Compositions isolated from plant cells and their use in the modification

Information

  • Patent Grant
  • 6359198
  • Patent Number
    6,359,198
  • Date Filed
    Tuesday, January 12, 1999
    25 years ago
  • Date Issued
    Tuesday, March 19, 2002
    22 years ago
Abstract
Novel isolated polynucleotides that encode polypeptides involved in plant cell signaling are provided, together with DNA constructs comprising such polynucleotides. Methods for using such constructs for the modulation of cell signaling in plants are also disclosed, together with transgenic plants comprising such constructs.
Description




FIELD OF THE INVENTION




This invention relates to the field of modifying the responses of plant cells to external signals, such as environmental changes, and developmental cues. More specifically, this invention provides isolated polynucleotides encoding polypeptides that are integrally located in plant cell membranes and that mediate cellular signaling processes.




BACKGROUND OF THE INVENTION




Plants progress through set developmental programs throughout the course of their lifetimes. This is particularly evident in embryogenesis and floral development. There are a variety of signal molecules produced by certain cells in the plant to which other cells, particularly in the meristematic regions, are poised to respond. These signal molecules trigger distinct sets of developmental programs at specific times that lead to the formation of, for example, flowers or cotyledons. In addition to the programmed developmental pathways, plants are exposed to a variety of environmental stimuli such as changes in temperature and amount of sunlight, availability of water, wounding from mechanical injury and attack by pathogens. Environmental factors, such as exposure to light, heat, cold, drought, etc., activate the expression of genes and synthesis of proteins and other compounds essential for an appropriate response to the environmental signal and thereby, the healthy development of the plant. These responses, like the developmental pathways, are mediated by signal molecules.




To respond to these signal molecules, plant cells produce surface receptor proteins that serve as sensors, regulators and/or transducers of cell signals. The intracellular transduction of a signal is often transmitted via a phosphorylation cascade of molecules that culminates in the transcription of genes to elicit the appropriate cellular response either for normal development or against environmental challenge.




One major class of receptor proteins is the single-transmembrane family, of which there are several subclasses. These proteins are characterized by three domains: an extracellular signal molecule (or ligand) recognition/binding domain, a single cell membrane-spanning domain and an intracellular signal transduction domain which is usually a protein kinase. Many, but not all, plant single transmembrane proteins belong to the subclass known as receptor-like kinases (RLKs). The intracellular kinase domains of plant RLKs are all serine/threonine protein kinases, while the extracellular domains of RLKs are of different types. One type of RLK is characterized by the presence of the extracellular S-domain, originally described in self-incompatibility-locus glycoproteins that inhibit self-pollination. The S-domain is recognized by an array of ten cysteine residues in combination with other conserved residues. Another class of RLKs has an extracellular domain distinguished by leucine rich repeats (LRR) that are involved in protein-protein interactions. Binding of ligands to the extracellular domain is followed by receptor dimerization, autophosphorylation and the activation of a series of intracellular proteins which serve to transduce the signal to the nucleus. The structure of plant RLKs is very similar to receptors found in cell signaling pathways in animal systems.




One example of a plant RLK is the Xa21 gene, which confers resistance to the plant pathogen


Xanthomonas oryzae


pv. oryzae race 6. This gene was cloned using genetic means comparing Xanthomonas-sensitive and resistant strains of rice (Song et al.


Science


270:1804-1806, 1995), and has been subsequently shown to confer resistance to Xanthomonas in Arabidopsis. The 1025 amino acid protein shows a number of features with similarity to known protein domains including a NH


2


-terminal 23 amino acid residue signal peptide, indicating that the protein is directed to the plasma membrane. Amino acids 81 to 634 contain 23 imperfect copies of a 24-amino acid LRR. Amino acids 651 to 676 encode a 26-amino acid hydrophobic segment that is likely to form a membrane-spanning domain. The C-terminal amino acids contain a putative intracellular serine threonine kinase domain carrying 11 subdomains with all 15 invariant amino acids that are typical of protein kinases. Subdomains VI and VIII are indicative of serine-threonine phosphorylation specificity. Xa21 has strong similarities to other RLKs, such as the Arabidopsis receptor-like kinase proteins RLK5 and TMK1, showing conservation of both the LRR and protein kinase domains. It is not yet known to what protein Xa21 transduces its pathogen recognition signal.




Another kind of membrane receptor molecules expressed by plant cells is histidine kinases (HKs). HKs have been known for some time in bacterial signal transduction systems, where they form one half of a two-component signaling system. The bacterial HK serves as a sensor molecule for extracellular signals, such as changes in osmoticum, nutrients and toxins. The HK autophosphorylates on a histidine residue in response to ligand binding. This phosphohistidine donates its phosphate group to an aspartate residue of the second member of the two component system, known as the response regulator (RR). The phosphorylated RR then binds DNA in a sequence-specific manner, serving to directly activate specific genes which code for proteins that mediate the response to the extracellular stimulus.




Like bacteria, plant cells have a two-component signaling system which consists of a sensor element HK and a RR. The two components may be separate molecules or may exist as a hybrid molecule (hereinafter referred to as hybrid HK/RR proteins). The HK proteins are distinguished by well-conserved amino acid motifs that occur in a specific order. From the amino terminus, the conserved regions are identified as the H, N, G1, F and G2 boxes. These motifs are usually found within a 200-250 amino acid span of the protein. The G1, F and G2 boxes are thought to be involved in nucleotide binding. As in bacteria, upon receiving the extracellular signal, the HK is autophosphorylated on the histidine residue contained in the H box. The phosphate group is subsequently transferred to the RR. All HKs are believed to phosphorylate a RR, as an obligate part of signal transduction. RRs are characterized by the absolute conservation of an aspartate which is phosphorylated by the phosphohistidine of the HK, and a conserved lysine residue. Unlike bacteria, RRs in plants have not been shown to bind DNA directly. Rather, all the plant RR's characterized to date appear to transduce the signal into protein kinase cascades, which eventually phosphorylate and either activate or inactivate transcription factors, and thereby gene expression.




The ethylene receptor (ETR1; Chang et al.


Science


262:539-544) is the best known two-component signaling system in plants. Ethylene is a well known signal molecule that is involved in the regulation of plant development as well as the coordination of fertilization, senescence, skoto/photomorphogenesis and responses to pathogens and mechanical injury. The ethylene receptor is a hybrid HK/RR protein. The signal is transduced through the protein CTR1, which is a Raf-like protein kinase. CTR1 is a negative regulator of downstream steps in the signaling pathway. While the details of this pathway remain unclear, it appears that the HK is constitutively active in the absence of ethylene, thereby constantly phosphorylating CTR1, which in turn represses other genes in the ethylene response pathway. Binding of ethylene to ETR1 inhibits the HK function of the receptor, resulting in the inhibition of the negative regulator CTR1, thereby allowing the activation of downstream proteins in the ethylene signal transduction cascade. This culminates in activation of ethylene response genes.




Recently, two RR genes, IBC6 and IBC7, which are induced in response to the plant growth regulator cytokinin, have been cloned from


Arabidopsis thaliana


and characterized (Brandstatter and Kieber,


The Plant Cell


10:1009-1019, 1998). It is likely that IBC6 and IBC7 are involved in the transduction of the cytokinin signal in plants. This is particularly interesting in light of the fact that a gene encoding the hybrid HK/RR protein CKI1 (Kakimoto,


Science


274:982-985, 1996) causes cytokinin-like effects when it is ectopically expressed in transgenic plants. Thus it appears likely that a two-component HK/RR system is involved in cytokinin signal transduction. Cytokinin is known to regulate plant growth and development, including such physiological events as nutrient metabolism, expansion and senescence of leaves, and lateral branching.




While polynucleotides encoding proteins involved in plant cell signaling have been isolated for certain species of plants, genes encoding many such proteins have not yet been identified in a wide range of plant species. Thus, there remains a need in the art for materials which may be usefully employed in the modification of cell signaling in plants.




SUMMARY OF THE INVENTION




Briefly, the present invention provides polynucleotides isolated from eucalyptus and pine which encode polypeptides involved in cell signaling, together with methods for the use of such polynucleotides and polypeptides. Such polypeptides function as sensor-regulators or receptor kinases. The isolated polynucleotides and polypeptides may be usefully employed in the modification of plant cell responses either during the growth and development of a plant, or under conditions of stress resulting from pathogens or environmental factors.




In a first aspect, the present invention provides isolated and purified polynucleotides obtainable from eucalyptus and pine which encode RLKs, HKs, RRs or hybrid HK/RR proteins. In one embodiment, the isolated polynucleotides comprise a DNA sequence selected from the group consisting of: (a) sequences recited in SEQ ID NO: 1-67; (b) complements of the sequences recited in SEQ ID NO: 1-67; (c) reverse complements of the sequences recited in SEQ ID NO: 1-67; (d) reverse sequences of the sequences recited in SEQ ID NO: 1-67; and (e) sequences having either 40%, 60%, 75% or 90% identical nucleotides, as defined herein, to a sequence of (a)-(d).




In a further aspect, isolated polypeptides encoded by an inventive DNA sequence are provided. In one embodiment, such polypeptides comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 68-130.




In another aspect, the invention provides DNA constructs comprising a polynucleotide of the present invention, either alone, in combination with one or more other polynucleotides disclosed herein, or in combination with one or more known DNA sequences, together with transgenic cells comprising such constructs.




In a related aspect, the present invention provides DNA constructs comprising, in the 5′-3′ direction, a gene promoter sequence; an open reading frame coding for at least a functional portion of a polypeptide encoded by an inventive polynucleotide or a variant thereof; and a gene termination sequence. The open reading frame may be orientated in either a sense or antisense direction. DNA constructs comprising an untranslated, or non-coding, region of a gene coding for a cell membrane polypeptide encoded by the above polynucleotides or a nucleotide sequence complementary to a non-coding region, together with a gene promoter sequence and a gene termination sequence, are also provided. Preferably, the gene promoter and termination sequences are functional in a host plant. Most preferably, the gene promoter and termination sequences are those of the original genes but others generally used in the art, such as the Cauliflower Mosaic Virus (CaMV) promoter, with or without enhancers such as the Kozak sequence or Omega enhancer, and


Agrobacterium tumefaciens


nopaline synthase terminator may be usefully employed in the present invention. Tissue-specific promoters may be employed in order to target expression to one or more desired tissues. The DNA construct may further include a marker for the identification of transformed cells.




In a further aspect, transgenic cells, preferably plant cells, comprising the DNA constructs of the present invention are provided, together with organisms, preferably plants, comprising such transgenic cells, and fruit and seeds of such plants.




In yet another aspect, methods for modifying cell signaling in a target organism, such as a plant, are provided, such methods including stably incorporating into the genome of the plant a DNA construct of the present invention. In a preferred embodiment, the target plant is a woody plant, preferably selected from the group consisting of eucalyptus and pine species, most preferably from the group consisting of


Eucalyptus grandis


and


Pinus radiata.


In a related aspect, a method for producing a target organism, such as a plant, having modified cell signaling is provided, the method comprising transforming a plant cell with a DNA construct of the present invention to provide a transgenic cell and cultivating the transgenic cell under conditions conducive to regeneration and mature plant growth.




In yet a further aspect, the present invention provides methods for modifying the activity of a polypeptide in a target organism, such as a plant, comprising stably incorporating into the genome of the plant a DNA construct of the present invention. In a preferred embodiment, the target plant is a woody plant, preferably selected from the group consisting of eucalyptus and pine species, most preferably from the group consisting of


Eucalyptus grandis


and


Pinus radiata.






The above-mentioned and additional features of the present invention and the manner of obtaining them will become apparent, and the invention will be best understood by reference to the following more detailed description. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.




DETAILED DESCRIPTION




The present invention provides isolated and purified polynucleotides that encode proteins involved in plant cell signaling. As discussed above, cell signaling is known to play a critical role in the growth and development of plants, and in cellular responses to external stimuli, such as environmental factors and disease pathogens. Transformation of plants with polynucleotides that encode proteins involved in cell signaling may thus be employed to modify properties such as cell proliferation, differentiation, elongation and survival; resistance to disease; and nutrient metabolism.




For example, the HK ETR1 is known to be involved in ethylene signal transduction. Modulation of ETR1 expression will thus lead to a modification of physiological properties regulated by ethylene, such as fruit ripening, and senescence of leaves and flowers. Modulation of the expression of this protein in transgenic plants may therefore be employed to prolong the useful life of cut flowers by delaying senescence. Additionally, modulation of the expression of ETR1 could be used to selectively enhance the senescence of reproductive organs, resulting in engineered sterile plants.




The HK protein CKI1 has been implicated in cytokinin signal transduction. Its over expression is known to result in cytokinin-like effects in mutant plants. Cytokinin has been shown to play critical roles in lateral branching, leaf expansion, cell division, nutrient distribution, and delaying senescence, among other physiological phenomena. Therefore, modulation of the expression of CKI1 may result in, for example, the delay of senescence in selected cell types or organs. This would result in prolonged shelf life for fruits and vegetables between harvest and consumption. Alternatively, modulation of CKI1 expression may be used to decrease branching frequency in forest tree species, resulting in long stretches of valuable knot-free clear wood for use in solid timber furniture and veneers.




