLFNLNITAASLRFPFCSPQTNNPCVTFQVLHSV





YDKALGINTFGTKETPEDQQMEDIKNWLTKALNTAGFTVL





NTFRTEGIYSHPQLKKPPEGSNKPSAEQYFAPLDSLWGD





KIYVNNNTSPSQTEATIPGILARNACTYYQKAKTSTLRQHL





GAMAHCHLTGIFNPALLTQGRLSPEFFGLYKEIIYNPYDD





KGKGNRIWIDPLTKPDNIFDARSKVELEDMPLWMACFGY





NDWCKKELNNWGLEVEYRVLLRCPYTYPKLYNDANPNY





GYVPISYNFSAGKTVEGDLYVPIMWRTKWHPTMYNQSP





VLEDLAMAGPFAPKEKIPSSTLTIKYKAKFIFGGNPISEQIV





KDPCTQPTYEIPGGGTLPRRIQVINPEYIGPHYSFKSFDIR





RGYFSAKSVKRVSEQSDITEFIFSGPKKPRIDQDRYQEAE





EHSDSRLREEKPWESSQETESEAQEEEIQETNIQLQLQH





QLKEQLQLRRGIQCLFEQLTKTQQGVHINPSLV*






DQ187005.1
ABD34307.1
MSLKVLYDDHLKGLNIWTYSNKDLELVRYMHTTITFYRHP
277




DTDFIAVYNRKTPLGGNRYTAPSLHPGNMMLQRTKILIPS





FKTKPRGSGKIRVVIKPPTLLVDKWYFQKDICDVTLFNLNI





TAASLRFPFCSPQTNNPCVTFQVLHSVYDKALGINTFGTK





ETPEDQQMEDIKNWLTKALNTAGFTVLNTFRTEGIYSHP





QLKKPPEGSNKPSAEQYFAPLDSLWGDKIYVNNNTSPSQ





TEATIPGILARNACTYYQKAKTSTLRQHLGAMAHCHLTGI





FNPALLTQGRLSPEFFGLYKEIIYNPYDDKGKGNRIWIDPL





TKPDNIFDARSKVELEDMPLWMACFGYNDWCKKELNNW





GLEVEYRVLLRCPYTYPKLYNDANPNYGYVPISYNFSAG





KTVEGDLYVPIMWRTKWYPTMYDQSPVLEDLAMAGPFA





PKEKIPSSTLTIKYKAKFIFGAILYLNRLSRTPAPSPPTKFP





EAVRSLAEYKSLTRNTSGHTTHSKASTSDVGTLARRVLK





ECQNNQTLLSLYSQVQKSQGSTKTGTKKQKNTQILDSEK





RNRGRARKKQRAKPKKKRYKRQTSSSSCSTSSKSNCSS





DGESSASSSN*






DQ361268.1
ABD61942.1
MAWRWWWRRRRPWRWRWRRRRRPARRRRRRRPAR
278




RARRPRVRRWRRRRVWAPRPYIRRRRRSFRRKKIKITQ





WNPAVTKKCTVTGYLPVIYCGTGDIGTTFQNFGSHMNEY





KQYNAAGGGFSTMLFTMQNLYEEYQKHRCRWSKSNQD





LDLCRYLDCKLTFYRSPNTDFIVGYNRKPPFIDTQITRCTL





HPGMLIQERKKVIIPSFQTRPKGRIKRKIKVRPPTLFTDKW





YFQRDLCKVPLVTVSASAASLRFPFGSPQTENYCIYFQVL





DPWYHTRLSITGGKPAEYWTQLKAYLTQGWGRSTNNAG





YQHGPLGTYFNTLKTSEHIRQPPADNYKQANKDTTYYGR





VDSHWGDHVYQQTIIQAMEENQSNMYTKRALHTFLGSQ





YLNFKSGLFSSIFLDNARLSPDFKGMYQEVVYNPFNDRG





VGNKVWVQWCTNEDTIFKDLPGRVPVVDLPLWCALMGY





SDYCKKYFHDDGFLKEARITIISPYTNPPLINNKNTNEGFV





PYSFYFGKGRMPDGNGYIPIDFRFNWYPCIFHQTNWIND





MVQCGPFAYHGDEKNCSLTMKYKFKFLFGGNPISQQTIK





DPCQQPDWQLPGSGRFPRDVQVSNPRLQTEGSTFHAW





DFRRGFYGKRAIERLQGQQDDVTYIAGPPKRPRFEVPAL





AAEGSSNTRRSELPWQTSEEESSQEENSEETEEETSLS





QQLKQQCIEQKLLKRTLHQLVKQLVKTQYHLHAPIIH*






EF538879.1
ABU55887.1
MAWRWWKRRRRWWFRKRWTRGRLRRRWPRPARRRP
279




RRRRVRRRRRWRRGRPRRRLYRRYRRKKRRRRKPKIIL





KQWQPDIVKRCYIIGYIPAIICGAGTWSSHNYTSHLLDIIPKG





PFGGGHSTMRFSLKVLFEEHLRHLNFWTKSNQDLELIRY





FRCSFKFYRDQDTDYIVHYSRKTPLGGNRLTAPSLHPGV





QMLSKNKILVPSYATKPKGGSYVKVTIAPPTLLTDKWYFS





KDVCDTTLVNLDVVLCNLRFPFCSPQTDNPCITFQVLHSY





YNDYLSIVDTALYKTSFVNNLSTKLGTRNANRLNTFRTEG





CYSHPKLLKKTVTAANDTKYFTTPDGLWGDAVFDVSDAK





KLTKNMESYAASANERGVQGDPAFCHLTGIFSPPWLTPG





RISPETPGLYTDVTYNPYADKGVGNRIWVDYCSKKGNKY





DNTSKCVLEDMPLWMLCFGYVDWVKKETGNWGIPLWA





RVLIRSPYTVPKLYHENDPDYGWVPISYYFGEGKMPNGD





MYVPFKVRMKWYPSMWNQEPVLNDLAKSGPFAYKNTK





TSVTVTAKYKFTFNFGGNPVPSQIVQDPCTQPTYDIPGTG





NLPRRIQVIDPKVLGPHYSFHRWDFRRGLFGTQAIKRVSE





QSTTSEFLFSGPKKPRIDQGPYIPPEKGSGSLQRESRPW





SSSETEAETEAPSEEEPENQEEQVLQLQLRQQLREQRKL





RQGIQCLFEQLITTQQGVHKNPLLE*






EU305675.1
ABY26045.1
MAWWGRWRRWRWRPRRWRRRRRRRVPRRRAQRSV
280




RRRRARRVRRRRWGRRRWRRGYRRRLRLRRKRKRKR





RLVLTQWHPAKVRRCRISGVLPMILCGAGRSSFNYGLHS





DDFTKQKPNNONPHGGGMSTVTFNLKVLFDQYERFMNK





WSYPNDQLDLARYKGCKFTFYRHPEVDFLAQYDNVPPM





KMDELTAPNTHPALLLQSRHRVKIYSWKTRPFGSKKVTV





KIGPPKLFEDKWYSQSDLCKVSLVSWRLTACDFRFPFCS





PQTDNPCVTFQVLGEQYYEVFGTSVLDVPASYNSQITTF





EQWLYKKCTHYQTFATDTRLAPQKKATTSTNHTYNPSG





NTESSTWTQSNYSKFKPGNTDSNYGYCSYKVDGETFKAI





KNYRKQRFKWLTEYTGENHINSTFAKGKYDEYEYHLGW





YSNIFIGNLRHNLAFRSAYIDVTYNPTVDKGKGNIVWFQY





LTKPTTQLIRTQAKCVIEDLPLYCAFFGYEDYIQRTLGPYQ





DIETVGVICFISPYTEPPCIRKEEQKKDWGFVFYDTNFGN





GKTPEGIGQVHPYWMQRWRVMAQFQKETQNRIARSGP





FSYRDDIPSATLTANYKFYFNWGGDSIFPQIIKNPCPDTGL





RPSGHREPRSVQVVSPLTMGPEFIFHRWDWRRGFYNPK





ALKRMLEKSDNDAESSTGPKVPRWFPAHHDQEQESDFD





SQETRSQSSQEEAAQEALQDVQETSVQQYLLKQFREQR





LLGQQLRLLMLQLTKTQSNLHINPRVLDHA*






EU305676.1
ABY26046.1
MFWWGWRRRWWWKPRRRWRRRRARRPRRVPRRRY
281




RRAARRYRGRRVRRRRAGGWRGRRRYSRHYSRRLTVR





RKKKKLTLKIWQPQNIRKCRIRGLLPLLICGHTRSAFNYAI





HSDDKTPQQESFGGGLSTVSFSLKVLFDQNQRGLNRWS





ASNDQLDLARYLGCTFWFYRDKKTDFIVQYDISAPFKLDK





NSSPSYHPFMLMKAKHKVLIPSFDTKPKGREKIKVRIQPP





KMFIDKWYTQEDLCPVILVSLAVSVASFTHPFCSPQTANP





CITFQVLKEFYYPAMGYGAPETTVTSVFNTLYTTATYWQ





SHLTPQFVRMPTKNPDNTENNQAQAFNTWVDKDFKTGK





LVKYNFPQYAPSIEKLKQLRTYYFEWETKHTGVAAPPTW





TTPTSDRYEYHMGMFSPTFLTPFRSAGLDFPGAYQDVTY





NPLTDKGVGNRMWFQYNTKIDTQFDARSCKCVLEDMPL





YAMAYGYADFLEQEIGEYQDLEANGYVCVISPYTKPPMF





NKHNPQQGYVFYDSQWGNGKWIDGTGFVPVYWLTRWR





VELLFQKKVLSDIAMSGPFSYPDELKNTVLTAKYRFDFKW





GGNLFHQQTIRNPCKPEETSTGRVPRDVQVVDPVTMGP





RFVFHSWDWRRGFLSDRALKRMFEKPLDLEGFAASPKR





PRIFPPTEGQLAREQKEQEESSDSQEESSLTSLEEVPEE





TKLRLHLRKQLREQRSIRQQLRTMFQQLVKTQAGLHLNP





LLSSQL*






FJ426280.1
ACK14071.1
MAWRWWWQRRWRRRPWPRRRWRRLRRRRPRRPVR
282




RRRRRATVRRRRWRGRRGRRTYTRRAVRRRRRPRKRF





VLTQWSPQTARNCSIRGIVPMVICGHTRAGRNYALHSED





FTTQIRPFGGSFSTERNSLKVLWDEHQKFQNRWSYPNT





QLDLARYRGVTFWFYRDQKTDYIVQWSRNPPFKLNKYS





SPMYHPGMMMQAKKKLVVPSFQTRPKGKKRYRVRIRPP





NMFNDKWYTQEDLCPVPLVQIVVSAATQTKKNCSPQTN





NPCITFQVLKDKYLNYIGVNSSETRRNSYKTLQEKLYSQC





TYFQTTQVLAQLSPAFQPAKKPNRTNNSTSTTLGNKVTD





LKSNNGKFHTGNNPVFGMCSYKPSKDILYKANEWLWDN





LMVENDLHSTYGKATLKCMEYHTGIYSSIFLSPQRSLEFP





AAYQDVTYNPNCDRAIGNRVWFQYGTKMNTNFNEQQC





KCVLTNIPLWAAFNGYPDFIEQELGISTEVHNFGIVCFQCP





YTFPPLYDKKNPDKGYVFYDTTFGNGKMPDGSGHIPIYW





QQRWWIRLAFQVQVMHDFVLTGPFSYKDDLANTTLTAR





YKFRFKWGGNIIPEQIIKNPCKREQSLGSYPDRQRRDLQV





VDPSTMGPIYTFHTWDWRRGLFGADAIQRVSQKPEDAL





RFTNPFKRPRYLPPTDGEDYRQEEDFALQERRRRTSTEE





VQDEESPPQNAPLLQQQQQQRELSVQHAEQQRLGVQL





RYILQEVLKTQAGLHLNPLLLGPPQTRCISLSPPEAYSP*






FJ392105.1
ACR20257.1
MAAWWWGRRRRWRRWRRRRLPRRRRWRRRRRWPR
283




RRRRRWPRRRRRRRPARRPRRRRRRRRVRRPRRRQK





LVLTQWNPQTVRKCIIRGFVPLFQCSRTAYHRNFVDHMD





DVYTTGPFGGGTGSMLFTLSFFYHEFKKHHCKWSASNR





DFDLCRYRGTVLKFYRHPDVDYIVWLNRNPPFQENLLDA





MSRQPLIMLQTHKCILVRSFKTHPRGPSYVRMKVRPPRL





LTDKWYFQSDFCNVPLFQLQFALAELRFPIGSPQTNTTC





VNFLVLDNRYHLFLDNKPQQSDNSQREERGHGYPFNGS





EGEADRLKFWHSLWNTGRFLNTTHINTLQPNISKLQEHK





AEDTEAKTTYKSLINGNKKVYNDSQYMQNVWAQNKINTL





YEAIAEEQYRKIQKYYNTTYGQYQRQLFTGKKYWDYRVG





MFSPTFLSPSRLNPEMPGAYTEIAYNPWTDEGTGNVVCL





QYLTKETSDYKPHAGSKFTIEDVPLWIAMNGYVDICKKEG





KDPGIRLNCLMCIRCPYTRPKLYNPRYPKELFVVYSYNFA





HGRMPGGDKYIPMEFKDRWYPSLMHQEEVIEDIVRSGPF





ALKDQTEMVTCMMRYSALFNWGGNIIREQAVEDPCKKN





TFALPGASGVARLLQVSNPIRQTPSTTWHSWDWRRSLF





TQTGIKRMREQQPYDEITYAGPKRPKLTVPAGPTLAAGD





AYNYWERKPLTSPGETLPTQTETETEAPEEEAQQEEVQE





GLQLQQLWEQQLQQKRQLGVMFQQLLRLRTGAEIHPAL





A*






FJ392107.1
ACR20260.1
MAAWWWGRRRRWRRWRRRRLPRRRRWRRRRRWPR
284




RRRRRWPRRRRRRRPARRPRRRRRRRRVRRPRRRQK





LVLTQWNPQTVRKCIIRGFVPLFQCSRTACHRNFVDHMD





DVYTTGPFGGGTGSMLFTLSFFYHEFKKHHCKWSASNR





DFDLCRYRGTVLKFYRHPDVDYIVWLNRNPPFQENLLDA





MSRQPLIMLQTHKCILVRSFKTHPRGPSYVRMKVRPPRL





LTDKWYFQSDFCNVPLFQLQFALAELRFPIGSPQTNTTC





VNFLVLDNRYHLFLDNKPQQSENLQRKERGHGYSFTGN





EGEVDRLKFWHSLWNTGRFLNTTHINTLLPNISKLQEHKA





EDRQANAKYKNLINGNKKVYNDSQYMQNVWEENKINTL





YDAIAEEQYRKIQKYYNTTYGQYQRQLFTGKKYWDYRVG





MFSPTFLSPSRLNPEMPGAYTEIAYNPWTDEGTGNVVCL





QYLTKETSDYKPHAGSKFTIEDVPLWIAMNGYVDICKKEG





KDPGIRLNCLMCIRCPYTRPKLYNPRYPEELFVVYSYNFA





HGRMPGGDKYIPMEFKDRWYPSLMHQEEVIEDIVRSGPF





ALKDQTEMVTCMMRYSALFNWGGNIIREQAVEDPCKKN





TFALPGASGVARLLQVSNPIRQTPSTTWHSWDWRRSLF





TQTGIKRMREQQPYDEITYAGPKRPKLTVPAGPTLAAGD





AYNYWERKPLTSPGETLPTQTDTETEAPEEEAQQEEVQ





EGLQLQQLWEQQLQQKRQLGVMFQQLLRLRTGAEIHPA





LA*






FJ392108.1
ACR20262.1
MAAWWWGRRRRWRRWRRRRLPRRRRWRRRRRWPR
285




RRRRRWPRRRRRRRPARRPRRRRRRRRVRRPRRRQK





LVLTQWNPQTVRKCIIRGFVPLFQCSRTAYHRNFVDHMD





DVYTTGPFGGGTGSMLFTLSFFYHEFKKHHCKWSASNR





DFDLCRYRGTVLKFYRHPDVDYIVWLNRNPPFQEDLLDA





MSRQPLIMLQTHKCILVRSFKTHPRGPSYVRMKVRPPRL





LTDKWYFQSDFCNVPLFQLQFALAELRFPIGSPQTNTTC





VNFLVLDNRYHLFLDNKPQQSDNPQRKERGHGYSFTGN





EGEMDRERFWHSLWSTGRFLNTTHINTLLPNISKLQDHK





AEDKDAKTTYKSLINDNKKVYNDSQYMQNVWDQNKIHTL





YMAIAEEQYRKIQKYYNTTYGQYQRQLFTGKKYWDYRV





GMFSPTFLSPSRLNPEMPGAYTEIAYNPWTDEGTGNVV





CLQYLTKETSDYKPHAGSKFTIEDVPLWIAMNGYVDICKK





EGKDPGIRLNCLMCIRCPYTRPKLYNPRYPEELFVVYSYN





FAHGRMPGGDKYIPMEFKDRWYPSLMHQEEVIEDIVRSS





PFALKDQTEMVTCMMRYSALFNWGGNIIREQAVEDPCK





KNTFALPGASGVARLLQVSNPIRQTPSTTWHSWDWRRS





LFTQTGIKRMREQQPYDEITYAGPKRPKLTVPAGPTLAAG





DAYNYWERKPLTSPGETLPTQTETETEAPEEEAQQEEV





QEGLQLQQLWEQQLQQKRQLGVMFQQLLRLRTGAEIHP





ALA*






FJ392111.1
ACR20267.1
MAAWWWGRRRRWRRWRRRRLPRRRRWRRRRRWPR
286




RRRRRWPRRRRRRRPARRPRRRRRRRRVRRPRRRQK





LVLTQWNPQTVRKCIIRGFVPLFQCSRTAYHRNFVDHMD





DVYTTGPFGGGAGSMLFTLSFFYHEFKKHHCKWSASNR





DFDLSRYRGAVLKFYRHPDVDYIVWLNRNPPFQENLLDA





MSRQPLIMLQTHKCILVRSFKTHPRGPSYVRMKVRPPRL





LTDKWYFQSDFCNVPLFQLQFALAELRFPIGSPQTNTTC





VNFLVLDNRYHSFLDNKPQQSENSQRKERGHGYSFTGK





EGEQDRLTFWQSLWNTGRFLNTTHINTLLPNISKLQDHK





AEDTDANPDYKSLINGNKKVYNDSQYMQNVWQQGKINT





LCNAIAQEQYRKIQKYYNTTYGQYQRQLFTGKKYWDYRV





GTFSPTFLSPSRLNPEMPGAYTEIAYNPWTDEGTGNVVC





LQYLTKETSDYKPHAGSKFTIEDVPLWIAMNGYVDICKKE





GKDPGIRLNCLMCIRCPYTRPKLYNPRYPEELFVVYSYNF





SHGRMPGGDKYIPMEFKDRWYPSLMHQEEVIEDIVRSG





PFALKDQTDMVTCMMRYSALFNWGGNIIREQAVEDPCK





KNTFALPGASGVARLLQVSNPIRQTPSTTWHSWDWRRS





LFTQTGIKRMREQQPYDEITYAGPKRPKLTVPAGPTLAAG





DAYNYWERKPLTSPGETLPTQTETETEAPEEEAQQEEV





QEGLQLQQLWEQQLQQKRQLGVMFQQLLRLRTGAEIHP





ALA*






FJ392112.1
ACR20269.1
MAAWWWGRRRRWRRWRRRRLPRRRRWRRRRRWPR
287




RRRRRWPRRRRRRRPARRPRRRRRRRRVRRPRRRQK





LVLTQWNPQTVRKCIIRGFVPLFQCSRTAYHRNFVDHMD





DVYTTGPFGGGTGSMLFTLSFFYHEFKKHHCKWSASNR





DFDLCRYRGTVLKFYRHPDVDYIVWLNRNPPFQENLLDA





MSRQPLIMLQTHKCILVRSFKTHPRGPSYVRMKVRPPRL





LTDKWYFQSDFCNVPLFQLQFALAELRFPIGSPQTNTTC





VNFLVLDNRYHLFLDNKPRQSENLQRKERGHGYVFTGN





EGEDDRLKFWHSLWSTGRFLNTTHINTLLPNISKLQDHEA





EDTQAKTDYKSLINGNKKVYNDSQYMQDVWEQKKIQTLY





KVIAEEQYRKIEKYYNTTYGQYQRQLFTGKKYWDYRVGM





FSPTFLSPSRLNPEMPGAYTEIAYNPWTDEGTGNVVCLQ





YLTKETSDYKPHAGSKFTIEDVPLWIAMNGYVDICKKEGK





DPGIRLNCLMCIRCPYTRPKLYNPRYPEELFVVYSYNFAH





GRMPGGDKYIPMEFKDRWYPSLMHQEEVIEDIVRSGPFA





LKDQTEMVTCMMRYSALFNWGGNIIREQAVEDPCKKNT





FALPGASGVARLLQVSNPIRQTPSTTWHSWDWRRSLFT





QTGIKRMREQQPYDEITYAGPKRPKLTVPAGPTLAAGDA





YNYWERKPLTSPGETLPTQTETETEAPEEEAQQEEVQE





GLQLQQLWEQQLQQKRQLGVMFQQLLRLRTGAEIHPAL





A*






FJ392114.1
ACR20272.1
MAAWWWGRRRRWRRWRRRRLPRRRRWRRRRRWPR
288




RRRRRWPRRRRRRGPARRLRRRRRRRRVRRPRRRQKL





VLTQWNPQTQRKCVVRGFLPLFFCGQGAYHRNFVEHM





DDVFPKGPSGGGFGSMVWNLDFLYQEFKKHHNKWSSS





NRDFDLVRCHGTVIKFYRHSDFDYLVHVTRTPPFKEDLLT





IVSHQPGLMMQNYRCILVKSYKTHPGGRPYITPKIRPPRL





LTDKWYFRPDFCGVPLFKLYVTLAELRFPICSPQTDTNCV





TFLVLDNTYYDYLDNTADTTRDHERQQKWTNMKMTPRY





HLTSHINTLFSGTQQMQSAKETGKDSQFRENIWKTAEVV





KIIKDIASKNMQKQQTYYTKTYGAYATQYFTGKQYWDWR





VGLFSPIFLSPSRLNPQEPGAYTEIAYNPWTDEGTGNIVCI





QYLTKKDSHYKPGAGSKFAVTDVPLWAALFGYYDQCKK





ESKDANIRLNRLLLVRCPYTRPKLYNPRDPDQLFVMYSY





NFGHGRMPGGDKYVPMEFKDRWYPCMLHQEEVVEEIV





RCGPFAPKDMTPSVTCMARYSSLFTWGGNIIREQAVEDP





CKKSTFAIPGAGGLARILQVSNPQRQAPTTTWHSWGWR





RSLFTETGLKRMQEQQPYDEMSYTGPKRPKLSVPPAAE





GNLAAGGGLFFRDGKQPASPGGSLPTQSETEAEAEDEE





AHQEETEEGAQLQQLWEQQLQQKRELGIVFQHLLRLRQ





GAEIHPGLV*






FJ392115.1
ACR20274.1
MAAWWWGRRRRWRRWRRRRXPRRRRWRRRRRWPR
289




RRRRRWPRRRRRRRPARRLRRRRRRRRVRRPRRRQKL





VLTQWNPQTQRKCVVRGFLPLFFCGQGAYHRNFVEHM





DDVFPKGPSGGGFGSMVWNLDFLYQEFKKHHNRWSSS





NRDFDLVRYHGTVIKFYRHSDFDYLVHVTRTPPFKEDLLT





IVSHQPGLMMQNYRCILVKSYKTHPGGRPYITLKIRPPRL





LTDKWYFQPDFCGVPLFKLYVTLAELRFPICSPQTDTNCV





TFLVLDNTYYDYLDSTADTTRDNERHQKWKNMIMTPRYH





LTSHINTLFSGTQQMQNAKETGKDSQFRENIWKTEEVVKI





IHDIASRNMQKQITYYTKTYGAYATQYFTGKQYWDWRVG





LFSPIFLSPSRLNPQEPGAYTEIAYNPWTDEGTGNIVCIQY





LTKKDSHYKPGAGSKFAVTDVPLWAALFGYYDQCKKES





KDANIRLNCLLLVRCPYTRPKLYNPRDPDQLFVMYSYNF





GHGRMPGGDKYVPMEFKDRWYPCMLHQEEVVEEIVRC





GPFAPKDMTPSVTCMARYSSLFTWGGNIIREQAVEDPCK





KSTFAIPGAGGLARILQVSNPQRQAPTTTWHLWDWRRSL





FTETGLKRMQEQQPYDEMSYTGPKRPKLSVPPAAEGNL





AAGGGLFFRDRKQPTSPGGSLPTQSETEAEAEDEEAHQ





EETEEGAQLQQLWEQQLQQKRELGIVFQHLLRLRQGAEI





HPGLV*






FJ392117.1
ACR20277.1
MAWWWWRRRRRPWRRRWRWKRRARVRTRRPRRAVR
290




RRRRRVRRRRRGWRRLYRRWRRKGRRRRRRKKLVMK





QWNPSTVSRCYIVGYLPIIIMGQGTASMNYASHSDDVYY





PGPFGGGISSMRFTLRILYDQFMRGQNFWTKTNEDLDLA





RFLGSKWRFYRHKDVDFIVTYETSAPFTDSLESGPHQHP





GIQMLMKNKILIPSFATKPKGRSSIKVRIQPPKLMIDKWYP





QTDFCEVTLLTIHATACNLRFPFCSPQTDTSCVQFQVLSY





NAYRQRISILPELCTREKLREFIKQVVKPNLTCINTLATPW





CFKFPELDKLPPVANNATGWSVNPDSGDGDVIYQETTLE





TKWIANNDVWHTKDQRAHNNIHSQYGMPQSDALEHKTG





YFSPALLSPQRLNPQIPGLYINIVYNPLTDKGEGNKIWCDP





LTKNTFGYDPPKSKFLIENLPLWSAVTGYVDYCTKASKDE





SFKYNYRVLIQTPYTVPALYSDSETTKNRGYIPIGTDFAYG





RMPGGVQQIPIRWRMRWYPMLFNQQPVLEDLFQSGPFA





YQGDAKSATLVGKYAFKWLWGGNRIFQQVVRDPRSHQ





QDQSVGPSRQPRAVQVFDPKYQAPQWTFHAWDIRRGL





FGRQAIKRVSAKPTPDELISTGPKRPRLEVPAFQEEQEKD





LLFRQRKHKAWEDTTEEETEAPSEEEEENQELQLVRRLQ





QQRELGRGLROLFQQLTRTQMGLHVDPQLLAPV*






GU797360.1
ADO51761.1
MAWGWWKRRRKWWWRRRWTRGRLRKRRARRAGRR
291




PRRRRVRRRRAWRRGRRKRRTFRRRRRRKGRRHRTRL





IIRQWQPEIVRKCLIIGYFPMIICGQGRWSENYSSHLEDRV





VKQAFGGGHATTRWSLKVLYEENLRHLNFWIWTNRDLE





LARYLKVTWTFYRHQDVDFIIYFNRKSPMGGNIYTAPMM





HPGALMLSKHKILVKSFKTKPKGKATVKVTIKPPTLLVDK





WYFQKDICDMTLLNLNAVAADLRFPFCSPQTDNPCINFQ





VLSSVYNNFLSITDNRLTPVTDDGQAYYKAFLDAAFTKDR





DFNAVNTFRTISNFSHPQLELPTKTTNTSQDQYFNTLDGY





WGDPIYVHTQNIKPDQNLDKCKEILTNNMKNWHKKVKSE





NPSSLNHSCFAHNVGIFSSSFLSAGRLAPEVPGLYTDVIY





NPYTDKGKGNMLWVDYCSKGDNLYKEGQSKCLLANLPL





WMATNGYIDWVKKETDNWVINTQARVLMVCPYTYPKLY





HEIQPLYGFVVYSYNFGEGKMPNGATYIPFKFRNKWYPTI





YMQQAVLEDISRSGPFALKQQIPSATLTAKYKFKFLFGGN





PTSEQVVRDPCTQPTFELPGASTQPPRIQVTDPKLLGPH





YSFHSWDLRRGYYSTKSIKRMSEHEEPSEFIFPGPKKPR





VDLGPIQQQERPSDSLQRESRPWETSEEESEAEVQQEE





TEEVPLRQQLLHNLREQQQLRKGLQCVFQQLIKTQQGVH





IDPSLL*






DQ003341.1
AAX94182.1
MAWSWWWRRRKRWWPRRRRRWRRFRTRRARRAVPR
292




RRRRRRVRRRRWGRRGRRRRVFYKRRRRKTGRLYRKP





KKKLVLTQWHPTTVRNCSIRGLVPLVLCGHTQGGRNFAL





RSDDYPKQGSPYGGSFSTTTWNLRVLFDEHQKHHNTW





SYPNNQLDLGRYKGCTFCFYRGKKTDYIVKFQRRGPFKI





NKYSSPMAHPGMMMLDKMKILVPSFDTRPGGR*






DQ003342.1
AAX94185.1
MAWSWWWRRRKRWWPRRRRRWRRFRTRRARRAVPR
293




RRRRRRVRRRRWGRRGRRRRVFYKRRRRKTGRLYRKP





KKKLVLTQWHPTTVRNCSIRGLVPLVLCGHTQGGRNFAL





RSDDYPKQGSPYGGSFSTTTWNLRVLFDEHQKHHNTW





SYPNNQLDLGRYKGCTFCFYRGKKTDYIVKFQRRGPFKI





NKYSSPMAHPGMMMLDKMKILVPSFDTRPGGR*






DQ003343.1
AAX94188.1
MAWSWWWRRRKRWWPRRRRRWRRFRTRRARRAVPR
294




RRRRRRVRRRRWGRRRRRRRVFYKRRRRKTGRLYRKP





KKKLVLTQWHPTTVRNCSIRGLVPLVLCGHTQGGRNFAL





RSDDYPKQGSPYGGSFSTTTWNLRVLFDEHQKHHNTW





SYPNNQLDLGRYKGCTFYFYRDKKTDYIVKFQRRGPFKI





NKYSSPMAHPGMMMLDKMKILVPSFDTRPGGR*






DQ003344.1
AAX94191.1
MAWSWWWRRRKRWWPRRRRRWRRFRTRRARRAVPR
295




RRRRRRVRRRRWGRRRRRRRVFYKRRRRKTGRLYRKP





KKKLVLTQWHPTTVRNCSIRGLVPLVLCGHTQGGRNFAL





RSDDYPKQGSPYGGSFSTTTWNLRVLFDEHQKHHNTW





SYPNNQLDLGRYKGCTFYFYRDKKTDYIVKFQRRGPFKI





NKYSSPMAHPGMMMLDKMKILVPSFDTRPGGR*






DQ003341.1
AAX94183.1
MYYGCIGINSTLTTKYENLFNKLYSKCCYFETFQTIAQLNP
296




GFKAAKKTTNGSGSTAATLGDAVTELKNPNGTFYTGNNS





TFGCCTYKPTKQIGSNANKWFWHQLTATDSDTLGQYGR





ASIQYMEYHTGIYSSIFLSPLRSNLELPTAYQDVTYNPLTD





RGIGNRIWYQYSTKENTTFNETQCKCVLSDLPLWSMFYG





YVDFIESELGISAEIHNFGIVCVQCPYTFPPMFDKSKPDKG





YVFYDTLFGNGKMPDGSGHVPTYWQQRWWPRFSFQR





QVMHDIILTGPFSYKDDSVMTGITAGYKFKFSWGGDMVS





EQVIKNPERGDGRDSTYPDRQRRDSQVVDPRSMGPQW





VFHTFDYRRGLFGKDAIKRVSEKPTDPDYFTTPYKKPRFF





PPTAGEEKLQEEDSALQEKRSPLSSEEGQTRAQVLQQQ





VLQSELQQQQELGEQLRFLLREMFKTQAGIHMNPRAFQ





EL*






DQ003342.1
AAX94186.1
MYYGCIGINSTLTTKYENLFNKLYSKCCYFETFQTIAQLNP
297




GFKAAKKTTNGSGSTAATLGDAVTELKNPNGTFYTGNNS





TFGCCTYKPTKQIGSNANKWFWHQLTATDSDTLGQYGR





ASIQYMEYHTGIYSSIFLSPLRSNLELPTAYQDVTYNPLTD





RGIGNRIWYQYSTKENTTFNETQCKCVLSDLPLWSMFYG





YVDFIESELGISAEIHNFGIVCVQCPYTFPPMFDKSKPDKG





YVFYDTLFGNGKMPDGSGHVPTYWQQRWWPRFSFQR





QVMHDIILTGPFSYKDDSVMTGITAGYKFKFSWGGDMVS





EQVIKNPERGDGRDSTYPDRQRRDSQVVDPRSMGPQW





VFHTFDYRRGLFGKDAIKRVSEKPTDPDYFTTPYKKPRFF





PPTAGEEKLQEEDSALQEKRSPLSSEEGQTRAQVLQQQ





VLQSELQQQQELGEQLRFLLREMFKTQAGIHMNPRAFQ





EL*






DQ003343.1
AAX94189.1
MYYDCIGINSTLTTKYENLFNKLYSKCCYFETFQTIAQLNP
298




GFKAAKKTTNGSGSTAATLGDAVTELKNPNGTFYTGNNS





TFGCCTYKPTKQIGSNANKWFWHQLTATDSDTLGQYGR





ASIQYMEYHTGIYSSIFLSPLRSNLEFPTAYQDVTYNPLTD





RGIGNRIWYQYSTKENTTFNETQCKCVLSDLPLWSMFYG





YVDFIESELGISAEIHNFGIVCVQCPYTFPPMFDKSKPDKG





YVFYDTLFGNGKMPDGSGHVPTYWQQRWWPRFSFQR





QVMHDIILTGPFSYKDDSVMTGITAGYKFKFSWGGDMVS





EQVIKNSERGDGRDSTYPDRQRRDLQVVDPRSMGPQW





VFHTFDYRRGLFGKDAIKRVSEKPTDPDYFTTPYKKPRFF





PPTAGEEKLQEEDSALQEKRSPLSSEEGQTRAQVLQQQ





VLQSELQQQQELGEQLRFLLREMFKTQAGIHMNPRAFQ





EL*






DQ003344.1
AAX94192.1
MYYDCIGINSTLTTKYENLFNKLYSKCCYFETFQTIAQLNP
299




GFKAAKKTTNGSGSTAATLGDAVTELKNPNGTFYTGNNS





TFGCCTYKPTKQIGSNANKWFWHQLTATDSDTLGQYGR





ASIQYMEYHTGIYSSIFLSPLRSNLEFPTAYQDVTYNPLTD





RGIGNRIWYQYSTKENTTFNETQCKCVLSDLPLWSMFYG





YVDFIESELGISAEIHNFGIVCVQCPYTFPPMFDKSKPDKG





YVFYDTLFGNGKMPDGSGHVPTYWQQRWWPRFSFQR





QVMHDIILTGPFSYKDDSVMTGITAGYKFKFSWGGDMVS





EQVIKNSERGDGRDSTYPDRQRRDLQVVDPRSMGPQW





VFHTFDYRRGLFGKDAIKRVSEKPTDPDYFTTPYKKPRFF





PPTAGEEKLQEEDSALQEKRSPLSSEEGQTRAQVLQQQ





VLQSELQQQQELGEQLRFLLREMFKTQAGIHMNPRAFQ





EL*









In some embodiments, the genetic element comprises a nucleotide sequence encoding an amino acid sequence or a functional fragment thereof or a sequence having at least about 60%, 70% 80%, 85%, 90% 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of the amino acid sequences described herein, e.g., Table 17. In some embodiments, the substantially non-pathogenic protein comprises an amino acid sequence or a functional fragment thereof or a sequence having at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of the amino acid sequences described herein, e.g., as listed in any of Tables 2, 4, 6, 8, 10, 12, 14, 16, or 17.


In some embodiments, the genetic element comprises a nucleotide sequence encoding an amino acid sequence having about position 1 to about position 150 (e.g., or any subset of amino acids within each range, e.g., about position 20 to about position 35, about position 25 to about position 30, about position 26 to about 30), about position 150 to about position 390 (e.g., or any subset of amino acids within each range, e.g., about position 200 to about position 380, about position 205 to about position 375, about position 205 to about 371), about 390 to about position 525, about position 525 to about position 850 (e.g., or any subset of amino acids within each range, e.g., about position 530 to about position 840, about position 545 to about position 830, about position 550 to about 820), about 850 to about position 950 (e.g., or any subset of amino acids within each range, e.g., about position 860 to about position 940, about position 870 to about position 930, about position 880 to about 923) of the amino acid sequences described herein, e.g., as listed in any of Tables 2, 4, 6, 8, 10, 12, 14, 16, or 17, or shown in FIG. 1, or a functional fragment thereof. In some embodiments, the substantially non-pathogenic protein comprises an amino acid sequence or a functional fragment thereof or a sequence having at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to about position 1 to about position 150 (e.g., or any subset of amino acids within each range as described herein), about position 150 to about position 390, about position 390 to about position 525, about position 525 to about position 850, about position 850 to about position 950 of the amino acid sequences described herein, e.g., as listed in any of Tables 2, 4, 6, 8, 10, 12, 14, 16, or 17, or as shown in FIG. 1.


In some embodiments, the substantially non-pathogenic protein comprises an amino acid sequence or a functional fragment thereof or a sequence having at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of the amino acid sequences or ranges of amino acids described herein, e.g., as listed in any of Tables 2, 4, 6, 8, 10, 12, 14, 16, or 17, or shown in FIG. 1, where the sequence is a functional domain or provides a function, e.g., species and/or tissue and/or cell tropism, viral genome binding and/or packaging, immune evasion (non-immunogenicity and/or tolerance), pharmacokinetics, endocytosis and/or cell attachment, nuclear entry, intracellular modulation and localization, exocytosis modulation, propagation, nucleic acid protection, and a combination thereof. In some embodiments, the ranges of amino acids with less sequence identity may provide one or more of the properties described herein and differences in cell/tissue/species specificity (e.g. tropism).


Protein Binding Sequence


A strategy employed by many viruses is that the viral capsid protein recognizes a specific protein binding sequence in its genome. For example, in viruses with unsegmented genomes, such as the L-A virus of yeast, there is a secondary structure (stem-loop) and a specific sequence at the 5′ end of the genome that are both used to bind the viral capsid protein. However, viruses with segmented genomes, such as Reoviridae, Orthomyxoviridae (influenza), Bunyaviruses and Arenaviruses, need to package each of the genomic segments. Some viruses utilize a complementarity region of the segments to aid the virus in including one of each of the genomic molecules. Other viruses have specific binding sites for each of the different segments. See for example, Curr Opin Struct Biol. 2010 February; 20(1): 114-120; and Journal of Virology (2003), 77(24), 13036-13041.


In some embodiments, the genetic element encodes a protein binding sequence that binds to the substantially non-pathogenic protein. In some embodiments, the protein binding sequence facilitates packaging the genetic element into the proteinaceous exterior. In some embodiments, the protein binding sequence specifically binds an arginine-rich region of the substantially non-pathogenic protein. In some embodiments, the genetic element comprises a protein binding sequence as described in Example 8. In some embodiments, the genetic element comprises a protein binding sequence having at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to a 5′ UTR conserved domain or GC-rich domain of an Anellovirus sequence (e.g., as shown in any of Tables 1, 3, 5, 7, 9, 11, or 13). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 1 (e.g., nucleotides 177-247 of the nucleic acid sequence of Table 1). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 1 (e.g., nucleotides 3415-3570 of the nucleic acid sequence of Table 1). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 3 (e.g., nucleotides 174-244 of the nucleic acid sequence of Table 3). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 3 (e.g., nucleotides 3691-3794 of the nucleic acid sequence of Table 3). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 5 (e.g., nucleotides 170-240 of the nucleic acid sequence of Table 5). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 5 (e.g., nucleotides 3632-3753 of the nucleic acid sequence of Table 5). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 7 (e.g., nucleotides 174-244 of the nucleic acid sequence of Table 7). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 7 (e.g., nucleotides 3733-3853 of the nucleic acid sequence of Table 7). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 9 (e.g., nucleotides 171-241 of the nucleic acid sequence of Table 9). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 9 (e.g., nucleotides 3644-3758 of the nucleic acid sequence of Table 9). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 11 (e.g., nucleotides 323-393 of the nucleic acid sequence of Table 11). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 11 (e.g., nucleotides 2868-2929 of the nucleic acid sequence of Table 11). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of Table 13 (e.g., nucleotides 117-187 of the nucleic acid sequence of Table 13). In embodiments, the protein binding sequence has at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the Anellovirus GC-rich nucleotide sequence of Table 13 (e.g., nucleotides 3054-3172 of the nucleic acid sequence of Table 13).


In some embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to a nucleic acid sequence shown in Table 16-1 and/or FIG. 21. In some embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence of the Consensus 5′ UTR sequence shown in Table 16-1, wherein X1, X2, X3, X4, and X5 are each independently any nucleotide, e.g., wherein X1=G or T, X2=C or A, X3=G or A, X4=T or C, and X5=A, C, or T). In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the Consensus 5′ UTR sequence shown in Table 16-1. In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the exemplary TTV 5′ UTR sequence shown in Table 16-1. In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-CT30F 5′ UTR sequence shown in Table 16-1. In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-HD23a 5′ UTR sequence shown in Table 16-1. In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-JA20 5′ UTR sequence shown in Table 16-1. In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-TJN02 5′ UTR sequence shown in Table 16-1. In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the TTV-tth8 5′ UTR sequence shown in Table 16-1.









TABLE 16-1







Exemplary 5′ UTR sequences from Anelloviruses









Source
Sequence
SEQ ID NO:





Consensus
CGGGTGCCGX1AGGTGAGTTTACACACCGX2AGT
715



CAAGGGGCAATTCGGGCTCX3GGACTGGCCGGG




CX4X5TGGG




X1 = G or T




X2 = C or A




X3 = G or A




X4 = T or C




X5 = A, C, or T






Exemplary TTV
CGGGTGCCGGAGGTGAGTTTACACACCGCAGTC
703


Sequence
AAGGGGCAATTCGGGCTCGGGACTGGCCGGGCT




WTGGG






TTV-CT30F
CGGGTGCCGTAGGTGAGTTTACACACCGCAGTC
704



AAGGGGCAATTCGGGCTCGGGACTGGCCGGGCT




ATGGG






TTV-HD23a
CGGGTGCCGGAGGTGAGTTTACACACCGCAGTC
705



AAGGGGCAATTCGGGCTCGGGACTGGCCGGGCC




CTGGG






TTV-JA20
CGGGTGCCGGAGGTGAGTTTACACACCGCAGTC
706



AAGGGGCAATTCGGGCTCGGGACTGGCCGGGCT




TTGGG






TTV-TJN02
CGGGTGCCGGAGGTGAGTTTACACACCGCAGTC
707



AAGGGGCAATTCGGGCTCGGGACTGGCCGGGCT




ATGGG






TTV-tth8
CGGGTGCCGGAGGTGAGTTTACACACCGAAGTC
708



AAGGGGCAATTCGGGCTCAGGACTGGCCGGGCT




TTGGG









In some embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to a nucleic acid sequence shown in Table 16-2 and/or FIG. 22. In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence of the Consensus GC-rich sequence shown in Table 16-1, wherein X1, X4, X5, X6, X7, X12, X13, X14, X15, X20, X21, X22, X26, X29, X30, and X33 are each independently any nucleotide and wherein X2, X3, X5, X9, X10, X11, X16, X17, X18, X19, X23, X24, X25, X27, X28, X31, X32, and X34 are each independently absent or any nucleotide. In some embodiments, one or more of (e.g., all of) X1 through X34 are each independently the nucleotide (or absent) specified in Table 16-2. In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to the Consensus GC-rich sequence shown in Table 16-1. In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to an exemplary TTV GC-rich sequence shown in Table 16-1 (e.g., the full sequence, Fragment 1, Fragment 2, Fragment 3, or any combination thereof, e.g., Fragments 1-3 in order). In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to a TTV-CT30F GC-rich sequence shown in Table 16-1 (e.g., the full sequence, Fragment 1, Fragment 2, Fragment 3, Fragment 4, Fragment 5, Fragment 6, Fragment 7, Fragment 8, or any combination thereof, e.g., Fragments 1-7 in order). In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to a TTV-HD23a GC-rich sequence shown in Table 16-1 (e.g., the full sequence, Fragment 1, Fragment 2, Fragment 3, Fragment 4, Fragment 5, Fragment 6, or any combination thereof, e.g., Fragments 1-6 in order). In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to a TTV-JA20 GC-rich sequence shown in Table 16-1 (e.g., the full sequence, Fragment 1, Fragment 2, or any combination thereof, e.g., Fragments 1 and 2 in order). In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to a TTV-TJN02 GC-rich sequence shown in Table 16-1 (e.g., the full sequence, Fragment 1, Fragment 2, Fragment 3, Fragment 4, Fragment 5, Fragment 6, Fragment 7, Fragment 8, or any combination thereof, e.g., Fragments 1-8 in order). In embodiments, the genetic element (e.g., protein-binding sequence of the genetic element) comprises a nucleic acid sequence having at least about 75% (e.g., at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) identity to a TTV-tth8 GC-rich sequence shown in Table 16-1 (e.g., the full sequence, Fragment 1, Fragment 2, Fragment 3, Fragment 4, Fragment 5, Fragment 6, or any combination thereof, e.g., Fragments 1-6 in order).









TABLE 16-2







Exemplary GC-rich sequences from Anelloviruses











SEQ ID


Source
Sequence
NO:





Consensus
CGGCGGX1GGX2GX3X4X5CGCGCTX6CG
743



CGCGCX7X8X9X10CX11X12X13X14GGGGX15




X16X17X18X19X20X21GCX22X23X24X25CCCCC




CCX26CGCGCATX27X28GCX29CGGGX30CC




CCCCCCCX31X32X33GGGGGGCTCCGX34C




CCCCCGGCCCCCC




X1 = G or C




X2 = G, C, or absent




X3 = C or absent




X4 = G or C




X5 = G or C




X6 = T, G, or A




X7 = G or C




X8 = G or absent




X9 = C or absent




X10 = C or absent




X11 = G, A, or absent




X12 = G or C




X13 = C or T




X14 = G or A




X15 = G or A




X16 = A, G, T, or absent




X17 = G, C, or absent




X18 = G, C, or absent




X19 = C, A, or absent




X20 = C or A




X21 = T or A




X22 = G or C




X23 = G, T, or absent




X24 = C or absent




X25 = G, C, or absent




X26 = G or C




X27 = G or absent




X28 = C or absent




X29 = G Or A




X30 = G or T




X31 = C, T, or absent




X32 = G, C, A, or absent




X33 = G Or C




X34 = C or absent














Exemplary TTV
Full sequence
GCCGCCGCGGCGGCGGSGGNGNSGCG
709


Sequence

CGCTDCGCGCGCSNNNCRCCRGGGGGN





NNNCWGCSNCNCCCCCCCCCGCGCAT





GCGCGGGKCCCCCCCCCNNCGGGGGG





CTCCGCCCCCCGGCCCCCCCCCGTGCT





AAACCCACCGCGCATGCGCGACCACG





CCCCCGCCGCC




Fragment 1
GCCGCCGCGGCGGCGGSGGNGNSGCG
716




CGCTDCGCGCGCSNNNCRCCRGGGGGN





NNNCWGCSNCNCCCCCCCCCGCGCAT




Fragment 2
GCGCGGGKCCCCCCCCCNNCGGGGGG
717




CTCCG




Fragment 3
CCCCCCGGCCCCCCCCCGTGCTAAACC
718




CACCGCGCATGCGCGACCACGCCCCCG





CCGCC






TTV-CT30F
Full sequence
GCGGCGG-GGGGGCG-GCCGCG-
710




TTCGCGCGCCGCCCACCAGGGGGTG--





CTGCG-CGCCCCCCCCCGCGCAT





GCGCGGGGCCCCCCCCC--





GGGGGGGCTCCGCCCCCCCGGCCCCCC





CCCGTGCTAAACCCACCGCGCATGCGC





GACCACGCCCCCGCCGCC




Fragment 1
GCGGCGG
719



Fragment 2
GGGGGCG
720



Fragment 3
GCCGCG
721



Fragment 4
TTCGCGCGCCGCCCACCAGGGGGTG
722



Fragment 5
CTGCG
723



Fragment 6
CGCCCCCCCCCGCGCAT
724



Fragment 7
GCGCGGGGCCCCCCCCC
725



Fragment 8
GGGGGGGCTCCGCCCCCCCGGCCCCCC
726




CCCGTGCTAAACCCACCGCGCATGCGC





GACCACGCCCCCGCCGCC






TTV-HD23a
Full sequence
CGGCGGCGGCGGCG-
711




CGCGCGCTGCGCGCGCG---





CGCCGGGGGGGCGCCAGCG-





CCCCCCCCCCCGCGCAT





GCACGGGTCCCCCCCCCCACGGGGGGC





TCCG CCCCCCGGCCCCCCCCC




Fragment 1
CGGCGGCGGCGGCG
727



Fragment 2
CGCGCGCTGCGCGCGCG
728



Fragment 3
CGCCGGGGGGGCGCCAGCG
729



Fragment 4
CCCCCCCCCCCGCGCAT
730



Fragment 5
GCACGGGTCCCCCCCCCCACGGGGGGC
731




TCCG




Fragment 6
CCCCCCGGCCCCCCCCC
732





TTV-JA20
Full sequence
CCGTCGGCGGGGGGGCCGCGCGCTGC
712




GCGCGCGGCCC-





CCGGGGGAGGCACAGCCTCCCCCCCCC





GCGCGCATGCGCGCGGGTCCCCCCCCC





TCCGGGGGGCTCCGCCCCCCGGCCCCC





CCC




Fragment 1
CCGTCGGCGGGGGGGCCGCGCGCTGC
733




GCGCGCGGCCC




Fragment 2
CCGGGGGAGGCACAGCCTCCCCCCCCC
734




GCGCGCATGCGCGCGGGTCCCCCCCCC





TCCGGGGGGCTCCGCCCCCCGGCCCCC





CCC






TTV-TJN02
Full sequence
CGGCGGCGGCG-
713




CGCGCGCTACGCGCGCG---





CGCCGGGGGG----CTGCCGC-





CCCCCCCCCGCGCAT





GCGCGGGGCCCCCCCCC-GCGGGGGGCTCCG





CCCCCCGGCCCCCC




Fragment 1
CGGCGGCGGCG
735



Fragment 2
CGCGCGCTACGCGCGCG
736



Fragment 3
CGCCGGGGGG
737



Fragment 4
CTGCCGC
738



Fragment 5
CCCCCCCCCGCGCAT
739



Fragment 6
GCGCGGGGCCCCCCCCC
740



Fragment 7
GCGGGGGGCTCCG
741



Fragment 8
CCCCCCGGCCCCCC
742





TTV-tth8
Full sequence
GCCGCCGCGGCGGCGGGGG-
714




GCGGCGCGCTGCGCGCGCCGCCCAGTA





GGGGGAGCCATGCG---





CCCCCCCCCGCGCAT





GCGCGGGGCCCCCCCCC-





GCGGGGGGCTCCG





CCCCCCGGCCCCCCCCG




Fragment 1
GCCGCCGCGGCGGCGGGGG
744



Fragment 2
GCGGCGCGCTGCGCGCGCCGCCCAGTA
745




GGGGGAGCCATGCG




Fragment 3
CCCCCCCCCGCGCAT
746



Fragment 4
GCGCGGGGCCCCCCCCC
747



Fragment 5
GCGGGGGGCTCCG
748



Fragment 6
CCCCCCGGCCCCCCCCG
749









Effector


In some embodiments, the genetic element may include one or more sequences that encode a functional nucleic acid, e.g., an exogenous effector, e.g., a therapeutic, e.g., a regulatory nucleic acid, e.g., cytotoxic or cytolytic RNA or protein. In some embodiments, the functional nucleic acid is a non-coding RNA.


