Compositions for combatting phytopathogenical fungi and bacteria employing mixtures of benzyl phenol derivatives and carbendazin

Information

  • Patent Grant
  • 4593040
  • Patent Number
    4,593,040
  • Date Filed
    Tuesday, August 17, 1982
    43 years ago
  • Date Issued
    Tuesday, June 3, 1986
    39 years ago
Abstract
The invention relates to synergistically active mixtures for the control of phytopathogenic fungi and bacteria comprising antimicrobially effective derivatives of a phenol of the general formula ##STR1## R.sub.1, R.sub.2, R.sub.5 and R.sub.6 represent hydrogen (for R.sub.5 and R.sub.6 only), bromine, chlorine or alkyl with up to 5 C-atoms, R.sub.3 represents hydrogen, sodium, potassium, calcium, barium or ammonium*, magnesium, bismuth, tin, zinc or copper, furthermore R.sub.1, R.sub.2 and R.sub.3 may be interchangeably positioned in the ortho position as well as in the para position, and using fungicides.Benzimidazole fungicides or dithiocarbamates are predominantly used preferably on potato tubers with carbendazim and thiabendazole as mixing components.* substituted ammonium
Description

BACKGROUND OF THE INVENTION AND PRIOR ART STATEMENT
This invention relates to agents comprising antimicrobially active compounds of the general formula: ##STR2## and R.sub.1, R.sub.2, R.sub.5 and R.sub.6 represent hydrogen (for R.sub.5 and R.sub.6 only), chlorine, bromine or alkyl groups with up to 5 C-atoms, R.sub.3 represents hydrogen, sodium, potassium, magnesium, calcium, barium, tin, zinc, copper, ammonium or substituted ammonium and wherein furthermore, R.sub.1, R.sub.2 and R.sub.4 may be interchangeably positioned in the ortho-position as well as in the para-position, and fungicides which may be used for chemical control of phytopathogenical fungi and bacteria. These compounds are used against mycoses and bacterioses in the culture of grain, fruit, potatoes, vegetables and ornamental plants, and as a preparation and protective in storage for agricultural and horticultural crops, particularly against the inciter of the bacterial nodular-wet rot (Erwinia spp), the nodular-dry rot (Fusarium spp. and Phoma spp.) and the rhizoctonia (Rhizoctonia solani Kuhn) on potato tubers as well as bark diseases in the culture of fruits.
Mycoses and bacterioses of culture plants cause losses of crops and losses of stored harvested goods every year, which are estimated to be more than 20 billion a year. The use of plant protectives has, in addition to cultivation, a decisive significance in the exploitation of the potentially high yield of our cultured plants and for the protection of the stored goods. For many plant diseases, no completely satisfactory or sufficiently economical solutions are known (mixed rot of stored crops, bark diseases in fruit culture and others). That relates particularly to plant protectives against bacterioses, except potato preparation. A worldwide problem is represented by the losses due to rotting of crops during storage periods, particularly potatoes. Literature of this field mentions chemical methods of fighting, which are directed against fungal and bacterial damaging inciters on the potato tubers. The benzimidazoles were among the various active compounds used that were the most effective against nodular-dry rot (Fusarium spp. and Phoma spp.) (Thiabendazol, Fuberidazol, Benomyl, Garbendazim etc.) (DD-WP No. 130,427, DD-WP No. 110,423; DE-AS Nos. 1,209,799 and 1,237,731; DE-OS No. 1,745,784; U.S. Pat. Nos. 3,631,175 and 3,657,443; DD-WP No. 107,204).
Dithiocarbamate was also used against nodular-dry rot. In order to combat rhizoctonia, principally pentachloronitrobenzene, Maneb and Mancozeb were used. In order to successfully combat bacterial nodular-wet rot (Erwinia spp.) at practical conditions, only the antibiotic chloramphenicol can be noted (DD-WP No. 78 423). In order to successfully combat all injurious inciters, it was found advantageous to use a mixture comprising a benzimidazole fungicide and chloramphenicol (DD-WP Nos. 110,423 and 130,427). This mixture forms the basis for the preferred treatment of potato tubers which are intended for subsequent storage.
The use of chloramphenicol, which was after all the first broadband antibiotic and also the first antibiotic that could be prepared synthetically, results in many risks when used as a preparation on stored crops.
