COMPOSITIONS FOR CANCER TREATMENT AND METHODS AND USES FOR CANCER TREATMENT AND PROGNOSIS

Information

  • Patent Application
  • 20200078401
  • Publication Number
    20200078401
  • Date Filed
    December 07, 2017
    6 years ago
  • Date Published
    March 12, 2020
    4 years ago
Abstract
Global transcriptional profiling of CTLs in tumors and adjacent non-tumor tissue from treatment-naive patients with early stage lung cancer revealed molecular features associated with robustness of anti-tumor immune responses. Major differences in the transcriptional program of tumor-infiltrating CTLs were observed that are shared across tumor subtypes. Pathway analysis revealed enrichment of genes in cell cycle, T cell receptor (TCR) activation and co-stimulation pathways, indicating tumor-driven expansion of presumed tumor antigen-specific CTLs. Marked heterogeneity in the expression of molecules associated with TCR activation and immune checkpoints such as 4-1BB, PD1, TIM3, was also observed and their expression was positively correlated with the density of tumor-infiltrating CTLs. Transcripts linked to tissue-resident memory cells (TRM), such as CD 103, were enriched in tumors containing a high density of CTLs, and CTLs from CD 103high tumors displayed features of enhanced cytotoxicity, implying better anti-tumor activity. In an independent cohort of 689 lung cancer patients, patients with CD103high (TRM rich) tumors survived significantly longer. In summary, the molecular fingerprint of tumor-infiltrating CTLs at the site of primary tumor was defined and a number of novel targets identified that appear to be important in modulating the magnitude and specificity of anti-tumor immune responses in lung cancer.
Description
BACKGROUND

Throughout and within this disclosure reference is made to patent and technical literature by reference to an identifying citation or an Arabic numeral, the complete bibliographic information for which is found immediately preceding the claims. These disclosure provide a background of the state of the art to which this disclosure pertains.


Immunotherapy is rapidly gaining its place as a standard treatment for solid tumors1, 2, including lung cancer3. Nonetheless, only ˜30% of patients benefit from this approach4.


Much remains to be learned about how immunotherapies work and how to choose the right treatment or combination for a particular patient. Understanding the mechanisms and molecular basis of effective anti-tumor immune responses will be essential to develop novel immunotherapeutic agents for those patients who do not respond to currently available immunotherapies.


Immunotherapies are thought to enhance the antitumor responses of cytotoxic T lymphocytes (CTLs) i.e., CD8+ T cells that infiltrate into the tumor5. Indeed, a high density of tumor-infiltrating lymphocytes (TIL) predicts good prognosis in a wide range of cancers, and in some, is the most important predictor of patient survival, surpassing standard pathological and clinical staging6, 7. However, it remains unclear why the degree of infiltration by TILs varies significantly even between individuals with the same cancer. It is also unknown whether there are merely quantitative differences in the number of TILs or whether qualitative differences also exist in TILs from tumors with high TIL density that may contribute to the superior outcome seen in these patients. An understanding of the TIL transcriptome and the molecular basis of TIL heterogeneity could lead not only to novel biomarkers for patient stratification for therapy but also identify novel immune pathways to be targeted by future immunotherapeutic strategies. This disclosure provides these benefits and provides related advantages as well.


SUMMARY OF THE DISCLOSURE

Aspects of this disclosure relate to selecting and/or modifying cells for the treatment of cancer, as well as diagnosing and assessing cancer prognosis and/or survival.


Aspects of this disclosure relate to methods of treating cancer in a subject and/or eliciting an anti-tumor response comprising, or alternatively consisting essentially of, or yet further consisting of, administering to the subject and/or contacting the tumor or a tumor cell with, respectively, an effective amount of a population of T-cells that exhibit one or more of the following characteristics:

    • (i) higher than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (ii) lower than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (iii) higher than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (iv) lower than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (v) higher than baseline expression of one or more genes set forth in Table 12; and/or
    • (vi) lower than baseline expression of one or more genes set forth in Table 13.


In some embodiments, the T-cells are CD8+ and/or tumor infiltrating lymphocytes (TILs). Such embodiments include (i) to (iv) but are not limited to listed above. In some embodiments, the T-cells are tissue-resident memory cells (TRM). Such embodiments include (v) and (vi) listed above. Similar aspects relate to methods of treating cancer in a subject and/or eliciting an anti-tumor response comprising, or alternatively consisting essentially of, or yet further consisting of, administering to the subject and/or contacting the tumor or a tumor cell with, respectively, an effective amount of one or more an active agent that induces in T-cells, one or more of:

    • (i) higher than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (ii) lower than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (iii) higher than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (iv) lower than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (v) higher than baseline expression of one or more genes set forth in Table 12; and/or
    • (vi) lower than baseline expression of one or more genes set forth in Table 13.


In some embodiments, the T-cells are CD8+ and/or tumor infiltrating lymphocytes (TILs). Such embodiments include but are not limited to (i) to (iv) listed above. In some embodiments, the T-cells are tissue-resident memory cells (TRM). Such embodiments include (v) and (vi) listed above. In some embodiments, the active agent is an antibody, a small molecule, or a nucleic acid.


Additional aspects relate to methods of modulating protein expression in a subject or a sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that induces in T-cells, higher or lower than baseline expression of one or more proteins encoded by the genes set forth in any one of Tables 1-13 to the subject or sample, optionally one or more of:

    • (i) higher than baseline expression of one or more proteins encoded by genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (ii) lower than baseline expression of one or more proteins encoded by genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (iii) higher than baseline expression of proteins encoded by genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (iv) lower than baseline expression of proteins encoded by genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (v) higher than baseline expression of one or more proteins encoded by genes set forth in Table 12; and/or
    • (vi) lower than baseline expression of one or more proteins encoded by genes set forth in Table 13.


Additional aspects relate to methods of modulating protein activity in a subject or a sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that modulates in T-cells, one or more proteins encoded by the genes set forth in any one of Tables 1-13 to the subject or sample, optionally one or more of:

    • (i) induce activity of one or more proteins encoded by genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (ii) inhibit activity of one or more proteins encoded by genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (iii) induce activity of one or more proteins encoded by genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (iv) inhibit activity of one or more of proteins encoded by genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (v) induce activity of one or more proteins encoded by genes set forth in Table 12; and/or
    • (vi) inhibit activity of one or more proteins encoded by genes set forth in Table 13.


In some embodiments, the method is effective for treating cancer in a subject and/or eliciting an anti-tumor response; thus, the method comprises, or alternatively consists essentially of, or yet further consists of, administering the agent to the subject and/or contacting the tumor or a tumor cell with the agent, respectively. In some embodiments, the T-cells are CD8+ and/or tumor infiltrating lymphocytes (TILs). Such embodiments include but are not limited to (i) to (iv) listed above. In some embodiments, the T-cells are tissue-resident memory cells (T w). Such embodiments include (v) and (vi) listed above. In some embodiments, the active agent is an antibody, a small molecule, or a nucleic acid.


Still further aspects relate to a modified T-cell, which is modified to exhibit one or more of:

    • (i) higher than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (ii) lower than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (iii) higher than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (iv) lower than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (v) higher than baseline expression of one or more genes set forth in Table 12; and/or
    • (vi) lower than baseline expression of one or more genes set forth in Table 13.


In some embodiments, the T-cells are CD8+. Such embodiments include but are not limited to (i) to (iv) listed above. In some embodiments, the T-cells are tissue-resident memory cells (TRM). Such embodiments include (v) and (vi) listed above. In some embodiments, the T-cell is modified using techniques of genetic modification, such as but not limited to those techniques employing recombinant methods and/or CRISPR/Cas systems. In some embodiments, the T-cell is further modified to express a protein that binds to a cytokine, chemokine, lymphokine, or a receptor each thereof and/or CD19. In further embodiments, this protein comprises, or alternatively consists essentially of, or yet further consisting of, an antibody or antigen binding fragment thereof, optionally wherein the antibody is IgG, IgA, IgM, IgE or IgD, or a subclass thereof or the antigen binding fragment is an Fab, Fab′, F(ab′)2, Fv, Fd, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv) or VL or VH. Regarding antibodies, non-limiting exemplary subclasses of IgG relevant to aspects disclosed herein include but are not limited to IgG1, IgG2, IgG3 and IgG4.


Further aspects relate to compositions comprising, or alternatively consisting essentially of, or yet further consisting of, the aforementioned modified T-cell. Still further aspects relate to treating cancer in a subject and/or eliciting an anti-tumor response with one or more of the modified T-cell and/or compositions disclosed herein.


Some aspects relate to diagnostic and prognostic methods utilizing the expression profiles disclosed herein above.


For example, aspects disclosed herein relate to a method of determining the density of tumor infiltrating lymphocytes (TILs), optionally T-cells, in a cancer, tumor, or sample thereof comprising, or alternatively consisting essentially of, or yet further consisting of, measuring expression of one or more gene selected from the group of 4-1BB, PD-1, or TIM3 in the cancer, tumor, or sample thereof, wherein higher than baseline expression indicates higher density of TILs in the cancer, tumor, or sample thereof. Additional aspects relate to a method to determine the density of tissue-resident memory cells (TRM), optionally T-cells, in a cancer, tumor, or sample thereof comprising, or alternatively consisting essentially of, or yet further consisting of, measuring the level of CD103 in the cancer, tumor, or sample thereof, wherein higher than baseline levels of CD103 indicates a high density of TRM in the cancer, tumor, or sample thereof. In some method aspects, prognosis of a subject having cancer is determined based on the density of TILs and/or TRM in the cancer or a sample thereof, i.e. wherein a high density of TILs and/or TRM indicates an increased probability and/or duration of survival. As disclosed herein, measuring CD103 levels can be used to determine density of TRM. Thus, density or frequency of CD103 can serve as a prognostic indicator in the same manner as density of TRM. Further, in embodiments relating to the density of TILs, these cells can be enriched for TRM, for example by contacting the TILs with an effective amount of an active agent that induces higher than baseline expression of one or more genes set forth in Table 12 and/or an active agent that induces lower than base line expression of one or more genes set forth in Table 13 in TILs. As noted above, such an active agent can optionally be an antibody, a small molecule, or a nucleic acid. It is appreciated that in such an enriched population, in some embodiments, the TILs enriched for TRM have enhanced cytotoxicity and proliferation.


Further aspects relate to a method of diagnosing, determining prognosis in a subject, and/or responsiveness to cancer therapy by detecting the presence of one or more of:

    • (i) one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8, wherein higher than baseline levels is diagnostic of cancer and/or indicates an increased probability and/or duration of survival and/or indicates that the subject is likely to respond to cancer therapy;
    • (ii) one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8, wherein lower than baseline levels is diagnostic of cancer and/or indicates an increased probability and/or duration of survival and/or indicates that the subject is likely to respond to cancer therapy;
    • (iii) one or more genes set forth in Table 12, wherein higher than baseline levels is diagnostic of cancer and/or indicates an increased probability and/or duration of survival and/or indicates that the subject is likely to respond to cancer therapy; and/or
    • (iv) one or more genes set forth in Table 13, wherein lower than baseline levels is diagnostic of cancer and/or indicates an increased probability and/or duration of survival and/or indicates that the subject is likely to respond to cancer therapy.


In some embodiments, the T-cells are CD8+ and/or tumor infiltrating lymphocytes (TILs). Such embodiments include but are not limited to (i) to (ii) listed above. In some embodiments, the T-cells are tissue-resident memory cells (TRM). Such embodiments include (iii) and (iv) listed above. In further embodiments of these aspects, the detection is conducted by contacting the cancer, tumor, or sample (as relevant) with an agent, optionally including a detectable label or tag. The detectable label or tag can comprise a radioisotope, a metal, horseradish peroxidase, alkaline phosphatase, avidin or biotin. Further, the agent may comprise a polypeptide that binds to an expression product encoded by the gene, or a polynucleotide that hybridizes to a nucleic acid sequence encoding all or a portion of the gene or that binds to an expression product encoded by the gene, or a polynucleotide that hybridizes to a nucleic acid sequence encoding all or a portion of the gene. In some aspects, the polypeptide comprises, or alternatively consisting essentially of, or yet further consisting of, an antibody, an antigen binding fragment thereof, or a receptor that binds to the gene.


Further exemplary aspects are disclosed herein, including: a method of determining prognosis of a subject having cancer, optionally lung cancer, comprising, or alternatively consisting essentially of, or yet further consisting of, contacting tumor infiltrating lymphocytes (TILs) of the cancer or a sample thereof with an antibody that recognizes and binds CD103 to determine the frequency of CD103+ TILs, wherein a high frequency of CD103+ TILs indicates an increased probability and/or duration of survival; a method of determining the responsiveness of a subject having cancer to immunotherapy comprising, or alternatively consisting essentially of, or yet further consisting of, contacting tumor infiltrating lymphocytes (TILs) of the cancer or a sample thereof with an antibody that recognizes and binds CD8, and antibody that recognizes and binds PD-1, an antibody that recognizes and binds TIM3, an antibody that recognizes and binds LAG3, and an antibody that recognizes and binds CTLA4 to determine the frequency of CD8+PD1+, CD8+TIM3+, CD8+LAG3+, CD8+CTLA4+, CD8+PD1+TIM3+, CD8D+PD1+LAG3+, CD8+PD1+CTLA4+, CD8+TIM3+LAG3+, CD8+TIM3+CTLA4+, CD8+LAG3+CTLA4+, CD8+PD1+TIM3+LAG3+, CD8+PD1+LAG3+CTLA4+, or CD8+PD1+TIM3+CTLA4+ TILs, wherein a high frequency of one or more of these TILs indicates responsiveness to immunotherapy


a method of determining the responsiveness of a subject having cancer to immunotherapy comprising, or alternatively consisting essentially of, or yet further consisting of, contacting tumor infiltrating lymphocytes (TILs) of the cancer or a sample thereof with an antibody that recognizes and binds CD8, and antibody that recognizes and binds S1PR1, and an antibody that recognizes and binds KLF2 to determine the frequency of CD8+S1PR1- or CD8+KLF2− TILs, wherein a high frequency of one or more of these TILs indicates an increased responsiveness to immunotherapy.


It is appreciated that in any such embodiment disclosed herein, such as the exemplary embodiments of the paragraph above, similar embodiments may include the use of antibodies or detection of expression of one or more proteins encoded by one or more genes or related genes in pathways disclosed in Tables 1-13. Non-limiting exemplary embodiments thereof are described in the claims below.


In aspects where responsiveness to therapy for example, cancer therapy or immunotherapy, is assessed further embodiments may include the administration of the therapy to the subject being assessed. Non-limiting examples of cancer therapies include but are not limited to chemotherapy, immunotherapy, and/or radiation therapy.


It is understood that, in the aforementioned aspects and embodiments, baseline expression refers to normalized mean gene expression. Thus, in further embodiments, higher than baseline expression refers to at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.


More generally, the term “baseline” is employed to refer to the condition of the cells absent exposure to a tumor or cancer. And, unless explicitly stated otherwise, terms of degree such as “higher” and “lower” are used in reference to a “baseline” value calculated thusly.


It is also understood in aspects relating to the use of an antibody or antigen binding fragment thereof, the full scope of these terms are intended. For examples, antibodies may be of any class and/or subclass, including but not limited to IgG, IgA, IgM, IgE or IgD, or a subclass thereof. Exemplary subclasses of IgG are provided herein and include IgG1, IgG2, IgG3 and IgG4. Antigen binding fragments may comprise a variety of antibody components, e.g. the antigen binding fragment may be a Fab, Fab′, F(ab′)2, Fv, Fd, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv) or VL or VH.


In general, it is noted that agents or antibodies disclosed herein can be contacted with the cancer, tumor, or sample in conditions under which it can bind to the gene or protein it targets to assess expression and/or presence of the aforementioned genes or proteins.


Analytic techniques useful for the purposes of detection required by some method aspects include but are not limited to immunohistochemistry (IHC), in-situ hybridization (ISH), ELISA, immunoprecipitation, immunofluorescence, chemiluminescence, radioactivity, X-ray, nucleic acid hybridization, protein-protein interaction, immunoprecipitation, flow cytometry, Western blotting, polymerase chain reaction, DNA transcription, Northern blotting, and Southern blotting.


To the extent that samples are required in the method aspects disclosed herein they can optionally comprise comprises cells, tissue, or an organ biopsy; be an epithelial sample; originate from lung, respiratory or airway tissue or organ, a circulatory tissue or organ, a skin tissue, bone tissue, or muscle tissue; and/or originate from head, neck, brain, skin, bone, or blood. Likewise, the term cancer or tumor may refer to a cancer or tumor in the head, neck, lung, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, brain, or comprises a lymphoma, breast, endometrium, uterus, ovary, testes, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, or brain; and can include a metastasis from the primary cancer or a recurring tumor, cancer or neoplasia; and/or comprising a non-small cell lung cancer (NSCLC) or head and neck squamous cell cancer (HNSCC).





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1. Core CD8+ TIL transcriptional profile. FIG. 1: GSEA of various gene sets in the transcriptome of CD8+ TILs versus that of CD8+N-TILs from donors with NSCLC, presented as the running enrichment score (RES) for the gene set as the analysis ‘walks down’ the ranked list of genes (reflective of the degree to which the gene set is over-represented at the top or bottom of the ranked list of genes) (top), the position of the gene-set members (vertical lines) in the ranked list of genes (middle), and the value of the ranking metric (bottom). P values, Kolmogorov-Smirnov test. Data are from one experiment with n=32 donors (lung N-TILs), n=36 donors (NSCLC TILs) and n=41 donors (HNSCC TILs).



FIGS. 2A-2F. Pathways for which CD8+ TILs show enrichment. FIG. 2A: Analysis of canonical pathways from the Ingenuity pathway analysis database (horizontal axis; bars in plot) for which CD8+ TILs show enrichment, presented as the frequency of differentially expressed genes encoding components of each pathway that are upregulated or downregulated (key) in CD8+ TILs relative to their expression in CD8+N-TILs (left vertical axis), and adjusted P values (right vertical axis; line; Fisher's exact test); numbers above bars indicate total genes in each pathway. HBCS, hereditary breast cancer signaling; BRCA, tumor suppressor; RA, rheumatoid arthritis; CHK, checkpoint kinase; APRIL, proliferation-inducing ligand; dTMP, deoxythymidine monophosphate; NF-κB, transcription factor; iNOS, inducible nitric oxide synthase. FIG. 2B: Overlap of genes encoding components of the cell-cycle and proliferation pathways in CD8+ TILs and in CD8+N-TILs: numbers in parentheses indicate total genes in each pathway; numbers along lines indicate total genes shared by the pathways connected by the line. FIG. 2C: RNA-Seq analysis of PLK1 (encoding the serine-threonine kinase PLK1), CCNB1 (encoding cyclin B1), 4-1BB, CD27 and JUN (encoding the transcription factor c-Jun) in lung N-TILs and NSCLC TILs (key in FIG. 2F). Each symbol represents an individual sample. FIG. 2D: Ingenuity pathway analysis of genes upregulated in CD8+ TILs relative to their expression in N-TILs (yellow), encoding components of the canonical 4-1BB and CD27 signaling pathways (shape indicates function (key)) in lymphocytes. FIG. 2E: Flow-cytometry analysis of the surface expression of 4-1BB and CD8 on live and singlet-gated CD45+CD3+ T cells obtained from peripheral blood mononuclear cells (PBMC), lung N-TILs and NSCLC TILs (above plots) from the same patient. Numbers in quadrants indicate percent cells in each throughout; red indicates percent cells among TILs throughout. FIG. 2F: Quantification of clonotypes (average values) among CD8+N-TILs and NSCLC CD8+ TILs (key) according to their frequency in each donor (horizontal axis), derived from RNA-Seq analysis of genes encoding TCR 3-chains. Small horizontal lines indicate the mean (±s.e.m.). *P<0.05 (unpaired Student's two-tailed t-test).



FIG. 3. Heterogeneity in the expression of immunotherapy target molecules. FIG. 3 shows RNA-Seq analysis of PDCD1, 4-1BB, HAVCR2, LAG3 and TIGIT in N-TILS and TILs from TILhigh or TILlow tumors (key).



FIG. 4A-4F. Tissue residency features in TILhigh tumors. FIG. 4A: RNA-Seq analysis of ITGAE, CXCR6, SIPR1, KLF2 and STK38. Each symbol (bottom) represents an individual sample; small horizontal lines indicate the mean (±s.e.m.). FIG. 4B: Immunohistochemistry microscopy of CD8α, PD-1 and CD103 (above images) in TILlow and TILhigh NSCLC tumors (left margin). Scale bars, 100 μm. FIG. 4C: Flow-cytometry analysis of the surface expression of CD8 and CD103 (top), PD-1 and CD103 (middle) and 4-1BB and CD103 (bottom) on live and singlet-gated CD45+CD3+ T cells obtained from peripheral blood mononuclear cells, lung N-TILs and NSCLC TILs (above plots) from the same patient. FIG. 4D: Flow-cytometry analysis of the expression of CD69 or CD49a versus that of CD103 (top row, left and middle), and of KLRG1, CD62L or CCR7 versus that of CD103 (bottom row) in live and singlet-gated CD45+CD3+CD8+ T cells; top right, overlay of CD103+CD8+ TILs with CD103−CD8+ TILs. FIG. 4E: GSEA of TRM cell signature genes upregulated (top) or downregulated (bottom) in the transcriptome of CD8+ TILs from NSCLC TILhigh tumors relative to their expression in other TILs and N-TILs. FIG. 4F: Ingenuity pathway analysis of upregulated transcripts (perimeter) in NSCLC TILhigh tumors that are regulated by interferon-γ (arrows) and encode products with various functions (key); an arrow indicates an unpredicted effect of IFN-γ.



FIG. 5A-5G. CD103 density predicts survival in lung cancer. FIG. 5A: RNA-Seq analysis of DLGAP5, CDC20, AURKB, CCNB2A and BIRC5, all encoding products linked to cell cycle and proliferation. Each symbol (bottom) represents an individual sample; small horizontal lines indicate the mean (±s.e.m). FIG. 5B: Flow-cytometry analysis of the expression of Ki67 and CD103 in live and singlet-gated CD45+CD3+CD8+ T cells obtained from peripheral blood mononuclear cells, lung N-TILs and NSCLC TILs (above plots) from the same patient. FIG. 5C: Expression of GZMB, GZMA and IFNG transcripts (log 2 normalized counts) in cells as in 5A (key). FIG. 5D: Expression of granzyme B (mean fluorescence intensity (MFI)) in CD8+ TILs from CD103low tumors (n=5) or CD103high tumors (n=7) (top left), and flow-cytometry analysis of the expression of granzynne B, granzyme A, perforin, CD107a (LAMP-1) or IFN-γ versus that of CD103 in live and singlet-gated CD45+CD3+CD8+ T cells obtained from NSCLC TILs. *P=0.0025 (Mann-Whitney test). FIGS. 5E and 5F: Survival of patients (n=689) with lung cancer, with a low density (CD81low) or high density (CD8high) of CD8+ cells (key) in tumors (FIG. 5E) or a low density (CD103low) or high density (CD103high) of CD103− cells (key) in tumors (FIG. 5F), presented as Kaplan-Meier curves. NS, P=0.086 (FIG. 5G), and *P=0.043 (FIG. 5F) (log-rank test). FIG. 5G: Survival of patients with lung cancer with CD8high tumors sub-classified according to the density of CD103-expressing cells (key) (right), presented as Kaplan-Meier curves. *P=0.036 (log-rank test). Each symbol (FIGS. 5C/5D) represents an individual sample (FIG. 5C) or patient (FIG. 5D); small horizontal lines indicate the mean (±s.e.m.).



FIGS. 6A-6B. FIG. 6A: Expression of gene transcripts (log 2 normalized counts) in N-TILs or in NSCLC CD8+ TILs from CD103high or CD103low tumors (key). FIG. 6B: Flow-cytometry analysis of the expression of KIR2DL4, CD38 or CD39 versus that of CD103 in live and singlet-gated CD45+CD3+CD8+ T cells obtained from NSCLC TILs (left), and frequency of CD38+ cells or CD39+ cells among CD8+CD103− TILs or CD8+CD103+ TILs (key). *P=0.0006, CD38+ cells, or P<0.0001, CD39+ cells (paired Student's two-tailed t-test). Each symbol (FIGS. 6A-6B) represents an individual patient or sample; small horizontal lines (FIG. 6A) indicate the mean (±s.e.m.); diagonal lines (FIG. 6B) connect data from the same patient.



FIGS. 7A-7C. FIG. 7A Ingenuity pathway analysis of genes downregulated in CD8+ TILs from NSCLC TILhigh tumors relative to their expression in TILlow tumors, encoding molecules associated with tissue egress (shape indicates function (key)). FIG. 7B Flow-cytometry analysis of the expression of CD69, CD49a, KLRG1, CD62L or CCR7 versus that of CD103 in live and singlet-gated CD45+CD3+CD8+ T cells obtained from NSCLC TILs (left); frequency of CD103+CD8+ or CD103−CD8+ TILs (n==6) that express the indicated surface marker (right). * P=0.0025 (CD69), P=0.0025 (CD49a), P=0.0016 (KLRG1), P=0.0021 (CD62L) (paired Student's two-tailed t-test). FIG. 7C Analysis of canonical pathways from the Ingenuity pathway analysis database (horizontal axis; bars in plot) for which CD8+ TILs from NSCLC TILhigh tumors show enrichment (presented as in FIG. 2A) relative to their expression in TILlow tumors (P values as in FIG. 2A). Each symbol (FIG. 7B) represents an individual sample; small horizontal lines indicate the mean (±s.e.m.). Data are from one experiment (FIG. 7A, 7C) or from six experiments (FIG. 7B).



FIGS. 8A-8C show RNA-Seq analysis of NSCLC CD103+CD8+ (TRMs, right most; tumor+) and CD103−CD8+(non-TRMs, second from right; tumor −) TILs and CD103+CD8+(TRMs, second from left; non-tumor+) and CD103−CD8+ (non-TRMs, left most; non-tumor −) NTILs from lung cancer patients (n>20). The expression of the indicated transcripts is represented as bar graphs (Transcript per million (TPM) counts; error bars are mean±SEM); each dot represents data from a single patient.





DETAILED DESCRIPTION OF THE DISCLOSURE

It is to be understood that the present disclosure is not limited to particular aspects described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.


Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this technology belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present technology, the preferred methods, devices and materials are now described. All technical and patent publications cited herein are incorporated herein by reference in their entirety. Nothing herein is to be construed as an admission that the present technology is not entitled to antedate such disclosure by virtue of prior invention.


The practice of the present technology will employ, unless otherwise indicated, conventional techniques of tissue culture, immunology, molecular biology, microbiology, cell biology, and recombinant DNA, which are within the skill of the art. See, e.g., Sambrook and Russell eds. (2001) Molecular Cloning: A Laboratory Manual, 3rd edition; the series Ausubel et al. eds. (2007) Current Protocols in Molecular Biology; the series Methods in Enzymology (Academic Press, Inc., N.Y.); MacPherson et al. (1991) PCR 1: A Practical Approach (IRL Press at Oxford University Press); MacPherson et al. (1995) PCR 2: A Practical Approach; Harlow and Lane eds. (1999) Antibodies, A Laboratory Manual; Freshney (2005) Culture of Animal Cells: A Manual of Basic Technique, 5th edition; Gait ed. (1984) Oligonucleotide Synthesis; U.S. Pat. No. 4,683,195; Hames and Higgins eds. (1984) Nucleic Acid Hybridization; Anderson (1999) Nucleic Acid Hybridization; Hames and Higgins eds. (1984) Transcription and Translation; Immobilized Cells and Enzymes (IRL Press (1986)); Perbal (1984) A Practical Guide to Molecular Cloning; Miller and Calos eds. (1987) Gene Transfer Vectors for Mammalian Cells (Cold Spring Harbor Laboratory); Makrides ed. (2003) Gene Transfer and Expression in Mammalian Cells; Mayer and Walker eds. (1987) Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); and Herzenberg et al. eds (1996) Weir's Handbook of Experimental Immunology.


All numerical designations, e.g., pH, temperature, time, concentration, and molecular weight, including ranges, are approximations which are varied (+) or (−) by increments of 1.0 or 0.1, as appropriate, or alternatively by a variation of +/−15%, or alternatively 10%, or alternatively 5%, or alternatively 2%. It is to be understood, although not always explicitly stated, that all numerical designations are preceded by the term “about”. It also is to be understood, although not always explicitly stated, that the reagents described herein are merely exemplary and that equivalents of such are known in the art.


It is to be inferred without explicit recitation and unless otherwise intended, that when the present technology relates to a polypeptide, protein, polynucleotide or antibody, an equivalent or a biologically equivalent of such is intended within the scope of the present technology.


Definitions

As used in the specification and claims, the singular form “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a cell” includes a plurality of cells, including mixtures thereof.


As used herein, the term “animal” refers to living multi-cellular vertebrate organisms, a category that includes, for example, mammals and birds. The term “mammal” includes both human and non-human mammals.


The terms “subject,” “host,” “individual,” and “patient” are as used interchangeably herein to refer to human and veterinary subjects, for example, humans, animals, non-human primates, dogs, cats, sheep, mice, horses, and cows. In some embodiments, the subject is a human.


As used herein, the term “antibody” collectively refers to immunoglobulins or immunoglobulin-like molecules including by way of example and without limitation, IgA, IgD, IgE, IgG and IgM, combinations thereof, and similar molecules produced during an immune response in any vertebrate, for example, in mammals such as humans, goats, rabbits and mice, as well as non-mammalian species, such as shark immunoglobulins. Unless specifically noted otherwise, the term “antibody” includes intact immunoglobulins and “antibody fragments” or “antigen binding fragments” that specifically bind to a molecule of interest (or a group of highly similar molecules of interest) to the substantial exclusion of binding to other molecules (for example, antibodies and antibody fragments that have a binding constant for the molecule of interest that is at least 103 M−1 greater, at least 104 M−1 greater or at least 105 M−1 greater than a binding constant for other molecules in a biological sample). The term “antibody” also includes genetically engineered forms such as chimeric antibodies (for example, humanized murine antibodies), heteroconjugate antibodies (such as, bispecific antibodies). See also, Pierce Catalog and Handbook, 1994-1995 (Pierce Chemical Co., Rockford, Ill.); Kuby, J., Immunology, 3rd Ed., W.H. Freeman & Co., New York, 1997. An “antigen binding fragment” of an antibody is a portion of an antibody that retains the ability to specifically bind to the target antigen of the antibody.


As used herein, the term “monoclonal antibody” refers to an antibody produced by a single clone of B-lymphocytes or by a cell into which the light and heavy chain genes of a single antibody have been transfected. Monoclonal antibodies are produced by methods known to those of skill in the art, for instance by making hybrid antibody-forming cells from a fusion of myeloma cells with immune spleen cells. Monoclonal antibodies include humanized monoclonal antibodies and human antibodies.


In terms of antibody structure, an immunoglobulin has heavy (H) chains and light (L) chains interconnected by disulfide bonds. There are two types of light chain, lambda (λ) and kappa (κ). There are five main heavy chain classes (or isotypes) which determine the functional activity of an antibody molecule: IgM, IgD, IgG, IgA and IgE. Each heavy and light chain contains a constant region and a variable region, (the regions are also known as “domains”). In combination, the heavy and the light chain variable regions specifically bind the antigen. Light and heavy chain variable regions contain a “framework” region interrupted by three hypervariable regions, also called “complementarity-determining regions” or “CDRs”. The extent of the framework region and CDRs have been defined (see, Kabat et al., Sequences of Proteins of Immunological Interest, U.S. Department of Health and Human Services, 1991, which is hereby incorporated by reference). The Kabat database is now maintained online. The sequences of the framework regions of different light or heavy chains are relatively conserved within a species. The framework region of an antibody, that is the combined framework regions of the constituent light and heavy chains, largely adopts a 3-sheet conformation and the CDRs form loops which connect, and in some cases form part of, the (3-sheet structure. Thus, framework regions act to form a scaffold that provides for positioning the CDRs in correct orientation by inter-chain, non-covalent interactions.


The CDRs are primarily responsible for binding to an epitope of an antigen. The CDRs of each chain are typically referred to as CDR1, CDR2, and CDR3, numbered sequentially starting from the N-terminus, and are also typically identified by the chain in which the particular CDR is located. Thus, a VH CDR3 is located in the variable domain of the heavy chain of the antibody in which it is found, whereas a VL CDR1 is the CDR1 from the variable domain of the light chain of the antibody in which it is found. An antibody that binds DCLK1 will have a specific VH region and the VL region sequence, and thus specific CDR sequences. Antibodies with different specificities (i.e. different combining sites for different antigens) have different CDRs. Although it is the CDRs that vary from antibody to antibody, only a limited number of amino acid positions within the CDRs are directly involved in antigen binding. These positions within the CDRs are called specificity determining residues (SDRs).


As used herein, the term “antigen” refers to a compound, composition, or substance that may be specifically bound by the products of specific humoral or cellular immunity, such as an antibody molecule or T-cell receptor. Antigens can be any type of molecule including, for example, haptens, simple intermediary metabolites, sugars (e.g., oligosaccharides), lipids, and hormones as well as macromolecules such as complex carbohydrates (e.g., polysaccharides), phospholipids, and proteins. Common categories of antigens include, but are not limited to, viral antigens, bacterial antigens, fungal antigens, protozoa and other parasitic antigens, tumor antigens, antigens involved in autoimmune disease, allergy and graft rejection, toxins, and other miscellaneous antigens.


As used herein, the term “antigen binding domain” refers to any protein or polypeptide domain that can specifically bind to an antigen target.


A “composition” typically intends a combination of the active agent, e.g., an immune cell, an antibody, a compound or composition, and a naturally-occurring or non-naturally-occurring carrier, inert (for example, a detectable agent or label) or active, such as an adjuvant, diluent, binder, stabilizer, buffers, salts, lipophilic solvents, preservative, adjuvant or the like and include pharmaceutically acceptable carriers. Carriers also include pharmaceutical excipients and additives proteins, peptides, amino acids, lipids, and carbohydrates (e.g., sugars, including monosaccharides, di-, tri-, tetra-oligosaccharides, and oligosaccharides; derivatized sugars such as alditols, aldonic acids, esterified sugars and the like; and polysaccharides or sugar polymers), which can be present singly or in combination, comprising alone or in combination 1-99.99% by weight or volume. Exemplary protein excipients include serum albumin such as human serum albumin (HSA), recombinant human albumin (rHA), gelatin, casein, and the like. Representative amino acid/antibody components, which can also function in a buffering capacity, include alanine, arginine, glycine, arginine, betaine, histidine, glutamic acid, aspartic acid, cysteine, lysine, leucine, isoleucine, valine, methionine, phenylalanine, aspartame, and the like. Carbohydrate excipients are also intended within the scope of this technology, examples of which include but are not limited to monosaccharides such as fructose, maltose, galactose, glucose, D-mannose, sorbose, and the like; disaccharides, such as lactose, sucrose, trehalose, cellobiose, and the like; polysaccharides, such as raffinose, melezitose, maltodextrins, dextrans, starches, and the like; and alditols, such as mannitol, xylitol, maltitol, lactitol, xylitol sorbitol (glucitol) and myoinositol.


The term “consensus sequence” as used herein refers to an amino acid or nucleic acid sequence that is determined by aligning a series of multiple sequences and that defines an idealized sequence that represents the predominant choice of amino acid or base at each corresponding position of the multiple sequences. Depending on the sequences of the series of multiple sequences, the consensus sequence for the series can differ from each of the sequences by zero, one, a few, or more substitutions. Also, depending on the sequences of the series of multiple sequences, more than one consensus sequence may be determined for the series. The generation of consensus sequences has been subjected to intensive mathematical analysis. Various software programs can be used to determine a consensus sequence.


As used herein, the term “B cell,” refers to a type of lymphocyte in the humoral immunity of the adaptive immune system. B cells principally function to make antibodies, serve as antigen presenting cells, release cytokines, and develop memory B cells after activation by antigen interaction. B cells are distinguished from other lymphocytes, such as T cells, by the presence of a B-cell receptor on the cell surface. B cells may either be isolated or obtained from a commercially available source. Non-limiting examples of commercially available B cell lines include lines AHH-1 (ATCC® CRL-8146™), BC-1 (ATCC® CRL-2230™), BC-2 (ATCC® CRL-2231™), BC-3 (ATCC® CRL-2277™), CA46 (ATCC® CRL-1648™), DG-75 [D.G.-75] (ATCC® CRL-2625™), DS-1 (ATCC® CRL-11102™), EB-3 [EB3] (ATCC® CCL-85™), Z-138 (ATCC # CRL-3001), DB (ATCC CRL-2289), Toledo (ATCC CRL-2631), Pfiffer (ATCC CRL-2632), SR (ATCC CRL-2262), JM−1 (ATCC CRL-10421), NFS-5 C-1 (ATCC CRL-1693); NFS-70 C10 (ATCC CRL-1694), NFS-25 C-3 (ATCC CRL-1695), AND SUP-B15 (ATCC CRL-1929). Further examples include but are not limited to cell lines derived from anaplastic and large cell lymphomas, e.g., DEL, DL-40, FE-PD, JB6, Karpas 299, Ki-JK, Mac-2A Plyl, SR-786, SU-DHL-1, -2, -4, -5, -6, -7, -8, -9, -10, and -16, DOHH-2, NU-DHL-1, U-937, Granda 519, USC-DHL-1, RL; Hodgkin's lymphomas, e.g., DEV, HD-70, HDLM-2, HD-MyZ, HKB-1, KM-H2, L 428, L 540, L1236, SBH-1, SUP-HD1, SU/RH-HD-1. Non-limiting exemplary sources for such commercially available cell lines include the American Type Culture Collection, or ATCC, (www.atcc.org/) and the German Collection of Microorganisms and Cell Cultures (https://www.dsmz.de/).


As used herein, the term “T-cell,” refers to a type of lymphocyte that matures in the thymus. T cells play an important role in cell-mediated immunity and are distinguished from other lymphocytes, such as B cells, by the presence of a T-cell receptor (TCR) on the cell surface. T-cells may either be isolated or obtained from a commercially available source. “T-cell” includes all types of immune cells expressing CD3. Non-limiting examples of T-cells and markers for isolation thereof including naïve T cells (CCR7+, CD45RA+), double-negative T-cells (CD3+, CD4−, CD8−), CD4+ T-cells (such as but not limited to T-helper (“Th”) cells such as: T-regulatory cells, Tregs (CD25+), Th1 cells (CDCR3+, CCR5+), Th2 cells (CXCR4+, CCR3+, CCR4+, CCR5+, CCR7+, CD30+), Th17 cells (CD4+, IL-17A+) and naïve CD4+ T-cells (CD4+, CD45RA+, CD62L+)), CD8+ T-cells, natural killer T-cells, central memory T-cells (CCR7+, CD45RA−), effector memory T-cells (CCR7−, CD45RA−), and gamma-delta T cells. Natural killer T cells (NKT) co-express NK cell markers and a semi-invariant T cell receptor (TCR). They are implicated in the regulation of immune responses associated with a broad range of diseases. Non-limiting examples of commercially available T-cell lines include lines BCL2 (AAA) Jurkat (ATCC® CRL-2902™), BCL2 (S70A) Jurkat (ATCC® CRL-2900™), BCL2 (S87A) Jurkat (ATCC® CRL-2901™), BCL2 Jurkat (ATCC® CRL-2899™), Neo Jurkat (ATCC® CRL-2898™), TALL-104 cytotoxic human T cell line (ATCC # CRL-11386). Further examples include but are not limited to mature T-cell lines, e.g., such as Deglis, EBT-8, HPB-MLp-W, HUT 78, HUT 102, Karpas 384, Ki 225, My-La, Se-Ax, SKW-3, SMZ-1 and T34; and immature T-cell lines, e.g., ALL-SIL, Bel3, CCRF-CEM, CML-T1, DND-41, DU.528, EU-9, HD-Mar, HPB-ALL, H-SB2, HT-1, JK-T1, Jurkat, Karpas 45, KE-37, KOPT-K1, K-T1, L-KAW, Loucy, MAT, MOLT-1, MOLT 3, MOLT-4, MOLT 13, MOLT-16, MT-1, MT-ALL, P12/Ichikawa, Peer, PER0117, PER-255, PF-382, PFI-285, RPMI-8402, ST-4, SUP-T1 to T14, TALL-1, TALL-101, TALL-103/2, TALL-104, TALL-105, TALL-106, TALL-107, TALL-197, TK-6, TLBR-1, -2, -3, and -4, CCRF-HSB-2 (CCL-120.1), J.RT3-T3.5 (ATCC TIB-153), J45.01 (ATCC CRL-1990), J.CaM1.6 (ATCC CRL-2063), RS4;11 (ATCC CRL-1873), CCRF-CEM (ATCC CRM-CCL-119); and cutaneous T-cell lymphoma lines, e.g., HuT78 (ATCC CRM-TIB-161), MJ[G11] (ATCC CRL-8294), HuT102 (ATCC TIB-162). Null leukemia cell lines, including but not limited to REH, NALL-1, KM-3, L92-221, are another commercially available source of immune cells, as are cell lines derived from other leukemias and lymphomas, such as K562 erythroleukemia, THP-1 monocytic leukemia, U937 lymphoma, HEL erythroleukemia, HL60 leukemia, HMC-1 leukemia, KG-1 leukemia, U266 myeloma. Non-limiting exemplary sources for such commercially available cell lines include the American Type Culture Collection, or ATCC, (http://www.atcc.org/) and the German Collection of Microorganisms and Cell Cultures (https://www.dsmz.de/).


As used herein, the term “NK cell,” also known as natural killer cell, refers to a type of lymphocyte that originates in the bone marrow and play a critical role in the innate immune system. NK cells provide rapid immune responses against viral-infected cells, tumor cells or other stressed cell, even in the absence of antibodies and major histocompatibility complex on the cell surfaces. NK cells may either be isolated or obtained from a commercially available source. Non-limiting examples of commercial NK cell lines include lines NK-92 (ATCC® CRL-2407™), NK-92MI (ATCC® CRL-2408™). Further examples include but are not limited to NK lines HANK1, KHYG-1, NKL, NK-YS, NOI-90, and YT. Non-limiting exemplary sources for such commercially available cell lines include the American Type Culture Collection, or ATCC, (http://www.atcc.org/) and the German Collection of Microorganisms and Cell Cultures (https://www.dsmz.de/).


As used herein, the terms “nucleic acid sequence” and “polynucleotide” are used interchangeably to refer to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. Thus, this term includes, but is not limited to, single-, double-, or multi-stranded DNA or RNA, genomic DNA, cDNA, DNA-RNA hybrids, or a polymer comprising purine and pyrimidine bases or other natural, chemically or biochemically modified, non-natural, or derivatized nucleotide bases.


The term “encode” as it is applied to nucleic acid sequences refers to a polynucleotide which is said to “encode” a polypeptide if, in its native state or when manipulated by methods well known to those skilled in the art, can be transcribed and/or translated to produce the mRNA for the polypeptide and/or a fragment thereof. The antisense strand is the complement of such a nucleic acid, and the encoding sequence can be deduced therefrom.


As used herein, the term signal peptide or signal polypeptide intends an amino acid sequence usually present at the N-terminal end of newly synthesized secretory or membrane polypeptides or proteins. It acts to direct the polypeptide across or into a cell membrane and is then subsequently removed. Examples of such are well known in the art. Non-limiting examples are those described in U.S. Pat. Nos. 8,853,381 and 5,958,736.


As used herein, the term “vector” refers to a nucleic acid construct deigned for transfer between different hosts, including but not limited to a plasmid, a virus, a cosmid, a phage, a BAC, a YAC, etc. In some embodiments, plasmid vectors may be prepared from commercially available vectors. In other embodiments, viral vectors may be produced from baculoviruses, retroviruses, adenoviruses, AAVs, etc. according to techniques known in the art. In one embodiment, the viral vector is a lentiviral vector.


The term “promoter” as used herein refers to any sequence that regulates the expression of a coding sequence, such as a gene. Promoters may be constitutive, inducible, repressible, or tissue-specific, for example. A “promoter” is a control sequence that is a region of a polynucleotide sequence at which initiation and rate of transcription are controlled. It may contain genetic elements at which regulatory proteins and molecules may bind such as RNA polymerase and other transcription factors.


As used herein, the term “isolated cell” generally refers to a cell that is substantially separated from other cells of a tissue. “Immune cells” includes, e.g., white blood cells (leukocytes) which are derived from hematopoietic stem cells (HSC) produced in the bone marrow, lymphocytes (T cells, B cells, natural killer (NK) cells), myeloid-derived cells (neutrophil, eosinophil, basophil, monocyte, macrophage, dendritic cells), as well as precursors thereof committed to immune lineages. Precursors of T-cells are lineage restricted stem and progenitor cells capable of differentiating to produce a mature T-cell. Precursors of T-cells include HSCs, long term HSCs, short term HSCs, multipotent progenitor cells (MPPs), lymphoid primed multipotent progenitor cells (LMPPs), early lymphoid progenitor cells (ELPs), common lymphoid progenitor cells (CLPs), Pro-T-cells (ProT), early T-lineage progenitors/double negative 1 cells (ETPs/DN1), double negative (DN) 2a, DN2b, DN3a, DN3b, DN4, and double positive (DP) cells. Markers of such T-cell precursors in humans include but are not limited to: HSCs: CD34+ and, optionally, CD38-; long term HSCs: CD34+CD38- and lineage negative, wherein lineage negative means negative for one or more lineage specific markers selected from the group of TER119, Mac1, Gr1, CD45R/B220, CD3, CD4, and CD8; MPPs: CD34+CD38− CD45RA− CD90− and, optionally, lineage negative; CLP: CD34+CD38+CD10+ and, optionally, lineage negative; LMPP/ELP: CD45RA+CD62L+CD38− and, optionally, lineage negative; DN1: CD117− CD34+CD38−CD1a−; DN2: CD117+CD34+CD38+CD1a−; DN3: CD34+CD38+CD1a+; DN4: CD4+CD3−; DP: CD4+CD8+ and, optionally, CD3+. Precursors of NK cells are lineage restricted stem and progenitor cells capable of differentiating to produce a mature NK cell. NK precursors include HSCs, long term HSCs, short term HSCs, multipotent progenitor cells (MPPs), common myeloid progenitors (CMP), granulocyte-macrophage progenitors (GMP), pro-NK, pre-NK, and immature NK (iNK). Markers of such NK precursors include but are not limited to: CMP: CD56− CD36− CD33+CD34+ NKG2D− NKp46-; GMP: CD56− CD36-CD33+CD34+ NKG2D− NKp46-; pro-NK: CD34+CD45RA+CD10+CD117− CD161-; pre-NK: CD34+CD45RA+CD10− CD117+CD161+/−; and iNK: CD34− CD117+CD161+ NKp46− CD94/NKG2A−. In some aspects, markers of NK cell precursors include but are not limited to CD117+CD161+CD244+CD33+CD56− NCR− CD94/NKG2A- and LFA-1-.


Phenotyping reagents to detect precursor cell surface markers are available from, for example, BD Biosciences (San Jose, Calif.) and BioLegend (San Diego, Calif.). “T cell” includes all types of immune cells expressing CD3 including T-helper cells (CD4+ cells), cytotoxic T-cells (CD8+ cells), natural killer T-cells, T-regulatory cells (Treg) and gamma-delta T cells. A “cytotoxic cell” includes CD8+ T cells, natural-killer (NK) cells, and neutrophils, which cells are capable of mediating cytotoxicity responses.


Certain terms are used herein to describe subsets of immune cells categorized based on location and/or function. The term “tumor infiltrating lymphocytes” or “TILs” as used herein describes immune cells which have left the bloodstream and migrated into a tumor. The term “tissue resident memory cells” or “TRM” or “TRM” refers to cells that retain immune memory and reside in tissue without recirculating in the peripheral blood.


The term “transduce” or “transduction” as it is applied to the production of chimeric antigen receptor cells refers to the process whereby a foreign nucleotide sequence is introduced into a cell. In some embodiments, this transduction is done via a vector.


As used herein, the term “CRISPR” refers to a technique of sequence specific genetic manipulation relying on the clustered regularly interspaced short palindromic repeats pathway (CRISPR). CRISPR can be used to perform gene editing and/or gene regulation, as well as to simply target proteins to a specific genomic location. Gene editing refers to a type of genetic engineering in which the nucleotide sequence of a target polynucleotide is changed through introduction of deletions, insertions, or base substitutions to the polynucleotide sequence. In some aspects, CRISPR-mediated gene editing utilizes the pathways of nonhomologous end-joining (NHEJ) or homologous recombination to perform the edits. Gene regulation refers to increasing or decreasing the production of specific gene products such as protein or RNA.


The term “guide RNA” or “gRNA” as used herein refers to the guide RNA sequences used to target the CRISPR complex to a specific nucleotide sequence such as a specific region of a cell's genome. Techniques of designing gRNAs and donor therapeutic polynucleotides for target specificity are well known in the art. For example, Doench, J., et al. Nature biotechnology 2014; 32(12):1262-7, Mohr, S. et al. (2016) FEBS Journal 283: 3232-38, and Graham, D., et al. Genome Biol. 2015; 16: 260. gRNA comprises or alternatively consists essentially of, or yet further consists of a fusion polynucleotide comprising CRISPR RNA (crRNA) and trans-activating CRIPSPR RNA (tracrRNA); or a polynucleotide comprising CRISPR RNA (crRNA) and trans-activating CRIPSPR RNA (tracrRNA). In some aspects, a gRNA is synthetic (Kelley, M. et al. (2016) J of Biotechnology 233 (2016) 74-83).


As used herein, the term “autologous,” in reference to cells refers to cells that are isolated and infused back into the same subject (recipient or host). “Allogeneic” refers to non-autologous cells.


An “effective amount” or “efficacious amount” refers to the amount of an agent, or combined amounts of two or more agents, that, when administered for the treatment of a mammal or other subject, is sufficient to effect such treatment for the disease. The “effective amount” will vary depending on the agent(s), the disease and its severity and the age, weight, etc., of the subject to be treated.


As used herein, the term “cancer” refers to a disease characterized by the abnormal growth of cells caused by uncontrolled cell division. These cells may be malignant. A “neoplasia” is a new, abnormal growth of cells. A “tumor” is an abnormal mass of tissue that usually does not contain cysts or liquid areas. Tumors can be benign or malignant. Different types of tumors are named for the type of cells that form them. Examples of tumors include sarcomas, carcinomas, and lymphomas. The term “tumor” may optionally refer to a solid tumor. Malignant tumors may often shed “circulating tumor cells” or “CTCs” which are tumor cells that have shed into the vasculature or lymphatic system from a primary tumor and carried through these systems throughout the body. These CTCs may settle in another part of the body to generate additional tumors known as “metastases.” In some embodiments disclosed herein, the term cancer or tumor may refer to a cancer or tumor in the head, neck, lung, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, brain, or comprises a lymphoma, breast, endometrium, uterus, ovary, testes, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, or brain; comprising a metastasis or recurring tumor, cancer or neoplasia; and/or comprising a non-small cell lung cancer (NSCLC) or head and neck squamous cell cancer (HNSCC).


As used herein, the term “comprising” is intended to mean that the compositions and methods include the recited elements, but do not exclude others. “Consisting essentially of” when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination for the intended use. For example, a composition consisting essentially of the elements as defined herein would not exclude trace contaminants from the isolation and purification method and pharmaceutically acceptable carriers, such as phosphate buffered saline, preservatives and the like. “Consisting of” shall mean excluding more than trace elements of other ingredients and substantial method steps for administering the compositions disclosed herein. Aspects defined by each of these transition terms are within the scope of the present disclosure.


As used herein, the term “detectable marker” refers to at least one marker capable of directly or indirectly, producing a detectable signal. A non-exhaustive list of this marker includes enzymes which produce a detectable signal, for example by colorimetry, fluorescence, luminescence, such as horseradish peroxidase, alkaline phosphatase, (3-galactosidase, glucose-6-phosphate dehydrogenase, chromophores such as fluorescent, luminescent dyes, groups with electron density detected by electron microscopy or by their electrical property such as conductivity, amperometry, voltammetry, impedance, detectable groups, for example whose molecules are of sufficient size to induce detectable modifications in their physical and/or chemical properties, such detection may be accomplished by optical methods such as diffraction, surface plasmon resonance, surface variation, the contact angle change or physical methods such as atomic force spectroscopy, tunnel effect, or radioactive molecules such as 32P, 35S or 125I.


As used herein, the term “purification marker” or “label” intends a directly or indirectly detectable compound or composition that is conjugated directly or indirectly to the composition to be detected or isolated, e.g., N-terminal histidine tags (N-His), HA tag, FLAG tag, 6×His tag, magnetically active isotopes, e.g., 115Sn, 117Sn and 119Sn, a non-radioactive isotopes such as 13C and 15N, polynucleotide or protein such as an antibody so as to generate a “labeled” composition. The term also includes sequences conjugated to the polynucleotide that will provide a signal upon expression of the inserted sequences, such as green fluorescent protein (GFP) and the like. The label may be detectable by itself (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable. The labels can be suitable for small scale detection or more suitable for high-throughput screening. As such, suitable labels include, but are not limited to magnetically active isotopes, non-radioactive isotopes, radioisotopes, fluorochromes, chemiluminescent compounds, dyes, and proteins, including enzymes. The label may be simply detected or it may be quantified. A response that is simply detected generally comprises a response whose existence merely is confirmed, whereas a response that is quantified generally comprises a response having a quantifiable (e.g., numerically reportable) value such as an intensity, polarization, and/or other property. In luminescence or fluorescence assays, the detectable response may be generated directly using a luminophore or fluorophore associated with an assay component actually involved in binding, or indirectly using a luminophore or fluorophore associated with another (e.g., reporter or indicator) component. Examples of luminescent labels that produce signals include, but are not limited to bioluminescence and chemiluminescence. Detectable luminescence response generally comprises a change in, or an occurrence of a luminescence signal. Suitable methods and luminophores for luminescently labeling assay components are known in the art and described for example in Haugland, Richard P. (1996) Handbook of Fluorescent Probes and Research Chemicals (6th ed). Examples of luminescent probes include, but are not limited to, aequorin and luciferases. Examples of suitable fluorescent labels include, but are not limited to, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade Blue™, and Texas Red. Other suitable optical dyes are described in the Haugland, Richard P. (1996) Handbook of Fluorescent Probes and Research Chemicals (6th ed.). In another aspect, the fluorescent label is functionalized to facilitate covalent attachment to a cellular component present in or on the surface of the cell or tissue such as a cell surface marker. Suitable functional groups, include, but are not limited to, isothiocyanate groups, amino groups, haloacetyl groups, maleimides, succinimidyl esters, and sulfonyl halides, all of which may be used to attach the fluorescent label to a second molecule. The choice of the functional group of the fluorescent label will depend on the site of attachment to either a linker, the agent, the marker, or the second labeling agent.


As used herein, the term “antigen” refers to a compound, composition, or substance that may be specifically bound by the products of specific humoral or cellular immunity, such as an antibody molecule or T-cell receptor. Antigens can be any type of molecule including, for example, haptens, simple intermediary metabolites, sugars (e.g., oligosaccharides), lipids, and hormones as well as macromolecules such as complex carbohydrates (e.g., polysaccharides), phospholipids, and proteins. Common categories of antigens include, but are not limited to, viral antigens, bacterial antigens, fungal antigens, self-antigens, protozoa and other parasitic antigens, tumor/cancer antigens, antigens involved in autoimmune disease, allergy and graft rejection, toxins, and other miscellaneous antigens.


As used herein, the term “expression” refers to the process by which polynucleotides are transcribed into mRNA and/or the process by which the transcribed mRNA is subsequently being translated into peptides, polypeptides, or proteins. If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell. The expression level of a gene may be determined by measuring the amount of mRNA or protein in a cell or tissue sample. In one aspect, the expression level of a gene from one sample may be directly compared to the expression level of that gene from a control or reference sample. In another aspect, the expression level of a gene from one sample may be directly compared to the expression level of that gene from the same sample following administration of a compound.


As used herein, “homology” or “identical”, percent “identity” or “similarity”, when used in the context of two or more nucleic acids or polypeptide sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of nucleotides or amino acid residues that are the same, e.g., at least 60% identity, preferably at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region (e.g., nucleotide sequence encoding an antibody described herein or amino acid sequence of an antibody described herein). Homology can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are homologous at that position. A degree of homology between sequences is a function of the number of matching or homologous positions shared by the sequences. The alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in Current Protocols in Molecular Biology (Ausubel et al., eds. 1987) Supplement 30, section 7.7.18, Table 7.7.1. Preferably, default parameters are used for alignment. A preferred alignment program is BLAST, using default parameters. In particular, preferred programs are BLASTN and BLASTP, using the following default parameters: Genetic code=standard; filter=none; strand=both; cutoff=60; expect=10; Matrix=BLOSUM62; Descriptions=50 sequences; sort by=HIGH SCORE; Databases=non-redundant, GenBank+EMBL+DDBJ+PDB+GenBank CDS translations+SwissProtein+SPupdate+PIR. Details of these programs can be found at the following Internet address: ncbi.nlm.nih.gov/cgi-bin/BLAST. The terms “homology” or “identical”, percent “identity” or “similarity” also refer to, or can be applied to, the complement of a test sequence. The terms also include sequences that have deletions and/or additions, as well as those that have substitutions. As described herein, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is at least 50-100 amino acids or nucleotides in length. An “unrelated” or “non-homologous” sequence shares less than 40% identity, or alternatively less than 25% identity, with one of the sequences disclosed herein.


In one aspect, the term “equivalent” or “biological equivalent” of an antibody means the ability of the antibody to selectively bind its epitope protein or fragment thereof as measured by ELISA or other suitable methods. Biologically equivalent antibodies include, but are not limited to, those antibodies, peptides, antibody fragments, antibody variant, antibody derivative and antibody mimetics that bind to the same epitope as the reference antibody.


It is to be inferred without explicit recitation and unless otherwise intended, that when the present disclosure relates to a polypeptide, protein, polynucleotide or antibody, an equivalent or a biologically equivalent of such is intended within the scope of this disclosure. As used herein, the term “biological equivalent thereof” is intended to be synonymous with “equivalent thereof” when referring to a reference protein, antibody, polypeptide or nucleic acid, intends those having minimal homology while still maintaining desired structure or functionality. Unless specifically recited herein, it is contemplated that any polynucleotide, polypeptide or protein mentioned herein also includes equivalents thereof. For example, an equivalent intends at least about 70% homology or identity, or at least 80% homology or identity and alternatively, or at least about 85%, or alternatively at least about 90%, or alternatively at least about 95%, or alternatively 98% percent homology or identity and exhibits substantially equivalent biological activity to the reference protein, polypeptide or nucleic acid. Alternatively, when referring to polynucleotides, an equivalent thereof is a polynucleotide that hybridizes under stringent conditions to the reference polynucleotide or its complement.


A polynucleotide or polynucleotide region (or a polypeptide or polypeptide region) having a certain percentage (for example, 80%, 85%, 90%, or 95%) of “sequence identity” to another sequence means that, when aligned, that percentage of bases (or amino acids) are the same in comparing the two sequences. The alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in Current Protocols in Molecular Biology (Ausubel et al., eds. 1987) Supplement 30, section 7.7.18, Table 7.7.1. Preferably, default parameters are used for alignment. A preferred alignment program is BLAST, using default parameters. In particular, preferred programs are BLASTN and BLASTP, using the following default parameters: Genetic code=standard; filter=none; strand=both; cutoff=60; expect=10; Matrix=BLOSUM62; Descriptions=50 sequences; sort by=HIGH SCORE; Databases=non-redundant, GenBank+EMBL+DDBJ+PDB+GenBank CDS translations+SwissProtein+SPupdate+PIR. Details of these programs can be found at the following Internet address: ncbi.nlm.nih.gov/cgi-bin/BLAST.


“Hybridization” refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. The hydrogen bonding may occur by Watson-Crick base pairing, Hoogstein binding, or in any other sequence-specific manner. The complex may comprise two strands forming a duplex structure, three or more strands forming a multi-stranded complex, a single self-hybridizing strand, or any combination of these. A hybridization reaction may constitute a step in a more extensive process, such as the initiation of a PCR reaction, or the enzymatic cleavage of a polynucleotide by a ribozyme.


Examples of stringent hybridization conditions include: incubation temperatures of about 25° C. to about 37° C.; hybridization buffer concentrations of about 6×SSC to about 10×SSC; formamide concentrations of about 0% to about 25%; and wash solutions from about 4×SSC to about 8×SSC. Examples of moderate hybridization conditions include: incubation temperatures of about 40° C. to about 50° C.; buffer concentrations of about 9×SSC to about 2×SSC; formamide concentrations of about 30% to about 50%; and wash solutions of about 5×SSC to about 2×SSC. Examples of high stringency conditions include: incubation temperatures of about 55° C. to about 68° C.; buffer concentrations of about 1×SSC to about 0.1×SSC; formamide concentrations of about 55% to about 75%; and wash solutions of about 1×SSC, 0.1×SSC, or deionized water. In general, hybridization incubation times are from 5 minutes to 24 hours, with 1, 2, or more washing steps, and wash incubation times are about 1, 2, or 15 minutes. SSC is 0.15 M NaCl and 15 mM citrate buffer. It is understood that equivalents of SSC using other buffer systems can be employed.


The term “isolated” as used herein refers to molecules or biologicals or cellular materials being substantially free from other materials. In one aspect, the term “isolated” refers to nucleic acid, such as DNA or RNA, or protein or polypeptide (e.g., an antibody or derivative thereof), or cell or cellular organelle, or tissue or organ, separated from other DNAs or RNAs, or proteins or polypeptides, or cells or cellular organelles, or tissues or organs, respectively, that are present in the natural source. The term “isolated” also refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. Moreover, an “isolated nucleic acid” is meant to include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state. The term “isolated” is also used herein to refer to polypeptides which are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides. The term “isolated” is also used herein to refer to cells or tissues that are isolated from other cells or tissues and is meant to encompass both cultured and engineered cells or tissues.


The term “protein”, “peptide” and “polypeptide” are used interchangeably and in their broadest sense to refer to a compound of two or more subunit amino acids, amino acid analogs or peptidomimetics. The subunits may be linked by peptide bonds. In another aspect, the subunit may be linked by other bonds, e.g., ester, ether, etc. A protein or peptide must contain at least two amino acids and no limitation is placed on the maximum number of amino acids which may comprise a protein's or peptide's sequence. As used herein the term “amino acid” refers to either natural and/or unnatural or synthetic amino acids, including glycine and both the D and L optical isomers, amino acid analogs and peptidomimetics.


The terms “polynucleotide” and “oligonucleotide” are used interchangeably and refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides or analogs thereof. Polynucleotides can have any three-dimensional structure and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: a gene or gene fragment (for example, a probe, primer, EST or SAGE tag), exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, RNAi, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes and primers. A polynucleotide can comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure can be imparted before or after assembly of the polynucleotide. The sequence of nucleotides can be interrupted by non-nucleotide components. A polynucleotide can be further modified after polymerization, such as by conjugation with a labeling component. The term also refers to both double and single stranded molecules. Unless otherwise specified or required, any aspect of this technology that is a polynucleotide encompasses both the double stranded form and each of two complementary single stranded forms known or predicted to make up the double stranded form.


As used herein, the term “purified” does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a purified nucleic acid, peptide, protein, biological complexes or other active compound is one that is isolated in whole or in part from proteins or other contaminants. Generally, substantially purified peptides, proteins, biological complexes, or other active compounds for use within the disclosure comprise more than 80% of all macromolecular species present in a preparation prior to admixture or formulation of the peptide, protein, biological complex or other active compound with a pharmaceutical carrier, excipient, buffer, absorption enhancing agent, stabilizer, preservative, adjuvant or other co-ingredient in a complete pharmaceutical formulation for therapeutic administration. More typically, the peptide, protein, biological complex or other active compound is purified to represent greater than 90%, often greater than 95% of all macromolecular species present in a purified preparation prior to admixture with other formulation ingredients. In other cases, the purified preparation may be essentially homogeneous, wherein other macromolecular species are not detectable by conventional techniques.


As used herein, the term “specific binding” means the contact between an antibody and an antigen with a binding affinity of at least 10−6 M. In certain aspects, antibodies bind with affinities of at least about 10−7 M, and preferably 10−8 M, 10−9 M, 10−10 M, 10−11 M, or 10−12 M.


As used herein, the term “recombinant protein” refers to a polypeptide which is produced by recombinant DNA techniques, wherein generally, DNA encoding the polypeptide is inserted into a suitable expression vector which is in turn used to transform a host cell to produce the heterologous protein.


As used herein, “treating” or “treatment” of a disease in a subject refers to (1) preventing the symptoms or disease from occurring in a subject that is predisposed or does not yet display symptoms of the disease; (2) inhibiting the disease or arresting its development; or (3) ameliorating or causing regression of the disease or the symptoms of the disease. As understood in the art, “treatment” is an approach for obtaining beneficial or desired results, including clinical results. For the purposes of the present technology, beneficial or desired results can include one or more, but are not limited to, alleviation or amelioration of one or more symptoms, diminishment of extent of a condition (including a disease), stabilized (i.e., not worsening) state of a condition (including disease), delay or slowing of condition (including disease), progression, amelioration or palliation of the condition (including disease), states and remission (whether partial or total), whether detectable or undetectable. When the disease is cancer, the following clinical end points are non-limiting examples of treatment: reduction in tumor burden, slowing of tumor growth, longer overall survival, longer time to tumor progression, inhibition of metastasis or a reduction in metastasis of the tumor. The term “therapy” as used herein refers to the application of one or more treatments protocols to a disease in a subject.


“Cytoreductive therapy,” as used herein, refers to cancer therapy aimed at debulking a cancerous tumor. Such therapy includes but is not limited to chemotherapy, cryotherapy, and radiation therapy. Agents that act to reduce cellular proliferation are known in the art and widely used. Chemotherapy drugs that kill cancer cells only when they are dividing are termed cell-cycle specific. These drugs include agents that act in S-phase, including topoisomerase inhibitors and anti-metabolites. Cryotherapy also includes, but is not limited to, therapies involving decreasing the temperature, for example, hypothermic therapy.


Toposiomerase inhibitors are drugs that interfere with the action of topoisomerase enzymes (topoisomerase I and II). During the process of chemo treatments, topoisomerase enzymes control the manipulation of the structure of DNA necessary for replication, and are thus cell cycle specific. Examples of topoisomerase I inhibitors include the camptothecan analogs listed above, irinotecan and topotecan. Examples of topoisomerase II inhibitors include amsacrine, etoposide, etoposide phosphate, and teniposide.


Antimetabolites are usually analogs of normal metabolic substrates, often interfering with processes involved in chromosomal replication. They attack cells at very specific phases in the cycle. Antimetabolites include folic acid antagonists, e.g., methotrexate; pyrimidine antagonist, e.g., 5-fluorouracil, foxuridine, cytarabine, capecitabine, and gemcitabine; purine antagonist, e.g., 6-mercaptopurine and 6-thioguanine; adenosine deaminase inhibitor, e.g., cladribine, fludarabine, nelarabine and pentostatin; and the like.


Plant alkaloids are derived from certain types of plants. The vinca alkaloids are made from the periwinkle plant (Catharanthus rosea). The taxanes are made from the bark of the Pacific Yew tree (taxus). The vinca alkaloids and taxanes are also known as antimicrotubule agents. The podophyllotoxins are derived from the May apple plant. Camptothecan analogs are derived from the Asian “Happy Tree” (Camptotheca acuminata). Podophyllotoxins and camptothecan analogs are also classified as topoisomerase inhibitors. The plant alkaloids are generally cell-cycle specific.


Examples of these agents include vinca alkaloids, e.g., vincristine, vinblastine and vinorelbine; taxanes, e.g., paclitaxel and docetaxel; podophyllotoxins, e.g., etoposide and tenisopide; and camptothecan analogs, e.g., irinotecan and topotecan.


Radiation therapy includes, but is not limited to, exposure to radiation, e.g., ionizing radiation, UV radiation, as known in the art. Exemplary dosages include, but are not limited to, a dose of ionizing radiation at a range from at least about 2 Gy to not more than about 10 Gy and/or a dose of ultraviolet radiation at a range from at least about 5 J/m2 to not more than about 50 J/m2, usually about 10 J/m2.


“Immunotherapy,” as used herein, refers to cancer therapies that enhance the immune response to a tumor or cancer. Such therapy includes but is not limited to adoptive cell therapies, such as those utilizing chimeric antigen receptor expressing (“CAR”) cells, CD8+ cytotoxic cells, natural killer cells, or equivalents thereof; monoclonal antibodies and immunoconjugate based therapies designed to target and destroy tumors and/or cancer cells; cytokine, chemokine, or lymphokine therapy, such as interferon gamma (“IFNα”) treatment; and vaccination.


The phrase “first line” or “second line” or “third line” refers to the order of treatment received by a patient. First line therapy regimens are treatments given first, whereas second or third line therapy are given after the first line therapy or after the second line therapy, respectively. The National Cancer Institute defines first line therapy as “the first treatment for a disease or condition. In patients with cancer, primary treatment can be surgery, chemotherapy, radiation therapy, or a combination of these therapies. First line therapy is also referred to those skilled in the art as “primary therapy and primary treatment.” See National Cancer Institute website at www.cancer.gov, last visited Nov. 15, 2017. Typically, a patient is given a subsequent chemotherapy regimen because the patient did not show a positive clinical or sub-clinical response to the first line therapy or the first line therapy has stopped.


