The present application relates to pharmaceutical grade highly bioavailable superfine cyclodextrin-encapsulated active pharmaceutical ingredients, stable and non-degradable edible, inhalable, soluble and drinkable compositions comprising the disclosed cyclodextrin-encapsulated active pharmaceutical ingredients, and to methods of manufacturing the superfine cyclodextrin-encapsulated active pharmaceutical ingredients.
Lipophilic active pharmaceutical ingredients (APIs) are poorly soluble in water, and their extraction and refinement are time-consuming processes that require extraction, distillate production, and refinement. These processes involve the use of hazardous solvents and often yield products suffering from low stability and lack of efficacy. In addition, the resulting API products lack pharmaceutical grade purity and have poor bioavailability.
Cannabinoids are lipophilic APIs, which are naturally produced in the annual plants Cannabis sativa, Cannabis indica, Cannabis ruderalis, and hybrids thereof. Tetrahydrocannabinol (THC), the most active naturally occurring cannabinoid, is beneficial in the treatment of a wide range of medical conditions, including glaucoma, AIDS wasting, neuropathic pain, treatment of spasticity associated with multiple sclerosis, fibromyalgia, emesis and chemotherapy-induced nausea. Cannabidiol (CBD) has no psychotropic effects and it is FDA-approved for the treatment of epilepsy. Cannabinol (CBN) is an effective sedative and inflammation reliever. There is increasing demand for cannabinoids in general, and THC, CBD and CBN in particular, for recreational use. Psychoactive drugs, such as psychedelics, are also in demand for their effects on consciousness state. Solubility in water of these APIs, however, is limited. The solubility in water of cannabidiol (CBD) isolates currently available, for example, is just 0.0126 mg/ml.
Cannabinoids derive from the precursor cannabigerolic acid (CBGA), or its analog cannabigerovaric acid (CBGVA). Enzymatic conversion of CBGA produces a wide variety of cannabinoids, including (−)-trans-Δ9-tetrahydrocannabinol (Δ9-THC), (−)-trans-Δ9-tetrahydrocannabiphorolol (Δ9-THCP), cannabigerol (CBG), cannabichromene (CBC), cannabicyclol (CBL), cannabidiol (CBD), cannabinodiol (CBND), and cannabinol (CBN). Enzymatic conversion of CBGVA produces Δ9-tetrahydrocannabivarin (Δ9-THCV), cannabivarin (CBV), cannabidivarin (CBDV) and cannabichromevarin (CBCV).
There is a need in the art for efficient and safe production of stable, non-degradable compositions comprising pharmaceutical grade, inhalable, soluble and highly bioavailable APIs.
The present application presents solutions to the aforementioned challenges, by providing stable, non-degradable, edible, inhalable, soluble or drinkable compositions comprising pharmaceutical grade highly bioavailable superfine cyclodextrin-encapsulated active pharmaceutical ingredients and quick, cost-effective and easily scalable processes that produce the highly bioavailable superfine cyclodextrin-encapsulated active pharmaceutical ingredients of pharmaceutical grade purity. The disclosed processes do not require the use of organic solvents and thus satisfy the most restrictive health guideline requirements. The resulting superfine pharmaceutical active ingredients may be used for pulmonary and oral delivery, food production, and pharmaceutical and medical applications.
Provided herein are stable, non-degradable, edible, inhalable, soluble or drinkable compositions comprising pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredients (API) having 99.9% purity and 200% increased bioavailability compared to non-cyclodextrin-encapsulated active pharmaceutical ingredient formulations, and pharmaceutically acceptable carriers, excipients and/or binders.
Suitable active pharmaceutical ingredients include, but are not limited to, cannabinoids, psychedelics, analgesics, anesthetics, anti-inflammatories, anti-bacterials, anti-virals, anti-coagulants, anti-convulsants, antidepressants, and muscle relaxants.
In some embodiments, the pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredients are in form of nanoparticles having an average particle size between 100 nm and 40 μm and a size distribution within 1% and 50% of the average particle size.
In some embodiments, the pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredients are in form of ultrafine dry powder having an average particle size between 100 nm and 5 μm.
In some embodiments, the pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredients are in form of soluble or drinkable solutions or suspensions.
In some embodiments, the API is encapsulated in one or more acetylated cyclodextrins. Suitable acetylated cyclodextrins include, but are not limited to, acetylated α-cyclodextrin, acetylated β-cyclodextrin, acetylated γ-cyclodextrin or any mixture thereof.
In some embodiments, the API is encapsulated in one or more acetylated cyclodextrins and in one or more hydrophilic cyclodextrins. Suitable acetylated cyclodextrins include, but are not limited to, acetylated α-cyclodextrin, acetylated β-cyclodextrin, acetylated γ-cyclodextrin or any mixture thereof. Suitable hydrophilic cyclodextrins include, but are not limited to, hydrophilic α-cyclodextrin, hydrophilic β-cyclodextrin, hydrophilic γ-cyclodextrin or any mixture thereof.
In some embodiments, the API and the one or more acetylated cyclodextrins are in an API: acetylated cyclodextrin molar ratio ranging from 1:0.5 to 1:10. In some embodiments, the API: acetylated cyclodextrin molar ratio is 1:0.5, 1:0.75, 1:1, 1:1.5, 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1:4.5, 1:5, 1:5.5, 1:6, 1:6.5, 1:7, 1:7.5, 1:8, 1:8.5, 1:9, 1:9.5, or 1:10.
In some embodiments, the API is encapsulated in one or more hydrophilic cyclodextrins. Suitable hydrophilic cyclodextrins include, but are not limited to, hydrophilic α-cyclodextrin, hydrophilic β-cyclodextrin, hydrophilic γ-cyclodextrin or any mixture thereof.
In some embodiments, the pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredients are psychedelics, such as psilocin or psilocybin.