Using the methods and materials of the present invention, the amount of a specific plant cell polypeptide may be increased or reduced by incorporating additional copies of genes encoding the polypeptide into the genome of a target organism, such as a plant. Similarly, an increase or decrease in the amount of the polypeptide may be obtained by transforming the target organism with antisense copies of such genes.




In one embodiment, the present invention provides isolated polynucleotides encoding, or partially encoding, plant polypeptides that are involved in cell signaling, the polynucleotides being derived from eucalyptus and pine. Specifically, the present invention provides isolated polynucleotides encoding RLKs from


Eucalyptus grandis


(SEQ ID NO: 2, 8, 9, 11, 15, 18, 19, 21-25, 33, 34 and 38) and


Pinus radiata


(SEQ ID NO: 1, 3-7, 10, 12-14, 16, 17, 20, 26-32, 35-37, 39-41), and isolated polynucleotides encoding at least one member of a two-component signaling system (HKs, RRs or hybrid HK/RR proteins) from


Eucalyptus grandis


(SEQ ID NO: 42, 48-52, 55-58 and 67) and


Pinus radiata


(SEQ ID NO: 43-47, 53, 54 and 59-66). Complements of such isolated polynucleotides, reverse complements of such isolated polynucleotides and reverse sequences of such isolated polynucleotides are also provided, together with variants of such sequences, as defined below.




In another embodiment, the present invention provides isolated polypeptides encoded by the DNA sequences of SEQ ID NO: 1-67. In specific embodiments, such isolated polypeptides include an amino acid sequence of SEQ ID NO: 68-130. The present invention also encompasses DNA sequences that differ from the disclosed sequences but which, due to the degeneracy of the genetic code, encode a polypeptide which is the same as that encoded by a DNA sequence disclosed herein.




The term “polynucleotide(s),” as used herein, means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and corresponding RNA molecules, including HnRNA and mRNA molecules, both sense and anti-sense strands, and comprehends cDNA, genomic DNA and recombinant DNA, as well as wholly or partially synthesized polynucleotides. An HnRNA molecule contains introns and corresponds to a DNA molecule in a generally one-to-one manner. An mRNA molecule corresponds to an HnRNA and DNA molecule from which the introns have been excised. A polynucleotide may consist of an entire gene, or any portion thereof. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of “polynucleotide” therefore includes all such operable anti-sense fragments. Anti-sense polynucleotides and techniques involving anti-sense polynucleotides are well known in the art and are described, for example, in Robinson-Benion et al. (1995), Antisense techniques,


Methods in Enzymol.


254(23): 363-375; and Kawasaki et al. (1996),


Artific. Organs


20 (8): 836-848.




The term “polypeptide”, as used herein, encompasses amino acid chains of any length including full length proteins, wherein amino acid residues are linked by covalent peptide bonds. Polypeptides of the present invention may be purified natural products, or may be produced partially or wholly using recombinant or synthetic techniques.




All of the polynucleotides and polypeptides described herein are isolated and purified, as those terms are commonly used in the art.




The definition of the terms “complement”, “reverse complement” and “reverse sequence”, as used herein, is best illustrated by the following example. For the sequence 5′ AGGACC 3′, the complement, reverse complement and reverse sequence are as follows:





















complement




3′ TCCTGG 5′







reverse complement




3′ GGTCCT 5′







reverse sequence




5′ CCAGGA 3′.















As used herein, the term “variant” covers any sequence which has at least about 40%, more preferably at least about 60%, more preferably yet at least about 75% and most preferably at least about 90% identical residues (either nucleotides or amino acids) to a sequence of the present invention. The percentage of identical residues is determined by aligning the two sequences to be compared, determining the number of identical residues in the aligned portion, dividing that number by the total length of the inventive, or queried, sequence and multiplying the result by 100.




Polynucleotide or polypeptide sequences may be aligned, and percentage of identical nucleotides in a specified region may be determined against another sequence, using computer algorithms that are publicly available. Two exemplary algorithms for aligning and identifying the similarity of polynucleotide sequences are the BLASTN and FASTA algorithms. The similarity of polypeptide sequences may be examined using the BLASTP algorithm. Both the BLASTN and BLASTP software are available on the NCBI anonymous FTP server (ftp://ncbi.nlm.nih.gov) under/blast/executables/. The BLASTN algorithm version 2.0.4 [Feb. 24, 1998], set to the default parameters described in the documentation and distributed with the algorithm, is preferred for use in the determination of variants according to the present invention. The use of the BLAST family of algorithms, including BLASTN and BLASTP, is described at NCBI's website at URL http://www.ncbi.nlm.nih.gov/BLAST/newblast.html and in the publication of Altschul, Stephen F., et al. (1997), “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”,


Nucleic Acids Res.


25:3389-3402. The computer algorithm FASTA is available on the Internet at the ftp site ftp://ftp.virginia.edu/pub/fasta/. Version 2.0u4, February 1996, set to the default parameters described in the documentation and distributed with the algorithm, is preferred for use in the determination of variants according to the present invention. The use of the FASTA algorithm is described in W. R. Pearson and D. J. Lipman, “Improved Tools for Biological Sequence Analysis,”


Proc. Natl. Acad. Sci. USA


85:2444-2448 (1988) and W. R. Pearson, “Rapid and Sensitive Sequence Comparison with FASTP and FASTA,”


Methods in Enzymology


183:63-98 (1990).




The following running parameters are preferred for determination of alignments and similarities using BLASTN that contribute to E values (as discussed below) and percentage identity: Unix running command: blastall -p blastn -d embldb -e 10 -G 1 -E 1 -r 2 -v 50 -b 50 -i queryseq -o results; and parameter default values:




-p Program Name [String]




-d Database [String]




-e Expectation value (E) [Real]




-G Cost to open a gap (zero invokes default behavior) [Integer]




-E Cost to extend a gap (zero invokes default behavior) [Integer]




-r Reward for a nucleotide match (blastn only) [Integer]




-v Number of one-line descriptions (V) [Integer]




-b Number of alignments to show (B) [Integer]




-i Query File [File In]




-o BLAST report Output File [File Out] Optional




For BLASTP the following running parameters are preferred: blastall -p blastp -d swissprotdb -e 10 -G 1 -E 1 -v 50 -b 50 -i queryseq -o results




-p Program Name [String]




-d Database [String]




-e Expectation value (E) [Real]




-G Cost to open a gap (zero invokes default behavior) [Integer]




-E Cost to extend a gap (zero invokes default behavior) [Integer]




-v Number of one-line descriptions (v) [Integer]




-b Number of alignments to show (b) [Integer]




-I Query File [File In]




-o BLAST report Output File [File Out] Optional




The “hits” to one or more database sequences by a queried sequence produced by BLASTN, BLASTP, FASTA, or a similar algorithm, align and identify similar portions of sequences. The hits are arranged in order of the degree of similarity and the length of sequence overlap. Hits to a database sequence generally represent an overlap over only a fraction of the sequence length of the queried sequence.




The BLASTN and FASTA algorithms also produce “Expect” or E values for alignments. The E value indicates the number of hits one can “expect” to see over a certain number of contiguous sequences by chance when searching a database of a certain size. The Expect value is used as a significance threshold for determining whether the hit to a database, such as the preferred EMBL database, indicates true similarity. For example, an E value of 0.1 assigned to a hit is interpreted as meaning that in a database of the size of the EMBL database, one might expect to see 0.1 matches over the aligned portion of the sequence with a similar score simply by chance. By this criterion, the aligned and matched portions of the sequences then have a 90% probability of being the same. For sequences having an E value of 0.01 or less over aligned and matched portions, the probability of finding a match by chance in the EMBL database is 1% or less using the BLASTN or FASTA algorithm.




According to one embodiment, “variant” polynucleotides, with reference to each of the polynucleotides of the present invention, preferably comprise sequences having the same number or fewer nucleic acids than each of the polynucleotides of the present invention and producing an E value of 0.01 or less when compared to the polynucleotide of the present invention. That is, a variant polynucleotide is any sequence that has at least a 99% probability of being the same as the polynucleotide of the present invention, measured as having an E value of 0.01 or less using the BLASTN or FASTA algorithms set at the parameters discussed above.




Variant polynucleotide sequences will generally hybridize to the recited polynucleotide sequence under stringent conditions. As used herein, “stringent conditions” refers to prewashing in a solution of 6×SSC, 0.2% SDS; hybridizing at 65° C., 6×SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1×SSC, 0.1% SDS at 65° C. and two washes of 30 minutes each in 0.2×SSC, 0.1% SDS at 65° C.




As used herein, the term “x-mer,” with reference to a specific value of “x,” refers to a polynucleotide comprising at least a specified number (“x”) of contiguous residues of any of the polynucleotides identified as SEQ ID NO: 1-67. The value of x may be from about 20 to about 600, depending upon the specific sequence.




Polynucleotides of the present invention comprehend polynucleotides comprising at least a specified number of contiguous residues (x-mers) of any of the polynucleotides identified as SEQ ID NO: 1-67 or their variants. According to preferred embodiments, the value of x is preferably at least 20, more preferably at least 40, more preferably yet at least 60, and most preferably at least 80. Thus, polynucleotides of the present invention include polynucleotides comprising a 20-mer, a 40-mer, a 60-mer, an 80-mer, a 100-mer, a 120-mer, a 150-mer, a 180-mer, a 220-mer a 250-mer, or a 300-mer, 400-mer, 500-mer or 600-mer of a polynucleotide identified as SEQ ID NO: 1-67 or a variant of one of the polynucleotides identified as SEQ ID NO: 1-67.




The inventive polynucleotides may be isolated by high throughput sequencing of cDNA libraries prepared from


Eucalyptus grandis


and


Pinus radiata


as described below in Examples 1 and 2. Alternatively, oligonucleotide probes based on the sequences provided in SEQ ID NO: 1-67 can be synthesized and used to identify positive clones in either cDNA or genomic DNA libraries from


Eucalyptus grandis


and


Pinus radiata


by means of hybridization or PCR techniques. Probes can be shorter than the sequences provided herein but should be at least about 10, preferably at least about 15 and most preferably at least about 20 nucleotides in length. Hybridization and PCR techniques suitable for use with such oligonucleotide probes are well known in the art, and include those taught by Sambrook et al., Ibid. Positive clones may be analyzed by restriction enzyme digestion, DNA sequencing or the like.




In addition, the DNA sequences of the present invention may be generated by synthetic means using techniques well known in the art. Equipment for automated synthesis of oligonucleotides is commercially available from suppliers such as Perkin Elmer/Applied Biosystems Division (Foster City, Calif.) and may be operated according to the manufacturer's instructions.




In one embodiment, the DNA constructs of the present invention include an open reading frame coding for at least a functional portion of a polypeptide encoded by a polynucleotide of the present invention or a variant thereof. As used herein, the “functional portion” of a polypeptide is that portion which contains the binding site or the catalytic signal transduction site of the protein. The functional portion can be determined by targeted mutagenesis and screening of modified protein products with protocols well known in the art. Normally, the functional portion is 10-20 amino acids in length, but can be shorter or longer. The active site may be made up of separate portions present on one or more polypeptide chains and will generally exhibit high substrate specificity. The term “polypeptide encoded by a polynucleotide” as used herein, includes polypeptides encoded by a nucleotide sequence which includes the partial isolated DNA sequences of the present invention.




The open reading frame is inserted in the DNA construct in a sense or antisense orientation, such that transformation of a target plant with the DNA construct will lead to a change in the amount of polypeptide compared to the wild-type plant. Transformation with a DNA construct comprising an open reading frame in a sense orientation will generally result in over-expression of the selected gene, while transformation with a DNA construct comprising an open reading frame in an antisense orientation will generally result in reduced expression of the selected gene. A population of plants transformed with a DNA construct comprising an open reading frame of the present invention in either a sense or antisense orientation may be screened for increased or reduced expression of the gene in question using techniques well known to those of skill in the art, and plants having the desired phenotypes may thus be isolated.




Alternatively, expression of a gene involved in plant cell signaling may be inhibited by inserting a portion of an open reading frame of the present invention, in either sense or antisense orientation, in the DNA construct. Such portions need not be full-length but preferably comprise at least 25 and more preferably at least 50 residues of an inventive DNA sequence. A longer portion or even the full length DNA corresponding to the complete open reading frame may be employed. The portion of the open reading frame does not need to be precisely the same as the endogenous sequence, provided that there is sufficient sequence similarity to achieve inhibition of the target gene. Thus a sequence derived from one species may be used to inhibit expression of a gene in a different species.




In a second embodiment, the inventive DNA constructs comprise a DNA sequence including an untranslated region of a gene coding for a polypeptide encoded by a polynucleotide of the present invention, or a DNA sequence complementary to such untranslated region. Examples of untranslated regions which may be usefully employed in such constructs include introns and 5′-untranslated leader sequences. Transformation of a target plant with such a DNA construct may lead to a reduction in the amount of the polypeptide expressed in the plant by the process of cosuppression, in a manner similar to that discussed, for example, by Napoli et al. (


Plant Cell


2:279-290, 1990) and de Carvalho Niebel et al. (


Plant Cell


7:347-358, 1995).




