Compositions comprising dimethyl sulfoxide (DMSO)

Information

  • Patent Grant
  • 9427419
  • Patent Number
    9,427,419
  • Date Filed
    Monday, September 11, 2006
    18 years ago
  • Date Issued
    Tuesday, August 30, 2016
    8 years ago
Abstract
The invention relates generally to compositions comprising dimethylsulfoxide (DMSO) and associated compounds in combination with one or more of the following: fructose 1,6-diphosphate, L-arginine, L-lysine, L-aspartate, and urea. Methods for treating traumatic brain injury, ischemic stroke, atherosclerosis, spinal cord trauma, and neurodegenerative illnesses are also provided.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to pharmaceutical compositions and medicaments comprising dimethyl sulfoxide (DMSO) and/or related compounds in combination with one or more other compounds, such as L-arginine, fructose 1,6-diphosphate, L-lysine, L-aspartate, and urea.


2. Description of the Related Art


Traumatic brain injury and stroke generally cause a reduction in cerebral blood flow (CBF), which may cause additional damage to the brain. Applicant believes that there are presently no known therapeutic agents which increase CBF in a sustained fashion (for at least several days) after traumatic brain injury. (Narayan K, and NIH Collaborative Committee. Clinical trials in head injury. J. Neurotrauma. 2002; 19(5):503-57, herein incorporated by reference).


Nitric oxide (NO) is a multifunctional messenger molecule that has a prominent role in the regulation of CBF and cell-to-cell communication in the brain. Its highest levels in the body is found in neurons. NO is synthesized from L-arginine by a family of enzymes called NO synthases (NOS). Release of NO from cerebral endothelial cells to produce vasodilation is a fairly well established reaction. NO has been shown to diffuse towards the lumen of blood vessels in humans where it helps maintain blood fluidity, and by inference, reduce blood viscosity, thus improving blood flow. (Moncada, S., Palmer, R. M., and Higgs, E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev 1991; 43, 109-142; Ignarro L, Napoli C. Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Curr Atheroscler Rep. 2004 July; 6(4):281-7, herein incorporated by reference).


Arginine is a basic amino acid that plays several pivotal roles in cellular physiology. Like any amino acid, it is involved with protein synthesis, but it is also intimately involved with cell signaling through the production of NO and cell proliferation through its metabolism to ornithine and the other polyamines. Because of these multiple functions, arginine is an essential substrate for healing processes involving tissue trauma. Numerous studies have shown that arginine supplementation can lead to normalization or improvement of wound healing. (Barbul A. Arginine: biochemistry, physiology, and therapeutic implications. J Parent Enteral Nutr 1986; 10:227-238; Cheman L. L-Arginine and Free Radical Scavengers Increase Cerebral Blood Flow and Brain Tissue Nitric Oxide Concentrations after Controlled Cortical Impact Injury in Rats. Journal of Neurotrauma, January 2003, 20 (1): 77-85; Hlatky R. The Role of Endothelial Nitric Oxide Synthase in the Cerebral Hemodynamics after Controlled Cortical Impact Injury in Mice. Journal of Neurotrauma, 2003, 20 (10): 995-1006, all herein incorporated by reference).


Studies have shown that L-arginine administration after experimental traumatic injury in mice increased CBF post-injury. L-Arginine administration also resulted in a reduction in contusion volume in the L-arginine treated mice. The likely explanation for these results is that the increase in CBF was beneficial to the outcome of the head injury in these animals, and such action is mediated by vascular NO. These findings suggest an important role for vascular NO produced by endothelial NO synthase (eNOS) in the preservation of cerebral blood flow in contused brain following traumatic injury, and in the improvement in cerebral blood flow with L-arginine administration. Normal synthesis of vascular NO from L-arginine is achieved by the action of eNOS and specific co-factors nicotinamide adenine dinucleotide phosphate (NADPH) and tetrahydrobiopterin (BH4) in the endothelium.


L-arginine is a non-toxic, inexpensive, natural amino acid that can be given in high doses orally for prolonged periods of several months or intravenously for several weeks. (Piatti P, Fragasso G, Monti L D, Setola E, Lucotti P, Fermo I, Paroni R, Galluccio E, Pozza G, Chierchia S, Margonato A. Acute intravenous L-arginine infusion decreases endothelin-1 levels and improves endothelial function in patients with angina pectoris and normal coronary arteriograms: correlation with asymmetric dimethylarginine levels. Circulation. 2003; 107(3):429-36, herein incorporated by reference).


Arginine is a dibasic amino acid, and is found in many proteins in the body. Its metabolism is intimately tied to several metabolic pathways involved in the synthesis of urea, NO, polyamines, agmatine, and creatine phosphate. (FIG. 1). Arginine can be provided via nutritional intake, via new synthesis, or via systemic administration, for example, intravenously. About 50% of the ingested arginine is released into the portal circulation. The other part is directly utilized in the small bowel. The physiological uptake of arginine and citrulline by the liver is low because the liver does not express large amounts of the cationic transporter for the basic amino acid arginine. Therefore, most of the portal venous arginine and citrulline enters the systemic circulation and serves as substrate for extrahepatic tissues. The kidney metabolizes citrulline into arginine (the “intestinal-renal axis”) and exports arginine into the systemic circulation. (FIG. 1).


The average nutritional arginine uptake is approximately 5-6 g/day. Standard rodent laboratory chow diets contain about 1% L-arginine, which corresponds to an average intake of 1 g arginine/kg body weight/day. Arginine-deficient rats subjected to minor trauma lose significantly more weight and are more likely to experience mortality when compared to arginine-repleted animals.


Arginine catabolism occurs via several enzymatic pathways (FIG. 1). The two major catabolic pathways during healing after trauma are degradation via NO synthase (NOS) isoforms and via the two arginase isoforms. Both pathways deplete extracellular arginine concentrations in the wound milieu, thus rendering arginine an essential amino acid for wound healing. The current interest in L-arginine is due mainly to its close relation with the important signal molecule NO.


The major isoform of NOS activation during healing after trauma is inducible nitric oxide synthase (iNOS), which generates larger amounts of NO than the constitutive isoforms (endothelial NOS and neuronal NOS). Major sources of iNOS are macrophages but also fibroblasts, endothelial cells, and keratinocytes. Strong counter-regulating mechanisms exist between the two catabolic pathways. Intermediates and end products of each pathway can reciprocally inhibit each other. Each pathway is stimulated by a well-defined set of cytokines that in turn also down-regulates the alternate pathway.


Arginase exists in two different isoforms. Arginase I is the cytosolic “hepatic” isoform that is also present in wound-derived fibroblasts. Arginase II, the mitochondrial extrahepatic isoform, is present in many other cell types such as macrophages, kidney, breast tissue, and enterocytes. The two isoforms are encoded by different genes and have their own distinct regulation. It is unclear which isoform, if any, plays the predominant role in the wound environment.


The main source of vascular NO in mammals is derived from eNOS contained within the endothelial cells. The loss or uncoupling of eNOS impairs cerebrovascular function in part by promoting vasoconstriction, platelet aggregation, smooth muscle cell proliferation, leukocyte adhesion and greater endothelial-immune cell interaction. Vascular NO production from the endothelium is regulated by eNOS enzyme activity and/or NOS gene expression. (Kubes P. and Granger, D. N. (1992). Nitric oxide modulates microvascular permeability. Am. J. Physiol. 262, H611-H615, herein incorporated by reference).


Besides the key role vascular NO plays in vascular tone, blood pressure and vascular homeostasis, it also acts to inhibit platelet and leukocyte adhesion to the endothelium, a process that may down-regulate pro-inflammatory events. (Kubes P., Kanwar S., Niu X. F. (1993). Nitric oxide synthesis inhibition induces leukocyte adhesion via superoxide and mast cells. FASEB J. 7, 1293-1299, herein incorporated by reference).


When trauma to the brain reduces cerebral blood flow (CBF), formation of reactive oxygen species (ROS) at the injury site may induce a deficiency in tetrahydrobiopterin (BH4), a rate limiting step in eNOS synthesis, resulting in eNOS uncoupling and reduced release of vascular NO. Reduced vascular NO is reported to involve many changes including: endothelial cell (EC) shape changes, mitochondrial stress, reduced eNOS, impaired glucose transporter 1 (thus lowering glucose delivery to brain cells), tumor necrosis factor-alpha (TNF-alpha) activation, neutral factor-kappa B (NF-kB) translocation from cytosol to nucleus and activation of transcription inflammatory genes, release of the powerful vasoconstrictor endothelin-1 (ET-1), migration of vascular smooth muscle cells (VSMC) leading to the formation of vessel wall plaques, activation of hypoxic inducible factor-1alpha (HIF-1alpha), increase of vascular adhesion molecules (VCAM), increased beta peptide angiopathy, excess free radical formation including hydrogen peroxide (H2O2) and superoxide anion (SO), impairment of the angiogenic vascular endothelial growth factor (VEGF) and persistent shear-stress on vessel walls. (de la Torre J C, Stefano G B. Evidence that Alzheimer's disease is a microvascular disorder: Role of constitutive nitric oxide. Brain Res Rev. 34:119-136, 2000, herein incorporated by reference).


Vascular NO therefore, acts as an antiatherogenic, antithrombotic and anti-ischemic molecule. No does this by reducing oxidative stress, by preventing platelet aggregation and by stimulating angiogenesis via vascular endothelial growth factor (VEGF) while reducing shear stress on the vessel wall.


The increased synthesis of vascular NO by L-arginine appears to be a logical approach for the treatment of severe traumatic brain injury, acute ischemic stroke, and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, subacute sclerosing panencephalitis, vascular dementia, multiple sclerosis, assorted neuropathies, Huntington's disease, amyotrophic lateral sclerosis (ALS) and leukodystrophies.


L-arginine produces peak plasma levels approximately 1-2 hours after oral administration. The most common adverse reactions of higher doses, from 15 to 30 grams daily, are nausea, abdominal cramps and diarrhea. (Visser J J, Hoekman K. Arginine supplementation in the prevention and treatment of osteoporosis. Med. Hypotheses. 1994 November; 43(5):339-42, herein incorporated by reference).


Additionally, L-arginine given as a continuous intravenous infusion for 120 minutes at a rate of 0.125 g/min, for angina pectoris, was able to reduce the levels of endothelin-1, one of the most powerful vasoconstrictors known and also lowered the serum levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of eNOS.


