This application incorporates by reference a Sequence Listing submitted with this application as a text file entitled NDV-100WO1_Sequence_Listing.TXT, created on Feb. 18, 2016, and having a size of 63.2 kilobytes.
Newcastle disease virus (NDV) is an avian virus causing a contagious bird disease affecting many domestic and wild avian species. Exposure of humans to infected birds (e.g., in poultry processing plants) can cause mild conjunctivitis and influenza-like symptoms, but NDV otherwise poses no hazard to human health and most people are seronegative for NDV. Based on viral pathogenicity in chickens, NDV pathogenicity is classified as high (velogenic), medium (mesogenic) or low (lentogenic) as determined by the intracerebral pathogenicity index (ICPI). Due to agricultural concerns, the mesogenic and velogenic NDV having chicken virulence (ICPI>0.7) have been classified by the USDA as “select agents” since 2008. The Select Agents and Toxin List includes biological agents having the potential to pose a severe threat to human and animal health, to plant health, or to animal and plant products
Naturally occurring forms of NDV have been used in clinical studies as an immunotherapeutic and virotherapeutic biologic. NDV shows promise as an anticancer agent because of the virus' ability to selectively kill human tumor cells with limited toxicity to normal cells. However, due to the reclassification of NDV as a select agent, the development of NDV as an anti-cancer agent has failed to progress. Other oncolytic viruses have shown considerable promise in clinical trials. To facilitate the development of NDV as a cancer therapy, new forms of the virus are required. Ideally, such new forms would retain their ability to target tumor cells, but would no longer cause disease in birds.
As described below, the present invention features compositions and methods for the treatment of neoplasia.
In one aspect the invention generally provides an attenuated Newcastle disease virus (NDV) having an F protein cleavage site of NDV LaSota strain or glycoprotein B (gB) of cytomegalovirus (CMV) (S116). In one embodiment of the invention the modified F protein cleavage sequence (FPCS) has one of the following sequence modifications S116: 111H-N-R-T-K-S/F117 (SEQ ID NO: 1); S116K: 111H-N-K-T-K-S/F117 (SEQ ID NO: 2); S116M: 111H-N-R-M-K-S/F117 (SEQ ID NO: 3); S116KM: 111H-N-K-M-K-S/F-I118 (SEQ ID NO: 4); or R116: 111H-N-R-T-K-R/F-I118 (SEQ ID NO: 5). In another embodiment the attenuated virus strain is a modified 73T strain. In yet another embodiment the attenuated NDV virus is r73T-R116 virus. In further embodiments the virus has an increased HN-L intergenic region. In yet other embodiments the HN-L intergenic region is a non-coding sequence between at least about 50-300 amino nucleotides in length. In further embodiments the non-coding sequence is derived from a paramyxoviruses type-1 (APMV-1), a respiratory syncytial virus (RSV) or a random sequence. In yet another embodiment the HN and L intergenic non-coding sequence is 60, 102, 144, 198, or 318 nt in length. In additional embodiments the virus has one or more heterologous polynucleotide sequences inserted at the P-M junction and/or the HN-L junction. In further embodiments the virus has two or more heterologous polynucleotide sequences, wherein at least one heterologous polynucleotide sequence is inserted at the P-M junction and at least one is inserted at the HN-L junction. In other embodiments the heterologous polynucleotide sequence is a transgene encoding a polypeptide that enhances the oncolytic properties of the virus. In yet another embodiment the transgene encodes a cytokine, cell surface ligand, and/or chemokine. In other embodiments the cytokine is selected from the group consisting of GM-CSF, IL-2, IL-21, IL-15, IL-12, and IL-12p70. In particular embodiments the cytokine is human GM-CSF. In other embodiments the heterologous polynucleotide sequence is a transgene encoding a detectable moiety. In certain embodiments the expression level of the detectable moiety correlates with virus replication. In yet another embodiment the F and HN genes of NDV are replaced by corresponding extracellular domains of canine Parainfluenza virus 5 (PIV 5) or pigeon paramyxovirus type 1 (PPMV-1). In another particular embodiment the virus is 73T-R116i-hGM-CSF. In other embodiments the attenuated virus has a Mean death time in eggs (MDT) of greater than 90 hr or about 90-156 hours. In another embodiment the attenuated virus has an intracerebral pathogenicity index between about 0-0.7. In additional embodiments the attenuated virus has an intracerebral pathogenicity index of about 0. In yet another embodiment the attenuated virus has less than about 15% cytotoxicity in HT1080 cells. In further embodiments the attenuated virus selectively kills tumor cells with killing efficiency at least 10 or 15%. In another embodiment the tumor cell killing efficiency in between about 75%-100%.
Another aspect of the invention generally features a method of selectively killing tumor cells, involving contacting a tumor cell with the attenuated Newcastle disease virus described herein. In another embodiment of the invention the tumor cell is a cell of a cancer of bladder, ovarian, brain, pancreas, prostate, sarcoma, lung, breast, cervical, liver, head and neck, gastric, kidney, melanoma, lymphoma, leukemia, thyroid, colon, and melanoma cancer cells. In yet another embodiment the method involves administering to the subject an effective amount of an attenuated Newcastle disease virus described herein. In yet another embodiment the attenuated Newcastle disease virus is delivered systemically, intraperitoneally, or intratumorally. In further embodiments virus is administered at a dose of about 107 pfu to about 109 pfu. In additional embodiments the virus is administered intravenously at a dose of about 109 pfu to about 1011 pfu. In further embodiments the subject has a cancer selected from the group consisting of bladder, ovarian, brain, pancreas, prostate, sarcoma, lung, breast, cervical, liver, head and neck, gastric, kidney, melanoma, lymphoma, leukemia, thyroid, colon, and melanoma cancer.
In yet another aspect the invention generally features a method of treating a neoplasia in a subject that has developed an anti-NDV immune response, the method involving administering to the subject an effective amount of an attenuated chimeric Newcastle disease virus described herein, wherein the virus is a chimeric virus comprising a F and/or HN gene of a canine Parainfluenza virus 5 (PIV 5) or Pigeon paramyxovirus type 1 (PPMV-1), wherein the chimeric Newcastle disease virus is antigenically distinct from NDV. In an embodiment of the invention the method increases the level of oncolytic viruses present in the subject relative to the level of oncolytic viruses present in a control subject that has developed an anti-NDV immune response, but that is not receiving a chimeric Newcastle disease virus.
Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton et al., Dictionary of Microbiology and Molecular Biology (2nd ed. 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991); and Hale & Marham, The Harper Collins Dictionary of Biology (1991). As used herein, the following terms have the meanings ascribed to them below, unless specified otherwise.
By “attenuated Newcastle disease virus” is meant a Newcastle disease virus that selectively kills tumor cells but that does not pose a threat to poultry. In one embodiment, an attenuated Newcastle disease virus has an ICPI less than about 0.4 or 0.7. In other embodiments, attenuated Newcastle disease virus has an ICPI of between about 0 and 0.1.
By “heterologous polynucleotide sequence” is meant a recombinant polynucleotide that is not present in the wild-type condition.
By “detectable label” is meant a composition that when linked to a molecule of interest renders the latter detectable, via spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include radioactive isotopes, magnetic beads, metallic beads, colloidal particles, fluorescent dyes, electron-dense reagents, enzymes (for example, as commonly used in an ELISA), biotin, digoxigenin, or haptens.
By “agent” is meant any small molecule chemical compound, antibody, nucleic acid molecule, or polypeptide, or fragments thereof.
By “alteration” or “change” is meant an increase or decrease. An alteration may be by as little as 1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, or by 40%, 50%, 60%, or even by as much as 70%, 75%, 80%, 90%, or 100%.
As used herein, the term “antibody” refers to a polypeptide or group of polypeptides that are comprised of at least one binding domain that is formed from the folding of polypeptide chains having three-dimensional binding spaces with internal surface shapes and charge distributions complementary to the features of an antigenic determinant of an antigen. An antibody typically has a tetrameric form, comprising two identical pairs of polypeptide chains, each pair having one “light” and one “heavy” chain. The variable regions, or variable chain polypeptides, of each light/heavy chain pair form an antibody binding site.
The term “mAb” refers to monoclonal antibody. Antibodies of the invention comprise without limitation whole native antibodies, bispecific antibodies; chimeric antibodies; Fab, Fab′, single chain V region fragments (scFv), fusion polypeptides, and unconventional antibodies.
By “biologic sample” is meant a sample obtained from a subject including a sample of biological tissue or fluid origin, obtained or collected in vivo or in situ. In particular embodiments, a biological sample includes any cell, tissue, fluid, or other material derived from an organism.