Alternatively, regulation of polypeptide expression can be achieved by inserting appropriate sequences or subsequences (e.g. DNA or RNA) in ribozyme constructs (McIntyre C L, Manners J M,


Transgenic Res.,


5(4): 257-262, 1996). Ribozymes are synthetic RNA molecules that comprise a hybridizing region complementary to two regions, each of which comprises at least 5 contiguous nucleotides of a mRNA molecule encoded by one of the inventive polynucleotides. Ribozymes possess highly specific endonuclease activity, which autocatalytically cleaves the mRNA.




The DNA constructs of the present invention further comprise a gene promoter sequence and a gene termination sequence, operably linked to the DNA sequence to be transcribed, which control expression of the gene. The gene promoter sequence is generally positioned at the 5′ end of the DNA sequence to be transcribed, and is employed to initiate transcription of the DNA sequence. Gene promoter sequences are generally found in the 5′ non-coding region of a gene but they may exist downstream of the open reading frame, in introns (Luehrsen, K. R.,


Mol. Gen. Genet.


225:81-93, 1991) or in the coding region, as for example in a plant defense gene (Douglas et al.


EMBO J.


10:1767-1775, 1991).




A variety of gene promoter sequences which may be usefully employed in the DNA constructs of the present invention are well known in the art. The gene promoter sequence, and also the gene termination sequence, may be endogenous to the target plant host or may be exogenous, provided the promoter is functional in the target host. For example, the promoter and termination sequences may be from other plant species, plant viruses, bacterial plasmids and the like. Preferably, gene promoter and termination sequences are from the inventive sequences themselves.




Factors influencing the choice of promoter include the desired tissue specificity of the construct, and the timing of transcription and translation. For example, constitutive promoters, such as the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter, will affect the activity of the enzyme in all parts of the plant. Use of a tissue specific promoter will result in production of the desired sense or antisense RNA only in the tissue of interest. With DNA constructs employing inducible gene promoter sequences, the rate of RNA polymerase binding and initiation can be modulated by external stimuli, such as light, heat, anaerobic stress, alteration in nutrient conditions and the like. Temporally regulated promoters can be employed to effect modulation of the rate of RNA polymerase binding and initiation at a specific time during development of a transformed cell. Preferably, the original promoters from the gene in question, or promoters from a specific tissue-targeted gene in the organism to be transformed, such as eucalyptus or pine, are used. Other examples of gene promoters which may be usefully employed in the present invention include mannopine synthase (mas), octopine synthase (ocs) and those reviewed by Chua et al. (


Science,


244:174-181, 1989).




The gene termination sequence, which is located 3′ to the DNA sequence to be transcribed, may come from the same gene as the gene promoter sequence or may be from a different gene. Many gene termination sequences known in the art may be usefully employed in the present invention, such as the 3′ end of the


Agrobacterium tumefaciens


nopaline synthase gene. In one embodiment, terminator sequences are those from the original enzyme gene or from the target species to be transformed.




The DNA constructs of the present invention may also contain a selection marker that is effective in plant cells, to allow for the detection of transformed cells containing the inventive construct. Such markers, which are well known in the art, typically confer resistance to one or more toxins. One example of such a marker is the NPTII gene whose expression results in resistance to kanamycin or hygromycin, antibiotics which are usually toxic to plant cells at a moderate concentration (Rogers et al. in


Methods for Plant Molecular Biology,


A. Weissbach and H. Weissbach, eds., Academic Press Inc., San Diego, Calif. (1988)). Transformed cells can thus be identified by their ability to grow in media containing the antibiotic in question. Alternatively, the presence of the desired construct in transformed cells can be determined by means of other techniques well known in the art, such as Southern and Western blots.




Techniques for operatively linking the components of the inventive DNA constructs are well known in the art and include the use of synthetic linkers containing one or more restriction endonuclease sites as described, for example, by Sambrook et al., (


Molecular Cloning: A Laboratory Manual,


Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y., 1989). The DNA construct of the present invention may be linked to a vector having at least one replication system, for example


E. coli,


whereby after each manipulation, the resulting construct can be cloned and sequenced and the correctness of the manipulation determined.




The DNA constructs of the present invention may be used to transform a variety of target organisms, including plants, both monocotyledonous angiosperms(e.g. grasses, corn, grains, oat, wheat and barley), dicotyledonous angiosperms (e.g. Arabidopsis, tobacco, legumes, alfalfa, oaks, eucalyptus, maple), and Gymnosperms (e.g. Scots pine (Aronen, Finnish Forest Res. Papers, vol. 595, 1996), white spruce (Ellis et al.,


Biotechnology


11:94-92, 1993), and larch (Huang et al.,


In Vitro Cell


27:201-207, 1991)). In a preferred embodiment, the inventive DNA constructs are employed to transform woody plants, herein defined as a perennial tree or shrub whose stem increases in diameter each year by the addition of woody tissue. Preferably the target plant is selected from the group consisting of eucalyptus and pine species, most preferably from the group consisting of


Eucalyptus grandis


and


Pinus radiata.


Other species which may be usefully transformed with the DNA constructs of the present invention include, but are not limited to: pines such as


Pinus banksiana, Pinus brutia, Pinus caribaea, Pinus clausa, Pinus contorta, Pinus coulteri, Pinus echinata, Pinus eldarica, Pinus ellioti, Pinus jeffreyi, Pinus lambertiana, Pinus monticola, Pinus nigra, Pinus palustrus, Pinus pinaster, Pinus ponderosa, Pinus resinosa, Pinus rigida, Pinus serotina, Pinus strobus, Pinus sylvestris, Pinus taeda, Pinus virginiana;


other gymnosperms, such as


Abies amabilis, Abies balsamea, Abies concolor, Abies grandis, Abies lasiocarpa, Abies magnifica, Abies procera, Chamaecyparis lawsoniona, Chamaecyparis nootkatensis, Chamaecyparis thyoides, Huniperus virginiana, Larix decidua, Larix laricina, Larix leptolepis, Larix occidentalis, Larix siberica, Libocedrus decurrens, Picea abies, Picea engelmanni, Picea glauca, Picea mariana, Picea pungens, Picea rubens, Picea sitchensis, Pseudotsuga menziesii, Sequoia gigantea, Sequoia sempervirens, Taxodium distichum, Tsuga canadensis, Tsuga heterophylla, Tsuga mertensiana, Thuja occidentalis, Thuja plicata;


Eucalypts, such as


Eucalyptus alba, Eucalyptus bancroftii, Eucalyptus botyroides, Eucalyptus bridgesiana, Eucalyptus calophylla, Eucalyptus camaldulensis, Eucalyptus citriodora, Eucalyptus cladocalyx, Eucalyptus coccifera, Eucalyptus curtisii, Eucalyptus dalrympleana, Eucalyptus deglupta, Eucalyptus delagatensis, Eucalyptus diversicolor, Eucalyptus dunnii, Eucalyptus ficifolia, Eucalyptus globulus, Eucalyptus gomphocephala, Eucalyptus gunnii, Eucalyptus henryi, Eucalyptus laevopinea, Eucalyptus macarthurii, Eucalyptus macrorhyncha, Eucalyptus maculata, Eucalyptus marginata, Eucalyptus megacarpa, Eucalyptus melliodora, Eucalyptus nicholii, Eucalyptus nitens, Eucalyptus nova-anglica, Eucalyptus obliqua, Eucalyptus obtusiflora, Eucalyptus oreades, Eucalyptus pauciflora, Eucalyptus polybractea, Eucalyptus regnans, Eucalyptus resinifera, Eucalyptus robusta, Eucalyptus rudis, Eucalyptus saligna, Eucalyptus sideroxylon, Eucalyptus stuartiana, Eucalyptus tereticornis, Eucalyptus torelliana, Eucalyptus urnigera, Eucalyptus urophylla, Eucalyptus viminalis, Eucalyptus viridis, Eucalyptus wandoo


and


Eucalyptus youmanni;


and hybrids between any of the above species.




Techniques for stably incorporating DNA constructs into the genome of target plants are well known in the art and include


Agrobacterium tumefaciens


mediated introduction, electroporation, protoplast fusion, injection into reproductive organs, injection into immature embryos, high velocity projectile introduction and the like. The choice of technique will depend upon the target plant to be transformed. For example, dicotyledonous plants and certain monocots and gymnosperms may be transformed by Agrobacterium Ti plasmid technology, as described, for example by Bevan (


Nucl. Acid Res.


12:8711-8721, 1984). Targets for the introduction of the DNA constructs of the present invention include tissues, such as leaf tissue, dissociated cells, protoplasts, seeds, embryos, meristematic regions; cotyledons, hypocotyls, and the like. One method for transforming eucalyptus and pine is a biolistic method using pollen (see, for example, Aronen 1996, Finish Forest Res. Papers vol. 595, 53pp) or easily regenerable embryonic tissues.




Once the cells are transformed, cells having the inventive DNA construct incorporated in their genome may be selected by means of a marker, such as the kanamycin resistance marker discussed above. Transgenic cells may then be cultured in an appropriate medium to regenerate whole plants, using techniques well known in the art. In the case of protoplasts, the cell wall is allowed to reform under appropriate osmotic conditions. In the case of seeds or embryos, an appropriate germination or callus initiation medium is employed. For explants, an appropriate regeneration medium is used. Regeneration of plants is well established for many species. For a review of regeneration of forest trees see Dunstan et al., Somatic embryogenesis in woody plants. In: Thorpe, T. A. ed., 1995:


In Vitro Embryogenesis of Plants.


Vol. 20 in Current Plant Science and Biotechnology in Agriculture, Chapter 12, pp. 471-540. Specific protocols for the regeneration of spruce are discussed by Roberts et al., (Somatic Embryogenesis of Spruce. In:


Synseed. Applications of synthetic seed to crop improvement.


Redenbaugh, K., ed. CRC Press, Chapter 23, pp. 427-449, 1993). The resulting transformed plants may be reproduced sexually or asexually, using methods well known in the art, to give successive generations of transgenic plants.




As discussed above, the production of RNA in target plant cells can be controlled by choice of the promoter sequence. A target plant may be transformed with more than one DNA construct of the present invention, thereby modulating the activity of more than one polypeptide, affecting polypeptide activity in more than one tissue, or affecting polypeptide activity at more than one expression time. Similarly, a DNA construct may be assembled containing more than one open reading frame coding for a polypeptide encoded by a polynucleotide of the present invention or more than one untranslated region of a gene coding for such a polypeptide. The polynucleotides of the present invention may also be employed in combination with other known sequences encoding polypeptides involved in plant cell signaling.




The isolated polynucleotides of the present invention may also be employed as probes to isolate DNA sequences encoding polypeptides involved in cell signaling from other plant species, using techniques well known to those of skill in the art, such as routinely used DNA hybridization and PCR techniques.




The inventive polynucleotides, polypeptides expressed by such polynucleotides and antibodies to such polypeptides may be used to screen for molecules that interact with such polynucleotides and/or polypeptides and that thereby modulate cell signaling. Techniques for performing such assays are well known in the art. Similarly, the polynucleotides and corresponding expressed polypeptides of the present invention may be employed in studies designed to elucidate the mechanism of cell signaling pathways.











The following examples are offered by way of illustration and not by way of limitation.




EXAMPLE 1




Isolation and Characterization of cDNA Clones from


Eucalyptus grandis








Eucalyptus grandis


cDNA expression libraries were constructed and screened as follows.




mRNA was extracted from specific plant tissues, such as trunk xylem, using the protocol of Chang et al. (


Plant Molecular Biology Reporter


11:113-116 (1993)) with minor modifications. Specifically, samples were dissolved in CPC-RNAXB (100 mM Tris-Cl, pH 8,0; 25 mM EDTA; 2.0 M NaCl; 2% CTAB; 2% PVP and 0.05% Spermidine*3 HCl) and extracted with chloroform:isoamyl alcohol, 24:1. mRNA was precipitated with ethanol and the total RNA preparate was purified using a Poly(A) Quik mRNA Isolation Kit (Stratagene, La Jolla, Calif.). A CDNA expression library was constructed from the purified mRNA by reverse transcriptase synthesis followed by insertion of the resulting cDNA clones in Lambda ZAP using a ZAP Express cDNA Synthesis Kit (Stratagene), according to the manufacturer's protocol. The resulting cDNAs were packaged using a Gigapack II Packaging Extract (Stratagene) employing 1 μl of sample DNA from the 5 μl ligation mix. Mass excision of the library was done using XL1-Blue MRF′ cells and XLOLR cells (Stratagene) with ExAssist helper phage (Stratagene). The excised phagemids were diluted with NZY broth (Gibco BRL, Gaithersburg, Md.) and plated out onto LB-kanamycin agar plates containing X-gal and isopropylthio-beta-galactoside (IPTG).




Of the colonies plated and picked for DNA miniprep, 99% contained an insert suitable for sequencing. Positive colonies were cultured in NZY broth with kanamycin and cDNA was purified by means of alkaline lysis and polyethylene glycol (PEG) precipitation. Agarose gel at 1% was used to screen sequencing templates for chromosomal contamination. Dye primer sequences were prepared using a Turbo Catalyst 800 machine (Perkin Elmer/Applied Biosystems Division, Foster City, Calif.) according to the manufacturer's protocol.