As used herein, the term “overexpress” with respect to a cell, a tissue, or an organ expresses a protein to an amount that is greater than the amount that is produced in a control cell, a control issue, or an organ. A protein that is overexpressed may be endogenous to the host cell or exogenous to the host cell.


As used herein, the term “enhancer”, as used herein, denotes sequence elements that augment, improve or ameliorate transcription of a nucleic acid sequence irrespective of its location and orientation in relation to the nucleic acid sequence to be expressed. An enhancer may enhance transcription from a single promoter or simultaneously from more than one promoter. As long as this functionality of improving transcription is retained or substantially retained (e.g., at least 70%, at least 80%, at least 90% or at least 95% of wild-type activity, that is, activity of a full-length sequence), any truncated, mutated or otherwise modified variants of a wild-type enhancer sequence are also within the above definition.


Disclosed herein are a plurality of genes of interest whose expression or presence is quantified and assessed in comparison to a baseline. As disclosed above, the term “baseline” is employed to refer to the condition of the cells absent exposure to a tumor or cancer. And, unless explicitly stated otherwise, terms of degree such as “higher” and “lower” are used in reference to a “baseline” value calculated thusly.


Further, in regard to the various genes, it is appreciated that the sequences of each of these genes and the resulting proteins are known in the art; thus, probes for detecting the genes, transcripts, and the resulting proteins as well are those other genes along the pathway may be readily determined based on the information disclosed herein. For example, in addition to the listing of the genes, Tables 1, 12, and 13 provide the Gene Cards database identification number for each of the listed genes. An ordinary skilled artisan may access the Gene Cards database at genecards.org (last accessed Dec. 5, 2017) to locate the sequence of each of these genes by searching the name or by utilizing the readily available Gene Cards identification number. Furthermore, using this identifier, an ordinary skilled artisan is able to access information on homologs, orthologs, and other gene sequences. In addition, the Gene Cards identification number provide the chromosome (first to numbers), position (plus (P) or minus (M)) strand), an kilboase number (last numbers) for the location of the gene of interest. Thus, demonstrating the availability of the sequences for the purposes of making and/or using the claimed invention. To provide further clarity as to this process, provided below is a summary of the Gene Cards reference information for non-limiting exemplary genes disclosed herein:


CD8, GCID: GC02M086784 is an alternate name for the CD8 protein, which is a cell surface glycoprotein found on most cytotoxic T lymphocytes that mediates efficient cell-cell interactions within the immune system. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. P01732, accessible through the Gene Cards database (SEQ ID NO: 1):









MALPVTALLLPLALLLHAARPSQFRVSPLDRTWNLGETVELKCQVLLSNP





TSGCSWLFQPRGAAASPTFLLYLSQNKPKAAEGLDTQRFSGKRLGDTFVL





TLSDFRRENEGYYFCSALSNSIMYFSHFVPVFLPAKPTTTPAPRPPTPAP





TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSL





VITLYCNHRNRRRVCKCPRPVVKSGDKPSLSARYV






CD103, GCID: GC17M003722 is an alternate name for ITGAE, which is the alpha subunit of a heterodimeric integral membrane protein and may have a role in adhesion and as an accessory molecule for IEL activation. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. P38570, accessible through the Gene Cards database (SEQ ID NO: 2):









MWLFHTLLCIASLALLAAFNVDVARPWLTPKGGAPFVLSSLLHQDPSTNQ





TWLLVTSPRTKRTPGPLHRCSLVQDEILCHPVEHVPIPKGRHRGVTVVRS





HHGVLICIQVLVRRPHSLSSELTGTCSLLGPDLRPQAQANFFDLENLLDP





DARVDTGDCYSNKEGGGEDDVNTARQRRALEKEEEEDKEEEEDEEEEEAG





TEIAIILDGSGSIDPPDFQRAKDFISNMMRNFYEKCFECNFALVQYGGVI





QTEFDLRDSQDVMASLARVQNITQVGSVTKTASAMQHVLDSIFTSSHGSR





RKASKVMVVLTDGGIFEDPLNLTTVINSPKMQGVERFAIGVGEEFKSART





ARELNLIASDPDETHAFKVTNYMALDGLLSKLRYNIISMEGTVGDALHYQ





LAQIGFSAQILDERQVLLGAVGAFDWSGGALLYDTRSRRGRFLNQTAAAA





ADAEAAQYSYLGYAVAVLHKTCSLSYIAGAPRYKHHGAVFELQKEGREAS





FLPVLEGEQMGSYFGSELCPVDIDMDGSTDFLLVAAPFYHVHGEEGRVYV





YRLSEQDGSFSLARILSGHPGFTNARFGFAMAAMGDLSQDKLTDVAIGAP





LEGFGADDGASFGSVYIYNGHWDGLSASPSQRIRASTVAPGLQYFGMSMA





GGFDISGDGLADITVGTLGQAVVFRSRPVVRLKVSMAFTPSALPIGFNGV





VNVRLCFEISSVTTASESGLREALLNFTLDVDVGKQRRRLQCSDVRSCLG





CLREWSSGSQLCEDLLLMPTEGELCEEDCFSNASVKVSYQLQTPEGQTDH





PQPILDRYTEPFAIFQLPYEKACKNKLFCVAELQLATTVSQQELVVGLTK





ELTLNINLTNSGEDSYMTSMALNYPRNLQLKRMQKPPSPNIQCDDPQPVA





SVLIMNCRIGHPVLKRSSAHVSVVWQLEENAFPNRTADITVTVTNSNERR





SLANETHTLQFRHGFVAVLSKPSIMYVNTGQGLSHHKEFLFHVHGENLFG





AEYQLQICVPTKLRGLQVVAVKKLTRTQASTVCTWSQERACAYSSVQHVE





EWHSVSCVIASDKENVTVAAEISWDHSEELLKDVTELQILGEISFNKSLY





EGLNAENHRTKITVVFLKDEKYHSLPIIIKGSVGGLLVLIVILVILFKCG





FFKRKYQQLNLESIRKAQLKSENLLEEEN






PD-1, GCID: GC02M241849 is an alternate name for PDCD1, which is a cell surface membrane protein of the immunoglobulin superfamily expressed in pro-B-cells and believe to play a role in their differentiation as well as be important to T-cell function. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q15116, accessible through the Gene Cards database (SEQ ID NO: 3):









MQIPQAPWPVVWAVLQLGWRPGWFLDSPDRPWNPPTFSPALLVVTEGDNA





TFTCSFSNTSESFVLNWYRMSPSNQTDKLAAFPEDRSQPGQDCRFRVTQL





PNGRDFHMSVVRARRNDSGTYLCGAISLAPKAQIKESLRAELRVTERRAE





VPTAHPSPSPRPAGQFQTLVVGVVGGLLGSLVLLVWVLAVICSRAARGTI





GARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPCVPEQTEYAT





IVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL






TIM3, GCID: GC05M157063 is an alternate name for HAVCR2, which is a Th1-specific cell surface protein that regulates macrophage activation, and inhibits Th1-mediated auto- and alloimmune responses, and promotes immunological tolerance. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q8TDQ0, accessible through the Gene Cards database (SEQ ID NO: 4):









MFSHLPFDCVLLLLLLLLTRSSEVEYRAEVGQNAYLPCFYTPAAPGNLVP





VCWGKGACPVFECGNVVLRTDERDVNYWTSRYWLNGDFRKGDVSLTIENV





TLADSGIYCCRIQIPGIMNDEKFNLKLVIKPAKVTPAPTRQRDFTAAFPR





MLTTRGHGPAETQTLGSLPDINLTQISTLANELRDSRLANDLRDSGATIR





IGIYIGAGICAGLALALIFGALIFKWYSHSKEKIQNLSLISLANLPPSGL





ANAVAEGIRSEENIYTIEENVYEVEEPNEYYCYVSSRQQPSQPLGCRFAM





P






LAG3, GCID: GC12P006774 refers to a member of the Ig superfamily and contains 4 extracellular Ig-like domains. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. P18627, accessible through the Gene Cards database (SEQ ID NO: 5):









MWEAQFLGLLFLQPLWVAPVKPLQPGAEVPVVWAQEGAPAQLPCSPTIPL





QDLSLLRRAGVTWQHQPDSGPPAAAPGHPLAPGPHPAAPSSWGPRPRRYT





VLSVGPGGLRSGRLPLQPRVQLDERGRQRGDFSLWLRPARRADAGEYRAA





VHLRDRALSCRLRLRLGQASMTASPPGSLRASDWVILNCSFSRPDRPASV





HWFRNRGQGRVPVRESPHHHLAESFLFLPQVSPMDSGPWGCILTYRDGFN





VSIMYNLTVLGLEPPTPLTVYAGAGSRVGLPCRLPAGVGTRSFLTAKWTP





PGGGPDLLVTGDNGDFTLRLEDVSQAQAGTYTCHIHLQEQQLNATVTLAI





ITVTPKSFGSPGSLGKLLCEVTPVSGQERFVWSSLDTPSQRSFSGPWLEA





QEAQLLSQPWQCQLYQGERLLGAAVYFTELSSPGAQRSGRAPGALPAGHL





LLFLILGVLSLLLLVTGAFGFHLWRRQWRPRRFSALEQGIHPPQAQSKIE





ELEQEPEPEPEPEPEPEPEPEPEQL






CTLA4, GCID: GC02P203867 refers to a member of the immunoglobulin superfamily and encodes a protein which transmits an inhibitory signal to T cells. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. P16410, accessible through the Gene Cards database (SEQ ID NO: 6):









MACLGFQRHKAQLNLATRTWPCTLLFFLLFIPVFCKAMHVAQPAVVLASS





RGIASFVCEYASPGKATEVRVTVLRQADSQVTEVCAATYMMGNELTFLDD





SICTGTSSGNQVNLTIQGLRAMDTGLYICKVELMYPPPYYLGIGNGTQIY





VIDPEPCPDSDFLLWILAAVSSGLFFYSFLLTAVSLSKMLKKRSPLTTGV





YVKMPPTEPECEKQFQPYFIPIN






S1PR5, GCID: GC19M010512 refers to a gene that regulates cell proliferation, apoptosis, motility, and neurite retraction. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q9H228, accessible through the Gene Cards database (SEQ ID NO: 7):









MESGLLRPAPVSEVIVLHYNYTGKLRGARYQPGAGLRADAVVCLAVCAFI





VLENLAVLLVLGRHPRFHAPMFLLLGSLTLSDLLAGAAYAANILLSGPLT





LKLSPALWFAREGGVFVALTASVLSLLAIALERSLTMARRGPAPVSSRGR





TLAMAAAAWGVSLLLGLLPALGWNCLGRLDACSTVLPLYAKAYVLFCVLA





FVGILAAICALYARIYCQVRANARRLPARPGTAGTTSTRARRKPRSLALL





RTLSVVLLAFVACWGPLFLLLLLDVACPARTCPVLLQADPFLGLAMANSL





LNPIIYTLTNRDLRHALLRLVCCGRHSCGRDPSGSQQSASAAEASGGLRR





CLPPGLDGSFSGSERSSPQRDGLDTSGSTGSPGAPTAARTLVSEPAAD






STK38, GCID: GC06M036493 refers to a member of the AGC serine/threonine kinase family of proteins. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q15208, accessible through the Gene Cards database (SEQ ID NO: 8):









MAMTGSTPCSSMSNHTKERVTMTKVTLENFYSNLIAQHEEREMRQKKLEK





VMEEEGLKDEEKRLRRSAHARKETEFLRLKRTRLGLEDFESLKVIGRGAF





GEVRLVQKKDTGHVYAMKILRKADMLEKEQVGHIRAERDILVEADSLWVV





KMFYSFQDKLNLYLIMEFLPGGDMMTLLMKKDTLTEEETQFYIAETVLAI





DSIHQLGFIHRDIKPDNLLLDSKGHVKLSDFGLCTGLKKAHRTEFYRNLN





HSLPSDFTFQNMNSKRKAETWKRNRRQLAFSTVGTPDYIAPEVFMQTGYN





KLCDWWSLGVIMYEMLIGYPPFCSETPQETYKKVMNWKETLTFPPEVPIS





EKAKDLILRFCCEWEHRIGAPGVEEIKSNSFFEGVDWEHIRERPAAISIE





IKSIDDTSNFDEFPESDILKPTVATSNHPETDYKNKDWVFINYTYKRFEG





LTARGAIPSYMKAAK






FAM65B, GCID: GC06M024805 is an alternate name for RIPOR2, which is an atypical inhibitor of the small G protein RhoA. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. Q9Y4F9, accessible through the Gene Cards database (SEQ ID NO: 9):









MLVGSQSFSPGGPNGIIRSQSFAGFSGLQERRSRCNSFIENSSALKKPQA





KLKKMHNLGHKNNNPPKEPQPKRVEEVYRALKNGLDEYLEVHQTELDKLT





AQLKDMKRNSRLGVLYDLDKQIKTIERYMRRLEFHISKVDELYEAYCIQR





RLQDGASKMKQAFATSPASKAARESLTEINRSFKEYTENMCTIEVELENL





LGEFSIKMKGLAGFARLCPGDQYEIFMKYGRQRWKLKGKIEVNGKQSWDG





EETVFLPLIVGFISIKVTELKGLATHILVGSVTCETKELFAARPQVVAVD





INDLGTIKLNLEITWYPFDVEDMTASSGAGNKAAALQRRMSMYSQGTPET





PTFKDHSFFRWLHPSPDKPRRLSVLSALQDTFFAKLHRSRSFSDLPSLRP





SPKAVLELYSNLPDDIFENGKAAEEKMPLSLSFSDLPNGDCALTSHSTGS





PSNSTNPEITITPAEFNLSSLASQNEGMDDTSSASSRNSLGEGQEPKSHL





KEEDPEEPRKPASAPSEACRRQSSGAGAEHLFLENDVAEALLQESEEASE





LKPVELDTSEGNITKQLVKRLTSAEVPMATDRLLSEGSVGGESEGCRSFL





DGSLEDAFNGLLLALEPHKEQYKEFQDLNQEVMNLDDILKCKPAVSRSRS





SSLSLTVESALESFDFLNTSDFDEEEDGDEVCNVGGGADSVFSDTETEKH





SYRSVHPEARGHLSEALTEDTGVGTSVAGSPLPLTTGNESLDITIVRHLQ





YCTQLVQQIVFSSKTPFVARSLLEKLSRQIQVMEKLAAVSDENIGNISSV





VEAIPEFHKKLSLLSFWTKCCSPVGVYHSPADRVMKQLEASFARTVNKEY





PGLADPVFRTLVSQILDRAEPLLSSSLSSEVVTVFQYYSYFTSHGVSDLE





SYLSQLARQVSMVQTLQSLRDEKLLQTMSDLAPSNLLAQQEVLRTLALLL





TREDNEVSEAVTLYLAAASKNQHFREKALLYYCEALTKTNLQLQKAACLA





LKILEATESIKMLVTLCQSDTEEIRNVASETLLSLGEDGRLAYEQLDKFP





RDCVKVGGRHGTEVATAF






S1PR1, GCID: GC01P101236 refers to a protein structurally similar to G protein-coupled receptors that is highly expressed in endothelial cells. It binds the ligand sphingosine-1-phosphate with high affinity and high specificity. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. P21453, accessible through the Gene Cards database (SEQ ID NO: 10):









MGPTSVPLVKAHRSSVSDYVNYDIIVRHYNYTGKLNISADKENSIKLTSV





VFILICCFIILENIFVLLTIWKTKKFHRPMYYFIGNLALSDLLAGVAYTA





NLLLSGATTYKLTPAQWFLREGSMFVALSASVFSLLAIAIERYITMLKMK





LHNGSNNFRLFLLISACWVISLILGGLPIMGWNCISALSSCSTVLPLYHK





HYILFCTTVFTLLLLSIVILYCRIYSLVRTRSRRLTFRKNISKASRSSEK





SLALLKTVIIVLSVFIACWAPLFILLLLDVGCKVKTCDILFRAEYFLVLA





VLNSGTNPIIYTLTNKEMRRAFIRIMSCCKCPSGDSAGKFKRPIIAGMEF





SRSKSDNSSHPQKDEGDNPETIMSSGNVNSSS






KLF2, GCID: GC19P019293 refers to a protein that belongs to the Kruppel family of transcription factors. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. Q9Y5W3, accessible through the Gene Cards database (SEQ ID NO: 11):









MALSEPILPSFSTFASPCRERGLQERWPRAEPESGGTDDDLNSVLDFILS





MGLDGLGAEAAPEPPPPPPPPAFYYPEPGAPPPYSAPAGGLVSELLRPEL





DAPLGPALHGRFLLAPPGRLVKAEPPEADGGGGYGCAPGLTRGPRGLKRE





GAPGPAASCMRGPGGRPPPPPDTPPLSPDGPARLPAPGPRASFPPPFGGP





GFGAPGPGLHYAPPAPPAFGLFDDAAAAAAALGLAPPAARGLLTPPASPL





ELLEAKPKRGRRSWPRKRTATHTCSYAGCGKTYTKSSHLKAHLRTHTGEK





PYHCNWDGCGWKFARSDELTRHYRKHTGHRPFQCHLCDRAFSRSDHLALH





MKRHM






MYO7A, GCID: GC11P077128 refers to an unconventional myosin with a very short tail. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q13402, accessible through the Gene Cards database (SEQ ID NO: 12):









MVILQQGDHVWMDLRLGQEFDVPIGAVVKLCDSGQVQVVDDEDNEHWISP





QNATHIKPMHPTSVHGVEDMIRLGDLNEAGILRNLLIRYRDHLIYTYTGS





ILVAVNPYQLLSIYSPEHIRQYTNKKIGEMPPHIFAIADNCYFNMKRNSR





DQCCIISGESGAGKTESTKLILQFLAAISGQHSWIEQQVLEATPILEAFG





NAKTIRNDNSSRFGKYIDIHFNKRGAIEGAKIEQYLLEKSRVCRQALDER





NYHVFYCMLEGMSEDQKKKLGLGQASDYNYLAMGNCITCEGRVDSQEYAN





IRSAMKVLMFTDTENWEISKLLAAILHLGNLQYEARTFENLDACEVLFSP





SLATAASLLEVNPPDLMSCLTSRTLITRGETVSTPLSREQALDVRDAFVK





GIYGRLFVWIVDKINAAIYKPPSQDVKNSRRSIGLLDIFGFENFAVNSFE





QLCINFANEHLQQFFVRHVFKLEQEEYDLESIDWLHIEFTDNQDALDMIA





NKPMNIISLIDEESKFPKGTDTTMLHKLNSQHKLNANYIPPKNNHETQFG





INHFAGIVYYETQGFLEKNRDTLHGDIIQLVHSSRNKFIKQIFQADVAMG





AETRKRSPTLSSQFKRSLELLMRTLGACQPFFVRCIKPNEFKKPMLFDRH





LCVRQLRYSGMMETIRIRRAGYPIRYSFVEFVERYRVLLPGVKPAYKQGD





LRGTCQRMAEAVLGTHDDWQIGKTKIFLKDHHDMLLEVERDKAITDRVIL





LQKVIRGFKDRSNFLKLKNAATLIQRHWRGHNCRKNYGLMRLGFLRLQAL





HRSRKLHQQYRLARQRIIQFQARCRAYLVRKAFRHRLWAVLTVQAYARGM





IARRLHQRLRAEYLWRLEAEKMRLAEEEKLRKEMSAKKAKEEAERKHQER





LAQLAREDAERELKEKEAARRKKELLEQMERARHEPVNHSDMVDKMFGFL





GTSGGLPGQEGQAPSGFEDLERGRREMVEEDLDAALPLPDEDEEDLSEYK





FAKFAATYFQGTTTHSYTRRPLKQPLLYHDDEGDQLAALAVWITILRFMG





DLPEPKYHTAMSDGSEKIPVMTKIYETLGKKTYKRELQALQGEGEAQLPE





GQKKSSVRHKLVHLTLKKKSKLTEEVTKRLHDGESTVQGNSMLEDRPTSN





LEKLHFIIGNGILRPALRDEIYCQISKQLTHNPSKSSYARGWILVSLCVG





CFAPSEKFVKYLRNFIHGGPPGYAPYCEERLRRTFVNGTRTQPPSWLELQ





ATKSKKPIMLPVTFMDGTTKTLLTDSATTAKELCNALADKISLKDRFGFS





LYIALFDKVSSLGSGSDHVMDAISQCEQYAKEQGAQERNAPWRLFFRKEV





FTPWHSPSEDNVATNLIYQQVVRGVKFGEYRCEKEDDLAELASQQYFVDY





GSEMILERLLNLVPTYIPDREITPLKTLEKWAQLAIAAHKKGIYAQRRTD





AQKVKEDVVSYARFKWPLLFSRFYEAYKFSGPSLPKNDVIVAVNWTGVYF





VDEQEQVLLELSFPEIMAVSSSRECRVWLSLGCSDLGCAAPHSGWAGLTP





AGPCSPCWSCRGAKTTAPSFTLATIKGDEYTFTSSNAEDIRDLVVTFLEG





LRKRSKYVVALQDNPNPAGEESGFLSFAKGDLIILDHDTGEQVMNSGWAN





GINERTKQRGDFPTDSVYVMPTVTMPPREIVALVTMTPDQRQDVVRLLQL





RTAEPEVRAKPYTLEEFSYDYFRPPPKHTLSRVMVSKARGKDRLWSHTRE





PLKQALLKKLLGSEELSQEACLAFIAVLKYMGDYPSKRTRSVNELTDQIF





EGPLKAEPLKDEAYVQILKQLTDNHIRYSEERGWELLWLCTGLFPPSNIL





LPHVQRFLQSRKHCPLAIDCLQRLQKALRNGSRKYPPHLVEVEAIQHKTT





QIFHKVYFPDDTDEAFEVESSTKAKDFCQNIATRLLLKSSEGFSLFVKIA





DKVLSVPENDFFFDFVRHLTDWIKKARPIKDGIVPSLTYQVFFMKKLWTT





TVPGKDPMADSIFHYYQELPKYLRGYHKCTREEVLQLGALIYRVKFEEDK





SYFPSIPKLLRELVPQDLIRQVSPDDWKRSIVAYFNKHAGKSKEEAKLAF





LKLIFKWPTFGSAFFEVKQTTEPNFPEILLIAINKYGVSLIDPKTKDILT





THPFTKISNWSSGNTYFHITIGNLVRGSKLLCETSLGYKMDDLLTSYISQ





MLTAMSKQRGSRSGKG






GPR25, GCID: GC01P200872 refers to a member of the G-protein coupled receptor 1 family, which generally activate signaling cascades as a response to extracellular stress. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. 000155, accessible through the Gene Cards database (SEQ ID NO: 13):









MAPTEPWSPSPGSAPWDYSGLDGLEELELCPAGDLPYGYVYIPALYLAAF





AVGLLGNAFVVWLLAGRRGPRRLVDTFVLHLAAADLGFVLTLPLWAAAAA





LGGRWPFGDGLCKLSSFALAGTRCAGALLLAGMSVDRYLAVVKLLEARPL





RTPRCALASCCGVWAVALLAGLPSLVYRGLQPLPGGQDSQCGEEPSHAFQ





GLSLLLLLLTFVLPLVVTLFCYCRISRRLRRPPHVGRARRNSLRIIFAIE





STFVGSWLPFSALRAVFHLARLGALPLPCPLLLALRWGLTIATCLAFVNS





CANPLIYLLLDRSFRARALDGACGRTGRLARRISSASSLSRDDSSVFRCR





AQAANTASASW






CLNK, GCID: GC04M010491 refers to a member of the SLP76 family of adaptors that plays a role in signalling. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. Q7Z7G1, accessible through the Gene Cards database (SEQ ID NO: 14):









MNRQGNRKTTKEGSNDLKFQNFSLPKNRSWPRINSATGQYQRMNKPLLDW





ERNFAAVLDGAKGHSDDDYDDPELRMEETWQSIKILPARPIKESEYADTH





YFKVAMDTPLPLDTRTSISIGQPTWNTQTRLERVDKPISKDVRSQNIKGD





ASVRKNKIPLPPPRPLITLPKKYQPLPPEPESSRPPLSQRHTFPEVQRMP





SQISLRDLSEVLEAEKVPHNQRKPESTHLLENQNTQEIPLAISSSSFTTS





NHSVQNRDHRGGMQPCSPQRCQPPASCSPHENILPYKYTSWRPPFPKRSD





RKDVQHNEWYIGEYSRQAVEEAFMKENKDGSFLVRDCSTKSKEEPYVLAV





FYENKVYNVKIRFLERNQQFALGTGLRGDEKFDSVEDIIEHYKNFPIILI





DGKDKTGVHRKQCHLTQPLPLTRHLLPL






SRGAP3, GCID: GC03M008998 refers to a protein associated with the G-protein signaling pathway. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. 043295, accessible through the Gene Cards database (SEQ ID NO: 15):









MSSQTKFKKDKEIIAEYEAQIKEIRTQLVEQFKCLEQQSESRLQLLQDLQ





EFFRRKAEIELEYSRSLEKLAERFSSKIRSSREHQFKKDQYLLSPVNCWY





LVLHQTRRESRDHATLNDIFMNNVIVRLSQISEDVIRLFKKSKEIGLQMH





EELLKVTNELYTVMKTYHMYHAESISAESKLKEAEKQEEKQFNKSGDLSM





NLLRHEDRPQRRSSVKKIEKMKEKRQAKYSENKLKCTKARNDYLLNLAAT





NAAISKYYIHDVSDLIDCCDLGFHASLARTFRTYLSAEYNLETSRHEGLD





VIENAVDNLDSRSDKHTVMDMCNQVFCPPLKFEFQPHMGDEVCQVSAQQP





VQTELLMRYHQLQSRLATLKIENEEVRKTLDATMQTLQDMLTVEDFDVSD





AFQHSRSTESVKSAASETYMSKINIAKRRANQQETEMFYFTKFKEYVNGS





NLITKLQAKHDLLKQTLGEGERAECGTTRPPCLPPKPQKMRRPRPLSVYS





HKLFNGSMEAFIKDSGQAIPLVVESCIRYINLYGLQQQGIFRVPGSQVEV





NDIKNSFERGEDPLVDDQNERDINSVAGVLKLYFRGLENPLFPKERFQDL





ISTIKLENPAERVHQIQQILVTLPRVVIVVMRYLFAFLNHLSQYSDENMM





DPYNLAICFGPTLMHIPDGQDPVSCQAHINEVIKTIIIHHEAIFPSPREL





EGPVYEKCMAGGEEYCDSPHSEPGAIDEVDHDNGTEPHTSDEEVEQIEAI





AKFDYMGRSPRELSFKKGASLLLYHRASEDWWEGRHNGVDGLIPHQYIVV





QDMDDAFSDSLSQKADSEASSGPLLDDKASSKNDLQSPTEHISDYGFGGV





MGRVRLRSDGAAIPRRRSGGDTHSPPRGLGPSIDTPPRAAACPSSPHKIP





LTRGRIESPEKRRMATFGSAGSINYPDKKALSEGHSMRSTCGSTRHSSLG





DHKSLEAEALAEDIEKTMSTALHELRELERQNTVKQAPDVVLDTLEPLKN





PPGPVSSEPASPLHTIVIRDPDAAMRRSSSSSTEMMTTFKPALSARLAGA





QLRPPPMRPVRPVVQHRSSSSSSSGVGSPAVTPTEKMFPNSSADKSGTM






ATP8B4, GCID: GC15M049858 refers to a member of the cation transport ATPase (P-type) family and type IV subfamily. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q8TF62, accessible through the Gene Cards database (SEQ ID NO: 16):









MFCSEKKLREVERIVKANDREYNEKFQYADNRIHTSKYNILTFLPINLFE





QFQRVANAYFLCLLILQLIPEISSLTWFTTIVPLVLVITMTAVKDATDDY





FRHKSDNQVNNRQSEVLINSKLQNEKWMNVKVGDIIKLENNQFVAADLLL





LSSSEPHGLCYVETAELDGETNLKVRHALSVTSELGADISRLAGFDGIVV





CEVPNNKLDKFMGILSWKDSKHSLNNEKIILRGCILRNTSWCFGMVIFAG





PDTKLMQNSGKTKFKRTSIDRLMNTLVLWIFGFLICLGIILAIGNSIWES





QTGDQFRTFLFWNEGEKSSVFSGFLTFWSYIIILNTVVPISLYVSVEVIR





LGHSYFINWDRKMYYSRKAIPAVARTTTLNEELGQIEYIFSDKTGTLTQN





IMTFKRCSINGRIYGEVHDDLDQKTEITQEKEPVDFSVKSQADREFQFFD





HHLMESIKMGDPKVHEFLRLLALCHTVMSEENSAGELIYQVQSPDEGALV





TAARNFGFIFKSRTPETITIEELGTLVTYQLLAFLDFNNTRKRMSVIVRN





PEGQIKLYSKGADTILFEKLHPSNEVLLSLTSDHLSEFAGEGLRTLAIAY





RDLDDKYFKEWHKMLEDANAATEERDERIAGLYEEIERDLMLLGATAVED





KLQEGVIETVTSLSLANIKIWVLTGDKQETAINIGYACNMLTDDMNDVFV





IAGNNAVEVREELRKAKQNLFGQNRNFSNGHVVCEKKQQLELDSIVEETI





TGDYALIINGHSLAHALESDVKNDLLELACMCKTVICCRVTPLQKAQVVE





LVKKYRNAVTLAIGDGANDVSMIKSAHIGVGISGQEGLQAVLASDYSFAQ





FRYLQRLLLVHGRWSYFRMCKFLCYFFYKNFAFTLVHFWFGFFCGFSAQT





VYDQWFITLFNIVYTSLPVLAMGIFDQDVSDQNSVDCPQLYKPGQLNLLF





NKRKFFICVLHGIYTSLVLFFIPYGAFYNVAGEDGQHIADYQSFAVTMAT





SLVIVVSVQIALDTSYWTFINHVFIWGSIAIYFSILFTMHSNGIFGIFPN





QFPFVGNARHSLTQKCIWLVILLTTVASVMPVVAFRFLKVDLYPTLSDQI





RRWQKAQKKARPPSSRRPRTRRSSSRRSGYAFAHQEGYGELITSGKNMRA





KNPPPTSGLEKTHYNSTSWIENLCKKTTDTVSSFSQDKTVKL






AFAP1L2, GCID: GC10M114281 refers to a protein associated with Sh3 domain binding and protein tyrosine kinase activator activity. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. Q8N4X5, accessible through the Gene Cards database (SEQ ID NO: 17):









MERYKALEQLLTELDDFLKILDQENLSSTALVKKSCLAELLRLYTKSSSS





DEEYIYMNKVTINKQQNAESQGKAPEEQGLLPNGEPSQHSSAPQKSLPDL





PPPKMIPERKQLAIPKTESPEGYYEEAEPYDTSLNEDGEAVSSSYESYDE





EDGSKGKSAPYQWPSPEAGIELMRDARICAFLWRKKWLGQWAKQLCVIKD





NRLLCYKSSKDHSPQLDVNLLGSSVIHKEKQVRKKEHKLKITPMNADVIV





LGLQSKDQAEQWLRVIQEVSGLPSEGASEGNQYTPDAQRFNCQKPDIAEK





YLSASEYGSSVDGHPEVPETKDVKKKCSAGLKLSNLMNLGRKKSTSLEPV





ERSLETSSYLNVLVNSQWKSRWCSVRDNHLHFYQDRNRSKVAQQPLSLVG





CEVVPDPSPDHLYSFRILHKGEELAKLEAKSSEEMGHWLGLLLSESGSKT





DPEEFTYDYVDADRVSCIVSAAKNSLLLMQRKFSEPNTYIDGLPSQDRQE





ELYDDVDLSELTAAVEPTEEATPVADDPNERESDRVYLDLTPVKSFLHGP





SSAQAQASSPTLSCLDNATEALPADSGPGPTPDEPCIKCPENLGEQQLES





LEPEDPSLRITTVKIQTEQQRISFPPSCPDAVVATPPGASPPVKDRLRVT





SAEIKLGKNRTEAEVKRYTEEKERLEKKKEEIRGHLAQLRKEKRELKETL





LKCTDKEVLASLEQKLKEIDEECRGEESRRVDLELSIMEVKDNLKKAEAG





PVTLGTTVDTTHLENVSPRPKAVTPASAPDCTPVNSATTLKNRPLSVVVT





GKGTVLQKAKEWEKKGAS






DAPK2, GCID: GC15M063907 refers to a protein that belongs to the serine/threonine protein kinase family. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q9UIK4, accessible through the Gene Cards database (SEQ ID NO: 18):









MFQASMRSPNMEPFKQQKVEDFYDIGEELGSGQFAIVKKCREKSTGLEYA





AKFIKKRQSRASRRGVSREEIEREVSILRQVLHHNVITLHDVYENRTDVV





LILELVSGGELFDFLAQKESLSEEEATSFIKQILDGVNYLHTKKIAHFDL





KPENIMLLDKNIPIPHIKLIDFGLAHEIEDGVEFKNIFGTPEFVAPEIVN





YEPLGLEADMWSIGVITYILLSGASPFLGDTKQETLANITAVSYDFDEEF





FSQTSELAKDFIRKLLVKETRKRLTIQEALRHPWITPVDNQQAMVRRESV





VNLENFRKQYVRRRWKLSFSIVSLCNHLTRSLMKKVHLRPDEDLRNCESD





TEEDIARRKALHPRRRSSTS






PTMS, GCID: GC12P006765 refers to a protein hypothesized to mediate immune function by blocking the effect of prothymosin alpha which confers resistance to certain opportunistic infections. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. P20962, accessible through the Gene Cards database (SEQ ID NO: 19):









MSEKSVEAAAELSAKDLKEKKEKVEEKASRKERKKEVVEEEENGAEEEEE





ETAEDGEEEDEGEEEDEEEEEEDDEGPALKRAAEEEDEADPKRQKTENGA





SA






ATP10D, GCID: GC04P047487 refers to a catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q9P241, accessible through the Gene Cards database (SEQ ID NO: 20):









MTEALQWARYHWRRLIRGATRDDDSGPYNYSSLLACGRKSSQTPKLSGRH





RIVVPHIQPFKDEYEKFSGAYVNNRIRTTKYTLLNFVPRNLFEQFHRAAN





LYFLFLVVLNWVPLVEAFQKEITMLPLVVVLTIIAIKDGLEDYRKYKIDK





QINNLITKVYSRKEKKYIDRCWKDVTVGDFIRLSCNEVIPADMVLLFSTD





PDGICHIETSGLDGESNLKQRQVVRGYAEQDSEVDPEKFSSRIECESPNN





DLSRFRGFLEHSNKERVGLSKENLLLRGCTIRNTEAVVGIVVYAGHETKA





MLNNSGPRYKRSKLERRANTDVLWCVMLLVIMCLTGAVGHGIWLSRYEKM





HFFNVPEPDGHIISPLLAGFYMFWTMIILLQVLIPISLYVSIEIVKLGQI





YFIQSDVDFYNEKMDSIVQCRALNIAEDLGQIQYLFSDKTGTLTENKMVF





RRCSVAGFDYCHEENARRLESYQEAVSEDEDFIDTVSGSLSNMAKPRAPS





CRTVHNGPLGNKPSNHLAGSSFTLGSGEGASEVPHSRQAAFSSPIETDVV





PDTRLLDKFSQITPRLFMPLDETIQNPPMETLYIIDFFIALAICNTVVVS





APNQPRQKIRHPSLGGLPIKSLEEIKSLFQRWSVRRSSSPSLNSGKEPSS





GVPNAFVSRLPLFSRMKPASPVEEEVSQVCESPQCSSSSACCTETEKQHG





DAGLLNGKAESLPGQPLACNLCYEAESPDEAALVYAARAYQCTLRSRTPE





QVMVDFAALGPLTFQLLHILPFDSVRKRMSVVVRHPLSNQVVVYTKGADS





VIMELLSVASPDGASLEKQQMIVREKTQKHLDDYAKQGLRTLCIAKKVMS





DTEYAEWLRNHFLAETSIDNREELLLESAMRLENKLTLLGATGIEDRLQE





GVPESIEALHKAGIKIWMLTGDKQETAVNIAYACKLLEPDDKLFILNTQS





KDACGMLMSTILKELQKKTQALPEQVSLSEDLLQPPVPRDSGLRAGLIIT





GKTLEFALQESLQKQFLELTSWCQAVVCCRATPLQKSEVVKLVRSHLQVM





TLAIGDGANDVSMIQVADIGIGVSGQEGMQAVMASDFAVSQFKHLSKLLL





VHGHWCYTRLSNMILYFFYKNVAYVNLLFWYQFFCGFSGTSMTDYWVLIF





FNLLFTSAPPVIYGVLEKDVSAETLMQLPELYRSGQKSEAYLPHTFWITL





LDAFYQSLVCFFVPYFTYQGSDTDIFAFGNPLNTAALFIVLLHLVIESKS





LTWIHLLVIIGSILSYFLFAIVFGAMCVTCNPPSNPYWIMQEHMLDPVFY





LVCILTTSIALLPRFVYRVLQGSLFPSPILRAKHFDRLTPEERTKALKKW





RGAGKMNQVTSKYANQSAGKSGRRPMPGPSAVFAMKSASSCAIEQGNLSL





CETALDQGYSETKAFEMAGPSKGKES






SLC7A2, GCID: GC08P017497 refers to a cationic amino acid transporter and a member of the APC (amino acid-polyamine-organocation) family of transporters. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. P52569, accessible through the Gene Cards database (SEQ ID NO: 21):









MIPCRAALTFARCLIRRKIVTLDSLEDTKLCRCLSTMDLIALGVGSTLGA





GVYVLAGEVAKADSGPSIVVSFLIAALASVMAGLCYAEFGARVPKTGSAY





LYTYVTVGELWAFITGWNLILSYVIGTSSVARAWSGTFDELLSKQIGQFL





RTYFRMNYTGLAEYPDFFAVCLILLLAGLLSFGVKESAWVNKVFTAVNIL





VLLFVMVAGFVKGNVANWKISEEFLKNISASAREPPSENGTSIYGAGGFM





PYGFTGTLAGAATCFYAFVGFDCIATTGEEVRNPQKAIPIGIVTSLLVCF





MAYFGVSAALTLMMPYYLLDEKSPLPVAFEYVGWGPAKYVVAAGSLCALS





TSLLGSIFPMPRVIYAMAEDGLLFKCLAQINSKTKTPIIATLSSGAVAAL





MAFLFDLKALVDMMSIGTLMAYSLVAACVLILRYQPGLSYDQPKCSPEKD





GLGSSPRVTSKSESQVTMLQRQGFSMRTLFCPSLLPTQQSASLVSFLVGF





LAFLVLGLSVLTTYGVHAITRLEAWSLALLALFLVLFVAIVLTIWRQPQN





QQKVAFMVPFLPFLPAFSILVNIYLMVQLSADTWVRFSIWMAIGFLIYFS





YGIRHSLEGHLRDENNEEDAYPDNVHAAAEEKSAIQANDHHPRNLSSPFI





FHEKTSEF






LAYN, GCID: GC11P111541 refers to a putative hyalurnoate receptor. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. Q6UX15, accessible through the Gene Cards database (SEQ ID NO: 22):









MRPGTALQAVLLAVLLVGLRAATGRLLSASDLDLRGGQPVCRGGTQRPCY





KVIYFHDTSRRLNFEEAKEACRRDGGQLVSIESEDEQKLIEKFIENLLPS





DGDFWIGLRRREEKQSNSTACQDLYAWTDGSISQFRNWYVDEPSCGSEVC





VVMYHQPSAPAGIGGPYMFQWNDDRCNMKNNFICKYSDEKPAVPSREAEG





EETELTTPVLPEETQEEDAKKTFKESREAALNLAYILIPSIPLLLLLVVT





TVVCWVWICRKRKREQPDPSTKKQHTIWPSPHQGNSPDLEVYNVIRKQSE





ADLAETRPDLKNISFRVCSGEATPDDMSCDYDNMAVNPSESGFVTLVSVE





SGFVTNDIYEFSPDQMGRSKESGWVENEIYGY






TNS3, GCID: GC07M047281 refers to a protein believed to be involved in actin remodeling, e.g. the dissociation of the integrin-tensin-actin complex. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q68CZ2, accessible through the Gene Cards database (SEQ ID NO: 23):









MEEGHGLDLTYITERIIAVSFPAGCSEESYLHNLQEVTRMLKSKHGDNYL





VLNLSEKRYDLTKLNPKIMDVGWPELHAPPLDKMCTICKAQESWLNSNLQ





HVVVIHCRGGKGRIGVVISSYMHFTNVSASADQALDRFAMKKFYDDKVSA





LMQPSQKRYVQFLSGLLSGSVKMNASPLFLHFVILHGTPNFDTGGVCRPF





LKLYQAMQPVYTSGIYNVGPENPSRICIVIEPAQLLKGDVMVKCYHKKYR





SATRDVIFRLQFHTGAVQGYGLVFGKEDLDNASKDDRFPDYGKVELVFSA





TPEKIQGSEHLYNDHGVIVDYNTTDPLIRWDSYENLSADGEVLHTQGPVD





GSLYAKVRKKSSSDPGIPGGPQAIPATNSPDHSDHTLSVSSDSGHSTASA





RTDKTEERLAPGTRRGLSAQEKAELDQLLSGFGLEDPGSSLKEMTDARSK





YSGTRHVVPAQVHVNGDAALKDRETDILDDEMPHHDLHSVDSLGTLSSSE





GPQSAHLGPFTCHKSSQNSLLSDGFGSNVGEDPQGTLVPDLGLGMDGPYE





RERTFGSREPKQPQPLLRKPSVSAQMQAYGQSSYSTQTWVRQQQMVVAHQ





YSFAPDGEARLVSRCPADNPGLVQAQPRVPLTPTRGTSSRVAVQRGVGSG





PHPPDTQQPSPSKAFKPRFPGDQVVNGAGPELSTGPSPGSPTLDIDQSIE





QLNRLILELDPTFEPIPTHMNALGSQANGSVSPDSVGGGLRASSRLPDTG





EGPSRATGRQGSSAEQPLGGRLRKLSLGQYDNDAGGQLPFSKCAWGKAGV





DYAPNLPPFPSPADVKETMTPGYPQDLDIIDGRILSSKESMCSTPAFPVS





PETPYVKTALRHPPFSPPEPPLSSPASQHKGGREPRSCPETLTHAVGMSE





SPIGPKSTMLRADASSTPSFQQAFASSCTISSNGPGQRRESSSSAERQWV





ESSPKPMVSLLGSGRPTGSPLSAEFSGTRKDSPVLSCFPPSELQAPFHSH





ELSLAEPPDSLAPPSSQAFLGFGTAPVGSGLPPEEDLGALLANSHGASPT





PSIPLTATGAADNGFLSHNFLTVAPGHSSHHSPGLQGQGVTLPGQPPLPE





KKRASEGDRSLGSVSPSSSGFSSPHSGSTISIPFPNVLPDFSKASEAASP





LPDSPGDKLVIVKFVQDTSKFWYKADISREQAIAMLKDKEPGSFIVRDSH





SFRGAYGLAMKVATPPPSVLQLNKKAGDLANELVRHFLIECTPKGVRLKG





CSNEPYFGSLTALVCQHSITPLALPCKLLIPERDPLEEIAESSPQTAANS





AAELLKQGAACNVWYLNSVEMESLTGHQAIQKALSITLVQEPPPVSTVVH





FKVSAQGITLTDNQRKLFFRRHYPVNSVIFCALDPQDRKWIKDGPSSKVF





GFVARKQGSATDNVCHLFAEHDPEQPASAIVNFVSKVMIGSPKKV






KIR2DL4, GCID: GC19P054994 refers to a transmembrane glycoprotein expressed by natural killer cells and subsets of T cells. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. Q99706, accessible through the Gene Cards database (SEQ ID NO: 24):









MSMSPTVIILACLGFFLDQSVWAHVGGQDKPFCSAWPSAVVPQGGHVTLR





CHYRRGFNIFTLYKKDGVPVPELYNRIFWNSFLISPVTPAHAGTYRCRGF





HPHSPTEWSAPSNPLVIMVTGLYEKPSLTARPGPTVRAGENVTLSCSSQS





SFDIYHLSREGEAHELRLPAVPSINGTFQADFPLGPATHGETYRCFGSFH





GSPYEWSDPSDPLPVSVTGNPSSSWPSPTEPSFKTGIARHLHAVIRYSVA





IILFTILPFFLLHRWCSKKKDAAVMNQEPAGHRTVNREDSDEQDPQEVTY





AQLDHCIFTQRKITGPSQRSKRPSTDTSVCIELPNAEPRALSPAHEHHSQ





ALMGSSRETTALSQTQLASSNVPAAGI






ENTPD1, GCID: GC10P095711 refers to a plasma membrane protein that hydrolyzes extracellular ATP and ADP to AMP. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. P49961, accessible through the Gene Cards database (SEQ ID NO: 25):









MEDTKESNVKTFCSKNILAILGFSSIIAVIALLAVGLTQNKALPENVKYG





IVLDAGSSHTSLYIYKWPAEKENDTGVVHQVEECRVKGPGISKFVQKVNE





IGIYLTDCMERAREVIPRSQHQETPVYLGATAGMRLLRMESEELADRVLD





VVERSLSNYPFDFQGARIITGQEEGAYGWITINYLLGKFSQKTRWFSIVP





YETNNQETFGALDLGGASTQVTFVPQNQTIESPDNALQFRLYGKDYNVYT





HSFLCYGKDQALWQKLAKDIQVASNEILRDPCFHPGYKKVVNVSDLYKTP





CTKRFEMTLPFQQFEIQGIGNYQQCHQSILELFNTSYCPYSQCAFNGIFL





PPLQGDFGAFSAFYFVMKFLNLTSEKVSQEKVTEMMKKFCAQPWEEIKTS





YAGVKEKYLSEYCFSGTYILSLLLQGYHFTADSWEHIHFIGKIQGSDAGW





TLGYMLNLTNMIPAEQPLSTPLSHSTYVFLMVLFSLVLFTVAIIGLLIFH





KPSYFWKDMV






AKAPS, GCID: GC14P064465 refers to a member of the AKAP family of proteins, which are capable of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. P24588, accessible through the Gene Cards database (SEQ ID NO: 26):









METTISEIHVENKDEKRSAEGSPGAERQKEKASMLCFKRRKKAAKALKPK





AGSEAADVARKCPQEAGASDQPEPTRGAWASLKRLVTRRKRSESSKQQKP





LEGEMQPAINAEDADLSKKKAKSRLKIPCIKFPRGPKRSNHSKIIEDSDC





SIKVQEEAEILDIQTQTPLNDQATKAKSTQDLSEGISRKDGDEVCESNVS





NSTTSGEKVISVELGLDNGHSAIQTGTLILEEIETIKEKQDVQPQQASPL





ETSETDHQQPVLSDVPPLPAIPDQQIVEEASNSTLESAPNGKDYESTEIV





AEETKPKDTELSQESDFKENGITEEKSKSEESKRMEPIAIIITDTEISEF





DVTKSKNVPKQFLISAENEQVGVFANDNGFEDRTSEQYETLLIETASSLV





KNAIQLSIEQLVNEMASDDNKINNLLQ






TTYH3, GCID: GC07P002638 refers to a member of the tweety family of proteins, which function as chloride anion channels. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q9C0H2, accessible through the Gene Cards database (SEQ ID NO: 27):









MAGVSYAAPWWVSLLHRLPHFDLSWEATSSQFRPEDTDYQQALLLLGAAA





LACLALDLLFLLFYSFWLCCRRRKSEEHLDADCCCTAWCVIIATLVCSAG





IAVGFYGNGETSDGIHRATYSLRHANRTVAGVQDRVWDTAVGLNHTAEPS





LQTLERQLAGRPEPLRAVQRLQGLLETLLGYTAAIPFWRNTAVSLEVLAE





QVDLYDWYRWLGYLGLLLLDVIICLLVLVGLIRSSKGILVGVCLLGVLAL





VISWGALGLELAVSVGSSDFCVDPDAYVTKMVEEYSVLSGDILQYYLACS





PRAANPFQQKLSGSHKALVEMQDVVAELLRTVPWEQPATKDPLLRVQEVL





NGTEVNLQHLTALVDCRSLHLDYVQALTGFCYDGVEGLIYLALFSFVTAL





MFSSIVCSVPHTWQQKRGPDEDGEEEAAPGPRQAHDSLYRVHMPSLYSCG





SSYGSETSIPAAAHTVSNAPVTEYMSQNANFQNPRCENTPLIGRESPPPS





YTSSMRAKYLATSQPRPDSSGSH






ASB2, GCID: GC14M093934 refers to a member of the ankyrin repeat and SOCS box-containing (ASB) protein family, which play a role in protein degradation by coupling suppressor of cytokine signalling (SOCS) proteins with the elongin BC complex. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. Q96Q27, accessible through the Gene Cards database (SEQ ID NO: 28):









MTRFSYAEYFSLFHSCSAPSRSTAPPESSPARAPMGLFQGVMQKYSSSLF





KTSQLAPADPLIKAIKDGDEEALKTMIKEGKNLAEPNKEGWLPLHEAAYY





GQVGCLKVLQRAYPGTIDQRTLQEETAVYLATCRGHLDCLLSLLQAGAEP





DISNKSRETPLYKACERKNAEAVKILVQHNADTNHRCNRGWTALHESVSR





NDLEVMQILVSGGAKVESKNAYGITPLFVAAQSGQLEALRFLAKYGADIN





TQASDNASALYEACKNEHEEVVEFLLSQGADANKTNKDGLLPLHIASKKG





NYRIVQMLLPVTSRTRIRRSGVSPLHLAAERNHDEVLEALLSARFDVNTP





LAPERARLYEDRRSSALYFAVVNNNVYATELLLQHGADPNRDVISPLLVA





IRHGCLRTMQLLLDHGANIDAYIATHPTAFPATIMFAMKCLSLLKFLMDL





GCDGEPCFSCLYGNGPHPPAPQPSSRFNDAPAADKEPSVVQFCEFVSAPE





VSRWAGPIIDVLLDYVGNVQLCSRLKEHIDSFEDWAVIKEKAEPPRPLAH





LCRLRVRKAIGKYRIKLLDTLPLPGRLIRYLKYENTQ






DBN1, GCID: GC05M177456 refers to a cytoplasmic actin-binding protein thought to play a role in the process of neuronal growth. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. Q16643, accessible through the Gene Cards database (SEQ ID NO: 29):









MAGVSFSGHRLELLAAYEEVIREESAADWALYTYEDGSDDLKLAASGEGG





LQELSGHFENQKVMYGFCSVKDSQAALPKYVLINWVGEDVPDARKCACAS





HVAKVAEFFQGVDVIVNASSVEDIDAGAIGQRLSNGLARLSSPVLHRLRL





REDENAEPVGTTYQKTDAAVEMKRINREQFWEQAKKEEELRKEEERKKAL





DERLRFEQERMEQERQEQEERERRYREREQQIEEHRRKQQTLEAEEAKRR





LKEQSIFGDHRDEEEETHMKKSESEVEEAAAIIAQRPDNPREFFKQQERV





ASASAGSCDVPSPFNHRPGSHLDSHRRMAPTPIPTRSPSDSSTASTPVAE





QIERALDEVTSSQPPPLPPPPPPAQETQEPSPILDSEETRAAAPQAWAGP





MEEPPQAQAPPRGPGSPAEDLMFMESAEQAVLAAPVEPATADATEIHDAA





DTIETDTATADTTVANNVPPAATSLIDLWPGNGEGASTLQGEPRAPTPPS





GTEVTLAEVPLLDEVAPEPLLPAGEGCATLLNFDELPEPPATFCDPEEVE





GESLAAPQTPTLPSALEELEQEQEPEPHLLTNGETTQKEGTQASEGYFSQ





SQEEEFAQSEELCAKAPPPVFYNKPPEIDITCWDADPVPEEEEGFEGGD






ACP5, GCID: GC19M011574 refers to an iron containing glycoprotein which catalyzes the conversion of orthophosphoric monoester to alcohol and orthophosphate. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. P13686, accessible through the Gene Cards database (SEQ ID NO: 30):









MDMWTALLILQALLLPSLADGATPALRFVAVGDWGGVPNAPFHTAREMAN





AKEIARTVQILGADFILSLGDNFYFTGVQDINDKRFQETFEDVFSDRSLR





KVPWYVLAGNHDHLGNVSAQIAYSKISKRWNFPSPFYRLHFKIPQTNVSV





AIFMLDTVTLCGNSDDFLSQQPERPRDVKLARTQLSWLKKQLAAAREDYV





LVAGHYPVWSIAEHGPTHCLVKQLRPLLATYGVTAYLCGHDHNLQYLQDE





NGVGYVLSGAGNFMDPSKRHQRKVPNGYLRFHYGTEDSLGGFAYVEISSK





EMTVTYIEASGKSLFKTRLPRRARP






ABCB1, GCID: GC07M087504 refers to a member of the superfamily of ATP-binding cassette (ABC) transporters, which transport various molecules across the extra- and/or intra-cellular membranes. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. P08183, accessible through the Gene Cards database (SEQ ID NO: 31):









MDLEGDRNGGAKKKNFFKLNNKSEKDKKEKKPTVSVFSMFRYSNWLDKLY





MVVGTLAAIIHGAGLPLMMLVFGEMTDIFANAGNLEDLMSNITNRSDIND





TGFFMNLEEDMTRYAYYYSGIGAGVLVAAYIQVSFWCLAAGRQIHKIRKQ





FFHAIMRQEIGWFDVHDVGELNTRLTDDVSKINEGIGDKIGMFFQSMATF





FTGFIVGFTRGWKLTLVILAISPVLGLSAAVWAKILSSFTDKELLAYAKA





GAVAEEVLAAIRTVIAFGGQKKELERYNKNLEEAKRIGIKKAITANISIG





AAFLLIYASYALAFWYGTTLVLSGEYSIGQVLTVFFSVLIGAFSVGQASP





SIEAFANARGAAYEIFKIIDNKPSIDSYSKSGHKPDNIKGNLEFRNVHFS





YPSRKEVKILKGLNLKVQSGQTVALVGNSGCGKSTTVQLMQRLYDPTEGM





VSVDGQDIRTINVRFLREIIGVVSQEPVLFATTIAENIRYGRENVTMDEI





EKAVKEANAYDFIMKLPHKFDTLVGERGAQLSGGQKQRIAIARALVRNPK





ILLLDEATSALDTESEAVVQVALDKARKGRTTIVIAHRLSTVRNADVIAG





FDDGVIVEKGNHDELMKEKGIYFKLVTMQTAGNEVELENAADESKSEIDA





LEMSSNDSRSSLIRKRSTRRSVRGSQAQDRKLSTKEALDESIPPVSFWRI





MKLNLTEWPYFVVGVFCAIINGGLQPAFAIIFSKIIGVFTRIDDPETKRQ





NSNLFSLLFLALGIISFITFFLQGFTFGKAGEILTKRLRYMVFRSMLRQD





VSWFDDPKNTTGALTTRLANDAAQVKGAIGSRLAVITQNIANLGTGIIIS





FIYGWQLTLLLLAIVPIIAIAGVVEMKMLSGQALKDKKELEGSGKIATEA





IENFRTVVSLTQEQKFEHMYAQSLQVPYRNSLRKAHIFGITFSFTQAMMY





FSYAGCFRFGAYLVAHKLMSFEDVLLVFSAVVFGAMAVGQVSSFAPDYAK





AKISAAHIIMIIEKTPLIDSYSTEGLMPNTLEGNVTFGEVVFNYPTRPDI





PVLQGLSLEVKKGQTLALVGSSGCGKSTVVQLLERFYDPLAGKVLLDGKE





IKRLNVQWLRAHLGIVSQEPILFDCSIAENIAYGDNSRVVSQEEIVRAAK





EANIHAFIESLPNKYSTKVGDKGTQLSGGQKQRIAIARALVRQPHILLLD





EATSALDTESEKVVQEALDKAREGRTCIVIAHRLSTIQNADLIVVFQNGR





VKEHGTHQQLLAQKGIYFSMVSVQAGTKRQ






KLRB 1, GCID: GC12M011717 refers to a protein that an extracellular domain with several motifs characteristic of C-type lectins, a transmembrane domain, and a cytoplasmic domain. The KLRB 1 protein is classified as a type II membrane protein because it has an external C terminus and may be involved with the regulation of NK cell function. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q12918, accessible through the Gene Cards database (SEQ ID NO: 32):









MDQQAIYAELNLPTDSGPESSSPSSLPRDVCQGSPWHQFALKLSCAGIIL





LVLVVTGLSVSVTSLIQKSSIEKCSVDIQQSRNKTTERPGLLNCPIYWQQ





LREKCLLFSHTVNPWNNSLADCSTKESSLLLIRDKDELIHTQNLIRDKAI





LFWIGLNFSLSEKNWKWINGSFLNSNDLEIRGDAKENSCISISQTSVYSE





YCSTEIRWICQKELTPVRNKVYPDS






ALOX5AP, GCID: GC13P030713 refers to a protein which, with 5-lipoxygenase, is required for leukotriene synthesis. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. P20292, accessible through the Gene Cards database (SEQ ID NO: 33):









MDQETVGNVVLLAIVTLISVVQNGFFAHKVEHESRTQNGRSFQRTGTLAF





ERVYTANQNCVDAYPTFLAVLWSAGLLCSQVPAAFAGLMYLFVRQKYFVG





YLGERTQSTPGYIFGKRIILFLFLMSVAGIFNYYLIFFFGSDFENYIKTI





STTISPLLLIP






GALNT2, GCID: GC01P230057 refers to a member of the glycosyltransferase 2 protein family, which are known to initiate mucin-type O-glycosylation of peptides in the Goldi apparatus. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q10471, accessible through the Gene Cards database (SEQ ID NO: 34):









MRRRSRMLLCFAFLWVLGIAYYMYSGGGSALAGGAGGGAGRKEDWNEIDP





IKKKDLHHSNGEEKAQSMETLPPGKVRWPDFNQEAYVGGTMVRSGQDPYA





RNKFNQVESDKLRMDRAIPDTRHDQCQRKQWRVDLPATSVVITFHNEARS





ALLRTVVSVLKKSPPHLIKEIILVDDYSNDPEDGALLGKIEKVRVLRNDR





REGLMRSRVRGADAAQAKVLTFLDSHCECNEHWLEPLLERVAEDRTRVVS





PIIDVINMDNFQYVGASADLKGGFDWNLVFKWDYMTPEQRRSRQGNPVAP





IKTPMIAGGLFVMDKFYFEELGKYDMMMDVWGGENLEISFRVWQCGGSLE





IIPCSRVGHVFRKQHPYTFPGGSGTVFARNTRRAAEVWMDEYKNFYYAAV





PSARNVPYGNIQSRLELRKKLSCKPFKWYLENVYPELRVPDHQDIAFGAL





QQGTNCLDTLGHFADGVVGVYECHNAGGNQEWALTKEKSVKHMDLCLTVV





DRAPGSLIKLQGCRENDSRQKWEQIEGNSKLRHVGSNLCLDSRTAKSGGL





SVEVCGPALSQQWKFTLNLQQ






SIRPG, GCID: GC20M001628 refers to a member of the signal-regulatory protein (SRP) family, which receptor-type transmembrane glycoproteins known to be involved in the negative regulation of receptor tyrosine kinase-coupled signaling processes. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q9P1W8, accessible through the Gene Cards database (SEQ ID NO: 35):









MPVPASWPHPPGPFLLLTLLLGLTEVAGEEELQMIQPEKLLLVTVGKTAT





LHCTVTSLLPVGPVLWFRGVGPGRELIYNQKEGHFPRVTTVSDLTKRNNM





DFSIRISSITPADVGTYYCVKFRKGSPENVEFKSGPGTEMALGAKPSAPV





VLGPAARTTPEHTVSFTCESHGFSPRDITLKWFKNGNELSDFQTNVDPTG





QSVAYSIRSTARVVLDPWDVRSQVICEVAHVTLQGDPLRGTANLSEAIRV





PPTLEVTQQPMRVGNQVNVTCQVRKFYPQSLQLTWSENGNVCQRETASTL





TENKDGTYNWTSWFLVNISDQRDDVVLTCQVKHDGQLAVSKRLALEVTVH





QKDQSSDATPGPASSLTALLLIAVLLGPIYVPWKQKT






NDFIP2, GCID: GC13P079481 refers to a protein associated with signal transduced activity and WW domain binding which is a paralog of NDFIP1. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q9NV92, accessible through the Gene Cards database (SEQ ID NO: 36):









MARRRSQRVCASGPSMLNSARGAPELLRGTATNAEVSAAAAGATGSEELP





PGDRGCRNGGGRGPAATTSSTGVAVGAEHGEDSLSRKPDPEPGRMDHHQP





GTGRYQVLLNEEDNSESSAIEQPPTSNPAPQIVQAASSAPALETDSSPPP





YSSITVEVPTTSDTEVYGEFYPVPPPYSVATSLPTYDEAEKAKAAAMAAA





AAETSQRIQEEECPPRDDFSDADQLRVGNDGIFMLAFFMAFIFNWLGFCL





SFCITNTIAGRYGAICGFGLSLIKWILIVRFSDYFTGYFNGQYWLWWIFL





VLGLLLFFRGFVNYLKVRNMSESMAAAHRTRYFFLL






SNAP47, GCID: GC01P227730 refers to a protein that plays a role in intracellular membrane fusion. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q5SQN1, accessible through the Gene Cards database (SEQ ID NO: 37):









MRAARRGLHCAGAERPRRRGRLWDSSGVPQRQKRPGPWRTQTQEQMSRDV





CIHTWPCTYYLEPKRRWVTGQLSLTSLSLRFMTDSTGEILVSFPLSSIVE





IKKEASHFIFSSITILEKGHAKHWFSSLRPSRNVVFSIIEHFWRELLLSQ





PGAVADASVPRTRGEELTGLMAGSQKRLEDTARVLHHQGQQLDSVMRGLD





KMESDLEVADRLLTELESPAWWPFSSKLWKTPPETKPREDVSMTSCEPFG





KEGILIKIPAVISHRTESHVKPGRLTVLVSGLEIHDSSSLLMHRFEREDV





DDIKVHSPYEISIRQRFIGKPDMAYRLISAKMPEVIPILEVQFSKKMELL





EDALVLRSARTSSPAEKSCSVWHAASGLMGRTLHREPPAGDQEGTALHLQ





TSLPALSEADTQELTQILRRMKGLALEAESELERQDEALDGVAAAVDRAT





LTIDKHNRRMKRLT






CD200R1, GCID: GC03M112921 refers to a receptor for the OX-2 membrane glycoprotein. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. Q8TD46, accessible through the Gene Cards database (SEQ ID NO: 38):









MLCPWRTANLGLLLILTIFLVAASSSLCMDEKQITQNYSKVLAEVNTSWP





VKMATNAVLCCPPIALRNLIIITWEIILRGQPSCTKAYRKETNETKETNC





TDERITWVSRPDQNSDLQIRPVAITHDGYYRCIMVTPDGNFHRGYHLQVL





VTPEVTLFQNRNRTAVCKAVAGKPAAQISWIPEGDCATKQEYWSNGTVTV





KSTCHWEVHNVSTVTCHVSHLTGNKSLYIELLPVPGAKKSAKLYIPYIIL





TIIILTIVGFIWLLKVNGCRKYKLNKTESTPVVEEDEMQPYASYTEKNNP





LYDTTNKVKASEALQSEVDTDLHTL






PATL2, GCID: GC15M044665 refers to an RNA-binding protein that acts as a translational repressor. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. C9JE40, accessible through the Gene Cards database (SEQ ID NO: 39):









MNCLEGPGKTCGPLASEEELVSACQLEKEEENEGEEEEEEEDEEDLDPDL





DPDLEEEENDLGDPAVLGAVHNTQRALLSSPGVKAPGMLGMSLASLHFLW





QTLDYLSPIPFWPTFPSTSSPAQHFGPRLPSPDPTLFCSLLTSWPPRFSH





LTQLHPRHQRILQQQQHSQTPSPPAKKPWSQQPDPYANLMTRKEKDWVIK





VQMVQLQSAKPRLDDYYYQEYYQKLEKKQADEELLGRRNRVESLKLVTPY





IPKAEAYESVVRIEGSLGQVAVSTCFSPRRAIDAVPHGTQEQDIEAASSQ





RLRVLYRIEKMFLQLLEIEEGWKYRPPPPCFSEQQSNQVEKLFQTLKTQE





QNNLEEAADGFLQVLSVRKGKALVARLLPFLPQDQAVTILLAITHHLPLL





VRRDVADQALQMLFKPLGKCISHLTLHELLQGLQGLTLLPPGSSERPVTV





VLQNQFGISLLYALLSHGEQLVSLHSSLEEPNSDHTAWTDMVVLIAWEIA





QMPTASLAEPLAFPSNLLPLFCHHVDKQLVQQLEARMEFAWIY






ADRB2, GCID: GC05P148825 refers to a beta-2-adrenergic receptor which is a member of the G protein-coupled receptor superfamily. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. P07550, accessible through the Gene Cards database (SEQ ID NO: 40):









MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLAIVFG





NVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWT





FGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFAITSPFKYQSLLTKNKA





RVIILMVWIVSGLTSFLPIQMHWYRATHQEAINCYANETCCDFFTNQAYA





IASSIVSFYVPLVIMVFVYSRVFQEAKRQLQKIDKSEGRFHVQNLSQVEQ





DGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIQD





NLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQELLCLRRSSLKAY





GNGYSSNGNTGEQSGYHVEQEKENKLLCEDLPGTEDFVGHQGTVPSDNID





SQGRNCSTNDSLL






SORL1, GCID: GC11P121452 refers to a mosaic protein that belongs to at least two families: the vacuolar protein sorting 10 (VPS 10) domain-containing receptor family, and the low-density lipoprotein receptor (LDLR) family. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. Q92673, accessible through the Gene Cards database (SEQ ID NO: 41):









MATRSSRRESRLPFLFTLVALLPPGALCEVWTQRLHGGSAPLPQDRGFLV





VQGDPRELRLWARGDARGASRADEKPLRRKRSAALQPEPIKVYGQVSLND





SHNQMVVHWAGEKSNVIVALARDSLALARPKSSDVYVSYDYGKSFKKISD





KLNFGLGNRSEAVIAQFYHSPADNKRYIFADAYAQYLWITFDFCNTLQGF





SIPFRAADLLLHSKASNLLLGFDRSHPNKQLWKSDDFGQTWIMIQEHVKS





FSWGIDPYDKPNTIYIERHEPSGYSTVFRSTDFFQSRENQEVILEEVRDF





QLRDKYMFATKVVHLLGSEQQSSVQLWVSFGRKPMRAAQFVTRHPINEYY





IADASEDQVFVCVSHSNNRTNLYISEAEGLKFSLSLENVLYYSPGGAGSD





TLVRYFANEPFADFHRVEGLQGVYIATLINGSMNEENMRSVITFDKGGTW





EFLQAPAFTGYGEKINCELSQGCSLHLAQRLSQLLNLQLRRMPILSKESA





PGLIIATGSVGKNLASKTNVYISSSAGARWREALPGPHYYTWGDHGGIIT





AIAQGMETNELKYSTNEGETWKTFIFSEKPVFVYGLLTEPGEKSTVFTIF





GSNKENVHSWLILQVNATDALGVPCTENDYKLWSPSDERGNECLLGHKTV





FKRRTPHATCFNGEDFDRPVVVSNCSCTREDYECDFGFKMSEDLSLEVCV





PDPEFSGKSYSPPVPCPVGSTYRRTRGYRKISGDTCSGGDVEARLEGELV





PCPLAEENEFILYAVRKSIYRYDLASGATEQLPLTGLRAAVALDFDYEHN





CLYWSDLALDVIQRLCLNGSTGQEVIINSGLETVEALAFEPLSQLLYWVD





AGFKKIEVANPDGDFRLTIVNSSVLDRPRALVLVPQEGVMFWTDWGDLKP





GIYRSNMDGSAAYHLVSEDVKWPNGISVDDQWIYWTDAYLECIERITFSG





QQRSVILDNLPHPYAIAVFKNEIYWDDWSQLSIFRASKYSGSQMEILANQ





LTGLMDMKIFYKGKNTGSNACVPRPCSLLCLPKANNSRSCRCPEDVSSSV





LPSGDLMCDCPQGYQLKNNTCVKQENTCLRNQYRCSNGNCINSIWWCDFD





NDCGDMSDERNCPTTICDLDTQFRCQESGTCIPLSYKCDLEDDCGDNSDE





SHCEMHQCRSDEYNCSSGMCIRSSWVCDGDNDCRDWSDEANCTAIYHTCE





ASNFQCRNGHCIPQRWACDGDTDCQDGSDEDPVNCEKKCNGFRCPNGTCI





PSSKHCDGLRDCSDGSDEQHCEPLCTHFMDFVCKNRQQCLFHSMVCDGII





QCRDGSDEDAAFAGCSQDPEFHKVCDEFGFQCQNGVCISLIWKCDGMDDC





GDYSDEANCENPTEAPNCSRYFQFRCENGHCIPNRWKCDRENDCGDWSDE





KDCGDSHILPFSTPGPSTCLPNYYRCSSGTCVMDTWVCDGYRDCADGSDE





EACPLLANVTAASTPTQLGRCDRFEFECHQPKTCIPNWKRCDGHQDCQDG





RDEANCPTHSTLTCMSREFQCEDGEACIVLSERCDGFLDCSDESDEKACS





DELTVYKVQNLQWTADFSGDVTLTWMRPKKMPSASCVYNVYYRVVGESIW





KTLETHSNKTNTVLKVLKPDTTYQVKVQVQCLSKAHNTNDFVTLRTPEGL





PDAPRNLQLSLPREAEGVIVGHWAPPIHTHGLIREYIVEYSRSGSKMWAS





QRAASNFTEIKNLLVNTLYTVRVAAVTSRGIGNWSDSKSITTIKGKVIPP





PDIHIDSYGENYLSFTLTMESDIKVNGYVVNLFWAFDTHKQERRTLNFRG





SILSHKVGNLTAHTSYEISAWAKTDLGDSPLAFEHVMTRGVRPPAPSLKA





KAINQTAVECTWTGPRNVVYGIFYATSFLDLYRNPKSLTTSLHNKTVIVS





KDEQYLFLVRVVVPYQGPSSDYVVVKMIPDSRLPPRHLHVVHTGKTSVVI





KWESPYDSPDQDLLYAVAVKDLIRKTDRSYKVKSRNSTVEYTLNKLEPGG





KYHIIVQLGNMSKDSSIKITTVSLSAPDALKIITENDHVLLFWKSLALKE





KHFNESRGYEIHMFDSAMNITAYLGNTTDNFFKISNLKMGHNYTFTVQAR





CLFGNQICGEPAILLYDELGSGADASATQAARSTDVAAVVVPILFLILLS





LGVGFAILYTKHRRLQSSFTAFANSHYSSRLGSAIFSSGDDLGEDDEDAP





MITGFSDDVPMVIA






CD300A, GCID: GC17P074466 refers to a member of the CD300 glycoprotein family of cell surface proteins found on leukocytes involved in immune response signaling pathways. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. Q9UGN4, accessible through the Gene Cards database (SEQ ID NO: 42):