WHO (WORLD HEALTH ORGANIZATION) recommends never to use paramedically an antibiotics that are used in human medicine. Therefore it is international custom not to use chloramphenicol for plant protection.
The fact that constant use of chloramphenicol as a plant protectant in agriculture causes seeping into the environment has to be taken very seriously, since it results in a reduction of sensitivity of bacteria. (Rosenthal, and others 1977). A lowered sensitivity is frequently connected to resistance factors (r-plasmids) which may be transferred by conjugation or transduction in bacteria between species, genera, families and even orders and may therefore cause disasterous consequences for remedy (WHO, 1973; RISCHE, 1975).
Antimicrobially effective compounds of the general formula I are novel active materials having the type of composition of known antimicrobially active phenols, whose synthesis may be started from a waste product of herbicide synthesis (4-chloro-2-methylphenol-synthesis) (DD-WP No. 131,746). They are characterized by good antimicrobial properties which permit their recommendation in human and in veterinary medicine. Furthermore, it is known that derivatives of phenol, such as chlorophenol, pentachlorophenol, cresol, chlorocresol, benzylphenol, benzylchlorophenol and thymol are antimicrobially active and may therefore be used as potential combination partners for fungicides for increased effectiveness and widening of the inactivity spectrum. Disadvantages of these compounds are their partially very high phytotoxicity and toxicity for warm-blooded animals, making their use in plant protection impossible.
OBJECT OF THE INVENTION
The object of the invention is the development of agents for combatting phytopathogenic fungi and bacteria which, at minimal phytotoxicity, permit a maximum fungicidal and bactericidal effect particularly against nodular-rot in stored potatoes and which are devoid of the aforementioned disadvantages, particularly when treating stored potatoes and which also open the possibility of obtaining an effect against plant diseases which thus far could not be sufficiently combatted (for instance mixed rot of stored crops, bark diseases of fruit trees etc.).
SUMMARY OF THE INVENTION
The invention is based upon the object of developing agents for combatting phytopathogenic fungi and bacteria which are preferably able to treat potato tubers which have to be stored, and which make it possible to obtain an effect against plant diseases which previously could not be sufficiently combatted. The antibiotic chloramphenicol, whose use is so frought with risk, has to be replaced by a more favorable compound, but, nevertheless the entire losses due to the rot of stored potatoes should be reduced by 60 to 90%, the yield of potato tubers should be increased by 5 to 10%, and the quality of the seeds should be obtained as well as the occurrence of plants damaged by black leg and rhizoctonia should be reduced by at least 50 percent.
Surprisingly, it was found that mixtures of antimicrobial compounds of the general formula I with a variety of fungicides, particularly with benzimidazole fungicides, allow excellent control of fungal and bacterial inciters alone or in mixed infections and furthermore show an increased effectiveness far above the effect of the single compounds. In the general formula I: ##STR3##
R.sub.1, R.sub.2, R.sub.5 and R.sub.6 =hydrogen (only for R.sub.5 and R.sub.6), chlorine, bromine, alkyl-groups with up to 5 C-atoms,
R.sub.3 =hydrogen, sodium, potassium, magnesium, calcium, barium, tin, zinc, copper, ammonium or substituted ammonium,
R.sub.1, R.sub.2 as well as R.sub.4 may furthermore be interchangeably positioned in the ortho-position as well as in the para position. The following derivatives (or their salts) are preferably used:
6-Bromo-2-methyl-4-benzylphenol,
6-Chloro-2-methyl-4-benzylphenol,
6-Bromo-2-ethyl-4-benzylphenol,
2-Chloro-6-methyl-4-benzylphenol,
2-Chloro-6-methyl-4-(4'-isopropylbenzyl)-phenol,
2-Chloro-6-ethyl-4-(4'-ethylbenzyl)-phenol,
2-Chloro-6-methyl-4-(4'-ethylbenzyl)-phenol,
6-Bromo-2-ethyl-4-(4'-isopropylbenzyl)-phenol,
6-Bromo-2-methyl-4-(4'-isopropylbenzyl)-phenol,
2-Chloro-6-methyl-4-(4'-Chlorobenzyl)-phenol,
2-Bromo-6-methyl-4-(4'-Bromobenzyl)-phenol,
2-Chloro-6-methyl-4-(4'-methylbenzyl)-phenol,
2-Chloro-6-ethyl-4-(4'-Chlorobenzyl)-phenol,
4-Chloro-2-ethyl-6-benzylphenol,
4-Chloro-2-ethyl-6-(4'-isopropylbenzyl)-phenol,
4-Chloro-2-ethyl-6-(4'-tert-butylbenzyl)-phenol,
4-Chloro-2-methyl-6-(4'-isopropylbenzyl)-phenol,
2-Chloro-6-methyl-4-(4'-tert-butylbenzyl)-phenol,
4-Bromo-2-ethyl-6-benzylphenol
2-Bromo-6-ethyl-4-(4'-Bromobenzyl)-phenol
Sodium, potassium, barium, and calcium salts are preferably used.