DNA sequence for positive clones was obtained using a Perkin Elmer/Applied Biosystems Division Prism 377 sequencer. cDNA clones were sequenced first from the 5′ end and, in some cases, also from the 3′ end. For some clones, internal sequence was obtained by designing primers to hybridise to the ends of known sequences, and using these as sequencing primers extending the amount of sequence information. This procedure was repeated iteratively until the complete sequence was obtained. Alternatively, internal sequence was obtained by generating “nested” deletion clones of the gene of interest using published methods (Henikoff, (1984)


Gene


28 351-359).




The determined cDNA sequence was compared to known sequences in the EMBL database (up to end of August 1998) using the computer algorithms FASTA and/or BLASTN. Multiple alignments of redundant sequences were used to build up reliable consensus sequences. Based on similarity to known sequences from other plant species, the isolated DNA sequences were identified as encoding RLKs (SEQ ID NO: 2, 8, 9, 11, 15, 18, 19, 21-25, 33, 34 and 38) or at least one member of a two-component signaling system (HKs, RRs or hybrid HK/RR proteins; SEQ ID NO: 42, 48-52, 55-58 and 67). The sequences of SEQ ID NO: 2, 8, 9, 11, 15, 18, 19, 21-25, 33, 34 and 38 were found to have less than 10% identical residues (determined as described above) to known sequences.




EXAMPLE 2




Isolation and Characterization of cDNA Clones from


Pinus radiata






A


Pinus radiata


cDNA expression library was constructed from xylem and screened as described above in Example 1. DNA sequence for positive clones was obtained using forward and reverse primers on a Perkin Elmer/Applied Biosystems Division Prism 377 sequencer and the determined sequences were compared to known sequences in the database as described above.




Based on similarity to known sequences from other plant species, the isolated DNA sequences were identified as encoding RLKs (SEQ ID NO: 1, 3-7, 10, 12-14, 16, 17, 20, 26-32, 35-37 and 39-41) or at least one member of a two-component signaling system (HKs, RRs or hybrid HK/RR proteins; SEQ ID NO: 43-47, 53, 54 and 59-66). The sequences of SEQ ID NO: 3-7, 10, 12-14, 16, 17, 20, 26, 28-32, 35-37 and 39-41 were found to have less than 10% identical residues (determined as described above) to known sequences.




EXAMPLE 3




Use of an Ethylene Receptor Gene to Modify Plant Growth




Transformation of tobacco plants with a


Pinus radiata


ethylene receptor gene homolog is performed as follows. DNA constructs comprising sense and anti-sense constructs containing a DNA sequence including the coding region of an ethylene receptor homolog (SEQ ID NO: 43) from


Pinus radiata


are constructed and inserted into


Agrobacterium tumefaciens


by direct transformation using published methods (see, An G, Ebert P R, Mitra A, Ha S B: Binary Vectors. In: Gelvin S B, Schilperoort RA (eds)


Plant Molecular Biology Manual,


Kluwer Academic Publishers, Dordrecht (1988)). The constructs of sense DNAs are made by direct cloning from PBK-CMV plasmid by cloning cDNA insert into pART7 plasmid, which is then cut by NotI enzyme and 35S-Insert-OCS 3′UTR put into pART27 plant expression vector (See Gleave, A.


Plant Molecular Biology


20:1203-1207, 1992). The presence and integrity of the transgenic constructs are verified by restriction digestion and DNA sequencing.




Tobacco (


Nicotiana tabacum


cv. Samsun) leaf sections are transformed with the sense and anti-sense ethylene receptor constructs using a method based on that of Horsch et al. (


Science,


227:1229-1231, 1985). Transformed plants containing the appropriate construct are verified using Southern blot experiments. Expression of the Pinus ethylene receptor homolog in transformed plants is confirmed by isolating total RNA from each independent transformed plant line created with the sense and anti-sense constructs. The RNA samples are analysed in Northern blot experiments to determine the level of expression of the transgene in each transformed line. The expression level of the ethylene receptor polypeptide, encoded by the Pinus ethylene receptor gene and by the endogenous tobacco ethylene receptor gene, for each transformed plant line created with the sense and anti-sense constructs is compared to that of wild-type control plants.




Although the present invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, changes and modifications can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the claims.







130




1


2389


DNA


Pinus radiata



1
atctactggt agtgctaatc ccaatctcat tccagtgggt cattaacatg ggctgagagg 60
tttcaaaatc tttatatggt tgttgaagta tccacttcct gtgccaatct tattctcatt 120
ctctgccgtt acaatggaga ggctggagat ggcgatgttt ttaatgttac tgattatctt 180
tttctttaga gattgtgaag cccagggcaa atcggattat catgcactga tagctttcaa 240
ggcctcctct gatatcaata acactctggc gttctcatgg acacataaga atccatgcag 300
acgaaagtgg tatggagttg ggtgtgagaa tggccgggta gtgaggcttg tgctccagga 360
tctcgacctc gtgggtccga ttgatgcctt aacaggtctc catgagctca gaattctgag 420
cttgaagaga aattcactca atggcaccat tcctgatttt ttgaactgga gaagtcttaa 480
gttcctgttt ctctctgata actatttctc aggtcccttg ccttctacca ttgcttcttt 540
agatcatctc ttgagattgg atgtatcgaa caatcatctt ggcggtcaaa taccattgag 600
tattacttca atgacccatt tgcttactct gaggcttgag aacaatgagt tctctggcag 660
catttcagac ttgatgttgc ccaatactgt ggaagaattc aatgtttcag acaatagact 720
tagtggcatg atacctgcaa gtctgtctag gtttccaagc tctggatttg tgaataatga 780
agaactctgt ggaagtcccc tgcagagttg caatgaaagt aacaatgcaa gctctgcttc 840
taatccctac atggcttcca gcccctccat gatttcaggc tcactgccag tgcatagaaa 900
taatagctct acgcaactca gcaaaggtga tattatagca atagttgtgg gagatgttgc 960
agtgttatcg ctcataggtt gtgtaatctt ctgctactac tggaaaaaga agggtgtaaa 1020
acagaagaag cctaagccta agcctgccca gagatgtcca acagacaggt tagctgtgca 1080
ttcttcagat cagtgcccta ataatcagtc tattactgca ggaaaatgca agcttatctt 1140
ctttgatgat ggaagacctt ttgagctaga gcatctcttg cgagcttcgg ctgaaatgct 1200
aggaaagggt aactttggaa gcgcttataa ggctattatg gaagatggat ctgttgttgc 1260
tgtcaagaga ttgaaagatt tgtatggtat tggaaggaag gagtttgagc aacatatgga 1320
gctcatggga agtttgagac atcaaaatgt agttaattta agggcctatt attttgctag 1380
agatgaaaag cttctggtct atgactatat gccaaatggg agtctgtatg cacttcttca 1440
tggtagccga ggacctggta gaacacccct agactggaca actagaatga agatagcact 1500
tggtgcagct aaaggcttgg catttattca cagccactgc aagtcaccca agattggcca 1560
cggaaacatc aagtcttcca atattttgtt agacagaaat gggaatgctt gcatttcaga 1620
ctttggcctt gcactgctgg tgagtccatc agttgctgct tcacgaatgg tgggctacac 1680
tgctcctgag caagctgcaa caaagaagat atcccagaaa gcggacgtgt acagctttgg 1740
agttttactg cttgaaatgc taactggcaa ggcccctgtt caagctcaca tgcaagagga 1800
ttatcattca gctatagatc ttcccaggtg ggtgcagtcc attgtcccag aagaatggac 1860
atcagaggta tttgatattg agttgatgag attcaaaaac attgaagagg aactagtaag 1920
catgcttcag attgctttgc tctgtgcctc acaatctcct cagcaacgcc ctaaaatgag 1980
ccatgtggtg agggtgattc aagacattag aggagatcac cactctccct ccatgcagaa 2040
ttctctatct caatctcctt ccatgcaaga accaggtcat tctatatcag attctccttc 2100
tgtatcagag gactcgggaa taagaggcct gtgagtttgt gtatttgttc tcattagaat 2160
ccaatttgct tgaatttaat tgcaggtatt ctttagcagc atccttttgg atgggcattt 2220
aactagctgt agcataagag tgtagcatat gcttaaatgg gcatttaagt atatgcagtg 2280
tgtaggagga ggtatatttt agaagacttg gatttggttt tttcttgaag tatccatatc 2340
catattaaaa gagttggtat tttggttaag atccaaaaaa aaaaaaaaa 2389




2


2568


DNA


Eucalyptus grandis



2
agagagatgg gtttcgcttc cttgcgctcg cagtgtctct tcttcttcct cctctgggtc 60
ttcatcttct tcgccagccg aagcgacgtg cttgtctccg cagcaacgag cgcggagctg 120
agagctctca tggacatgaa agccagccta gacccggaaa gcaggtatct ttcctcgtgg 180
accgtcgatg gcgatccttg cgacgggtcc ttccaaggcg tctgctgcga cgacgagggc 240
cgcgtcgcca acgtttcgct gcaggggaga cggctcaccg ggaggctctc tccggccatt 300
gctgggctca cccacttgac tggcctttac cttcactaca actccctgtg cggagagatt 360
ccgcgagagc tcggcaactt gagcgcgctc agcgacttgt atctgaacat gaacaatctc 420
tccggccaga ttcctcccga gatggctgac gtcgcaagct tgcaagttat gcagctctct 480
tacaaccagt tgactggaag tatacctaca aagctgggat ctctgaagaa gctcagtgtt 540
cttgctctgc aatctaatca gctcactggc gcaataccgg caagtttagg tgacctgggg 600
acgttgacga ggttatattt gagtttcaat cgcctctttg gctcgattcc catgaagata 660
gccgatctgc ctcttctaga agtcttggat gtccaaaaca acactctctc tggcaatgta 720
cctcctgcgc tgaagagact gaacgaagga tttctgtacg aaaacaactt cgacttgtgt 780
gggactgggt tcctctcttt aaggacttgt aatgctttgg agggtcgaaa gcctagtcaa 840
cctcaaccct atggggctgc gacaacagta ccctccacaa gtatacccga gacggccaat 900
gtggtgttac catgtaacct gactgaatgt tctagtttgc caaaatcagc gcatccctct 960
gcgcttattg gatcaatctt ggcaactgtt gcattgtcgg ccatagggtt ccttttgttc 1020
acacactacc gtcggaggaa acagaaactt ggcttttcgg ctgaggtttg tgatggccat 1080
ctgagcactg atcaacccaa gagtgcttat aagaaaaatg gctctccttt agctagcctg 1140
gagtattcca acggatggga tccgcttgct gatgctcgga tctttaatga gttttctgaa 1200
gaagctttcc agagcttcag attcaatctg gaagaggttg aatccgccac tcagtatttc 1260
tcggagttga atgtgttggg taagagtaat ttctctacca catacagagg aatcctgaga 1320
gacggttctg tagtctccat caaatgcatc aataagacta gctgcaaggc tgatgaatca 1380
gagttcttga agggtttgaa tatgttgacc tcactgagac atgaaaatct ggtgaggctg 1440
agaggattct gctgctcaac ggcccgtggt gagtgcttcc tgatatatga ttatgttccg 1500
aatgggactc tgctaagctt tttggatttg gaggaggggg acagtggcac tcttgagtgg 1560
tccactagag tttcgattgt gaagggaatc gctaaaggta ttgcctattt gcacgctcac 1620
aaaccaaaca aggcccccct ccttcaccaa aacatctcag cagacaaggt gctcatagac 1680
cagcgattca atccgttgct ctaccaatct ggtctccaca ggctcctgac aaatgatgtt 1740
gtgttctcgt tgctcaaagc tagtgctgcc atgggctacc tagcgcctga gtacatgtcc 1800
acgggccggt tcacagagaa gagtgatgtc tacgcgtttg gaatgatcgt gttccagatc 1860
ttgtcgggga agcagaaagt agatcactcc atgcgtctgg ctgctgaatc gtgtagattc 1920
caagaattca ttgatgcgaa tatccatgga aggttcttcg agtacgaggc agctaaactt 1980
gcaaaaatcg cctcgctctg caccaacgag tctccttatg acaggccatc catggacgcc 2040
gtgattcacg agctgagtaa ctgtagcagc tgtctctgat tgtgaggcct tattggagta 2100
aatgttccag gagctgttgc aaaagtcaat ggtagaagtt ggtctgaaaa agctccctgc 2160
gctgccacta atgttgtaac ctaccggctt tgacatcttt ttgatttggt gcctttgcct 2220
tagggccgtg ctttcttgtg tatgttcaag cctggtaggg atgaatgact ttaattcacg 2280
catgtatgat tgcttttcaa aatattttct ttagaagtag gttcatttcg gaattagatt 2340
ttcgatattt ctcgttgcgt gccgcagttg tgtgggtgaa aatggccgtg gacttccaac 2400
gccggtaact agccttgttg ccgtggtcgc attgcattag ccctgcctgg catctttaat 2460
tgctggttaa ttgaggcgat ttgtttttcc attggtggat ctgctggcat ctttaattgc 2520
tggttaatcg aggcgatttg tttttccgta aaaaaaaaaa aaaaaaaa 2568