In some embodiments, the pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredients are cannabinoids, such as one or more of cannabigerolic acid (CBGA), cannabigerovaric acid (CBGVA, tetrahydrocannabinolic acid (THCA), cannabichromene acid (CBCA), cannabidiolic acid (CBDA), tetrahydrocannabivarinic acid (THCVA), cannabichromevarinic acid (CBCVA), cannabidivarinic acid (CBDVA), (−)-trans-Δ9-tetrahydrocannabinol (Δ9-THC), trans-Δ9-tetrahydrocannabiphorol (Δ9-THCP), cannabigerol (CBG), cannabichromene (CBC), cannabicyclol (CBL), cannabidiol (CBD), cannabinodiol (CBND), and cannabinol (CBN).
In some embodiments, the cannabinoid is cannabidiol (CBD). In some embodiments, the cannabinoid is tetrahydrocannabinol (THC). In some embodiments, the one or more cannabinoids are cannabidiol (CBD) and tetrahydrocannabinol (THC). In some embodiments, the cannabinoid is cannabinol (CBN). In some embodiments, the cannabinoid is tetrahydrocannabipherol (THCP).
Suitable pharmaceutically acceptable carriers, excipients and binders that may be used in the disclosed compositions include, but are not limited to, sodium citrate, dicalcium phosphate, starch, lactose, sucrose, glucose, mannitol, silicic acid, carboxymethylcellulose, alginate, gelatin, lecithin, polyvinylpyrrolidone, sucrose, acacia, humectants, solubilizers, emulsifiers, disintegrating agents, solution retarding agents, absorption accelerators, wetting agents, absorbents, lubricants, oils, adjuvants, sweeteners, flavoring agents, perfuming agents, buffering agents, and any mixtures thereof.
In some embodiments, the disclosed compositions are in form of inhaler, capsule, tablet, pill, powder, bead, lozenge, dragee, granule, dietary composition, food product, beverage, emulsion, solution, suspension, cream, gel, sunblock, shampoo, toothpaste, transdermal patch, plaster, implant, syrup, elixir, injection or infusion.
In some embodiments, the disclosed compositions are formulated in immediate release form, sustained release form or controlled release form.
In some embodiments, the disclosed compositions further comprise a coating. Suitable coatings include, but are not limited to, enteric coatings, extended-release coatings, sustained-release coatings, delayed release coatings, and immediate-release coatings.
The disclosed compositions may be formulated for oral, mucosal, pulmonary, topical, parenteral, transdermal or sub-mucosal administration.
In some embodiments, the disclosed compositions are in form of food products. Suitable food products include, but are not limited to, bread, cookies, soups, cereals, salads, sandwiches, sprout, vegetables, and candies.
In some embodiments, the disclosed compositions are in form of beverages. Suitable beverages include, but are not limited to, tea, juice, syrup, soda, fermented drinks, alcoholic drinks, non-alcoholic drinks, distilled drinks, and brewed drinks.
The foregoing and other features of the disclosure will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more examples of embodiments and, together with the description of example embodiments, serve to explain the principles and implementations of the embodiments.
The following explanations of terms are provided to better describe the present disclosure and to guide those of ordinary skill in the art in the practice of the present disclosure. As used herein, “comprising” means “including” and it is not intended to mean that the compositions and methods exclude elements that are not recited. “Consisting essentially of,” when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination. For example, a composition consisting essentially of the elements as defined herein would not exclude other elements that do not materially affect the basic and novel characteristic(s) of the claimed invention. “Consisting of” shall mean excluding more than a trace amount of other ingredients and substantial method steps recited. The singular forms “a” or “an” or “the” include plural references unless the context clearly dictates otherwise. The term “or” refers to a single element of stated alternative elements or a combination of two or more elements, unless the context clearly indicates otherwise. All numerical designations, e.g., pH, temperature, time, concentration, amounts, and molecular weight, including ranges, are approximations which are varied (+) or (−) by 10%, 1%, or 0.1%, as appropriate. It is also to be understood, although not always explicitly stated, that the reagents described herein are merely exemplary and that equivalents of such are known in the art. Unless explained otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. The materials, methods, and examples are illustrative only and not intended to be limiting.
To facilitate review of the various embodiments of this disclosure, the following explanations of specific terms are provided:
About: A term used to indicate a variation in value by +/−10% of the value, or optionally +/−5% of the value, or in some embodiments, by +/−1% of the value.
Administer: To provide or give a subject a composition, such as a supplement composition, by an effective route. Application is local. Exemplary routes of application include, but are not limited to, oral and topical routes.
Agitate or Agitation: A mechanical movement that may include, but is not limited to, rotating, vibrating, vortexing, swirling, shaking, ultrasonicating, stirring, or any movement that causes mixing. Mechanical movements include movements performed by hand or by a rotator.
Active Pharmaceutical Ingredient: A biologically active ingredient in a finished product having a direct effect in the diagnosis, cure, mitigation, treatment or prevention of a disease, or in restoring, correcting or modifying one or more physiological functions in a subject, such as a human or animal subject.
Alcohol: An organic compound containing a hydroxyl functional group —OH bound to a carbon.
Analog: A compound having a structure similar to another, but differing from it, for example, in one or more atoms, functional groups, or substructure. API analogs encompass compounds that are structurally related to naturally occurring APIs, but whose chemical and biological properties may differ from naturally occurring APIs, as well as compounds derived from a naturally occurring API by chemical, biological or a semi-synthetic transformation of the naturally occurring API.
Cannabinoids: A class of diverse chemical compounds that activate cannabinoid receptors. Cannabinoids produced by plants are called phytocannabinoids. Typical cannabinoids isolated from the Cannabis plants include, but are not limited to, tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), cannabichromene (CBC), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), and cannabigerol monomethyl ether (CBGM).
Cell: A living biological cell, its progeny or potential progeny, which may be identical or non-identical to the parent cell.
Contacting: Placing in direct physical association.
Co-Solvent: A solvent added to a fluid in an amount less than 50% of the total volume.
Cyclodextrins: A family of cyclic oligosaccharides produced from starch by enzymatic conversion and having a structure comprising a macrocyclic ring of α-D-glucopyranoside units joined by α-1,4 glycoside bonds. Typical cyclodextrins contain six to eight glucose subunits in a ring, creating a cone shape. α-Cyclodextrin contains six glucose subunits; β-cyclodextrin contains seven glucose subunits; and γ-cyclodextrin contains eight glucose subunits. Because cyclodextrins have an inner hydrophobic core and a hydrophilic exterior, they form complexes with hydrophobic compounds.