MWLPWALLLLWVPGCFALSKCRTVAGPVGGSLSVQCPYEKEHRTLNKYWC





RPPQIFLCDKIVETKGSAGKRNGRVSIRDSPANLSFTVTLENLTEEDAGT





YWCGVDTPWLRDFHDPVVEVEVSVFPASTSMTPASITAAKTSTITTAFPP





VSSTTLFAVGATHSASIQEETEEVVNSQLPLLLSLLALLLLLLVGASLLA





WRMFQKWIKAGDHSELSQNPKQAATQSELHYANLELLMWPLQEKPAPPRE





VEVEYSTVASPREELHYASVVFDSNTNRIAAQRPREEEPDSDYSVIRKT






C1orf12, GCID: GC01M231363 is an alternate name for EGLN1, which is a catalyzes the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref. No. Q9GZT9, accessible through the Gene Cards database (SEQ ID NO: 43):









MANDSGGPGGPSPSERDRQYCELCGKMENLLRCSRCRSSFYCCKEHQRQD





WKKHKLVCQGSEGALGHGVGPHQHSGPAPPAAVPPPRAGAREPRKAAARR





DNASGDAAKGKVKAKPPADPAAAASPCRAAAGGQGSAVAAEAEPGKEEPP





ARSSLFQEKANLYPPSNTPGDALSPGGGLRPNGQTKPLPALKLALEYIVP





CMNKHGICVVDDFLGKETGQQIGDEVRALHDTGKFTDGQLVSQKSDSSKD





IRGDKITWIEGKEPGCETIGLLMSSMDDLIRHCNGKLGSYKINGRTKAMV





ACYPGNGTGYVRHVDNPNGDGRCVTCIYYLNKDWDAKVSGGILRIFPEGK





AQFADIEPKFDRLLFFWSDRRNPHEVQPAYATRYAITVWYFDADERARAK





VKYLTGEKGVRVELNKPSDSVGKDVF






PLEK, GCID: GC02P068365 refers to a protein associated with protein homodimerization activity and phosphatidylinositol-3.4-biphosphate binding. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. P08567, accessible through the Gene Cards database (SEQ ID NO: 44):









MEPKRIREGYLVKKGSVFNTWKPMWVVLLEDGIEFYKKKSDNSPKGMIPL





KGSTLTSPCQDFGKRMFVFKITTTKQQDHFFQAAFLEERDAWVRDIKKAI





KCIEGGQKFARKSTRRSIRLPETIDLGALYLSMKDTEKGIKELNLEKDKK





IFNHCFTGNCVIDWLVSNQSVRNRQEGLMIASSLLNEGYLQPAGDMSKSA





VDGTAENPFLDNPDAFYYFPDSGFFCEENSSDDDVILKEEFRGVIIKQGC





LLKQGHRRKNWKVRKFILREDPAYLHYYDPAGAEDPLGAIHLRGCVVTSV





ESNSNGRKSEEENLFEIITADEVHYFLQAATPKERTEWIRAIQMASRTGK






PLAC8, GCID: GC04M083090 refers to a protein associated with metabolism, the immune system, and chromatin binding. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q9NZF 1, accessible through the Gene Cards database (SEQ ID NO: 45):









MQAQAPVVVVTQPGVGPGPAPQNSNWQTGMCDCFSDCGVCLCGTFCFPCL





GCQVAADMNECCLCGTSVAMRTLYRTRYGIPGSICDDYMATLCCPHCTLC





QIKRDINRRRAMRTF






ATM, GCID: GC11P108127 refers to a protein closely related to kinase ATR, which belongs to the PI3/PI4 kinase family and functions as a regulator of a wide variety of downstream proteins, including tumor suppressor proteins p53 and BRCA1, checkpoint kinase CHK2, checkpoint proteins RAD17 and RAD9, and DNA repair protein NBS1. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q13315, accessible through the Gene Cards database (SEQ ID NO: 46):









MSLVLNDLLICCRQLEHDRATERKKEVEKFKRLIRDPETIKHLDRHSDSK





QGKYLNWDAVFRFLQKYIQKETECLRIAKPNVSASTQASRQKKMQEISSL





VKYFIKCANRRAPRLKCQELLNYIMDTVKDSSNGAIYGADCSNILLKDIL





SVRKYWCEISQQQWLELFSVYFRLYLKPSQDVHRVLVARIIHAVTKGCCS





QTDGLNSKFLDFFSKAIQCARQEKSSSGLNHILAALTIFLKTLAVNFRIR





VCELGDEILPTLLYIWTQHRLNDSLKEVIIELFQLQIYIHHPKGAKTQEK





GAYESTKWRSILYNLYDLLVNEISHIGSRGKYSSGFRNIAVKENLIELMA





DICHQVFNEDTRSLEISQSYTTTQRESSDYSVPCKRKKIELGWEVIKDHL





QKSQNDFDLVPWLQIATQLISKYPASLPNCELSPLLMILSQLLPQQRHGE





RTPYVLRCLTEVALCQDKRSNLESSQKSDLLKLWNKIWCITFRGISSEQI





QAENFGLLGAIIQGSLVEVDREFWKLFTGSACRPSCPAVCCLTLALTTSI





VPGTVKMGIEQNMCEVNRSFSLKESIMKWLLFYQLEGDLENSTEVPPILH





SNFPHLVLEKILVSLTMKNCKAAMNFFQSVPECEHHQKDKEELSFSEVEE





LFLQTTFDKMDFLTIVRECGIEKHQSSIGFSVHQNLKESLDRCLLGLSEQ





LLNNYSSEITNSETLVRCSRLLVGVLGCYCYMGVIAEEEAYKSELFQKAK





SLMQCAGESITLFKNKTNEEFRIGSLRNMMQLCTRCLSNCTKKSPNKIAS





GFFLRLLTSKLMNDIADICKSLASFIKKPFDRGEVESMEDDTNGNLMEVE





DQSSMNLFNDYPDSSVSDANEPGESQSTIGAINPLAEEYLSKQDLLFLDM





LKFLCLCVTTAQTNTVSFRAADIRRKLLMLIDSSTLEPTKSLHLHMYLML





LKELPGEEYPLPMEDVLELLKPLSNVCSLYRRDQDVCKTILNHVLHVVKN





LGQSNMDSENTRDAQGQFLTVIGAFWHLTKERKYIFSVRMALVNCLKTLL





EADPYSKWAILNVMGKDFPVNEVFTQFLADNHHQVRMLAAESINRLFQDT





KGDSSRLLKALPLKLQQTAFENAYLKAQEGMREMSHSAENPETLDEIYNR





KSVLLTLIAVVLSCSPICEKQALFALCKSVKENGLEPHLVKKVLEKVSET





FGYRRLEDFMASHLDYLVLEWLNLQDTEYNLSSFPFILLNYTNIEDFYRS





CYKVLIPHLVIRSHFDEVKSIANQIQEDWKSLLTDCFPKILVNILPYFAY





EGTRDSGMAQQRETATKVYDMLKSENLLGKQIDHLFISNLPEIVVELLMT





LHEPANSSASQSTDLCDFSGDLDPAPNPPHFPSHVIKATFAYISNCHKTK





LKSILEILSKSPDSYQKILLAICEQAAETNNVYKKHRILKIYHLFVSLLL





KDIKSGLGGAWAFVLRDVIYTLIHYINQRPSCIMDVSLRSFSLCCDLLSQ





VCQTAVTYCKDALENHLHVIVGTLIPLVYEQVEVQKQVLDLLKYLVIDNK





DNENLYITIKLLDPFPDHVVFKDLRITQQKIKYSRGPFSLLEEINHFLSV





SVYDALPLTRLEGLKDLRRQLELHKDQMVDIMRASQDNPQDGIMVKLVVN





LLQLSKMAINHTGEKEVLEAVGSCLGEVGPIDFSTIAIQHSKDASYTKAL





KLFEDKELQWTFIMLTYLNNTLVEDCVKVRSAAVTCLKNILATKTGHSFW





EIYKMTTDPMLAYLQPFRTSRKKFLEVPRFDKENPFEGLDDINLWIPLSE





NHDIWIKTLTCAFLDSGGTKCEILQLLKPMCEVKTDFCQTVLPYLIHDIL





LQDTNESWRNLLSTHVQGFFTSCLRHFSQTSRSTTPANLDSESEHFFRCC





LDKKSQRTMLAVVDYMRRQKRPSSGTIFNDAFWLDLNYLEVAKVAQSCAA





HFTALLYAEIYADKKSMDDQEKRSLAFEEGSQSTTISSLSEKSKEETGIS





LQDLLLEIYRSIGEPDSLYGCGGGKMLQPITRLRTYEHEAMWGKALVTYD





LETAIPSSTRQAGIIQALQNLGLCHILSVYLKGLDYENKDWCPELEELHY





QAAWRNMQWDHCTSVSKEVEGTSYHESLYNALQSLRDREFSTFYESLKYA





RVKEVEEMCKRSLESVYSLYPTLSRLQAIGELESIGELFSRSVTHRQLSE





VYIKWQKHSQLLKDSDFSFQEPIMALRTVILEILMEKEMDNSQRECIKDI





LTKHLVELSILARTFKNTQLPERAIFQIKQYNSVSCGVSEWQLEEAQVFW





AKKEQSLALSILKQMIKKLDASCAANNPSLKLTYTECLRVCGNWLAETCL





ENPAVIMQTYLEKAVEVAGNYDGESSDELRNGKMKAFLSLARFSDTQYQR





IENYMKSSEFENKQALLKRAKEEVGLLREHKIQTNRYTVKVQRELELDEL





ALRALKEDRKRFLCKAVENYINCLLSGEEHDMWVFRLCSLWLENSGVSEV





NGMMKRDGMKIPTYKFLPLMYQLAARMGTKMMGGLGFHEVLNNLISRISM





DHPHHTLFIILALANANRDEFLTKPEVARRSRITKNVPKQSSQLDEDRTE





AANRIICTIRSRRPQMVRSVEALCDAYIILANLDATQWKTQRKGINIPAD





QPITKLKNLEDVVVPTMEIKVDHTGEYGNLVTIQSFKAEFRLAGGVNLPK





IIDCVGSDGKERRQLVKGRDDLRQDAVMQQVFQMCNTLLQRNTETRKRKL





TICTYKVVPLSQRSGVLEWCTGTVPIGEFLVNNEDGAHKRYRPNDFSAFQ





CQKKMMEVQKKSFEEKYEVFMDVCQNFQPVFRYFCMEKFLDPAIWFEKRL





AYTRSVATSSIVGYILGLGDRHVQNILINEQSAELVHIDLGVAFEQGKIL





PTPETVPFRLTRDIVDGMGITGVEGVFRRCCEKTMEVMRNSQETLLTIVE





VLLYDPLFDWTMNPLKALYLQQRPEDETELHPTLNADDQECKRNLSDIDQ





SFNKVAERVLMRLQEKLKGVEEGTVLSVGGQVNLLIQQAIDPKNLSRLFP





GWKAWV






PTGDR, GCID: GC14P052267 refers to a member of the guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) superfamily, which are seven-pass transmembrane proteins that respond to extracellular cues and activate intracellular signal transduction pathways. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. Q13258, accessible through the Gene Cards database (SEQ ID NO: 47):









MKSPFYRCQNTTSVEKGNSAVMGGVLFSTGLLGNLLALGLLARSGLGWCS





RRPLRPLPSVFYMLVCGLTVTDLLGKCLLSPVVLAAYAQNRSLRVLAPAL





DNSLCQAFAFFMSFFGLSSTLQLLAMALECWLSLGHPFFYRRHITLRLGA





LVAPVVSAFSLAFCALPFMGFGKFVQYCPGTWCFIQMVHEEGSLSVLGYS





VLYSSLMALLVLATVLCNLGAMRNLYAMHRRLQRHPRSCTRDCAEPRADG





REASPQPLEELDHLLLLALMTVLFTMCSLPVIYRAYYGAFKDVKEKNRTS





EEAEDLRALRFLSVISIVDPWIFIIFRSPVFRIFFHKIFIRPLRYRSRCS





NSTNMESSL






PXN, GCID: GC12M120210 refers to a cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extracellular matrix (focal adhesion). A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. P49023, accessible through the Gene Cards database (SEQ ID NO: 48):









MDDLDALLADLESTTSHISKRPVFLSEETPYSYPTGNHTYQEIAVPPPVP





PPPSSEALNGTILDPLDQWQPSSSRFIHQQPQSSSPVYGSSAKTSSVSNP





QDSVGSPCSRVGEEEHVYSFPNKQKSAEPSPTVMSTSLGSNLSELDRLLL





ELNAVQHNPPGFPADEANSSPPLPGALSPLYGVPETNSPLGGKAGPLTKE





KPKRNGGRGLEDVRPSVESLLDELESSVPSPVPAITVNQGEMSSPQRVTS





TQQQTRISASSATRELDELMASLSDFKIQGLEQRADGERCWAAGWPRDGG





RSSPGGQDEGGFMAQGKTGSSSPPGGPPKPGSQLDSMLGSLQSDLNKLGV





ATVAKGVCGACKKPIAGQVVTAMGKTWHPEHFVCTHCQEEIGSRNFFERD





GQPYCEKDYHNLFSPRCYYCNGPILDKVVTALDRTWHPEHFFCAQCGAFF





GPEGFHEKDGKAYCRKDYFDMFAPKCGGCARAILENYISALNTLWHPECF





VCRECFTPFVNGSFFEHDGQPYCEVHYHERRGSLCSGCQKPITGRCITAM





AKKFHPEHFVCAFCLKQLNKGTFKEQNDKPYCQNCFLKLFC






DHRS3, GCID: GC01M012567 refers to a short-chain dehydrogenase/reductase (SDR) that catalyzes the oxidation/reduction of a wide range of substrates, including retinoids and steroids. A non-limiting exemplary sequence of the human protein provided below may be found under UniProtKB Ref No. 075911, accessible through the Gene Cards database (SEQ ID NO: 49):









MVWKRLGALVMFPLQMIYLVVKAAVGLVLPAKLRDLSRENVLITGGGRGI





GRQLAREFAERGARKIVLWGRTEKCLKETTEEIRQMGTECHYFICDVGNR





EEVYQTAKAVREKVGDITILVNNAAVVHGKSLMDSDDDALLKSQHINTLG





QFWTTKAFLPRMLELQNGHIVCLNSVLALSAIPGAIDYCTSKASAFAFME





SLTLGLLDCPGVSATTVLPFHTSTEMFQGMRVRFPNLFPPLKPETVARRT





VEAVQLNQALLLLPWTMHALVILKSILPQAALEEIHKFSGTYTCMNTFKG





RT






It is appreciated that for all the proteins disclosed herein, the short hand term may also refer to isoforms, orthologs, variants, and equivalents thereof, as well as the gene encoding the protein—whose sequence can be readily determined through reverse transcription of the exemplary protein sequence and/or by accessing the gene sequence provided in the Gene Cards database.


MODES OF CARRYING OUT THE DISCLOSURE

To date, transcriptional studies of CD8+ T cells from cancer patients have analyzed cells in peripheral blood or metastatic sites8, 9, 10, 11. The precise state of CD8+ T cell activation, differentiation and function within primary tumors, where they are persistently challenged with tumor antigens, is poorly understood; however, this must be a key reference point from which to begin unraveling the biology of immune attack at the time of diagnosis, tumor progression and after intervention with immunotherapies. In order to fully characterize the molecular nature of immune responses at the tumor site, an unbiased approach was taken to define the global transcriptional profile of purified CD8+ TILs from well-characterized cohorts of patients with two epithelial cancers, non-small cell lung cancer (NSCLC) and head and neck squamous cell cancer (HNSCC).


The global gene expression profile of tumor-infiltrating CTLs (CD8+ TILs) in human cancers has not been fully characterized8, 9, 10, 11. To identify the core transcriptional signature of CD8+ TILs, RNA sequencing (RNA-Seq) of purified populations of CD8+ T cells present in tumor samples (CD8+ TILs) from human patients was performed. Disclosed herein are expression profiles, as set forth in Tables 1-13 herein, which characterize CD8+ TILs and their association with disease prognosis. Based on this information, Applicants arrived at the cells, compositions, and methods disclosed herein.


Cells of Interest

Aspects of this disclosure relate to a cell that exhibits or is modified to exhibit one or more of the following characteristics:

    • (i) higher than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (ii) lower than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (iii) higher than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (iv) lower than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (v) higher than baseline expression of one or more genes set forth in Table 12; and/or
    • (vi) lower than baseline expression of one or more genes set forth in Table 13.


In some aspects the cell is an immune cell, such as but not limited to a tumor infiltrating lymphocyte (TILs), a tissue resident memory cell (TRM), and/or a CD 8+ T-cell.


It is understood that, in the aforementioned aspects and embodiments, baseline expression refers to normalized mean gene expression. Thus, in further embodiments, higher than baseline expression refers to at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.


More generally, the term “baseline” is employed to refer to the condition of the cells absent exposure to a tumor or cancer. And, unless explicitly stated otherwise, terms of degree such as “higher” and “lower” are used in reference to a “baseline” value calculated thusly.


Methods of Detection and Isolation

In aspects relating to cells aforementioned cells without further modification, detection of presence or absence of these cells may be used for diagnosis of, prognosis of, or determining suitable therapy for a cancer, tumor, or neoplasia in a subject.


For example, aspects disclosed herein relate to a method of determining the density of tumor infiltrating lymphocytes (TILs), optionally T-cells, in a cancer, tumor, or sample thereof comprising measuring expression of one or more gene selected from the group of 4-1BB, PD-1, or TIM3, or one or more genes selected from Table 12 in the cancer, tumor, or sample thereof, wherein higher than baseline expression indicates higher density of TILs in the cancer, tumor, or sample thereof, or one or more genes selected from Table 13 in the cancer, tumor, or sample thereof, wherein lower than baseline expression indicates higher density of TILs in the cancer, tumor, or sample thereof. Additional aspects relate to a method to determine the density of tissue-resident memory cells (TRM), optionally T-cells, in a cancer, tumor, or sample thereof comprising measuring the level of CD103 or one or more genes selected from Table 12 in the cancer, tumor, or sample thereof, wherein higher than baseline levels of CD103 indicates a high density of TRM in the cancer, tumor, or sample thereof, or one or more genes selected from Table 13 in the cancer, tumor, or sample thereof, wherein lower than baseline levels of CD103 indicates a high density of TRM in the cancer, tumor, or sample thereof. In some method aspects, prognosis of a subject having cancer is determined based on the density of TILs and/or TRM in the cancer or a sample thereof, i.e. wherein a high density of TILs and/or TRM indicates an increased probability and/or duration of survival. As disclosed herein, measuring CD103 levels may be used to determine density of TRM. Thus, density or frequency of CD103 may likewise serve as a prognostic indicator in the same manner as density of TRM. Further, in embodiments relating to the density of TILs, these cells may be enriched for TRM, for example by contacting the TILs with an effective amount of an active agent that induces higher than baseline expression of one or more genes set forth in Table 12 and/or an active agent that induces lower than base line expression of one or more genes set forth in Table 13 in TILs. As noted above, such an active agent may optionally be an antibody, protein, peptide, a small molecule, or a nucleic acid. It is appreciated that in such an enriched population, in some embodiments, the TILs enriched for TRM have enhanced cytotoxicity and proliferation.


Further aspects relate to a method of diagnosing, determining prognosis in a subject, and/or responsiveness to cancer therapy by detecting the presence of one or more of:

    • (i) one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8, wherein higher than baseline levels is diagnostic of cancer and/or indicates an increased probability and/or duration of survival and/or indicates that the subject is likely to respond to cancer therapy;
    • (ii) one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8, wherein lower than baseline levels is diagnostic of cancer and/or indicates an increased probability and/or duration of survival and/or indicates that the subject is likely to respond to cancer therapy;
    • (iii) one or more genes set forth in Table 12, wherein higher than baseline levels is diagnostic of cancer and/or indicates an increased probability and/or duration of survival and/or indicates that the subject is likely to respond to cancer therapy; and/or
    • (iv) one or more genes set forth in Table 13, wherein lower than baseline levels is diagnostic of cancer and/or indicates an increased probability and/or duration of survival and/or indicates that the subject is likely to respond to cancer therapy.


In some embodiments, the T-cells are CD8+ and/or tumor infiltrating lymphocytes (TILs). Such embodiments include but are not limited to (i) to (ii) listed above. In some embodiments, the T-cells are tissue-resident memory cells (TRM). Such embodiments include (iii) and (iv) listed above. In further embodiments of these aspects, the detection is conducted by contacting the cancer, tumor, or sample (as relevant) with an agent, optionally including a detectable label or tag. The detectable label or tag may comprise a radioisotope, a metal, horseradish peroxidase, alkaline phosphatase, avidin or biotin. Further, the agent may comprise a polypeptide that binds to an expression product encoded by the gene, or a polynucleotide that hybridizes to a nucleic acid sequence encoding all or a portion of the gene or that binds to an expression product encoded by the gene, or a polynucleotide that hybridizes to a nucleic acid sequence encoding all or a portion of the gene. In some aspects, the polypeptide comprises an antibody, an antigen binding fragment thereof, or a receptor that binds to the gene.


Further exemplary aspects are disclosed herein, including:


a method of determining prognosis of a subject having cancer, optionally lung cancer, comprising, or alternatively consisting essentially of, or yet further consisting of, contacting tumor infiltrating lymphocytes (TILs) of the cancer or a sample thereof with an antibody that recognizes and binds CD103 to determine the frequency of CD103+ TILs, or an antibody that recognizes and binds a protein encoded by a gene listed in Table 12 or Table 13, wherein a high frequency of CD103+ TILs or TILs expressing proteins encoded by a gene listed in Table 12 indicates an increased probability and/or duration of survival and low frequency of or TILs expressing proteins encoded by a gene listed in Table 13 indicates an increased probability and/or duration of survival;


a method of determining the responsiveness of a subject having cancer to immunotherapy comprising, or alternatively consisting essentially of, or yet further consisting of, contacting tumor infiltrating lymphocytes (TILs) of the cancer or a sample thereof with an antibody that recognizes and binds a protein encoded by a gene listed in Table 12 or Table 13, wherein a high frequency of TILs expressing proteins encoded by a gene listed in Table 12 indicates responsiveness to immunotherapy and low frequency of or TILs expressing proteins encoded by a gene listed in Table 13 indicates responsiveness to immunotherapy;


a method of determining the responsiveness of a subject having cancer to immunotherapy comprising, or alternatively consisting essentially of, or yet further consisting of, contacting tumor infiltrating lymphocytes (TILs) of the cancer or a sample thereof with an antibody that recognizes and binds CD8, and antibody that recognizes and binds PD-1, an antibody that recognizes and binds TIM3, an antibody that recognizes and binds LAG3, and an antibody that recognizes and binds CTLA4 to determine the frequency of CD8+PD1+, CD8+TIM3+, CD8+LAG3+, CD8+CTLA4+, CD8+PD1+TIM3+, CD8+PD1+LAG3+, CD8+PD1+CTLA4+, CD8+TIM3+LAG3+, CD8+TIM3+CTLA4+, CD8+LAG3+CTLA4+, CD8+PD1+TIM3+LAG3+, CD8+PD1+LAG3+CTLA4+, or CD8+PD1+TIM3+CTLA4+ TILs, wherein a high frequency of one or more of these TILs indicates responsiveness to immunotherapy;


a method of determining the responsiveness of a subject having cancer to immunotherapy comprising, or alternatively consisting essentially of, or yet further consisting of, contacting tumor infiltrating lymphocytes (TILs) of the cancer or a sample thereof with an antibody that recognizes and binds a protein encoded by a gene listed in Table 12 or Table 13, wherein a high frequency of TILs expressing proteins encoded by a gene listed in Table 12 indicates responsiveness to immunotherapy and low frequency of or TILs expressing proteins encoded by a gene listed in Table 13 indicates responsiveness to immunotherapy; and/or


a method of determining the responsiveness of a subject having cancer to immunotherapy comprising, or alternatively consisting essentially of, or yet further consisting of, contacting tumor infiltrating lymphocytes (TILs) of the cancer or a sample thereof with an antibody that recognizes and binds CD8, and antibody that recognizes and binds S1PR1, and an antibody that recognizes and binds KLF2 to determine the frequency of CD8+S1PR1- or CD8+KLF2− TILs, wherein a high frequency of one or more of these TILs indicates an increased responsiveness to immunotherapy.


It is appreciated that in any such embodiment disclosed herein, such as the exemplary embodiments of the paragraph above, similar embodiments may include the use of antibodies or detection of expression of one or more proteins encoded by one or more genes or related genes in pathways disclosed in Tables 1-13. Non-limiting exemplary embodiments thereof are described in the claims below.


In aspects where responsiveness to therapy—e.g. cancer therapy or immunotherapy—is assessed further embodiments may include the administration of the therapy to the subject being assessed. Non-limiting examples of cancer therapies include but are not limited to chemotherapy, immunotherapy, and/or radiation therapy.


Methods of detecting gene expression are well known in the art and can be readily adapted to the present disclosure. Such methods include but are not limited to Northern, Southern, and Western blotting, ISH, ELISA, X-ray, IHC, FISH, immunoprecipitation, immunofluorescence, chemiluminescence, radioactivity, X-ray, nucleic acid hybridization, protein-protein interaction, immunoprecipitation, flow cytometry, PCR, RT-PCR, qRT-PCR, SAGE, DNA microarray, DNA transcription, RNA Seq, and tiling arrays. Kits are available for carrying out such assays, such as but not limited to those produced by Thermo Fisher Scientific, Illumina®, QIAGEN, Life Technologies™, and other commercial vendors. In some embodiments, the gene expression may be detected at the transcriptional or translational level, i.e. either based on levels of mRNA transcribed or by levels of actual protein produced.


In general it is noted that agents or antibodies disclosed herein may be contacted with the cancer, tumor, or sample in conditions under which it can bind to the gene it targets to assess expression and/or presence of the aforementioned genes.


Methods of isolating relevant cells are well known in the art and can be readily adapted to the present disclosure. Isolation methods for use in relation to this disclosure include, but are not limited to Life Technologies Dynabeads® system; STEMcell Technologies EasySep™, RoboSep™, RosetteSep™, SepMate™; Miltenyi Biotec MACS™ cell separation kits, fluorescence activated cell sorting (FACS), and other commercially available cell separation and isolation kits. Particular subpopulations of immune cells may be isolated through the use of beads or other binding agents available in such kits specific to unique cell surface markers. For example, MACS™ CD4+ and CD8+ MicroBeads or complement depletion may be used to isolate CD4+ and CD8+ T-cells.


To the extent that samples are required in the method aspects disclosed herein they may optionally comprise comprises cells, tissue, or an organ biopsy; be an epithelial sample; originate from lung, respiratory or airway tissue or organ, a circulatory tissue or organ, a skin tissue, bone tissue, or muscle tissue; and/or originate from head, neck, brain, skin, bone, or blood.


Methods of Modification

In aspects relating to cells that are modified to exhibit or isolated as exhibiting the traits disclosed herein, administration of these cells can be useful in the treatment of a cancer, tumor, or neoplasia in a subject. In some embodiments, the cells to be modified are isolated from the subject, and, thus, are autologous to the subject. In some embodiments, the cells to be modified are obtained from a source other than the subject (e.g. another subject, a cell line, or an “off-the-shelf” source of cells).


Some aspects relate to a modified T-cell, which is modified to exhibit one or more of:

    • (i) higher than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (ii) lower than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (iii) higher than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (iv) lower than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (v) higher than baseline expression of one or more genes set forth in Table 12; and/or
    • (vi) lower than baseline expression of one or more genes set forth in Table 13.


In some embodiments, the T-cells are CD8+. Such embodiments include but are not limited to (i) to (iv) listed above. In some embodiments, the T-cells are tissue-resident memory cells (TRM). Such embodiments include (v) and (vi) listed above.


Methods of modifying gene expression are well known in the art and can be readily adapted to the present disclosure. For example, genes of interest may be packaged using a packaging vector and cell lines and introduced via a traditional recombinant methods. Alternatively or in addition, gene expression may be modified using a CRISPR/Cas9 system.


In some embodiments, the packaging vector may include, but is not limited to retroviral vector, lentiviral vector, adenoviral vector, and adeno-associated viral vector. The packaging vector contains elements and sequences that facilitate the delivery of genetic materials into cells. For example, the retroviral constructs are packaging plasmids comprising at least one retroviral helper DNA sequence derived from a replication-incompetent retroviral genome encoding in trans all virion proteins required to package a replication incompetent retroviral vector, and for producing virion proteins capable of packaging the replication-incompetent retroviral vector at high titer, without the production of replication-competent helper virus. The retroviral DNA sequence lacks the region encoding the native enhancer and/or promoter of the viral 5′ LTR of the virus, and lacks both the psi function sequence responsible for packaging helper genome and the 3′ LTR, but encodes a foreign polyadenylation site, for example the SV40 polyadenylation site, and a foreign enhancer and/or promoter which directs efficient transcription in a cell type where virus production is desired. The retrovirus is a leukemia virus such as a Moloney Murine Leukemia Virus (MMLV), the Human Immunodeficiency Virus (HIV), or the Gibbon Ape Leukemia virus (GALV). The foreign enhancer and promoter may be the human cytomegalovirus (HCMV) immediate early (IE) enhancer and promoter, the enhancer and promoter (U3 region) of the Moloney Murine Sarcoma Virus (MMSV), the U3 region of Rous Sarcoma Virus (RSV), the U3 region of Spleen Focus Forming Virus (SFFV), or the HCMV IE enhancer joined to the native Moloney Murine Leukemia Virus (MMLV) promoter.


The retroviral packaging plasmid may consist of two retroviral helper DNA sequences encoded by plasmid based expression vectors, for example where a first helper sequence contains a cDNA encoding the gag and pol proteins of ecotropic MMLV or GALV and a second helper sequence contains a cDNA encoding the env protein. The Env gene, which determines the host range, may be derived from the genes encoding xenotropic, amphotropic, ecotropic, polytropic (mink focus forming) or 10A1 murine leukemia virus env proteins, or the Gibbon Ape Leukemia Virus (GALV env protein, the Human Immunodeficiency Virus env (gp160) protein, the Vesicular Stomatitus Virus (VSV) G protein, the Human T cell leukemia (HTLV) type I and II env gene products, chimeric envelope gene derived from combinations of one or more of the aforementioned env genes or chimeric envelope genes encoding the cytoplasmic and transmembrane of the aforementioned env gene products and a monoclonal antibody directed against a specific surface molecule on a desired target cell. Similar vector based systems may employ other vectors such as sleeping beauty vectors or transposon elements.


Additional modifications can be made to the cell to render it more suitable for use in treatment. For example, the cells may be further modified to express or not express one or more antibodies, signaling molecules, receptors, or other immune effector in order to enhance their anti-cancer effect.


In some embodiments, the T-cell is further modified to express a protein that binds to a cytokine, chemokine, lymphokine, or a receptor each thereof and/or CD19. In further embodiments, this protein comprises an antibody or antigen binding fragment thereof, optionally wherein the antibody is IgG, IgA, IgM, IgE or IgD, or a subclass thereof or the antigen binding fragment is an Fab, Fab′, F(ab′)2, Fv, Fd, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv) or VL or VH. Regarding antibodies, non-limiting exemplary subclasses of IgG relevant to aspects disclosed herein include but are not limited to IgG1, IgG2, IgG3 and IgG4.


Compositions

Further aspects of the disclosure relate to a composition comprising one or more of the cells disclosed herein.


Briefly, pharmaceutical compositions of the present disclosure including but not limited to any one of the claimed compositions may comprise a target cell population as described herein, in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients.


Examples of well-known carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, agaroses and magnetite. The nature of the carrier can be either soluble or insoluble for purposes of the disclosure. Those skilled in the art will know of other suitable carriers for binding antibodies, or will be able to ascertain such, using routine experimentation.


Such compositions may also comprise buffers such as neutral buffered saline, phosphate buffered saline and the like; carbohydrates such as glucose, mannose, sucrose or dextrans, mannitol; proteins; polypeptides or amino acids such as glycine; antioxidants; chelating agents such as EDTA or glutathione; adjuvants (e.g., aluminum hydroxide); and preservatives. Compositions of the present disclosure may be formulated for oral, intravenous, topical, enteral, and/or parenteral administration. In certain embodiments, the compositions of the present disclosure are formulated for intravenous administration.


Administration of the cells or compositions can be effected in one dose, continuously or intermittently throughout the course of treatment. Methods of determining the most effective means and dosage of administration are known to those of skill in the art and will vary with the composition used for therapy, the purpose of the therapy and the subject being treated. Single or multiple administrations can be carried out with the dose level and pattern being selected by the treating physician. Suitable dosage formulations and methods of administering the agents are known in the art. In a further aspect, the cells and composition of the disclosure can be administered in combination with other treatments.


The cells and populations of cell are administered to the host using methods known in the art. This administration of the cells or compositions of the disclosure can be done to generate an animal model of the desired disease, disorder, or condition for experimental and screening assays.


Briefly, pharmaceutical compositions of the present disclosure including but not limited to any one of the claimed compositions may comprise a cell or population of cells as described herein, in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients. Such compositions may comprise buffers such as neutral buffered saline, phosphate buffered saline and the like; carbohydrates such as glucose, mannose, sucrose or dextrans, mannitol; proteins; polypeptides or amino acids such as glycine; antioxidants; chelating agents such as EDTA or glutathione; adjuvants (e.g., aluminum hydroxide); and preservatives. Compositions of the present disclosure may be formulated for oral, intravenous, topical, enteral, and/or parenteral administration. In certain embodiments, the compositions of the present disclosure are formulated for intravenous administration.


Briefly, pharmaceutical compositions of the present disclosure including but not limited to any one of the claimed compositions may comprise a target cell population as described herein, in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients. Such compositions may comprise buffers such as neutral buffered saline, phosphate buffered saline and the like; carbohydrates such as glucose, mannose, sucrose or dextrans, mannitol; proteins; polypeptides or amino acids such as glycine; antioxidants; chelating agents such as EDTA or glutathione; adjuvants (e.g., aluminum hydroxide); and preservatives. Compositions of the present disclosure are preferably formulated for intravenous administration.


Pharmaceutical compositions of the present disclosure may be administered in a manner appropriate to the disease to be treated or prevented. The quantity and frequency of administration will be determined by such factors as the condition of the patient, and the type and severity of the patient's disease, although appropriate dosages may be determined by clinical trials.


Methods of Treatment

As disclosed hereinabove, the cells of the present disclosure may be used to treat cancer, tumor, and neoplasia. These cells may be administered either alone or in combination with diluents, known anti-cancer therapeutics, and/or with other components such as cytokines or other cell populations that are immunostimulatory.


Aspects of this disclosure relate to methods of treating cancer in a subject and/or eliciting an anti-tumor response comprising, or alternatively consisting essentially of, or yet further consisting of, administering to the subject and/or contacting the tumor or a tumor cell with, respectively, an effective amount of a population of T-cells that exhibit one or more of the following characteristics:

    • (i) higher than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (ii) lower than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (iii) higher than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (iv) lower than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (v) higher than baseline expression of one or more genes set forth in Table 12; and/or lower than baseline expression of one or more genes set forth in Table 13.


In some embodiments, the T-cells are CD8+ and/or tumor infiltrating lymphocytes (TILs). Such embodiments include (i) to (iv) but are not limited to listed above. In some embodiments, the T-cells are tissue-resident memory cells (TRM). Such embodiments include (v) and (vi) listed above. Similar aspects relate to methods of treating cancer in a subject and/or eliciting an anti-tumor response comprising, or alternatively consisting essentially of, or yet further consisting of, administering to the subject and/or contacting the tumor to a tumor cell with, respectively, an effective amount of one or more an active agent that induces in T-cells:

    • (i) higher than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (ii) lower than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (iii) higher than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (iv) lower than baseline expression of genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (v) higher than baseline expression of one or more genes set forth in Table 12; and/or
    • (vi) lower than baseline expression of one or more genes set forth in Table 13.


In some embodiments, the T-cells are CD8+ and/or tumor infiltrating lymphocytes (TILs). Such embodiments include but are not limited to (i) to (iv) listed above. In some embodiments, the T-cells are tissue-resident memory cells (TRM). Such embodiments include (v) and (vi) listed above. In some embodiments, the active agent is an antibody, a small molecule, or a nucleic acid.


Additional aspects relate to methods of modulating protein expression in a subject or sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that induces in T-cells, higher or lower than baseline expression of one or more proteins encoded by the genes set forth in any one of Tables 1-13 to the subject or sample, optionally one or more of:

    • (i) higher than baseline expression of one or more proteins encoded by genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (ii) lower than baseline expression of one or more proteins encoded by genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (iii) higher than baseline expression of proteins encoded by genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (iv) lower than baseline expression of proteins encoded by genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (v) higher than baseline expression of one or more proteins encoded by genes set forth in Table 12; and/or
    • (vi) lower than baseline expression of one or more proteins encoded by genes set forth in Table 13.


Additional aspects relate to methods of modulating protein activity in a subject or a sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that modulates in T-cells, one or more proteins encoded by the genes set forth in any one of Tables 1-13 to the subject or sample, optionally one or more of:

    • (i) induce activity of one or more proteins encoded by genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (ii) inhibit activity of one or more proteins encoded by genes set forth in Table 1, Table 4, Table 7 and/or Table 8;
    • (iii) induce activity of one or more proteins encoded by genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (iv) inhibit activity of one or more of proteins encoded by genes involved in one or more pathways set forth in Table 5 and/or Table 9;
    • (v) induce activity of one or more proteins encoded by genes set forth in Table 12; and/or
    • (vi) inhibit activity of one or more proteins encoded by genes set forth in Table 13.


In some embodiments, the method is effective for treating cancer in a subject and/or eliciting an anti-tumor response; thus, the method comprises, or alternatively consists essentially of, or yet further consists of, administering the agent to the subject and/or contacting the tumor or a tumor cell with the agent, respectively. In some embodiments, the T-cells are CD8+ and/or tumor infiltrating lymphocytes (TILs). Such embodiments include but are not limited to (i) to (iv) listed above. In some embodiments, the T-cells are tissue-resident memory cells (TRM). Such embodiments include (v) and (vi) listed above. In some embodiments, the active agent is an antibody, a small molecule, or a nucleic acid.


Methods of modulating gene expression and/or protein expression are well known in the art. With regard to gene expression, agents can be used to silence genes through affecting gene regulation and/or methylation. The recombinant methods and CRISPR/Cas systems disclosed hereinabove may be useful in such methods. With regard to protein expression, agents can be used to affect protein expression at either the transcriptional level or the translational level (protein). Non-limiting examples of modulation at the transcriptional level include the use of interfering RNA molecules which disrupt transcription of the mRNA encoding the protein (to reduce expression) and/or the introduction of additional mRNA transcripts of the protein to increase production of the protein (to increase expression). Non-limiting examples of modulation at the translational level include the use of an agent that renders the protein unstable or otherwise non-functional for its putative function (to reduce expression) or the introduction of additional protein to increase the quantity of protein performing the putative function (to increase expression). Further methods of modulation include the use of active agents that affect downstream and/or upstream elements of the pathway in which the protein is involved.


Methods of assessing protein activity according the aspects disclosed herein are well understood in the art and include any protocol and/or assay designed to determine whether there has been an increase or decrease in the activity of a protein from the baseline of normal protein activity. Non-limiting examples of assays that are suitable are those that assess enzyme activity and/or catalysis; assess co-association and/or precipitation, assess phylphorylation/glycosylation/amidation/ubiquitination as a result of the protein, and/or any other appropriate mechanism related to the protein, e.g., where a protein functions along a specified pathway, assays analyzing levels of the relevant upstream pathway functions. In some embodiments, the change in activity is at least 0.1×, at least 0.2×, at least 0.3×, at least 0.4×, at least 0.5×, at least 1.0×. at least 1.25×, at least 1.5×, at least 2.0×, at least 2.5×, at least 3.0×, at least 3.5×, at least 4.0×, at least 4.5×, at least 5.0×, at least 5.5×, at least 6.0×, at least 6.5×, at least 7.0×, at least 7.5×, at least 8.0×, at least 8.5×, at least 9.0×, at least 9.5×, at least 10× fold.


The cells as disclosed herein may be administered either alone or in combination with diluents, known anti-cancer therapeutics, and/or with other components such as cytokines, chemokines, lymphokines, antibodies, or other cell populations that are immunostimulatory. They may be administered as a first line therapy, a second line therapy, a third line therapy, or further therapy. As such, the disclosed cells may be combined with other therapies (e.g., chemotherapy, radiation, etc.). Non-limiting examples of additional therapies include chemotherapeutics or biologics. Appropriate treatment regimens will be determined by the treating physician or veterinarian.


In some embodiments, the disclosed cells can be delivered or administered into a cavity formed by the resection of tumor tissue (i.e. intracavity delivery) or directly into a tumor prior to resection (i.e. intratumoral delivery). In some embodiments, the disclosed cells can be administered intravenously, intrathecally, intraperitoneally, intramuscularly, subcutaneously, or by other suitable means of administration.


Pharmaceutical compositions of the present disclosure can be administered in a manner appropriate to the disease to be treated or prevented. The quantity and frequency of administration will be determined by such factors as the condition of the patient, and the type and severity of the patient's disease, although appropriate dosages may be determined by clinical trials.


Kits

In one particular aspect, the present disclosure provides kits for performing any of the methods disclosed herein as well as instructions for carrying out the methods of the present disclosure such as detecting, isolating, or modifying cells and/or analyzing the results or administering the cells.


The kit can also comprise, e.g., a buffering agent, a preservative or a protein-stabilizing agent. The kit can further comprise components necessary for detecting the detectable-label, e.g., an enzyme or a substrate. The kit can also contain a control sample or a series of control samples, which can be assayed and compared to the test sample. Each component of the kit can be enclosed within an individual container and all of the various containers can be within a single package, along with instructions for interpreting the results of the assays performed using the kit. The kits of the present disclosure may contain a written product on or in the kit container. The written product describes how to use the reagents contained in the kit.


As amenable, these suggested kit components can be packaged in a manner customary for use by those of skill in the art. For example, these suggested kit components may be provided in solution or as a liquid dispersion or the like.


The following examples are illustrative of procedures which can be used in various instances in carrying the disclosure into effect.


EXAMPLES
Example 1—Immune Profiling of CD8+ Tumor Infiltrating Lymphocytes
Results
Major Transcriptional Changes Characterize Tumor-Infiltrating CTLs

To identify the core transcriptional signature of tumor infiltrating CTL's (CD8+ TILs), the inventors performed RNA sequencing (RNA-Seq) of purified populations of CD8+ T cells present in tumor samples (CD8+ TILs) from 36 patients with treatment-naïve early stage non-small cell lung cancer (NSCLC), categorized based on their histological subtype into adenocarcinoma and squamous cell carcinoma (Table 2). Matched transcriptional profiles of CD8+ T cells isolated from the adjacent non-tumor lung tissue (CD8+ N-TILs) were matched to discriminate features linked to lung tissue residence from those related to tumor infiltration. To assess the conservation of the transcriptional program of CD8+ TILs in a related solid tumor of epithelial-origin, a similar data set generated in 41 patients with head and neck squamous cell carcinoma (HNSCC) from both human papilloma virus (HPV)-positive (virally-driven) and HPV-negative subtypes was utilized (Table 2 and Table 3).


A large number of transcripts (n=1403) were identified that were differentially expressed by CD8+ TILs when compared to CD8+ N-TILs (Benjamini-Hochberg adjusted P<0.05 and 1.5-fold change (Table 4); indicating major changes in the transcriptional landscape of CD8+ TILs in lung tumor tissue. This set of ‘CD8+ TIL-associated transcripts’ reflects tumor-specific transcriptional programming as they were revealed by comparison with CD8+ N-TILs from uninvolved lung tissue; such a comparison excludes confounding factors introduced by lung tissue residence-related gene expression.


The expression of lung cancer ‘CD8+ TIL-associated transcripts’ did not differ according to histological subtype (adenocarcinoma versus squamous cell carcinoma).


Principal component analysis (PCA) and hierarchical clustering also showed that CD8+ TILs from both subtypes of lung cancer mostly clustered together, distinct from the CD8+ N-TILs. Interestingly, this set of lung cancer ‘CD8+ TIL-associated transcripts’ were similarly expressed in CD8+ TILs in both subtypes of HNSCC, which also clustered together with CD8+ TILs from lung cancer, indicating a conserved TIL transcriptome for these two tumor types.


Features associated with inhibited T cell function, anergy and senescence have been described in TILs12, 13, 14. Gene set enrichment analysis (GSEA) revealed significant enrichment of genes linked to the so-called exhaustion stage, such as PDCD1 (which encodes for PD1), CTLA4, HA VCR2 (which encodes for TIM3) and KLRG1, although some of these are also associated with activation, while genes associated with T cell anergy and senescence were not enriched FIG. 1). T cell-associated genes derived from The Cancer Genome Atlas (TCGA) of lung cancer15 were also enriched (FIG. 1). Together these findings suggest the strategy disclosed herein for micro-scaled RNA-Seq analysis of freshly purified ex vivo CD8+ TILs and CD8+ N-TILs reliably identifies transcripts previously linked to TILs.


Cell Proliferation- and TCR Activation-Related Genes in CD8+ TILs

To gain broad insight into the functional relevance of the CD8+ TIL transcriptional program, gene pathway analysis was performed. Interestingly, in TILs, there was observed significant enrichment of transcripts encoding overlapping sets of genes involved in cell cycle control, mitosis, DNA replication and signaling via the tumor suppressor p53, ataxia telangiectasia mutated (ATM) and polo-like kinase (PLK) pathways (FIGS. 2A-C and Table 5), indicating that proliferating CD8+ T cells are enriched in TILs (tumors) when compared to N-TILs (adjacent uninvolved lung tissue). Furthermore, the inventors observed enrichment of canonical pathways involved in antigen-specific T cell activation, especially the 4-1BB (tumor necrosis factor receptor superfamily member 9, TNFRSF9)-mediated and CD27 co-stimulatory pathways that are activated following T cell receptor (TCR) engagement and co-stimulation by antigen-presenting cells (APC), respectively16, 17 (FIGS. 2A, 2D). The increased expression of 4-1BB in CD8+ TILs was confirmed at the protein level by flow cytometry (FIG. 2E). Together these data suggest that TCR engagement and co-stimulation, presumably provided by APCs expressing tumor-associated antigens (TAA), are likely to be involved in antigen-specific activation and proliferation of CD8+ TILs, implying that the tumor milieu sustains clonal expansion of presumed TAA-specific CD8+ T cells. This suggestion was further supported by analysis of the TCR repertoire, which indicated significantly greater clonal expansion of CD8+ TILs compared to N-TILs (FIG. 2F, Table 6).


Heterogeneity in the Expression of Immunotherapy Target Molecules

Immune checkpoint blockers such as anti-PD1 and anti-CTLA4 agents in humans and in model organisms4, 18 suggests that CD8+ TILs with features of TCR engagement and strong co-stimulation are likely to mount robust anti-tumor immune responses. However, the response to such treatments is highly variable and limited to a minority of patients. Although not wishing to be bound by theory, it was hypothesized that such inter-individual variability in response may be dictated by the underlying molecular profile of CD8+ TILs, which may also reveal other immune evasion mechanisms besides PD1 and CTLA-4-based pathways. Therefore, expression of a spectrum of potential immunotherapy target molecules was examined to uncover the extent of molecular heterogeneity in CD8+ TILs. Substantial variability was observed in the expression of transcripts encoding PD-1 and other potential targets of immunotherapy by CD8+ TILs from patients with lung cancer or HNSCC. The inventors confirmed PD-1 expression at the protein level and showed that the abundance of PDCD1 transcripts correlated with the average number of PD-1-expressing cells in the tumors. Varying combinations of expression of co-inhibitory molecules were also found; for example, CD8+ TILs from some patients with lung cancer had upregulation of transcripts encoding four targets of immunotherapy (PD-1, TIM-3, LAG-3 and CTLA-4) relative to the expression of those transcripts by other patients, while some patients showed upregulation of expression of three or two molecules or even a single molecule. The high molecular resolution and breadth of the data suggests that baseline transcriptional profiling of tumor-infiltrating CD8+ T cells might guide the selection of appropriate immunotherapies for each patient and the development of biomarkers that can be used to predict the clinical response to checkpoint blockade with monotherapy or combination therapies.


PDCD1 Expression Correlates with TIL Density


The marked heterogeneity observed in PDCD1 transcript levels led the inventors to investigate factors linked to PDCD1 expression in CD8+ TILs. Despite the perceived negative regulatory role of PD1 as an immune checkpoint, it serves as a marker for clonally expanded, antigen-specific T cells capable of lysing autologous tumor cells19, 20 Furthermore, the inventors found a strong positive correlation between the expression of PDCD1 and 4-1B, a molecule expressed following TCR engagement and thus a marker of antigen-specific T cells16, 17, 21. The heterogeneity in the expression of these surrogate markers for antigen specificity suggests that not all tumors contain similar numbers of tumor-reactive CD8+ TILs. Hence, the inventors asked what factors might influence the enrichment of PDCD1- and 4-1BB-expressing CD8+ TILs, i.e. TAA-specific cells, in some patients. The inventors found no correlation of PDCD1 or 4-1BB transcript levels with clinical or pathological characteristics such as patient age, gender, histological subtype, stage of disease, performance status or smoking status. However, there was a positive correlation between the abundance of each of those transcripts and the average number of CD8+ TILs that infiltrated each tumor sample. A similar correlation was also observed between the abundance of each of those transcripts and CDBA transcripts (encoding the co-receptor CD8α) in lung-tumor samples from the TCGA RNA-Seq data set. In addition to their higher expression of PDCD1 and 4-1BB, tumors with a high density of TILs (‘TILhigh’ tumors; tumors were classified as TILhigh, TILint and TILlow on the basis of the average number of CD8+ T cells that infiltrated the tumors; also had higher expression of transcripts encoding several other targets of immunotherapy, such as TIM-3, LAG-3 or TIGIT, than that of TILlow tumors. Published studies have linked PD-1 and 4-1BB to both exhaustion22 and antigen-specific TCR activation19,20, but the positive correlation of their expression with TIL density indicated that their higher expression reflects enrichment for activated TAA-specific CD8+ T cells.


CD8+ TRM Cells are Enriched in TILhigh Tumors


Patients with a high density of TILs in tumors have a better survival outcome than that of patients with low TIL density6. Besides the numerical changes in T cells, it is not known if there are qualitative differences in tumor-infiltrating CD8+ T cells between these groups, i.e. whether any molecular features in CD8+ TILs are unique to tumors with high TIL density. Defining such features provides insight into the mechanisms that govern the magnitude and specificity of anti-tumor CD8+ T cells responses.


109 transcripts were found for which expression differed significantly between TILhigh versus TILlow tumors (Benjamini-Hochberg adjusted P<0.05, Table 7). As expected, transcripts involved in TCR activation (4-1BB, PDCD1) were upregulated in TILhigh tumors, consistent with the enrichment of presumed TAA-specific CD8+ T cells. Several other transcripts associated with tissue retention of lymphocytes and tissue-resident memory T cells (TRM) were differentially expressed in TILhigh tumors (Table 7). For example, ITGAE (CD103) encodes the α-subunit of the integrin molecule αEβ7 (human mucosal lymphocyte-1 antigen), which binds the adhesion molecule E-cadherin expressed by epithelial cells in barrier tissues22, 23. Expression of this marker of TRM cells was enriched in TILhigh tumors (FIG. 4A) and positively correlated with the average number of CD8+ cells within tumors in the patient cohort. This finding was also validated in the TCGA lung cancer data set. The inventors confirmed CD103 expression in CD8+ TILs at the protein level by immunohistochemistry and flow cytometry (FIGS. 4B, 4C). Surface molecules linked to TRM cells25, 26, such as CD69 and CD49a (ITGAI), were co-expressed with CD103, and surface molecules linked to effector memory cells (KLRG1) and central memory cells (CCR7 and CD62L) had lower expression on CD103+CD8+ TILs than on CD103−CD8+ TILs (FIGS. 4D and 7B), which suggested that the former population represented TRM cells. The inventors also observed co-expression of PD-1 and 4-1BB in 6% of CD103+CD8+ TILs and 4% of CD103+CD8+ TILs, respectively, in a representative patient sample (FIG. 4C).


Another transcript enriched in TILhigh tumors was CXCR6 (FIG. 4A), whose expression is not only linked to TRM cells24, but is also important for the localization and function of tissue-residing T cells25, 26. SIPR1 and KLF2 transcripts, known to be downregulated in TRM cells23, were also diminished in TILhigh tumors (FIG. 4A). Downregulation of SIPR1, which encodes sphingosine 1-phosphate receptor 1 (S1P1), is necessary for the egress of T cells from the lymph nodes and subsequent retention in tissues, as T cells expressing high levels of S1P1 are retained in the lymph nodes and also easily exit from tissues due to the higher levels of its ligand, sphingosine-1 phosphate (S1P) in the lymph nodes and blood. SIPR1 is a target gene of KLF2, a transcription factor; its downregulation has been shown to result in reduced SIPR1 expression, and both of these genes together play an important role in the establishment and retention of TRM cells in tissues27. Gene set enrichment analysis (GSEA) also revealed that TILhigh tumors express low levels of genes that are typically downregulated in a core set of TRM signature genes, such as SIPR5, STK38, FAM65B23, 25 (FIG. 4E). Pathway analysis of the genes enriched in TILhigh tumors revealed a significant overrepresentation of genes involved in the canonical interferon (IFN) pathway (FIG. 7C), which was also predicted to be an upstream regulator by IPA upstream regulator analysis (FIG. 4F). Because IFN-γ produced by TRM cells has been shown to recruit circulating T cells to potentiate robust immune responses in tissues28, 29, the inventors, without being bound to any particular theory, infer that the IFN response signature seen in TTLhigh tumors may be the result of TRM activation by TAA (tumor-specific TRM activity). Overall, these results demonstrate that TRM cells are enriched in TILhigh tumors.


CD103 Density Predicts Survival in Lung Cancer

CD8+ TILs from tumors enriched for TRM cells (CD103high) were next examined for features that would support a robust (clinically-relevant) anti-tumor immune response. Ingenuity pathway analysis of the genes differentially expressed in CD103high versus CD103low TILs (classified based on the expression of ITGAE (CD103) transcripts in CD8+ TTLs, Table 8) pointed to cell proliferation and cytotoxicity as the key activated functions (Table 9). Consistent with this analysis, several transcripts linked to cell cycle and proliferation30 were markedly upregulated in CD103highCD8+ TLs. The inventors confirmed by flow cytometry that CD103+CD8+ TILs express the cell proliferation marker Ki67. Several transcripts linked to cytotoxic function of CD8+ T cells (IFNG, GZMA, GZMB, SEMA7A, KLRB1, CCL3, STAT1, RAB27A, IL21R, FKBP1A31) were also significantly upregulated in CD103high tumors (FIG. 5C). The inventors confirmed at the protein level that CD103+CD8+ TILs expressed molecules linked to cytotoxicity, such as granzyme B, granzyme A, perforin and CD107a, and produced IFN-γ (FIG. 5D), and demonstrated that CD103+CD8+ TILs were the main producers, among CD8+ TILs, of both granzyme A and granzyme B. To address the question of whether CD8+ TILs from CD103high tumors (Table 8) had greater effector potential, the mean fluorescence intensity of those molecules were compared against the frequency of cells expressing them in CD103high tumors relative to that in CD103low tumors (FIG. 5D). Notably, the inventors found that CD8+ TILs from CD103high tumors had significantly higher expression of granzyme B than that of CD103low tumors (FIG. 5D). These results suggested that tumors rich in TRM cells (CD103high tumors) harbored CD8+ T cells that actively proliferated in the tumor milieu and displayed enhanced production of cytotoxic molecules, all hallmarks of robust anti-tumor immunity.


Based on this finding, but without wishing to be bound by any particular theory, it was hypothesized that a high density of CD103 in tumors (TRM-enriched tumors) also confers a survival advantage beyond that previously found to be associated with CD8+ TIL density6, 7. In an independent large cohort of predominantly early stage lung cancer patients (n=689; 83% Stage I to IIIA, Table 10) followed up from 2007 to 2016, the inventors assessed retrospectively the survival outcome for patients whose tumors were classified based on the density of cells expressing CD8a or CD103 (Table 10). A higher density of CD8+ TILs was associated with a 28% reduction in mortality, although this did not reach statistical significance (Cox proportional hazards model, P=0.077; Kaplan-Meier plot with log-rank test P value is shown in FIG. 5E). Importantly, lung cancer patients with CD103high tumors had significantly reduced mortality compared to those with CD10310w tumors (34% reduced risk of mortality, Cox proportional hazards model, P=0.045; Kaplan-Meier plot with log-rank test P value is shown in FIG. 5F). This finding was also observed in the TCGA data set for lung cancer. To better understand the dependence of CD103 and CD8 density in tumors, the inventors determined the status of CD103 density (CD103high, CD103int, CD103low) in tumors pre-classified based on CD8 density. As expected, the proportion of CD103high tumors was higher in CD8high compared to CD8low tumors; however, there is some discordance as tumors with CD103low or CD103int status were also observed in CD8high tumors (FIG. 5G). Notably, even in the subgroup of lung cancer patients with high CD8+ TIL density (CD8high tumors), patients with higher CD103 density had significantly reduced mortality (60% reduced risk of mortality, Cox proportional hazards model, P=0.043) and survived significantly longer compared to patients with CD10310w tumors (Kaplan-Meier plot with log-rank test P=0.036, FIG. 5G). These results suggest that patients with a robust intra-tumoral TRM response have better long-term survival outcomes, and this effect is over and above that conferred by density of CD8+ TILs.


New Molecules Linked to Tumor Immune Response

Transcripts for molecules that have been shown to be effective immunotherapy targets, such as PDCD1, TIM3 and LAG3, were among the most enriched in tumors with CD8high and CD103high TIL status, which were both independently linked to better anti-tumor immunity and survival outcomes. Therefore, the inventors have discovered that other molecules in the list of genes upregulated in tumors with CD8high and CD103high TIL status play an important functional role in modulating the magnitude and specificity of anti-tumor immune responses (Table 8). Some examples include CD39 (encoded by ENTPD1), a cell-surface ectonucleotidase that dephosphorylates ATP to AMP (FIG. 6A). The inventors found that the expression of CD39 protein was much higher in CD103+CD8+ TILs than in CD103−CD8+ TILs (FIG. 6B). High concentrations of ATP in the tumor microenvironment can have toxic effects on cells via signaling through the purinergic receptor P2RX733,34 Given that CD8+ TILs from CD103high tumors and those from CD103low tumors exhibited similar expression of transcripts encoding P2RX7 (FIG. 6A), the inventors, without being bound to any particular theory, speculated that the greater abundance of CD39 ‘preferentially’ protects TRM cells (CD103+CD8+ TILs) from ATP-induced cell death. Notably, however, adenosine produced by CD39 might also suppress the function of natural killer T cells, natural killer cells and CD8+ T cells35,36. CD38 is another ectonucleotidase and type II trans-membrane glycoprotein with various functions, including regulation of adenosine signaling, adhesion and transduction of activation and proliferation signals37,38. Expression of CD38 protein was also higher in CD103+CD8+ TILs than in CD103−CD8+ TILs (FIG. 6B). Given that purinergic receptors can be targeted therapeutically, it might be pertinent to determine how CD39 and CD38 modulate ATP and purinergic signaling path-ways to influence the development and function of anti-tumor TRM cells (CD103+CD8-+ TILs).


CD8+ TILs from CD103high tumors had higher expression of several transcripts encoding components of the Notch signaling pathway (NOTCH, RBPJ, DTX2, UBC and UBB), relative to their expression in CD8+ TILs from CD103low tumors (FIG. 6A), suggestive of an important role for this pathway in boosting TRM cell responses in lung cancer; this speculation is supported by a report showing that the Notch pathway supports the development of TRM cells in the lungs39. CD8+ TILs from CD103high tumors had higher expression of transcripts encoding two transcription factors (BATF and NAB1) potentially linked to CD4+ T cell-mediated help of CD8+ T cells, relative to their expression in CD8+ TILs from CD103low tumors (FIG. 6A).


Other examples of transcripts upregulated in CD103high CD8+ TILs include KIR2DL4, which encodes a killer cell immunoglobulin-like receptor KIR2DL4 with activating and inhibitory functions31; expression of KIR2DL4 protein was confirmed in CD103+CD8+ TILs (FIG. 6D). HLA-G, a non-classical MHC class I molecule, has been shown to engage KIR2DL4 and increase cytokine and chemokine production by NK cells32. Though the expression of HLA-G is highly restricted, several reports have shown its increased expression in tumor tissue, especially in lung cancer33, and therefore, without being bound to a particular theory, the inventors hypothesize that HLA-G expressed in tumors conveys activation signals via the KIR2DL4 receptor to CTLs and thus enhance their anti-tumor activities. SIRPG encodes for SIRPG, a member of the immunoglobulin superfamily of signal-regulatory proteins (SIRPs) that interact with the ubiquitously expressed CD47 molecule34. Interestingly, SIRPG is the only member of the SIPR family that is expressed on T cells, and its interaction with CD47 expressed on APCs was shown to enhance T cell proliferation and IFN-γ production35. Based on the increased expression of SIRPG transcripts in CD103highCD8+ TILs (FIG. 6A), SIRPG serves as an important co-stimulatory molecule and its function could be exploited to enhance anti-tumor function of CTLs. Overall, these examples highlight the value of this large data set of CD8+ TIL transcriptional maps.


DISCUSSION

An unbiased discovery-based approach was undertaken to identify transcripts that are enriched in CD8+ TILs and those that are linked to robust anti-tumor immune responses and good outcomes. Prior transcriptional studies of anti-tumor CD8+ T cells from patients with cancer have been largely restricted to analysis of whole tumor tissue or CD8+ T cells in peripheral blood or metastatic sites8, 9, 10, 11. Further, most of those patients had advanced disease and were heavily pre-treated with chemotherapy or immunotherapies. Thus, these studies may not fully capture the molecular program of CD8+ T cells generated de novo at the primary tumor site, which is the focal point for immunotherapies. Further, studies that compare the transcriptional profile of tumor-infiltrating CD8+ T cells with their circulating counterparts are most likely to capture features linked to tissue residency rather than those linked to tumor infiltration (anti-tumor function/response). This study design avoided these confounding factors by using ‘micro-scaled’ RNA-Seq assays to generate transcriptomic maps of purified populations of CD8+ TILs and CD8+ T cells from adjacent non-involved lung tissue (N-TILs) from treatment-naïve patients with well-characterized early stage lung cancer. Bioinformatic analysis of these data sets revealed a core CD8+ TIL transcriptional profile comprising of ˜1400 genes that is shared across different tumor subtypes and is distinct from N-TILs, i.e. excluding differences that arise merely from lung tissue residency. This profile suggests extensive molecular reprogramming within the tumor microenvironment and the enrichment of presumably TAA-specific cells that are actively proliferating following TCR engagement and co-stimulation, all hallmarks of effective anti-tumor immunity.


In purified CD8+ TIL populations for the analyses, there was significant heterogeneity in the expression of cell cycle, TCR activation, co-stimulation and inhibitory genes across patients. This underlying molecular heterogeneity in anti-tumor CTL response addresses the variability in clinical responses to currently available immune checkpoint blockers. As set forth herein, baseline transcriptional profiling of purified tumor-infiltrating CTLs is a means of rationally selecting immunotherapies. The strategy disclosed herein of purifying relevant immune-cell populations from relatively small tumor samples and performing ‘micro-scaled’ RNA-Seq assays to generate high-resolution genome-wide data can be readily applied to any accessible tumor type. This approach can thus be used to develop biomarkers of the response to immunotherapy and to discover novel targets for immunotherapy. Another unique aspect of the present disclosed study is the inventor's evaluation of CD8+ TIL transcriptomes relative to TIL density (a feature linked to outcome). This analysis revealed various features linked to robust anti-tumor immune responses, such as TIL density; the most striking of these was tissue residence. CDS+ TILs with enrichment for TRM cells (CD103high) had features of enhanced cytotoxicity and proliferation, which suggested that patients whose tumors had a high density of TRM cell markers, such as CD103, had a more-robust anti-tumor immune response and that this feature in the tumor might independently influence clinical outcome. In a large, independent cohort of patients with lung cancer, the inventors showed that a higher density of cells expressing CD103 was predictive of a better survival outcome. Most notably, the inventors confirmed that this effect was independent of that conferred by the density of CD8+ TILs; this finding was biologically relevant and has not been addressed by published studies−47. Thus, the present disclosure has not only revealed a close link among TIL density, TRM cell features and enhanced survival but has also shed light on the global molecular features that endow CD8+ TILs from TRM cell-rich tumors with robust anti-tumor properties. Accordingly, the generation of a robust anti-tumor TRM cell response is an important goal of vaccination approaches targeting neo antigens or shared tumor antigens.


Since patients with lung cancer who had a high density of CD8+ or CD103+ TILs had a better survival outcome, the comparison of the transcriptional profiles of CD8+ TILs from tumors with either a high density or a low density of cells expressing CD8 or CD103 highlights features linked to the generation of robust anti-tumor immunity. The list of transcripts expressed differentially included those encoding molecules such as PD-1, TIM-3, CTLA-4, LAG-3, CD27, CD8 and OX40, which are effective targets of cancer immuno therapy in humans or in model organisms. Other molecules in that list might also have an important role in modulating the magnitude and specificity of anti-tumor immune response. For example, several promising molecules that were identified, such as CD38, CD39, BATF, NAB1, K1R2DL4, S1PRG and components of Notch signaling, are promising as immunotherapeutic targets in cancer. BATF has been shown to regulate the metabolism and survival of CD8+ T cells and to diminish the inhibited phenotype of CD8-F− T cells 48,49. In a model of infection with lymphocytic choriomeningitis virus, the expression of BATF in CD8+ T cells, induced by the cytokine IL-21 derived from CD4+ T cells, was shown to be essential for maintaining the effector response of CTLs, and overexpression of BATF restored the effector function of CD8+ T cells that had not received help from CD4+ T cells 49. NAB1 is a transcription factor whose mouse homolog (NAB2) is induced in CDS+ T cells that have received help from CD4+ T cells and is needed to prevent activation-induced cell death of those ‘helped’ CD8+ T cells 50. Thus, without being bound to a particular theory, NAB1, which has high sequence homology to NAB2, has a similar role in preventing the apoptosis of tumor-infiltrating CTLs and that its increased expression might identify tumors in which CD8+ TILs have received help from CD4+ T cells.


The present disclosure reveals the transcriptional program of CD8+ TILs at the tumor site and has identified the inter-patient heterogeneity that presumably underlies the variability in clinical responses to checkpoint blockade. It has provided insight into the molecular mechanisms that govern robust anti-tumor CTL responses and lends support to the proposal that anti-tumor vaccines should be designed to enable the generation of CD8+ TRM cells for durable immunity. The ability to perform ‘micro-scaled’ RNA-Seq analysis of purified CD8+ TILs from patients' tumors allowed the inventors to identify gene-expression programs that might inform personalized immunotherapeutic treatment strategies and thereby provide a useful tool for translational application.