In some embodiments, the sequence encoding an exogenous effector is inserted into the genetic element, e.g., at an insert site as described in Example 10, 12, or 22. In embodiments, the sequence encoding an exogenous effector is inserted into the genetic element at a noncoding region, e.g., a noncoding region disposed 3′ of the open reading frames and 5′ of the GC-rich region of the genetic element, in the 5′ noncoding region upstream of the TATA box, in the 5′ UTR, in the 3′ noncoding region downstream of the poly-A signal, or upstream of the GC-rich region. In embodiments, the sequence encoding an exogenous effector is inserted into the genetic element at about nucleotide 3588 of a TTV-tth8 plasmid, e.g., as described herein or at about nucleotide 2843 of a TTMV-LY2 plasmid, e.g., as described herein. In embodiments, the sequence encoding an exogenous effector is inserted into the genetic element at or within nucleotides 336-3015 of a TTV-tth8 plasmid, e.g., as described herein, or at or within nucleotides 242-2812 of a TTV-LY2 plasmid, e.g., as described herein. In some embodiments, the sequence encoding an exogenous effector replaces part or all of an open reading frame (e.g., an ORF as described herein, e.g., an ORF1, ORF1/1, ORF1/2, ORF2, ORF2/2, ORF2/3, and/or ORF2t/3 as shown in any of Tables 1-14).


In some embodiments, the sequence encoding an exogenous effector comprises 100-2000, 100-1000, 100-500, 100-200, 200-2000, 200-1000, 200-500, 500-1000, 500-2000, or 1000-2000 nucleotides. In some embodiments, the exogenous effector is a nucleic acid or protein payload, e.g., as described in Example 11.


Regulatory Nucleic Acid


In some embodiments, the regulatory nucleic acids modify expression of an endogenous gene and/or an exogenous gene. In one embodiment, the regulatory nucleic acid targets a host gene. The regulatory nucleic acids may include, but are not limited to, a nucleic acid that hybridizes to an endogenous gene (e.g., miRNA, siRNA, mRNA, lncRNA, RNA, DNA, an antisense RNA, gRNA as described herein elsewhere), nucleic acid that hybridizes to an exogenous nucleic acid such as a viral DNA or RNA, nucleic acid that hybridizes to an RNA, nucleic acid that interferes with gene transcription, nucleic acid that interferes with RNA translation, nucleic acid that stabilizes RNA or destabilizes RNA such as through targeting for degradation, and nucleic acid that modulates a DNA or RNA binding factor. In embodiments, the regulatory nucleic acid encodes an miRNA.


In some embodiments, the regulatory nucleic acid comprises RNA or RNA-like structures typically containing 5-500 base pairs (depending on the specific RNA structure, e.g., miRNA 5-30 bps, lncRNA 200-500 bps) and may have a nucleobase sequence identical (or complementary) or nearly identical (or substantially complementary) to a coding sequence in an expressed target gene within the cell, or a sequence encoding an expressed target gene within the cell.


In some embodiments, the regulatory nucleic acid comprises a nucleic acid sequence, e.g., a guide RNA (gRNA). In some embodiments, the DNA targeting moiety comprises a guide RNA or nucleic acid encoding the guide RNA. A gRNA short synthetic RNA can be composed of a “scaffold” sequence necessary for binding to the incomplete effector moiety and a user-defined ˜20 nucleotide targeting sequence for a genomic target. In practice, guide RNA sequences are generally designed to have a length of between 17-24 nucleotides (e.g., 19, 20, or 21 nucleotides) and complementary to the targeted nucleic acid sequence. Custom gRNA generators and algorithms are available commercially for use in the design of effective guide RNAs. Gene editing has also been achieved using a chimeric “single guide RNA” (“sgRNA”), an engineered (synthetic) single RNA molecule that mimics a naturally occurring crRNA-tracrRNA complex and contains both a tracrRNA (for binding the nuclease) and at least one crRNA (to guide the nuclease to the sequence targeted for editing). Chemically modified sgRNAs have also been demonstrated to be effective in genome editing; see, for example, Hendel et al. (2015) Nature Biotechnol., 985-991.


The regulatory nucleic acid comprises a gRNA that recognizes specific DNA sequences (e.g., sequences adjacent to or within a promoter, enhancer, silencer, or repressor of a gene).


Certain regulatory nucleic acids can inhibit gene expression through the biological process of RNA interference (RNAi). RNAi molecules comprise RNA or RNA-like structures typically containing 15-50 base pairs (such as about 18-25 base pairs) and having a nucleobase sequence identical (complementary) or nearly identical (substantially complementary) to a coding sequence in an expressed target gene within the cell. RNAi molecules include, but are not limited to: short interfering RNAs (siRNAs), double-strand RNAs (dsRNA), micro RNAs (miRNAs), short hairpin RNAs (shRNA), meroduplexes, and dicer substrates (U.S. Pat. Nos. 8,084,599 8,349,809 and 8,513,207).


Long non-coding RNAs (lncRNA) are defined as non-protein coding transcripts longer than 100 nucleotides. This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), and other short RNAs. In general, the majority (˜78%) of lncRNAs are characterized as tissue-specific. Divergent lncRNAs that are transcribed in the opposite direction to nearby protein-coding genes (comprise a significant proportion ˜20% of total lncRNAs in mammalian genomes) may possibly regulate the transcription of the nearby gene.


The genetic element may encode regulatory nucleic acids with a sequence substantially complementary, or fully complementary, to all or a fragment of an endogenous gene or gene product (e.g., mRNA). The regulatory nucleic acids may complement sequences at the boundary between introns and exons to prevent the maturation of newly-generated nuclear RNA transcripts of specific genes into mRNA for transcription. The regulatory nucleic acids that are complementary to specific genes can hybridize with the mRNA for that gene and prevent its translation. The antisense regulatory nucleic acid can be DNA, RNA, or a derivative or hybrid thereof.


The length of the regulatory nucleic acid that hybridizes to the transcript of interest may be between 5 to 30 nucleotides, between about 10 to 30 nucleotides, or about 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more nucleotides. The degree of identity of the regulatory nucleic acid to the targeted transcript should be at least 75%, at least 80%, at least 85%, at least 90%, or at least 95%.


The genetic element may encode a regulatory nucleic acids, e.g., a micro RNA (miRNA) molecule identical to about 5 to about 25 contiguous nucleotides of a target gene. In some embodiments, the miRNA sequence targets a mRNA and commences with the dinucleotide AA, comprises a GC-content of about 30-70% (about 30-60%, about 40-60%, or about 45%-55%), and does not have a high percentage identity to any nucleotide sequence other than the target in the genome of the mammal in which it is to be introduced, for example as determined by standard BLAST search.


In some embodiments, the regulatory nucleic acid is at least one miRNA, e.g., 2, 3, 4, 5, 6, or more. In some embodiments, the genetic element comprises a sequence that encodes an miRNA at least about 75%, 80%, 85%, 90% 95%, 96%, 97%, 98%, 99% or 100% nucleotide sequence identity to any one of the nucleotide sequences or a sequence that is complementary to a sequence described herein, e.g., in Table 18.









TABLE 18







Examples of regulatory nucleic acids, e.g., miRNAs.














Accession
Exemplary








number of
subsequence

SEQ ID
miRNA_5prime_
SEQ ID
miRNA_3prime_
SEQ ID


strain
nucleotides
Pre_miRNA
NO:
per_MiRdup
NO:
per_MiRdup
NO:





AB008394.1
AB008394_
GCCAUUUUAAGUA
300
AGUAGCUGAC
395
CAUCCUCGGC
490



3475_3551
GCUGACGUCAAGG

GUCAAGGAUU

GGAAGCUACA





AUUGACGUAAAGG

GAC(5′)

CAA(3′)





UUAAAGGUCAUCC









UCGGCGGAAGCUA









CACAAAAUGGU










AB008394.1
AB008394_
GCGUACGUCACAA
301
CAAGUCACGU
396
GGCCCCGUCA
491



3579_3657
GUCACGUGGAGGG

GGAGGGGACC

CGUGACUUAC





GACCCGCUGUAAC

CG(5′)

CAC(3′)





CCGGAAGUAGGCC









CCGUCACGUGACU









UACCACGUGUGUA










AB017613.1
AB017613_
GCCAUUUUAAGUA
302
AAGUAGCUGA
397
UCAUCCUCGG
492



3462_3539
GCUGACGUCAAGG

CGUCAAGGAU

CGGAAGCUAC





AUUGACGUGAAGG

UGACG(5′)

ACAA(3′)





UUAAAGGUCAUCC









UCGGCGGAAGCUA









CACAAAAUGGUG










AB017613.1
AB017613_
GCACACGUCAUAA
303
AUAAGUCACG
398
GGCCCCGUCA
493



3566_3644
GUCACGUGGUGGG

UGGUGGGGAC

CGUGAUUUGU





GACCCGCUGUAAC

CCG(5′)

CAC(3′)





CCGGAAGUAGGCC









CCGUCACGUGAUU









UGUCACGUGUGUA










AB025946.1
AB025946_
CUUCCGGGUCAUA
304
UGGGGAGGGU
399
CCGGGUCAUA
494



3534_3600
GGUCACACCUACG

UGGCGUAUAG

GGUCACACCU





UCACAAGUCACGU

CCCGGA(3′)

ACGUCAC(5′)





GGGGAGGGUUGGC









GUAUAGCCCGGAA









G










AB025946.1
AB025946_
GCCGGGGGGCUGC
305
CCCCCCCCGG
400
GGCUGCCGCC
495



3730_3798
CGCCCCCCCCGGG

GGGGGGGUUU

CCCCCCGGGG





GAAAGGGGGGGGC

GCCC(3′)

AAAGGGGG(5′)





CCCCCCCGGGGGG









GGGUUUGCCCCCC









CCC










AB028668.1
AB028668_
AUACGUCAUCAGU
306
AUCAGUCACG
401
AUCCUCGUCC
496



3537_3615
CACGUGGGGGAAG

UGGGGGAAGG

ACGUGACUGU





GCGUGCCUAAACC

CGUGC(5′)

GA(3′)





CGGAAGCAUCCUC









GUCCACGUGACUG









UGACGUGUGUGGC










AB028669.1
AB028669_
CAUUUUAAGUAAG
307
AAGUAAGGCG
402
GAGCACUUCC
497



3440_3513
GCGGAAGCAGCUC

GAAGCAGCUC

GGCUUGCCCA





GGCGUACACAAAA

GG(5′)

A(3′)





UGGCGGCGGAGCA









CUUCCGGCUUGCC









CAAAAUGG










AB028669.1
AB028669_
GUCACAAGUCACG
308
AGUCACGUGG
403
CAAUCCUCUU
498



3548_3619
UGGGGAGGGUUGG

GGAGGGUUGG

ACGUGGCCUG





CGUUUAACCCGGA

C(5′)

(3′)





AGCCAAUCCUCUU









ACGUGGCCUGUCA









CGUGAC










AB037926.1
AB037926_
CGACCGCGUCCCG
309
CCCGAAGGCG
404
CGAGGUUAAG
499



162_232
AAGGCGGGUACCC

GGUACCCGAG

GGCCAAUUCG





GAGGUGAGUUUAC

GU(5′)

GGCU(3′)





ACACCGAGGUUAA









GGGCCAAUUCGGG









CUUGG










AB037926.1
AB037926_
CGCGGUAUCGUAG
310
UAUCGUAGCC
405
GGGCCCCCGC
500



3454_3513
CCGACGCGGACCC

GACGCGGACC

GGGGCUCUCG





CGUUUUCGGGGCC

CCG(5′)

GCG(3′)





CCCGCGGGGCUCU









CGGCGCG










AB037926.1
AB037926_
CGCCAUUUUGUGA
311
AUUUUGUGAU
406
GCGGGGCGUG
501



3531_3609
UACGCGCGUCCCC

ACGCGCGUCC

GCCGUAUCAG





UCCCGGCUUCCGU

CCUCCC(5′)

AAAAUGG(3′)





ACAACGUCAGGCG









GGGCGUGGCCGUA









UCAGAAAAUGGCG










AB037926.1
AB037926_
GCUACGUCAUAAG
312
AAGUCACGUG
407
CCUCGGUCAC
502



3637_3714
UCACGUGACUGGG

ACUGGGCAGG

GUGGCCUGU





CAGGUACUAAACC

U(5′)

(3′)





CGGAAGUAUCCUC









GGUCACGUGGCCU









GUCACGUAGUUG










AB038621.1
AB038621_
GGCUSUGACGUCA
313
UGACGUCAAA
408
CCUCGUCACG
503



3511_3591
AAGUCACGUGGGR

GUCACGUGGG

UGACCUGACG





AGGGUGGCGUUAA

RAGGGU(5′)

UCACAG(3′)





ACCCGGAAGUCAU









CCUCGUCACGUGA









CCUGACGUCACAG









CC










AB038622.1
AB038622_
GCCCGUCCGCGGC
314
GAUCGAGCGU
409
CCGUCCGCGG
504



227_293
GAGAGCGCGAGCG

CCCGUGGGCG

CGAGAGCGCG





AAGCGAGCGAUCG

GGU(3′)

AGCGA(5′)





AGCGUCCCGUGGG









CGGGUGCCGAAGG









U










AB038622.1
AB038622_
GGUUGUGACGUCA
315
UGACGUCAAA
410
AUCCUCGUCA
505



3510_3591
AAGUCACGUGGGG

GUCACGUGGG

CGUGACCUGA 





AGGGCGGCGUUAA

GAGGGCGG(5′)

CGUCACG(3′)





ACCCGGAAGUCAU









CCUCGUCACGUGA









CCUGACGUCACGG









CC










AB038623.1
AB038623_
GCCCGUCCGCGGC
316
GAUCGAGCGU
411
CCGUCCGCGG
506



228_295
GAGAGCGCGAGCG

CCCGUGGGCG

CGAGAGCGCG





AAGCGAGCGAUCG

GGU(3′)

AGCGA(5′)





AGCGUCCCGUGGG









CGGGUGCCGUAGG









UG










AB038624.1
AB038624_
GCCCGUCCGCGGC
317
GAUCGAGCGU
412
CCGUCCGCGG
507



228_295
GAGAGCGCGAGCG

CCCGUGGGCG

CGAGAGCGCG





AAGCGAGCGAUCG

GGU(3′)

AGCGA(5′)





AGCGUCCCGUGGG









CGGGUGCCGUAGG









UG










AB038624.1
AB038624_
GGCUGUGACGUCA
318
UGACGUCAAA
413
AUCCUCGUCA
508



1351_3592
AAGUCACGUGGGG

GUCACGUGGG

CGUGACCUGA





AGGGCGGCGUUAA

GAGGGCGG(5′)

CGUCACG(3′)





ACCCGGAAGUCAU









CCUCGUCACGUGA









CCUGACGUCACGG









CC










AB041957.1
AB041957_
AGACCACGUGGUA
319
ACGUGGUAAG
414
CUGACCCGCG
509



3414_3493
AGUCACGUGGGGG

UCACGUGGGG

UGACUGGUCA





CAGCUGCUGUAAA

GCAGCU(5′)

CGUGA(3′)





CCCGGAAGUAGCU









GACCCGCGUGACU









GGUCACGUGACCU









G










AB049608.1
AB049608_
CGCCAUUUUAUAA
320
AUUUUAUAAU
415
CGGGGCGUGG
510



3199_3277
UACGCGCGUCCCC

ACGCGCGUCC

CCGUAUUAGA





UCCCGGCUUCCGU

CCUCC(5′)

AAAUGG(3′)





ACUACGUCAGGCG









GGGCGUGGCCGUA









UUAGAAAAUGGUG










AB050448.1
AB050448_
UAAGUAAGGCGGA
321
AAGGGACAGC
416
AGUAAGGCGG
511



3393_3465
ACCAGGCUGUCAC

CUUCCGGCUU

AACCAGGCUG





CCUGUGUCAAAGG

GC(3′)

UCACCCUGU





UCAAGGGACAGCC



(5′)





UUCCGGCUUGCAC









AAAAUGG










AB054647.1
AB054647_
UGCCUACGUCAUA
322
CAUAAGUCAC
417
UAGCUGACCC
512



3537_3615
AGUCACGUGGGGA

GUGGGGACGG

GCGUGACUUG





CGGCUGCUGUAAA

CUGCU(5′)

UCAC(3′)





CACGGAAGUAGCU









GACCCGCGUGACU









UGUCACGUGAGCA










AB054648.1
AB054648_
UUGUGUAAGGCGG
323
UAAGGCGGAA
418
GGUCAGCCUC
513



3439_3511
AACAGGCUGACAC

CAGGCUGACA

CGCUUUGCA





CCCGUGUCAAAGG

CCCC(5′)

(3′)





UCAGGGGUCAGCC









UCCGCUUUGCACC









AAAUGGU










AB054648.1
AB054648_
UACCUACGUCAUAA
324
UACGUCAUAA
419
GCUGACCCGC
514



3538_3617
GUCACGUGGGAAG

GUCACGUGGG

GUGGCUUGUC





AGCUGCUGUGAAC

AAGAGCUG(5′)

ACGUGAGU(3′)





CUGGAAGUAGCUG









ACCCGCGUGGCUU









GUCACGUGAGUGC










AB064595.1
AB064595_
UUUUCCUGGCCCG
325
UCGGGCGUCC
420
GGCCCGUCCG
515



116_191
UCCGCGGCGAGAG

CGAGGGCGGG

CGGCGAGAGC





CGCGAGCGAAGCG

UG(3′)

GCGAG(5′)





AGCGAUCGGGCGU









CCCGAGGGCGGGU









GCCGGAGGUG










AB064595.1
AB064595_
AAAGUGAGUGGGG
326
AAAGUGAGUG
421
UCCGGGUGCG
516



3283_3351
CCAGACUUCGCCA

GGGCCAGACU

UCUGGGGGCC





UAGGGCCUUUAAC

UCGCC(5′)

GCCAUUU(3′)





UUCCGGGUGCGUC









UGGGGGCCGCCAU









UUU










AB064595.1
AB064595_
GUGACGUUACUCU
327
CUCUCACGUG
422
AUCCUCGACC
517



3427_3500
CACGUGAUGGGGG

AUGGGGGCGU

ACGUGACUGU





CGUGCUCUAACCC

GC(5′)

G(3′)





GGAAGCAUCCUCG









ACCACGUGACUGU









GACGUCAC










AB064595.1
AB064595_
AGCGUCUACUACG
328
UCUACUACGU
423
AUAAACCAGA
518



41_116
UACACUUCCUGGG

ACACUUCCUG

GGGGUGACGA





GUGUGUCCUGCCA

GGGUGUGU(5′)

AUGGUAGAGU(3′)





CUGUAUAUAAACCA









GAGGGGUGACGAA









UGGUAGAGU










AB064596.1
AB064596_
GUGACGUCAAAGU
329
UGGCUGUUGU
424
CAAAGUCACG
519



3424_3497
CACGUGGUGACGG

CACGUGACUU

UGGUGACGGC





CCAUUUUAACCCG

GA(3′)

CAU(5′)





GAAGUGGCUGUUG









UCACGUGACUUGA









CGUCACGG










AB064597.1
AB064597_
GCUUUAGACGCCA
330
AGACGCCAUU
425
GUAGGCGCGU
520



1319_3253
UUUUAGGCCCUCG

UUAGGCCCUC

UUUAAUGACG





CGGGCACCCGUAG

GCGG(5′)

UCACGG(3′)





GCGCGUUUUAAUG









ACGUCACGGC










AB064597.1
AB064597_
CACCCGUAGGCGC
331
UGUCGUGACG
426
UAGGCGCGUU
521



3221_3294
GUUUUAAUGACGU

UUUGAGACAC

UUAAUGACGU





CACGGCAGCCAUU

GUGAU(3′)

CACGGCAG(5′)





UUGUCGUGACGUU









UGAGACACGUGAU









GGGGGCGU










AB064597.1
AB064597_
GUCGUGACGUUUG
332
UGACGUUUGA
427
AUCCCUGGUC
522



3262_3342
AGACACGUGAUGG

GACACGUGAU

ACGUGACUCU





GGGCGUGCCUAAA

GGGGGCGUGC

GACGUCACG





CCCGGAAGCAUCC

(5′)

(3′)





CUGGUCACGUGAC









UCUGACGUCACGG









CG










AB064598.1
AB064598_
CGAAAGUGAGUGG
333
AGUGAGUGGG
428
GCGUGUGGGG
523



3179_3256
GGCCAGACUUCGC

GCCAGACUUC

GCCGCCAUUU





CAUAAGGCCUUUA

GC(5′)

UAGCUU(3′)





ACUUCCGGGUGCG









UGUGGGGGCCGCC









AUUUUAGCUUCG










AB064598.1
AB064598_
CUGUGACGUCAAA
334
UGUGACGUCA
429
UCAUCCUCGU
524



3323_3399
GUCACGUGGGGAG

AAGUCACGUG

CACGUGACCU





GGCGGCGUGUAAC

GGGAGGGCGG

GACGUCACG





CCGGAAGUCAUCC

(5′)

(3′)





UCGUCACGUGACC









UGACGUCACGG










AB064598.1
AB064598_
CUGUCCGCCAUCU
335
AAAAGAGGAA
430
CGCCAUCUUG
525



3412_3485
UGUGACUUCCUUC

GUAUGACGUA

UGACUUCCUU





CGCUUUUUCAAAAA

GCGGCGG(3′)

CCGCUUUUU





AAAAGAGGAAGUAU



(5′)





GACGUAGCGGCGG









GGGGGC










AB064599.1
AB064599_
GGUAGAGUUUUUU
336
AGCGAGCGGC
431
UAGAGUUUUU
526



108_175
CCGCCCGUCCGCA

CGAGCGACCC

UCCGCCCGUC





GCGAGGACGCGAG

G(3′)

CG(5′)





CGCAGCGAGCGGC









CGAGCGACCCGUG









GG










AB064599.1
AB064599_
GCUGUGACGUUUC
337
UUCAGUCACG
432
GUCCCUGGUC
527



3389_3469
AGUCACGUGGGGA

UGGGGAGGGA

ACGUGAUUGU





GGGAACGCCUAAA

ACGC(5′)

GAC(3′)





CCCGGAAGCGUCC









CUGGUCACGUGAU









UGUGACGUCACGG









CC










AB064599.1
AB064599_
CCGCCAUUUUGUG
338
AAAAGAGGAA
433
CAUUUUGUGA
528



3483_3546
ACUUCCUUCCGCU

GUGUGACGUA

CUUCCUUCCG





UUUUCAAAAAAAAA

GCGG(3′)

CUUUUU(5′)





GAGGAAGUGUGAC









GUAGCGGCGG










AB064600.1
AB064600_
GACUGUGACGUCA
339
UGUGACGUCA
434
UCAUCCUCGU
529



3378_3456
AAGUCACGUGGGG

AAGUCACGUG

CACGUGACCU





AGGGCGGCGUGUA

GGGAGGGCGG

GACGUCACG





ACCCGGAAGUCAU

(5′)

(3′)





CCUCGUCACGUGA









CCUGACGUCACGG










AB064600.1
AB064600_
CUGUCCGCCAUCU
340
AAAAGAGGAA
435
CCGCCAUCUU
530



9346_3542
UGUGACUUCCUUC

GUAUGACGUG

GUGACUUCCU





CGCUUUUUCAAAAA

GCGG(3′)

UCCGCUUUUU(5′)





AAAAGAGGAAGUAU









GACGUGGCGGCGG









GGGGGC










AB064601.1
AB064601_
GGUUGUGACGUCA
341
UGACGUCAAA
436
AUCCUCGUCA
531



3318_3398
AAGUCACGUGGGG

GUCACGUGGG

CGUGACCUGA





AGGGCGGCGUGUA

GAGGGCGG(5′)

CGUCACG(3′)





ACCCGGAAGUCAU









CCUCGUCACGUGA









CCUGACGUCACGG









CC










AB064601.1
AB064601_
CCCGCCAUCUUGU
342
AAAAAAGAGG
437
CGCCAUCUUG
532



3412_3477
GACUUCCUUCCGC

AAGUGUGACG

UGACUUCCUU





UUUUUCAAAAAAAA

UAGCGGCGG

CCGCUUUUUC





AGAGGAAGUGUGA

(3′)

(5′)





CGUAGCGGCGGG










AB064602.1
AB064602_
GCCCGUCCGCGGC
343
GAUCGAGCGU
438
CCGUCCGCGG
533



125_192
GAGAGCGCGAGCG

CCCGUGGGCG

CGAGAGCGCG





AAGCGAGCGAUCG

GGU(3′)

AGCGA(5′)





AGCGUCCCGUGGG









CGGGUGCCGUAGG









UG










AB064602.1
AB064602_
GACUGUGACGUCA
344
UGUGACGUCA
439
UCAUCCUCGU
534



3368_3446
AAGUCACGUGGGG

AAGUCACGUG

CACGUGACCU





AGGAGGGCGUGUA

GGGAGGAGGG

GACGUCACG





ACCCGGAAGUCAU

(5′)

(3′)





CCUCGUCACGUGA









CCUGACGUCACGG










AB064603.1
AB064603_
UCGCGUCUUAGUG
345
UUGGUCCUGA
440
CUUAGUGACG
535



3385_3447
ACGUCACGGCAGC

CGUCACUGUC

UCACGGCAGC





CAUCUUGGUCCUG

A(3′)

CAU(5′)





ACGUCACUGUCAC









GUGGGGAGGG










AB064603.1
AB064603_
UGACGUCACUGUC
346
CGUCACUGUC
441
GUCCCUGGUC
536



3422_3498
ACGUGGGGAGGGA

ACGUGGGGAG

ACGUGACAUG





ACACGUGAACCCG

GGAACAC(5′)

ACGUC(3′)





GAAGUGUCCCUGG









UCACGUGACAUGA









CGUCACGGCCG










AB064604.1
AB064604_
CGCCAUUUUAAGU
347
UAAGUAAGCA
442
CACAGCCGGU
537



3436_3514
AAGCAUGGCGGGC

UGGCGGGCGG

CAUGCUUGCA





GGUGAUGUCAAAU

UGAU(5′)

CAAA(3′)





GUUAAAGGUCACA









GCCGGUCAUGCUU









GCACAAAAUGGCG










AB064605.1
AB064605_
CGCCAUUUUAAGU
348
AAGUAAGCAU
443
ACAGCCUGUC
538



3440_3518
AAGCAUGGCGGGC

GGCGGGCGGU

AUGCUUGCAC





GGUGACGUGCAAU

GA(5′)

AA(3′)





GUCAAAGGUCACA









GCCUGUCAUGCUU









GCACAAAAUGGCG










AB064606.1
AB064606_
CCAUCUUAAGUAG
349
UAAGUAGUUG
444
CACCAUCAGC
539



3377_3449
UUGAGGCGGACGG

AGGCGGACGG

CACACCUACU





UGGCGUCGGUUCA

UGGC(5′)

CAAA(3′)





AAGGUCACCAUCA









GCCACACCUACUC









AAAAUGG










AB064607.1
AB064607_
GCCUGUCAUGCUU
350
UCAUGCUUGC
445
CGGGUCGCCG
540



3502_3569
GCACAAAAUGGCG

ACAAAAUGGC

CCAUAUUUGG





GACUUCCGCUUCC

GGACUUCCG

UCACGUGA(3′)





GGGUCGCCGCCAU

(5′)







AUUUGGUCACGUG









AC










AF079173.1
AF079173_
GCCAUUUUAAGUA
351
AGUAGCUGAC
446
CAUCCUCGGC
541



3475_3551
GCUGACGUCAAGG

GUCAAGGAUU

GGAAGCUACA





AUUGACGUAAAGG

GAC(5′)

CAA(3′)





UUAAAGGUCAUCC









UCGGCGGAAGCUA









CACAAAAUGGU










AF116842.1
AF116842_
GCCAUUUUAAGUA
352
AGUAGCUGAC
447
CAUCCUCGGC
542



3475_3551
GCUGACGUCAAGG

GUCAAGGAUU

GGAAGCUACA





AUUGACGUAAAGG

GAC(5′)

CAA(3′)





UUAAAGGUCAUCC









UCGGCGGAAGCUA









CACAAAAUGGU










AF116842.1
AF116842_
GCAUACGUCACAA
353
ACAAGUCACG
448
GGCCCCGUCA
543



3579_3657
GUCACGUGGGGGG

UGGGGGGGAC

CGUGACUUAC





GACCCGCUGUAAC

CCG(5′)

CAC(3′)





CCGGAAGUAGGCC









CCGUCACGUGACU









UACCACGUGUGUA










AF122913.1
AF122913_
GCCAUUUUAAGUA
354
AAGUAGCUGA
449
UCAUCCUCGG
544



3475_3551
GCUGACGUCAAGG

CGUCAAGGAU

CGGAAGCUAC





AUUGACGUGAAGG

UGACG(5′)

ACAA(3′)





UUAAAGGUCAUCC









UCGGCGGAAGCUA









CACAAAAUGGU










AF122913.1
AF122913_
GCACACGUCAUAA
355
AUAAGUCACG
450
GGCCCCGUCA
545



3579_3657
GUCACGUGGUGGG

UGGUGGGGAC

CGUGAUUUGU





GACCCGCUGUAAC

CCG(5′)

CAC(3′)





CCGGAAGUAGGCC









CCGUCACGUGAUU









UGUCACGUGUGUA










AF122914.1
AF122914_
GCCAUUUUAAGUC
356
AAGUCAGCUC
451
GUCAUCCUCA
546



3476_3552
AGCUCUGGGGAGG

UGGGGAGGCG

CCAUAACUGG





CGUGACUUCCAGU

UGACUU(5′)

CACAA(3′)





UCAAAGGUCAUCC









UCACCAUAACUGG









CACAAAAUGGC










AF122915.1
AF122915_
GCCAUUUUAAGUA
357
AGUAGCUGAC
452
CAUCCUCGGC
547



3475_3551
GCUGACGUCAAGG

GUCAAGGAUU

GGAAGCUACA





AUUGACGUAAAGG

GAC(5′)

CAA(3′)





UUAAAGGUCAUCC









UCGGCGGAAGCUA









CACAAAAUGGU










AF122915.1
AF122915_
GCAUACGUCACAA
358
CAAGUCACGU
453
GGCCCCGUCA
548



3579_3657
GUCACGUGGAGGG

GGAGGGGACA

CGUGACUUAC





GACACGCUGUAAC

CG(5′)

CAC(3′)





CCGGAAGUAGGCC









CCGUCACGUGACU









UACCACGUGUGUA










AF122916.1
AF122916_
GCGCCAUGUUAAG
359
UGUUAAGUGG
454
AUCCUCGACG
549



3458_3537
UGGCUGUCGCCGA

CUGUCGCCGA

GUAACCGCAA





GGAUUGACGUCAC

GGAUUGA(5′)

ACAUG(3′)





AGUUCAAAGGUCA









UCCUCGACGGUAA









CCGCAAACAUGGC









G










AF122916.1
AF122916_
CAUGCGUCAUAAG
360
UAAGUCACAU
455
GGCCCCGACA
550



3565_3641
UCACAUGACAGGG

GACAGGGGUC

UGUGACUCGU





GUCCACUUAAACAC

CA(5′)

C(3′)





GGAAGUAGGCCCC









GACAUGUGACUCG









UCACGUGUGU










AF122916.1
AF122916_
UGGCAGCACUUCC
361
CGGAGAGGGA
456
AGCACUUCCG
551



91_164
GAAUGGCUGAGUU

GCCACGGAGG

AAUGGCUGAG





UUCCACGCCCGUC

UG(3′)

UUUUCCA(5′)





CGCGGAGAGGGAG









CCACGGAGGUGAU









CCCGAACG










AF122917.1
AF122917_
GCCAUUUUAAGUC
362
AAGUCAGCGC
457
AUCCUCACCG
552



3369_3447
AGCGCUGGGGAGG

UGGGGAGGCA

GAACUGACAC





CAUGACUGUAAGU

UGA(5′)

AA(3′)





UCAAAGGUCAUCC









UCACCGGAACUGA









CACAAAAUGGCCG










AF122918.1
AF122918_
GCCAUCUUAAGUG
363
UCUUAAGUGG
458
CAUCCUCGGC
553



3460_3540
GCUGUCGCCGAGG

CUGUCGCCGA

GGUAACCGCA





AUUGACGUCACAG

GGAUUGAC(5′)

AAGAUG(3′)





UUCAAAGGUCAUC









CUCGGCGGUAACC









GCAAAGAUGGCGG









UC










AF122918.1
AF122918_
AUACGUCAUAAGU
364
AAGUCACAUG
459
UAGGCCCCGA
554



3566_3642
CACAUGUCUAGGG

UCUAGGGGUC

CAUGUGACUC





GUCCACUUAAACAC

CACU(5′)

GU(3′)





GGAAGUAGGCCCC









GACAUGUGACUCG









UCACGUGUGU










AF122919.1
AF122919_
CCAUUUUAAGUAA
365
AAGUAAGGCG
460
ACAGCCUUCC
555



3370_3447
GGCGGAAGCAGCU

GAAGCAGCUG

GCUUUGCACA





GUCCCUGUAACAA

UCC(5′)

A(3′)





AAUGGCGGCGACA









GCCUUCCGCUUUG









CACAAAAUGGAG










AF122920.1
AF122920_
GCCAUCUUAAGUG
366
AUCUUAAGUG
461
CAUCCUCGGC
556



3460_3540
GCUGUCGCUGAGG

GCUGUCGCUG

GGUAACCGCA





AUUGACGUCACAG

AGGAUUGAC(5′)

AAGAUGG(3′)





UUCAAAGGUCAUC









CUCGGCGGUAACC









GCAAAGAUGGCGG









UC










AF122920.1
AF122920_
CAUACGUCAUAAG
367
UAAGUCACAU
462
UAGGCCCCGA
557



3565_3641
UCACAUGACAGGA

GACAGGAGUC

CAUGUGACUC





GUCCACUUAAACAC

CACU(5′)

GUC(3′)





GGAAGUAGGCCCC









GACAUGUGACUCG









UCACGUGUGU










AF122921.1
AF122921_
CGCCAUCUUAAGU
368
AAGUGGCUGU
463
UCCUCGGCGG
558



3459_3540
GGCUGUCGCCGAG

CGCCGAGGAU

UAACCGCAAA





GAUUGGCGUCACA

UG(5′)

(3′)





GUUCAAAGGUCAU









CCUCGGCGGUAAC









CGCAAAGAUGGCG









GU










AF122921.1
AF122921_
CAUACGUCAUAAG
369
UAAGUCACAU
464
GGCCCCGACA
559



3565_3641
UCACAUGACAGGG

GACAGGGGUC

UGUGACUCGU





GUCCACUUAAACAC

CA(5′)

C(3′)





GGAAGUAGGCCCC









GACAUGUGACUCG









UCACGUGUGU










AF129887.1
AF129887_
GCAUACGUCACAA
370
ACAAGUCACG
465
GGCCCCGUCA
560



9357_3657
GUCACGUGGGGGG

UGGGGGGGAC

CGUGACUUAC





GACCCGCUGUAAC

CCG(5′)

CAC(3′)





CCGGAAGUAGGCC









CCGUCACGUGACU









UACCACGUGGUGU










AF247137.1
AF247137_
CCGCCAUUUUAGG
371
AUUUUAGGCU
466
UCAAACACCC
561



3453_3530
CUGUUGCCGGGCG

GUUGCCGGGC

AGCGACACCA





UUUGACUUCCGUG

GUUUGACU(5′)

AAAAAUGG(3′)





UUAAAGGUCAAACA









CCCAGCGACACCA









AAAAAUGGCCG










AF247137.1
AF247137_
CUACGUCAUAAGU
372
AUAAGUCACG
467
CCUCGCCCAC
562



3559_3636
CACGUGACAGGGA

UGACAGGGAG

GUGACUUACC





GGGGCGACAAACC

GGG(5′)

AC(3′)





CGGAAGUCAUCCU









CGCCCACGUGACU









UACCACGUGGUG










AF247138.1
AF247138_
GCCAUUUUAAGUA
373
AAGUAGGUGA
468
CCUCGGCGGA
563



3455_3532
GGUGACGUCCAGG

CGUCCAGGAC

ACCUAUACAA





ACUGACGUAAAGU

U(5′)

(3′)





UCAAAGGUCAUCC









UCGGCGGAACCUA









UACAAAAUGGCG










AF247138.1
AF247138_
CUACGUCAUAAGU
374
CAUAAGUCAC
469
GCCCCGUCAC
564



3561_3637
CACGUGGGGACGG

GUGGGGACGG

GUGAUUUACC





CUGUACUUAAACAC

CUGU(5′)

AC(3′)





GGAAGUAGGCCCC









GUCACGUGAUUUA









CCACGUGGUG










AF261761.1
AF261761_
GCCAUUUUAAGUA
375
UAAGUAAGGC
470
GCGGCGGAGC
565



3431_3504
AGGCGGAAGAGCU

GGAAGAGCUC

ACUUCCGCUU





CUAGCUAUACAAAA

UAGCUA(5′)

UGCCCAAA(3′)





UGGCGGCGGAGCA









CUUCCGCUUUGCC









CAAAAUG










AF351132.1
AF351132_
GCCAUUUUAAGUA
376
AGUAGCUGAC
471
CAUCCUCGGC
566



3475_3552
GCUGACGUCAAGG

GUCAAGGAUU

GGAAGCUACA





AUUGACGUAGAGG

GAC(5′)

CAA(3′)





UUAAAGGUCAUCC









UCGGCGGAAGCUA









CACAAAAUGGUG










AF351132.1
AF351132_
GCAUACGUCACAA
377
ACAAGUCACG
472
GGCCCCGUCA
567



3579_3657
GUCACGUGGGGGG

UGGGGGGGAC

CGUGACUUAC





GACCCGCUGUAAC

CCG(5′)

CAC(3′)





CCGGAAGUAGGCC









CCGUCACGUGACU









UACCACGUGUGUA










AF435014.1
AF435014_
GGCGCCAUUUUAA
378
UAAGUAAGCA
473
CACCGCACUU
568



3344_3426
GUAAGCAUGGCGG

UGGCGGGCGG

CCGUGCUUGC





GCGGCGACGUCAC

CGAC(5′)

ACAAA(3′)





AUGUCAAAGGUCA









CCGCACUUCCGUG









CUUGCACAAAAUG









GC










AF435014.1
AF435014_
UGCUACGUCAUCG
379
AUCGAGACAC
474
UCGCUGACAC
569



3453_3526
AGACACGUGGUGC

GUGGUGCCAG

ACGUGUCUUG





CAGCAGCUGUAAA

CAGCU(5′)

UCAC(3′)





CCCGGAAGUCGCU









GACACACGUGUCU









UGUCACGU










AJ620212.1
AJ620212_
GCCAUUUUAAGUA
380
UCAUCCUCAG
475
CAUUUUAAGU
570



3360_3438
AGCACCGCCUAGG

CCGGAACUUA

AAGCACCGCC





GAUGACGUAUAAG

CACAAAAUGG

UAGGGAUGAC





UUCAAAGGUCAUC

(3′)

(5′)





CUCAGCCGGAACU









UACACAAAAUGGU










AJ620212.1
AJ620212_
ACGUCAUAUGUCA
381
AUAUGUCACG
476
GUAGGCCCCG
571



3470_3542
CGUGGGGAGGCCC

UGGGGAGGCC

UCACGUGUCA





UGCUGCGCAAACG

CUGCUG(5′)

UACCAC(3′)





CGGAAGUAGGCCC









CGUCACGUGUCAU









ACCACGU










AJ620218.1
AJ620218_
CCAUUUUAAGUAA
382
AAGUAAGGCG
477
GGCGGGGCAC
572



3381_3458
GGCGGAAGCAGCU

GAAGCAGCUC

UUCCGGCUUG





CCACUUUCUCACAA

CACUUU(5′)

CCCAA(3′)





AAUGGCGGCGGGG









CACUUCCGGCUUG









CCCAAAAUGGC










AJ620226.1
AJ620226_
CCAUUUUAAGUAA
383
AAGUAAGGCG
478
CGGCGGAGCA
573



3451_3523
GGCGGAAGUUUCU

GAAGUUUCUC

CUUCCGGCUU





CCACUAUACAAAAU

CACU(5′)

GCCCAA(3′)





GGCGGCGGAGCAC









UUCCGGCUUGCCC









AAAAUG










AJ620227.1
AJ620227_
CCAUCUUAAGUAG
384
UAAGUAGUUG
479
CACCAUCAGC
574



3379_3451
UUGAGGCGGACGG

AGGCGGACGG

CACACCUACU





UGGCGUGAGUUCA

UGGC(5′)

CAAA(3′)





AAGGUCACCAUCA









GCCACACCUACUC









AAAAUGG










AJ620231.1
AJ620231_
CGCCAUCUUAAGU
385
UAAGUAGUUG
480
ACCAUCAGCC
575



3429_3505
AGUUGAGGCGGAC

AGGCGGACGG

ACACCUACUC





GGUGGCGUGAGUU

UGG(5′)

AAA(3′)





CAAAGGUCACCAU









CAGCCACACCUAC









UCAAAAUGGUG










AY666122.1
AY666122_
UUUCGGACCUUCG
386
GACCUUCGGC
481
GACUCCGAGA
576



3163_3236
GCGUCGGGGGGGU

GUCGGGGGG

UGCCAUUGGA





CGGGGGCUUUACU

GUCGGGGG(5′)

CACUGAGG(3′)





AAACAGACUCCGA









GAUGCCAUUGGAC









ACUGAGGG










AY666122.1
AY666122_
CCAUUUUAAGUAG
387
AUCCUCGGCG
482
AGUAGGUGCC
577



3388_3464
GUGCCGUCCAGCA

GAACCUAUA(3′)

GUCCAGCA(5′)





CUGCUGUUCCGGG









UUAAAGGGCAUCC









UCGGCGGAACCUA









UACAAAAUGGC










AY666122.1
AY666122_
CUACGUCAUCGAU
388
AUCGAUGACG
483
AAGUAGGCCC
578



3494_3567
GACGUGGGGAGGC

UGGGGAGGCG

CGCUACGUCA





GUACUAUGAAACG

UACUAU(5′)

UCAUCAC(3′)





CGGAAGUAGGCCC









CGCUACGUCAUCA









UCACGUGG










AY823988.1
AY823988_
CCAUUUUAAGUAA
389
UGGCGGAGGA
484
AAGGCGGAAG
579



3452_3525
GGCGGAAGAGCUG

GCACUUCCGG

AGCUGCUCUA





CUCUAUAUACAAAA

CUUG(3′)

UAU(5′)





UGGCGGAGGAGCA









CUUCCGGCUUGCC









CAAAAUG










AY823988.1
AY823988_
UGCCUACGUAACA
390
AACAAGUCAC
485
CAAUCCUCCC
580



3554_3629
AGUCACGUGGGGA

GUGGGGAGGG

ACGUGGCCUG





GGGUUGGCGUAUA

UUGGC(5′)

UCAC(3′)





ACCCGGAAGUCAA









UCCUCCCACGUGG









CCUGUCACGU










AY823989.1
AY823989_
UAAGUAAGGCGGA
391
AGGGGUCAGC
486
AAGGCGGAAC
581



3551_3623
ACCAGGCUGUCAC

CUUCCGCUUU

CAGGCUGUCA





CCCGUGUCAAAGG

A(3′)

CCCCGU(5′)





UCAGGGGUCAGCC









UUCCGCUUUACAC









AAAAUGG










AY823989.1
AY823989_
UAAGUAAGGCGGA
392
AGGGGUCAGC
487
AAGGCGGAAC
582



3551_3623
ACCAGGCUGUCAC

CUUCCGCUUU

CAGGCUGUCA





CCCGUGUCAAAGG

A(3′)

CCCCGU(5′)





UCAGGGGUCAGCC









UUCCGCUUUACAC









AAAAUGG










DQ361268.1
DQ361268_
GCAGCCAUUUUAA
393
UAAGUCAGCU
488
CAUCCUCACC
583



3413_3494
GUCAGCUUCGGGG

UCGGGGAGGG

GGAACUGGUA





AGGGUCACGCAAA

UCAC(5′)

CAAA(3′)





GUUCAAAGGUCAU









CCUCACCGGAACU









GGUACAAAAUGGC









CG










DQ361268.1
DQ361268_
UGCUACGUCAUAA
394
UCAUAAGUGA
489
UAGGCCCCGC
584



3519_3593
GUGACGUAGCUGG

CGUAGCUGGU

CACGUCACUU





UGUCUGCUGUAAA

GUCUGCU(5′)

GUCACG(3′)





CACGGAAGUAGGC









CCCGCCACGUCAC









UUGUCACGU









siRNAs and shRNAs resemble intermediates in the processing pathway of the endogenous microRNA (miRNA) genes (Bartel, Cell 116:281-297, 2004). In some embodiments, siRNAs can function as miRNAs and vice versa (Zeng et al., Mol Cell 9:1327-1333, 2002; Doench et al., Genes Dev 17:438-442, 2003). MicroRNAs, like siRNAs, use RISC to downregulate target genes, but unlike siRNAs, most animal miRNAs do not cleave the mRNA. Instead, miRNAs reduce protein output through translational suppression or polyA removal and mRNA degradation (Wu et al., Proc Natl Acad Sci USA 103:4034-4039, 2006). Known miRNA binding sites are within mRNA 3′ UTRs; miRNAs seem to target sites with near-perfect complementarity to nucleotides 2-8 from the miRNA's 5′ end (Rajewsky, Nat Genet 38 Suppl:S8-13, 2006; Lim et al., Nature 433:769-773, 2005). This region is known as the seed region. Because siRNAs and miRNAs are interchangeable, exogenous siRNAs downregulate mRNAs with seed complementarity to the siRNA (Birmingham et al., Nat Methods 3:199-204, 2006. Multiple target sites within a 3′ UTR give stronger downregulation (Doench et al., Genes Dev 17:438-442, 2003).


Lists of known miRNA sequences can be found in databases maintained by research organizations, such as Wellcome Trust Sanger Institute, Penn Center for Bioinformatics, Memorial Sloan Kettering Cancer Center, and European Molecule Biology Laboratory, among others. Known effective siRNA sequences and cognate binding sites are also well represented in the relevant literature. RNAi molecules are readily designed and produced by technologies known in the art. In addition, there are computational tools that increase the chance of finding effective and specific sequence motifs (Lagana et al., Methods Mol. Bio., 2015, 1269:393-412).


The regulatory nucleic acid may modulate expression of RNA encoded by a gene. Because multiple genes can share some degree of sequence homology with each other, in some embodiments, the regulatory nucleic acid can be designed to target a class of genes with sufficient sequence homology. In some embodiments, the regulatory nucleic acid can contain a sequence that has complementarity to sequences that are shared amongst different gene targets or are unique for a specific gene target. In some embodiments, the regulatory nucleic acid can be designed to target conserved regions of an RNA sequence having homology between several genes thereby targeting several genes in a gene family (e.g., different gene isoforms, splice variants, mutant genes, etc.). In some embodiments, the regulatory nucleic acid can be designed to target a sequence that is unique to a specific RNA sequence of a single gene.


In some embodiments, the genetic element may include one or more sequences that encode regulatory nucleic acids that modulate expression of one or more genes.


In one embodiment, the gRNA described elsewhere herein are used as part of a CRISPR system for gene editing. For the purposes of gene editing, the curon may be designed to include one or multiple guide RNA sequences corresponding to a desired target DNA sequence; see, for example, Cong et al. (2013) Science, 339:819-823; Ran et al. (2013) Nature Protocols, 8:2281-2308. At least about 16 or 17 nucleotides of gRNA sequence generally allow for Cas9-mediated DNA cleavage to occur; for Cpf1 at least about 16 nucleotides of gRNA sequence is needed to achieve detectable DNA cleavage.


Therapeutic Peptides or Polypeptides


In some embodiments, the genetic element comprises a sequence that encodes a therapeutic peptide or polypeptide. Such therapeutics include, but are not limited to, small peptides, peptidomimetics (e.g., peptoids), amino acids, and amino acid analogs. Such therapeutics generally have a molecular weight less than about 5,000 grams per mole, a molecular weight less than about 2,000 grams per mole, a molecular weight less than about 1,000 grams per mole, a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds. Such therapeutics may include, but are not limited to, a neurotransmitter, a hormone, a drug, a toxin, a viral or microbial particle, a synthetic molecule, and agonists or antagonists thereof.


