COMPOSITIONS CONTAINING C1 TO C7 ORGANIC ACID MONOGLYCERIDES AND GLYCEROL, THEIR PREPARATION AND USE AS ANTIBACTERIALS AND ANTI-MOULD AGENTS

Information

  • Patent Application
  • 20120029075
  • Publication Number
    20120029075
  • Date Filed
    March 16, 2010
    14 years ago
  • Date Published
    February 02, 2012
    12 years ago
Abstract
Described are antibacterial and anti-mould compositions containing high amounts of C1 to C7 organic acid mono-glycerides and glycerol, their preparation and their use in animal feedstuffs.
Description
FIELD OF THE INVENTION

The present invention relates to the field of compositions for animal feedstuffs.


STATE OF THE ART

The most common problem known to affect farm and companion animals is the damage caused by bacterial infections and mycotoxins produced by moulds ingested with their feed. Regarding bacterial infections, and in particular intestinal infections, these often present with severe diarrhoea which can compromise, even to a serious extent, the health of the animal and consequently the revenue of the farm as a whole.


Regarding mycotoxins produced by moulds, their toxic effects on specific organs and on the physiological functions of animals, and their capacity to cause diseases such as toxicosis, have been known for some years. It is also known that carcinogenic mycotoxins, such as aflatoxins produced by moulds of the Aspergillus strain, can be transferred from cow's or goat's milk to man because they are stable and cannot be eliminated with normal heat treatments. Ocratoxin A is produced by Aspergillus and Penicillium species; if present in the feed, it can cause serious kidney diseases in pigs and in bird species.


T-2 toxin, produced by Fusarium species, can cause necrosis of the digestive tract of animals.


It is normally sought to overcome these drawbacks by using short chain organic acids, either alone or in a mixture, such as: formic acid (C1H2O2), acetic acid (C2H4O2), propionic acid (C3H5O2), lactic acid (C3H6O2), fumaric acid (C4H4O4), butyric acid (C4H8O2), citric acid (C8H8O7) and benzoic acid (C7H6O2).


Among the limitations of using said organic acids is their strong corrosive action which can damage any equipment with which they come into contact. Salified forms with ammonium, calcium, sodium or potassium also produce a corrosive action which, though more limited, is nevertheless present.


There are also certain physiological restrictions to the action of organic acids as such or in salified form when used as antibacterials in the diets of animals; in this respect organic acids are known to require an acidic pH in order to perform the actual antibacterial action, because under these conditions they are present in the undissociated RCOOH form. This undissociated RCOOH form passes through microorganism cell walls and, once inside, is dissociated according to intracellular pH. To maintain its intracellular pH the microorganism expels H+; the level of dissociated organic acid thus rises and as it does not leave the microorganism, it kills it.


In the intestines, however, the pH is slightly basic (around 7) so the presence of organic acid in undissociated form is very limited, and consequently the antibacterial function is also very limited.


In the light of the aforesaid, therefore, there is an evident need to develop new compositions able to counteract the effects of moulds and bacteria present in animal feeds, but which do not exhibit the aforesaid drawbacks.


The technique of microencapsulating organic acids with lipid substances was developed as a method for delivering organic acid to the intestines and to lower the pH therein, but the results obtained are rather unsatisfactory because of the buffering action of sodium bicarbonate produced by the pancreas as an intestinal pH regulator. Moreover, in addition to not being very effective, this technology is also very costly.


The antibacterial action of certain fatty acid monoglycerides has been investigated in a number of studies, for example:


1. J. Kabara, Dennis M. Swieczkowski, Anthony J, Conley, Joseph P. Truant 1972 FATTY ACIDS AND DERIVATES AS ANTIMICROBIAL AGENTS.


2. G. Bergsson, J. Arnfinnsson S. Karlsson, O. Steingrimsson, H. Thormar 1998. IN VITRO INACTIVATION OF CHLAMYDIA TRACHOMATIS BY FATTY ACIDS AND MONOGLYCERIDES.


3. G. Bergsson, J. Arnfinnsson, O. Steingrimsson, H. Thormar 2001. IN VITRO KILLING OF CANDIDA ALBICANS BY FATTY ACIDS AND MONOGLYCERIDES.