Further characterization was performed to determine differentially expressed genes in TRM cells. RNA-seq analysis in a purified population of TRM cells (CD8+ C103+) and non-TRM cells (CD8+C103−) from lung tumor and adjacent uninvolved lung (n>20). A total of 27 genes showed increased expression in TRM cells and 12 genes showed reduced expression in TRM cells (Table 12, Table 13). Based on this unique expression pattern, these molecules are deemed important in TRM cells (FIGS. 8A-C, mean and individual expression levels (dots) from each patient).


Materials and Methods
Patient Characteristics and Sample Processing.

Written informed consent was obtained from all subjects. Newly diagnosed, untreated patients with NSCLC and HNSCC (Table 2) referred to Southampton University Hospitals NHS Foundation Trust and Poole Hospital NHS Foundation trust, UK between 2014 and 2016 were prospectively recruited. Freshly resected tumor tissue and matched adjacent non-tumor lung tissue (in the case of patients with NSCLC) was obtained following surgical resection. T cells were isolated from tumor (TILs) or adjacent uninvolved lung (N-TILs) using a combination of mechanical and enzymatic dissociation. In brief, tumor or lung tissue was cut into small fragments and incubated at 37° C. for 15 min in an orbital shaker with 2 ml RPMI-1640 medium (Fisher Scientific) containing 0.15 WU/ml Liberase DL (Roche) and 800 units/ml DNase I (Sigma-Aldrich). Dispersed cells were then passed through a 70-μm filter and centrifuged and were re-suspended in MACS buffer (phosphate-buffered saline containing 2 mM EDTA and 0.5% bovine serum albumin) for sorting or analysis by flow cytometry. For isolating and phenotyping of CD8+ T cells from tumor or lung tissue, dispersed cells were first incubated with FcR block (Miltenyi Biotec), then were stained with a mixture of the following fluorescence-conjugated antibodies (each at the concentration recommended by the manufacturer): anti-CD45-FITC (HI30; BioLegend), anti-CD4-PE (RPA-T4; BD Biosciences), anti-CD3-PE-Cy7 (SK7; BioLegend), anti-CD8α-PerCP-Cy5.5 (cSKI; BD Biosciences), anti-HLA-DR-APC (L243; BD Biosciences), anti-CD14-APC-H7 (M4P9; BD Biosciences), anti-CD19-PerCP-Cy5.5 (clone HIB 19; BioLegend) and anti-CD20-PerCP-Cy5.5 (clone 2H7; BioLegend). Stained samples were analyzed with a BD FACSAria (BD Biosciences) and FlowJo software (Treestar), and CD8+ T cells were sorted into ice-cold TRIzol LS reagent (Ambion)51,52. Phenotypic analysis of CD8+ TILs for TRM markers was performed by staining with anti-CD69-BV605 (FN50; BioLegend), anti-CD49a-PE (TS2/7; BioLegend), anti-KLRG1-APC (SA231A2; BioLegend), anti-CD62L-BV510 (DREG-56; BioLegend), anti-CCR7-AF700 (TS2/7; BioLegend) (each at the concentration recommended by the manufacturer). Flow-cytometry analysis of CD8+CD103+ T cells and intra-cellular assessment of Ki67 were carried out with the following antibodies (each at the concentration recommended by the manufacturer): anti-CD45-FITC (H130; BioLegend), anti-Ki67-PE (Ki67; BioLegend), anti-CD3-APC-Cy7 (SK7; BioLegend), anti-CD8α-PerCP-Cy5.5 (SKI; BD Biosciences), anti-CD103-APC (Ber-ACT8; BioLegend), anti-PD-1-PE-Cy7 (eBioJ105; eBioscience), anti-4-1 BB-Pacific blue (4B4-1; BioLegend). The True-Nuclear Transcription Factor Buffer set (BioLegend) was used for the intracellular staining of Ki67. Flow-cytometry analysis of novel molecules and intracellular assessment of cytotoxic molecules were performed using the following antibodies (each at the concentration recommended by the manufacturer): anti-granzyme A-APC (CB9; BioLegend), anti-granzyme B-PE (REA226; Miltenyi Biotec), anti-Perforin-PE or -BV421 (B-D48; BioLegend), anti-KIR2DL4-PE (mAb33; BD BioLegend), anti-CD38-APC-Cy7 (HB-7; BioLegend), anti-CD39-PE (A1; BioLegend). For cytokine and CD107a assays, CD8+ TILs were stimulated ex vivo with 20 nM PMA (phorbol 12-myristate 13-acetate) and 1 μM ionomycin for 4 h, and 5 μg/ml brefeldin was added during the final 2 h of stimulation. Anti-CD107a-PE (H4A3; BioLegend; at the concentration recommended by the manufacturer) was added to the PMA-and-ionomycin stimulation mixture for the final 2 h. Intracellular assessment of interferon-γ was performed using anti-IFNG-BV-421 (4S.B3; BioLegend; at the concentration recommended by the manufacturer) at the end of stimulation. Assays were performed in at least six patients and representative plots are presented. Stained samples were analyzed using a BD FACSCanto II (BD Biosciences). Dead cells were excluded using a LIVE/DEAD Fixable Aqua dead cell stain kit (Life Technologies) or DAPI (4,6-diamidino-2-phenylindole).


Histology and Immunohistochemistry

Immunohistochemistry (IHC) was performed on FFPE tumor sections against CD8a (clone: C8/144B, Dako), CD103 (clone: ab129202, Abcam) and PD1 (clone: ab52587. Abcam). TILs were quantified using a Zeiss AxioCam MRc5 microscope (Zeiss, Cambridge, UK) and Zeiss Axiovision software (version 4.8.1.0; Zeiss). An average of 10 high-power (×400) fields across representative areas of each tumor was counted to account for intratumoral heterogeneity; these were averaged to generate an intratumoral TIL score. Tumors with an average CD8 count in the top 1/3 or bottom 1/3 percentile were classified as TILhigh or TILlow, respectively; the lowest CD8 count in the TILhigh tumors was at least 2-fold greater than the highest CD8 count in the TILlow tumors. For overall survival analyses (FIGS. 5C-5E), tumor tissue microarrays from NSCLC patients were stained with anti-CD8a (clone: C8/144B, Dako) and anti-CD103 (clone: ab129202, Abcam) antibodies and viewed under low-power magnification (×2.5 objective) to determine CD8 and CD103 density, as described previously5.


Survival Data and Analysis

In an independent large cohort of predominantly early stage NSCLC patients (n=689, Table 10) followed up from January 2007 to June 2016 (minimum follow up 3.4 years) the inventors retrospectively analyzed survival according to CD8 and CD103 TIL density. The primary endpoint was overall survival, and survival time was measured from the date of diagnosis until date of death or date last seen alive. Kaplan-Meier plots (with log-rank tests to determine significance of overall survival, P values shown in FIGS. 5C-5G) and unadjusted Cox proportional hazards model (to determine relative risk of death) were used to analyze the survival data, as described previously51. Patients were excluded from analysis if survival was <30 days to exclude possibility of surgery-related mortality. Survival analysis based on the expression of ITGAE (CD103) transcripts in tumor samples from lung adenocarcinoma patients in the TCGA was derived from http://www.oncolnc.org.


RNA Sequencing.


Total RNA was purified using a miRNAeasy micro kit (Qiagen, USA) and quantified as described previously52. Purified total RNA (5 ng) was amplified following the smart-seq2 protocol52. cDNA was purified using AMPure XP beads (1:1.1 ratio, Beckman Coulter). From this step, 1 ng of cDNA was used to prepare a standard Nextera XT sequencing library (Nextera XT DNA sample preparation kit and index kit, Illumina). Samples were sequenced using HiSeq2500 (Illumina) to obtain 50-bp single-end reads. Quality control steps were included to determine total RNA quality and quantity, optimal number of PCR pre-amplification cycles, and cDNA fragment size. Samples that failed quality control were eliminated from further downstream steps.


RNA-Seq Analysis.

RNA-Seq data was mapped against the hg19 reference using TopHat53 (v1.4.1., --library-type fr-secondstrand -C) and the RefSeq gene annotation downloaded from the UCSC Genome Bioinformatics site. Sequencing read coverage per gene was counted using HTSeq-count (-m union -s yes - t exon -i gene_id, http://www-huber.embl.de/users/anders/HTSeq/). To identify genes differentially expressed between patient groups, the inventors performed negative binomial tests for paired and unpaired comparisons by employing the Bioconductor package DESeq2 disabling the default options for independent filtering and Cooks cutoff54. The inventors considered genes differentially expressed between any pairwise comparison when the DESeq2 analysis resulted in a Benjamini-Hochberg-adjusted P value <0.05. The Qlucore Omics Explorer 3.2 software package was used for visualization and representation (heat maps, principal component analysis) of RNA-Seq data49. Unsupervised hierarchical clustering of samples based on the expression of genes (n=1,000) with the highest variance, which accounted for 20% of the total variance, was performed using DESeq package functions and custom scripts on R. T cell receptor (TCR) sequences were retrieved from CD8+ T cell RNA-Seq data sets and the frequency of TCR beta chain clonotypes were determined using default parameters of the MiXCR package55 (Table 6). The CD103 status of TILs was determined based on the transcript levels of ITGAE (CD103) in CD8+ TILs. Tumors with CD8+ TILs expression of ITGAE transcripts in the top 1/3 or bottom 1/3 percentile were classified as CD103high or CD1030w, respectively.


Knowledge-Based Network Generation and Pathway Analysis.

The biological relevance of differentially expressed genes identified by DESeq2 analysis was further investigated using the Ingenuity Pathways Analysis platform. The enrichment of canonical pathways (pre-defined, well-described metabolic and signaling pathways curated from literature reviews) amongst differentially expressed genes was assessed, with significance determined by right-tailed Fisher's exact test, P<0.05. For network analysis, differentially expressed genes were progressively linked together based on a measure of their interconnection, which is derived from previously characterized functional interactions.


Gene Set Enrichment Analysis (GSEA).

The Qlucore Omics Explorer 3.2 software package was used for GSEA analysis. GSEA was used to further assess whether specific biological pathways or signatures were significantly enriched between two groups. GSEA determines whether an a priori defined ‘set’ of genes (such as a signature) show statistically significant cumulative changes in gene expression between phenotypic subgroups56. In brief, all genes are ranked based on their differential expression between two groups. Next, a running enrichment score (RES) is calculated for a given gene set based on how often its members appear at the top or bottom of the ranked differential list. 1000 random permutations of the phenotypic subgroups are used to establish a null distribution of RES against which a normalized running enrichment score (NES) and FDR-corrected q values are calculated using Kolmogorov-Smirnov statistic. GSEA was run with a focused group of gene signatures, namely exhaustion22, lung cancer associated T cell signature15, anergy57, senescence58, tissue residency25. These gene signatures (FIGS. 1, 4E and Table 11) were selected to test the null hypothesis that different CD8 T cell phenotypes were not significantly enriched in CD8+ T cell groups.


Statistical Analysis.

Comparison between two groups was assessed with two-tailed unpaired or paired Student's t-test (FIGS. 2F, 6D, 7B) or Mann-Whitney test (FIG. 5D) or Kolmogorov-Smirnov test using GraphPad Prism 6. Spearman correlation coefficient (r value) was calculated to assess the significance of correlation of the expression of any two transcripts of interest.


EQUIVALENTS

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this technology belongs.


The present technology illustratively described herein may suitably be practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. Thus, for example, the terms “comprising,” “including,” “containing,” etc. shall be read expansively and without limitation. Additionally, the terms and expressions employed herein have been used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the present technology claimed.


Thus, it should be understood that the materials, methods, and examples provided here are representative of preferred aspects, are exemplary, and are not intended as limitations on the scope of the present technology.


The present technology has been described broadly and generically herein. Each of the narrower species and sub-generic groupings falling within the generic disclosure also form part of the present technology. This includes the generic description of the present technology with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein.


In addition, where features or aspects of the present technology are described in terms of Markush groups, those skilled in the art will recognize that the present technology is also thereby described in terms of any individual member or subgroup of members of the Markush group.


All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety, to the same extent as if each were incorporated by reference individually. In case of conflict, the present specification, including definitions, will control.









TABLE 1







Gene List









OFFICIAL_GENE_SYMBOL
Name
GENE CARDS ID





ACTN4
actinin, alpha 4
GC19P038647


ADD3
adducin 3 (gamma)
GC10P109996


ADRB2
adrenergic, beta-2-, receptor, surface
GC05P148825


AHCTF1
AT hook containing transcription factor 1; AT hook
GC01M246840



containing transcription factor 1 pseudogene


AKAP5
A kinase (PRKA) anchor protein 5
GC14P064465


ANP32E
acidic (leucine-rich) nuclear phosphoprotein 32 family,
GC01M150190



member E


ANTXR2
anthrax toxin receptor 2
GC04M079901


ARL6IP6
ADP-ribosylation-like factor 6 interacting protein 6
GC02P152717


ASB2
ankyrin repeat and SOCS box-containing 2
GC14M093934


ATP1B1
ATPase, Na+/K+ transporting, beta 1 polypeptide
GC01P169105


ATP5G2
ATP synthase, H+ transporting, mitochondrial F0
GC12M053648



complex, subunit C2 (subunit 9)


BCAS4
breast carcinoma amplified sequence 4
GC20P050794


BST2
NPC-A-7; bone marrow stromal cell antigen 2
GC19M017403


C6orf108
chromosome 6 open reading frame 108
GC06M043193


CA5B
inactivation escape 2 (non-protein coding); carbonic
GC0XP015706



anhydrase VB, mitochondrial


CAST
Calpastatin
GC05P096525


CCL3
chemokine (C-C motif) ligand 3
GC17M036088


CCL5
chemokine (C-C motif) ligand 5
GC17M035871


CD200R1
CD200 receptor 1
GC03M112921


CD38
CD38 molecule
GC04P015779


CD8A (also
CD8a molecule
GC02M086784


known as CD8)


CD39
CD39 molecule
GC10P095711


CTLA4
Cytotoxic T-Lymphocyte Associated Protein 4
GC02P203867


COTL1
coactosin-like 1 (Dictyostelium)
GC16M084599


CX3CR1
chemokine (C—X3—C motif) receptor 1
GC03M039279


CXCR6
chemokine (C−X—C motif) receptor 6
GC03P045982


DSTN
destrin (actin depolymerizing factor)
GC20P017550


DUSP6
dual specificity phosphatase 6
GC12M089347


EPSTI1
epithelial stromal interaction 1 (breast)
GC13M042886


FAM113B
family with sequence similarity 113, member B
GC12P047079


FCGR3A
Fc fragment of IgG, low affinity IIIa, receptor (CD16a)
GC01M161541


FGFBP2
fibroblast growth factor binding protein 2
GC04M015961


FUT8
fucosyltransferase 8 (alpha (1,6) fucosyltransferase)
GC14P065411


GBP1
guanylate binding protein 1, interferon-inducible, 67 kDa
GC01M089052


GBP2
guanylate binding protein 2, interferon-inducible
GC01M089106


GBP4
guanylate binding protein 4
GC01M089181


GBP5
guanylate binding protein 5
GC01M089259


GMPS
guanine monphosphate synthetase
GC03P155870


GNL3L
guanine nucleotide binding protein-like 3 (nucleolar)-
GC0XP054573



like


GPI
glucose phosphate isomerase
GC19P034359


GZMA
granzyme A (granzyme 1, cytotoxic T-lymphocyte-
GC05P055102



associated serine esterase 3)


HAVCR2
hepatitis A virus cellular receptor 2
GC05M157063


(also known as


TIM3)


HNRNPK
heterogeneous nuclear ribonucleoprotein K; similar to
GC09M083969



heterogeneous nuclear ribonucleoprotein K


HNRPLL
heterogeneous nuclear ribonucleoprotein L-like
GC02M038561


IGFLR1
IGF Like Family Receptor 1
GC19M038029


IL21R
interleukin 21 receptor
GC16P027413


ITGAE
integrin, alpha E (antigen CD103, human mucosal
GC17M003722


(also known as
lymphocyte antigen 1; alpha polypeptide)


CD103)


KLF2
Kruppel-like factor 2 (lung)
GC19P019293


KIR2DL4
Killer cell immunoglobin like receptor
GC19P054994


LAG3
Lymphocyte Activating 3
GC12P006774


LDHB
lactate dehydrogenase B
GC12M021635


LPAR6
purinergic receptor P2Y, G-protein coupled, 5
GC13M048389


MCM4
minichromosome maintenance complex component 4
GC08P047965


MLLT10
myeloid/lymphoid or mixed-lineage leukemia (trithorax
GC10P021534



homolog, Drosophila); translocated to, 10


MRPL37
mitochondrial ribosomal protein L37
GC01P054185


NAB1
NGFI-A binding protein 1 (EGR1 binding protein 1)
GC02P190646


NDUFS8
NADH dehydrogenase (ubiquinone) Fe—S protein 8,
GC11P068030



23 kDa (NADH-coenzyme Q reductase)


NECAP1
NECAP endocytosis associated 1
GC12P008082


NOTCH1
Notch homolog 1, translocation-associated (Drosophila)
GC09M136505


NPC2
Niemann-Pick disease, type C2
GC14M074476


OAS3
2′-5′-oligoadenylate synthetase 3, 100 kDa
GC12P112938


PAG1
phosphoprotein associated with glycosphingolipid
GC08M080967



microdomains 1


PARP9
poly (ADP-ribose) polymerase family, member 9
GC03M122527


PCMTD2
protein-L-isoaspartate (D-aspartate) O-
GC20P064255



methyltransferase domain containing 2


PCNT
Pericentrin
GC21P046324


PDCD1 (also
programmed cell death 1
GC02M241849


known as PD-1)


PLAC8
placenta-specific 8
GC04M083090


POLR1D
polymerase (RNA) I polypeptide D, 16 kDa
GC13P027620


PPM1M
protein phosphatase 1M (PP2C domain containing)
GC03P052245


PPP2R4
protein phosphatase 2A activator, regulatory subunit 4
GC09P129111


PRDM2
PR domain containing 2, with ZNF domain
GC01P013776


PRKAG1
protein kinase, AMP-activated, gamma 1 non-catalytic
GC12M049002



subunit


PRKAR1A
protein kinase, cAMP-dependent, regulatory, type I,
GC17P068414



alpha (tissue specific extinguisher 1)


PSMB8
proteasome (prosome, macropain) subunit, beta type, 8
GC06M032840



(large multifunctional peptidase 7)


PSMB9
proteasome (prosome, macropain) subunit, beta type, 9
GC06P032825



(large multifunctional peptidase 2)


PSMD8
proteasome (prosome, macropain) 26S subunit, non-
GC19P038374



ATPase, 8


PSME2
proteasome (prosome, macropain) activator subunit 2
GC14M024143



(PA28 beta)


PTTG1
pituitary tumor-transforming 1; pituitary tumor-
GC05P160422



transforming 2


PURA
purine-rich element binding protein A
GC05P140076


R3HDM1
R3H domain containing 1
GC02P135531


RAB3GAP1
RAB3 GTPase activating protein subunit 1 (catalytic)
GC02P135052


RABAC1
Rab acceptor 1 (prenylated)
GC19M041956


RARRES3
retinoic acid receptor responder (tazarotene induced) 3
GC11P063536


RBBP4
hypothetical LOC642954; retinoblastoma binding
GC01P032651



protein 4


S100A10
S100 calcium binding protein A10
GC01M151955


S1PR1
sphingosine-1-phosphate receptor 1
GC01P101236


SEC11A
SEC11 homolog A (S. cerevisiae)
GC15M084669


SF3B3
splicing factor 3b, subunit 3, 130 kDa
GC16P070523


SIRPG
signal-regulatory protein gamma
GC20M001628


SLC27A2
solute carrier family 27 (fatty acid transporter), member 2
GC15P050182


SNX17
sorting nexin 17
GC02P027370


SRA1
steroid receptor RNA activator 1
GC05M140537


STAT1
signal transducer and activator of transcription 1, 91 kDa
GC02M190964


STAT2
signal transducer and activator of transcription 2,
GC12M056341



113 kDa


STK38
serine/threonine kinase 38
GC06M036493


STMN1
stathmin 1
GC01M025884


SYT11
synaptotagmin XI
GC01P155829


TAZ
Tafazzin
GC0XP154411


TGFBR3
transforming growth factor, beta receptor III
GC01M091619


TIAM1
T-cell lymphoma invasion and metastasis 1
GC21M031118


TIMP1
TIMP metallopeptidase inhibitor 1
GC0XP047583


TMEM140
transmembrane protein 140
GC07P135148


TNF
tumor necrosis factor (TNF superfamily, member 2)
GC06P031673


TNFRSF9 (also
tumor necrosis factor receptor superfamily, member 9
GC01M007915


known as 41BB)


TNFSF4 (also
tumor necrosis factor (ligand) superfamily, member 4
GC01M173152


known as OX40-


Ligand)


TNRC6C
trinucleotide repeat containing 6C
GC17P077959


TOP2A
topoisomerase (DNA) II alpha 170 kDa
GC17M040388


TP53BP2
tumor protein p53 binding protein, 2
GC01M223779


TRAPPC10
trafficking protein particle complex 10
GC21P044012


TUG1
taurine upregulated 1 (non-protein coding)
GC22P030969


UBE2L6
ubiquitin-conjugating enzyme E2L 6
GC11M057571


UBE2Q2
ubiquitin-conjugating enzyme E2Q family member 2
GC15P075843


ZFYVE26
zinc finger, FYVE domain containing 26
GC14M067727
















TABLE 2





Demographic, clinical and histopathological characteristics of cancer patients.







A. Non-small cell lung cancer































Number







Metas-



ALK


of CD8a+






Tumor
tasis
Perfor-


trans-
EGFR

cells



Age


status
status
mance
Smoking
Asbestos
location
mutation
Tumor
(average


Patient ID
(years)
Gender
Stage
(T)
(M)
status
status
exposure
status
status
histology
per HPF)





NSCLC_01
87
M
IA
1A
0
0
Ex
No
Negative
Negative
adenocarcinoma
32.7


NSCLC_02
74
M
IIB
2B
0
0
Ex
No
Negative
Negative
squamous
8.6













carcinoma


NSCLC_03
77
M
IA
2B
0
0
Ex
Yes
Negative
Negative
adenocarcinoma
28.2


NSCLC_04
67
M
IB
2A
0
0
Ex
Yes
Negative
Negative
squamous
14.7













carcinoma


NSCLC_05
84
F
IIA
1B
0
0
Ex
No
Negative
Negative
adenocarcinoma
11.4


NSCLC_06
72
M
IA
1B
0
1
Ex
No
Negative
Negative
adenocarcinoma
15.6


NSCLC_07
74
M
IIB
3 
0
0
Ex
No
N/A
N/A
adenocarcinoma
80.3


NSCLC_08
63
M
IB
2A
0
0
Ex
No
Negative
Negative
adenocarcinoma
21.2


NSCLC_09
83
M
IIA
2B
0
0
Ex
Yes
Negative
Negative
squamous
11.4













carcinoma


NSCLC_10
64
M
IB
1A
0
0
Ex
Yes
Negative
Negative
adenocarcinoma
23.2


NSCLC_11
72
F
IIIA
4 
0
0
Current
No
Negative
Negative
adenocarcinoma
9.9


NSCLC_12
72
F
IIA
2B
0
0
Never
No
Negative
Negative
adenocarcinoma
28.1


NSCLC_13
68
F
IIA
2A
0
1
Ex
No
Negative
Negative
adenocarcinoma
9.2


NSCLC_14
50
M
IB
2B
0
0
Current
No
N/A
Negative
adenocarcinoma
7.1


NSCLC_15
74
M
IB
2A
0
1
Ex
No
Negative
Negative
adenocarcinoma
8.3


NSCLC_16
65
F
IA
1A
0
1
Ex
No
Negative
Negative
adenocarcinoma
3.0


NSCLC_17
68
M
IIA
2B
0
0
Ex
No
Negative
Negative
squamous
17.5













carcinoma


NSCLC_18
71
F
IIIA
3 
0
0
Current
No
Negative
Negative
squamous
15.0













carcinoma


NSCLC_19
68
F
IA
1A
0
0
Ex
No
N/A
N/A
adenocarcinoma
6.5


NSCLC_20
72
F
IB
2A
0
0
Ex
No
Negative
Negative
adenocarcinoma
38.7


NSCLC_21
72
M
IV
1A
1B
1
Ex
No
Negative
Negative
adenocarcinoma
10.3


NSCLC_22
70
M
IIIA
3 
0
1
Ex
Yes
Negative
Negative
Adenocarcinoma
4.1


NSCLC_23
51
F
IB
2A
0
0
Never
No
Negative
Positive
adenocarcinoma
9.6


NSCLC_24
77
F
IB
2A
0
1
Ex
No
Negative
Negative
adenocarcinoma
10.8


NSCLC_25
60
F
IA
1B
0
1
Ex
No
Negative
Negative
adenocarcinoma
10.7


NSCLC_26
77
F
IIA
2A
0
0
Ex
No
Negative
Positive
adenocarcinoma
6.3


NSCLC_27
81
F
IIB
3 
0
0
Ex
No
N/A
N/A
squamous
10.8













carcinoma


NSCLC_28
69
F
IB
2A
0
0
Ex
No
Negative
Negative
adenocarcinoma
6.8


NSCLC_29
73
M
IB
2A
0
0
Ex
No
Negative
Negative
adenocarcinoma
3.7


NSCLC_30
81
F
IIIB
4 
0
1
Never
No
Negative
Negative
adenocarcinoma
4.3


NSCLC_31
76
M
IA
1B
0
0
Current
No
Negative
Negative
squamous
2.7













carcinoma


NSCLC_32
77
F
IIIA
2A
0
1
Never
No
Negative
Negative
adenocarcinoma
4.8


NSCLC_33
67
M
IIB
3 
0
1
Current
Yes
Negative
Negative
squamous
4.4













carcinoma


NSCLC_34
70
F
IA
1B
0
1
Ex
No
Negative
Negative
adenocarcinoma
12.6


NSCLC_35
66
M
IA
1A
0
0
Ex
No
Negative
Negative
adenocarcinoma
10.1


NSCLC_36
80
M
IB
2A
0
1
Ex
No
Negative
Negative
squamous
18.6













carcinoma


NSCLC_37
81
M
IA
1A
0
1
Ex
Yes
N/A
N/A
squamous
N/A













carcinoma


NSCLC_38
69
M
IB
1B
0
0
Ex
No
N/A
N/A
adenocarcinoma
N/A


NSCLC_39
75
M
IIIA
3 
0
0
Current
Yes
Negative
Negative
squamous
N/A













carcinoma


NSCLC_40
58
F
IA
1A
0
0
Current
No
Negative
Negative
adenocarcinoma
N/A


NSCLC_41
76
M
IB
2A
0
0
Ex
No
Negative
Negative
adenocarcinoma
N/A


NSCLC_42
74
M
IA
1A
0
0
Ex
No
N/A
N/A
adenocarcinoma
N/A


NSCLC_43
79
M
IIB
3 
0
0
Ex
No
Negative
Negative
squamous
N/A













carcinoma










Data not available is indicated by ‘N/A’.


“ALK translocation status” negative indicates the absence of a translocation involving anaplastic lymphoma kinase gene (ALK)


“EGFR mutation status” positive indicates presence of activating mutations in epidermal growth factor receptor gene (EGFR)







B. Head & neck squamous cell cancer






















Tumor
Nodal
Metastasis


Number of





Age


status
status
status
Smoking
HPV
CD8+ cells

QC passed TIL


Patient ID
(years)
Gender
Stage
(T)
(N)
(M)
status
Status
(average per HPF)
TIL status
RNA-Seq





HNSCC_01
82
M
III
2
1
0
Ex
Negative
25
Intermediate
Yes


HNSCC_02
55
F
IVA
4
1
0
Ex
Negative
12.5
Intermediate
Yes


HNSCC_03
94
F
IVA
3
0
0
N/A
Negative
3.1
Low
Yes


HNSCC_04
69
M
III
2
1
0
N/A
Positive
26.1
Intermediate
Yes


HNSCC_05
57
M
IVA
1
2B
0
Smoker
Negative
35.7
High
Yes


HNSCC_06
66
M
IVA
4
2B
0
Never
Positive
23.9
Intermediate
Yes


HNSCC_07
64
F
I
1
0
0
Ex
Negative
35.5
High
Yes


HNSCC_08
63
M
IVA
4
2C
0
Current
Negative
29.3
High
Yes


HNSCC_09
66
F
IVA
2
2B
0
N/A
Negative
28.5
High
Yes


HNSCC_10
86
F
IVA
4A
0
0
Never
Positive
24.1
Intermediate
Yes


HNSCC_11
70
M
IVA
4B
2B
0
N/A
Negative
10.2
Low
Yes


HNSCC_12
56
M
IVA
3
2B
0
Never
Negative
32
High
Yes


HNSCC_13
47
M
IVA
3
2A
0
Current
Positive
N/A
N/A
Yes


HNSCC_14
67
M
IVA
4A
2B
0
Never
Positive
24.8
Intermediate
Yes


HNSCC_15
74
M
III
2
1
0
N/A
Negative
11
Low
Yes


HNSCC_16
57
M
IVC
4
3
1
Current
Negative
37.2
High
Yes


HNSCC_17
60
F
IVA
4A
2B
0
Ex
Negative
1.6
Low
Yes


HNSCC_18
48
M
IVA
2
2A
0
Ex
Positive
32.5
High
Yes


HNSCC_19
60
M
III
3
1
0
Current
Positive
26.8
Intermediate
Yes


HNSCC_20
51
M
IVA
4
0
0
Ex
Positive
25.5
Intermediate
Yes


HNSCC_21
62
M
II
2
0
0
Never
Negative
28.4
High
Yes


HNSCC_22
55
M
IVA
2
2C
0
Current
Negative
31.1
High
Yes


HNSCC_23
68
M
IVA
2
2C
0
Ex
Positive
24.4
Intermediate
Yes


HNSCC_24
75
M
III
2
1
0
Ex
Negative
N/A
N/A
Yes


HNSCC_25
50
M
III
1
1
0
Never
Positive
N/A
N/A
Yes


HNSCC_26
68
M
IVA
3
2B
0
Never
Positive
2
Low
Yes


HNSCC_27
62
F
IVA
4
1
0
Current
Negative
2.4
Low
Yes


HNSCC_28
29
F
II
2
0
0
Ex
Positive
27.4
Intermediate
Yes


HNSCC_29
61
F
IVA
2
2C
0
Current
Negative
20.5
Intermediate
Yes


HNSCC_30
52
M
IVA
4
0
0
Current
Negative
1.5
Low
Yes


HNSCC_31
70
F
II
2
0
0
N/A
Negative
11.2
Low
Yes


HNSCC_32
67
F
II
2
0
0
Ex
Negative
2.2
Low
Yes


HNSCC_33
60
M
IVA
2
2C
0
Never
Positive
45
High
Yes


HNSCC_34
57
M
IVA
1
2B
0
Smoker
Negative
47.7
High
Yes


HNSCC_35
51
M
IVB
2
3
0
Never
Positive
24.4
Intermediate
Yes


HNSCC_36
71
F
III
3
0
0
Never
Positive
41.4
High
Yes


HNSCC_37
63
M
IVA
3
2B
0
Ex
Negative
24.1
Intermediate
Yes


HNSCC_38
61
M
IVA
1
2B
0
N/A
Negative
N/A
N/A
Yes


HNSCC_39
63
M
IVA
4
2B
0
Current
Negative
6.4
Low
Yes


HNSCC_40
38
M
IVA
3
2B
0
Current
Positive
5
Low
Yes


HNSCC_41
62
M
II
2
0
0
Ex
Negative
2.5
Low
Yes










Data not available is indicated by ‘N/A’.


“HPV status” positive indicates presence of human papilloma virus (HPV) infection in tumors as determined by over expression of p16


in tumor samples”













TABLE 3







Details of libraries run for RNA sequencing.













Total number of





uniquely mapped





reads (excluding


Sample ID
Patient ID
Cell type
mitochondrial reads)










A. Non small cell lung cancer


For each RNA-Seq assay, the table lists sample ID, patient ID, cell type and total number of uniquely


mapped reads excluding mitochondrial reads.










NSCLC_01_TIL
NSCLC_01
FACS-sorted CD8+ TILs from NSCLC
13,020,371


NSCLC_02_TIL
NSCLC_02
FACS-sorted CD8+ TILs from NSCLC
11,542,850


NSCLC_03_TIL
NSCLC_03
FACS-sorted CD8+ TILs from NSCLC
12,216,079


NSCLC_04_TIL
NSCLC_04
FACS-sorted CD8+ TILs from NSCLC
14,162,563


NSCLC_05_TIL
NSCLC_05
FACS-sorted CD8+ TILs from NSCLC
10,909,550


NSCLC_06_TIL
NSCLC_06
FACS-sorted CD8+ TILs from NSCLC
16,098,077


NSCLC_07_TIL
NSCLC_07
FACS-sorted CD8+ TILs from NSCLC
12,350,892


NSCLC_08_TIL
NSCLC_08
FACS-sorted CD8+ TILs from NSCLC
16,349,349


NSCLC_09_TIL
NSCLC_09
FACS-sorted CD8+ TILs from NSCLC
12,273,924


NSCLC_10_TIL
NSCLC_10
FACS-sorted CD8+ TILs from NSCLC
12,699,628


NSCLC_11_TIL
NSCLC_11
FACS-sorted CD8+ TILs from NSCLC
11,436,022


NSCLC_12_TIL
NSCLC_12
FACS-sorted CD8+ TILs from NSCLC
13,757,125


NSCLC_13_TIL
NSCLC_13
FACS-sorted CD8+ TILs from NSCLC
12,440,359


NSCLC_14_TIL
NSCLC_14
FACS-sorted CD8+ TILs from NSCLC
19,173,715


NSCLC_15_TIL
NSCLC_15
FACS-sorted CD8+ TILs from NSCLC
17,406,814


NSCLC_16_TIL
NSCLC_16
FACS-sorted CD8+ TILs from NSCLC
11,122,554


NSCLC_17_TIL
NSCLC_17
FACS-sorted CD8+ TILs from NSCLC
13,645,925


NSCLC_18_TIL
NSCLC_18
FACS-sorted CD8+ TILs from NSCLC
15,697,087


NSCLC_19_TIL
NSCLC_19
FACS-sorted CD8+ TILs from NSCLC
11,938,530


NSCLC_20_TIL
NSCLC_20
FACS-sorted CD8+ TILs from NSCLC
14,223,418


NSCLC_21_TIL
NSCLC_21
FACS-sorted CD8+ TILs from NSCLC
13,413,370


NSCLC_22_TIL
NSCLC_22
FACS-sorted CD8+ TILs from NSCLC
12,971,479


NSCLC_23_TIL
NSCLC_23
FACS-sorted CD8+ TILs from NSCLC
11,719,664


NSCLC_24_TIL
NSCLC_24
FACS-sorted CD8+ TILs from NSCLC
13,589,132


NSCLC_25_TIL
NSCLC_25
FACS-sorted CD8+ TILs from NSCLC
13,509,805


NSCLC_26_TIL
NSCLC_26
FACS-sorted CD8+ TILs from NSCLC
12,019,742


NSCLC_27_TIL
NSCLC_27
FACS-sorted CD8+ TILs from NSCLC
13,984,367


NSCLC_28_TIL
NSCLC_28
FACS-sorted CD8+ TILs from NSCLC
11,155,688


NSCLC_29_TIL
NSCLC_29
FACS-sorted CD8+ TILs from NSCLC
12,834,065


NSCLC_30_TIL
NSCLC_30
FACS-sorted CD8+ TILs from NSCLC
14,242,019


NSCLC_31_TIL
NSCLC_31
FACS-sorted CD8+ TILs from NSCLC
11,305,292


NSCLC_32_TIL
NSCLC_32
FACS-sorted CD8+ TILs from NSCLC
12,714,146


NSCLC_33_TIL
NSCLC_33
FACS-sorted CD8+ TILs from NSCLC
13,242,761


NSCLC_34_TIL
NSCLC_34
FACS-sorted CD8+ TILs from NSCLC
11,853,168


NSCLC_35_TIL
NSCLC_35
FACS-sorted CD8+ TILs from NSCLC
13,833,776


NSCLC_36_TIL
NSCLC_36
FACS-sorted CD8+ TILs from NSCLC
12,798,616


NSCLC_01_N-TIL
NSCLC_01
FACS-sorted CD8+ N-TILs from uninvolved lung
10,724,899


NSCLC_02_N-TIL
NSCLC_02
FACS-sorted CD8+ N-TILs from uninvolved lung
15,708,837


NSCLC_03_N-TIL
NSCLC_03
FACS-sorted CD8+ N-TILs from uninvolved lung
11,576,281


NSCLC_05_N-TIL
NSCLC_05
FACS-sorted CD8+ N-TILs from uninvolved lung
15,739,299


NSCLC_08_N-TIL
NSCLC_08
FACS-sorted CD8+ N-TILs from uninvolved lung
23,744,700


NSCLC_10_N-TIL
NSCLC_10
FACS-sorted CD8+ N-TILs from uninvolved lung
12,566,143


NSCLC_11_N-TIL
NSCLC_11
FACS-sorted CD8+ N-TILs from uninvolved lung
12,482,491


NSCLC_12_N-TIL
NSCLC_12
FACS-sorted CD8+ N-TILs from uninvolved lung
12,919,370


NSCLC_14_N-TIL
NSCLC_14
FACS-sorted CD8+ N-TILs from uninvolved lung
11,586,753


NSCLC_16_N-TIL
NSCLC_16
FACS-sorted CD8+ N-TILs from uninvolved lung
10,708,372


NSCLC_17_N-TIL
NSCLC_17
FACS-sorted CD8+ N-TILs from uninvolved lung
13,056,386


NSCLC_19_N-TIL
NSCLC_19
FACS-sorted CD8+ N-TILs from uninvolved lung
11,417,787


NSCLC_22_N-TIL
NSCLC_22
FACS-sorted CD8+ N-TILs from uninvolved lung
13,100,404


NSCLC_23_N-TIL
NSCLC_23
FACS-sorted CD8+ N-TILs from uninvolved lung
10,835,392


NSCLC_25_N-TIL
NSCLC_25
FACS-sorted CD8+ N-TILs from uninvolved lung
13,287,194


NSCLC_26_N-TIL
NSCLC_26
FACS-sorted CD8+ N-TILs from uninvolved lung
12,874,088


NSCLC_27_N-TIL
NSCLC_27
FACS-sorted CD8+ N-TILs from uninvolved lung
12,510,907


NSCLC_28_N-TIL
NSCLC_28
FACS-sorted CD8+ N-TILs from uninvolved lung
12,639,045


NSCLC_29_N-TIL
NSCLC_29
FACS-sorted CD8+ N-TILs from uninvolved lung
11,857,037


NSCLC_30_N-TIL
NSCLC_30
FACS-sorted CD8+ N-TILs from uninvolved lung
14,246,557


NSCLC_32_N-TIL
NSCLC_32
FACS-sorted CD8+ N-TILs from uninvolved lung
12,696,885


NSCLC_33_N-TIL
NSCLC_33
FACS-sorted CD8+ N-TILs from uninvolved lung
12,242,225


NSCLC_34_N-TIL
NSCLC_34
FACS-sorted CD8+ N-TILs from uninvolved lung
12,334,230


NSCLC_35_N-TIL
NSCLC_35
FACS-sorted CD8+ N-TILs from uninvolved lung
12,993,603


NSCLC_36_N-TIL
NSCLC_36
FACS-sorted CD8+ N-TILs from uninvolved lung
13,434,111


NSCLC_37_N-TIL
NSCLC_37
FACS-sorted CD8+ N-TILs from uninvolved lung
12,773,058


NSCLC_38_N-TIL
NSCLC_38
FACS-sorted CD8+ N-TILs from uninvolved lung
14,484,549


NSCLC_39_N-TIL
NSCLC_39
FACS-sorted CD8+ N-TILs from uninvolved lung
14,472,842


NSCLC_40_N-TIL
NSCLC_40
FACS-sorted CD8+ N-TILs from uninvolved lung
11,720,532


NSCLC_41_N-TIL
NSCLC_41
FACS-sorted CD8+ N-TILs from uninvolved lung
11,337,189


NSCLC_42_N-TIL
NSCLC_42
FACS-sorted CD8+ N-TILs from uninvolved lung
12,460,707


NSCLC_43_N-TIL
NSCLC_43
FACS-sorted CD8+ N-TILs from uninvolved lung
12,509,756







B. Head & neck squamous cell cancer


For each RNA-Seq assay, the table lists sample ID, patient ID, cell type and total number of uniquely


mapped reads excluding mitochondrial reads.