In some embodiments, the genetic element includes a sequence encoding a peptide e.g., a therapeutic peptide. The peptides may be linear or branched. The peptide has a length from about 5 to about 500 amino acids, about 15 to about 400 amino acids, about 20 to about 325 amino acids, about 25 to about 250 amino acids, about 50 to about 150 amino acids, or any range therebetween.


Some examples of peptides include, but are not limited to, fluorescent tag or marker, antigen, peptide therapeutic, synthetic or analog peptide from naturally-bioactive peptide, agonist or antagonist peptide, anti-microbial peptide, a targeting or cytotoxic peptide, a degradation or self-destruction peptide, and degradation or self-destruction peptides. Peptides useful in the invention described herein also include antigen-binding peptides, e.g., antigen binding antibody or antibody-like fragments, such as single chain antibodies, nanobodies (see, e.g., Steeland et al. 2016. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today: 21(7):1076-113). Such antigen binding peptides may bind a cytosolic antigen, a nuclear antigen, or an intra-organellar antigen.


In some embodiments, the genetic element includes a sequence encoding a protein e.g., a therapeutic protein. Some examples of therapeutic proteins may include, but are not limited to, a hormone, a cytokine, an enzyme, an antibody, a transcription factor, a receptor (e.g., a membrane receptor), a ligand, a membrane transporter, a secreted protein, a peptide, a carrier protein, a structural protein, a nuclease, or a component thereof.


In some embodiments, the composition or curon described herein includes a polypeptide linked to a ligand that is capable of targeting a specific location, tissue, or cell.


Regulatory Sequences


In some embodiments, the genetic element comprises a regulatory sequence, e.g., a promoter or an enhancer.


In some embodiments, a promoter includes a DNA sequence that is located adjacent to a DNA sequence that encodes an expression product. A promoter may be linked operatively to the adjacent DNA sequence. A promoter typically increases an amount of product expressed from the DNA sequence as compared to an amount of the expressed product when no promoter exists. A promoter from one organism can be utilized to enhance product expression from the DNA sequence that originates from another organism. For example, a vertebrate promoter may be used for the expression of jellyfish GFP in vertebrates. In addition, one promoter element can increase an amount of products expressed for multiple DNA sequences attached in tandem. Hence, one promoter element can enhance the expression of one or more products. Multiple promoter elements are well-known to persons of ordinary skill in the art.


In one embodiment, high-level constitutive expression is desired. Examples of such promoters include, without limitation, the retroviral Rous sarcoma virus (RSV) long terminal repeat (LTR) promoter/enhancer, the cytomegalovirus (CMV) immediate early promoter/enhancer (see, e.g., Boshart et al, Cell, 41:521-530 (1985)), the SV40 promoter, the dihydrofolate reductase promoter, the cytoplasmic .beta.-actin promoter and the phosphoglycerol kinase (PGK) promoter.


In another embodiment, inducible promoters may be desired. Inducible promoters are those which are regulated by exogenously supplied compounds, either in cis or in trans, including without limitation, the zinc-inducible sheep metallothionine (MT) promoter; the dexamethasone (Dex)-inducible mouse mammary tumor virus (MMTV) promoter; the T7 polymerase promoter system (WO 98/10088); the tetracycline-repressible system (Gossen et al, Proc. Natl. Acad. Sci. USA, 89:5547-5551 (1992)); the tetracycline-inducible system (Gossen et al., Science, 268:1766-1769 (1995); see also Harvey et al., Curr. Opin. Chem. Biol., 2:512-518 (1998)); the RU486-inducible system (Wang et al., Nat. Biotech., 15:239-243 (1997) and Wang et al., Gene Ther., 4:432-441 (1997)]; and the rapamycin-inducible system (Magari et al., J. Clin. Invest., 100:2865-2872 (1997); Rivera et al., Nat. Medicine. 2:1028-1032 (1996)). Other types of inducible promoters which may be useful in this context are those which are regulated by a specific physiological state, e.g., temperature, acute phase, or in replicating cells only.


In some embodiments, a native promoter for a gene or nucleic acid sequence of interest is used. The native promoter may be used when it is desired that expression of the gene or the nucleic acid sequence should mimic the native expression. The native promoter may be used when expression of the gene or other nucleic acid sequence must be regulated temporally or developmentally, or in a tissue-specific manner, or in response to specific transcriptional stimuli. In a further embodiment, other native expression control elements, such as enhancer elements, polyadenylation sites or Kozak consensus sequences may also be used to mimic the native expression.


In some embodiments, the genetic element comprises a gene operably linked to a tissue-specific promoter. For instance, if expression in skeletal muscle is desired, a promoter active in muscle may be used. These include the promoters from genes encoding skeletal α-actin, myosin light chain 2A, dystrophin, muscle creatine kinase, as well as synthetic muscle promoters with activities higher than naturally-occurring promoters. See Li et al., Nat. Biotech., 17:241-245 (1999). Examples of promoters that are tissue-specific are known for liver albumin, Miyatake et al. J. Virol., 71:5124-32 (1997); hepatitis B virus core promoter, Sandig et al., Gene Ther. 3:1002-9 (1996); alpha-fetoprotein (AFP), Arbuthnot et al., Hum. Gene Ther., 7:1503-14 (1996)], bone (osteocalcin, Stein et al., Mol. Biol. Rep., 24:185-96 (1997); bone sialoprotein, Chen et al., J. Bone Miner. Res. 11:654-64 (1996)), lymphocytes (CD2, Hansal et al., J. Immunol., 161:1063-8 (1998); immunoglobulin heavy chain; T cell receptor a chain), neuronal (neuron-specific enolase (NSE) promoter, Andersen et al. Cell. Mol. Neurobiol., 13:503-15 (1993); neurofilament light-chain gene, Piccioli et al., Proc. Natl. Acad. Sci. USA, 88:5611-5 (1991); the neuron-specific vgf gene, Piccioli et al., Neuron, 15:373-84 (1995)]; among others.


The genetic element may include an enhancer, e.g., a DNA sequence that is located adjacent to the DNA sequence that encodes a gene. Enhancer elements are typically located upstream of a promoter element or can be located downstream of or within a coding DNA sequence (e.g., a DNA sequence transcribed or translated into a product or products). Hence, an enhancer element can be located 100 base pairs, 200 base pairs, or 300 or more base pairs upstream or downstream of a DNA sequence that encodes the product. Enhancer elements can increase an amount of recombinant product expressed from a DNA sequence above increased expression afforded by a promoter element. Multiple enhancer elements are readily available to persons of ordinary skill in the art.


In some embodiments, the genetic element comprises one or more inverted terminal repeats (ITR) flanking the sequences encoding the expression products described herein. In some embodiments, the genetic element comprises one or more long terminal repeats (LTR) flanking the sequence encoding the expression products described herein. Examples of promoter sequences that may be used, include, but are not limited to, the simian virus 40 (SV40) early promoter, mouse mammary tumor virus (MMTV), human immunodeficiency virus (HIV) long terminal repeat (LTR) promoter, MoMuLV promoter, an avian leukemia virus promoter, an Epstein-Barr virus immediate early promoter, and a Rous sarcoma virus promoter.


Replication Proteins


In some embodiments, the genetic element of the curon, e.g., synthetic curon, may include sequences that encode one or more replication proteins. In some embodiments, the curon may replicate by a rolling-circle replication method, e.g., synthesis of the leading strand and the lagging strand is uncoupled. In such embodiments, the curon comprises three elements additional elements: i) a gene encoding an initiator protein, ii) a double strand origin, and iii) a single strand origin. A rolling circle replication (RCR) protein complex comprising replication proteins binds to the leading strand and destabilizes the replication origin. The RCR complex cleaves the genome to generate a free 3′OH extremity. Cellular DNA polymerase initiates viral DNA replication from the free 3′OH extremity. After the genome has been replicated, the RCR complex closes the loop covalently. This leads to the release of a positive circular single-stranded parental DNA molecule and a circular double-stranded DNA molecule composed of the negative parental strand and the newly synthesized positive strand. The single-stranded DNA molecule can be either encapsidated or involved in a second round of replication. See for example, Virology Journal 2009, 6:60 doi: 10.1186/1743-422X-6-60.


The genetic element may comprise a sequence encoding a polymerase, e.g., RNA polymerase or a DNA polymerase.


Other Sequences


In some embodiments, the genetic element further includes a nucleic acid encoding a product (e.g., a ribozyme, a therapeutic mRNA encoding a protein, an exogenous gene).


In some embodiments, the genetic element includes one or more sequences that affect species and/or tissue and/or cell tropism (e.g. capsid protein sequences), infectivity (e.g. capsid protein sequences), immunosuppression/activation (e.g. regulatory nucleic acids), viral genome binding and/or packaging, immune evasion (non-immunogenicity and/or tolerance), pharmacokinetics, endocytosis and/or cell attachment, nuclear entry, intracellular modulation and localization, exocytosis modulation, propagation, and nucleic acid protection of the curon in a host or host cell.


In some embodiments, the genetic element may comprise other sequences that include DNA, RNA, or artificial nucleic acids. The other sequences may include, but are not limited to, genomic DNA, cDNA, or sequences that encode tRNA, mRNA, rRNA, miRNA, gRNA, siRNA, or other RNAi molecules. In one embodiment, the genetic element includes a sequence encoding an siRNA to target a different loci of the same gene expression product as the regulatory nucleic acid. In one embodiment, the genetic element includes a sequence encoding an siRNA to target a different gene expression product as the regulatory nucleic acid.


In some embodiments, the genetic element further comprises one or more of the following sequences: a sequence that encodes one or more miRNAs, a sequence that encodes one or more replication proteins, a sequence that encodes an exogenous gene, a sequence that encodes a therapeutic, a regulatory sequence (e.g., a promoter, enhancer), a sequence that encodes one or more regulatory sequences that targets endogenous genes (siRNA, lncRNAs, shRNA), and a sequence that encodes a therapeutic mRNA or protein.


The other sequences may have a length from about 2 to about 5000 nts, about 10 to about 100 nts, about 50 to about 150 nts, about 100 to about 200 nts, about 150 to about 250 nts, about 200 to about 300 nts, about 250 to about 350 nts, about 300 to about 500 nts, about 10 to about 1000 nts, about 50 to about 1000 nts, about 100 to about 1000 nts, about 1000 to about 2000 nts, about 2000 to about 3000 nts, about 3000 to about 4000 nts, about 4000 to about 5000 nts, or any range therebetween.


Exogenous Gene


For example, the genetic element may include a gene associated with a signaling biochemical pathway, e.g., a signaling biochemical pathway-associated gene or polynucleotide. Examples include a disease associated gene or polynucleotide. A “disease-associated” gene or polynucleotide refers to any gene or polynucleotide which is yielding transcription or translation products at an abnormal level or in an abnormal form in cells derived from a disease-affected tissues compared with tissues or cells of a non disease control. It may be a gene that becomes expressed at an abnormally high level; it may be a gene that becomes expressed at an abnormally low level, where the altered expression correlates with the occurrence and/or progression of the disease. A disease-associated gene also refers to a gene possessing mutation(s) or genetic variation that is directly responsible or is in linkage disequilibrium with a gene(s) that is responsible for the etiology of a disease.


Examples of disease-associated genes and polynucleotides are available from McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, Md.) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, Md.). Examples of disease-associated genes and polynucleotides are listed in Tables A and B of U.S. Pat. No. 8,697,359, which are herein incorporated by reference in their entirety. Disease specific information is available from McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, Md.) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, Md.). Examples of signaling biochemical pathway-associated genes and polynucleotides are listed in Tables A-C of U.S. Pat. No. 8,697,359, which are herein incorporated by reference in their entirety.


Moreover, the genetic elements can encode targeting moieties, as described elsewhere herein. This can be achieved, e.g., by inserting a polynucleotide encoding a sugar, a glycolipid, or a protein, such as an antibody. Those skilled in the art know additional methods for generating targeting moieties.


Viral Sequence


In some embodiments, the genetic element comprises at least one viral sequence. In some embodiments, the sequence has homology or identity to one or more sequence from a single stranded DNA virus, e.g., Anellovirus, Bidnavirus, Circovirus, Geminivirus, Genomovirus, Inovirus, Microvirus, Nanovirus, Parvovirus, and Spiravirus. In some embodiments, the sequence has homology or identity to one or more sequence from a double stranded DNA virus, e.g., Adenovirus, Ampullavirus, Ascovirus, Asfarvirus, Baculovirus, Fusellovirus, Globulovirus, Guttavirus, Hytrosavirus, Herpesvirus, Iridovirus, Lipothrixvirus, Nimavirus, and Poxvirus. In some embodiments, the sequence has homology or identity to one or more sequence from an RNA virus, e.g., Alphavirus, Furovirus, Hepatitis virus, Hordeivirus, Tobamovirus, Tobravirus, Tricornavirus, Rubivirus, Birnavirus, Cystovirus, Partitivirus, and Reovirus.


In some embodiments, the genetic element may comprise one or more sequences from a non-pathogenic virus, e.g., a symbiotic virus, e.g., a commensal virus, e.g., a native virus, e.g., an anellovirus. Recent changes in nomenclature have classified the three anelloviruses able to infect human cells into Alphatorquevirus (TT), Betatorquevirus (TTM), and Gammatorquevirus (TTMD) Genera of the Anelloviridae family of viruses. To date anelloviruses have not been linked to any human disease. In some embodiments, the genetic element may comprise a sequence with homology or identity to a Torque Teno Virus (TT), a non-enveloped, single-stranded DNA virus with a circular, negative-sense genome. In some embodiments, the genetic element may comprise a sequence with homology or identity to a SEN virus, a Sentinel virus, a TTV-like mini virus, and a TT virus. Different types of TT viruses have been described including TT virus genotype 6, TT virus group, TTV-like virus DXL1, and TTV-like virus DXL2. In some embodiments, the genetic element may comprise a sequence with homology or identity to a smaller virus, Torque Teno-like Mini Virus (TTM), or a third virus with a genomic size in between that of TTV and TTMV, named Torque Teno-like Midi Virus (TTMD). In some embodiments, the genetic element may comprise one or more sequences or a fragment of a sequence from a non-pathogenic virus having at least about 60%, 70% 80%, 85%, 90% 95%, 96%, 97%, 98% and 99% nucleotide sequence identity to any one of the nucleotide sequences described herein, e.g., Table 19.









TABLE 19







Examples of viral sequences, e.g., encoding capsid proteins. The first column


identifies the strain by its complete genome accession number. The second column


identifies the accession number of the protein encoded by the ORF listed in the


third column. The fourth column shows the nucleic acid sequence encoding the ORF


listed in the third column.















SEQ ID


Strain #
Accession #
ORF #
Sequence
NO:





AF079173.1
AAC28466.1
ORF2
ATGGCTGAGTTTTCCACGCCCGTCCGCAGCGGTGA
585





AGCCACGGAGGGAGATCACCGCGTCCCGAGGGCG






GGTGCCGAAGGTGAGTTTACACACCGAAGTCAAGG






GGCAATTCGGGCTCGGGACTGGCCGGGCTATGGGC






AAGGCTCTGAAAAAAGCATGTTTATTGGCAGGCATT






ACAGAAAGAAAAGGGCGCTGTCACTGTGTGCTGTG






CGAACAACAAAGAAGGCTTGCAAACTACTAATAGTA






ATGTGGACCCCACCTCGCAATGATCAACAGTACCTT






AACTGGCAATGGTACTCAAGTGTACTTAGCCCCCAC






GCTGCTATGTGCGGGTGTCCCGACGCTGTCGCTCA






TTTTAATCATCTTGCTTCTGTGCTTCGTGCCCCGCAA






AACCCACCCCCTCCCGGTCCCCAGCGAAACCTGCC






CCTCCGACGGCTGCCGGCTCTCCCGGCTGCGCCAG






AGGCGCCCGGAGATAGAGCACCATGGCCTATGGCT






GGTGGCGCCGAAGGAGAAGACGGTGGCGCAGGTG






GAGACCCAGACCATGGAGGCCCCGCTGGAGGACCC






GAAGACGCAGACCTGCTAGACGCCGTGGCCACCGC






AGAAACGTAA






AF129887.1
AAD20025.1
ORF2
ATGGCTGGGTTTTCCACGCCCGTCCGCAGCGGTGA
586





AGCCACGGAGGGAGCTCAGCGCGTCCCGAGGGCG






GGTGCCGAAGGTGAGTTTACACACCGCAGTCAAGG






GGCAATTCGGGCTCGGGACTGGCCGGGCTATGGGC






AAGACTCTGAAAAATGCATTTTTATCGGCAGGCATTA






CAGAAAGAAAAAGGCACTGTCACTGTGTGCAGTGCG






AGCAACACAGAAGGCTTGCAAACTTCTAAAAGTTAT






GTGGAGCCCTCCCCGCAACGATGAACATTACCTTAA






GGGACAATGGTACTCAAGTATACTTAGCTCTCACTC






TGCTTTCTGTGGCTGCCCCGATGCTGTCGCTCACTT






CAATCATCTTGCTACTGTACTTCGTGCTCCGGAAAA






CCCGGGACCCCCCGGGGGACATCGACCTTCTCCGC






TCCGGGTCCTACCCGCTCTCCCGGCTGCTCCCGAG






GCGCCCGGTGATCGAGCGCCATGGCCTATGGGTTG






TGGAGGAGACGGCGAAGGAGGTGGAAGAGGTGGA






GACGCAGACGGTGGAGACGCCGCTGGAGGACCCG






CCGACGCAGACCTGCTGGACGCCGTAGACGCCGCA






GAACAGTAA






AF116842.1
AAD29635.1
ORF2
ATGGCTGAGTTTTCCACGCCCGTCCGCAGCGGTGA
587





AGCCACGGAGGGAGATTACCGCGTCCCGAGGGCG






GGTGCCGAAGGTGAGTTTACACACCGAAGTCAAGG






GGCAATTCGGGCTCGGGACTGGCCGGGCTATGGGC






AAGGCTCTGAAAAAAGCATGTTTATTGGCAGGCATT






ACAGAAAGAAAAGGGCGCTGTCACTGTGTGCTGTG






CGAACAACAAAGAAGGCTTGCAAACTACTAATAGTA






ATGTGGACCCCACCTCGCAATGATCAACAGTACCTT






AACTGGCAATGGTACTCAAGTGTACTTAACCCCCAC






GCTGCTATGTTCGGGTGTCCCGACGCTGTCGCTCAT






TTTAATCATCTTGCTTCTGTGCTTCGTGCCCCGCAAA






ACCCACCCCCTCCCGGTCCCCAGCGAAACCTGCCC






CTCCGACGGGTGCCGGCTCTCCCGGCTGCGCCAGA






GGCGCCCGGAGATAGAGCACCATGGCCTATGGCTT






GTGGCACCGAAGGAGAAGACGGTGGCGCAGGTGG






AAACGCACACCATGGAAGCGCCGCTGGAGGACCCG






AAGACGCAGACCTGCTAGACGCCGTGGCCGCCGCA






GAAACGTAA






AB026345.1
BAA85661.1
ORF2
ATGTTTATTGGCAGGCATTACAGAAAGAAAAGGGCG
588





CTGTCACTGTGTGCTGTGCGAACAACAAAGAAGGCT






TGCAAACTACTAATAGTAATGTGGACCCCACCTCGC






AATGATCAACAGTACCTTAACTGGCAATGGTACTCAA






GTGTACTTAGCTCCCACGCTGCTATGTGCGGGTGTC






CCGACGCTGTCGCTCATTTTAATCATCTTGCTTCTGT






GCTTCGTGCCCCGCAAAACCCACCCCCTCCCGGTC






CCCAGCGAAACCTGCCCCTCCGACGGCTGCCGGCT






CTCCCGGCTGCGCCAGAGGCGCCCGGAGATAGAG






CACCATGGCCTATGGCTGGTGGCGCCGAAGGAGAA






GACGGTGGCGCAGGTGGAGACGCAGACCATGGAG






GCGCCGCTGGAGGACCCGAAGACGCAGACCTGCTA






GACGCCGTGGCCGCCGCAGAAACGTAA






AB026346.1
BAA85663.1
ORF2
ATGTTTATTGGCAGGCATTACAGAAAGAAAAGGGCG
589





CTGTCACTGTGTGCTGTGCGAACAACAAAGAAGGCT






TGCAAACTACTAATACTAATGTGGACCCCACCTCGC






AATGACCAACAGTACCTTAACTGGCAATGGTACTCA






AGTATACTTAGCTCCCACGCTGCTATGTGCGGGTGT






CCCGACGCTGTCGCTCATTTTAATCATCTTGCGTCT






GTGCTTCGTGCCCCGCAAAACCCACCCCCTCCCGG






TCCCCAGCGAAACCTGCCCCTCCGACGGCTGCCGG






CTCTCCCGGCTGCGCCAGAGGCGCCCGGAGATAGA






GCACCATGGCCTATGGCTGGTGGCGCCGAAGGAGA






AGACGGTGGCGCAGGTGGAGACGCAGACCATGGA






GGCGCCGCTGGAGGACCCGAAGACGCAGACCTGCT






AGACGCCGTGGCCGCCGCAGAAACGTAA






AB026347.1
BAA85665.1
ORF2
ATGTTTATTGGCAGGCATTACAGAAAGAAAAGGGCG
590





CTGTCACTGTGTGCTGTGCGAACAACAAAGAAGGCT






TGCAAACTACTAATACTAATGTGGACCCCACCTCGC






AATGACCAACAGTACCTTAACTGGCAATGGTACTCA






AGTATACTTAGCTCCCACGCTGCTATGTGCGGGTGT






CCCGACGCTGTCGCTCATTTTAATCATCTTGCTTCTG






TGCTTCGTGCCCCGCAAAACCCACCCCCTCCCGGT






CCCCAGCGAAACCTGCCCCTCCGACGGCTGCCGGC






TCTCCCGGCTGCGCCAGAGGCGCCCGGAGATAGAG






CGCCATGGCCTATGGCTGGTGGCGCCGAAGGAGAA






GACGGTGGCGCAGGTGGAGACGCAGACCATGGAG






GCGCCGCTGGAGGACCCGAAGACGCAGACCTGCTA






GACGCCGTGGCCGCCGCAGAAACGTAA






AB038622.1
BAA93585.1
ORF2
ATGCCGTGGAGACCGCCGGTACATAACGTTCCAGG
591





TCGCGAAAATCAATGGTTTGCAGCGTTTTTTCACTCG






CATGCTTCTTTCTGCGGCTGTGGTGACCCTGTTGGG






CATATTAACAGCATTGCTCCTCGCTTTCCTAACGCC






GGTCCACCGAGACCACCTCCAGGGCTAGAGCAGCA






GAACCCCGAGGGCCCGACGGGTCCCGGAGGTCCC






CCCGCCATCTTGCCAGCTCTGCCGGCCCCGGCAGA






CCCTGAACCGCCGCCACGGCTTGGTGGTGGGGCAG






ATGGAGGCGCCGCTGGAGGCCTCGCTATCGCAGAC






GCACCTGGAGGGTACGAAGAAGACGACCTAGACGA






ACTTTTCGCCGCCGCCGCCGAGGACGATATGTGA






AB038623.1
BAA93588.1
ORF2
ATGCCGTGGAGACCGCCGGCACATAACGTTCCGGG
592





TAGGGAAAATCAATGGTTCGCAGCTGTGTTTCACTC






GCATGCTTCTTGGTGCGGCTGTGGTGACGTTGTTGG






GCATCTTAATACCATTGCTACTCGCTTTCCTAACGCC






GGTCCCCCGAGACCACCTCCAGGGCTAGACCAGCA






GAACCCCGAGGGCCCGGCGGGTCCCGGAGGTCCC






CCCGCCATCTTGCCTGCTCTGCCGGCCCCGGCAGA






CCCTGAACCGCCGCCACGGCGTGGTGGTGGGGCA






GATGGAGGCGTCGATGGAGGCCTCGCTATCGCAAA






CGCACCTGGAGATTACGGAGACGACGACCTAGACG






AACTTTTCGCCGCCGCCGCCGAAGACAATATGTGA






AB038624.1
BAA93591.1
ORF2
ATGCCGTGGAAACCGCCGCGACATAACGTTCCGGG
593





TAGGGAAAACCAATGGTTTGCAGCAGTGTTTCACTC






GCATGCTTCTTGGTGCGGCTGTGCTGACGTTGTTGG






CCATCTTAATAGCATTGCTACTCGCTTTCCTAACATC






GGTCCCCCGAGACCACCTCCAGGGCTAGACCAGCA






GAACCCCGAGGGCCCGGCGGGTCCCGGAGGTCCC






CCCGCCATCTTGCCTGCTCTGCCGGCCCCGGCAAA






CCCTGAACCGCCGCCACGGCGTGGTGGTGGGGCA






GATGGAGGCGCCGCTGGAGGCCTCGCTATCGCAGA






CGCACCTGGAGGGTACGCAGAAGACGACCTAGACG






AACTTTTCGCCGCCGCCGCCGAGGACGATATGTGA






AF254410.1
AAF71534.1
ORF2
ATGTTTCCTGGTAGGATCCACAGAAAGAAAAGGAAA
594





GTGCTATTGTCCCCACTGCACCCTGCACCGAAAACT






CGCCGGGTTATGAGCTGGTCTCGTCCAATACACGAT






GCCCCAGCCATTGAGCGTAACTGGTGGGAATCCAC






AGCTCGATCCCACGCATGTTGCTGTGGCTGCGGTAA






TTTTGTTAATCATATTAATGTACTGGCTAATCGGTAT






GGCTTTACTGGCTCCGCGCACACGCCGGGTGGTCC






CCGGCCGAGGCCCCCGACAGTGAGCTCTGGTCCCA






GTACTTCCTACCGACACCCCGAGACCGGCTTTACCA






TGGCATGGGGATACTGGTGGAGAAGGCGCTTCTGC






GACCGAGGAGACGCTGGAAGAAGGTGGCGGCGCC






GCCGAGACTACAACCCAGAAGATCTCGACGCTCTGT






TCGACGCCCTCGACGAAGAGTAA






AB050448.1
BAB19927.1
ORF2
ATGAGCTTTGTAGAACCCTTACTAACCAGCACCCAC
595





AGAGAGATAGCATACTACCATGGCTGTGTTCAGATG






CACAAAGCCTTCTGTGGGTGTGACAACTTTCTTACC






CACCTGCAACGCATAACAACATACATCTCTGCTAAC






CAACACACTCCACCCAGCACACCCTCAAACACCCTC






CGTAGAGCCCGGGCCCTGCCCGCGGCTCCGGAGC






CAGCTCCATGGCGTGGACCTGGTGGTGGCAGAGGA






GGCGCCGAAGGTGGCCGTGGAGAAGGAGAAGGTG






GAGAAGACTACGCACAAGAAGACCTAGACGCCTTGT






TCGACGCCGTCGCAAGAGATACAGAGTAA






AY026465.1
AAK01941.1
ORF2
ATGCACTTTTCTCGAATAAACAGAAAGAAAAAGAAAG
596





TGCTACTGCTTTGCGTGCCAGCAGCTAAGAAAAAAC






CAACTGCTATGAGCTTCTGGAGACCTCCGGTGCACA






ATGTCACGGGGATCCAGCGCCTGTGGTACGAGTCC






TTTCACCGTGGCCATGCTGCTTTTTGTGGTTGTGGG






GATCCTATACTTCACATTACTACACTTGCTGAGACAT






ATGGCCATCCAACAGGCCCGAGACCTTCTGGGTCAT






CGGGAGTAGACCCCGGCCCCAATATCCGTCGAGCC






AGGCCTGCCCCGGCCGCTCCGGAGCCCTCACAGGT






TGATTCCAGACCGGCCCTGCCATGGCATGGGGATG






GTGGAAGCGACGGCGGCGCTGGTGGTTCCGGAAG






CGGTGGACCCGTGGCAGACTTCGCAGACGATGGCC






TAGACCAGCTCGTCGGCGCCCTAGACGACGAAGAG






TAA






AY026466.1
AAK01943.1
ORF2
ATGCACTTTTCTAGGATACAAAGAAAGAAAAGGCTAT
597





TGCTACTGCAGACACTGCCAGCTTCAAAGAAAACTA






GGCAACTTCTGAGAGGTATGTGGAGCCCACCCACA






GACGATGAACGTGTCCGTGAGCGTAAATGGCTCCTC






TCAGTTTTTCAGTCTCACTGTGCTTTCTGTGGCTGCA






ATGATCCTATCGGTCACCTTTGTCGCTTGGCTACTCT






GTCTAACCGCCCGGAGAGCCCGGGGCCCTCCGGA






GGACCCCGTACTCCTCAGATCCGGCACCTACCCGC






TCTCCCGGCTGCTCCCCAAGAGCCCGGTGATCGAG






CACCATGGCCTATGGCTGGTGGGCCCGGAGACGGA






GACGCTGGCGCCGCTGGAAGCGCAGGCCCTGGAG






ACGCCGATGGAGGACCCGCAGACGCAGACCTCGTC






GCCGCTATAGACGCCGCAGACATGTAA






AF345521.1
AAK11697.1
Orf2
ATGCACTTTCGCAGAGTCTCAGCGAAAAGGAAACTG
598





CTACTGCTTCCTCTGCACCCTGCATCGCAGACACCT






GCCATGAGCTTCAGGGCGCCCTCTCTTAATGCCGGT






CAACGAGAGCAGCTATGGTTCGAGTCCATCGTCCGA






TCCCATGACAGTTATTGCGGGTGTGGTGATACTGTC






GCTCATTTTAATAACATTGCTACTCGCTTTAACTATCT






GCCTGTTACCTCCTCGCCTCTGGATCCTTCCTCGGG






CCCGCCGCGAGGCCGTCCAGCGCTCCGCGCACTC






CCGGCTCTGCCAGCGGCACCCTCCACCCCCTCTAC






TAGCCGACCATGGCGTGGTGGGGCAGATGGAGAAG






GTGGCCGCGGCGCCGGTGGAGGAGATGGCGGCGC






CGCCGTAGAAGGAGACTACCAACAAGAAGAACTCG






ACGAGCTGTTCGCGGCCTTGGAAGACGACCAAGAA






AGACGGTAA






AF345522.1
AAK11699.1
Orf2
ATGTTTCTTGGCAGGGCCTGGAGAAAGAAAAGGCAA
599





GTGCCACTGCCGACACTGCCAGTGGTGCCGCTTCC






ACAACCTTCACCTATGAGCAGCCAGTGGAGACCCCC






GGTTCACAATGTCCAGGGGCTGGAGCGCAATTGGT






GGGAGTGCTTCTTCCGTTCTCATGCTTGTTTTTGTG






GCTGTGGTGATGCTATTACTCATATTAATCATCTGGC






GACTCGTTTTGGACGTCCTCCTACTACCTCAACTCC






CCGAGGACCGCAGGCACCTCCAGTGACTCCGTACC






CGGCCCTGCCGGCCCCAGAGCCTAGCCCTGAGCCA






TGGCGTGGCGCCGGTGGCGATGGCGGCCGTGGTG






GAGACGCCGGAGGCGCCGCCGGTGGAGAAGGAGA






CGGAGGAGACCCAGACGACGCCGCCCTTATCGACG






CCGTCGACCTCGCAGAGTAA






AF345525.1
AAK11705.1
Orf2
ATGTTTCTTGGTAAAATTTACAGACAGAAAAGGAAAG
600





TGCCACTGTACGGCCTGCCAGCTCCAAAGAAAAAAC






CACCTACTGCTATGAGCCACTGGAGCAGACCCGTC






CACCATGCAACGGGGATCGAGCACCTCTGGTACCA






GTCTGTTATTAACAGCCATTCTGCTAGCTGCGGTTG






TGGCGATCCTGTACGCCACTTTACTTATCTTGCTGA






GAGGTATGGCTTTGCCCCAACTTCCCGGGCCCCGC






CGGTAGCCCCAACGCCCACCATCCGTAGAGCCAGG






CCCGCGCCTGCCGCTCCGGAGCCCCGTGCCCTACC






ATGGCATGGGGATGGTGGAGACGAAGGCGCAAGTG






GTGGTGGAGACGCCGGTTCGCCCGAAGCAGACTTC






GCAGACGACGGATTAGACGCCCTCGTCGCCGCACT






CGACGAAGAACAGTAA






AF345527.1
AAK11709.1
Orf2
ATGTTTCTCGGCAGGCCTTACAGAAAGAAGAGGCAA
601





GTGCCACTGCCTGGCGTGCACCATCCACCGCACCC






ACGGCCTAGCATGAGCCACCACTGGCGGGAGCCCA






TCGACAATGTCCCCAACCGGGAGAGGCACTGGCTC






GGGTCCGTCCTCCGAGGCCACCGAGCTTTTTGTGG






TTGTCGGGATCCTGTGCTTCATTTTACTAATCTGGTT






GCACGTTACAATCTTCAGGGCGGTGGTCCCTCAGC






GGGTAGTCTTAGGGATCCGCCGCCACTGAGGAGGG






CGCTGCCGCCACCGCCGTCCCCCCGACCGCCATGT






CCTGGTGGGGATGGCGCCGCCGATGGTGGTGGAA






GCCACGGAGGCGATGGAGACGCAGGAGGGCGCGC






CGCCCGAGACGACTACCGCGACGACGATATAGAAG






ACCTACTCGCCGCTATCGAGGCAGACGAGTAA






AF345528.1
AAK11711.1
Orf2
ATGCGATTTTCTCGAATTTATCGCAGAAAGAAGAGG
602





CTACTGCCACTGCTACTGGTGCCAACAGAACCGAAA






GAACAATTTGTGATGAGCTGGCGCTGTCCCTTAGAA






AATGCCTATAAGAGGGAAATTAACTTCCTCAGAGGG






TGCCAAATGCTTCACACTTGTTTTTGTGGTTGTGATG






ATTTTATTAATCATATTATTCGCCTACAAAATCTTCAC






GGGAATTTACACCAACCCACCGGCCCGTCCACACCT






CCAGTAGGCCGTAGAGCTCTGGCCCTGCCGGCAGC






TCCGGAACCATGGCGTGGAGATGGTGGTGGGCCCG






AAGGCGACCGAACCGCCGATGGACCCGCAGACGCT






GGAGGAGACTACGCACCCGGAGACCTAGACGACCT






GTTCGCCGCCGCCGCCGCCGACCAAGAGTAA






AF345529.1
AAK11713.1
Orf2
ATGGGCAACGCTCTTAGGGTATTCATTCTTAAAATGT
603





TTATCGGCAGGGCCTACCGCCACAAGAAAAGGAAA






GTGCTACTGTCCGCACTGCGAGCTCCACAGGCGTC






TCGGAGGGCTATGAGTTGGAGACCCCCTGTACACG






ATGCGCCCGGCATCGAGCGCAATTGGTACGAGGCC






TGTTTCAGAGCCCACGCTGGAACTTGTGGCTGTGGC






AATTTTATTATGCACATTAATCTTCTGGCTGGGCGTT






ATGGTTTTACTCCGGTATCAGCACCACCAGGTGGTC






CTCCTCCGGGCACCCCGCAGATAAGGAGAGCCAGA






CCTAGTCCCGCCGCGCCCGAACAGCCCCAGGCCCT






ACCATGGCATGGGGATGGTGGAGACGGTGGCGCC






GGTGGCCCACCAGACGCTGGAGGAGACGCCGTCG






CCGGCGCCCCGTACGGAGAACAAGAGCTCGCCGAC






CTGCTCGACGCTATAGAAGACGACGAACAGTAA






AF371370.1
AAK54732.1
ORF2
ATGGCACACCCGGGCATGATGATGCTAAGCAAAATG
604





AAAATACTAGTACCCAGTTCTGACACCAGACCGGGG






GGCAGACGCAGAGTAAAAGTTAAAATAAGACCCCCG






GCCCTTTTAGAAGACAAGTGGTACACTCAGCAAGAT






CTAGCGCCCGTTAATCTTGTGTCACTTGTGGTTTCT






GCGACTAGCTTCATACATCCGTTTAGCCAACCACAA






ACGAACAACATTTGCACAACTTTTCAGGTGTTGAAAG






ACATGTACTATGACTGCATAGGAGTTAGTTCCACTTT






AGACGACAAATATAAAAAATTATTTCAAAAATTATACA






CTAAATGCTGCTACTTTGAAACATTTCAAACAATAGC






CCAGCTAAACCCCGGCTTTAAATCTGCTAAAAAAACT






ACAACTGGCTCCGGTAAGGAAGCTGCCACACTAGG






CGACGCAGTTACACAATTAAAAAACCAACACGGTAG






TTTTTATACTGGAAACAATAGTACTTTTGGCTGCTGT






ACATATAACCCCACTGAAGAAATAGGTAAAGCAGCA






AATGAGTGGTTCTGGAACCAATTAACTGCAACAGAG






TCAGACACACTAGGACAGTACGGACGTGCCTCAATT






AAGTACTTTGAATATCACACAGGACTATACAGTTCCA






TATTTTTAAGTCCACTAAGGAGCAACCTAGAATTTTC






TACAGCATACCAGGATGTAACATACAATCCACTGAC






AGACCTAGGCATAGGCAACAGAATCTGGTACCAATA






CAGTACCAAGCCAGACACTACATTTAACGAAACACA






GTGCAAATGTGTACTAACTGACCTGCCCCTGTGGTC






CCTGTTTTATGGATACGTAGACTTTATAGAGTCAGAG






CTAGGCATAAGCGCAGAGATACACAACTTTGGCATA






GTTTGCGTTCAGTGCCCATACACCTTTCCACCCATG






TTCGACAAGTCTAAGCCAGACAAGGGCTACGTATTT






TATGACACCCTTTTTGGTAACGGAAAGATGCCAGAC






GGTTCCGGACACGTACCTACCTACTGGCAGCAGAG






ATGGTGGCCAAGATTTAGCTTCCAGAGACAAGTAAT






GCATGACATTATTCTGACTGGACCTTTTAGTTACAAA






GATGACTCTGTAATGACTGGACTAACAGCAGGCTAC






AAGTTTAAATTCACATGGGGCGGTGATATGATCTCC






GAACAGGTCATTAAAAACCCCGACAGAGGTGACGG






ACGCGAATCCTCCTATCCCGATAGACAGCGCCGCG






ACCTACAAGTTGTTGACCCTCGCTCCATGGGGCCCC






AATGGGTATTCCACACCTTTGACTACAGGAGGGGAC






TATTTGGAAAGGACGCTATTAAACGAGTGTCAGAAA






AACCGACAGATCCTGACTACTTTACAACACCTTACAA






AAAACCGAGGTTTTTCCCCCCAACAGCAGGAGAAGA






AAGACTGCAAGAAGAAAACTACACTTTACAGGAGAA






AAGAGACCCGTTCTCGTCAGAAGAGGGGCCGCAGA






GGACGCAAGTCCTCCAGCAGCAGGTCCTCCAGTCG






GAGCTCCAGCAGCAGCAGGAGCTCGGGGACCAGCT






CAGATTCCTCCTCAGGGAAATGTTCAAAACCCAAGC






GGGTATACACATGAACCCCCGCGCATTTCAAGAGCT






GTAA






AB060596.1
BAB69915.1
ORF2
ATGAGCTGGTGTACTCCAGTTGAAAATGCCTATAAG
605





AGAGAGATCCACTTTCTCAGGGGCTGTCAACTGCTT






CACACTAGCTTTTGTGGTTGCGATGATTTTATTAATC






ATATTATTCGCCTACAAAATCTTCACGGCAACCTACA






CCAGCCCACGGGACCGTCCACACCTCCAGTGACCC






GTAGAGCTCTGGCCTTGCCGGCTGCTCCGGAGTCA






TGGCGTTCCGGTGGTGGTGGTGGAGACGCCGCCC






GCAGCGACGATGGACCCGGCGCCGATGGAGGAGA






CTACGAACCCGCCGACCTAGACGCACTGTACGACG






CCGTCGCCGCAGACCAAGAGTAA






AB060592.1
BAB69899.1
ORF2
ATGAGCTTTGTAGAACCGTTACTAAGCAGCACCCAC
606





CGAGAGATAGCATTCTACCATGGCTGTGTTCAAATG






CACAAGGCCTTCTGTGGCTGTGACAACTTTCTTACC






CACCTGCAGCGCATAACAACATACATCTCTGCTAAT






CAACACACTCCACCCAGCACACCCTCAAACACCCTC






CGTAGAGCCCGGGCCCTGCCCGCGGCTCCGGAGC






CAGCTCCATGGCGTGGACCTGGTGGTGGCAGAGGA






GGCGCCGAAGGTGGCCGTGGAGAAGGAGAAGGTG






GAGAAGACTACGCACCAGAAGACCTAGACGACTTGT






TCGCCGCCGTCGCAAGAGATACAGAGTAA






AB060593.1
BAB69903.1
ORF2
ATGAGTCTGTGGCGACCCCCGGTCCACAATGCCCC
607





CGGCAGAGAGAGACTTTGGTTTCAGGCCTGTTACGA






ATCTCACAGTGCTTTTTGTGGCTGTGGTAGCTTTATT






CTTCATCTTACTAGCTTGGCTGCACGTTTTAATTTTC






AGGCCGGGCCACCGCCTCCCGGGGGTCCCCGGGC






GGAGACCCCGCCGATTCTGAGGGCGCTGCCGGCAC






CCCAGCCGCGCCGCCACCGCCAGACGGAGAACCC






CGGGTCTGAGCCATGGCCTGGAGATGGTGGTGGAG






ACGGCGCTGGAAGCCAAGAAGGCGGCCAGCGTGG






ACCAAGTACCGCAGACGCAGGTGGAGACGACTTCG






ACCCCGCAGACCTAGAAGACTTGCTCGCGGCCGTC






GAAGAAGACGAACAGTAA






AB060595.1
BAB69911.1
ORF2
ATGAATCTCTGGCGACCCCCTCTGAGAAATATCCCC
608





CACAGGGAGAGATGTTGGCTTGAGGCCTGTCTCAG






AGCCCACGATTCTTTTTGTGGCTGTCCTAGTCCTATT






GTTCATTTTTCTAGTCTGGTTGCACGTTTTAATCTAC






AAGGAGGCCCGCCGCCAGAGGATGACTCCCCACAG






GGCGCGCCAGTCCTGAGGGCCCTGCCGGCACCGA






GCCCCCACAGGCACACCCGCACGGAGAACCCCTCC






GGTGAGCCATGGCCTACTCCTACTGGTGGCGCCGC






CGGAGGTGGCCGTGGAGAGGCCGATGGAGGCGCT






GGAGGCGCCGCAGACGAATACCGCGCCGAAGACCT






AGACGACCTGTTCGCCGCTATCGAAGGAGACCAGT






AA






AB064596.1
BAB79313.1
ORF2
ATGCCGTGGAGACCGCCGGCTCATAACGTCCAGGG
609





GCGAGAGAGCCAGTGGTTCGCGGCTTGTTTTCACG






GCCACGCTTCGTTTTGCGGCTGCGGTGACTTTATTG






GGCATATTAACAGCCTTGCTCCTCGCTTTCCTAACAA






CCAAGGACCCCCGCATCCACCTGCCTTAAACAGGC






CACCTGCACAGGGCCCAGAAAGCCCCGGGGGTTCC






ATACTACCCCTGCCAGCCCTACCGGCACCACCTGAT






CCGCCACCACGGCCTGGTGGTGGGGAAGACGGTG






GCGACGCCGCCCGTGGGGCCGCTGGCGCCGCCGA






AGGCGCGTATGGAGAAGAAGACCTAGAACTGCTGTT






CGCCGCCGCCGAGGAAGACGATATGTGA






AB064597.1
BAB79317.1
ORF2
ATGCCGTGGAGACCGCCGGTGCATAGTGTCCAGGG
610





GCGAGAGGATCAGTGGTTCGCGAGCTTTTTTCACGG






CCACGCTTCATTTTGCGGTTGCGGTGACGCTGTTGG






CCATCTTAATAGCATTGCTCCTCGCTTTCCTCGCGC






CGGTCCACCAAGGCCCCCTCCGGGGCTAGAGCAGC






CTAACCCCCCGCAGCAGGGCCCGGCCGGGCCCGG






AGGGCCGCCCGCCATCTTGGCGCTGCCGGCTCCGC






CCGCGGAGCCTGACGACCCGCAGCCACGGCGTGG






TGGTGGGGACGGTGGCGCCGCCGCTGGCGCCGCA






GGCGACCGTGGAGACCGAGACTACGACGAAGAAGA






GCTAGACGAGCTTTTCCGCGCCGCCGCCGAAGACG






ATTTGTAA






AB064599.1
BAB79325.1
ORF2
ATGCCGTGGTCTCTGCCGAGACATAATATCAGAACG
611





AGAGAAGATCTCTGGGTGCAATCGATTCTTTATTCAC






ATGACACTTTTTGTGGCTGTGATAATATTCCTGAGCA






TCTTACTGGCCTCCTGGGCGGCGTACGACCAGCTC






CACCTAGAAACCCAGGACCCCCTACCATACGGAGC






CTGCCGGCACTGCCGCCAGCTCCGGAACCCCCTGA






GGAACCACGGCGTGGTGGAGATACAGACGGAGACC






GTGGAGAAGATGGAGGAGACGCCGCTGGGGCCTAC






GAACCCGAAGACCTAGAAGAACTTTTCGCCGCCGC






CGAGCAAGACGATATGTGA






AB064600.1
BAB79329.1
ORF2
ATGTCGTGGAGACCGCCGAGCCAAAATTTACTGCAA
612





AGAGAAGAGGCCTGGTACTCAGCTTTTCTTAGCTCG






CATTCTACATTTTGCGGTTGTACTGACCCTCTGCTGC






ATATTACTCTCATTGCTGGCCGCCTTACTAACCCCGT






ACCCGTCACCCGCCAACCGGAGACCCCTCCTAACG






GCCTCAGGGGGCTGCCGGCACTGCCAGCACCCCCT






GAACCACCAGCACCGCCACCACGGCCTGGGGATGG






TACCGGAGAAGAAGATGGCGCCCATGGAGAAGGAG






AAGGTGGGCGATACGCAGAAGAAGACCTAGAAGAA






CTGTTCGCCGCCGCGGCAGAAGACGATATGTGA






AB064601.1
BAB79333.1
ORF2
ATGTCGTGGGCTCCGCCGCTATTCAACTCGAAACAG
613





AGAGAGGACCAGTGGTACCAGTCAATTATTTTCAGC






CATAATACTTTTTGCGGCTGCGGTGACCTTGTTAGG






CATTTTTGCGTCGTTGCTTCTCGCTTTACTGAGCCTC






CTGTAGTGCCGGCCCTACCGGCACCGGTACCGGCA






CCGCCACGGCGTGGTACAGAAGAAGAAGGTGGAGA






CCGTGGAGAAGACGCCGCAGACCGTGGACCCTACG






CAGAAGAAGAGCTAGAAGATTTGTTCGCCGCCGCC






CGAGAAGACGATATGTGA






AB064602.1
BAB79337.1
ORF2
ATGCCGTGGCATCCACCGGGCTACAACGTTCAACA
614





GAGAGAAGAGCTCTGGGTACAGACAGTTACTACTTC






ACATGCTACTTTTTGCGGCTGTGGTGACCCTAGTAG






CCATCTTCACCGCATTCTTAGCCGCCTTAATAACAG






CAGCCGGCGGCCCCCCGAAACCCCAAACCCCATTC






GTGCCCTACCGGCCCTACCGGCACCCCAAGAACCT






GAACAGCCGCCATCACGGCCTGGTACCGGTACAGA






AGAAGGCCATGGCGCCGAAGGAGGCGACCGAGGT






GGGGCCTACGCAGAAGAAGATTTAGAAGATCTTTTC






GCGGCCGCGGAAGAAGACGATATGTGA






AB064603.1
BAB79341.1
ORF2
ATGTCGTGGCGACCGCCGTTGCATTCTATCCAAGGC
615





AGAGAAGATCAATGGTATGCAGGCATCTTTCATACG






CATTTTGCTTTTTGCGGTTGTGGTGACCCTGTTGGG






CGTATTAACCGCATTGCTCACCGCTTTCCTAACGCC






GGTCCCCCGAGACCACCTCCAGGGCTAGACCAGCC






CAACCTCGGAGGGCCGGAAGGTCCAGGAGGTGCC






CCTAGAGCCCTGCCAGCCCTGCCGGCCCCGGCAGA






GCCAGAGCCGGCACCACGGCGTGGTGGTGGGGCC






GATGGAGACAGCGCCGCTGGGGCCGCCGCCGCCG






CAGACCATGGAGGGTACGACGAAGGAGACCTAGAA






GATCTTTTCGCCGCCGCCGCCGAGGACGATATGTG






A






AB064604.1
BAB79345.1
ORF2
ATGAGTATTTGGAGGCCTCCACTGCACAATGTCCCG
616





GGACTCGAACACCTCTGGTACGAGTCAGTGCATCGT






AGCCATGCTGCTGTTTGTGGCTGTGGGGATCCTGTA






CGCCATCTTACTGCTCTTGCTGAAAGATATGGCATT






CCGGGAGGGTCGCGGTCTTCTGGGGCACCGGGAG






TAGGGGGCAACCACAACCCTCCCCAGATCCGTCGA






GCCCGCCACCCGGCGGCTGCTCCGGACCCCCCAG






CAGGTAACCAGCCTCCGGCCCTGCCATGGCATGGG






GATGGTGGAAACGAAAGCGGCGCTGGTGGTGGAGA






AAGCGGTGGACCCGTGGCCGACTTCGCAGACGATG






GCCTAGACGATCTCGTCGCCGCCCTCGACGAAGAA






GAGTAA






AB064606.1
BAB79353.1
ORF2
ATGAGCTTCTGGAGACCTCCGGTGCACAATGCCAC
617





GGGGATCCAGCGCCTGTGGTACGAGTCCTTTCACC






GTGGCCATGCTGCTTTTTGTGGTTGTGGGGATCCTA






TACTTCACATTACTGCACTTGCTGAGACATATGGCCA






TCCAACAGGCCCGAGACCTTCTGGGCCACCGCGAG






TAGACCCCGATCCCCAGATCCGTAGAGCCAGGCCT






GCCCCGGCCGCTCCGGAGCCCTCACAGGTTGAGCC






GAGACCTGCCCTGCCATGGCATGGGGATGGTGGAA






GCGACGGCGGCGCTGGTGGTTCCGGAAGCGGTGG






ACCCGTGGCAGACTTCGCAGACGATGGCCTCGATC






AGCTCGTCGCCGCCCTAGACGACGAAGAGTAA






DQ003341.1
AAX94181.1
ORF2
ATGGGCAAGGCTCTTAGAGTATTTATTCTTAATATGC
618





GCTTTTCCAGAATTTACAAACAGAAGAAGAGGCCAC






TGCCACTGCTTCTGGTGCGAGTTGAACCGAAAGCAT






TCGCTAGTGATATGAGTTGGCGCCCTCCCGTTCACA






ATGCGGCAGGAATTGAGCGACAGCTCCTTGAGGGC






TGCTTTCGATTTCACGCTGCCTGTTGCGGTTGTGGC






AGTTTTATTACTCATCTTACTATACTGGCTGCTCGCT






ATGGTTTTACTGGGGGGCCGGCGCCGCCAGGTGGT






CCTGGGGCGCTGCCATCGCTGAGACGGGCTCAGCC






CGCGCCGGCGGCCCCCGAGAACCAGCCTGAACCA






GAGCTATGGCGTGGTCGTGGTGGTGGAGGCGACG






GAAACGCTGGTGGCCGCGCAGAAGGAGGCGATGG






AGGAGATTTCGCACCCGAAGAGCTAGACGAGCTGTT






CCGCGCCGTCGCCGCCGACGAAGAGTAA






DQ003342.1
AAX94184.1
ORF2
ATGGGCAAGGCTCTTAGAGTATTTATTCTTAATATGC
619





GCTTTTCCAGAATTTACAAACAGAAGAAGAGGCCAC






TGCCACTGCTTCTGGTGCGAGTTGAACCGAAAGCAT






TCGCTAGTGATATGAGTTGGCGCCCTCCCGTTCACA






ATGCGGCAGGAATTGAGCGACAGCTCCTTGAGGGC






TGCTTTCGATTTCACGCTGCCTGTTGCGGTTGTGGC






AGTTTTATTACTCATCTTACTATACTGGCTGCTCGCT






ATGGTTTTACTGGGGGGCCGGCGCCGCCAGGTGGT






CCTGGGGCGCTGCCATCGCTGAGACGGGCTCAGCC






CGCGCCGGCGGCCCCCGAGAACCAGCCTGAACCA






GAGCTATGGCGTGGTCGTGGTGGTGGAGGCGACG






GAAACGCTGGTGGCCGCGCAGAAGGAGGCGATGG






AGGAGATTTCGCACCCGAAGAGCTAGACGAGCTGTT






CCGCGCCGTCGCCGCCGACGAAGAGTAA






DQ003343.1
AAX94187.1
ORF2
ATGGGCAAGGCTCTTAGAGTATTCATTCTTAATATGC
620





GCTTTTCCAGAATTTACAAACAGAAGAAGAGGCCAC






TGCCACTGCTTCTGGTGCGAGTTGAACCGAAAGCAC






TCGCTAGTGATATGAGTTGGCGCCCTCCCGTTCACA






ATGCGGCAGGAATTGAGCGACAGCTCCTTGAGGGC






TGCTTTCGATTTCACGCTGCCTGTTGCGGTTGTGGC






AGTTTTATTACTCATCTTACTATACTGGCTGCTCGCT






ATGGTTATACTGGGGGGCCGGCGCCGCCAGGTGGT






CCTGGGGCGCTGCCATCGCTGAGACGGGCTCTGCC






CGCGCCGGCGGCCCCCGAGAACCAGCCTGAACCA






GAGCTATGGCGTGGTCGTGGTGGTGGAGGCGACG






GAAACGCTGGTGGCCGCGCAGAAGGAGGCGATGG






AGGAGATTTCGCACCCGAAGAGCTAGACGAGCTGTT






CCGCGCCGTCGCCGCCGACGAAGAGTAA






DQ003344.1
AAX94190.1
ORF2
ATGGGCAAGGCTCTTAGAGTATTCATTCTTAATATGC
621





GCTTTTCCAGAATTTACAAACAGAAGAAGAGGCCAC






TGCCACTGCTTCTGGTGCGAGTTGAACCGAAAGCAC






TCGCTAGTGATATGAGTTGGCGCCCTCCCGTTCACA






ATGCGGCAGGAATTGAGCGACAGCTCCTTGAGGGC






TGCTTTCGATTTCACGCTGCCTGTTGCGGTTGTGGC






AGTTTTATTACTCATCTTACTATACTGGCTGCTCGCT






ATGGTTATACTGGGGGGCCGGCGCCGCCAGGTGGT






CCTGGGGCGCTGCCATCGCTGAGACGGGCTCTGCC






CGCGCCGGCGGCCCCCGAGAACCAGCCTGAACCA






GAGCTATGGCGTGGTCGTGGTGGTGGAGGCGACG






GAAACGCTGGTGGCCGCGCAGAAGGAGGCGATGG






AGGAGATTTCGCACCCGAAGAGCTAGACGAGCTGTT






CCGCGCCGTCGCCGCCGACGAAGAGTAA






DQ186994.1
ABD34285.1
ORF2
ATGGGCAAGGCTCTTAGAGTATTCATTCTTAATATGC
622





GCTTTTCCAGAATTTACAAACAGAAGAAGAGGCCAC






TGCCACTGCTTCTGGTGCGAGTTGAACCGAAAGCAC






TCGCTAGTGATATGAGTTGGCGCCCTCCCGTTCACA






ATGCGGCAGGAATTGAGCGACAGCTCCTTGAGGGC






TGCTTTCGATTTCACGCTGCCTGTTGCGGTTGTGGC






AGTTTTATTACTCATCTTACTATACTGGCTACTCGCT






ATGGTTTTACTGGGGGGCCGGCGCCGCCAGGTGGT






CCTGGGGCGCTGCCATCGCTGAGACGGGCTCTGCC






CGCGCCGGCGGCCCCCGAGAACCAGCCTGAACCA






GAGCTATGGCGTGGTCGTGGTGGTGGAGGCGACG






GAAACGCTGGTGGCCGCGCAGAAGGAGGCGATGG






AGGAGATTTCGCACCCGAAGAGCTAGACGAGCTGTT






CCGCGCCGTCGCCGCCGACGAAGAGTAA






DQ186995.1
ABD34287.1
ORF2
ATGGGCAAGGCTCTTAGAGTATTCATTCTTAATATGC
623





GCTTTTCCAGAATTTACAAACAGAAGAAGAGGCCAC






TGCCACTGCTTCTGGTGCGAGTTGAACCGAAAGCAC






TCGCTAGTGATATGAGTTGGCGCCCTCCCGTTCACA






ATGCGGCAGGAATTGAGCGACAGCTCCTTGAGGGC






TGCTTTCGATTTCACGCTGCCTGTTGCGGTTGTGGC






AGTTTTATTACTCATCTTACTATACTGGCTACTCGCT






ATGGTTTTACTGGGGGGCCGGCGCCGCCAGGTGGT






CCTGGGGCGCTGCCATCGCTGAGACGGGCTCTGCC






CGCGCCGGCGGCCCCCGAGAACCAGCCTGAACCA






GAGCTATGGCGTGGTCGTGGTGGTGGAGGCGACG






GAAACGCTGGTGGCCGCGCAGAAGGAGGCGATGG






AGGAGATTTCGCACCCGAAGAGCTAGACGAGCTGTT






CCGCGCCGTCGCCGCCGACGAAGAGTAA






DQ186996.1
ABD34289.1
ORF2
ATGGGCAAGGCTCTTAGGGTCTTCATTCTTAATATGT
624





TCCTTGGCAGGGTTTACCGCCACAAGAAAAGGAAAG






TGCTACTGTCTACACTGCGAGCTCCACAGGCGTCTC






GCAGGGCTATGAGTCGGCGACCCCCGGTACACGAT






GCACCCGGCATCGAGCGCAATTGGTACGAGGCCTG






TTTCAGAGCCCACGCTGGAGCTTGTGGCTGTGGCA






ATTTTATTATGCACCTTAATCTTCTGGCTGGGCGTTA






TGGTTTTACTCCGGGGTCAGCGCCGCCAGGTGGTC






CTCCTCCGGGCACCCCGCAGATAAGAAGAGCCAGA






CCTAGTCCCGCCGCACCCCAAGAGCCCGCTGCTCT






ACCATGGCATGGGGATGGTGGAGATGGCGGCGCC






GCTGGCCCGCCAGACGCTGGAGGAGACGCCGTCG






CCGGCGCCCCGTACGGAGAACAAGAGCTCGCCGAC






CTGCTCGACGCTATAGAAGACGACGAACAGTAA






DQ186997.1
ABD34291.1
ORF2
ATGGGCAAGGCTCTTAGGGTCTTCATTCTTAATATGT
625





TCCTTGGCAGGGTTTACCGCCACAAGAAAAGGAAAG






TGCTACTGTCCACACTGCGAGCTCCACAGGCGTCTC






GCAGGGCTATGAGTTGGCGACCCCCGGTACACGAT






GCACCCGGCATCGAGCGCAATTGGTACGAGGCCTG






TTTCAGAGCCCACGCTGGAGCTTGTGGCTGTGGCA






ATTTTATTATGCACCTTAATCTTCTGGCTGGGCGTTA






TGGTTTTACTCCGGGGTCAGCGCCGCCAGGTGGTC






CTCCTCCGGGCACCCCGCAGATAAGAAGAGCCAGA






CCTAGTCCCGCCGCACCCCAAGAGCCCGCTGCTCT






ACCATGGCATGGGGATGGTGGAGATGGCGGCGCC






GCTGGCCCGCCAGACGCTGGAGGAGACGCCGTCG






CCGGCGCCCCGTACGGAGAACAAGAGCTCGCCGAC






CTGCTCGACGCTATAGAAGACGACGAACAGTAA






DQ186998.1
ABD34293.1
ORF2
ATGGGCAAGGCTCTTAGGGTCTTCATTCTTAATATGT
626





TCCTTGGCAGGGTTTACCGCCACAAGAAAAGGAAAG






TGCTACTGTCCACACTGCGAGCTCCACAGGCGTCTC






GCAGGGCTATGAGTTGGCGACCCCCGGTACACGAT






GCACCCGGCATCGAGCGCAATTGGTACGAGGCCTG






TTTCAGAGCCCACGCTGGGGCTTGTGGCTGTGGCA






ATTTTATTATGCACCTTAATCTTCTGGCTGGGCGTTA






TGGTTTTACTCCGGGGTCAGCGCCGCCAGGTGGTC






CTCCTCCGGGCACCCCGCAGATAAGAAGAGCCAGA






CCTAGTCCCGCCGCACCCCAAGAGCCCGCTGCTCT






ACCATGGCATGGGGATGGTGGAGATGGCGGCGCC






GCTGGCCCGCCAGACGCTGGAGGAGACGCCGTCG






CCGGCGCCCCGTACGGAGAACAAGAGCTCGCCGAC






CTGCTCGACGCTATAGAAGACGACGAACAGTAA






DQ186999.1
ABD34295.1
ORF2
ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAA
627





GTGCTACTGCTTTGCGTGCCAGCAGCTAAGAAAAAA






CCAACTGCTATGAGCTTCTGGAGACCTCCGGTGCAC






AATGTCACGGGGATCCAGCGCCTGTGGTACGAGTC






CTTTCACCGTGGCCATGCTGCTTTTTGTGGTTGTGG






GGATCCTATACTTCACATTACTTCACTTGCTGAGACA






TATGGCCATCCAACAGGCCCGAGACCTTCTGGGTCA






TCGGGAATAGACCCCACTCCGCCCATCCGTAGAGC






CAGGCCTGCCCCGGCCGCTCCGGAACCCTCACAGG






TTGACTCCAGACCGGCCCTGCCATGGCATGGAGAT






GGTGGAAGCGACGGAGGCGCTGGTGGTTCCGCAA






GCGGTGGACCCGTGGCAGACTTCGCAGACGATGGC






CTCGACCAGCTCGTCGCCGACCTAGACGACGAAGA






GTAA






DQ187000.1
ABD34297.1
ORF2
ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAA
628





GTGCTACTGCTTTGCGTGCCAGCAGCTAAGAAAAAA






CCAACTGCTATGAGCTTCTGGAGACCTCCGGTGCAC






AATGTCACGGGGATCCAGCGCCTGTGGTACGAGTC






CTTTCACCGTGGCCATGCTGCTTTTTGTGGTTGTGG






GGATCCTATACTTCACATTACTTCACTTGCTGAGACA






TATGGCCATCCAACAGGCCCGAGACCTTCTGGGTCA






TCGGGAATAGACCCCACTCCGCCCATCCGTAGAGC






CAGGCCTGCCCCGGCCGCTCCGGAACCCTCACAGG






TTGACTCCAGACCGGCCCTGCCATGGCATGGAGAT






GGTGGAAGCGACGGAGGCGCTGGTGGTTCCGCAA






GCGGTGGACCCGTGGCAGACTTCGCAGACGATGGC






CTCGACCAGCTCGTCGCCGACCTAGACGACGAAGA






GTAA






DQ187001.1
ABD34299.1
ORF2
ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAA
629





GTGCTACTGCTTTGCGTGCCAGCAGCTAAGAAAAAA






CCAACTGCTATGAGCTTCTGGAGACCTCCGGTGCAC






AATGTCACGGGGATCCAGCGCCTGTGGTACGAGTC






CTTTCACCGTGGCCATGCTGCTTTTTGTGGTTGTGG






GGATCCTATACTTCACATTACTTCACTTGCTGAGACA






TATGGCCATCCAACAGGCCCGAGACCTTCTGGGTCA






TCGGGAATAGACCCCACTCCGCCCATCCGTAGAGC






CAGGCCTGCCCCGGCCGCTCTGGAACCCTCACAGG






TTGACTCCAGACCGGCCCTGCCATGGCACGGAGAT






GGTGGAAGCGACGGAGGCGCTGGTGGTTCCGCAA






GCGGTGGACCCGTGGCAGACTTCGCAGACGATGGC






CTCGACCAGCTCGTCGCCGACCTAAACGACGAAGA






GTAA






DQ187002.1
ABD34301.1
ORF2
ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAA
630





GTGCTACTGCTTTGCGTGCCAGCAGCTAAGAAAAAA






CCAACTGCTATGAGCTTCTGGAGACCTCCGGTGCAC






AATGTCACGGGGATCCAGCGCCTGTGGTACGAGTC






CTTTCACCGTGGCCATGCTGCTTTTTGTGGTTGTGG






GGATCCTATACTTCACATTACTTCACTTGCTGAGACA






TATGGCCATCCAACAGGCCCGAGACCTTCTGGGTCA






TCGGGAATAGACCCCACTCCGCCCATCCGTAGAGC






CAGGCCTGCCCCGGCCGCTCCGGAACCCTCACAGG






TTGACTCCAGACCGGCCCTGCCATGGCATGGAGAT






GGTGGAAGCGACGGAGGCGCTGGTGGTTCCGCAA






GCGGTGGACCCGTGGCAGACTTCGCAGACGATGGC






CTCGACCAGCTCGTCGCCGACCTAAACGACGAAGA






GTAA






DQ187003.1
ABD34303.1
ORF2
ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAA
631