4. H. Thormar, H. Hilmarsson, G. Bergsson 2005. STABLE CONCENTRATED EMULSIONS OF THE 1-MONOGLYCERIDE OF CAPRIC ACID (MONOCAPRIN) WITH MICROBICIDAL ACTIVITIES AGAINST THE FOOD-BORNE BACTERIA CAMPYLOBACTER JEJUNI, SALMONELLA SPP AND ESHERICHIA COLI; PCT/IS2005/000026 “STABLE CONCENTRATED ANTI-BACTERIAL EMULSIONS OF MONOCAPRIN IN WATER”.


5. Hilmarsson, H. Thormar, J. H. Thrainsson, E. Gunnarsson 2006 EFFECT OF GLYCEROL MONOCAPRATE (MONOCAPRIN) ON BROILER CHICKENS: AN ATTEMPT AT REDUCING INTESTINAL CAMPYLOBACTER INFECTION.


These studies have highlighted a promising but not exhaustive research direction; as far as current knowledge allows, there are no studies which confirm the specifically antibacterial and anti-mould action of compositions of short chain fatty acid monoglycerides combined with glycerol.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is an aqueous suspension of a composition of the invention shown by electron microscopy.



FIG. 2 shows untreated feed inoculated with Fusarium.



FIG. 3 shows feed inoculated with Fusarium and treated with 0.7% Monopropionin 43.





SUMMARY OF THE INVENTION

The present invention relates to compositions containing C1 to C7 fatty acid monoglycerides in percentages between 10% and 90% and glycerol between 10 and 90% by weight (calculated on the total composition weight) as antibacterials and anti-mould agents to be added to cereals, feed, and to general foodstuffs and drinking water intended for the feeding of animals.


DETAILED DESCRIPTION OF THE INVENTION

It has surprisingly been found that compositions containing C1 to C7 organic acid monoglyceride esters combined with glycerol have a strong antibacterial potency both at acidic pH (4.5) and at neutral pH as is present in animal intestines (i.e. pH 7).


In the compositions of the invention, the organic acid monoglyceride esters as aforedefined are present in amounts between 10% and 90% and the glycerol between 10 and 90% by weight (calculated on the total composition weight); preferably said amounts are between 40%-90%, and 10%-60% respectively.


The term “C1 to C7 organic acids” according to the invention refers preferably to the following acids: formic, acetic, propionic, lactic, butyric, citric, fumaric and benzoic acids.


Butyric acid and propionic acid are particularly preferred.


Examples of compositions according to the invention are compositions consisting of:


(a)


















monoglyceride ester of butyric acid
42-47%



diglyceride ester of butyric acid
5-8%



triglyceride ester of butyric acid
0.5-2%  



glycerol
45-50%










(b)


















monoglyceride ester of propionic acid
45-50%



diglyceride ester of propionic acid
 8-12%



triglyceride ester of propionic acid
1-3%



glycerol
36-40%










Specific examples of compositions according to the invention are compositions consisting of:


(c)


















monoglyceride ester of butyric acid
45%



diglyceride ester of butyric acid
6%



triglyceride ester of butyric acid
1%



glycerol
48%










(d)


















butyric acid monoglycerides
43%



butyric acid diglycerides
6%



butyric acid triglycerides
1%



glycerol
50%










(e)


















monoglyceride ester of propionic acid
49%



diglyceride ester of propionic acid
10%



triglyceride ester of propionic acid
2%



glycerol
39%










(f)


















propionic acid monoglycerides
43%



propionic acid diglycerides
6%



propionic acid triglycerides
1%



glycerol
50%










Antibacterial potency values of organic acids alone compared with those of the compositions of the invention are given below in table 1.














TABLE 1










Salmonella


Campylobacter







E. coli


typhimurium


jejuni



PRODUCT
CONC. USED
pH
(cfu/ml)
(cfu/ml)
(cfu/ml)




















Positive control

7
108 × 105
120 × 105
431 × 105


Positive control

4.5
84 × 105
96 × 105
201 × 105


Propionic acid
1:909
7
54 × 104
11 × 104
33 × 103


Propionic acid
1:909
4.5
13 × 104
42 × 103
14 × 101


Butyric Acid
 1:1000
7
106 × 104
65 × 104
18 × 103


Butyric Acid
 1:1000
4.5
78 × 104
25 × 103
 2 × 101


Monopropionin 43
1:109
7
110 × 104
12 × 103
79 × 105


Monobutyrin 43
1:100
7
75 × 104
35 × 103
48 × 104


Monobutyrin 43
1:100
4.5
47 × 104
 8 × 102
87 × 103





Note:


Monopropionin 43 is composed of: 43% propionic acid monoglycerides 6% propionic acid diglycerides 1% propionic add triglycerides 50% glycerol


Note:


Monobutyrin 43 is composed of: 43% butyric acid monoglycerides 6% butyric acid diglycerides 1% butyric acid triglycerides 50% glycerol






Table 2 compares the in vitro antibacterial action of pure butyric acid, of butyric acid monoglycerides without free glycerol and of a mixture of butyric acid monoglycerides with free glycerol, against Clostridium perfringens. Whereas the mixture of butyric acid monoglycerides and glycerol already exhibits an inhibitory potency (i.e. no growth) in all three replicates at a concentration of 1000 ppm, the butyric acid monoglycerides do not exhibit any inhibitory potency against the bacterium, and butyric acid only exhibits inhibitory action from 3000 ppm.









TABLE 2







Bacteria: Clostridium perfringens CP27


Inoculation concentration: 105


Medium: Brain Heart Infusion


Incubation time and appearance of growth; + for 24 hr, ++ for


37 hr and +++ for 96 hr - 3 replications for each concentration













Positive






Negative
control


Monobutyrin
Butyric acid


Control
(PC)
ppm
Butyric Acid
43
monoglycerides
















+
 500
+
+
+



+

+
+
+



++

+
+
+




mean




1000
+
no growth
+





+
no growth
+





+
no growth
+




mean




1500
+
no growth
+





+
no growth
+





+
no growth
+




mean




2000
++
no growth
+





++
no growth
+





++
no growth
+




mean




2500
++
no growth
+





++
no growth
+





++
no growth
+




mean




3000
no growth
no growth
+





no growth
no growth
+





no growth
no growth
+




mean




4000
no growth
no growth
+





no growth
no growth
+





no growth
no growth
+




mean










Table 3 compares the in vitro antibacterial action of pure acetic acid, of acetic acid monoglycerides without free glycerol and of a mixture of acetic acid monoglycerides with free glycerol against porcine Salmonella typhimurium. Whereas the mixture of acetic acid monoglycerides and glycerol (Monoacetin 42) exhibits an inhibitory potency (i.e. no growth) in all three replicates at a concentration of 10,000 ppm, the acetic acid monoglycerides exhibit inhibitory potency against the bacterium from 25,000 ppm and the acetic acid exhibits inhibitory action from 20,000 ppm.









TABLE 3







Bacteria: Porcine Salmonella typhimurium


Inoculation concentration: 105


Medium: Brain Heart Infusion


Incubation time and appearance of growth: + for 24 hr, ++ for


37 hr and +++ for 96 hr - 3 replications for each concentration


pH 6













Positive






Negative
Control

Acetic
Monoacetin
Acetic acid


control
(PC)
ppm
acid
42
monoglycerides
















+
 5000
+
+
+



+

+
+
+



++

+
+
+




Mean




10000
+
no growth
+





+
no growth
+





+
no growth
+




Mean




15000
+
no growth
+





+
no growth
+





+
no growth
+




Mean




20000
no growth
no growth
+





no growth
no growth
+





no growth
no growth
+




Mean




25000
no growth
no growth
no growth





no growth
no growth
no growth





no growth
no growth
no growth




Mean




30000
no growth
no growth
no growth





no growth
no growth
no growth





no growth
no growth
no growth




Mean




40000
no growth
no growth
no growth





no growth
no growth
no growth





no growth
no growth
no growth




Mean







Note:



Monoacetin 42 is composed of: 42% acetic acid monoglycerides 7% acetic acid diglycerides 1% acetic acid triglycerides 50% glycerol






Table 4 compares the in vitro antibacterial action of pure formic acid, of formic acid monoglycerides without free glycerol and of a mixture of formic acid monoglycerides with free glycerol against porcine Salmonella typhimurium. Whereas the mixture of formic acid monoglycerides and glycerol (Monoformin 42) exhibits an inhibitory potency (i.e. no growth) in all three replicates at a concentration of 5,000 ppm, the formic acid monoglycerides exhibit inhibitory potency against the bacterium from 25,000 ppm and formic acid exhibits inhibitory action from 15,000 ppm.