By “capture reagent” is meant a reagent that specifically binds a nucleic acid molecule or polypeptide to select or isolate the nucleic acid molecule or polypeptide.
By “clinical aggressiveness” is meant the severity of the neoplasia. Aggressive neoplasia are more likely to metastasize than less aggressive neoplasia. While conservative methods of treatment are appropriate for less aggressive neoplasia, more aggressive neoplasia require more aggressive therapeutic regimens.
As used herein, the terms “determining”, “assessing”, “assaying”, “measuring” and “detecting” refer to both quantitative and qualitative determinations, and as such, the term “determining” is used interchangeably herein with “assaying,” “measuring,” and the like. Where a quantitative determination is intended, the phrase “determining an amount” of an analyte and the like is used. Where a qualitative and/or quantitative determination is intended, the phrase “determining a level” of an analyte or “detecting” an analyte is used.
The term “subject” or “patient” refers to an animal which is the object of treatment, observation, or experiment. By way of example only, a subject includes, but is not limited to, a mammal, including, but not limited to, a human or a non-human mammal, such as a non-human primate, murine, bovine, equine, canine, ovine, or feline.
The term “reduce” or “increase” is meant to alter negatively or positively, respectively. An alteration may be by 5%, 10%, 25%, 30%, 50%, 75%, or even by 100%.
By “reference” is meant a standard of comparison.
By “periodic” is meant at regular intervals. Periodic patient monitoring includes, for example, a schedule of tests that are administered daily, bi-weekly, bi-monthly, monthly, bi-annually, or annually.
By “severity of neoplasia” is meant the degree of pathology. The severity of a neoplasia increases, for example, as the stage or grade of the neoplasia increases.
Nucleic acid molecules useful in the methods of the invention include any nucleic acid molecule that encodes a polypeptide of the invention or a fragment thereof. Such nucleic acid molecules need not be 100% identical with an endogenous nucleic acid sequence, but will typically exhibit substantial identity. Polynucleotides having “substantial identity” to an endogenous sequence are typically capable of hybridizing with at least one strand of a double-stranded nucleic acid molecule. By “hybridize” is meant pair to form a double-stranded molecule between complementary polynucleotide sequences (e.g., a gene described herein), or portions thereof, under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger (1987) Methods Enzymol. 152:399; Kimmel, A. R. (1987) Methods Enzymol. 152:507).
For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and more preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and more preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30° C., more preferably of at least about 37° C., and most preferably of at least about 42° C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred: embodiment, hybridization will occur at 30° C. in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37° C. in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 μg/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42° C. in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50% formamide, and 200 .mu.g/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.
For most applications, washing steps that follow hybridization will also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include a temperature of at least about 25° C., more preferably of at least about 42° C., and even more preferably of at least about 68° C. In a preferred embodiment, wash steps will occur at 25° C. in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42° C. in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 68° C. in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art. Hybridization techniques are well known to those skilled in the art and are described, for example, in Benton and Davis (Science 196:180, 1977); Grunstein and Hogness (Proc. Natl. Acad. Sci., USA 72:3961, 1975); Ausubel et al. (Current Protocols in Molecular Biology, Wiley Interscience, New York, 2001); Berger and Kimmel (Guide to Molecular Cloning Techniques, 1987, Academic Press, New York); and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York.
By “substantially identical” is meant a polypeptide or nucleic acid molecule exhibiting at least 50% identity to a reference amino acid sequence (for example, any one of the amino acid sequences described herein) or nucleic acid sequence (for example, any one of the nucleic acid sequences described herein). Preferably, such a sequence is at least 60%, more preferably 80% or 85%, and more preferably 90%, 95%, 96%, 97%, 98%, or even 99% or more identical at the amino acid level or nucleic acid to the sequence used for comparison.
Sequence identity is typically measured using sequence analysis software (for example, Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705, BLAST, BESTFIT, GAP, or PILEUP/PRETTYBOX programs). Such software matches identical or similar sequences by assigning degrees of homology to various substitutions, deletions, and/or other modifications. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. In an exemplary approach to determining the degree of identity, a BLAST program may be used, with a probability score between e−3 and e−100 indicating a closely related sequence.
As used herein, “substantially pure” means that a species of interest is the predominant species present (i.e., on a molar basis it is more abundant than any other individual species in the composition), and preferably a substantially purified fraction is a composition wherein the object species comprises at least about 50 percent (on a molar basis) of all macromolecular species present. Generally, a substantially pure composition will comprise more than about 80 percent of all macromolecular species present in the composition, more preferably more than about 85%, 90%, 95%, and 99%. Most preferably, the species of interest is purified to essential homogeneity (contaminant species cannot be detected in the composition by conventional detection methods) wherein the composition consists essentially of a single macromolecular species.
As used herein, the terms “treat,” treating,” “treatment,” and the like refer to reducing or ameliorating a disorder and/or symptoms associated therewith. It will be appreciated that, although not precluded, treating a disorder or condition does not require that the disorder, condition or symptoms associated therewith be completely eliminated. Thus, a successful treatment may prolong the survival of a patient or alleviate an undesirable symptom.
As used herein, the terms “prevent,” “preventing,” “prevention,” “prophylactic treatment” and the like refer to reducing the probability of developing a disorder or condition in a subject, who does not have, but is at risk of or susceptible to developing a disorder or condition.
A dose refers to a single administration of a therapeutic composition. Dosage refers to the amount of a therapeutically active molecule in a dose. A treatment regimen refers to the dosage, schedule, and mode of administration of one or more doses. A cycle refers to a repeatable unit of one or more doses within a treatment regimen. In some treatment regimens dosages are uniform for each dose. In other treatment regimens, the dosages may not be uniform. For example, one or more loading doses may be used to raise the concentration of a therapeutic molecule to a desired level in a patient. Loading doses may be followed by one or more maintenance doses, generally comprising lower dosages (for example one half or less of a loading dose) which are sufficient to maintain a desired concentration of a therapeutic molecule in a patient. One or more tapering doses may be used to gradually reduce the concentration of a therapeutic molecule in a patient.
By “specifically binds” is meant a compound (e.g., antibody) that recognizes and binds a molecule (e.g., polypeptide), but which does not substantially recognize and bind other molecules.
Unless specifically stated or obvious from context, as used herein, the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein are modified by the term about.
Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.
Any compounds, compositions, or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.
As used herein, the singular forms “a”, “an”, and “the” include plural forms unless the context clearly dictates otherwise. Thus, for example, reference to “a biomarker” includes reference to more than one biomarker.
Unless specifically stated or obvious from context, as used herein, the term “or” is understood to be inclusive.
The term “including” is used herein to mean, and is used interchangeably with, the phrase “including but not limited to.”
As used herein, the terms “comprises,” “comprising,” “containing,” “having” and the like can have the meaning ascribed to them in U.S. Patent law and can mean “includes,” “including,” and the like; “consisting essentially of” or “consists essentially” likewise has the meaning ascribed in U.S. Patent law and the term is open-ended, allowing for the presence of more than that which is recited so long as basic or novel characteristics of that which is recited is not changed by the presence of more than that which is recited, but excludes prior art embodiments.
An exemplary nucleotide sequence of full-length NDV virus 73T is:
An exemplary nucleotide sequence of wt F protein is, wherein the underlined sequence denotes the nucleotide sequence of the F protein cleavage site:
t
ataggcgccattattggcggtgtggctcttggagttgcaactgctgcac
An exemplary amino acid sequence of wild type F protein wherein the underlined sequence denotes the amino acid sequence of the F protein cleavage site:
An exemplary nucleotide sequence of mouse GM-CSF is:
An exemplary amino acid sequence of mouse GM-CSF is:
An exemplary nucleotide sequence of human GM-CSF is:
An exemplary amino acid sequence of human GM-CSF is:
The invention features compositions comprising an attenuated Newcastle disease virus and methods of using that virus for the treatment of neoplasia.
The invention is based, at least in part, on the discovery of an oncolytic NDV with reduced chicken virulence. As reported in more detail below, the NDV 73T strain was derived from NDV MK-107, which is a commercial poultry vaccine (mesogenic) first marketed in 1948. The NDV MK-107 strain was maintained through 73 passages in Ehrlich ascites tumor cells (Cassel et al., Cancer. 1965 July; 18:863-8). NDV MK-107 was used in a series of Ph I and Ph II clinical studies in the 1970's. NDV MK-107 was also used in the 1980's as an immunotherapeutic to treat late stage melanoma patients (Cassel et al., Cancer. 1983 1; 52:856-860; Murray et al., Cancer. 1977. 40:680-686).