The synergistic effect of these mixtures may be obtained when mixing ratios of the compound of the general formula I: fungicide between 100:1 and 1:100 are used for the formulations; an optimal effect is obtained when treating potato tubers to be stored with a mixing ratio of compounds of the general formula I: fungicide between 1:50 and 1:5. Various fungicides were used, such as sulfur, copper oxychloride, pentachloronitrobenzene, dithiocarbamate (zineb, maneb, mancozeb), fentin acetate, captan, captafol, propamocarb, oxathiine (carboxin, oxycarboxin), benzimidazole (benomyl, carbendazim, thiophanate-methyl, thiabendazole and fuberidazol), pyrimidine (ethirimol, dimethirimol, nuarimol and fenarimol), morpholine tridemorph, dodemorph, aldimorph and fenpropemorph), triforine, pyrazophos, triadimofon, triademenol, chloraniformethan, dichlobentrazol and metalyxyl, all of which brought greater than cumulative effects.
Benzimidazole fungicides are preferred for treatment of potato tubers against rot inciters, against bark diseases in fruit tree culture etc. The mixtures according to the invention are prepared in a form appropriate for their use with the convention carrier materials and additives. The agents according to the invention may be furthermore admixed with insecticides, bactericides, viricides drying oils, mineral substances, trace elements as well as agents for the regulation of biological processes, thereby extending their intended purpose for plant hygiene and plant care. The application of the preferably aqueous spray wash onto vegetable sprouts or for treatment of agricultural crops may be accomplished by a multitude of techniques.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
It was found that various types of formulation (spray powders, dust, solutions, suspensions, emulsion concentrates etc.) may be used and result in an advantageous effect. These formulations contain, according to their type, a mixture of an agent of the general formula I as well as a fungicide, one or more inert carriers (for instance kaolin, mica, bentonite sepiolite, diatomaceous earth, synthetic silica etc.) wetting-, dispersing-, or emulsifying agents (for instance ligninsulfonate, dinaphthylmethane-disulfonate, polyvinylsulfonate, alkylsuccinate, sodium sulfite, alkylbenzene sulfonate, alkylphenyl polyglycolether etc.), adhesion agents (for instance polyvinyl alcohols, vegetable or animal waxes, albumen, dextrins, gum arabic, natural and synthetic resins), solvents (for instance DMSO (dimethyl-sulfoxide), DMF (dimethylformamide), HMPT, triacetin, propylene glycol etc.), oils (mineral and triglycerides) and if so needed anti-agglomerants. Particularly for the preparation of spray powders or dust, grinding aids might be needed in addition to inert carriers, in which case substances such as chalk powder, clay, natural silicates or salts such as sodium sulfate, sodium carbonate, sodium phosphate, sodium thiosulfate and sodium bicarbonate are used.