TABLE 4







Bacteria: Porcine Salmonella typhimurium


Inoculation concentration: 105


Medium: Brain Heart Infusion


Incubation time and appearance of growth: + for 24 hr, ++ for


37 hr and +++ for 96 hr - 3 replications for each concentration


pH 6













Positive






Negative
Control

Formic
Monoformin
Formic acid


control
(PC)
ppm
acid
42
monoglycerides
















+
 5000
+
no growth
+



+

+
no growth
+



++

+
no growth
+




Mean




10000
+
no growth
+





+
no growth
+





+
no growth
+




Mean




15000
no growth
no growth
+





no growth
no growth
+





no growth
no growth
+




Mean




20000
no growth
no growth
+





no growth
no growth
+





no growth
no growth
+




Mean




25000
no growth
no growth
no growth





no growth
no growth
no growth





no growth
no growth
no growth




Mean




30000
no growth
no growth
no growth





no growth
no growth
no growth





no growth
no growth
no growth




Mean




40000
no growth
no growth
no growth





no growth
no growth
no growth





no growth
no growth
no growth




Mean







Note:



Monoformin 42 is composed of: 42% formic acid monoglycerides 7% formic acid diglycerides 1% formic acid triglycerides 50% glycerol






Table 5 compares the in vitro antibacterial action of pure fumaric acid, of fumaric acid monoglycerides without free glycerol and of a mixture of fumaric acid monoglycerides with free glycerol (Monofumarin 41) against E. coli. Whereas the mixture of fumaric acid monoglycerides and glycerol exhibits an inhibitory potency (i.e. no growth) in all three replicates at a concentration of 20,000 ppm, the fumaric acid monoglycerides exhibit inhibitory potency against the bacterium from 60,000 ppm and the fumaric acid exhibits inhibitory action from 90,000 ppm.









TABLE 5







Bacteria: E. coli


Inoculation concentration: 105


Medium: Brain Heart Infusion


Incubation time and appearance of growth: + for 24 hr, ++ for


37 hr and +++ for 96 hr—3 replications for each concentration


pH 5













Positive


Mono-



Negative
Control

Fumaric
fumarin
Fumaric acid


control
(PC)
Ppm
acid
41
monoglycerides
















+
10000
+
+
+



+

+
+
+



++

+
+
+




Mean




20000
+
no growth
+





+
no growth
+





+
no growth
+




Mean




40000
+
no growth
+





+
no growth
+





+
no growth
+




Mean




60000
++
no growth
no growth





++
no growth
no growth





++
no growth
no growth




Mean




80000
++
no growth
no growth





++
no growth
no growth





++
no growth
no growth




Mean




90000
no growth
no growth
no growth





no growth
no growth
no growth





no growth
no growth
no growth




Mean




100000 
no growth
no growth
no growth





no growth
no growth
no growth





no growth
no growth
no growth




Mean







Nota:



Monofumarin 41 is composed of: 41% fumaric acid monoglycerides 8% fumaric acid diglycerides 1% fumaric acid triglycerides 50% glycerol






If preferred, the compositions of the invention can also contain active principles of essential oils (cinnamic aldehyde, thymol, carvacrol) in percentages comprised between 1 and 20% (calculated by weight on the weight of the mixture of other components) as commonly provided for such products for feeding animals, since these active principles are soluble in lipids but insoluble in glycerol.


It should be noted that when the composition of the invention is dispersed in water, the glycerol surrounds the monoglyceride itself to form drops which incorporate said monoglyceride, they remaining suspended in water (the other optionally added active principles dissolve in the monoglyceride, they also becoming incorporated within the glycerol drop) (see FIG. 1).


The compositions of the invention can be prepared according to the usual fatty acid esterification processes amply described in the literature, but using a large excess of glycerol (never less than 200% by weight on the weight of the fatty acids used) in order to obtain a large amount of monoglycerides with large amounts of free glycerol.


The compositions of the invention can be added to the animal feed and/or their drinking water in amounts from 0.1 to 1.5%, preferably from 0.3-0.6% calculated by weight on the feed or drink weight.


The compositions of the invention are particularly indicated for the diets of pigs, chickens, fish, cattle, sheep and companion animals.


EXAMPLE 1

The esterification reaction takes place in batches of 10,000 kg.


3000 kg of butyric acid and 7000 kg of glycerol are introduced into a reactor at ambient temperature.


The temperature is increased to 140° C., the butyric acid that evaporates being recycled within the reactor by means of a reflux condenser.