GTGCTACTGCTTTGCGTGCCAGCAGCTAAGAAAAAA






CCAACTGCTATGAGCTTCTGGAGACCTCCGGTGCAC






AATGTCACGGGGATCCAGCGCCTGTGGTACGAGTC






CTTTCACCGTGGCCATGCTGCTTTTTGTGGTTGTGG






GGATCCTATACTTCACATTACTTCACTTGCTGAGACA






TATGGCCATCCAACAGGCCCGAGACCTTCTGGGTCA






TCGGGAATAGACCCCACTCCGCCCATCCGTAGAGC






CAGGCCTGCCCCGGCCGCTCCGGAACCCTCACAGG






TTGACTCCAGACCGGCCCTGCCATGGCATGGAGAT






GGTGGAAGCGACGGAGGCGCTGGTGGTTCCGCAA






GCGGTGGACCCGTGGCAGACTTCGCAGACGATGGC






CTCGACCAGCTCGTCGCCGACCTAGACGACGAAGA






GTAA






DQ187004.1
ABD34304.1
ORF2
ATGTTTTTCGGTAGACATTGGCGAAAGAAAAGGGCA
632





CTGTTACTGTCTAGCTTGCGAACTTCAAAGAAGAAA






CCACCTGCAATGAGCCAGTGGTGCCCGCCTGTGCA






CAGCGTTCAGGGTCGCAACCACCAGTGGTATGAAG






CCTGCTACCGTGGCCATGCTGCTTATTGTGGCTGTG






GCGATTTTATTAGTCACCTTGTTGCTCTGGGTAATCA






GTTTGGCTTCAGGCCGGGTCCCCGAGCTCCTGGCG






CACCGGGGCTAGGGGGACCCCCCGTTCTGCCCCGT






AGAGCCCTGCCGGCACCCCCGGCTGAGGCTCCGG






AGCACCAGCAGGGCAACAACAACAACAACCAGCAG






CTGCAGAGATGGCCTGGGGATGGTGGAAACGCAGA






CGGCGCCGATGGTGGAGAGGCCTCTGGAGGAGAC






GCCGCTTTGCCAGAAGACGACCTAGACGGCCTGCT






CGCCGCCCTAGACGACGAAGAGTAA






DQ187005.1
ABD34306.1
ORF2
ATGTTTTTCGGTAGGCATTGGCGAAAGAAAAGGGCA
633





CTGTTACTGTCTAGCTTGCGAACTTCAAAGAAGAAA






CCACCTGCAATGAGCCAGTGGTGCCCGCCTGTGCA






CAGCGTTCAGGGTCGCAACCACCAGTGGTATGAAG






CCTGCTACCGTGGCCATGCTGCTTATTGTGGCTGTG






GCGATTTTATTAGTCACCTTGTTGCTCTGGGTAATCA






GTTTGGCTTCGGGCCGGGTCCCCGAGCTCCTGGCG






CACCGGGGCTAGGGGGACCCCCCGTTCTGCCCCGT






AGAGCCCTGCCGGCACCCCCGGCTGAGGCTCCGG






AGCACCAGCAGGGCAACAACAACAACAACCAGCAG






CTGCAGAGACGGCCTGGGGATGGTGGAAACGCAGA






CGGCGCCGATGGTGGAGAGGCCTCTGGAGGAGAC






GCCGCTTTGCCAGAAGACGACCTAGACGGCCTGCT






CGCCGCCCTAGACGACGAAGAGTAA






DQ187007.1
ABD34309.1
ORF2
ATGTTTTTCGGTAGGCATTGGCGAAAGAAAAGGGCA
634





CTGTTACTGTCTAGCTTGCGAACTTCAAAGAAGAAA






CCACCTGCAATGAGCCAGTGGTGCCCGCCTGTGCA






CAGCGTTCAGGGTCGCAACCACCAGTGGTATGAAG






CCTGCTACCGTGGCCATGCTGCTTATTGTGGCTGTG






GCGATTTTATTAGTCACCTTGTTGCTCTGGGTAATCA






GTTTGGCTTCAGGCCGGGTCCCCGAGCTCCTGGCG






CACCGGGGCTAGGGGGACCCCCCGTTCTGCCCCGT






AGAGCCCTGCCGGCACCCCCGGCTGAGGCTCCGG






AGCACCAGCAGGGCAACAACAACAACAACCAGCAG






CTGCAGAGATGGCCTGGGGATGGTGGAAACGCAGA






CGGCGCCGATGGTGGAGAGGCCTCTGGAGGAGAC






GCCGCTTTGCCAGAAGACGACCTAGACGGCCTGCT






CGCCGCCCTAGACGACGAAGAGTAA






EF538879.1
ABU55886.1
ORF2
ATGCACTTTTCTCGAATAAGCAGAAAGAAAAGGAAA
635





GTGCTACTGCTTTGCGTGCCAGCAGCTAAGAAACAA






CCAACTGCTATGAGCTTCTGGAGACCTCCGATACAC






AATGTCACGGGGATCCAGCGCCTGTGGTACGAGTC






CTTTCACCGTGGCCATGCTGCTTTTTGTGGTTGTGG






GGATCCTATACTTCACATTACTGCACTTGCTGAGACA






TATGGCCATCCAACAGGCCCGAGACCTTCTGGGTCA






TCGGGAATAGACCCCACTCCCCCAATCCGTAGAGC






CAGGCCCGCCCCGGCCGCTCCGGAGCCCTCACAG






GCTGAGTCCAGACCGGCCCTGCCATGGCATGGAGA






TGGTGGAAGCGACGGAGGCGCTGGTGGTTCCGCAA






GCGGTGGACCCGTGGCAGACTTCGCAGACGATGGC






CTCGACCAGCTCGTCGCCGCCCTAGACGACGAAGA






GTAA






FJ426280.1
ACK44072.1
ORF2
ATGTTTCTCGGCAGGGTGTGGAGGAAACAGAAAAG
636





GAAAGTGCTTCTGCTGGCTGTGCGAGCTACACAGAA






AACATCTTCCATGAGTATCTGGCGTCCCCCTCTCGG






GAATGTCTCCTACAGGGAGAGAAATTGGCTTCAGGC






CGTCGAAGGATCCCACAGTTCCTTTTGTGGCTGTGG






TGATTTTATTCTTCATCTTACTAATTTGGCTGCACGC






TTTGCTCTTCAGGGGCCCCCGCCGGAGGGTGGTCC






TCCTCGGCCGAGGCCGCCGCTCCTGAGAGCGCTGC






CGGCCCCCGAGGTCCGCAGGGAAACGCGCACAGA






GAACCCGGGCGCCTCCGGTGAGCCATGGCCTGGC






GATGGTGGTGGCAGAGACGATGGCGCCGCCGCCC






GTGGCCCCGCAGACGGTGGAGACGCCTACGACGC






CGGAGACCTCGACGACCTGTTCGCCGCCGTCGAAG






ACGAGCAACAGTAA






FJ392105.1
ACR20258.1
ORF2
CTGCCACTGCTACCTGTGCCAGCTACACCGCAAGAA
637





CGGCCTAGTCGTGCGCCCCTGATGGCCTGCGGACC






CAGAGGATGGATGCCCCCCAACTTCGGGGGACACG






ACAGAGAAAATGCTTGGTGCAAATCTGTTAAATTGTC






TCATGATGCTTTCTGTGGCTGCGACGATCCTCTTAC






CCATCTTGCTGCTCTGCTACCAAGCAGACAAGCTTC






TCGTCAGAATACTCCTTCTGCTCCACCTCCGCGCCC






CCCGCCGCCGACCCCGAGGCAGGGCCAGGGCTCT






GGGCCGCCTCAGGGGCGAATCAGACCGTCCTGGTC






CCTCCCGGTGACCCCACCCGCTGACGAGCCATGGC






AGCCTGGTGGTGGGGCAGGCGGAGACGCTGGCGC






AGGTGGAGGCGCCGCCGCCTCCCTCGCCGCCGCC






GCTGGCGACGGAGGAGACGGTGGCCCAGAAGACG






CAGGCGGAGATGGCCGCGCAGACGCAGACGTCGC






AGACCTGCTCGCCGCCCTAGAAGGAGACGCAGACG






CCGAAGGGTAA






FJ392107.1
ACR20261.1
ORF2
GATCCTCTTACCCATCTTGCTGCTCTGCTACCAGGC
638





AGACAAGCTTCTCGTCAGAATACTCCTTCTGCTCCA






CCTCCGCGCCCCCCGCCGCCGACCCCGAGGCAGG






GCCAGGGCTCTGGGCCGCCTCAGGGGCGAATCAGA






CCGTCCTGGTCCCTCCCGGTGACCCCACCCGCTGA






CGAGCCATGGCAGCCTGGTGGTGGGGCAGGCGGA






GACGCTGGCGCAGGTGGAGGCGCCGCCGCCTCCC






TCGCCGCCGCCGCTGGCGACGGAGGAGACGGTGG






CCCAGAAGACGCAGGCGGAGATGGCCGCGCAGAC






GCAGACGTCGCAGACCTGCTCGCCGCCCTAGAAGG






AGACGCAGACGCCGAAGGGTAA






FJ392108.1
ACR20263.1
ORF2
TCTCATGATGCTTTCTGTGGCTGCGACGATCCTCTT
639





ACCCATCTTGCTGCTCTGCTACCAGGCAGACAAGCT






TCTCGTCAGAATACTCCTTCTGCTCCACCTCCGCGC






CCCCCGCCGCCGACCCCGAGGCAGGGCCAGGGCT






CTGGGCCGCCTCAGGGGCGAATCAGACCGTCCTGG






TCCCTCCCGGTGACCCCACCCGCTGACGAGCCATG






GCAGCCTGGTGGTGGGGCAGGCGGAGACGCTGGC






GCAGGTGGAGGCGCCGCCGCCTCCCTCGCCGCCG






CCGCTGGCGACGGAGGAGACGGTGGCCCAGAAGA






CGCAGGCGGAGATGGCCGCGCAGACGCAGACGTC






GCAGACCTGCTCGCCGCCCTAGAAGGAGACGCAGA






CGCCGAAGGGTAA






FJ392111.1
ACR20268.1
ORF2
CAAGAACGGCCTAGTCGTGCGCCCCTGATGGCCTG
640





CGGACCCAGAGGATGGATGCCCCCCAACTTCGGGG






GACACGACAGAGAAAATGCTTGGTGCAAATCTGTTA






AATTGTCTCATGATGCTTTCTGTGGCTGCGACGATC






CTCTTACCCATCTTGCTGCTCTGCTACCAGGCAGAC






AAGCTTCTCGCCAGAATACTCCTTCTGCTCCACCTC






CGCGCCCCCCGCCGCCGACCCCGAGGCAGGGCCA






GGGCTCTGGGCCGCCTCAGGGGCGAATCAGACCGT






CCTGGTCCCTCCCGGTGACCCCACCCGCTGACGAG






CCATGGCAGCCTGGTGGTGGGGCAGGCGGAGACG






CTGGCGCAGGTGGAGGCGCCGCCGCCTCCCTCGC






CGCCGCCGCTGGCGACGGAGGAGACGGTGGCCCA






GAAGACGCAGGCGGAGATGGCCGCGCAGACGCAG






ACGTCGCAGACCTGCTCGCCGCCCTAGAAGGAGAC






GCAGACGCCGAAGGGTAA






FJ392112.1
ACR20270.1
ORF2
CTGCTACCTGTGCCAGCTACACCGCAAGAACGGCC
641





TAGTCGTGCGCCCCTGATGGCCTGCGGACCCAGAG






GATGGATGCCCCCCAACTTCGGGGGACACGACAGA






GAAAATGCTTGGTGCAAATCTGTTAAATTGTCTCATG






ATGCTTTCTGTGGCTGCGACGATCCTCTTACCCATC






TTGCTGCTCTGCTACCAGGCAGACAAGCTTCTCGTC






AGAATACTCCTTCTGCTCCACCTCCGCGCCCCCCGC






CGCCGACCCCGAGGCAGGGCCAGGGCTCTGGGCC






GCCTCAGGGGCGAATCAGACCGTCCTGGTCCCTCC






CGGTGACCCCACCCGCTGACGAGCCATGGCAGCCT






GGTGGTGGGGCAGGCGGAGACGCTGGCGCAGGTG






GAGGCGCCGCCGCCTCCCTCGCCGCCGCCGCTGG






CGACGGAGGAGACGGTGGCCCAGAAGACGCAGGC






GGAGATGGCCGCGCAGACGCAGACGTCGCAGACCT






GCTCGCCGCCCTAGAAGGAGACGCAGACGCCGAAG






GGTAA






FJ392113.1
ACR20271.1
ORF2
ATGTTCCTCGGCAGGCCGTGGAGAAAGAGGAGGGC
642





GGCCGGGAAGAAAGGGCCACTGCCACTGCAAGCTG






TGCGAGCTGCATCGCAGGAACGGTCTGACAGTGCA






CCGCTGATGGCCTGCGGACCCCGGGGATGGATGCC






CCCGAACTTCGGGGGACACGAGAGAGAAAATGCCT






GGAGCCAGTCTGTTGTACTGTCTCATGATGCTTTCT






GTGGCTGCGACGATCCTGCTACCCATCTTACTGCTC






TGCTATCAGGTAGACAAGCTTCTCGTCAGAGTACTC






CTTCTGCTCCACCTCCGCGCCCCCCGCCGCCGTCC






CCGAGGCAGGGCCAGGGGTCTCGGTCACCTCCGG






GGCGAATCAGACCATCCTGGTCCCTCCCGGTAGCC






CCGCCGAGTGAAGGGCCATGGCTGCCTGGTGGTGG






GGCAGGAGGCGGCGATGGCGCCGGTGGAGACGGC






GCCGTCTCCCTCGCCGCCGCCGCTGGTGACGGAG






GAGACGGTGGCCCAGGAGGCGTAGGCGGAGATGG






CCGCGGAGACGCAGACGTCGCAGACCTGCTCGCCG






CCTTAGAAGGAGACGTCGACGCAGAAGGGTAA






FJ392114.1
ACR20273.1
ORF2
ATGTTCCTCGGCAGGCCGTGGAGAAAGAGGAGGGC
643





GGCCGGGAAGAAAGGGCCACTGCCACTGCAAGCTG






TGCGAGCTGCATCGCAGGAACGGTCTCACAGTGCA






CCGCTGATAGCCTGCGGACCCCGGGGATGGATGCC






CCCGAACTTCGGGGGACACGAGAGGGAAAATGCCT






GGAGCCAGTCTGTTGTACTGTCTCATGATGCTTTCT






GTGGTTGCGACGATCCTGCTACCCATCTTACTACTC






TGCTATCACGCAGACAAGCTTCTCGTCAGAGTACTC






CTTCTGCTCCACCTCCGCGCCCCCCGCCGCCGTCC






CCGAGGCAGGGCCAGGGGTCTCGGTCGCCTCCGG






GACGAATCAGACCATCCTGGTCCCTCCCGGTAGCC






CCGCCGAGTGAAGGGCCATGGCTGCCTGGTGGTGG






GGCAGGAGGCGGCGATGGCGCCGGTGGAGACGGC






GCCGTCTCCCTCGCCGCCGCCGCTGGCGACGGAG






GAGACGGTGGCCCAGGAGGCGTAGGCGGAGATGG






CCGCGGAGACGCAGACGTCGCGGACCTGCTCGCC






GCCTTAGAAGGAGACGTCGACGCAGAAGGGTAA






FJ392115.1
ACR20275.1
ORF2
ATGTTCCTCGGCAGGCCGTGGAGAAAGAGGAGAGC
644





GGCAGGGAAGAAAGGGCCACTGCCACTGCAAGCTG






TGCGGGCTGCATCGCAGGAACGGTCTCACAGTGCA






CCGCTGATGGCCTGCGGACCCCGGGGATGGATGCC






CCCGAACTTCGGGGGACACGAGAGAGAAAATGCCT






GGAGCCAGTCTGTTGTACTGTCTCATGATGCTTTCT






GTGGTTGCGACGATCCTGCTACCCATCTTACTACTC






TGCTATCACGCAGACAAGCTTCTCGTCAGAGTACTC






CTTCTGCTCCACCTCCGCGCCCCCCGCCGCCGTCC






CCGAGGCAGGGCCAGGGGTCTCGGTCGCCTCCGG






GGCGAATCAGACCATCCTGGTCCCTCCCGGTAGCC






CCGCCGAGTGAAGGGCCATGGCTGCYTGGTGGTGG






GGCAGGAGGCGGCGATGGCGCCGGTGGAGACGGC






GCCGTYTCCCTCGCCGCCGCCGCTGGCGACGGAG






GAGACGGTGGCCCAGGAGGCGTAGGCGGAGATGG






CCGCGGAGACGCAGACGTCGCAGACCTGCTCGCCG






CCTTAGAAGGAGACGTCGACGCAGAAGGGTAA






GU797360.1
AD051764.1
ORF2
ATGGCTGAGTTTATGCTGCCCGTCCGCAGAGAGGA
645





GCCACGGCGGGGGATCCGAACGTCCCGAGGGCGG






GTGCCGGAGGTGAGTTTACACACCGCAGTCAAGGG






GCAATTCGGGCTCGGGACTGGCCGGGCTATGGGCA






AGGCTCTTAAAAAAGCCATGTTTCTCGGTAAATTACA






CAGAAAGAAGAGGGCACTGTCACTGCACGGCCTGC






CAGCTACAAAGAAAAAACCACCTCCTGATATGAACT






ACTGGAGGCCGCCTGTGCACAATGTCCCGGGGCTC






GAACGCCTCTGGTACGAGTCCGTGCATCGTAGCCAT






GCTGCTGTTTGTGGTTGTGGGGATTTTGTACGCCAT






ATTACTGCTCTGGCTGAGAGATACGGCCACCCTGG






GGGACCGCGCGCGCCTGGGGCACCGGGAATAGGG






GGCAATCCCAATTCTCCCCCGATCCGTCGAGCCCG






CCACCCGGCGGCCGCTCCGGAGCCCCCAGCAGGT






AACCAGCCTCCGGCCCTGCCATGGCATGGGGATGG






TGGAAACGAAGGCGCAAGTGGTGGTGGAGACGACG






CTGGACTCGTGGCCGACTTCGCAAACGACGGGCTA






GACGAGCTGGTCGCCGCCCTCGACGAAGAAGAGTC






CCAAAAAACCCAGGGTCGACCTCGGGCCAATCCAA






CAGCAAGAAAGGCCCTCCGATTCACTCCAAAGAGAA






TCGAGGCCGTGGGAGACCAGCGAAGAAGAGAGCGA






AGCAGAAGTCCAGCAAGAAGAGACGGAGGAGGTGC






CCCTCAGACAGCAACTCCTCCACAACCTCAGAGAGC






AGCAGCAACTCCGAAAGGGCCTCCAGTGCGTCTTC






CAGCAGCTAATAAAGACGCAGCAGGGGGTTCACATA






GACCCATCCCTACTGTAGGCCCCAGTCAGTGGCTCT






TCCCCGAGAGAAAGCCTAAACCCCCTCCATCGGCC






GGAGACTGGGCCATGGAGTACCTAGCTTGCAAGAT






ATTCAACAGGCCGCCCCGCACTCACCTTACAGACCC






TCCTTTCTACCCCTACTGCAAAAACAATTACAATGTA






ACCTTTCAGCTCAACTACAAATAA






GU797360.1
AD051763.1
ORF2
ATGGCTGAGTTTATGCTGCCCGTCCGCAGAGAGGA
646





GCCACGGCGGGGGATCCGAACGTCCCGAGGGCGG






GTGCCGGAGGTGAGTTTACACACCGCAGTCAAGGG






GCAATTCGGGCTCGGGACTGGCCGGGCTATGGGCA






AGGCTCTTAAAAAAGCCATGTTTCTCGGTAAATTACA






CAGAAAGAAGAGGGCACTGTCACTGCACGGCCTGC






CAGCTACAAAGAAAAAACCACCTCCTGATATGAACT






ACTGGAGGCCGCCTGTGCACAATGTCCCGGGGCTC






GAACGCCTCTGGTACGAGTCCGTGCATCGTAGCCAT






GCTGCTGTTTGTGGTTGTGGGGATTTTGTACGCCAT






ATTACTGCTCTGGCTGAGAGATACGGCCACCCTGG






GGGACCGCGCGCGCCTGGGGCACCGGGAATAGGG






GGCAATCCCAATTCTCCCCCGATCCGTCGAGCCCG






CCACCCGGCGGCCGCTCCGGAGCCCCCAGCAGGT






AACCAGCCTCCGGCCCTGCCATGGCATGGGGATGG






TGGAAACGAAGGCGCAAGTGGTGGTGGAGACGACG






CTGGACTCGTGGCCGACTTCGCAAACGACGGGCTA






GACGAGCTGGTCGCCGCCCTCGACGAAGAAGAGTT






GTTAGAGACCCCTGCACTCAGCCCACCTTCGAACTG






CCCGGAGCCAGTACGCAGCCTCCACGAATACAAGT






CACGGACCCGAAACTCCTCGGTCCCCACTACTCATT






CCACTCGTGGGACCTCAGACGTGGCTACTATAGCAC






AAAGAGTATTAAACGAATGTCAGAACACGAAGAACC






TTCTGAGTTTATTTTCCCAGGTCCCAAAAAACCCAGG






GTCGACCTCGGGCCAATCCAACAGCAAGAAAGGCC






CTCCGATTCACTCCAAAGAGAATCGAGGCCGTGGG






AGACCAGCGAAGAAGAGAGCGAAGCAGAAGTCCAG






CAAGAAGAGACGGAGGAGGTGCCCCTCAGACAGCA






ACTCCTCCACAACCTCAGAGAGCAGCAGCAACTCCG






AAAGGGCCTCCAGTGCGTCTTCCAGCAGCTAA






GU797360.1
AD051762.1
ORF2
ATGGCTGAGTTTATGCTGCCCGTCCGCAGAGAGGA
647





GCCACGGCGGGGGATCCGAACGTCCCGAGGGCGG






GTGCCGGAGGTGAGTTTACACACCGCAGTCAAGGG






GCAATTCGGGCTCGGGACTGGCCGGGCTATGGGCA






AGGCTCTTAAAAAAGCCATGTTTCTCGGTAAATTACA






CAGAAAGAAGAGGGCACTGTCACTGCACGGCCTGC






CAGCTACAAAGAAAAAACCACCTCCTGATATGAACT






ACTGGAGGCCGCCTGTGCACAATGTCCCGGGGCTC






GAACGCCTCTGGTACGAGTCCGTGCATCGTAGCCAT






GCTGCTGTTTGTGGTTGTGGGGATTTTGTACGCCAT






ATTACTGCTCTGGCTGAGAGATACGGCCACCCTGG






GGGACCGCGCGCGCCTGGGGCACCGGGAATAGGG






GGCAATCCCAATTCTCCCCCGATCCGTCGAGCCCG






CCACCCGGCGGCCGCTCCGGAGCCCCCAGCAGGT






AACCAGCCTCCGGCCCTGCCATGGCATGGGGATGG






TGGAAACGAAGGCGCAAGTGGTGGTGGAGACGACG






CTGGACTCGTGGCCGACTTCGCAAACGACGGGCTA






GACGAGCTGGTCGCCGCCCTCGACGAAGAAGAGTA






A






AB030487.1
BAA90404.1
ORF2a
ATGGCTGAGTTTTCCACGCCCGTCCGCAGCGAGAT
648





CGCGACGGAGGAGCGATCGAGCGTCCCGAGGGCG






GGTGCCGAAGGTGAGTTTACACACCGGAGTCAAGG






GGCAATTCGGGCTCGGGACTGGCCGGGCTATGGGC






AAGGCTCTTAA






AB030488.1
BAA90407.1
ORF2a
ATGGCTGAGTTTTCCATGCCCGTCCGCAGCGGTGAA
649





GCCACGGAGGGAGCTCAGCGCGTCCCGAGGGCGG






GTGCCGAAGGTGAGTTTACACACCGAAGTCAAGGG






GCAATTCGGGCTCGGGACTGGCCGGGCTATGGGCA






AGGCTCTTAA






AB030489.1
BAA90410.1
ORF2a
ATGGCTGAGTTTTCTATGCCCGTCCGCAGCGGCGAA
650





GCCACGGAGGGAGCTCAGCGCGTCCCGAGGGCGG






GTGCCGGAGGTGAGTTTACACACCGAAGTCAAGGG






GCAATTCGGGCTCGGGACTGGCCGGGCTATGGGCA






AGGCTCTTAA






AB030487.1
BAA90405.1
ORF2b
ATGCACTTTTCTAGGATATCCAGAAAGAAAAGGCTA
651





CTGCTACTGCAAACAGTGCCAGCTCCACAGAAAACT






TTCAAACTTTTAAGAGGTATGTGGAGTCCTCCCACT






GACGATGAACGTGTCCGCGAGCGAAAATGGTTCCT






CGCAACTGTTTATTCTCACTCTGCTTTCTGTGGCTGC






AATGATCCTGTCGGTCACCTCTGTCGCTTGGCTACT






CTTTCTAACCGTCCGGAGAACCCGGGACCCTCCGG






GGGACGTCGTGCTCCTTCGATCGGGGTCCTACCCG






CTCTCCCGGCTGCTACCGAGCAGCCCGGTGATCGA






GCACCATGGCCTATGGGTGGTGGAGGAGACGCCGC






AGAAGGTGGAAGAGATGGAGGAGAAGGCCCAGGTG






GAGACGCCCATGGAGGACCCGCAGACGCAGACCTG






CTAGACGCCGTGGACGCCGCAGAACAGTAA






AB030488.1
BAA90408.1
ORF2b
ATGCACTTTTCTAGGATACGCAGAAAGAAAAGGCTA
652





CTGCTACTGCAAACAGTGCCAGCTCCACAGAAAACT






CTCAAACTTTTAAAAGGTATGTGGAGTCCTCCCACC






GACGATGAACGTGTCCGCGAGCGAAAATGGTTCCT






CGCAACTATTTATTCTCACTCTACTTTCTGTGGCTGC






AATGATCCTGTCGGTCACTTCTGTCGCCTGGCTACT






CTGTCTAACCGCCCGGAAAACCCGGGACCCTCCGG






AGGACGTAGTGCTCCTCAGATCGGGCTCCTACCCG






CTCTCCCGGCTGCTCCCGAGCAACCCGGTGATCGA






GCACCATGGCTTATGGGTGGTGGAGGAGACGCCGC






AGGAGGTGGAAGAGATGGAGGAGAAGGCCCAGGT






GGAGACGCCCATGGAGGACCCGCAGACGCAGACCT






GCTGGACGCCGTGGACGCCGCAGAACAGTAA






AB030489.1
BAA90411.1
ORF2b
ATGCACTTTTCTAGGATACACAGAAAGAAAAGGCTA
653





CTGCCACTGCAAACAGTGCCAACTCCACAGAAAACT






CTCAAACTTTTAAAAGGTATGTGGAGTCCTCCCACC






GACGATGAACGTGTCCGCGAGCGAAAATGGTTCCT






CGCAACTATCTATTCTCACTCTACTTTCTGTGGCTGC






AATGATCCTGTCGCTCATTTCTGTCGCCTGGCTACT






CTCTCTAACCGCCCGGAAAACCCGGGACCCTCCGG






AGGACGTAGTGCTCCTCAGATCGGGCTCCTACCCG






CTCTCCCGGCTGCTCCCGAGCAACCCGGTGATCGA






GCCCCATGGCCTATGGGTGGTGGAGGAGACGCCGC






AGGAGGTGGAAGAGATGGAGGAGAAGGCCCAGGT






GGAGACGCCGCTGGAGGACCCGCAGACGCAGACC






TGCTGGACGCCGTAGACGCCGCAGAACAGTAA






AB038340.1
BAA90824.1
ORF2s
ATGTTTATTGGCAGGCATTACAGAAAGAAAAGGGCG
654





CTGTCACTGTGTGCTGTGCGAACAACAAAGAAGGCT






TGCAAACTACTAATAGTAATGTGGACCCCACCTCGC






AATGATCAACAGTACCTTAACTGGCAATGGTACTCAA






GTGTACTTAGCTCCCACGCTGCTATGTGCGGGTGTC






CCGACGCTGTCGCTCATTTTAATCATCTTGCTTCTGT






GCTTCGTGCCCCGCAAAACCCACCCCCTCCCGGTC






CCCAGCGAAACCTGCCCCTCCGACGGCTGCCGGCT






CTCCCGGCTGCGCCAGAGGCGCCCGGAGATAGAG






CACCATGGCCTATGGCTGGTGGCGCCGAAGGAGAA






GACGGTGGCGCAGGTGGAGACGCAGACCATGGAG






GCGCCGCTGGAGGACCCGAAGACGCAGACCTGCTA






GACGCCGTGGCCGCCGCAGAAACGTAA






AB038340.1
BAA90826.1
ORF3
ATGTTTGGTGACCCCAAACCTTACAACCCTTCCAGT
655





AATGACTGGAAAGAGGAGTACGAGGCCTGTAGAATA






TGGGACAGACCCCCCAGAGGCAACCTAAGAGACAC






CCCTTTCTACCCCTGGGCCCCCAAGGAAAACCAGTA






CCGTGTAAACTTTAAACTTGGATTTCAATAA






AB038622.1
BAA93587.1
ORF3
ATGATGAATATGTTGCAGGGCCTTTACCAAGAAAAA
656





GAAACAAATTCGATACCAGAGCCCAAGGGCTGCAAA






CCCCCGAAAAAGAAAGCTACACTTTACTCCAAGCCC






TCCAAGAGTCGGGGCAAGAGACCAGCTCAGAAGAC






CAAGAACAAGCACCCCAAGAAAAAGAGGGTCAGAA






GGAAGCGCTCATGGAGCAGCTCCAGCTCCAGAAAC






AGCACCAGCGAGTCCTCAAGCGAGGCCTCAAACTC






CTCCTCGGAGACGTCCTCCGACTCCGGAGAGGAGT






CCACTGGGACCCCCTCCTGTCATAATTCAGGGCCCC






TCTATCCCAGACCTGCTTTTCCCTAA






AB038623.1
BAA93590.1
ORF3
ATGATGAATATGTTGCAGGGCCTTTACCAAGAAAAA
657





GAAACAAGTTCGATACCAGAGCCCAAGGGCTCCAAA






GCCCCGAAAAAGAAAGCTACACTTTACTCCAAGCCC






TCCAAGAGTCGGGGCAAGAGAGCAGCTCAGAAGAC






CAAGAACAAGCACCCCAAGAAAAAGAGGGTCAGAA






GGAAGCGCTCATGGAGCAGCTCCAGCTCCAGAAAC






AGCACCAGCGAGTCCTCAAGCGAGGCCTCAAACTC






CTCCTCGGAGACGTTCTCCGACTCCGGAGAGGAGT






ACACTGGGACCCCCTCCTGTCATAATTCAGGGCCCC






TCTATCCCAGACCTACTTTTCCCTAA






AB038624.1
BAA93593.1
ORF3
ATGATGAATATGTTGCAGGGCCTTTACCAAGAAAAA
658





GAAACAAGTTCGATACCAGAGCCCAAGGGCTCCAAA






GCCCCGAAAAAGAAAGCTACACTTTACTCCAAGCCC






TCCAAGAGTCGGGGCAAGAGACGAGCTCAGAAGAC






CAAGAACAAGCACCCCAAGAAAAAGAGGGTCAGAA






GGAAGCGCTCATGGAGCAGCTCCAGCTCCAGAAAC






AGCACCAGCGAGTCCTCAAGCGAGGCCTCAAACTC






CTCCTCGGAGACGTTCTCCGACTCCGGAGAGGAGT






ACACTGGGACCCCCTCCTGTCATAATTCAGGGCCCC






TCTATCCCAGACCTGCTTTTCCCTAA






AB050448.1
BAB19926.1
ORF3
ATGAGCTTTGTAGAACCCTTACTAACCAGCACCCAC
659





AGAGAGATAGCATACTACCATGGCTGTGTTCAGATG






CACAAAGCCTTCTGTGGGTGTGACAACTTTCTTACC






CACCTGCAACGCATAACAACATACATCTCTGCTAAC






CAACACACTCCACCCAGCACACCCTCAAACACCCTC






CGTAGAGCCCGGGCCCTGCCCGCGGCTCCGGAGC






CAGCTCCATGGCGTGGACCTGGTGGTGGCAGAGGA






GGCGCCGAAGGTGGCCGTGGAGAAGGAGAAGGTG






GAGAAGACTACGCACAAGAAGACCTAGACGCCTTGT






TCGACGCCGTCGCAAGAGATACAGAGTTATCAGAAA






CCCTTGTAAAACAGAAGGACACGATCTCCCTCACAC






CAGTAGACTCCATCGCGACTTACAAGTTGTTGACCC






ACACACCGTGGGCCCCCAATGGGCGCTCCACACCT






GGGACTGGCGACGTGGACTCTTTGGTTCAGAGGCT






ATCAAAAGAGTGTCTGAACAACAAGTACATGATGAA






CTGTATTACCCACCTTCAAAGAAACCTCGATTCCTCC






CTCCAATATCAGGCCTCCAAGAGCAAGAAAGAGACT






ACAGTTCGCAGGAGGAGAAAGAACAGTCCTCCTCA






GAAGAAGAGACGGACCCGAAGAAAAAAGAGCAAAA






ACAGCAGCAGCGACTCCACCTCCAGTTCCAAGAGC






AGCAGCGACTCGGAAACCAACTCCGACTCATCTTCC






GAGAGCTACAGAAAACCCAAGCGGGTCTCCACTTAA






AF371370.1
AAK54733.1
ORF3
ATGGCGTGGTCGTGGTGGTGGAGGCGAAGGAAACG
660





CTGGTGGCCGCGCAGAAGGAGGCGATGGAGAAGG






CTACGAACCCGAAGAACTGGAAGAGCTGTTCCGCG






CCGCCGCCGCCGACGACGAGTAAGGAGGCGCCGG






TGGGGGAGGCGACCGCGTAGGAGACGGGTGTACTA






TAAGAGACGCAGACGAAAGACTGGCAGACTGTATAG






AAAGCCTAAAAAAAAACTAGTACTGACTCAATGGCA






CCCCACTACAGTTAGAAACTGCTCCATACGGGGCTT






AGTGCCCCTAGTCCTCTGCGGACACACACAGGGAG






GCAGAAACTTTGCTTTGAGGAGCGATGACTACCCCA






AACAAGGCACCCCATACGGGGGCAGCTTCAGCACT






ACAACCTGGAACCTCAGGGTGCTTTTCGACGAGCAC






CAAAAACACCACAATACGTGGAGCTATCCAAGCAAT






CAACTAGACCTAGCCAGATTTAGAGGCAGCATATTT






TACTTTACAGAGACAAAAAAACTGACTACATAG






AB060596.1
BAB69914.1
ORF3
ATGAGCTGGTGTACTCCAGTTGAAAATGCCTATAAG
661





AGAGAGATCCACTTTCTCAGGGGCTGTCAACTGCTT






CACACTAGCTTTTGTGGTTGCGATGATTTTATTAATC






ATATTATTCGCCTACAAAATCTTCACGGCAACCTACA






CCAGCCCACGGGACCGTCCACACCTCCAGTGACCC






GTAGAGCTCTGGCCTTGCCGGCTGCTCCGGAGTCA






TGGCGTTCCGGTGGTGGTGGTGGAGACGCCGCCC






GCAGCGACGATGGACCCGGCGCCGATGGAGGAGA






CTACGAACCCGCCGACCTAGACGCACTGTACGACG






CCGTCGCCGCAGACCAAGAATTATCAAAAACCCGTG






TAAAAAAGAAGAATCCACATTCACCTATCCCAGTAGA






GAGCCTCGCGACCTACAAGTTGTTGACCCACTCACC






ATGGGCCCAGAATGGGTCTTCCACACATGGGACTG






GAGACGTGGACTTTTTGGTAAAAATGCTGTCGACAG






AGTGTCAAAAAAACCAGACGATGATGCAGAATATTAT






CCAGTACCAAAAAGGCCTCGATTCTTCCCTCCAACA






GACACACAGTCAGAGCCAGAAAAAGACTTCGGTTTC






ACACCGGAGAGCCAAGAGTTACAGCAAGAAGACTTA






CGAGCACCCCAAGAAGAAAGCCAAGAGGTACAGCA






GCAGCGACTGCTCCAGCTCAGACTCTCACAGCAGTT






CAGACTCAGACAGCAGCTCCAGCACCTGTTCGTACA






AGTCCTCAAAACCCAAGCAGGTCTCCACATAA






AB060592.1
BAB69898.1
ORF3
ATGAGCTTTGTAGAACCGTTACTAAGCAGCACCCAC
662





CGAGAGATAGCATTCTACCATGGCTGTGTTCAAATG






CACAAGGCCTTCTGTGGCTGTGACAACTTTCTTACC






CACCTGCAGCGCATAACAACATACATCTCTGCTAAT






CAACACACTCCACCCAGCACACCCTCAAACACCCTC






CGTAGAGCCCGGGCCCTGCCCGCGGCTCCGGAGC






CAGCTCCATGGCGTGGACCTGGTGGTGGCAGAGGA






GGCGCCGAAGGTGGCCGTGGAGAAGGAGAAGGTG






GAGAAGACTACGCACCAGAAGACCTAGACGACTTGT






TCGCCGCCGTCGCAAGAGATACAGAGTTATCAGAAA






CCCTTGTAAAACAGAAGGACACGATCTCCCTCACAC






CAGTAGACTCCATCGCGACTTACAAGTTGTTGACCC






ACACACCGTGGGCCCCCAATGGGCGCTCCACACCT






GGGACTGGCGACGTGGACTCTTTGGTTCAGAGGCT






ATCAAAAGAGTGTCTGAACAACAAGTACATGATGAA






CTGTATTACCCAGCTTCAAAGAAACCTCGATTCCTCC






CTCCAATATCAGGCCTCCAAGAGCAAGAAAGAGACT






ACAGTTCGCAGGAGGAAAAAGACCAGTCCTCCTCAG






AAGAAGAGAAGGACCCGAAGAAAAAAGAGCAAAAAC






AGCAGCAGCGACTCCACCTCCAGTTCCAAGAGCAG






CAGCGACTCGGAAACCAACTCCGACTCATCTTCCGA






GAGCTACAGAAAACCCAAGCGGGTCTCCACATAA






AB060593.1
BAB69902.1
ORF3
ATGAGTCTGTGGCGACCCCCGGTCCACAATGCCCC
663





CGGCAGAGAGAGACTTTGGTTTCAGGCCTGTTACGA






ATCTCACAGTGCTTTTTGTGGCTGTGGTAGCTTTATT






CTTCATCTTACTAGCTTGGCTGCACGTTTTAATTTTC






AGGCCGGGCCACCGCCTCCCGGGGGTCCCCGGGC






GGAGACCCCGCCGATTCTGAGGGCGCTGCCGGCAC






CCCAGCCGCGCCGCCACCGCCAGACGGAGAACCC






CGGGTCTGAGCCATGGCCTGGAGATGGTGGTGGAG






ACGGCGCTGGAAGCCAAGAAGGCGGCCAGCGTGG






ACCAAGTACCGCAGACGCAGGTGGAGACGACTTCG






ACCCCGCAGACCTAGAAGACTTGCTCGCGGCCGTC






GAAGAAGACGAACAGTCATCAAAGACCCGTGCAGCT






CCTCAGGACTGGCACCTACCGACTCCAGTAGATTCA






AGCGGGATGTACAAGTCGTTAGCCCGCTCACAATG






GGGCCCCGACTGCTATTCCACTCGTTCGACCAAAGA






CGAGGGTTCTTTACTCCAGGAGCTATCAAACGAATG






CATGATGAACAAATTAATGTTCCAGACTTTACACAAA






AACCTAAAATCCCGCGAATTTTCCCACCAGTCGAGC






TCCGAGAAAGAGCAGAAGCCGAAGAAGACTCAGGT






TCGGAAAAAGCGTCGTTCACCTCGTCGCAAGAGAGA






GAAGCCGAAGCCCAAGAAAAGTTACCGATACAGCTC






CAGCTCAGACAGCAGCTCAGACAACAACAGCAGCT






CCGAGTCCACTTGCAGCAAGTCTTCCTCCAACTCCA






AAAAACGAAGGCACATTTACATATAA






AB060595.1
BAB69910.1
ORF3
ATGAATCTCTGGCGACCCCCTCTGAGAAATATCCCC
664





CACAGGGAGAGATGTTGGCTTGAGGCCTGTCTCAG






AGCCCACGATTCTTTTTGTGGCTGTCCTAGTCCTATT






GTTCATTTTTCTAGTCTGGTTGCACGTTTTAATCTAC






AAGGAGGCCCGCCGCCAGAGGATGACTCCCCACAG






GGCGCGCCAGTCCTGAGGGCCCTGCCGGCACCGA






GCCCCCACAGGCACACCCGCACGGAGAACCCCTCC






GGTGAGCCATGGCCTACTCCTACTGGTGGCGCCGC






CGGAGGTGGCCGTGGAGAGGCCGATGGAGGCGCT






GGAGGCGCCGCAGACGAATACCGCGCCGAAGACCT






AGACGACCTGTTCGCCGCTATCGAAGGAGACCAAC






GATCAGAAACCCGTGCACCTCGGACGGACAGACGC






CCACAACCAGTAGACAGTCTAGAGAGGTACAAATCG






TTGACCCGCTCACCATGGGACCCCGATACGTATTCC






ACTCGTGGGACTGGCGACGTGGGTGGCTTAATGAC






AGAACTCTCAAACGCTTGTTCCAAAAACCGCTCGAT






TTTGAAGAGTATCCAAAATCTCCAAAGAGACCTAGAA






TTTTCCCACCCACAGAGCAGCTCCAAGAAGACCCGC






AAGAGCAAGAAAGAGACTCCTCTTCTTCGGAAGAAA






GTCTCCCTACATCGTCAGAAGAGACACCGCCAGCC






CACCTACTCAGAGTACACCTCAGAAAGCAGCTCCGG






CAACAGCGAGACCTCCGAGTCCAGCTCAGAGCCCT






GTTCGCCCAAGTCCTCAAAACGCAAGCGGGCCTAC






ACATAA






AB064596.1
BAB79312.1
ORF3
ATGCCGTGGAGACCGCCGGCTCATAACGTCCAGGG
665





GCGAGAGAGCCAGTGGTTCGCGGCTTGTTTTCACG






GCCACGCTTCGTTTTGCGGCTGCGGTGACTTTATTG






GGCATATTAACAGCCTTGCTCCTCGCTTTCCTAACAA






CCAAGGACCCCCGCATCCACCTGCCTTAAACAGGC






CACCTGCACAGGGCCCAGAAAGCCCCGGGGGTTCC






ATACTACCCCTGCCAGCCCTACCGGCACCACCTGAT






CCGCCACCACGGCCTGGTGGTGGGGAAGACGGTG






GCGACGCCGCCCGTGGGGCCGCTGGCGCCGCCGA






AGGCGCGTATGGAGAAGAAGACCTAGAACTGCTGTT






CGCCGCCGCCGAGGAAGACGATATGCAATCGACGA






CCCCTGCCAGCAGGGAACCCACCCGCTTCCCGAGC






CCGGTACGTTGCCTAGAATCTTACAAGTCAGCGACC






CGACGCAACTCGGACCGAAAACCATATTCCACCTCT






GGGACCAGAGGCGTGGACTTTTTAGCAAAAGAAGTA






TTGAAAGAATGTCAGAATACAAAGGAACTGATGACTT






ATTTTCACCAGGTCGCCCAAAGCGCCCAAAGCTCGA






CACACGTCCCGAAGGACTACCAGAGGAGCAAAGAG






GAGCTTACAATTTACTCCAAGCCCTCGAAGACTCAG






CCCAGTCGGAAGAAAGCGACCAAGAAGAAATGCCT






CCCCTCGAAGAAGAACAAGTACTCCACGAGCAAAAG






AAAGAGGCGCTCCTCCAGCAGCTCCAGCAGCAGAA






ACACCACCAGCGAGTCCTCAAGCGAGGCCTCAGAC






TCCTCCTCGGAGACGTCCTGA






AB064597.1
BAB79316.1
ORF3
ATGCCGTGGAGACCGCCGGTGCATAGTGTCCAGGG
666





GCGAGAGGATCAGTGGTTCGCGAGCTTTTTTCACGG






CCACGCTTCATTTTGCGGTTGCGGTGACGCTGTTGG






CCATCTTAATAGCATTGCTCCTCGCTTTCCTCGCGC






CGGTCCACCAAGGCCCCCTCCGGGGCTAGAGCAGC






CTAACCCCCCGCAGCAGGGCCCGGCCGGGCCCGG






AGGGCCGCCCGCCATCTTGGCGCTGCCGGCTCCGC






CCGCGGAGCCTGACGACCCGCAGCCACGGCGTGG






TGGTGGGGACGGTGGCGCCGCCGCTGGCGCCGCA






GGCGACCGTGGAGACCGAGACTACGACGAAGAAGA






GCTAGACGAGCTTTTCCGCGCCGCCGCCGAAGACG






ATTTGGAACCCACCCGATTCCCGACCCCGATAAGCA






CCCTCGCCTCCTACAAGTGTCGAACCCGAAACTGCT






CGGACCGAGGACAGTGTTCCACAAGTGGGACATCA






GACGTGGGCAGTTTAGCAAAAGAAGTATTAAAAGAG






TGTCAGAATACTCATCGGATGATGAATCTCTTGCGC






CAGGTCTCCCATCAAAGCGAAACAAGCTCGACTCGG






CCTTCAGAGGAGAAAACCCAGAGCAAAAAGAATGCT






ATTCTCTCCTCAAAGCACTCGAGGAAGAAGAGACCC






CAGAAGAAGAAGAACCAGCACCCCAAGAAAAAGCC






CAGAAAGAGGAGCTACTCCACCAGCTCCAGCTCCA






GAGACGCCACCAGCGAGTCCTCAGACGAGGGCTCA






AGCTCGTCTTTACAGACATCCTCCGACTCCGCCAGG






GAGTCCACTGGAACCCCGAGCTCACATAGAGCCCC






CACCTTACATACCAGACCTACTTTTTCCCAATACTGG






TAA






AB064599.1
BAB79324.1
ORF3
ATGCCGTGGTCTCTGCCGAGACATAATATCAGAACG
667





AGAGAAGATCTCTGGGTGCAATCGATTCTTTATTCAC






ATGACACTTTTTGTGGCTGTGATAATATTCCTGAGCA






TCTTACTGGCCTCCTGGGCGGCGTACGACCAGCTC






CACCTAGAAACCCAGGACCCCCTACCATACGGAGC






CTGCCGGCACTGCCGCCAGCTCCGGAACCCCCTGA






GGAACCACGGCGTGGTGGAGATACAGACGGAGACC






GTGGAGAAGATGGAGGAGACGCCGCTGGGGCCTAC






GAACCCGAAGACCTAGAAGAACTTTTCGCCGCCGC






CGAGCAAGACGATATCCCATTGACGACCCCTGCCAA






AAAGGAAAACACGACATTCCCGACCCCGATACAAAC






CCTCCAAGAATACAAATATCAGACCCGCAACACCTC






GGACCGGCGACGCTGTTCCACTCGTGGGACCTCAG






ACGTGGATATATTAATACAAAAAGTATTAAAAGAATC






TCAGAACACCTCGATGCTAATGAATATTTTTCGACAG






GCGTCGTGTCCAAAAAACCCCGATTCGACACTCCCC






ACCACGGGCAGCTATCAAACCAAGAAGAAGACGCC






TTGTCTATCCTCAGACAACCCCAAAAAGAGCAAGAA






GAGACCACCTCCGAGGAAGAACAAGCACTCCAAAAA






GAAGAGGAGCAAAAAGAAAAGCTCCTACAGCAACTC






AGAGTCCAGCGACAGCACCAGCGAGTCCTCAGACA






GGGAATCAAACACCTCATGGGAGACGTCCTCCGACT






CAGACAGGGAGTCCACTGGAACCCAGTCCTATAATA






CTTCCACCAGAACCAATACCAGACCTCTTATTCCCC






AATACTGGTAA






AB064600.1
BAB79328.1
ORF3
ATGTCGTGGAGACCGCCGAGCCAAAATTTACTGCAA
668





AGAGAAGAGGCCTGGTACTCAGCTTTTCTTAGCTCG






CATTCTACATTTTGCGGTTGTACTGACCCTCTGCTGC






ATATTACTCTCATTGCTGGCCGCCTTACTAACCCCGT






ACCCGTCACCCGCCAACCGGAGACCCCTCCTAACG






GCCTCAGGGGGCTGCCGGCACTGCCAGCACCCCCT






GAACCACCAGCACCGCCACCACGGCCTGGGGATGG






TACCGGAGAAGAAGATGGCGCCCATGGAGAAGGAG






AAGGTGGGCGATACGCAGAAGAAGACCTAGAAGAA






CTGTTCGCCGCCGCGGCAGAAGACGATATCCTATC






GACGACCCCTACCAAAAACCCACCCACGAAATACCC






GACCCCGATAAGCACCCTCCAAGACTACAAATTGCA






GACCCGAAAATCCTCGGACCGTCGACAGTCTTCCAC






ACATGGGACATCAGACGTGGCCTCTTTAGCACAGCA






AGTCTTAAGAGAGTGTCAGAATACCAACCGCCTGAT






GACCTTTTTTCAACAGGCGTCGCATCCAAAAGACCC






CGATTCGACACTCCAGTCCAAGGGCAGCTCGAAAG






CCAAGAAGAAGAAAGCTATCGTTTACTCAGAGCACT






CCAAAAAGAGCAAGAGACAAGCAGCTCGGAAGAGG






AGCAGCCACAAAACCAAGAGATCCAAGAAAAACTAC






TCCTCCAGCTCCAGCAGCAGCGACAACAGCAGCGA






CTCCTCGCAAAGGGAATCAAGCACCTCCTCGGAGAT






GTCCTCCGACTCCGAAAAGGAGTCCACTGGGACCC






GGTCCTTACATAGCACCTCCAGAACCTATCCCAGAC






CTTTTGTTCCCCAGTACTAA






AB064601.1
BAB79332.1
ORF3
ATGTCGTGGGCTCCGCCGCTATTCAACTCGAAACAG
669





AGAGAGGACCAGTGGTACCAGTCAATTATTTTCAGC






CATAATACTTTTTGCGGCTGCGGTGACCTTGTTAGG






CATTTTTGCGTCGTTGCTTCTCGCTTTACTGAGCCTC






CTGTAGTGCCGGCCCTACCGGCACCGGTACCGGCA






CCGCCACGGCGTGGTACAGAAGAAGAAGGTGGAGA






CCGTGGAGAAGACGCCGCAGACCGTGGACCCTACG






CAGAAGAAGAGCTAGAAGATTTGTTCGCCGCCGCC






CGAGAAGACGATATCCCATCGACGACCCCTGCCAAA






AAGACACCCACGAAATACCCGACCCCGATAAACACC






CTAGAGGAATACAAATATCAGACCCGAAGGTACTCG






GACCACCCACAGTCTTCCACACATGGGACATCAGAC






GTGGACTGTTTAGCTCGACGAGTCTTAAAAGAGTGT






CAGAATACCAACCGCCTGATGACCCTTTTTCAACAG






GCGTCGTCTTCAAAAGACCCCGACTGGAAACCCAGT






ACAAAGGAACCCAAGAAACCCCAGAAGAAGACGCC






TACACTTTACTCAAAGCACTCCAAAAAGAGCAAGAG






AGCAGCAGCTCGGAAGAAGAACTCCCACAAGAAGA






GCAAGAGATCCAAAAAACACAACTCCTCAAGCAGCT






CCAACTCCAGCAGCAGCAACAGCGAATCCTCAAGA






GGGGAATCAGACACCTCTTCGGAGACGTCCTCCGA






CTCAGAAAAGGAGTCCACTCCAACCCAGACCTATTA






TAATACCAGCAGAGGAAATCCCAGACCTGCTTTTCC






CCAATACTGGTAA






AB064602.1
BAB79336.1
ORF3
ATGCCGTGGCATCCACCGGGCTACAACGTTCAACA
670





GAGAGAAGAGCTCTGGGTACAGACAGTTACTACTTC






ACATGCTACTTTTTGCGGCTGTGGTGACCCTAGTAG






CCATCTTCACCGCATTCTTAGCCGCCTTAATAACAG






CAGCCGGCGGCCCCCCGAAACCCCAAACCCCATTC






GTGCCCTACCGGCCCTACCGGCACCCCAAGAACCT






GAACAGCCGCCATCACGGCCTGGTACCGGTACAGA






AGAAGGCCATGGCGCCGAAGGAGGCGACCGAGGT






GGGGCCTACGCAGAAGAAGATTTAGAAGATCTTTTC






GCGGCCGCGGAAGAAGACGATATCCCATCGACGAC






CCATGCCAAAAGCCCACCCACGACCTTCCCGACCC






CGATAGACACCCCCCAAGAATACAAATCTCGGACCC






GGCAAGACTCGGACCGGAGACGCTCTTCCACTCAT






GGGACATCAGACGTGGATACATTAACACAAAAGCTA






TTAAAAGAATCTCAGATTACACAGAATCTAATGACTA






TTTTTCAACAGGCGTCGTGTCAAAAAGACCCCGATT






GGAAACCCAGTACCACGGCCAACACGAAAGCCAAG






AAGAAGACGCCTATCTTTTACTCAAACAACTCCAGG






AAGAGCAAGAAACGAGCAGTTCGGAGGGAGAACAA






GCACCCCAAGAAAAAACACTCCAAAAAGAAAAGCTC






CTCAAGCAGCTGCAGCTCCACAAGCAGCAGCAGCA






ACTCCTCAGAAAAGGAATCAGACACCTCCTCGGGGA






CGTCCTCCGACTCAGACGGGGAGTCCACTGGGACC






CAGGCCTATAGTACTGCCTCCAGAGCCTATTCCAGA






CTTGCTTTTCCCAAATACTAA






AB064603.1
BAB79340.1
ORF3
ATGTCGTGGCGACCGCCGTTGCATTCTATCCAAGGC
671





AGAGAAGATCAATGGTATGCAGGCATCTTTCATACG






CATTTTGCTTTTTGCGGTTGTGGTGACCCTGTTGGG






CGTATTAACCGCATTGCTCACCGCTTTCCTAACGCC






GGTCCCCCGAGACCACCTCCAGGGCTAGACCAGCC






CAACCTCGGAGGGCCGGAAGGTCCAGGAGGTGCC






CCTAGAGCCCTGCCAGCCCTGCCGGCCCCGGCAGA






GCCAGAGCCGGCACCACGGCGTGGTGGTGGGGCC






GATGGAGACAGCGCCGCTGGGGCCGCCGCCGCCG






CAGACCATGGAGGGTACGACGAAGGAGACCTAGAA






GATCTTTTCGCCGCCGCCGCCGAGGACGATATGCA






ATCGACGACCCCTGCCAGAAGCCCACCCATGAGCT






ACCCGATCCCGATAGACACCCTCGCATGTTACAAGT






CTCTGACCCGACAAAGCTCGGACCGAAGACAGTGTT






CCACAAATGGGACTGGAGACGTGGGCAACTTAGCA






AAAGAAGTATTAAAAGAGTCCAAGAAGACTCAACGG






ATGATGAATATGTTACAGGGCCTTTATCAAGAAAAAG






AAACAAGCTCGACACAAAGATGCCAGGCCCCCCAA






CCCCCGAAAAAGAAAGCTACACTTTACTCCAAGCCC






TCCAAGAGTCGGGCCAGGAGAGCAGCTCCCAGGAC






GAAGAACAAGCACCCCAAAAAGAAGAGAACCAGAAA






GAAGCGCTCGTGGAGCAGCTCCAGCTCCAGAAACA






GCACCAGCGAGTCCTCAAGCGAGGCCTCAAACTCC






TCTTGGGAGACGTCCTCCGACTCCGCCGCGGAGTC






CACTGGGACCCCCTCCTATCCTAATTCAGGGTCCCT






CTATCCCAGACCTGCTTTTCCCTAA






AB064604.1
BAB79344.1
ORF3
ATGAGTATTTGGAGGCCTCCACTGCACAATGTCCCG
672





GGACTCGAACACCTCTGGTACGAGTCAGTGCATCGT






AGCCATGCTGCTGTTTGTGGCTGTGGGGATCCTGTA






CGCCATCTTACTGCTCTTGCTGAAAGATATGGCATT






CCGGGAGGGTCGCGGTCTTCTGGGGCACCGGGAG






TAGGGGGCAACCACAACCCTCCCCAGATCCGTCGA






GCCCGCCACCCGGCGGCTGCTCCGGACCCCCCAG






CAGGTAACCAGCCTCCGGCCCTGCCATGGCATGGG






GATGGTGGAAACGAAAGCGGCGCTGGTGGTGGAGA






AAGCGGTGGACCCGTGGCCGACTTCGCAGACGATG






GCCTAGACGATCTCGTCGCCGCCCTCGACGAAGAA






GAATTGTTAAAGACCCCTGCACCCAGCCCACCTTTG






AAATACCCGGTGGCGGTAACATCCCTCGCAGAATAC






AAGTCATCAATCCGAAAGTCCTCGGACCCAGCTACA






GTTTCAGATCCTTTGACCTCAGACGTGACATGTTTAG






CGGCTCGAGTCTTAAAAGAGTCTCAGAACAACAAGA






GACTTCTGAGTTTTTATTCTCCGGCGGCAAACGCCC






CAGGATCGACCTTCCCAAGTACGTCCCGCCAGAAG






AAGACTTCAATATCCAAGAGAGACAACAAAGAGAAC






AGAGACCGTGGACGAGCGAAAGCGAGAGCGAAGCA






GAAGCCCAAGAAGAGACGCAGGCGGGCTCGGTCC






GAGAGCAGCTCCAGCAGCAGCTCCAAGAGCAGTTT






CAACTCCGAAGAGGGCTCAAGTGCCTCTTCGAGCA






GTTAG






AB064606.1
BAB79352.1
ORF3
ATGAGCTTCTGGAGACCTCCGGTGCACAATGCCAC
673





GGGGATCCAGCGCCTGTGGTACGAGTCCTTTCACC






GTGGCCATGCTGCTTTTTGTGGTTGTGGGGATCCTA






TACTTCACATTACTGCACTTGCTGAGACATATGGCCA






TCCAACAGGCCCGAGACCTTCTGGGCCACCGCGAG






TAGACCCCGATCCCCAGATCCGTAGAGCCAGGCCT






GCCCCGGCCGCTCCGGAGCCCTCACAGGTTGAGCC






GAGACCTGCCCTGCCATGGCATGGGGATGGTGGAA






GCGACGGCGGCGCTGGTGGTTCCGGAAGCGGTGG






ACCCGTGGCAGACTTCGCAGACGATGGCCTCGATC






AGCTCGTCGCCGCCCTAGACGACGAAGAATTGTACA






AGATCCCTGCACACAGTCCACCTATGACATCCCCGG






CACCGGTAACTTGCCTCGCAGAATACAAGTCATTGA






CCCGAAAGTCCTCGGTCCCCACTACTCATTCCACCG






CTGGGACTTCAGGCGTGGCCTCTTTGGCCAACAAG






CTATTAAGAGAGTGTCAGAACAACCAACAACTTCTG






AGTTTTTATTCTCAGGTCCAAAGAGACCCAGAATCG






ATCAAGGGCCTTACATCCCGCCAGAAAAAGGCTCAG






ATTCACTCCAAAGAGAATCGAGACCGTGGAGCAACT






CGGAGACCGAGGCAGAGACAGAAGCCCCCTCGGAA






GAAGAGCCGGAGAACCAAGAAGAACAAGTACTCCA






GTTGCAGCTCCGACAGCAGCTCCGAGAACAGCGAA






AACTCAGACAGGGAATCCAGTGCCTCTTCGAGCAAC






TGA






FJ426280.1
ACK44073.1
ORF3
ATGCTATCCAGAGAGTGTCACAAAAACCGGAAGATG
674





CTCTCCGCTTTACAAACCCTTTCAAGAGACCCAGAT






ATCTTCCCCCGACAGACGGAGAAGACTACCGACAA






GAAGAAGACTTCGCTTTACAGGAAAGAAGACGGCG






CACATCCACAGAAGAAGTCCAGGACGAGGAGAGCC






CCCCGCAAAACGCGCCGCTCCTACAGCAGCAGCAG






CAGCAGCGGGAGCTCTCAGTCCAGCACGCGGAGCA






GCAGCGACTCGGAGTCCAACTCCGATACATCCTCCA






AGAAGTCCTCAAAACGCAAGCGGGTCTCCACCTAA






AB050448.1
BAB19925.1
ORF4
ATGAGCTTTGTAGAACCCTTACTAACCAGCACCCAC
675





AGAGAGATAGCATACTACCATGGCTGTGTTCAGATG






CACAAAGCCTTCTGTGGGTGTGACAACTTTCTTACC






CACCTGCAACGCATAACAACATACATCTCTGCTAAC






CAACACACTCCACCCAGCACACCCTCAAACACCCTC






CGTAGAGCCCGGGCCCTGCCCGCGGCTCCGGAGC






CAGCTCCATGGCGTGGACCTGGTGGTGGCAGAGGA






GGCGCCGAAGGTGGCCGTGGAGAAGGAGAAGGTG






GAGAAGACTACGCACAAGAAGACCTAGACGCCTTGT






TCGACGCCGTCGCAAGAGATACAGAGCCTCCAAGA






GCAAGAAAGAGACTACAGTTCGCAGGAGGAGAAAG






AACAGTCCTCCTCAGAAGAAGAGACGGACCCGAAG






AAAAAAGAGCAAAAACAGCAGCAGCGACTCCACCTC






CAGTTCCAAGAGCAGCAGCGACTCGGAAACCAACT






CCGACTCATCTTCCGAGAGCTACAGAAAACCCAAGC






GGGTCTCCACTTAAATCCTATGTTATCAAACCGGCT






GTAAATAAAGTTTACCTTTTTCCTCCCGAGGGGCCTA






AACCCATCTCTGGCTACAGAGCATGGGAAGACGAAT






TTACCACCTGTAAGTACTGGGACAGGCCTAGTAGAA






TTAACCACACAGACCCCCCCTTTTACCCCTGGATGC






CTAAATACAATGTAACCTTCAAACTTGGCTGGAAATA






A






AB060596.1
BAB69913.1
ORF4
ATGAGCTGGTGTACTCCAGTTGAAAATGCCTATAAG
676





AGAGAGATCCACTTTCTCAGGGGCTGTCAACTGCTT






CACACTAGCTTTTGTGGTTGCGATGATTTTATTAATC






ATATTATTCGCCTACAAAATCTTCACGGCAACCTACA






CCAGCCCACGGGACCGTCCACACCTCCAGTGACCC






GTAGAGCTCTGGCCTTGCCGGCTGCTCCGGAGTCA






TGGCGTTCCGGTGGTGGTGGTGGAGACGCCGCCC






GCAGCGACGATGGACCCGGCGCCGATGGAGGAGA






CTACGAACCCGCCGACCTAGACGCACTGTACGACG






CCGTCGCCGCAGACCAAGAACACACAGTCAGAGCC






AGAAAAAGACTTCGGTTTCACACCGGAGAGCCAAGA






GTTACAGCAAGAAGACTTACGAGCACCCCAAGAAGA






AAGCCAAGAGGTACAGCAGCAGCGACTGCTCCAGC






TCAGACTCTCACAGCAGTTCAGACTCAGACAGCAGC






TCCAGCACCTGTTCGTACAAGTCCTCAAAACCCAAG






CAGGTCTCCACATAAACCCATTATTTTTAAACCATGC






ATAAATCAGGTCTTTATGTTTCCACCAGACACCCCCA






GACCTATTATAACTAAAGAAGGCTGGGAGGATGAGT






TTGTCACCTGCAAACACTGGGATAGGCCAGCTAGAT






CATACTACACAGACACACCTACTTACCCTTGGATGC






CCAAGGCACCCCCTCAATGCAATGTAAGCTTTAAAC






TTGGCTTTAAATAA






AB060592.1
BAB69897.1
ORF4
ATGAGCTTTGTAGAACCGTTACTAAGCAGCACCCAC
677





CGAGAGATAGCATTCTACCATGGCTGTGTTCAAATG






CACAAGGCCTTCTGTGGCTGTGACAACTTTCTTACC






CACCTGCAGCGCATAACAACATACATCTCTGCTAAT






CAACACACTCCACCCAGCACACCCTCAAACACCCTC






CGTAGAGCCCGGGCCCTGCCCGCGGCTCCGGAGC






CAGCTCCATGGCGTGGACCTGGTGGTGGCAGAGGA






GGCGCCGAAGGTGGCCGTGGAGAAGGAGAAGGTG






GAGAAGACTACGCACCAGAAGACCTAGACGACTTGT






TCGCCGCCGTCGCAAGAGATACAGAGCCTCCAAGA






GCAAGAAAGAGACTACAGTTCGCAGGAGGAAAAAG






ACCAGTCCTCCTCAGAAGAAGAGAAGGACCCGAAG






AAAAAAGAGCAAAAACAGCAGCAGCGACTCCACCTC






CAGTTCCAAGAGCAGCAGCGACTCGGAAACCAACT






CCGACTCATCTTCCGAGAGCTACAGAAAACCCAAGC






GGGTCTCCACATAAATCCTATGTTATCAAACCGGCT






ATAAATAAAGTTTACCTTTTTCCTCCCGAGGGGCCTA






AACCCATCTCTGGCTACAGAGCATGGGAAGATGAGT






TCACCTGCTGTAAGTACTGGGACAGGCCTAGTAGAA






TTAACCACACAGACCCCCCCTTCTACCCCTGGATGC






CTAAGTACAATGTAACCTTTAAACTTGGCTGGAAATA






A






AB060593.1
BAB69901.1
ORF4
ATGAGTCTGTGGCGACCCCCGGTCCACAATGCCCC
678





CGGCAGAGAGAGACTTTGGTTTCAGGCCTGTTACGA






ATCTCACAGTGCTTTTTGTGGCTGTGGTAGCTTTATT






CTTCATCTTACTAGCTTGGCTGCACGTTTTAATTTTC






AGGCCGGGCCACCGCCTCCCGGGGGTCCCCGGGC






GGAGACCCCGCCGATTCTGAGGGCGCTGCCGGCAC






CCCAGCCGCGCCGCCACCGCCAGACGGAGAACCC






CGGGTCTGAGCCATGGCCTGGAGATGGTGGTGGAG






ACGGCGCTGGAAGCCAAGAAGGCGGCCAGCGTGG






ACCAAGTACCGCAGACGCAGGTGGAGACGACTTCG






ACCCCGCAGACCTAGAAGACTTGCTCGCGGCCGTC






GAAGAAGACGAACATCGAGCTCCGAGAAAGAGCAG






AAGCCGAAGAAGACTCAGGTTCGGAAAAAGCGTCG






TTCACCTCGTCGCAAGAGAGAGAAGCCGAAGCCCA






AGAAAAGTTACCGATACAGCTCCAGCTCAGACAGCA






GCTCAGACAACAACAGCAGCTCCGAGTCCACTTGCA






GCAAGTCTTCCTCCAACTCCAAAAAACGAAGGCACA






TTTACATATAAACCCACTATTTTTGGCCCAAGGGAAC






ATGTAAACATGTTCGGTGAGTACCCAGATAGGAAGC






CCACTAAGGAAGATTGGCAGACCGAGTATGAGACCT






GCAGAGCCTTTGATAGACCCCCTAGAACCTTACTCA






CAGATCCCCCTTTCTACCCCTGGATGCCTAAACAAC






CCCCCACCTATCGTGTATCCTTCAAACTTGGCTTTCA






ATAA






AB060595.1
BAB69909.1
ORF4
ATGAATCTCTGGCGACCCCCTCTGAGAAATATCCCC
679





CACAGGGAGAGATGTTGGCTTGAGGCCTGTCTCAG






AGCCCACGATTCTTTTTGTGGCTGTCCTAGTCCTATT






GTTCATTTTTCTAGTCTGGTTGCACGTTTTAATCTAC






AAGGAGGCCCGCCGCCAGAGGATGACTCCCCACAG






GGCGCGCCAGTCCTGAGGGCCCTGCCGGCACCGA






GCCCCCACAGGCACACCCGCACGGAGAACCCCTCC






GGTGAGCCATGGCCTACTCCTACTGGTGGCGCCGC






CGGAGGTGGCCGTGGAGAGGCCGATGGAGGCGCT






GGAGGCGCCGCAGACGAATACCGCGCCGAAGACCT






AGACGACCTGTTCGCCGCTATCGAAGGAGACCAAG






CAGCTCCAAGAAGACCCGCAAGAGCAAGAAAGAGA






CTCCTCTTCTTCGGAAGAAAGTCTCCCTACATCGTC






AGAAGAGACACCGCCAGCCCACCTACTCAGAGTAC






ACCTCAGAAAGCAGCTCCGGCAACAGCGAGACCTC






CGAGTCCAGCTCAGAGCCCTGTTCGCCCAAGTCCT






CAAAACGCAAGCGGGCCTACACATAAACCCCCTCTT






ATTGGCCCCGCAGTAAACAAGGTCTACTTGTTCCCT






GACAGGGCCCCTAAACCTCCACCTAGCTCGGGAGA






CTGGGCCACGGAGTACGCGGCGGCCGCCGCCTTC






GATAGACCCCCCAGAGGCAACCTGTCAGACAACCC






CTTCTATCCCTGGATGCCAACAAACACCAAATTCTCT






GTAACCTTTAAACTGGGGTGGAAACCCTGA






AB064596.1
BAB79311.1
ORF4
ATGCCGTGGAGACCGCCGGCTCATAACGTCCAGGG
680





GCGAGAGAGCCAGTGGTTCGCGGCTTGTTTTCACG






GCCACGCTTCGTTTTGCGGCTGCGGTGACTTTATTG






GGCATATTAACAGCCTTGCTCCTCGCTTTCCTAACAA






CCAAGGACCCCCGCATCCACCTGCCTTAAACAGGC






CACCTGCACAGGGCCCAGAAAGCCCCGGGGGTTCC






ATACTACCCCTGCCAGCCCTACCGGCACCACCTGAT






CCGCCACCACGGCCTGGTGGTGGGGAAGACGGTG






GCGACGCCGCCCGTGGGGCCGCTGGCGCCGCCGA






AGGCGCGTATGGAGAAGAAGACCTAGAACTGCTGTT






CGCCGCCGCCGAGGAAGACGATATGTCGCCCAAAG






CGCCCAAAGCTCGACACACGTCCCGAAGGACTACC






AGAGGAGCAAAGAGGAGCTTACAATTTACTCCAAGC






CCTCGAAGACTCAGCCCAGTCGGAAGAAAGCGACC






AAGAAGAAATGCCTCCCCTCGAAGAAGAACAAGTAC






TCCACGAGCAAAAGAAAGAGGCGCTCCTCCAGCAG






CTCCAGCAGCAGAAACACCACCAGCGAGTCCTCAA






GCGAGGCCTCAGACTCCTCCTCGGAGACGTCCTGA






AACTCCGCCGGGGTCTACACATAGACCCGGTCCTTA






CATAGCACCCCCTCCATACATCCCTGACCTTCTTTTT






CCCAACACCCAAAAAAAAAAAAAATTTTCCAACTTCG






ATTGGGCTACAGAATACCAGCTTGCTACCGCTTTCG






ACCGCCCTCTCCGCCACTACCCCTTAGACCTCCCGC






ACTACCCGTGGCTACCAAAAAAGCCCAATACCCACT






CTACCTATAGAGTGTCCTTTCAACTAAAAGCCCCCC






AATAA






AB064597.1
BAB79315.1
ORF4
ATGCCGTGGAGACCGCCGGTGCATAGTGTCCAGGG
681





GCGAGAGGATCAGTGGTTCGCGAGCTTTTTTCACGG






CCACGCTTCATTTTGCGGTTGCGGTGACGCTGTTGG






CCATCTTAATAGCATTGCTCCTCGCTTTCCTCGCGC






CGGTCCACCAAGGCCCCCTCCGGGGCTAGAGCAGC






CTAACCCCCCGCAGCAGGGCCCGGCCGGGCCCGG






AGGGCCGCCCGCCATCTTGGCGCTGCCGGCTCCGC






CCGCGGAGCCTGACGACCCGCAGCCACGGCGTGG






TGGTGGGGACGGTGGCGCCGCCGCTGGCGCCGCA






GGCGACCGTGGAGACCGAGACTACGACGAAGAAGA






GCTAGACGAGCTTTTCCGCGCCGCCGCCGAAGACG






ATTTGTCTCCCATCAAAGCGAAACAAGCTCGACTCG






GCCTTCAGAGGAGAAAACCCAGAGCAAAAAGAATGC






TATTCTCTCCTCAAAGCACTCGAGGAAGAAGAGACC






CCAGAAGAAGAAGAACCAGCACCCCAAGAAAAAGC






CCAGAAAGAGGAGCTACTCCACCAGCTCCAGCTCC






AGAGACGCCACCAGCGAGTCCTCAGACGAGGGCTC






AAGCTCGTCTTTACAGACATCCTCCGACTCCGCCAG






GGAGTCCACTGGAACCCCGAGCTCACATAGAGCCC






CCACCTTACATACCAGACCTACTTTTTCCCAATACTG






GTAAAAAAAAAAAATTCTCTCCCTTCGACTGGGAAAC






GGAGGCCCAGCTAGCAGGGATATTCAAGCGTCCTA






TGCGCTTCTATCCCTCAGACACCCCTCACTACCCGT






GGTTACCCCCCAAGCGCGATATCCCGAAAATATGTA






ACATAAACTTCAAAATAAAGCTGCAAGAGTGA






AB064599.1
BAB79323.1
ORF4
ATGCCGTGGTCTCTGCCGAGACATAATATCAGAACG
682





AGAGAAGATCTCTGGGTGCAATCGATTCTTTATTCAC






ATGACACTTTTTGTGGCTGTGATAATATTCCTGAGCA






TCTTACTGGCCTCCTGGGCGGCGTACGACCAGCTC






CACCTAGAAACCCAGGACCCCCTACCATACGGAGC






CTGCCGGCACTGCCGCCAGCTCCGGAACCCCCTGA






GGAACCACGGCGTGGTGGAGATACAGACGGAGACC






GTGGAGAAGATGGAGGAGACGCCGCTGGGGCCTAC






GAACCCGAAGACCTAGAAGAACTTTTCGCCGCCGC






CGAGCAAGACGATATGCGTCGTGTCCAAAAAACCCC






GATTCGACACTCCCCACCACGGGCAGCTATCAAACC






AAGAAGAAGACGCCTTGTCTATCCTCAGACAACCCC






AAAAAGAGCAAGAAGAGACCACCTCCGAGGAAGAA






CAAGCACTCCAAAAAGAAGAGGAGCAAAAAGAAAAG






CTCCTACAGCAACTCAGAGTCCAGCGACAGCACCA






GCGAGTCCTCAGACAGGGAATCAAACACCTCATGG






GAGACGTCCTCCGACTCAGACAGGGAGTCCACTGG






AACCCAGTCCTATAATACTTCCACCAGAACCAATACC






AGACCTCTTATTCCCCAATACTGGTAAAAAAAAAAAA






TTCTCTCTCTTCGACTGGGAGTGCGAGAGGGATCTA






GCATGTGCATTCTGCCGTCCCATGCGCTTCTATCCC






TCAGACAACCCAACTTACCCGTGGTTACCCCCCAAG






CGAGATATCCCCAAAATATGTAAAGTAAACTTCAAAA






TAAATTTCACTGAATGA






AB064600.1
BAB79327.1
ORF4
ATGTCGTGGAGACCGCCGAGCCAAAATTTACTGCAA
683





AGAGAAGAGGCCTGGTACTCAGCTTTTCTTAGCTCG






CATTCTACATTTTGCGGTTGTACTGACCCTCTGCTGC






ATATTACTCTCATTGCTGGCCGCCTTACTAACCCCGT






ACCCGTCACCCGCCAACCGGAGACCCCTCCTAACG






GCCTCAGGGGGCTGCCGGCACTGCCAGCACCCCCT






GAACCACCAGCACCGCCACCACGGCCTGGGGATGG






TACCGGAGAAGAAGATGGCGCCCATGGAGAAGGAG






AAGGTGGGCGATACGCAGAAGAAGACCTAGAAGAA






CTGTTCGCCGCCGCGGCAGAAGACGATATGCGTCG






CATCCAAAAGACCCCGATTCGACACTCCAGTCCAAG






GGCAGCTCGAAAGCCAAGAAGAAGAAAGCTATCGTT






TACTCAGAGCACTCCAAAAAGAGCAAGAGACAAGCA






GCTCGGAAGAGGAGCAGCCACAAAACCAAGAGATC






CAAGAAAAACTACTCCTCCAGCTCCAGCAGCAGCGA






CAACAGCAGCGACTCCTCGCAAAGGGAATCAAGCA






CCTCCTCGGAGATGTCCTCCGACTCCGAAAAGGAGT






CCACTGGGACCCGGTCCTTACATAGCACCTCCAGAA






CCTATCCCAGACCTTTTGTTCCCCAGTACTAAAAAAA






AAAAGAAATTTTCAAAATTAGACTGGGAGAACGAGG






CTCAAATAGCAGGGTGGTTAGACAGGCCTATGAGG






CTGTATCCTGGGGACCCCCCCTTCTACCCTTGGCTA






CCCCGAAAGCCACCTACCCAGCCTACATGTAGGGTA






AGCTTCAAAATAAAGCTAGATGATTAA






AB064601.1
BAB79331.1
ORF4
ATGTCGTGGGCTCCGCCGCTATTCAACTCGAAACAG
684





AGAGAGGACCAGTGGTACCAGTCAATTATTTTCAGC






CATAATACTTTTTGCGGCTGCGGTGACCTTGTTAGG






CATTTTTGCGTCGTTGCTTCTCGCTTTACTGAGCCTC






CTGTAGTGCCGGCCCTACCGGCACCGGTACCGGCA






CCGCCACGGCGTGGTACAGAAGAAGAAGGTGGAGA






CCGTGGAGAAGACGCCGCAGACCGTGGACCCTACG






CAGAAGAAGAGCTAGAAGATTTGTTCGCCGCCGCC






CGAGAAGACGATATGCGTCGTCTTCAAAAGACCCCG






ACTGGAAACCCAGTACAAAGGAACCCAAGAAACCCC






AGAAGAAGACGCCTACACTTTACTCAAAGCACTCCA






AAAAGAGCAAGAGAGCAGCAGCTCGGAAGAAGAAC






TCCCACAAGAAGAGCAAGAGATCCAAAAAACACAAC






TCCTCAAGCAGCTCCAACTCCAGCAGCAGCAACAGC






GAATCCTCAAGAGGGGAATCAGACACCTCTTCGGAG






ACGTCCTCCGACTCAGAAAAGGAGTCCACTCCAACC






CAGACCTATTATAATACCAGCAGAGGAAATCCCAGA






CCTGCTTTTCCCCAATACTGGTAAAAAAAAAAAATTC






TCTCCATTCGATTGGGAGACAGAGCAGCAGCTCGCA






TGCTGGATGCGGCGCCCCATGCGCTTCTATCCAACA






GACCCCCCGTTCTACCCCTGGCTACCCCCCAAGCG






AGATATCCCCAATATATGTAAAGTCAACTTCAAAATA






AATTACTCAGAGTAA






AB064602.1
BAB79335.1
ORF4
ATGCCGTGGCATCCACCGGGCTACAACGTTCAACA
685





GAGAGAAGAGCTCTGGGTACAGACAGTTACTACTTC






ACATGCTACTTTTTGCGGCTGTGGTGACCCTAGTAG






CCATCTTCACCGCATTCTTAGCCGCCTTAATAACAG






CAGCCGGCGGCCCCCCGAAACCCCAAACCCCATTC






GTGCCCTACCGGCCCTACCGGCACCCCAAGAACCT






GAACAGCCGCCATCACGGCCTGGTACCGGTACAGA






AGAAGGCCATGGCGCCGAAGGAGGCGACCGAGGT






GGGGCCTACGCAGAAGAAGATTTAGAAGATCTTTTC






GCGGCCGCGGAAGAAGACGATATGCGTCGTGTCAA






AAAGACCCCGATTGGAAACCCAGTACCACGGCCAA






CACGAAAGCCAAGAAGAAGACGCCTATCTTTTACTC






AAACAACTCCAGGAAGAGCAAGAAACGAGCAGTTCG






GAGGGAGAACAAGCACCCCAAGAAAAAACACTCCAA






AAAGAAAAGCTCCTCAAGCAGCTGCAGCTCCACAAG






CAGCAGCAGCAACTCCTCAGAAAAGGAATCAGACAC






CTCCTCGGGGACGTCCTCCGACTCAGACGGGGAGT






CCACTGGGACCCAGGCCTATAGTACTGCCTCCAGA






GCCTATTCCAGACTTGCTTTTCCCAAATACTAAAAAA






AAAAAGAAATTTTCGCCCTTAGACTGGGAGAACGAG






GCTCAAATAGCAGGGTGGTTAGACAGGCCTATGAG






GCTGTATCCTGGGGACAACCCCTTCTACCCGTGGCT






ACCAAAAAAGCCACCTACCCACCCTACATGTAGAGT






AACCTTCAAAATAAAGCTAGATGATTAA






AB064603.1
BAB79339.1
ORF4
ATGTCGTGGCGACCGCCGTTGCATTCTATCCAAGGC
686





AGAGAAGATCAATGGTATGCAGGCATCTTTCATACG






CATTTTGCTTTTTGCGGTTGTGGTGACCCTGTTGGG






CGTATTAACCGCATTGCTCACCGCTTTCCTAACGCC






GGTCCCCCGAGACCACCTCCAGGGCTAGACCAGCC






CAACCTCGGAGGGCCGGAAGGTCCAGGAGGTGCC






CCTAGAGCCCTGCCAGCCCTGCCGGCCCCGGCAGA






GCCAGAGCCGGCACCACGGCGTGGTGGTGGGGCC






GATGGAGACAGCGCCGCTGGGGCCGCCGCCGCCG






CAGACCATGGAGGGTACGACGAAGGAGACCTAGAA






GATCTTTTCGCCGCCGCCGCCGAGGACGATATGGC






CTTTATCAAGAAAAAGAAACAAGCTCGACACAAAGAT






GCCAGGCCCCCCAACCCCCGAAAAAGAAAGCTACA






CTTTACTCCAAGCCCTCCAAGAGTCGGGCCAGGAG






AGCAGCTCCCAGGACGAAGAACAAGCACCCCAAAA






AGAAGAGAACCAGAAAGAAGCGCTCGTGGAGCAGC






TCCAGCTCCAGAAACAGCACCAGCGAGTCCTCAAG






CGAGGCCTCAAACTCCTCTTGGGAGACGTCCTCCG






ACTCCGCCGCGGAGTCCACTGGGACCCCCTCCTAT






CCTAATTCAGGGTCCCTCTATCCCAGACCTGCTTTT






CCCTAACACTCAAAAAAAACCCAAATTTTCCAACTTC






GACTGGGCCACCGAGTACCAAATAGCCAAGTGGCC






AGACCGCCCTTTGAGGCACTACCCCTCAGACCTCCC






TCACTACCCGTGGCTACCAAAAAAGCCACCTACCCA






GCCTACATGTAGAGTAAGTTTCAAATTAAAGCTTGAT






GCCTAA






AB064604.1
BAB79343.1
ORF4
ATGAGTATTTGGAGGCCTCCACTGCACAATGTCCCG
687





GGACTCGAACACCTCTGGTACGAGTCAGTGCATCGT






AGCCATGCTGCTGTTTGTGGCTGTGGGGATCCTGTA






CGCCATCTTACTGCTCTTGCTGAAAGATATGGCATT






CCGGGAGGGTCGCGGTCTTCTGGGGCACCGGGAG






TAGGGGGCAACCACAACCCTCCCCAGATCCGTCGA






GCCCGCCACCCGGCGGCTGCTCCGGACCCCCCAG






CAGGTAACCAGCCTCCGGCCCTGCCATGGCATGGG






GATGGTGGAAACGAAAGCGGCGCTGGTGGTGGAGA






AAGCGGTGGACCCGTGGCCGACTTCGCAGACGATG






GCCTAGACGATCTCGTCGCCGCCCTCGACGAAGAA






GAAAGAAGACTTCAATATCCAAGAGAGACAACAAAG






AGAACAGAGACCGTGGACGAGCGAAAGCGAGAGCG






AAGCAGAAGCCCAAGAAGAGACGCAGGCGGGCTCG






GTCCGAGAGCAGCTCCAGCAGCAGCTCCAAGAGCA






GTTTCAACTCCGAAGAGGGCTCAAGTGCCTCTTCGA






GCAGTTAGTCAGAACCCAACAGGGAGTCCACGTAG






ATCCCTGCCTCGTGTAGGCCCGGAGCAGTGGCTAC






TCCCCGAGAGAAAGCCTAAGCCCGCTCCTACTTCAG






GAGACTGGGCTATGGAGTACCTAATGTGCAAAATAA






TGAATAGGCCTCCTCGCTCTCAGCTTACTGACCCCC






CATTTTACCCTTACTGCAAAAATAATTACAATGTAAC






CTTTCAGCTTAACTACAAATAA






AB064606.1
BAB79351.1
ORF4
ATGAGCTTCTGGAGACCTCCGGTGCACAATGCCAC
688





GGGGATCCAGCGCCTGTGGTACGAGTCCTTTCACC






GTGGCCATGCTGCTTTTTGTGGTTGTGGGGATCCTA






TACTTCACATTACTGCACTTGCTGAGACATATGGCCA






TCCAACAGGCCCGAGACCTTCTGGGCCACCGCGAG






TAGACCCCGATCCCCAGATCCGTAGAGCCAGGCCT






GCCCCGGCCGCTCCGGAGCCCTCACAGGTTGAGCC






GAGACCTGCCCTGCCATGGCATGGGGATGGTGGAA






GCGACGGCGGCGCTGGTGGTTCCGGAAGCGGTGG






ACCCGTGGCAGACTTCGCAGACGATGGCCTCGATC






AGCTCGTCGCCGCCCTAGACGACGAAGAAAAAAGG






CTCAGATTCACTCCAAAGAGAATCGAGACCGTGGAG






CAACTCGGAGACCGAGGCAGAGACAGAAGCCCCCT






CGGAAGAAGAGCCGGAGAACCAAGAAGAACAAGTA






CTCCAGTTGCAGCTCCGACAGCAGCTCCGAGAACA






GCGAAAACTCAGACAGGGAATCCAGTGCCTCTTCGA






GCAACTGATAACAACCCAACAGGGGGTTCACAAAAA






CCCATTGCTAGAGTAGGCCCAGAGCAGTGGCTGTTT






CCCGAGAGAAAGCCAAAACCACCTCCCACCGCCCA






GGACTGGGCGGAGGAGTACACTGCCTGTAAATACT






GGGGTAGGCCACCTCGCAAATTCCTCACAGACACG






CCATTCTATACTCACTGCAAGACCAATTACAATGTAA






CCTTTATGCTTAACTATCAATAA






FJ426280.1
ACK44074.1
ORF4
ATGGGACTGGCGACGGGGGCTTTTTGGTGCAGATG
689





CTATCCAGAGAGTGTCACAAAAACCGGAAGATGCTC






TCCGCTTTACAAACCCTTTCAAGAGACCCAGATATCT






TCCCCCGACAGACGGAGAAGACTACCGACAAGAAG






AAGACTTCGCTTTACAGGAAAGAAGACGGCGCACAT






CCACAGAAGAAGTCCAGGACGAGGAGAGCCCCCCG






CAAAACGCGCCGCTCCTACAGCAGCAGCAGCAGCA






GCGGGAGCTCTCAGTCCAGCACGCGGAGCAGCAGC






GACTCGGAGTCCAACTCCGATACATCCTCCAAGAAG






TCCTCAAAACGCAAGCGGGTCTCCACCTAAACCCCC






TATTATTAGGCCCGCCACAAACAAGGTGTATATCTTT






GAGCCCCCCAGAGGCCTACTCCCCATAGTGGGAAA






AGAAGCCTGGGAGGACGAGTACTGCACCTGCAAGT






ACTGGGATCGCCCTCCCAGAACCAACCACCTAGACA






CCCCCACTTATCCCTAG









In some embodiments, the genetic element may comprise one or more sequences or a fragment of a sequence from a substantially non-pathogenic virus having at least about 60%, 70% 80%, 85%, 90% 95%, 96%, 97%, 98% and 99% nucleotide sequence identity to any one of the nucleotide sequences described herein, e.g., Table 20.