3


2686


DNA


Pinus radiata



3
gacgaggatc cccaaggccc attgctttat tgcctggaaa gaattttaaa gcttatatat 60
atattattgt tgctctataa tagtaatgat aaatttaggc ctaggcatag gtgtgtcatt 120
gccattctta gaagcaatgc ctggcactgg tcactgccca cagtccagct ctcaaagcct 180
gtcctgtagc tgttgtctca atgccttgtc ttactttgtg agctggtgtc tgtcatggag 240
gtagaggaag aatcatttgg cttttaagtt ttaccccatt tttcttcagt aagaagaagt 300
gcctccatgg tttgcagcag atcggagctt tgctgagacg cgattaggta acccgtctgc 360
gacaattttt tctctgcaat gtgggtttgt tgggcatttt acagaagcat gactggcaga 420
gaagaatagc agcaagtata tatctctgtt tttggcttgc tgtgatgtat tggtcgcaga 480
tggggaatat acggcagctt tttaatggtt tcttcatgct ggtgctagta gtggccgtgg 540
ttaaggggga gccaacgggc gataaacagg cccttctcga ttttctcagc aaggttcccc 600
atgggcgaag gctaaactgg aatgccagca gctcagcttg tacttgggtt ggagtgacct 660
gcaatagtaa caaggatcgc atctgggaag ttagattgcc gggcgtggga ctctttggac 720
cgattccccc tggcactctg gggcgtctga cggagctcag agttctttcc ctgagatcaa 780
atttgctcac cggttctctg ccttcagacc ttgcaaatgc caaggctctg agaagtatct 840
atcttcagca taacttgttt tccggaccat tgcctccgtt tctgtctcaa tgggggcgct 900
tgagtcgact ggatctttcc ttcaatcgtt tgaatgggtc tattcccttt tccttgaata 960
acctcacgca tctcactggt ctcttgttgc agaacaattc gctgagtgga agcataccca 1020
atctcaacat ccagaacttg actctgttga gtgtggccaa caatcagctc aacggttcga 1080
ttcctaggtc gcttcagaag tttcccaaga cttctttcca aggcaatgct cagctctgcg 1140
gggttccatt aaaactgtgc aaatcgtttt tcccgtcgcc ttctccctct cccaacggtt 1200
ctgctgtgcc ccggaggtcc aagaaatcga agctgagcac cggcgtggtc gtggctatca 1260
tcgtgggcgc cgttgctgtg ctcttcttgt tgctggcatg cctatttttg tgctgcgtta 1320
gaaagcacag gggcgagagt gcgacggaga agcctcagaa agacgagcgg accacggtcg 1380
agaagggcgg gccttctaag gaggaataca tggggactgc ccaggagaca gagcgcaata 1440
agctcgtatt cttcgagggc agccagtata ctttcgacct ggaagatctt ctccgcgctt 1500
ctgcagaggt tctggggaaa ggaagcgtgg ggacggccta caaggcagtg ctggaagatg 1560
ggactactgt tgtggtcaaa cgcttgaagg acgtggctgt caacaggagg gattttgaac 1620
agcagatgga gctggtggga aggatccgtc acaggaattt ggtgcccttg agagccttct 1680
acttttccaa agatgagaaa ttactcgtct atgactatat gcccgctggc agcttatcag 1740
cccttttgca tggtagcaga ggctctggcc gcacaccttt ggattgggaa accaggatgc 1800
ggattgcttt gggtgctgca aggggcattt cccacatcca cgaagaaggc ggaggcaaat 1860
tcacccatgg aaacataaag tcatccaatg ttctgttaac gtccgatttg gatggctgcg 1920
tctcagactt cggcctcgtt ccattattta gcgctgctgc agcagcaaac cgcatcgctg 1980
gttacagagc cccggaggtc atagagactc gcaaggtcac acagaaatcc gatgtctaca 2040
gcttcggtgt gctactccta gaacttctca caggcaaggc tcccaaccag gcctctctca 2100
acgacgaggg catcgatctg ccaagatggg tacaatccgt ggttcgcgag gagtggacag 2160
cagaggtttt cgacgtggaa ttaatgaggt accaaaacat agaagaagag atggtccagt 2220
tgctgcagat tgccatggcc tgcgttgcta cagtgcctga tcagaggccc agaatgcaag 2280
acgtggtgaa gatgatcgag gacatgaggc agttcgaaac agacgaagga aatagacaat 2340
cctctgatga taaatcgaaa gaatccaatg gacaaactcc tccccagcaa gccacaccag 2400
aagcacgcac ccccacagca agaacaccgt gacagcaccc cctcagcaag cacactttga 2460
cagtcgaaat tcttctgttt ctgtccatat tataacacag ttgccagtat catgggcttt 2520
tcgtgattga tttcatttat atccagtatt tcagtaaagt aatttcaccg cggaattgct 2580
tgctttatat tccggttttc gttccccttt tcttggctcg ctggtgatct tcaagcattc 2640
ttgaaatagg caccacacta cactacattc gtgctcattt gattgg 2686




4


2868


DNA


Pinus radiata



4
gaacacaatg cgggtctgat gtctctccgc gggtttgaag cctgacgagg ctgctcccta 60
gggttgagtt ggaggttgct gcgggagcgg gaggcggggg cgaggctgat catgagatct 120
ggattgtgaa tccgcgtgga tccgtggatg atttaacggg gcgaaagatc gagtctcgtc 180
cccgagggct aagcaggcgg ttgaaataaa gaggtgaagt tattttgagc ggagtcatgc 240
agcagccgta tgttgtactc gccctgttgt ggatgctgct gctgcatcac ccgctctggc 300
gagtttttgc taatacagaa ggtgatgctt tacatagcct tcggtcgaac ttactggacc 360
caaacaatgt gcttcagagt tgggatccaa ccctcgtcaa tccatgtaca tggtttcatg 420
ttacatgcaa caatgataac agtgtgataa gagtggactt gggaaatgca caactttctg 480
gttcattggt tccccagctt ggcctactga acaatctgca gtacttggag ctttatagca 540
acaatataag tggtcccatc cccagtgatt taggcaactt gaccaatctt gttagcctgg 600
atttatacct gaacaatttc actggtctaa tcccggagtc actgggcaaa ctgtccaggt 660
tacgcttcct tcggcttaat aacaacagtc ttgtaggacg gatcccaatg tctctcacaa 720
ccattactgc tcttcaagtc cttgatctgt caaacaataa tctcacagga gaggttccag 780
caaatggttc attctctcta tttactccta tcagtttcgg tggcaatcaa tacctgtgtg 840
gtccagtggc acaaaagcca tgtccgggat ctcctccttt ttctcctcct cctccgtttg 900
taccaccccc gccagtagct ggaagcaatg gagcaagggt gcagagctct tccagcacag 960
gagccattgc tgggggagta gctgcaggtg ctgccctctt atttgcagct cctgcaattg 1020
ggttcgcctg gtggcgtcgc agaaagccac aggagcactt ctttgatgta cctgctgagg 1080
aggatccaga agttcactta ggccaactta agaggttctc attacgggaa ttacaggttg 1140
caactgatgg ttttagcaat agaaacattc ttggcagagg tggttttgga aaggtgtaca 1200
aagggcgcct tgcagatggt tccttggtgg ctgtaaaacg tctgaaggaa gagcgtacac 1260
cgggtggaga gttgcagttt caaacagaag tggagatgat aagcatggca gtacatagga 1320
acctccttcg actacgtgga ttctgcatga cacccactga acggctgctt gtttatccct 1380
acatggccaa tggaagtgtt gcttcatgcc tacgagagag ggcacaaaat gacccaccct 1440
tagattggcc aactcgcaag cgcatagcat tgggttctgc aagaggtctc tcctacttgc 1500
atgatcattg tgatcctaag attattcacc gggatgtcaa ggctgctaac atcttactgg 1560
atgaagaata tgaggcagtg gtgggggatt ttggcttggc aaaacttatg gattataagg 1620
acacacatgt tacgacggct gttcgtggaa ccattggcca catagcacct gagtaccttt 1680
ctactggaaa gtcttcggaa aagacagacg tatttggata tggaatcatg ttgctggaac 1740
ttattacggg acaacgggca tttgaccttg cacgtttagc aaatgatgat gatgtcatgt 1800
tgcttgactg ggttaaaggc ctactaaaag agagaaggct tgatatgcta gttgatcctg 1860
atcttaagaa caattatgtt gaagcagagg tggaacaact tattcaagtt gcattacttt 1920
gtacacaagg gtcaccaatg gatagaccaa agatgtctga agtggtaagg atgttggaag 1980
gggatggctt agctgagaga tgggaggaat ggcaaaaggt ggaagtcgta cggagccaag 2040
aagttgaact tgttcctcat agaaattcag aatggattgt cgactcaaca gataatcttc 2100
atgcagttga attgtctggt ccaagatgat aagagttgaa ttgtttattc aatctttgca 2160
aatccataat tttattgagt ccaaattaca atgtcaatat gtatcgaggt tgaatcgatg 2220
tatcattttc aagcatattt tagtagatgc gtcaatgtgc gaatgtagag aatattcgtt 2280
gcaagtcctt agatggctat gctgggtttt gtcccatgag aatttctgtc gggttgcagt 2340
caaacccgaa agttagaagg atttcttatg gtgcatccca tccaggcaaa gatctgggct 2400
cctgtattat gaatggtttg ctctaggaat cgaagctcca tttctgctat tgaagacttc 2460
ctttttcagt gctaatatgt atttaaacag tctgtccact tgacatatgc aactactttt 2520
cctgccgaga gtgtactttg ataagaccac aatcttttga gactagtact aaatttggtc 2580
tcagtttcaa atccagagtg gaaaatgaag gaaaacaaat ttcatgaata ccaagattct 2640
gctaaatccc ttgagctggg ctcttaattc tcgataatcc tccggagttt gagaaagatg 2700
tatgttgtca aaggtagatc tcaagctagt gaattcctta gtttcacaga attgttttct 2760
tagagccaga cacatgctcc tgaattacat taaatttact ttttgtggtg ttcaaattga 2820
aatacagaaa ctatgactgt tttaatgaca ttggcagcta acggaccg 2868