DMSO has been shown to increase CBF in a variety of brain injuries including stroke and head trauma in animals and humans. The combination of DMSO with fructose 1,6-diphosphate has been reported to of benefit to victims of acute and chronic human stroke. The mechanism of DMSO action for increasing CBF after brain injury is not clear but may be due to its ability to: i) reduce cerebrovascular reactivity, ii) deaggregate platelets in blood vessels thus augmenting blood fluidity by decreasing blood viscosity and iii) reducing intracranial pressure, thus allowing compressed blood vessels in brain tissue to return to a more normal hemodynamic state. DMSO is not known to affect vascular nitric oxide, ADMA or endothelin-1. (de la Torre, J. C. and Surgeon, J. W.: Dexamethasone and DMSO in cerebral infarction. Stroke, 7:577-583, 1976; de la Torre, J. C., Kawanaga, H. M., Goode, D. J., Johnson, C. M., Kajihara, K., Rowed, D. W. Mullan, S.: Dimethyl sulfoxide in CNS trauma. Ann. N.Y. Acad. Sci., 243:362-389, 1975; Brown F D, Johns L M, Mullan S. Dimethyl sulfoxide in experimental brain injury, with comparison to mannitol. J. Neurosurg. 1980 July; 53(1):58-62; Karaca M, Kilic E, Yazici B, Demir S, de la Tone J C. Ischemic stroke in elderly patients treated with a free radical scavenger-glycolytic intermediate compound. Neurol Res, 24:73-80, 2002; Karaca, M., Bilgin, U., Akar, M. and de la Torre, J. C.: Dimethyl sulfoxide lowers ICP after closed head trauma. Eur. J. Clin. Pharmacol., 40:113-114, 1991, all herein incorporated by reference).


Ischemia has been proposed to cause an excess increase in the extracellular concentration of glutamate, an excitotoxic amino acid, in the central nervous system. (Benveniste H, Drejer J, Schousboe A, Diemer N H: Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 1984; 43: 1369-74, herein incorporated by reference).


The increased glutamate in turn triggers a surplus influx of calcium ion (Ca2+) from the extracellular space into the cytosol, resulting in the initiation of a neuronal cell death cascade. The extracellular glutamate concentration is tightly regulated by release from presynaptic membranes and uptake by postsynaptic membranes and glia. This regulation is closely linked to alterations in intracellular free calcium concentration; namely, an increase in intracellular Ca2+ may enhance glutamate release from glutamatergic neurons and astrocytes. Therefore, controlling the extracellular glutamate and intracellular Ca2+ concentrations could be a promising strategy for alleviating ischemic and traumatic neuronal damage. (Kristian T, Siesjö; B K: Calcium in ischemic cell death. Stroke 1998; 29: 705-18; Rossi D J, Oshima T, Attwell D: Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 2000; 403: 316-21; Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini B L, Pozzan T, Volterra A: Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 1998; 391: 281-292, all herein incorporated by reference).


It has been reported that concentrations of DMSO to which neurons are typically exposed in experimental studies and in human patients (0.5-1.5%) inhibit glutamate responses in hippocampal neurons. DMSO suppresses, in a rapidly reversible manner, electrophysiological responses and calcium influx induced by glutamate, NMDA (N-methyl-1-aspartate), and AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionate). Moreover, DMSO can prevent excitotoxic death of the neurons induced by glutamate. The findings have important implications for the use of DMSO as a therapeutic agent that involve glutamatergic excitotoxicity after head trauma. These findings by an NIH group of investigators identify a mechanism that might explain the beneficial clinical effects of DMSO on CNS neurons and suggest a potential use for DMSO in the treatment of excitotoxic traumatic and neurodegenerative conditions. (Lu, C., and M. P. Mattson. 2001 July. Dimethyl sulfoxide suppresses NMDA- and AMPA-induced ion currents and calcium influx and protects against excitotoxic death in hippocampal neurons. Exp Neurol 170:180-185; Marshall L F, Camp P, Bowers S. Dimethyl sulfoxide for the treatment of intracranial hypertension. J Neurosurg 1984; 14: 659-663, herein incorporated by reference).


SUMMARY OF THE INVENTION

In one embodiment, the invention comprises the use of a composition comprising dimethylsulfoxide (DMSO) in the preparation of a medication for the treatment of stroke or brain injury, wherein said composition additionally comprises one or more of the following: L-arginine and urea. About 1.0 to 8.0 grains of L-arginine may be dissolved in a DMSO solution. DMSO may be provided in a concentration of about 20% to about 40%. In one embodiment, a dose of 70 grams of DMSO is used. About 20% to about 60% urea can be used. In one embodiment, a combination (e.g., a solution) of about 50% DMSO and 50% urea is provided. Brain injuries may include spinal cord injuries. Brain injuries may be degenerative disorder, as a result of trauma, or both.


In one embodiment, DMSO is provided to lower intracranial pressure and increase cerebral blood flow, thereby providing an effective brain injury treatment. Arginine can also increase cerebral blood flow, perhaps by forming nitric oxide. Together, DMSO and arginine may have a combined, additive, or synergistic effect. In some embodiments, DMSO and arginine (or NO) act on different receptors or pathways to increase blood flow more than either of the compounds administered alone. In other embodiments, DMSO and arginine (or NO) act on the same receptors or pathways to increase blood flow.


In several of the embodiments described herein, one or more DMSO associated compounds, such as methylsulfonylmethane (MSM or DMSO2) and dimethyl sulfide or methylthiomethane (DMS), are provided in addition to or instead of DMSO. For example, in one embodiment, a composition comprising DMS and L-arginine is provided. In other embodiments, DMS and L-arginine are provided along with one or more of the following: fructose 1,6-diphosphate, L-lysine, L-aspartate, urea, DMSO, MSM, and other DMSO metabolites.


Because arginine is the immediate precursor of NO, urea, ornithine and agmatine, in some embodiments, NO, urea, ornithine and agmatine are used in addition to or instead of L-arginine in several of the compositions described herein. Because arginine is synthesized from citrulline, citrulline may be used in addition to or instead of L-arginine in several of the compositions described herein. Other forms of arginine, other than the L isomer may also be used. The compositions described herein may comprise nitric oxide synthase to facilitate the production of NO from arginine.


As discussed above, L-arginine given as a continuous intravenous infusion was able to reduce the levels of endothelin-1, one of the most powerful vasoconstrictors known and also lowered the serum levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of eNOS. L-arginine combined with L-aspartate or L-lysine can increase its peak levels in physiological conditions such as an increase in growth hormones and bone metabolism. It is therefore anticipated that the addition of L-lysine and/or L-aspartate to L-arginine should increase the efficacy of this amino acid in traumatic or degenerative brain conditions, according to several embodiments of the invention.


In one embodiment, the present invention comprises a composition comprising DMSO and L-arginine, DMSO and urea, or DMSO, L-arginine, and urea. In other embodiments, the present invention comprises a composition comprising DMSO, L-arginine, and additional compound selected from the group consisting of one or more of the following: fructose 1,6-diphosphate, L-lysine, L-aspartate, and urea. In one embodiment, a synergistic effect is obtained when DMSO and L-arginine are combined with these additional compounds.


In another embodiment, the invention comprises a DMSO solution and one or more of the following: L-arginine, fructose 1,6-diphosphate, L-lysine, L-aspartate, and urea. In one embodiment, a synergistic effect is obtained when DMSO is combined with these additional compounds. In one embodiment, about 200 to 900 mg of L-lysine is dissolved in (or otherwise combined with) the DMSO solution. In another embodiment, about 100 to 1,200 mg of the L-aspartate is dissolved in (or otherwise combined with) the DMSO solution.


In yet another embodiment, the invention comprises a pharmaceutical composition according to any of the embodiments described herein that is provided to a patient to treat brain injuries, atherosclerosis, stroke, or neurodegenerative disorders.


In one embodiment, the present invention comprises a method of treating brain injury or stroke, comprising administering a therapeutically effective dose of a composition according to any one of the preceding claims to an individual in need thereof.


In one embodiment, the invention comprises a pharmaceutical composition according to any of the embodiments described herein that is provided to a patient as a neuroprotectant.


In another embodiment, the pharmaceutical composition is provided orally and/or intravenously to a patient to prevent or treat a pathologic condition.


The pharmaceutical compositions described above may be provided intravenously to a patient to prevent or treat a pathologic condition. In one embodiment, the intravenous solution is provided at a rate of about 10 ml/min.


In one embodiment, the invention comprises the use of a composition comprising in the preparation of a medication for the treatment of stroke or brain injury, wherein said composition additionally comprises one or more of the following: L-arginine and urea. DMS may be provided in a concentration of about 5% to about 50%.


In yet another embodiment, a preventative or therapeutic method of increasing cerebral blood flow is provided. In one embodiment, the method comprises administering to an individual dimethylsulfoxide (DMSO) and one or more of the following: L-arginine and urea.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a schematic diagram showing L-arginine metabolic pathways.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In several embodiments, the present invention provides compositions, pharmaceutical compositions and medicaments comprising DMSO and/or a DMSO associated compound (such as DMS) combined with one or more of the following: L-arginine, L-fructose 1,6-diphosphate, L-lysine, L-aspartate, urea or a metabolite or derivative thereof. The invention also provides methods of using these compositions for treatments of various disorders. In a preferred embodiment, the composition comprises DMSO and L-arginine. In another embodiment, the composition comprises one or more DMSO metabolites or derivatives thereof and L-arginine.


The phrases “DMSO associated compounds”, “associated compounds”, or “related compounds” as used herein shall be given their ordinary meaning and shall include degradation compounds, derivatives, precursors, and metabolites of DMSO, such as methylsulfonylmethane (MSM or DMSO2) and dimethyl sulfide or methylthiomethane (DMS). Metabolites include compounds to which DMSO is converted within the cells of a mammal. For example, the pharmaceutical compositions of several embodiments of the present invention may include a metabolite of DMSO instead of DMSO. The scope of the methods of several embodiments of the present invention includes those instances where DMSO is administered to the patient, yet the metabolite is the bioactive entity.


The terms “pharmaceutical composition” or “formulation” as used herein shall be given their ordinary meaning, be used interchangeably, and shall include a mixture of the components listed herein, or a pharmaceutically acceptable salt, prodrug, ester or amide thereof, with other chemical components, such as diluents or carriers. The pharmaceutical composition may facilitate administration of the compound to an organism. Multiple techniques of administering a compound exist in the art including, but not limited to, oral, rectal, injection, aerosol, parenteral, and topical administration. Pharmaceutical compositions can also be obtained by reacting compounds with inorganic or organic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.


The term “carrier” as used herein shall be given its ordinary meaning and shall include a compound that facilitates the incorporation of a compound into cells or tissues.


The term “treating” or “treatment” does not necessarily mean total cure. Any alleviation, amelioration, prevention, or reversal any undesired signs or symptoms of the disease to any extent or the slowing down of the progress of the disease can be considered treatment. Furthermore, treatment may include acts that may worsen the patient's overall feeling of well being or appearance. Treatment may also include lengthening the life of the patient, even if the symptoms are not alleviated, the disease conditions are not ameliorated, or the patient's overall feeling of well being is not improved.


In one embodiment, the invention provides a combination of DMSO (about 1 gram in a 28% solution) and L-arginine (about 1.0 to 8.0 g dissolved in the DMSO solution). In other embodiments, about 10 grams to about 200 grams, preferably about 40 grams to 100 grams, and more preferably about 70 grams of DMSO is administered to an individual in a dose. In several embodiments, a concentration of about 5% to about 50%, preferably about 15% to about 40%, and more preferably about 30% DMSO in solution (such as dextrose, water or physiological saline) is provided in a dose. Doses may be administered daily, weekly, monthly, or as needed. Other time intervals for dosing may also be appropriate.


