Compositions for activating pyruvate kinase

Information

  • Patent Grant
  • 10836771
  • Patent Number
    10,836,771
  • Date Filed
    Friday, October 4, 2019
    4 years ago
  • Date Issued
    Tuesday, November 17, 2020
    3 years ago
Abstract
Compositions for the activation of PKR are provided, as well as therapeutic administration of the compositions for the treatment of pyruvate kinase-related medical conditions, such as pyruvate kinase deficiency (PKD).
Description
TECHNICAL FIELD

This disclosure relates to novel chemical compositions for activating the pyruvate kinase enzyme, useful in the treatment of pyruvate kinase-related medical conditions (e.g., pyruvate kinase deficiency).


BACKGROUND

Pyruvate Kinase (PK) is an enzyme involved in glycolysis (the conversion of glucose into pyruvate), and is critical for the survival of the cell. PK converts phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP) to pyruvate and adenosine triphosphate (ATP), respectively, which is the final step in glycolysis. PKR is one of several tissue-specific isoforms (e.g., PKR, PKL, PKM1, and PKM2) of pyruvate kinase that is present in red blood cells (RBCs). Glycolysis is the only pathway available for RBCs to maintain the production of adenosine-5′-triphosphate, or ATP, which is a form of chemical energy within cells. Accordingly, PK deficiency can result in a shortened life span for RBCs and is the most common form of non-spherocytic hemolytic anemia in humans.


PK deficiency (PKD) is a rare autosomal recessive genetic disorder that can result in severe hemolytic anemia, jaundice, and lifelong conditions associated with chronic anemia, as well as secondary complications due to inherited mutations in the pyruvate kinase enzyme within RBCs. Individuals with the PK deficiency produce PKR enzyme at only a fraction of the normal level of activity (generally <50%). There are many different possible mutant combinations, classified as either a missense mutation (causing a single amino acid change in the protein), generally resulting in some level of functional protein in the RBCs, or a non-missense mutation (any mutation other than a missense mutation), generally resulting in little functional protein in the RBCs. It is estimated that 58 percent of patients with PK deficiency have two missense mutations, 27 percent have one missense and one non-missense mutation, and 15 percent have two non-missense mutations.


There remains a need for novel compounds that activate PKR for the treatment of PK deficiency and other medical conditions that can therapeutically benefit from compounds that activate PKR.


SUMMARY

Compositions disclosed herein include compounds useful for activating PKR. The invention is based in part on the discovery of the chemical compound 1 as a PKR Activator Compound, defined herein as a compound that provides an AC50 value of less than 1 μM using the Luminescence Assay described below:




embedded image


The discovery includes the use of 1-(5-((3,4-Dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-2-hydroxy-2-methylpropan-1-one, and pharmaceutically acceptable salts thereof, in pharmaceutical preparations for the treatment of patients diagnosed with a pyruvate kinase-related condition, such as pyruvate kinase deficiency. The compositions comprising compound 1 and pharmaceutically acceptable salts thereof can be obtained by certain processes also provided herein.







DETAILED DESCRIPTION

Compositions comprising compound 1 can be prepared as shown in the scheme below:




embedded image


Step 1. tert-butyl 5-((4-acetyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (2)

To a solution of tert-butyl 3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (0.7 g, 3.33 mmol, 1.00 equiv) in acetonitrile (20 mL) and DIEA (1.7 mL, 9.76 mmol, 2.93 equiv) is added 4-acetyl-3,4-dihydro-2H-benzo[b][1,4]oxazine-6-sulfonyl chloride (0.96 g, 3.50 mmol, 1.05 equiv) in 1,4 dioxane (17 mL). The resulting mixture is stirred at RT overnight. The reaction mixture is worked up with saturated ammonium chloride solution and EtOAc. The combined organics are washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure to provide tert-butyl 5-((4-acetyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (2) (1.5 g, 3.33 mmol, 100% yield).


Step 2. 1-(6-((3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)sulfonyl)-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)ethan-1-one hydrochloride (3)

Tert-butyl 5-((4-acetyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (2) (1.5 g, 3.33 mmol, 1.00 equiv) is dissolved in a mixture of MeOH (30 mL), DCE (10 mL) and 4 M HCl in 1,4-dioxane (5 mL). The reaction is heated at 50° C. for 2 h. The solvents are evaporated under reduced pressure and the reaction mixture is azeotropically dried with toluene and dried further under vacuum overnight to provide 1-(6-((3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)sulfonyl)-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)ethan-1-one hydrochloride (3) (1.21 g, 3.13 mmol, 94% yield, over two steps). LCMS: m/z=350 [M+H]+.


Step 3. 1-(5-((4-acetyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-2-hydroxy-2-methylpropan-1-one (4)

Into an 8-mL vial purged and maintained with an inert atmosphere of nitrogen is added 2-hydroxy-2-methylpropanoic acid (0.050 g, 0.48 mmol, 1.20 equiv), DIEA (154.8 mg, 1.20 mmol, 3.00 equiv), 1-(6-((3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)sulfonyl)-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)ethan-1-one hydrochloride (3) (0.154 g, 0.40 mmol, 1.00 equiv), HATU (0.167 g, 0.44 mmol, 1.10 equiv), and dichloromethane (4 ml). The solution is stirred for 4 h at room temperature, then concentrated under vacuum. The crude product is purified by prep-TLC to provide 1-(5-((4-acetyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-2-hydroxy-2-methylpropan-1-one (4).


Step 4. 1-(5-((3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-2-hydroxy-2-methylpropan-1-one (1)

Into an 8-mL vial is placed 1-(5-((4(4-acetyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-2-hydroxy-2-methylpropan-1-one (4) (0.087 g, 0.20 mmol, 1.00 equiv) and a solution of sodium hydroxide (0.032 g, 0.80 mmol, 4.00 equiv) in methanol (2 ml) and water (0.5 ml). The solution is stirred for 4 h at room temperature, then the pH is adjusted to 9 with hydrochloric acid (2 mol/L). The mixture is concentrated under vacuum. The residue is purified by silica gel column chromatography. The crude product is further purified by Prep-HPLC to provide 1-(5-((3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-2-hydroxy-2-methylpropan-1-one (1). LCMS m/z: 394.


The ability of compound 1 to activate PKR was determined using the following Luminescence Assay. The effect of phosphorylation of adenosine-5′-diphosphate (ADP) by PKR (wild type) is determined by the Kinase Glo Plus Assay (Promega) in the presence or absence of FBP [D-Fructose-1,6-diphosphate; BOC Sciences, CAS: 81028-91-3] as follows. Unless otherwise indicated, all reagents are purchased from Sigma-Aldrich. All reagents are prepared in buffer containing 50 mM Tris-HCl, 100 mM KCl, 5 mM MgCl2, and 0.01% Triton X100, 0.03% BSA, and 1 mM DTT. Enzyme and PEP [Phospho(enol) pyruvic acid] are added at 2× to all wells of an assay-ready plate containing serial dilutions of test compounds or DMSO vehicle. Final enzyme concentrations for PKR(wt), PKR(R510Q), and PKR(G332S) are 0.8 nM, 0.8 nM, and 10 nM respectively. Final PEP concentration is 100 μM. The Enzyme/PEP mixture is incubated with compounds for 30 minutes at RT before the assay is initiated with the addition of 2×ADP [Adenosine-5′-diphosphate] and KinaseGloPlus. Final concentration of ADP is 100 μM. Final concentration of KinaseGloPlus is 12.5%. For assays containing FBP, that reagent is added at 30 μM upon reaction initiation. Reactions are allowed to progress for 45 minutes at RT until luminescence is recorded by the BMG PHERAstar FS Multilabel Reader. The compound is tested in triplicate at concentrations ranging from 42.5 μM to 2.2 nM in 0.83% DMSO. An AC50 measurement for compound 1 of between 0.1 and 1.0 μM for the G332S PKR mutant, and between 0.1 and 1.0 μM for the PKR wild type enzyme was obtained by the standard four parameter fit algorithm of ActivityBase XE Runner (max, min, slope and AC50). The AC50 value for a compound is the concentration (μM) at which the activity along the four parameter logistic curve fit is halfway between minimum and maximum activity.


Compounds and compositions described herein are activators of wild type PKR and certain PKR mutants having lower activities compared to the wild type. Such mutations in PKR can affect enzyme activity (catalytic efficiency), regulatory properties and/or thermostability of the enzyme. One example of a PKR mutation is G332S. Methods of treatment (e.g., by activating wild type PKR) can comprise administering to a subject in need thereof a therapeutically effective amount of (1) a compound disclosed herein or a pharmaceutically acceptable salt thereof; (2) a pharmaceutical composition comprising a compound disclosed herein or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier. The pharmaceutical compositions may be orally administered in any orally acceptable dosage form. In some embodiments, to increase the lifetime of red blood cells, a compound, composition or pharmaceutical composition described herein is added directly to whole blood or packed cells extracorporeally or provided to the subject (e.g., the patient) directly. The compositions described herein can modulate (e.g., activate) PKR. Accordingly, a patient and/or subject can be selected for treatment using a compound described herein by first evaluating the patient and/or subject to determine whether the subject is in need of modulation (e.g., activation) of PKR, and if the subject is determined to be in need of modulation of PKR, then administering to the subject a composition described herein.


The present disclosure enables one of skill in the relevant art to make and use the inventions provided herein in accordance with multiple and varied embodiments. Various alterations, modifications, and improvements of the present disclosure that readily occur to those skilled in the art, including certain alterations, modifications, substitutions, and improvements are also part of this disclosure. Accordingly, the foregoing description and drawings are by way of example to illustrate the discoveries provided herein.

Claims
  • 1. A method of treating a patient diagnosed with pyruvate kinase deficiency, the method comprising administering to the patient a therapeutically effective amount of a PKR Activator Compound, or a pharmaceutically acceptable salt thereof, wherein the patient has a PKR mutation, and wherein the PKR mutation is G332S, wherein the PKR Activator Compound is:
  • 2. The method of claim 1, wherein the PKR Activator Compound, or the pharmaceutically acceptable salt thereof, is orally administered.
RELATED PATENT APPLICATIONS

The present patent application is a continuation of U.S. patent application Ser. No. 16/245,654, filed Jan. 11, 2019, which is a continuation of U.S. patent application Ser. No. 15/926,236, filed Mar. 20, 2018, which claims the benefit of U.S. Provisional Patent Application No. 62/473,751, filed on Mar. 20, 2017, each of which is incorporated by reference in its entirety.