Effective amount: The amount of an active agent (alone or with one or more other active agents) sufficient to induce a desired response, such as to prevent, treat, reduce and/or ameliorate a condition.
Emulsifier: A surfactant that reduces the interfacial tension between oil and water, minimizing the surface energy through formation of globules. Emulsifiers include gums, fatty acid conjugates and cationic, anionic and amphotheric surfactants capable of suspending the oily phase and stabilizing the emulsion by coating the oil droplets and avoiding the separation of the internal oily phase. The film coat produced by the emulsifier is a barrier between the immiscible phase and it also prevents droplets association, coagulation and coalescence. Examples of emulsifier include, but are not limited to, lecithin, glyceryl monostearate, methylcellulose, sodium lauryl sulfate, sodium oleate, sorbitan monopalmitate, sorbitan monostearate, sorbitan tristrearate, tragacanth, triethanolamine oleate, polyethylene sorbitan monolaurate, poloxamer, detergents, Tween 80 (polyoxyethylene sorbitan monooleate), Tween 20 (polyoxyethylene sorbitan monolaurate), cetearyl glucoside, polyglucosides, sorbitan monooleate (Span 80), sorbitan monolaurate (Span 20), polyoxyethylene monostearate (Myrj 45), polyoxyethylene vegetable oil (Emulphor), cetyl piridinium chloride, polysaccharides gums, Xanthan gums, Tragacanth, Gum arabica, Acacia, or proteins and conjugated proteins capable of forming and protecting stable oil in glycerin emulsion.
Hydrophilic: A polymer, substance or compound that is capable of absorbing more than 10% of water at 100% relative humidity (RH).
Hydrophobic: A polymer, substance or compound that is capable of absorbing no more than 1% of water at 100% relative humidity (RH).
Lipophilic: A substance or compound that has an affinity for a non-polar environment compared to a polar or aqueous environment.
Nanoparticle: A particle of matter measurable on a nanometer scale. Nanoparticles may be in solid or semi-solid form.
Oil: Any fatty substance that is in viscous liquid form at room temperature (25° C.) and at atmospheric pressure (760 mmHg). Oils are hydrophobic and lipophilic, have a high carbon and hydrogen content and are usually flammable and surface active. Oils may be animal, vegetable, or petrochemical in origin, and may be volatile or non-volatile. Oils may be used for food, fuel, medical purposes, and for the manufacture of paints and plastics.
Organic Solvent: A hydrocarbon-based solvent optionally comprising one or more polar groups capable of dissolving a substance that has low solubility in water.
Permeation Enhancer: A natural or synthetic molecule that facilitates the transport of co-administered active agents across biological membranes.
pH Adjuster or Modifier: A molecule or buffer used to achieve desired pH control in a formulation. Exemplary pH modifiers include acids (e.g., acetic acid, adipic acid, carbonic acid, citric acid, fumaric acid, phosphoric acid, sorbic acid, succinic acid, tartaric acid), basic pH modifiers (e.g., magnesium oxide, tribasic potassium phosphate), and pharmaceutically acceptable salts thereof.
Psychedelic Drug: A hallucinogen that triggers a non-ordinary state of consciousness and psychedelic experiences via serotonin 2A receptor agonism.
Purification or Purify: Any technique or method that increases the degree of purity of a substance of interest, such as an enzyme, a protein, or a compound, from a sample comprising the substance of interest. Non-limiting examples of purification methods include silica gel column chromatography, size exclusion chromatography, hydrophobic interaction chromatography, ion exchange chromatography including, but not limited to, cation and anion exchange chromatography, free-flow-electrophoresis, high performance liquid chromatography (HPLC), and differential precipitation.
Purity: A quality of an unadulterated, uncontaminated and safe product obtained by the disclosed methods and meeting pharmaceutical standards.
Recovery: A process involving isolation and collection of a product from a reaction mixture. Recovery methods may include, but are not limited to, chromatography, such as silica gel chromatography and HPLC, activated charcoal treatment, filtration, distillation, precipitation, drying, chemical derivation, and any combinations thereof.
Supercritical Fluid: Any substance at a temperature and pressure above their critical point, where distinct liquid and gas phases do not exist. Solubility of a material in the fluid increases as the density of the fluid increases. Density of the fluid increases with pressure, and at constant density, solubility of a material in the fluid increases as the temperature increases. Exemplary supercritical fluids include, but are not limited to, carbon dioxide, water, methane, propane, ethane, ethylene, propylene, methanol, ethanol, acetone, and nitrogen oxide.
Viscosity: The measure of a fluid's resistance to gradual deformation by shear stress or tensile stress.
Water-Immiscible: Any non-aqueous or hydrophobic fluid, liquid or solvent which separates from solution into two distinct phases when mixed with water.
Water-Insoluble: A compound or composition having a solubility in water of less than 5%, less than 3%, or less than 1%, measured in water at 20° C.
The development of efficient processes for the production of pure lipophilic API compounds with high bioavailability has to date been hampered by the low solubility of APIs in aqueous and acidic conditions. As a consequence, classical lipophilic API preparation and refinement is a time-consuming process, which often requires the use of toxic organic solvents. In addition, APIs produced by currently available methods suffer from lack of purity and have low bioavailability.
Disclosed herein are quick and efficient methods that overcome these challenges, by making use of supercritical, subcritical, high-pressure gas or liquid carbon dioxide and acetylated and/or hydrophilic cyclodextrins to create highly pure, ultrafine API-cyclodextrin inclusion complexes that are suitable for pulmonary and oral delivery. The methods provided herein significantly decrease API particle size, do not include the use of toxic organic solvents, and produce pure active pharmaceutical compounds that meet the most restrictive health requirements. Cyclodextrin encapsulation protects the API from degradation after production, and thus the pure active pharmaceutical compounds produced according to the disclosed methods are highly stable for extended periods of time, such as 16 months or longer, at room temperature and do not degrade over time. In addition, since carbon dioxide is a gas at atmospheric pressure, CO2 removal is much quicker and safer than organic solvent removal, and no residual solvent is left in the final product.