In order to generate an oncolytic NDV with reduced chicken virulence, the recombinant NDV 73T strain includes certain genetic modifications. In particular, the F protein cleavage sequence was altered and the length of the HN-L intergenic sequence was increased. Advantageously, the modified virus can be used to express a transgene(s) of interest. In one embodiment, the NDV 73T strain includes a transgene encoding a polypeptide that enhances the oncolytic properties of recombinant NDV. In another embodiment, the NDV 73T strain includes a transgene encoding a biomarker that provides a read-out useful to monitor virus replication. If desired, NDV 73T strain can be modified to incorporate additional genetic information that disrupts the normal transcriptional polarity of the standard genome and is expected to further reduce viral virulence in chickens. Accordingly, the invention provides a recombinant Newcastle Disease Virus (NDV) generated using reverse genetics to reduce its pathogenesis in chickens while maintaining its selective cancer cell killing ability, and methods of producing such a virus. The invention also provides for the construction and use of NDV as a viral vector to deliver and express heterologous gene products for enhanced cancer treatment. The transgenes encoding exemplary therapeutic agents that can be delivered by NDV are described herein below. In working examples described herein below, novel NDV viral constructs expressing granulocyte macrophage-colony stimulating factor (GM-CSF) selectively killed cancer cells, but did not kill normal cells. This selective cancer cell killing effect was observed in a number of cancer cell lines, as well as in vivo when tested in the xerograft HT1080 tumor model. The efficacy and selectivity of the recombinant attenuated Newcastle Disease Virus (NDV) was also demonstrated in a melenoma model where tumor regression was observed. In sum, the invention provides for the insertion of specific transgene(s) into a recombinant attenuated NDV vector and the efficient expression of the encoded protein in a tumor environment.
Newcastle Disease Virus
The Newcastle disease virus (NDV) is an enveloped virus containing a linear, single-strand, nonsegmented, negative sense RNA genome. The negative-sense, single-stranded genome of NDV encodes a RNA-directed RNA polymerase, a fusion (F) protein, a hemagglutinin-neuraminidase (HN) protein, a matrix protein, a phosphoprotein and a nucleoprotein. The genomic RNA contains genes in the following order: 3′-NP-P-M-F-HN-L. The organization of the NDV RNA genome is described in greater detail herein below. The genomic RNA also contains a leader sequence at the 3′ end.
The structural elements of the virion include the virus envelope which is a lipid bilayer derived from the cell plasma membrane. The glycoprotein, hemagglutinin-neuraminidase (HN), protrudes from the envelope allowing the virus to contain both hemagglutinin and neuraminidase activities. The fusion glycoprotein (F), which is an integral membrane protein, is first produced as an inactive precursor, then cleaved post-translationally to produce two disulfide linked polypeptides. The active F protein is involved in penetration of NDV into host cells by facilitating fusion of the viral envelope with the host cell plasma membrane. The matrix protein (M), is involved with viral assembly, and interacts with both the viral membrane as well as the nucleocapsid proteins.
The main protein subunit of the nucleocapsid is the nucleocapsid protein (NP) which confers helical symmetry on the capsid. In association with the nucleocapsid are the P and L proteins. The phosphoprotein (P), which is subject to phosphorylation, is thought to play a regulatory role in transcription, and may also be involved in methylation, phosphorylation and polyadenylation. The L gene, which encodes an RNA-dependent RNA polymerase, is required for viral RNA synthesis together with the P protein. The L protein, which takes up nearly half of the coding capacity of the viral genome, is the largest of the viral proteins, and plays an important role in both transcription and replication.
The replication of all negative-strand RNA viruses, including NDV, is complicated by the absence of cellular machinery required to replicate RNA. Additionally, the negative-strand genome can not be translated directly into protein, but must first be transcribed into a positive-strand (mRNA) copy. Therefore, upon entry into a host cell, the genomic RNA alone cannot synthesize the required RNA-dependent RNA polymerase. The L, P and NP proteins must enter the cell along with the genome upon infection.
Without being bound to theory, it is hypothesized that most or all of the viral proteins that transcribe NDV mRNA also carry out replication. The mechanism that regulates the alternative uses (i.e., transcription or replication) of the same complement of proteins has not been clearly identified. Directly following penetration of the virus, transcription is initiated by the L protein using the negative-sense RNA in the nucleocapsid as a template. Viral RNA synthesis is regulated such that it produces monocistronic mRNAs during transcription. Following transcription, virus genome replication is the second event that occurs upon infection of a cell by negative-strand RNA viruses. As with other negative-strand RNA viruses, viral genome replication of Newcastle disease virus (NDV) is mediated by virus-specified proteins. The first products of replicative RNA synthesis are complementary copies (i.e., plus-polarity) of NDV genome RNA (cRNA). These plus-stranded copies (antigenomes) differ from the plus-strand mRNA transcripts in the structure of their termini. Unlike mRNA transcripts, the anti-genomic cRNAs are not capped and methylated at the 5′ termini, and are not truncated and polyadenylated at the 3′ termini. The cRNAs are coterminal with their negative strand templates and contain all the genetic information in each genomic RNA segment in the complementary form. The cRNAs serve as templates for the synthesis of NDV negative-strand viral genomes (vRNAs).
Both the NDV negative strand genomes (vRNAs) and antigenomes (cRNAs) are encapsidated by nucleocapsid proteins; the only unencapsidated RNA species are virus mRNAs. For NDV, the cytoplasm is the site of virus RNA replication, just as it is the site for transcription. Assembly of the viral components likely takes place at the host cell plasma membrane. Mature virus is then released from the cell by budding.
Oncolytic Viruses
Viruses are known to exert oncolytic effects on tumor cells and the use of oncolytic viruses as therapeutic agents has been reported. Some effort has been done to use non-human viruses exhibiting medium to high pathogenicity for their natural hosts in the treatment of cancer patients. The present invention discloses methods for inducing regression of tumors in human subjects, the methods utilize a modified mesogenic strain of Newcastle disease virus (NDV) with modified F protein cleavage site, which is non-pathogenic to poultry (lentogenic), but exhibits oncolytic properties. The disclosed methods provide safe, effective and reliable means to induce regression of a tumor in an individual in need thereof. These methods overcome the drawbacks of using pathogenic strains of viruses for human therapy.
Accordingly in one aspect, the present invention provides a method for inducing regression of a tumor in a subject, the method comprises the step of administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of a lentogenic oncolytic strain of NDV. According to one embodiment, the lentogenic oncolytic strain of NDV is NDV r73T-R116.
Oncolytic viruses are capable of exerting a cytotoxic or killing effect in vitro and in vivo to tumor cells with little or no effect on normal cells. The term “oncolytic activity” refers to the cytotoxic or killing activity of a virus that targets tumor cells. Without wishing to be bound to any mechanism of action, the oncolytic activity exerted by a lentogenic strain of NDV (e.g., r73T-R116), is probably primarily due to cell apoptosis and to a lesser extent to plasma membrane lysis, the latter is accompanied by release of viable progeny into the cell's milieu that subsequently infect adjacent cells. Without wishing to be bound to a particular theory, it is believed that NDV has direct cytolytic activity on the cancer cells. It is also believed that NDV is capable of specifically differentiating cancer cells from normal, healthy cells. Results have indicated that several oncogenes (H-ras, N-ras, and N-myc) which are known to confer malignant behavior to cancer cells, enhance the susceptibility of cells to killing by NDV. See, Lorence, R. M., Reichard, K. W., Cascino, C. J. et al. (1992) Proc. Am. Assoc. Cancer Res., 33, 398; Reichard, K. W., Lorence, R. M., Cascino, C. J., et al. (1992) Surg. Forum, 43, 603-606. In addition, it has been observed that treatment of cells with retinoic acid (vitamin A) also enhances lysis of cancer cells by NDV. Reichard, K. W., Lorence, R. M., Katubig, B. B., et al. (1993) J. Pediatr. Surg., 28, 1221.
The cytotoxic effects under in vitro or in vivo conditions can be detected by various means as known in the art, for example, by inhibiting cell proliferation, by detecting tumor size using gadolinium enhanced MRI scanning, by radiolabeling of a tumor, and the like.
For clinical studies, it is desirable to obtain a clonal virus so as to ensure virus homogeneity. Clonal virus can be produced according to any method available to the skilled artisan. For example, clonal virus can be produced by limiting dilution or by plaque purification.
NDV Culture
The virus employed in the invention may be prepared by a variety of methods. For example, NDV may be prepared in 8 to 10 day old fertilized chicken eggs (obtained from SPAFAS, Inc., Roanoke, Ill.). Methods of isolating the virus are known in the art and are described, for example, by Weiss, S. R. & Bratt, M. A. (1974) J. Virol, 13, 1220-1230. This method is further described in Example #1 below. Using this isolation method, NDV may be obtained which is about 90-95% pure.