TABLE 20







Examples of Anelloviruses and their sequences. Accessions numbers and related sequence


information may be obtained at www.ncbi.nlm.nih.gov/genbank/, as referenced on Jun. 12, 2017.








Accession #
Description





AB026345.1
TT virus genes for ORF1 and ORF2, complete cds, isolate: TRM1


AB026346.1
TT virus genes for ORF1 and ORF2, complete cds, isolate: TK16


AB026347.1
TT virus genes for ORF1 and ORF2, complete cds, isolate: TP1-3


AB030487.1
TT virus gene for pORF2a, pORF2b, pORF1, complete cds, clone: JaCHCTC19


AB030488.1
TT virus gene for pORF2a, pORF2b, pORF1, complete cds, clone: JaBD89


AB030489.1
TT virus gene for pORF2a, pORF2b, pORF1, complete cds, clone: JaBD98


AB038340.1
TT virus genes for ORF2s, ORF1, ORF3, complete cds


AB038622.1
TT virus genes for ORF2, ORF1, ORF3, complete cds, isolate: TTVyon-LC011


AB038623.1
TT virus genes for ORF2, ORF1, ORF3, complete cds, isolate: TTVyon-KC186


AB038624.1
TT virus genes for ORF2, ORF1, ORF3, complete cds, isolate: TTVyon-KC197


AB041821.1
TT virus mRNA for VP1, complete cds


AB050448.1
Torque teno virus genes for ORF1, ORF2, ORF3, ORF4, complete cds, isolate: TYM9


AB060592.1
Torque teno virus gene for ORF1, ORF2, ORF3, ORF4, clone: SAa-39


AB060593.1
Torque teno virus gene for ORF1, ORF2, ORF3, ORF4, complete cds, clone: SAa-38


AB060595.1
TT virus gene for ORF1, ORF2, ORF3, ORF4, complete cds, clone: SAj-30


AB060596.1
TT virus gene for ORF1, ORF2, ORF3, ORF4, complete cds, clone: SAf-09


AB064596.1
Torque teno virus DNA, complete genome, isolate: CT25F


AB064597.1
Torque teno virus DNA, complete genome, isolate: CT30F


AB064599.1
Torque teno virus DNA, complete genome, isolate: JT03F


AB064600.1
Torque teno virus DNA, complete genome, isolate: JT05F


AB064601.1
Torque teno virus DNA, complete genome, isolate: JT14F


AB064602.1
Torque teno virus DNA, complete genome, isolate: JT19F


AB064603.1
Torque teno virus DNA, complete genome, isolate: JT41F


AB064604.1
Torque teno virus DNA, complete genome, isolate: CT39F


AB064606.1
Torque teno virus DNA, complete genome, isolate: JT33F


AF079173.1
TT virus strain TTVCHN1, complete genome


AF116842.1
TT virus strain BDH1, complete genome


AF122917.1
TT virus isolate JA4, complete genome


AF122919.1
TT virus isolate JA10 unknown genes


AF129887.1
TT virus TTVCHN2, complete genome


AF254410.1
TT virus ORF2 protein and ORF1 protein genes, complete cds


AF298585.1
TT virus Polish isolate P/1C1, complete genome


AF315076.1
TTV-like virus DXL1 unknown genes


AF315077.1
TTV-like virus DXL2 unknown genes


AF345521.1
TT virus isolate TCHN-G1 Orf2 and Orf1 genes, complete cds


AF345522.1
TT virus isolate TCHN-E Orf2 and Orf1 genes, complete cds


AF345525.1
TT virus isolate TCHN-D2 Orf2 and Orf1 genes, complete cds


AF345527.1
TT virus isolate TCHN-O2 Orf2 and Orf1 genes, complete cds


AF345528.1
TT virus isolate TCHN-F Orf2 and Orf1 genes, complete cds


AF345529.1
TT virus isolate TCHN-G2 Orf2 and Orf1 genes, complete cds


AF371370.1
TT virus ORF1, ORF3, and ORF2 genes, complete cds


AJ620212.1
Torque teno virus, isolate tth6, complete genome


AJ620213.1
Torque teno virus, isolate tth10, complete genome


AJ620214.1
Torque teno virus, isolate tth11g2, complete genome


AJ620215.1
Torque teno virus, isolate tth18, complete genome


AJ620216.1
Torque teno virus, isolate tth20, complete genome


AJ620217.1
Torque teno virus, isolate tth21, complete genome


AJ620218.1
Torque teno virus, isolate tth3, complete genome


AJ620219.1
Torque teno virus, isolate tth9, complete genome


AJ620220.1
Torque teno virus, isolate tth16, complete genome


AJ620221.1
Torque teno virus, isolate tth17, complete genome


AJ620222.1
Torque teno virus, isolate tth25, complete genome


AJ620223.1
Torque teno virus, isolate tth26, complete genome


AJ620224.1
Torque teno virus, isolate tth27, complete genome


AJ620225.1
Torque teno virus, isolate tth31, complete genome


AJ620226.1
Torque teno virus, isolate tth4, complete genome


AJ620227.1
Torque teno virus, isolate tth5, complete genome


AJ620228.1
Torque teno virus, isolate tth14, complete genome


AJ620229.1
Torque teno virus, isolate tth29, complete genome


AJ620230.1
Torque teno virus, isolate tth7, complete genome


AJ620231.1
Torque teno virus, isolate tth8, complete genome


AJ620232.1
Torque teno virus, isolate tth13, complete genome


AJ620233.1
Torque teno virus, isolate tth19, complete genome


AJ620234.1
Torque teno virus, isolate tth22g4, complete genome


AJ620235.1
Torque teno virus, isolate tth23, complete genome


AM711976.1
TT virus sle1957 complete genome


AM712003.1
TT virus sle1931 complete genome


AM712004.1
TT virus sle1932 complete genome


AM712030.1
TT virus sle2057 complete genome


AM712031.1
TT virus sle2058 complete genome


AM712032.1
TT virus sle2072 complete genome


AM712033.1
TT virus sle2061 complete genome


AM712034.1
TT virus sle2065 complete genome


AY026465.1
TT virus isolate L01 ORF2 and ORF1 genes, complete cds


AY026466.1
TT virus isolate L02 ORF2 and ORF1 genes, complete cds


DQ003341.1
Torque teno virus clone P2-9-02 ORF2 (ORF2), ORF1A (ORF1A), and ORF1B (ORF1B)



genes, complete cds


DQ003342.1
Torque teno virus clone P2-9-07 ORF2 (ORF2), ORF1A (ORF1A), and ORF1B (ORF1B)



genes, complete cds


DQ003343.1
Torque teno virus clone P2-9-08 ORF2 (ORF2), ORF1A (ORF1A), and ORF1B (ORF1B)



genes, complete cds


DQ003344.1
Torque teno virus clone P2-9-16 ORF2 (ORF2), ORF1A (ORF1A), and ORF1B (ORF1B)



genes, complete cds


DQ186994.1
Torque teno virus clone P601 ORF2 (ORF2) and ORF1 (ORF1) genes, complete cds


DQ186995.1
Torque teno virus clone P605 ORF2 (ORF2) and ORF1 (ORF1) genes, complete cds


DQ186996.1
Torque teno virus clone BM1A-02 ORF2 (ORF2) and ORF1 (ORF1) genes, complete cds


DQ186997.1
Torque teno virus clone BM1A-09 ORF2 (ORF2) and ORF1 (ORF1) genes, complete cds


DQ186998.1
Torque teno virus clone BM1A-13 ORF2 (ORF2) and ORF1 (ORF1) genes, complete cds


DQ186999.1
Torque teno virus clone BM1B-05 ORF2 (ORF2) and ORF1 (ORF1) genes, complete cds


DQ187000.1
Torque teno virus clone BM1B-07 ORF2 (ORF2) and ORF1 (ORF1) genes, complete cds


DQ187001.1
Torque teno virus clone BM1B-11 ORF2 (ORF2) and ORF1 (ORF1) genes, complete cds


DQ187002.1
Torque teno virus clone BM1B-14 ORF2 (ORF2) and ORF1 (ORF1) genes, complete cds


DQ187003.1
Torque teno virus clone BM1B-08 ORF2 (ORF2) gene, complete cds; and nonfunctional



ORF1 (ORF1) gene, complete sequence


DQ187004.1
Torque teno virus clone BM1C-16 ORF2 (ORF2) and ORF1 (ORF1) genes, complete cds


DQ187005.1
Torque teno virus clone BM1C-10 ORF2 (ORF2) and ORF1 (ORF1) genes, complete cds


DQ187007.1
Torque teno virus clone BM2C-25 ORF2 (ORF2) gene, complete cds; and nonfunctional



ORF1 (ORF1) gene, complete sequence


D0361268.1
Torque teno virus isolate ViPi04 ORF1 gene, complete cds


EF538879.1
Torque teno virus isolate CSC5 ORF2 and ORF1 genes, complete cds


EU305675.1
Torque teno virus isolate LTT7 ORF1 gene, complete cds


EU305676.1
Torque teno virus isolate LTT10 ORF1 gene, complete cds


EU889253.1
Torque teno virus isolate ViPi08 nonfunctional ORF1 gene, complete sequence


FJ392105.1
Torque teno virus isolate TW53A25 ORF2 gene, partial cds; and ORF1 gene, complete cds


FJ392107.1
Torque teno virus isolate TW53A27 ORF2 gene, partial cds; and ORF1 gene, complete cds


FJ392108.1
Torque teno virus isolate TW53A29 ORF2 gene, partial cds; and ORF1 gene, complete cds


FJ392111.1
Torque teno virus isolate TW53A35 ORF2 gene, partial cds; and ORF1 gene, complete cds


FJ392112.1
Torque teno virus isolate TW53A39 ORF2 gene, partial cds; and ORF1 gene, complete cds


FJ392113.1
Torque teno virus isolate TW53A26 ORF2 gene, complete cds; and nonfunctional ORF1



gene, complete sequence


FJ392114.1
Torque teno virus isolate TW53A30 ORF2 and ORF1 genes, complete cds


FJ392115.1
Torque teno virus isolate TW53A31 ORF2 and ORF1 genes, complete cds


FJ392117.1
Torque teno virus isolate TW53A37 ORF1 gene, complete cds


FJ426280.1
Torque teno virus strain SIA109, complete genome


GU797360.1
Torque teno virus clone 8-17, complete genome


HC742700.1
Sequence 7 from Patent WO2010044889


HC742710.1
Sequence 17 from Patent WO2010044889









In some embodiments, the genetic element comprises one or more sequences with homology or identity to one or more sequences from one or more non-anelloviruses, e.g., adenovirus, herpes virus, pox virus, vaccinia virus, SV40, papilloma virus, an RNA virus such as a retrovirus, e.g., lenti virus, a single-stranded RNA virus, e.g., hepatitis virus, or a double-stranded RNA virus e.g., rotavirus. Since, in some embodiments, recombinant retroviruses are defective, assistance may be provided order to produce infectious particles. Such assistance can be provided, e.g., by using helper cell lines that contain plasmids encoding all of the structural genes of the retrovirus under the control of regulatory sequences within the LTR. Suitable cell lines for replicating the curons described herein include cell lines known in the art, e.g., A549 cells, which can be modified as described herein. Said genetic element can additionally contain a gene encoding a selectable marker so that the desired genetic elements can be identified.


In some embodiments, the genetic element includes non-silent mutations, e.g., base substitutions, deletions, or additions resulting in amino acid differences in the encoded polypeptide, so long as the sequence remains at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the polypeptide encoded by the first nucleotide sequence or otherwise is useful for practicing the present invention. In this regard, certain conservative amino acid substitutions may be made which are generally recognized not to inactivate overall protein function: such as in regard of positively charged amino acids (and vice versa), lysine, arginine and histidine; in regard of negatively charged amino acids (and vice versa), aspartic acid and glutamic acid; and in regard of certain groups of neutrally charged amino acids (and in all cases, also vice versa), (1) alanine and serine, (2) asparagine, glutamine, and histidine, (3) cysteine and serine, (4) glycine and proline, (5) isoleucine, leucine and valine, (6) methionine, leucine and isoleucine, (7) phenylalanine, methionine, leucine, and tyrosine, (8) serine and threonine, (9) tryptophan and tyrosine, (10) and for example tyrosine, tryptophan and phenylalanine. Amino acids can be classified according to physical properties and contribution to secondary and tertiary protein structure. A conservative substitution is recognized in the art as a substitution of one amino acid for another amino acid that has similar properties.


Identity of two or more nucleic acid or polypeptide sequences having the same or a specified percentage of nucleotides or amino acid residues that are the same (e.g., about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) may be measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site www.ncbi.nlm.nih.gov/BLAST/ or the like). Identity may also refer to, or may be applied to, the compliment of a test sequence. Identity also includes sequences that have deletions and/or additions, as well as those that have substitutions. As described herein, the algorithms account for gaps and the like. Identity may exist over a region that is at least about 10 amino acids or nucleotides in length, about 15 amino acids or nucleotides in length, about 20 amino acids or nucleotides in length, about 25 amino acids or nucleotides in length, about 30 amino acids or nucleotides in length, about 35 amino acids or nucleotides in length, about 40 amino acids or nucleotides in length, about 45 amino acids or nucleotides in length, about 50 amino acids or nucleotides in length, or more.


In some embodiments, the genetic element comprises a nucleotide sequence with at least about 75% nucleotide sequence identity, at least about 80%, 85%, 90% 95%, 96%, 97%, 98%, 99% or 100% nucleotide sequence identity to any one of the nucleotide sequences described herein, e.g., Table 19 or Table 20. Since the genetic code is degenerate, a homologous nucleotide sequence can include any number of “silent” base changes, i.e. nucleotide substitutions that nonetheless encode the same amino acid.


Gene Editing Component


The genetic element of the synthetic curon may include one or more genes that encode a component of a gene editing system. Exemplary gene editing systems include the clustered regulatory interspaced short palindromic repeat (CRISPR) system, zinc finger nucleases (ZFNs), and Transcription Activator-Like Effector-based Nucleases (TALEN). ZFNs, TALENs, and CRISPR-based methods are described, e.g., in Gaj et al. Trends Biotechnol. 31.7(2013):397-405; CRISPR methods of gene editing are described, e.g., in Guan et al., Application of CRISPR-Cas system in gene therapy: Pre-clinical progress in animal model. DNA Repair 2016 October; 46:1-8. doi: 10.1016/j.dnarep.2016.07.004; Zheng et al., Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. BioTechniques, Vol. 57, No. 3, September 2014, pp. 115-124.


CRISPR systems are adaptive defense systems originally discovered in bacteria and archaea. CRISPR systems use RNA-guided nucleases termed CRISPR-associated or “Cas” endonucleases (e. g., Cas9 or Cpf1) to cleave foreign DNA. In a typical CRISPR/Cas system, an endonuclease is directed to a target nucleotide sequence (e. g., a site in the genome that is to be sequence-edited) by sequence-specific, non-coding “guide RNAs” that target single- or double-stranded DNA sequences. Three classes (I-III) of CRISPR systems have been identified. The class II CRISPR systems use a single Cas endonuclease (rather than multiple Cas proteins). One class II CRISPR system includes a type II Cas endonuclease such as Cas9, a CRISPR RNA (“crRNA”), and a trans-activating crRNA (“tracrRNA”). The crRNA contains a “guide RNA”, typically about 20-nucleotide RNA sequence that corresponds to a target DNA sequence. The crRNA also contains a region that binds to the tracrRNA to form a partially double-stranded structure which is cleaved by RNase III, resulting in a crRNA/tracrRNA hybrid. The crRNA/tracrRNA hybrid then directs the Cas9 endonuclease to recognize and cleave the target DNA sequence. The target DNA sequence must generally be adjacent to a “protospacer adjacent motif” (“PAM”) that is specific for a given Cas endonuclease; however, PAM sequences appear throughout a given genome.


In some embodiments, the curon includes a gene for a CRISPR endonuclease. For example, some CRISPR endonucleases identified from various prokaryotic species have unique PAM sequence requirements; examples of PAM sequences include 5′-NGG (Streptococcus pyogenes), 5′-NNAGAA (Streptococcus thermophilus CRISPR1), 5′-NGGNG (Streptococcus thermophilus CRISPR3), and 5′-NNNGATT (Neisseria meningiditis). Some endonucleases, e. g., Cas9 endonucleases, are associated with G-rich PAM sites, e. g., 5′-NGG, and perform blunt-end cleaving of the target DNA at a location 3 nucleotides upstream from (5′ from) the PAM site. Another class II CRISPR system includes the type V endonuclease Cpf1, which is smaller than Cas9; examples include AsCpf1 (from Acidaminococcus sp.) and LbCpf1 (from Lachnospiraceae sp.). Cpf1 endonucleases, are associated with T-rich PAM sites, e. g., 5′-TTN. Cpf1 can also recognize a 5′-CTA PAM motif. Cpf1 cleaves the target DNA by introducing an offset or staggered double-strand break with a 4- or 5-nucleotide 5′ overhang, for example, cleaving a target DNA with a 5-nucleotide offset or staggered cut located 18 nucleotides downstream from (3′ from) from the PAM site on the coding strand and 23 nucleotides downstream from the PAM site on the complimentary strand; the 5-nucleotide overhang that results from such offset cleavage allows more precise genome editing by DNA insertion by homologous recombination than by insertion at blunt-end cleaved DNA. See, e. g., Zetsche et al. (2015) Cell, 163:759-771.


A variety of CRISPR associated (Cas) genes may be included in the curon. Specific examples of genes are those that encode Cas proteins from class II systems including Cas1, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10, Cpf1, C2C1, or C2C3. In some embodiments, the curon includes a gene encoding a Cas protein, e.g., a Cas9 protein, may be from any of a variety of prokaryotic species. In some embodiments, the curon includes a gene encoding a particular Cas protein, e.g., a particular Cas9 protein, is selected to recognize a particular protospacer-adjacent motif (PAM) sequence. In some embodiments, the curon includes nucleic acids encoding two or more different Cas proteins, or two or more Cas proteins, may be introduced into a cell, zygote, embryo, or animal, e.g., to allow for recognition and modification of sites comprising the same, similar or different PAM motifs. In some embodiments, the curon includes a gene encoding a modified Cas protein with a deactivated nuclease, e.g., nuclease-deficient Cas9.


Whereas wild-type Cas9 protein generates double-strand breaks (DSBs) at specific DNA sequences targeted by a gRNA, a number of CRISPR endonucleases having modified functionalities are known, for example: a “nickase” version of Cas9 generates only a single-strand break; a catalytically inactive Cas9 (“dCas9”) does not cut the target DNA. A gene encoding a dCas9 can be fused with a gene encoding an effector domain to repress (CRISPRi) or activate (CRISPRa) expression of a target gene. For example, the gene may encode a Cas9 fusion with a transcriptional silencer (e.g., a KRAB domain) or a transcriptional activator (e.g., a dCas9-VP64 fusion). A gene encoding a catalytically inactive Cas9 (dCas9) fused to FokI nuclease (“dCas9-FokI”) can be included to generate DSBs at target sequences homologous to two gRNAs. See, e. g., the numerous CRISPR/Cas9 plasmids disclosed in and publicly available from the Addgene repository (Addgene, 75 Sidney St., Suite 550A, Cambridge, Mass. 02139; addgene.org/crispr/). A “double nickase” Cas9 that introduces two separate double-strand breaks, each directed by a separate guide RNA, is described as achieving more accurate genome editing by Ran et al. (2013) Cell, 154:1380-1389.


CRISPR technology for editing the genes of eukaryotes is disclosed in US Patent Application Publications 2016/0138008A1 and US2015/0344912A1, and in U.S. Pat. Nos. 8,697,359, 8,771,945, 8,945,839, 8,999,641, 8,993,233, 8,895,308, 8,865,406, 8,889,418, 8,871,445, 8,889,356, 8,932,814, 8,795,965, and 8,906,616. Cpf1 endonuclease and corresponding guide RNAs and PAM sites are disclosed in US Patent Application Publication 2016/0208243 A1.


In some embodiments, the curon comprises a gene encoding a polypeptide described herein, e.g., a targeted nuclease, e.g., a Cas9, e.g., a wild type Cas9, a nickase Cas9 (e.g., Cas9 D10A), a dead Cas9 (dCas9), eSpCas9, Cpf1, C2C1, or C2C3, and a gRNA. The choice of genes encoding the nuclease and gRNA(s) is determined by whether the targeted mutation is a deletion, substitution, or addition of nucleotides, e.g., a deletion, substitution, or addition of nucleotides to a targeted sequence. Genes that encode a catalytically inactive endonuclease e.g., a dead Cas9 (dCas9, e.g., D10A; H840A) tethered with all or a portion of (e.g., biologically active portion of) an (one or more) effector domain (e.g., VP64) create chimeric proteins that can modulate activity and/or expression of one or more target nucleic acids sequences.


As used herein, a “biologically active portion of an effector domain” is a portion that maintains the function (e.g. completely, partially, or minimally) of an effector domain (e.g., a “minimal” or “core” domain). In some embodiments, the curon includes a gene encoding a fusion of a dCas9 with all or a portion of one or more effector domains to create a chimeric protein useful in the methods described herein. Accordingly, in some embodiments, the curon includes a gene encoding a dCas9-methylase fusion. In other some embodiments, the curon includes a gene encoding a dCas9-enzyme fusion with a site-specific gRNA to target an endogenous gene.


In other aspects, the curon includes a gene encoding 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more effector domains (all or a biologically active portion) fused with dCas9.


Proteinaceous Exterior

In some embodiments, the curon, e.g., synthetic curon, comprises a proteinaceous exterior that encloses the genetic element. The proteinaceous exterior can comprise a substantially non-pathogenic exterior protein that fails to elicit an immune response in a mammal. In some embodiments, the synthetic curon lacks lipids in the proteinaceous exterior. In some embodiments, the synthetic curon lacks a lipid bilayer, e.g., a viral envelope. In some embodiments, the interior of the synthetic curon is entirely covered (e.g., 100% coverage) by a proteinaceous exterior. In some embodiments, the interior of the synthetic curon is less than 100% covered by the proteinaceous exterior, e.g., 95%, 90%, 85%, 80%, 70%, 60%, 50% or less coverage. In some embodiments, the proteinaceous exterior comprises gaps or discontinuities, e.g., permitting permeability to water, ions, peptides, or small molecules, so long as the genetic element is retained in the curon.


In some embodiments, the proteinaceous exterior comprises one or more proteins or polypeptides that specifically recognize and/or bind a host cell, e.g., a complementary protein or polypeptide, to mediate entry of the genetic element into the host cell.


In some embodiments, the proteinaceous exterior comprises one or more of the following: one or more glycosylated proteins, a hydrophilic DNA-binding region, an arginine-rich region, a threonine-rich region, a glutamine-rich region, a N-terminal polyarginine sequence, a variable region, a C-terminal polyglutamine/glutamate sequence, and one or more disulfide bridges.


In some embodiments, the proteinaceous exterior comprises one or more of the following characteristics: an icosahedral symmetry, recognizes and/or binds a molecule that interacts with one or more host cell molecules to mediate entry into the host cell, lacks lipid molecules, lacks carbohydrates, is pH and temperature stable, is detergent resistant, and is substantially non-immunogenic or non-pathogenic in a host.


Vectors

The genetic element described herein may be included in a vector. Suitable vectors as well as methods for their manufacture and their use are well known in the prior art.


In one aspect, the invention includes a vector comprising a genetic element comprising (i) a sequence encoding a non-pathogenic exterior protein, (ii) an exterior protein binding sequence that binds the genetic element to the non-pathogenic exterior protein, and (iii) a sequence encoding a regulatory nucleic acid.


The genetic element or any of the sequences within the genetic element can be obtained using any suitable method. Various recombinant methods are known in the art, such as, for example screening libraries from cells harboring viral sequences, deriving the sequences from a vector known to include the same, or isolating directly from cells and tissues containing the same, using standard techniques. Alternatively or in combination, part or all of the genetic element can be produced synthetically, rather than cloned.


In some embodiments, the vector includes regulatory elements, nucleic acid sequences homologous to target genes, and various reporter constructs for causing the expression of reporter molecules within a viable cell and/or when an intracellular molecule is present within a target cell.


Reporter genes are used for identifying potentially transfected cells and for evaluating the functionality of regulatory sequences. In general, a reporter gene is a gene that is not present in or expressed by the recipient organism or tissue and that encodes a polypeptide whose expression is manifested by some easily detectable property, e.g., enzymatic activity. Expression of the reporter gene is assayed at a suitable time after the DNA has been introduced into the recipient cells. Suitable reporter genes may include genes encoding luciferase, beta-galactosidase, chloramphenicol acetyl transferase, secreted alkaline phosphatase, or the green fluorescent protein gene (e.g., Ui-Tei et al., 2000 FEBS Letters 479: 79-82). Suitable expression systems are well known and may be prepared using known techniques or obtained commercially. In general, the construct with the minimal 5′ flanking region showing the highest level of expression of reporter gene is identified as the promoter. Such promoter regions may be linked to a reporter gene and used to evaluate agents for the ability to modulate promoter-driven transcription.


In some embodiments, the vector is substantially non-pathogenic and/or substantially non-integrating in a host cell or is substantially non-immunogenic in a host.


In some embodiments, the vector is in an amount sufficient to modulate one or more of phenotype, virus levels, gene expression, compete with other viruses, disease state, etc. at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more.


Compositions

The synthetic curon or vector described herein may also be included in pharmaceutical compositions with a pharmaceutical excipient, e.g., as described herein. In some embodiments, the pharmaceutical composition comprises at least 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, or 1015 synthetic curons. In some embodiments, the pharmaceutical composition comprises about 105-1015, 105-1010, or 1010-1015 synthetic curons. In some embodiments, the pharmaceutical composition comprises about 108 (e.g., about 105, 106, 107, 108, 109, or 1010) genomic equivalents/mL of the synthetic curon. In some embodiments, the pharmaceutical composition comprises 105-1010, 106-1010, 107-1010, 108-1010, 109-1010, 105-106, 105-107, 105-108, or 105-109 genomic equivalents/mL of the synthetic curon, e.g., as determined according to the method of Example 18. In some embodiments, the pharmaceutical composition comprises sufficient synthetic curons to deliver at least 1, 2, 5, or 10, 100, 500, 1000, 2000, 5000, 8,000, 1×104, 1×105, 1×106, 1×107 or greater copies of a genetic element comprised in the curons per cell to a population of the eukaryotic cells. In some embodiments, the pharmaceutical composition comprises sufficient synthetic curons to deliver at least about 1×104, 1×105, 1×106, 1× or 107, or about 1×104-1×105, 1×104-1×106, 1×104-1×107, 1×105-1×106, 1×105-1×107, or 1×106- 1×107 copies of a genetic element comprised in the curons per cell to a population of the eukaryotic cells.


In some embodiments, the pharmaceutical composition has one or more of the following characteristics: the pharmaceutical composition meets a pharmaceutical or good manufacturing practices (GMP) standard; the pharmaceutical composition was made according to good manufacturing practices (GMP); the pharmaceutical composition has a pathogen level below a predetermined reference value, e.g., is substantially free of pathogens; the pharmaceutical composition has a contaminant level below a predetermined reference value, e.g., is substantially free of contaminants; or the pharmaceutical composition has low immunogenicity or is substantially non-immunogenic, e.g., as described herein.


In some embodiments, the pharmaceutical composition comprises below a threshold amount of one or more contaminants. Exemplary contaminants that are desirably excluded or minimized in the pharmaceutical composition include, without limitation, host cell nucleic acids (e.g., host cell DNA and/or host cell RNA), animal-derived components (e.g., serum albumin or trypsin), replication-competent viruses, non-infectious particles, free viral capsid protein, adventitious agents, and aggregates. In embodiments, the contaminant is host cell DNA. In embodiments, the composition comprises less than about 500 ng of host cell DNA per dose. In embodiments, the pharmaceutical composition consists of less than 10% (e.g., less than about 10%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.1%) contaminant by weight.


In one aspect, the invention described herein includes a pharmaceutical composition comprising:


a) a synthetic curon comprising a genetic element comprising (i) a sequence encoding a non-pathogenic exterior protein, (ii) an exterior protein binding sequence that binds the genetic element to the non-pathogenic exterior protein, and (iii) a sequence encoding a regulatory nucleic acid; and a proteinaceous exterior that is associated with, e.g., envelops or encloses, the genetic element; and


b) a pharmaceutical excipient.


Vesicles

In some embodiments, the composition further comprises a carrier component, e.g., a microparticle, liposome, vesicle, or exosome. In some embodiments, liposomes comprise spherical vesicle structures composed of a uni- or multilamellar lipid bilayer surrounding internal aqueous compartments and a relatively impermeable outer lipophilic phospholipid bilayer. Liposomes may be anionic, neutral or cationic. Liposomes are generally biocompatible, nontoxic, can deliver both hydrophilic and lipophilic drug molecules, protect their cargo from degradation by plasma enzymes, and transport their load across biological membranes (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review).


Vesicles can be made from several different types of lipids; however, phospholipids are most commonly used to generate liposomes as drug carriers. Vesicles may comprise without limitation DOTMA, DOTAP, DOTIM, DDAB, alone or together with cholesterol to yield DOTMA and cholesterol, DOTAP and cholesterol, DOTIM and cholesterol, and DDAB and cholesterol. Methods for preparation of multilamellar vesicle lipids are known in the art (see for example U.S. Pat. No. 6,693,086, the teachings of which relating to multilamellar vesicle lipid preparation are incorporated herein by reference). Although vesicle formation can be spontaneous when a lipid film is mixed with an aqueous solution, it can also be expedited by applying force in the form of shaking by using a homogenizer, sonicator, or an extrusion apparatus (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review). Extruded lipids can be prepared by extruding through filters of decreasing size, as described in Templeton et al., Nature Biotech, 15:647-652, 1997, the teachings of which relating to extruded lipid preparation are incorporated herein by reference.


As described herein, additives may be added to vesicles to modify their structure and/or properties. For example, either cholesterol or sphingomyelin may be added to the mixture to help stabilize the structure and to prevent the leakage of the inner cargo. Further, vesicles can be prepared from hydrogenated egg phosphatidylcholine or egg phosphatidylcholine, cholesterol, and dicetyl phosphate. (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi: 10.1155/2011/469679 for review). Also, vesicles may be surface modified during or after synthesis to include reactive groups complementary to the reactive groups on the recipient cells. Such reactive groups include without limitation maleimide groups. As an example, vesicles may be synthesized to include maleimide conjugated phospholipids such as without limitation DSPE-MaL-PEG2000.


A vesicle formulation may be mainly comprised of natural phospholipids and lipids such as 1,2-distearoryl-sn-glycero-3-phosphatidyl choline (DSPC), sphingomyelin, egg phosphatidylcholines and monosialoganglioside. Formulations made up of phospholipids only are less stable in plasma. However, manipulation of the lipid membrane with cholesterol reduces rapid release of the encapsulated cargo or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) increases stability (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review).


In embodiments, lipids may be used to form lipid microparticles. Lipids include, but are not limited to, DLin-KC2-DMA4, C12-200 and colipids disteroylphosphatidyl choline, cholesterol, and PEG-DMG may be formulated (see, e.g., Novobrantseva, Molecular Therapy-Nucleic Acids (2012) 1, e4; doi:10.1038/mtna.2011.3) using a spontaneous vesicle formation procedure. The component molar ratio may be about 50/10/38.5/1.5 (DLin-KC2-DMA or C12-200/disteroylphosphatidyl choline/cholesterol/PEG-DMG). Tekmira has a portfolio of approximately 95 patent families, in the U.S. and abroad, that are directed to various aspects of lipid microparticles and lipid microparticles formulations (see, e.g., U.S. Pat. Nos. 7,982,027; 7,799,565; 8,058,069; 8,283,333; 7,901,708; 7,745,651; 7,803,397; 8,101,741; 8,188,263; 7,915,399; 8,236,943 and 7,838,658 and European Pat. Nos. 1766035; 1519714; 1781593 and 1664316), all of which may be used and/or adapted to the present invention.


In some embodiments, microparticles comprise one or more solidified polymer(s) that is arranged in a random manner. The microparticles may be biodegradable. Biodegradable microparticles may be synthesized, e.g., using methods known in the art including without limitation solvent evaporation, hot melt microencapsulation, solvent removal, and spray drying. Exemplary methods for synthesizing microparticles are described by Bershteyn et al., Soft Matter 4:1787-1787, 2008 and in US 2008/0014144 A1, the specific teachings of which relating to microparticle synthesis are incorporated herein by reference.


Exemplary synthetic polymers which can be used to form biodegradable microparticles include without limitation aliphatic polyesters, poly (lactic acid) (PLA), poly (glycolic acid) (PGA), co-polymers of lactic acid and glycolic acid (PLGA), polycarprolactone (PCL), polyanhydrides, poly(ortho)esters, polyurethanes, poly(butyric acid), poly(valeric acid), and poly(lactide-co-caprolactone), and natural polymers such as albumin, alginate and other polysaccharides including dextran and cellulose, collagen, chemical derivatives thereof, including substitutions, additions of chemical groups such as for example alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art), albumin and other hydrophilic proteins, zein and other prolamines and hydrophobic proteins, copolymers and mixtures thereof. In general, these materials degrade either by enzymatic hydrolysis or exposure to water, by surface or bulk erosion.


The microparticles' diameter ranges from 0.1-1000 micrometers (μm). In some embodiments, their diameter ranges in size from 1-750 μm, or from 50-500 μm, or from 100-250 μm. In some embodiments, their diameter ranges in size from 50-1000 μm, from 50-750 μm, from 50-500 μm, or from 50-250 μm. In some embodiments, their diameter ranges in size from 0.05-1000 μm, from 10-1000 μm, from 100-1000 μm, or from 500-1000 μm. In some embodiments, their diameter is about 0.5 μm, about 10 μm, about 50 μm, about 100 μm, about 200 μm, about 300 μm, about 350 μm, about 400 μm, about 450 μm, about 500 μm, about 550 μm, about 600 μm, about 650 μm, about 700 μm, about 750 μm, about 800 μm, about 850 μm, about 900 μm, about 950 μm, or about 1000 μm. As used in the context of microparticle diameters, the term “about” means +/−5% of the absolute value stated.


In some embodiments, a ligand is conjugated to the surface of the microparticle via a functional chemical group (carboxylic acids, aldehydes, amines, sulfhydryls and hydroxyls) present on the surface of the particle and present on the ligand to be attached. Functionality may be introduced into the microparticles by, for example, during the emulsion preparation of microparticles, incorporation of stabilizers with functional chemical groups.


Another example of introducing functional groups to the microparticle is during post-particle preparation, by direct crosslinking particles and ligands with homo- or heterobifunctional crosslinkers. This procedure may use a suitable chemistry and a class of crosslinkers (CDI, EDAC, glutaraldehydes, etc. as discussed in more detail below) or any other crosslinker that couples ligands to the particle surface via chemical modification of the particle surface after preparation. This also includes a process whereby amphiphilic molecules such as fatty acids, lipids or functional stabilizers may be passively adsorbed and adhered to the particle surface, thereby introducing functional end groups for tethering to ligands.


In some embodiments, the microparticles may be synthesized to comprise one or more targeting groups on their exterior surface to target a specific cell or tissue type (e.g., cardiomyocytes). These targeting groups include without limitation receptors, ligands, antibodies, and the like. These targeting groups bind their partner on the cells' surface. In some embodiments, the microparticles will integrate into a lipid bilayer that comprises the cell surface and the mitochondria are delivered to the cell.


The microparticles may also comprise a lipid bilayer on their outermost surface. This bilayer may be comprised of one or more lipids of the same or different type. Examples include without limitation phospholipids such as phosphocholines and phosphoinositols. Specific examples include without limitation DMPC, DOPC, DSPC, and various other lipids such as those described herein for liposomes.


In some embodiments, the carrier comprises nanoparticles, e.g., as described herein.


In some embodiments, the vesicles or microparticles described herein are functionalized with a diagnostic agent. Examples of diagnostic agents include, but are not limited to, commercially available imaging agents used in positron emissions tomography (PET), computer assisted tomography (CAT), single photon emission computerized tomography, x-ray, fluoroscopy, and magnetic resonance imaging (MRI); and contrast agents. Examples of suitable materials for use as contrast agents in MRI include gadolinium chelates, as well as iron, magnesium, manganese, copper, and chromium.


Membrane Penetrating Polypeptides

In some embodiments, the composition further comprises a membrane penetrating polypeptide (MPP) to carry the components into cells or across a membrane, e.g., cell or nuclear membrane. Membrane penetrating polypeptides that are capable of facilitating transport of substances across a membrane include, but are not limited to, cell-penetrating peptides (CPPs)(see, e.g., U.S. Pat. No. 8,603,966), fusion peptides for plant intracellular delivery (see, e.g., Ng et al., PLoS One, 2016, 11:e0154081), protein transduction domains, Trojan peptides, and membrane translocation signals (MTS) (see, e.g., Tung et al., Advanced Drug Delivery Reviews 55:281-294 (2003)). Some MPP are rich in amino acids, such as arginine, with positively charged side chains.


Membrane penetrating polypeptides have the ability of inducing membrane penetration of a component and allow macromolecular translocation within cells of multiple tissues in vivo upon systemic administration. A membrane penetrating polypeptide may also refer to a peptide which, when brought into contact with a cell under appropriate conditions, passes from the external environment in the intracellular environment, including the cytoplasm, organelles such as mitochondria, or the nucleus of the cell, in amounts significantly greater than would be reached with passive diffusion.


Components transported across a membrane may be reversibly or irreversibly linked to the membrane penetrating polypeptide. A linker may be a chemical bond, e.g., one or more covalent bonds or non-covalent bonds. In some embodiments, the linker is a peptide linker. Such a linker may be between 2-30 amino acids, or longer. The linker includes flexible, rigid or cleavable linkers.


Combinations

In one aspect, the synthetic curon or composition comprising a synthetic curon described herein may also include one or more heterologous moiety. In one aspect, the curon or composition comprising a synthetic curon described herein may also include one or more heterologous moiety in a fusion. In some embodiments, a heterologous moiety may be linked with the genetic element. In some embodiments, a heterologous moiety may be enclosed in the proteinaceous exterior as part of the curon. In some embodiments, a heterologous moiety may be administered with the synthetic curon.


In one aspect, the invention includes a cell or tissue comprising any one of the synthetic curons and heterologous moieties described herein.


In another aspect, the invention includes a pharmaceutical composition comprising a synthetic curon and the heterologous moiety described herein.


In some embodiments, the heterologous moiety may be a virus (e.g., an effector (e.g., a drug, small molecule), a targeting agent (e.g., a DNA targeting agent, antibody, receptor ligand), a tag (e.g., fluorophore, light sensitive agent such as KillerRed), or an editing or targeting moiety described herein. In some embodiments, a membrane translocating polypeptide described herein is linked to one or more heterologous moieties. In one embodiment, the heterologous moiety is a small molecule (e.g., a peptidomimetic or a small organic molecule with a molecular weight of less than 2000 daltons), a peptide or polypeptide (e.g., an antibody or antigen-binding fragment thereof), a nanoparticle, an aptamer, or pharmacoagent.


Viruses


In some embodiments, the composition may further comprise a virus as a heterologous moiety, e.g., a single stranded DNA virus, e.g., Anellovirus, Bidnavirus, Circovirus, Geminivirus, Genomovirus, Inovirus, Microvirus, Nanovirus, Parvovirus, and Spiravirus. In some embodiments, the composition may further comprise a double stranded DNA virus, e.g., Adenovirus, Ampullavirus, Ascovirus, Asfarvirus, Baculovirus, Fusellovirus, Globulovirus, Guttavirus, Hytrosavirus, Herpesvirus, Iridovirus, Lipothrixvirus, Nimavirus, and Poxvirus. In some embodiments, the composition may further comprise an RNA virus, e.g., Alphavirus, Furovirus, Hepatitis virus, Hordeivirus, Tobamovirus, Tobravirus, Tricornavirus, Rubivirus, Birnavirus, Cystovirus, Partitivirus, and Reovirus. In some embodiments, the curon is administered with a virus as a heterologous moiety.


In some embodiments, the heterologous moiety may comprise a non-pathogenic, e.g., symbiotic, commensal, native, virus. In some embodiments, the non-pathogenic virus is one or more anelloviruses, e.g., Alphatorquevirus (TT), Betatorquevirus (TTM), and Gammatorquevirus (TTMD). In some embodiments, the anellovirus may include a Torque Teno Virus (TT), a SEN virus, a Sentinel virus, a TTV-like mini virus, a TT virus, a TT virus genotype 6, a TT virus group, a TTV-like virus DXL1, a TTV-like virus DXL2, a Torque Teno-like Mini Virus (TTM), or a Torque Teno-like Midi Virus (TTMD). In some embodiments, the non-pathogenic virus comprises one or more sequences having at least at least about 60%, 70% 80%, 85%, 90% 95%, 96%, 97%, 98% and 99% nucleotide sequence identity to any one of the nucleotide sequences described herein, e.g., Table 19 or Table 20.


In some embodiments, the heterologous moiety may comprise one or more viruses that are identified as lacking in the subject. For example, a subject identified as having dyvirosis may be administered a composition comprising a curon and one or more viral components or viruses that are imbalanced in the subject or having a ratio that differs from a reference value, e.g., a healthy subject.


In some embodiments, the heterologous moiety may comprise one or more non-anelloviruses, e.g., adenovirus, herpes virus, pox virus, vaccinia virus, SV40, papilloma virus, an RNA virus such as a retrovirus, e.g., lenti virus, a single-stranded RNA virus, e.g., hepatitis virus, or a double-stranded RNA virus e.g., rotavirus. In some embodiments, the curon or the virus is defective, or requires assistance in order to produce infectious particles. Such assistance can be provided, e.g., by using helper cell lines that contain a nucleic acid, e.g., plasmids or DNA integrated into the genome, encoding one or more of (e.g., all of) the structural genes of the replication defective curon or virus under the control of regulatory sequences within the LTR. Suitable cell lines for replicating the curons described herein include cell lines known in the art, e.g., A549 cells, which can be modified as described herein.


Effector


In some embodiments, the composition or synthetic curon may further comprise an effector that possesses effector activity. The effector may modulate a biological activity, for example increasing or decreasing enzymatic activity, gene expression, cell signaling, and cellular or organ function. Effector activities may also include binding regulatory proteins to modulate activity of the regulator, such as transcription or translation. Effector activities also may include activator or inhibitor functions. For example, the effector may induce enzymatic activity by triggering increased substrate affinity in an enzyme, e.g., fructose 2,6-bisphosphate activates phosphofructokinase 1 and increases the rate of glycolysis in response to the insulin. In another example, the effector may inhibit substrate binding to a receptor and inhibit its activation, e.g., naltrexone and naloxone bind opioid receptors without activating them and block the receptors' ability to bind opioids. Effector activities may also include modulating protein stability/degradation and/or transcript stability/degradation. For example, proteins may be targeted for degradation by the polypeptide co-factor, ubiquitin, onto proteins to mark them for degradation. In another example, the effector inhibits enzymatic activity by blocking the enzyme's active site, e.g., methotrexate is a structural analog of tetrahydrofolate, a coenzyme for the enzyme dihydrofolate reductase that binds to dihydrofolate reductase 1000-fold more tightly than the natural substrate and inhibits nucleotide base synthesis.


Targeting Moiety


In some embodiments, the composition or curon described herein may further comprise a targeting moiety, e.g., a targeting moiety that specifically binds to a molecule of interest present on a target cell. The targeting moiety may modulate a specific function of the molecule of interest or cell, modulate a specific molecule (e.g., enzyme, protein or nucleic acid), e.g., a specific molecule downstream of the molecule of interest in a pathway, or specifically bind to a target to localize the curon or genetic element. For example, a targeting moiety may include a therapeutic that interacts with a specific molecule of interest to increase, decrease or otherwise modulate its function.


Tagging or Monitoring Moiety


In some embodiments, the composition or synthetic curon described herein may further comprise a tag to label or monitor the curon or genetic element described herein. The tagging or monitoring moiety may be removable by chemical agents or enzymatic cleavage, such as proteolysis or intein splicing. An affinity tag may be useful to purify the tagged polypeptide using an affinity technique. Some examples include, chitin binding protein (CBP), maltose binding protein (MBP), glutathione-S-transferase (GST), and poly(His) tag. A solubilization tag may be useful to aid recombinant proteins expressed in chaperone-deficient species such as E. coli to assist in the proper folding in proteins and keep them from precipitating. Some examples include thioredoxin (TRX) and poly(NANP). The tagging or monitoring moiety may include a light sensitive tag, e.g., fluorescence. Fluorescent tags are useful for visualization. GFP and its variants are some examples commonly used as fluorescent tags. Protein tags may allow specific enzymatic modifications (such as biotinylation by biotin ligase) or chemical modifications (such as reaction with FlAsH-EDT2 for fluorescence imaging) to occur. Often tagging or monitoring moiety are combined, in order to connect proteins to multiple other components. The tagging or monitoring moiety may also be removed by specific proteolysis or enzymatic cleavage (e.g. by TEV protease, Thrombin, Factor Xa or Enteropeptidase).


Nanoparticles


In some embodiments, the composition or synthetic curon described herein may further comprise a nanoparticle. Nanoparticles include inorganic materials with a size between about 1 and about 1000 nanometers, between about 1 and about 500 nanometers in size, between about 1 and about 100 nm, between about 50 nm and about 300 nm, between about 75 nm and about 200 nm, between about 100 nm and about 200 nm, and any range therebetween. Nanoparticles generally have a composite structure of nanoscale dimensions. In some embodiments, nanoparticles are typically spherical although different morphologies are possible depending on the nanoparticle composition. The portion of the nanoparticle contacting an environment external to the nanoparticle is generally identified as the surface of the nanoparticle. In nanoparticles described herein, the size limitation can be restricted to two dimensions and so that nanoparticles include composite structure having a diameter from about 1 to about 1000 nm, where the specific diameter depends on the nanoparticle composition and on the intended use of the nanoparticle according to the experimental design. For example, nanoparticles used in therapeutic applications typically have a size of about 200 nm or below.