US Referenced Citations (79)
Number Name Date Kind
4602093 Baldwin et al. Jul 1986 A
4918073 Ruger et al. Apr 1990 A
5030631 Bauer Jul 1991 A
5037467 Cho et al. Aug 1991 A
5089621 Kim et al. Feb 1992 A
5091384 Kim et al. Feb 1992 A
5180719 White et al. Jan 1993 A
5250544 Lavielle et al. Oct 1993 A
5480899 Yano et al. Jan 1996 A
5672601 Cignarella Sep 1997 A
5714625 Hada et al. Feb 1998 A
5747502 Hanaoka et al. May 1998 A
5962703 Moszner et al. Oct 1999 A
6214879 Abraham et al. Apr 2001 B1
6534501 Abraham et al. Mar 2003 B2
6710052 Pease et al. Mar 2004 B2
6878715 Klein et al. Apr 2005 B1
7138401 Kasibhatla et al. Nov 2006 B2
7160885 Currie et al. Jan 2007 B2
7875603 Rathinavelu et al. Jan 2011 B2
8501953 Salituro et al. Aug 2013 B2
8552050 Cantley et al. Oct 2013 B2
8692001 Becker et al. Apr 2014 B2
8742119 Salituro et al. Jun 2014 B2
8785450 Salituro et al. Jul 2014 B2
8841305 Thomas et al. Sep 2014 B2
8877791 Cantley et al. Nov 2014 B2
8889667 Salituro et al. Nov 2014 B2
9018210 Metcalf et al. Apr 2015 B2
9108921 Cianchetta et al. Aug 2015 B2
9181231 Su Nov 2015 B2
9221792 Salituro et al. Dec 2015 B2
9328077 Salituro et al. May 2016 B2
9394257 Ho et al. Jul 2016 B2
9458132 Cianchetta et al. Oct 2016 B2
9708267 Boxer et al. Jul 2017 B2
9744145 Liu et al. Aug 2017 B1
10034879 Metcalf et al. Jul 2018 B2
10208052 Zheng Feb 2019 B1
20040077648 Timmer et al. Apr 2004 A1
20040102458 Chiosis et al. May 2004 A1
20050002861 Krause et al. Jan 2005 A1
20050049263 Kasibhatla et al. Mar 2005 A1
20050059663 Martin et al. Mar 2005 A1
20050256103 Suzuki et al. Nov 2005 A1
20060074121 Chen et al. Apr 2006 A1
20060211737 Huang et al. Sep 2006 A1
20070015752 Hangauer, Jr. Jan 2007 A1
20070270433 Brinkman et al. Nov 2007 A1
20080058315 Cai et al. Mar 2008 A1
20080184495 Brun et al. Aug 2008 A1
20080253965 Chiosis et al. Oct 2008 A1
20080269234 Gandhi et al. Oct 2008 A1
20090042966 Coleman et al. Feb 2009 A1
20090163545 Goldfarb Jun 2009 A1
20090291921 Jabri et al. Nov 2009 A1
20100029575 Junien et al. Feb 2010 A1
20100120863 Biftu et al. May 2010 A1
20100144594 Zoller et al. Jun 2010 A1
20100144722 Alexander et al. Jun 2010 A1
20100152157 Puech et al. Jun 2010 A1
20100179154 Almario Garcia et al. Jul 2010 A1
20100216774 Bender et al. Aug 2010 A1
20100324030 Dale et al. Dec 2010 A1
20110059089 Swagemakers et al. Mar 2011 A1
20110085969 Rollo et al. Apr 2011 A1
20110104054 Chiosis et al. May 2011 A1
20120252818 Chiosis et al. Oct 2012 A1
20130109684 Blagg et al. May 2013 A1
20130116430 Fujiwara et al. May 2013 A1
20130155489 Kato et al. Jun 2013 A1
20130190315 Metcalf et al. Jul 2013 A1
20130190316 Metcalf et al. Jul 2013 A1
20140228360 Duncan et al. Aug 2014 A1
20140242602 Chiosis et al. Aug 2014 A1
20150246025 Desai et al. Sep 2015 A1
20160200681 Yu et al. Jul 2016 A1
20170121338 Zhang et al. May 2017 A1
20170217964 Li Aug 2017 A1
Foreign Referenced Citations (235)
Number Date Country
101812063 Aug 2010 CN
102206217 Oct 2011 CN
102952139 Mar 2013 CN
103570722 Feb 2014 CN
105037367 Nov 2015 CN
105085528 Nov 2015 CN
105153119 Dec 2015 CN
105254628 Jan 2016 CN
105294694 Feb 2016 CN
105348286 Feb 2016 CN
0007529 Feb 1980 EP
0036711 Sep 1981 EP
0264883 Apr 1988 EP
0273534 Jul 1988 EP
0338372 Oct 1988 EP
0363212 Apr 1990 EP
0378255 Jul 1990 EP
0424850 May 1991 EP
424851 May 1991 EP
0424852 May 1991 EP
0486022 May 1992 EP
0520277 Dec 1992 EP
0590415 Apr 1994 EP
0737670 Oct 1996 EP
1099692 May 2001 EP
1249233 Oct 2002 EP
1952800 Aug 2008 EP
3141542 Mar 2017 EP
2797416 Aug 2017 EP
1809MUM2013 May 2013 IN
2013MU01809 Mar 2015 IN
S 61 200544 Sep 1986 JP
3 13040 Feb 1991 JP
3 275666 Dec 1991 JP
04 054181 Feb 1992 JP
05 196976 Aug 1993 JP
7 164400 Jun 1995 JP
1 110376 Jan 1999 JP
2003514673 Apr 2003 JP
2004175674 Jun 2004 JP
2007246885 Sep 2007 JP
2007328090 Dec 2007 JP
2008031064 Feb 2008 JP
2008063256 Mar 2008 JP
2009149707 Jul 2009 JP
2010192782 Sep 2010 JP
2011246649 Dec 2011 JP
2012188474 Oct 2012 JP
2012188475 Oct 2012 JP
20110096442 Aug 2011 KR
11379 Jul 2018 LB
2517693 Apr 2011 RU
2472794 Nov 2012 RU
WO 1993022298 Nov 1993 WO
WO 1995019353 Jul 1995 WO
WO 1998050364 Nov 1998 WO
WO 1999001442 Jan 1999 WO
WO 1999002493 Jan 1999 WO
WO 1999047516 Sep 1999 WO
WO 1999048461 Sep 1999 WO
WO 1999047489 Sep 1999 WO
WO 1999048490 Sep 1999 WO
WO 1999065895 Dec 1999 WO
WO 2000004023 Jan 2000 WO
WO 2000021951 Apr 2000 WO
WO 2000053591 Sep 2000 WO
WO 2001010842 Feb 2001 WO
WO 2001043744 Jun 2001 WO
WO 2001053288 Jul 2001 WO
WO 2001057037 Aug 2001 WO
WO 2001085728 Nov 2001 WO
WO 2002034754 May 2002 WO
WO 2002060902 Aug 2002 WO
WO 2002076989 Oct 2002 WO
WO 2003015769 Feb 2003 WO
WO 2003037860 May 2003 WO
WO 2003067332 Aug 2003 WO
WO 2003084948 Oct 2003 WO
WO 2004002490 Jan 2004 WO
WO 2004007770 Jan 2004 WO
WO 2004009600 Jan 2004 WO
WO 2004013144 Feb 2004 WO
WO 2004014374 Feb 2004 WO
WO 2004080457 Sep 2004 WO
WO 2004089470 Oct 2004 WO
WO 2004089947 Oct 2004 WO
WO 2004104000 Dec 2004 WO
WO 2005000098 Jan 2005 WO
WO 2005002577 Jan 2005 WO
WO 2005009965 Feb 2005 WO
WO 2005011653 Feb 2005 WO
WO 2005011656 Feb 2005 WO
WO 2005016915 Feb 2005 WO
WO 2005023761 Mar 2005 WO
WO 2005084667 Sep 2005 WO
WO 2005094251 Oct 2005 WO
WO 2005094834 Oct 2005 WO
WO 2005103015 Nov 2005 WO
WO 2006002100 Jan 2006 WO
WO 2006009886 Jan 2006 WO
WO 2006018279 Feb 2006 WO
WO 2006018280 Feb 2006 WO
WO 2006021448 Mar 2006 WO
WO 2006023608 Mar 2006 WO
WO 2006034315 Mar 2006 WO
WO 2006038172 Apr 2006 WO
WO 2006060122 Jun 2006 WO
WO 2006086445 Aug 2006 WO
WO 2006084030 Aug 2006 WO
WO 2006099884 Sep 2006 WO
WO 2006101521 Sep 2006 WO
WO 2006123121 Nov 2006 WO
WO 2006123121 Nov 2006 WO
WO 2006130469 Dec 2006 WO
WO 2006137485 Dec 2006 WO
WO 2007006926 Jan 2007 WO
WO 2007007069 Jan 2007 WO
WO 2007019344 Feb 2007 WO
WO 2007027734 Mar 2007 WO
WO 2007042325 Apr 2007 WO
WO 2007083119 Jul 2007 WO
WO 2007087231 Aug 2007 WO
WO 2007088123 Aug 2007 WO
WO 2007097931 Aug 2007 WO
WO 2007098418 Aug 2007 WO
WO 2007126745 Nov 2007 WO
WO 2007136603 Nov 2007 WO
WO 2007138351 Dec 2007 WO
WO 2008005937 Jan 2008 WO
WO 2008032905 Mar 2008 WO
WO 2008057608 May 2008 WO
WO 2008083027 Jul 2008 WO
WO 2008094203 Aug 2008 WO
WO 2008115719 Sep 2008 WO
WO 2008120003 Oct 2008 WO
WO 2008139585 Nov 2008 WO
WO 2008135141 Nov 2008 WO
WO 2009001126 Dec 2008 WO
WO 2009004356 Jan 2009 WO
WO 2009025784 Feb 2009 WO
WO 2009063244 May 2009 WO
WO 2009077527 Jun 2009 WO
WO 2009093032 Jul 2009 WO
WO 2009121623 Oct 2009 WO
WO 2009136889 Nov 2009 WO
WO 2009153554 Dec 2009 WO
WO 2010002802 Jan 2010 WO
WO 2010021717 Feb 2010 WO
WO 2010028761 Mar 2010 WO
WO 2010042867 Apr 2010 WO
WO 2010058318 May 2010 WO
WO 2010092181 Aug 2010 WO
WO 2010108268 Sep 2010 WO
WO 2010115688 Oct 2010 WO
WO 2010132599 Nov 2010 WO
WO 2010135524 Nov 2010 WO
WO 2011025690 Mar 2011 WO
WO 2011037793 Mar 2011 WO
WO 2011060321 May 2011 WO
WO 2011103256 Aug 2011 WO
WO 2011116282 Sep 2011 WO
WO 2011146358 Nov 2011 WO
WO 2012007861 Jan 2012 WO
WO 2012007868 Jan 2012 WO
WO 2012007877 Jan 2012 WO
WO 2012002577 Jan 2012 WO
WO 2012019426 Feb 2012 WO
WO 2012019427 Feb 2012 WO
WO 2012068096 May 2012 WO
WO 2012071519 May 2012 WO
WO 2012071684 Jun 2012 WO
WO 2012080729 Jun 2012 WO
WO 2012092426 Jul 2012 WO
WO 2012092485 Jul 2012 WO
WO 2012160447 Nov 2012 WO
WO 2012151450 Nov 2012 WO
WO 2013003249 Jan 2013 WO
WO 2013003250 Jan 2013 WO
WO 2013021054 Feb 2013 WO
WO 2013038390 Mar 2013 WO
WO 2013102826 Jul 2013 WO
WO 2013102142 Jul 2013 WO
WO 2013118805 Aug 2013 WO
WO 2013126856 Aug 2013 WO
WO 2013127266 Sep 2013 WO
WO 2013155223 Oct 2013 WO
WO 2013177224 Nov 2013 WO
WO 2013184794 Dec 2013 WO
WO 2014008458 Jan 2014 WO
WO 2014014050 Jan 2014 WO
WO 2014018355 Jan 2014 WO
WO 2014023814 Feb 2014 WO
WO 2014044356 Mar 2014 WO
WO 2014048865 Apr 2014 WO
WO 2014061031 Apr 2014 WO
WO 2014102817 Jul 2014 WO
WO 2014118634 Aug 2014 WO
WO 2014130890 Aug 2014 WO
WO 2014139144 Sep 2014 WO
WO 2014139978 Sep 2014 WO
WO 2014144715 Sep 2014 WO
WO 2014150276 Sep 2014 WO
WO 2014152588 Sep 2014 WO
WO 2015030514 Mar 2015 WO
WO 2015042397 Mar 2015 WO
WO 2015048336 Apr 2015 WO
WO 2015054555 Apr 2015 WO
WO 2015051230 Apr 2015 WO
WO 2015078374 Jun 2015 WO
WO 2015116061 Aug 2015 WO
WO 2015130915 Sep 2015 WO
WO 2015144605 Oct 2015 WO
WO 2015172732 Nov 2015 WO
WO 2015183173 Dec 2015 WO
WO 2015192701 Dec 2015 WO
WO 2016014522 Jan 2016 WO
WO 2016005576 Jan 2016 WO
WO 2016005577 Jan 2016 WO
WO 2016014324 Jan 2016 WO