In one embodiment, the composition is provided as a pharmaceutical formulation which is used to treat a patient with brain injury or stroke. In one embodiment, the pharmaceutical formulation is provided intravenously at a rate of about 1 ml/min to about 30 ml/min, or preferably about 10 ml/min administered. Administration at a rate less than 1 ml/min or greater than 30 ml/min can also be used. Other pathologies may also benefit from this combination, including traumatic brain injury, ischemic stroke, atherosclerosis, neurodegeneration, and spinal cord trauma.


In one embodiment, the invention provides a pharmaceutical formulation comprising DMSO, L-arginine, and L-lysine. In one embodiment, the invention comprises a pharmaceutical formulation comprising DMSO and L-lysine. In another embodiment, one or more additional amino acids are included.


In one embodiment, the combination of DMSO, L-arginine (about 1.0 to 8.0 g dissolved in the DMSO solution), and L-lysine (about 200 to 900 mg dissolved in the DMSO solution) is provided. In one embodiment, the combination is provided intravenously a rate of about 10 ml/min and is administered for traumatic brain injury or for stroke. In some embodiments, DMSO is provided in a concentration of about 20%-40%.


In one embodiment, the invention comprises a pharmaceutical composition comprising DMSO and L-aspartate. In one embodiment, the invention comprises a pharmaceutical composition comprising DMSO, L-arginine, and L-aspartate. In some embodiments, DMSO is provided in a concentration of about 20%-40%.


In one embodiment, a combination of DMSO, L-arginine (about 1.0 to 8.0 g dissolved in the DMSO solution), and L-aspartate (about 100 to 1,200 mg dissolved in the DMSO solution) is given intravenously at a rate of 10 ml/min and administered for traumatic brain injury or for stroke In some embodiments, DMSO is provided in a concentration of about 20%-40%.


The safety of intravenous DMSO is well-established. L-arginine has been shown in numerous studies to be safe at doses up to 30 grams/day, or intravenously at doses up to 15 g/day. The typical dietary intake of L-arginine is 3.5 to 5 grams daily. This semi-essential amino acid has not been used extensively for intravenous administration and its use is mainly through the oral route. L-aspartate and L-lysine have been given in doses of 250 mg/Kg without adverse effects. All of these compounds are commercially available.


Supplemental L-arginine may have anti-atherogenic, antioxidant and immunomodulatory actions. It may also have wound-repair activity. Thus, in one embodiment, L-arginine is administered in combination with DMSO (or DMSO metabolites or derivatives) to treat pathologies in which anti-atherogenic, antioxidant, immunomodulatory actions, and/or wound-repair activity would be desirable. Such pathologies include atherosclerosis, cancer, systemic lupus erythematosus, arthritis, inflammation, and autoimmune disease.


In one embodiment, the invention comprises a combination of DMSO, L-arginine, and one or more of the following: fructose 1,6-diphosphate, L-lysine, L-aspartate, and urea. In another embodiment, DMSO and urea is used together or in combination with L-arginine, fructose 1,6-diphosphate, L-lysine, L-aspartate. A DMSO associated compound may be used in addition to, or instead of DMSO, in any of the embodiments described herein.


The compositions and combinations described herein may be used to prevent or treat one or more of the following pathologies: traumatic brain injury, ischemic stroke, atherosclerosis, spinal cord trauma, and other dementias, and as a neuronal protector to prevent brain damage, for example, during coronary artery bypass graft (CABG). These compositions may also be used to treat neurodegenerative disorders including, but not limited to, Alzheimer's disease, Parkinson's disease, subacute sclerosing panencephalitis, vascular dementia, multiple sclerosis, assorted neuropathies, Huntington's disease, amyotrophic lateral sclerosis (ALS) and leukodystrophies.


The amounts of L-arginine, fructose 1,6 diphosphate and L-aspartate to be combined with the DMSO will vary depending of the disorder to be treated, severity of the disorder and age of the patient, but in general the amounts of these compounds will range from about 0.5% w/v to about 10% w/v.


Several embodiments of the present invention is also directed to the use of any of the DMSO-containing compositions described hereinabove for treatment of any of the disorders disclosed herein. In addition, other embodiments are directed to the use of any of the DMSO-containing compositions described above in the preparation of a medicament for treatment of any of the disorders described herein.


The pharmaceutical compositions described herein can be administered to a human or non-human patient per se, or in pharmaceutical compositions where they are mixed with other active ingredients, as in combination therapy, or suitable carriers or excipient(s). Techniques for formulation and administration of the compounds of the instant application may be found in “Remington's Pharmaceutical Sciences,” Mack Publishing Co., Easton, Pa., 18th edition, 1990.


Suitable routes of administration may, for example, include oral, rectal, topical, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intravenous, intramedullary injections, as well as intrathecal, direct intraventricular, intraperitoneal, intranasal, or intraocular injections.


Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly in the renal or cardiac area, often in a depot or sustained release formulation. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a tissue-specific antibody. The liposomes will be targeted to and taken up selectively by the organ.


The pharmaceutical compositions according to several embodiments of the present invention may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or tabletting processes.


Pharmaceutical compositions for use in accordance with several embodiments of the present invention thus may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen. Any of the well-known techniques, carriers, and excipients may be used as suitable and as understood in the art; e.g., in Remington's Pharmaceutical Sciences, above.


For injection, the agents according to several embodiments of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.


For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained by mixing one or more solid excipient with pharmaceutical combination of the invention, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.


For topical administration, the compounds may be formulated for administration to the epidermis as ointments, gels, creams, pastes, salves, or lotions, or as a transdermal patch. Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions may be formulated with an aqueous or oily base and will in general also containing one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents.


Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.


Pharmaceutical preparations which can be used orally, including sublingually, which include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration.


For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.


For administration by inhalation, the compounds for use according to several embodiments of the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.


The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.


Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.


Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-fi-ee water, before use.


The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.


In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.


A pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. A common cosolvent system used is the VPD co-solvent system, which is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80™, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of POLYSORBATE 80™; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.


Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein stabilization may be employed.


Many of the compounds used in the pharmaceutical combinations of the invention may be provided as salts with pharmaceutically compatible counterions. Pharmaceutically compatible salts may be formed with many acids, including but not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free acid or base forms.


Pharmaceutical compositions suitable for use in several embodiments of the present invention include compositions where the active ingredients are contained in an amount effective to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount of compound effective to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated. Determination of a therapeutically effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.


The exact formulation, route of administration and dosage for the pharmaceutical compositions according to several embodiments of the present invention can be chosen by the individual physician in view of the patient's condition. (See e.g., Fingl et al 1975, in “The Pharmacological Basis of Therapeutics”, Ch. 1 p. 1). Typically, the dose range of the composition administered to the patient can be from about 0.5 to 1000 mg/kg of the patient's body weight. The dosage may be a single one or a series of two or more given in the course of one or more days, as is needed by the patient. A suitable human dosage can be inferred from ED50 or ID50 values, or other appropriate values derived from in vitro or in vivo studies, as qualified by toxicity studies and efficacy studies in animals.


Although the exact dosage will be determined on a drug-by-drug basis, in most cases, some generalizations regarding the dosage can be made. The daily dosage regimen for an adult human patient may be, for example, an oral dose of between 0.1 mg and 6000 mg of each ingredient, preferably between 1 mg and 5000 mg, e.g. 25 to 5000 mg or an intravenous, subcutaneous, or intramuscular dose of each ingredient between 0.01 mg and 100 mg, preferably between 0.1 mg and 60 mg, e.g. 1 to 40 mg of each ingredient of the pharmaceutical compositions of the present invention or a pharmaceutically acceptable salt thereof calculated as the free base, the composition being administered 1 to 4 times per day. Alternatively the compositions of the invention may be administered by continuous intravenous infusion, preferably at a dose of each ingredient up to 400 mg per day. Thus, the total daily dosage by oral administration of each ingredient will typically be in the range 1 to 2500 mg and the total daily dosage by parenteral administration will typically be in the range 0.1 to 400 mg. Suitably the compounds will be administered for a period of continuous therapy, for example for several days, a week or more, or for months or years. DMSO alone or in combination with the compounds described herein may be administered as a one-time therapy immediately upon affliction of injury. A low dose of DMSO alone or in combination with the compounds described may be administered on a regular basis to individuals susceptible to stroke, and thereby serve as a preventative measure or as a measure that would lower the risk of having a stroke or other illnesses that are related to cerebral blood flow.


Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the modulating effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.


Dosage intervals can also be determined using MEC value. Compositions should be administered using a regimen that maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%.


In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.


The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.


The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. The pack or dispenser may also be accompanied with a notice associated with the container in form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the drug for human or veterinary administration. Such notice, for example, may be the labeling approved by the U.S. Food and Drug Administration for prescription drugs, or the approved product insert. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