5


3340


DNA


Pinus radiata



5
gattaccata atgcttctcc tcgccactct ttctttcatt ctctttctca atccttttgc 60
cttttccaca cccatcgccc atttccctca ccatcctcct cgtctcacca atgcttccga 120
tcaacacgct ctgcttgcat tcaagtctgc aatcacatat gatccctcac agtccttggc 180
cacgtcttgg ttgccaaatg tgtcattctg ccagtggacg ggcatcatat gcagcaggcg 240
cagacagaga gttatttccc tcaatgtttc gagcatggga ttacaaggta caatctctcc 300
ccttctcgcc aatctctcct ttcttacagt actcgacctt cacaacaaca gtttcgactg 360
ccacattccc tatcaattgg gaaccctctt tcgcttaaag atgcttcgcc tgtctaagaa 420
tcaactccag ggttccattc cgcccactct ggctaattgt cgcagtttac ggaacttgac 480
tctctccttt aacaacctca cgggaaacat tcccccacaa ctatgccttc tccccaacct 540
aatatgtatg tccttgggaa ttaacaattt gacgggaaca atcccggact gcttgggaaa 600
catatcctct ttgcagtact tatctttgag tcaaggtaac cttcagggca gtgtcccttc 660
cgaattgggt aggctaagcc agctcatcgt tcttgatctg tttgggaacc atctcacggg 720
atgcattccg tcttcgttgt ccaactgcac caatcttgaa ctattggata taggtgataa 780
ccaattagtt ggccacattc cgtcgcattt gtgtaccaag aagaccaccc agttaatgta 840
tctccgtctg ggtgctaatc agctaagtgg cagcgttcct tcatccctct tcaattgtac 900
caagttacaa gagattgcct taccatataa ccagctcagc ggaatagtgc ctatggagtt 960
gggtaaattg acacatctcc agcggctttt ctttggcggg aattacttta ttagcggcaa 1020
caccatgaga tgccccattc ttactgctct tagtaactgt tctgatctac aatatgtaga 1080
cttatctgag aataacttca ctgggcaatt gccgttttct ataggccacc tctccaaaaa 1140
actctaccat ttagacttgg gtagcaacga attagctgga gaaatacctc cggctattgg 1200
aaatttaagt agcctaacat tccttaattt aggacgtaat tattttacag ggtcaatccc 1260
atcttcactt attatgcttc agaagttgga gaggttatat atggattcca ataatttaca 1320
aggaaacatt ccaatggaaa ttgggcagct aaagagctta ggtctcttat atctttctgg 1380
aaataatttg tctggaaaaa tccctgattt tgtggccaac ctccagcaat taagatattt 1440
atatcttaat cataaccagt tatcaggaga tataaatgca aatttaggga aatgtgtgaa 1500
cttactactg ctagatctat catacaacaa gcttagtggg cacatacctc aagagctcgc 1560
aggccttgca aatttagcct tctatttcaa cttgtcaaac aatttattaa gtggccatgt 1620
acctttagaa ctaggaaagt tcgatatgct tcaagccata gatatttcgg caaatcaaat 1680
aactggctac attccaagta tcgttggaag ctggaaagaa gtagcatatc tgaatctttc 1740
ttacaatgca cttgaaggtc caattccagt gtcaatcagt gaacttctaa gtcttcaaga 1800
cctagatctc tcctccaaca atttgtcggg tggaatacct atatcactag caaatctcac 1860
aatgctccat cacttgaatt tttcttttaa caagttgtca ggggaagtcc ctaaagaagg 1920
agttttcaaa aatattggcg ccacagcatt tatgggaaat cttggtctat gtggaccttg 1980
ggtaaatcta ccaccgtgct atgctcataa acataaaagt gttttgaatc tcaaaagagt 2040
tatcatactg gttgttgttg tagcaattgt tgtattgtgt ttgtttcttg caatattgtg 2100
gagaaagaat tgtaggagaa atattcagag agacattggt ccatcattaa atgtggggca 2160
tcgaagaatc tcctatgcag agctcgtcat tgcaacaaat gaatttagtg atgcaaactt 2220
gttaggaatt ggtagttttg gaaaagtgta caaagggatt ttgaatgatg gcacaatggt 2280
tgctgtcaag cttctcaatc tacaaaatga aggggctcaa aagagttttg atagagaatg 2340
caaagttttg ggtagagtta gacaccggaa tttgattcgg gtcataactt gctattcaga 2400
tctccaaatc aaagctttga tatttccatt aatgccaaaa ggaagcctag aaaagtggtt 2460
atatcccgat gatggagaac aaagttgttt gaatttgatt caaaggttga atatagcaat 2520
agatatcgcc caaggcatga catatctcca tcatcattgc tttgtgcaag tgattcattg 2580
tgatttgaaa cccaacaatg tgttgttggg tgaagatatg actgcatatt taatagactt 2640
tggcattgct actatatgtt ttgcaaataa tgaagatgga gctctcactt ccacaaatgc 2700
actcaaagga tctaccgggt acattcctcc aggtattatt taaactatat cccatatgaa 2760
gcaatcttat gattttctta tgtttactta acattttcaa ttaaattaaa aaacttaaga 2820
tgaggatcta tgaatgcaga atatggagtg ggaggacaag ttacaaccaa aggtgatgtt 2880
tatagctatg gaatagtgct attggaaatg cttactagaa agaagcccac ccatgacata 2940
tttgtggaag gaatgaactt gcaaaaatgg gtgggtagta gttttccaag ccaagtacaa 3000
gaagtggtgg acatgggtct gttaacgagg actagtagat gcattgaaga agataaagat 3060
ctcaattgtc tcagtgcact gataaatgtg ggtttgcttt gcacaaatga atctcctcaa 3120
ggacgaccta caatgatggg cattttaggc acattgcaaa acatcaaaga ctcttttttg 3180
agcactactt ccattcccaa attccaatca aatctaacac atttgttggg tagtacaagt 3240
gctactatca acaacatttg tgaaggtcaa agttcttcca catcttagtc tattgtaaca 3300
aagtagtggt tatatgcttt tttgtacata aaaaaaaaaa 3340




6


3396


DNA


Pinus radiata



6
ggaggaagcc tgagacgaaa tcattgcagg aggcggatgc ccaacaaata ggttgatgca 60
gggattgcac gcattcttca tttatttgct gtgaaaaatg aggtattcct ggacatgttc 120
tccctttctc agtctcctgt tcattctttc atgtttagat tctggaattt gtctcgataa 180
ccaacaaaca caggtgatga aaaaactgtc gtcctacaca ccctcatgga cgactgtaaa 240
gtctgataac ccatgtggat ggagtggtgt gaattgcact gccgaagaga gtaatgtgac 300
tgagcttcat atgtccggtt ttaggatgaa gggcaatgct tggcagacta tatgcaaact 360
tcaagccctt caagtgcttg acgtctctga taatttgctg tcaaccccgt ctgataatga 420
tatccaggct tgcaccaact tgttttccct taacatcagc tccaattttt tgccaggctc 480
ctcccttcct tcgcttgcac cgatgcgcaa actgcacttc cttgatgtct ctcacaatgg 540
atttgcaggg gaatttggcc cgcagattca gcatttgaca gacctcagag tgctcaattt 600
gacatacaat aacttcagtg gtccaatccc ttcattttta ggaaatctga cgactttaga 660
aaaaatcgat ttctctcaaa attattttga gggtgaattt cccaaagagc ttgtgcgttg 720
cacaagtctg acttatctag acctcagctt caatagactg acaggccaaa tccctgataa 780
tattagcaac cttatccatt tagaaaccct gattctgtca tcaaataatt taactggaac 840
gattcctaaa acactggatc gacttgtcaa tttgactcac tttgcatcaa ataagaatca 900
gctcattgga cgaatacctg ttcagttagc taagctcaca gaattacatt ttcttgatct 960
gagctacaat gggttaaatg aaaccattcc tccagaactt tttgctttga gcaacttgca 1020
gactctggac cttacaaaga atttgctcac aggagagatt cctcagaatt tttcgagaaa 1080
attgataagg ttgcgaatag gccagaatct tcttaaagga aacattcctt taacaattgg 1140
aaattggtct aacttgacat acttagaaat gaatgataac tcactagatg ggcagattcc 1200
gcagcagctg gtaaattgta tcaagcttca actacttgac ctcggcaaca ataatttgtc 1260
aggctcatta accaatcagc tgccttcact tctacagttg caagtgttga agttgcataa 1320
taataatttt gttggaagca ttccatatat actgtcatct ttctctaatt tgtcatatgt 1380
cgatttgagt gacaatactt taaatgggtc cataccctca aatattttca atctttcgaa 1440
gctccaaaat ttgcgcctac agaacaacaa gctaacagga gcgattccaa acactgttgg 1500
aggcagccag gtcttgttag agctccagtt gggtggcaac aacctaactg gaacaatgcc 1560
attggaaatt ggcttcgtca gaaagttgca aattcaactc aatctcagct gcaattctct 1620
agaaggggaa attccgaata ctctttctgg tttgtacatg ctagaaatct tggatctttc 1680
caacaataaa ttgacaggag aagttccagg ttctttgaca gctatgctca gtctcacact 1740
gttgaacatc tcaaacaata gtttaacagg cgtccttcca aaatttccaa attccacaag 1800
cgcgttgata attattgata caggaaaccc tggtctcact gctgggcaaa atggttccgc 1860
tcctgccgct tctgcaagga aaaaaatctc ggcaattttg atcattggag ttgctgttgc 1920
aggtgctgtc tttgcaattg tggctgttgg attgttcatt gtggccagca aatactttgg 1980
gcgtggtgat cagcaaatgc cagaagtgca actagcccgt aagattgaag gccattttat 2040
tcatccagat agtatccaca ggctaaggat tgactttgaa aagggtgttg aagccactct 2100
agatccggct aatgtcttcc taaagaacaa gtttagtacc tattacaaag ctgtcatgcc 2160
ttctggcatt agttattccg tgaagaagct caactggagt gacagaattt tcaaatctgg 2220
aagctaccga aagcttggtg cagaactgga gaaacagggg aagctaaggc atcccaacat 2280
cctgacaccc ttggcacatg ttctagacac agattctgct taccttttct acgaatatgt 2340
tcataaaggc agcctctcag aattccttca cactagtaat gtttctgtat tggattggcc 2400
atctcgttgc agaattgcca taggtgtagc gcaaggtttg gcttttctac acgggtgtca 2460
gcatccaatc ttccatcttg atctcactac caaaaacatt ctcctaaagt ctttaacaga 2520
gccacaaata ggtgatattg agctttgcaa gattgttgat ccttccaaga gcacagggag 2580
tatttctgca attgctggtt cagttggata cgttcctcca gaatatgcat acactatgag 2640
agtgacggct gctggtaatg tctatagctt tggcgtcatt ttgctagagt tactgactgg 2700
aaggactccc atcaccagtg gaatggatct tgcaaagtgg gttcagtcaa ctctctcagg 2760
ggaggaaaca tgggaacaaa ttcttgacac aggaatcaga aacttttccg tccaaataca 2820
gaatgagatg atcgcaatgc tgaaagtagc tctcagttgc gttagctcat ccccagagtc 2880
gagacccaaa atgagaaatg tagtgggaat gctccagatg gtcaggcaag ttgcagaata 2940
aggttttact tcattcgaca atatatggat gagattttac ttccctacaa tataggagtg 3000
ggaacggggt attctgtttt atatttttaa ggagactaaa tctgtatagt attgtcgata 3060
tgattaggat tcacatgaat tcagacatgg atatatgagg ttgttaaaat gttggtattt 3120
tttgctcagg ttagcgtagt tatgcagtaa agtgcttatg ctagattatc atggttcata 3180
tcataaatct agtatacttc caagcacaaa tgtataaata tatgtgtttc tgatttgatt 3240
aacggggaag ttattgtctt cattggcatt caaccaaaat atcagttaaa ggtagcaagt 3300
ttatagaatg cttgtggctt tcaaacatgg tcctggcttg tggctaaatc atggtaattc 3360
aagaacacag tctatttgac taaaaaaaaa aaaaaa 3396




7


2432


DNA


Pinus radiata



7
tctcaaagct ctcaatccca ccactattgg acaagaatgg cagaagtgaa gaaaattgtt 60
gagagtttgt cgcattgcac tgcacaatgt gtttcttgat gctctaaagt cccgctcatg 120
tgagttattt tcctgatacc ttatctgtac ttgatgttac ctgatgcatt tcaagatctt 180
gtttgatgca aaggaggaaa aaattaagtc ctctttcgat atgttgactg cctttctggt 240
attgtgcttc actaccactg ctgcgtctgc tacacaacta tctccttcgg gcctcaacta 300
tgaagttgca gctctaatgg cgataaagaa tagtttgaat gatccacata atgtcttaga 360
gaattgggac atcaattcgg tggacccatg cggttggagg atggtgacat gcacacttga 420
aggctctgtt tctatattag gaattcagtg tcagaatttg tctggtagtt tgtctccaag 480
cattcgaaac ctcaccaatc ttcagtctgt gctacttcaa aataacgcca tatcaggatc 540
aatcccagct gagttgggaa agctagataa gcttgatact cttgacctct ccaacaatca 600
tttcaatggg ttgataccca gttcactggg aaaattgaaa aacctaaatt acttgcggct 660
caacaacaac aacctatctg gaccaattcc cccatcactg gctactatca cagggcttac 720
tctcctggat ttgtcgtgca ataatctaag cggctctgtg ccaagaattt ctgctagaac 780
cttcaatatt gtgggcaacc ctttgatttg tggtccgaat tcaacatata agtgtcctgg 840
acaatttccc acgcctatcc cattagttgt tgagacaccg caaggtagag ttccttcaag 900
acaatctaaa accagaaagc tggctgttgc cttggtcgct agtcttggtt ttgtgtttgt 960
ggtttccatt ggacttctcc tttggtggcg caagagacac aatcagcaaa ttttcattga 1020
tgtcaatgaa cagcacaatg ttgatatttg tctagggcat ttgaagagat tctcattcaa 1080
agagttacgt gtttccacta ataattttag tagcaagaat attttaggag taggaggata 1140
tggaattgtc tataaaggat tcctacaaga tggcactata gtagcaataa aaaggttgaa 1200
agatggtaat gtgggaggag gagaaattca atttcaaaca gaggtggaaa tgatcagctt 1260
ggctgtgcat aggaacctat tacgattgta tggattttgc acaacctcca gagagaggct 1320
tctggtctat ccctacatgc caaatggaag tgtggcctct tgtcttagag atcatattaa 1380
tggaaagctt gccctggact ggcctactcg caagcgtata gcccttggag cagctagggg 1440
actgttatat ttgcatgagc aatgtgatcc caagattatt caccgggatg tgaaagcagc 1500
aaatatatta ctggatgaat attttgaagc tgttgttgga gattttgggt tagcaaagct 1560
cttggatcac agggattctc atgtgactac tgctgttcga gggacggtag gtcacattgc 1620
cccagaatac ctttcaacgg gacaatcttc agagaaaact gatgtatttg gctttgggat 1680
attactgttg gaactcatta caggacaaag ggctttagat tttggccagg ctgcaaagca 1740
aaaagttgta atgctggatt gggtaaagaa gcttcatcaa gagaagaagt tgcacctcct 1800
tgctgataaa gatcttaagg gcaattttga tagagttgag ctagaagaga tggttcaggt 1860
ttctttgcta tgcacccaat ttcagcctgg acatcgtcca aaaatgtgtg atgttttgag 1920
aatgttggaa ggtgatggat tgacagaacg gtgggaaaca ttgcaaaaaa ttgaaacccc 1980
ccgatacaga gtaactgaga tacccataac atattccgag ttggttgaag aagattcttc 2040
ttggcttgtc caggcaattg agctatctgg tccccgttga tttcacaggc ttgctaacat 2100
tctaatatca atgcttccat agcttgttgt ctttgcatct tttgttggtg cccatggaaa 2160
catatgctgg ttcgttgtat aggtagcttt ggtacagtca aaatatttcg ccatgcacca 2220
aaaaatacgg atacctttat aattgtctct ctatgtaatc tcaggcaaac ttaagcatat 2280
tcagtatttt ttattgataa gttggtagct ttgcttgtaa tggctatgct gtatcctcgc 2340
ttgacacttc atcagcagcc tagcttattt gatagtgaag ggttttcaca agaactttct 2400
cagatggttg taaatggttg ttgagatatt tc 2432