WO 2016044604 Mar 2016 WO
WO 2016044629 Mar 2016 WO
WO 2016044650 Mar 2016 WO
WO 2016047592 Mar 2016 WO
WO 2016044604 Mar 2016 WO
WO 2016044629 Mar 2016 WO
WO 2016046837 Mar 2016 WO
WO 2016168647 Oct 2016 WO
WO 2016181408 Nov 2016 WO
WO 2016201227 Dec 2016 WO
WO 2017050791 Mar 2017 WO
WO 2017050792 Mar 2017 WO
WO 2017191274 Nov 2017 WO
WO 2017214002 Dec 2017 WO
WO 2018109277 Jun 2018 WO
WO 2018175474 Sep 2018 WO
Non-Patent Literature Citations (288)
Entry
Aiuti, A. et al, Progress and prospects: gene therapy clinical trials (part 2), Gene Ther, 14(22): 1555-1563 (2007).
Alves-Filho, J.C. & Palsson-McDermott, E.M., Pyruvate Kinase M2: A Potential Target for Regulating Inflammation, Frontiers in Immunology, 7(145): Article 145 (2016).
Ambrus, J. et al., Studies on the vasoocclusive crisis of sickle cell disease. III. In vitro and in vivo effect of the pyrimido-pyrimidine derivative, RA-233: studies on its mechanism of action, J Med, 18(3-4):165-198 (1987).
Amer, J. et al., Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants, British Journal of Haematology, 132(1):108-113 (2006).
Banerjee, T. and Kuypers F.A., Reactive oxygen species and phosphatidylserine externalization in murine sickle red cells, British Journal of Haematology, 124:391-402 (2004).
Beutler, E. and Gelbart, T., Estimating the prevalence of pyruvate kinase deficiency from the gene frequency in the general white population, Blood, 95(11): 3585-3588 (2000).
Bianchi, P. and Zanella, A., Hematologically important mutations: red cell pyruvate kinase (Third update), Blood Cells Mol Dis., 26(1): 47-53 (2000).
Boxer, M.B. et al., Evaluation of Substituted N,N⊥-Diarylsulfonamides as Activators of the Tumor Cell Specific M2 Isoform of Pyruvate Kinase, J. Med. Chem., 53: 1048-1055 (2010).
Cabrales, P. et al., A look inside the mechanistic black box: Are red blood cells the critical effectors of RRx-001 cytotoxicity?, Med Oncol., 33(7):63 (2016).
Castilhos, L. et al., Altered E-NTPDase-E-ADA activities and CD39 expression in platelets of sickle cell anemia patients, Biomed Pharmacother., 79:241-246 (2016).
Castilhos, L. et al., Increased oxidative stress alters nucleosides metabolite levels in sickle cell anemia, Redox Rep., 22(6):451-459 (2017).
Castro, O., Viability and function of stored sickle erythrocytes, Transfusion, 20(6):695-703 (1980).
Cazzola, M., Pyruvate kinase deficiency, Haematologica, 90(1): 1-2 (2005).
Charache, S. et al., Effect of 2,3-Diphosphateglycerate on oxygen affinity of blood in sickle cell anemia, Journal of Clinical Investigation, 49(4):806-812 (1970).
De Furia, F. et al., The effects of cyanate in vitro on red blood cell metabolism and function in sickle cell anemia, J Clin Invest., 51(3):566-574 (1972).
De Jong, K. and Kuypers, F., Sulphydryl modifications alter scramblase activity in murine sickle cell disease, British Journal of Haematology, 133(4):427-432 (2006).
Diez, A. et al., Life-threatening nonspherocytic hemolytic anemia in a patient with a null mutation in the PKLR gene and no compensatory PKM gene expression, Blood, 106:1851 (2005).
Estepp, J.H. et al., A clinically meaningful fetal hemoglobin threshold for children with sickle cell anemia during hydroxyurea therapy, Am J Hematol., 92:1333-1339 (2017).
Gizi, A. et al., Assessment of oxidative stress in patients with sickle cell disease: The glutathione system and the oxidant-antioxidant status, Blood Cells Mol Dis., 46(3):220-225 (2011).
Gladwin, M., Adenosine recepter crossroads in sickle cell disease, Nature Medicine, 17(1):38-40, (2011).
Glombitza, S. et al., Adenosine causes cAMP-dependent activation of chick embryo red cell carbonic anhydrase and 2,3-DPG synthesis, American Journal of Physiology, 271(4):973-81 (1996).
Hierso, R. et al., Effects of oxidative stress on red blood cell rheology in sickle cell patients, British Journal of Haematology, 166(4):601-606 (2014).
International Search Report for PCT-US2018-023405, 6 pages (dated Jun. 5, 2018).
Jendralla, H. et al., Synthesis of 1,2,3,4,5,6-Hexahydropyrrolo[3,4-c]pyrrole dihydrobromide and 1,2,3,5-Tetrahydro-2-[(4-Methyl-Phenyl)Sulfonyl]Pyrrolo[3,4-c]Pyrrole, Heterocycles, 41(6): 1291-1298 (1995).
Jin, Y. et al., Effects of gamma irradiation on red cells from donors with sickle cell trait, Transfusion, 37(8):804-808 (1997).
Kalai, T. et al., Synthesis of Pyrroline Nitroxide Annulated Carbocycles and Heterocycles, Synthesis No. 6, pp. 831-837 (2000).
Kharalkar, S.S. et al., Identification of Novel Allosteric Regulators of Human-Erythrocyte Pyruvate Kinase, Chemistry & Biodiversity, vol. 4, pp. 2603-2617 (Feb. 2007).
Kodama, K. et al., Solvent-induced dual chirality switching in the optical resolution of tropic acid via diastereomeric salt formation with (1R,2S)-2-amino-1,2-diphenylethanol, Tetrahedron 70:7923-7928 (2014).
Kuehl, G. et al., In vitro interactions of 51Cr in human red blood cells and hemolysates, Vox Sang., 40(4):260-272 (1981).
Kurita, R. et al., Establishment of Immortalized Human Erythroid Progenitor Cell Lines Able to Produce Enucleated Red Blood Cells, PLOS ONE, vol. 8, Iss.3, pp. 1-15 (Mar. 2013).
Le Quesne, P.W. et al., One-Step Preparation of Tetrakis(bromomethyl)ethylene from Pinacolyl Alcohol, J. Org. Chem., 40(1): 142-143 (1975).
Lochmatter, C. et al., Integrative phosphoproteomics links IL-23R signalling with metabolic adaption in lymphocytes, Scientific Reports, 6:24491 (2016).
Lockwood, S. et al., Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea, Nitric Oxide, 38:1-7 (2014).
MacDonald, Rosemary, Red cell 2,3-diphosphoglycerate and oxygen affinity, Anaesthesia, vol. 32, pp. 544-553, (1977).
Meza, N.W. et al, In vitro and in vivo expression of human erythrocyte pyruvate kinase in erythroid cells: a gene therapy approach, Hum Gene Ther, 18(6):502-514 (2007).
Middelkoop, E. et al., Studies on sickled erythrocytes provide evidence that the asymmetric distribution of phosphatidylserine in the red cell membrane is maintained by both ATP-dependent translocation and interaction with membrane skeletal proteins, Biochimica et Biophysica Acta, 937:281-288 (1988).
Miwa, S. and Fujii, H., Molecular basis of erythroenzymopathies associated with hereditary hemolytic anemia: tabulation of mutant enzymes, Am J Hematol., 51(2): 122-132 (1996).
Muzyamba, M. and Gibson, J., Effect of 1-chloro-2,4-dinitrobenzene on K+ transport in normal and sickle human red blood cells, Journal of Physiology, 547(3):903-911 (2003).
Ould Amar, A.K. et al., Assessment of qualitative functional parameters of stored red blood cells from donors with sickle cell trait (AS) or with heterozygote (AC) status, Transfus Clin Biol., 3(4):225-233 (1996).
Palsson-McDermott, EM et al., Pyruvate kinase M2 regulates Hif-1a activity and IL-1ß induction and is a critical determinant of the Warburg Effect in LPS-activated macrophages, Cell Metabolism, 21:65-80 (2015).
Poillon W., & Kim, B., 2,3-Diphosphoglycerate and intracellular pH as interdependent determinants of the physiologic solubility of deoxyhemoglobin S, Blood, 76:1028-1036 (1990).
Poillon, W. et al., Antisickling effects of 2,3-Diphosphoglycerate depletion, Blood, 85(11):3289-3296 (1995).
Poillon, W. et al., Intracellular hemoglobin S polymerization and the clinical severity of sickle cell anemia, Blood, 91:1777-1783 (1998).
Poillon, W. et al., The Effect of 2,3-Diphosphoglycerate on the Solubility of Deoxyhemoglobin S1, Archives of Biochemistry and Biophysics, vol. 249, No. 2, pp. 301-305, (Sep. 1986).
Ramdani, G. and Langsley, G., ATP, an Extracellular Signaling Molecule in Red Blood Cells: A Messenger for Malaria?, Biomed Journal, 37(5):284-292 (2014).
Raththagala, M. et al., Hydroxyurea stimulates the release of ATP from rabbit erythrocytes through an increase in calcium and nitric oxide production, European Journal of Pharmacology, 645(1-3):32-38 (2010).
Rosa, M. et al., Allosteric properties of hemoglobin and the plasma membrane of the erythrocyte: New insights in gas transport and metabolic modulation, Life, 60(2):87-93 (2008).
Schwartz, R. et al., Two distinct pathways mediate the formation of intermediate density cells and hyperdense cells from normal density sickle red blood cells, Blood, 92(12):4844-4855 (1998).
Sega, M. et al., Fluorescence assay of the interaction between hemoglobin and the cytoplasmic domain of erythrocyte membrane band 3, Blood Cells Mol Dis., 55(3):266-271 (2015).