Thus, in some embodiments, a method is provided, that comprises: (i) dissolving the API and one or more acetylated cyclodextrins in supercritical, subcritical, high-pressure gas or liquid carbon dioxide in a reaction chamber; (ii) pumping the carbon dioxide at a set pressure and a set temperature for a pre-determined period of time to obtain an acetylated cyclodextrin-encapsulated API solution; (iii) depressurizing the acetylated cyclodextrin-encapsulated API solution; (iv) spraying the acetylated cyclodextrin-encapsulated API solution into a heated precipitator and through a nozzle to obtain inhalable ultrafine nanoparticles of acetylated cyclodextrin-encapsulated active pharmaceutical ingredient; and (v) collecting and sorting the inhalable ultrafine nanoparticles of acetylated cyclodextrin-encapsulated active pharmaceutical ingredient by particle size.
The disclosed method produces inhalable pharmaceutical grade highly bioavailable ultrafine nanoparticles of cyclodextrin-encapsulated active pharmaceutical ingredients. The inhalable ultrafine nanoparticles have an average particle size between 100 nm and 40 μm and a size distribution within about 1% and about 50% of the average particle size. The superfine nanoparticles may also be added to food products, such as solid foods, beverages, condiments, and nutraceuticals, and may be used for medical and pharmaceutical applications in immediate release, sustained release and controlled release formulation for prolonged and sustainable effects.
In some other embodiments, a method is provided, that comprises: (i) pulverizing hydrophilic cyclodextrin into particles having an average particle size between 100 nm and 5 μm; (ii) dissolving the API and one or more acetylated cyclodextrins in supercritical, subcritical, high-pressure gas or liquid carbon dioxide in the reaction chamber; (iii) pumping the carbon dioxide at a set pressure and a set temperature for a pre-determined period of time to obtain an acetylated cyclodextrin-encapsulated API solution; (iv) depressurizing the acetylated cyclodextrin-encapsulated API solution; (v) adding hydrophilic cyclodextrin particles to the acetylated cyclodextrin-encapsulated API solution to create a hydrophilic cyclodextrin suspension-acetylated cyclodextrin-encapsulated API solution mixture; (vi) spraying the mixture into a heated precipitator and through a nozzle to obtain inhalable ultrafine dry powder of a cyclodextrin-encapsulated active pharmaceutical ingredient; and (vii) collecting and sorting the inhalable ultrafine dry powder of the cyclodextrin-encapsulated active pharmaceutical ingredient by particle size.
The disclosed method produces a pharmaceutical grade highly bioavailable ultrafine inhalable dry powder of cyclodextrin-encapsulated active pharmaceutical ingredients. The particle size of the dry powder may be varied by determining the particle size of the hydrophilic cyclodextrins, which rather than dissolving form a suspension in carbon dioxide. The hydrophobicity of the inhalable dry powder is controlled by adjusting the ratio between acetylated and hydrophilic cyclodextrins. The dry powder thus produced is readily soluble in water, hydrophilic liquids, brewed or fermented alcoholic and non-alcoholic beverages, juices, may be added to food products, such as solid foods, beverages, condiments, and nutraceuticals, and may be used for medical and pharmaceutical applications in immediate release, sustained release and controlled release formulation for prolonged and sustainable effects.
In additional embodiments, a method is provided, that comprises: (i) dissolving hydrophilic cyclodextrin in a hydrophilic liquid at controlled pressure and temperature to form a hydrophilic cyclodextrin aqueous solution; (ii) dissolving the API in supercritical, subcritical, high-pressure gas or liquid carbon dioxide in a reaction chamber; (iii) pumping the carbon dioxide at a set pressure and a set temperature for a pre-determined period of time to obtain an API solution; (iv) depressurizing the API solution; and (v) spraying the API solution into the hydrophilic cyclodextrin aqueous solution and through a nozzle to obtain a drinkable solution or suspension of a hydrophilic cyclodextrin-encapsulated active pharmaceutical ingredient. Hydrophilic liquids include, but are not limited to, water, juice, syrup, milk or an alcoholic beverage optionally containing an excipient. In some embodiments, the controlled pressure is between 50 and 100 bars, and the controlled temperature is between 30° C. and 70° C. The spraying of the API solution into the aqueous cyclodextrin solution leads to the formation of API droplets that disperse in the aqueous cyclodextrin solution, and produces water-soluble cyclodextrin-encapsulated API concentrates. The aqueous cyclodextrin solution may comprise stabilizers, thickening agents and surfactants to enhance the stability of the API compounds in the solution.
The disclosed method produces pharmaceutical grade highly bioavailable soluble or drinkable solutions or suspensions comprising ultrafine cyclodextrin-encapsulated active pharmaceutical ingredients. The cyclodextrin-encapsulated API solutions and suspensions are ready for consumption without any further preparation, and may be diluted in water, hydrophilic liquids, brewed or fermented alcoholic and non-alcoholic beverages, juices, or any other drinkable liquid.
Suitable active pharmaceutical ingredients that may be processed according to the disclosed methods include, but are not limited to, cannabinoids, psychedelics, analgesics, anesthetics, anti-inflammatories, anti-bacterials, anti-virals, anti-coagulants, anti-convulsants, antidepressants, and muscle relaxants in any form.
The APIs may be in form of crude plant extracts, distillates, refined distillates, twice-refined distillates, three time-refined distillates or isolates. Plant extracts may contain plant material, such as lipids and waxes, chlorophyll, and terpenes, such as myrcene, geraniol, limonene, terpineol, pinene, menthol, thymol, carvacrol, camphor, and sesquiterpenes. Distillates may be prepared by mixing the extracts with alcohol and filtering the mixture to remove plant materials, followed by heating to remove the alcohol. For further refinement, the distillates may be heated to undergo short path distillation, and the process may be repeated several times to obtain twice-refined distillates, three time-refined distillates or isolates with a higher degree of purity. In alternative embodiments, the APIs may be in crystalline form.