Alternatively, the virus may be prepared in an in vitro cell culture. Preferably, the cell culture comprises mammalian cells, and more preferably, cells can be used for virus manufacture such as Vero cells. The viruses will be purified by chromatograph or other appropriate methods. The cells may be anchorage-dependent or anchorage-independent.
Cell culture techniques that may be employed in the virus preparation are known in the art and may include use of stationary culture flasks with large surface areas or roller-type flasks. Preferably, the type of culture system selected can support relatively large numbers of cells. To produce large quantity of viruses, a bioreactor process will be deployed whereas the cells are grown in microcarrier beads for virus infection and production.
Cell culture mediums that can be employed in the virus production are known to those skilled in the art. The medium typically includes a nutrient source, antibiotic(s) and albumin or a serum source that contains growth factor(s). It is within the skill in the art to select particular mediums and medium constituents suitable for the cells employed in the culture. In certain embodiments trypsin is included in the growth media. In other embodiments, trypsin is not included.
Culture conditions typically include incubation at a desired temperature (such as 37° C.), as well as selected concentrations of oxygen and carbon dioxide. The particular culture conditions selected can be determined in accordance with the cells employed in the culture, and determination of such conditions is within the skill in the art.
The cells are placed in the culture vessel and allowed to incubate and grow under the selected culture conditions. Preferably, anchorage-dependent cells are allowed to grow to confluence or peak growth. The time required for growth will vary depending upon the size of the initial cell inoculum added to the culture vessel and doubling time of the cell line being employed. Preferably, about 3×103 to about 3×105 cells are plated per cm2 and grown for one to five days. For virus inoculation of the cell culture, the medium is removed from the cells (for adherent cells, by aspiration of the culture medium; for cells grown in suspension, by centrifugation of the cell suspension and aspiration of the cell supernatant) and the virus (after reconstitution) is added to the cells in a minimal volume of medium or saline solution (such as Hank's Balanced Salt Solution, Gibco) to prevent dehydration. Preferably, this volume ranges from about 10 to about 2500 microliter per cm2 culture vessel surface area or 105 cells. The preferred dilution of virus inoculum ranges from about 0.001 to about 10 infectious units per cell, the optimal ratio depending on the particular virus and cell line. The virus is then grown from about 1 to 7 days, the length of time being primarily determined by the residual survival of the cell line. For NDV, the optimal time of harvest is 1 to 5 days after virus inoculation.
The virus can then be harvested by either removing the supernatant and replacing it with fresh medium or fresh medium with fresh cells at 12 to 48 hour intervals or freeze-thawing the cells to release virus in the supernatant. The supernatant can then be centrifuged and ultracentrifuged to recover the virus in relatively pure form or by chromatography methods. The purity of the viral preparation may be tested by protein determination and/or by electrophoresis. The virus can then be added to a pharmaceutically-acceptable carrier, described further below.
Therapy
Therapy may be provided wherever cancer therapy is performed: at home, the doctor's office, a clinic, a hospital's outpatient department, or a hospital. In one embodiment, the invention provides for the use of an Newcastle disease virus (NDV) (e.g., r73T-R116).
Treatment generally begins at a hospital so that the doctor can observe the therapy's effects closely and make any adjustments that are needed. The duration of the therapy depends on the kind of cancer being treated, the age and condition of the patient, the stage and type of the patient's disease, and how the patient's body responds to the treatment. Drug administration may be performed at different intervals (e.g., daily, weekly, or monthly). Therapy may be given in on-and-off cycles that include rest periods so that the patient's body has a chance to build healthy new cells and regain its strength.
Depending on the type of cancer and its stage of development, the therapy can be used to slow the spreading of the cancer, to slow the cancer's growth, to kill or arrest cancer cells that may have spread to other parts of the body from the original tumor, to relieve symptoms caused by the cancer, or to prevent cancer in the first place. Cancer growth is uncontrolled and progressive, and occurs under conditions that would not elicit, or would cause cessation of, multiplication of normal cells.
As described above, if desired, treatment with a composition of the invention may be combined with therapies for the treatment of proliferative disease (e.g., radiotherapy, surgery, or chemotherapy).
Formulation of Pharmaceutical Compositions
The administration of a virus of the invention (e.g., NDV r73T-R116) for the treatment of tumors may be by any suitable means that results in a concentration of the therapeutic that, combined with other components, is effective in preventing, ameliorating, or reducing tumors. The agent may be contained in any appropriate amount in any suitable carrier substance, and is generally present in an amount of 1-95% by weight of the total weight of the composition. The composition may be provided in a dosage form that is suitable for parenteral (e.g., subcutaneously, intravenously, intramuscularly, or intraperitoneally) administration route. The pharmaceutical compositions may be formulated according to conventional pharmaceutical practice (see, e.g., Remington: The Science and Practice of Pharmacy (20th ed.), ed. A. R. Gennaro, Lippincott Williams & Wilkins, 2000 and Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J. C. Boylan, 1988-1999, Marcel Dekker, New York).
Pharmaceutical compositions according to the invention may be formulated to release the active compound substantially immediately upon administration or at any predetermined time or time period after administration. The latter types of compositions are generally known as controlled release formulations, which include (i) formulations that create a substantially constant concentration of the drug within the body over an extended period of time; (ii) formulations that after a predetermined lag time create a substantially constant concentration of the drug within the body over an extended period of time; (iii) formulations that sustain action during a predetermined time period by maintaining a relatively, constant, effective level in the body with concomitant minimization of undesirable side effects associated with fluctuations in the plasma level of the active substance (sawtooth kinetic pattern); (iv) formulations that localize action by, e.g., spatial placement of a controlled release composition adjacent to or in a sarcoma (v) formulations that allow for convenient dosing, such that doses are administered, for example, once every one or two weeks; and (vi) formulations that target proliferating neoplastic cells by using carriers or chemical derivatives to deliver the therapeutic agent to a sarcoma cell. For some applications, controlled release formulations obviate the need for frequent dosing during the day to sustain the plasma level at a therapeutic level.
Any of a number of strategies can be pursued in order to obtain controlled release in which the rate of release outweighs the rate of metabolism of the compound in question. In one example, controlled release is obtained by appropriate selection of various formulation parameters and ingredients, including, e.g., various types of controlled release compositions and coatings. Thus, the therapeutic is formulated with appropriate excipients into a pharmaceutical composition that, upon administration, releases the therapeutic in a controlled manner. Examples include single or multiple unit tablet or capsule compositions, oil solutions, suspensions, emulsions, microcapsules, microspheres, molecular complexes, nanoparticles, patches, and liposomes.
A composition of the invention, may be administered within a pharmaceutically-acceptable diluent, carrier, or excipient, in unit dosage form. Conventional pharmaceutical practice may be employed to provide suitable formulations or compositions to administer the compounds to patients suffering from a disease that is caused by excessive cell proliferation. Administration may begin before the patient is symptomatic.
Any appropriate route of administration may be employed, for example, administration may be parenteral, intravenous, intraarterial, subcutaneous, intratumoral, intramuscular, intracranial, intraorbital, ophthalmic, intraventricular, intrahepatic, intracapsular, intrathecal, intracisternal, intraperitoneal, intranasal, aerosol, suppository, or oral administration. For example, therapeutic formulations may be in the form of liquid solutions or suspensions; for oral administration, formulations may be in the form of tablets or capsules; and for intranasal formulations, in the form of powders, nasal drops, or aerosols. For any of the methods of application described above, a composition of the invention is desirably administered intravenously or is applied to the site of the needed apoptosis event (e.g., by injection).
Methods well known in the art for making formulations are found, for example, in “Remington: The Science and Practice of Pharmacy” Ed. A. R. Gennaro, Lippincourt Williams & Wilkins, Philadelphia, Pa., 2000. Formulations for parenteral administration may, for example, contain excipients, sterile water, or saline, polyalkylene glycols such as polyethylene glycol, oils of vegetable origin, or hydrogenated napthalenes. Biocompatible, biodegradable lactide polymer, lactide/glycolide copolymer, or polyoxyethylene-polyoxypropylene copolymers may be used to control the release of the compounds. Other potentially useful parenteral delivery systems for delivering agents include ethylene-vinyl acetate copolymer particles, osmotic pumps, implantable infusion systems, and liposomes. Formulations for inhalation may contain excipients, for example, lactose, or may be aqueous solutions containing, for example, polyoxyethylene-9-lauryl ether, glycocholate and deoxycholate, or may be oily solutions for administration in the form of nasal drops, or as a gel.