HNSCC_01_TIL
HNSCC_01
FACS-sorted CD8+ TILs from HNSCC
6,057,956


HNSCC_02_TIL
HNSCC_02
FACS-sorted CD8+ TILs from HNSCC
8,160,090


HNSCC_03_TIL
HNSCC_03
FACS-sorted CD8+ TILs from HNSCC
5,089,047


HNSCC_04_TIL
HNSCC_04
FACS-sorted CD8+ TILs from HNSCC
5,442,594


HNSCC_05_TIL
HNSCC_05
FACS-sorted CD8+ TILs from HNSCC
9,503,393


HNSCC_06_TIL
HNSCC_06
FACS-sorted CD8+ TILs from HNSCC
11,726,291


HNSCC_07_TIL
HNSCC_07
FACS-sorted CD8+ TILs from HNSCC
15,579,048


HNSCC_08_TIL
HNSCC_08
FACS-sorted CD8+ TILs from HNSCC
9,280,208


HNSCC_09_TIL
HNSCC_09
FACS-sorted CD8+ TILs from HNSCC
10,429,966


HNSCC_10_TIL
HNSCC_10
FACS-sorted CD8+ TILs from HNSCC
11,292,924


HNSCC_11_TIL
HNSCC_11
FACS-sorted CD8+ TILs from HNSCC
15,327,902


HNSCC_12_TIL
HNSCC_12
FACS-sorted CD8+ TILs from HNSCC
10,115,277


HNSCC_13_TIL
HNSCC_13
FACS-sorted CD8+ TILs from HNSCC
17,982,291


HNSCC_14_TIL
HNSCC_14
FACS-sorted CD8+ TILs from HNSCC
10,281,548


HNSCC_15_TIL
HNSCC_15
FACS-sorted CD8+ TILs from HNSCC
14,985,658


HNSCC_16_TIL
HNSCC_16
FACS-sorted CD8+ TILs from HNSCC
7,541,577


HNSCC_17_TIL
HNSCC_17
FACS-sorted CD8+ TILs from HNSCC
10,282,472


HNSCC_18_TIL
HNSCC_18
FACS-sorted CD8+ TILs from HNSCC
10,332,233


HNSCC_19_TIL
HNSCC_19
FACS-sorted CD8+ TILs from HNSCC
14,519,215


HNSCC_20_TIL
HNSCC_20
FACS-sorted CD8+ TILs from HNSCC
10,025,567


HNSCC_21_TIL
HNSCC_21
FACS-sorted CD8+ TILs from HNSCC
13,350,981


HNSCC_22_TIL
HNSCC_22
FACS-sorted CD8+ TILs from HNSCC
2,239,887


HNSCC_23_TIL
HNSCC_23
FACS-sorted CD8+ TILs from HNSCC
14,813,440


HNSCC_24_TIL
HNSCC_24
FACS-sorted CD8+ TILs from HNSCC
11,763,101


HNSCC_25_TIL
HNSCC_25
FACS-sorted CD8+ TILs from HNSCC
15,701,995


HNSCC_26_TIL
HNSCC_26
FACS-sorted CD8+ TILs from HNSCC
10,522,801


HNSCC_27_TIL
HNSCC_27
FACS-sorted CD8+ TILs from HNSCC
15,878,485


HNSCC_28_TIL
HNSCC_28
FACS-sorted CD8+ TILs from HNSCC
11,362,339


HNSCC_29_TIL
HNSCC_29
FACS-sorted CD8+ TILs from HNSCC
7,039,987


HNSCC_30_TIL
HNSCC_30
FACS-sorted CD8+ TILs from HNSCC
13,324,623


HNSCC_31_TIL
HNSCC_31
FACS-sorted CD8+ TILs from HNSCC
12,943,157


HNSCC_32_TIL
HNSCC_32
FACS-sorted CD8+ TILs from HNSCC
11,820,527


HNSCC_33_TIL
HNSCC_33
FACS-sorted CD8+ TILs from HNSCC
6,562,823


HNSCC_34_TIL
HNSCC_34
FACS-sorted CD8+ TILs from HNSCC
12,331,493


HNSCC_35_TIL
HNSCC_35
FACS-sorted CD8+ TILs from HNSCC
15,876,608


HNSCC_36_TIL
HNSCC_36
FACS-sorted CD8+ TILs from HNSCC
12,755,890


HNSCC_37_TIL
HNSCC_37
FACS-sorted CD8+ TILs from HNSCC
12,197,671


HNSCC_38_TIL
HNSCC_38
FACS-sorted CD8+ TILs from HNSCC
9,774,851


HNSCC_39_TIL
HNSCC_39
FACS-sorted CD8+ TILs from HNSCC
7,740,986


HNSCC_40_TIL
HNSCC_40
FACS-sorted CD8+ TILs from HNSCC
15,133,640


HNSCC_41_TIL
HNSCC_41
FACS-sorted CD8+ TILs from HNSCC
9,704,871
















TABLE 4







List of differentially expressed genes in CD8+ TILs from NSCLC










Normalized mean counts
DE-Seq statistics












Gene symbol
CD8+ N-TILs
CD8+ TILs
Fold Change
P value
P adj















ABAT
53.63
98.54
1.84
0.0069
0.039


ABCD2
361.15
603.45
1.67
1.30E−08
6.80E−07


ABL2
143.76
91.59
0.64
0.00092
0.0084


ABTB2
12.22
44.61
3.65
0.00021
0.0026


ACAP3
119.89
69.02
0.58
0.0013
0.011


ACOT1
18.94
6.88
0.36
0.00022
0.0027


ACOT4
160.61
79.96
0.50
0.00077
0.0072


ACSS1
405.34
262.36
0.65
0.00035
0.0039


ACSS2
69.24
27.87
0.40
0.0022
0.016


ACTG2
1.77
48.59
27.45
0.00057
0.0058


ACTN1
370.81
127.43
0.34
4.40E−09
2.50E−07


ACVR2B
29
8.49
0.29
0.00093
0.0085


ACVRL1
68.81
10.65
0.15
4.70E−07
1.60E−05


ACYP1
75.89
114.88
1.51
0.0032
0.022


ADAM28
17.64
112.69
6.39
1.20E−11
1.40E−09


ADAMTS1
57.97
10.35
0.18
1.30E−05
0.00025


ADAMTSL4
204.57
46.68
0.23
1.40E−09
8.80E−08


ADARB2
19.22
48.59
2.53
4.10E−05
0.00067


ADAT2
49.38
79.41
1.61
0.0081
0.044


ADRB2
1682.72
1038.05
0.62
0.0014
0.012


ADTRP
58.53
12.59
0.22
5.60E−06
0.00013


AES
1829.67
993.81
0.54
2.20E−15
5.70E−13


AFAP1
123.88
196.75
1.59
0.0083
0.045


AFAP1L2
85.58
318.53
3.72
2.70E−07
9.90E−06


AGER
72.45
20.02
0.28
0.00033
0.0037


AGMAT
35.93
59.92
1.67
0.0068
0.039


AGPAT4
204.21
72.75
0.36
9.30E−09
5.00E−07


AGPAT4-IT1
48.69
14.25
0.29
0.00054
0.0055


AGRP
17.3
7.21
0.42
0.0078
0.043


AHI1
235.37
396.99
1.69
0.00014
0.0019


AIF1
284.23
127.58
0.45
2.70E−05
0.00047


AIM2
60.38
181.05
3.00
1.00E−06
3.10E−05


AK4
19.4
90.97
4.69
5.40E−07
1.80E−05


AK5
19.03
4.99
0.26
0.0018
0.014


AKAP5
114.91
369.89
3.22
4.60E−10
3.30E−08


AKR1B10
5.93
18.09
3.05
0.0044
0.028


AKR1C3
151
55.59
0.37
0.00017
0.0022


ALDH1A1
288.71
86.34
0.30
2.10E−05
0.00038


ALDH2
2024.53
226.94
0.11
2.50E−19
1.70E−16


ALDH3B1
126.29
31.88
0.25
3.90E−08
1.70E−06


ALDH7A1
17.4
8.06
0.46
0.0018
0.014


ALG10
34.07
69.51
2.04
0.00054
0.0055


ALG3
602.89
401.53
0.67
0.0023
0.017


ALOX15
23.2
3.04
0.13
2.10E−07
7.80E−06


ALOX5
692.43
133.98
0.19
4.80E−24
1.10E−20


AMOTL1
27.27
6.61
0.24
0.00087
0.008


AMZ1
20.3
56.94
2.80
0.0074
0.041


ANKLE1
7.07
20.24
2.86
0.0082
0.045


ANKRD30BL
46.82
28.63
0.61
0.00073
0.0069


ANKRD32
570.38
1047.89
1.84
6.60E−11
5.90E−09


ANKRD35
30.44
87.93
2.89
0.0039
0.025


ANKRD9
21.15
6.53
0.31
0.006
0.036


ANKS1B
6.58
41.75
6.34
6.70E−05
0.001


ANKS4B
6.34
10.41
1.64
0.0084
0.045


ANPEP
223.38
29.87
0.13
1.40E−10
1.10E−08


ANTXRL
8.82
13.8
1.56
0.0093
0.049


ANXA1
10537.02
6033.29
0.57
2.40E−13
3.60E−11


ANXA2
3611.39
2122.75
0.59
1.70E−14
3.40E−12


ANXA2P2
14.68
8.04
0.55
0.00024
0.0028


ANXA4
474.5
286.66
0.60
0.0011
0.0094


AOC3
93.24
7.88
0.08
9.20E−08
3.70E−06


AP5B1
259.93
152.31
0.59
0.00061
0.006


APLP2
1344.84
700.79
0.52
1.10E−10
9.10E−09


APOBEC3D
308.49
471.97
1.53
8.80E−09
4.70E−07


APOC1
1105.55
325.48
0.29
7.40E−10
5.10E−08


APOE
1090.42
563.57
0.52
0.00011
0.0015


APOL4
77.65
17.36
0.22
9.90E−07
3.00E−05


APOLD1
29.67
58.56
1.97
8.90E−05
0.0013


AQP9
120.64
36.76
0.30
0.00092
0.0084


ARHGAP1
1038.19
674.81
0.65
4.30E−07
1.50E−05


ARHGAP10
131.02
83.87
0.64
0.0048
0.03


ARHGAP11A
112.75
182.17
1.62
0.0064
0.037


ARHGEF10L
55.98
12.17
0.22
2.30E−06
5.90E−05


ARHGEF26-
8.81
14.06
1.60
0.0027
0.019


AS1


ARL11
48.85
28.15
0.58
0.0093
0.049


ARL3
134.08
250.31
1.87
0.00014
0.0018


ARPM1
10.61
56.39
5.31
0.0065
0.038


ARRB1
251.87
93.17
0.37
3.00E−06
7.60E−05


ARRB2
749.61
480.04
0.64
1.40E−09
9.10E−08


ARRDC2
433.21
281.53
0.65
0.00038
0.0041


ARRDC4
149.11
25.18
0.17
2.70E−11
2.70E−09


ARVCF
14.67
4.76
0.32
0.0091
0.048


ASAH1
1356.57
724.42
0.53
8.30E−11
7.30E−09


ASB13
65.46
23.05
0.35
0.00037
0.0041


ASB2
113.58
505.83
4.45
2.50E−11
2.60E−09


ASCL2
69.43
17.47
0.25
3.30E−07
1.20E−05


ASGR1
24.94
2.5
0.10
2.60E−11
2.70E−09


ASPM
94.64
357.68
3.78
5.60E−06
0.00013


ATAD2
249.67
459.52
1.84
5.50E−05
0.00087


ATF3
218.88
628.23
2.87
9.30E−05
0.0013


ATF7IP2
109.83
189.16
1.72
0.00044
0.0047


ATG4D
284.32
183.84
0.65
0.0019
0.015


ATP13A2
273.5
157.24
0.57
0.0011
0.0094


ATP1B1
410.59
258.4
0.63
0.0063
0.037


ATP2B1
1721.7
827.76
0.48
8.20E−09
4.40E−07


ATP6AP1
1876.39
1233.41
0.66
9.90E−11
8.50E−09


ATP6V0D1
1480.25
930.53
0.63
5.00E−07
1.60E−05


ATP8B4
86.94
243.66
2.80
6.10E−07
2.00E−05


ATP9A
18.39
68.38
3.72
0.00016
0.0021


AXIN1
264.98
149.26
0.56
0.00011
0.0016


AXL
509.67
137.04
0.27
1.80E−07
6.70E−06


B3GNT7
162.71
64.93
0.40
2.60E−05
0.00046


BANK1
8.22
31.84
3.87
0.0094
0.049


BARD1
163.25
262.33
1.61
0.00051
0.0052


BBC3
42.39
23.53
0.56
0.0013
0.011


BBS1
139.13
69.69
0.50
3.60E−05
6.00E−04


BCAR3
25.31
5.39
0.21
0.00047
0.005


BCL9
116.84
77.23
0.66
0.0087
0.047


BCORL1
96.43
58.03
0.60
0.0085
0.046


BEND4
4.04
41.14
10.18
0.00011
0.0015


BFSP1
44.04
12.54
0.28
0.0015
0.012


BHLHE41
86.92
21.41
0.25
8.70E−08
3.50E−06


BLM
121.66
184.86
1.52
0.0062
0.036


BLOC1S3
249.13
152.5
0.61
0.0013
0.011


BLZF1
197.94
298.32
1.51
3.20E−08
1.50E−06


BMF
42.87
78.35
1.83
0.0022
0.017


BMP8A
23.62
46.78
1.98
0.0079
0.043


BMP8B
13.74
8.14
0.59
0.0042
0.027


BNC2
23.84
6.2
0.26
0.001
0.0092


BPIFB1
276.03
37.37
0.14
8.10E−05
0.0012


BRI3
336.65
197.88
0.59
1.00E−05
0.00022


BST1
44.45
10.43
0.23
0.00014
0.0019


BTBD16
1.47
19.46
13.24
0.0026
0.019


BTBD6
115.68
68.62
0.59
0.00095
0.0086


BTG3
307
469.89
1.53
0.0039
0.025


BTK
85.38
21.01
0.25
4.80E−08
2.10E−06


BUB1
69.94
292.41
4.18
1.50E−06
4.20E−05


BUB1B
35.04
123.63
3.53
0.0094
0.049


C10orf116
13.66
2.8
0.20
0.0011
0.0098


C10orf54
2282.17
1480.44
0.65
7.80E−07
2.40E−05


C11orf74
14.99
4.1
0.27
0.0016
0.013


C15orf38
15.17
4.03
0.27
0.0013
0.011


C16orf54
2615.69
1537.25
0.59
4.40E−13
6.50E−11


C17orf51
24.97
9.07
0.36
0.00026
0.003


C17orf72
16.75
7.92
0.47
0.00074
0.007


C18orf1
403.83
889.77
2.20
1.30E−11
1.50E−09


C19orf35
60.12
18.99
0.32
1.70E−06
4.60E−05


C19orf59
779.36
56.56
0.07
9.60E−17
3.50E−14


C1orf106
13.37
46.42
3.47
0.00026
0.0031


C1orf162
591.44
230.41
0.39
6.40E−35
8.60E−31


C1orf173
28.04
3.25
0.12
0.0048
0.03


C1orf177
28.02
5.04
0.18
0.00011
0.0015


C1orf186
5
11.43
2.29
0.0026
0.019


C1orf187
68.1
33.19
0.49
0.0018
0.014


C1orf21
520.55
246.69
0.47
2.90E−05
5.00E−04


C1orf38
899.8
334.6
0.37
2.60E−11
2.70E−09


C1orf63
582.43
880.04
1.51
5.90E−08
2.50E−06


C1QA
2050.2
412.99
0.20
5.80E−13
8.30E−11


C1QB
3288.56
592.68
0.18
2.50E−14
4.80E−12


C1QC
1780.2
418.5
0.24
5.60E−11
5.20E−09


C2
264.75
66.81
0.25
0.00012
0.0016


C20orf197
12.85
3.37
0.26
0.00098
0.0088


C20orf27
286.57
160.31
0.56
0.00074
0.007


C20orf85
33.13
3.57
0.11
2.20E−07
8.30E−06


C20orf96
17.76
5.08
0.29
0.0012
0.01


C21orf63
181.64
97.26
0.54
1.00E−05
0.00021


C2orf18
1341.87
779.84
0.58
2.50E−07
9.00E−06


C2orf89
96.82
40.73
0.42
4.50E−05
0.00074


C3orf14
26.5
60.85
2.30
0.0087
0.047


C4orf34
300.8
150.34
0.50
2.20E−05
0.00039


C5
7.73
20.43
2.64
0.0079
0.043


C5AR1
270.31
77.7
0.29
1.20E−08
6.30E−07


C5orf25
45.44
103.99
2.29
0.00096
0.0087


C6orf108
152.88
336.63
2.20
1.60E−05
0.00031


C6orf211
215.34
327.39
1.52
0.0039
0.026


C6orf225
30.51
12.6
0.41
3.00E−04
0.0034


C7orf58
49.38
15.04
0.30
0.00053
0.0054


C8orf45
10.04
21.26
2.12
0.0074
0.041


C8orf82
57.61
32.3
0.56
3.60E−05
0.00061


C9orf167
39.77
19.7
0.50
0.0035
0.024


C9orf21
287.66
166.62
0.58
7.60E−05
0.0011


C9orf24
36.42
9.47
0.26
0.00053
0.0054


C9orf3
52.88
91.75
1.74
0.0048
0.03


C9orf9
17.64
7.66
0.43
6.00E−04
0.006


CACNA2D2
111.26
45.19
0.41
1.10E−05
0.00022


CAMK1
54.84
182.01
3.32
1.40E−06
3.90E−05


CAMK2N1
18.35
7.96
0.43
0.0019
0.015


CAMK4
784.42
1183.1
1.51
2.60E−05
0.00046


CAPS
126.23
53.98
0.43
2.50E−05
0.00045


CARD17
4.53
17.88
3.95
7.00E−04
0.0067


CARD6
71.58
39.34
0.55
0.0075
0.042


CARD9
31.12
8.52
0.27
0.007
0.04


CASC5
50.01
163.86
3.28
8.50E−06
0.00018


CASP10
186.48
116.92
0.63
0.0031
0.021


CBR3
13.61
31.87
2.34
0.0061
0.036


CBX3P2
17
8.51
0.50
0.0013
0.011


CBX5
735.16
1138.79
1.55
1.30E−05
0.00026


CBX6
231.58
142.68
0.62
3.00E−05
0.00051


CCDC141
283.55
684.56
2.41
2.00E−15
5.20E−13


CCDC28B
83.1
51.2
0.62
0.0012
0.01


CCDC65
143.23
73.76
0.51
0.00061
0.006


CCL18
1685.27
403.43
0.24
3.70E−08
1.70E−06


CCL23
18.65
6.91
0.37
0.0037
0.025


CCNA2
49.46
203.23
4.11
5.70E−05
0.00089


CCNB1
47.48
126.75
2.67
0.0043
0.027


CCNB2
36.22
115.3
3.18
0.0074
0.041


CCND3
5289.58
3170.53
0.60
1.90E−16
6.20E−14


CCR5
1089.5
1691.96
1.55
7.50E−11
6.70E−09


CD109
59.46
112.82
1.90
0.0025
0.018


CD163
464.15
179.04
0.39
0.0021
0.016


CD200
6.87
81.47
11.86
2.40E−07
8.80E−06


CD200R1
366.89
685.98
1.87
1.20E−06
3.50E−05


CD27
684.59
1196.19
1.75
5.20E−06
0.00012


CD276
91.56
25.41
0.28
0.0012
0.01


CD300A
663.38
249.36
0.38
1.90E−11
2.10E−09


CD300C
81.9
11.32
0.14
2.70E−09
1.60E−07


CD300LF
118.42
23.68
0.20
2.80E−07
9.90E−06


CD320
369.9
236.91
0.64
0.0079
0.044


CD33
65.48
20.02
0.31
6.50E−05
0.00098


CD36
119.8
53.56
0.45
0.00067
0.0065


CD38
70.51
350.75
4.97
3.60E−08
1.60E−06


CD4
549.92
184
0.33
5.10E−06
0.00012


CD55
1651.23
1025.6
0.62
3.40E−05
0.00057


CD59
691.75
423.87
0.61
7.20E−05
0.0011


CD68
2154.58
503.18
0.23
2.40E−15
6.10E−13


CD79A
28.16
63.91
2.27
0.0059
0.035


CD82
909.63
1573.58
1.73
1.50E−08
7.60E−07


CD96
4917.4
7608.02
1.55
1.20E−10
9.90E−09


CD97
6854.66
3986.74
0.58
1.40E−12
1.80E−10


CDC20
26.82
113.07
4.22
0.0038
0.025


CDC25C
2.39
21.79
9.12
0.0016
0.013


CDC42BPB
52.16
10.2
0.20
2.30E−06
5.90E−05


CDC45
17
65.69
3.86
0.00049
0.0051


CDC6
22.78
91.64
4.02
2.40E−06
6.20E−05


CDCA2
19.56
84.53
4.32
0.0011
0.0096


CDCA3
12.48
43.58
3.49
0.0045
0.029


CDCA7
150.38
327.37
2.18
0.0018
0.014


CDCP1
81.08
37.28
0.46
0.009
0.048


CDH17
0.33
15.38
46.61
0.00024
0.0029


CDK1
84.88
245.7
2.89
2.10E−05
0.00038


CDKN2D
295.68
182.57
0.62
4.40E−05
0.00072


CDKN3
56.42
130.57
2.31
0.0074
0.041


CDT1
28.78
65.83
2.29
0.0094
0.049


CEACAM5
11.23
76.01
6.77
3.10E−06
7.90E−05


CEACAM6
96.15
457.13
4.75
0.00061
0.006


CEBPA
119.96
39.96
0.33
3.30E−05
0.00056


CEBPB
398.93
202.12
0.51
1.20E−08
6.30E−07


CEND1
4.5
17.98
4.00
0.0026
0.019


CENPBD1
66.43
38.18
0.57
0.0029
0.021


CENPE
97.02
235.23
2.42
8.20E−06
0.00018


CENPF
162.99
346.48
2.13
5.20E−05
0.00083


CENPM
87.67
159.14
1.82
0.0088
0.047


CEP78
450.54
282.73
0.63
0.0025
0.018


CES1
651.9
37.53
0.06
3.20E−29
2.20E−25


CES4A
37.89
15.19
0.40
0.0066
0.038


CFD
277.22
94.37
0.34
1.50E−09
9.60E−08


CFH
271.56
84.07
0.31
3.90E−10
2.90E−08


CFP
37.14
9.59
0.26
0.003
0.021


CHDH
22.3
12.4
0.56
0.0035
0.024


CHEK1
67
117.91
1.76
0.0011
0.0096


CHML
67.9
107.76
1.59
0.0011
0.0098


CHN1
94.15
345.78
3.67
1.00E−09
6.80E−08


CHST14
44.67
23.02
0.52
0.00051
0.0053


CISH
2226.51
1438.93
0.65
0.0019
0.015


CKAP2
235.94
669.65
2.84
6.50E−14
1.10E−11


CKAP2L
33.07
104.83
3.17
0.0066
0.038


CKLF
202.53
317.9
1.57
0.0025
0.018


CKS1B
150.55
286.61
1.90
0.0076
0.042


CKS2
207.14
515.25
2.49
5.30E−09
2.90E−07


CLASP1
444.4
669.3
1.51
9.30E−07
2.80E−05


CLCF1
120.68
36.31
0.30
5.70E−05
0.00089


CLDND1
2254.96
3825.53
1.70
1.20E−08
6.20E−07


CLEC4E
27.41
5.63
0.21
9.30E−05
0.0013


CLEC7A
146.1
47.56
0.33
1.40E−08
7.00E−07


CLECL1
95.05
154.99
1.63
0.0078
0.043


CLIC4
149.5
61.76
0.41
0.00056
0.0056


CLIC5
220
485.08
2.20
4.90E−11
4.60E−09


CLK4
350.91
563.72
1.61
1.40E−06
4.10E−05


CLMN
42.53
16.53
0.39
0.00024
0.0028


CLNK
44.75
157.15
3.51
1.20E−06
3.40E−05


CLSPN
54.96
113.26
2.06
0.0034
0.023


CLU
434.1
229.4
0.53
2.60E−06
6.70E−05


CMKLR1
249.05
84.24
0.34
0.00017
0.0022


CNN3
18.07
58.23
3.22
0.009
0.048


COL6A2
196.74
55.93
0.28
3.60E−07
1.20E−05


COL6A3
16.31
114.62
7.03
2.70E−06
6.90E−05


COLEC12
57.76
33.08
0.57
0.0033
0.023


CPNE7
114.75
286.15
2.49
6.90E−08
2.90E−06


CPVL
221.54
92.55
0.42
0.0016
0.013


CRABP2
2.84
42.95
15.12
0.00055
0.0056


CRIP1
5553.14
3364.55
0.61
1.80E−14
3.60E−12


CRIP2
137.49
56.73
0.41
2.50E−05
0.00045


CRTAM
1134.13
1762.23
1.55
3.20E−05
0.00054


CSDA
261.42
138.86
0.53
9.10E−07
2.70E−05


CSF1
679.12
1139.86
1.68
3.20E−06
7.90E−05


CSF1R
244.45
124.21
0.51
3.90E−07
1.30E−05


CSF2RB
59.01
24.99
0.42
0.0037
0.025


CSPG4
16.65
1.29
0.08
0.0021
0.016


CST3
1571.93
356.21
0.23
3.50E−09
2.10E−07


CSTA
72.89
29.59
0.41
4.30E−06
1.00E−04


CSTF3
187.64
306.8
1.64
0.00044
0.0047


CTBP2
143.44
40.02
0.28
4.10E−07
1.40E−05


CTLA4
281.21
1077.82
3.83
1.40E−10
1.10E−08


CTNNAL1
44.45
81.45
1.83
0.0079
0.044


CTSD
12888.26
6652.84
0.52
3.10E−07
1.10E−05


CTSF
184.49
77.98
0.42
0.0011
0.0099


CTSS
2886.11
1815.92
0.63
2.90E−09
1.70E−07


CUL9
196.26
312.08
1.59
0.0027
0.019


CX3CR1
3407.32
838.28
0.25
1.40E−16
4.60E−14


CXCL13
172.01
3795.11
22.06
4.50E−23
8.50E−20


CXCL16
837.33
173.81
0.21
9.20E−11
8.00E−09


CXCL3
132.51
21.6
0.16
4.00E−10
2.90E−08


CXCL5
111.31
9.35
0.08
5.90E−16
1.70E−13


CXCR1
156.67
39.57
0.25
4.80E−05
0.00078


CXCR2
160.53
31.15
0.19
1.40E−15
3.90E−13


CXCR5
65.47
264.58
4.04
3.90E−09
2.20E−07


CXCR6
3031.23
6111.37
2.02
6.20E−09
3.40E−07


CXXC4
13.42
2.25
0.17
4.00E−04
0.0043


CYB561
245.6
144.89
0.59
0.00047
0.0049


CYB5R2
21.93
3.04
0.14
0.00032
0.0036


CYB5R3
1375.95
869.38
0.63
1.40E−09
8.70E−08


CYBA
4565.56
2936.98
0.64
2.00E−09
1.30E−07


CYBB
827.95
309.88
0.37
1.80E−05
0.00035


CYP27A1
682.79
102.76
0.15
2.90E−09
1.70E−07


CYP2F1
19.03
8.02
0.42
0.0059
0.035


CYSTM1
265.08
151.48
0.57
0.00092
0.0084


CYTH1
1841.29
1109.35
0.60
4.30E−06
1.00E−04


D4S234E
298.55
95.47
0.32
4.80E−09
2.70E−07


DAB2
262.46
101.11
0.39
3.10E−10
2.30E−08


DAGLA
12.16
3.02
0.25
0.0056
0.034


DAPK1
144.08
49.84
0.35
0.00071
0.0068


DAPK2
172.15
438.08
2.54
3.30E−11
3.20E−09


DBH
4.51
27.3
6.05
3.10E−05
0.00053


DDIT3
176.63
290.74
1.65
0.0013
0.011


DDX28
177.37
103.07
0.58
0.0049
0.031


DDX60
848.42
1325.7
1.56
9.10E−07
2.80E−05


DEFB1
16.76
1.29
0.08
1.00E−04
0.0014


DEGS2
17.08
5.17
0.30
0.0081
0.044


DENND5A
184.1
83.27
0.45
0.00018
0.0022


DEPDC1
5.57
51.58
9.26
3.00E−04
0.0034


DGKD
500.07
301.84
0.60
1.20E−05
0.00025


DGKH
77.19
141.48
1.83
0.0063
0.037


DGKQ
191.58
126.24
0.66
0.00037
0.004


DHCR24
298.11
170.29
0.57
0.0011
0.0098


DHFR
69.52
156.69
2.25
8.00E−04
0.0075


DHRS13
170.72
110.86
0.65
0.0013
0.011


DIAPH3
4.83
26.3
5.45
0.00028
0.0033


DKK3
113.56
361.06
3.18
2.70E−05
0.00047


DLEC1
39.34
14.2
0.36
0.00021
0.0026


DLEU2
46.86
80.74
1.72
0.0017
0.013


DLG1
173.13
268.79
1.55
1.10E−05
0.00023


DLG5
72.77
34.55
0.47
0.0021
0.016


DLGAP5
17.83
102.7
5.76
2.20E−05
0.00039


DMC1
5.14
13.57
2.64
0.0063
0.037


DMKN
24.67
7.8
0.32
1.00E−04
0.0015


DNAH6
31.85
11.44
0.36
6.00E−04
0.0059


DNAH7
32.93
6.8
0.21
9.80E−05
0.0014


DNAI2
17.8
3.25
0.18
7.50E−06
0.00016


DNAJA1
1407.56
2318.02
1.65
0.00072
0.0068


DNAJA4
115.64
203.71
1.76
0.0012
0.01


DNAJB1
5193.77
12981.84
2.50
2.00E−08
9.50E−07


DNAJB4
88.29
402.67
4.56
5.40E−10
3.80E−08


DNAJC28
24.37
12.33
0.51
0.0071
0.04


DNAJC5
425.54
251.7
0.59
2.70E−05
0.00047


DOK3
104.07
33.84
0.33
0.0018
0.014


DPEP2
222.21
75.15
0.34
7.30E−08
3.00E−06


DPYSL2
597.62
358.85
0.60
5.20E−08
2.20E−06


DSC1
26.17
4
0.15
5.70E−06
0.00013


DSEL
66.84
28.67
0.43
0.00016
0.002


DSG2
6.88
32.19
4.68
0.00036
0.0039


DST
113.35
39.23
0.35
0.0011
0.0094


DSTN
1337.48
853.58
0.64
1.30E−06
3.70E−05


DTHD1
570.29
932.48
1.64
8.90E−06
0.00019


DTL
46.01
135.87
2.95
0.0031
0.022


DTX4
35.6
6.48
0.18
0.00044
0.0047


DUSP16
269.98
423.97
1.57
0.0088
0.047


DUSP4
1013.21
2408.59
2.38
2.10E−12
2.60E−10


DYNLRB2
19.49
9
0.46
0.0071
0.04


DZIP3
405.74
760.99
1.88
3.30E−08
1.50E−06


E2F7
6.14
34.62
5.64
0.00029
0.0033


ECT2L
25.43
8.71
0.34
0.00086
0.0079


EDEM2
562.14
374.17
0.67
0.00016
0.0021


EFHC2
22.06
4.32
0.20
0.0023
0.017


EFHD2
1086.54
555.11
0.51
1.10E−16
3.90E−14


EFNA5
111.74
46.67
0.42
0.0058
0.035


EFNB1
60.33
34.73
0.58
0.0056
0.034


EGR1
826.87
1401.52
1.69
0.0063
0.037


EHD4
346.69
195.91
0.57
1.90E−06
5.10E−05


EIF2AK2
575.62
912.79
1.59
0.00028
0.0033


ELK2AP
27.72
389.24
14.04
2.50E−16
8.10E−14


ELL2
218.53
127.8
0.58
0.00063
0.0061


EMILIN2
163.88
82.33
0.50
0.0019
0.015


EMP3
3118
1779.13
0.57
1.90E−14
3.80E−12


EMR1
71.3
6.77
0.09
8.10E−08
3.30E−06


ENG
425.13
237.99
0.56
9.80E−05
0.0014


ENPP5
298.27
131.43
0.44
0.0017
0.013


ENTPD1
333.35
1566.32
4.70
2.20E−12
2.70E−10


EPB41L1
46.87
12.46
0.27
6.60E−05
0.001


EPB41L4A
136.55
63.29
0.46
0.0017
0.014


EPCAM
18.08
82.29
4.55
0.0011
0.0095


EPG5
189.33
299.35
1.58
5.50E−05
0.00086


EPHA1
245.57
471.69
1.92
3.70E−06
9.10E−05


EPHX4
22.46
6.04
0.27
0.0038
0.025


ERBB3
27.13
59.02
2.18
8.10E−05
0.0012


ESCO2
17.58
60.51
3.44
0.0066
0.038


ETAA1
165.36
254.98
1.54
0.00061
0.006


ETV1
81.44
368.39
4.52
2.20E−08
1.00E−06


EVC
6.59
35.71
5.42
0.00011
0.0015


EVC2
50.75
120.57
2.38
0.0033
0.023


EZH2
149.67
333.68
2.23
0.00012
0.0016


F8A1
49.51
27.42
0.55
0.00026
0.003


FABP3
75.66
27.95
0.37
2.70E−07
9.90E−06


FABP4
1434.18
64.61
0.05
2.80E−20
2.20E−17


FADS1
133.9
78.05
0.58
0.0012
0.01


FADS3
53.39
28.17
0.53
0.0031
0.021


FAM105B
442.43
701.97
1.59
1.70E−13
2.70E−11


FAM109A
23.01
7.14
0.31
0.0028
0.02


FAM160B1
531.62
820.37
1.54
0.00083
0.0077


FAM166B
11.11
50.7
4.56
0.00097
0.0087


FAM172BP
14.69
39.65
2.70
0.00021
0.0025


FAM174B
6.83
38.99
5.71
0.0027
0.019


FAM184A
23.67
47.68
2.01
0.0083
0.045


FAM18B2
45.58
70.54
1.55
0.0067
0.038


FAM19A1
63.72
11.81
0.19
1.80E−07
6.80E−06


FAM216B
39.25
7.59
0.19
3.80E−08
1.70E−06


FAM3B
21.09
5.47
0.26
0.0054
0.033


FAM40B
9.12
16.26
1.78
0.0036
0.024


FAM65A
292.27
180.55
0.62
0.0024
0.017


FAM65B
2858.72
1347.03
0.47
3.10E−11
3.00E−09


FAM82A2
551.93
321.09
0.58
1.10E−07
4.30E−06


FAM83D
38.6
133.48
3.46
0.00054
0.0055


FAM89A
75.74
32.97
0.44
0.0068
0.039


FAM92B
21.08
1.4
0.07
4.10E−07
1.40E−05


FANCI
112.84
245.02
2.17
0.0013
0.011


FANCL
101.37
180.82
1.78
0.003
0.021


FANCM
111.43
209.52
1.88
0.0019
0.014


FASLG
977.25
1653.28
1.69
3.20E−08
1.50E−06


FBP1
1884.75
337.99
0.18
2.50E−15
6.10E−13


FBXW5
1331.57
833.96
0.63
9.80E−09
5.20E−07


FCER1G
1503.38
476.39
0.32
2.40E−12
3.00E−10


FCGR1A
40.84
13.47
0.33
3.80E−05
0.00063


FCGR2A
430.23
149.82
0.35
8.10E−05
0.0012


FCGR3A
3198.42
731.82
0.23
9.30E−23
1.40E−19


FCGR3B
57.17
15.22
0.27
8.10E−06
0.00018


FCGRT
679.04
285.89
0.42
7.20E−06
0.00016


FCN1
78.26
16.4
0.21
1.60E−07
6.40E−06


FCRL6
2377.67
1451.72
0.61
0.00082
0.0076


FCRLB
35.86
11.74
0.33
0.0023
0.017


FDPSL2A
32.45
70.48
2.17
1.20E−06
3.60E−05


FES
54.81
24.46
0.45
0.0058
0.035


FEZ1
117.65
44.95
0.38
1.30E−07
5.10E−06


FGB
5.92
19.58
3.31
0.002
0.015


FGD2
127.19
76.48
0.60
0.0088
0.047


FGD4
56.46
33.33
0.59
0.00096
0.0087


FGD6
7.77
23.82
3.07
0.0012
0.01


FGFBP2
1819.24
403.06
0.22
7.60E−22
1.00E−18


FGFBP3
25.93
13.09
0.50
0.001
0.0091


FGFR1
125.95
48.35
0.38
6.40E−06
0.00014


FGR
1278.09
407.19
0.32
2.70E−18
1.40E−15


FHAD1
33.01
10.4
0.32
3.40E−05
0.00058


FHL1
197.79
42.77
0.22
3.00E−09
1.70E−07


FHL2
20.68
55.18
2.67
6.00E−04
0.0059


FKBP14
33.49
51.84
1.55
0.0028
0.02


FKBP1AP1
34.91
56.75
1.63
0.0025
0.018


FKTN
52.32
108.1
2.07
0.00044
0.0047


FLJ14186
23.68
52.66
2.22
0.0088
0.047


FLJ34690
7.17
12.13
1.69
0.0031
0.021


FLNA
5628.53
2950.61
0.52
2.60E−13
3.90E−11


FLT1
17.99
46.96
2.61
0.00022
0.0026


FLT3LG
499.99
315.98
0.63
1.40E−08
6.90E−07


FLT4
50.9
17.64
0.35
0.0066
0.038


FLVCR2
130.87
54.02
0.41
0.0054
0.033


FN1
3434.97
609.52
0.18
8.20E−10
5.50E−08


FNDC3B
594.31
337.14
0.57
1.00E−05
0.00021


FOSL2
456.53
303.12
0.66
0.00093
0.0085


FOXJ1
19.08
3.33
0.17
0.0034
0.023


FPR1
264.22
33.41
0.13
1.10E−10
9.50E−09


FPR2
82.24
11.26
0.14
0.00013
0.0017


FRY
50.44
20.74
0.41
0.0013
0.011


FTH1
22475.03
9869.68
0.44
1.50E−18
8.90E−16


FTL
36289.33
16023.76
0.44
8.70E−16
2.50E−13


FUT11
302.87
178.23
0.59
0.00035
0.0039


FUT8
307.97
653.21
2.12
2.00E−09
1.30E−07


FXYD7
35.11
12.98
0.37
0.00096
0.0087


FZD4
54.49
35.62
0.65
0.0017
0.013


FZD6
19.73
55.76
2.83
0.0027
0.019


G6PC3
187.89
117.29
0.62
0.00084
0.0077


G6PD
766.07
430.23
0.56
7.90E−09
4.30E−07


GAA
661.85
233.43
0.35
9.00E−11
7.80E−09


GALM
426.56
891.22
2.09
6.90E−11
6.20E−09


GALNT12
75.26
29.13
0.39
6.80E−05
0.001


GALNT3
185.06
114.78
0.62
0.00025
0.003


GAS2L1
33.59
6.13
0.18
5.10E−06
0.00012


GAS7
187.89
83.74
0.45
1.10E−07
4.60E−06


GBP1P1
9.05
30.96
3.42
0.0087
0.047


GBP5
2472.04
4134.35
1.67
2.00E−04
0.0024


GCHFR
615.62
396.33
0.64
3.00E−04
0.0034


GCNT1
263.21
446.71
1.70
0.0049
0.03


GDPD5
178.72
74.03
0.41
4.00E−05
0.00066


GEM
10.37
300.91
29.02
1.00E−14
2.30E−12


GGCT
115.24
196.3
1.70
0.0046
0.029


GGTA1P
50.89
19.48
0.38
0.0058
0.035


GINS1
13.35
37.92
2.84
0.009
0.048


GLDC
10.22
126.53
12.38
1.30E−06
3.80E−05


GLDN
157.83
12.66
0.08
2.70E−17
1.10E−14


GLRX
1011.42
648.92
0.64
3.80E−06
9.40E−05


GLT25D1
725.84
394.44
0.54
3.20E−11
3.10E−09


GLTPD1
178.6
118.82
0.67
0.0067
0.038


GLUL
4440.18
2366.67
0.53
8.50E−13
1.20E−10


GNG4
14.32
49.9
3.48
2.30E−07
8.40E−06


GNLY
14788.96
7493.78
0.51
1.20E−05
0.00024


GOLGA7B
33.77
15.08
0.45
0.0065
0.037


GOLIM4
140.92
278.08
1.97
0.0031
0.022


GPA33
225.34
106.32
0.47
0.0059
0.035


GPBAR1
33.85
4.94
0.15
0.0011
0.0096


GPD1
215.95
18.01
0.08
7.00E−20
5.20E−17


GPNMB
1179.05
622.26
0.53
3.00E−04
0.0034


GPR110
3.11
12.22
3.93
0.0082
0.045


GPR113
26.47
57.48
2.17
1.80E−05
0.00034


GPR141
26.15
10.17
0.39
0.0044
0.028


GPR153
39.71
11.08
0.28
1.90E−06
5.20E−05


GPR174
986.94
1655.89
1.68
1.80E−14
3.60E−12


GPR25
179.82
403.48
2.24
5.70E−05
0.00089


GPR34
74.66
214.15
2.87
0.00035
0.0039


GPR56
3075.9
1323.58
0.43
2.70E−07
9.90E−06


GPR82
54.58
116.76
2.14
0.00013
0.0017


GPX1
1063.84
675.61
0.64
0.0019
0.015


GPX3
222.15
61.53
0.28
3.40E−06
8.30E−05


GRINA
497.89
259.78
0.52
9.20E−07
2.80E−05


GRK6
877.44
583.16
0.66
6.60E−07
2.10E−05


GRN
4617.98
1014.03
0.22
7.60E−14
1.30E−11


GSG2
38.65
130.34
3.37
7.80E−10
5.30E−08


GSN
877.38
316
0.36
5.20E−08
2.20E−06


GSTA1
26.16
10.25
0.39
0.0019
0.015


GSTT1
85.59
40.09
0.47
0.0068
0.039


GZMA
6066.85
10287.1
1.70
4.60E−05
0.00074


H2AFX
138.63
264.94
1.91
8.60E−06
0.00018


HAVCR1
4.86
23.42
4.82
0.00046
0.0049


HAVCR2
448.29
1432.14
3.19
9.10E−08
3.70E−06


HBEGF
148.96
63.56
0.43
4.90E−07
1.60E−05


HCAR2
73.49
16.45
0.22
0.00013
0.0017


HCAR3
25.78
5.24
0.20
9.00E−05
0.0013


HCK
288.55
61.7
0.21
1.20E−08
6.20E−07


HECTD2
63.8
162.49
2.55
2.90E−09
1.70E−07


HELLS
60.27
165.45
2.75
5.20E−10
3.80E−08


HHEX
23.72
7.16
0.30
0.00026
0.0031


HIF1A
1179.45
1781.47
1.51
1.10E−05
0.00022


HIST1H1B
40.41
100.55
2.49
0.0041
0.026


HIST1H2AC
110.89
176.63
1.59
0.00015
0.0019


HIST1H2AG
23.77
40.47
1.70
0.0091
0.048


HIST1H2AH
16.99
53.13
3.13
0.0039
0.026


HIST1H2AJ
11.71
32.43
2.77
5.90E−06
0.00014


HIST1H2AL
13.17
31.2
2.37
0.0048
0.03


HIST1H2AM
71.06
162.6
2.29
0.00024
0.0029


HIST1H2BF
11.43
30.26
2.65
0.009
0.048


HIST1H2BH
5.58
27.21
4.88
0.00069
0.0066


HIST1H2BN
24.98
37.96
1.52
0.0071
0.04


HIST1H3D
60
117.53
1.96
0.00068
0.0066


HIST1H3G
2.08
12.04
5.79
0.00049
0.0051


HIST1H3I
65.27
128.88
1.97
0.0015
0.012


HIST2H2BE
97.19
221.02
2.27
2.10E−08
1.00E−06


HIST3H2A
32.25
67.58
2.10
5.60E−05
0.00087


HIVEP1
249.38
377.22
1.51
0.0044
0.028


HJURP
14.46
82.26
5.69
6.60E−07
2.10E−05


HK3
163.76
34.3
0.21
5.90E−08
2.50E−06


HLA-DQB1
1634.08
959.48
0.59
1.20E−05
0.00024


HLA-DQB2
170.93
64.36
0.38
5.00E−06
0.00012


HLA-DRA
14618.44
7798.46
0.53
9.30E−05
0.0013


HLA-DRB1
5400.93
3556.09
0.66
3.60E−05
6.00E−04


HLA-DRB5
1693.01
1100.02
0.65
6.70E−05
0.001


HMOX1
215.93
97.19
0.45
0.008
0.044


HNMT
106.27
43.01
0.40
0.0013
0.011


HOXA1
21.52
8.01
0.37
0.0093
0.049


HP
102.01
11.19
0.11
4.50E−06
0.00011


HPGDS
26.03
6.32
0.24
0.0039
0.025


HPS6
343.37
146.6
0.43
2.70E−05
0.00047


HRH2
23.23
12.1
0.52
0.0064
0.037


HS1BP3
214.99
112.68
0.52
0.0031
0.022


HS6ST1
58.57
24.16
0.41
0.0023
0.017


HSD3B7
104.77
33.15
0.32
3.50E−05
0.00058


HSP90AA1
9901.12
17771.14
1.79
5.10E−07
1.70E−05


HSPA1A
577.27
2361.39
4.09
1.20E−10
9.80E−09


HSPA1B
502.34
2361.87
4.70
1.70E−14
3.40E−12


HSPA6
225.3
545.74
2.42
5.40E−07
1.70E−05


HSPA7
13.26
25.22
1.90
0.0016
0.013


HSPD1
1196.28
1877.01
1.57
0.00024
0.0029


HSPE1
267.3
413.26
1.55
0.00049
0.0051


HSPH1
1075.8
2078.93
1.93
2.10E−05
0.00038


HTRA1
62.69
141.7
2.26
0.0037
0.025


HYDIN
52.31
12.37
0.24
0.0015
0.012


ICAM2
423.44
217.81
0.51
1.20E−08
6.40E−07


ICOS
770.04
1243.94
1.62
4.00E−04
0.0043


ID1
12.31
44.16
3.59
0.0033
0.023


ID3
34.62
107.4
3.10
0.00013
0.0017


IFI30
4438.14
1285.27
0.29
1.50E−14
3.30E−12


IFI44
499.41
814.89
1.63
1.70E−05
0.00032


IFITM3
644.56
429.7
0.67
0.00019
0.0024


IFNG
1389.58
2911.74
2.10
1.70E−07
6.70E−06


IFNGR2
190.69
92.78
0.49
0.00019
0.0023


IGF1
29.22
17.6
0.60
0.00063
0.0061


IGFBP2
198.22
68.92
0.35
0.0012
0.01


IGFBP4
80.44
185.17
2.30
0.003
0.021


IGFBP7
46.3
13.54
0.29
0.0016
0.013


IGJ
57.13
428.85
7.51
3.60E−07
1.20E−05


IGLL5
40.97
991.9
24.21
2.40E−19
1.70E−16


IGSF6
257.25
131.94
0.51
1.20E−05
0.00024


IKZF3
2378.25
3620.27
1.52
8.10E−12
9.20E−10


IKZF4
44.62
120.94
2.71
0.00013
0.0017


IL10
19.45
46.46
2.39
0.0055
0.033


IL17A
10.19
236.83
23.24
2.00E−06
5.40E−05


IL18
51.46
21.92
0.43
0.0017
0.013


IL1B
113.08
24.63
0.22
1.30E−08
6.60E−07


IL26
8.33
39.58
4.75
1.60E−05
3.00E−04


IL5RA
87.57
48.32
0.55
0.0072
0.04


IL6ST
596.04
987.21
1.66
0.00076
0.0072


IMPDH1
588.15
382.08
0.65
2.40E−06
6.20E−05


INHBA
297.79
51.56
0.17
1.20E−21
1.50E−18


INPP5F
79.63
211.64
2.66
0.00023
0.0027


INTS7
231.86
368.25
1.59
0.0027
0.019


IQSEC2
11.42
3.8
0.33
0.0011
0.0095


IRAK3
62.83
15.13
0.24
1.80E−08
8.70E−07


ITGA1
1022.28
2542.82
2.49
2.20E−18
1.20E−15


ITGA2
44.29
133.12
3.01
7.60E−06
0.00017


ITGA5
731.48
471.57
0.64
0.00037
0.0041


ITGA6
351.02
188.53
0.54
1.80E−06
4.90E−05


ITGAE
1671.27
4241.95
2.54
1.20E−12
1.60E−10


ITGAM
595.99
173.99
0.29
2.90E−17
1.10E−14


ITGAX
459.16
190.42
0.41
4.50E−07
1.50E−05


ITGB1
4571.31
2960.73
0.65
2.70E−06
6.90E−05


ITGB2
9290.52
5935.14
0.64
7.90E−08
3.20E−06


ITGB5
35.64
9.37
0.26
0.0014
0.012


ITGB8
102.14
41.8
0.41
0.0029
0.021


ITIH5
57.77
13.83
0.24
2.30E−05
0.00041


ITM2A
2325.9
4089.08
1.76
4.80E−07
1.60E−05


ITM2C
1373.78
2651.85
1.93
8.30E−10
5.50E−08


JUN
2921.26
5253.12
1.80
1.00E−09
6.80E−08


KAL1
37.53
9.54
0.25
0.0092
0.048


KCNE1
29.91
1.74
0.06
5.40E−06
0.00013


KCNE3
50.92
19.17
0.38
1.00E−04
0.0014


KCNK5
63.06
238.5
3.78
1.30E−07
5.00E−06


KCNN2
4.79
9.83
2.05
0.0032
0.022


KCNQ1
36.56
8.9
0.24
0.00022
0.0027


KCNQ1OT1
188.81
339.16
1.80
0.00017
0.0022


KCTD12
69.16
32.09
0.46
8.60E−05
0.0012


KDELR3
6.67
28.34
4.25
0.0065
0.038


KDM5B
381.06
638.89
1.68
7.90E−07
2.50E−05


KHDC1
20.46
56.99
2.79
0.0026
0.019


KIAA0101
53.27
195.66
3.67
3.40E−05
0.00058


KIAA0664
188.72
101.73
0.54
0.00035
0.0038


KIAA0754
47.56
76.49
1.61
0.0093
0.049


KIAA0825
278.49
434.26
1.56
3.50E−05
6.00E−04


KIAA1467
118.5
70.3
0.59
0.0021
0.016


KIAA1598
52.8
18.71
0.35
0.0041
0.027


KIAA1671
376.01
599.31
1.59
0.00041
0.0045


KIF11
91.31
297.89
3.26
5.80E−06
0.00013


KIF14
20.7
62.17
3.00
1.40E−05
0.00027


KIF15
22.12
84.15
3.80
0.0037
0.025


KIF18A
37.72
133.29
3.53
3.90E−06
9.50E−05


KIF18B
3.99
23.64
5.92
0.0017
0.014


KIF19
31.35
5.65
0.18
0.00047
0.0049


KIF20A
16.98
74.45
4.38
0.00015
0.002


KIF20B
378.79
628.38
1.66
2.60E−05
0.00046


KIF23
32.14
132.13
4.11
9.80E−06
0.00021


KIF2C
28.34
113.34
4.00
5.20E−07
1.70E−05


KIF4A
17.8
58.15
3.27
0.003
0.021


KIR2DL1
132.84
44.07
0.33
0.0017
0.014


KIR2DL3
180.89
74.43
0.41
0.0022
0.017


KIR2DL4
173
474.44
2.74
0.0018
0.014


KIR2DS4
188.83
45.79
0.24
2.00E−04
0.0025


KIR3DL1
373.92
107.23
0.29
8.40E−06
0.00018


KIR3DL2
397.54
146.99
0.37
3.20E−05
0.00054


KIR3DX1
36.54
12.09
0.33
0.0029
0.021


KLF11
205.3
72.52
0.35
2.40E−10
1.80E−08


KLF2
1710.25
585.45
0.34
2.80E−17
1.10E−14


KLF3
903.28
296.72
0.33
3.90E−14
7.10E−12


KLF4
86.66
25.1
0.29
3.70E−10
2.70E−08


KLF6
11771.81
7805.85
0.66
2.00E−06
5.30E−05


KLHDC10
171.77
110.71
0.64
0.0026
0.019


KLHL6
342.37
584.43
1.71
9.10E−06
0.00019


KLK10
13.93
1.61
0.12
6.60E−05
0.001


KLRAP1
267.68
157.39
0.59
0.00062
0.0061


KLRC4-
16.68
28.17
1.69
0.002
0.015


KLRK1


KLRF1
914.94
182.19
0.20
1.70E−14
3.40E−12


KLRG1
2846.29
1761.08
0.62
0.00029
0.0034


KRT8
107.18
210.75
1.97
0.0031
0.022


KRT81
12.62
51.35
4.07
3.50E−05
0.00059


KRT86
147.55
499.34
3.38
5.80E−13
8.30E−11


KYNU
119.08
39.37
0.33
9.60E−05
0.0014


LAIR1
921.72
453.09
0.49
2.00E−10
1.50E−08


LAMB3
10.43
37.27
3.57
0.0041
0.027


LAMP1
319.09
211.81
0.66
4.10E−05
0.00068


LATS2
59.18
26.46
0.45
0.0021
0.016


LAYN
16.5
257.64
15.61
1.20E−14
2.60E−12


LDLR
553.42
179.27
0.32
6.10E−13
8.70E−11


LEF1
579.69
262.33
0.45
1.70E−08
8.60E−07


LGALS1
2315.43
1260.78
0.54
1.90E−12
2.40E−10


LGALS3
2542.72
1607.56
0.63
0.00035
0.0039


LGALS3BP
1202.65
478
0.40
7.80E−06
0.00017


LGR6
334.63
121.34
0.36
3.50E−07
1.20E−05


LHPP
138.68
92.34
0.67
0.0031
0.021


LILRA2
27.25
10.5
0.39
1.70E−05
0.00032


LILRA5
46.45
10.46
0.23
2.10E−08
1.00E−06


LILRA6
68.15
18.66
0.27
4.60E−08
2.00E−06


LILRB1
296.66
106.74
0.36
4.40E−08
2.00E−06


LILRB3
81.28
26.05
0.32
1.30E−13
2.10E−11


LILRP2
4.93
34.02
6.90
0.00016
0.0021


LINC00152
332.66
625.25
1.88
6.20E−07
2.00E−05


LINC00158
3.65
27.3
7.48
7.60E−05
0.0011


LINC00299
8.91
50.43
5.66
2.50E−05
0.00044


LINC00341
85.41
55.39
0.65
0.0015
0.012


LINC00426
112.57
181.68
1.61
0.00077
0.0073


LINC00574
6.24
12.99
2.08
0.0034
0.023


LINGO3
23.11
4.67
0.20
3.00E−06
7.60E−05


LIPE
25.77
47.8
1.85
0.00035
0.0038


LIPT2
40.92
16.66
0.41
0.0011
0.0097


LITAF
5968.91
3113.64
0.52
3.80E−14
7.00E−12


LMCD1
23.71
107.81
4.55
0.00062
0.0061


LMNA
1908.21
396.77
0.21
2.90E−18
1.40E−15


LMNB1
95.78
152.5
1.59
0.0045
0.029


LMO7
88.82
136.8
1.54
0.0082
0.045


LOC100129917
52.27
78.48
1.50
0.0063
0.037


LOC100130298
4.56
26.69
5.85
8.00E−05
0.0012


LOC100131176
94.23
44.05
0.47
0.00071
0.0068


LOC100131234
6.9
20.69
3.00
0.0013
0.011


LOC100131691
19.4
40.95
2.11
4.30E−05
7.00E−04


LOC100132077
16.96
32.99
1.95
0.0049
0.031


LOC100132247
53.81
87.28
1.62
0.00045
0.0047


LOC100216479
12.6
3.87
0.31
0.0065
0.037


LOC100216546
131.11
208.33
1.59
0.0066
0.038


LOC100271836
39.6
59.54
1.50
0.00022
0.0026


LOC100287616
119.93
66.5
0.55
1.20E−05
0.00025


LOC100287722
33.16
52.12
1.57
0.0012
0.01


LOC100302650
85.49
199.29
2.33
1.10E−06
3.20E−05


LOC100306975
11.23
39.38
3.51
0.00049
0.0051


LOC100335030
6.29
12.33
1.96
0.0021
0.016


LOC100505576
14.4
39.54
2.75
0.0024
0.018


LOC100505702
53.56
14.3
0.27
0.00058
0.0058


LOC100506548
45.7
98.61
2.16
0.00025
0.003


LOC100506585
37.51
5.84
0.16
2.80E−05
0.00049


LOC100506660
15.48
38.12
2.46
0.00034
0.0037


LOC202181
123.57
193.04
1.56
0.003
0.021


LOC220729
65.82
103.46
1.57
0.0053
0.032


LOC284276
31.33
16.25
0.52
0.00044
0.0047


LOC284801
58.13
35.49
0.61
0.00052
0.0053


LOC285965
47.23
135.33
2.87
4.90E−07
1.60E−05


LOC439949
867.21
543.2
0.63
6.00E−04
0.0059


LOC644656
18.9
51.27
2.71
0.0037
0.025


LOC653061
36
18.55
0.52
0.0041
0.027


LOC653075
22.17
7.11
0.32
0.0019
0.014


LOC727896
14.85
31.94
2.15
0.0084
0.045


LOC728558
22.3
41.8
1.87
3.30E−06
8.30E−05


LOC728989
4.18
16.42
3.93
1.80E−08
8.90E−07


LOC729513
31.15
47.87
1.54
0.0068
0.039


LOC729603
47.92
79.05
1.65
0.0091
0.048


LOC729678
229.09
362.32
1.58
0.00033
0.0037


LOC731424
47.84
6.05
0.13
1.20E−09
7.80E−08


LOC96610
65.23
105.06
1.61
0.0025
0.018


LPAR6
727.78
417.78
0.57
0.00046
0.0048


LPCAT1
911.65
494.62
0.54
0.00046
0.0048


LPCAT2
74.25
35.15
0.47
1.20E−06
3.40E−05


LPL
514.46
98.6
0.19
3.30E−08
1.50E−06


LRBA
962.9
1448.48
1.50
6.80E−08
2.80E−06


LRIG2
161.64
282.47
1.75
0.00098
0.0088


LRP1
421.83
76.28
0.18
1.20E−17
5.50E−15


LRP6
3.8
16.49
4.34
0.0032
0.022


LRRC2
23.18
59.42
2.56
4.70E−05
0.00076


LRRC25
79.43
38.97
0.49
0.00013
0.0017


LRRC34
8.98
46.04
5.13
0.00032
0.0036


LRRC8A
270.45
136.32
0.50
1.20E−06
3.40E−05


LRRIQ3
20.32
8.34
0.41
0.0084
0.045


LRRN3
133.55
413.93
3.10
6.40E−05
0.00098


LSAMP
27.29
3.59
0.13
4.40E−07
1.50E−05


LST1
164.48
65.47
0.40
4.10E−05
0.00068


LTA4H
1552.23
690.28
0.44
7.00E−10
4.90E−08


LTB4R
200.67
90.53
0.45
1.30E−06
3.80E−05


LY86
139.78
36.68
0.26
2.00E−05
0.00037


LYN
407.98
188.1
0.46
0.00012
0.0017


LYZ
4979.4
1755.07
0.35
6.40E−14
1.10E−11


MACC1
40.07
19.61
0.49
0.0055
0.033


MAD2L1
174.34
324.4
1.86
0.0015
0.012


MAFB
147.98
64.24
0.43
0.00041
0.0044


MAN1C1
41.34
81.44
1.97
0.00053
0.0054


MAN2B1
912.47
574.73
0.63
0.00054
0.0055


MAOB
6.29
39.02
6.20
0.005
0.031


MAP3K14
172.99
322.52
1.86
2.90E−09
1.70E−07


MAP4K2
291.4
172.15
0.59
0.00018
0.0023


MAP7D1
375.97
220.35
0.59
8.20E−06
0.00018


MAPK12
2.04
14.38
7.05
0.0049
0.031


MARCH3
18.68
50.54
2.71
0.00027
0.0031


MARCO
1798.95
240.91
0.13
3.30E−16
1.00E−13


MARVELD1
27.75
5.71
0.21
8.30E−05
0.0012


MAST4
119.6
243.64
2.04
2.60E−05
0.00045


MATK
1180.89
630.46
0.53
2.50E−11
2.60E−09


MCAM
14.98
31.52
2.10
0.0019
0.015


MCM10
10.34
51.42
4.97
6.00E−05
0.00093


MCM3AP-
19.84
9.68
0.49
0.0033
0.023


AS1


MCM4
178.41
402.78
2.26
0.00062
0.0061


MCOLN1
213.58
88.26
0.41
1.70E−05
0.00033


ME1
80.71
48.5
0.60
0.0069
0.039


ME3
35.8
13.66
0.38
0.00094
0.0085


MELK
43.36
102.4
2.36
0.00067
0.0065


MESDC1
113.78
61.89
0.54
3.70E−10
2.70E−08


METTL8
139.37
229.7
1.65
0.0014
0.012


MFSD7
45.4
14.25
0.31
9.30E−05
0.0013


MGAT3
22.36
0
0.00
7.50E−05
0.0011


MGC21881
64.49
119.7
1.86
0.0011
0.0094


MIAT
952.4
1552.35
1.63
5.00E−06
0.00012


MICAL3
103.78
64.89
0.63
0.0039
0.025


MIDN
133.46
86.67
0.65
0.0011
0.0098


MINA
227.57
141.43
0.62
0.0014
0.011


MIR155HG
126.22
264.66
2.10
1.40E−05
0.00028


MIR17HG
38.33
127.04
3.31
2.00E−06
5.20E−05


MIR21
10.16
24.93
2.45
9.50E−05
0.0013


MIR210HG
4.32
13.67
3.16
0.0056
0.034


MIR600HG
3.95
29.91
7.57
3.40E−06
8.30E−05


MIRLET7BHG
20.63
10.97
0.53
0.0067
0.038


MITF
80.84
15.4
0.19
3.30E−06
8.30E−05


MKI67
141.66
532.16
3.76
1.90E−08
9.40E−07


MKNK1
366.41
232.67
0.63
0.0047
0.03


MLC1
88.87
25.29
0.28
0.0013
0.011


MLLT3
363.1
595.43
1.64
4.50E−08
2.00E−06


MLLT4
76
35.44
0.47
0.00018
0.0023


MLPH
123.79
31.38
0.25
5.40E−05
0.00086


MMAB
119.13
70.02
0.59
0.00025
0.0029


MME
193.23
17.49
0.09
2.50E−25
8.50E−22


MMP12
5.1
166.03
32.55
0.0032
0.022


MMP19
255.9
54.95
0.21
7.70E−10
5.20E−08


MMS22L
231.36
361.52
1.56
2.20E−05
4.00E−04


MND1
4.96
9.71
1.96
0.0057
0.034


MNDA
220.93
69.49
0.31
2.50E−06
6.40E−05


MNT
44.97
26.97
0.60
0.0065
0.038


MOB3B
109.35
33.89
0.31
6.70E−05
0.001


MPEG1
102.45
36.76
0.36
0.0042
0.027


MPHOSPH9
292.27
587.69
2.01
5.70E−05
0.00089


MRAS
29.99
6.69
0.22
1.60E−06
4.50E−05


MRC1
79.41
20.61
0.26
1.20E−12
1.60E−10


MS4A4A
328.31
117.94
0.36
0.0037
0.025


MS4A7
869.66
180.97
0.21
7.10E−18
3.30E−15


MSH2
299.42
482.79
1.61
0.0049
0.031


MSR1
1410.66
314.49
0.22
7.00E−09
3.80E−07


MSRA
99.27
63.95
0.64
0.0015
0.012


MSX2P1
43.78
17.87
0.41
0.00051
0.0053


MTMR14
682.26
423.48
0.62
3.10E−06
7.80E−05


MTSS1
527.19
269.25
0.51
0.00057
0.0058


MTX3
192.2
342.63
1.78
1.00E−05
0.00022


MYADM
2827.6
1104.02
0.39
9.70E−14
1.60E−11


MYBL1
498.26
251.88
0.51
9.00E−05
0.0013


MYEF2
41.74
70.16
1.68
0.0065
0.038


MYL6B
18.92
68.45
3.62
8.70E−05
0.0013


MYO1D
156.63
78.63
0.50
0.0038
0.025


MYO1E
65.57
168.93
2.58
0.0015
0.012


MYO1G
2764.75
1742.78
0.63
6.60E−13
9.20E−11


MYO5B
34.66
122.9
3.55
0.001
0.0093


MYO7A
144.45
737.89
5.11
5.90E−11
5.30E−09


MZB1
37.16
106.47
2.87
6.20E−06
0.00014


N4BP2
358.23
580.14
1.62
9.50E−06
2.00E−04


NAB1
312.04
611.28
1.96
5.80E−06
0.00013


NACC2
94.72
50.07
0.53
0.0029
0.02


NAPSB
71.28
35.44
0.50
0.0023
0.017


NBPF1
82.48
48.87
0.59
0.0042
0.027


NBPF15
39.03
61.63
1.58
0.0026
0.019


NCAM1
144.12
39.98
0.28
8.20E−05
0.0012


NCAPG
43.9
148.04
3.37
0.0027
0.019


NCF1
64.52
18.83
0.29
4.90E−07
1.60E−05


NCF1C
35.28
16.87
0.48
0.0045
0.028


NCF2
466.84
141.89
0.30
3.10E−08
1.40E−06


NCKAP5L
39.93
21.33
0.53
0.00066
0.0064


NCR3
561.86
311.21
0.55
1.10E−08
5.80E−07


NDFIP2
289.83
852.29
2.94
1.20E−08
6.30E−07


NDST1
69.33
19.42
0.28
0.00085
0.0079


NEBL
9.28
51.82
5.58
0.00017
0.0022


NEIL2
169.68
88.82
0.52
0.00011
0.0015


NEK2
13.7
42.78
3.12
2.30E−05
0.00041


NEK6
303.29
160.58
0.53
7.90E−05
0.0012


NELF
184.01
101.84
0.55
2.00E−06
5.30E−05


NELL2
1098.57
1885.79
1.72
1.00E−06
3.10E−05


NETO2
16.76
46.79
2.79
0.0057
0.034


NFAM1
126.75
27.8
0.22
6.60E−14
1.10E−11


NFKBIZ
925.6
1802.78
1.95
2.40E−08
1.20E−06


NHS
20.61
154.09
7.48
5.00E−09
2.80E−07


NHSL2
182.08
46.52
0.26
1.90E−07
7.20E−06


NMUR1
408.84
239.41
0.59
0.0029
0.02


NPHP3
31.42
52.59
1.67
0.0052
0.032


NPHP3-
10.38
17.62
1.70
0.007
0.04


ACAD11


NR1H3
140.21
67.55
0.48
0.0071
0.04


NR5A2
18.1
66.9
3.70
0.0049
0.031


NTRK1
33.7
72.7
2.16
2.20E−06
5.80E−05


NUP107
388.13
610.81
1.57
0.00013
0.0017


NUPR1
131
71.17
0.54
0.0018
0.014


NUSAP1
173.56
435.4
2.51
1.10E−05
0.00023


O3FAR1
66.53
12.75
0.19
3.10E−09
1.80E−07


OCIAD2
431.88
656.08
1.52
0.00011
0.0015


ODF3L1
28.82
3.43
0.12
0.00095
0.0086


OLFM2
76.33
125.28
1.64
0.0013
0.011


OLR1
737.91
200.44
0.27
4.80E−10
3.50E−08


OPN3
56.65
30.93
0.55
0.0091
0.048


ORAI1
1069
660.58
0.62
2.20E−11
2.30E−09


ORC6
21.97
48.67
2.22
0.00039
0.0043


OSBPL5
379.47
77.03
0.20
2.60E−13
3.90E−11


OSBPL7
205.2
125.87
0.61
0.0052
0.032


OSCAR
149.12
28.52
0.19
5.80E−11
5.30E−09


OSMR
12.11
51.66
4.27
5.60E−07
1.80E−05


OTUB2
26.37
79.05
3.00
0.00059
0.0059


OTUD1
137.32
81.03
0.59
0.0057
0.034


OTUD7A
15.17
6.61
0.44
0.0021
0.016


PAG1
1744.56
2649.42
1.52
1.20E−06
3.40E−05


PAIP2B
55.88
25.71
0.46
0.004
0.026


PALLD
111.46
47.93
0.43
8.00E−04
0.0075


PAQR5
33.94
9.84
0.29
8.00E−04
0.0074


PARP14
1556.72
2335.17
1.50
4.10E−09
2.30E−07


PATL2
640.15
340.96
0.53
0.00017
0.0022


PCNA
265.91
445.29
1.67
0.0047
0.029


PCNXL2
231.13
365.61
1.58
1.50E−05
3.00E−04


PCOLCE2
186.38
21.82
0.12
4.90E−14
8.80E−12


PCSK1N
37.78
13.79
0.37
0.0039
0.025


PDCD1
775.88
1308.17
1.69
0.00059
0.0058


PDE4A
366.01
168.72
0.46
4.20E−12
5.00E−10


PDE4DIP
793.31
1726.58
2.18
8.00E−16
2.30E−13


PDE6G
15.06
1.25
0.08
0.00012
0.0016


PDE7B
10.18
82
8.06
3.80E−15
9.30E−13


PDE8A
133.4
71.23
0.53
0.0024
0.018


PDGFD
281.87
147.87
0.52
0.0026
0.019


PDK1
169.29
263.6
1.56
0.00089
0.0082


PDK4
183.59
34.42
0.19
1.30E−05
0.00026


PDLIM1
435.66
149.48
0.34
0.00016
0.0021


PDLIM4
23.81
95.56
4.01
6.30E−08
2.60E−06


PDZD4
119.37
29.8
0.25
1.30E−06
3.70E−05


PDZD8
222.52
147.83
0.66
0.0048
0.03


PELI2
141
35.09
0.25
8.10E−06
0.00018


PGD
948.63
567.97
0.60
0.00096
0.0087


PHEX
2.39
69.34
29.01
2.60E−05
0.00046


PHLDA3
80.14
23.52
0.29
0.00045
0.0048


PIBF1
297.02
457.25
1.54
0.0016
0.013


PIEZO1
523.85
337.71
0.64
2.50E−05
0.00044


PIGV
185.92
97.66
0.53
0.0056
0.034


PIK3C2A
237.98
379.31
1.59
0.0011
0.0094


PIK3R2
110
32.19
0.29
1.10E−06
3.30E−05


PIK3R5
1559.61
908.51
0.58
1.40E−11
1.50E−09


PILRA
191.48
37.86
0.20
8.30E−13
1.10E−10


PION
342.15
222.22
0.65
0.0092
0.049


PIP5K1C
222.38
146.43
0.66
0.005
0.031


PIWIL2
7.32
14.37
1.96
0.0024
0.018


PKP2
25.77
10.69
0.41
0.005
0.031


PLAC8
2021.3
609.46
0.30
7.20E−19
4.60E−16


PLAGL1
46.49
105.96
2.28
3.00E−04
0.0034


PLAT
6.43
45.58
7.09
0.00011
0.0015


PLAUR
317.9
155.43
0.49
0.00088
0.0081


PLBD1
493.32
86.58
0.18
4.70E−12
5.50E−10


PLBD2
446.23
285.82
0.64
0.00012
0.0016


PLCD1
263.9
167.56
0.63
0.00037
0.004


PLCXD2
111.9
221.12
1.98
1.70E−08
8.30E−07


PLD3
1228.11
739.14
0.60
0.00018
0.0023


PLEK
2913.34
1286.68
0.44
9.80E−13
1.30E−10


PLEKHG3
507.52
118.67
0.23
2.50E−11
2.60E−09


PLIN2
1568.78
922.48
0.59
5.90E−06
0.00014


PLOD1
383.21
232.5
0.61
0.0085
0.046


PLS3
10.73
112.24
10.46
6.90E−06
0.00016


PLXDC2
248.39
78.08
0.31
3.40E−07
1.20E−05


PLXND1
300.12
174.54
0.58
6.20E−05
0.00095


PMAIP1
359.94
663.39
1.84
6.10E−06
0.00014


PMEPA1
42.7
114.59
2.68
8.50E−07
2.60E−05


PNPLA6
846.6
387.35
0.46
1.30E−10
1.10E−08


POLE2
16.68
59.23
3.55
0.0015
0.012


POLQ
25.63
69.52
2.71
0.0068
0.039


POLR2J2
3.65
10.93
2.99
0.00011
0.0015


PON2
121.1
212.74
1.76
0.00063
0.0062


PON3
1.07
41.15
38.46
4.60E−05
0.00075


POR
718.24
440.4
0.61
0.00028
0.0032


POU2AF1
7.97
32.48
4.08
5.00E−10
3.60E−08


PPAP2A
127.85
235.71
1.84
0.00059
0.0059


PPARG
246.37
69.28
0.28
5.20E−06
0.00012


PPIC
48.1
14.3
0.30
0.0012
0.011


PPP1R14B
86
221.48
2.58
3.90E−06
9.50E−05


PPP1R9B
72.86
44.29
0.61
0.0058
0.035


PRAM1
61.16
15.78
0.26
2.80E−05
0.00048


PRF1
16655.25
9812.88
0.59
8.40E−12
9.40E−10


PRKAR1B
76.38
131.57
1.72
0.0049
0.03


PRKCD
494.34
304.61
0.62
1.40E−05
0.00027


PRKG2
14.31
2.36
0.16
0.0014
0.012


PROCR
97.29
43.39
0.45
0.004
0.026


PROK2
63.46
23
0.36
0.00054
0.0055


PROS1
93.81
38.02
0.41
0.0065
0.038


PROX2
11.81
47.5
4.02
0.00033
0.0037


PRR11
48.49
89.8
1.85
8.70E−05
0.0013


PRR5
295.89
196.48
0.66
0.0014
0.012


PRR7
84.47
48.24
0.57
7.00E−04
0.0067


PRSS21
66.89
27.03
0.40
4.00E−04
0.0043


PRSS23
672.84
176.9
0.26
5.30E−08
2.30E−06


PRSS30P
89.06
31.04
0.35
0.00022
0.0027


PRSS8
11.15
53.88
4.83
0.0015
0.012


PSAP
10389.23
5346.87
0.51
1.90E−11
2.00E−09


PSTPIP2
216.42
141.24
0.65
0.0027
0.019


PTAFR
216.72
81.54
0.38
6.10E−08
2.60E−06


PTBP2
142.42
216.56
1.52
0.0071
0.04


PTCH1
373.67
135.66
0.36
1.50E−10
1.20E−08


PTGDR
921.11
507.32
0.55
8.00E−04
0.0075


PTGDR2
53.28
8.53
0.16
5.30E−05
0.00084


PTGDS
96.43
27.57
0.29
6.00E−06
0.00014


PTGER2
1858.87
728.51
0.39
6.00E−12
7.00E−10


PTGIS
27.95
69.74
2.50
0.00015
0.002


PTPN12
191.47
105.76
0.55
8.00E−04
0.0075


PTPN13
8.27
37.28
4.51
0.0083
0.045


PTPN18
1116.62
694.23
0.62
1.10E−07
4.50E−06


PTPN22
1984.12
2976.77
1.50
3.40E−07
1.20E−05


PTPN7
2573.74
3872.72
1.50
2.60E−05
0.00046


PTPRF
31.28
91.26
2.92
0.0024
0.018


PTPRK
42.9
120.01
2.80
7.00E−05
0.0011


PTPRN2
69.51
137.01
1.97
0.0046
0.029


PTPRO
44.95
15.82
0.35
3.00E−04
0.0034


PTTG1
293.69
625.45
2.13
7.10E−05
0.0011


PVR
63.72
24.95
0.39
0.0012
0.01


PVT1
98.88
208.45
2.11
6.70E−06
0.00015


PXN
1867.53
583.78
0.31
1.30E−20
1.10E−17


PYROXD2
63.5
26.42
0.42
7.00E−04
0.0067


R3HDM1
353.44
569.53
1.61
0.00034
0.0037


RAB11FIP5
152.27
38.35
0.25
1.90E−07
7.20E−06


RAB13
64.36
28.8
0.45
0.0025
0.018


RAB26
6.39
19.08
2.99
0.0025
0.019


RAB27A
1260.59
1894.13
1.50
8.90E−05
0.0013


RAB31
329.33
107.84
0.33
1.70E−06
4.80E−05


RAB3GAP1
271.3
900.81
3.32
4.80E−18
2.30E−15


RAB9A
483.87
287.71
0.59
9.60E−06
2.00E−04


RAD54L
12.82
33.75
2.63
0.0026
0.019


RAP1GAP2
227.07
53.31
0.23
1.30E−08
6.60E−07


RAP2A
308.23
182.17
0.59
0.00091
0.0083


RAP2B
1152.96
694.31
0.60
1.50E−07
6.00E−06


RARA
461.29
230.91
0.50
2.80E−08
1.30E−06


RASA3
805.78
408.32
0.51
1.10E−09
6.90E−08


RASAL2
65.31
15.94
0.24
5.70E−09
3.20E−07


RASGRP2
489.39
171.03
0.35
3.90E−16
1.20E−13


RBM38
710.53
468.28
0.66
2.80E−05
0.00049


RBP4
247.11
26.64
0.11
3.00E−11
3.00E−09


RBPJ
1944.93
3538.41
1.82
3.10E−07
1.10E−05


RCBTB2
539.7
222.97
0.41
2.40E−05
0.00043


REC8
105.61
169.33
1.60
0.003
0.021


REG4
4.79
42.38
8.85
1.60E−05
3.00E−04


REPS1
519.92
301.78
0.58
2.80E−06
7.10E−05


RETN
84.27
10.86
0.13
2.30E−24
6.30E−21


RFC4
117.23
200.17
1.71
6.30E−05
0.00097


RGL4
160.8
265.26
1.65
2.20E−06
5.80E−05


RGMB
27.51
7.32
0.27
0.0084
0.045


RGNEF
76.24
23.72
0.31
0.00021
0.0026


RGS1
6864.23
20437.32
2.98
2.20E−12
2.70E−10


RGS2
1467.53
4815.87
3.28
4.60E−12
5.50E−10


RHBDD2
1444.91
935.25
0.65
2.20E−05
4.00E−04


RHBDL2
7.84
16.2
2.07
0.0016
0.013


RHOU
47
25.72
0.55
0.005
0.031


RMI1
79.17
160.44
2.03
0.00053
0.0054


RNASEK
35.49
20.76
0.58
0.0032
0.022


RND3
86.47
16.56
0.19
0.00012
0.0016


RNF122
34.85
57.48
1.65
0.0021
0.016


RNF126
490.52
281.99
0.57
8.60E−07
2.60E−05


RNF130
511.85
233.09
0.46
5.10E−11
4.70E−09


RNF138P1
51.5
118.15
2.29
9.60E−06
2.00E−04


RNF144A
243.8
145.36
0.60
0.00031
0.0035


RNPEPL1
1319.83
716.36
0.54
5.80E−06
0.00013


ROPN1L
26.66
9.96
0.37
0.0013
0.011


RPP25
32.35
12.67
0.39
0.0075
0.042


RPS16P5
40.42
126.65
3.13
3.40E−08
1.50E−06


RPS6KA6
6.62
11.17
1.69
0.0016
0.013


RRAGD
90.64
29.4
0.32
5.80E−06
0.00013


RRAS2
389.52
206.27
0.53
6.90E−06
0.00015


RRBP1
205.69
122.91
0.60
0.00024
0.0029


RRM2
143.12
447.47
3.13
1.50E−05
0.00029


RSAD2
177.02
381.07
2.15
0.00011
0.0015


RSPH1
15.64
3.77
0.24
0.0036
0.024


RTN3
1113.78
731.88
0.66
2.50E−05
0.00044


RTN4
964.33
580.12
0.60
6.10E−06
0.00014


RUNX2
388.09
695.34
1.79
1.80E−07
6.90E−06


RXRA
149.61
78.07
0.52
1.30E−06
3.70E−05


RYR2
20.01
113.01
5.65
5.40E−05
0.00085


S100A10
5329.44
2435.31
0.46
1.10E−20
1.10E−17


S100A11
3608.48
1834.68
0.51
1.60E−17
6.60E−15


S100A4
11003.84
7224.12
0.66
4.00E−17
1.50E−14


S100A8
311.42
89.66
0.29
6.00E−07
1.90E−05


S100A9
713.64
278.7
0.39
0.00047
0.0049


S100PBP
322.1
551.19
1.71
6.10E−06
0.00014


S1PR1
2333.29
773.74
0.33
1.10E−15
3.10E−13


S1PR3
3.15
13.04
4.14
0.0035
0.024


S1PR4
1586.58
827.19
0.52
2.30E−10
1.70E−08


S1PR5
1167.22
286.79
0.25
1.10E−16
3.90E−14


SAMD10
86.67
140.9
1.63
0.0023
0.017


SAMHD1
1735.97
1132.92
0.65
9.50E−06
2.00E−04


SAPCD2
4.6
20.37
4.43
0.0076
0.042


SARDH
93.95
409.61
4.36
5.70E−10
4.00E−08


SASH1
19.2
10.65
0.55
0.0036
0.024


SASS6
100.81
161.5
1.60
1.00E−05
0.00021


SBK1
94.2
35.92
0.38
7.60E−07
2.40E−05


SCD
1000.29
323.16
0.32
0.00026
0.003


SCGB1A1
1358.94
84.1
0.06
6.60E−13
9.20E−11


SCGB3A1
693.6
115.64
0.17
3.70E−09
2.10E−07


SCIMP
25.42
12.05
0.47
0.0051
0.031


SCPEP1
515.35
290.66
0.56
1.10E−06
3.20E−05


SDC1
14.45
57.22
3.96
0.0011
0.0099


SEC61A2
55.23
89.55
1.62
0.0093
0.049


SECTM1
101.34
15.49
0.15
1.20E−09
7.80E−08


SELL
2056.97
1207.89
0.59
0.00041
0.0044


SEMA7A
70.17
169.74
2.42
0.00083
0.0077


SENP7
541.78
845.4
1.56
8.80E−14
1.50E−11


SEPT10
33.01
11.57
0.35
0.0038
0.025


SEPT11
1174.64
658.32
0.56
1.10E−10
9.30E−09


SEPT4
33.18
9.11
0.27
0.0019
0.015


SERPINA1
3111.71
478.87
0.15
2.00E−13
3.20E−11


SERPINB6
518.64
285.09
0.55
2.50E−05
0.00044


SERPING1
1357.42
127.6
0.09
1.30E−20
1.10E−17


SERTAD1
307.7
488.54
1.59
0.0021
0.016


SESN3
23.88
53.99
2.26
0.0012
0.01


SFMBT2
351.17
542.52
1.54
8.90E−05
0.0013


SFTPA1
771.82
217.9
0.28
0.00094
0.0086


SFTPA2
1100.91
321.95
0.29
0.00057
0.0058


SFTPC
1300.43
147.57
0.11
1.20E−13
1.90E−11


SFXN2
63.14
130.46
2.07
0.0034
0.023


SGMS1
548.79
857.93
1.56
1.90E−05
0.00036


SGMS2
92.46
22.22
0.24
1.80E−05
0.00035


SGOL1
38.82
65.62
1.69
0.008
0.044


SGPP2
9.48
50.1
5.28
1.10E−05
0.00022


SH3BP5
194.86
89.24
0.46
2.30E−07
8.40E−06


SH3D21
5.46
21.13
3.87
0.0094
0.049


SH3PXD2B
21.9
5.85
0.27
0.0016
0.013


SH3RF1
3.51
22.46
6.40
0.004
0.026


SHCBP1
20.97
99.99
4.77
8.70E−05
0.0013


SIDT2
185.04
102.02
0.55
0.0017
0.013


SIGLEC1
91.18
33.28
0.36
0.0078
0.043


SIGLEC11
21.1
5.83
0.28
6.60E−06
0.00015


SIGLEC14
99.97
27.78
0.28
3.80E−07
1.30E−05


SIGLEC7
93.94
20.47
0.22
1.10E−06
3.10E−05


SIGLEC9
75.15
34.8
0.46
0.0016
0.013


SIGLECP3
268.06
52.25
0.19
3.30E−11
3.20E−09


SIPA1L1
334
522.28
1.56
2.00E−04
0.0025


SIRPA
190.71
56.83
0.30
2.40E−05
0.00043


SIRPB1
211.46
59.18
0.28
2.20E−06
5.80E−05


SIRPB2
34.56
12.91
0.37
0.00029
0.0033


SIRPG
577.55
1830.28
3.17
5.10E−15
1.20E−12


SKA1
31.14
54.87
1.76
0.0022
0.017


SKA2
328.42
512.26
1.56
0.00075
0.0071


SKIL
771.5
1201.15
1.56
2.30E−06
6.00E−05


SLC10A1
10.2
34.33
3.37
8.60E−05
0.0013


SLC10A3
669.13
422.44
0.63
8.10E−06
0.00018


SLC11A1
507.86
119.17
0.23
7.50E−12
8.50E−10


SLC12A7
205.86
87.52
0.43
2.50E−09
1.50E−07


SLC15A3
83.81
21.93
0.26
5.80E−08
2.50E−06


SLC19A3
54.83
11.35
0.21
4.70E−11
4.40E−09


SLC22A15
18.09
10.27
0.57
0.0067
0.038


SLC23A2
160.24
260.22
1.62
0.0047
0.03


SLC23A3
6.55
15.32
2.34
0.0088
0.047


SLC25A23
76.73
37.34
0.49
0.00064
0.0062


SLC25A29
76.23
47.85
0.63
0.0085
0.046


SLC25A33
122.14
64.13
0.53
0.0082
0.045


SLC27A2
142.15
426.13
3.00
1.20E−05
0.00024


SLC27A3
410.59
242.78
0.59
0.0017
0.013


SLC29A2
41.73
21.04
0.50
0.0077
0.043


SLC2A6
123.67
76.56
0.62
0.0035
0.024


SLC31A1
277.98
177.38
0.64
0.0072
0.04


SLC31A2
437.27
118.34
0.27
7.30E−09
4.00E−07


SLC35C1
260.38
158.07
0.61
0.0059
0.035


SLC35G1
8.71
22.28
2.56
0.0058
0.035


SLC37A2
94.54
57.01
0.60
0.0071
0.04


SLC44A2
2165.89
1339.68
0.62
3.60E−08
1.60E−06


SLC44A4
72.74
33.69
0.46
0.0068
0.039


SLC47A1
87.76
31.28
0.36
0.00078
0.0073


SLC48A1
105
67.46
0.64
0.0017
0.013


SLC4A5
43.19
74.03
1.71
0.0014
0.011


SLC5A3
506.23
954.64
1.89
7.00E−07
2.20E−05


SLC5A6
199.44
129.18
0.65
0.005
0.031


SLC6A14
4.12
18.64
4.52
3.70E−05
0.00062


SLC6A20
5.43
11.99
2.21
0.0017
0.013


SLC7A5P2
157.49
288.89
1.83
1.00E−10
8.70E−09


SLC7A7
307.99
67.11
0.22
2.80E−05
0.00048


SLC7A8
222.73
45.13
0.20
1.20E−06
3.50E−05


SLC8A1
48.47
16.37
0.34
3.80E−06
9.40E−05


SLCO2B1
450.13
97.27
0.22
1.70E−06
4.60E−05


SLCO3A1
208.5
65.48
0.31
9.80E−13
1.30E−10


SLFN12L
183.61
289.82
1.58
0.00015
0.002


SLPI
205.09
76.69
0.37
0.0027
0.019


SMARCD3
32.35
95.53
2.95
6.60E−05
0.001


SMC2
264.58
397.23
1.50
0.0022
0.017


SMC4
631.28
1115.41
1.77
1.70E−10
1.40E−08


SMURF2
261.22
507.59
1.94
1.40E−08
7.00E−07


SNHG1
338.43
563.34
1.66
2.20E−06
5.80E−05


SNHG11
71.98
39.83
0.55
0.0022
0.017


SNORA29
3.27
13.35
4.08
2.20E−07
8.20E−06


SNORA31
10.73
19.16
1.79
0.0077
0.043


SNORA4
14.71
32.49
2.21
1.50E−08
7.50E−07


SNORA63
19.17
38.43
2.00
1.20E−05
0.00024


SNORD2
10.15
21.21
2.09
1.20E−05
0.00024


SNORD22
17.65
31.26
1.77
0.0049
0.03


SNORD25
4.73
12.19
2.58
0.00068
0.0066


SNORD26
5.57
13.15
2.36
0.0033
0.023


SNORD27
9.83
19.2
1.95
0.0026
0.019


SNORD28
5.43
17.68
3.26
9.60E−06
2.00E−04


SNORD29
5.56
14.92
2.68
4.10E−06
1.00E−04


SNORD31
8.36
16.35
1.96
0.0026
0.019


SNORD44
5.65
11.43
2.02
0.001
0.009


SNORD45B
3.52
11.19
3.18
0.00014
0.0019


SNORD50A
25.92
45.43
1.75
1.40E−05
0.00028


SNORD50B
42.54
85.19
2.00
6.70E−09
3.70E−07


SNORD76
11.49
23.87
2.08
0.00097
0.0087


SNORD79
9.87
20.72
2.10
7.20E−07
2.30E−05


SNORD80
16.78
31.05
1.85
0.0014
0.011


SNORD81
13.77
23.99
1.74
0.002
0.015


SNTN
27.41
11.09
0.40
0.0011
0.0098


SOCS2
176.73
88.58
0.50
7.00E−04
0.0067


SORBS3
268.33
158.24
0.59
6.10E−07
1.90E−05


SORT1
240.83
59.83
0.25
3.30E−06
8.10E−05


SOX4
33.1
135.89
4.11
6.30E−07
2.00E−05


SPARC
115.94
48.56
0.42
0.00053
0.0054


SPATA6
22.63
6.37
0.28
0.008
0.044


SPC25
7.46
34.66
4.65
7.60E−05
0.0011


SPECC1
207.46
92.45
0.45
8.30E−05
0.0012


SPI1
279.75
52.13
0.19
1.80E−15
4.70E−13


SPIRE1
59.42
22.62
0.38
0.00073
0.0069


SPN
3765.6
2319.13
0.62
7.60E−10
5.20E−08


SPON2
564.27
114.94
0.20
3.00E−14
5.60E−12


SPP1
67.51
4220.13
62.51
7.40E−23
1.20E−19


SPR
42.37
14.45
0.34
0.0037
0.025


SPSB1
52.34
142.63
2.73
0.00039
0.0042


SPTB
32.67
9.12
0.28
0.00037
0.0041


SREBF2
376.04
250.57
0.67
0.0052
0.032


SRGAP3
123.99
537
4.33
8.90E−19
5.40E−16


SSBP3
49.99
22.13
0.44
9.40E−07
2.80E−05


SSBP4
323.45
204.58
0.63
8.10E−07
2.50E−05


ST6GALNAC2
56.6
14.94
0.26
0.00012
0.0016


ST6GALNAC3
23.12
81.22
3.51
0.0014
0.012


ST8SIA1
89.87
231.96
2.58
5.00E−08
2.20E−06


STAC
138.92
22.33
0.16
1.80E−05
0.00034


STAT1
3572.42
6010.73
1.68
0.0019
0.015


STON1
18.25
3.09
0.17
4.50E−05
0.00073


STRBP
161.32
358.23
2.22
2.20E−05
0.00039


STX3
245.74
96.99
0.39
4.60E−08
2.00E−06


STYXL1
174.92
287.84
1.65
0.005
0.031


SUMO1P3
29.67
57.43
1.94
4.90E−05
0.00079


SUN2
5714.36
3309.96
0.58
3.70E−09
2.10E−07


SUPT3H
187.47
313.87
1.67
1.50E−05
0.00029


SUSD1
251.82
89.96
0.36
2.00E−06
5.30E−05


SUSD3
426.27
764.9
1.79
5.00E−06
0.00012


SUV39H2
53.45
81.87
1.53
0.0069
0.039


SVIL
193.06
76.8
0.40
4.80E−11
4.50E−09


SYK
219.29
101.28
0.46
0.00024
0.0028


SYNJ1
144.05
225.25
1.56
2.00E−05
0.00037


SYTL1
931.5
606.33
0.65
4.40E−07
1.50E−05


TAGLN2
8378.09
4026.35
0.48
2.20E−26
1.00E−22


TANC2
162.55
108.07
0.66
0.0018
0.014


TAS2R19
2.43
18.1
7.45
0.0031
0.022


TBC1D17
251.87
167.23
0.66
0.002
0.015


TBC1D2
168.51
95.81
0.57
0.0054
0.033


TBC1D4
193.08
444.84
2.30
0.00014
0.0019


TBC1D9
26.68
14.33
0.54
0.0083
0.045


TBCD
1083.54
1764.92
1.63
5.60E−07
1.80E−05


TBL1XR1
1724.49
2713.17
1.57
3.10E−08
1.40E−06


TBX21
1423.31
602.11
0.42
7.30E−12
8.40E−10


TCF7L2
172.44
48.34
0.28
1.10E−10
9.10E−09


TFCP2L1
27.69
5.6
0.20
0.0051
0.032


TFEB
116.96
61.17
0.52
5.20E−05
0.00083


TFEC
69.56
20.77
0.30
2.10E−07
7.80E−06


TGFBI
837
402.27
0.48
0.0012
0.01


TGFBR3
1808.02
786.77
0.44
3.70E−11
3.50E−09


TGM2
722.79
206.62
0.29
2.60E−06
6.70E−05


THAP6
209.72
316.93
1.51
0.0037
0.025


THBD
204.98
52.27
0.26
2.10E−07
8.00E−06


THBS1
1075.72
361.65
0.34
1.90E−05
0.00035


THEM4
371.48
246.99
0.66
0.0014
0.011


THRA
175.92
93.4
0.53
0.00029
0.0034


TIAM1
183.24
431.88
2.36
1.70E−06
4.80E−05


TIAM2
39.19
107.86
2.75
1.70E−06
4.60E−05


TIGIT
1790.85
2906.05
1.62
0.00027
0.0032


TIMP1
889.13
347.74
0.39
1.00E−09
6.80E−08


TIMP2
96.46
40.28
0.42
0.00031
0.0035


TKTL1
94.13
23.29
0.25
0.0037
0.025


TLR10
6.18
13.96
2.26
0.0055
0.033


TLR4
129.76
52.24
0.40
0.0015
0.012


TLR6
29.83
11.72
0.39
0.00055
0.0056


TLR7
31.68
13.06
0.41
0.0036
0.024


TLR8
61.03
17.26
0.28
0.0015
0.012


TM7SF4
30.77
5.31
0.17
0.00019
0.0024


TMBIM1
1822.98
1078.02
0.59
9.40E−10
6.30E−08


TMCC3
210.98
52.28
0.25
1.60E−07
6.40E−06


TMEM102
192.01
111.94
0.58
0.00062
0.0061


TMEM104
230.44
139.71
0.61
0.0027
0.019


TMEM14A
171.93
260.46
1.51
0.0023
0.017


TMEM155
9.25
79.37
8.58
0.00022
0.0026


TMEM156
135.84
227.78
1.68
2.00E−04
0.0025


TMEM173
1727.35
1136.57
0.66
1.60E−07
6.30E−06


TMEM184B
338.86
191.69
0.57
1.90E−05
0.00035


TMEM185B
266.93
151.58
0.57
0.0032
0.022


TMEM220
28.09
11.39
0.41
5.00E−04
0.0052


TMEM53
76.66
43.61
0.57
0.00014
0.0018


TMEM63A
545.2
362.65
0.67
0.00081
0.0075


TMEM65
59.7
36.81
0.62
0.0045
0.029


TMIGD2
60.6
151.67
2.50
0.002
0.016


TMPO
593.84
1079.45
1.82
2.80E−06
7.20E−05


TMPRSS3
29.59
74.32
2.51
0.00021
0.0026


TMPRSS4
3.24
24.16
7.46
0.0088
0.047


TNFAIP2
72.59
23.46
0.32
1.10E−06
3.20E−05


TNFAIP8L2
191.54
108.59
0.57
0.0011
0.0094


TNFRSF9
272.09
1326.53
4.88
2.40E−21
2.60E−18


TNFSF13
79.04
18.36
0.23
1.80E−06
4.80E−05


TNFSF15
5.52
16.09
2.91
9.70E−05
0.0014


TNFSF4
98.94
470.59
4.76
1.80E−10
1.40E−08


TNFSF9
23.14
47.67
2.06
1.70E−08
8.40E−07


TNIP3
364.47
717.57
1.97
4.70E−08
2.00E−06


TNNI2
27.63
4.48
0.16
1.30E−05
0.00026


TNS3
119.87
421.11
3.51
3.90E−05
0.00064


TOM1L2
198.12
129.63
0.65
0.006
0.036


TOP2A
141.45
548.61
3.88
1.60E−09
1.00E−07


TOR2A
335.23
219.53
0.65
0.002
0.016


TOX
843.57
1329.31
1.58
2.20E−09
1.30E−07


TOX2
72.98
184.99
2.53
0.00021
0.0025


TP53BP1
257.92
468.89
1.82
9.70E−06
2.00E−04


TP53INP1
255.18
414.51
1.62
3.90E−08
1.70E−06


TP73
19.69
72.54
3.68
0.0031
0.021


TPCN1
114.22
183.8
1.61
9.40E−05
0.0013


TPGS1
201.93
130.28
0.65
5.60E−06
0.00013


TPPP
79.06
13.7
0.17
1.40E−12
1.80E−10


TPPP3
112.15
19.81
0.18
8.70E−05
0.0013


TPST2
1575.74
1042.48
0.66
1.10E−07
4.50E−06


TPX2
58.26
220.32
3.78
0.00016
0.0021


TRAF1
483.76
730.03
1.51
1.50E−05
0.00029


TRAF5
812.26
1375.18
1.69
2.90E−09
1.70E−07


TRAM2
181.62
86.95
0.48
4.20E−06
1.00E−04


TREM1
763.65
112.14
0.15
1.40E−10
1.10E−08


TREM2
164.98
106.94
0.65
0.0019
0.014


TRIM13
347.46
546.62
1.57
1.50E−06
4.10E−05


TRIM44
517.41
329.06
0.64
6.80E−05
0.001


TRIM59
509.51
805.85
1.58
3.60E−07
1.20E−05


TRIM69
32.9
86.18
2.62
0.004
0.026


TROAP
18.48
54.75
2.96
0.0013
0.011


TRPA1
8.77
25.91
2.95
0.0017
0.014


TRPC1
18.06
9.62
0.53
0.0068
0.039


TRPC6
29.52
5.14
0.17
0.00028
0.0032


TRPS1
417.36
751.46
1.80
0.00043
0.0046


TSC22D3
18891.64
11302.78
0.60
5.90E−08
2.50E−06


TSHZ2
13.57
47.73
3.52
2.50E−06
6.50E−05


TSHZ3
55.04
16.54
0.30
0.00033
0.0037


TSPAN15
97.67
33.1
0.34
0.0019
0.015


TSPAN2
370.47
123.68
0.33
4.80E−09
2.70E−07


TSPAN5
387.68
618.17
1.59
0.00028
0.0032


TSPYL4
557.87
903.74
1.62
1.20E−09
7.80E−08


TTC14
652.51
1014.03
1.55
2.20E−07
8.10E−06


TTC16
276.77
168.35
0.61
0.0029
0.021


TTC24
90.99
226
2.48
6.80E−05
0.001


TTC38
796.85
342.2
0.43
5.90E−09
3.30E−07


TTK
16.7
82.08
4.91
0.0023
0.017


TTN
924.63
2137.03
2.31
4.30E−15
1.00E−12


TTYH2
99.44
22.6
0.23
2.60E−08
1.20E−06


TUBB4A
85.06
43.27
0.51
0.00079
0.0074


TUBB6
119.37
26.51
0.22
2.20E−05
0.00039


TXK
440.47
212.44
0.48
0.00041
0.0044


TXNDC3
42.04
5.41
0.13
7.30E−10
5.10E−08


TYMS
28.21
80.14
2.84
0.0023
0.017


TYROBP
1664.05
496.36
0.30
9.60E−15
2.20E−12


UBE2C
38.87
179.14
4.61
7.70E−05
0.0011


UBE2E2
70.91
25.98
0.37
0.00019
0.0023


UBXN10
59.35
13.72
0.23
0.00021
0.0025


UCP2
8236.16
4949.76
0.60
2.80E−12
3.40E−10


UHRF1
30.49
104.92
3.44
0.0017
0.013


ULK2
161.01
90.83
0.56
0.00048
0.005


UNC13B
30.62
5.88
0.19
0.0029
0.02


UNC5B
36.36
2.13
0.06
2.30E−18
1.20E−15


UNC93B1
247.43
128.37
0.52
0.00024
0.0029


UPP1
835.94
474.87
0.57
9.40E−11
8.10E−09


VAMP2
1141.43
758.44
0.66
7.60E−08
3.10E−06


VARS
438.94
288.23
0.66
6.90E−05
0.001


VASH1
121.05
62.36
0.52
0.0041
0.027


VAT1
980.21
360.71
0.37
2.10E−10
1.60E−08


VCAM1
194.14
635.43
3.27
3.40E−05
0.00058


VCAN
226.28
135.6
0.60
0.001
0.0091


VCL
616.26
220.57
0.36
2.50E−14
4.80E−12


VDR
49.82
156.49
3.14
0.00013
0.0018


VGLL3
28.23
1.98
0.07
1.50E−07
6.00E−06


VIM
10359.24
6551.63
0.63
1.60E−10
1.20E−08


VMO1
43.05
5.68
0.13
3.10E−11
3.00E−09


VPS18
359.33
232.63
0.65
0.0036
0.024


VPS54
108.35
163.46
1.51
0.00058
0.0058


VSIG4
1532.41
251.18
0.16
5.30E−12
6.20E−10


VSTM4
17.6
30.26
1.72
0.007
0.04


WDFY4
43.98
13.46
0.31
0.0061
0.036


WDR13
347.89
206.36
0.59
0.00023
0.0028


WDR45
499.73
328.49
0.66
0.00046
0.0049


WDR81
177.73
108.84
0.61
0.0089
0.047


WDR96
22.84
3.81
0.17
2.10E−05
0.00039


WIPF3
11.47
108.36
9.45
1.50E−14
3.30E−12


WNT10A
68.19
111.13
1.63
0.00091
0.0083


WWC2
43.71
15.15
0.35
0.0023
0.017


XBP1
3890.25
2024.85
0.52
8.80E−21
9.10E−18


XIST
1638.7
2573.51
1.57
6.90E−05
0.001


XPNPEP2
48.75
12.58
0.26
0.0028
0.02


YPEL1
449.2
274.75
0.61
5.50E−05
0.00087


YPEL2
151.79
253.18
1.67
1.00E−05
0.00021


ZBED2
101.64
394.29
3.88
9.10E−14
1.50E−11


ZBTB16
247.24
103.68
0.42
0.001
0.009


ZBTB3
107.93
70.94
0.66
0.0059
0.035


ZBTB7C
21.33
7.47
0.35
0.0085
0.046


ZDBF2
69.43
128.44
1.85
0.0074
0.041


ZDHHC11
20.44
8.25
0.40
0.00046
0.0049


ZFP14
103.17
161.8
1.57
0.00033
0.0037


ZMAT1
106.55
174.08
1.63
0.0024
0.018


ZMYM2
640.4
989.71
1.55
3.10E−06
7.90E−05


ZMYND10
34.15
12.6
0.37
0.0086
0.046


ZNF248
88.34
147.94
1.67
0.0089
0.048


ZNF267
516.61
792.4
1.53
5.50E−10
3.90E−08


ZNF280C
68.83
108.39
1.57
0.0035
0.024


ZNF362
310.97
190.12
0.61
0.00064
0.0062


ZNF365
117.51
21.31
0.18
5.60E−09
3.10E−07


ZNF385A
33.47
11.8
0.35
0.00061
0.006


ZNF408
134.28
66.78
0.50
0.0039
0.026


ZNF414
41.09
24.42
0.59
0.00028
0.0032


ZNF460
430.04
707.06
1.64
0.00033
0.0037


ZNF518B
219.31
344.03
1.57
7.00E−04
0.0067


ZNF783
105.33
59.99
0.57
6.40E−05
0.00098


ZNF827
168.82
258.55
1.53
0.00024
0.0028


ZNF837
27.76
15.44
0.56
0.0052
0.032


ZNF841
63.19
108.56
1.72
0.0016
0.013


ZNRF1
86.03
272.46
3.17
1.00E−05
0.00021
















TABLE 5







Pathway analysis of differentially expressed genes (DEGs) in CD8+ TILs from NSCLC.