The further raising of the temperature from 140 to 170° C. must be very slow (over about 4 hours) and the reflux condenser temperature must be maintained at 120° C. in order to evaporate the water derived from the esterification reaction while the butyric acid continues to recycle within the reactor.


At this point the temperature can be raised to 180° C. (but leaving the reflux condenser temperature at 120° C.) and once this temperature has been reached the acidity of the mixture is expected to reach a value less than 1%.


A vacuum is then applied to distil off any unreacted butyric acid until a final acidity of less than 0.2% is reached.


The mixture is discharged through a cooler to bring it to ambient temperature.


A mixture is thus obtained containing 43% monoglyceride ester, 6% diglyceride ester, 1% triglyceride ester, and 50% glycerol.


Once the esterification reaction is complete the glycerol can be separated if desired by distillation from the thus obtained mono- di- and triglyceride esters to arrive at a 90% monoglyceride concentration.


EXAMPLE 2

Sixty 5 week old DanBred piglets were assigned to two groups of thirty piglets each: A)—control, and B) treated, divided into 6 pens of ten animals each. After the first 10 days of adaptation in the enclosures, all animals were inoculated orally with Salmonella typhimurium, isolated at the Istituto Zooprofilattico of Forli (Italy) from fecal samples of infected pigs, with a dose equal to 7×107 cfu.


The following day some of the subjects from each pen presented with diarrhoea.


The symptoms worsened and affected all the subjects over the next three days following infection.


Fecal samples were collected on the third day following infection; the bacterial count was found to be equal to 165,000 cfu in control group A) and 160,000 cfu in the treated group B). Group B) from the third day after infection was treated with a mixture composed of:

    • Butyric acid monoglycerides=45%
    • Butyric acid diglycerides=6%
    • Butyric acid triglycerides=1%
    • Glycerol=48%


administered in the drinking water at a dosage of 0.5% for three days. On the third day after treatment, fecal samples were again collected for bacterial count analysis. The control group A) presented a mean cfu number of 160,000, while in the treated group B) the cfu number was 900. Use of the “butyric acid esters and glycerol” mixture in the stated percentages reduced the cfus of salmonella by 3 log10, with a 3-day administration. This fact confirms the bactericidal effectiveness of the mixture.


EXAMPLE 3

The present field trial was carried out on an Italian farm with hygiene problems such as very evident ileitis resulting from a Lawsonia intracellularis infection, enteritis from Brachyspira Spp and necrotic enteritis resulting from a Treponema hyodysenteriae infection. 1,027 DanBred pigs weighing about 25 kg (71 days old) were divided into two groups: control group A) and treated group B), composed of 511 and 516 animals respectively.


The two groups were fed with a feed that was formulated in identical manner except for the following components: the feed of the control group had added Lincomycin, 200 ppm, and Doxicyclin, 250 ppm, for the first 14 days of the trial, and Lincomycin alone for the remaining time. The treated group B) did not receive antibiotics in the feed, only a “butyric acid esters and glycerol” mixture composed as follows:

    • Butyric acid monoglycerides=45%
    • Butyric acid diglycerides=6%
    • Butyric acid triglycerides=1%
    • Glycerol=48%


administered to the feed in a quantity of 0.5% to replace 0.5% of the soya oil.


The trial lasted 63 days. The growth and feeding efficiency results are summarized in the table below.













TABLE








Group B) -




Group A) -
Butyric acid esters



Control
and glycerol
Delta



















No. of animals
511
516



Age at the start of the trial
71
71


(days)


Age at the end of the trial
134
134


(days)


Average weight at the start
25
25


of the trial (kg)


Average weight at the end of
62.13
63.61


the trial (kg)


No. of dead animals
5
2
−3


No. of rejected animals
3
2
−1


Average daily weight
0.59
0.61
+0.02


increase (kg)


Total feed consumed (kg)
53.570
53.250
−320


Meat produced in kg
19.340
20.200
+860


Feed conversion index
2.76
2.64
−0.12









Although the fecal analysis of the control group A) showed the presence of Lawsonia, its presence was not found in the treated group B). The diarrhoea episodes were also very much reduced in the treated group B). The growth parameters, the feed conversion index of the treated group B) were comparable, and tendentially better than those of the control group A) whose diet contained the aforesaid antibiotics. The “butyric acid esters and glycerol” mixture enabled the highlighted diseases to be controlled, without the use of antibiotics. The trial has demonstrated the antibacterial effect of the “butyric acid esters and glycerol” mixture with a consequent improvement to intestinal health.