The formulations can be administered to human patients in therapeutically effective amounts (e.g., amounts which prevent, eliminate, or reduce a pathological condition) to provide therapy for a disease or condition. The preferred dosage of a composition of the invention is likely to depend on such variables as the type and extent of the disorder, the overall health status of the particular patient, the formulation of the compound excipients, and its route of administration.
Human dosage amounts for any therapy described herein can initially be determined by extrapolating from the amount of compound used in mice, as a skilled artisan recognizes it is routine in the art to modify the dosage for humans compared to animal models. In certain embodiments it is envisioned that the dosage may vary from between about 107 pfu to about 1011 pfu; or from about 108 pfu to about 1010 pfu or from about 109 pfu to about 1011 pfu In other embodiments this dose may be about 107 pfu, 108 pfu, 109 pfu, 1010 pfu, 1011 pfu. Of course, a dosage amount may be adjusted upward or downward, as is routinely done in such treatment protocols, depending on the results of the initial clinical trials and the needs of a particular patient.
Selection of a Treatment Method
After a subject is diagnosed as having neoplasia a method of treatment is selected. In neoplasia, for example, a number of standard treatment regimens are available. The marker profile of the neoplasia is used in selecting a treatment method. In one embodiment, neoplasia cells that are responsive to cell killing by NDV (e.g., r73T-R116).
Less aggressive neoplasia are likely to be susceptible to conservative treatment methods. More aggressive neoplasia (e.g., metastatic neoplasia) are less susceptible to conservative treatment methods and are likely to recur. When methods of the invention indicate that a neoplasia is very aggressive, an aggressive method of treatment should be selected. Aggressive therapeutic regimens typically include one or more of the following therapies: surgical resection, radiation therapy, or chemotherapy.
Assays for Measuring Cell Viability
Agents (e.g., NDV) useful in the methods of the invention include those that induce neoplastic cell death and/or reduce neoplastic cell survival, i.e., viability.
Assays for measuring cell viability are known in the art, and are described, for example, by Crouch et al. (J. Immunol. Meth. 160, 81-8); Kangas et al. (Med. Biol. 62, 338-43, 1984); Lundin et al., (Meth. Enzymol. 133, 27-42, 1986); Petty et al. (Comparison of J. Biolum. Chemilum. 10, 29-34, 0.1995); and Cree et al. (AntiCancer Drugs 6: 398-404, 1995). Cell viability can be assayed using a variety of methods, including MTT (3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide) (Barltrop, Bioorg. & Med. Chem. Lett. 1: 611, 1991; Cory et al., Cancer Comm 3, 207-12, 1991; Paull J. Heterocyclic Chem. 25, 911, 1988). Assays for cell viability are also available commercially. These assays include but are not limited to CELLTITER-GLO® Luminescent Cell Viability Assay (Promega), which uses luciferase technology to detect ATP and quantify the health or number of cells in culture, and the CellTiter-Glo® Luminescent Cell Viability Assay, which is a lactate dehyrodgenase (LDH) cytotoxicity assay (Promega).
Candidate compounds that induce or increase neoplastic cell death (e.g., increase apoptosis, reduce cell survival) are also useful as anti-neoplasm therapeutics. Assays for measuring cell apoptosis are known to the skilled artisan. Apoptotic cells are characterized by characteristic morphological changes, including chromatin condensation, cell shrinkage and membrane blebbing, which can be clearly observed using light microscopy. The biochemical features of apoptosis include DNA fragmentation, protein cleavage at specific locations, increased mitochondrial membrane permeability, and the appearance of phosphatidylserine on the cell membrane surface. Assays for apoptosis are known in the art. Exemplary assays include TUNEL (Terminal deoxynucleotidyl Transferase Biotin-dUTP Nick End Labeling) assays, caspase activity (specifically caspase-3) assays, and assays for fas-ligand and annexin V. Commercially available products for detecting apoptosis include, for example, Apo-ONE® Homogeneous Caspase-3/7 Assay, FragEL TUNEL kit (ONCOGENE RESEARCH PRODUCTS, San Diego, Calif.), the ApoBrdU DNA Fragmentation Assay (BIOVISION, Mountain View, Calif.), and the Quick Apoptotic DNA Ladder Detection Kit (BIOVISION, Mountain View, Calif.).
Neoplastic cells have a propensity to metastasize, or spread, from their locus of origination to distant points throughout the body. Assays for metastatic potential or invasiveness are known to the skilled artisan. Such assays include in vitro assays for loss of contact inhibition (Kim et al., Proc Natl Acad Sci USA. 101:16251-6, 2004), increased soft agar colony formation in vitro (Zhong et al., Int J Oncol. 24(6):1573-9, 2004), pulmonary metastasis models (Datta et al., In vivo, 16:451-7, 2002) and Matrigel-based cell invasion assays (Hagemann et al. Carcinogenesis. 25: 1543-1549, 2004). In vivo screening methods for cell invasiveness are also known in the art, and include, for example, tumorigenicity screening in athymic nude mice. A commonly used in vitro assay to evaluate metastasis is the Matrigel-Based Cell Invasion Assay (BD Bioscience, Franklin Lakes, N.J.).
If desired, candidate compounds selected using any of the screening methods described herein are tested for their efficacy using animal models of neoplasia. In one embodiment, mice are injected with neoplastic human cells. The mice containing the neoplastic cells are then injected (e.g., intraperitoneally) with vehicle (PBS) or candidate compound daily for a period of time to be empirically determined. Mice are then euthanized and the neoplastic tissues are collected and analyzed for levels of NDV, NDV polypeptides, and/or NDV markers (e.g., a transgene encoding a detectable moiety) using methods described herein. Compounds that decrease NDV, NDV polypeptides, or NDV marker levels mRNA or protein expression relative to control levels are expected to be efficacious for the treatment of a neoplasm in a subject (e.g., a human patient). In another embodiment, the effect of a candidate compound on tumor load is analyzed in mice injected with a human neoplastic cell. The neoplastic cell is allowed to grow to form a mass. The mice are then treated with a candidate compound or vehicle (PBS) daily for a period of time to be empirically determined. Mice are euthanized and the neoplastic tissue is collected. The mass of the neoplastic tissue in mice treated with the selected candidate compounds is compared to the mass of neoplastic tissue present in corresponding control mice.
Kits
The invention provides kits for the treatment or prevention of sarcoma. In one embodiment, the kit includes a therapeutic or prophylactic composition containing an effective amount of an NDV (e.g., r73T-R116) in unit dosage form. In a further embodiment, the kit includes a therapeutic or prophylactic composition containing an effective amount of NDV (e.g., r73T-R116) in unit dosage form.
In some embodiments, the kit comprises a sterile container which contains a therapeutic or prophylactic composition; such containers can be boxes, ampoules, bottles, vials, tubes, bags, pouches, blister-packs, or other suitable container forms known in the art. Such containers can be made of plastic, glass, laminated paper, metal foil, or other materials suitable for holding medicaments.
If desired an antibody of the invention is provided together with instructions for administering an NDV (e.g., r73T-R116) to a subject having or at risk of developing neoplasia. The instructions will generally include information about the use of the composition for the treatment or prevention of neoplasia. In other embodiments, the instructions include at least one of the following: description of the therapeutic agent; dosage schedule and administration for treatment or prevention of neoplasia or symptoms thereof; precautions; warnings; indications; counter-indications; overdosage information; adverse reactions; animal pharmacology; clinical studies; and/or references. The instructions may be printed directly on the container (when present), or as a label applied to the container, or as a separate sheet, pamphlet, card, or folder supplied in or with the container.
The practice of the present invention employs, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry and immunology, which are well within the purview of the skilled artisan. Such techniques are explained fully in the literature, such as, “Molecular Cloning: A Laboratory Manual”, second edition (Sambrook, 1989); “Oligonucleotide Synthesis” (Gait, 1984); “Animal Cell Culture” (Freshney, 1987); “Methods in Enzymology” “Handbook of Experimental Immunology” (Weir, 1996); “Gene Transfer Vectors for Mammalian Cells” (Miller and Calos, 1987); “Current Protocols in Molecular Biology” (Ausubel, 1987); “PCR: The Polymerase Chain Reaction”, (Mullis, 1994); “Current Protocols in Immunology” (Coligan, 1991). These techniques are applicable to the production of the polynucleotides and polypeptides of the invention, and, as such, may be considered in making and practicing the invention. Particularly useful techniques for particular embodiments will be discussed in the sections that follow.
The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the assay, screening, and therapeutic methods of the invention, and are not intended to limit the scope of what the inventors regard as their invention.