8


2638


DNA


Eucalyptus grandis



8
cgaggaccaa ccgccaagaa ccatgcattt acactctctt ttactccatt cataacctcc 60
gctccccagg gcagagcaat ccaagaatac ccatctcatt cttttgcagc tgctgcattt 120
cttgatctcc ccgccacaat gcatttccga attctagccc tcctgggctt cttcttcttg 180
gccgtcctct tcccctccgc ggagccagat ctcgcgtccg accgcgccgc cctcctcgcg 240
ctgcgatccg ccgtcggcgg ccgcaccctg ctctggaacg ccaacctccc gagcccctgc 300
tcgtgggcgg gcgtccagtg cgaggggaac cgggtcaccg ccctccgcct ccccggcgtc 360
gccctgtccg gccaaatccc cgacggcgtc ctgggcaact tgacccagct ccgcaccctc 420
tcgctccggt tcaacgcgct ctccggcacg ctcccctcag atctcgcgtc ctgcgccgac 480
ctgaggaacc tctacgtgca aggtaacctg ttctctggcc cgatccctgc gtcgctgttc 540
ggcttgagtg atctcgtgag gctcaatctc gcgtccaata agttctcggg ggactttccc 600
gctggtttcg gcaacttgac taggctcaag actctcttgc ttgagaacaa ccagctctct 660
gggtcgatcc cagctgacct gaagcaactc aagctcgagc agttcaatgt ttctaacaac 720
ttgttaaatg ggtcgatacc tgagggcttg ggggcttttg ctacctcttc gttttccggt 780
aactctctgt gcgggaagcc gctggcttct tgctctcaag atattgctct gcctgccggc 840
gagccttctg gtagtccagg gcagccagga ggaaagaaaa agaagctttc gggggctgtg 900
gtcgcgggca ttgtgattgg gtgcgtgttc gggttcatat tcctcgtcat actgttgatc 960
tatctgtgcc ggaagaaggg tagcaagaag tctagatctg tggacgtcgc gaccttcaag 1020
caccaggaat tggagattcc aggtgagaaa ccggtcgggg aggtcgagaa tggcggtttc 1080
agtaatgggt actccgtggc ggcagctgcg gctgcggcca tgacaggaag tggaaagggg 1140
gaagtgaatg ggagtgctgg tgccgcggca aagaagttga tcttcttcgg taattctgca 1200
agggcgtttg atttggagga cttgttgagg gcttcggcgg aagttctcgg gaaagggacc 1260
ttcggaacgg cttacaaggc ggttttggag gccgggatca cggtggccgt gaagaggcta 1320
aaggatgtca acgtggctgc aaaggaattc aaggagaaga tcgaagcagt cggggcaatg 1380
gatcaccaga gtctggttcc tctgagggca tactattaca gcaatgatga gaagcttctt 1440
gtctatgatt atatgcctat gggaagcttg tctgcacttt tacatggaaa caaaggagca 1500
ggaaggactc cgctgaactg ggaaatcagg tctgccattg cgcttggggc tgcccgtggc 1560
atagagtacc tacattccca aggtccaatc gtctcccatg gaaatatcaa atcctccaac 1620
atccttctca cgacatcata tgatgcgcga gtgtcagact tcggcctagc ccaccttgtg 1680
gggccttcct ccactccaaa ccacgtcgcc ggctaccgag caccagaagt caccgaccct 1740
cgtaaagttt cccaaaaggc cgatgtctat agctttgggg tgttgcttct ggagctcctg 1800
actgggaagg cacctattca ctctcaactc aacgaggaag gtgtggacct tcctaggtgg 1860
gtccagtcca ttgttcgcga ggagtggact tccgaagtct tcgatctcga gctccttagg 1920
taccagaaca tcgaggagga gatggttcag ttattgcagc tcgcgataga ttgtgccgcc 1980
caatatcctg ataagcgtcc ttcaatgtcc gaagtgagga gccaaatcga agagctatgt 2040
cattctagct cgcagaaaga tcgtgccccg cagcttgacc aggtcaatga agtgaacgat 2100
gacacgtctt ctcggtgagt tgatttccga gattggcgag cgaaattccc gaaggatcat 2160
cttgcaacat catgttcaca tttagcgtca taagctgggt tttcttgtct ttttttctgt 2220
tctatgtcca tttgggcctc tttctaatgt cattacgagg caaatagtct tctccccttt 2280
ttcccctcat cattttctgt aattccccat tgtgctacat tttttcatct tttctttcat 2340
ttatgctttt tggggtggat atcagttact ttgttcttgt tggtaagtat gttggatcat 2400
ggtttcttgt aattattact catgcttttg cttttgcttt ccacttttgc ttttgatgca 2460
acttctcatc tgttcagact gagatgtttc agttgcttct taggatgctt ggtgtaattg 2520
tgttttcaag tgtaccgatc caccaaactt tgtttaaagt ttcctggacc ttttgaaaaa 2580
tcagattgag atgtatacct gaagtctaag tttattttgt gaaaaaaaaa aaaaaaaa 2638




9


3239


DNA


Eucalyptus grandis



9
gcaacacccc ccctcctgct gaattttcaa cacatcaaca tcatattcac gttctcatta 60
tgctctgcaa gtcgtcgcgg aggaccggga caatagcagc aggaggagcc ttggaggcaa 120
gacgagttct ttgacttgtt tttctccttg gcaagggaag gtatggagga ggccttcctg 180
aggttgatct tcctggtggc ggtgcttttg tttgggaagg atctgcagct ggttttttct 240
ttcaccaatc ccgatgactc cgtggctctc caatccctca agatgtcatg gcagaacacg 300
ccgcctagct gggaaaggtc gagtgacccg tgtggactcc cttgggaagg agtaacctgc 360
aatagcaatt cgagggtaac ttcattggga ttatcaacca tgggaatcaa gggccagcta 420
attagtgaaa tagcaggact cgctgaacta agatctctgg acctttcctt caacaaagag 480
ctcactggtc cgctcgctcg gcagttgggc aatctacaga agttgaacat actgatttta 540
gccggctgta gtttcaccgg tagtattccg gacgaactgg gcaaccttgc agagctatca 600
ttcttggcgc tgaactcgaa caacctcaca ggcaatatac ctgcttcatt gggtaacctc 660
tccaagcttt actggtttga cctggctgat aatcaattaa cggggcctat tccgatatcg 720
acggacacat cccctgggtt ggacctcctg ttaaaagcaa agcactttca tttcaacaag 780
aacaagcttt cagggcccat tccggaaaag ctattcaact cggcgatggt tctaatacac 840
gtcttattcg atggaaatca gcttaatggt tctataccgt cctcagtagg acttctaccg 900
gatcttgagg ttcttcgact tgacaggaac aagttatctg gaaaggtccc tctgaatctc 960
aacaacctga caaaccttag tgaactgaac tttgcccata atgcattgac tggcccttta 1020
ccagacttga cggatatgaa ttccctcaat tacgttgacc ttagcaacaa cttctttgac 1080
ccttcggaag ctccagattg gttctcaact ttacctactc taaccacgct ggttatagaa 1140
tatggaccgc ttaagggggt tgtcccacaa aagcttttca gctttcctca gctacagcaa 1200
gtgaaattga agaacaatga attcaatggt acgctgaaca tgggagacaa catcagtccc 1260
cagttgcagc ttgtcgatct gcagaacaac caaatatcat cggtgacgct gggctcttcg 1320
ggttactcaa atacactgat gttaataggc aaccccgttt gcactaccga actctcgaac 1380
actaattact gccagctcca gcagcagaca gtgaagcctt attcgaccag cctcgccagc 1440
tgcggaagca agtcgtgccc tcccgacgaa aggctcaacc ctcagagctg cgagtgcgca 1500
tttccatacg aagggacctt atattttaga ggtccctcct tcagggaatt gtccaatgtg 1560
accttgtttc acatgctcga aatggacttg tggacgaagt tgaatctcac tcccggttcg 1620
gtttctcttc agaacccctt cttcaatctt gacgactacc ttcaagtgca gctttcactc 1680
ttccccccga gcgggaaata tttcagtcgg tcggatattc agagcatcgg tttcgacttg 1740
acaaaccaaa ctttcaagcc tcccaaacca ttcggcccct attacttcat cgcctccccc 1800
tatgcttttc cagacaatgg aggaaccgcc ataagcaaag gtgtgatagt tgggatcgct 1860
attggcggca cggttctggt tcttggcctt gttgtattag ggttatatgc tattcgacaa 1920
aagaaacggg cggagaaagc tctcgagttg agcagaccct tcgcatcctg ggcacccagt 1980
gggaaagata gcggaggagc gccacaactg aaaggagcac gatggttctc ctatgatgaa 2040
cttaagaggt gcaccaataa tttctccgat agcaatgaat taggcttcgg aggatacgga 2100
aaggtgtaca ggggagttct tcctgatggt catatattag caatcaaaag agctcagcag 2160
gggtcgatgc agggtgcaac cgagttcaag acagaaatcg agctgctttc gcgggttcat 2220
cacaagaatc ttgttggcct cataggattc tgtttcgagc aaggagagca gatgttggtc 2280
tatgaatata tgcctaacgg gacgctcagg gatagcttga caggaaaatc aggcatttat 2340
cttgattgga agaggaggct tcgtatagct ctaggttcgg ctagaggact agcttatctg 2400
cacgaactcg cgaatcctcc aattatccac agagatgtca agtccaccaa tatcttgttg 2460
gacgaacatc tgacggccaa agtcgcggat ttcggtttgt ccaaactggt atcggacagc 2520
gggaaggggc acgtttcgac gcaagtgaaa ggcacgctgg gctatttgga tcccgaatac 2580
tacatgagtc aacagctgac agaaaagagc gatgtgtaca gcttcggggt ggtcatgctt 2640
gagctcatca ctgcaaagca accgattgag aagggcaagt atgtcgtccg cgagattcgc 2700
accgccatgg acaagaacga ccaggactac tacggcgtga gggaaatgat ggacccgtcc 2760
atgaggagca tgggctacct cgtcgggttc agcaggttct tggatttggc gatgcgatgt 2820
gtcgaggagt cggctgcgga ccgccccaca atgagcgagg tggtgaaggc gatcgagacc 2880
atgttgcaga acgatgggat acacaccaac tcgacgtccg catcgtcgtc ggcgacggac 2940
tttgggtcga cgaagggcgc tcctcggcat ccgtacaacg atgccttacc caagaaggaa 3000
gttagctata gcgattcctt tgattatagt ggtggatatg gactatctac aaaaattgaa 3060
cccaagtgaa aaacatgatc aattgatctg ctcagtcact tgtttttctt tttcctttgt 3120
ttctgctcag gtttggcttg gtcctcttca caatttctgc aagtgagtaa cctgtcttac 3180
atgtgtaata gttttgatca gccgcatcaa gtgaaggaag ttcttgtgca aaaaaaaaa 3239