Suitable cannabinoids and cannabinoid precursors include, but are not limited to, cannabigerolic acid (CBGA), cannabigerovaric acid (CBGVA, tetrahydrocannabinolic acid (THCA), cannabichromene acid (CBCA), cannabidiolic acid (CBDA), tetrahydrocannabivarinic acid (THCVA), cannabichromevarinic acid (CBCVA), cannabidivarinic acid (CBDVA), (−)-trans-Δ9-tetrahydrocannabinol (Δ9-THC), (−)-trans-Δ9-tetrahydrocannabipherol (Δ9-THCP), cannabigerol (CBG), cannabichromene (CBC), cannabicyclol (CBL), cannabidiol (CBD), cannabinodiol (CBND), cannabinol (CBN), analogs thereof, or any mixture thereof.
Suitable psychedelics include, but are not limited to, psilocin and psilocybin.
In some embodiments, the methods disclosed herein provide for cyclodextrin acetylation to increase the Lewis acid: Lewis base interactions of cyclodextrin with carbon dioxide and significantly increase their solubility. In other embodiments, the methods disclosed herein provide for the use of actylated cyclodextrins to increase API solubility in carbon dioxide, and hydrophilic cyclodextrins to form ultrafine cyclodextrin-encapsulated API inhalable powder. In other embodiments, the methods disclosed herein provide for the use of hydrophilic cyclodextrins to disperse API droplets and produce water-soluble API concentrates.
Suitable cyclodextrins include, but are not limited to, α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin. Acetylated forms of cyclodextrin include, but are not limited to, α-cyclodextrin exadeacetate (AACD), β-cyclodextrin heneicosaacetate (ABCD), and γ-cyclodextrin octadeacetate (AGCD), respectively. Suitable hydrophilic cyclodextrines include, but are not limited to, hydrophilic α-cyclodextrin, hydrophilic β-cyclodextrin, hydrophilic γ-cyclodextrin and any mixture thereof.
For processing, the API extracts, distillates, refined distillates, twice-refined distillates, three time-refined distillates or high quality isolates may be combined with acetylated and/or hydrophilic cyclodextrins in API: cyclodextrin molar ratios ranging from 1:0.5 to 1:10. In some examples, the API: cyclodextrin molar ratio is 1:0.5, 1:0.75, 1:1, 1:1.5, 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1:4.5, 1:5, 1:5.5, 1:6, 1:6.5, 1:7, 1:7.5, 1:8, 1:8.5, 1:9, 1:9.5, or 1:10.
The API and the cyclodextrins may be mixed for a period of time that is defined by the type and form of the API used, the type of cyclodextrin used, temperature and pressure conditions, and the force used for mixing. In some embodiments, the preset pressure is in a range between 2,500 psi and 6,500 psi, and the preset temperature is in a range between 37° C. and 55° C. Following pressurization, the API solution is depressurized at supersonic speed to induce particle formation, by releasing the API solution through a nozzle for short bursts. The diameter of the nozzle is in a range from 1 μm to 10 μm. In some embodiments, the diameter of the nozzle is 1 μm, 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, or 7 μm. De-pressurization is best achieved by releasing the supercritical solution through the nozzle in short bursts such as, for example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. 0.7, 0.8, 0.9 or 1 second bursts.
The supercritical, subcritical, high-pressure gas or liquid carbon dioxide may comprise an excipient or dispersing agent. In some embodiments, the disclosed methods may further comprise (vi) converting carbon dioxide into gas; (vii) filtering and pressuring carbon dioxide gas to achieve supercritical, subcritical, high-pressure gas or liquid status; and (viii) recirculating carbon dioxide in the reaction chamber for the next batch processing.
The cannabinoid fine nanoparticles produced by the methods provided herein have an average particle size between about 100 nm and about 40 μm and a size distribution within about 1% and about 50% of the average particle size.
The methods provided herein present numerous advantages. In particular, the disclosed methods significantly decrease API particle size, do not require the use of toxic organic solvents, and quickly and efficiently produce highly pure, ultrafine API-cyclodextrin inclusion complexes in form of nanoparticles, dry powder, solutions and suspensions, which are suitable for pulmonary and/or oral delivery. The cyclodextrin-encapsulated APIs produced by the disclosed methods are 99.9% pure, have 200% increased bioavailability compared to non-cyclodextrin-encapsulated active pharmaceutical ingredient formulations, and have excellent stability at room temperature for extended periods of time, such as 16 months, 24 months, 3 years, 4 years and 5 years.
Diagrams of exemplary apparatuses for performing the disclosed methods are shown in
In the diagram shown in
In the diagram shown in
In the diagram shown in
Additionally provided herein are stable edible, inhalable, soluble or drinkable pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredients that are produced by the disclosed methods. The stable edible, inhalable, soluble or drinkable pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredients have 99.9% purity and 200% increased bioavailability compared to non-cyclodextrin-encapsulated active pharmaceutical ingredient formulations. The active pharmaceutical ingredient may be a cannabinoid, a psychedelic, an analgesic, an anesthetic, an anti-inflammatory, an anti-bacterial, an anti-viral, an anti-coagulant, an anti-convulsant, an antidepressant, or a muscle relaxant.
In some embodiments, the pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredient is in form of inhalable nanoparticles having an average particle size between 100 nm and 40 μm and a size distribution within 1% and 50% of the average particle size.
In some embodiments, the pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredient is in form of inhalable ultrafine dry powder having an average particle size between 100 nm and 5 μm.
In some embodiments, the pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredient is in form of a drinkable or soluble solution or suspension.
Because of their stability, the disclosed edible, inhalable, soluble or drinkable pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredients may be easily manufactured, mixed with other comestible ingredients or preparations, consumed or distributed without any risk of resuspension or separation. In particular, the disclosed edible, inhalable, soluble or drinkable pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredients are completely soluble in water, have a 200% (+/−10%) increased mean bioavailability compared to non cyclodextrin-encapsulated active pharmaceutical ingredients, and they may be kept indefinitely after production.