Six subgenomic cDNA fragments generated by high-fidelity RT-PCR were assembled in the pUC19 vector. The full length cDNA of NDV 73T was designated as p73T. The nucleotide and deduced amino acid sequences of the F protein cleavage site (FPCS) in 73T were modified to that of the NDV LaSota strain (lentogenic, lento) or glycoprotein B (gB) of cytomegalovirus (CMV) (S116) (
Transgenes were inserted into p73T at two locations: at the intergenic sequences between P and M or at the intergenic sequences between the HN and L junctions (
The NDV 73T NP, P, L proteins and antigenic cDNA (p73T-lento or p73T-S116) were cloned under the control of the T7 RNA polymerase promoter and terminator. The four plasmids were co-transfected into an RNA polymerase expressing cell line (
Recombinant 73T strain with novel modified F protein cleavage sequences (FPCS) included the following sequences:
The recombinant 73T strains with different FPCS were characterized with regard to MDT, ICPI, relative HT1080 cell killing, replication in Vero cells, and replication in eggs (
Avian virulence of NDV is mainly determined by the F protein cleavage sequences (FPCS). r73T-lento was engineered to contain the FPCS of the non-virulent strain LaSota. Replication of LaSota virus in the tissue cultures is trypsin dependent, as F protein cannot be cleaved. r73T-lento forms tiny plaques in Vero cells without trypsin supplement, indicating that the F protein is not cleaved and virus cannot spread efficiently from cell-to-cell. r73-lento replicated at a low level in Vero cells (7.5×103 pfu/ml), but efficiently in eggs with endogenous trypsin-like enzyme (5.7×108 pfu/ml). r73-lento is not virulent in chickens as demonstrated by the mean death time (MDT) of embryos inoculated with the virus (MDT >156 hr) and by an intracerebral pathogenicity index (ICPI; ICPI=0.00), and has low cytotoxicity in HT1080 cells (13% cell killing).
r73T-S116 can form relatively large plaques, and reaches a titer of 4.4×106 pfu/ml in Vero cells. This was comparable to the titers obtained when r73T-S116 was grown in Vero cells supplemented with trypsin. This data indicated that the fusion protein cleavage site (FPCS) of r73T-S116 can be cleaved without exogenous trypsin in tissue cultures. It was not virulent in chickens and showed 31% cell killing in HT1080 cells. r73T-S116 was examined for its genetic stability by in vitro cell passage.
After 10 passages in Vero or HT1080 cells, amino acid substitutions were found in the FPCS: R113K, Q114M, and/or S116R. To eliminate the possibility that additional sequence change had occurred in the viral genome, recombinant r73T-S116 mutant viruses were constructed by reverse genetics and evaluated. Except for r73T-R116, r73T-S116 and its derivatives were similar to the parental S116 in that these mutant viruses were not virulent in chickens and were capable of similar levels of HT1080 cell killing. HT1080 cell killing was between 29%-31% for the single mutation and 48% for the double mutations.
The plaque size of M114 and K113M114 were significantly larger than S116. Ther73T-R116 mutant acquired one amino acid change at residue 116 (S116R) in the FPCS. The R116 next to the cleavage site is known to be important for efficient cleavage of the F protein. r73T-R116 formed large plaques in Vero cells, grew to similar titers with and without trypsin supplement, and efficiently killed HT1080 cells (80%). R116 increased chicken virulence as shown by the MDT assay (72, 80 hrs). Although the ICPI value (0.65) was <0.7 in one test, it is preferable to further reduce its chicken virulence.
Virus can be engineered to express a transgene at the P-M junction (1) a 2nd transgene at the HN-L junction (2) and an increased HN-L intergenic region that is extended by insertion of non-coding sequence (3) (
To reduce r73T-R116 virulence in chickens, r73T-R116 virus was modified to increase the HN and L intergenic sequence by insertion of sequences of various lengths. r73T-R116 derivatives were evaluated for infectivity by examining plaque formation and replication in cells and eggs; for avian pathogenicity by examining MDT and ICPI, and for tumor cell killing (
Intergenic insertions of 318 nt from APMV, 198 nt from RSV and 198 random sequences indeed reduced virulence in chickens, with MDT >156 hr and ICPI of 0.27, 0.0375 and 0, respectively. A long insertion (random 198 nt) had an increased effect on reducing virulence than a short insertion (random 60 nt). The insertion of 144, 102 and 60 nt had some virulence in chickens, but MDT times were shorter. ICPI values for the insertion of 144, 102 and 60 nt were 0.74, 0.51 and 0.78, respectively. The insertion of non-viral sequence (random 198 nt) more effectively reduced virulence than insertion of viral sequence (RSV-198 nt). The insertion of the 2nd transgene cassette (EGFP) at the HN-L junction did not reduce chicken virulence (MDT 86 hr and ICPI of 0.82). All insertions slightly reduced viral replication in eggs by up to 4-fold, but did not effect viral replication in Vero cells (˜106 pfu/ml). Although mutant viruses were more attenuated in chicken, tumor cell killing function was not affected. All r73T-R116 derivatives had tumor cell killing efficiency in the range of 75%-86% on day 3 of infection.
To determine growth conditions for the r73T viruses, growth kinetic studies were performed in eggs (
The viruses were also evaluated in sero-free Vero cell clone 51D11, a proprietary cell line generated by MedImmune. All the viruses replicated well under both MOI conditions (0.001 and 0.0001) (
rT3T and its derivatives were evaluated for their cell killing in human fibrosarcoma HT1080 compared to normal human skin fibroblast CCD1122Sk cells, relative to untreated control cells (
To evaluate oncolytic activity in vivo, HT1080 xenograft model was established by injecting the HT1080 cells at a concentration of 5×106 cells/0.1 ml subcutaneously into Balb/C athymic nude mice at age of 5-6 week old. As hGM-CSF has no cross reactivity in mouse, this study was not geared to assess the transgene effect, but the oncolytic capability of various r73T constructs. R116-318i-hGM-CSF was given intratumorally (it) or intravenously (iv) and tumor growth rate was compared between the treatment and the control groups (
Mice were randomized into groups (N=10) as indicated when tumor volume reached approximately 65 mm3. Mice received a single dose of either PBS or 2×107 Pfu of r73T-hGM-CSF-R116i-198 administered intratumorally (IT) or 1×108 PFU administered intravenously (IV) via tail vein injection. Tumor size was measured every 3-4 days. As presented in
The oncolytic activities of r73T derivatives were compared in the HT1080 xenografts by IT injection of 1×108 PFU (
To determine if the oncolytic NDV virus selectively replicates in tumor tissues and viral clearance, virus distribution in different organs was determined. Athymic nude mice bearing subcutaneous HT1080 tumors with size of ˜250 mm3 were treated with R116i (r73T-hGM-CSF-R116i-318 nt APMV-N) at a dose of 1×108 PFU intravenously and sacrificed on day 1, 4, or 8 (n=3 per time point). Serum, lungs, spleen, ovaries and tumor were collected.
The presence of virus was quantified by plaque assay in Vero cells, and hGM-CSF transgene expression was measured by ELISA assay. Virus replication in tumor and organs were assessed on day 1, 4 and 8 post infection. Virus was only detected in organs on day 1 (no virus was detected in ovary at all time points) and virus load in tumor tissues was ˜100-fold higher than lungs and spleens (
Viral surface glycoproteins are important antigens for immunogenicity and virulence in chickens. Strategies were explored to replace the F and HN genes of NDV by the corresponding extracellular (ecto) domains of other paramyxoviruses which are not virulent in chickens individually or in combination. Parainfluenza virus 5 (PIV 5) is a canine paramyxovirus and does not cause diseases in human. Pigeon paramyxovirus type 1 (PPMV-1) has been shown to be nonvirulent in chickens with an ICPI of 0.025, as previously reported, and is antigenically distinct from NDV (Dortmans et al, Veterinary Microbiology, 2010, vo. 143, pages 139-144.) There exist two genetically closely related pigeon paramyxovirus type 1 (PPMV-1) variants with identical velogenic fusion protein cleavage sites, but with strongly contrasting virulence (Veterinary Microbiology, 2010, 143:139-144). Full-length antigenomic cDNAs of NDV 73T in which the F and/or HN glycoprotein ectodomain were swapped with that of PPMV-1 and/or PIV5 were generated (
The amino acid lengths of individual proteins or protein domains are indicated. Plaque formation in Vero, relative HT1080 cell killing and MDT were performed as described previously (
A comparison of NDV RNA polymerase activity with other paramyxoviruses by mini-genome assay (
In order to understand what tumor types may be sensitive to NDV oncolysis, 180 cancer cell lines covering a broad range of tumor types and indications were tested for sensitivity to recombinant NDV and variants thereof. Cell lines were obtained from American Type Tissue Collection (Manassas, Va.) or the European Collection of cell cultures (ECACC) and were cultured in media and under conditions recommended by the supplier. 10,000 cancer cell lines were seeded in 96 well plates and were infected 6 hours later with a virus. Virus concentrations ranged from MOI 10-0.0001 (or 1 to 100,000 pfu per well). Cell viability was determined 48-96 hrs post infection. Sensitivity was determined using a cut off of >30% cell kill at 72 hrs post infection with virus at an MOI of 0.1.