EXAMPLE 4

Efficacy Test Towards Salmonella Typhimurium in Chickens



Salmonella Strain


For the test, a strain of Salmonella typhimurium isolated and identified by the IZSLER section of Forli was used.


Animals


SPF (Specific Pathogen Free) chicks were used, 30 animals per test. The chicks were hatched at the IZSLER section of Forli. The subjects were immediately placed into isolation units.


Diet


The animals received water from the mains water supply and a commercial starter ad libitum feed. The feed contained added Monobutyrin 43.


Experimental Protocol


4 groups of 30 subjects each were prepared. The diets differed by the different amount of Monobutyrin 43 added to the feed from the first day of life, and were identified as follows: untreated control group: 0%, group 1: 1% in the feed, group 2: 0.3% in the feed. Group 3 received the same feed as the control group up to the 14th day of life, i.e. until the 7th day post-infection, and only received feed supplemented with 1.4% Monobutyrin 43 after that day.


At aged 7 days, all the subjects were infected by the esophageal route with 107 cfu of Salmonella typhimurium. 24 hours following infection, cloacal swabs were taken from all the subjects to confirm that Salmonella typhimurium infection had taken hold. At 14, 24 and 35 days of life, 10 subjects in each group were killed.


The ceca were collected from each animal and the load of Salmonella typhimurium was determined (expressed in cfu/g).


Laboratory Tests


The absence of antibodies against S. typhimurium was confirmed by an ELISA test. The cloacal swabs were seeded directly onto Hektoen Enteric Agar and incubated at 37° C. for 24 hours. One gram of intestinal contents was diluted in 9 ml of Ringer's lactate and seeded onto Hektoen Enteric Agar (inoculum volume: 0.1 ml). Colony counting was carried out after 24 hours of incubation at 37° C. For each collection, the geometric means of the bacterial loads of the 10 killed subjects were calculated.


All the subjects, after one day of life, were found to be seronegative for Salmonella typhimurium. 24 hours after the infection, all the cloacal swabs were found to be positive for S. typhimurium. The results of the determined cecal bacterial loads are shown in the following table.









TABLE







CFU in the cecum of chickens infected with Salmonella Typhimurium-107















Group 3




Group 1
Group 2
(1.4% in feed




(1% in
(0.3%
from 14th



Control
feed)
in feed)
day of life)















Day of infection
0
0
0
0


(7th day of life)


7th day post-
6,400,000
770,000
2,226,000
6,302,000


infection



Start of






treatment


17th day post-
25,120,000
213,220
1,242,000
171,120


infection


28th day post-
(high
>100
300
1,000


infection
mortality)









EXAMPLE 5

In Vitro Sensitivity Tests towards Filamentous Fungi (Moulds)


Materials and Methods


Strains of Aspergillus spp, Penicillium spp and Fusarium spp were utilized for the test, having been isolated and identified during diagnostic activity at the IZSLER section of Forli from complete feeds used in the chicken industry. To prepare the inoculum, mycelium of pure cultures of the tested strains was collected using a swab. The material thus collected was dissolved in a culture broth (BHI—Brain Heart Infusion). 5 ml of the fungal suspension and an equal amount of the product to be tested were placed in contact in a test tube. The test tube was incubated at 20±4° C. for 24 hours.


After this time period, the fungal suspension was then seeded and enumerated.


The control suspension was obtained by placing 5 ml of fungal suspension+5 ml of diluent (Ringer's lactate) into a test tube. Reading of the tests was carried out after a 5 day incubation period at 20±4° C.


The results given in the following table are expressed as cfu/ml












TABLE







ASPERGILLUS


PENICILLIUM


FUSARIUM



PRODUCT
spp.
spp.
spp:


















Control
450000
97000
310000


Monopropionin 43
20000
1500
90000


Monobutyrin 43
1000
700
3000


Propionic acid
300
<100
300


Ammonium
1000
100
500


propionate





Note:


Monopropionin 43 is composed of: 43% propionic acid monoglycerides 12% propionic acid diglycerides 1% propionic acid triglycerides 28% free glycerol 16% H2O


Note:


Monobutyrin 43 is composed of: 43% butyric acid monoglycerides 6% butyric acid diglycerides 1% butyric acid triglycerides 50% glycerol






EXAMPLE 6

In Vitro Efficacy Test towards Penicilium spp and Fusarium spp


Materials and Methods


Strains: strains of moulds isolated and identified by the IZSLER section at Forli were used for the test. The strains were revitalized in BHI broth then enumerated in OGYE agar (after incubation at 20° C. for 5 days)


Substrate: a complete chicken feed, sterilized in a dry oven at 100° C. for 4 hours, was used.