Soupene, E. and Kuypers, F., Identification of an erythroid ATP-dependent aminophospholipid transporter, British Journal of Haematology, 133(4):436-438 (2006).
Stasiuk, M. et al., Transformations of erythrocytes shape and its regulation, Postepy Biochem., 55(4):425-33 (2009). English Abstract.
Takenaka, M. et al, Isolation and characterization of the human pyruvate kinase M gene, Eur J Biochem, 198(1):101-106 (1991).
Tanphaichitr, V.S. et al, Successful bone marrow transplantation in a child with red blood cell pyruvate kinase deficiency, Bone Marrow Transplant, 26(6):689-690 (2000).
Tripathi, Ashutoshi and Safo, Martin K., In Silico-Screening Approaches for Lead Generation: Identification of Novel Allosteric Modulators of Human-Erythrocyte Pyruvate Kinase, Allostery: Methods and Protocols, Methods in Molecular Biology, Chpt. 19, vol. 796, pp. 351-367 (2012).
Van Zweiten, R. et al., Inborn defects in the antioxidant systems of human red blood cells, Free Radio Biol Med., 67:377-386 (2014).
Verma, S.K. et al., Imidazole-Catalyzed Monoacylation of Symmetrical Diamines, Organic Letters, 12(19): 4232-4235 (201).
Vichinsky, E. et al., “A Phase 3 Randomized Trial of Voxelotor in Sickle Cell Disease,” N Engl J Med. DOI: 10.1056-NEJMoa1903212 (Jun. 2019).
Vichinsky, E. et al., “A Phase 3 Randomized Trial of Voxelotor in Sickle Cell Disease,” The New England Journal of Medicine, (Jun. 14, 2019).
Vichinsky, E. et al., “A Randomized Phase 3 Multicenter Study of Voxelotor in Sickle Cell Disease,” N Engl J Med. DOI: 10.1056-NEJMoa1903212 (Jun. 2019).
Wagner, G. et al., Red cell vesiculation—a common membrane physiologic event, J Lab Clin., 108(4):315-324 (1986).
Wang, H. et al., JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1a-mediated glucose metabolism, PNAS, 111(1):279-284 (2014).
Weatherall, D., The inherited diseases of hemoglobin are an emerging global health burden, Blood, 115(22):4331-43336 (2010).
Willcocks, J. et al., Simultaneous determination of low free Mg2+ and pH in human sickle cells using P NMR spectroscopy, The Journal of Biological Chemistry, 277(51):49911-49920 (2002).
Wright, S.W. et al., A Convenient Preparation of Heteroaryl Sulfonamides and Sulfonyl Fluorides from Heteroaryl Thiols, J. Org. Chem., 71: 1080-1084 (2006).
Zhang, Y & Xia, Y., Adenosine signaling in normal and sickle erythrocytes and beyond, Microbes Infect., 14(10) (2012).
Zhang, Y. et al., Detrimental effects of adenosine signaling in sickle cell disease, Nature Medicine, 17(1):79-87 (2011).
Abbady M.A., et al., Synthesis and biological activity of some new 4-(2-pyrazolin-3-yl)-, 4-(2-isoxazolin-e-yl)- and 4-(1,2,5,6-tetrahydro-2-thioxopyrimidin-4-yl)phenyl aminophenyl sulfides and sulfones., Egyptian Journal of Pharmaceutical Sciences, vol. 27, No. 1-4, (1986), Abstract Only.
Abraham DJ, Mehanna AS, Wireko FC, et al. “Vanillin, a potential agent for the treatment of sickle cell anemia.” Blood. 1991; 77(6):1334-41.
Agrawal RK, Patel RK, Shah V, Nainiwal L, Trivedi B. “Hydroxyurea in sickle cell disease: drug review.” Indian J Hematol Blood Transfus. Jun. 2014, 30(2):91-96.
Agrawal, R. K. et al., “Hydroxyurea in Sickle Cell Disease: Drug Review”, Indian J. Hematol Blood Transfus, 30(2), pp. 91-96, (Apr.-Jun. 2014).
Al-Hakim, A.K. et al., 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK, Journal of Cell Science 118 (23), pp. 5661-5673 (Aug. 2005).
Al-Hakim, A.K. et al., “Control of AMPK-related kinases by USP9X and atypical Lys29/Lys33-linked polyubiquitin chains”, Biochemical Journal, 411 (2), pp. 249-260, (Feb. 2008).
Andresen, C.A. et al., “Protein Interaction Screening for the Ankyrin Repeats and Suppressor of Cytokine Signaling (SOCS) Box (ASB) Family Identify Asb11 as a Novel Endoplasmic Reticulum Resident Ubiquitin Ligase”, The Journal of Biological Chemistry, vol. 289, No. 4, pp. 2043-2054, (Jan. 24, 2014).
Ataga KI, Kutlar A, Kanter J, Liles D, Cancado R, Friedrisch J, Guthrie TH, Knight-Madden J, Alvarez OA, Gordeuk VR, Gualandro S, Colella MP, Smith WR, Rollins SA, Stocker JW, Rother RP. “Crizanlizumab for the prevention of pain crises in sickle cell disease.” N Engl J Med. Feb. 2, 2017, 376(5):429-439.
Atkinson, Peter J., et al., 3,4-Dihydro-2H-benzoxazinones are 5-HT1A receptor antagonists with potent 5-HT reuptake inhibitory activity, BioOrganic & Medicinal Chemistry Letters, 15(3), pp. 737-741 (2005).
Austin, Nigel E., et al., “Novel 2,3,4,5-tetrahydro-1H-3-benzazepines with high affinity and selectivity for the dopamine D3 receptor”, BioOrganic & Medicinal Chemistry Letters, 10(22), pp. 2553-2555, (2000).
Bailey, S.D. et al., “Variation at the NFATC2 Locus Increases the Risk of Thiazolidinedione-Induced Edema in the Diabetes Reduction Assessment with Ramipril and rosiglitazone Medication (DREAM) Study”, Diabetes Care, vol. 33, No. 10, pp. 2250-2254, (Oct. 2010).
Bakshi N, Sinha CB, Ross D, Khemani K, Loewenstein G, Krishnamurti L. “Proponent or collaborative: Physician perspectives and approaches to disease modifying therapies in sickle cell disease.” PLoS One. Jul. 20, 2017, 12(7): e0178413.
Balakin, Konstantin V. et al., Comprehensive Computational Assessment of ADME Properties using Mapping Techniques, Current Drug Discovery Technologies, 2(2), pp. 99-113 (2005).
Banerjee, S. et al., “Interplay between Polo kinase, LKB1-activated NUAK1 kinase, PP1β phosphatase complex and the SCFβTrCP E3 ubiquitin ligase”, Biochem. J. 461, pp. 233-245, (2014).
Barbier AJ, Bodie S, Connor G, et al. “Safety, tolerability, pharmacokinetics and pharmacodynamics of multiple doses of AG-519, an allosteric activator of pyruvate kinase-R, in healthy subjects.” Blood. 2016, 128:1264.
Barua, A.K., et al., Chemistry and Industry Communications to the Editor 1376 24 (Oct. 1970).
Bennett, Eric J., et al., “Dynamics of Cullin-RING Ubiquitin Ligase Network Revealed by Systematic Quantitative Proteomics”, Cell 143, pp. 951-965, (Dec. 10, 2010).
Betz T, Lenz M, Joanny JF, Sykes C. “ATP-dependent mechanics of red blood cells.” Proc Natl Acad Sci USA. 2009; 106(36): 15320-5.
Biftu, T. et al., “Omarigliptin (MK-3102): A Novel Long-Acting DPP-4 Inhibitor for Once-Weekly Treatment of Type 2 Diabetes”, Journal of Medicinal Chemistry, 57, pp. 3205-3212, (2014).
Bouwmeester, T. et al., “A physical and functional map of the human TNF-α/NF-κB signal transduction pathway”, Nature Cell Biology, vol. 6, No. 2, pp. 97-105, (Feb. 2004).
Brajenovic, M. et al., “Comprehensive Proteomic Analysis of Human Par Protein Complexes Reveals an Interconnected Protein Network”, The Journal of Biological Chemistry, vol. 275, No. 13, pp. 12804-12811 (Mar. 2004).
Brehme, M. et al., “Charting the molecular network of the drug target Bcr-Abl”, PNAS, vol. 106, No. 18, pp. 7414-7419, (May 2009).
Bridges, C.R., et al., “USP9X deubiquitylating enzyme maintains RAPTOR protein levels, mTORC1 signalling and proliferation in neural progenitors”, Scientific Reports 7:391, pp. 1-15, (Mar. 2017).
Budzikiewicz, Herbert et al., “Vincetene, a benzopyrroloisoquinoline alkaloid, from Cynanchum vincetoxicum (L.) Pers. (Asclepiadaceae)”, Liebigs Annalen Der Chemie, (8), pp. 1212-1231 (1979).
Buontempo P, Jubin RG, Buontempo C, Real R, Kazo F, O'Brien S, Adeel F, Abuchowski A. “Pegylated carboxyhemoglobin bovine (Sanguinate) restores RBCs roundness and reduces pain during a sickle cell vaso-occlusive crisis.” Blood. 2017, 130: 969.
Chaudhary, Neelam & Maddika, Subbareddy, “WWP2-WWP1 Ubiquitin Ligase Complex Coordinated by PPM1G Maintains the Balance Between Cellular p73 and ΔNp73 Levels”, Mol. Cell. Biol. (Oct. 2014).
Cheung, Yiu-Yin et al., Solution-Phase Parallel Synthesis and SAR of Homopiperazinyl Analogs as Positive Allosteric Modulators of MGlu4, ACS Comb Sci. 13(2), pp. 159-165, (Mar. 2011).
Chiosis et al., Development of a Purine-Scaffold Novel Class of Hsp90 Binders that Inhibit the Proliferation of Cancer Cells and Induce the Degradation of Her2 Tyrosine Kinase, BioOrganic & Medicinal Chemistry, vol. 10, Iss 11, (Nov. 2002), pp. 3555-3564.
Chiou WL, Barve A. “Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats.” Pharm Res. Nov. 1998, 15(11): 1792-5.
Choudhury, N.R., et al., “RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination”, BMC Biology 15:105, pp. 1-20, (2017).