EXAMPLES 1 TO 10
Agents formulated as spray powders have the following composition:
______________________________________AGENT I 4 wt. % 2-chloro-6-methyl-4-benzylphenol50 wt. % carbendazim40 wt. % kaolin 3 wt. % powdered sulfite liquor 3 wt. % ethoxylated alkylphenyl polyglycol etherAGENT II 5.0 wt. % 2-chloro-6-methyl-4-benzylphenol22.5 wt. % thiabendazole60.5 wt. % calcium carbonte 6 wt. % sodium ligninsulfonate 6 wt. % ethoxylated alkylphenyl polyglycol etherAGENT III 4 wt. % 2-chloro-6-methyl-4-(4'-isopropylbenzyl)-phenol50 wt. % carbendazim 6 wt. % propylene glycol30 wt. % synthetic silica 4 wt. % powdered sulfite liquor 6 wt. % ethoxylated alkylphenyl polyglycol etherAGENT IV 5 wt. % 2-chloro-6-methyl-4-(4'-isopropylbenzyl)-phenol30 wt. % thiabendazole 5 wt. % ethylene glycol40 wt. % synthetic silica12 wt. % dinapthtalmethane-disulfonate 3 wt. % polyvinyl acetate 5 wt. % sodium N--oleylvinyltaurideAGENT V30 wt. % 2-chloro-6-methyl-4-(4'-isopropylbenzyl)-phenol20 wt. % metalaxyl32 wt. % synthetic silica 3 wt. % sodium dioctylsulfosuccinate 8 wt. % hydrated sodium aluminosilicate 4 wt. % sodium ligninsulfonate 3 wt. % ethoxylated alkylphenyl polyglycol etherAGENT VI30 wt. % 2-chloro-6-ethyl-4-benzylphenol30 wt. % maneb 8 wt. % precipitated silica25 wt. % kaolin 3 wt. % sodium laurylsulfate 4 wt. % sodium ligninsulfonateAGENT VII40 wt. % 2-chloro-6-methyl-4-(4'-isopropylbenzyl)-phenol20 wt. % mancozeb24 wt. % kaolin 3 wt. % sodium dioctylsulfosuccinate 6 wt. % hydrated sodium aluminosilicate 4 wt. % sodium ligninsulfonate 3 wt. % ethoxylated alkylphenyl polyglycol etherAGENT VIII40 wt. % 2-bromo-6-methyl-4-benzylphenol20 wt. % zineb24 wt. % kaolin 3 wt. % sodium dioctylsulfosuccinate 6 wt. % hydrated sodium aluminosilicate 4 wt. % sodium ligninsulfonate 3 wt. % ethoxylated alkylphenyl polyglycol etherAGENT IX 4 wt. % 2-bromo-6-ethyl-4-benzylphenol50 wt. % methyl thiophanate40 wt. % kaolin 3 wt. % powdered sulfite liquor 3 wt. % ethoxylated alkylphenyl polyglycol etherAGENT X25 wt. % 2-bromo-6-ethyl-4-benzylphenol30 wt. % sulfur35 wt. % diatomaceous earth 5 wt. % powdered sulfite liquor 5 wt. % ethoxylated alkylphenyl polyglycol ether______________________________________
EXAMPLES 11 TO 19
Agents according to the invention formulated as suspensions have the following compositions:
______________________________________AGENT XI30 wt. % 2-chloro-6-methyl-4-(4'-isopropylbenzyl)-phenol 3 wt. % carbendazim19 wt. % ethylene glycol25 wt. % butanol 3 wt. % metaupon20 wt. % ethoxylated alkylphenyl polyglycol etherAGENT XII30 wt. % 2-bromo-6-methyl-4-benzylphenol15 wt. % captan34 wt. % ethoxylated alkylphenyl polyglycol ether10 wt. % propylene glycol 4 wt. % dibutylphthalate 6 wt. % triacetin 1 wt. % antaphron NE 30AGENT XIII10 wt. % 2-bromo-6-methyl-4-benzylphenol 5 wt. % Cu--stearate10 wt. % dimethylamino ethanol20 wt. % DMSO20 wt. % methylboxalin35 wt. % ethoxylated alkylphenyl polyglycol etherAGENT XIV 5 wt. % 2-bromo-6-methyl-4-benzylphenol 5 wt. % sulfur10 wt. % dimethylamino ethanol25 wt. % DMSO25 wt. % xylol30 wt. % ethoxylated alkylphenyl polyglycol etherAGENT XV10 wt. % 2-bromo-6-methyl-4-benzylphenol 5 wt. % griseofulvin25 wt. % dimethylamino ethanol30 wt. % DMSO30 wt. % ethoxylated alkylphenyl polyglycol etherAGENT XVI12 wt. % 2-bromo-6-methyl-4-benzylphenol15 wt. % copper oxychloride15 wt. % synthetic silica 6 wt. % propylene glycol 2 wt. % hydroxymethylcellulose 5 wt. % ethoxylated alkylphenyl polyglycol ether45 wt. % waterAGENT XVII 5 wt. % 2-chloro-6-ethyl-4-benzylphenol 5 wt. % sulfur10 wt. % synthetic silica50 wt. % spindle oil30 wt. % ethoxylated alkylphenyl polyglycol etherAGENT XVIII25 wt. % 6-bromo-2-methyl-4-benzylphenol25 wt. % tridemorph16 wt. % propylene glycol34 wt. % ethoxylated alkylphenyl polyglycol etherAGENT XIX20 wt. % 6-bromo-2-methyl-4-benzylphenol20 wt. % metalaxyl30 wt. % propylene glycol10 wt. % DMSO20 wt. % ethoxylated alkylphenyl polyglycol ether______________________________________
EXAMPLE 20
Test on potato tubers in the laboratory
The following agents according to the invention are used: III, XX, XXI (2-chloro-6-methyl-4-benzylphenyl+carbendazim are mixed for use at a ratio of 1:50 and 1:12.5 respectively and formulated corresponding to agent III), agent II, thiabendazole and carbendazim.