Percent-














Number
age of
Fraction














Ingenuity
−log
of genes
DEGs
of down-
Fraction



canonical
(P-
in
in
regulated
of up-


pathways
value)
pathway
pathway
genes
regulated
DEGS in the pathway


















ATM Signaling
9.18
59
22% 
0/59
(0%)
13/59
(22%)
CDC25C, TP73, CCNB2, CBX5, MAPK12, CDK1,










CHEK1, CCNB1, JUN, SMC2, H2AFX, TP53BP1, BLM


Hereditary Breast
5.21
144
10% 
5/144
(3%)
14/144
(10%)
FANCM, POLR2J2/POLR2J3, CDC25C, PIK3C2A,


Cancer Signaling







FGFR1, BARD1, PIK3R5, FANCL, CDK1, SMARCD3,


(HBCS)







CHEK1, CCNB1, RRAS2, MSH2, RFC4, H2AFX, MRAS,










PIK3R2, BLM


Role of Osteoblasts,
4.96
238
8%
16/238
(7%)
18/238
(8%)
CAMK4, AXIN1, LRP6, PIK3R5, JUN, IGF1, DKK3,


Osteoclasts and







RUNX2, PIK3R2, TRAF5, ITGB1, IFNG, MAP3K14, SPP1,


Chondrocytes in







PIK3C2A, IL10, BMP8A, FGFR1, BMP8B, ITGA2, ITGA5,


Rheumatoid







GSN, MAPK12, CSF1R, IL17A, IL18, FZD4, WNT10A,


Arthritis







CSF1, FZD6, IL1B, LEF1, LRP1, TCF7L2


Role of BRCA1 in
4.93
78
13% 
0/78
(0%)
10/78
(13%)
FANCM, IFNG, MSH2, RFC4, BARD1, STAT1,


DNA Damage







BLM, SMARCD3, FANCL, CHEK1


Response


Cell Cycle: G2/M
4.84
49
16% 
0/49
(0%)
8/49
(16%)
CDC25C, CKS2, CKS1B, TOP2A, CCNB2, CDK1,


DNA Damage







CHEK1, CCNB1


Checkpoint


Regulation


Mitotic Roles of
4.71
66
14% 
0/66
(0%)
9/66
(14%)
KIF23, CDC25C, CDC20, PTTG1, CCNB2, HSP90AA1,


Polo-Like Kinase







CDK1, KIF11, CCNB1


Altered T Cell and
4.47
88
11% 
12/88
(14%)
10/88
(11%)
IFNG, MAP3K14, SPP1, IL10, TLR8, CD79A,


B Cell Signaling in







HLA-DQB1, IL17A, TLR4, IL18, TLR10, HLA-


Rheumatoid







DRB1, CXCL13, CSF1, TNFSF13, HLA-DRA,


Arthritis







TLR6, TLR7, FCER1G, IL1B, HLA-DRB5, FASLG


4-1BB Signaling in
4.19
31
19% 
0/31
(0%)
6/31
(19%)
MAP3K14, TNFRSF9, JUN, TNFSF9, MAPK12, TRAF1


T Lymphocytes


3-phosphoinositide
3.65
153
8%
4/153
(3%)
12/153
(8%)
CDC25C, PTPN7, PTPN13, MTMR14, STYXL1,


Degradation







PTPN12, PPP1R14B, PTPRF, TNS3, INPP5F,










SYNJ1, PDCD1, PTPRO, PTPN22, SIRPA, DUSP16


D-myo-inositol
3.53
135
8%
4/135
(3%)
11/135
(8%)
CDC25C, PTPN7, ATP, PTPN13, STYXL1, PTPN12,


(1,4,5,6)-







PPP1R14B, PTPRF, TNS3, SYNJ1, PTPRO, PDCD1,


Tetrakisphosphate







PTPN22, SIRPA, DUSP16


Biosynthesis


D-myo-inositol
3.53
135
8%
4/135
(3%)
11/135
(8%)
CDC25C, PTPN7, ATP, PTPN13, STYXL1, PTPN12,


(3,4,5,6)-







PPP1R14B, PTPRF, TNS3, SYNJ1, PTPRO,


tetrakisphosphate







PDCD1, PTPN22, SIRPA, DUSP16


Biosynthesis


Cell Cycle Control
3.48
27
19% 
0/27
(0%)
5/27
(19%)
CDC45, CDT1, CDC6, ORC6, MCM4


of Chromosomal


Replication


Protein Kinase A
3.35
402
5%
16/402
(4%)
21/402
(5%)
PDE6G, CAMK4, ATP, TNNI2, PTPN13, PDE4A,


Signaling







LIPE, MYL6B, PPP1R14B, PTPN12, PTPRF, CDKN3,










PLCD1, PDE7B, PTPRO, FLNA, PRKAR1B, GNG4,










AKAP5, PXN, CDC25C, PTPN7, PTPRK, RYR2, PTCH1,










PTPN18, TTN, PDE8A, HIST1H1B, PRKCD, KDELR3,










DUSP4, LEF1, PTPN22, TCF7L2, SIRPA, DUSP16


3-phosphoinositide
3.18
197
7%
8/197
(4%)
13/197
(7%)
CDC25C, PTPN7, ATP, PIK3C2A, PTPN13, FGFR1,


Biosynthesis







PIK3R5, ERBB3, STYXL1, PTPN12, PPP1R14B, PTPRF,










TNS3, SYNJ1, PDCD1, PIP5K1C, PTPRO, PIK3R2,










PTPN22, SIRPA, DUSP16


D-myo-inositol-5-
3.05
154
7%
5/154
(3%)
11/154
(7%)
CDC25C, PTPN7, ATP, PTPN13, STYXL1, PTPN12,


phosphate







PPP1R14B, PTPRF, PLCD1, TNS3, SYNJ1, PDCD1,


Metabolism







PTPRO, PTPN22, SIRPA, DUSP16


p53 Signaling
2.97
111
8%
5/111
(5%)
9/111
(8%)
PMAIP1, TP53INP1, PIK3C2A, TP73, PLAGL1, FGFR1,










PIK3R5, HIF1A, CHEK1, PCNA, JUN, BBC3, THBS1,










PIK3R2


T Helper Cell
2.88
72
10% 
8/72
(11%)
7/72
(10%)
IL6ST, IFNG, IL10, IFNGR2, HLA-DQB1, TBX21,


Differentiation







IL17A, IL18, HLA-DRB1, HLA-DRA, ICOS, FCER1G,










CXCR5, STAT1, HLA-DRB5


Role of CHK
2.8
55
11% 
0/55
(0%)
6/55
(11%)
PCNA, CDC25C, RFC4, CLSPN, CDK1, CHEK1


Proteins in Cell


Cycle Checkpoint


Control


April Mediated
2.77
38
13% 
1/38
(3%)
5/38
(13%)
MAP3K14, JUN, TNFSF13, TRAF5, MAPK12,


Signaling







TRAF1


Superpathway of
2.74
247
6%
9/247
(4%)
14/247
(6%)
CDC25C, PTPN7, ATP, PIK3C2A, PTPN13, FGFR1,


Inositol Phosphate







PIK3R5, ERBB3, STYXL1, PTPN12, PPP1R14B, PTPRF,


Compounds







PLCD1, TNS3, SYNJ1, INPP5F, PDCD1, PIP5K1C,










PTPRO, PIK3R2, PTPN22, SIRPA, DUSP16


B Cell Activating
2.67
40
13% 
0/40
(0%)
5/40
(13%)
MAP3K14, JUN, TRAF5, MAPK12, TRAF1


Factor Signaling


Colorectal Cancer
2.66
252
6%
20/252
(8%)
14/252
(6%)
IL6ST, ATP, AXIN1, LRP6, PIK3R5, TLR8,


Metastasis







TLR10, ARRB1, JUN, TLR7, MRAS, RHOU, PRKAR1B,


Signaling







PIK3R2, MMP12, STAT1, MMP19, GNG4, IFNG,










PIK3C2A, FGFR1, MAPK12, TLR4, RRAS2, FZD4,










WNT10A, MSH2, RND3, TLR6, FZD6, LEF1, PTGER2,










LRP1, TCF7L2


Role of JAK family
2.62
25
16% 
0/25
(0%)
4/25
(16%)
IL6ST, OSMR, STAT1, MAPK12


kinases in IL-6-type


Cytokine Signaling


Role of
2.56
315
5%
26/315
(8%)
16/315
(5%)
IL6ST, CAMK4, FN1, AXIN1, LRP6, TLR8, PIK3R5,


Macrophages,







FCGR1A, PLCD1, TLR10, JUN, DKK3, TLR7, CEBPA,


Fibroblasts and







MRAS, TRAF5, PIK3R2, FCGR3A/FCGR3B, TRAF1,


Endothelial Cells in







MAP3K14, VCAM1, C5AR1, PIK3C2A, IL10, FGFR1,


Rheumatoid







CEBPB, IRAK3, IL17A, TLR4, IL18, RRAS2, FZD4,


Arthritis







WNT10A, CSF1, PRKCD, TLR6, FZD6, IL1B, LEF1,










PDGFD, LRP1, TCF7L2


dTMP De Novo
2.44
14
21% 
0/14
(0%)
3/14
(21%)
TYMS, NADPH, DHFR


Biosynthesis


NF-κB Activation
2.41
87
8%
12/87
(14%)
7/87
(8%)
ITGB1, MAP3K14, CCR5, PIK3C2A, FGFR1,


by Viruses







CD4, ITGA2, PIK3R5, ITGA6, ITGA5, ITGB2,










RRAS2, PRKCD, MRAS, ITGA1, PIK3R2, CXCR5,










EIF2AK2, ITGB5


Hepatic Fibrosis/
2.39
187
6%
13/187
(7%)
11/187
(6%)
IFNG, IGFBP4, CCR5, VCAM1, FN1, FLT1, COL6A2,


Hepatic Stellate







IL10, FGFR1, KLF6, FLT4, IFNGR2, MYL6B, TLR4,


Cell Activation







CXCL3, COL6A3, IGF1, CSF1, TIMP1, IL1B, STAT1,










PDGFD, FASLG, TIMP2


iNOS Signaling
2.36
47
11% 
3/47
(6%)
5/47
(11%)
TLR4, IFNG, CAMK4, JUN, IFNGR2, IRAK3, STAT1,










MAPK12


Agrin Interactions
2.27
70
9%
7/70
(10%)
6/70
(9%)
ITGB1, ITGB2, PXN, JUN, RRAS2, ITGA2, MRAS,


at Neuromuscular







ITGA6, ITGA5, ITGA1, ERBB3, ACTG2, MAPK12


Junction


CD27 Signaling in
2.17
52
10% 
0/52
(0%)
5/52
(10%)
MAP3K14, JUN, TRAF5, CD27, MAPK12


Lymphocytes


CCR5 Signaling in
2.15
74
8%
4/74
(5%)
6/74
(8%)
GNG4, CCR5, CAMK4, JUN, PRKCD, CD4, MRAS,


Macrophages







FCER1G, MAPK12, FASLG


Toll-like Receptor
2.15
74
8%
7/74
(9%)
6/74
(8%)
TLR4, MAP3K14, TLR10, IL18, JUN, TLR6, TLR8,


Signaling







TLR7, IL1B, IRAK3, EIF2AK2, MAPK12, TRAF1


Protein
2.14
259
5%
4/259
(2%)
13/259
(5%)
IFNG, ATP, CDC20, DNAJB4, HSPH1, HSPA1A/HSPA1B,


Ubiquitination







HSPA6, HSPD1, DNAJA1, DNAJC28, DNAJC5, HSPE1,


Pathway







UBE2E2, HSP90AA1, SMURF2, DNAJB1, UBE2C


Mismatch Repair in
2.12
18
17% 
1/18
(6%)
3/18
(17%)
PCNA, ATP, MSH2, RFC4


Eukaryotes


Aldosterone
2.11
176
6%
8/176
(5%)
10/176
(6%)
PIK3C2A, DNAJB4, HSPH1, FGFR1, HSPA1A/HSPA1B,


Signaling in







HSPA6, PIK3R5, HSPD1, DNAJA1, PLCD1, DNAJC28,


Epithelial Cells







DNAJC5, PIP5K1C, PRKCD, HSPE1, HSP90AA1, PIK3R2,










DNAJB1


Unfolded protein
2.1
54
9%
5/54
(9%)
5/54
(9%)
PPARG, DDIT3, SREBF2, HSPH1, HSPA1A/HSPA1B,


response







HSPA6, CEBPA, XBP1, CD82, CEBPB


IL-17A Signaling in
2.09
35
11% 
2/35
(6%)
4/35
(11%)
JUN, CXCL5, CEBPB, MAPK12, NFKBIZ, IL17A


Fibroblasts


BMP signaling
2.07
77
8%
3/77
(4%)
6/77
(8%)
CAMK4, JUN, RRAS2, RUNX2, BMP8A, BMP8B, MRAS,


pathway







PRKAR1B, MAPK12


GADD45 Signaling
2.05
19
16% 
1/19
(5%)
3/19
(16%)
PCNA, CCND3, CDK1, CCNB1


DNA damage-
2.05
19
16% 
0/19
(0%)
3/19
(16%)
CCNB2, CDK1, CCNB1


induced 14-3-3σ


Signaling


CD40 Signaling
2.04
78
8%
3/78
(4%)
6/78
(8%)
MAP3K14, JUN, PIK3C2A, FGFR1, PIK3R5, TRAF5,










PIK3R2, MAPK12, TRAF1


B Cell Receptor
1.89
190
5%
11/190
(6%)
10/190
(5%)
RAP2B, RAP2A, MAP3K14, CAMK4, PIK3C2A, FCGR2A,


Signaling







EGR1, FGFR1, PIK3R5, CD79A, MAPK12, BTK, JUN,










RRAS2, SYNJ1, INPP5F, SYK, PAG1, MRAS, LYN,










PIK3R2


Role of PKR in
1.88
40
10% 
1/40
(3%)
4/40
(10%)
IFNG, TRAF5, EIF2AK2, STAT1, FCGR1A


Interferon Induction


and Antiviral


Response


PCP pathway
1.83
63
8%
2/63
(3%)
5/63
(8%)
JUN, SDC1, FZD4, WNT10A, EFNB1, FZD6, MAPK12


TGF-β Signaling
1.82
87
7%
4/87
(5%)
6/87
(7%)
JUN, RRAS2, RUNX2, MRAS, SMURF2, ACVR2B, VDR,










MAPK12, INHBA, PMEPA1


Differential
1.82
23
13% 
2/23
(9%)
3/23
(13%)
IFNG, IL10, IL1B, DEFB1, IL17A


Regulation of


Cytokine


Production in


Intestinal Epithelial


Cells by IL-17A


and IL-17F


Androgen Signaling
1.79
114
6%
2/114
(2%)
7/114
(6%)
POLR2J2/POLR2J3, GNG4, CAMK4, JUN, PRKCD,










MRAS, PRKAR1B, HSP90AA1, DNAJB1


Glucocorticoid
1.73
293
4%
16/293
(5%)
13/293
(4%)
HSPA1A/HSPA1B, PIK3R5, HSPA6, SLPI, CD163,


Receptor Signaling







FCGR1A, TSC22D3, CXCL3, JUN, ANXA1, CEBPA,










MRAS, PIK3R2, STAT1, ADRB2, POLR2J2/POLR2J3,










MAP3K14, IFNG, VCAM1, PIK3C2A, IL10, FGFR1,










CEBPB, MAPK12, SMARCD3, SCGB1A1, RRAS2,










HSP90AA1, IL1B


IL-17A Signaling in
1.72
25
12% 
0/25
(0%)
3/25
(12%)
JUN, MAPK12, IL17A


Gastric Cells


Lymphotoxin β
1.67
69
7%
3/69
(4%)
5/69
(7%)
MAP3K14, VCAM1, PIK3C2A, FGFR1, PIK3R5, TRAF5,


Receptor Signaling







PIK3R2, TRAF1
















TABLE 6







Analysis of TCR beta chain sequences from RNA-Seq


data of CD8+ N-TIL versus NSCLC CD8+ TIL.


Table lists the number of clonotypes based on their


frequencies in CD8+ TILs and N-TILs from each patient.









Sample type
















CD8+
CD8+
CD8+
CD8+
CD8+
CD8+
CD8+
CD8+



N-TILs
TILs
N-TILs
TILs
N-TILs
TILs
N-TILs
TILs









Frequency of clonotypes















Patient ID
>1
>1
>2
>2
>3
>3
>4
>4


















NSCLC_30
16
7
8
2
7
1
4
1


NSCLC_35
10
11
2
7
0
3
0
2


NSCLC_33
26
31
15
16
12
11
9
8


NSCLC_26
8
6
3
5
3
3
3
2


NSCLC_27
21
18
12
14
10
10
8
8


NSCLC_12
17
22
13
8
8
5
6
4


NSCLC_17
6
27
3
11
1
6
0
5


NSCLC_11
9
10
7
9
4
7
2
5


NSCLC_22
21
22
15
14
10
10
9
8


NSCLC_25
9
21
6
12
4
9
4
5


NSCLC_05
9
12
3
8
3
7
2
7


NSCLC_08
24
23
8
9
7
4
7
3


NSCLC_32
20
24
11
11
8
7
6
6


NSCLC_36
16
11
6
7
4
2
3
0


NSCLC_23
28
16
16
10
12
5
7
1


NSCLC_34
8
6
5
3
3
1
3
1


NSCLC_29
6
9
3
4
3
2
2
1


NSCLC_28
15
16
6
8
5
6
3
5


NSCLC_03
14
15
7
8
4
3
3
2


NSCLC_14
10
28
8
15
5
12
4
9


NSCLC_01
10
25
4
18
4
10
2
8


NSCLC_16
13
3
4
0
2
0
1
0


NSCLC_10
10
10
6
8
2
5
0
4


NSCLC_02
15
23
9
13
5
8
4
5


NSCLC_19
17
13
8
9
6
6
6
5


NSCLC_39
11
NA
8
NA
7
NA
6
NA


NSCLC_40
9
NA
3
NA
2
NA
2
NA


NSCLC_37
15
NA
11
NA
5
NA
2
NA


NSCLC_38
8
NA
4
NA
2
NA
2
NA


NSCLC_41
12
NA
8
NA
4
NA
4
NA


NSCLC_42
8
NA
3
NA
2
NA
1
NA


NSCLC_43
12
NA
6
NA
2
NA
1
NA


NSCLC_07
NA
20
NA
13
NA
11
NA
10


NSCLC_31
NA
15
NA
9
NA
5
NA
4


NSCLC_15
NA
32
NA
19
NA
14
NA
11


NSCLC_20
NA
8
NA
6
NA
4
NA
3


NSCLC_06
NA
20
NA
13
NA
11
NA
8


NSCLC_04
NA
26
NA
15
NA
12
NA
9


NSCLC_21
NA
20
NA
12
NA
9
NA
9


NSCLC_18
NA
22
NA
7
NA
3
NA
3


NSCLC_24
NA
8
NA
5
NA
5
NA
4


NSCLC_13
NA
14
NA
10
NA
7
NA
6


NSCLC_09
NA
19
NA
13
NA
12
NA
10





Data not available is indicated by ‘NA’













TABLE 7







List of differentially expressed genes in NSCLC CD8+


TILs from TIL high versus TIL low tumors.










Normalized
DE-Seq statistics










Gene
mean counts
Fold













Symbol
TIL low
TIL high
Change
P value
P adj















ACTN4
2519.83
3813.73
1.51
0.00073
0.043


ADD3
1672.21
1047.43
0.63
1.00E−05
4.20E−03


ADRB2
1461.63
777.29
0.53
0.00036
0.029


AHCTF1
714.98
431.4
0.60
0.00017
0.019


AKAP5
116.13
513.11
4.42
0.000000055
0.000062


ANP32E
1455.41
1890.54
1.30
0.00082
0.047


ANTXR2
772.57
303.87
0.39
0.000024
0.0065


ARL6IP6
460.97
651.77
1.41
0.00088
0.048


ASB2
292.48
670.05
2.29
0.00077
0.045


ATP1B1
414.23
149.85
0.36
0.00025
0.024


ATP5G2
2054.29
2736.15
1.33
8.20E−04
4.70E−02


BCAS4
176.16
405.54
2.30
0.000028
0.0068


BST2
684.27
1148.36
1.68
2.90E−04
2.60E−02


C6orf108
194.74
442.24
2.27
0.000021
0.0063


CA5B
408.77
226.19
0.55
7.10E−04
4.20E−02


CAST
1340.86
995.56
0.74
1.70E−04
0.019


CCL3
1284.07
2684.22
2.09
8.40E−04
4.70E−02


CCL5
21219.07
30156.58
1.42
9.20E−04
0.048


CD200R1
405.14
782.31
1.93
0.00038
0.031


CD38
107.41
585.58
5.45
0.000000021
0.00004


CD8A
16973.02
22695.83
1.34
9.40E−05
0.013


COTL1
5140.46
9857.62
1.92
4.00E−05
8.20E−03


CX3CR1
1495.32
262.14
0.18
0.000000088
0.000082


CXCR6
3780.01
8082.91
2.14
3.10E−09
8.60E−06


DSTN
1160.97
739.82
0.64
0.000000053
0.000062


DUSP6
938.68
411.48
0.44
0.000038
0.0081


EPSTI1
176.68
482.2
2.73
9.10E−06
4.20E−03


FAM113B
630.98
978.4
1.55
0.00023
0.023


FCGR3A
1160.83
304.78
0.26
0.0005
0.033


FGFBP2
683.23
201.09
0.29
0.00045
0.032


FUT8
433.47
828.78
1.91
5.90E−04
0.036


GBP1
1075.11
2449.9
2.28
6.00E−05
1.10E−02


GBP2
1716.46
3149.91
1.84
9.70E−06
4.20E−03


GBP4
1111.12
2230.95
2.01
0.000057
0.011


GBP5
2587.64
5517.27
2.13
3.00E−06
1.90E−03


GMPS
498.06
787.05
1.58
0.00057
0.035


GNL3L
527.99
362.95
0.69
0.000021
0.0063


GPI
2960.44
4398.01
1.49
4.80E−04
0.032


GZMA
7225.21
13673.22
1.89
2.30E−05
6.50E−03


HAVCR2
515.37
2154.62
4.18
4.80E−06
2.70E−03


HNRNPK
5826.88
7527.09
1.29
0.00023
0.023


HNRPLL
930.78
1413.62
1.52
0.00057
0.035


IGFLR1
451.21
927.91
2.06
0.00028
0.026


IL21R
433.09
695.55
1.61
2.50E−04
2.40E−02


ITGAE
2740.41
5777.05
2.11
9.80E−05
1.30E−02


KLF2
1098.98
351.43
0.32
0.00092
0.048


LDHB
3256.94
4900.2
1.50
0.0000011
0.00077


LPAR6
601.89
265.48
0.44
0.00048
0.032


MCM4
247.48
583.68
2.36
0.00054
0.034


MLLT10
447.64
244.31
0.55
7.80E−05
1.20E−02


MRPL37
417.14
613.5
1.47
0.00033
0.028


NAB1
411.07
921.51
2.24
0.000081
0.012


NDUFS8
556.25
952.93
1.71
2.90E−05
0.0068


NECAP1
486.82
336.44
0.69
0.000096
0.013


NOTCH1
365.49
672.33
1.84
8.50E−04
4.70E−02


NPC2
855.28
248.27
0.29
0.00025
0.024


OAS3
526.48
929.18
1.76
4.10E−04
3.20E−02


PAG1
1962.17
3135.86
1.60
6.90E−05
1.10E−02


PARP9
1032.74
1764.92
1.71
0.00044
0.032


PCMTD2
486.25
273.91
0.56
0.00051
0.033


PCNT
597.4
399.92
0.67
9.20E−04
4.80E−02


PDCD1
902.98
1791.4
1.98
0.00028
0.026


PLAC8
959.85
316.57
0.33
5.40E−04
3.40E−02


POLR1D
648.33
882.86
1.36
5.10E−04
3.30E−02


PPM1M
729.91
1108.49
1.52
1.60E−04
1.90E−02


PPP2R4
372.32
651.97
1.75
0.00019
0.02


PRDM2
1117.78
754.48
0.67
8.30E−04
4.70E−02


PRKAG1
407.63
672.7
1.65
4.40E−04
0.032


PRKAR1A
2441.24
3577.97
1.47
0.000016
0.0056


PSMB8
2196.61
3613.86
1.65
3.40E−05
7.50E−03


PSMB9
2542.74
4211.37
1.66
0.00019
0.02


PSMD8
925.56
1493.93
1.61
0.0002
0.021


PSME2
1697.08
3083.82
1.82
3.00E−04
2.60E−02


PTTG1
375.15
848.43
2.26
0.00011
0.015


PURA
373.61
222.01
0.59
0.00011
0.014


R3HDM1
404.06
680.97
1.69
0.0006
0.036


RAB3GAP1
575.58
1058.87
1.84
0.00043
0.032


RABAC1
937.27
1296.02
1.38
3.10E−04
2.70E−02


RARRES3
2370.82
4399.49
1.86
6.70E−05
1.10E−02


RBBP4
1347
1852.53
1.38
0.00091
0.048


S100A10
3109.64
1927.52
0.62
3.90E−04
3.10E−02


S1PR1
1184.39
390.45
0.33
0.000019
0.0063


SEC11A
678.62
1069.04
1.58
9.40E−04
4.80E−02


SF3B3
1227.63
1738.82
1.42
0.00067
0.04


SIRPG
1052.21
2594.02
2.47
2.50E−09
8.60E−06


SLC27A2
209.02
621.75
2.97
4.20E−04
3.20E−02


SNX17
1090.28
1562.14
1.43
9.00E−04
4.80E−02


SRA1
229.62
398.37
1.73
5.00E−05
0.01


STAT1
3308.41
8166.42
2.47
2.80E−07
0.00022


STAT2
518.14
772.49
1.49
9.40E−04
0.048


STK38
1077.55
607.04
0.56
0.000067
0.011


STMN1
715.35
2001.3
2.80
0.000082
0.012


SYT11
877.99
1467.19
1.67
0.000089
0.013


TAZ
383.69
223
0.58
0.00047
0.032


TGFBR3
1078.72
546.16
0.51
4.60E−04
3.20E−02


TIAM1
248.36
545.18
2.20
5.70E−05
1.10E−02


TIMP1
508.71
187.64
0.37
1.20E−05
4.60E−03


TMEM140
412.13
670.89
1.63
9.80E−05
1.30E−02


TNF
2071
806.83
0.39
0.00017
0.019


TNFRSF9
614.89
1886.64
3.07
0.000026
0.0066


TNFSF4
202.36
627.96
3.10
3.60E−04
2.90E−02


TNRC6C
489.35
238.97
0.49
1.60E−04
0.019


TOP2A
243.52
763.8
3.14
0.00043
0.032


TP53BP2
363.83
241.13
0.66
0.00016
0.019


TRAPPC10
948.07
653.94
0.69
0.00048
0.032


TUG1
742.03
517.6
0.70
3.10E−04
2.70E−02


UBE2L6
1777.58
3418.7
1.92
0.00001
0.0042


UBE2Q2
466.85
276.57
0.59
0.00014
0.017


ZFYVE26
379.61
199.16
0.52
0.00031
0.027
















TABLE 8







List of differentially expressed genes in NSCLC CD8+


TILs from CD103 high versus CD103 low tumors.