Claims
  • 1. A method of treating brain injury, the method consisting essentially of: administering a composition consisting essentially of dimethylsulfoxide (DMSO), L-arginine and one or more pharmaceutically-acceptable carriers to a brain injury patient,wherein the DMSO is present in a concentration range of about 20% to about 40% in the composition,wherein the L-arginine is present in a range of about 0.5% to about 10% weight per volume of the composition,wherein the administering is intravenous, andwherein the brain injury is a spinal cord injury or a traumatic brain injury.
  • 2. The method of claim 1, further comprising preparing the composition prior to the administering, wherein the preparing comprises combining at least the DMSO and the L-arginine.
  • 3. The method of claim 1, wherein the DMSO is present in the composition in has a concentration in a range of about 20% to about 30%.
  • 4. The method of claim 1, wherein the DMSO is present in in the composition in a concentration of about 28%.
  • 5. The method of claim 1, wherein the pharmaceutically-acceptable carrier is saline.
  • 6. A method of treating a patient with brain injury, said method comprising: obtaining a composition comprising dimethylsulfide (DMS) and L-arginine in a therapeutically effective dose,wherein said therapeutically effectively dose of DMS is a concentration of about 20% to 40% of said composition and said therapeutically effective dose of L-arginine is about 0.5% to about 10% weight per volume of said composition; andadministering said composition intravenously to said patient, wherein said brain injury is a spinal cord injury or a traumatic brain injury.
  • 7. The method of claim 6, further comprising administering at least one of methylsulfonylmethane (MSM), urea, and dimethylsuloxide (DMSO).
  • 8. The method of claim 7, wherein the administering at least one of methylsulfonylmethane (MSM), urea, and dimethylsulfoxide (DMSO) comprises administering orally.
  • 9. The method of claim 6, wherein the dimethylsulfide (DMS) is present in said composition in a concentration of about 28%.
  • 10. The method of claim 6, wherein said composition further comprises a compound selected from the group consisting of one or more of the following: L-lysine and L-aspartine.
  • 11. The method of claim 6, wherein said composition further comprises urea in a concentration in a range of about 20% to about 60%.
  • 12. The method of claim 11, wherein at least one of said DMSO, said L-arginine, and said urea is administered intravenously at a rate of about 10 ml/min.
  • 13. A method of increasing blood flow in the central nervous system, consisting essentially of: intravenously administering a therapeutically effective dose of a pharmaceutical composition consisting essentially of dimethylsulfoxide (DMSO), L-arginine, and one or more pharmaceutically-acceptable carriers to a subject having a spinal cord injury or a traumatic brain injury.
  • 14. A method of treating brain injury, consisting essentially of: administering a therapeutically effective dose of a pharmaceutical composition consisting essentially of dimethylsulfoxide (DMSO), L-arginine, urea, and one or more pharmaceutically-acceptable carriersto an individual having a brain injury, wherein said brain injury comprises a spinal cord injury or a traumatic brain injury.
  • 15. A method of treating brain injury, the method consisting essentially of: administering a composition consisting essentially of DMSO, L-arginine and one or more pharmaceutically-acceptable carriers to a brain injury patient,wherein said DMSO is present in a concentration range of about 20% to about 40% in the first composition,wherein said L-arginine is present in a range of about 0.5% to about 10% weight per volume of said first composition,wherein said brain injury is a spinal cord injury or a traumatic brain injury.
  • 16. A method of treating brain injury, consisting essentially of: administering a therapeutically effective dose of a pharmaceutical composition consisting essentially of dimethylsulfoxide (DMSO), L-arginine, MSM, and one or more pharmaceutically-acceptable carriersto an individual having a brain injury, wherein said brain injury comprises a spinal cord injury or a traumatic brain injury.
  • 17. A method of treating brain injury, comprising: administering a therapeutically effective dose of a composition comprising dimethylsulfide (DMS), L-arginine, MSM, and one or more pharmaceutically-acceptable carriers to an individual having a brain injury, wherein said brain in jury comprises a spinal cord injury or a traumatic brain injury.
  • 18. A method of treating brain injury, comprising: administering a therapeutically effective dose of a pharmaceutical composition comprising dimethylsulfide (DMS), L-arginine, urea, and one or more pharmaceutically-acceptable carriers to an individual having a brain injury, wherein said brain injury comprises a spinal cord injury or a traumatic brain injury.
  • 19. A method, comprising: administering a composition to a patient, the composition consisting essentially of:dimethylsulfoxide (DMSO),at least one of L-arginine, L-lysine, L-aspartate, dimethylsulfide (DMS), methylsulfonylmethane (MSM), and urea, andone or more pharmaceutically-acceptable carriers.
  • 20. The method of claim 19, wherein the patient is a brain injury patient.
  • 21. The method of claim 20, wherein the brain injury is a spinal cord injury or a traumatic brain injury.
  • 22. A method, comprising: administering a composition to a patient, the composition comprising: dimethylsulfide (DMS),at least one of L-arginine, L-lysine, L-aspartate, dimethylsulfoxide (DMSO), methylsulfonylmethane (MSM), and urea, andone or more pharmaceutically-acceptable carriers.
  • 23. The method of claim 22, wherein the patient is a brain injury patient.
  • 24. The method of claim 23, wherein the brain injury is a spinal cord injury or a traumatic brain injury.
RELATED APPLICATIONS