Chubukov V, Johnson K, Kosinski PA, et al. “Characterization of metabolic response to AG-348, an allosteric activator of red cell pyruvate kinase, in healthy volunteers and pyruvate kinase deficiency patients.” Poster presented at: 58th American Society of Hematology Annual Meeting and Exposition; Dec. 4, 2016; San Diego, California. http://investor.agios.com/staticfiles/e1e9fd70-c84b-4472-bff3-bef0ecf05482 Accessed Jul. 28, 2017.
Chung, J.Y.L. et al., “Evolution of a Manufacturing Route to Omarigliptin, A Long-Acting DPP-4 Inhibitor for the Treatment of Type 2 Diabetes”, Organic Process Research & Development, 19, pp. 1760-1768, (2015).
Clinical Trials Archive, History of Changes for Study: NCT03815695, A SAD/MAD to Assess the Safety, Pharmacokinetics and Pharmacodynamics of FT-4202 in Healthy Volunteers and Sickle Cell Disease Patients; (Mar. 13, 2019) pp. 1-5.
ClinicalTrIals.gov, NCT03815695, A SAD/MAD to Assess the Safety, Pharmacokinetics and Pharmacodynamics of FT-4202 in Healthy Volunteers and Sickle Cell Disease Patients (Jan. 24, 2019).
ClinicalTrIals.gov, NCT03815695, A SAD/MAD to Assess the Safety, Pharmacokinetics and Pharmacodynamics of FT-4202 in Healthy Volunteers and Sickle Cell Disease Patients (Sep. 17, 2019).
Cloutier, P. et al., “R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein”, Nature Communications, pp. 1-14 (May 2017).
Cole, D.C. et al., Conformationally Constrained N1-arylsulfonyltryptamine derivatives as 5-HT6 receptor antagonists, BioOrganic & Medicinal Chemistry Letters, vol. 15, No. 21, (Nov. 1, 2005), pp. 4780-4785.
Cox, J.L., et al., “The SOX2-Interactome in Brain Cancer Cell Identifies the Requirement of MSI2 and USP9X for the Growth of Brain Tumor Cell”, PLOS ONE, vol. 8, Issue 5, pp. 1-13, (May 2013).
Das, A. et al., “USP9X counteracts differential ubiquitination of NPHP5 by MARCH7 and BBS11 to regulate ciliogenesis”, PLOS Genetics, pp. 1-24, (May 12, 2017).
Davis, Z.H., et al., “Global Mapping of Herpesvirus-Host Protein Complexes Reveals a Transcription Strategy for Late Genes”, Molecular Cell 57, pp. 349-360; (Jan. 22, 2015).
De Rosa MC, Carelli Alinovi C, Galtieri A, Russo A, Giardina B. “Allosteric properties of hemoglobin and the plasma membrane of the erythrocyte: New insights in gas transport and metabolic modulation.” IUBMB Life. 2008, 60(2):87-93.
Diez-Silva M, Dao M, Han J, Lim CT, Suresh S. “Shape and biomechanical characteristics of human red blood cells in health and disease.” MRS Bull. May 2010, 35(5):382-8.
Drissi, R. et al., “Quantitative Proteomics Reveals Dynamic Interactions of the Mini chromosome Maintenance Complex (MCM) in the Cellular Response to Etoposide Induced DNA Damage”, Molecular & Cellular Proteomics, pp. 2002-2013, (2015).
Dupont, S. et al., “FAM/USP9x, a Deubiquitinating Enzyme Essential for TGFβ Signaling, Controls Smad4 Monoubiquitination”, Cell, 136, pp. 123-135, (Jan. 9, 2009).
Dzandu JK, Johnson RM. “Membrane protein phosphorylation in intact normal and sickle cell erythrocytes.” J Biol Chem. Jul. 10, 1980, 255(13):6382-6.
El-Sharief, A.M., et al., Some halogenated sulfonamides with biological interest, Journal of the Indian Chemical Society, vol. 61, No. 6, (1984), pp. 537-543.
Emam, H.A., et al., Heterocyclization of sulfamido chalcones to pyrazoline, cyanopyridone, nicotinonitrile and hydrobenzo [1,2-c] pyrazole derivatives, Journal of the Serbian Chemical Society, vol. 62, No. 7, (1997), Abstract only.
Ernst, A. et al., “A Strategy for Modulation of Enzymes in the Ubiquitin System”, Science, 339, pp. 1-15, (Feb. 2013).
Fioravanti, R., et al., Synthesis and Biological Evaluation of N-substituted-3, 5-diphenyl—2-pyrazoline derivatives as cyclooxygenase (COX-2) inhibitors, European Journal of Medicinal Chemistry, vol. 45, No. 12, (Dec. 1, 2010), pp. 6135-6138, XP027526583.
Fitch, R. W. et al., Phantasmidine: An Epibatidine Congener from the Ecuadorian Poison Frog Epipedobates anthonyi′, Journal of Natural Products (2010), vol. 73, No. 3, pp. 331-337.
Fleischhacker, W., et al., “Heterocyclic fused naphthalene systems from thebaine. 1”, Liebigs Annalen Der Chemie, (5), pp. 844-851, (1983).
Fogeron, M.L. et al., “LGALS3BP regulates centriole biogenesis and centrosome hypertrophy in cancer cells”, Nature Communications, 4:1531, pp. 1-14; (2013).
Gaudet, P. et al., “Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium”, vol. 12, No. 5, pp. 449-462; (Aug. 2011).
Giannone, R.J., et al., “The Protein Network Surrounding the Human Telomere Repeat Binding Factors TRF1, TRF2, and POT1”, PLOS One, vol. 5, Issue 8, pp. 1-10, (Aug. 2010).
Gomez-Bougie, P. et al., “Noxa controls Mule-dependent Mcl-1 ubiquitination through the regulation of the Mcl-1/USP9X interaction”, Biochemical and Biophysical Research Communications 413, pp. 460-464, (2011).
Goncharov, T. et al., “OTUB1 modulates c-IAP1 stability to regulate signaling pathways”, The EMBO Journal 32, No. 8, pp. 1103-1114, (2013).
Grace RF, Rose C, Layton DM, Yaish HM, Barcellini W, Galactéros F, Morton DH, Ravindranath Y, Kuo KHM, van Beers EJ, Kwiatkowski JL, Silver BA, Merica E, Kung C, Cohen M, Yang H, Hixon J, Kosinski PA, Silver L, Dang L, Yuan Z, Barbier AJ, Glader B. “Effects of AG_348, a pyruvate kinase activator, on anemia and hemolysis in patients with pyruvate kinase deficiency: Data from the DRIVE PK study”. Blood. 2016, 128:402.
Grasso, D. et al., “Zymophagy, a Novel Selective Autophagy Pathway Mediated by VMP1-USP9x-p62, Prevents Pancreatic Cell Death”, The Journal of Biological Chemistry, vol. 286, No. 10, pp. 8308-8324, (Mar. 2011).
Greco, T.M. et al., “Nuclear Import of Histone Deacetylase 5 by Requisite Nuclear Localization Signal Phosphorylation”, Molecular & Cellular Proteomics 10: , pp. 1-15, (2011).
Grou, C.P., et al., “Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on the ubiquitin-peroxin 5 (PEX5) thioester conjugate”, J. Biol. Chem., pp. 1-24; (Feb. 27, 2012).
Habata, S. et al., “BAG3-mediated Mcl-1 stabilization contributes to drug resistance via interaction with USP9X in ovarian cancer”, International Journal of Oncology 49: pp. 402-410, (2016).
Han, K.J. et al., “Ubiquitin-specific Protease 9x Deubiquitinates and Stabilizes the Spinal Muscular Atrophy Protein—Survival Motor Neuron”, J. Biol. Chem., pp. 1-22, (Oct. 2012).
Hanson, D. et al., “Identifying biological pathways that underlie primordial short stature using network analysis”, Journal of Molecular Endocrinology, pp. 333-344, (2014).
Harada, R. et al., “Structure of pristimerine, a quinonoid triterpene”, Tetrahedron Letters, pp. 603-607, (1962).
Harayama, Takashi et al., “Novel synthesis of naphthobenzazepines from N-bromobenzylnaphthylamines by regioselective C—H activation utilizing the intramolecular coordination of an amine to Pd”, Synlett, (8), pp. 1141-1144, (2003).
Hauri, S. et al., “Interaction proteome of human Hippo signaling: modular control of the co-activator YAP1”, Molecular Systems Biology, 9: 713, pp. 1-16 (Nov. 2013).
Havugimana, P. et al., “A Census of Human Soluble Protein Complexes”, Cell 150, pp. 1068-1081, (Aug. 2012).
Hebbel RP, Eaton JW, Balasingam M, Steinberg MH. “Spontaneous oxygen radical generation by sickle erythrocytes.” J Clin Invest. 1982, 70(6):1253-9.
Hein, M.Y., et al., “A Human Interactome in Three Quantitative Dimensions Organized by Stoichiometries and Abundances”, Cell 163, pp. 712-723, (Oct. 2015).
Homan, C.C. et al., “Mutations in USP9X Are Associated with X-linked Intellectual Disability and Disrupt Neuronal Cell Migration and Growth”, The American Journal of Human Genetics 94, pp. 470-478, (Mar. 2014).
Hoppe CC, Inati AC, Brown C, et al. “Initial results from a cohort in a phase 2a study (GBT440-007) evaluating adolescents with sickle cell disease treated with multiple doses of GBT440, a HbS polymerization inhibitor.” Blood. 2017:130(Suppl 1): 689.
Husain, M.I., et al., Synthesis of some new N-[4-(acetyl/phenyl-5-arylpyrazolin-3-yl)phenyl]arylsulfonamides as oral hypoglycemic agents, Indian Drugs, vol. 24, No. 4, (1987), Abstract only.
Huttlin, E. L., et al., “The BioPlex Network: A Systematic Exploration of the Human Interactome”, Cell 162, pp. 425-440, (Jul. 2015).
Huttlin, E.L., et al., “Architecture of the human interactome defines protein communities and disease networks”, Nature, pp. 1-35, (May 2017).
Imamura K, Tanaka T. “Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. I Electrophoretic studies.” J Biochem. 1972, 71:1043-51.