The formulations and the comparison agents carbendazim are thiabendazole are studied in laboratory tests against Fusarium-dry rot (Fusarium spp.), bacterial wet rot (Erwinia spp.) and mixed rot (Fusarium spp.+Erwinia spp.) on potato tubers of the Adretta variety, after artificial infections. The fungicidal efficiency of the tested agents is shown in table 1. The fungicidal efficiency was calculated from the degree of infection. Agent III according to the invention is distinctly superior in its fungicidal efficiency against the three rot-types over the individual substances. The excellent effect against bacterial wet rot and mixed rot is prominent here, considering that these diseases are very difficult to combat.
TABLE 1______________________________________Fungicidal effect of agents according to the inventionII, III, XX, and XXI compared with 2-chloro-6-methyl-4-(4'-isopropylbenzyl)-phenol, 2-chloro-6-methyl-4-benzyl-phenol, thiabendazole and carbendazim against Fusarium-dry rot (Fusarium spp.), bacterial wet rot (Erwiniaspp.) and mixed rot (Fusarium spp. + Erwinia spp.) onpotato tubers of the "Adretta" variety, after artifi-cial infection at laboratory conditions. Degree of efficiency in % amount of Fusarium wet mixedVariant agent per ton dry rot rot rot______________________________________2-chloro-6-methyl-4- 10 g + 125 g 90 100 100(4-isopropybenzyl)-phenol +carbendazim(agent III)2-chloro-6-methyl-4- 10 g + 45 g -- -- 99benzylphenol +thiabendazole(agent II)2-chloro-6-methyl-4- 10 g 30 40 10(4'-isopropylbenzyl)-phenol2-chloro-6-methyl-4- 2.5 g + 125 g 83 100 95benzylphenol +carbendazim(agent XX)2-chloro-6-methyl- 10 g + 125 g 92 100 984-benzylphenol +carbendazim(agent XXI)2-chloro-6-methyl 2.5 g 28 -- 74-benzylphenol2-chloro-6-methyl- 10 g 37 40 104-benzylphenolcarbendazim 125 g 70 10 10thiabendazole 45 g -- -- 72______________________________________
EXAMPLE 21
Test on potato tubers at practical conditions (of the "Libelle" variety)
Potato tubers of the "Libelle" variety serve to test the mixtures according to the invention (agent XX and XXI) at storage under practical conditions. Additionally, a mixture according to the invention (agent XXII) 2-chloro-6-methyl-4-benzylphenol:Carbendazim 1:10 was formulated with the conventional formulation adjuvants (corresponding to agent III) and included in the tests. 5 kg samples (5 repetitions in a laboratory preparation drum) were additionally infected, treated and stored in a conventional manner. Bercema-Demex, a conventional preparation containing chloramphenicol as the bactericidal component, was used for comparison. The effect of the agents is shown in Table 2, separate in respect to Fusarium-dry rot, bacterial wet rot and mixed rot. In their fungicidal effect, the agents according to the invention are as good as the comparative agent Bercema-Demex which contains chloramphenicol. One of the agents according to the invention shows even a better effect against mixed rot.