This application is the U.S. National Phase under 35 U.S.C. §371 of International Application No. PCT/US2006/035320, filed Sep. 11, 2006 (published as WO 2007/033082A1), which claims priority to U.S. Provisional Patent Application Ser. No. 60/716,335, filed Sep. 12, 2005, all herein incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2006/035320 9/11/2006 WO 00 1/22/2009
Publishing Document Publishing Date Country Kind
WO2007/033082 3/22/2007 WO A
US Referenced Citations (502)
Number Name Date Kind
3334012 Herschler Aug 1967 A
3361555 Herschler Jan 1968 A
3393080 Erdi et al. Jul 1968 A
3419619 Soder et al. Dec 1968 A
3482572 Grosclaude et al. Dec 1969 A
3527863 Weichselbaum Sep 1970 A
3549770 Herschler et al. Dec 1970 A
3549771 Herschler Dec 1970 A
3551554 Herschler Dec 1970 A
3558434 Herschler Jan 1971 A
3573214 Kollonitsch Mar 1971 A
3592936 Marcus et al. Jul 1971 A
3654165 Bryant et al. Apr 1972 A
3675654 Baker et al. Jul 1972 A
3690808 St. Pierre Sep 1972 A
3711606 Herschler Jan 1973 A
3740420 Herschler et al. Jun 1973 A
3757495 Sievers Sep 1973 A
3773838 Andruski et al. Nov 1973 A
3790682 Herschler et al. Feb 1974 A
3823676 Cook et al. Jul 1974 A
3852408 Ewan et al. Dec 1974 A
3861894 Marsh Jan 1975 A
3881003 Rehm Apr 1975 A
3948617 Withorn Apr 1976 A
3972962 Williams et al. Aug 1976 A
3976747 Shale et al. Aug 1976 A
3988129 Fornoff et al. Oct 1976 A
3996295 Goeb Dec 1976 A
4015025 Szczesniak Mar 1977 A
4112946 Herschler Sep 1978 A
4125589 deVries Nov 1978 A
4129122 Dout et al. Dec 1978 A
4169550 Williams Oct 1979 A
4177267 Herschler Dec 1979 A
4194628 Campos Mar 1980 A
4202676 Pelosi, Jr. et al. May 1980 A
4212392 McKenzie Jul 1980 A
4225381 Ishikawa et al. Sep 1980 A
4252054 Bakels Feb 1981 A
4256728 Nishino et al. Mar 1981 A
4277450 Dilworth Jul 1981 A
4296104 Herschler Oct 1981 A
4296130 Herschler Oct 1981 A
4307067 Tagawa et al. Dec 1981 A
4309393 Nguyen Jan 1982 A
4316795 Mooi Feb 1982 A
4333922 Herschler Jun 1982 A
4335148 Vidal et al. Jun 1982 A
4341675 Nakamura Jul 1982 A
4350245 Elstner Sep 1982 A
4357288 Oas et al. Nov 1982 A
4369190 Schulte Jan 1983 A
4372915 Neti et al. Feb 1983 A
4413109 Haas Nov 1983 A
4424330 Raviola Jan 1984 A
4469702 Schulte Sep 1984 A
4477469 Herschler Oct 1984 A
4491563 Reusser et al. Jan 1985 A
4493930 Klayman et al. Jan 1985 A
4497824 Schulte Feb 1985 A
4505708 Gajewski et al. Mar 1985 A
4507114 Bohman et al. Mar 1985 A
4510292 Chiba et al. Apr 1985 A
4512245 Goldman Apr 1985 A
4514421 Herschler Apr 1985 A
4545414 Baum Oct 1985 A
4550010 Chelu Oct 1985 A
4559329 Herschler Dec 1985 A
4568547 Herschler Feb 1986 A
4575515 Sandborn Mar 1986 A
4591497 Naito et al. May 1986 A
4595102 Cianci et al. Jun 1986 A
4600002 Maryyanek et al. Jul 1986 A
4616039 Herschler Oct 1986 A
4616064 Zukosky et al. Oct 1986 A
4622221 Schleppnik Nov 1986 A
4626530 Schulte Dec 1986 A
4634588 Moroe Jan 1987 A
4642177 Mester et al. Feb 1987 A
4652557 Sandborn Mar 1987 A
4655148 Winship Apr 1987 A
4656094 Kojima et al. Apr 1987 A
4686204 Mester et al. Aug 1987 A
4710353 Tanaka et al. Dec 1987 A
4719105 Schleppnik Jan 1988 A
4721813 Mark et al. Jan 1988 A
4725290 Ohlmeyer et al. Feb 1988 A
4728712 Singh et al. Mar 1988 A
4729835 McNeillie et al. Mar 1988 A
4737173 Kudirka et al. Apr 1988 A
4747845 Korol May 1988 A
4751241 Motoyama et al. Jun 1988 A
4778697 Genske et al. Oct 1988 A
4784909 Emi et al. Nov 1988 A
4796790 Hamilton Jan 1989 A
4797274 Miki et al. Jan 1989 A
4803047 Pluim, Jr. Feb 1989 A
4830718 Stauffer May 1989 A
4834721 Onohara et al. May 1989 A
4850268 Saito et al. Jul 1989 A
4863687 Stevens et al. Sep 1989 A
4863748 Herschler Sep 1989 A
4887751 Lehman Dec 1989 A
4902489 Watanabe Feb 1990 A
4902558 Henriksen Feb 1990 A
4904520 Dumas et al. Feb 1990 A
4910803 Cukier Mar 1990 A
4911691 Aniuk et al. Mar 1990 A
4914135 Herschler Apr 1990 A
4916767 Uetake et al. Apr 1990 A
4919925 Ueda et al. Apr 1990 A
4931276 Franco et al. Jun 1990 A
4933169 Shanbrom Jun 1990 A
4937115 Leatherman Jun 1990 A
4940405 Kelly Jul 1990 A
4940658 Allen et al. Jul 1990 A
4941991 Rajamannan Jul 1990 A
4946720 Oishi et al. Aug 1990 A
4948643 Mueller Aug 1990 A
4948787 Chen et al. Aug 1990 A
4956183 Miki et al. Sep 1990 A
4973605 Herschler Nov 1990 A
4978687 Pascuchi Dec 1990 A
4980045 Krishna et al. Dec 1990 A
4988505 Watanabe et al. Jan 1991 A
4990311 Hirai et al. Feb 1991 A
4994245 Murray et al. Feb 1991 A
5001794 Uetake et al. Mar 1991 A
5006510 Ellis Apr 1991 A
5007999 Chin Apr 1991 A
5032613 Watson Jul 1991 A
5041273 Rock Aug 1991 A
5049159 Yamaji et al. Sep 1991 A
5049163 Huang et al. Sep 1991 A
5055279 Hirt et al. Oct 1991 A
5059477 Henriksen Oct 1991 A
5070597 Holt et al. Dec 1991 A
5071622 Dunson, Jr. Dec 1991 A
5071686 Genske et al. Dec 1991 A
5071878 Herschler Dec 1991 A
5083558 Thomas et al. Jan 1992 A
5086804 Ngai Feb 1992 A
5087673 Watanabe et al. Feb 1992 A
5091180 Walker et al. Feb 1992 A
5117821 White Jun 1992 A
5133788 Backus Jul 1992 A
5135904 Kamiya et al. Aug 1992 A
5139831 Mueller Aug 1992 A
5143831 Wong et al. Sep 1992 A
5145657 Kobayashi et al. Sep 1992 A
5149576 Potts et al. Sep 1992 A
5152814 Nelson Oct 1992 A
5160707 Murray et al. Nov 1992 A
5169217 Orchard et al. Dec 1992 A
5183656 Uesaka et al. Feb 1993 A
5190640 Roof et al. Mar 1993 A
5192272 Faure Mar 1993 A
5192342 Baron et al. Mar 1993 A
5192498 Chen et al. Mar 1993 A
5199263 Green et al. Apr 1993 A
5207303 Oswalt et al. May 1993 A
5213680 Kremer et al. May 1993 A
5218036 Kagawa et al. Jun 1993 A
5218147 Shaw Jun 1993 A
5240478 Messina Aug 1993 A
5260090 Isao Nov 1993 A
5269294 Rogozinski Dec 1993 A
5290331 Miles et al. Mar 1994 A
5335373 Dangman et al. Aug 1994 A
5336431 Richards et al. Aug 1994 A
5344529 Stauffer Sep 1994 A
5356709 Woo et al. Oct 1994 A
5358443 Mitchell et al. Oct 1994 A
5409769 Fukumoto et al. Apr 1995 A
5415180 Horan May 1995 A
5419812 Beal May 1995 A
5439454 Lo et al. Aug 1995 A
5441729 Salce et al. Aug 1995 A
5458848 Burgaud Oct 1995 A
5458861 Buchanan et al. Oct 1995 A
5460625 Johnson Oct 1995 A
5466757 Watanabe et al. Nov 1995 A
5480860 Dillon Jan 1996 A
5486387 Mueller Jan 1996 A
5487766 Vannier Jan 1996 A
5494587 Morlec et al. Feb 1996 A
5512144 Stauffer Apr 1996 A
5516526 da la Torre May 1996 A
5521268 Ghyzel et al. May 1996 A
5531987 Bauer et al. Jul 1996 A
5538545 Dauber et al. Jul 1996 A
5562127 Fanselow et al. Oct 1996 A
5569679 Jacob Oct 1996 A
5578540 Banzi et al. Nov 1996 A
5582865 Rezuke et al. Dec 1996 A
5584986 Bartholic Dec 1996 A
5603696 Williams et al. Feb 1997 A
5605635 David Feb 1997 A
5607647 Kinkead Mar 1997 A
5616408 Oleszczuk et al. Apr 1997 A
5620760 Galimberti et al. Apr 1997 A
5624649 Gal Apr 1997 A
5626820 Rezuke et al. May 1997 A
5650329 Warner Jul 1997 A
5654061 Visioli Aug 1997 A
5658801 Poissant et al. Aug 1997 A
5667799 Caldwell et al. Sep 1997 A
5703152 Ohama Dec 1997 A
5712044 Fanselow et al. Jan 1998 A
5725893 Pittet et al. Mar 1998 A
5753696 Shealy et al. May 1998 A
5761362 Yang et al. Jun 1998 A
5779679 Shaw Jul 1998 A
5783269 Heilmann et al. Jul 1998 A
5789046 Mueller Aug 1998 A
5792505 Fulger et al. Aug 1998 A
5803130 Robben et al. Sep 1998 A
5803249 Harsanyi, Jr. et al. Sep 1998 A
5843420 Bauer et al. Dec 1998 A
5849846 Chen et al. Dec 1998 A
5861096 Mason et al. Jan 1999 A
5871562 Culoso Feb 1999 A
5885566 Goldberg Mar 1999 A
5891508 Barnum Apr 1999 A
5919877 Tanaglia Jul 1999 A
5928744 Heilmann et al. Jul 1999 A
5931303 Salvadori Aug 1999 A
5935412 Brainard, II Aug 1999 A
5935547 LeComte et al. Aug 1999 A
5948398 Hanamoto et al. Sep 1999 A
5958502 Fulger et al. Sep 1999 A
5965276 Shlenker et al. Oct 1999 A
5967061 Ashworth et al. Oct 1999 A
5972993 Ptchelintsev Oct 1999 A
5989497 Labonte, Jr. Nov 1999 A
5998019 Rosenbaum et al. Dec 1999 A
6007520 Sudo Dec 1999 A
6010666 Kurokawa et al. Jan 2000 A
6012586 Misra Jan 2000 A
6015536 Lokkesmoe et al. Jan 2000 A
6030494 Hupa et al. Feb 2000 A
6042640 Isganitis et al. Mar 2000 A
6045596 Holland, Jr. et al. Apr 2000 A
6048733 Machino et al. Apr 2000 A
6057018 Schmidt May 2000 A
6060083 Dorr et al. May 2000 A
6060152 Murchie May 2000 A
D427299 Haslebacher Jun 2000 S
6070578 Baughman et al. Jun 2000 A
6071905 Krasnov et al. Jun 2000 A
6077335 Schneider et al. Jun 2000 A
6090076 Lane, Jr. Jul 2000 A
6094549 Hiraoka et al. Jul 2000 A
6099607 Haslebacher Aug 2000 A
6106502 Richmond Aug 2000 A
6106596 Haramoto et al. Aug 2000 A
6110176 Shapira Aug 2000 A
6114586 Devaux et al. Sep 2000 A
D431353 Mellin Oct 2000 S
D431902 Mellin Oct 2000 S
6183708 Hei et al. Feb 2001 B1
6183758 Scott Feb 2001 B1
6197288 Mankoo Mar 2001 B1
6207106 Kurokawa et al. Mar 2001 B1
6221325 Brown et al. Apr 2001 B1
6228960 Tanaglia May 2001 B1
6238767 McCormack et al. May 2001 B1
6248733 Landgrebe et al. Jun 2001 B1
6261655 Rosenbaum et al. Jul 2001 B1
6267941 Sata Jul 2001 B1
6277344 Hei et al. Aug 2001 B1
6294161 Hiramoto et al. Sep 2001 B1
6303200 Woo et al. Oct 2001 B1
6312713 Korol et al. Nov 2001 B1
6318075 Gunther et al. Nov 2001 B1
6348177 Bartley et al. Feb 2002 B1
6349826 Kapik et al. Feb 2002 B1
6365099 Castrantas et al. Apr 2002 B1
6403642 Berg Jun 2002 B1
6403739 Tanaglia et al. Jun 2002 B1
6406767 Mueller Jun 2002 B1
6412639 Hickey Jul 2002 B1
6414194 Bloom, Jr. et al. Jul 2002 B1
6416772 Van Engelen et al. Jul 2002 B1
6418932 Paschal, Jr. et al. Jul 2002 B2
6426112 Boatright Jul 2002 B1
6426370 Hofschneider Jul 2002 B1
6432891 O'Connor Aug 2002 B1
6440391 Jacob Aug 2002 B1
6454097 Blanco Sep 2002 B1
6458828 Sakurai et al. Oct 2002 B1
6460702 Hammond Oct 2002 B2
6461631 Dunn et al. Oct 2002 B1
6465068 Patel et al. Oct 2002 B1
6468259 Loretti et al. Oct 2002 B1