Gene
Normalized mean counts
DE-Seq statistics












Symbol
CD103 low
CD103 high
Fold change
P value
P adj















A2M
1017.35
378.05
0.37
0.00046
0.013


ABCB1
546.19
932.05
1.71
3.20E−04
9.80E−03


ABI3
1006.55
1783.19
1.77
0.00023
0.0079


ABL2
150.24
50.27
0.33
0.00036
0.011


ACOT7
187.02
539.27
2.88
0.0000097
0.00087


ACP5
872.59
1998.81
2.29
0.000045
0.0025


ACSL6
304.68
124.78
0.41
0.0022
0.038


ACTN4
2367.3
4148.19
1.75
0.0011
0.024


ACTR3
4711.26
6568.16
1.39
0.0006
0.016


ADAMTSL4
92.02
25.54
0.28
0.002
0.036


ADD3
1433.55
1181.2
0.82
1.70E−03
3.30E−02


ADRB2
1340.27
712.13
0.53
0.000071
0.0034


AFAP1L2
129.16
424.05
3.28
2.90E−03
4.50E−02


AGXT2L2
445.92
665.22
1.49
0.0011
0.024


AHNAK
11994.26
7483.26
0.62
9.50E−06
8.60E−04


AIM1
1727.22
942.42
0.55
1.20E−03
0.025


AKAP5
145.76
618.83
4.25
2.90E−06
3.30E−04


AKAP9
2156.87
1407.34
0.65
1.60E−03
0.031


ALDOC
300.81
698.27
2.32
0.00015
0.006


ALOX5AP
4048.19
6542.77
1.62
0.000015
0.0012


ANAPC11
470.21
640.32
1.36
1.90E−04
0.0069


ANK3
364.63
180.84
0.50
2.20E−03
3.90E−02


ANKRD12
2859.79
2152.45
0.75
0.0015
0.029


ANKRD20A9P
232.88
115.92
0.50
2.00E−03
3.60E−02


ANKRD44
4481.24
3278.35
0.73
0.00025
0.0083


ANKS1B
9.17
75.29
8.21
0.0015
0.03


ANKS6
86.7
12.25
0.14
3.00E−03
4.60E−02


ANP32B
513.13
779
1.52
0.0002
0.0072


ANP32E
1435.03
2009.06
1.40
9.3E−09
0.0000041


ANTXR2
604.98
317.17
0.52
0.000036
0.0021


ANXA5
2037.69
3630
1.78
7.10E−04
0.018


AP4S1
135.21
55.48
0.41
3.70E−05
2.10E−03


ARHGAP26
919.69
495.07
0.54
1.70E−03
3.20E−02


ARHGAP27
572.59
372.87
0.65
0.0025
0.041


ARL3
148.9
322.73
2.17
3.60E−07
6.90E−05


ARL4C
3049.03
1913.58
0.63
0.00092
0.021


ARL5A
1109.47
893.07
0.80
0.0022
0.038


ARL6IP1
2832.03
4268.71
1.51
5.10E−04
0.014


ARL6IP6
470.8
635.1
1.35
1.30E−03
2.70E−02


ARPC2
8776.4
12575.65
1.43
6.10E−05
3.00E−03


ARPC3
2749.26
3605.55
1.31
0.000059
0.003


ASB2
298.95
763.66
2.55
0.0000058
0.00059


ASF1B
50.63
307.62
6.08
 3.9E−10
0.00000031


ASPM
109.39
564.19
5.16
2.50E−05
1.70E−03


ATG14
201.58
124.82
0.62
2.10E−03
3.70E−02


ATM
1928.43
1083.2
0.56
0.000035
0.0021


ATP10D
371.86
571.3
1.54
0.00091
0.021


ATP2B1
950.31
593.36
0.62
0.0017
0.032


ATP5B
5179.06
7348.78
1.42
0.00096
0.022


ATP5C1
1231.67
1869.3
1.52
5.60E−05
2.90E−03


ATP5E
318.51
330.37
1.04
0.00094
0.022


ATP5EP2
41.3
51.87
1.26
0.00062
0.016


ATP5G3
1706.19
2281.79
1.34
5.90E−04
0.015


ATP5J2
309.84
381.83
1.23
0.0012
0.025


ATP5L
2481.62
2782.12
1.12
1.60E−03
3.10E−02


ATP8B4
82.69
309.33
3.74
0.00017
0.0065


ATXN7
1423.54
887.92
0.62
9.60E−04
2.20E−02


ATXN7L1
375.3
200.54
0.53
3.20E−04
9.90E−03


AUH
131.99
286.99
2.17
0.00000061
0.000099


AURKA
58.84
155.92
2.65
0.00000048
0.000085


AURKB
10.18
186.53
18.32
1.90E−05
1.40E−03


BARD1
160.96
356.77
2.22
0.00019
0.0068


BATF
479.45
1033.1
2.15
8.70E−08
2.30E−05


BAZ2B
940.01
525.04
0.56
3.60E−05
2.10E−03


BBX
1583.19
1370.97
0.87
3.00E−03
4.60E−02


BCCIP
457.64
600.6
1.31
0.0026
0.043


BCL11B
1244.44
798.79
0.64
1.20E−03
2.50E−02


BEX2
108.9
25.44
0.23
5.30E−04
0.014


BIRC5
25.85
247.76
9.58
0.000035
0.0021


BLOC1S1
168.34
266.7
1.58
6.90E−05
3.30E−03


BRIP1
47.47
137.24
2.89
0.0031
0.047


BST2
826.52
1230.81
1.49
0.00014
0.0058


BUB1
107.58
468.39
4.35
8.50E−05
3.90E−03


C10orf54
1717.68
1352.74
0.79
0.000016
0.0012


C14orf166
715.22
1046.02
1.46
0.00002
0.0014


C15orf17
669.03
303.32
0.45
0.00024
0.0081


C16orf54
1888.59
1219.16
0.65
0.00041
0.012


C1orf21
358.82
118.57
0.33
1.00E−05
8.90E−04


C20orf112
597.98
261.09
0.44
2.50E−05
1.70E−03


C4orf34
224.92
80.06
0.36
0.000025
0.0017


C4orf48
119.44
152.55
1.28
1.00E−04
4.60E−03


C6orf108
245.44
473.36
1.93
0.00000016
0.000037


C9orf16
379.58
577.16
1.52
2.30E−03
3.90E−02


CA5B
383.93
207.63
0.54
0.00002
0.0014


CACYBP
933.15
1610.97
1.73
2.70E−03
4.30E−02


CALCOCO2
1506.95
2160.6
1.43
6.10E−05
3.00E−03


CALM3
838.76
1412.41
1.68
2.10E−06
2.50E−04


CAMK1D
205.81
134.02
0.65
6.70E−04
0.017


CAPZA1
4668.15
5824.83
1.25
2.90E−03
0.045


CAPZB
2419.92
3951.14
1.63
1.70E−03
0.032


CASC5
58.04
276.8
4.77
0.00023
0.008


CAST
1311.85
1053.78
0.80
0.001
0.023


CCDC109B
900.87
541.67
0.60
0.0002
0.0072


CCDC12
516.79
629.66
1.22
0.00037
0.011


CCL3
1395.15
2885.68
2.07
3.40E−05
2.10E−03


CCL5
21385.86
30378.31
1.42
3.30E−04
1.00E−02


CCNA2
58.08
370.2
6.37
4.60E−07
8.30E−05


CCNB2
18.58
260.7
14.03
8.30E−07
1.30E−04


CCND3
3636.55
2760.86
0.76
0.003
0.046


CCNE2
39.44
176.73
4.48
0.00046
0.013


CD2
7410.34
9346.67
1.26
1.70E−03
3.20E−02


CD200R1
473.16
861.38
1.82
1.80E−05
0.0013


CD300A
373.4
154.91
0.41
0.00047
0.013


CD38
116.46
705.81
6.06
 6.4E−12
 9.5E−09


CD3D
8389.86
11155.32
1.33
0.00000053
0.000091


CD3G
2804.98
3963.96
1.41
3.80E−05
2.20E−03


CD40LG
230.49
42.94
0.19
0.00017
0.0065


CD63
2297.87
3275.04
1.43
0.0022
0.038


CD7
573.54
1078.82
1.88
0.0011
0.024


CD82
1093.16
2136.68
1.95
0.0000071
0.00069


CD96
6296.83
8704.35
1.38
0.000048
0.0026


CDC123
542.1
803.54
1.48
2.60E−04
8.50E−03


CDC20
28.79
255.55
8.88
0.0007
0.017


CDC45
11.11
144.32
12.99
0.0012
0.025


CDC6
46.27
174.91
3.78
1.10E−03
2.50E−02


CDCA2
21.44
162
7.56
0.00049
0.014


CDCA7
181.8
571.82
3.15
0.00000046
0.000083


CDCA8
22.6
168.17
7.44
0.0006
0.016


CDK1
121.79
407.66
3.35
0.00087
0.021


CDKN3
56.86
232.47
4.09
2.80E−04
0.009


CENPF
164.5
573.54
3.49
2.50E−09
0.0000015


CENPM
93.69
267.2
2.85
0.00000055
0.000092


CEP350
1927.15
1331.77
0.69
0.002
0.036


CEP55
22.44
121.06
5.39
0.00049
0.014


CERK
817.88
391.05
0.48
0.00083
0.02


CERKL
101.36
40.25
0.40
5.20E−05
2.70E−03


CFL1
10823.85
15883.78
1.47
2.10E−03
3.60E−02


CHEK1
79.04
180.89
2.29
0.0009
0.021


CHMP4A
510.59
738.53
1.45
0.0018
0.034


CHORDC1
327.33
482.24
1.47
2.00E−03
3.60E−02


CIRBP
1564.81
1006.92
0.64
0.0014
0.028


CISD1
145.5
249.37
1.71
0.00071
0.018


CKAP2
463.97
778.02
1.68
2.80E−03
4.50E−02


CKAP2L
36.1
198.24
5.49
0.0018
0.034


CKLF
291.13
366.7
1.26
0.00025
0.0082


CKS1B
189.82
465.66
2.45
1.00E−04
4.60E−03


CKS2
330.79
803
2.43
2.50E−05
1.60E−03


CLEC2B
1539.43
2004.43
1.30
4.40E−06
4.80E−04


CLIC1
4981.72
6647.21
1.33
0.00081
0.019


CLNK
78.26
269.75
3.45
2.00E−04
7.20E−03


CLSPN
64.58
200.76
3.11
0.0000064
0.00064


CMC2
340
560.12
1.65
0.0000013
0.00017


CNNM3
389.86
179.98
0.46
0.00016
0.0061


COL6A2
107.42
21.43
0.20
0.0019
0.034


COMMD7
651.6
1012.88
1.55
1.90E−04
6.80E−03


COPB1
1462.34
2213.04
1.51
1.50E−03
2.90E−02


COPE
1441.03
1927.3
1.34
1.70E−03
3.30E−02


COPS6
959.42
1130.08
1.18
1.90E−03
3.50E−02


COPZ1
1057.45
1459.53
1.38
1.10E−03
2.30E−02


COTL1
5161.28
10851.46
2.10
1.00E−06
1.50E−04


COX5A
1147.18
1663.06
1.45
0.0021
0.037


COX6A1
1577.67
1722.18
1.09
0.00074
0.018


COX7B
1030.5
1181.44
1.15
0.00079
0.019


COX8A
1222.22
1528.76
1.25
2.50E−03
4.10E−02


CROCC
124.18
42.06
0.34
0.0021
0.037


CRTAP
906.89
578.84
0.64
1.30E−03
0.028


CSF1
674.49
1812.46
2.69
3.50E−05
2.10E−03


CUEDC2
298.95
493.7
1.65
6.30E−04
0.016


CUX1
342.34
159.04
0.46
0.002
0.036


CX3CR1
1321.47
282.23
0.21
5.20E−04
0.014


CXCL13
950.75
6139.74
6.46
0.00038
0.011


CXCR6
4485.82
7662.29
1.71
1.10E−04
4.90E−03


CYTH1
1256.96
880.39
0.70
0.0011
0.023


DAPK2
293.53
663.18
2.26
1.30E−05
0.001


DBN1
128.26
328.38
2.56
0.00058
0.015


DDB2
309.8
475.04
1.53
2.30E−03
0.039


DENND1B
860.15
1250.41
1.45
0.00073
0.018


DENND5A
142.24
21.2
0.15
0.00065
0.017


DGKD
403.47
262.05
0.65
3.10E−03
0.047


DHFR
87.68
233.09
2.66
0.00028
0.0089


DHRS3
924.4
300.14
0.32
1.70E−11
0.000000022


DHX36
805.7
562.79
0.70
0.0018
0.034


DIXDC1
36.39
111.8
3.07
0.0022
0.037


DLG1
317.63
204.1
0.64
2.30E−03
0.039


DLGAP5
6.87
195.6
28.47
2.50E−13
 8.2E−10


DNAJA1
1702.01
2923.76
1.72
1.50E−03
3.00E−02


DNAJB11
454.26
710.37
1.56
0.00021
0.0074


DNAJB6
936.51
1381.01
1.47
2.00E−03
0.036


DPEP2
130.93
27.43
0.21
1.00E−04
0.0044


DPP3
351.88
579.53
1.65
1.60E−03
0.032


DPY30
474.86
615.62
1.30
0.0011
0.025


DRAP1
441.94
634.53
1.44
0.00063
0.016


DTL
39.22
232.62
5.93
2.80E−04
0.009


DTX2
258.98
443.74
1.71
0.003
0.046


DUT
601.93
868.19
1.44
0.0024
0.039


DYNLRB1
661.35
897.3
1.36
0.00044
0.012


DYNLT3
763.81
575.71
0.75
1.50E−03
0.03


ECH1
1310.37
1857.74
1.42
7.00E−04
0.017


EEA1
468.29
297.47
0.64
3.30E−05
2.00E−03


EIF3I
929.81
1346.23
1.45
0.0021
0.037


ELL2
212.89
68.81
0.32
0.00045
0.013


EMB
3368.41
2914.16
0.87
2.20E−03
3.80E−02


EMP3
2523.16
1343.08
0.53
0.00094
0.022


ENC1
359.95
142.58
0.40
1.70E−03
0.033


ENO1
5231.48
8258.6
1.58
0.002
0.036


ENSA
654.71
970.33
1.48
0.0028
0.044


ENTPD1
658.82
2651.92
4.03
2.00E−07
4.30E−05


EPB41
942.58
706.74
0.75
1.60E−04
6.30E−03


EPB41L5
112.71
21.94
0.19
0.00017
0.0064


EPSTI1
175.58
555.14
3.16
 1.8E−09
0.0000013


ERBB2
114.75
28.73
0.25
1.60E−03
3.10E−02


ERC1
393.09
207.81
0.53
2.90E−03
4.50E−02


ERMP1
376.92
192.9
0.51
1.80E−03
0.034


ERP27
140.76
33.15
0.24
0.00000086
0.00013


ETFA
619.88
851.63
1.37
2.30E−03
3.90E−02


ETFB
303.05
463.27
1.53
1.60E−03
3.10E−02


ETV3
138.64
65.07
0.47
2.60E−03
4.20E−02


ETV7
24.54
224.6
9.15
0.0023
0.039


EXOSC10
791.23
1051.15
1.33
3.40E−04
0.01


EXOSC6
249.88
143.49
0.57
0.0029
0.045


EZH2
146.14
475.89
3.26
6.90E−06
6.80E−04


F11R
398.06
215.16
0.54
4.20E−04
0.012


FABP5
462.37
1141.17
2.47
3.40E−05
0.0021


FAM105B
654.22
783.17
1.20
2.60E−03
0.042


FAM111B
32.11
126.69
3.95
1.90E−03
3.40E−02


FAM113B
703.07
1075.84
1.53
0.0018
0.034


FAM117A
247.53
135.73
0.55
5.30E−04
1.40E−02


FAM179A
98.34
250.94
2.55
4.10E−05
2.30E−03


FAM65B
1850.24
777.82
0.42
7.10E−09
3.40E−06


FAM84B
181.79
73.71
0.41
0.0008
0.019


FANCI
111.59
426.66
3.82
 5.9E−14
 3.1E−10


FANCL
94.85
230.08
2.43
8.70E−04
2.10E−02


FARSA
455.79
697.21
1.53
0.0014
0.028


FBXO5
84.93
254.49
3.00
2.00E−05
1.50E−03


FBXW4
233.07
96.44
0.41
0.00048
0.013


FDPS
380.77
611.53
1.61
0.00000014
0.000033


FEN1
123.47
388.89
3.15
0.00023
0.008


FGFBP2
715.14
133.73
0.19
0.00000041
0.000077


FIBP
431.19
720.96
1.67
0.000084
0.0039


FIS1
547.61
718.67
1.31
8.90E−05
0.0041


FKBP1A
1227.39
2296.82
1.87
2.30E−08
0.0000082


FOXK1
238.18
121.61
0.51
0.0011
0.024


FOXP1
2150.08
1586.19
0.74
0.00012
0.0052


FRYL
1237.4
915.93
0.74
2.70E−03
4.30E−02


FUT11
260.1
128.89
0.50
0.000023
0.0016


FXC1
653.67
440.68
0.67
2.10E−03
0.037


FZD3
167.76
66.62
0.40
1.70E−03
3.20E−02


FZD4
88.11
4.52
0.05
0.000000019
0.0000072


GALM
610.26
1136.46
1.86
0.0000012
0.00016


GALNT1
593.26
1036.87
1.75
1.40E−03
0.029


GALNT2
493.65
1089.43
2.21
8.80E−07
0.00013


GAPDH
15822.78
32559.55
2.06
 4.2E−09
0.0000023


GBP1
1024.16
2782.3
2.72
0.00000022
0.000045


GBP2
1556.13
3641.25
2.34
7.30E−09
3.40E−06


GBP4
1237.21
2570.17
2.08
0.0003
0.0093


GBP5
2971.45
5985.91
2.01
1.90E−06
2.30E−04


GDPD1
65.51
25.51
0.39
9.60E−04
2.20E−02


GIMAP1
731.4
439.41
0.60
0.00019
0.0069


GLDC
22.23
245.95
11.06
0.000012
0.001


GNAO1
63.5
19.24
0.30
0.00000016
0.000037


GOLGA1
280.31
120.02
0.43
0.0023
0.039


GPI
2901.6
4930.81
1.70
2.60E−04
8.40E−03


GPR25
233.78
681.78
2.92
0.00013
0.0054


GRAMD1A
667.81
404.52
0.61
0.0013
0.027


GRK6
820.48
439.36
0.54
2.20E−03
3.80E−02


GSTM3
146.28
55.13
0.38
0.00021
0.0074


GTSE1
16.76
105.62
6.30
0.000014
0.0011


GZMA
7962.1
13460.35
1.69
0.0000034
0.00038


GZMB
4247.1
17025.77
4.01
5.00E−11
5.20E−08


GZMK
7553.09
3894.68
0.52
2.30E−03
3.90E−02


H2AFX
183.6
392.57
2.14
3.10E−05
0.002


H2AFZ
1728.79
3027.42
1.75
8.60E−06
8.10E−04


HAPLN3
107.51
331.04
3.08
1.20E−05
0.00099


HAVCR2
543.14
2467.99
4.54
3.10E−13
8.20E−10


HCLS1
3022.85
3853.64
1.27
0.00055
0.015


HDLBP
798.65
1477.04
1.85
0.0000052
0.00055


HIST1H1B
34.75
185.79
5.35
3.10E−04
9.70E−03


HIST1H1C
347.93
541.33
1.56
3.00E−05
1.90E−03


HIST1H1E
381.19
482.67
1.27
0.0015
0.03


HIST1H2AC
123.56
230.84
1.87
9.70E−04
2.20E−02


HIST1H2AH
13.17
96.1
7.30
0.0000059
0.00059


HIST1H2AM
91.24
281.58
3.09
8.00E−08
2.30E−05


HIST1H2BK
284.5
499.61
1.76
0.000049
0.0026


HIST1H4C
2652.14
4340
1.64
0.000000012
0.0000047


HIST1H4I
18.82
59.32
3.15
1.80E−04
6.70E−03


HIST3H2A
52.78
95.05
1.80
1.30E−04
5.40E−03


HLA-DRA
7126.75
10478.03
1.47
0.00001
0.00091


HLA-DRB1
3009.24
5091.8
1.69
2.40E−05
1.60E−03


HLTF
402.3
726.42
1.81
0.0028
0.044


HMGB1
5473.99
7820.28
1.43
0.0014
0.028


HMGB2
1480.91
2918.89
1.97
9.00E−05
4.10E−03


HMGN1
1686.19
2523.22
1.50
1.20E−06
0.00016


HMGN2
3367
5966.64
1.77
6.50E−07
0.0001


HMMR
6.44
83.13
12.91
1.80E−04
6.80E−03


HNRNPK
6106.43
7502.18
1.23
2.20E−03
3.70E−02


HPRT1
449.79
880.26
1.96
7.50E−05
3.50E−03


HSD17B10
458.18
620.32
1.35
0.0000081
0.00077


HSPA8
13805.53
21838.93
1.58
0.00023
0.0079


HSPA9
1683.28
2223.56
1.32
1.50E−04
6.00E−03


HSPD1
1255.23
2432.67
1.94
2.50E−03
4.10E−02


HSPE1
311.24
544.17
1.75
0.000097
0.0043


ICAM2
319.08
118.43
0.37
9.00E−04
2.10E−02


ID2
5169.39
7345.85
1.42
2.90E−04
9.30E−03


IDI1
955.38
1287.13
1.35
0.0018
0.034


IFI16
2590.54
4075.78
1.57
1.20E−03
2.60E−02


IFI27L2
423.49
543.14
1.28
0.0015
0.031


IFI35
389.91
856.45
2.20
2.20E−05
1.50E−03


IFNG
1819
4097.04
2.25
0.000016
0.0012


IGFLR1
518.19
1075.99
2.08
5.80E−05
3.00E−03


IL10RA
3655.02
2375.04
0.65
7.70E−04
1.90E−02


IL17RA
689.13
430.92
0.63
1.90E−03
3.50E−02


IL1RAP
240.48
53.51
0.22
9.40E−06
8.50E−04


IL21R
442.5
739.71
1.67
1.40E−03
2.90E−02


IL5RA
77.29
6.62
0.09
1.00E−04
0.0046


IL7R
7126.48
2448.61
0.34
2.70E−05
1.80E−03


INADL
865.78
434.98
0.50
1.30E−04
5.40E−03


IQGAP2
1632.7
873.83
0.54
6.80E−05
3.30E−03


IQSEC1
401.75
251.08
0.62
4.50E−04
0.013


IRF2BPL
124.49
69.08
0.55
0.000029
0.0019


IRF9
873.2
1401.67
1.61
0.000051
0.0027


ITGA4
3339.43
2390.58
0.72
3.40E−05
2.10E−03


ITGA5
664.55
317.12
0.48
1.10E−06
1.50E−04


ITGA6
319.59
72.84
0.23
7.30E−06
0.0007


ITGAE
1970.92
6923.08
3.51
5.70E−28
6.00E−24


ITGAM
289.34
61.05
0.21
0.00092
0.021


ITM2A
2984.64
4642.52
1.56
0.0011
0.025


JAK3
1817.89
2694.73
1.48
2.80E−03
4.40E−02


JAKMIP1
357.63
672.99
1.88
1.00E−03
2.30E−02


JHDM1D
718.14
423.83
0.59
5.60E−04
1.50E−02


KCNA3
1451.86
907.13
0.62
0.0008
0.019


KIAA0100
609.29
380.25
0.62
0.0018
0.034


KIAA0101
61.35
369.26
6.02
4.40E−08
1.40E−05


KIAA1147
436.49
107.02
0.25
2.70E−07
0.000053


KIAA1671
426.96
849.71
1.99
0.000037
0.0021


KIF11
117.04
452.31
3.86
0.000018
0.0013


KIF15
5.98
176.05
29.44
1.00E−06
1.50E−04


KIF1B
354.49
249.09
0.70
1.60E−03
0.031


KIF2C
40.18
234.86
5.85
0.0026
0.043


KIF4A
25.35
95.13
3.75
0.0027
0.043


KIR2DL4
111.06
944.03
8.50
1.20E−06
0.00016


KLF12
2256.22
1213.07
0.54
1.10E−03
0.025


KLF13
409.4
220.24
0.54
0.00012
0.005


KLF2
1151.11
258.17
0.22
0.000033
0.0021


KLF3
444.94
172.84
0.39
0.00012
0.0053


KLRB1
1379.8
1927.19
1.40
9.00E−04
0.021


KLRG1
2562.52
794.41
0.31
0.00000082
0.00013


KPNA2
419.39
1361.29
3.25
0.000026
0.0017


LAG3
958.2
2583.31
2.70
2.70E−06
0.00031


LAGE3
126.79
184.2
1.45
0.0024
0.039


LAP3
552.73
1092.21
1.98
0.00066
0.017


LAYN
76.14
477.08
6.27
2.60E−05
0.0017


LDHA
6266.88
11706.93
1.87
0.000043
0.0024


LDHB
3591.38
4684.25
1.30
9.70E−04
0.022


LDLRAP1
510.68
248.65
0.49
0.000095
0.0042


LEF1
343.64
152.3
0.44
4.00E−04
0.012


LIMK1
247.49
557.97
2.25
1.10E−04
0.0048


LINC00152
558.54
832.44
1.49
4.50E−05
0.0025


LINC00299
17.26
82.56
4.78
2.20E−03
0.038


LIX1L
242.32
181.63
0.75
0.0026
0.042


LMAN2
1451.23
1875.51
1.29
0.0013
0.027


LOC100132356
126.92
66.73
0.53
3.60E−04
1.10E−02


LOC144571
283.07
72.61
0.26
1.40E−04
5.80E−03


LOC541471
215.33
427.15
1.98
0.000042
0.0024


LOC648987
150.68
82.6
0.55
5.50E−04
0.015


LPP
891.93
575.74
0.65
0.0021
0.037


LPXN
2938.89
3782.86
1.29
1.90E−03
3.50E−02


LSM2
307.04
512.33
1.67
4.60E−04
1.30E−02


LSP1
4879.17
6802.88
1.39
1.10E−03
0.025


LYAR
697.1
344.73
0.49
0.00019
0.0069


MAD2L1
168.62
503.57
2.99
0.000000084
0.000023


MAD2L2
427.75
713.04
1.67
0.00031
0.0097


MAN2C1
397.72
247
0.62
7.20E−04
1.80E−02


MAP4K1
1104.65
1626.19
1.47
5.30E−04
0.014


MAP4K4
389.98
179.52
0.46
0.0000033
0.00038


MAST4
154.9
367.2
2.37
0.00023
0.008


MATK
856.92
476.07
0.56
0.002
0.036


MCM2
157.36
577.07
3.67
4.30E−04
1.20E−02


MCM4
162.75
737.54
4.53
 4.8E−13
 9.9E−10


MCM5
405.73
1182.59
2.91
9.10E−06
8.50E−04


MCM6
482.96
1319.35
2.73
0.00000058
0.000095


MCM7
388.24
928.54
2.39
0.00031
0.0097


MEA1
366.69
540.54
1.47
0.00066
0.017


MECP2
456.18
301.89
0.66
0.0013
0.027


MELK
30.59
192
6.28
9.90E−07
1.50E−04


METTL5
374.5
483.97
1.29
0.00045
0.013


MFN1
261.64
140.15
0.54
0.0018
0.034


MIR155HG
153.97
276.09
1.79
0.00043
0.012


MKI67
232.03
991.22
4.27
2.30E−05
1.60E−03


MLF1IP
60.26
198.4
3.29
0.0027
0.043


MLLT10
418.64
251.91
0.60
2.00E−03
3.60E−02


MNF1
114.18
208.67
1.83
0.0000001
0.000026


MOB1A
786.12
1396.97
1.78
0.00082
0.02


MPHOSPH8
1163.08
687.44
0.59
3.90E−04
1.20E−02


MRPL51
443.68
673.09
1.52
1.50E−04
5.90E−03


MSRB2
95.02
24
0.25
4.70E−04
0.013


MT2A
1218.49
1825.36
1.50
0.00014
0.0058


MTHFD1
342.89
799.12
2.33
3.50E−06
3.90E−04


MTHFD2
396.11
1033.04
2.61
1.10E−06
0.00015


MYBL1
458.44
94.12
0.21
0.00001
0.0009


MYBL2
13.24
108.17
8.17
0.00026
0.0085


MYL6
8143.79
8799.36
1.08
3.10E−03
0.047


MYO7A
284.04
1385.72
4.88
1.80E−07
4.00E−05


NAB1
459.14
960.08
2.09
0.000092
0.0041


NACC2
80.3
24.67
0.31
1.10E−04
0.0047


NCAPD2
338.64
662.17
1.96
0.0019
0.035


NCAPG
22.16
260.99
11.78
0.000000058
0.000017


NCF1B
93.35
36.06
0.39
1.70E−04
6.50E−03


NDFIP2
550.06
1228.28
2.23
0.0000041
0.00045


NDRG1
502.6
394.48
0.78
0.00062
0.016


NDUFA6
717.75
831.62
1.16
0.0025
0.041


NDUFB11
583.45
746.14
1.28
0.000036
0.0021


NDUFB6
386.28
513.97
1.33
3.00E−03
4.60E−02


NDUFB8
1124.76
1310.84
1.17
1.10E−03
2.40E−02


NDUFS4
264.78
358.16
1.35
0.0029
0.045


NDUFS6
394.45
576.11
1.46
0.00075
0.018


NDUFS8
711.2
999.56
1.41
3.60E−04
1.10E−02


NEB
72.35
14.88
0.21
0.00067
0.017


NEIL3
13.64
99.07
7.26
0.0012
0.025


NEK2
16.76
79.94
4.77
0.000076
0.0035


NFYC
305.25
550.67
1.80
0.0011
0.024


NONO
2202.06
2710.13
1.23
0.002
0.036


NOTCH1
410.74
714.39
1.74
0.000089
0.0041


NR2C2
388.7
215.71
0.55
0.00097
0.022


NSMCE2
217.56
360.38
1.66
2.00E−05
1.40E−03


NUAK2
117.92
46
0.39
2.30E−03
3.90E−02


NUDT5
493.42
744.8
1.51
0.0011
0.024


NUSAP1
214.38
756.67
3.53
0.000005
0.00053


OAS2
1085.85
1982.3
1.83
0.0001
0.0046


OASL
1204.86
2315.98
1.92
1.30E−04
5.40E−03


ODF2
202.56
380.47
1.88
3.60E−04
1.10E−02


ODZ1
383.31
170.26
0.44
0.0022
0.038


OFD1
1125.95
731.52
0.65
0.00049
0.014


ORC1
8.75
83.03
9.49
2.90E−04
9.20E−03


ORC6
24.85
77.63
3.12
0.00032
0.0098


PAG1
1851.17
3347.22
1.81
 4.9E−09
0.0000025


PARK7
1821.25
2917.33
1.60
0.000059
0.003


PARP8
4114.98
2838.74
0.69
1.90E−04
6.80E−03


PARP9
1006.89
1962.18
1.95
2.10E−06
2.60E−04


PATL2
501.85
202.04
0.40
1.30E−05
1.10E−03


PBK
3.31
97.83
29.56
5.30E−05
2.80E−03


PCK2
201.05
373.6
1.86
3.30E−03
0.049


PCMT1
1002.67
1421.64
1.42
2.70E−03
0.044


PCMTD2
468.17
274.21
0.59
3.20E−03
4.80E−02


PCNXL3
423.15
207.77
0.49
1.30E−03
0.027


PDE8A
95.63
28.09
0.29
6.50E−04
0.017


PDIA6
1136.83
1816.68
1.60
9.50E−05
4.20E−03


PGAM1
1588.46
2950.9
1.86
  3E−10
0.00000026


PGK1
5481.98
8759.84
1.60
0.00018
0.0068


PHF1
550.76
360.53
0.65
9.00E−04
2.10E−02


PHF12
397.36
234.65
0.59
0.0025
0.041


PIAS2
284.69
92.79
0.33
5.20E−08
1.60E−05


PIH1D1
294.58
486.16
1.65
0.0028
0.044


PIK3R5
1103.75
774.82
0.70
0.0029
0.045


PIN1
369.65
515.71
1.40
0.00074
0.018


PIP4K2A
4592.08
3658.94
0.80
0.0015
0.03


PITPNC1
757.99
472.99
0.62
2.30E−03
3.90E−02


PKI55
91.09
12.46
0.14
0.0012
0.025


PKM2
2422.68
4984.49
2.06
1.10E−05
0.00097


PKMYT1
12.52
121.61
9.71
7.30E−04
1.80E−02


PLA2G16
369.14
537.42
1.46
2.50E−03
0.041


PLAC8
922.22
286.56
0.31
2.10E−04
7.40E−03


PLEK
1739.86
897.36
0.52
1.70E−03
0.032


PLEKHA5
210.13
122.87
0.58
0.0018
0.034


PLEKHG3
199.42
30.41
0.15
0.00032
0.0098


PLK1
30
188.28
6.28
0.00027
0.0086


PLXND1
271.96
104.62
0.38
0.000022
0.0015


PMF1
167.12
283.48
1.70
0.00015
0.006


POLR2G
1101.8
1409.59
1.28
8.70E−04
2.10E−02


PPA1
841.25
1809.07
2.15
0.000023
0.0016


PPAP2A
175.05
333.13
1.90
2.80E−03
4.50E−02


PPIB
913.69
1129.62
1.24
0.0027
0.043


PPM1M
762.76
1206.19
1.58
0.000021
0.0015


PPP1R13B
104.74
49.38
0.47
2.80E−03
4.40E−02


PPP1R7
372.57
536.43
1.44
4.20E−04
0.012


PPP2R4
409.91
686.97
1.68
0.0021
0.037


PPP2R5D
592.29
1010.23
1.71
0.00024
0.0082


PPP5C
398.93
625.73
1.57
3.00E−03
4.60E−02


PRC1
55.96
230.73
4.12
0.0013
0.027


PRDM2
1151.46
736.69
0.64
0.0006
0.016


PRDX5
867.79
1168.84
1.35
1.80E−04
6.70E−03


PRDX6
971.03
1665.03
1.71
9.40E−08
2.40E−05


PRKAG1
411.81
693.23
1.68
0.00087
0.021


PRKAR1A
2397.56
3587.37
1.50
4.60E−05
2.50E−03


PSMA2
1271.36
1890.5
1.49
0.00029
0.0092


PSMA5
1481.87
1996.42
1.35
0.0021
0.037


PSMA6
1196.06
1908.5
1.60
0.0023
0.039


PSMB6
777.79
1003.83
1.29
0.00088
0.021


PSMB8
2339.04
3802.45
1.63
8.80E−08
2.30E−05


PSMB9
2886.73
4217.66
1.46
7.70E−04
1.90E−02


PSMC1
744.94
1036.16
1.39
4.70E−04
1.30E−02


PSMC3
695.56
1144.2
1.65
1.30E−04
0.0055


PSMD8
936.35
1551.03
1.66
0.000000031
0.00001


PSME1
4634.03
6465.06
1.40
4.20E−04
0.012


PSME2
1876.32
3417.48
1.82
2.90E−08
9.90E−06


PTAR1
674.12
408.5
0.61
0.0021
0.037


PTCH1
233.54
70.41
0.30
2.50E−03
0.041


PTGDR
729.27
265.66
0.36
2.50E−03
0.041


PTGER2
1044.16
377.31
0.36
0.00000023
0.000047


PTMA
4907.9
6500.19
1.32
4.80E−05
0.0026


PTMS
105.43
244.99
2.32
1.60E−05
1.20E−03


PTPN22
2231.66
3526.12
1.58
0.00029
0.0091


PTPN7
2890.98
5136.25
1.78
0.000000086
0.000023


PTTG1
401.03
922.08
2.30
 1.7E−12
 2.9E−09


PXN
785.4
359.13
0.46
2.60E−06
3.00E−04


PZP
352.53
110.35
0.31
7.90E−04
1.90E−02


RAB27A
1364.45
2439.95
1.79
7.90E−05
3.70E−03


RAB3GAP1
573.3
1232.27
2.15
1.70E−06
2.10E−04


RACGAP1
58.09
341.87
5.89
0.00053
0.014


RAN
2554
3494.86
1.37
5.80E−04
1.50E−02


RANBP1
292.4
521
1.78
5.60E−06
5.90E−04


RAP2B
945.19
545.54
0.58
9.40E−06
0.00085


RARRES3
2822.7
4449.56
1.58
0.00019
0.0069


RASA3
642.85
224.91
0.35
0.000037
0.0021


RASGRP2
260.76
91.61
0.35
0.000051
0.0027


RASSF3
439.25
217.17
0.49
0.0000098
0.00087


RBBP4
1287.12
1849.22
1.44
3.10E−03
4.70E−02


RBBP8
76.55
272.07
3.55
3.00E−05
0.0019


RBCK1
687.92
1033.84
1.50
0.0024
0.04


RBL2
3510.25
2900.91
0.83
2.40E−03
0.039


RBPJ
2046.58
4981.33
2.43
 1.1E−10
0.0000001


RBX1
729.98
862.9
1.18
5.00E−04
1.40E−02


RERE
175.46
102
0.58
1.20E−03
2.60E−02


RFC2
150.24
331.86
2.21
7.30E−04
0.018


RFX5
569.8
908.03
1.59
0.00055
0.015


RFX7
371.29
580.63
1.56
2.20E−03
3.70E−02


RG9MTD3
186.25
91.24
0.49
0.00081
0.019


RHOA
5313.23
7571.11
1.42
0.00024
0.008


RIC3
81.14
14.71
0.18
3.00E−03
4.60E−02


RMI2
15.81
110.96
7.02
2.00E−03
3.60E−02


RNASEH2B
434.21
636.56
1.47
1.60E−03
3.10E−02


RNF144A
237.31
54.88
0.23
1.40E−04
5.80E−03


RNF149
2402.73
1907.45
0.79
2.60E−03
4.20E−02


RNF26
430.8
313.33
0.73
2.30E−03
3.90E−02


ROMO1
537.59
643.14
1.20
0.0000015
0.00018


RPS26
1759.55
2182.35
1.24
0.00015
0.006


RREB1
365.55
136.97
0.37
5.60E−05
0.0028


RRM1
398.16
946.36
2.38
6.50E−05
0.0032


RRM2
147.32
890.79
6.05
0.000000011
0.0000047


S100A10
2989.32
1990.42
0.67
1.20E−03
2.50E−02


S1PR1
1197.42
322.99
0.27
2.10E−09
1.40E−06


S1PR5
447.46
113.55
0.25
0.00065
0.017


SACS
830.41
435.62
0.52
1.00E−04
0.0046


SAMD3
1387.57
678.58
0.49
5.00E−06
5.30E−04


SAMSN1
1788.24
3033.55
1.70
2.50E−03
4.10E−02


SCARNA17
372.71
154.29
0.41
1.20E−03
2.50E−02


SCCPDH
254.04
487.04
1.92
0.0019
0.035


SCUBE1
32.17
183.17
5.69
2.10E−04
0.0074


SEC11A
703.82
1027.6
1.46
0.0016
0.031


SEC61B
760.13
792.55
1.04
0.0019
0.035


SEC62
1067.72
844.62
0.79
0.00049
0.014


SEL1L3
1148.83
1692.06
1.47
0.003
0.046


SELL
1766.39
811.51
0.46
2.70E−04
0.0089


SEMA4C
89.64
18.59
0.21
0.000013
0.0011


SEMA7A
65.36
245.67
3.76
0.00011
0.0049


SF3B14
572.01
775.61
1.36
0.000042
0.0024


SFXN1
775.31
1137.9
1.47
0.0028
0.044


SFXN2
75.71
195.71
2.58
0.00035
0.011


SGMS1
633.46
1106.9
1.75
0.0021
0.037


SGOL1
30.8
95.21
3.09
0.000021
0.0015


SGOL2
50.63
172.61
3.41
0.0012
0.025


SH2B3
365.85
144.99
0.40
6.10E−05
3.00E−03


SH3BP5
106.02
62.13
0.59
1.70E−05
0.0013


SHFM1
717.24
973
1.36
0.000014
0.0011


SIDT1
439.77
306.45
0.70
1.30E−03
2.70E−02


SIRPG
1076.24
2764.48
2.57
1.80E−06
2.20E−04


SLC25A5
1963.73
2852.39
1.45
5.00E−05
0.0026


SLC27A2
147.29
720.72
4.89
2.60E−07
0.000053


SLC30A7
1003.52
758.88
0.76
1.70E−03
0.032


SLC39A10
579.85
359.61
0.62
1.70E−03
3.20E−02


SLC44A1
284.81
164.79
0.58
1.60E−03
0.031


SMAD5
482.74
277.17
0.57
0.00043
0.012


SMC2
279.36
582.55
2.09
0.00095
0.022


SMC4
766.42
1409.18
1.84
0.00023
0.008


SNAP47
387.08
709.91
1.83
2.30E−03
0.039


SNHG9
124.25
54.06
0.44
0.003
0.046


SNRPB
1574.18
2223.3
1.41
2.60E−05
0.0017


SNRPE
638.08
882.67
1.38
0.00099
0.022


SNRPG
1039.23
1302.29
1.25
0.0015
0.029


SOCS5
382.45
140.36
0.37
0.000045
0.0025


SOD1
2102.07
2741.64
1.30
7.50E−04
0.018


SORBS3
165.73
123.56
0.75
1.60E−03
3.20E−02


SORL1
2103.87
885.33
0.42
2.10E−07
4.50E−05


SP140
1068.93
1523.34
1.43
2.70E−03
4.30E−02


SPAG5
29.26
183.8
6.28
7.60E−04
1.90E−02


SPDYE1
66.5
14.96
0.22
0.00005
0.0026


SPON2
169.84
63.15
0.37
0.00083
0.02


SQLE
92.27
340.14
3.69
 2.7E−09
0.0000016


SRGAP3
353.52
802.28
2.27
2.50E−03
0.041


SRP14
3250.7
4175.9
1.28
0.0028
0.044


SRSF4
823.62
1118.39
1.36
0.00035
0.011


SSBP2
276.52
79.96
0.29
1.40E−04
5.70E−03


SSH2
1388.31
810.75
0.58
1.20E−03
0.025


STAT1
3437.52
9109.41
2.65
0.00000049
0.000086


STAT3
1597.28
2752.8
1.72
0.00017
0.0065


STAT5A
679.07
1001.22
1.47
1.70E−03
3.20E−02


STIL
25.33
105.04
4.15
1.60E−03
0.031


STK38
1099.61
596.48
0.54
0.0000013
0.00017


STMN1
590.71
2186.64
3.70
4.00E−11
4.60E−08


STX3
126.37
29.28
0.23
0.000007
0.00068


SUB1
1939.81
2734.93
1.41
0.0024
0.04


SUMO3
653.71
940.91
1.44
0.00019
0.0068


SYPL1
870.6
564.93
0.65
0.0013
0.027


SYT11
839.77
1558.28
1.86
0.0000011
0.00015


TALDO1
645.73
979.31
1.52
2.30E−04
7.90E−03


TBC1D4
271.96
635.29
2.34
7.20E−05
3.40E−03


TBL1XR1
2180.12
3095.97
1.42
1.70E−04
0.0065


TC2N
2434.21
1514.2
0.62
1.60E−05
1.20E−03


TCF7
929.6
348.42
0.37
0.00025
0.0084


TCP1
1136.95
1555.5
1.37
0.0012
0.026


TFDP1
257.02
506.17
1.97
1.80E−03
3.30E−02


TGFBR3
1043.07
598.43
0.57
0.0015
0.03


THEM4
345.7
150.11
0.43
1.80E−07
4.00E−05


THRA
136.85
60.02
0.44
1.70E−03
3.30E−02


TIGIT
2349.71
3822.88
1.63
0.0006
0.016


TLE4
451.6
223.59
0.50
0.00025
0.0083


TMEM14C
484.01
650.25
1.34
1.20E−03
2.60E−02


TMEM181
571.69
373.72
0.65
3.00E−03
4.60E−02


TMEM63A
535.36
212.68
0.40
0.00025
0.0083


TMPO
765.25
1272.26
1.66
0.00054
0.015


TMSB4X
61515.24
70294.98
1.14
0.001
0.023


TNFRSF10A
659.13
287.2
0.44
6.80E−05
3.30E−03


TNFRSF10B
363.08
171.64
0.47
1.70E−03
3.20E−02


TNFRSF9
642.02
2048.09
3.19
1.50E−05
0.0012


TNFSF4
182.3
741.26
4.07
 9.5E−09
0.0000041


TNIK
601.58
424.55
0.71
1.00E−03
2.30E−02


TNRC6B
2131.91
1512.37
0.71
1.80E−04
6.70E−03


TNRC6C
534.28
214
0.40
1.80E−05
1.30E−03


TNS3
186.99
886.05
4.74
2.60E−03
4.20E−02


TOMM5
702.41
824.16
1.17
1.50E−04
6.00E−03


TOP2A
178.96
964.34
5.39
4.90E−07
8.60E−05


TOX2
107.4
344.69
3.21
0.00018
0.0067


TP53BP2
380.46
244.48
0.64
0.0029
0.045


TP73
20.9
145.52
6.96
2.90E−03
0.045


TPI1
3283.17
6630.63
2.02
5.50E−08
1.70E−05


TPM3
6051.12
8502.4
1.41
2.50E−03
4.10E−02


TPX2
55.89
430.95
7.71
1.30E−08
5.00E−06


TRAFD1
644.7
1117.26
1.73
0.00021
0.0074


TRIM44
515.13
232.49
0.45
8.90E−06
0.00084


TRIP12
875.83
1220.13
1.39
1.30E−04
0.0054


TRIP13
11.31
71.96
6.36
3.50E−05
2.10E−03


TRMT2B
363.84
175.58
0.48
0.00042
0.012


TROAP
17.87
116.81
6.54
0.00024
0.008


TSC22D2
426.31
252.23
0.59
0.0019
0.035


TSHZ2
13.66
81.1
5.94
2.30E−06
0.00027


TSPAN17
303.16
591.26
1.95
0.00019
0.0069


TSPAN32
357.88
115.79
0.32
2.00E−09
1.40E−06


TTC16
276.63
73.08
0.26
0.000051
0.0027


TTC24
136.13
310.33
2.28
1.30E−03
0.027


TTC3
1935.99
1542.03
0.80
0.00099
0.022


TTC9
65.14
18.91
0.29
0.0019
0.035


TTYH3
142.48
368.28
2.58
1.00E−03
2.30E−02


TUBA1B
1146.26
2248.41
1.96
0.000073
0.0035


TUBB
3094.93
6024.03
1.95
0.000044
0.0024


TXNL4A
355.5
387.27
1.09
0.0003
0.0093


TYMS
27.02
160.27
5.93
7.60E−05
0.0035


UBB
7122.51
10855.69
1.52
1.40E−05
0.0011


UBC
6474.06
10239.8
1.58
0.00025
0.0082


UBE2A
600.05
1029.69
1.72
3.60E−04
1.10E−02


UBE2C
59.86
357.7
5.98
0.00058
0.015


UBE2L6
1931.55
3639.96
1.88
0.0000011
0.00015


UBE2N
1101.27
1455.97
1.32
0.000013
0.0011


UBE2Q2
379.1
282.93
0.75
1.60E−03
0.032


UBL5
1243.23
1305.32
1.05
1.70E−03
0.032


UCP2
3767.53
6929.37
1.84
2.00E−03
3.60E−02


UHRF1
46.05
227.23
4.93
0.00071
0.018


UQCR10
979.75
1046.33
1.07
0.0028
0.044


UQCRH
704.34
871.49
1.24
0.000091
0.0041


UROD
296.45
412.88
1.39
0.0013
0.027


USP1
508.66
928.84
1.83
5.80E−06
0.00059


USP3
1219.84
769.72
0.63
6.90E−05
0.0033


USP53
160.26
97.43
0.61
2.10E−03
0.037


UTRN
4399.63
2870.85
0.65
0.000063
0.0031


VCAM1
283.21
1010.31
3.57
5.40E−05
2.80E−03


VCL
357.23
106.8
0.30
2.60E−04
8.60E−03


WARS
779.76
1874.98
2.40
2.30E−03
3.90E−02


WDR1
2698.42
3744.26
1.39
4.30E−04
1.20E−02


WDR34
99.4
263.39
2.65
7.50E−04
1.80E−02


WDR37
380.8
198.7
0.52
0.0014
0.029


WHAMMP3
54.36
31.03
0.57
5.90E−04
0.015


WHSC1
227.72
341.87
1.50
3.00E−03
0.046


XPO6
1042.48
660.02
0.63
0.0011
0.024


XRCC6
3037.04
3964.44
1.31
0.00017
0.0066


YWHAE
856.84
1154.67
1.35
5.40E−04
1.50E−02


YWHAQ
3336.67
4797.11
1.44
0.00015
0.0059


ZBTB16
143.23
54.08
0.38
0.00062
0.016


ZBTB4
422.39
272.46
0.65
1.50E−03
0.031


ZCRB1
498.37
756.91
1.52
2.70E−04
8.70E−03


ZHX3
151.2
60.64
0.40
1.00E−03
0.023


ZMAT1
242.9
65.86
0.27
4.40E−04
1.20E−02


ZMIZ1
206.73
421.03
2.04
0.0033
0.049


ZNF286A
190.25
105.37
0.55
3.10E−03
0.047


ZNF33A
917.13
548.2
0.60
0.00021
0.0074


ZNF394
773.63
454.31
0.59
2.40E−03
3.90E−02


ZNF43
287.04
193.03
0.67
2.10E−03
3.70E−02


ZNF528
171.05
56.59
0.33
2.90E−03
4.50E−02


ZNF83
477.6
235.19
0.49
1.80E−04
6.80E−03


ZNRF1
152.52
473.53
3.10
0.000022
0.0015


ZWINT
70.8
318.92
4.50
5.80E−04
0.015


ZXDC
482.74
262.21
0.54
2.40E−03
3.90E−02


ZZEF1
615.13
433.28
0.70
0.00037
0.011
















TABLE 9







Pathway analysis of differentially expressed genes in CD103 high TILs from NSCLC.














Disease or

Predicted


Number



functions

activation
Activation

of mol-


Categories
annotation
P value
state
z-score
Molecules
ecules
















Cellular
proliferation
1.68E−25
Increased
7.486
ABCB1, ACTN4, AFAP1L2, ALOX5AP, ARL3, ASB2, ASPM,
211


Growth
of cells



ATP5B, AURKA, AURKB, BARD1, BATF, BCCIP,


and




BIRC5, BRIP1, BST2, BUB1, CACYBP, CALCOCO2, CALM1


Proliferation




(includes







others), CAPZA1, CCL3, CCL5, CCNA2, CCNB2, CCNE2,







CD2, CD38, CD3G, CD63, CD82, CDC123, CDC20, CDC45,







CDC6, CDCA2, CDCA7, CDCA8, CDK1, CDKN3, CENPF,







CFL1, CHEK1, CISD1, CKLF, CKS1B, CKS2, CLIC1,







CLSPN, CMC2, COPE, COPS6, COPZ1, CSF1, DAPK2,







DBN1, DDB2, DHFR, DIXDC1, DLGAP5, DNAJA1, DNAJB6,







DNPH1, DPY30, DTL, EIF3I, ENO1, ENTPD1, ETFB,







ETV7, EZH2, FABP5, FANCL, FEN1, FIS1, FKBP1A, GALNT2,







GAPDH, GBP1, GBP2, GLDC, GPI, GZMB, H2AFX,







H2AFZ, HAVCR2, HCLS1, HIST1H1B, HIST1H2AC,







HLA-







DRB1, HLTF, HMGB1, HMGB2, HMGN1, HMMR, HNRNPK,







HPRT1, HSPA8, HSPA9, HSPD1, ID2, IFI16, IFNG, IL21R,







JAK3, KIAA0101, KIF11, KIF15, KIF2C, KLRB1,







KPNA2, LAG3, LAP3, LDHA, LIMK1, MAD2L1, MAD2L2,







MAP4K1, MCM2, MCM4, MCM5, MCM7, MELK, MKI67,







MOB1A, MT2A, MTHFD1, MYBL2, NAB1, NCAPG,







NDUFS4, NEIL3, NEK2, NOTCH1, ORC1, PAG1, PARK7,







PBK, PCK2, PGK1, PIN1, PKM, PLA2G16, PLK1, PPIB,







PPP5C, PRC1, PRKAR1A, PSMA5, PSMC1, PSMC3, PSME2,







PTMA, PTPN22, PTTG1, RAB27A, RACGAP1, RAN,







RANBP1, RARRES3, RBBP4, RBCK1, RBPJ, RBX1,







RHOA, RNASEH2B, ROMO1, RRM1, RRM2, SAMSN1,







SEMA7A, SGMS1, SHFM1, SIRPG, SLC25A5, SOD1, SRGAP3,







STAT1, STAT3, STAT5A, STIL, STMN1, SUMO3,







TCP1, TFDP1, TIGIT, TMPO, TMSB10/TMSB4X, TNFRSF9,







TNFSF4, TNS3, TOP2A, TP73, TPM3, TPX2, TUBB,







TYMS, UBC, UBE2A, UBE2C, UBE2L6, UBE2N, UCP2,







UHRF1, USP1, VCAM1, WARS, WHSC1, XRCC6, YWHAQ,







ZMIZ1


Cell Cycle
cell cycle
2.01E−25
Increased
2.021
AFAP1L2, ANAPC11, AURKA, AURKB, BCCIP, BIRC5,
97



progression



BUB1, CASC5, CCL3, CCNA2, CCNE2, CDC123, CDC20,







CDC6, CDCA8, CDK1, CDKN3, CENPF, CHEK1, CKAP2,







CKS1B, CKS2, CLSPN, COPZ1, CSF1, DHFR, DIXDC1,







DLGAP5, DTL, EZH2, FBXO5, FKBP1A, GBP2, GPI, GTSE1,







HMGB1, HSPA8, HSPA9, ID2, IFI16, IFNG, IRF9, JAK3,







KIAA0101, KIF11, KIF15, KIF2C, KIF4A, LAG3, MAD2L1,







MAD2L2, MCM2, MCM7, MELK, MKI67, MYBL2,







NEK2, NOTCH1, NUSAP1, ORC6, PIN1, PKMYT1, PLA2G16,







PLK1, PPP5C, PRKAR1A, PTMA, PTTG1, RACGAP1,







RAN, RBBP8, RBX1, RHOA, RMI2, RRM1, SGO1,







SPAG5, STAT1, STAT3, STAT5A, STIL, STMN1, TBL1XR1,







TCP1, TFDP1, TMPO, TOP2A, TP73, TPX2, TUBB,







TYMS, UBC, UBE2C, USP1, XRCC6, YWHAE, ZWINT


Cell Cycle,
segregation
 5.6E−21


AURKA, AURKB, BUB1, CCNA2, CCNB2, CDC6, CDCA2,
29


Cellular
of



CENPF, KIF11, KIF2C, MAD2L1, NCAPD2, NCAPG,


Assembly and
chromosomes



NEK2, NUSAP1, ODF2, PLK1, PMF1/PMF1-


Organization,




BGLAP, PPP1R7, PTTG1, RAN, RHOA, SGO1, SMC2, SMC4,


DNA




SPAG5, TOP2A, TPX2, ZWINT


Replication,


Recombination,


and Repair


Cell Cycle
mitosis
3.97E−19


AFAP1L2, ANAPC11, AURKA, AURKB, BIRC5, BUB1,
55







CASC5, CCNA2, CDC123, CDC20, CDCA8, CDK1, CDKN3,







CENPF, CHEK1, CKAP2, CSF1, DLGAP5, FBXO5, JAK3,







KIF11, KIF15, KIF2C, KIF4A, MAD2L1, MAD2L2,







MYBL2, NEK2, NUSAP1, ORC6, PIN1, PKMYT1, PLK1,







PPP5C, PTMA, PTTG1, RACGAP1, RAN, RBBP8, RMI2,







SGO1, SPAG5, STAT1, STAT3, STIL, STMN1, TBL1XR1,







TCP1, TOP2A, TP73, TPX2, TUBB, UBE2C, YWHAE, ZWINT


Cell Cycle
mitosis of
2.87E−18


AURKA, BIRC5, BUB1, CASC5, CDC20, CDCA8, CDK1,
27



tumor cell



CHEK1, DLGAP5, FBXO5, KIF11, KIF4A, MAD2L1, MAD2L2,



lines



PKMYT1, PLK1, PTTG1, RACGAP1, RBBP8, RMI2,







SPAG5, STIL, TBL1XR1, TCP1, TOP2A, TPX2, YWHAE


Cell Cycle
mitosis of
1.14E−17


AURKA, BIRC5, BUB1, CASC5, CDC20, CDCA8, CDK1,
23



cervical



DLGAP5, FBXO5, KIF11, KIF4A, MAD2L1, PKMYT1, PLK1,



cancer cell



PTTG1, RACGAP1, RMI2, SPAG5, STIL, TBL1XR1,



lines



TCP1, TOP2A, TPX2


Cell Cycle
arrest in
1.21E−17


AURKB, BIRC5, BUB1, CASC5, CDC20, CDK1, CHEK1,
22



mitosis



CKAP2, FBXO5, KIF11, KIF4A, MAD2L1, MYBL2, PLK1,







RACGAP1, RMI2, SGO1, SPAG5, TBL1XR1, TCP1, TPX2,







ZWINT


DNA
metabolism
6.38E−16
Increased
3.131
ABCB1, BARD1, BIRC5, BRIP1, CACYBP, CCNA2, CCNE2,
44


Replication,
of DNA



CD2, CDC6, CDK1, CHEK1, CKS2, CSF1, DUT, ENO1,


Recombination,




FEN1, GZMA, GZMB, HMGB1, HMGB2, HMGN1, HMGN2,


and Repair




HSD17B10, IFNG, KIAA0101, KPNA2, MCM2,







MCM7, ORC1, ORC6, PIN1, PLK1, PPIB, PRDX6, PTMS,







RAN, RBPJ, RHOA, SOD1, STAT1, TFDP1, TMPO, TOP2A,







XRCC6


Cell Cycle
interphase
2.39E−15
Increased
3.373
ABCB1, AURKA, BARD1, BIRC5, BUB1, CCL3, CCNA2,
59







CCNE2, CDC20, CDC6, CDCA2, CDK1, CDKN3, CHEK1,







CKS1B, CKS2, CLSPN, CSF1, DTL, EZH2, FBXO5, FEN1,







FKBP1A, GPI, HMGN1, ID2, IFI16, IFNG, JAK3, KIAA0101,







KIF11, LIMK1, MAD2L1, MAD2L2, MCM7, MELK,







MYBL2, NOTCH1, PIN1, PKM, PLK1, PPP5C, PTPN22,







PTTG1, RBBP8, RBCK1, RBX1, RHOA, RNASEH2B,







STAT1, STAT3, TCP1, TFDP1, TMPO, TP73, TYMS, UBL5,







UHRF1, YWHAQ


Cell Death and
cell death
3.13E−15


ABCB1, ACTN4, AFAP1L2, ALDOC, ANXA5, ARL6IP1,
174


Survival




ASB2, AURKA, AURKB, BARD1, BIRC5, BUB1, CACYBP,







CALCOCO2, CALM1 (includes







others), CASC5, CCL3, CCL5, CCNA2, CD2, CD38, CD3G,







CD7, CD82, CD96, CDC20, CDC45, CDC6, CDCA2, CDK1,







CDKN3, CENPF, CFL1, CHEK1, CKAP2, CLNK, CLSPN,







COPZ1, COX5A, COX8A, CSF1, DAPK2, DDB2, DHFR,







DNAJA1, DNAJB6, DTL, DUT, EIF3I, ENO1, ENTPD1,







EZH2, FANCL, FBXO5, FDPS, FEN1, FIS1, FKBP1A, GAPDH,







GPI, GZMA, GZMB, H2AFX, HAVCR2, HCLS1,







HIST1H1C, HLA-







DRB1, HMGB1, HMGB2, HMMR, HNRNPK, HPRT1, HSD17B10,







HSPA8, HSPA9, HSPD1, HSPE1, ID2, IFI16, IFNG,







IL21R, IRF9, JAK3, KIAA0101, KIF11, KIR2DL4, KLRB1,







KPNA2, LAG3, LDHA, LSP1, MAD2L1, MAD2L2, MAP4K1,







MCM2, MCM7, MELK, MKI67, MOB1A, MT2A,







MYBL2, MYO7A, NDUFS4, NEK2, NOTCH1, NUSAP1,







PARK7, PBK, PCK2, PCMT1, PIN1, PKM, PKMYT1, PLA2G16,







PLK1, PPIB, PPP2R4, PPP5C, PRDX5, PRDX6, PRKAG1,







PRKAR1A, PSMA5, PSMA6, PSMB8, PSMC1, PSME2,







PTMA, PTPN22, PTTG1, RAB27A, RACGAP1, RAN,







RANBP1, RBBP4, RBCK1, RBPJ, RBX1, RHOA, RRM1,







RRM2, SEMA7A, SGMS1, SLC25A5, SNRPB, SOD1, SPAG5,







STAT1, STAT3, STAT5A, STIL, STMN1, SUB1, TBL1XR1,







TCP1, TFDP1, TMSB10/TMSB4X, TNFRSF9,







TOP2A, TP73, TPM3, TPX2, TUBB, TYMS, UBB, UBC, UBE2C,







UBE2N, UCP2, VCAM1, WHSC1, XRCC6, YWHAE,







YWHAQ


Dermatological
psoriasis
1.13E−14


CD2, CD63, CD7, CFL1, DBN1, DHFR, DTX2, EPSTI1, FABP5,
53


Diseases and




FEN1, FKBP1A, GAPDH, GBP1, GBP2, GZMB, H2AFX,


Conditions




H2AFZ, HSPA8, HSPE1, IFI16, IFI35, IFNG, ITGAE,







JAK3, KIAA0101, KPNA2, MAD2L1, MKI67, NAB1, OAS2,







OASL, PARP9, PCMT1, PGAM1, PKM, PLA2G16, PSMA6,







PSMB6, PSME2, RAB27A, RAN, RANBP1, SEC61B,







SLC25A5, SQLE, STAT1, SUB1, TUBB, UBE2L6, UBE2N,







VCAM1, YWHAE, YWHAQ


Cell Cycle
M phase
 1.3E−14


ACTN4, ARL3, AURKA, AURKB, BIRC5, CALM1
32







(includes







others), CDC20, CDC6, CDK1, CEP55, CFL1, CKAP2, CKS2,







FBXO5, KIF4A, LIMK1, MAD2L1, MCM4, MCM7, MOB1A,







NCAPD2, NEK2, NUSAP1, PIN1, PLK1, PRC1, PTTG1,







RACGAP1, RHOA, TOP2A, TRIP13, UBE2C


Cell
morphology
1.55E−13


AURKA, BIRC5, BUB1, CDK1, FBXO5, KIF11, NUSAP1,
13


Morphology,
of mitotic



ORC6, PLK1, PTTG1, RACGAP1, RAN, TPX2


Cellular
spindle


Assembly and


Organization,


DNA


Replication,


Recombination,


and Repair


Cellular
cell
1.56E−13
Increased
5.794
ABCB1, ACTN4, AURKA, AURKB, BARD1, BCCIP, BIRC5,
100


Development,
proliferation



BUB1, CACYBP, CCL3, CCNA2, CCNB2, CCNE2,


Cellular
of tumor cell



CD38, CDCA2, CDCA8, CDK1, CDKN3, CHEK1, CISD1,


Growth
lines



CKS1B, CMC2, COPS6, COPZ1, CSF1, DAPK2, DDB2, DLGAP5,


and




DNAJB6, DTL, ENTPD1, ETV7, EZH2, FABP5, FEN1,


Proliferation




GALNT2, GAPDH, GLDC, GZMB, H2AFZ, HAVCR2,







HMGB1, HMMR, HNRNPK, ID2, IFI16, IFNG, JAK3,







KIAA0101, KIF2C, KPNA2, LDHA, LIMK1, MCM2, MCM7,







MELK, MKI67, MT2A, NCAPG, NEK2, NOTCH1, PBK,







PCK2, PIN1, PKM, PLK1, PPP5C, PRKAR1A, PSMA5,







PTMA, PTPN22, PTTG1, RAN, RARRES3, RBCK1, RBX1,







RHOA, RRM1, RRM2, SGMS1, SOD1, STAT1, STAT3,







STAT5A, STMN1, SUMO3, TCP1, TMPO, TMSB10/TMSB4X,







TP73, TPX2, TUBB, TYMS, UBE2C, UHRF1, VCAM1,







WHSC1, XRCC6, YWHAQ, ZMIZ1


Cancer,
mammary
2.02E−13


ABCB1, ACP5, ACTN4, ALDOC, ANKS1B, ASF1B, ATP10D,
119


Organismal
tumor



ATP5C1, ATP5J2, AURKB, BARD1, BCCIP, BIRC5,


Injury and




BRIP1, CALM1 (includes


Abnormalities,




others), CCL3, CCL5, CCNA2, CCNB2, CCNE2, CD3G, CDC20,


Reproductive




CDC6, CDCA7, CDK1, CHEK1, CISD1, COMMD7,


System Disease




CSF1, DDB2, DHFR, DIXDC1, DNAJB6, DPP3, ENO1,







ENSA, ETFA, ETFB, EZH2, FABP5, FAM179A, FARSA,







FBXO5, FDPS, FEN1, FIS1, FKBP1A, H2AFX, H2AFZ, HAPLN3,







HDLBP, HIST1H1C, HMMR, IFNG, IRF9, ITGAE,







JAK3, KIF11, KIF2C, KPNA2, LAGE3, LIMK1, LSP1,







MAST4, MCM2, MCM4, MCM6, MELK, MKI67, MT2A,







MYBL2, MYO7A, NCAPD2, NEK2, NFYC, NOTCH1, ODF2,







PGK1, PIN1, PKM, PRC1, PRDX5, PSMA5, PTPN22,







PTTG1, RANBP1, RBBP8, RBX1, RFX5, RHOA, RRM1,







RRM2, SCCPDH, SCUBE1, SGO1, SLC25A5, SOD1, SQLE,







SRGAP3, STAT1, STAT3, STMN1, TBL1XR1, TCP1,







TNFRSF9, TOP2A, TP73, TPI1, TSHZ2, TUBA1B, TUBB,







TYMS, UBB, UBE2C, UHRF1, WDR1, WHSC1, YWHAQ,







ZMIZ1


Cell Cycle
arrest in
3.54E−13


BIRC5, BUB1, CASC5, CDK1, CHEK1, FBXO5, KIF11, KIF4A,
16



mitosis of



MAD2L1, PLK1, RACGAP1, RMI2, SPAG5, TBL1XR1,



tumor cell



TCP1, TPX2



lines


Cell Cycle
M phase of
5.04E−12


AURKB, BIRC5, CEP55, FBXO5, KIF4A, LIMK1, MAD2L1,
18



tumor cell



MCM7, MOB1A, NCAPD2, NEK2, PIN1, PLK1, PTTG1,



lines



RACGAP1, RHOA, TOP2A, TRIP13


Cell Death and
necrosis
5.37E−12


ABCB1, AFAP1L2, ARL6IP1, AURKA, AURKB, BARD1,
137


Survival




BIRC5, BUB1, CASC5, CCL3, CCL5, CD2, CD38, CD7,







CD82, CDC20, CDC45, CDC6, CDCA2, CDK1, CHEK1, CKAP2,







CLSPN, COPZ1, COX5A, COX8A, CSF1, DAPK2,







DDB2, DHFR, DTL, DUT, EIF3I, ENO1, EZH2, FANCL, FBXO5,







FDPS, FEN1, FIS1, FKBP1A, GAPDH, GPI, GZMA,







GZMB, H2AFX, HAVCR2, HCLS1, HIST1H1C, HMGB1,







HMGB2, HMMR, HNRNPK, HPRT1, HSD17B10, HSPA8,







HSPA9, HSPD1, HSPE1, ID2, IFI16, IFNG, IL21R, IRF9,







JAK3, KIAA0101, KIF11, KPNA2, LAG3, LDHA, LSP1,







MAD2L1, MAD2L2, MAP4K1, MCM2, MCM7, MELK,







MKI67, MT2A, MYBL2, NEK2, NOTCH1, PARK7, PBK,







PCK2, PIN1, PKM, PKMYT1, PLA2G16, PLK1, PPP5C, PRDX6,







PRKAR1A, PSMA5, PSMA6, PSMB8, PSMC1, PTMA,







PTPN22, PTTG1, RACGAP1, RAN, RBBP4, RBCK1,







RBPJ, RBX1, RHOA, RRM1, RRM2, SEMA7A, SGMS1,







SLC25A5, SNRPB, SOD1, SPAG5, STAT1, STAT3, STAT5A,







STMN1, TBL1XR1, TCP1, TFDP1, TMSB10/TMSB4X,







TNFRSF9, TOP2A, TP73, TPX2, TUBB, TYMS, UBB,







UBE2C, UCP2, VCAM1, WHSC1, XRCC6, YWHAE, YWHAQ


Cell Death and
apoptosis
9.84E−12


ABCB1, ACTN4, ALDOC, ANXA5, ARL6IP1, ASB2, AURKA,
136


Survival




AURKB, BARD1, BIRC5, BUB1, CASC5, CCL3, CCL5,







CCNA2, CD2, CD38, CD7, CD82, CDC20, CDC45, CDC6,







CDCA2, CDK1, CDKN3, CENPF, CFL1, CHEK1, CKAP2,







COPZ1, COX5A, COX8A, CSF1, DAPK2, DDB2,







DHFR, DNAJA1, DUT, EIF3I, ENO1, ENTPD1, EZH2, FBXO5,







FEN1, FIS1, FKBP1A, GAPDH, GPI, GZMA, GZMB,







H2AFX, HAVCR2, HCLS1, HIST1H1C, HMGB1, HMMR,







HNRNPK, HSD17B10, HSPA8, HSPA9, HSPD1, HSPE1,







ID2, IFI16, IFNG, JAK3, KIAA0101, KIF11, KPNA2, LAG3,







LDHA, LSP1, MAD2L1, MAD2L2, MAP4K1, MCM2,







MELK, MKI67, MOB1A, MT2A, MYBL2, NOTCH1, NUSAP1,







PARK7, PBK, PCMT1, PIN1, PKM, PKMYT1, PLA2G16,







PLK1, PPP2R4, PPP5C, PRDX5, PRDX6, PRKAR1A,







PSMB8, PTMA, PTPN22, PTTG1, RAB27A, RACGAP1,







RANBP1, RBBP4, RBCK1, RBPJ, RBX1, RHOA, RRM1,







RRM2, SEMA7A, SGMS1, SLC25A5, SOD1, SPAG5, STAT1,







STAT3, STAT5A, STIL, STMN1, SUB1, TBL1XR1,







TCP1, TFDP1, TMSB10/TMSB4X, TNFRSF9, TOP2A,







TP73, TPX2, TYMS, UBB, UCP2, WHSC1, XRCC6, YWHAE,







YWHAQ


Cell Death and
cell death of
1.23E−11


ABCB1, ARL6IP1, AURKA, AURKB, BARD1, BIRC5, BUB1,
93


Survival
tumor cell



CASC5, CD7, CD82, CDC20, CDC6, CDCA2, CDK1,



lines



CHEK1, CKAP2, CLSPN, COPZ1, COX5A, COX8A, DAPK2,







DHFR, DTL, DUT, ENO1, EZH2, FANCL, FBXO5, FEN1,







FIS1, FKBP1A, GAPDH, GPI, GZMB, H2AFX, HCLS1,







HMMR, HNRNPK, HSPA8, HSPA9, HSPD1, IFI16, IFNG,







JAK3, KIF11, KPNA2, LAG3, LSP1, MAD2L1, MAP4K1,







MCM7, MELK, MT2A, MYBL2, NEK2, NOTCH1, PARK7,







PBK, PCK2, PKM, PKMYT1, PLA2G16, PLK1, PPP5C,







PRKAR1A, PTMA, PTPN22, PTTG1, RACGAP1, RBX1,







RHOA, RRM1, RRM2, SGMS1, SLC25A5, SOD1, SPAG5,







STAT1, STAT3, STAT5A, STMN1, TBL1XR1, TCP1,







TMSB10/TMSB4X, TOP2A, TP73, TPX2, TYMS, UBE2C,







UCP2, WHSC1, XRCC6, YWHAE


Cancer,
female
3.17E−11


ABCB1, ACP5, AURKA, BUB1, CALCOCO2, CCNA2, CCNB2,
36


Organismal
genital tract



CNB2, CDC20, CDC6, CKS1B, ENTPD1, FEN1, GZMA,


Injury and
serous cancer



H2AFX, HIST1H1C, HMMR, ITM2A, KIF11, KIF2C, KPNA2,


Abnormalities,




MYBL2, NOTCH1, PKM, PLK1, PLPP1, PTTG1, RACGAP1,


Reproductive




SEL1L3, SMC4, STAT1, TBL1XR1, TOP2A, TPX2,


System Disease




TRIP13, TSHZ2, UBE2C


Cell Cycle
delay in
4.82E−11


AURKA, CDC20, CDK1, DLGAP5, MAD2L1, PKMYT1,
9



mitosis of



PLK1, PTTG1, TOP2A



tumor cell



lines


Cell Cycle
arrest in
7.39E−11


AURKA, BARD1, BIRC5, CCNA2, CDC6, CDCA2, CDK1,
38



interphase



CHEK1, CKS1B, CKS2, CSF1, EZH2, FBXO5, FEN1, FKBP1A,







IFNG, JAK3, KIF11, LIMK1, MAD2L1, MAD2L2,







MCM7, MELK, MYBL2, NOTCH1, PKM, PLK1, PTPN22,







RBCK1, RBX1, RHOA, STAT1, TCP1, TFDP1, TMPO,







TP73, TYMS, UBL5


Cancer,
uterine
7.71E−11


ABCB1, AURKA, BUB1, CCNA2, CCNB2, CDC20, CDC6,
26


Organismal
serous



CKS1B, ENTPD1, FEN1, GZMA, HIST1H1C, HMMR, ITM2A,


Injury and
papillary



KIF11, KIF2C, KPNA2, MYBL2, PLK1, PTTG1, SEL1L3,


Abnormalities,
cancer



STAT1, TOP2A, TPX2, TRIP13, UBE2C


Reproductive


System Disease


Cell Cycle
arrest in cell
8.92E−11


AURKA, AURKB, BIRC5, CCNA2, CCNE2, CDC123, CDKN3,
33



cycle



CHEK1, CKAP2, CLSPN, EZH2, FKBP1A, ID2, IFI16,



progression



IFNG, IRF9, LAG3, MAD2L1, MELK, NOTCH1, PLK1,







RBX1, RHOA, RRM1, STAT1, STAT3, TCP1, TFDP1, TP73,







TYMS, USP1, XRCC6, YWHAE


Cellular
alignment of
1.19E−10


AURKA, BIRC5, CCNA2, DLGAP5, KIF2C, NCAPD2, NCAPG,
10


Assembly and
chromosomes



PLK1, SGO1, SMC4


Organization,


DNA


Replication,


Recombination,


and Repair


Cell Death and
apoptosis of
 1.2E−10


ABCB1, AURKA, BARD1, BIRC5, BUB1, CASC5, CD7,
77


Survival
tumor cell



CD82, CDC20, CDC6, CDCA2, CDK1, CHEK1, CKAP2, COPZ1,



lines



COX5A, COX8A, DAPK2, DUT, ENO1, EZH2, FBXO5,







FIS1, GAPDH, GZMB, H2AFX, HCLS1, HMMR, HNRNPK,







HSPA8, HSPA9, HSPD1, IFI16, IFNG, JAK3, KIF11,







KPNA2, LAG3, LSP1, MAD2L1, MAP4K1, MELK,







MT2A, NOTCH1, PARK7, PBK, PKM, PKMYT1, PLA2G16,







PLK1, PPP5C, PRKAR1A, PTMA, PTPN22, PTTG1, RACGAP1,







RBX1, RHOA, RRM1, RRM2, SGMS1, SLC25A5,







SOD1, SPAG5, STAT1, STAT3, STAT5A, STMN1, TBL1XR1,







TCP1, TMSB10/TMSB4X, TOP2A, TP73, TPX2,







TYMS, WHSC1, YWHAE


Infectious
Viral
1.31E−10
Increased
3.525
ABCB1, ACTR3, ANXA5, ARPC3, ATP5B, BST2, C14orf166,
92


Diseases
Infection



CCL3, CCL5, CCNA2, CD200R1, CD38, CD63, CHMP4A,







CHORDC1, COPB1, COPZ1, COX6A1, CSF1, CXCR6,







DAPK2, DHFR, DNAJA1, DTX2, EIF3I, EXOSC10, EZH2,







FDPS, FKBP1A, GAPDH, GBP1, GPI, GZMA, HAVCR2,







HIST1H1C, HIST1H2AC, HIST1H2BK, HMGB1, HMGN2,







HNRNPK, HSPA9, HSPD1, IFI35, IFNG, IRF9, KIF11,







LIMK1, LMAN2, LSP1, MT2A, NDUFA6, NDUFS6,







NEIL3, OASL, PARP9, PBK, PDIA6, PIN1, PKMYT1, PLK1,







PPIB, PPP5C, PSMA2, PSMA5, PSMB6, PSMB9, PSMC3,







PSME2, PTTG1, RACGAP1, RAN, RANBP1, RARRES3,







RBPJ, RHOA, RRM2, SAMSN1, STAT1, STAT3, STAT5A,







SUB1, TALDO1, TMPO, TNFRSF9, TOP2A, TP73,







TRAFD1, TUBB, TXNL4A, TYMS, UBE2C, UBE2L6


DNA
DNA
1.34E−10


BATF, BIRC5, BRIP1, CDC6, CHEK1, GAPDH, GZMA,
24


Replication,
damage



H2AFX, HLA-


Recombination,




DRB1, HLTF, IFNG, MAD2L2, PARK7, PBK, PLK1, RBX1,


and Repair




RHOA, RNASEH2B, RRM2, SOD1, STAT5A, TOP2A,







TP73, YWHAE


Cell Cycle
arrest in
 1.4E−10


BIRC5, BUB1, CASC5, FBXO5, KIF11, KIF4A, PLK1, RACGAP1,
13



mitosis of



RMI2, SPAG5, TBL1XR1, TCP1, TPX2



cervical



cancer cell



lines


Cell Death and
cytotoxicity
 1.6E−10
Increased
2.208
CALM1 (includes
26


Survival




others), CCL5, CD2, CD38, CD96, CHEK1, DHFR, FKBP1A,







GZMA, GZMB, HAVCR2, HLA-







DRB1, HPRT1, HSPA8, IFNG, IL21R, KIR2DL4, KLRB1,







MYBL2, NDUFS4, NOTCH1, PPIB, RAB27A, SOD1, STAT1,







TOP2A


Cell Cycle
delay in
3.44E−10


AURKA, CDC20, DLGAP5, MAD2L1, PKMYT1, PLK1,
8



mitosis of



PTTG1, TOP2A



cervical



cancer cell



lines


Immunological
systemic
3.83E−10


ABCB1, ALOX5AP, BIRC5, CCL3, CCL5, CD38, CD3D,
68


Disease
autoimmune



CD3G, CD7, CD96, CLEC2B, CSF1, CXCL13, CXCR6, DHFR,



syndrome



ENO1, FDPS, FKBP1A, GALNT2, GBP2, GBP4, GZMA,







GZMB, HAVCR2, HCLS1, HIST1H2AC, HLA-







DRA, HLA-







DRB1, HMGB1, HPRT1, HSPA8, HSPD1, IFI16, IFNG, IL21R,







ITGAE, JAK3, KLRB1, LAP3, LDHB, LSM2, MT2A,







NONO, OASL, PGK1, PPP1R7, PRDX5, PSMB8, PSMB9,







PTMA, PTPN22, RAB27A, SCUBE1, SQLE, SRP14, STAT1,







STAT3, STAT5A, TNFRSF9, TNFSF4, TRAFD1, TUBB,







TYMS, UBB, UBE2L6, UCP2, UQCC2, VCAM1


Neurological
neuromuscular
5.99E−10


ABCB1, ARL3, ATP5C1, ATP5L, CAPZB, CCL5, CD38,
59


Disease,
disease



COPE, COX7B, DHFR, DNAJA1, DNAJB11, DNAJB6, EPSTI1,


Skeletal




PSTI1, ETFB, FKBP1A, GAPDH, GBP1, GPI, HAVCR2, HLA-


and Muscular




DRA, HLA-


Disorders




DRB1, HMGB2, HMGN1, HSPA8, IFNG, LDHA, LDHB,







LIMK1, MT2A, NDUFB6, PARK7, PCMT1, PGK1, PIN1,







PKM, PRDX6, PSMA2, PSMB6, PSMB8, PSMB9, PSMC1,







PSME1, RAN, RANBP1, RARRES3, RRM1, RRM2, SOD1,







STMN1, SUB1, SUMO3, TOP2A, TPI1, TPM3, TUBA1B,







UBB, UQCR10, XRCC6


Cell Cycle,
segregation
6.23E−10


CCNA2, MAD2L1, NCAPD2, NEK2, NUSAP1, PLK1, SMC4,
9


Cellular
of sister



SPAG5, ZWINT


Assembly and
chromatids


Organization,


DNA


Replication,


Recombination,


and Repair


Cell Cycle
anaphase
6.39E−10


CDC20, CKAP2, LIMK1, MAD2L1, MCM4, NCAPD2, TOP2A,
8







TRIP13


Nucleic Acid
metabolism
6.6E−10
Increased
3.396
ATP5B, ATP5C1, ATP5J2, ATP5L, CDK1, COX8A, ENTPD1,
19


Metabolism,
of nucleoside



HMGB1, HSPA8, HSPD1, NDUFS6, PKM, SGMS1,


Small Molecule
triphosphate



SLC25A5, SOD1, STAT3, TYMS, UCP2, UQCC2


Biochemistry


Cell Cycle,
check
8.51E−10


BUB1, CCNB2, CCNE2, CDC20, CDC6, CHEK1, CKS1B,
16


DNA
point control



CKS2, HMGN1, MAD2L1, MCM7, PIN1, PLK1, PTTG1,


Replication,




RBBP8, ZWINT


Recombination,


and Repair


Cancer,
breast cancer
1.04E−09


ABCB1, ACP5, ACTN4, ALDOC, ANKS1B, ASF1B, ATP10D,
104


Organismal




ATP5C1, ATP5J2, AURKB, BARD1, BCCIP, BIRC5,


Injury and




BRIP1, CALM1 (includes


Abnormalities,




others), CCL3, CD3G, CDC20, CDCA7, CDK1, CHEK1, COMMD7,


Reproductive




DHFR, DIXDC1, DNAJB6, DPP3, ENO1, ENSA,


System Disease




ETFA, ETFB, EZH2, FABP5, FAM179A, FARSA, FDPS,







FIS1, FKBP1A, H2AFX, H2AFZ, HAPLN3, HIST1H1C,







HMMR, IRF9, ITGAE, JAK3, KIF11, KPNA2, LAGE3, LIMK1,







LSP1, MAST4, MCM6, MELK, MKI67, MT2A, MYBL2,







MYO7A, NCAPD2, NEK2, NFYC, NOTCH1, ODF2,







PGK1, PIN1, PKM, PRC1, PRDX5, PSMA5, PTPN22, PTTG1,







RANBP1, RBBP8, RBX1, RFX5, RHOA, RRM1, RRM2,







SCCPDH, SCUBE1, SGO1, SLC25A5, SOD1, SQLE, SRGAP3,







STAT1, STAT3, STMN1, TBL1XR1, TCP1, TNFRSF9,







TOP2A, TP73, TPI1, TSHZ2, TUBA1B, TUBB, TYMS,







UBB, UBE2C, UHRF1, WDR1, WHSC1, YWHAQ, ZMIZ1


Cancer,
lymphocytic
1.85E−09


AFAP1L2, AURKA, AURKB, BIRC5, BST2, CCNA2,
54


Hematological
cancer



CDC123, CDCA2, CXCL13, DDB2, DHFR, EZH2, FEN1,


Disease,




FKBP1A, H2AFX, HIST1H1C, HIST1H2BK, HLA-


Immunological




DRB1, HMGB1, ID2, IFNG, JAK3, KIF11, LIMK1, LSM2,


Disease,




MAP4K1, MCM5, MKI67, NOTCH1, PAG1, PSMB9, RAN,


Organismal




RANBP1, RBBP8, RHOA, RRM1, RRM2, SFXN1, SNRPB,


Injury and




SP140, STAT1, STAT3, STAT5A, STMN1, TNFRSF9,


Abnormalities




TOP2A, TP73, TPX2, TRIP12, TSHZ2, TYMS, UBE2A,







WHSC1, XRCC6


Cell Cycle
ploidy
2.11E−09


AURKA, AURKB, BIRC5, BUB1, CCNA2, CDC20, CKAP2,
20







CKS1B, CKS2, FBXO5, KIF11, MAD2L1, NEK2, PIN1,







PLK1, PTTG1, STAT1, STMN1, TOP2A, TPX2


Connective
Rheumatic
2.46E−09


ABCB1, ALOX5AP, BARD1, BIRC5, CCL3, CCL5, CD200R1,
67


Tissue
Disease



CD3D, CLEC2B, CSF1, CXCL13, DHFR, ENO1, FDPS,


Disorders,




FKBP1A, GALNT2, GBP2, GPI, GZMA, GZMB, HAVCR2,


Inflammatory




HCLS1, HIST1H2AC, HLA-DRA, HLA-


Disease,




DRB1, HLTF, HMGB1, HMMR, HPRT1, HSPA8, HSPD1,


Skeletal




HSPE1, IFNG, IL21R, JAK3, KLRB1, LAP3, LDHB, MAP4K1,


and Muscular




MCM5, MT2A, NONO, OASL, PGK1, PPP1R7, PRDX5,


Disorders




PSMB8, PSMB9, PTMA, PTPN22, RAB27A, RBPJ, RHOA,







SCUBE1, SQLE, SRP14, STAT1, STAT3, STAT5A,







TNFRSF9, TNFSF4, TP73, TYMS, UBB, UBE2L6, UQCC2,







VCAM1


Cancer,
plasma cell
2.55E−09


ACP5, AKAP5, ANXA5, BIRC5, CCL3, CCL5, CD38, CDC20,
31


Hematological
dyscrasia



CDK1, DHFR, EPSTI1, FDPS, FEN1, FKBP1A, IFNG,


Disease,




KIF2C, KPNA2, MKI67, NONO, PDIA6, PMF1/PMF1-


Immunological




BGLAP, PSMA2, PSMB8, PSMB9, RRM1, RRM2, STAT3,


Disease,




TFDP1, TOP2A, XRCC6, YWHAE


Organismal


Injury and


Abnormalities


Cell Cycle
formation of
3.45E−09


AURKA, BIRC5, CKAP2, FBXO5, KIF11, KIF2C, KIF4A,
13



mitotic



NEK2, PLK1, RAN, STMN1, TPX2, TUBB



spindle


Cell
morphology
3.58E−09


AURKA, BIRC5, BUB1, CDK1, FBXO5, KIF11, KIF2C, KIF4A,
17


Morphology,
of



LIMK1, NUSAP1, ORC6, PLK1, PRKAR1A, PTTG1,


Cellular
cytoskeleton



RACGAP1, RAN, TPX2


Assembly and


Organization


Gene
expression of
4.52E−09
Increased
2.11
ACTR3, AFAP1L2, AKAP5, ASPM, AURKB, BATF, BIRC5,
110


Expression
RNA



BRIP1, BST2, C14orf166, CCL3, CCL5, CCNA2, CD38,







CD3D, CD82, CDK1, CENPF, CKAP2, CKS1B, CKS2, COMMD7,







COPZ1, CSF1, DDB2, DIXDC1, DNAJB6, DRAP1,







EIF3I, ENO1, ETV7, EZH2, FKBP1A, GAPDH, GBP2,







H2AFX, H2AFZ, HAVCR2, HCLS1, HIST1H1B, HIST1H1C,







HLTF, HMGB1, HMGB2, HMGN1, HMGN2, HNRNPK,







HSPA8, ID2, IFI16, IFNG, IRF9, JAK3, KPNA2, MAD2L2,







MCM7, MELK, MRPL51, MYBL2, NAB1, NDFIP2, NFYC,







NONO, NOTCH1, PARK7, PIN1, PLK1, PMF1/PMF1-







BGLAP, POLR2G, PPP2R5D, PPP5C, PRKAG1, PRKAR1A,







PSMC3, PTMA, PTMS, PTPN22, PTPN7, PTTG1, RAB27A,







RAB3GAP1, RARRES3, RBBP8, RBCK1, RBPJ, RBX1,







RFX5, RHOA, RNASEH2B, SGMS1, SP140, STAT1,







STAT3, STAT5A, SUB1, TBL1XR1, TFDP1, TMPO, TNFSF4,







TOP2A, TOX2, TP73, TRIP13, UHRF1, VCAM1, WARS,







WHSC1, XRCC6, YWHAQ, ZMIZ1


Connective
rheumatoid
4.71E−09


ABCB1, BIRC5, CCL3, CCL5, CD3D, CLEC2B, CSF1, CXCL13,
48


Tissue
arthritis



DHFR, ENO1, FDPS, FKBP1A, GALNT2, GBP2, GZMA,


Disorders,




GZMB, HAVCR2, HCLS1, HIST1H2AC, HLA-


Immunological




DRA, HLA-


Disease,




DRB1, HMGB1, HPRT1, HSPA8, HSPD1, IFNG, JAK3, LAP3,


Inflammatory




LDHB, NONO, PGK1, PPP1R7, PRDX5, PSMB8, PSMB9,


Disease,




PTMA, PTPN22, SQLE, SRP14, STAT1, STAT3, STAT5A,


Inflammatory




TNFSF4, TYMS, UBB , UBE2L6, UQCC2, VCAM1


Response,


Skeletal and


Muscular


Disorders


Cell Death and
cell survival
5.63E−09
Increased
5.356
ABCB1, AFAP1L2, AKAP5, ANKS1B, ANXA5, AURKA,
79


Survival




AURKB, BARD1, BIRC5, BRIP1, CCL3, CCL5, CCNA2,







CD38, CD7, CD82, CDK1, CHEK1, CSF1, DNAJB6, DPP3,







ENO1, FBXO5, GZMB, H2AFX, HMGB1, HMGB2, HMGN1,







HNRNPK, HSD17B10, HSPD1, ID2, IFNG, IL21R, IRF9,







JAK3, KIF11, LDHA, MAD2L1, MAD2L2, MYBL2,







NOTCH1, PARK7, PBK, PIN1, PKM, PLK1, PLPP1, PPIB,







PPM1M, PRDX6, PRKAR1A, PSMA6, PSMC3, PTPN22,







PTPN7, RARRES3, RBBP4, RHOA, RRM1, RRM2, SHFM1,







SNRPE, SOD1, STAT1, STAT3, STAT5A, STMN1, TCP1,







TNFRSF9, TOP2A, TP73, TUBB, TYMS, UCP2, UHRF1,







VCAM1, WHSC1, XRCC6


Cell Cycle
delay in
 6.1E−09


BIRC5, CDC20, CKAP2, LIMK1, MAD2L1, PLK1, RACGAP1,
9



initiation of



TOP2A, TRIP13



M phase


Cancer,
benign
6.11E−09


ABCB1, ACP5, ALDOC, ANXA5, AURKA, AURKB, BIRC5,
65


Organismal
neoplasia



BRIP1, BUB1, C9orf16, CALCOCO2, CASC5, CCNB2,


Injury and




CCNE2, CDK1, CSF1, DBN1, DDB2, DUT, EZH2, FABP5,


Abnormalities




FANCI, FKBP1A, H2AFX, HIST1H1C, HMGB1, HMGB2,







HMGN1, HMMR, HSD17B10, IFNG, JAK3 , KIF11,







LSP1, MKI67, MTHFD2, MYBL2, MYL6, NOTCH1, NUSAP1,







PAG1, PARK7, PKM, PLPP1, PPA1, PRDX6, PRKAR1A,







PSMA6, PTTG1, RACGAP1, RBBP8, RRM2, SMC4,







SRGAP3, STAT1, STAT3, STIL, TBL1XR1, TFDP1, TNFRSF9,







TOP2A, TP73, TSHZ2, UQCRH, VCAM1
















TABLE 10





Disease-specific survival in NSCLC patients based on CD8a and CD103


density in tumors.



