Following tumor model refinement, S116-RD NDV encoding human or murine GM-CSF was tested for efficacy in refined B16F10 syngeneic model (
In order to assess oncolytic and immune effects on tumor growth, NDV variants R116i and S116 encoding hGM-CF or mGM-CSF respectively were tested for efficacy in the mouse syngeneic immune competent CT26 colorectal tumor model. Each virus was dosed with 1×108 PFU of virus intra-tumorally for 4 doses. Tumors were a minimum of 100 mm3 before dosing commenced. As shown in Table 2 below, all animals treated with virus demonstrated potent anti-tumor activity as a monotherapy. With 11/12 animals tumor free following treatment with R116 encoding human GM-CSF which is a 92% complete response rate. The less lytic re-derived S116-KM virus had a reduced tumor growth inhibition achieving 53% TGI and a complete response rate of 36%. However, in the presence of murine GM-CSF which unlike human GM-CSF will be active in the mouse model this response rate was increased to 54% with a tumor growth inhibition of 75%. Thus, it is likely that arming the S116 virus with GM-CSF may enhance anti-tumor activity.
Tumors that were remaining were taken for histological analysis and stained by Hematoxylin and eosin stain (H and E) and using immunohistochemistry methods for NDV detection (
73T-R116i-hGM-CSF and 73T-R116i-mGM-CSF were evaluated for oncolytic effect in the B16 melanoma model. The study evaluated virus tolerability in the B16 mouse. Each virus was dosed at 2×107 pfu twice on days 11 and 14 intravenously (i.v) or intraperitoneally (i.p), or once on Day 11 at 1.1×107 pfu intratumorally (i.t). The groups treated with R116-hGM-SCF or mGM-SCF by three different routes of administration had slower rate of tumor growth compared to the untreated group (
In addition to GM-CSF, a number of transgenes (Table 3) may be inserted into NDV 73T strain to enhance tumor killing. These transgenes include the following:
NDV oncolytic virus can be administered concurently or sequentially with therapeutic antibodies or agonistic fusion proteins where appropriate (e.g. anti-PD-L1, anti-CTLA4, anti-OX40, anti-GITR, anti-TIM-3, anti-PD-1 and anti-ICOS). Preclinical data are generated that establish the most effective dose and schedule of molecules that enhance the activity of NDV in tumor models in combination with the novel NDV constructs described herein. Transgenes may be inserted into recombinant NDV for expression either singly or in combination to deliver multiple modes of activity, e.g., to enhance the tumor cell death induced by the novel variants of NDV. Increasing the release of tumor cell antigens combined with an immunomodulatory approach has the potential to increase the adaptive immune response to these liberated tumor antigens.
In order to understand whether the difference in the F protein cleavage site affects F protein cleavage in the infected cells and its impact on the fusion activity, the F protein plasmid was transfected into 293 cells to examine F protein cleavage. In addition, the F and HN plasmids were cotransfected to examine fusion activity in the transient assay as both the F and HN proteins are required for fusion formation (
R116i virus with 198 nt inserted between the HN-L junction exhibited slower growth kinetics in chicken DF-1 cells under high moi condition as shown in
Immune cell infiltration in virus infected tumor tissues was examined (
The complement (C′) system is a major defense system against microbial invasion in the host. There are about 30 different glycoproteins in the human complement system, of which 20 act in plasma and 10 are regulators or receptors on cell membranes. Membrane bound C′ regulators (RCA) include 4 well characterized molecules: hCD46, hCD55, hCD59 and hCD35. Their main function is to protect human cells against autologous complement attack without affecting the role of C′ in eliminating foreign agents. These RCA proteins are host species-specific. NDV used for viral therapy in the past was generally produced in embryonated chicken eggs. It is expected that NDV oncolytic virus administered by intravenous injection to cancer patients might be cleared rapidly, therefore reducing effective viral dosing. Since enveloped viruses produced from human cells incorporate RCA proteins during their egress from the infected cells, it is therefore desirable to produce NDV in human cell culture to reduce C′ mediated viral lysis or inactivation.
Sensitivity of NDV to C′ mediated inactivation was evaluated by examining NDV produced in embryonated chicken eggs, human 293 and Hela S3 suspension cell lines (
To explain why the NDV produced from the Hela S3 cells is more resistant to C′, 293 and Hela S suspension cell lines were evaluated for the levels of the 4 well characterized human RCA proteins, hCD46, hCD55, hCD59 and hCD35. hCD35 was not detected in the 293 and Hela cells by Western analysis and the data are therefore not shown in
In order to determine if all three RCA proteins regulate C′ function, hCD55, hCD59 or hCD46 transgene was inserted into NDV genome by reverse genetics and recombinant viruses expressing each of the three RCA proteins were produced. Western blot analysis showed that each of these RCA proteins was expressed by virus and incorporated into virions (
In conclusion, to reduce viral clearance for oncolytic viral therapy and to improve NDV therapeutic index, Hela cells are considered the cell line of choice for viral production.
The results described herein were obtained using the following materials and methods.
Cells and Viruses.
The following cell lines and corresponding media were used: African green monkey kidney Vero cell line (ATCC) and human fibrosarcoma (HT1080, ATCC), Eagle's minimal essential medium (EMEM, Hyclone) with 10% fetal bovine serum (FBS); Vero clone 51D11 line (MedImmune), serum free media (SFMMegaVir, Hyclone) with 1% glutamine; normal human skin fibroblast cells (CCD1122Sk, ATCC), ATCC formulated Iscove's Modified Dulbecco's medium (IMEM) with 10% FBS. Recombinant Newcastle disease viruses (NDV) were grown in the allantoic cavities of 10-11-day-old specific-pathogen free (SPF) embryonated chicken eggs, Vero, or Vero clone 51D11 cells.
Construction of NDV Antigenomic cDNA and Supporting Plasmids NP, P and L.
Viral RNA of NDV strain 73T was obtained from Dr. Mark Peeples (Nationwide Children's Hospital). NDV sequences (GenBank) were aligned to obtain consensus sequences to design DNA oligonucleotides for RT-PCR of the viral RNA. Six subgenomic cDNA overlapping fragments spanning the entire NDV genome were generated by high-fidelity RT-PCR (
Insertion of the Transgene into the NDV.
For insertion of a transgene at the P-M junction, an AfeI restriction site was introduced at nt 3148 in the subclone plasmid containing SacII-PmlI fragment (
To insert a transgene into the HN-L junction between the HN ORF and the gene end signal (GE) sequence of HN, an AfeI restriction site was introduced at nt 8231 in the plasmid containing the AgeI-XbaI fragment (
TTCCTGG 3′
TC 3′
TC 3′
GCTG 3′
GCGAGG 3′
T 3′
The AgI-XbaI fragment from the resulting plasmid was shuffled into plasmid p73T, yielding p73T-HN1. Another strategy to insert sequence at the HN-L junction was to insert a transgene cassette or sequences from other paramyxoviruses between the gene end signal (GE) of the HN and the gene start signal (GS) of the L (
To insert two transcriptional cassettes into the P-M junction, an AfeI site was introduced at the end of the ORF of GM-CSF (nt 3619) (
Generation of r73T Chimeric Viruses Containing Ectodomain of Other Paramyxovirus.
The chimeric NDV genomic DNA was produced by replacing the F and HN of NDV with those of pigeon paramyxovirus 1 (PPMV-1). The C-terminal coding sequence for the cytoplasmic tail and transmembrane portion of NDV 73T F (amino acid residues 503 to 553) was joined with the ectodomain F protein coding sequence of PPMV-1 (residues 1 to 502), the N-terminal coding sequences of the NDV HN (amino acid sequence residues 1 to 45) was fused with the HN (residues 46 to 577) by overlapping PCR reactions using GeneArt kit (Invitrogen). The amplified fragment was digested and cloned into PmlI-AgeI digested NDV cDNA. The parainfluenza virus 5 (PIV-5) F or HN were introduced into the NDV 73T antigenomic cDNA by a similar cloning strategy. The PIV5 F (residues 1 to 486) ectodomain was fused with the transmembrane and the cytoplasmic tail of NDV 73T F (residues 503 to 553). The NDV HN (residues 1 to 45) was joined with the PIV5 HN ectodomain (residues 36 to 565). The cDNA fragment was cloned into PmlI-AgeI digested NDV antigenomic cDNA.