TABLE 2______________________________________Fungicidal effect of agents according to the inven-tion compared to the conventional agent Bercema-Demex, againstFusarium-dry rot (Fusarium spp.), bacterial wet rot (Erwinia spp.)and mixed rot (Fusarium spp. + Erwinia spp.) on potato tubersof the "Libelle" variety after additional infection underpractical conditions. Infection under Practical Conditions amount rot infection (in %) used Fusarium wet mixed sum ofVariant per ton dry rot rot rot rots______________________________________untreated -- 10.3 0 5.7 16.0control2-chloro-6-methyl- 2.5 g + 6.5 0 0.8 7.34-benzylphenol + 125 gcarbendazim(agent XX)2-chloro-6-methyl- 10 g + 7.1 0 0.9 8.04-benzylphenol + 125 gcarbendazim(agent XXI)2-chloro-6-methyl- 24 g+ 6.0 0 0.4 6.44-benzylphenol + 125 g +carbendazim(agent XXII)carbendazim + 115 g + 6.4 0 0.8 7.2chloroamphenicol 2.6 g(Bercema-Demex)______________________________________
EXAMPLE 22
Testing of mixtures according to the invention against grain mildew (Erysiphe graminis DC)
The mixtures according to the invention (agents XI, XIII, XV) are used for the experiments. For the execution of the test, wheat plants in their one-leaf state were infected with Erisyphe graminis DC f. sp. triticai Marchal and treated after 24 hours with the chosen agent to dripping wetness. The degree of fungicidal effect was calculated from yield classifications. The mixtures according to the invention show very good fungicidal effect against wheat mildew under laboratory conditions.
TABLE 3______________________________________Fungicidal effect of agents XI, XII and XV accordingto the invention against grain mildew (Erysiphe graminis DC f.sp. tritici Marchal) concentration degree ofVariant of agent (in ppm) effect (in %)______________________________________2-chloro-6-methyl-4- 750 100(4'-isopropylbenzyl)-phenol + carbendazim(agent XI)2-bromo-6-methyl-4- 300 + 150 95benzylphenol +Cu--stearate(agent XIII)2-bromo-6-methyl-4- 300 + 150 100benzylphenol +griseofulvin(agent XV)______________________________________
EXAMPLE 23
Testing of mixtures according to the invention against Botrytis spp. on tulips
Tulip bulbs infected with Botrytis spp. are treated with mixtures according to the invention (agents XI and XII) by immersion in an aqueous bath. These tulip bulbs were planted in the fall and inspected the following year for symtoms of disease caused by Botrytis spp. The result of these tests are displayed in Table 4. It was found that the mixture according to the invention resulted in an excellent controlling effect.
TABLE 4______________________________________Fungicidal effect of mixtures according to the inven-tion against Botrytis spp. on tulip bulbs concentration of degree ofVariant application % effect %______________________________________2-chloro-6-methyl-4- 0.15 + 0.05 98(4'-isopropylbenzyl)-phenol + carbendazim(agent XI)2-bromo-6-methyl-4- 1.00 + 0.05 92benzylphenol +captan(agent XII)______________________________________
EXAMPLE 24
Testing of mixtures according to the invention (agents VII, VIII, and XIV) against Phytophthora infestans
Tomato leaves were treated with the mixtures according to the invention until dripping wet and were infected consecutively with Phytophthora infestans. The fungicidal effect of the test agents is displayed in Table 5. The degree of fungicidal effect was calculated by counting the infected spots against the degree of infection. As can be observed from the test results, the mixtures according to the invention possess an excellent fungicidal effect. It is expected that by mixing--according to the invention--with metalaxyl, the danger of production of resistance against the agent metalaxyl can be reduced or prevented, due to combination with an antimicrobial compound of the general formula I.
TABLE 5______________________________________Fungicidal effect of the mixtures according to theinvention against Phytophthora infestans on tomato leaves concentration degree ofVariants of agent (ppm) effect (%)______________________________________2-chloro-6-methyl-4- 150 92(4'-isopropylbenzyl)-phenol + mancozeb(agent VII)2-bromo-6-methyl-4- 150 80benzylphenol +zineb (agent VIII)2-bromo-6-methyl-4- 150 93benzylphenol +metalaxyl (agent XIV)______________________________________
EXAMPLE 25
Testing against bark disease inciter of fruit in a Petri dish
A mixture according to the invention is prepared by mixing 2-chloro-6-methyl-4-benzylphenol with the benzimidazole fungicide carbendazim at a ratio of 50:1 and by formulating it with the conventional formulation adjuvants. The mixture according to the invention or 2-chloro-6-methyl-4-benzylphenol or carbendazim respectively were added to nutritional agar for fungi and transferred into Petri dishes.