Additional desirable properties of the nanoparticle, such as surface charges and steric stabilization, can also vary in view of the specific application of interest. Exemplary properties that can be desirable in clinical applications such as cancer treatment are described in Davis et al, Nature 2008 vol. 7, pages 771-782; Duncan, Nature 2006 vol. 6, pages 688-701; and Allen, Nature 2002 vol. 2 pages 750-763, each incorporated herein by reference in its entirety. Additional properties are identifiable by a skilled person upon reading of the present disclosure. Nanoparticle dimensions and properties can be detected by techniques known in the art. Exemplary techniques to detect particles dimensions include but are not limited to dynamic light scattering (DLS) and a variety of microscopies such at transmission electron microscopy (TEM) and atomic force microscopy (AFM). Exemplary techniques to detect particle morphology include but are not limited to TEM and AFM. Exemplary techniques to detect surface charges of the nanoparticle include but are not limited to zeta potential method. Additional techniques suitable to detect other chemical properties comprise by 1H, 11B, and 13C and 19F NMR, UV/Vis and infrared/Raman spectroscopies and fluorescence spectroscopy (when nanoparticle is used in combination with fluorescent labels) and additional techniques identifiable by a skilled person.


Small Molecules


In some embodiments, the composition or synthetic curon described herein may further comprise a small molecule. Small molecule moieties include, but are not limited to, small peptides, peptidomimetics (e.g., peptoids), amino acids, amino acid analogs, synthetic polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic and inorganic compounds (including heterorganic and organometallic compounds) generally having a molecular weight less than about 5,000 grams per mole, e.g., organic or inorganic compounds having a molecular weight less than about 2,000 grams per mole, e.g., organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, e.g., organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds. Small molecules may include, but are not limited to, a neurotransmitter, a hormone, a drug, a toxin, a viral or microbial particle, a synthetic molecule, and agonists or antagonists.


Examples of suitable small molecules include those described in, “The Pharmacological Basis of Therapeutics,” Goodman and Gilman, McGraw-Hill, New York, N.Y., (1996), Ninth edition, under the sections: Drugs Acting at Synaptic and Neuroeffector Junctional Sites; Drugs Acting on the Central Nervous System; Autacoids: Drug Therapy of Inflammation; Water, Salts and Ions; Drugs Affecting Renal Function and Electrolyte Metabolism; Cardiovascular Drugs; Drugs Affecting Gastrointestinal Function; Drugs Affecting Uterine Motility; Chemotherapy of Parasitic Infections; Chemotherapy of Microbial Diseases; Chemotherapy of Neoplastic Diseases; Drugs Used for Immunosuppression; Drugs Acting on Blood-Forming organs; Hormones and Hormone Antagonists; Vitamins, Dermatology; and Toxicology, all incorporated herein by reference. Some examples of small molecules include, but are not limited to, prion drugs such as tacrolimus, ubiquitin ligase or HECT ligase inhibitors such as heclin, histone modifying drugs such as sodium butyrate, enzymatic inhibitors such as 5-aza-cytidine, anthracyclines such as doxorubicin, beta-lactams such as penicillin, anti-bacterials, chemotherapy agents, anti-virals, modulators from other organisms such as VP64, and drugs with insufficient bioavailability such as chemotherapeutics with deficient pharmacokinetics.


In some embodiments, the small molecule is an epigenetic modifying agent, for example such as those described in de Groote et al. Nuc. Acids Res. (2012):1-18. Exemplary small molecule epigenetic modifying agents are described, e.g., in Lu et al. J. Biomolecular Screening 17.5(2012):555-71, e.g., at Table 1 or 2, incorporated herein by reference. In some embodiments, an epigenetic modifying agent comprises vorinostat or romidepsin. In some embodiments, an epigenetic modifying agent comprises an inhibitor of class I, II, III, and/or IV histone deacetylase (HDAC). In some embodiments, an epigenetic modifying agent comprises an activator of SirTI. In some embodiments, an epigenetic modifying agent comprises Garcinol, Lys-CoA, C646, (+)-JQI, I-BET, BICI, MS120, DZNep, UNC0321, EPZ004777, AZ505, AMI-I, pyrazole amide 7b, benzo[d]imidazole 17b, acylated dapsone derivative (e.e.g, PRMTI), methylstat, 4,4′-dicarboxy-2,2′-bipyridine, SID 85736331, hydroxamate analog 8, tanylcypromie, bisguanidine and biguanide polyamine analogs, UNC669, Vidaza, decitabine, sodium phenyl butyrate (SDB), lipoic acid (LA), quercetin, valproic acid, hydralazine, bactrim, green tea extract (e.g., epigallocatechin gallate (EGCG)), curcumin, sulforphane and/or allicin/diallyl disulfide. In some embodiments, an epigenetic modifying agent inhibits DNA methylation, e.g., is an inhibitor of DNA methyltransferase (e.g., is 5-azacitidine and/or decitabine). In some embodiments, an epigenetic modifying agent modifies histone modification, e.g., histone acetylation, histone methylation, histone sumoylation, and/or histone phosphorylation. In some embodiments, the epigenetic modifying agent is an inhibitor of a histone deacetylase (e.g., is vorinostat and/or trichostatin A).


In some embodiments, the small molecule is a pharmaceutically active agent. In one embodiment, the small molecule is an inhibitor of a metabolic activity or component. Useful classes of pharmaceutically active agents include, but are not limited to, antibiotics, anti-inflammatory drugs, angiogenic or vasoactive agents, growth factors and chemotherapeutic (anti-neoplastic) agents (e.g., tumour suppressers). One or a combination of molecules from the categories and examples described herein or from (Orme-Johnson 2007, Methods Cell Biol. 2007; 80:813-26) can be used. In one embodiment, the invention includes a composition comprising an antibiotic, anti-inflammatory drug, angiogenic or vasoactive agent, growth factor or chemotherapeutic agent.


Peptides or Proteins


In some embodiments, the composition or synthetic curon described herein may further comprise a peptide or protein. The peptide moieties may include, but are not limited to, a peptide ligand or antibody fragment (e.g., antibody fragment that binds a receptor such as an extracellular receptor), neuropeptide, hormone peptide, peptide drug, toxic peptide, viral or microbial peptide, synthetic peptide, and agonist or antagonist peptide.


Peptides moieties may be linear or branched. The peptide has a length from about 5 to about 200 amino acids, about 15 to about 150 amino acids, about 20 to about 125 amino acids, about 25 to about 100 amino acids, or any range therebetween.


Some examples of peptides include, but are not limited to, fluorescent tags or markers, antigens, antibodies, antibody fragments such as single domain antibodies, ligands and receptors such as glucagon-like peptide-1 (GLP-1), GLP-2 receptor 2, cholecystokinin B (CCKB) and somatostatin receptor, peptide therapeutics such as those that bind to specific cell surface receptors such as G protein-coupled receptors (GPCRs) or ion channels, synthetic or analog peptides from naturally-bioactive peptides, anti-microbial peptides, pore-forming peptides, tumor targeting or cytotoxic peptides, and degradation or self-destruction peptides such as an apoptosis-inducing peptide signal or photosensitizer peptide.


Peptides useful in the invention described herein also include small antigen-binding peptides, e.g., antigen binding antibody or antibody-like fragments, such as single chain antibodies, nanobodies (see, e.g., Steeland et al. 2016. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today: 21(7):1076-113). Such small antigen binding peptides may bind a cytosolic antigen, a nuclear antigen, an intra-organellar antigen.


In some embodiments, the composition or curon described herein includes a polypeptide linked to a ligand that is capable of targeting a specific location, tissue, or cell.


Oligonucleotide Aptamers


In some embodiments, the composition or synthetic curon described herein may further comprise an oligonucleotide aptamer. Aptamer moieties are oligonucleotide or peptide aptamers. Oligonucleotide aptamers are single-stranded DNA or RNA (ssDNA or ssRNA) molecules that can bind to pre-selected targets including proteins and peptides with high affinity and specificity.


Oligonucleotide aptamers are nucleic acid species that may be engineered through repeated rounds of in vitro selection or equivalently, SELEX (systematic evolution of ligands by exponential enrichment) to bind to various molecular targets such as small molecules, proteins, nucleic acids, and even cells, tissues and organisms. Aptamers provide discriminate molecular recognition, and can be produced by chemical synthesis. In addition, aptamers may possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications.


Both DNA and RNA aptamers can show robust binding affinities for various targets. For example, DNA and RNA aptamers have been selected for t lysozyme, thrombin, human immunodeficiency virus trans-acting responsive element (HIV TAR), (see en.wikipedia.org/wiki/Aptamercite_note-10), hemin, interferon γ, vascular endothelial growth factor (VEGF), prostate specific antigen (PSA), dopamine, and the non-classical oncogene, heat shock factor 1 (HSF1).


Peptide Aptamers


In some embodiments, the composition or synthetic curon described herein may further comprise a peptide aptamer. Peptide aptamers have one (or more) short variable peptide domains, including peptides having low molecular weight, 12-14 kDa. Peptide aptamers may be designed to specifically bind to and interfere with protein-protein interactions inside cells.


Peptide aptamers are artificial proteins selected or engineered to bind specific target molecules. These proteins include of one or more peptide loops of variable sequence. They are typically isolated from combinatorial libraries and often subsequently improved by directed mutation or rounds of variable region mutagenesis and selection. In vivo, peptide aptamers can bind cellular protein targets and exert biological effects, including interference with the normal protein interactions of their targeted molecules with other proteins. In particular, a variable peptide aptamer loop attached to a transcription factor binding domain is screened against the target protein attached to a transcription factor activating domain. In vivo binding of the peptide aptamer to its target via this selection strategy is detected as expression of a downstream yeast marker gene. Such experiments identify particular proteins bound by the aptamers, and protein interactions that the aptamers disrupt, to cause the phenotype. In addition, peptide aptamers derivatized with appropriate functional moieties can cause specific post-translational modification of their target proteins, or change the subcellular localization of the targets


Peptide aptamers can also recognize targets in vitro. They have found use in lieu of antibodies in biosensors and used to detect active isoforms of proteins from populations containing both inactive and active protein forms. Derivatives known as tadpoles, in which peptide aptamer “heads” are covalently linked to unique sequence double-stranded DNA “tails”, allow quantification of scarce target molecules in mixtures by PCR (using, for example, the quantitative real-time polymerase chain reaction) of their DNA tails.


Peptide aptamer selection can be made using different systems, but the most used is currently the yeast two-hybrid system. Peptide aptamers can also be selected from combinatorial peptide libraries constructed by phage display and other surface display technologies such as mRNA display, ribosome display, bacterial display and yeast display. These experimental procedures are also known as biopannings. Among peptides obtained from biopannings, mimotopes can be considered as a kind of peptide aptamers. All the peptides panned from combinatorial peptide libraries have been stored in a special database with the name MimoDB.


Hosts

The invention is further directed to a host or host cell comprising a synthetic curon described herein. In some embodiments, the host or host cell is a plant, insect, bacteria, fungus, vertebrate, mammal (e.g., human), or other organism or cell. In certain embodiments, as confirmed herein, provided curons infect a range of different host cells. Target host cells include cells of mesodermal, endodermal, or ectodermal origin. Target host cells include, e.g., epithelial cells, muscle cells, white blood cells (e.g., lymphocytes), kidney tissue cells, lung tissue cells.


In some embodiments, the curon is substantially non-immunogenic in the host. The curon or genetic element fails to produce an undesired substantial response by the host's immune system. Some immune responses include, but are not limited to, humoral immune responses (e.g., production of antigen-specific antibodies) and cell-mediated immune responses (e.g., lymphocyte proliferation).


In some embodiments, a host or a host cell is contacted with (e.g., infected with) a synthetic curon. In some embodiments, the host is a mammal, such as a human. The amount of the curon in the host can be measured at any time after administration. In certain embodiments, a time course of curon growth in a culture is determined.


In some embodiments, the curon, e.g., a curon as described herein, is heritable. In some embodiments, the curon is transmitted linearly in fluids and/or cells from mother to child. In some embodiments, daughter cells from an original host cell comprise the curon. In some embodiments, a mother transmits the curon to child with an efficiency of at least 25%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, or 99%, or a transmission efficiency from host cell to daughter cell at least 25%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, or 99%. In some embodiments, the curon in a host cell has a transmission efficiency during meiosis of at 25%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, or 99%. In some embodiments, the curon in a host cell has a transmission efficiency during mitosis of at least 25%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, or 99%. In some embodiments, the curon in a cell has a transmission efficiency between about 10%-20%, 20%-30%, 30%-40%, 40%-50%, 50%-60%, 60%-70%, 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, 95%-99%, or any percentage therebetween.


In some embodiments, the curon, e.g., synthetic curon replicates within the host cell. In one embodiment, the synthetic curon is capable of replicating in a mammalian cell, e.g., human cell.


While in some embodiments the synthetic curon replicates in the host cell, the synthetic curon does not integrate into the genome of the host, e.g., with the host's chromosomes. In some embodiments, the synthetic curon has a negligible recombination frequency, e.g., with the host's chromosomes. In some embodiments, the curon has a recombination frequency, e.g., less than about 1.0 cM/Mb, 0.9 cM/Mb, 0.8 cM/Mb, 0.7 cM/Mb, 0.6 cM/Mb, 0.5 cM/Mb, 0.4 cM/Mb, 0.3 cM/Mb, 0.2 cM/Mb, 0.1 cM/Mb, or less, e.g., with the host's chromosomes.


Methods of Use

The synthetic curons and compositions comprising synthetic curons described herein may be used in methods of treating a disease, disorder, or condition, e.g., in a subject (e.g., a mammalian subject, e.g., a human subject) in need thereof. Administration of a pharmaceutical composition described herein may be, for example, by way of parenteral (including intravenous, intratumoral, intraperitoneal, intramuscular, intracavity, and subcutaneous) administration. The synthetic curons may be administered alone or formulated as a pharmaceutical composition.


The synthetic curons may be administered in the form of a unit-dose composition, such as a unit dose parenteral composition. Such compositions are generally prepared by admixture and can be suitably adapted for parenteral administration. Such compositions may be, for example, in the form of injectable and infusable solutions or suspensions or suppositories or aerosols.


In some embodiments, administration of a synthetic curon or composition comprising same, e.g., as described herein, may result in delivery of a genetic element comprised by the synthetic curon to a target cell, e.g., in a subject.


A synthetic curon or composition thereof described herein, e.g., comprising an exogenous effector or payload, may be used to deliver the exogenous effector or payload to a cell, tissue, or subject. In some embodiments, the synthetic curon or composition thereof is used to deliver the exogenous effector or payload to bone marrow, blood, heart, GI or skin. Delivery of an exogenous effector or payload by administration of a synthetic curon composition described herein may modulate (e.g., increase or decrease) expression levels of a noncoding RNA or polypeptide in the cell, tissue, or subject. Modulation of expression level in this fashion may result in alteration of a functional activity in the cell to which the exogenous effector or payload is delivered. In some embodiments, the modulated functional activity may be enzymatic, structural, or regulatory in nature.


In some embodiments, the synthetic curon, or copies thereof, are detectable in a cell 24 hours (e.g., 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 30 days, or 1 month) after delivery into a cell. In embodiments, a synthetic curon or composition thereof mediates an effect on a target cell, and the effect lasts for at least 1, 2, 3, 4, 5, 6, or 7 days, 2, 3, or 4 weeks, or 1, 2, 3, 6, or 12 months. In some embodiments (e.g., wherein the synthetic curon or composition thereof comprises a genetic element encoding an exogenous protein), the effect lasts for less than 1, 2, 3, 4, 5, 6, or 7 days, 2, 3, or 4 weeks, or 1, 2, 3, 6, or 12 months.


Examples of diseases, disorders, and conditions that can be treated with the synthetic curon described herein, or a composition comprising the synthetic curon, include, without limitation: immune disorders, interferonopathies (e.g., Type I interferonopathies), infectious diseases, inflammatory disorders, autoimmune conditions, cancer (e.g., a solid tumor, e.g., lung cancer, non-small cell lung cancer, e.g., a tumor that expresses a gene responsive to mIR-625, e.g., caspase-3), and gastrointestinal disorders. In some embodiments, the synthetic curon modulates (e.g., increases or decreases) an activity or function in a cell with which the curon is contacted. In some embodiments, the synthetic curon modulates (e.g., increases or decreases) the level or activity of a molecule (e.g., a nucleic acid or a protein) in a cell with which the curon is contacted. In some embodiments, the synthetic curon decreases viability of a cell, e.g., a cancer cell, with which the curon is contacted, e.g., by at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or more. In some embodiments, the synthetic curon comprises an effector, e.g., an miRNA, e.g., miR-625, that decreases viability of a cell, e.g., a cancer cell, with which the curon is contacted, e.g., by at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or more. In some embodiments, the synthetic curon increases apoptosis of a cell, e.g., a cancer cell, e.g., by increasing caspase-3 activity, with which the curon is contacted, e.g., by at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or more. In some embodiments, the synthetic curon comprises an effector, e.g., an miRNA, e.g., miR-625, that increases apoptosis of a cell, e.g., a cancer cell, e.g., by increasing caspase-3 activity, with which the curon is contacted, e.g., by at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or more.


Additional Curon Embodiments

In one aspect, the invention includes a synthetic curon comprising: a genetic element comprising (i) a sequence encoding a non-pathogenic exterior protein, (ii) an exterior protein binding sequence that binds the genetic element to the non-pathogenic exterior protein, and (iii) a sequence encoding an effector, e.g., a regulatory nucleic acid; and a proteinaceous exterior that is associated with, e.g., envelops or encloses, the genetic element.


In one aspect, the invention includes a pharmaceutical composition comprising: a) a curon comprising: a genetic element comprising (i) a sequence encoding a non-pathogenic exterior protein, (ii) an exterior protein binding sequence that binds the genetic element to the non-pathogenic exterior protein, and (iii) a sequence encoding an effector, e.g., a regulatory nucleic acid; and a proteinaceous exterior that is associated with, e.g., envelops or encloses, the genetic element; and b) a pharmaceutical excipient.


In various aspects of the invention delineated herein, one or more of the various embodiments described herein may be combined.


In some embodiments, curon or composition described herein further comprises at least one of the following characteristics: the genetic element is a single-stranded DNA; the genetic element is circular; the curon is non-integrating; the curon has a sequence, structure, and/or function based on an anellovirus or other non-pathogenic virus, and the curon is non-pathogenic.


In some embodiments, the proteinaceous exterior comprises the non-pathogenic exterior protein. In some embodiments, the proteinaceous exterior comprises one or more of the following: one or more glycosylated proteins, a hydrophilic DNA-binding region, an arginine-rich region, a threonine-rich region, a glutamine-rich region, a N-terminal polyarginine sequence, a variable region, a C-terminal polyglutamine/glutamate sequence, and one or more disulfide bridges. In some embodiments, the proteinaceous exterior comprises one or more of the following characteristics: an icosahedral symmetry, recognizes and/or binds a molecule that interacts with one or more host cell molecules to mediate entry into the host cell, lacks lipid molecules, lacks carbohydrates, is pH and temperature stable, is detergent resistant, and is non-immunogenic or non-pathogenic in a host. For example, data provided herein confirm that provided curons are infectious.


In some embodiments, the sequence encoding the non-pathogenic exterior protein comprise a sequence at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identical to one or more sequences or a fragment thereof listed in Table 15. In some embodiments, the non-pathogenic exterior protein comprises a sequence at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identical to one or more sequences or a fragment thereof listed in Table 16 or Table 17. In some embodiments, the non-pathogenic exterior protein comprises at least one functional domain that provides one or more functions, e.g., species and/or tissue and/or cell tropism, viral genome binding and/or packaging, immune evasion (non-immunogenicity and/or tolerance), pharmacokinetics, endocytosis and/or cell attachment, nuclear entry, intracellular modulation and localization, exocytosis modulation, propagation, and nucleic acid protection.


In some embodiments, the effector comprises a regulatory nucleic acid, e.g., an miRNA, siRNA, mRNA, lncRNA, RNA, DNA, an antisense RNA, gRNA; a therapeutic, e.g., fluorescent tag or marker, antigen, peptide therapeutic, synthetic or analog peptide from naturally-bioactive peptide, agonist or antagonist peptide, anti-microbial peptide, pore-forming peptide, a bicyclic peptide, a targeting or cytotoxic peptide, a degradation or self-destruction peptide, and degradation or self-destruction peptides, small molecule, immune effector (e.g., influences susceptibility to an immune response/signal), a death protein (e.g., an inducer of apoptosis or necrosis), a non-lytic inhibitor of a tumor (e.g., an inhibitor of an oncoprotein), an epigenetic modifying agent, epigenetic enzyme, a transcription factor, a DNA or protein modification enzyme, a DNA-intercalating agent, an efflux pump inhibitor, a nuclear receptor activator or inhibitor, a proteasome inhibitor, a competitive inhibitor for an enzyme, a protein synthesis effector or inhibitor, a nuclease, a protein fragment or domain, a ligand or a receptor, and a CRISPR system or component. In some embodiments, the effector comprises a sequence at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identical to one or more miRNA sequences listed in Table 18. In some embodiments, the effector, e.g., miRNA, targets a host gene, e.g., modulates expression of the gene.


In some embodiments, the genetic element further comprises one or more of the following sequences: a sequence that encodes one or more miRNAs, a sequence that encodes one or more replication proteins, a sequence that encodes an exogenous gene, a sequence that encodes a therapeutic, a regulatory sequence (e.g., a promoter, enhancer), a sequence that encodes one or more regulatory sequences that targets endogenous genes (siRNA, lncRNAs, shRNA), a sequence that encodes a therapeutic mRNA or protein, and a sequence that encodes a cytolytic/cytotoxic RNA or protein. In some embodiments, the genetic element has one or more of the following characteristics: is non-integrating with a host cell's genome, is an episomal nucleic acid, is a single stranded DNA, is about 1 to 10 kb, exists within the nucleus of the cell, is capable of being bound by endogenous proteins, and produces a microRNA that targets host genes.


In some embodiments, the genetic element comprises at least one viral sequence or at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identity to one or more sequences or a fragment thereof listed in Table 19 or Table 20. In one such embodiment, the viral sequence is from at least one of a single stranded DNA virus (e.g., Anellovirus, Bidnavirus, Circovirus, Geminivirus, Genomovirus, Inovirus, Microvirus, Nanovirus, Parvovirus, and Spiravirus), a double stranded DNA virus (e.g., Adenovirus, Ampullavirus, Ascovirus, Asfarvirus, Baculovirus, Fusellovirus, Globulovirus, Guttavirus, Hytrosavirus, Herpesvirus, Iridovirus, Lipothrixvirus, Nimavirus, and Poxvirus), a RNA virus (e.g., Alphavirus, Furovirus, Hepatitis virus, Hordeivirus, Tobamovirus, Tobravirus, Tricornavirus, Rubivirus, Birnavirus, Cystovirus, Partitivirus, and Reovirus). In another embodiment, the viral sequence is from one or more non-anelloviruses, e.g., adenovirus, herpes virus, pox virus, vaccinia virus, SV40, papilloma virus, an RNA virus such as a retrovirus, e.g., lenti virus, a single-stranded RNA virus, e.g., hepatitis virus, or a double-stranded RNA virus e.g., rotavirus.


In some embodiments, the protein binding sequence interacts with the arginine-rich region of the proteinaceous exterior.


In some embodiments, the curon is capable of replicating in a mammalian cell, e.g., human cell. In some embodiments, the curon is substantially non-pathogenic and/or non-integrating in a host cell. In some embodiments, the curon is substantially non-immunogenic in a host. In some embodiments, the curon inhibits/enhances one or more viral properties, e.g., tropism, e.g., infectivity, e.g., immunosuppression/activation, in a host or host cell. In some embodiments, the curon is in an amount sufficient to modulate (e.g., phenotype, virus levels, gene expression, compete with other viruses, disease state, etc. at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more).


In some embodiments, the composition further comprises at least one virus or vector comprising a genome of the virus, e.g., a variant of the curon, e.g., a commensal/native virus. In some embodiments, the composition further comprises a heterologous moiety, e.g., at least one small molecule, antibody, polypeptide, nucleic acid, targeting agent, imaging agent, nanoparticle, and a combination thereof.


In one aspect, the invention includes a vector comprising a genetic element comprising (i) a sequence encoding a non-pathogenic exterior protein, (ii) an exterior protein binding sequence that binds the genetic element to the non-pathogenic exterior protein, and (iii) a sequence encoding an effector, e.g., a regulatory nucleic acid.


In various aspects of the invention delineated herein, one or more of the various embodiments described herein may be combined.


In some embodiments, the genetic element fails to integrate with a host cell's genome. In some embodiments, the genetic element is capable of replicating in a mammalian cell, e.g., human cell.


In some embodiments, the vector further comprises an exogenous nucleic acid sequence, e.g., selected to modulate expression of a gene, e.g., a human gene.


In one aspect, the invention includes a pharmaceutical composition comprising the vector described herein and a pharmaceutical excipient.


In various aspects of the invention delineated herein, one or more of the various embodiments described herein may be combined.


In some embodiments, the vector is substantially non-pathogenic and/or non-integrating in a host cell. In some embodiments, the vector is substantially non-immunogenic in a host.


In some embodiments, the vector is in an amount sufficient to modulate (phenotype, virus levels, gene expression, compete with other viruses, disease state, etc. at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more).


In some embodiments, the composition further comprises at least one virus or vector comprising a genome of the virus, e.g., a variant of the curon, a commensal/native virus, a helper virus, a non-anellovirus. In some embodiments, the composition further comprises a heterologous moiety, at least one small molecule, antibody, polypeptide, nucleic acid, targeting agent, imaging agent, nanoparticle, and a combination thereof.


In one aspect, the invention includes a method of producing, propagating, and harvesting the curon described herein.


In one aspect, the invention includes a method of designing and making the vector described herein.


In one aspect, the invention includes a method of identifying dysvirosis in a subject comprising: analyzing genetic information from a sample obtained from a subject in need thereof, wherein viral genetic information is isolated from the subject's genetic information and other microorganisms; comparing the viral genetic information to a reference, e.g., a control, a healthy subject; and identifying dysvirosis in the subject if comparison of the viral genetic information yields an imbalance or irregular ratio of viral genetic information in the subject.


In various aspects of the invention delineated herein, one or more of the various embodiments described herein may be combined.


In some embodiments, the subject is administered the pharmaceutical composition further comprising one or more viral strains that are not represented in the viral genetic information. In some embodiments, the subject has inflammatory condition or disorder, autoimmune condition or disease, chronic/acute condition or disorder, cancer, gastrointestinal condition or disorder, or any combination thereof.


In embodiments, the synthetic curon inhibits interferon expression.


Methods of Production
Producing the Genetic Element

Methods of making the genetic element of the curon are described in, for example, Khudyakov & Fields, Artificial DNA: Methods and Applications, CRC Press (2002); in Zhao, Synthetic Biology: Tools and Applications, (First Edition), Academic Press (2013); and Egli & Herdewijn, Chemistry and Biology of Artificial Nucleic Acids, (First Edition), Wiley-VCH (2012).


In some embodiments, the genetic element may be designed using computer-aided design tools. The curon may be divided into smaller overlapping pieces (e.g., in the range of about 100 bp to about 10 kb segments or individual ORFs) that are easier to synthesize. These DNA segments are synthesized from a set of overlapping single-stranded oligonucleotides. The resulting overlapping synthons are then assembled into larger pieces of DNA, e.g., the curon. The segments or ORFs may be assembled into the curon, e.g., in vitro recombination or unique restriction sites at 5′ and 3′ ends to enable ligation.


The genetic element can alternatively be synthesized with a design algorithm that parses the curon into oligo-length fragments, creating optimal design conditions for synthesis that take into account the complexity of the sequence space. Oligos are then chemically synthesized on semiconductor-based, high-density chips, where over 200,000 individual oligos are synthesized per chip. The oligos are assembled with an assembly techniques, such as BioFab®, to build longer DNA segments from the smaller oligos. This is done in a parallel fashion, so hundreds to thousands of synthetic DNA segments are built at one time.


Each genetic element or segment of the genetic element may be sequence verified. In some embodiments, high-throughput sequencing of RNA or DNA can take place using AnyDot.chips (Genovoxx, Germany), which allows for the monitoring of biological processes (e.g., miRNA expression or allele variability (SNP detection). In particular, the AnyDot-chips allow for 10×-50× enhancement of nucleotide fluorescence signal detection. AnyDot.chips and methods for using them are described in part in International Publication Application Nos. WO 02088382, WO 03020968, WO 0303 1947, WO 2005044836, PCTEP 05105657, PCMEP 05105655; and German Patent Application Nos. DE 101 49 786, DE 102 14 395, DE 103 56 837, DE 10 2004 009 704, DE 10 2004 025 696, DE 10 2004 025 746, DE 10 2004 025 694, DE 10 2004 025 695, DE 10 2004 025 744, DE 10 2004 025 745, and DE 10 2005 012 301.


Other high-throughput sequencing systems include those disclosed in Venter, J., et al. Science 16 Feb. 2001; Adams, M. et al, Science 24 Mar. 2000; and M. J, Levene, et al. Science 299:682-686, January 2003; as well as US Publication Application No. 20030044781 and 2006/0078937. Overall such systems involve sequencing a target nucleic acid molecule having a plurality of bases by the temporal addition of bases via a polymerization reaction that is measured on a molecule of nucleic acid, i.e., the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence can then be deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labeled types of nucleotide analogs are provided proximate to the active site, with each distinguishably type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labeled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.


In some embodiments, shotgun sequencing is performed. In shotgun sequencing, DNA is broken up randomly into numerous small segments, which are sequenced using the chain termination method to obtain reads. Multiple overlapping reads for the target DNA are obtained by performing several rounds of this fragmentation and sequencing. Computer programs then use the overlapping ends of different reads to assemble them into a continuous sequence.


Producing the Synthetic Curon

The genetic elements and vectors comprising the genetic elements prepared as described herein can be used in a variety of ways to express the synthetic curon in appropriate host cells. In some embodiments, the genetic element and vectors comprising the genetic element are transfected in appropriate host cells and the resulting RNA may direct the expression of the curon gene products, e.g., non-pathogenic protein and protein binding sequence, at high levels. Host cell systems which provide for high levels of expression include continuous cell lines that supply viral functions, such as cell lines superinfected with APV or MPV, respectively, cell lines engineered to complement APV or MPV functions, etc.


In some embodiments, the synthetic curon is produced as described in any of Examples 1, 2, 5, 6, or 15-17.


In some embodiments, the synthetic curon is cultivated in continuous animal cell lines in vitro. According to one embodiment of the invention, the cell lines may include porcine cell lines. The cell lines envisaged in the context of the present invention include immortalised porcine cell lines such as, but not limited to the porcine kidney epithelial cell lines PK-15 and SK, the monomyeloid cell line 3D4/31 and the testicular cell line ST. Also, other mammalian cells likes are included, such as CHO cells (Chinese hamster ovaries), MARC-145, MDBK, RK-13, EEL. Additionally or alternatively, particular embodiments of the methods of the invention make use of an animal cell line which is an epithelial cell line, i.e. a cell line of cells of epithelial lineage. Cell lines susceptible to infection with curons include, but are not limited to cell lines of human or primate origin, such as human or primate kidney carcinoma cell lines.


In some embodiments, the genetic elements and vectors comprising the genetic elements are transfected into cell lines that express a viral polymerase protein in order to achieve expression of the curon. To this end, transformed cell lines that express a curon polymerase protein may be utilized as appropriate host cells. Host cells may be similarly engineered to provide other viral functions or additional functions.


To prepare the synthetic curon disclosed herein, a genetic element or vector comprising the genetic element disclosed herein may be used to transfect cells which provide curon proteins and functions required for replication and production. Alternatively, cells may be transfected with helper virus before, during, or after transfection by the genetic element or vector comprising the genetic element disclosed herein. In some embodiments, a helper virus may be useful to complement production of an incomplete viral particle. The helper virus may have a conditional growth defect, such as host range restriction or temperature sensitivity, which allows the subsequent selection of transfectant viruses. In some embodiments, a helper virus may provide one or more replication proteins utilized by the host cells to achieve expression of the curon. In some embodiments, the host cells may be transfected with vectors encoding viral proteins such as the one or more replication proteins.


The genetic element or vector comprising the genetic element disclosed herein can be replicated and produced into curon particles by any number of techniques known in the art, as described, e.g., in U.S. Pat. Nos. 4,650,764; 5,166,057; 5,854,037; European Patent Publication EP 0702085A1; U.S. patent application Ser. No. 09/152,845; International Patent Publications PCT WO97/12032; WO96/34625; European Patent Publication EP-A780475; WO 99/02657; WO 98/53078; WO 98/02530; WO 99/15672; WO 98/13501; WO 97/06270; and EPO 780 47SA1, each of which is incorporated by reference herein in its entirety.


The production of curon-containing cell cultures according to the present invention can be carried out in different scales, such as in flasks, roller bottles or bioreactors. The media used for the cultivation of the cells to be infected are known to the skilled person and will comprise the standard nutrients required for cell viability but may also comprise additional nutrients dependent on the cell type. Optionally, the medium can be protein-free. Depending on the cell type the cells can be cultured in suspension or on a substrate.


The purification and isolation of synthetic curons can be performed according to methods known by the skilled person in virus production and is described for example by Rinaldi, et al., DNA Vaccines: Methods and Protocols (Methods in Molecular Biology), 3rd ed. 2014, Humana Press.


In one aspect, the present invention includes a method for the in vitro replication and propagation of the curon as described herein, which may comprise the following steps: (a) transfecting a linearized genetic element into a cell line sensitive to curon infection; (b) harvesting the cells and isolating cells showing the presence of the genetic element; (c) culturing the cells obtained in step (b) for at least three days, such as at least one week or longer, depending on experimental conditions and gene expression; and (d) harvesting the cells of step (c).


Administration/Delivery

The composition (e.g., a pharmaceutical composition comprising a synthetic curon as described herein) may be formulated to include a pharmaceutically acceptable excipient. Pharmaceutical compositions may optionally comprise one or more additional active substances, e.g. therapeutically and/or prophylactically active substances. Pharmaceutical compositions of the present invention may be sterile and/or pyrogen-free. General considerations in the formulation and/or manufacture of pharmaceutical agents may be found, for example, in Remington: The Science and Practice of Pharmacy 21st ed., Lippincott Williams & Wilkins, 2005 (incorporated herein by reference).


Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to any other animal, e.g., to non-human animals, e.g. non-human mammals. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions is contemplated include, but are not limited to, humans and/or other primates; mammals, including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, dogs, mice, and/or rats; and/or birds, including commercially relevant birds such as poultry, chickens, ducks, geese, and/or turkeys.


Formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, dividing, shaping and/or packaging the product.


In one aspect, the invention features a method of delivering a curon to a subject. The method includes administering a pharmaceutical composition comprising a curon as described herein to the subject. In some embodiments, the administered curon replicates in the subject (e.g., becomes a part of the virome of the subject).


In one aspect, the invention features a method of administering a curon to a subject with dysvirosis. The method includes selecting a subject having dysvirosis as described herein, and administering a pharmaceutical composition comprising a curon as described herein to the subject. In some embodiments, the administered curon replicates in the subject (e.g., becomes a part of the virome of the subject).


The pharmaceutical composition may include wild-type or native viral elements and/or modified viral elements. The curon may include one or more of the sequences (e.g., nucleic acid sequences or nucleic acid sequences encoding amino acid sequences thereof) in any of Tables 1-20 or a sequence with at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% 95%, 96%, 97%, 98% and 99% nucleotide sequence identity to any one of the nucleotide sequences or a sequence that is complementary to the sequence in any of Tables 1-20. The curon may encode one or more of the sequences in any of Tables 1-20 or a sequence with at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% 95%, 96%, 97%, 98% and 99% sequence identity to any one of the amino acid sequences in any of Tables 2, 4, 6, 8, 10, 12, 14, or 16. The curon may include one or more of the sequences in Table 19 or Table 20 or a sequence with at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% 95%, 96%, 97%, 98% and 99% nucleotide sequence identity to any one of the nucleotide sequences or a sequence that is complementary to the sequence in Table 19 or Table 20.


In some embodiments, the synthetic curon is sufficient to increase (stimulate) endogenous gene and protein expression, e.g., at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more as compared to a reference, e.g., a healthy control. In certain embodiments, the synthetic curon is sufficient to decrease (inhibit) endogenous gene and protein expression, e.g., at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more as compared to a reference, e.g., a healthy control.


In some embodiments, the synthetic curon inhibits/enhances one or more viral properties, e.g., tropism, infectivity, immunosuppression/activation, in a host or host cell, e.g., at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more as compared to a reference, e.g., a healthy control.


In one aspect, the invention includes a method of identifying dysvirosis, e.g., dysregulation of viral populations present within a host, in a subject comprising analyzing genetic information from a sample obtained from a subject in need thereof, wherein viral genetic information is isolated from the subject's genetic information and other microorganisms; comparing the viral genetic information to a reference, e.g., a control, a healthy subject; and identifying dysvirosis in the subject if comparison of the viral genetic information yields an imbalance or irregular ratio of viral genetic information in the subject.


In one aspect, the present invention also includes a method for generating a database of genetic information for identifying dysviriosis in a diseased subject, which may comprise the following steps (i) determining nucleotide sequences of a host cell genome in a sample from a healthy subject; (ii) determining viral nucleic acid sequences present in the host cell genome and/or present in episomal form; (iii) compiling a database of the viral nucleic acid sequences determined in step (ii) associated with a specific viral strain; and (iv) repeat steps (i)-(iii) for a plurality of subjects to populate the database.


In one aspect, the invention includes a method of administering the pharmaceutical composition described herein to a subject with dysvirosis, comprising obtaining the viral genetic information as described herein and administering a pharmaceutical composition comprising the curon described herein in a dose sufficient to alter a virome within the subject, e.g., at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more as compared to a reference, e.g., a healthy control.


In some embodiments, the subject is administered the pharmaceutical composition further comprising one or more viral strains that are not represented in the viral genetic information.


In some embodiments, the pharmaceutical composition comprising a curon described herein is administered in a dose and time sufficient to modulate a viral infection. Some non-limiting examples of viral infections include adeno-associated virus, Aichi virus, Australian bat lyssavirus, BK polyomavirus, Banna virus, Barmah forest virus, Bunyamwera virus, Bunyavirus La Crosse, Bunyavirus snowshoe hare, Cercopithecine herpesvirus, Chandipura virus, Chikungunya virus, Cosavirus A, Cowpox virus, Coxsackievirus, Crimean-Congo hemorrhagic fever virus, Dengue virus, Dhori virus, Dugbe virus, Duvenhage virus, Eastern equine encephalitis virus, Ebolavirus, Echovirus, Encephalomyocarditis virus, Epstein-Barr virus, European bat lyssavirus, GB virus C/Hepatitis G virus, Hantaan virus, Hendra virus, Hepatitis A virus, Hepatitis B virus, Hepatitis C virus, Hepatitis E virus, Hepatitis delta virus, Horsepox virus, Human adenovirus, Human astrovirus, Human coronavirus, Human cytomegalovirus, Human enterovirus 68, Human enterovirus 70, Human herpesvirus 1, Human herpesvirus 2, Human herpesvirus 6, Human herpesvirus 7, Human herpesvirus 8, Human immunodeficiency virus, Human papillomavirus 1, Human papillomavirus 2, Human papillomavirus 16, Human papillomavirus 18, Human parainfluenza, Human parvovirus B19, Human respiratory syncytial virus, Human rhinovirus, Human SARS coronavirus, Human spumaretrovirus, Human T-lymphotropic virus, Human torovirus, Influenza A virus, Influenza B virus, Influenza C virus, Isfahan virus, JC polyomavirus, Japanese encephalitis virus, Junin arenavirus, KI Polyomavirus, Kunjin virus, Lagos bat virus, Lake Victoria marburgvirus, Langat virus, Lassa virus, Lordsdale virus, Louping ill virus, Lymphocytic choriomeningitis virus, Machupo virus, Mayaro virus, MERS coronavirus, Measles virus, Mengo encephalomyocarditis virus, Merkel cell polyomavirus, Mokola virus, Molluscum contagiosum virus, Monkeypox virus, Mumps virus, Murray valley encephalitis virus, New York virus, Nipah virus, Norwalk virus, O'nyong-nyong virus, Orf virus, Oropouche virus, Pichinde virus, Poliovirus, Punta toro phlebovirus, Puumala virus, Rabies virus, Rift valley fever virus, Rosavirus A, Ross river virus, Rotavirus A, Rotavirus B, Rotavirus C, Rubella virus, Sagiyama virus, Salivirus A, Sandfly fever sicilian virus, Sapporo virus, Semliki forest virus, Seoul virus, Simian foamy virus, Simian virus 5, Sindbis virus, Southampton virus, St. louis encephalitis virus, Tick-borne powassan virus, Torque teno virus, Toscana virus, Uukuniemi virus, Vaccinia virus, Varicella-zoster virus, Variola virus, Venezuelan equine encephalitis virus, Vesicular stomatitis virus, Western equine encephalitis virus, WU polyomavirus, West Nile virus, Yaba monkey tumor virus, Yaba-like disease virus, Yellow fever virus, and Zika Virus. In certain embodiments, the curon is sufficient to outcompete and/or displace a virus already present in the subject, e.g., at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more as compared to a reference. In certain embodiments, the curon is sufficient to compete with chronic or acute viral infection. In certain embodiments, the curon may be administered prophylactically to protect from viral infections (e.g. a provirotic). In some embodiments, the curon is in an amount sufficient to modulate (e.g., phenotype, virus levels, gene expression, compete with other viruses, disease state, etc. at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more).


All references and publications cited herein are hereby incorporated by reference.


The following examples are provided to further illustrate some embodiments of the present invention, but are not intended to limit the scope of the invention; it will be understood by their exemplary nature that other procedures, methodologies, or techniques known to those skilled in the art may alternatively be used.


EXAMPLES
Example 1: Preparation of Curons

This example describes the design and synthesis of a synthetic curon that inhibits interferon (IFN) expression.


A curon (Curon A) is designed starting with 1) a DNA sequence for a capsid gene encoding a non-pathogenic packaging enclosure (Arch Virol (2007) 152: 1961-1975), Accession Number: A7XCE8.1 (ORF11_TTW3); 2) a DNA sequence coding for a microRNA that targets a host gene (e.g. IFN) (PLOS Pathogen (2013), 9(12), e1003818), Accession number: AJ620231.1; and 3) a DNA sequence (Journal of Virology (2003), 77(24), 13036-13041) that binds to a specific region in the capsid protein, (e.g., specific region of capsid having an Accession Number: Q99153.1).


To this sequence is added 1 kb non-coding DNA sequences (Curon B). The designed curon (FIG. 2) is chemically synthesized into 3 kb (total size), which is sequence verified.


The curon sequence is transfected into human embryonic kidney 293T cells (1 mg per 105 cells on 12-well plates) with JetPEI reagent (PolyPlus-transfection, Illkirch, France) as recommended by the manufacturer. Controls transfections are included with vector alone or cells transfected with JetPEI alone and transfection efficiencies are optimized with a reporter plasmid encoding GFP. Fluorescence of control transfections is measured to ensure properly transfected cells. Transfected cultures are incubated overnight at 37° C. and 5% carbon dioxide.


After 18 hrs, the cells are washed three times with PBS before adding fresh medium. The supernatant is collected for ultracentrifugation and harvest of curons as follows. The medium is cleared by centrifugation at 4,000×g for 30 min and then at 8,000×g for 15 min to remove cells and cell debris. The supernatant is then filtered through 0.45-nm-pore-size filters. Curons are pelleted at 27,000 rpm for 1 hr through a 5% sucrose cushion (5 ml) and resuspended in 1× phosphate-buffered saline (PBS) plus 0.1% bacitracin in 1/100 of the original volume. The concentrated Curons are centrifuged through a 20 to 35% sucrose step gradient at 24,000 rpm for 2 hr. The curon band at the gradient junction is collected. The curons are then diluted with 1×PBS and pelleted at 27,000 rpm for 1 hr. The Curon pellets are resuspended in 1×PBS and further purified through a 20 to 35% continuous sucrose gradient.


Example 2: Large-Scale Production of Curons (Curon A and/or B)

This example describes production and propagation of curons.


Purified curons as described in Example 1 are prepared for large-scale amplification in spinner flasks with producer A549 cells grown in suspension. A549 cells are maintained in F12K medium, 10% fetal bovine serum, 2 mM glutamine and antibiotics. A549 cells are infected with curons at a curon load of 106 curons to produce ˜1×107 curon particles after an incubation at 37° C. and 5% carbon dioxide for 24 hrs. Cells are then washed three times with PBS and incubated with fresh medium for 6 hrs.


For curon purification, two ultracentrifugation steps based on cesium chloride gradients are performed followed by dialysis as follows (Bio-Protocol (2012) Bio101: e201). Cells are removed by centrifugation (6000×g for 10 min) and the supernatant is filtered through 0.8 and then 0.2 μm filters. The filtrate is concentrated by passage through filter membranes (100,000 mw) to a volume of 8 ml. The retentate is loaded into a cesium sulfate solution and centrifuged at 247,000×g for 20 h. Curon bands are removed, placed into 14,000 mw cutoff dialysis tubing, and dialyzed. A further concentration may be performed, if desired.


Example 3: Effects of Curons In Vitro (Curon A)

This example describes in vitro assessment of expression and effector function, e.g., expression of the miRNA, of the curon after cell infection.


The effect of purified curons as described in Example 1 is assessed in vitro through endogenous gene regulation (e.g. IFN signaling). HEK293T cells are co-transfected with dual luciferase plasmids (firefly luciferase with an interferon-stimulated response element (ISRE) based promoter and transfection control Renilla luciferase with constitutive promoter): Luciferase reporter mix (pcDNA3.1dsRluc to pISRE-Luc at 1:4 ratio (Clonetech)) (J Virol (2008), 82: 9823-9828).


Curons are administered at multiplicity of infection of 107 to HEK293T cells seeded in a 6-well plate (2 sets of triplicates-3 control wells and 3 experimental wells with Curon A).


After 48 hours, the media is replaced with new media with or without 100 u/ml of universal type I interferon (PBL, Piscataway, N.J.). Sixteen hours after IFN treatment, a dual-luciferase assay (J Virol (2008), 82: 9823-9828) is performed to determine IFN signaling. Firefly luciferase is normalized to Renilla luciferase expression to control for transfection differences. The fold induction of the ISRE ffLuc reporter is calculated by dividing the comparable experimental wells by the control wells and induction of each condition is compared relative to the negative control.


In an embodiment, a decreased luciferase signal in the curon treatment group compared to a control will indicate that the curons decrease IFN production in the cells.


Example 4: Immunologic Effects of Curons (Curon A)

This example describes in vivo effector function, e.g., expression of the miRNA, of the curon after administration.


Purified curons prepared as described in Examples 1 and 2 are intravenously administered to healthy pigs at various doses using hundred-fold dilutions starting from 1014 genome equivalents per kilogram down to 0 genome equivalents per kilogram. In order to evaluate the effects on immune tolerance, pigs are injected daily for 3 days with the dosages of curons specified above or vehicle control PBS and sacrificed after 3 days.


Spleen, bone marrow and lymph nodes are harvested. Single cell suspensions are prepared from each of the tissues and stained with extracellular markers for MHC-II, CD11c, and intracellular IFN. MHC+, CD11c+, IFN+ antigen presenting cells are analyzed via flow cytometry from each tissue, e.g., wherein a cell that is positive for a given one of the above-mentioned markers is a cell that exhibits higher fluorescence than 99% of cells in a negative control population that lack expression of the marker but is otherwise similar to the assay population of cells, under the same conditions.


In an embodiment, a decreased number of IFN+ cells in the curon treatment group compared to the control will indicate that the curons decrease IFN production in cells after administration.


Example 5: Preparation of Synthetic Curons

This example demonstrates in vitro production of a synthetic curon.


DNA sequences from LY1 and LY2 strains of TTMiniV (Eur Respir J. 2013 August; 42(2):470-9), between the EcoRV restriction enzyme sites, were cloned into a kanamycin vector (Integrated DNA Technologies). Curons including DNA sequences from the LY1 and LY2 strains of TTMiniV are referred to as Curon 1 and Curon 2 respectively, in Examples 6 and 7 and in FIGS. 6A-10B. Cloned constructs were transformed into 10-Beta competent E. coli. (New England Biolabs Inc.), followed by plasmid purification (Qiagen) according to the manufacturer's protocol.


DNA constructs (FIG. 3 and FIG. 4) were linearized with EcoRV restriction digest (New England Biolabs, Inc.) at 37 degree Celsius for 6 hours, followed by agarose gel electrophoresis, excision of a correctly size DNA band (2.9 kilobase pairs), and gel purification of DNA from excised agarose bands using a gel extraction kit (Qiagen) according to the manufacturer's protocol.


Example 6: Assembly and Infection of Curons

This example demonstrates successful in vitro production of infectious curons using synthetic DNA sequences as described in Example 5.


Curon DNA (obtained in Example 5) was transfected into either HEK293T cells (human embryonic kidney cell line) or A549 cells (human lung carcinoma cell line), either in an intact plasmid or in linearized form, with lipid transfection reagent (Thermo Fisher Scientific). 6 ug of plasmid or 1.5 ug of linearized DNA was used for transfection of 70% confluent cells in T25 flasks. Empty vector backbone lacking the viral sequences included in the curon was used as a negative control. Six hours post-transfection, cells were washed with PBS twice and were allowed to grow in fresh growth medium at 37 degrees Celsius and 5% carbon dioxide. DNA sequences encoding the human Ef1alpha promoter followed by YFP gene were synthesized from IDT. This DNA sequence was blunt end ligated into a cloning vector (Thermo Fisher Scientific). The resulting vector was used as a control to assess transfection efficiency. YFP was detected using a cell imaging system (Thermo Fisher Scientific) 72 hours post transfection. The transfection efficiencies of HEK293T and A549 cells were calculated as 85% and 40% respectively (FIG. 5).


Supernatants of 293T and A549 cells transfected with curons were harvested 96 hours post transfection. The harvested supernatants were spun down at 2000 rpm for 10 minutes at 4 degrees Celsius to remove any cell debris. Each of the harvested supernatants was used to infect new 293T and A549 cells, respectively, that were 70% confluent in wells of 24 well plates. Supernatants were washed away after 24 hours of incubation at 37 degrees Celsius and 5% carbon dioxide, followed by two washes of PBS, and replacement with fresh growth medium. Following incubation of these cells at 37 degrees and 5% carbon dioxide for another 48 hours, cells were individually harvested for genomic DNA extraction. Genomic DNA from each of the samples was harvested using a genomic DNA extraction kit (Thermo Fisher Scientific), according to manufacturer's protocol.