Imamura K, Tanaka T. “Pyruvate kinase isozymes from rat.” Methods Enzymol. 1982, 90:150-65.
International Search Report and Written Opinion for PCT/US2019/052024, dated Dec. 23, 2019 (dated Dec. 23, 2019).
Iwasaki, Tameo et al., “Novel Selective PDE IV Inhibitors as Antiasthmatic Agents. Synthesis and Biological Activities of a Series of 1-Aryl-2,3-bis (hydroxymethyl) naphthalene Lignans”, Journal of Medicinal Chemistry (1996), pp. 2696-2704.
Johansen, L.D., et al., “IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration”, Journal of Cell Science 121, pp. 854-864, (Dec. 2007).
Jones, M.H., et al., “The Drosophila developmental gene fat facets has a human homologue in Xp11.4 which escapes X-inactivation and has related sequences on Yq11.2”, Human Molecular Genetics, vol. 5, No. 11, pp. 1695-1701, (Aug. 1996).
Jorgensen, Eugene C., et al., “Thyroxine analogs. 20. Substituted 1- and 2-naphthyl ethers of 3,5-diiodotyrosine”, Journal of Medicinal Chemistry 14(11), pp. 1023-1026, (1971).
Joshi, B., et al., Indian J. Chem., Sect. B (1983), 22B(2), Abstract only. Chemical Abstract No. 99:105146.
Joshi, P., et al., “The functional interactome landscape of the human histone deacetylase family”, Molecular Systems Biology 9, 672, (2013).
Kalfa, T.A. et al., “616 Phase 1 Single (SAD) and Julotiple Ascending Dose (MAD) Studies of the Safety, Tolerability, Pharmacokinetics (PK) and Pharmacodynamics (PD) of FT-4202, an Allosteric Activator of Pyruvate Kinase-R, in Healthy and Sickle Cell Disease Subjects”, (Nov. 2019).
Kaltenbach, L.S., et al., “Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration”, PLOS Genetics, vol. 3, Issue 5, pp. 689-708, (May 2007).
Kasturi, Tirumalai R., et al., “Reactions of tetrahalo-1,2-benzoquinones. III. Reaction of tetrachloro-1,2-benzoquinone withtetralones and naphthols: pathway to the condensates”, Journal of the Chemical Society C: Organic, (9), pp. 1257-1259, (1970).
Katzenellenbogen, R.A., et al., “NFX1-123 and Poly(A) Binding Proteins Synergistically Augment Activation of Telomerase in Human Papillomavirus Type 16 E6-Expressing Cells”, Journal of Virology, vol. 81, pp. 3786-3796, (Apr. 2007).
Khafagy, M.M., Synthesis of some pyrimidine and pyrazoline derivatives, Al-Azhar Bulletin of Science, vol. 3, No. 1, (1992), Abstract only.
Kim H, Kosinski P, Kung C, Dang L, Chen Y, Yang H, Chen YS, Kramer J, Liu G. “A fit-for-purpose LC-MS/MS method for the simultaneous quantitation of ATP and 2,3-DPG in human K2EDTA whole blood.” J Chromatogr B Analyt Technol Biomed Life Sci. Sep. 1, 2017, 1061-1062:89-96.
Kim J, Lee H, Shin S. “Advances in the measurement of red blood cell deformability: A brief review.” J Cell Biotech. 2015;1:63-79.
Kim, M., et al., “Role of Angiomotin-like 2 mono-ubiquitination on YAP inhibition”, EMBO reports, vol. 17, No. 1., pp. 64-78, (Nov. 23, 2015).
Kimura, K., et al., “Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes”, Genome Research 16, pp. 55-65, (2006).
Kirli, K., et al., “A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning”, eLife, pp. 1-28; (2015).
Knauff, E.A.H., et al., “Genome-wide association study in premature ovarian failure patients suggests ADAMTS19 as a possible candidate gene”, Human Reproduction, vol. 24, No. 9, pp. 2372-2379, (2009).
Kristensen, A.R., Gsponer, J. and Foster, L.J., “A high-throughput approach for measuring temporal changes in the interactome”, Nat Methods, 9(9), pp. 1-12, (2012).
Kung C, Hixon J, Kosinski PA, et al. “AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency.” Blood. 2017;130(11):1347-1356.
Kushwaha, D., et al., “USP9X inhibition promotes radiation-induced apoptosis in non-small cell lung cancer cells expressing mid-to-high MCL1”, Cancer Biology & Therapy 16:3, pp. 392-401, (Mar. 2015).
Kwasna, D., et al., “Discovery and Characterization of ZUFSP/ZUP1, a Distinct Deubiquitinase Class Important for Genome Stability”, Molecular Cell 70, pp. 150-164, (2018).
Lehrer-Graiwer J, Howard J, Hemmaway CJ, et al. “Long-term dosing in sickle cell disease subjects with GBT440, a novel HbS polymerization inhibitor.” Blood, 2016:128(22): 2488.
Lenihan, J.A., Saha, Orthis, and Young P.W., “Proteomic analysis reveals novel ligands and substrates for LNX1 E3 ubiquitin ligase”, PLOS ONE, pp. 1-18; (Nov. 2017).
Li, X., et al., “Defining the protein-protein interaction network of the human protein tyrosine phosphatase family”, The American Society for Biochemistry and Molecular Biology, Inc., pp. 1-54, (2016).
Litinov RI, Weisel JW. “Role of red blood cells in haemostasis and thrombosis.” ISBT Sci Ser. Feb. 2017, 12(1):176-183.
Liu, X.H., et al., European Journal of Cancer, vol. 31A, No. 6, pp. 953-963, (1995).
Llauger et al., “Evaluation of 8-Arylsulfanyl, 8-Arylsulfoxyl, and 8-Arylsulfonyl Adenine Derivatives as Inhibitors of the Heat Shock Protein 90”, J. Med. Chem., 48 (8), pp. 2892-2905, (Mar. 25, 2005).
Llauger et al., “Synthesis of 8-arylsulfoxyl/sulfonyl adenines”, Tetrahedron Letters, vol. 45, Issue 52, (Dec. 20, 2004), pp. 9549-9552.
Loriga G. et al., Synthesis of 3,6-diazabicyclo [3.1.1]heptanes as novel ligands for the opioid receptors, Bioorganic & Medicinal Chemistry, Pergamon, GB, vol. 14, No. 3, pp. 676-691, (Feb. 1, 2006).
Lu, L., et al., “The HECT Type Ubiquitin Ligase NEDL2 Is Degraded by Anaphase-promoting Complex/Cyclosome (APC/C)-Cdh1, and Its Tight Regulation Maintains the Metaphase to Anaphase Transition”, The Journal of Biological Chemistry, vol. 288, No. 50, pp. 35637-35650; (Dec. 2013).
Lucas, et al., “Facile Synthesis of a Library of 9-Alkyl-8-benzyl-9H-purin-6-ylamine Derivatives”, J. Comb. Chem., 3 (6), pp. 518-520, (Sep. 21, 2001).
MacDonald, Gregor J., et al, “Design and Synthesis of trans-3-(2-(4-((3-(3-(5-Methyl-1,2,4-oxadiazolyl))-phenyl(carboxamido)cyclohexy1)ethyl)-7-methylsulfonyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SB-414796): A Potent and Selective Dopamine D3 Receptor Antagonist”, Journal of Medicinal Chemistry, 46(23), pp. 4952-4964 (2003).
Martinez-Mayorga Karina et al, Ligand/kappa-opioid receptor interactions: Insights from the X-ray crystal structure, European Journal of Medicinal Chemistry, vol. 66, pp. 114-121 (May 30, 2013).
Mathe-Allainmat, Monique et al., “Synthesis of 2-Amido-2, 3-dihydro-1H-phanalene Derivatives as New Conformationally Restricted Ligands for Melatonin Receptors”, Journal of Medicinal Chemistry, 39(16), pp. 3089-3095, (1996).
McCluskey A., et al., BioOrganic & Medicinal Chemistry Letters 10 (2000), pp. 1687-1690.
McCluskey A., et al., Bioorganic & Medicinal Chemistry Letters 11 (2001), pp. 2941-2946.
McGarry, E., et al., “The deubiquitinase USP9X maintains DNA replication fork stability and DNA damage checkpoint responses by regulating CLASPIN during S-phase”, Cancerres.aacrjournals.org, pp. 1-39; (2016).
Metcalf B, Chuang C, Dufu K, et al. “Discovery of GBT440, an orally bioavailable R-state stabilizer of sickle cell hemoglobin.” ACS Med Chem Lett. 2017; 8(3):321-326.
Misra H. Bainbridge J, Berryman J, Abuchowski A, Galvez KM, Uribe LF, Hernandez AL, Sosa NR. “A phase 1b open label, randomized, safety study of SANGUINATE™ in patients with sickle cell anemia.” Rev Bras Hematol Hemoter. Jan.-Mar. 2017, 39(1):20-7.
Moehrle, H., et al., “1,2,3,4-Tetrahydroquinolines as substrates for Mannich compounds”, Chemical Sciences, 53(7), pp. 742-752; (1998).
Moriyama R, Lombardo CR, Workman RF, Low PS. “Regulation of linkages between the erythrocyte membrane and its skeleton by 2,3-diphosphoglycerate.” J Biol Chem. May 25, 1993, 268(15):10990-6.
Mouchantaf, R., et al., “The Ubiquitin Ligase Itch Is Auto-ubiquitylated in Vivo and in Vitro but Is Protected from Degradation by Interacting with the Deubiquitylating Enzyme FAM/USP9X”, The Journal of Biological Chemistry, vol. 281, No. 50, pp. 38738-38747, (Dec. 2006).
Murn, J. et al., “Control of a neuronal morphology program by an RNA-binding zinc finger protein, Unkempt”, Genes & Development 29, pp. 501-512, (2015).
Murray, R.Z., Jolly, L.A., Wood, S.A., “The FAM Deubiquitylating Enzyme Localizes to Multiple Points of Protein Trafficking in Epithelia, where It Associates with E-cadherin and β-catenin”, Molecular Biology of the Cell, vol. 15, pp. 1591-1599; (Apr. 2004).
Nagai, H., et al., “Ubiquitine-like Sequence in ASK1 Plays Critical Roles in the Recognition and Stabilization by USP9X and Oxidative Stress-Induced Cell Death”, Molecular Cell 36, pp. 805-818, (Dec. 2009).