6475466 Ricci et al. Nov 2002 B1
6479150 Liu et al. Nov 2002 B1
6479488 Di-Fabio et al. Nov 2002 B1
6482377 Bartley et al. Nov 2002 B2
6495096 Hamaguchi et al. Dec 2002 B1
6528080 Dunn et al. Mar 2003 B2
6531111 Whalen, II et al. Mar 2003 B1
6552231 Jones et al. Apr 2003 B2
6562447 Wu et al. May 2003 B2
6579444 Feimer et al. Jun 2003 B2
6579543 McClung Jun 2003 B1
6599472 Hudson Jul 2003 B1
6620911 Pettit et al. Sep 2003 B1
6632842 Chaudry et al. Oct 2003 B2
6638605 Ankuda, Jr. et al. Oct 2003 B1
6639110 Fremy Oct 2003 B2
6649193 Colic Nov 2003 B1
6652845 Hu et al. Nov 2003 B2
6653352 Barr et al. Nov 2003 B2
6656723 Phillips Dec 2003 B1
6663679 Duncan Dec 2003 B1
6680194 Turner Jan 2004 B1
6706257 McCook et al. Mar 2004 B1
6718914 Riddles Apr 2004 B2
6722295 Zauderer Apr 2004 B2
6723349 Hill et al. Apr 2004 B1
6723399 Chundury et al. Apr 2004 B2
6734263 Eadara et al. May 2004 B2
6737031 Beal et al. May 2004 B2
6737089 Wadsworth et al. May 2004 B2
6743523 Woo et al. Jun 2004 B1
6743951 Fremy Jun 2004 B2
6761169 Eswarappa Jul 2004 B2
6761912 Forusz et al. Jul 2004 B2
6764566 Griesbach, III et al. Jul 2004 B1
6783004 Rinner Aug 2004 B1
RE38597 Lane, Jr. Sep 2004 E
6796958 Chen et al. Sep 2004 B2
6797042 LaFerriere et al. Sep 2004 B2
6822015 Muraki Nov 2004 B2
6830794 Cartledge et al. Dec 2004 B2
6844430 Pesce et al. Jan 2005 B2
6846535 De Groot et al. Jan 2005 B2
6858192 Graham et al. Feb 2005 B2
6872241 Soane et al. Mar 2005 B2
6881419 Lovett Apr 2005 B2
6884797 Hofmann Apr 2005 B2
6890373 Nemoto et al. May 2005 B2
6902714 Skaarup Jensen et al. Jun 2005 B2
6908885 Bengs et al. Jun 2005 B2
6927305 Choudary et al. Aug 2005 B2
7057016 Cerletti Jun 2006 B2
7203974 Jones et al. Apr 2007 B2
7282224 Roederer Oct 2007 B1
7371407 Farmer May 2008 B2
7381521 Whitaker Jun 2008 B2
7955418 Claussen et al. Jun 2011 B2
8298320 Cozean Oct 2012 B2
8435224 Claussen et al. May 2013 B2
8440001 Cozean May 2013 B2
8480797 Cozean et al. Jul 2013 B2
8673061 Cozean et al. Mar 2014 B2
20010005766 Fremy Jun 2001 A1
20010047038 Moorman et al. Nov 2001 A1
20020015762 Quinlan Feb 2002 A1
20020025983 Horrobin Feb 2002 A1
20020032131 O'Connor Mar 2002 A1
20020043501 Irvine Apr 2002 A1
20020090398 Dunn et al. Jul 2002 A1
20020110549 Till Aug 2002 A1
20020115729 Yang Aug 2002 A1
20020131933 Delmotte Sep 2002 A1
20020133100 Paschal, Jr. et al. Sep 2002 A1
20020151753 Fremy Oct 2002 A1
20020156326 Fremy Oct 2002 A1
20020179647 Hall et al. Dec 2002 A1
20020182263 Stenti et al. Dec 2002 A1
20030017183 Pollock Jan 2003 A1
20030032616 Moskowitz et al. Feb 2003 A1
20030082321 Kennedy et al. May 2003 A1
20030085170 Scranton et al. May 2003 A1
20030108810 Williamson et al. Jun 2003 A1
20030109495 Kretschmer Jun 2003 A1
20030118672 McPeak et al. Jun 2003 A1
20030133959 Shacknai et al. Jul 2003 A1
20030149007 Chaudry et al. Aug 2003 A1
20030152862 Williamson et al. Aug 2003 A1
20030157006 Hei et al. Aug 2003 A1
20030167033 Chen et al. Sep 2003 A1
20030190266 Tsurumi Oct 2003 A1
20030203009 MacDonald Oct 2003 A1
20030203484 Black et al. Oct 2003 A1
20040016410 Riddles Jan 2004 A1
20040039066 Crea Feb 2004 A1
20040048376 Chabot et al. Mar 2004 A1
20040057972 Shacknai et al. Mar 2004 A2
20040074212 Yachi et al. Apr 2004 A1
20040081673 Rayner et al. Apr 2004 A1
20040082667 McCadden et al. Apr 2004 A1
20040086888 Kornblith et al. May 2004 A1
20040087669 Hausmanns et al. May 2004 A1
20040105943 Hoerner et al. Jun 2004 A1
20040115818 Puri et al. Jun 2004 A1
20040121023 Stevens Jun 2004 A1
20040131806 Barmore et al. Jul 2004 A1
20040137136 Zheng et al. Jul 2004 A1
20040151826 Milligan Aug 2004 A1
20040154220 Holcomb Aug 2004 A1
20040156742 Milan et al. Aug 2004 A1
20040157802 Horwitz et al. Aug 2004 A1
20040186316 Choudary et al. Sep 2004 A1
20040197339 Brown Oct 2004 A1
20040213755 Hochwalt et al. Oct 2004 A1
20040213774 Till Oct 2004 A9
20040219126 Seto et al. Nov 2004 A1
20040242818 Williamson et al. Dec 2004 A1
20040265291 Drake et al. Dec 2004 A1
20050025840 Revnolds Feb 2005 A1
20050031651 Gervais et al. Feb 2005 A1
20050031761 Brucker et al. Feb 2005 A1
20050035062 Hiltzik et al. Feb 2005 A1
20050054875 Hei et al. Mar 2005 A1
20050058630 Harris et al. Mar 2005 A1
20050069598 Ribnicky et al. Mar 2005 A1
20050084412 MacDonald et al. Apr 2005 A1
20050084438 Do et al. Apr 2005 A1
20050084464 McGrath et al. Apr 2005 A1
20050084474 Wu et al. Apr 2005 A1
20050092070 Bhatti May 2005 A1
20050092761 Marganski et al. May 2005 A1
20050095653 Goldstein et al. May 2005 A1
20050112085 MacDonald et al. May 2005 A1
20050112176 Dopson et al. May 2005 A1
20050112177 Dopson et al. May 2005 A1
20050115895 Simpson et al. Jun 2005 A1
20050136082 Soane et al. Jun 2005 A1
20050136125 Roth Jun 2005 A1
20050142096 Wegner Jun 2005 A1
20050147692 Roth Jul 2005 A1
20050158406 McPeak et al. Jul 2005 A1
20050158424 Nakano et al. Jul 2005 A1
20050169826 Li Aug 2005 A1
20050176778 Vermeer Aug 2005 A1
20050181048 Romero Aug 2005 A1
20050182076 Pacheco et al. Aug 2005 A1
20050187124 Li et al. Aug 2005 A1
20050191343 Liang Sep 2005 A1
20050215515 Bucolo et al. Sep 2005 A1
20050222275 Gabizon et al. Oct 2005 A1
20050224409 Harshman et al. Oct 2005 A1
20050226827 Ho Oct 2005 A1
20050227910 Yang et al. Oct 2005 A1
20050260306 Baldus Nov 2005 A1
20050261257 Vermeer Nov 2005 A1
20050265979 Aoki et al. Dec 2005 A1
20050266064 McCarthy Dec 2005 A1
20050281883 Daniloff et al. Dec 2005 A1
20060003069 Zheng et al. Jan 2006 A1
20060006120 Chen et al. Jan 2006 A1
20060006121 Simpson et al. Jan 2006 A1
20060018933 Vaya et al. Jan 2006 A1
20060018934 Vaya et al. Jan 2006 A1
20060024365 Vaya et al. Feb 2006 A1
20060052438 Ho et al. Mar 2006 A1
20060121613 Havens Jun 2006 A1
20060127508 Larkins Jun 2006 A1
20060143767 Yang et al. Jul 2006 A1
20060166948 Vermeer Jul 2006 A1
20060177398 McCook et al. Aug 2006 A1
20060194759 Eidelson Aug 2006 A1
20060210646 Oku et al. Sep 2006 A1
20060281822 Appleton Dec 2006 A1
20070025950 Elson Feb 2007 A1
20070028772 Jain et al. Feb 2007 A1
20070048386 Mallozzi, Sr. et al. Mar 2007 A1
20070180544 Taylor et al. Aug 2007 A1
20070183936 Newsam et al. Aug 2007 A1
20070243146 Klock Oct 2007 A1
20070264212 Ho Nov 2007 A1
20070270358 Paoliambrosi Nov 2007 A1
20070292493 Brierre Dec 2007 A1
20080038219 Mosbaugh et al. Feb 2008 A1
20080076831 Goetz Mar 2008 A1
20080102107 Lewellyn et al. May 2008 A1
20080146458 Hollingsworth et al. Jun 2008 A1
20080193427 Kaesler et al. Aug 2008 A1
20080228161 Claussen et al. Sep 2008 A1
20080249082 Hollander Oct 2008 A1
20080251081 Claussen et al. Oct 2008 A1
20080260871 Fruitman Oct 2008 A1
20080274153 Farmer Nov 2008 A1
20080275015 Potter Nov 2008 A1
20080300311 Kisak et al. Dec 2008 A1
20080317680 Dueva-Koganov et al. Dec 2008 A1
20080319092 Singh et al. Dec 2008 A1
20090215888 Jagat et al. Aug 2009 A1
20090312273 De la Torre Dec 2009 A1
20090324784 Mclellan et al. Dec 2009 A1
20110105623 Benjamin et al. May 2011 A1
20110136210 Benjamin et al. Jun 2011 A1
20110203583 Cozean et al. Aug 2011 A1
20110203585 Cozean et al. Aug 2011 A1
20120207827 Cozean et al. Aug 2012 A1
20130018059 Jacob et al. Jan 2013 A1
20130045941 Cozean et al. Feb 2013 A1
20140116444 Cozean et al. May 2014 A1
Foreign Referenced Citations (41)
Number Date Country
2617934 Feb 2007 CA
0827744 Mar 1998 EP
0976726 Feb 2000 EP
2 028 162 Dec 1979 GB
2003-306446 Oct 2003 JP
2005-0270589 Oct 2005 JP
2005330199 Dec 2005 JP
2035909 May 1995 RU
WO 8500108 Jan 1985 WO
WO 9405272 Mar 1994 WO
WO 9405273 Mar 1994 WO
WO 9503753 Feb 1995 WO
WO 0064868 Nov 2000 WO
WO 0173096 Oct 2001 WO
WO 03015760 Feb 2003 WO
WO 03101415 Dec 2003 WO
WO 2004064877 Aug 2004 WO
WO 2004067013 Aug 2004 WO
WO 2004093541 Nov 2004 WO
WO 2004100896 Nov 2004 WO
WO 2005054553 Jun 2005 WO
WO 2005115546 Dec 2005 WO
WO 2005117913 Dec 2005 WO
WO 2006129149 Dec 2006 WO
WO 2006135854 Dec 2006 WO
WO 2007009245 Jan 2007 WO
WO 2007016766 Feb 2007 WO
WO 2007033083 Mar 2007 WO
WO 2007033180 Mar 2007 WO
WO 2007049262 May 2007 WO
WO 2007056205 May 2007 WO
WO 2007098591 Sep 2007 WO
WO 2007126191 Nov 2007 WO
WO 2008049020 Apr 2008 WO
WO 2008091704 Jul 2008 WO
WO 2008098871 Aug 2008 WO
WO 2010054093 May 2010 WO
WO 2010062721 Jun 2010 WO
WO 2011053848 May 2011 WO
WO 2011053854 May 2011 WO
WO 2011123695 Oct 2011 WO
Non-Patent Literature Citations (124)
Entry
“Biological Effects of The Metabolites of Dimethyl Sulfoxide” by Kocsis et al., Ann. N.Y. Acad. Sci. 243, 104 09 (1975).
“Arginine metabolism and the synthesis of nitric oxide in the nervous system,” by Wiesinger, Progess in Neurobiology 64, 365-91 (2001).
“In vitro induction of nitric oxide by fructose-1,6-diphosphate in the cardiovascular system of rats” by Rao et al., Mol. Cell. Biochem. 185, 171-75 (1998).
“Medical use of dimethyl sulfoxide (DMSO)” by Swanson, Rev. Clin. Basic Pharm. 5, 1-33 (1985) (PubMed Abstract No. 3916302).
Baer P, Thomas L, Shainhouse JZ. Treatment of osteoarthritis of the knee with a topical diclofenac solution: a randomized, controlled 6-week trial. BMC Musculoskeletal Disord. 2005; 6:44.
Cherian L, Robertson C. L-Arginine and Free Radical Scavengers Increase Cerebral Blood Flow and Brain Tissue Nitric Oxide Concentrations after Controlled Cortical Impact Injury in Rats. Journal of Neurotrauma, vol. 20, No. 1, (Jan. 2003), pp. 77-85.
Jacob et al., Interstitial Cystitis Network—Char Log, Topic: Understanding DMSO; Mar. 28, 2000; The IC Network.
Kubota et al. Beneficial effect of L-Arginine for Stroke-like episode in MELAS Brain and Development, Amsterdam, JL, vol. 26, No. 7, Oct. 1, 2004; pp. 481-483.
Pennsaid Monograph, Nuvo Research, 2010.