1 = Adenocarcinoma
1 = male
1 = dead



2 = Squamous carcinoma
2 = female
2 = alive














1 = low
1 = low



2 = intermediate
2 = intermediate



3 = high
3 = high


















Patient
Tumor


Disease-free
Tumor




ID
histology
Gender
Dead/Alive
survival
Stage
CD8a
CD103





1
1
1
1
31
IV
NA
1


2
1
2
2
32
IA
2
1


3
1
1
2
38
IIB
1
1


4
1
1
1
39
IA
1
1


5
1
2
2
42
IB
1
1


6
1
1
1
48
IB
1
1


7
1
2
1
50
IIIB
1
1


8
1
1
1
32
IIB
2
2


9
1
1
1
34
IIIA
1
2


10
1
2
2
35
IIB
2
2


11
1
2
1
35
NA
2
2


12
1
1
1
81
IA
1
1


13
1
2
2
38
IB
2
2


14
1
1
1
89
IIIB
1
1


15
1
1
1
89
IIB
1
1


16
1
1
1
44
NA
2
2


17
1
2
1
93
IIA
1
1


18
1
2
1
115
IV
1
1


19
1
1
1
51
IIB
2
2


20
1
1
1
52
NA
2
2


21
1
1
2
56
IIB
2
2


22
1
2
1
62
IB
2
2


23
1
1
1
128
IA
1
1


24
1
2
2
71
IIA
3
2


25
1
2
1
139
IIA
2
1


26
1
2
1
153
IIIA
2
1


27
1
2
1
174
IIB
2
1


28
1
2
1
206
IIA
2
1


29
1
1
1
96
IB
1
NA


30
1
2
1
114
IIIA
2
2


31
2
1
1
145
NA
1
1


32
1
1
1
209
IIIB
1
1


33
1
2
1
248
IV
1
1


34
1
2
1
130
IIA
NA
NA


35
1
1
1
248
IB
1
1


36
1
2
1
140
IA
1
2


37
1
1
1
144
NA
1
NA


38
1
1
1
253
IB
3
1


39
2
2
2
2443
NA
1
NA


40
1
2
1
257
IV
1
1


41
1
2
1
287
IIIA
1
1


42
1
1
1
151
IIB
1
2


43
1
2
1
290
IIA
1
1


44
1
2
1
299
IB
1
1


45
1
1
1
154
IB
2
2


46
1
2
1
161
IA
2
2


47
1
2
1
299
IIA
1
1


48
1
2
1
327
IIIA
1
1


49
1
1
1
337
NA
1
1


50
1
1
1
342
IV
1
1


51
1
1
1
345
IIIA
1
1


52
1
2
1
222
IIA
1
2


53
1
2
1
226
IIIB
2
2


54
1
2
1
237
IA
3
2


55
1
1
1
237
IIB
2
2


56
1
1
1
357
IV
1
1


57
1
2
1
368
IIIA
1
1


58
1
1
1
371
IA
1
1


59
1
2
1
393
IIB
1
1


60
1
1
1
394
IIB
1
1


61
1
1
1
275
NA
2
2


62
1
2
1
411
IB
1
1


63
1
2
1
423
IA
2
1


64
1
1
1
431
NA
1
1


65
1
1
1
460
IV
2
1


66
1
2
1
289
IV
3
2


67
1
1
1
467
NA
1
1


68
1
1
1
290
IV
2
2


69
1
1
1
292
IV
2
2


70
1
1
1
470
IV
NA
1


71
1
2
1
473
IB
1
1


72
1
2
1
307
NA
NA
NA


73
1
1
1
315
NA
2
2


74
1
1
1
324
IIIB
2
2


75
1
1
1
473
IIIB
1
1


76
1
1
1
480
IB
1
1


77
1
2
1
483
IB
1
1


78
1
1
1
490
NA
1
1


79
1
1
1
359
IIIB/IV
1
2


80
1
1
1
493
IIB
1
1


81
1
2
1
494
IIB
1
1


82
1
2
1
538
IIIA
1
1


83
1
2
1
543
IV
2
1


84
1
2
1
553
IIIB
1
1


85
1
1
1
569
IIIA
1
1


86
1
2
1
593
IIIA
2
1


87
1
1
1
610
IV
1
1


88
1
2
1
402
IA
2
2


89
1
1
1
614
IV
1
1


90
1
1
1
615
IB
1
1


91
1
1
2
416
IA
1
2


92
1
2
1
417
IV
2
2


93
1
1
1
638
IIIA
1
1


94
1
1
2
652
IIB
NA
1


95
1
2
1
663
IIIA
1
1


96
1
2
1
664
IB
1
1


97
1
1
1
696
IV
1
1


98
1
2
1
708
IV
2
1


99
1
1
1
709
IV
2
1


100
1
1
1
472
IIIA
3
2


101
1
2
1
721
IA
1
1


102
1
2
1
774
IIIA
1
1


103
1
2
1
808
IV
2
1


104
1
2
1
814
IIIA
1
1


105
2
2
2
1874
NA
2
2


106
1
1
1
814
IIIA
2
1


107
1
1
1
489
IA
2
2


108
1
2
1
834
IIB
2
1


109
1
2
1
862
NA
3
1


110
1
2
1
863
IB
1
1


111
1
2
2
926
IA
1
1


112
1
1
1
496
IB
1
2


113
1
2
1
497
IIB
2
2


114
1
1
1
511
IA
2
2


115
2
1
2
1680
NA
2
1


116
1
1
1
931
IIIA
1
1


117
1
1
1
540
IIIA
1
2


118
1
1
2
933
IA
2
1


119
1
1
1
544
IB
2
2


120
1
2
1
948
IA
1
1


121
1
1
2
950
IIB
1
1


122
1
2
2
951
IIB
2
1


123
1
2
1
969
IA
1
1


124
1
2
2
971
IA
1
1


125
1
1
2
973
IIIA
2
1


126
1
2
2
973
IB
2
1


127
1
1
1
589
IIA
2
2


128
1
2
2
973
IA
2
1


129
1
2
1
975
IIA
1
1


130
1
2
2
979
IA
1
1


131
1
2
2
986
IIIA
1
1


132
1
1
1
611
IA
1
2


133
1
2
1
996
IV
1
1


134
2
1
2
1554
NA
1
1


135
1
1
2
1006
IIB
1
1


136
1
2
2
1016
IIB
1
1


137
1
1
1
618
IIB
2
2


138
1
1
1
1019
IIA
2
1


139
1
1
1
1020
IIIA
1
1


140
1
1
1
639
IB
1
2


141
1
2
2
1027
IIIA
1
1


142
1
2
2
1028
IIB
1
1


143
1
2
2
1049
IIA
1
1


144
1
1
2
1058
IA
1
1


145
1
2
2
1065
IV
1
1


146
1
2
1
1068
IIB
2
1


147
2
1
1
930
IIIA
2
2


148
1
1
2
1070
IIB
2
1


149
1
1
1
695
IIB
NA
NA


150
1
2
2
1071
IA
1
1


151
1
1
1
1073
IIIB
1
1


152
1
1
1
709
IB
2
NA


153
1
1
2
1077
IA
2
1


154
1
1
2
1078
NA
3
1


155
1
2
1
719
IB
2
2


156
1
1
1
1080
IIIA
1
1


157
1
1
1
730
IV
1
2


158
1
1
2
750
IB
2
2


159
1
1
1
752
IIB
2
2


160
1
2
2
1104
IA
1
1


161
1
1
2
1107
IA
1
1


162
1
2
2
1114
IIB
1
1


163
1
2
2
1128
IB
3
1


164
1
2
2
1139
IA
1
1


165
1
1
1
1161
IB
1
1


166
1
2
2
1171
IIB
2
1


167
1
2
2
1209
IV
2
1


168
1
2
1
847
IIIA
1
2


169
1
2
2
1210
IIB
1
1


170
1
1
2
1213
IA
1
1


171
1
1
2
1218
IB
1
1


172
1
1
1
895
IIIB
2
2


173
1
1
2
1219
IIA
1
1


174
1
1
1
908
IB
2
2


175
1
2
1
911
IIIA
3
2


176
1
2
2
1220
IIA
1
1


177
1
1
2
1223
IIIA
1
1


178
1
1
2
1227
IIB
1
1


179
1
1
2
1240
IIA
2
1


180
1
2
2
943
IA
2
2


181
1
1
2
944
IA
3
2


182
1
1
2
947
IB
2
2


183
1
1
2
1240
NA
NA
1


184
1
1
2
1248
IB
1
1


185
1
2
2
1254
IA
1
1


186
1
1
1
1261
IB
NA
1


187
1
2
2
953
IIA
2
2


188
1
2
2
1273
IA
1
1


189
1
1
1
1282
IIA
1
1


190
1
2
2
1300
IB
2
1


191
1
2
2
1324
IIIA
2
1


192
1
2
1
1325
IB
1
1


193
1
1
2
1325
IIIA
1
1


194
1
2
2
978
IIA
2
2


195
1
2
1
979
IV
3
2


196
1
2
1
1326
IIIB
1
1


197
1
1
2
1332
IV
1
1


198
1
2
2
1342
IIB
2
1


199
1
1
1
996
IIA
2
2


200
1
2
2
1002
IA
2
2


201
1
1
2
1345
NA
1
1


202
1
2
2
1013
IA
2
2


203
1
2
1
1016
IIA
2
2


204
1
2
1
1360
IB
1
1


205
1
2
1
1386
IIB
1
1


206
1
1
2
1387
IB
1
1


207
1
2
2
1399
IA
1
1


208
1
2
2
1436
IIIA
1
1


209
1
2
1
1028
IV
1
2


210
1
1
2
1443
IIB
2
1


211
1
1
2
1475
IA
1
1


212
1
1
2
1034
IA
2
2


213
1
1
2
1476
IB
1
1


214
1
2
1
1482
IIIB
1
1


215
1
1
2
1527
IB
2
1


216
1
2
2
1539
IIB
2
1


217
1
2
2
1568
IIB
1
1


218
1
1
1
1598
IIA
3
1


219
2
1
2
1108
NA
NA
NA


220
1
1
2
1626
IIB
2
1


221
1
1
1
1656
IA
2
1


222
1
1
2
1660
IIB
1
1


223
1
1
2
1661
IIIA
1
1


224
1
1
2
1720
IA
2
1


225
2
1
1
469
NA
NA
NA


226
1
2
2
1079
IB
1
NA


227
1
2
2
1723
NA
1
1


228
1
2
1
1763
IIIA
1
1


229
1
2
2
1084
NA
1
2


230
1
1
2
1093
IB
1
2


231
1
1
2
1777
IB
3
1


232
2
2
2
1022
NA
2
NA


233
1
1
1
1818
IA
1
1


234
1
2
2
1833
IIIA
2
1


235
2
1
1
30
NA
1
NA


236
1
2
2
1836
IA
1
1


237
1
2
2
1850
IIA
1
1


238
1
1
2
1874
IA
2
1


239
1
2
2
1896
IA
1
1


240
1
2
2
1905
IIIA
1
1


241
1
2
1
1134
IIA
2
2


242
2
1
1
555
IA
2
NA


243
2
2
2
945
NA
3
NA


244
2
2
1
409
NA
NA
NA


245
1
1
2
1139
IB
3
2


246
1
1
2
1987
IB
2
1


247
1
2
2
1140
IIA
1
2


248
1
2
1
1153
IB
2
2


249
1
1
2
1990
IV
1
1


250
1
2
2
2035
IA
2
1


251
1
1
1
1172
IA
1
2


252
1
1
1
1184
NA
1
2


253
1
2
1
1187
IIIA
2
2


254
1
2
2
1197
IIA
3
2


255
1
1
2
1198
IB
2
2


256
1
1
1
1209
IA
3
2


257
1
2
2
1213
IIA
2
2


258
1
1
2
2121
IIB
1
1


259
1
2
2
2128
IIIA
1
1


260
1
1
1
2132
IB
1
1


261
1
1
2
1219
IA
2
2


262
1
2
2
2137
IA
1
1


263
1
2
2
2149
IA
1
1


264
1
2
2
2154
IA
1
1


265
1
2
1
2164
IV
1
1


266
1
1
2
1231
IB
3
2


267
1
1
2
2210
IIB
2
1


268
1
1
2
2225
IIA
1
1


269
1
1
2
2226
IA
1
1


270
1
2
2
2234
IIIB
1
1


271
1
1
2
2284
IB
2
1


272
1
2
2
2288
IB
1
1


273
1
2
2
2294
IB
1
1


274
1
1
2
1254
IB
1
2


275
1
2
2
2295
IA
1
1


276
1
1
2
2296
IIA
1
1


277
1
2
2
2304
IIIB
1
1


278
1
2
2
1269
IB
2
2


279
1
1
2
2364
IB
1
1


280
1
2
1
2393
IB
1
1


281
1
2
2
1280
IB
2
2


282
1
1
2
2401
IA
1
1


283
1
2
2
1293
IA
2
2


284
1
2
2
2420
IB
2
1


285
1
2
2
2449
IB
1
1


286
1
1
2
1317
IB
2
2


287
1
2
1
1320
IB
3
2


288
1
2
2
2470
IV
1
1


289
1
2
2
2500
IIB
2
1


290
1
1
2
2522
IA
1
1


291
1
2
2
2536
IB
2
1


292
1
2
2
2571
IA
2
1


293
1
2
2
2669
IA
1
1


294
1
2
2
2703
IA
2
1


295
1
1
2
1349
IV
2
2


296
1
2
2
1350
IV
2
2


297
1
1
2
1353
NA
2
2


298
1
2
2
2715
IB
2
1


299
1
2
2
1377
IV
1
NA


300
1
2
2
2900
IIIB
1
1


301
1
2
2
1387
IB
3
2


302
1
1
2
3060
IB
1
1


303
2
1
2
3072
IB
1
1


304
2
1
1
1017
IIIA
2
1


305
2
1
2
1105
IIIA
1
1


306
2
1
2
1142
IIA
1
1


307
1
1
2
1401
IIB
2
2


308
2
1
2
1149
IIA
2
1


309
1
2
2
1409
IA
2
2


310
2
1
1
1201
IIIA
1
1


311
2
2
2
1233
IV
2
1


312
2
1
1
1269
IB
2
1


313
2
1
2
1286
IIIA
1
1


314
1
1
2
1429
IB
2
2


315
2
1
2
1289
IIB
1
1


316
2
1
2
1309
IA
1
1


317
2
1
1
131
IIIA
2
1


318
2
1
2
134
IIB
1
1


319
1
2
2
1462
IB
2
2


320
2
1
2
1374
IIB
1
1


321
1
2
2
1470
IA
2
2


322
1
1
2
1475
IIIA
2
2


323
2
2
1
1432
IIA
1
1


324
2
2
2
1441
IV
2
1


325
1
2
2
1478
NA
2
2


326
2
1
2
1441
IA
1
1


327
2
1
2
1465
IB
1
1


328
2
1
2
1490
IIB
1
1


329
2
1
2
1552
IB
2
1


330
1
2
1
1496
NA
1
NA


331
2
2
2
1560
IIB
1
1


332
1
1
2
1511
IA
1
2


333
1
1
1
1514
IIB
1
2


334
1
1
2
1518
IA
1
2


335
2
2
2
1660
IB
1
1


336
2
1
1
168
IV
1
1


337
2
2
2
1764
IIIA
2
1


338
1
1
2
1540
IA
1
2


339
2
1
2
1822
IIIA
1
1


340
1
2
1
1565
NA
1
2


341
2
1
2
1860
IIIA
2
1


342
2
1
2
1932
IIA
2
1


343
2
1
2
1993
IIIA
1
1


344
2
2
2
2016
IIB
1
1


345
1
1
2
1570
IB
2
2


346
2
2
2
2017
IB
2
1


347
1
1
2
1580
IIB
3
2


348
1
1
1
1587
IIIB
1
2


349
1
2
2
1589
IB
1
2


350
1
2
1
1592
IA
3
2


351
2
2
2
2017
IB
1
1


352
2
2
2
2022
IA
1
1


353
2
2
2
2044
IB
1
1


354
2
2
2
2081
IB
2
1


355
1
2
2
1619
NA
2
2


356
2
2
2
2109
IB
1
1


357
1
1
1
1650
IIB
2
2


358
2
1
2
2234
IA
1
1


359
2
1
2
2269
IIB
1
1


360
2
1
2
2294
IIIA
2
1


361
2
1
2
2309
IB
2
1


362
2
1
2
2318
IIB
1
1


363
2
1
2
2326
IA
1
1


364
2
1
2
2338
IIIA
1
1


365
2
1
1
241
IIB
3
1


366
1
2
2
1678
IA
1
2


367
1
2
1
1713
IIB
2
2


368
2
1
2
2452
IIB
2
1


369
2
1
1
252
IIB
2
1


370
2
2
1
252
IIB
1
1


371
2
2
1
270
IIB
1
1


372
1
2
2
1737
IA
3
2


373
2
1
2
2774
IIIB
2
1


374
2
1
2
2966
IA
1
1


375
2
1
2
2992
IIB
1
1


376
1
2
2
1780
IB
2
2


377
1
1
2
1800
IIB
2
2


378
1
2
2
1801
IB
2
2


379
1
2
2
1804
IB
3
2


380
2
1
1
313
IB
1
1


381
1
2
2
1814
IA
2
2


382
2
1
1
314
IIIA
1
1


383
2
2
1
358
IIIA
2
1


384
2
1
1
368
IIIA
2
1


385
2
1
2
37
IIB
1
1


386
2
1
1
381
IIB
3
1


387
2
1
1
413
IA
1
1


388
2
2
1
428
IIA
1
1


389
2
1
1
436
NA
1
1


390
2
1
1
44
IB
1
1


391
2
1
1
500
IB
2
1


392
2
2
1
504
NA
1
1


393
1
2
2
1909
IIIA
1
2


394
1
2
1
1916
IIIB
1
NA


395
2
2
1
532
IB
3
1


396
1
2
2
1926
IIB
3
2


397
2
1
1
55
IIA
2
1


398
1
1
2
1961
IA
2
2


399
2
1
1
617
IIIB
1
1


400
1
1
2
1982
IB
2
2


401
2
1
1
638
IIB
2
1


402
2
1
1
651
IB
1
1


403
2
1
2
733
IA
2
1


404
2
1
1
746
IIB
2
1


405
2
1
1
765
IIA
1
1


406
1
1
1
2026
IA
2
2


407
2
1
1
931
IB
1
1


408
1
2
2
2051
IA
NA
2


409
2
2
2
958
IIB
2
1


410
1
2
2
2074
IIIA
2
2


411
2
2
2
985
IA
2
1


412
1
2
2
2086
IB
2
NA


413
1
1
2
2121
IA
1
2


414
1
1
2
2143
IIIA
1
2


415
1
1
2
2247
IA
2
2


416
1
2
2
2253
IB
2
2


417
1
2
2
2322
IB
1
2


418
1
2
2
2346
IIB
1
2


419
1
2
2
2360
IIIA
3
2


420
1
2
2
2445
IA
3
2


421
1
2
2
2450
IB
3
2


422
1
2
2
2469
IA
2
2


423
1
1
2
2492
IIA
2
2


424
1
2
2
2533
IIIA
3
2


425
2
1
2
2535
NA
2
1


426
1
2
2
2676
IA/IIA
2
2


427
1
2
2
2681
IB
2
2


428
1
2
2
2711
IB
1
2


429
1
1
1
146
IB
1
1


430
1
1
1
149
IB
2
1


431
1
2
2
2764
IB
1
2


432
1
1
2
2829
IB
3
2


433
1
2
1
171
IA
1
1


434
1
2
1
215
IV
2
1


435
1
1
2
2897
IB
2
2


436
1
1
1
279
IIIA
2
1


437
1
2
2
2934
IA
2
2


438
1
2
1
390
IV
2
1


439
1
1
1
464
NA
2
1


440
1
1
2
2960
IIB
1
2


441
1
2
2
2963
IIIA
1
2


442
1
1
1
522
IB
2
1


443
1
2
2
3032
IB
2
2


444
1
2
1
577
IA
1
1


445
1
1
1
598
IIIA
2
1


446
1
2
1
605
IA
2
1


447
1
1
2
617
IA
2
1


448
1
1
1
620
IIIA
3
1


449
2
1
1
1008
IIA
1
NA


450
1
1
1
710
IV
1
1


451
2
1
2
101
IA
1
NA


452
2
2
2
1021
IA
2
NA


453
1
1
1
866
IA
2
1


454
1
2
1
908
IB
1
1


455
1
2
1
1110
IA
1
1


456
1
1
2
1322
IB
2
1


457
1
1
2
1388
IIA
1
1


458
1
2
2
1423
IIB
2
1


459
2
1
2
1056
IIB
NA
NA


460
1
2
1
1441
IIIB
1
1


461
1
1
1
1441
IA
1
1


462
1
1
2
1468
IA
2
1


463
2
2
2
1084
IB
2
2


464
2
1
2
1087
IB
3
2


465
2
2
2
1094
IB
NA
NA


466
1
1
1
1485
IB
2
1


467
2
2
2
1107
IIIA
1
NA


468
1
2
2
1534
IV
2
1


469
1
2
2
1713
IB
2
1


470
1
2
2
1764
IA
2
1


471
1
1
2
1771
IIA
2
1


472
1
2
2
1807
IB
2
1


473
2
1
2
1160
IIIA
2
2


474
1
2
2
1898
IIIA
2
1


475
1
1
2
1946
IB
2
1


476
2
1
2
118
IIIA/IIIB
2
2


477
1
2
1
1970
IB
2
1


478
1
2
2
1986
IA
2
1


479
2
1
2
1188
IA
2
2


480
2
1
2
1192
IIIA
2
2


481
1
2
2
2067
IIIA
2
1


482
2
2
2
1216
IA
NA
NA


483
1
2
2
2184
IA
1
1


484
1
1
2
2185
IIIB
1
1


485
1
2
2
2408
IB
2
1


486
2
2
2
1223
IB
2
2


487
1
2
2
2535
IB
2
1


488
1
2
2
2667
IB
2
1


489
1
2
2
2857
IIB
1
1


490
2
1
2
1238
IIIA
2
2


491
2
2
2
1239
IB
2
NA


492
2
1
1
1241
IA
2
2


493
1
2
2
2975
IA
2
1


494
2
1
2
1248
IIIA
2
2


495
2
1
1
1258
IA
2
2


496
2
2
2
1258
IIIA
2
NA


497
1
1
2
3065
IA
1
1


498
2
1
2
1030
IIIA
2
1


499
2
2
2
1031
IIIA
2
1


500
2
2
1
1053
IIB
2
1


501
2
2
1
1080
IIA
2
1


502
2
1
1
1122
IIA
1
1


503
2
1
2
1296
IB
2
1


504
2
2
2
1309
IB
1
2


505
2
1
1
133
IIB
1
1


506
2
1
1
1348
IA
1
1


507
2
2
1
131
IV
1
NA


508
2
2
2
1318
IA
2
2


509
2
1
1
1323
IB
2
2


510
2
2
1
1367
IB
1
1


511
2
1
2
1482
IB
2
1


512
2
1
1
1495
IIIA
2
1


513
2
1
2
1563
IA
2
1


514
2
1
2
1591
IIB
2
1


515
2
1
1
1371
IIB
2
2


516
2
1
2
1702
IB
2
1


517
2
1
1
171
IIB
2
1


518
2
1
2
1387
IA
2
2


519
2
1
2
1758
IIIA
2
1


520
2
2
1
1848
IB
1
1


521
2
1
2
1855
IA
2
1


522
2
2
2
1940
IB
2
1


523
2
1
2
1454
IB
2
2


524
2
1
1
1944
IA
1
1


525
2
1
2
2395
IB
2
1


526
2
2
2
1478
IB
2
2


527
2
1
2
2590
IIIA
2
1


528
2
1
1
2607
IIB
2
1


529
2
1
2
1485
IB
3
2


530
2
1
2
279
IB
2
1


531
2
1
2
2827
IB
1
1


532
2
1
1
297
IB
1
1


533
2
1
2
3023
IB
1
1


534
2
1
2
3024
IIIA
1
1


535
2
1
2
3054
IIB
1
1


536
2
2
2
1499
IB
2
2


537
2
1
1
455
IIIA
1
1


538
2
2
2
841
IIA
2
1


539
2
1
1
1537
IB
1
2


540
2
1
2
1540
IIIB
3
2


541
1
2
1
386
IIIA
3
3


542
2
1
2
1559
IIA
2
2


543
2
2
2
1357
IB
2
3


544
2
1
1
1374
IA
2
3


545
2
1
2
1577
IB
2
3


546
2
1
1
158
IIIA
2
2


547
2
2
2
1615
IIA
3
2


548
2
2
2
1668
IA
3
2


549
2
2
2
1554
NA
2
3


550
2
2
1
186
NA
2
3


551
1
2
1
482
IIB
3
3


552
1
1
1
688
IB
3
3


553
2
1
2
178
IIA
1
2


554
2
2
2
1793
IIIA
2
2


555
1
2
1
1409
IB
3
3


556
2
1
2
1843
IIIA
2
2


557
1
1
2
1496
IB
3
3


558
1
2
2
1506
NA
2
3


559
1
2
2
1533
IIA
2
3


560
1
1
2
1555
NA
2
3


561
2
1
2
189
IIIA
2
2


562
2
2
2
1898
IB
1
2


563
2
2
2
1902
IIB
2
2


564
1
2
1
1611
IIIB
3
3


565
1
1
2
1715
IA
3
3


566
2
2
1
192
IA
NA
NA


567
1
1
2
1815
NA
1
3


568
2
2
2
1937
IIB
1
2


569
1
2
2
2170
IA
1
3


570
1
2
2
2466
IB
3
3


571
2
1
2
1973
IIB
3
2


572
1
1
2
2955
IIB
2
3


573
2
1
2
1069
IB
3
3


574
2
2
2
1511
IA
3
3


575
2
2
2
152
IIA
3
3


576
2
1
2
1736
IA
1
3


577
2
1
1
192
IIIA
3
3


578
2
1
1
2047
IA
2
2


579
2
2
1
206
IIIB
3
3


580
2
2
2
2591
IB
3
3


581
2
1
1
2079
IB
2
2


582
2
1
2
2778
IB
2
3


583
2
1
1
324
IIA
2
3


584
2
1
2
2115
IA
3
2


585
2
1
2
2116
IB
2
2


586
2
2
2
2156
IB
2
2


587
2
2
2
2157
IIIA
2
2


588
2
1
2
2178
IIB
2
2


589
2
2
1
2188
IB
2
2


590
2
1
2
41
IIA
3
3


591
2
1
2
2261
IIIA
2
2


592
2
1
2
2269
IA
2
2


593
2
1
2
2290
IIB
1
2


594
2
1
2
2291
IB
1
2


595
1
2
2
1253
IA
3
3


596
1
2
1
66
IIA
3
3


597
1
2
1
152
IIIA
3
3


598
1
2
1
263
IIIA
2
3


599
2
1
1
238
IV
1
2


600
1
1
1
274
IA
2
3


601
1
2
1
288
IIA
3
3


602
2
2
2
2430
IB
1
2


603
1
1
1
398
IA
2
3


604
1
2
1
402
IV
3
3


605
1
2
1
494
IIIB
3
3


606
2
1
2
2557
IB
2
2


607
1
1
1
551
IB
2
3


608
1
1
1
564
IIB
2
3


609
1
1
1
663
IA
2
3


610
1
1
1
841
IIB
3
3


611
1
1
2
938
IIIA
2
3


612
1
1
2
1023
IA
2
3


613
1
2
1
1030
IB
3
3


614
2
2
2
2780
IIA
2
2


615
1
2
2
1045
IIIA
2
3


616
1
1
1
1050
IB
2
3


617
2
2
2
2807
IB
1
2


618
1
2
2
1057
IA
3
3


619
1
1
2
1083
IA
2
3


620
2
1
1
291
IIIA
NA
NA


621
1
1
1
1108
IIB
2
3


622
1
1
2
1112
IIA
2
3


623
1
2
2
1118
IA
2
3


624
2
1
2
2998
IB
1
2


625
1
1
2
1195
IIB
2
3


626
1
1
2
1265
IIIA
3
3


627
2
2
2
3054
IA
1
2


628
1
1
2
1297
IIIA
2
3


629
1
1
2
1310
IB
3
3


630
1
2
2
1331
IIA
3
3


631
1
1
2
1393
IIA
3
3


632
2
2
1
331
IIB
2
NA


633
2
2
1
347
IIIB
1
2


634
2
1
2
35
IA
2
2


635
1
1
2
1394
IA
3
3


636
1
2
2
1409
NA
3
3


637
1
1
2
1414
IA
2
3


638
2
1
1
373
IA
3
2


639
2
1
1
381
IIIB
1
NA


640
1
2
2
1476
NA
3
3


641
2
2
1
396
IIB
2
2


642
1
1
2
1567
IB
2
3


643
1
2
2
1612
IIB
2
3


644
1
1
2
1657
IIB
3
3


645
2
1
2
42
IIA
2
2


646
1
2
2
1660
IV
2
3


647
1
2
2
1819
IV
3
3


648
1
2
2
1848
IIA
3
3


649
1
1
2
1871
IA
3
3


650
2
2
1
468
IIIA
2
NA


651
2
1
1
471
IB
2
2


652
1
1
2
1897
IIB
2
3


653
2
2
1
49
IIB
3
2


654
1
2
2
1919
IIB
3
3


655
1
2
2
2119
IA
2
3


656
1
1
2
2260
IA
3
3


657
2
2
1
533
IB
2
2


658
2
2
1
534
IIIA
2
2


659
1
1
2
2302
IB
3
3


660
2
1
1
554
IIIA
2
NA


661
2
1
1
577
IB
1
2


662
2
1
1
580
IB
2
2


663
2
2
1
587
IIB
2
2


664
1
1
2
3018
IA
3
3


665
2
2
2
1035
IIIA
2
3


666
2
2
2
1156
IIIA
2
3


667
2
2
2
1171
IA
1
3


668
2
1
1
630
IIIA
1
2


669
2
1
1
636
IA
2
2


670
2
2
2
1185
IB
3
3


671
2
2
2
1217
IA
3
3


672
2
2
1
696
IIIA
2
2


673
2
1
1
707
IA
2
2


674
2
1
2
1316
IB
2
3


675
2
1
2
1902
IB
3
3


676
2
1
1
760
IIB
2
2


677
2
1
1
765
IIIA
2
2


678
2
1
2
2059
IIIA
3
3


679
2
1
1
800
IIB
2
2


680
2
1
1
825
IB
1
2


681
2
2
2
2371
IA
3
3


682
2
2
1
861
IB
1
NA


683
2
2
2
2753
IA
3
3


684
2
2
1
912
IA
1
2


685
2
1
2
923
IA
NA
NA


686
2
2
1
282
IB
3
3


687
2
1
2
485
IIIA
3
3


688
2
1
1
591
IA
3
3


689
2
1
2
996
IIIA
2
2





Data not available is indicated by ‘NA’













TABLE 11





Gene lists utilized for GSEA analysis.







Genes upregulated in exhaustion; obtained from Wherry et al,


Immunity 2007; 27(4): 670-84









1110006I15Rik



1110067D22Rik



1810035L17Rik



1810054D07Rik



2010100O12Rik



2510004L0Rik



2700084L22Rik



5730469M10Rik



9130009C22Rik



9130410M22Rik



A430109M19Rik



Adfp



Ai181996



Art3



Atf1



BC024955



Bub1



C330007P06Rik



C79248



Capzb



Car2



Casp3



Casp4



Ccl3



Ccl4



Ccrl2



Cd160



Cd244



Cd7



Cd9



Chl1



Cit



Coch



Cpa3



Cpsf2



Cpt2



Crygb



Ctla4



Cxcl10



D15Ertd781e



D8Ertd531e



Dock7



Entpd1



Eomes



Eomes



Etf1



G1p2



Gein



Gdf3



Gp49b



Gpd2



Gpr56



Gpr65



Icsbp1



Ier5



Isg20



Itgav



Jak3



Kdt1



Klk6



Lag3



Lman2



MKi67



Mox2



Mtv43



Myh4



NDfip1



Nftac1



Nptxr



Nr4a2



Nr4a2



Pawr



Pbx3



Pdcd1



Penk1



Plscr1



Pon2



Prkwnk1



Ptger2



Ptger4



Ptpn13



Rcn



Rgs16



Rnf11



S100a13



Sept4



Serpina3g



Sh2d2a



Shkbp1



Snrpb2



Spock2



Spp1



Sybl1



Tank



Tcea2



Tcrb-V13



Tcrg-V4



Tcrg-V4



Tnfrsf1a



TnfrsP9



Tnfsf6



Tor3a



Trim25



Trim47



Tubb2



Wbp5



Wbscr5



Zfp91







Genes downregulated in exhaustion; obtained from


Wherry et al, Immunity 2007; 27(4): 670-84









1110020B03Rik



1110038D17Rik



1810009A16Rik



1810045K07Rik



2010315L10Rik



2810024B22Rik



2810404F18Rik



2810407C02Rik



4833420G17Rik



6330406L22Rik



A630038C17Rik



Abce1



Ablim1



Acadm



Acas2l



Acp5



Adcy7



Add1



Adh5



Akap8



Al325941



Al447904



Anapc5



Arbp



Arhgap1



Arhgef1



Ascc1



Atp6v0a2



Atp6v0b



B230114J08Rik



Bat1a



Bnip31



Bzw1



C79468



Cct3



Cct4



Cct5



Cct8



Cd1d1



Clk2



Cmah



Crlf3



D10Wsu52e



D14Wsu123e



Dgka



Dtx1



Eef2



Eif2s1



Ephb4



Erdr1



Ets1



Fkbp4



Gm2a



Gnb2-rs1



Gtf2i



Hcph



Hexa



Hmgcs1



Hspa8



Iap



Iap(II-3)



Iap11-1



Icam2



Ifnar1



Il17r



Il17r



Itgb7



Jmjd1a



Kcnn4



Kctd10



Klf13



Klf2



Klf3



Klf3



Lbr



Lef1



LOC280487



LOC381438



Macf1



Map4k4



Mapk8



Mat2a



Nfe2l2



Nme2



Numb



Osbpl11



Pak2



Pdha1



Pdlim1



Pik3cd



Pld3



Ppp2r5a



Prps1



Prss19



Pscdbp



Ptk9l



Rap1gds1



Rnpc1



Rpl10



Rpl10a



Rpl13



Rpl22



Rpl28



Rpl3



Rp18



Rpn2



Rps16



Rps3



Rps3a



Rps4x



Rps7



Rps8



Satb1



Sema4a



Sgk



Shda



Siah1a



Skp1a



Snrpd3



Snx4



Srpk1



Ss18



Stk38



Supt5h



Tex292



Tmc6



Tubb5



Tubb5



Ubp1



Znrf2







Lung cancer-associated T cell signature genes; obtained


from Johnston et al, Cancer Cell 2014; 26(6): 9723-37









ARHGAP15



CCL5



CCR5



CD2



CD247



CD48



CD6



CD96



CRTAM



CST7



CTLA4



CXCR3



CXCR6



GIMAP1



GIMAP4



GIMAP5



GIMAP7



GPR171



GPR174



GVINP1



GZMH



IL10RA



IL12RB1



IL2RG



ITGAL



ITK



LCK



LINC00426



LOC100506776



LOC100652927



NKG7



P2RY10



PCED1B-AS1



PDCD1



PTPN22



PTPRC



PTPRCAP



PYHIN1



SASH3



SCML4



SH2D1A



SIRPG



SIT1



SLA2



SLAMF1



SLAMF6



TBC1D10C



TESPA1



TIGIT



UBASH3A







Genes upregulated in senescence; obtained from


Safford et al, Nature Immunology 2005; 6(5): 472-80









ACTN4



ADORA2A



ADORA2B



AGT



ANGPTL2



ANKRD28



ANP32A



ARFIP1



BNIP3



CASP4



CCL1



CCL3



CCRN4L



CD40LG



CD97



CDC14A



CLEC4E



CSF1



CTSE



DDR1



DLG2



DTNA



DUSP6



EGR2



ETV6



F2R



FBXO34



FOXP1



FURIN



FYN



GABRA4



GADD45B



GCH1



GGA2



HEBP2



HIF1AN



HLF



HSD17B6



HSPA4L



IER3



ING4



IRF4



ISYNA1



JAK3



JARID2



JUP



KCNJ11



KCNK5



KCNQ5



KIF15



KIFC3



LAG3



LDHB



LPAR4



LRRC3



MARCH2



MMD



MPZL2



MYH14



MYL7



MYO1C



MYO1E



NDRG1



NFATC1



NOTCH1



NR4A2



NR4A3



OAZ3



PFKP



PLA2G10



RCBTB1



RNF19A



S100A5



SFRP4



SLC29A3



SOCS4



SRGN



STX11



TEKT2



TINAG



TNFRSF19



TNFRSF4



TNFSF11



TNFSF9



TP53RK



ZFP36L1



ZNF629







Genes upregulated in senescence; obtained from


Fridman et al, Oncogene 2008; 27(46): 5975-87









ALDH1A3



C9orf3



CCND1



CD44



CDKN1A



CDKN1C



CDKN2A



CDKN2B



CDKN2D



CITED2



CLTB



COL1A2



CREG1



CRYAB



CTGF



CXCL14



CYP1B1



EIF2S2



ESM1



F3



FILIP1L



FN1



GSN



GUK1



HBS1L



HPS5



HSPA2



HTATIP2



IFI16



IFNG



IGFBP1



IGFBP2



IGFBP3



IGFBP4



IGFBP5



IGFBP6



IGFBP7



IGSF3



ING1



IRF5



IRF7



ISG15



MAP1LC3B



MAP2K3



MDM2



MMP1



NDN



NME2



NRG1



OPTN



PEA15



RAB13



RAB31



RAB5B



RABGGTA



RAC1



RBL2



RGL2



RHOB



RRAS



S100A11



SERPINB2



SERPINE1



SMPD1



SMURF2



SOD1



SPARC



STAT1



TES



TFAP2A



TGFB1I1



THBS1



TNFAIP2



TNFAIP3



TP53



TSPYL5



VIM







Genes upregulated in TRM cells; obtained from


Mackay et al, Science 2016; 352(6284): 459-63









8430419L09RIK



ABI3



AMICA1



ARRDC3



ATF3



B4GALNT4



BTG2



CD244



CD69



CDH1



CISH



CSRNP1



CTNNA1



CXCR6



DDX3X



DGAT1



DHCR24



DUSP1



DUSP5



DUSP6



EGR1



EHD1



EYA2



FOS



FOSB



FOSL2



FRMD4B



GADD45B



GLRX



GPR171



GPR34



GPR55



GPR56



GSG2



HILPDA



HMGCS1



HOBIT



HPGDS



HSPA5



HSPD1



IFNG



INPP4B



INSIG1



IRF4



ISG20



ITGAE



JUN



JUNB



KLF6



LAD1



LDLRAD4



LITAF



LY6G5B



MAPKAPK3



NEDD4



NEURL3



NFKBID



NR4A1



NR4A2



ODC1



OSGIN1



P2RY10



P4HB



PER1



PLK3



PNRC1



PPP1R15A



PPP1R16B



PYGL



QPCT



RGS2



RHOB



RNF149



SC4MOL



SIK1



SKIL



SMIM3



SPSB1



STARD4



TNFAIP3



TRAF4



VDAC1



XCL1



ZFP36







Genes downregulated in TRM cells; obtained from


Mackay et al, Science 2016; 352(6284): 459-63









2010016I18RIK



A430078G23



AAED1



AB124611



ABHD8



ABTB2



ACP5



ACPL2



AI413582



ARHGAP26



ARHGEF18



ASRGL1



ATP10D



ATP1B3



AVEN



B3GAT3



BC094916



BC147527



BCL9L



BE692007



CCL5



CD84



CD97



CDC25B



CMAH



CXCR4



D1ERTD622E



DOCK2



EHD3



ELMO1



EMB KBTBD11



EML3



EOMES



FAM117A



FAM49A



FAM65B



FAM89B



FGF13



GAB3



GLIPR2



GM11346



GM1966



GM20140



GM8369



GM9835



GMFG



GNPDA2



GRAMD4



HAAO



HBA-A2



HEXB



ICAM2



IL10RA



ITGA4



ITGB1



ITGB2



KCNAB2



KCNN4



KLF2



KLF3



KLHL6



LCN4



LEF1



LFNG



LPIN1



LY6C2



LYRM2



LYST



MPND



MS4A4B



MS4A4C



NCLN



PAQR7



PCED1B



PDE2A



PHF11B



PIK3R5



PODNL1



POGK



PRKCQ



PYHIN1



RACGAP1



RASA3



RASGRP2



RBM43



RIK



S1PR1



S1PR4



S1PR5



SAMHD1



SBK1



SETX



SH2D1A



SIDT1



SMPDL3B



SNX10



ST3GAL1



STK38



TBXA2R



TCF7



THAP7



TMEM71



TSR3



TTC7B



TXK



TXNDC5



VOPP1



XRN2



*

















TABLE 12







Genes Upregulated in TRM cells.


UPREGULATED GENES











GENECARDS


GENE
GENE DETAILS
ID





MYO7A
myosin VIIA (MYO7A)
GC11P077128


GPR25
G protein-coupled receptor 25 (GPR25)
GC01P200872


CLNK
cytokine dependent hematopoietic cell linker (CLNK)
GC04M010491


SRGAP3
SLIT-ROBO Rho GTPase activating protein 3 (SRGAP3)
GC03M008998


ATP8B4
ATPase phospholipid transporting 8B4
GC15M049858



(putative) (ATP8B4)


AFAP1L2
actin filament associated protein 1 like 2 (AFAP1L2)
GC10M114281


DAPK2
death associated protein kinase 2 (DAPK2)
GC15M063907


PTMS
parathymosin (PTMS)
GC12P006765


ATP10D
ATPase phospholipid transporting 10D
GC04P047487



(putative) (ATP10D)


SLC27A2
solute carrier family 27 member 2 (SLC27A2)
GC15P050182


LAYN
layilin (LAYN)
GC11P111541


TNS3
tensin 3 (TNS3)
GC07M047281


KIR2DL4
killer cell immunoglobulin like receptor, two Ig domains
GC19P054994



and long cytoplasmic tail 4 (KIR2DL4)


ENTPD1
ectonucleoside triphosphate diphosphohydrolase
GC10P095711



1 (ENTPD1)


AKAP5
A-kinase anchoring protein 5 (AKAP5)
GC14P064465


TTYH3
tweety family member 3 (TTYH3)
GC07P002638


ASB2
ankyrin repeat and SOCS box containing 2 (ASB2)
GC14M093934


DBN1
drebrin 1 (DBN1)
GC05M177456


ACP5
acid phosphatase 5, tartrate resistant (ACP5)
GC19M011574


ABCB1
ATP binding cassette subfamily B member 1 (ABCB1)
GC07M087504


KLRB1
killer cell lectin like receptor B1 (KLRB1)
GC12M011717


ALOX5AP
arachidonate 5-lipoxygenase activating
GC13P030713



protein (ALOX5AP)


GALNT2
polypeptide N-acetylgalactosaminyltransferase
GC01P230057



2 (GALNT2)


SIRPG
signal regulatory protein gamma (SIRPG)
GC20M001628


NDFIP2
Nedd4 family interacting protein 2 (NDFIP2)
GC13P079481


SNAP47
synaptosome associated protein 47 (SNAP47)
GC01P227730


CD200R1
CD200 receptor 1 (CD200R1)
GC03M112921
















TABLE 13







Genes Downregulated in TRM cells.


DOWNREGULATED GENES











GENECARDS


GENE
GENE DETAILS
ID





PATL2
PAT1 homolog 2 (PATL2)
GC15M044665


FAM65B
family with sequence similarity 65
GC06M024805



member B (FAM65B)


ADRB2
adrenoceptor beta 2 (ADRB2)
GC05P148825


SORL1
sortilin related receptor 1 (SORL1)
GC11P121452


CD300A
CD300a molecule (CD300A)
GC17P074466


C1orf21
chromosome 1 open reading
GC01P184356



frame 21 (C1orf21)


PLEK
pleckstrin (PLEK)
GC02P068365


PLAC8
placenta specific 8 (PLAC8)
GC04M083090


ATM
ATM serine/threonine kinase (ATM)
GC11P108127


PTGDR
prostaglandin D2 receptor (PTGDR)
GC14P052267


PXN
paxillin (PXN)
GC12M120210


DHRS3
dehydrogenase/reductase 3 (DHRS3)
GC01M012567









REFERENCES



  • 1. Pardoll D M. The blockade of immune checkpoints in cancer immunotherapy. Nature reviews Cancer 2012, 12(4): 252-264.

  • 2. Drake C G, Lipson E J, Brahmer J R. Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nature reviews Clinical oncology 2014, 11(1): 24-37.

  • 3. Garon E B, Rizvi N A, Hui R, Leighl N, Balmanoukian A S, Eder J P, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. The New England journal of medicine 2015, 372(21): 2018-2028.

  • 4. Sharma P, Allison J P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015, 161(2): 205-214.

  • 5. Tumeh P C, Harview C L, Yearley J H, Shintaku I P, Taylor E J, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515(7528): 568-571.

  • 6. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 313(5795): 1960-1964.

  • 7. Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 2015, 125(9): 3335-3337.

  • 8. Baitsch L, Baumgaertner P, Devevre E, Raghav S K, Legat A, Barba L, et al. Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. The Journal of clinical investigation 2011, 121(6): 2350-2360.

  • 9. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf A C, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013, 39(4): 782-795.

  • 10. Collins N, Godec J, Zou L H, Mihm M C, Getz G, Haining W N. Transcriptional Hallmarks Of Tumor Infiltrating Lymphocyte Responses To Melanoma. Blood 2013, 122(21).

  • 11. Tirosh I, Izar B, Prakadan S M, Wadsworth M H, 2nd, Treacy D, Trombetta J J, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016, 352(6282): 189-196.

  • 12. Pauken K E, Wherry E J. Overcoming T cell exhaustion in infection and cancer. Trends in immunology 2015, 36(4): 265-276.

  • 13. Brown I E, Blank C, Kline J, Kacha A K, Gajewski T F. Homeostatic proliferation as an isolated variable reverses CD8+ T cell anergy and promotes tumor rejection. Journal of immunology 2006, 177(7): 4521-4529.

  • 14. Montes C L, Chapoval A I, Nelson J, Orhue V, Zhang X, Schulze D H, et al. Tumor-induced senescent T cells with suppressor function: a potential form of tumor immune evasion. Cancer research 2008, 68(3): 870-879.

  • 15. Johnston R J, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer cell 2014, 26(6): 923-937.

  • 16. Curran M A, Geiger T L, Montalvo W, Kim M, Reiner S L, Al-Shamkhani A, et al. Systemic 4-1B B activation induces a novel T cell phenotype driven by high expression of Eomesodermin. J Exp Med 2013, 210(4): 743-755.

  • 17. Willoughby J E, Kerr J P, Rogel A, Taraban V Y, Buchan S L, Johnson P W, et al. Differential impact of CD27 and 4-1B B costimulation on effector and memory CD8 T cell generation following peptide immunization. J Immunol 2014, 193(1): 244-251.

  • 18. Topalian S L, Drake C G, Pardoll D M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015, 27(4): 450-461.

  • 19. Gros A, Robbins P F, Yao X, Li Y F, Turcotte S, Tran E, et al. PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. The Journal of clinical investigation 2014, 124(5): 2246-2259.

  • 20. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher I F, Sander C, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. The Journal of experimental medicine 2010, 207(10): 2175-2186.

  • 21. Wolfl M, Kuball J, Ho W Y, Nguyen H, Manley T J, Bleakley M, et al. Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 2007, 110(1): 201-210.

  • 22. Mackay L K, Rahimpour A, Ma J Z, Collins N, Stock A T, Hafon M L, et al. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nature immunology 2013, 14(12): 1294-1301.

  • 23. Mueller S N, Gebhardt T, Carbone F R, Heath W R. Memory T cell subsets, migration patterns, and tissue residence. Annual review of immunology 2013, 31: 137-161.

  • 24. Mackay L K, Minnich M, Kragten N A, Liao Y, Nota B, Seillet C, et al. Hobit and Blimpl instruct a universal transcriptional program of tissue residency in lymphocytes. Science 2016, 352(6284): 459-463.

  • 25. Lee L N, Ronan E O, de Lara C, Franken K L, Ottenhoff T H, Tchilian E Z, et al. CXCR6 is a marker for protective antigen-specific cells in the lungs after intranasal immunization against Mycobacterium tuberculosis. Infection and immunity 2011, 79(8): 3328-3337.

  • 26. Tse S W, Radtke A J, Espinosa D A, Cockburn I A, Zavala F. The chemokine receptor CXCR6 is required for the maintenance of liver memory CD8(+) T cells specific for infectious pathogens. The Journal of infectious diseases 2014, 210(9): 1508-1516.

  • 27. Skon C N, Lee J Y, Anderson K G, Masopust D, Hogquist K A, Jameson S C. Transcriptional downregulation of Slprl is required for the establishment of resident memory CD8+ T cells. Nature immunology 2013, 14(12): 1285-1293.

  • 28. Ariotti S, Hogenbirk M A, Dijkgraaf F E, Visser L L, Hoekstra M E, Song J Y, et al. T cell memory. Skin-resident memory CD8(+) T cells trigger a state of tissue-wide pathogen alert. Science 2014, 346(6205): 101-105.

  • 29. Schenkel J M, Fraser K A, Beura L K, Pauken K E, Vezys V, Masopust D. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 2014, 346(6205): 98-101.

  • 30. Best J A, Blair D A, Knell J, Yang E, Mayya V, Doedens A, et al. Transcriptional insights into the CD8(+) T cell response to infection and memory T cell formation. Nature immunology 2013, 14(4): 404-412.

  • 31. Faure M, Long E O. KIR2DL4 (CD158d), an N K cell-activating receptor with inhibitory potential. Journal of immunology 2002, 168(12): 6208-6214.

  • 32. Rajagopalan S, Long E O. KIR2DL4 (CD158d): An activation receptor for HLA-G. Frontiers in immunology 2012, 3: 258.

  • 33. Wisniewski A, Kowal A, Wyrodek E, Nowak I, Majorczyk E, Wagner M, et al. Genetic polymorphisms and expression of HLA-G and its receptors, KIR2DL4 and LILRB 1, in non-small cell lung cancer. Tissue antigens 2015, 85(6): 466-475.

  • 34. Brooke G, Holbrook J D, Brown M H, Barclay A N. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family. Journal of immunology 2004, 173(4): 2562-2570.

  • 35. Piccio L, Vermi W, Boles K S, Fuchs A, Strader C A, Facchetti F, et al. Adhesion of human T cells to antigen-presenting cells through SIRPbeta2-CD47 interaction costimulates T-cell proliferation. Blood 2005, 105(6): 2421-2427.


Claims
  • 1. A method of treating cancer in a subject comprising administering to the subject an effective amount of a population of T-cells that exhibit higher than baseline expression of one or more genes set forth in Table 12.
  • 2. A method of treating cancer in a subject comprising administering to the subject an effective amount of a population of T-cells that exhibit lower than baseline expression of one or more genes set forth in Table 13.
  • 3. The method of claim 1 or 2, wherein the T-cells are tissue-resident memory cells (TRM).
  • 4. The method of claim 3, wherein the TRM are autologous to the subject being treated.
  • 5. The method of any one of claims 1 to 4, further comprising administering to the subject an effective amount of a cytoreductive therapy.
  • 6. The method of claim 5, wherein the cytoreductive therapy is one or more of chemotherapy, immunotherapy, or radiation therapy.
  • 7. The method of any one of claims 1 to 6, wherein baseline expression is normalized mean gene expression.
  • 8. The method of claim 7, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.
  • 9. A method of treating cancer in a subject comprising administering to the subject an effective amount of an active agent that induces higher than baseline expression of one or more genes set forth in Table 12 in T-cells.
  • 10. A method of treating cancer in a subject comprising administering to the subject an effective amount of an active agent that induces lower than baseline expression of one or more genes set forth in Table 13 in T-cells.
  • 11. The method of claim 9 or 10, wherein the T-cells are tissue-resident memory cells (TRM).
  • 12. The method of any one of claims 9 to 11, further comprising administering an effective amount of a cytoreductive therapy.
  • 13. The method of claim 12, wherein the cytoreductive therapy is one or more of chemotherapy, immunotherapy, or radiation therapy.
  • 14. The method of any one of claims 9 to 13, wherein baseline expression is normalized mean gene expression.
  • 15. The method of claim 14, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.
  • 16. The method of any one of claims 9 to 15, wherein the active agent is an antibody, a small molecule, or a nucleic acid.
  • 17. A method of eliciting an anti-tumor response comprising contacting a tumor or tumor cell with an effective amount of a population of T-cells that exhibit higher than baseline expression of one or more genes set forth in Table 12.
  • 18. A method of eliciting an anti-tumor response comprising contacting a tumor or tumor cell with an effective amount of a population of T-cells that exhibit lower than baseline expression of one or more genes set forth in Table 13.
  • 19. The method of claim 17 or 18, wherein the T-cells are tissue-resident memory cells (TRM).
  • 20. The method of any one of claims 17 to 19, wherein baseline expression is normalized mean gene expression.
  • 21. The method of claim 20, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.
  • 22. A method of eliciting an anti-tumor response comprising contacting a tumor or tumor cell with an effective amount of an active agent that induces higher than baseline expression of one or more genes set forth in Table 12 in T-cells.
  • 23. A method of eliciting an anti-tumor response comprising contacting a tumor or tumor cell with an effective amount of an active agent that induces lower than baseline expression of one or more genes set forth in Table 13 in T-cells.
  • 24. The method of claim 22 or 23, wherein the T-cells are tissue-resident memory cells (TRM).
  • 25. The method of any one of claims 22 to 24, wherein baseline expression is normalized mean gene expression.
  • 26. The method of claim 25, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.
  • 27. The method of any one of claims 22 to 26, wherein the active agent is an antibody, a small molecule, or a nucleic acid.
  • 28. A method of treating cancer or eliciting an anti-tumor response in a subject or sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that induces in T-cells higher than baseline expression of one or more proteins encoded by genes set forth in Table 12 to the subject or sample.
  • 29. A method of treating cancer or eliciting an anti-tumor response in a subject or sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that induces in T-cells lower than baseline expression of one or more proteins encoded by genes set forth in Table 13 to the subject or sample.
  • 30. A method of treating cancer or eliciting an anti-tumor response in a subject or sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that induces in T-cells activity of one or more proteins encoded by genes set forth in Table 12 to the subject or sample.
  • 31. A method of treating cancer or eliciting an anti-tumor response in a subject or sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that inhibits in T-cells activity of one or more proteins encoded by genes set forth in Table 13 to the subject or sample.
  • 32. The method of any one of claims 28 through 31, wherein the active agent is an antibody, a small molecule, or a nucleic acid.
  • 33. A modified T-cell modified to exhibit higher than baseline expression of one or more genes set forth in Table 12.
  • 34. A modified T-cell modified to exhibit lower than baseline expression of one or more genes set forth in Table 13.
  • 35. The modified T-cell of claim 33 or 34, wherein baseline expression is normalized mean gene expression.
  • 36. The modified T-cell of claim 35, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.
  • 37. The modified T-cell of any one of claims 33 to 36, wherein the modified T-cell is genetically modified, optionally using recombinant methods and/or a CRISPR/Cas system.
  • 38. The modified T-cell of any one of claims 33 to 36, further modified to express a protein that binds to a cytokine, chemokine, lymphokine, or a receptor each thereof.
  • 39. The modified T-cell of claim 38, wherein the protein comprises an antibody or an antigen binding fragment thereof.
  • 40. The modified T-cell of claim 39, wherein the antibody is an IgG, IgA, IgM, IgE or IgD, or a subclass thereof.
  • 41. The modified T-cell of claim 40, wherein the antibody is an IgG selected from the group of IgG1, IgG2, IgG3 or IgG4.
  • 42. The modified T-cell of any one of claims 39 to 41, wherein the antigen binding fragment is selected from the group of an Fab, Fab′, F(ab′)2, Fv, Fd, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv) or VL or VH.
  • 43. A composition comprising a population of modified T-cells according to any one of claims 33 to 42.
  • 44. A method of treating cancer in a subject and/or eliciting an anti-tumor response comprising administering to the subject or contacting the tumor with an effective amount of the modified T-cells according to any one of claims 33 to 42 and/or the composition according to claim 43.
  • 45. A method of diagnosing a subject having cancer, comprising contacting the same with an agent that detects the presence of one or more genes set forth in Table 12 in the cancer or a sample thereof, wherein the presence of the one or more genes at higher than baseline levels is diagnostic of cancer.
  • 46. The method of claim 44, wherein the presence of the one or more genes at higher than baseline levels is further indicative of a higher probability and/or duration of survival.
  • 47. A method of diagnosing a subject having cancer, comprising contacting the same with an agent that detects the presence of one or more genes set forth in Table 13 in the cancer or a sample thereof, wherein the presence of the one or more genes at lower than baseline levels is diagnostic of cancer.
  • 48. The method of claim 47, wherein the presence of the one or more genes at lower than baseline levels is further indicative of a higher probability and/or duration of survival.
  • 49. The method of any one of claims 44 to 48, wherein the cancer, tumor, or sample is contacted with an agent, optionally including a detectable label or tag.
  • 50. The method of claim 49, wherein the detectable label or tag comprises a radioisotope, a metal, horseradish peroxidase, alkaline phosphatase, avidin or biotin.
  • 51. The method of claim 49 or 50, wherein the agent comprises a polypeptide that binds to an expression product encoded by the gene, or a polynucleotide that hybridizes to a nucleic acid sequence encoding all or a portion of the gene.
  • 52. The method of claim 51, wherein the agent comprises a polypeptide that binds to an expression product encoded by the gene, or a polynucleotide that hybridizes to a nucleic acid sequence encoding all or a portion of the gene.
  • 53. The method of claim 52, wherein the polypeptide comprises an antibody, an antigen binding fragment thereof, or a receptor that binds to the gene.
  • 54. The method of claim 53, wherein the antibody is an IgG, IgA, IgM, IgE or IgD, or a subclass thereof.
  • 55. The method of claim 54, wherein the IgG is an IgG1, IgG2, IgG3 or IgG4.
  • 56. The method of any one of claims 53 to 55 wherein the antigen binding fragment is an Fab, Fab′, F(ab′)2, Fv, Fd, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv) or VL or VH.
  • 57. The method of any one of claims 45 to 56, wherein the agent is contacted with the cancer, tumor, or sample in conditions under which it can bind to the gene it targets.
  • 58. The method of any one of claims 45 to 57, wherein the method comprises detection by immunohistochemistry (IHC), in-situ hybridization (ISH), ELISA, immunoprecipitation, immunofluorescence, chemiluminescence, radioactivity, X-ray, nucleic acid hybridization, or protein-protein interaction.
  • 59. The method of any one of claims 45 to 57, wherein the method comprises detection by immunoprecipitation, flow cytometry, Western blotting, polymerase chain reaction, DNA transcription, Northern blotting or Southern blotting.
  • 60. The method of any one of claims 45 to 59, wherein the sample comprises cells, tissue, or an organ biopsy.
  • 61. The method of any one of claims 45 to 60, wherein the sample is an epithelial sample.
  • 62. The method of any one of claims 45 to 60, wherein the sample is from a lung, respiratory or airway tissue or organ, a circulatory tissue or organ, a skin tissue, bone tissue, or muscle tissue.
  • 63. The method of any one of claims 45 to 60, wherein the sample is from head, neck, brain, skin, bone or blood.
  • 64. The method of any one of claims 1 to 32 or claims 44 to 63, wherein the cancer or tumor is an epithelial cancer or tumor.
  • 65. The method of any one of claims 1 to 32 or claims 44 to 63, wherein the cancer or tumor is in head, neck, lung, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, brain, or comprises a lymphoma, breast, endometrium, uterus, ovary, testes, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, or brain.
  • 66. The method of any one of 1 to 32 or claims 44 to 63, wherein the cancer comprises a metastasis or recurring tumor, cancer or neoplasia.
  • 67. The method of any of claims 1 to 32 or claims 44 to 63, wherein the cancer comprises a non-small cell lung cancer (NSCLC) or head and neck squamous cell cancer (HNSCC).
  • 68. A method of treating cancer in a subject comprising administering to the subject an effective amount of a population of CD8+ T-cells that exhibit higher than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8.
  • 69. A method of treating cancer in a subject comprising administering to the subject an effective amount of a population of CD8+ T-cells that exhibit lower than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8.
  • 70. A method of treating cancer in a subject comprising administering to the subject an effective amount of a population of CD8+ T-cells that exhibit higher than baseline expression of one or more genes involved in one or more pathways set forth in Table 5 and/or Table 9.
  • 71. A method of treating cancer in a subject comprising administering to the subject an effective amount of a population of CD8+ T-cells that exhibit lower than baseline expression of one or more genes involved in one or more pathways set forth in Table 5 and/or Table 9.
  • 72. The method of any one of claims 68 through 71, wherein the CD8+ T-cells are tumor infiltrating lymphocytes (TILs).
  • 73. The method of claim 72, wherein the TILs are autologous to the subject being treated.
  • 74. The method of any one of claims 68 to 73, further comprising administering to the subject an effective amount of a cytoreductive therapy.
  • 75. The method of claim 74, wherein the cytoreductive therapy is one or more of chemotherapy, immunotherapy, or radiation therapy.
  • 76. The method of any one of claims 68 to 75, wherein baseline expression is normalized mean gene expression.
  • 77. The method of claim 76, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.
  • 78. A method of treating cancer in a subject comprising administering to the subject an effective amount of an active agent that induces higher than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8 in CD8+ T-cells.
  • 79. A method of treating cancer in a subject comprising administering to the subject an effective amount of an active agent that induces lower than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8 in CD8+ T-cells.
  • 80. A method of treating cancer in a subject comprising administering to the subject an effective amount of an active agent that induces higher than baseline expression one or more genes involved in one or more pathways set forth in Table 5 and/or Table 9 in CD8+ T-cells.
  • 81. A method of treating cancer in a subject comprising administering to the subject an effective amount of an active agent that induces lower than baseline expression one or more genes involved in one or more pathways set forth in Table 5 and/or Table 9 in CD8+ T-cells.
  • 82. The method of any one of claims 78 to 81, wherein the CD8+ T-cells are tumor infiltrating lymphocytes (TILs).
  • 83. The method of any one of claims 78 to 82, further comprising administering an effective amount of a cytoreductive therapy.
  • 84. The method of claim 83, wherein the cytoreductive therapy is one or more of chemotherapy, immunotherapy, or radiation therapy.
  • 85. The method of any one of claims 78 to 84, wherein baseline expression is normalized mean gene expression.
  • 86. The method of claim 85, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.
  • 87. The method of any one of claims 78 to 86, wherein the active agent is an antibody, a small molecule, or a nucleic acid.
  • 88. A method of eliciting an anti-tumor response comprising contacting a tumor or tumor cell with an effective amount of a population of CD8+ T-cells that exhibit higher than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8.
  • 89. A method of eliciting an anti-tumor response comprising contacting a tumor or tumor cell with an effective amount of a population of CD8+ T-cells that exhibit lower than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8.
  • 90. A method of eliciting an anti-tumor response comprising contacting a tumor or tumor cell with an effective amount of a population of CD8+ T-cells that exhibit higher than baseline expression of one or more genes involved in one or more pathways set forth in Table 5 and/or Table 9.
  • 91. A method of eliciting an anti-tumor response comprising contacting a tumor or tumor cell with an effective amount of a population of CD8+ T-cells that exhibit lower than baseline expression of one or more genes involved in one or more pathways set forth in Table 5 and/or Table 9.
  • 92. The method of any one of claims 88 to 91, wherein the CD8+ T-cells are tumor infiltrating lymphocytes (TILs).
  • 93. The method of any one of claims 88 to 92, wherein baseline expression is normalized mean gene expression.
  • 94. The method of claim 93, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.
  • 95. A method of eliciting an anti-tumor response comprising contacting a tumor or tumor cell with an effective amount of an active agent that induces higher than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8 in CD8+ T-cells.
  • 96. A method of eliciting an anti-tumor response comprising contacting a tumor or tumor cell with an effective amount of an active agent that induces lower than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8 in CD8+ T-cells.
  • 97. A method of eliciting an anti-tumor response comprising contacting a tumor or tumor cell with an effective amount of an active agent that induces higher than baseline expression of one or more genes involved in one or more pathways set forth in Table 5 and/or Table 9 in CD8+ T-cells.
  • 98. A method of eliciting an anti-tumor response comprising contacting a tumor or tumor cell with an effective amount of an active agent that induces lower than baseline expression of one or more genes involved in one or more pathways set forth in Table 5 and/or Table 9 in CD8+ T-cells.
  • 99. The method of any one of claims 95 to 98, wherein the CD8+ T-cells are tumor infiltrating lymphocytes (TILs).
  • 100. The method of any one of claims 95 to 99, wherein baseline expression is normalized mean gene expression.
  • 101. The method of claim 100, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.
  • 102. The method of any one of claims 95 to 101, wherein the active agent is an antibody, a small molecule, or a nucleic acid.
  • 103. A method of treating cancer or eliciting an anti-tumor response in a subject or sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that induces in CD8+ T-cells higher than baseline expression of than baseline expression of one or more proteins encoded by genes set forth in Table 1, Table 4, Table 7 and/or Table 8 to the subject or sample.
  • 104. A method of treating cancer or eliciting an anti-tumor response in a subject or sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that induces in CD8+ T-cells lower than baseline expression one or more proteins encoded by genes set forth in Table 1, Table 4, Table 7 and/or Table 8 to the subject or sample.
  • 105. A method of treating cancer or eliciting an anti-tumor response in a subject or sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that induces in CD8+ T-cells activity of one or more proteins encoded by genes set forth in Table 1, Table 4, Table 7 and/or Table 8 to the subject or sample.
  • 106. A method of treating cancer or eliciting an anti-tumor response in a subject or sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that inhibits in CD8+ T-cells activity of one or more proteins encoded by genes set forth in Table 1, Table 4, Table 7 and/or Table 8 to the subject or sample.
  • 107. A method of treating cancer or eliciting an anti-tumor response in a subject or sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that induces in T-cells higher than baseline expression of one or more proteins encoded by genes involved in one or more pathways set forth in Table 5 and/or Table 9 to the subject or sample.
  • 108. A method of treating cancer or eliciting an anti-tumor response in a subject or sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that induces in T-cells lower than baseline expression of one or more proteins encoded by genes involved in one or more pathways set forth in Table 5 and/or Table 9 to the subject or sample.
  • 109. A method of treating cancer or eliciting an anti-tumor response in a subject or sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that induces in T-cells activity of one or more proteins encoded by genes involved in one or more pathways set forth in Table 5 and/or Table 9 to the subject or sample.
  • 110. A method of treating cancer or eliciting an anti-tumor response in a subject or sample comprising, or alternatively consisting essentially of, or yet further consisting of, administering an effective amount of one or more an active agent that inhibits in T-cells activity of one or more proteins encoded by genes involved in one or more pathways set forth in Table 5 and/or Table 9 to the subject or sample.
  • 111. The method of any one of claims 103 to 110, wherein the active agent is an antibody, a small molecule, or a nucleic acid.
  • 112. A modified CD8+ T-cell modified to exhibit higher than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8.
  • 113. A modified CD8+ T-cell modified to exhibit lower than baseline expression of one or more genes set forth in Table 1, Table 4, Table 7 and/or Table 8.
  • 114. A modified CD8+ T-cell modified to exhibit higher than baseline expression of one or more genes involved in one or more pathways set forth in Table 5 and/or Table 9.
  • 115. A modified CD8+ T-cell modified to exhibit lower than baseline expression of one or more genes involved in one or more pathways set forth in Table 5 and/or Table 9.
  • 116. The modified CD8+ T-cell of any one of claims 112 to 115, wherein baseline expression is normalized mean gene expression.
  • 117. The modified CD8+ T-cell of claim 116, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.
  • 118. The modified CD8+ T-cell of any one of claims 112 to 117, wherein the modified CD8+ T-cell is genetically modified, optionally using recombinant methods and/or a CRISPR/Cas system.
  • 119. The modified CD8+ T-cell of any one of claims 112 to 118, further modified to express a protein that binds to a cytokine, chemokine, lymphokine, or a receptor each thereof.
  • 120. The modified CD8+ T-cell of any one of claims 112 to 118, further modified to express a protein that binds to CD19.
  • 121. The modified CD8+ T-cell of claim 119 or 120, wherein the protein comprises an antibody or an antigen binding fragment thereof.
  • 122. The modified CD8+ T-cell of claim 121, wherein the antibody is an IgG, IgA, IgM, IgE or IgD, or a subclass thereof.
  • 123. The modified CD8+ T-cell of claim 122, wherein the antibody is an IgG selected from the group of IgG1, IgG2, IgG3 or IgG4.
  • 124. The modified CD8+ T-cell of any one of claims 121 to 123, wherein the antigen binding fragment is selected from the group of an Fab, Fab′, F(ab′)2, Fv, Fd, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv) or VL or VH.
  • 125. A composition comprising a population of modified CD8+ T-cells according to any one of claims 112 to 124.
  • 126. A method of treating cancer in a subject and/or eliciting an anti-tumor response comprising administering to the subject or contacting the tumor with an effective amount of the modified CD8+ T-cells according to any one of claims 112 to 125 and/or the composition according to claim 87.
  • 127. A method of determining the density of tumor infiltrating lymphocytes (TILs) in a cancer, tumor, or sample thereof comprising measuring expression of one or more gene selected from the group of 4-1BB, PD-1, or TIM3 or genes set forth in Table 12 in the cancer, tumor, or sample thereof, wherein higher than baseline expression indicates higher density of TILs in the cancer, tumor, or sample thereof.
  • 128. A method of determining the density of tumor infiltrating lymphocytes (TILs) in a cancer, tumor, or sample thereof comprising measuring expression of one or more gene selected from genes set forth in Table 13 in the cancer, tumor, or sample thereof, wherein lower than baseline expression indicates higher density of TILs in the cancer, tumor, or sample thereof.
  • 129. The method of claim 127 or 128, wherein the TILs are T-cells.
  • 130. The method of any of claims 127 through 129, wherein baseline expression is normalized mean gene expression.
  • 131. The method of claim 130, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression.
  • 132. A method to determine the density of tissue-resident memory cells (TRM) in a cancer, tumor, or sample thereof comprising measuring the level of CD103 or one or more gene set forth in Table 12 in the cancer, tumor, or sample thereof, wherein higher than baseline levels of CD103 or proteins encoded by the one or more gene set forth in Table 12 indicates a high density of TRM in the cancer, tumor, or sample thereof.
  • 133. A method to determine the density of tissue-resident memory cells (TRM) in a cancer, tumor, or sample thereof comprising measuring the level of on gene set forth in Table 13 in the cancer, tumor, or sample thereof, wherein lower than baseline levels of proteins encoded by the one or more gene set forth in Table 13 indicates a high density of TRM in the cancer, tumor, or sample thereof.
  • 134. The method of claim 132 or 133, wherein the TRM are T-cells.
  • 135. A method of determining prognosis of a subject having cancer comprising measuring the density of tissue-resident memory cells (TRM) in the cancer or a sample thereof, wherein a high density of TRM indicates an increased probability and/or duration of survival.
  • 136. The method of claim 135, comprising measuring the level of CD103 or one or more gene set forth in Table 12 in the cancer or sample thereof in the cancer or the sample thereof, wherein higher than baseline levels of CD103 or proteins encoded by the one or more gene set forth in Table 12 indicate a high density of TRM.
  • 137. The method of claim 135 or 136, comprising measuring the level of on gene set forth in Table 13 in the cancer or sample thereof, wherein lower than baseline levels of proteins encoded by the one or more gene set forth in Table 13 indicates a high density of TRM.
  • 138. A method of determining prognosis of a subject having cancer comprising measuring the density of tumor infiltrating lymphocytes (TILs) in the cancer or a sample thereof, wherein a high density of TILs indicates an increased probability and/or duration of survival.
  • 139. The method of claim 138, wherein the TILs are enriched for tissue-resident memory cells (TRM).
  • 140. The method of claim 139, wherein the TILs are enriched for TRM by contacting the TILs with an effective amount of an active agent that induces higher than baseline expression of one or more genes set forth in Table 12 and/or an active agent that induces lower than baseline expression of one or more genes set forth in Table 13 in TILs.
  • 141. The method of claim 140, wherein the active agent is an antibody, a small molecule, or a nucleic acid.
  • 142. The method of any one of claims 139 to 141, wherein the TILs enriched for TRM have enhanced cytotoxicity and proliferation.
  • 143. A method of determining prognosis of a subject having cancer comprising measuring the density of CD103 or proteins encoded by one or more gene set forth in Table 12 in the cancer or a sample thereof, wherein a high density of proteins indicates an increased probability and/or duration of survival.
  • 144. A method of determining prognosis of a subject having cancer comprising measuring the density of proteins encoded by one or more gene set forth in Table 13 in the cancer or a sample thereof, wherein a low density of proteins indicates an increased probability and/or duration of survival.
  • 145. A method of diagnosing a subject having cancer, comprising contacting the same with an agent that detects the presence of one or more genes set forth in Table 1 Table 4, Table 8 and/or 9 in the cancer or a sample thereof, wherein the presence of the one or more genes at higher than baseline levels is diagnostic of cancer.
  • 146. The method of claim 145, wherein the presence of the one or more genes at higher than baseline levels is further indicative of a higher probability and/or duration of survival.
  • 147. A method of diagnosing a subject having cancer, comprising contacting the same with an agent that detects the presence of one or more genes set forth in Table 1 Table 4, Table 8 and/or 9 in the cancer or a sample thereof, wherein the presence of the one or more genes at lower than baseline levels is diagnostic of cancer.
  • 148. The method of claim 147, wherein the presence of the one or more genes at lower than baseline levels is further indicative of a higher probability and/or duration of survival.
  • 149. A method of identifying a subject that will or is likely to respond to a cancer therapy, comprising contacting the same with an agent that detects the presence of one or more genes set forth in Table 1 Table 4, Table 8 and/or 9 in the cancer or a sample thereof, wherein the presence of the one or more genes at higher than baseline levels indicates that the subject is likely to respond to cancer therapy.
  • 150. A method of identifying a subject that will or is likely to respond to a cancer therapy, comprising contacting the same with an agent that detects the presence of one or more genes set forth in Table 1 Table 4, Table 8 and/or 9 in the cancer or a sample thereof, wherein the presence of the one or more genes at lower than baseline levels indicates that the subject is likely to respond to cancer therapy.
  • 151. The method of claim 149 or 150, further comprising administering the cancer therapy to the subject.
  • 152. The method of claim 151, wherein the cancer therapy is chemotherapy, immunotherapy, and/or radiation therapy.
  • 153. The method of any one of claims 127 to 152, wherein the cancer, tumor, or sample is contacted with an agent, optionally including a detectable label or tag.
  • 154. The method of claim 153, wherein the detectable label or tag comprises a radioisotope, a metal, horseradish peroxidase, alkaline phosphatase, avidin or biotin.
  • 155. The method of claim 153 or 154, wherein the agent comprises a polypeptide that binds to an expression product encoded by the gene, or a polynucleotide that hybridizes to a nucleic acid sequence encoding all or a portion of the gene.
  • 156. The method of claim 153 or 154, wherein the agent comprises a polypeptide that binds to an expression product encoded by the gene, or a polynucleotide that hybridizes to a nucleic acid sequence encoding all or a portion of the gene.
  • 157. The method of claim 155, wherein the polypeptide comprises an antibody, an antigen binding fragment thereof, or a receptor that binds to the gene.
  • 158. A method of determining prognosis of a subject having cancer comprising contacting tumor infiltrating lymphocytes (TILs) of the cancer or a sample thereof with an antibody that recognizes and binds CD103 to determine the frequency of CD103+ TILs or an antibody that recognizes and binds a protein encoded by a gene set forth in Table 12 or Table 13 to determine the frequency of TILs expressing said protein, wherein a high frequency of CD103+ TILs or TILs expressing a protein encoded by a gene set forth in Table 12 or a low frequency of TILs expressing a protein encoded by a gene set forth in Table 13 indicates an increased probability and/or duration of survival.
  • 159. The method of claim 158, wherein the cancer is lung cancer.
  • 160. A method of determining the responsiveness of a subject having cancer to immunotherapy comprising contacting tumor infiltrating lymphocytes (TILs) of the cancer or a sample thereof with an antibody that recognizes and binds CD8, and antibody that recognizes and binds PD-1, an antibody that recognizes and binds TIM3, an antibody that recognizes and binds LAG3, and an antibody that recognizes and binds CTLA4 to determine the frequency of CD8+PD1+, CD8+TIM3+, CD8+LAG3+, CD8+CTLA4+, CD8+PD1+TIM3+, CD8+PD1+LAG3+, CD8+PD1+CTLA4+, CD8+TIM3+LAG3+, CD8+TIM3+CTLA4+, CD8+LAG3+CTLA4+, CD8+PD1+TIM3+LAG3+, CD8+PD1+LAG3+, CTLA4+, or CD8+PD1+TIM3+CTLA4+ TILs, wherein a high frequency of one or more of these TILs indicates responsiveness to immunotherapy.
  • 161. A method of determining the responsiveness of a subject having cancer to immunotherapy comprising contacting tumor infiltrating lymphocytes (TILs) of the cancer or a sample thereof with an antibody that recognizes and binds one or more proteins encoded by a gene set forth in Table 12 or Table 13 and, optionally, an antibody that recognizes and binds CD8, and antibody that recognizes and binds PD-1, an antibody that recognizes and binds TIM3, an antibody that recognizes and binds LAG3, and an antibody that recognizes and binds CTLA4 to determine the frequency of TILs expressing these proteins, wherein a high frequency of one or more TILs positive for a protein encoded by a gene set forth in Table 12 and, optionally, CD8, PD-1, TIM3, LAG3, and/or CTLA4; and/or negative for a protein encoded by a gene set forth in Table 12 indicates responsiveness to immunotherapy.
  • 162. A method of determining the responsiveness of a subject having cancer to immunotherapy comprising contacting tumor infiltrating lymphocytes (TILs) of the cancer or a sample thereof with an antibody that recognizes and binds CD8, and antibody that recognizes and binds S1PR1, and an antibody that recognizes and binds KLF2 to determine the frequency of CD8+ S1PR1- or CD8+ KLF2− TILs, wherein a high frequency of one or more of these TILs indicates an increased responsiveness to immunotherapy.
  • 163. A method of determining the responsiveness of a subject having cancer to immunotherapy comprising contacting tumor infiltrating lymphocytes (TILs) of the cancer or a sample thereof with an antibody that recognizes and binds one or more proteins encoded by a gene set forth in Table 12 or Table 13 and, optionally, an antibody that recognizes and binds CD8, and antibody that recognizes and binds S1PR1, and an antibody that recognizes and binds KLF2 to determine the frequency of TILs expressing these proteins, wherein a high frequency of one or more TILs, wherein a high frequency of TILs positive for a protein encoded by a gene set forth in Table 12 and/or negative for a protein encoded by a gene set forth in Table 13 and, optionally, S1PR1 and/or KLF2 indicates responsiveness to immunotherapy indicates responsiveness to immunotherapy.
  • 164. The method of any one of claims 160 to 163, further comprising administering an immunotherapy to the subject.
  • 165. The method of any one of claims 160 to 164, wherein the antibody is an IgG, IgA, IgM, IgE or IgD, or a subclass thereof.
  • 166. The method of claim 165, wherein the IgG is an IgG1, IgG2, IgG3 or IgG4.
  • 167. The method of any one of claims 160 to 166, wherein the antigen binding fragment is an Fab, Fab′, F(ab′)2, Fv, Fd, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv) or VL or VH.
  • 168. The method of any one of claims 127 to 167, wherein the agent or antibody is contacted with the cancer, tumor, or sample in conditions under which it can bind to the gene it targets.
  • 169. The method of any one of claims 127 to 168, wherein the method comprises detection by immunohistochemistry (IHC), in-situ hybridization (ISH), ELISA, immunoprecipitation, immunofluorescence, chemiluminescence, radioactivity, X-ray, nucleic acid hybridization, or protein-protein interaction.
  • 170. The method of any one of claims 127 to 168, wherein the method comprises detection by immunoprecipitation, flow cytometry, Western blotting, polymerase chain reaction, DNA transcription, Northern blotting or Southern blotting.
  • 171. The method of any one of claims 127 to 170, wherein the sample comprises cells, tissue, or an organ biopsy.
  • 172. The method of any one of claims 28 to 171, wherein the sample is an epithelial sample.
  • 173. The method of any one of claims 127 to 171, wherein the sample is from a lung, respiratory or airway tissue or organ, a circulatory tissue or organ, a skin tissue, bone tissue, or muscle tissue.
  • 174. The method of any one of claims 127 to 171, wherein the sample is from head, neck, brain, skin, bone or blood.
  • 175. The method of any one of claims 68 to 111 or claims 125 to 174, wherein the cancer or tumor is an epithelial cancer or tumor.
  • 176. The method of any one of claims 68 to 111 or claims 126 to 174, wherein the cancer or tumor is in head, neck, lung, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, brain, or comprises a lymphoma, breast, endometrium, uterus, ovary, testes, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, or brain.
  • 177. The method of any one of claims 68 to 111 or claims 126 to 174, wherein the cancer comprises a metastasis or recurring tumor, cancer or neoplasia.
  • 178. The method of any of claims 68 to 111 or claims 126 to 174, wherein the cancer comprises a non-small cell lung cancer (NSCLC) or head and neck squamous cell cancer (HNSCC).
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application 62/431,265, filed on Dec. 7, 2016, and U.S. Provisional Application 62/522,048, filed on Jun. 19, 2017, the contents of which are hereby incorporated by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/065197 12/7/2017 WO 00
Provisional Applications (2)
Number Date Country
62431265 Dec 2016 US
62522048 Jun 2017 US