Recovery of Recombinant NDV from Transfected cDNA Plasmids.
The mammalian cell line expressing the T7 RNA polymerase such as the BHK-T7 cells were transfected with the three plasmids expressing the NDV NP, P, and L proteins (0.4 μg, 0.4 μg, and 0.2 μg per well of a 6-well dish, respectively) and a plasmid encoding the NDV antigenomic cDNA (1.6 μg) using Lipofectamine 2000. Three days after transfection, the cell culture supernatant was injected into the allantoic cavities of 10 to 11-day-old SPF embryonated chicken eggs or passaged in Vero cells to amplify the rescued virus. Recovery of the virus was confirmed by hemaglutination assay using 1% chicken red blood cells (RBCs). Rescue of viruses can also be performed by electroporation of the NP, P, L, antigenomic cDNA plasmids together with a plasmid expressing the T7 RNA polymerase into Vero cells as previously described (Kaur et al., Optimization of plasmid-only rescue of highly attenuated and temperature-sensitive respiratory syncytial virus (RSV) vaccine candidates for human trials. 2008 J. Virol. Methods 153:196-202). The recovered virus was confirmed by sequencing of RT-PCR amplified cDNA.
In Vitro Passage to Select Virus with Stable F Protein Cleavage Site.
To examine if the F protein cleave sequence (FPCS) was stable and if any stabilizing mutations could be selected after passaging in tissue culture, r73T-S116 were serially passaged for 10 times in Vero and human fibrosarcoma HT1080 cells at MOI of 0.01. After every 2-3 passages, viral RNA was isolated from the culture media, cDNA was amplified by RT-PCR and the F and/or HN genes were sequenced.
Virus Plaque Morphology in Vero Cells and Titer Quantitation by Plaque Assay.
Vero cells on a 6-well plate were infected with serial diluted virus and incubated under 1% methylcellulose overlay at 37° C. for 3 days or 6 days for plaque morphology in the presence of trypsin (TrpyLE™, Invitrogen) for viral titer quantitation. The cell monolayers were fixed with methanol and stained with chicken anti-NDV polyclonal antibody against whole inactivated NDV virus followed by exposure to horseradish peroxidase (HRP)-conjugated anti-chicken antibody (Dako).
Virus Chicken Pathogenicity Test by Egg Mean Death Time (MDT) and Intracerebral Pathogenicity Index (ICPI) Assays.
The pathogenicity of the r73T viruses was determined by the mean death time (MDT) test in 10-day-old SPF embryonated chicken eggs. The ICPI test in 1-day-old SPF chicks was conducted at the USDA's National Veterinary Service Laboratory (NVSL, Ames, Iowa). For the MDT test, 0.1 ml of a series of 10-fold dilution between 10−6 and 10−9 was inoculated into the allantoic cavities of 8-10 of 9-10-day-old eggs per dilution and incubated at 37° C. The eggs were examined twice a day for 7 days to record the time of embryo death. The MDT was calculated as the mean time (hr) for the minimum lethal dose of virus to kill all the inoculated embryos. The MDT assay provides a reasonable prediction of virus pathogenicity. The viruses with MDT <60 hr are normally verogenic (virulent) strains; with MDT=60 to 90 hr, mesogenic (intermediate) strains; >90 h as letogenic (avirulent) strains. For the ICPI test, 0.05 ml of a 1:10 dilution of fresh infective allantoic fluid for each virus was inoculated into group of 10 1-day-old SPF chicks via the intracerebral route. The birds were observed for clinical symptoms and mortality once every 8 hr for a period of 8 days. At each observation, the birds were scored as follows: 0 if normal, 1 if sick, and 2 if dead. The ICPI is the mean of the score per bird per observation over the 8-day period. The ICPI values ranges from 0.0 to 2.0. The low virulent (LoND): ICPI<0.7; virulent (vND): ICPI≥0.7.
Virus Cell Killing Assessed by Cell Viability Assay.
The cells were plated in 96-well plates at 5×103 cells/well overnight infected with r73T at various MOI. Cell viability was determined by CellTiter Glo kit (Promega) per manufacture's manual. The relative percent of surviving cells is determined by comparing the ATP level of each testing sample to the untreated sample control of 100% viable. The data presented in the table is relative percent of the killed cells.
The Effect of NDV Tumor Killing Assessed in the Subcutaneous HT1080 Xenograft Model.
Athymic NCR homogenous nude mice (Taconic) were implanted subcutaneously (s.c.) with 5×106 HT1080 cells (in 100 μL PBS) into one flank. Viral treatment started when tumors reached a volume of 65-300 mm3. Recombinant 73T in 100 n1 was administered at different dose levels either locally by intratumor (i.t) injection or systemically by intratumor (i.t) injection into the tail vein, respectively. The control animals were injected with 100 μL PBS only. Tumor growth was measured using a digital caliper, and tumor volume was calculated as 0.5×(height)×width×length (mm3). Mice were sacrificed when the body weight dropped by 20% of the original body weight or the tumor volume exceeded 2000 mm3.
Viral Biodistribution in the HT1080 Xenograft Mice.
Nine Nude mice bearing HT1080 human fibrosarcoma xenograft subcutaneous tumors were i.v injected with 108 pfu of r73T-R116i-hGM-CSF. Three mice were terminated at 1, 4, and 8 day(s) post-injection. One mouse injected with PBS was terminated on day 8. The tumors, lungs, spleen, ovaries and serum samples were collected. The infectious virus titer in the tissue homogenates was quantified by plaque assay.
Quantitation of the GM-CSF Protein Level by ELISA.
Tumors from NDV infected and PBS injected mice were homogenized in PBS using gentle MACS Dissociator (Miltenyi Biotec) per manufacturer's instruction. The supernatant from homogenized tissues or serum collected from mice were tested for the level of GM-CSF by a Duoset ELISA kit (R&D).
Statistical Analysis
All statistical analyses were performed using the GraphPad Prism 6.0 software. The unpaired t-test was used to assess differences in tumor regression between groups. GraphPad Prism software was also used to calculate the IC50 of rNDV 73T for in vitro cell killing in normal and tumor cells.
From the foregoing description, it will be apparent that variations and modifications may be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.
The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.
All patents, publications, CAS, and accession numbers mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent, publication, and accession number was specifically and individually indicated to be incorporated by reference.
This application is a U.S. National Stage application of International Application No. PCT/EP2014/068619, filed on Sep. 2, 2014, said International Application No. PCT/EP2014/068619 claims benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 61/873,039, filed on Sep. 3, 2013, the contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/068619 | 9/2/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/032755 | 3/12/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7724558 | Ishizaka | May 2010 | B1 |
20100183664 | Cho | Jul 2010 | A1 |
20140271677 | Palese | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
WO 0120989 | Mar 2001 | WO |
WO 0120989 | Mar 2001 | WO |
WO 2009095167 | Aug 2009 | WO |
WO 2009101149 | Aug 2009 | WO |
WO 2010091262 | Aug 2010 | WO |
WO 2010091262 | Aug 2010 | WO |
Entry |
---|
Lam et al. (2011) J. Biomed. Biotech., Article ID 718710, pp. 1-13. |
Janke M, et al., “Recombinant Newcastle Disease Virus (NDV) with Inserted Gene Coding for GM-CSF as a New Vector for Cancer Immunogene Therapy”, Gene Therapy, vol. 14, No. 23, 2007, pp. 1639-1649. |
Dortmans, et al., “Virulence of Newcastle Disease Virus: What is Known so Far?” Veterinary Research, vol. 42, No. 1, 2011, pp. 122-132. |
Dortmans, et al., “Passaging of a Newcastle Disease Virus Pigeon Variant in Chickens Results in Selection of Viruses with Mutations in the Polymerase Complex Enhancing Virus Replication and Virulence”, Journal of General Virology, vol. 92, No. 2, 2011, pp. 336-345. |
Fournier, et al., “Oncolytic Newcastle Disease Virus as Cutting Edge between Tumor and Host”, Biology, vol. 2, No. 3, 2013, pp. 936-975. |
Samal et al., “A Single Amino Acid Change, Q114R, in the Cleavage-Site Sequence of Newcastle Disease VirusFusion Protein Attenuates Viral Replication and Pathogenicity”, Journal of General Virology, vol. 92, No. 10, 2011, pp. 2333-2338. |
International Search Report and Written Opinion for PCT/EP2014/068619, pp. 1-16, dated Dec. 11, 2014. |
International Preliminary Report on Patentability for PCT/EP2014/068619, pp. 1-8, dated Mar. 8, 2016. |
Number | Date | Country | |
---|---|---|---|
20160208222 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
61873039 | Sep 2013 | US |