Robertson et al. “L-Arginine reduces neuronal damage after traumatic brain injury in the mouse” Journal of Neurotrauma, vol. 17, No. 10, Oct. 2000, p. 945.
Rosenbaum WM, Rosenbaum EE, Jacob S. The use of dimethyl sulfoxide (DMSO) for the treatment of intractable pain in surgical patients. Surgery 1965: 58, (Feb. 1965).
Roth SH, Shainouse JZ, Efficacy of Safety of a topical diclofenac solution (Pennsaid) in the treatment of primary osteoarthritis of the knee: a randomized, double-blind, controlled clinical trial. Arch Intern Med. Oct. 11, 2004;164(18):2017-23.
Shainhouse JZ, Grierson L, Naseer Z, A long-term, open-label study to confirm the safety of topical diclofenac solution containing dimethyl sulfoxide in the treatment of the osteoarthritic knee, American Journal of Therapeutics 0(0) 2010.
Shaklee Health Network, “Methyl Sulfonyl Methane,” [online], 2006 [retrieved on Dec. 16, 2010]. Retrieved from the internet: <URL:http://content.hbiondemand.com/shap/monoVMN.asp?objID=100028]>: p. 1-4, especially p. 1, para 1 to p. 2, para 1.
Tugwell PS, Wells GA, Shainhouse JZ. Equivalence study of a topical diclofenac solution (Pennsaid) compared with oral diclofenac in symptomatic treatment of osteoarthritis of the knee: a randomized, controlled trial. J Rheumatol. Oct. 2004; 31(10):1893-5.
“Guidance on Medical Device Patient Labeling” accessed Mar. 10, 2010. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm070782.htm.
Additive Free MSM Methylsulfonylmethane. World Image Naturals™, Inc. 2005. Downloaded from http://www.worldimagenaturals.com/products/msm/index.php. pp. 1-6.
AloeCalm™ All-Natural and Organic Body Lotion. Lanique Botanicals™. Downloaded from http://www.acne-answers.org/products/aloe-calm.html on Jul. 5, 2010. pp. 1-5.
Andrews, Jennifer M.: “Determination of minimum inhibitory concentrations,” Journal of Antimicrobial Chemotherapy (2001) 48, Suppl. S1, 5-16.
Beilke, et al.: “Effects of dimethyl sulfoxide on the oxidative function of human neutrophils,” (1987) Journal of Laboratory and Clinical Medicine 110:91-96.
Borodina, et al.: “Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobiumand Arthrobacter,” Arch Microbiol (2000) 173: 425-437.
Brandt, et al.: “Selective Affinity of Dimethyl Sulphoxide (DMSO) and 2-amino-4-phenylsulphonylbenzenesulphonamide (NSD 3004) for the Large Intestinal Mucosa of Mice,” Acta pharmacol. Et toxicol. 1982, 51, 173-176.
Brown, Derek, F.J., et al.: “Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA),” Journal of Antimicrobial Chemotherapy (2005) 56, 1000-1018.
Dancer, S. J.: “The effect of antibiotics on methicillin-resistant Staphylococcus aureus,” Journal of Antimicrobial Chemotherapy (2008) 61, 246-253.
de Lencastre, et al.: “Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power,” Curr Opin Microbiol. Oct. 2007; 10(5): 428-435.
Gerhards & Gibian, “The Metabolism of Dimethyl Sulfoxide and Its Metabolic Effect in Man and Animals,” Annals New York Academy of Sciences, pp. 65-76, Mar. 1967.
Gupta, Shyam Dr.: “New Delivery System for Topical Nutraceutical (Nutracosmetic) and Cosmeceutical Formulations,” pp. 1-5, Business Briefing: Global Cosmetics Manufacturing 2004.
Horváth, et al.: “Toxicity of methylsulfonylmethane in rats,” Food and Chemical Toxicology 40 (2002) 1459-1462.
How to Flush the Toxins out of Your Body from the Swine or H1N1 Flu Shot, downloaded from http://www.ehow.com/print/how—5625054—flush-swine-hn-flu-shot.html, on Aug. 18, 2010. pp. 1-3.
Hucker, et al.: “Studies on the Absorption, Excretion and Metabolism of Dimethylsulfoxide (DMSO) in Man,” The Journal of Pharmacology and Experimental Therapeutics, 155:309-317. 1967.
Jacob & Herschler: “Introductory Remarks: Dimethyl Sulfoxide After Twenty Years,” Annals New York Academy of Sciences, Jun. 1983.
Layman, et al.: “The Absorption, Metabolism and Excretion of Dimethyl Sulfoxide by Rhesus Monkeys,” Life Sciences, vol. 37, pp. 2431-2437, 1985.
Lee, et al.: “Evaluation of Genotoxicity on Plant-Derived Dietary Sulfar,” J. Microbiol. Biotechnol. (2006), 16(5), 817-820.
Lu, et al.: “A Mouse Model for the Evaluation of Pathogenesis and Immunity to Influenza A (H5N1) Viruses Isolated from Humans,” Journal of Virology, Jul. 1999, p. 5903-5911.
Magnuson, et al.: “Oral developmental toxicity study of methylsulfonylmethane in rats,” Food and Chemical Toxicology 45 (2007) 977-984.
Magnuson, et al.: “Pharmacokinetics and Distribution of [35S]Methylsulfonylmethane following Oral Administration to Rats,” J. Agric. Food Chem. 2007, 55, 1033-1038.
Methylsulfonylmethane—Wikipedia, the free encyclopedia. Download from http://en.wikipedia.org/wiki/Methylsulfonylmethane, on Jul. 5, 2010. pp. 1-5.
MSM—MethylsulfonylMethane. Downloaded from http://pages.prodigy.net/naturedoctor/msm.html on Jul. 5, 2010. pp. 1-6.
Pratt, et al.: “A Study of the Absorption of OptiMSM (Methylsulfonylmethane) in Horses,” Proceedings of the 17th Equine Nutrition and Physiology Society, 2001.
Scrubs, online encyclopedia article, accessed Mar. 10, 2010. http://en.wikipedia.org/wiki/Scrubs—(clothing).
Shanmugam, et al.: “The Effect of Methylsulfonylmethane on Hair Growth Promotion of Magnesium Ascorbyl Phosphate for the Treatment of Alopecia,” Biomolecules & Therapeutics, 17(3), 241-248 (2009). ISSN 1976-9148.
Stürenburg, Enno: “Rapid detection of methicillin-resistant Staphylococcus aureus directly from clinical samples: methods, effectiveness and cost considerations,” GMS German Medical Science 2009, vol. 7, ISSN 1612-3174. pp. 1-19.
Sulfur—MSM—methyl sulfonyl methane—Natural Health Site. A Basic Essential Nutrient Needed Now, More than Ever Before. Downloaded from http://www.all-natural.com/msm.html on Aug. 11, 2010. pp. 1-7.
Szmant, Harry H., “Physical Properties of Dimethyl Sulfoxide and Its Function in Biological Systems,” Annals New York Academy of Sciences, pp. 20-23, Jan. 1975.
Tiews, et al.: “Metabolism and Excretion of Dimethyl Sulfoxide in Cows and Calves After Topical and Parenteral Application,” Annals New York Academy of Sciences, pp. 139-150. Jan. 1975.
Vignes, Robert P., Ph.D: “Dimethyl Sulfoxide (DMSO): A Superior Solvent,” Semiconductor Safety Association, Annual Meeting Apr. 25-28, 2000, Arlington, VA. pp. 1-47.
Williams, et al.: “Metabolism of Dimethyl Sulfide, Dimethyl Sulfoxide, and Dimethyl Sulfone in the Rabbit,” Archives of Biochemistry and Biophysics 117, 84-87 (1966).
Windrum, et al.: “Variation in dimethyl sulfoxide use in stem cell transplantation: a survey of EBMT centres,” Bone Marrow Transplantation (2005) 36, 601-603.
Wong, et al.: “Absorption, Excretion, and Biotransformation of Dimethyl Sulfoxide in Man and Minature Pigs After Topical Applicaton as an 80% Gel,” The Journal of Investigative Dermatology, vol. 56, No. 1, 1971.
Zhang, et al.: “Assessment of methysulfonylmethane as a permeability enhancer for regional EDTA chelation therapy,” infoma healthcare, Drug Delivery, 2009, 16(5): 243-248.
Adam, JB, Summary of Biomedical Treatments for Autism, ARI Publication 40, Apr. 2007.
Cárdenas, et al., “Fructose-1,6-bisphosphate inhibits the expression of inducible nitric oxide synthase caused by oxygen-glucose deprivation through the inhibition of glutamate related in rat forebrain slices”, Arch. of Pharmacol., vol. 362(3):208-121 (2000).
Database WPI, Week 199604, Thomson Scientific, (May 1995).
Khazina et al., Tuberculostatic effect of the combined use of isoniazid and streptomycin with 5-fluorouracil in vitro, Problemy Tuberkuleza, Medicina, Moscow, Russia, vol. 58 (1): 63-66 (1980).
Life Extension Magazine, Sep. 1999 “The Multi-Purpose Compound MSM”.
Ramirez, et al., DMSO in the Treatment of Mental Patients, Annals of the NY Acad. of Sci., vol. 141: 655-667 (1967).
Yang, TR, Gas Separation by Adsorption Process, Imperial College Press, 1987 pp. 11-12.
Web page entitled “fructose-1,6-diphosphate—Compound Summary”, retrieved from the Internet Aug. 20, 2013, http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=10267&loc=ec—rcs.
Jacob, Web page entitled DMSO Dimethyl Sulfoxide; www.dmso.org; retrieved from the internet on Mar. 25, 2010.
Jacob, Web page entitled Dr. Jacob's Quality Assurance, www.jacoblab.com; as published on the Internet on Sep. 8, 2004.
Jacob, Web page Dr. Jacob's Quality Assurance, Natural Healthcare Solutions; www.jacoblab.com; retrieved from Internet on Mar. 25, 2010.
Ruslami et al., Pharmacokinetics and Tolerability of a Higher Rifampin Dose Versus the Standard Dose in Pulmonary Tuberculosis Patients, Antimicrobial Agents and Chemotherapy, vol. 51(7):2546-2551 (2007).
Aleksevich Ial, Piletskaia IG, Nikonorova VP. Increase in the sensitivity of the microflora of pathological gingival pockets to streptomycin under the influence of dimexide and trypsin. Mikrobiol Zh. Nov.-Dec. 1973; 35(6):766-9.
Barrager et al., A Multicentered, Open-Label Trial on the Safety and Efficacy of Methylsulfonylmethane in the Treatment of Seasonal Allergic Rhinitis, The Journal of Alternative and Complementary Medicine, vol. 8, No. 2, 2002, pp. 167-173.
Berry et al. Natural Gas Odorants Desulfurization, (2004) AIChE Annual National Meeting, Austin, Texas, Nov. 7-12.
Blumenthal L, Fuchs M. The Clinical Use of Dimethyl Sulfoxide on Various Headaches, Musculoskeletal and Other General Medical Disorders. Annals New York Academy of Sciences 1967:572-585.
Bookman A, Williams S, Shainhouse J. Effect of a topical diclofenac solution for relieving symptoms of primary osteoarthritis of the knee: a randomized controlled trial. CMAJ Aug. 17, 2004; 171(4):333-338.
Brayton CF. Dimethyl Sulfoxide (DMSO); A Review. The Cornel Veterinarian. Jan. 1986; 76(1):61-90.