The disclosed edible, inhalable, soluble or drinkable pharmaceutical grade cyclodextrin-encapsulated active pharmaceutical ingredients may be formulated as compositions for oral, pulmonary, enteral, parenteral, intravenous, topical, mucosal, and sub-mucosal administration, as prescribed, non-prescribed and retail provision of medical and pharmaceutical products, for the treatment, prevention, and alleviation of diseases, disorders, ailments and complaints, including, but not limited to, Alzheimer's Disease, epilepsy, mild and chronic pain, chemotherapy-induced peripheral neuropathy, insomnia, opioid and drug addiction, addiction sparing, inflammatory lung disease, anxiety disorders, PTSD, panic attacks, phobias, allergies, respiratory difficulty impairments and diseases, including coronaviruses, asthma and COPD, and menieres disease.
The disclosed compositions may be formulated in immediate release form, sustained release form or controlled release form, and coated using compounds that accelerate or decrease API release. Thus, the disclosed compositions may comprise enteric coatings, extended-release coatings, sustained-release coatings, delayed release coatings and immediate-release coatings. Methods used to coat compositions as well as the materials used to manufacture such coatings are well known in the pharmaceutical formulary art. Coating materials may include, but are not limited to, glyceryl monostearate, glyceryl distearate, polymeric substances and waxes.
Solid dosage forms suitable for oral administration may include, but are not limited to, capsules, tablets, pills, powders, beads, lozenges, dragees, granules, aerogels, crumbles, snaps, or the like. Such solid dosage forms may include at least one pharmaceutically acceptable excipient or carrier, such as sodium citrate or dicalcium phosphate; fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and silicic acid; binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, and acacia; humectants, such as glycerol; disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, silicates and sodium carbonate; solution retarding agents such as paraffin; absorption accelerators, such as quaternary ammonium compounds; wetting agents such as, for example, acetyl alcohol and glycerol monostearate; absorbents such as kaolin and bentonite clay; lubricants, such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and buffering agents.
Solid oral dosage forms may also be formulated as dietary compositions, and may comprise any ingestible preparation that contains the disclosed cannabinoid nanoparticles mixed with a food product. The food product can be dried, cooked, boiled, lyophilized or baked, and may be in the form of breads, cookies, teas, juices, soups, cereals, salads, sandwiches, sprouts, vegetables, candies, pills, tablets, or the like.
Liquid dosage forms for oral administration may include, but are not limited to, pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs, and may contain inert diluents commonly used in the art. For instance, liquid formulations may contain water, polyethylene glycol ethers, or any other pharmaceutically acceptable solvents; solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, and dimethyl formamide; oils, such as cottonseed, groundnut, corn, germ, olive, castor, and sesame oils; glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan; adjuvants, such as wetting agents; emulsifying and suspending agents, such as ethoxylated isostearyl alcohols, polyoxyethylene sorbitol, sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, tragacanth, and mixtures thereof; sweetening, flavoring, perfuming agents, and any mixture thereof.
Liquid oral dosage forms may also be formulated as dietary compositions, and may comprise any ingestible preparation that contains the disclosed cannabinoid nanoparticles mixed with a drink product. Drink products may include, but are not limited to, teas, juices, syrups, soups, sodas, brewed drinks, fermented drinks, distilled drinks, or the like.
Parenteral administration may include subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques. Suspensions for parenteral administration may be encapsulated with a variety of polymers, sugars, and chelating agents, to yield stable preparations or granules. Polymers for encapsulation may include crosslinked polymers, non-crosslinked polymers, or polymers dispersed within the crystalline structure of sugar starches or protein molecules. Granules may be further processed to yield sublingual films, suppositories, dispersable powder, tablets, gel capsules, or the like.
Compositions for parenteral injection may comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions as well as sterile powders for reconstitution into sterile injectable solutions or dispersions prior to use. Examples of suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include, but are not limited to, water, ethanol, polyols, such as glycerol, propylene glycol, polyethylene glycol, and the like, carboxymethylcellulose and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants. The disclosed compositions for parenteral administration may also contain adjuvants such as, but not limited to, preservatives, wetting agents, emulsifying agents, and dispersing agents, isotonic agents, such as sugars, sodium chloride, and the like, and agents that delay absorption, such as aluminum monostearate and gelatin.
Injectable depot forms may be made by forming matrices of the APIs in biodegradable polymers such as, but not limited to, polylactide-polyglycolide, poly(orthoesters) and poly(anhydrides). Depot injectable formulations may also be prepared by entrapping the disclosed APIs in liposomes compatible with body tissues. Injectable formulations may be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.
The disclosed compositions may be made in form of preparations for inhalation for pulmonary delivery. Suitable preparations include, but are not limited to, aerosol, inhalers, breath-activated inhalers, dry powder inhalers, capsule and blister inhalers, multi-dose inhalers, metered inhalers, vaporizers, sprays, nasal sprays, and the like, and may comprise a variety of carriers or excipients known in the formulary art.
Topical compositions may be in form of powder, liquid solution, emulsion, liquid suspension, cream, salve, gel, gum gel, mouthwash, sunblock cream, toothpaste, shampoo, conditioner, liquid soap, and can be applied to the face, eyes, lips, teeth, hair, forehead, nails, hands, feet, shoulders, arms, back, or legs of a subject. Suitable subjects include mammals, such as an animal or a human subject.
The disclosed compositions may also be in form of patch, wound dressings, bandages, plasters, stents, implants, aerogels, crumbles, snaps, or hydrogel for transdermal application, and formulated for immediate release, extended release or sustained release. Various additives, known to those skilled in the art, may be included in transdermal formulations. Examples of additives include, but are not limited to, solubilizers, skin permeation enhancers, preservatives, such as anti-oxidants, moisturizers, gelling agents, buffering agents, surfactants, emulsifiers, emollients, thickening agents, stabilizers, humectants, dispersing agents and pharmaceutical carriers. Examples of moisturizers include, but are not limited to, jojoba oil and evening primrose oil. Suitable skin permeation enhancers include, but are not limited to, lower alkanols, such as methanol ethanol and 2-propanol; alkyl methyl sulfoxides, such as dimethylsulfoxide (DMSO), decylmethylsulfoxide (C10 MSO) and tetradecylmethyl sulfoxide; pyrrolidones, urea; N,N-diethyl-m-toluamide; C2-C6 alkanediols; dimethyl formamide (DMF), N,N-dimethylacetamide (DMA) and tetrahydrofurfuryl alcohol. Examples of solubilizers include, but are not limited to, hydrophilic ethers, such as diethylene glycol monoethyl ether and diethylene glycol monoethyl ether oleate; polyoxy 35 castor oil, polyoxy 40 hydrogenated castor oil, polyethylene glycol (PEG), and polyethylene glycol derivatives, such as PEG-8 caprylic/capric glycerides; alkyl methyl sulfoxides, such as DMSO; pyrrolidones, DMA, and mixtures thereof.