To confirm the successful infection of 293T and A549 cells by curons produced in vitro, 100 ng of genomic DNA harvested as described herein was used to perform quantitative polymerase chain reaction (qPCR) using primers specific for beta-torque viruses or LY2 specific sequences. SYBR green reagent (Thermo Fisher Scientific) was used to perform qPCR, as per manufacturer's protocol. qPCR for primers specific to genomic DNA sequence of GAPDH was used for normalization. The sequences for all the primers used are listed in Table 21.










TABLE 21








Primer sequence (5′ > 3′)









Target
Forward
Reverse





Betatorqueviruses
ATTCGAATGGCTGAGTTTATGC
CCTTGACTACGGTGGTTTCAC



(SEQ ID NO: 690)
(SEQ ID NO: 693)





LY2 TTMiniV
CACGAATTAGCCAAGACTGGGCAC
TGCAGGCATTCGAGGGCTTGTT


strain
(SEQ ID NO: 691)
(SEQ ID NO: 694)





GAPDH
GCTCCCACTCCTGATTTCTG
TTTAACCCCCTAGTCCCAGG



(SEQ ID NO: 692)
(SEQ ID NO: 695)









As shown in the qPCR results depicted in FIGS. 6A, 6B, 7A, and 7B, the curons produced in vitro and as described in this example were infectious.


Example 7: Selectivity of Curons

This example demonstrates the ability of synthetic curons produced in vitro to infect cell lines of a variety of tissue origins.


Supernatants with the infectious TTMiniV curons (described in Example 5) were incubated with 70% confluent 293T, A549, Jurkat (an acute T cell leukemia cell line), Raji (a Burkitt's lymphoma B cell line), and Chang (a liver carcinoma cell line) cell lines at 37 degrees and 5% carbon dioxide in wells of 24 well plates. Cells were washed with PBS twice, 24 hours post infection, followed by replacement with fresh growth medium. Cells were then incubated again at 37 degrees and 5% carbon dioxide for another 48 hours, followed by harvest for genomic DNA extraction. Genomic DNA from each of the samples was harvested using a genomic DNA extraction kit (Thermo Fisher Scientific), according to manufacturer's protocol.


To confirm successful infection of these cell lines by curons produced in the previous Example, 100 ng of genomic DNA harvested as described herein was used to perform quantitative polymerase chain reaction (qPCR) using primers specific for beta-torqueviruses or LY2 specific sequences. SYBR green reagent (Thermo Fisher Scientific) was used to perform qPCR, as per manufacturer's protocol. qPCR for primers specific to genomic DNA sequence of GAPDH was used for normalization. The sequences for all the primers used are listed in Table 21.


As shown in the qPCR results depicted in FIGS. 6A-10B, not only were curons produced in vitro infectious, they were able to infect a variety of cell lines, including examples of epithelial cells, lung tissue cells, liver cells, carcinoma cells, lymphocytes, lymphoblasts, T cells, B cells, and kidney cells. It was also observed that a synthetic curon was able to infect HepG2 cells, resulting in a greater than 100-fold increase relative to a control.


Example 8: Identification and Use of Protein Binding Sequences

This example describes putative protein-binding sites in the Anellovirus genome, which can be used for amplifying and packaging effectors, e.g., in a curon as described herein. In some instances, the protein-binding sites may be capable of binding to an exterior protein, such as a capsid protein.


Two conserved domains within the Anellovirus genome are putative origins of replication: the 5′ UTR conserved domain (5CD) and the GC-rich domain (GCR) (de Villiers et al., Journal of Virology 2011; Okamoto et al., Virology 1999). In one example, in order to confirm whether these sequences act as DNA replication sites or as capsid packaging signals, deletions of each region are made in plasmids harboring TTMV-LY2. A539 cells are transfected with pTTMV-LY2Δ5CD or pTTMV-LY2ΔGCR. Transfected cells are incubated for four days, and then virus is isolated from supernatant and cell pellets. A549 cells are infected with virus, and after four days, virus is isolated from the supernatant and infected cell pellets. qPCR is performed to quantify viral genomes from the samples. Disruption of an origin of replication prevents viral replicase from amplifying viral DNA and results in reduced viral genomes isolated from transfected cell pellets compared to wild-type virus. A small amount of virus is still packaged and can be found in the transfected supernatant and infected cell pellets. In some embodiments, disruption of a packaging signal will prevent the viral DNA from being encapsulated by capsid proteins. Therefore, in embodiments, there will still be an amplification of viral genomes in the transfected cells, but no viral genomes are found in the supernatant or infected cell pellets.


In a further example, in order to characterize additional replication or packaging signals in the DNA, a series of deletions across the entire TTMV-LY2 genome is used. Deletions of 100 bp are made stepwise across the length of the sequence. Plasmids harboring TTMV-LY2 deletions are transfected into A549 and tested as described above. In some embodiments, deletions that disrupt viral amplification or packaging will contain potential cis-regulatory domains.


Replication and packaging signals can be incorporated into effector-encoding DNA sequences (e.g., in a genetic element in a curon) to induce amplification and encapsulation. This is done both in context of larger regions of the curon genome (i.e., inserting effectors into a specific site in the genome, or replacing viral ORFs with effectors, etc.), or by incorporating minimal cis signals into the effector DNA. In cases where the curon lacks trans replication or packaging factors (e.g., replicase and capsid proteins, etc.), the trans factors are supplied by helper genes. The helper genes express all of the proteins and RNAs sufficient to induce amplification and packaging, but lack their own packaging signals. The curon DNA is co-transfected with helper genes, resulting in amplification and packaging of the effector but not of the helper genes.


Example 9: A Minimal Anellovirus Genome

This Example describes deletions in the Anellovirus genome, both to help characterize the minimal genome sufficient for replicating virus and to insert effector payloads.


A 172-nucleotide (nt) deletion was made in the non-coding region (NCR) of TTV-tth8 downstream of the ORFs but upstream of the GC-rich region (nts 3436 to 3607). A random 56-nt sequence (TTTGTGACACAAGATGGCCGACTTCCTTCCTCTTTAGTCTTCCCCAAAGAAGACAA (SEQ ID NO: 696)) was inserted into the deletion. 2 μg of circular or linearized (by SmaI) pTTV-tth8(3436-3707::56 nt), a DNA plasmid harboring the altered TTV-tth8, was transfected into HEK293 or A549 cells at 60% confluency in a 6 cm plate using lipofectamine 2000, in duplicate. Virus was isolated from cell pellets and supernatant 96 hours post transfection by freeze thaw, alternating three times between liquid nitrogen and 37° C. water bath. Virus from supernatant was used to re-infect cells (HEK293 cells infected by virus isolated from HEK293, and A549 cells infected by virus isolated from A549). 72 hours after infection, virus was isolated from cell pellets and supernatant by freeze thaw. qPCR was performed on all samples. As shown in Table 22 below, TTV-tth8 was observed in both the cell pellet and supernatant of infected cells, indicating successful virus production by pTTV-tth8(3436-3707::56 nt).


Therefore, TTV-tth8 is able to tolerate deletion of nts 3436 to 3707.









TABLE 22







TTV-tth8(3436-3707::56nt) infections in HEK293 and A549 result in viral


amplification. Average genome equivalents from duplicate experiments


compared to negative control cells with no plasmid or virus added.












Genome







Equivalents/Rx
HEK293 P0
HEK293 P1
A549 P0
A549 P1
Negatives

















TTH8
Sup
2.45E+06
1.02E+03
1.87E+07
1.00E+04
293 Empty
1.42E+02


Linear
Cell
2.52E+08
3.92E+05
2.89E+08
7.57E+05
293 Neg
5.08E+02


TTH8
Sup
1.69E+06
6.83E+02
5.07E+02
1.05E+04
549 Empty
1.73E+01


circular
Cell
2.00E+08
3.75E+05
2.61E+08
8.36E+05
549 Neg
2.08E+01









An engineered version of TTMV-LY2 was assembled, deleting nucleotides 574 to 1371 and 1432 to 2210 (1577 bp deletion) and inserting a 513 bp NanoLuc (nLuc) reporter ORF at the C-terminus of ORF1 (after nt 2609 in wild-type TTMV-LY2). Plasmids harboring the DNA sequence for the engineered TTMV-LY2 (pVL46-015B) were transfected into A549 cells, and then virus was isolated and used to infect new A549 cells, as described in Example 17. nLuc luminescence was detected in the cell pellets and supernatant of the infected cells, indicating viral replication (FIGS. 11A-11B). This demonstrates that TTMV-LY2 can tolerate at least a 1577 bp deletion in the ORF region.


To further characterize a minimal viral genome sufficient for replication, a series of deletions are made in the TTMV-LY2 DNA. A TTMV-LY2 with deletions of nts 574-1371 and 1432-2210 but no nLuc insertion is made and tested for viral replication as described previously. Further deletions are made to TTMV-LY2Δ574-1371,Δ1432-2210. Nts 1372-1431 are deleted to create TTMV-LY2Δ574-2210. Additionally, ORF3 sequence downstream of ORF1 is deleted (Δ2610-2809). Finally, to test deletions in non-coding regions, a series of 100 bp deletions are made sequentially across the NCR. All deletion mutants are tested for viral replication as previously described. Deletions that result in successful viral production (indicating that the deleted region is not essential for viral replication) are combined to make variants of TTMV-LY2 with more deleted nucleotides. This strategy will provide a minimal virus sufficient for self-amplification. To identify the minimal virus that can be amplified with helpers, each of the deletion mutants that disrupted viral replication is tested alongside helper genes carrying trans replication and packaging elements. Deletions rescued by trans expression of replication elements indicate areas of the viral genome that can be deleted to form a minimal virus when helper genes are provided from a separate source.


Example 10: Nucleotide Insertions of Various Lengths into an Anellovirus Genome

This example describes the addition of DNA sequences of various lengths into an Anellovirus genome, which can, in some instances, be used to generate a curon as described herein.


DNA sequences are cloned into plasmids harboring TTV-tth8 (GenBank accession number AJ620231.1) and TTMV-LY2 (GenBank accession number JX134045.1). Insertions are made in the noncoding regions (NCR) 3′ of the open reading frames and 5′ of the GC-rich region: after nucleotide 3588 in TTV-tth8, or nucleotide 2843 in TTMV-LY2.


Randomized DNA sequences of the following lengths are inserted into the NCRs of TTV-tth8 and TTMV-LY2: 100 base pairs (bp), 200 bp, 500 bp, 1000 bp, and 2000 bp. These sequences are designed to match the relative GC-content of each viral genome: approximately 50% GC for insertions into TTV-tth8, and approximately 38% GC for TTMV-LY2. In addition, several trans genes are inserted into the NCR. These include a miRNA driven by a U6 promoter (351 bp) and EGFP driven by a constitutive hEF1a promoter (2509 bp).


TTV-tth8 and TTMV-LY2 variants harboring various sized DNA inserts are transfected into mammalian cell lines, including HEK293 and A549, as previously described. Virus is isolated from the supernatant or cell pellets. Isolated virus is used to infect additional cells. Production of virus from the infected cells is monitored by quantitative PCR. In some embodiments, successful production of virus will indicate tolerance of insertions.


Example 11: Exemplary Cargo to be Delivered

This example describes exemplary classes of nucleic acid and protein payloads that may be delivered with a curon, e.g., a curon based on an Anellovirus, e.g., as described herein.


One example of a payload is mRNA for protein expression. A coding sequence of interest is transcribed from either a viral promoter native to the source virus (e.g., an Anellovirus) or from a promoter introduced with the payload as part of a trans gene. Alternatively, the mRNA is encoded within the open reading frames of the viral mRNAs, resulting in fusions between viral proteins and the protein of interest. Cleavage domains, for example, the 2A peptide or a proteinase target site, may be used to separate the protein of interest from the viral proteins when desired.


Non-coding RNAs (ncRNAs) are another example of a payload. These RNAs are generally transcribed using RNA polymerase III promoters, such as U6 or VA. Alternatively, an ncRNA is transcribed using RNA polymerase II, such as the native viral promoter or regulatable synthetic promoters. When expressed from RNA polymerase II promoters, the ncRNAs are encoded as part of the mRNA exon, introns, or as extra RNA transcribed downstream of the poly-A signal. ncRNAs are often encoded as part of a larger RNA molecule or are cleaved apart using ribozymes or endoribonucleases. ncRNAs that can be encoded as cargo in the genome of a curon include micro-RNA (miRNA), small-interfering RNAs (siRNA), short hairpin RNA (shRNA), antisense RNA, miRNA sponges, long-noncoding RNA (lncRNA), and guide RNA (gRNA).


DNA may be used as a functional element without requiring RNA transcription. For example, DNA may be used as a template for homologous recombination. In another example, a protein-binding DNA sequence may be used to drive packaging of proteins of interest into a capsid (e.g., in a proteinaceous exterior of a curon). For homologous recombination, regions of homology to human genomic DNA are encoded into the vector DNA to act as homology arms. Recombination can be driven by a targeted endonuclease (such as Cas9 with a gRNA, or a zinc-finger nuclease), which can be expressed either from the vector or from a separate source. Inside the cell, a single-stranded DNA genome is converted to double-stranded DNA, which then acts as a template for homologous recombination at the genomic DNA break site. For recruiting proteins of interest, a protein-binding sequence can be encoded in the curon DNA. A DNA-binding protein of interest, or a protein of interest fused to a DNA-binding protein (such as Gal4), binds to the curon DNA. When the curon DNA is encapsulated by the capsid proteins, the DNA-binding protein is encapsulated too, and can be delivered to cells with the curon.


Example 12: Exemplary Payload Integration Loci

This example describes exemplary loci in the genomes of TTV-tth8 (GenBank accession number AJ620231.1) and TTMV-LY2 (GenBank accession number JX134045) into which nucleic acid payloads can be inserted.


Several strategies can be employed for insertions into the open reading frame (ORF) regions of TTV-tth8 (nucleotides 336 to 3015) and TTMV-LY2 (nucleotides 424 to 2812). In one example, in order to tag viral proteins or create fusion proteins, a payload is inserted in frame within the specific ORF of interest. Alternatively, part or all of the ORF region is deleted, which may or may not disrupt viral protein function. The payload is then inserted into the deleted region. Additionally, a hyper-variable domain (HVD) in ORF1 of TTV-tth8 (between nucleotides 716 and 2362) or TTMV-LY2 (between nucleotides 724 and 2273) can be used as an insertion site.


Alternatively, payload insertions are made into regions of the vector comparable to the non-coding regions (NCRs) of TTV-tth8 or TTMV-LY2. In particular, insertions are made in the 5′ NCR upstream of the TATA box, in the 5′ untranslated region (UTR), in the 3′ NCR downstream of the poly-A signal and upstream of the GC-rich region. Additionally, insertions are made into the miRNA region of TTV-tth8 (nucleotides 3429 to 3506). For the 5′ NCR region, insertions are made upstream of the TATA box (between nucleotides 1 and 82 in TTV-tth8, and nucleotides 1 and 236 in TTMV-LY2). In some embodiments, trans genes are inserted in the reverse orientation to reduce promoter interference. For the 5′ UTR, insertions are made downstream of the transcriptional start site (nucleotide 111 in TTV-tth8, and nucleotide 267 in TTMV-LY2) and upstream of the ORF2 start codon (nucleotide 336 in TTV-tth8, and nucleotide 421 in TTMV-LY2). 5′ UTR insertions add or replace nucleotides in the 5′ UTR. 3′ NCR insertions are made upstream of the GC-rich region, in particular after nucleotide 3588 in TTV-tth8 or nucleotide 2843 in TTMV-LY2, as described in Example 10. The miRNA of TTV-tth8 is replaced by alternative natural or synthetic miRNA hairpins.


Example 13: Defined Categories of Anellovirus and Conserved Regions Thereof

There are three genera of Anellovirus present in humans: alphatorquevirus (Torque Teno Virus, TTV), betatorquevirus (Torque Teno Midi Virus, TTMDV), and gammatorquevirus (Torque Teno Mini Virus, TTMV). Within alphatorquevirus, there are five well-supported phylogenetic clades (FIG. 11C). It is contemplated that any of these Anelloviruses can be used as a source virus (e.g., a source of viral DNA sequences) for producing a curon as described herein.


Among these sequences, the highest conservation is found in the 5′ UTR domain (about 75% conserved) and the GC-rich domain (greater than 100 base pairs, greater than 70% GC-content, about 70% conserved). Additional, a hypervariable domain (HVD) in the sequences has very low conservation (about 30% conserved). All Anelloviruses also contain a region in which all three reading frames are open.


Also provided herein are exemplary sequences of representative viruses from each of the TTV clades, and of TTMDV and TTMV, annotated with the conserved regions (see, e.g., Tables 1-14).


Example 14: Replication-Deficient Curons and Helper Viruses

For replication and packaging of a curon, some elements can be provided in trans. These include proteins or non-coding RNAs that direct or support DNA replication or packaging. Trans elements can, in some instances, be provided from a source alternative to the curon, such as a helper virus, plasmid, or from the cellular genome.


Other elements are typically provided in cis. These elements can be, for example, sequences or structures in the curon DNA that act as origins of replication (e.g., to allow amplification of curon DNA) or packaging signals (e.g., to bind to proteins to load the genome into the capsid). Generally, a replication deficient virus or curon will be missing one or more of these elements, such that the DNA is unable to be packaged into an infectious virion or curon even if other elements are provided in trans.


Replication deficient viruses can be useful as helper viruses, e.g., for controlling replication of a curon (e.g., a replication-deficient or packaging-deficient curon) in the same cell. In some instances, the helper virus will lack cis replication or packaging elements, but express trans elements such as proteins and non-coding RNAs. Generally, the therapeutic curon would lack some or all of these trans elements and would therefore be unable to replicate on its own, but would retain the cis elements. When co-transfected/infected into cells, the replication-deficient helper virus would drive the amplification and packaging of the curon. The packaged particles collected would thus be comprised solely of therapeutic curon, without helper virus contamination.


To develop a replication deficient curon, conserved elements in the non-coding regions of Anellovirus will be removed. In particular, deletions of the conserved 5′ UTR domain and the GC-rich domain will be tested, both separately and together. Both elements are contemplated to be important for viral replication or packaging. Additionally, deletion series will be performed across the entire non-coding region to identify previously unknown regions of interest.


Successful deletion of a replication element will result in reduction of curon DNA amplification within the cell, e.g., as measured by qPCR, but will support some infectious curon production, e.g., as monitored by assays on infected cells that can include any or all of qPCR, western blots, fluorescence assays, or luminescence assays. Successful deletion of a packaging element will not disrupt curon DNA amplification, so an increase in curon DNA will be observed in transfected cells by qPCR. However, the curon genomes will not be encapsulated, so no infectious curon production will be observed.


Example 15: Manufacturing Process for Replication-Competent Curons

This example describes a method for recovery and scaling up of production of replication-competent curons. Curons are replication competent when they encode in their genome all the required genetic elements and ORFs necessary to replicate in cells. Since these curons are not defective in their replication they do not need a complementing activity provided in trans. They might, however need helper activity, such as enhancers of transcriptions (e.g. sodium butyrate) or viral transcription factors (e.g. adenoviral E1, E2 E4, VA; HSV Vp16 and immediate early proteins).


In this example, double-stranded DNA encoding the full sequence of a synthetic curon either in its linear or circular form is introduced into 5E+05 adherent mammalian cells in a T75 flask by chemical transfection or into 5E+05 cells in suspension by electroporation. After an optimal period of time (e.g., 3-7 days post transfection), cells and supernatant are collected by scraping cells into the supernatant medium. A mild detergent, such as a biliary salt, is added to a final concentration of 0.5% and incubated at 37° C. for 30 minutes. Calcium and Magnesium Chloride is added to a final concentration of 0.5 mM and 2.5 mM, respectively. Endonuclease (e.g. DNAse I, Benzonase), is added and incubated at 25-37° C. for 0.5-4 hours. Curon suspension is centrifuged at 1000×g for 10 minutes at 4° C. The clarified supernatant is transferred to a new tube and diluted 1:1 with a cryoprotectant buffer (also known as stabilization buffer) and stored at −80° C. if desired. This produces passage 0 of the curon (P0). To bring the concentration of detergent below the safe limit to be used on cultured cells, this inoculum is diluted at least 100-fold or more in serum-free media (SFM) depending on the curon titer.


A fresh monolayer of mammalian cells in a T225 flask is overlaid with the minimum volume sufficient to cover the culture surface and incubated for 90 minutes at 37° C. and 5% carbon dioxide with gentle rocking. The mammalian cells used for this step may or may not be the same type of cells as used for the P0 recovery. After this incubation, the inoculum is replaced with 40 ml of serum-free, animal origin-free culture medium. Cells are incubated at 37° C. and 5% carbon dioxide for 3-7 days. 4 ml of a 10× solution of the same mild detergent previously utilized is added to achieve a final detergent concentration of 0.5%, and the mixture is then incubated at 37° C. for 30 minutes with gentle agitation. Endonuclease is added and incubated at 25-37° C. for 0.5-4 hours. The medium is then collected and centrifuged at 1000×g at 4° C. for 10 minutes. The clarified supernatant is mixed with 40 ml of stabilization buffer and stored at −80° C. This generates a seed stock, or passage 1 of curon (P1).


Depending on the titer of the stock, it is diluted no less than 100-fold in SFM and added to cells grown on multilayer flasks of the required size. Multiplicity of infection (MOI) and time of incubation is optimized at smaller scale to ensure maximal curon production. After harvest, curons may then be purified and concentrated as needed. A schematic showing a workflow, e.g., as described in this example, is provided in FIG. 12.


Example 16: Manufacturing Process of Replication-Deficient Curons

This example describes a method for recovery and scaling up of production of replication-deficient curons.


Curons can be rendered replication-deficient by deletion of one or more ORFs (e.g., ORF1, ORF1/1, ORF1/2, ORF2, ORF2/2, ORF2/3, and/or ORF2t/3) involved in replication. Replication-deficient curons can be grown in a complementing cell line. Such cell line constitutively expresses components that promote curon growth but that are missing or nonfunctional in the genome of the curon.


In one example, the sequence(s) of any ORF(s) involved in curon propagation are cloned into a lentiviral expression system suitable for the generation of stable cell lines that encode a selection marker, and lentiviral vector is generated as described herein. A mammalian cell line capable of supporting curon propagation is infected with this lentiviral vector and subjected to selective pressure by the selection marker (e.g., puromycin or any other antibiotic) to select for cell populations that have stably integrated the cloned ORFs. Once this cell line is characterized and certified to complement the defect in the engineered curon, and hence to support growth and propagation of such curons, it is expanded and banked in cryogenic storage. During expansion and maintenance of these cells, the selection antibiotic is added to the culture medium to maintain the selective pressure. Once curons are introduced into these cells, the selection antibiotic may be withheld.


Once this cell line is established, growth and production of replication-deficient curons is carried out, e.g., as described in Example 15.


Example 17: Production of Curons Using Suspension Cells

This example describes the production of curons in cells in suspension.


In this example, an A549 or 293T producer cell line that is adapted to grow in suspension conditions is grown in animal component-free and antibiotic-free suspension medium (Thermo Fisher Scientific) in WAVE bioreactor bags at 37 degrees and 5% carbon dioxide. These cells, seeded at 1×106 viable cells/mL, are transfected using lipofectamine 2000 (Thermo Fisher Scientific) under current good manufacturing practices (cGMP), with a plasmid comprising curon sequences, along with any complementing plasmids suitable or required to package the curon (e.g., in the case of a replication-deficient curon, e.g., as described in Example 16). The complementing plasmids can, in some instances, encode for viral proteins that have been deleted from the curon genome (e.g., a curon genome based on a viral genome, e.g., an Anellovirus genome, e.g., as described herein) but are useful or required for replication and packaging of the curons. Transfected cells are grown in the WAVE bioreactor bags and the supernatant is harvested at the following time points: 48, 72, and 96 hours post transfection. The supernatant is separated from the cell pellets for each sample using centrifugation. The packaged curon particles are then purified from the harvested supernatant and the lysed cell pellets using ion exchange chromatography.


The genome equivalents in the purified prep of the curons can be determined, for example, by using a small aliquot of the purified prep to harvest the curon genome using a viral genome extraction kit (Qiagen), followed by qPCR using primers and probes targeted towards the curon DNA sequence, e.g., as described in Example 18.


The infectivity of the curons in the purified prep can be quantified by making serial dilutions of the purified prep to infect new A549 cells. These cells are harvested 72 hours post transfection, followed by a qPCR assay on the genomic DNA using primers and probes that are specific to the curon DNA sequence.


Example 18: Quantification of Curon Genome Equivalents by qPCR

This example demonstrates the development of a hydrolysis probe-based quantitative PCR assay to quantify curons. Sets of primers and probes were designed based on selected genome sequences of TTV (Accession No. AJ620231.1) and TTMV (Accession No. JX134045.1) using the software Geneious with a final user optimization. Primer sequences are shown in Table 23 below.









TABLE 23





Sequences of forward and reverse primers and hydrolysis probes


used to quantify TTMV and TTV genome equivalents by quantitative PCR.

















TTMV

SEQ ID NO:





Forward Primer
5′-GAAGCCCACCAAAAGCAATT-3′
697





Reverse Primer
5′-AGTTCCCGTGTCTATAGTCGA-3′
698





Probe
5′-ACTTCGTTACAGAGTCCAGGGG-3′
699





TTV





Forward Primer
5′-AGCAACAGGTAATGGAGGAC-3′
700





Reverse Primer
5′-TGGAAGCTGGGGTCTTTAAC-3′
701





Probe
5′-TCTACCTTAGGTGCAAAGGGCC-3′
702









As a first step in the development process, qPCR is run using the TTV and TTMV primers with SYBR-green chemistry to check for primer specificity. FIG. 13 shows one distinct amplification peak for each primer pair.


Hydrolysis probes were ordered labeled with the fluorophore 6FAM at the 5′ end and a minor groove binding, non-fluorescent quencher (MGBNFQ) at the 3′ end. The PCR efficiency of the new primers and probes was then evaluated using two different commercial master mixes using purified plasmid DNA as component of a standard curve and increasing concentrations of primers. The standard curve was set up by using purified plasmids containing the target sequences for the different sets of primers-probes. Seven tenfold serial dilutions were performed to achieve a linear range over 7 logs and a lower limit of quantification of 15 copies per 20 ul reaction. Master mix #2 was capable of generating a PCR efficiency between 90-110%, values that are acceptable for quantitative PCR (FIG. 14). All primers for qPCR were ordered from IDT. Hydrolysis probes conjugated to the fluorophore 6FAM and a minor groove binding, non-fluorescent quencher (MGBNFQ) as well as all the qPCR master mixes were obtained from Thermo Fisher. An exemplary amplification plot is shown in FIG. 15.


Using these primer-probe sets and reagents, the genome equivalent (GEq)/ml in curon stocks was quantified. The linear range was between 1.5E+07-15 GEq per 20 ul reaction, which was then used to calculate the GEq/ml, as shown in FIGS. 16A-16B. Samples with higher concentrations than the linear range can be diluted as needed.


Example 19: Utilizing Curons to Express an Exogenous Protein in Mice

This example describes the usage of a curon in which the Torque Teno Mini Virus (TTMV) genome is engineered to express the firefly luciferase protein in mice.


The plasmid encoding the DNA sequence of the engineered TTMV encoding the firefly-luciferase gene is introduced into A549 cells (human lung carcinoma cell line) by chemical transfection. 18 ug of plasmid DNA is used for transfection of 70% confluent cells in a 10 cm tissue culture plate. Empty vector backbone lacking the TTMV sequences is used as a negative control. Five hours post-transfection, cells are washed with PBS twice and are allowed to grow in fresh growth medium at 37° C. and 5% carbon dioxide.


Transfected A549 cells, along with their supernatant, are harvested 96 hours post transfection. Harvested material is treated with 0.5% deoxycholate (weight in volume) at 37° C. for 1 hour followed by endonuclease treatment. Curon particles are purified from this lysate using ion exchange chromatography. To determine curon concentration, a sample of the curon stock is run through a viral DNA purification kit and genome equivalents per ml are measured by qPCR using primers and probes targeted towards the curon DNA sequence.


A dose-range of genome equivalents of curons in 1× phosphate-buffered saline is performed via a variety of routes of injection (e.g. intravenous, intraperitoneal, subcutaneous, intramuscular) in mice at 8-10 weeks of age. Ventral and dorsal bioluminescence imaging is performed on each animal at 3, 7, 10 and 15 days post injection. Imaging is performed by adding the luciferase substrate (Perkin-Elmer) to each animal intraperitoneally at indicated time points, according to the manufacturer's protocol, followed by intravital imaging.


Example 20: Genome Alignments to Determine Whether Curon DNA Integrated into Host Genomes

This example describes the computational analysis performed to determine whether curon DNA can integrate into the host genome, by examining whether Torque Teno Virus (TTV) has integrated into the human genome.


The complete genomes of one representative TTV sequence from each of clades 1-5 were aligned against the human genome sequence using the Basic Local Alignment Search Tool (BLAST) that finds regions of local similarity between sequences. The representative TTV sequences shown in Table 24 were analyzed:









TABLE 24







Representative TTV sequences










TTV Clade
NCBI Accession No.







Clade 1
AB064597.1



Clade 2
AB028669.1



Clade 3
AJ20231.1



Clade 4
AF122914.3



Clade 5
AF298585.1










Sequences from none of the aligned TTVs were found to have any significant similarity to the human genome, indicating that the TTVs have not integrated into the human genome.


Example 21: Assessment of Curon Integration into a Host Genome

In this example, A549 cells (human lung carcinoma cell line) and HEK293T cells (human embryonic kidney cell line) are infected with either curon particles or AAV particles at MOIs of 5, 10, 30 or 50. The cells are washed with PBS 5 hours post infection and replaced with fresh growth medium. The cells are then allowed to grow at 37 degrees and 5% carbon dioxide. Cells are harvested five days post infection and they are processed to harvest genomic DNA, using the genomic DNA extraction kit (Qiagen). Genomic DNA is also harvested from uninfected cells (negative control). Whole-genome sequencing libraries are prepared for these harvested DNAs, using the Nextera DNA library preparation kit (Illumina), according to manufacturers protocol. The DNA libraries are sequenced using the NextSeq 550 system (Illumina) according to manufacturer's protocol. Sequencing data is assembled to the reference genome and analyzed to look for junctions between curon or AAV genomes and host genome. In cases where junctions are detected they are verified in the original genomic DNA sample prior sequencing library preparation by PCR. Primers are designed to amplify the region containing and around the junctions. The frequency of integration of Curons into the host genome is determined by quantifying the number of junctions (representing integration events) and the total number of curon copies in the sample by qPCR. This ratio can be compared to that of AAV.


Example 22: Functional Effects of a Curon Expressing an Exogenous microRNA Sequence

This example provides a successful demonstration of function of curons expressing exogenous microRNA (miRNA) sequences.


Curon DNA sequences were generated that contained one of the following exogenous microRNA sequences in the 3′ non-coding region (NCR):

    • 1) miR-124
    • 2) miR-518
    • 3) miR-625
    • 4) Non-targeting scramble miRNA (miR-scr)


This was done by replacing the pre-miRNA sequence of the tth8-T1 miRNA of TTV-tth8 with the pre-miRNA sequences of the miRNAs mentioned above. Curon DNAs were then transfected into HEK293T cells seperately. Transfected 293T cells, along with the supernatants were harvested 96 hours post transfection. Harvested material was treated with 0.5% deoxycholate (weight in volume) at 37 degrees Celsius, followed by endonuclease treatment. This lysate containing the packaged curons (P0 stock of curons) were used to infect new 293T cells. These cells were harvested 96 hours, post infection. The harvested cells were then treated with 0.5% deoxycholate (weight in volume) at 37 degrees Celsius, followed by endonuclease treatment. This lysate was then dialyzed in the 10K molecular-weight cutoff dialysis cassettes in PBS at 4 degrees overnight to remove any deoxycholate. The titer of the curon was quantified in these dialyzed lysate (P1 stock of curon) using qPCR. P1 stock of curons were then incubated with several KRAS mutant non-small cell lung cancer (NSCLC) cell lines (SW900, NCI-H460, and A549) for 3 days at a titer of 274 genome equivalents per cell. Cell viability was measured with an Alamar blue assay. As shown in FIG. 17A, curons expressing an exogenous miR-625 significantly inhibited cancer cell line viability in all three NSCLC cell lines as compared to cells infected with control curons expressing a scrambled non-targeted miRNA and uninfected cells.


Additionally, a YFP-reporter assay was used to determine the downregulation of the target by curon miRNA by site specific binding to its target site. A YFP reporter that has a specific binding sequence for miR-625 was generated and transfected into HEK293T cells. 24 hours after transfection, these HEK293T cells were infected with curons expressing either miR-625 or a non-specific miRNA (miR-124) at a titer of 2.4 genome equivalents per cell, and YFP fluorescence was then measured using flow cytometry. As shown in FIG. 17B, curons expressing miR-625 significantly downregulated YFP expression, whereas curons expressing the non-specific miRNA miR-124 did not affect YFP expression. These results show that the curon with miR-625 induced on-target downregulation of the YFP protein target.


The ability of curons expressing exogenous miRNAs to modulate host gene expression was also tested. SW-900 NSCLC cells were infected with Curons expressing either miR-518 or miR-625 or miR-scr at a dose of 10 genome equivalents per cell. Infected cells were harvested 72 hours post infection and total protein lysates were prepared. Immunoblot analysis was performed on these protein lysates to determine the levels of p65 protein. The intensity of p65 protein signal was normalized to the total amount of protein on the membrane for each sample (FIG. 17C). A reduction in p65 levels was observed, indicating that curons can modulate expression of a host gene.


Example 23: Preparation and Production of Curons to Express Exogenous Non-Coding RNAs

This example describes the synthesis and production of curons to express exogenous small non-coding RNAs.


The DNA sequence from the tth8 strain of TTV (Jelcic et al, Journal of Virology, 2004) is synthesized and cloned into a vector containing the bacterial origin of replication and bacterial antibiotic resistance gene. In this vector, the DNA sequence encoding the TTV miRNA hairpin is replaced by a DNA sequence encoding an exogenous small non-coding RNA such as miRNA or shRNA. The engineered construct is then transformed into electro-competent bacteria, followed by plasmid isolation using a plasmid purification kit according to the manufacturer's protocols.


The curon DNA encoding the exogenous small non-coding RNAs is transfected into an eukaryotic producer cell line to produce curon particles. The supernatant of the transfected cells containing the curon particles is harvested at different time points post transfection. Curon particles, either from the filtered supernatant or after purification, are used for downstream applications, e.g., as described herein.


Example 24: Conservation in Anellovirus Clades

This example describes the identification of five clades within the alphatorquevirus genus. The average pairwise identity within each clade generally ranges from 66 to 90% (FIG. 18). Representative sequences between these clades showed 57.2% pairwise identity across the sequences (FIG. 19). The pairwise identity is lowest among the open reading frames (˜51.4%), and higher in the non-coding regions (69.5% in the 5′ NCR, 72.6% in the 3′ NCR) (FIG. 19). This suggests that DNA sequences or structures in the non-coding regions play important roles in viral replication.


The amino acid sequences of the putative proteins in alphatorquevirus were also compared. The DNA sequences showed approximately 49 to 54% pairwise identity, while the amino acid sequences showed approximately 29 to 36% pairwise identity (FIG. 20). Interestingly, the representative sequences from the alphatorquevirus clades are able to successfully replicate in vivo and are observed in the human population. This suggests that the amino acid sequences for anellovirus proteins can vary widely while retaining functionalities such as replication and packaging.


Anelloviruses were found to have regions of local high conservation in the non-coding regions. In the region downstream of the promoter is a 71-bp 5′ UTR conserved domain that has 96.6% pairwise identity across the five alphatorquevirus clades (FIG. 21). Downstream of the open reading frames in the 3′ non-coding region of alphatorqueviruses, there is a 307 bp region with 85.2% pairwise identity between the representative sequences (FIG. 19). Near the 3′ end of this 3′ conserved non-coding region is a highly conserved 51 bp sequence with 96.5% pairwise identity. Each Anellovirus studied in this analysis also includes a GC-rich region, with greater than 70% GC content (FIG. 22).


Example 25: Expression of an Endogenous miRNA from a Curon and Deletion of the Endogenous miRNA

In one example, curons based on the TTV-tth8 strain were used to infect Raji B cells in culture. These curons comprised a sequence encoding the endogenous payload of the TTV-tth8 Anellovirus, which is a miRNA targeting the mRNA encoding n-myc interacting protein (NMI). NMI operates downstream of the JAK/STAT pathway to regulate the transcription of various intracellular signals, including interferon-stimulated genes, proliferation and growth genes, and mediators of the inflammatory response. As shown in FIG. 23A, curons were able to successfully infect Raji B cells. Infection of cells with curons comprising the miRNA against NMI resulted in successful knockdown of NMI compared to control cells infected with curons lacking the miRNA against NMI (FIG. 23B). Cells infected with curon comprising the miRNA against NMI showed a greater than 75% reduction in NMI protein levels compared to control cells. This example demonstrates that a curon with a native Anellovirus miRNA can knock down a target molecule in host cells.


In another example, the endogenous miRNA of an Anellovirus-based curon was deleted. The resultant curon (ΔmiR) was then used to infect host cells. Infection rate was compared to that of corresponding curons in which the endogenous miRNA was retained. As shown in FIG. 24, curons in which the endogenous miRNA were deleted were still able to infect cells at levels comparable to those observed for curons in which the endogenous miRNA was still present. This example demonstrates that the endogenous miRNA of an Anellovirus-based curon can be mutated, or deleted entirely, and still generate infectious particles.

Claims
  • 1. A synthetic curon comprising: (i) a genetic element comprising a promoter element and a nucleic acid sequence encoding an exogenous effector, and a protein binding sequence, wherein the genetic element comprises one or both of: (a) a sequence having at least 85% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of nucleotides 323-393 of the nucleic acid sequence of Table 11, or(b) a sequence having at least 85% sequence identity to the Anellovirus GC-rich region of nucleotides 2868-2929 of the nucleic acid sequence of Table 11; and(ii) a proteinaceous exterior; wherein the genetic element is enclosed within the proteinaceous exterior; andwherein the synthetic curon is capable of delivering the genetic element into a eukaryotic cell.
  • 2. The synthetic curon of claim 1, wherein the genetic element is single-stranded.
  • 3. The synthetic curon of any of the preceding claims, wherein the genetic element is DNA.
  • 4. The synthetic curon of claim 3, wherein the genetic element is a negative strand DNA.
  • 5. The synthetic curon of any of the preceding claims, wherein the genetic element integrates at a frequency of less than 10%, 8%, 6%, 4%, 3%, 2%, 1%, 0.5%, 0.2%, 0.1% of the curons that enters the cell, e.g., wherein the synthetic curon is non-integrating.
  • 6. The synthetic curon of any of the preceding claims, wherein the genetic element comprises a sequence of the Consensus 5′ UTR nucleic acid sequence shown in Table 16-1.
  • 7. The synthetic curon of any of the preceding claims, wherein the genetic element comprises a sequence of the Consensus GC-rich region shown in Table 16-2.
  • 8. The synthetic curon of any of the preceding claims, wherein the genetic element comprises a sequence of at least 100 nucleotides in length, which consists of G or C at least 70% (e.g., about 70-100%, 75-95%, 80-95%, 85-95%, or 85-90%) of the positions.
  • 9. The synthetic curon of any of the preceding claims, wherein the genetic element comprises a sequence having at least 85% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of nucleotides 1-393 of the nucleic acid sequence of Table 11 and a sequence having at least 85% sequence identity to the Anellovirus GC-rich region of nucleotides 2868-2929 of the nucleic acid sequence of Table 11.
  • 10. The synthetic curon of any of the preceding claims, wherein the genetic element comprises at least 75% identity to the nucleotide sequence of Table 11.
  • 11. The synthetic curon of any of the preceding claims, wherein the promoter element is exogenous to wild-type Anellovirus.
  • 12. The synthetic curon of any of claims 1-10, wherein the promoter element is endogenous to wild-type Anellovirus.
  • 13. The synthetic curon of any of the preceding claims, wherein the exogenous effector encodes a therapeutic agent, e.g., a therapeutic peptide or polypeptide or a therapeutic nucleic acid.
  • 14. The synthetic curon of any of the preceding claims, wherein the exogenous effector comprises a regulatory nucleic acid, e.g., an miRNA, siRNA, mRNA, lncRNA, RNA, DNA, an antisense RNA, gRNA; a fluorescent tag or marker, an antigen, a peptide, a synthetic or analog peptide from a naturally-bioactive peptide, an agonist or antagonist peptide, an anti-microbial peptide, a pore-forming peptide, a bicyclic peptide, a targeting or cytotoxic peptide, a degradation or self-destruction peptide, a small molecule, an immune effector (e.g., influences susceptibility to an immune response/signal), a death protein (e.g., an inducer of apoptosis or necrosis), a non-lytic inhibitor of a tumor (e.g., an inhibitor of an oncoprotein), an epigenetic modifying agent, an epigenetic enzyme, a transcription factor, a DNA or protein modification enzyme, a DNA-intercalating agent, an efflux pump inhibitor, a nuclear receptor activator or inhibitor, a proteasome inhibitor, a competitive inhibitor for an enzyme, a protein synthesis effector or inhibitor, a nuclease, a protein fragment or domain, a ligand, an antibody, a receptor, or a CRISPR system or component.
  • 15. The synthetic curon of any of the preceding claims, wherein the exogenous effector comprises an miRNA, and decreases expression of a host gene.
  • 16. The synthetic curon of any of the preceding claims, wherein the exogenous effector comprises a nucleic acid sequence about 20-200, 30-180, 40-160, 50-140, or 60-120 nucleotides in length.
  • 17. The synthetic curon of any of the preceding claims, wherein the nucleic acid sequence encoding the exogenous effector is about 20-200, 30-180, 40-160, 50-140, or 60-120 nucleotides in length.
  • 18. The synthetic curon of any of the preceding claims, wherein the sequence encoding the exogenous effector is situated at, within, or adjacent to (e.g., 5′ or 3′ to) one or more of the ORF1 locus, e.g., at the C-terminus of the ORF1 locus, or the 3′ noncoding region downstream of the poly-A region.
  • 19. The synthetic curon of any of the preceding claims, wherein the sequence encoding the exogenous effector is located between the poly-A region and the GC-rich region of the genetic element.
  • 20. The synthetic curon of any of the preceding claims, which comprises (e.g., in the proteinaceous exterior) one or more of an amino acid sequence chosen from ORF2, ORF2/2, ORF2/3, ORF1, ORF1/1, or ORF1/2 of Table 12, or an amino acid sequence having at least 85% sequence identity thereto.
  • 21. The synthetic curon of any of the preceding claims, wherein the portions of the genetic element excluding the effector have a combined size of about 2.5-5 kb (e.g., about 2.8-4 kb, about 2.8-3.2 kb, about 3.6-3.9 kb, or about 2.8-2.9 kb), less than about 5 kb (e.g., less than about 2.9 kb, 3.2 kb, 3.6 kb, 3.9 kb, or 4 kb), or at least 100 nucleotides (e.g., at least 1 kb).
  • 22. The synthetic curon of any of the preceding claims, wherein the synthetic curon does not comprise a lipid bilayer.
  • 23. The synthetic curon of any of the preceding claims, wherein the synthetic curon is capable of infecting mammalian cells, e.g., human cells, e.g., immune cells, liver cells, or lung epithelial cells.
  • 24. The synthetic curon of any of the preceding claims, wherein the genetic element is capable of replicating, e.g., capable of generating at least 102, 2×102, 5×102, 103, 2×103, 5×103, or 104 genomic equivalents of the genetic element per cell, e.g., as measured by a quantitative PCR assay.
  • 25. The synthetic curon of any of the preceding claims, which is substantially non-pathogenic, e.g., does not induce a detectable deleterious symptom in a subject (e.g., elevated cell death or toxicity, e.g., relative to a subject not exposed to the curon).
  • 26. The synthetic curon of any of the preceding claims, which is substantially non-immunogenic, e.g., does not induce a detectable and/or unwanted immune response, e.g., as detected according to the method described in Example 4.
  • 27. The synthetic curon of claim 26, wherein the substantially non-immunogenic curon has an efficacy in a subject that is a least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% of the efficacy in a reference subject lacking an immune response.
  • 28. The synthetic curon of claim 26 or 27, wherein the immune response comprises one or more of an antibody specific to the curon; a cellular response (e.g., an immune effector cell (e.g., T cell- or NK cell) response) against the curon or cells comprising the curon; or macrophage engulfment of the curon or cells comprising the curon.
  • 29. The synthetic curon of any of the preceding claims, wherein a population of at least 1000 of the synthetic curons is capable of delivering at least 100 copies of the genetic element into one or more of the eukaryotic cells.
  • 30. A synthetic curon comprising: (i) a genetic element comprising a promoter element and a nucleic acid sequence encoding an exogenous effector, and a protein binding sequence, wherein the genetic element comprises one or both of: (a) a sequence having at least 85% sequence identity to the Anellovirus 5′ UTR conserved domain of the nucleic acid sequence of Table 1, 3, 5, 7, 9 or 13; or(b) a sequence having at least 85% sequence identity to the Anellovirus GC-rich region of the nucleic acid sequence of Table 1, 3, 5, 7, 9 or 13;and(ii) a proteinaceous exterior; wherein the genetic element is enclosed within the proteinaceous exterior; andwherein the synthetic curon is capable of delivering the genetic element into a eukaryotic cell.
  • 31. The synthetic curon of claim 30, which comprises (e.g., in the proteinaceous exterior) one or more of an amino acid sequence chosen from ORF2, ORF2/2, ORF2/3, ORF2t/3, ORF1, ORF1/1, or ORF1/2 of any of Tables 2, 4, 6, 8, 10, or 14, or an amino acid sequence having at least 85% sequence identity thereto.
  • 32. A nucleic acid molecule comprising a promoter element and a nucleic acid sequence encoding an exogenous effector, and a protein binding sequence, wherein the genetic element comprises one or both of: (a) a sequence having at least 85% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of nucleotides 323-393 of the nucleic acid sequence of Table 11, or(b) a sequence having at least 85% sequence identity to the Anellovirus GC-rich region of nucleotides 2868-2929 of the nucleic acid sequence of Table 11.
  • 33. A nucleic acid molecule comprising a promoter element and a nucleic acid sequence encoding an exogenous effector, and a protein binding sequence, wherein the genetic element comprises one or both of: (a) a sequence having at least 85% sequence identity to the Anellovirus 5′ UTR conserved domain nucleotide sequence of the nucleic acid sequence of Table 1, 3, 5, 7, or 13, or(b) a sequence having at least 85% sequence identity to the Anellovirus GC-rich region of the nucleic acid sequence of Table 1, 3, 5, 7, or 13.
  • 34. A pharmaceutical composition comprising the synthetic curon of any of the preceding claims, and a pharmaceutically acceptable carrier or excipient.
  • 35. The pharmaceutical composition of claim 34, which comprises at least 103, 104, 105, 106, 107, 108, or 109 synthetic curons.
  • 36. A reaction mixture comprising the synthetic curon of any of claims 1-31 and a second nucleic acid sequence encoding one or more of an amino acid sequence chosen from ORF2, ORF2/2, ORF2/3, ORF1, ORF1/1, or ORF1/2 of Table 12, or an amino acid sequence having at least 85% sequence identity thereto.
  • 37. A reaction mixture comprising the synthetic curon of any of claims 1-31 and a second nucleic acid sequence encoding one or more of an amino acid sequence chosen from ORF2, ORF2/2, ORF2/3, ORF2t/3, ORF1, ORF1/1, or ORF1/2 of any of Tables 2, 4, 6, 8, 10, or 14, or an amino acid sequence having at least 85% sequence identity thereto.
  • 38. The reaction mixture of claim 36 or 37, wherein the second nucleic acid sequence is part of the genetic element.
  • 39. The reaction mixture of claim 36 or 37, wherein the second nucleic acid sequence is not part of the genetic element, e.g., the second nucleic acid sequence is comprised by a helper cell or helper virus.
  • 40. Use of a synthetic curon of any of the claims 1-31 or the pharmaceutical composition of any of claims 34-35 for delivering the genetic element to a host cell.
  • 41. Use of a synthetic curon of any of the claims 1-31 or the pharmaceutical composition of any of claims 34-35 for treating a disease or disorder in a subject.
  • 42. The use of claim 41, wherein the disease or disorder is chosen from an immune disorder, an interferonopathies (e.g., Type I interferonopathy), infectious disease, inflammatory disorder, autoimmune condition, cancer (e.g., a solid tumor, e.g., lung cancer), and a gastrointestinal disorder.
  • 43. A synthetic curon of any of claims 1-31 or the pharmaceutical composition of any of claims 34-35, for use in treating a disease or disorder in a subject.
  • 44. A method of treating a disease or disorder in a subject, the method comprising administering a synthetic curon of any of claims 1-31 or the pharmaceutical composition of any of claims 34-35 to the subject, wherein the disease or disorder is chosen from an immune disorder, an interferonopathy (e.g., Type I interferonopathy), infectious disease, inflammatory disorder, autoimmune condition, cancer (e.g., a solid tumor, e.g., lung cancer), and a gastrointestinal disorder.
  • 45. A method of manufacturing a synthetic curon composition, comprising: a) providing a plurality of synthetic curons according to claims 1-31, or a composition or pharmaceutical composition of any of claims 34-35;b) optionally evaluating the plurality for one or more of: a contaminant described herein, an optical density measurement (e.g., OD 260), particle number (e.g., by HPLC), infectivity (e.g., particle:infectious unit ratio); andc) formulating the plurality of synthetic curons, e.g., as a pharmaceutical composition suitable for administration to a subject, e.g., if one or more of the parameters of (b) meet a specified threshold.
RELATED APPLICATIONS

This application claims priority to U.S. Ser. No. 62/518,898 filed Jun. 13, 2017, U.S. Ser. No. 62/597,387 filed Dec. 11, 2017, and U.S. Ser. No. 62/676,730 filed May 25, 2018, each of which is incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/037379 6/13/2018 WO 00
Provisional Applications (3)
Number Date Country
62518898 Jun 2017 US
62597387 Dec 2017 US
62676730 May 2018 US