Brechner V, Cohen D, Pretsky I. Dermal Anesthesia by the Topical Application of Tetracaine Base Dissolved in Dimethyl Sulfoxide, Annals New York Academy of Sciences. 1967:524-531.
Brien et al. Systematic review of the nutritional supplements dimethyl sulfoxide (DMSO) and methylsulfonylmethane (MSM) in the treatment of osteoarthritis. Osteoarthritis and Cartilage (2008) 16:1277-1288.
Brien S, Prescott P, Lewith G. Meta-analysis of the Related Nutritional Supplements Dimethyl Sulfoxide and Methylsulfonlymethane in the Treatment of Osteoarthritis of the Knee. eCAM Advance Access published May 27, 2009 in 10 pages.
Brown JH. Clinical Experience with Dmso in Acute Musculoskeletal Conditions, Comparing a Noncontrolled Series with a Controlled Double Blind Study. Ann NY Acad Sci 1967; 141(1):496-505.
Debi R, et al. The Role of MSM in Knee Osteoarthritis: A Double Blind, RandomizedProspective Study. Osteoarthritis and Cartilage (2008) 15 Supplemental C:C231 (426).
Demos C et al. Dimethyl Sulfoxide in Musculoskeletal Disorders. Ann NY Acad Sci 1967:517-523.
Eberhardt et al. DMSO in patients with Active Gonarthrosis. A double-blind, placebo-controlled Phase III Study. Fortschr Med, Nov. 10, 1995: 113(31):446-450.
Evans MS, Reid KH, Sharp JB. Dimethylsulfoxide (DMSO) blocks conduction in peripheral nerve C fibers: a possible mechanism of analgesia. Neuroscience Letters, 150 (1993):145-148.
Feldman WE, Punch JD, Holden PC. In vivo and in vitro effects of dimethyl sulfoxide on streptomycin-sensitive and—resistant Escherichia coli. Ann NY Acad Sci, Jan. 27, 1975; 243:269-77.
Florain, The Solid State Structures of the Dimethylformamide and Dimethylsulfoxide Complexes of Dioxodichloromolybdenum (VI), ProQuest, 30-07B (1969), pp. 66.
Glasser D. Dimethylsulfoxide (DMSO) “resensibilization” as potential chemotherapy for opportunistic mycobacterial disease. Am Rev Respir Dis. Nov. 1978; 118(5):969-70.
Gorbach IN, Samtsov VS. Therapeutic possibilities of inhalation of rifampicin with dimexide in phthisiopulmonology. Probl Tuberk. 1991; (3):34-6.
Haigler HJ et al. Comparison of the Analgesic Effects of Dimethyl Sulfoxide and Morphine, Ann NY Acad Sci 1983; (411):19-27.
Hasegawa T, Suppressive Effects of Methylsulfonylmethane (MSM) on Type II Collagen-induced Arthritis in DBA/1J Mice. Jpn Pharmacol Ther 2004; 32 (7):421-427.
Jacob S, Appleton J. MSM: The Definitive Guide—Chapter 6, 45-54, Part II, Chapter 7, 57-68, Chapter 8, 69-76, Chapter 10, 84-90, Chapter 21, 181-186. California: Freedom Press, 2003.
Jacob S, Lawrence R, Zucker M, The Miracle of MSM—The Natural Solution for Pain. New York: Library of Congress Cataloging-in-Publication Data, 1999.
Jacob SW, Herschler R. Pharmacology of DMSO, Cryobiology, 1985, 23(1):14-27.
Jacob, S.W. and Wood, D.C. Dimethyl sulfoxide (DMSO): Toxicology, pharmacology, and clinical experience. Am. J. Surg. 1967; 114(3):414-426.
Jagannath C, Reddy VM, Gangadharam PR. Enhancement of drug susceptibility of multi-drug resistant strains of Mycobacterium tuberculosis by ethambutol and dimethyl sulphoxide. J Antimicrob Chemother. Mar. 1995; 35(3):381-90.
Jimenez RA, Willkens RF. Dimethyl Sulphoxide: a perspective of its use in rheumatic diseases. J Lab Clin Med 1982; 100(4):489-500.
John, H., Laudahn, G. Clinical Experiences with the Topical Application of DMSO in Orthopedic Diseases: Evaluation of 4,180 Cases, Annals New York Academy of Sciences, 1967; vol. 141:506-516.
Karlson AG, Ulrich JA, Stock solutions of rifampin remain stable in dimethylsulfoxide for at least 8 months, Appl Microbiol. Oct. 1969; 18(4):692-3.
Kim, et al. Efficacy of Methylsulfonylmethane (MSM) in Osteoarthritis Path of the Knee: A Pilot Clinical Trial. Osteoarthritis and Cartilage (2006) 14:286-294.
Knowles R. Clinical Experience with DMSO in Small Animal Practice, Annals New York Academy Sciences (1967) 141:478-483.
Koenen NJ, Haag RF, BiaP, RoseP. Perkutane therapie bei aktivierter Gonarthrose. Munch Med Wochenschr 1996; 138 (31-32):534-538.
Liubinets VI, Kruk MV. Dimexide in the treatment of endobronchitis in patients with destructive forms of pulmonary tuberculosis, Zh Ushn Nos Gorl Bolezn. Nov.-Dec. 1969; 29(6):68-71.
Lockie and Norcross. A Clinical Study on the Effects of Dimethyl Sulfoxide in 103 Patients with Acute and Chronic Musculoskeletal Injuries and Inflammations, Annals New York Academy Sciences (1967) 141:599-602.
Martin D. and Hauthal H., Dimethyl Sulfoxide—Chapter 12. New York: John Wiley & Sons, 1971.
Matsumoto, J. Clincal Trials of Dimethyl Sulfoxide in Rheumatoid Arthritis Patients in Japan, Annals New York Academy Sciences. 1967; vol. 141:560-568.
Mitinskaia LA, Iukhimenko NV, Kamaeva VF. BCG vaccination and increasing the effectiveness of treatment of post-vaccination complications by the use of rifampicin and dimexide. Probl Tuberk. 1994; (5):4-7.
Mohamaddi F, O'Mara K, Unusual Patient Odor Interfering with Care, Resurrection Medical Center, Chicago, III.
Muller U, Urbanczik R. Influence of dimethyl sulfoxide (DMSO) on restoring sensitivity of mycobacterial strains resistant to chemotherapeutic compounds, J Antimicrob Chemother. May 1979; 5(3):326-7.
Murav'ev IuV, Venikova MS, Peskovskaia GN, Riazantseva TA, Sigldin IaA. Effect of dimethylsulphoxide and dimethyl sulfone. Patol Fiziol Eksp Ter Mar.-Apr. 1991; (2):37-39.
Nash DR, Steingrube VA. In vitro drug sensitivity of M. avium-intracellulare complex in the presence and absence of dimethyl sulfoxide. Microbios. 1982; 35(140):71-8.
Oshima Y, Theodosakis J, Amiel D. The Effect of Distilled Methylsulfonylmethane (MSM) on Human Chondrocytes in vitro. World Congress on Osteoarthritis, Ft. Lauderdale, Florida; Osteoarthritis and Cartilage 2007; vol. 15 Supplemental C123:213.
Ostojic et. al. Laboratory Testing of Cabin Air Filters for the Removal of Reduced-Sulfur Odors. New Engine Design and Automotive Filtration SAE Special Publications 1998; 1362:41-58.
Paul M. Interval Therapy with Dimethyl Sulfoxide. Ann NY Acad Sci Mar. 1967; 1(141):586-598.
Paulus E. FDA advisory committee meeting: methotrexate; guidelines for the clinical evaluation of anti-inflammatory drugs; DMSO in scleroderma. Arthritis & Rehumatism Oct. 1986; 10(29):1289-1290.
Penrod, D., Bacharach, B., Templeton, J. Dimethyl Sulfoxide for Incisional Path after Thoracotomy: Preliminary Report. Annals New York Academy Sciences Mar. 15, 1967; vol. 141(1):493-495.
Pottz GE, Rampey JH, Bejamin F. The effect of dimethyl sulfoxide (DMSO) on antibiotic sensitivity of a group of medically important microorganisms: preliminary report. Ann NY Acad Sci. Mar. 15, 1967; 141(1):261-72.
Ropek M, Pawlowska I, Szydlowska T. Effects of dimethyl sulfoxide on tubercle bacilli resistant to INH. Gruzlica. Aug. 1971; 39(8):738-41.
Seibert F, Farrelly F, Shepherd C. DMSO and other combatants against bacteria isolated from leukemia and cancer patients. Ann NY Acad Sci Mar. 1967; 1(141):175-201.
Simon L, et. al. Efficacy and Safety of Topical Diclofenac containing Dimethyl Sulfoxide (DMSO) compared with those of Topical Placebo, DMSO Vehicle and Oral Diclofenac for Knee Osteoarthritis. Pain, 143(2009):238-245.
Smith G, Bertone AL, Kaeding C, et al. Anti-Inflammatory effects of topically applied dimethyl sulphoxide gel on endotoxin-induced synovitis in horses. Am J Vet Res Sep. 1998; 59(9):1149-52.
Steinberg, A. The employment of DMSO as an anti-inflammatory agent and steroid transporter in diversified clinical diseases. Ann NY Acad Sci 1967, 141(1):532-550.
Szydlowska T. In Vitro and In Vivo Studies on the role of Dimethylsulfoxide (DMSO) in Resensibilization of Bacterial Strains Resistant to Antibiotics and Chemotherapeutic Agents. Zbl. Bakt. Hyg., I. Abt. Orig. A 239, 270-274 (1977).
Szydlowska T, Pawlowska I. Comparative Studies on the Influence of Dimethylsulfoxide (DMSO) on Reversion to Sensitivity to Isonicotinic Acid Hydrazide (INH) and Rifampicin (RMP) in Resistant Strains of Tubercle Bacilli. Arch Immunol Ther Exp (Warsz). 1976; 24(4):575-77.
Szydlowska T, Pawlowska I. In vivo studies on reversion to sensitivity of INH-resistant tubercle bacilli under the influence of dimethylsulfoxide (DMSO). Arch Immunol Ther Exp (Warsz). 1974; 22(4):559-61.
Szydlowska T. Studies on the role of dimethylsulfoxide in resensibilization of antibiotic-resistant bacterial strains. Arch Immunol Ther Exp (Warsz). 1972; 20(2):193-202.
Szydlowska T. Studies on the role of dimethylsulfoxide in resensibilization of bacterial strains resistant to sulfonamides. Arch Immunol Ther Exp (Warsz). 1972; 20(2):203-207.
Teigland MB, Saurino V. Clinical Evaluation of Dimethyl Sulfoxide in Equine Applications. Ann NY Acad Sci Mar. 1967; 141(1):471-7.
Usha PR, Naidu MUR. Randomized, double-blind, parallel, placebo-controlled study of oral glucosamine, methylsulfonylmethane and their combination in osteoarthritis. Clin Drug Invest 2004; 24(6):353-63.
Vuopala U, et. al. The Analgesic action of DMSO ointment in arthrosis. Acta Rheum Scand 1971; 17(1):57-60.
Wierzbicki. Homocysteine and cardiovascular disease: a review of the evidence; Diabetes and Vascular Disease Research; Jun. 2007; pp. 143-149; vol. 4, Iss 2; The British Library.
Wood, DC, Wood, J. Pharmacologic and Biochemical Considerations of Dimethyl Sulfoxide. Ann NY Acad Sci Jan. 1975; 243:7-19.
Zuckner, J. Uddin, J., Gantner, G. Local Application of Dimethyl Sulfoxide and DMSO Combined with Triamcinolone Acetonide in Rheumatoid Arthritis. Ann NY Acad. Sci. Mar. 1967; 1(141):555-9.
Related Publications (1)
Number Date Country
20090312273 A1 Dec 2009 US
Provisional Applications (1)
Number Date Country
60716335 Sep 2005 US