Prevention and/or treatment of infections can be achieved by the inclusion of antibiotics, as well as various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like, in the disclosed compositions.
The disclosed compositions may also be administered by a variety of other routes, including mucosal, subcutaneous and intramuscular administration, and may comprise a variety of carriers or excipients known in the formulary art, such as non-toxic solid, semisolid or liquid filler, diluent, encapsulating material and formulation auxiliaries that are pharmaceutically acceptable.
The disclosed compositions may comprise a variety of carriers or excipients known in the formulary art, such as non-toxic solid, semisolid or liquid filler, diluent, encapsulating material and pharmaceutically acceptable excipients, diluents, adjuvants, stabilizers, emulsifiers, preservatives, colorants, buffers, flavor-imparting agents, bacteriostats, fungistats, emollients, plasticizers, permeation enhancers, antioxidants, pigments, lubricants, preservatives, wetting agents, salts, and any mixture thereof.
Cannabinoid precursors cannabigerolic acid (CBGA) and cannabigerovaric acid (CBGVA) were obtained by extraction from Cannabis plants or commercially purchased. The cannabinoids tetrahydrocannabinolic acid (THCA), cannabinolic acid (CBDA), cannabichromene acid (CBCA), (−)-trans-Δ9-tetrahydrocannabinolic acid (Δ9-THCA), tetrahydrocannabivarinic acid (THCVA), cannabichromevarinic acid (CBCVA) and cannabidivarinic acid (CBDVA) were extracted from Cannabis sativa plants by organic solvent extraction, steam or supercritical fluid extraction. Neutral forms of cannabinoids, tetrahydrocannabinol (THC), cannabidiol (CBD), (−)-trans-Δ9-tetrahydrocannabinol (Δ9-THC), cannabigerol (CBG), cannabichromene (CBC), cannabicyclol (CBL), cannabidiol (CBD), cannabinodiol (CBND), and cannabinol (CBN), were obtained by decarboxylation of their corresponding acidic forms by heating, drying, or combustion. For decarboxylation by heating cannabinoid extracts were heated at 95° C. for about 20 minutes until melted, and then cooled in a freezer for about 15 minutes.
The cannabinoid extracts were subject to molecular distillation, and the distillates were refined by removing terpenes, organic material and chlorophyll by thin layer chromatography (THLC), high performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry and/or gas chromatography-flame ionization detector (GC-FID) analysis.
The cannabinoid liquid oil distillates obtained as described above were used as such. Alternatively, the refined cannabinoid liquid oil distillates were refined once more to obtain twice-distilled cannabinoids. Triple-distilled cannabinoid isolates with high purity were obtained by refining the twice-distilled cannabinoids a third time.
Fine nanoparticles were produced as disclosed herein. The system was optimized to minimize the effect of humidity, by washing with CO2 prior to cannabinoid addition, and the pressure release process was optimized to 0.5 seconds with a 25 second re-pressurization cycle to prevent the nozzle from freezing and ensure uniformity and reproducibility.
A cannabinoid in form of extract, distillate or isolate was added to a 10 ml high pressure reactor chamber and liquid CO2 was pumped into the reactor chamber at a pressure of 1000 psi. The reactor was heated to 40° C. and the pressure rose to a range from about 1500 psi to about 1700 psi. Temperature was kept at 40° C. or was increased to 50° C. Pressure was then increased in 1000 psi increments from about 2500 psi to about 6500 psi using a syringe pump. A temperature of 40° C. and a pressure of 3500 psi were selected for preliminary testing. The resultant solution was released through a 5 μm nozzle for 0.5 second bursts.
To increase cannabinoid solubility in water, the cannabinoid extracts, distillates and isolates produced as described in Example 1 were combined with α-cyclodextrin or β-cyclodextrin in cannabinoid: cyclodextrin molar ratios ranging from 1:0.5 to 1:10 and added to a 10 ml reactor chamber. Supercritical CO2 was pumped into the reaction chamber at a pressure of 1,000 psi, the reactor chamber was heated to 40° C. and the pressure was elevated to 3,500 psi. The resultant solution was released through a 5 μm nozzle for 0.5 second bursts. Cyclodextrin was found to be insoluble under the process conditions.
To increase solubility in supercritical fluids, α-cyclodextrin and β-cyclodextrin were acetylated by substituting one or more hydroxyl groups with one or more acetyl groups to increase the Lewis acid: Lewis base interactions in supercritical fluid. 2.0 g of α-cyclodextrin, β-cyclodextrin or γ-cyclodextrin were acetylated in 10 ml acetic anhydride in a 100 ml round bottom flask. 0.05 g of iodine was added to the mixture and the flask was stirred in the dark for 2 hours. The reaction was quenched with 50 ml of water, and 1% (w/w) aqueous sodium thiosulfate was added dropwise until the solution turned clear. The reaction was stirred for 1 hour, and the resulting solution was extracted with 4 portions of 40 ml of dichloromethane (DCM). The organic fractions were combined and washed twice with 50 ml water and dried over sodium sulfate prior to solvent removal. The final products were dried in vacuum to yield α-cyclodextrin exadeacetate (AACD), β-cyclodextrin heneicosaacetate (ABCD), or γ-cyclodextrin octadeacetate (AGCD), respectively.
The acetylated cyclodextrins were then complexed with the cannabinoid extracts, distillates and isolates in cannabinoid:cyclodextrin molar ratios ranging from 1:0.5 to 1:10 and added to a 10 ml reactor chamber. Supercritical CO2 was pumped into the reaction chamber at a pressure of 1,000 psi, the reactor chamber was heated to 40° C. and the pressure was elevated to 3,500 psi. The resultant solution was released through a 5 μm nozzle for 0.5 second bursts.