Efficacy test: 10 g of feed were inoculated with 2 ml of fungal suspension (in distilled water) to which 70 μl of the product to be tested was added. The mixture thus obtained was kept at ambient temperature. A positive control (infected and untreated) and a negative control (feed only+distilled water) were also prepared.


On days 7 and 14 following infection, the fungal concentrations in the treated sample and control samples were evaluated.


The results are given in the table below.















TABLE






Concentration of
Concentration of
Concentration of
Concentration of
Concentration of
Concentration of




Fusarium spp.


Fusarium spp.


Fusarium spp.


Penicillium spp.


Penicillium spp.


Penicillium spp.




On day 0
7 days post-
14 days post-
On day 0
7 days post-
14 days post-


PRODUCT
(cfu/g)
infection (cfu/g)
infection (cfu/g)
(cfu/g)
infection (cfu/g)
infection (cfu/g)





















Positive control
5,700,000
72,000,000
300,000,000
100,000
30,000,000
200,000,000


Negative control
<100
<100
<100
<100
<100
<100


Monopropionin 43
5,700,000
410,000
250,000
100,000
<100
<100





Note:


Monopropionin 43 is composed of:


43% propionic acid monoglycerides


12% propionic acid diglycerides


1% propionic acid triglycerides


28% free glycerol


16% H2O





Claims
  • 1-11. (canceled)
  • 12. A method for removing or reducing a bacteria or a mold from an animal feed or a drinking liquid comprising adding to said animal feed or drinking liquid an amount of a composition containing at least one C1-C7 organic acid monoglyceride, and glycerol, wherein each of said monoglyceride and glycerol are present in said composition in an amount ranging from 10% to 90% by weight of said composition, in an amount sufficient to remove or reduce said bacteria or mold.
  • 13. A method for treating an animal suffering from an infection by a bacteria or mold comprising administering in feed or drinking water of said animal an amount of a composition containing at least one C1-C7 organic acid monoglyceride, and glycerol, wherein each of said monoglyceride and glycerol are present in said composition in an amount ranging from 10% to 90% by weight of said composition, in an amount sufficient to remove or reduce said bacteria or mold.
  • 14. The method of claim 12, wherein said composition comprises from 40%-90% by weight of said monoglyceride, and 10%-60% by weight of glycerol.
  • 15. The method of claim 12, wherein said organic acid is formic acid, acetic acid, propionic acid, lactic acid, butyric acid, citric acid, fumaric acid, or benzoic acid.
  • 16. The method of claim 12, wherein said organic acid is butyric acid or propionic acid.
  • 17. The method of claim 12, wherein said composition consists of: (a)
  • 18. The method of claim 12, wherein said composition further comprises from 1% to 20% by weight of an active principle of an essential oil.
  • 19. The method of claim 13, wherein said composition comprises from 40%-90% by weight of said monoglyceride, and 10%-60% by weight of glycerol.
  • 20. The method of claim 13, wherein said organic acid is formic acid, acetic acid, propionic acid, lactic acid, butyric acid, citric acid, fumaric acid, or benzoic acid.
  • 21. The method of claim 20, wherein said organic acid is butyric acid or propionic acid.
  • 22. The method of claim 13, wherein said composition consists of (a)
  • 23. A composition comprising: an animal feed or drink, and(ii) an antibacterial or anti-mold composition containing at least one C1-C7 organic acid monoglyceride, and glycerol, wherein each of said monoglyceride and glycerol are present in said composition in an amount ranging from 10% to 90% by weight of said composition.
  • 24. The composition of claim 23, wherein (ii) is added in an amount ranging from 0.1% to 1.5% by weight of said composition.
  • 25. The composition of claim 24, wherein (ii) is added in an amount ranging from 0.3% to 0.5% by weight of said composition.
  • 26. The composition of claim 23, wherein (i) is a feed or drink for a pig, a chicken, a fish, cattle, a sheep, or a companion animal.
Priority Claims (1)
Number Date Country Kind
FI2009A000050 Mar 2009 IT national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB2010/051126 3/16/2010 WO 00 10/18/2011