Nagy, Peter I., et al., “Theoretical and Experimental Study on Ion-Pair Formation and Partitioning of Organic Salts in Octanol/Water and Dichloromethane/Water Sytems”, Journal of the American Chemical Society, 122 (28), pp. 6583-6593 (2000).
Narayanan, N., Wang, Z., Li, L., and Yang, Y., “Arginine methylation of USP9X promotes its interaction with TDRD3 and its anti-apoptotic activities in breast cancer cells”, Cell Discovery 3, pp. 1-17, (2017).
Nathan, J.A., et al., “The Ubiquitin E3 Ligase MARCH7 is Differentially Regulated by the Deubiquitylating Enzymes USP7 and USP9X”, Traffic, 9, pp. 1130-1145, (2008).
Neto, E.D. et al., “Shotgun sequencing of the human transcriptome with ORF expressed sequence tags”, PNAS, vol. 97, No. 7, pp. 3491-3496, (Mar. 2000).
Noma, T., et al., “Stage- and sex-dependent expressions of Usp9x, an X-linked mouse ortholog of Drosophila Fat facets, during gonadal development and oogenesis in mice”, Gene Expression Patters 2, pp. 87-91, (2002).
O'Connor, H.F., et al., “Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners”, EMBO reports, vol. 16, No. 12., (2015).
Obach RS. “Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: An examination of in vitro half-life approach and nonspecific binding to microsomes.” Drug Metab Dispos. Nov. 1999, 27(11):1350-9.
Oksenberg D, Dufu K, Patel MP, Chuang C, Li Z, Xu Q, Silva-Garcia A, Zhou C, Hutchaleelaha A, Patskovska L, Patskovsky Y, Almo SC, Sinha U, Metcalf BW, Archer DR. “GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease.” Br J Haematol. Oct. 2016, 175(1):141-53.
Oliviero, G., et al., “The variant Polycomb Repressor Complex 1 component PCGF1 interacts with a pluripotency sub-network that includes DPPA4, a regulator of embryogenesis”, pp. 1-11, (2015).
Olsen, J.V., et al., “Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks”, Cell 127, pp. 635-648, (Nov. 2006).
Oski, M.D., Frank A., “The Role of Organic Phosphates in Erythrocytes on the Oxygen Dissociation of Hemoglobin,” Annals of Clinical Laboratory Science, vol. 1, No. 2 (Nov. 1970), pp. 162-176.
Ouyang, W., et al., “β-catenin is regulated by USP9x and mediates resistance to TRAIL-induced apoptosis in breast cancer”, Oncology Reports 35, pp. 717-724, (2016).
Paemka, L., et al., “Seizures Are Regulated by Ubiquitin-specific Peptidase 9 X-linked (USP9X), a De-Ubiquitinase”, PLOS Genetics, 11(3): pp. 1-16, (Mar. 2015).
Papp, S.J., et al., “DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization”, eLIFE, pp. 1-19, (2015).
Park, Yoon, Jin, Hyung-seung, and Liu, Yun-Cai, “Regulation of T cell function by the ubiquitin-specific protease USP9X via modulating the Carma 1-Bcl10-Malt1 complex”, PNAS, vol. 110, No. 23, pp. 9433-9438, (Jun. 2013).
Pászty C. “Transgenic and gene knock-out mouse models of sickle cell anemia and the thalassemias.” Curr Opin Hematol. 1997, 4(2):88-93.
Patel, P., et al., Synthesis of some novel pyrazoline and cyanopyridine derivatives as antimicrobial agents, Il Farmaco, vol. 51, No. 1, (1996), Abstract only.
Pavagadhi, T.H., et al., 3-(3′-phenoxyphenylmethyl)-5-aryl-1-acetylpyrazolines, Journal of the Institution of Chemists (India), vol. 73, No. 3, (2001), Abstract only.
Peddaboina, C. et al., “The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition”, BMC Cancer, 12:541, pp. 1-12, (2012).
Perez-Mancera, P.A., et al., “The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma”, Nature, 486(7402): pp. 266-270; (Dec. 2012).
Platt OS. “Hydroxyurea for the treatment of sickle cell anemia.” N Engl J Med. 2008; 358(13):1362-9.
PubChem CID: 135338361, create date: Dec. 15, 2018 (Dec. 15, 2018), p. 1, formula.
PubChem CID: 135338378, create date: Dec. 15, 2018 (Dec. 15, 2018), p. 1, formula.
Rab, M.A.E. et al., Rapid and reproducible characterization of sickling during automated deoxygenation in sickle cell disease patients, Am. J. Hematol. (2019; 94; pp. 575-584.
Rabai M, Detterich JA, Wenby RB, et al. “Deformability analysis of sickle blood using ektacytometry.” Biorheology. 2014; 51(2-3):159-70.
Rice-Evans C, Omorphos SC, Baysal E. “Cell membranes and oxidative damage.” Biochem J. Jul. 1, 1986, 237(1):265-9.
Ross, M.T., et al., “The DNA sequence of the human X chromosome”, Nature, 434, pp. 325-337; (Mar. 2005).
Rott, Ruth, et al., “α-Synuclein fate is determined by USP9X-regulated monoubiquitination”, PNAS, (2011).
Roy, R., et al., “hnRNPA1 couples nuclear export and translation of specific mRNAs downstream of FGF-2/S6K2 signalling”, Nucleic Acids Research, vol. 42, No. 20, pp. 12483-12497, (Oct. 2014).
Rush, J., et al., “Immunoaffinity profiling of tyrosine phosphorylation in cancer cells”, Nature Biotechnology, vol. 23, No. 1, pp. 94-101, (2005).
Sampson M, Archibong AE, Powell A, et al. “Perturbation of the developmental potential of preimplantation mouse embryos by hydroxyurea.” Int J Environ Res Public Health. 2010; 7(5):2033-44.
Sato, Y., et al., “Ubiquitin-specific protease 9X in host cells interacts with herpes simplex virus 1 ICP0”, J. Vet. Med. Sci. 78(3), pp. 405-410; (2016).
Savio et al., “USP9X Controls EGFR Fate by Deubiquitinating the Endocytic Adaptor Eps15”, Current Biology 26, pp. 173-183, (Jan. 2016).
Schwickart, M., et al., “Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival”, Nature vol. 463, pp. 103-108; (Jan. 2010).
Shen, G., et al., “MicroRNA-26b inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting USP9X,” BMC Cancer 14:393, pp. 1-11, (2014).
Smidrkal, Jan., “Synthesis of fagaronine”, Collection of Czechoslovak Chemical Communications, 53(12), pp. 3184-3192, (1988).
Sorathiya, S.D., et al., Preparation and antimicrobial activity of 3-(p-(2′,5′-dibromobenzenesulfonamido)phenyl)-5-aryl-1H/acetyl/phenyl-2-pyrazolines, Indian Journal of Chemistry, Section B: Organic, Incl. Medicinal Chemistry, vol. 36B, No. 7, (1997), Abstract only.
Space SL, Lane PA, Pickett CK, Weil JV. “Nitric oxide attenuates normal and sickle red blood cell adherence to pulmonary endothelium.” Am J Hematol. Apr. 2000, 63(4):200-4.
Spinella, J.F., et al., “Genomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals novel recurrent driver mutations”, Oncotarget, vol. 7, No. 40, pp. 65485-65503, (Sep. 2016).
St-Denis, N., et al., “Phenotypic and Interaction Profiling of the Human Phosphatases Identifies Diverse Mitotic Regulators”, Cell Reports 17, pp. 2488-2501, (Nov. 2016).
Stebbins et al., Crystal Structure of an Hsp90-Geldanamycin Complex: Targeting of a Protein Chaperone by an Antitumor Agent, Cell, (Apr. 1997), 89, p. 241.
Steinberg, Martin H., Pathophysiologically based drug treatment of sickle cell disease, TRENDS in Pharmacological Sciences, vol. 27, No. 4, (Apr. 2006).
Strausberg, R.L., et al., “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences”, PNAS vol. 99, No. 26, pp. 16899-16903, (Dec. 2002).
Sun, H., et al., “Bcr-Abl ubiquitination and Usp9x inhibition block kinase signaling and promote CML cell apoptosis”, Blood, (Jan. 2011).
Sundd, Prithu et al., Pathophysiology of Sickle Cell Disease, Annual Review of Pathology: Mechanisms of Disease, (Oct. 9, 2018), pp. 261-290.
Swanson, Devin M. et al., “Identification and biological evaluation of 4-(3-trifluoromethylpyridine-2-yl) piperazine-1-c arboxylic acid (5-trifluoromethylpyridin-2-yl) amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist”, Journal of Medicinal Chemistry, 48(6), pp. 1857-1872 (2005).
Taipale, M., et al., “A Quantitative Chaperone Interaction Network Reveals the Architecture of Cellular Protein Homeostasis Pathways”, Cell 158, pp. 434-448, (Jul. 2014).
Talmud, P.J., et al., “Gene-centric Association Signals for Lipids and Apolipoproteins Identified via the Human CVD Bead Chip”, The American Journal of Human Genetics 85, pp. 628-642, (Nov. 2009).
Taya, S., et al., “The deubiquitinating enzyme Fam interacts with and stabilizes β-catenin”, Genes to Cells 4, pp. 757-767, (1999).
Taya, S., et al., “The Ras Target AF-6 is a Substrate of the Fam Deubiquitinating Enzyme”, The Journal of Cell Biology, vol. 142, No. 4, pp. 1053-1062, (Aug. 1998).
Telen, Marilyn, Malik, Punam, and Vercellotti, Gregory M., Therapeutic strategies for sickle cell disease: towards a multi-agent approach, Nature Reviews/Drug Discovery; (Dec. 4, 2018).