In order to study the effects of the test, various inciters of bark disease of fruit trees were inoculated (Nectria spp., Pezicula spp., Gloeosporium spp.). Evaluation was performed by measuring the growth of the mycelium and is expressed as a degree of fungicidal effect. The results of the test may be found in Table 6. The agent according to the invention has a fungicidal effect against the inciters of bark diseases distinctly superior to the effect of the individual substances.
TABLE 6______________________________________Fungicidal effect of the agent according to theinvention compared with 2-chloro-6-methyl-4-benzylphenol andcarbendazim against inciters of bark diseases of fruit trees,found on the Petri dish test Concentration of use or degree ofInciter Variant agent in ppm. effect (%)______________________________________Nectria spp. 2-chloro-6-methyl- 300 100 4-benzylphenol + carbendazim 2-chloro-6-methyl- 300 30 4-benzylphenol Carbendazim 1 60Pezicula spp. 2-chloro-6-methyl- 300 100 4-benzylphenol + carbendazim 2-chloro-6-methyl- 300 30 4-benzylphenol Carbendazim 1 45Gloeosporium 2-chloro-6-methyl- 300 100spp. 4-benzylphenol + carbendazim 2-chloro-6-methyl- 300 25 4-benzylphenol Carbendazim 1 40______________________________________
EXAMPLE 26
Treatment against wheat bunt (Tilletia spp.)
For these tests, two mixtures according to the invention were prepared, comprising 2-chloro-6-methyl-4-benzylphenol and carbendazim with the conventional formulation adjuvants at ratios 10:1 and 5:1, and were tested according to the Gassner method. The fungicidal effect of the tested agent is determined by treating wheat seeds (of the "Alcedo" variety), artificially contaminated with Tilletia spores, and incubating in sludge soil. The formation of sporidia was used as a criteria for evaluation. Table 7 displays the results of testing the mixtures according to the invention compared with a conventional preparation (Falisan-Universal-Trockenbeize 69). The antimicrobial agent successfully prevents the formation of sporidia. It is, though, surpassed by the mixture according to the invention. The effect of the control preparation was approached only by an agent according to the invention.
TABLE 7______________________________________Results of treatment against wheat bunt (Tilletia spp.) inhibition of sporidia agent used per formationAgent 100 Kg seed basic number______________________________________untreated control -- 12-chloro-6-methyl-benzyl- 20 g + 2 g 3phenol + carbendazim2-chloro-6-methyl-4-benzyl- 10 g + 2 g 2phenol + carbendazim2-chloro-6-methyl-4-benzyl- 20 g 2phenol2-chloro-6-methyl-4-benzyl- 10 g 2phenolphenyl-mercury-silver-acetate 4.88 g 3(Falisan-Universal-Trockenbeize 69)______________________________________
legend: basic number
0=sporidia formation above 60%
1=sporidia formation 15 to 60%
2=sporidia formation 3 to 15%
3=sporidia formation 0 to 3%
Claims
  • 1. A mixture for controlling phytopathogenic fungi and bacteria, comprising 2-chloro-6-methyl-4-benzylphenol and carbendazim in a weight proportion in the range of 1:50 to 1:5.
  • 2. A mixture according to claim 1, further comprising ethoxylated alkylphenyl polyglycol ether.
  • 3. A mixture according to claim 2, consisting of
  • 4 wt. % 2-chloro-6-methyl-4-benzylphenol;
  • 50 wt. % carbendazim;
  • 40 wt. % kaolin;
  • 3 wt. % powdered sulfite liquor; and
  • 3 wt. % ethoxylated alkylphenyl polyglycol ether.
Priority Claims (3)
Number Date Country Kind
2311483 Jun 1981 DDX
2350192 Nov 1981 DDX
2382263 Mar 1982 DDX
US Referenced Citations (2)
Number Name Date Kind
3631175 LaLiberte Dec 1971
3657443 Klopping Apr 1972
Foreign Referenced Citations (9)
Number Date Country
1237731 Mar 1967 DEX
1209799 Mar 1970 DEX
1745784 Mar 1972 DEX
110423 Dec 1974 DEX
78423 Dec 1970 DDX
107204 Jul 1974 DDX
131746 Mar 1976 DDX
130427 Mar 1977 DDX
1195180 Jun 1970 GBX