The results showed that AACD, ABCD and AGCD solubility in supercritical CO2 increased to 1.1 and 1.3 wt. % respectively, under experimental conditions. Furthermore, cannabinoid complexation with acetylated cyclodextrins prevented re-suspension of cannabinoids and impurities thereof, such as terpenes and waxes, during processing.
Cannabinoid complexes with acetylated cyclodextrins were prepared as described in Example 3 in cannabinoid: cyclodextrin molar ratios ranging from 1:0.5 to 1:10 and each added to a 10 ml reactor chamber. The cannabinoid-cyclodextrin complexes were dissolved in supercritical fluid at a pressure of 3500 psi and a temperature of 40° C. The solution was depressurized through a 5-micron nozzle into a 19-liter expansion chamber with tubular exhaust to ensure maximum recovery of particulates.
Bioavailability of the cannabinoid ultrafine nanoparticles obtained as described in Example 4 was assessed by visually evaluating the solubility of the fine nanoparticles in simulated stomach conditions. 0.5 g of NaCl was added to a 0.155 M solution of HCl in water to replicate stomach acidic conditions. 10 mg of the fine nanoparticles, 10 mg of the isolates in crystalline form, and 10 mg of the distillates were each placed in vials containing 10 ml of the acidic solution and incubated for 10 hours at 37° C. At the end of the 10-hour period, only minimal solubility of the preparations was observed. Additional 10 ml of the acidic solution were added, and the mixtures were incubated for 10 more hours at 37° C. At the end of the 20-hour period, the cannabinoid nanoparticles dissolved in the acidic solution. In contrast, isolates in crystalline form and distillates showed complete insolubility (
Relative bioavailability tests of the cannabinoid ultrafine nanoparticles obtained as described in Example 4 (test samples) as compared to cannabinoid isolates in water (control samples) were performed using a high performance liquid chromatography (HPLC) separator equipped with a UV detector to determine the concentration of CBD in each sample. Control samples were prepared by filtering 1 ml of each sample through a 0.45 μm filter into a 2 ml HPLC vial and 1 ml of methanol (MeOH) was added to each sample vial. HPLC mobile phase was comprised of 65% acetonitrile and 35% water. A flow rate of 1 ml per minute led to the elution of CBD after approximately 4.5 minutes.
A percentage area was measured after 32 hours elapsed time, which represents the amount of CBD in each sample relative to the background signal created by the MeOH in each sample. It was found that the percentage area of the test samples was 4.1163% of the total sample as compared to a percentage area of 0.7706% of the total sample for the control samples.
These results indicate that the disclosed purified cannabinoid fine nanoparticles enhance the solubility of CBD when compared to control cannabinoid isolates in water. Significant increases in solubility (in this instance up to 6 fold) indicate a potential for dramatic improvements in the bioavailability of the disclosed formulations. Significant increases in bioavailability can dramatically improve therapeutic effects.
To increase API solubility in water, the cannabinoid distillates as described in Example 1 were combined with various cyclodextrins, and the resultant mixtures were placed in a high-pressure reactor. Liquefied CO2 was pumped into the reactor until the reactor pressure reached 5,000 psi. The mixtures were agitated for 30 minutes in the reactor to create cyclodextrin-encapsulated cannabinoids. The mixtures were then sprayed into a cyclone to allow CO2 to evaporate and obtain cyclodextrin-encapsulated cannabinoid dry powder. The recovered CO2 was stored in a buffer tank for future use. Table 1 below shows the percentage cannabinoid amount in each sample. Table 1 also shows that the average percentage cannabinoid amount in the cyclodextrin-encapsulated cannabinoid nanoparticles was 10 times higher than the average cannabinoid amount in standard non cyclodextrin-encapsulated cannabinoid nanoparticles.
Dissolution profiles were determined by dissolving the samples obtained from Example 7. Commercial THC oil (Reign Drops, THC 30 mg/ml) was used as standard control. Each sample containing equivalent amount of cannabinoids (40 mg) were dissolved in 200 ml of distilled water. The temperature was kept constant at 50° C.
At time intervals 0.5, 1, 2, 3, 5, 10, 20, and 30 minutes, 2 ml of each sample solution were withdrawn from the medium and immediately filtered through 0.45 μm syringe filters. The filtered solutions were then analyzed by HPLC at 220 nm wavelength using 0.085% phosphoric acid in methanol and 0.085% phosphoric acid in water as mobile phases. The results, summarized in Table 2 below and depicted in
Baker's yeast (Saccharomyces cerevisiae) was used to measure speed of transport across membranes and evaluate uptake of cyclodextrin-encapsulated cannabinoids into living organisms as compared to non-encapsulated THC absorption over a two-hour period.
Yeast were inoculated into a sugar solution and allowed to acclimatize for 15 minutes at 35° C. Half of the yeast cultures were then treated with a solution containing non-encapsulated THC as control, and half of the yeast cultures were treated with a solution containing an equivalent amount of THC in form of cyclodextrin-encapsulated THC in an equivalent amount. Treatment was for two hours at 35° C. with gentle agitation to facilitate gas exchange. At the end of treatment, the solution was removed by centrifugation and the yeast cells were washed with saline solution, lysed and subject to organic extraction. The organic cannabinoid solution was analyzed by HPLC. The results shown in Table 3 below demonstrate that cyclodextrin microencapsulation enhances THC transport across the yeast membrane and THC absorption by 200% relative to the transport of non-encapsulated THC. Overall, these results demonstrate that cyclodextrin microencapsulation improves cannabinoid absorption in eukaryotic systems such as humans, and can provide an enhanced recreational or medical experience in users.
It should be recognized that illustrated embodiments are only examples of the disclosed methods and should not be considered a limitation on the scope of the invention. Rather, the scope of the invention is defined by the following claims.
The present application claims priority to U.S. Provisional Application No. 62/923,726, filed Oct. 21, 2019, and to U.S. Provisional Application No. 62/929,455, filed Nov. 1, 2019, the contents of which are incorporated by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/056729 | 10/21/2020 | WO |
Number | Date | Country | |
---|---|---|---|
62929455 | Nov 2019 | US | |
62923726 | Oct 2019 | US |