Terao, Y., et al., “Trifluoroacetic Acid-Catalyzed 1,3-Cycloaddition of the Simplest Iminium Ylide Leading to 3- or 3,4-Substituted Pyrrolidines and 2,5-Dihydropyrroles”, Chem. Pharm. Bull., 33(7), pp. 2762-2766, (1985).
Théard, D., et al., “USP9x-mediated deubiquitination of EFA6 regulates de novo tight junction assembly”, The EMBO Journal, vol. 29, No. 9, pp. 1499-1509, (2010).
Thein, Swee Lay, The Molecular Basis of β-Thalassemia, Cold Spring Harb Perspect Med. (2013).
Tian, S., et al., Yaoxue Xueba (1993), 28(11), pp. 870-875. Chemical Abstract No. 120:299229.
Toloczko, A., et al., “Deubiquitinating Enzyme USP9X Suppresses Tumor Growth via LATS kinase and Core Components of the Hippo pathway”, Cancer Research, pp. 1-37, (Jul. 2017).
Trivigno, D., et al., “Deubiquitinase USP9x Confers Radioresistance through Stabilization of Mcl-1 1,2”, NEO Plasia, vol. 14, No. 10, pp. 893-904, (Oct. 2012).
Tsai, Y.C., et al., “Functional Proteomics Establishes the Interaction of SIRT7 with Chromatin Remodeling Complexes and Expands Its Role in Regulation of RNA Polymerase I Transcription”, Molecular & Cellular Proteomics 11.5, pp. 60-76, (2012).
Tsutsumi H, Tani K, Fujii H, Miwa S. “Expression of L- and M-type pyruvate kinase in human tissues. Genomics.” 1988, 2(1):86-9.
Upadhyay J., et al., Studies on pyrazolines. Part III. Preparation and antimicrobial activity of 3-(4-phenylsulfonamidophenyl)-5-aryl-1-ace tyl/phenyl-4,5-dihydropyrazoles, Journal of the Indian Chemical Society, vol. 68, No. 7, (1991), pp. 413-414.
Vanderah et al, Novel d-amino acid tetrapeptides produce potent antinociception by selectively acting at peripheral kappa-opioid receptors, European Journal of Pharmacology, Elsevier Science, vol. 583, No. 1, pp. 62-72 (Jan. 24, 2008).
Varjosalo, M., et al., The Protein Interaction Landscape of the Human CMGC Kinase Group, Cell Reports 3, pp. 1306-1320, (Apr. 2013).
Vong, Q. P., et al., “Chromosome Alignment and Segregation Regulated by Ubiquitination of Survivin”, Science, vol. 310, pp. 1499-1504, (Dec. 2, 2005).
Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M. “Oxidative stress in β-thalassaemia and sickle cell disease.” Redox Biol. Dec. 2015, 6:226-39.
Wan, C., et al., “Panorama of ancient metazoan macromolecular complexes”, Nature 525(7569), pp. 339-344, (Sep. 2015).
Wang, G.S., et al., Journal of Ethnopharmacology, 26 (1989), pp. 147-162.
Wang, J., et al, “TopBP1 Controls BLM Protein Level to Maintain Genome Stability”, Molecular Cell 52, pp. 667-678, (Dec. 2013).
Wang, Q., et al., “The X-linked Deubiquitinase USP9X Is an Integral Component of Centrosome”, The American Society for Biochemistry and Molecular Biology, Inc., pp. 1-33, (2017).
Wang, S. et al., “Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer”, PNAS, vol. 111, No. 11, pp. 4251-4256, (Mar. 2014).
Wang, S., et al., “The ubiquitin ligase TRIM25 targets ERG for degradation in prostate cancer”, Oncotarget, vol. 7, No. 40, pp. 64921-64931, (2016).
Wang, X, et al., “Hsp90 Cochaperone Aha1 Downregulation Rescues Misfolding of CFTR in Cystic Fibrosis”, Cell 127, pp. 803-815, (Nov. 2006).
Waza et al., Nature, 11, No. 10, (Oct. 2005), pp. 1088-1095.
Wei, Wan-Guo et al., “A practical procedure for multisubstituted .beta.-naphthols and their derivatives”, Tetrahedron, 59(34), pp. 6621-6625, (2003).
Wood BL1, Gibson DF, Tait JF. “Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow-cytometric measurement and clinical associations.” Blood. Sep. 1, 1996, 88(5):1873-80.
Woods, N.T., et al., “Charting the Landscape of Tandem BRCT Domain-Mediated Protein Interactions”, Sci Signal, 5(242), pp. 1-35, (2014).
Wu, Y., et al., “Aberrant phosphorylation of SMAD4 Thr277-mediated USP9x-SMAD4 interaction by free fatty acids promotes breast cancer matastasis”, Cancer Research, pp. 1-34, (2017).
Wu, Z., et al., “Targeted Ubiquitination and Degradation of G-Protein-Coupled Receptor Kinase 5 by the DDB1-CUL4 Ubiquitin Ligase Complex”, PLOS One, vol. 7, Issue 8, pp. 1-11, (Aug. 2012).
Xie, Y., et al., “Deubiquitinase FAM/USP9X Interacts with the E3 Ubiquitin Ligase SMURF1 Protein and Protects It from Ligase Activity-dependent Self-degradation”, The Journal of Biological Chemistry., vol. 288, No. 5, pp. 2976-2985, (Feb. 2013).
Xu, Z., et al., “Identification of a Deubiquitinating Enzyme as a Novel AGS3-Interacting Protein”, PLOS One, vol. 5, Issue 3, pp. 1-12, (Mar. 2010).
Yan, J., et al., “Usp9x- and Noxa-mediated Mcl-1 downregulation contributes to pemetrexed-induced apoptosis in human non-small-cell lung cancer cells”, Cell Death and Disease 5, pp. 1-7, (2014).
Yang H, Merica E, Chen Y, Cohen M, Goldwater R, Hill C, et al. “Phase I single (SAD) and multiple ascending dose (MAD) studies of the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of AG-348, a first-in-class allosteric activator of pyruvate kinase-R, in healthy subjects.” Blood. 2014, 124:4007.
Yang H, Merica E, Chen Y, et al. “Phase 1 Single- and Multiple-Ascending-Dose Randomized Studies of the Safety, Pharmacokinetics, and Pharmacodynamics of AG-348, a First-in-Class Allosteric Activator of Pyruvate Kinase R, in Healthy Volunteers.” Clin Pharmacol Drug Dev. Aug. 9, 2018.
Yi, S., et al., Leukemia Research, vol. 15(10), (1991), pp. 883-886.
You, J. and Pickart, C.M., “A HECT Domain E3 Enzyme Assembles Novel Polyubiquitin Chains”, vol. 276, No. 23, pp. 19871-19878, (2001).
Yu, W., et al., “Large-Scale Concatenation cDNA Sequencing”, Genome Research 7, pp. 353-358, (1997).
Zanella A, Fermo E, Bianchi P, Chiarelli LR, Valentini G. “Pyruvate kinase deficiency: The genotype-phenotype association.” Blood Rev. 2007, 23:217-31.
Zanella A, Fermo E, Bianchi P, Valentini G. “Red cell pyruvate kinase deficiency: molecular and clinical aspects.” Br J Haematol. 2005; 130(1):11-25.
Zhang, C., et al., “Synergistic anti-tumor activity of gemcitabine and ABT-737 in vitro and in vivo through disrupting the interaction of USP9X and Mcl-1”, Molecular Cancer Therapeutics, (May 12, 2011).
Zhang, C., et al., “USP9X destabilizes pVHL and promotes cell proliferation”, Oncotarget, vol. 7, No. 37, pp. 60519-60534, (2016).
Zhang, Yongmin et al., “Organic reactions in chiral micelles. 7. The structural effects on the asymmetric oxidation of prochiral sulfides in chiral micelles”, Chinese Journal of Chemistry, (1990), pp. 89-96.
Zhao, Y., et al., “Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase”, EMBO Journal, vol. 34, No. 12, pp. 1687-1703, (2015).
Zhi et al., Hybrid Antibacterals. DNA Polymerase—Topoisomerase Inhibitors. J. Med. Chem., published on Web Jan. 25, 2006., vol. 49, pp. 1455-1465, especially p. 1456. Scheme 3, compound 4; p. 1457, Scheme 4, compound 13, p. 1462.
Zhou, L., et al., “The Scaffold Protein KSR1, A Novel Therapeutic Target for the Treatment of Merlin-Deficient Tumors”, Oncogene 35(26), pp. 3443-3453, (Jun. 2016).
Zhou, ZH et al., Phosphorus, Sulfur and Silicon and the Related Elements (1999), 152, pp. 45-52. Chemical Abstract No. 132: 180853.
Zhu, Tong et al., Polymer-Supported Synthesis of Pyridone-Focused Libraries as Inhibitors of Anaplastic Lymphoma Kinase, Journal of Combinatorial Chemistry, 8(3), (2006), pp. 401-409.
Chemical Abstracts Service Registry Database, CAS Registry No. 1208929-16-1, Tert-Butyl 1H,2H,3H,4H,5H,6H-Pyrrolo[3,4-C]Pyrrole-2-Carboxylate Hydrochloride (Mar. 11, 2010).
Frost, David A., et al., “Naturally occurring compounds related to phenalenone. V. Synthetic approaches to structures based on 8,9-dihydro-8,8,9-trimethylphenaleno [1,2-b] furan-7-one”, Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1973), pp. 2159-2169.
Written Opinion of the International Searching Authority of PCT/US2018/023405 (dated Jun. 5, 2018).
Castilhos, L. G., et al., “Sickle cell anemia induces changes in peripheral lymphocytes E-NTPDase-E-ADA activities and cytokines secretion in patients under treatment,” Biomedicine & Pharmacotherapy 73 (2015) pp. 102-108.
Thompson, Alexis, M.D., M.P.H., “A Targeted Agent for Sickle Cell Disease—Changing the Protein but not the Gene,” The New England Journal of Medicine, Downloaded from nejm.org by Vishnu Daesety, published on-line on Jun. 14, 2019, pp. 1-2.
Related Publications (1)
Number Date Country
20200031839 A1 Jan 2020 US
Provisional Applications (1)
Number Date Country
62473751 Mar 2017 US
Continuations (2)
Number Date Country
Parent 16245654 Jan 2019 US
Child 16593523 US
Parent 15926236 Mar 2018 US
Child 16245654 US