10


2336


DNA


Pinus radiata



10
attcgattcg cgatgctatt tccatggcgc agcctcgttc tgatagcctt cacctccctc 60
gtcgtacaac ttattcctgc gcaggccgtg gaggatcgtc gacatgacac cactttcctg 120
ttcgacggat tcaatggaac caacttgatc ttggaggcta atgcttcagt catcggctct 180
gaatccgtac tctcccttac aaatcactcg catgagttca tgctcgggcg cgcgctgtat 240
gcagctcctg tgcaaatgaa aaacaaccat acggtttcct ccttcagcac taccttcgtt 300
ttctccattg tgcctcctcc ctctaacgaa gggggacacg gattagcctt catcatgacg 360
ccttacacat ctccgatggg cgctcagccg gtccagtatt tgggcttgct taacctcacc 420
agtaacgggc agccatacaa tcatttattc gcagtggagt ttgataccat catgaatgta 480
gaattcaaag atccagaccg caaccacgtg ggcgtggata tcaacagtct catctcagtc 540
cagacagaga ccgccggcta ttggaatggt gaggaattcc atgaactcaa cctcaggagt 600
ggacggaaca tacaggcctg gatcgattac gatcatcttg agagcagtct caatgttacc 660
attacggtgg ccgggttgcc gagaccgcag aggccgttga tatctctgca aatcgatctg 720
cagaatattg tagaagagaa gatgttggtg ggcttttcag cggcaacggg gctgttagtg 780
gaagaccatt acattctcgc gtggagcttc accaccgaag acacggcgcc gcctctcgat 840
gtttcttgcc tctcttcatt tgccaacatg tattccgaac ctctgagccg gggattcata 900
gccggtgtca ccgtggtttc tgtggttctt ttctggctgg tgattgcggc ggccatgttt 960
ctgagaagaa cactaaacag ggaaacggtc gaagaatggg agcaggagta ctggccccat 1020
agattcgatt acaaggagct gcgtatcgcc acgcgagggt ttcgggacga aaaccttttg 1080
gggtacgggg gatttggcat ggtttacaag ggttttctcc ccaggagcgg ccaagaagtc 1140
gcagtgaaat gtataacgac ggagttcaag gaaggaataa aggggtttgt tgcagagatc 1200
tcaagcatgg ggcggctaca gcaccggaac ctggttcaac tccgaggatg gtgccgaagg 1260
catacacagc tattcatcgt ttacgactac atgcccaacg gaagcctgca taaactcatc 1320
ttcggtagtc cgacaacagt cctgccgtgg catcggcgat acgcgatcct aaagggcgta 1380
gcagcggggc tgctgtatct gcacgagcaa tgggagaaga gggtcgtcca cagggacatt 1440
aagtcgagca acgtgctgtt ggattcggag ttcaacgggc ggcttagtga cttcgggctc 1500
gctcggctgt atgatcacag tgagaatccg gagacgacat atgtggtagg aacgttgggg 1560
tacatagcac cggagttgat acaaacgggg aaggcaactc ctagctcgga cgtgttcagc 1620
ttcggtgttc tgctgttgga ggtggcttgc gggaagagtc cagtggattc gttggaggac 1680
tctgagcgca tgattttagt ggagtgggcg tgggagctct acacggaggg gaggttgctg 1740
gaggcgtcgg atccgaagct ggccgcaaag ggtggatatg atgaaggcga gatggagaag 1800
gtgttgaaat tggggttact gtgttctcat ccagagccgg agagcaggtt gagcatgcgc 1860
caggtttgcc aagtactgaa cggcgaagct ccagttcctt gtagatggta gggacggggc 1920
aattccggag gtcaggatta tccatgtttg attaaagaat ataatacttt tatttattat 1980
atattatttt atgttcccat gcgggcccag cgaggacact gctattgttg ctggtcagtg 2040
gttcaaatcc gggaaagaga gcatgccgtt actcaagtta ttgctagcta tgcgggggat 2100
ttaagtagta gtctactgtt acaaaacata gatctgccct atctacttcc tgtgacaaag 2160
cagagttgaa tgctcagaga gcaggaattt gaaatccaaa ttcctttgta ttaaacattt 2220
tagttaattt tatgatgcgt aggcttcatt tgtcaccgta ttcgattcgt aaagggcgac 2280
actaacaata attttataat atttgtaaaa tttttggtgt taaaaaaaaa aaaaaa 2336




11


3097


DNA


Eucalyptus grandis



11
tttgttctct tgcaatgcca tatatacacc tgaaattctg atcgctctca ctcatctgtc 60
gcattcaaag cctcaaagcc gcttgtttct tgaactttgc cttggcttca aagaagaaag 120
tcctcaaata gaagatcgac catatgggac tgaagatatt ctcagtcggc tttgctcttc 180
tttgttgctt ctgttcactt ggcttctgtg atcaagacgg ttttctgagt ttagcttgtg 240
gtggaactac caattacacg gattcatcca acatctggtg gattaccgac agtgatttca 300
taagcacagg aaagactacc tatgttgaca atatcgaggg caattcatct ggtgtttcgc 360
ttcggttctt cccagattcc aaagtccata actgttacag attgcctgtg aggaatatat 420
cctccttaat tctcgtaaga agccaatttg tgtacaagaa ctacgatgga cgagggaagc 480
caccggcatt ttctgtttct cttgggacag caatggctag tactattaac ctgaccacta 540
atgatccttg gactgaagaa ttcatatggc cggtcgacaa ggacacactc tctttttgct 600
tgcatcgtat tcggaacggt gggactccag taatttcttt gctcgaagtg cggcctcttc 660
ctcctgaagc ttacaaaagt ggaatggggg attacccgaa taagttactc aggaagtctt 720
atcgaattga tagcggttac accaatggct cgttgaagta ccctgcagat ccctatgatc 780
gaatatggga tgctgataag agcttcacac cattccatgt gactactggg ttcaaaattc 840
aagtcgagtt taatctctcg gggctctcgg agagtcctcc tcccgctgtt cttcaaactg 900
ccagagtttt ggcacgaaaa gaagtcctga cgtataactt ccctctcgac tcacttggcg 960
actattacgt cgtcctctat ttcgctggga tccttcctat ttccccatct tttgatgtga 1020
taattaacgg ggacatagtg caatctaact atacagtgaa aacctcagca gccagtgctc 1080
tatatgttac gaggaagaaa attaagtcgc tgaacgtgac gttgaagagc aaacgtttct 1140
ttcctcaggt taatgcaatt gaggtgtatg aacttgttga cattccccca gaagcttcat 1200
caaccacagt ttcagcactt caggttatcg agcagtttac tggcctggac ctgggatggg 1260
aagatgatcc ttgctcacca aaaccgtggg atcatgtcgg atgtgaagga agcctagtaa 1320
catcactgga tctttcagac atcaatctga ggtctatcag tccaacattt ggggacttgt 1380
tggatctcaa aacactggat ttgcataacg cgtcacttgc tggtgagata cagaacttgg 1440
acagcctgca aaatctcgag aaattgaacc tgagtttcaa taaactgaca tcgtttggct 1500
ctgattggga gaacttgatt agcctgcaag ttctggacgt ccaaaacaac agcttagacg 1560
gagttgttcc cgacggcttg ggagagctga aagaccttca cctactggac ttggagaata 1620
acctgctaca aggtacctta ccagattcct tgaacagaca gagcttggag gtcagaacct 1680
caggaaactt gtgtctttcc ttctccacaa ccgcgtgcgg tgatgcatca tctagtcctt 1740
caattgaggc accgcaagtt acaatagttc ccgagagaaa caaaggggga cataatcgtt 1800
tagccattat actcggagca gtcggaggag tatcactagc tattttactc atcccgctct 1860
tcgtattcat gtacagaagg agaggaagaa ctgaaatgtc atatacggaa agggcagtcg 1920
cagacgtgag aaactggaat gcagctaaga ttttttccta caaagagatc aaaacagcta 1980
caaacaactt taaagaagtc attggtcatg gaagttttgg atccgtgtac ctgggaaacc 2040
ttccagttgg aaaactagtt gctgtgaaag tgcggtttga taaaacccaa cttggtgcag 2100
attctttcat aaatgaggtt cgtctcttat cacaagtccg ccatcagaac cttgtcagtc 2160
tggaaggatt ttgttatgag tcgcagcgtc agattttagt ctatgaatat ctaccgggtg 2220
gatcactggc tgatcaactg tatggtccaa acagtaggaa attctcacta agctgggttc 2280
gtagactcaa gattgctgtt gatgctgcaa aaggactgga ctatctacat aatggaagca 2340
atcctcgaat catacaccga gacatcaagt gcagtaatat actattggac aaggagatga 2400
atgcaagact ttgcgacttt gggctctcta agcaaatgat ccagccagac gcaactcacg 2460
tgaccactgt cgtcaagggc acagctggtt acctcgaccc tgaatattac tccacccaac 2520
aacttacaga gaaaagcgac gtctatagct ttggagttgt gcttttggag ctcatctgtg 2580
gacgagagcc gttaaatcat tcaggaactc cagattcctt caatttggtt ttatgggcaa 2640
agccctactt gcaggcaggt gcatttgaga tagtggatga gagtttaggg ggaagtttcg 2700
atgtggaaag catgaggaaa gtggcaaaaa tcgctgtgag gtctgtagag agggatgcat 2760
cactaaggcc aaccattgca cagatactgt ctgtgctcaa agaggcttac agcattcagc 2820
tctcttatct tgcagcctct ggacatgtga actgaatcta ctcgtattac aaccaagaca 2880
agattttttt cttttcggcc caaagagata aaaagaggtc gtttgtcctg ataacaaggc 2940
tgtttatcat tcgtttgagt ggaacctatg tacagagaga gttttgggtg caattatcat 3000
atttatcgta cttaaatgta tgatactgtt ttatttcata ttcatttgtg caagagaaat 3060
taagcaagtt tttgttccta aaaaaaaaaa aaaaaaa 3097




12


2649


DNA


Pinus radiata



12
gttggaagac cctgtaagca tttggcttcc atattgctat ttggcaaaga gagaaacatg 60
ggttgtcgga aagctgtgag atctgtgagc ccacagaacc catcttcctc tctgatgcat 120
ctcagactgt taggtgtttt gctcatgctt cattgcattg atgggctgat cctaaatcct 180
gaagtttcta ctcttctcac actgaaacca acgttgtctg gaacaggggt taacgttgta 240
ctggcctcgt ggagtgcctc tcgccctctg tgtggatgga aaggagttat gtggatgtac 300
aatggtatac ctgtcaactg ttctgttccc aaatttaggc acagtgtggc tttggcttac 360
agtcgcaagg tctcagtgct ggggattgat ttggaagcaa cagggttgaa gggtacagtc 420
ccaaaggagt tgggctcctt tatatatctg cagcagctga atctgaataa caatagtctt 480
acaggaggga tgcctccaga gttgggaaat gtgcctaatt tgagcagtct gcaactcaag 540
aacaatgggc tgaatggagg cattcctact gctatttgga atctgtgcga taacattact 600
gagctggaat tgggattcaa tgagctatca gggagcatcc ctgaacccgg aaatgggtct 660
aatataggtt gcccacaact ccggagattt gaggtgaata acaacagtct aacaggtaca 720
atccctagct tccttgctaa ttgtatttct cttcaagagc ttgatttgag tgggaattct 780
ttcaccggcg aaatacccaa tgagcttgca aatctgccaa acctgacaac tctcaacctt 840
gcccacaaca atctaagtgg tcgtataccg agttttcggc agaaatttga taagaattcc 900
tttgtagaaa atagtggatc cctgtgtggg cagcctctgt taaacccatg tggcgtagct 960
ccaaatgctg ctagtgctgc ttctgcaaat gtgactgcag cccagttcaa tgtgaccaaa 1020
gcccatttca aatctatgag cactggagct attgctggaa tcatcattgg atcaattgct 1080
gttgtagtca ttgccagttc tttgttaatt ggatgctacc ataggttcag cacagatgcc 1140
actgacaagt cttcgtcttc gtctgcccct tcgaagaaag ataaggaaga agacatggac 1200
aatgtgagtg ggaaattaat aaacttccaa ggaggtgagc atttgaccgt ggatgatgtt 1260
ctgaatgcaa cgggagaagt cttgggcaaa tccagttatg gaactgtcta caaggccagg 1320
ttaagtagtg gttgtatgat cgcactccgt cttctccgag atgggtgtct cagaagcaca 1380
gacgaattca tgcctgccat tcaggagttg ggtaccatca ggcataagca tcttgtttct 1440
ctaagagcat tttattcagg gacaagaggc gagaaactgc ttgcctatga ttaccttccc 1500
agaggaagcc tcgcagaatt gctacacagt acaaacaggc ctgctcctgg atgggctaga 1560
agacataaaa ttgctctggg agctgctaga ggtcttgcct accttcacac tggattccac 1620
aaatccatca tacacggcaa tatcaagtca aaaaacatac ttgtggatga caattatgtt 1680
gctcatcttt ctgactatgg tcttaacaag ctaatgaact caacagcaaa tattgagatg 1740
ttagaagctg ctgcttccca gggatacaaa gcacctgaac ttatcaagat gaaaagggcc 1800
aatgcaaaga ctgatatata cagctttggt attggtttac ttgaaattct cacaggcaga 1860
agacctggta gaacaagctc atccaatcat attgttgatt tgccaacagt cgtgaagaat 1920
gcagtgcttg aagagaggat ttcagaactc tttgaccttg agcttttgcg tgcaatgaga 1980
agtccagcag atgaaggtct tctgcaagtt ctgcagcttg caatgggttg ttgtgctcct 2040
tctccatcag tcaggccaca tataaaagag gtagtccgtc aacttgagga gattaggcca 2100
aaacctcaat ctccgcatct tgccctttcc ccacaataca attcagatga caagagtagt 2160
agggagtttt tgttggatgg cggacaaaat taaagatgga atttactcgt ctttcctccc 2220
tagttccgac acttatttag gttctacata tgctataaac tactaccgta gttacagata 2280
cgggaacata ttaagggatc tatttttctt ttcttgcaag atatgtctca gattataatt 2340
tatgcccatt gggaggggct ttcttttgtc agatcatttg gtgttctgag aggctgtaag 2400
agaaacatca atttagtccc ctgcttctgt acgatttcct atttgtaaat catactgata 2460
gttgtgagga ctctcagttt ctgtttgtgt ttttcatacc agagtagatt tccttttgtt 2520
gtcaaagtca tgacatagta aaaatcatga caaaaattga catgtagacg tgtaaactta 2580
gtggtaaaga tatgcttata tgtatatgaa ggatatgcac ttgcgtttaa aaaaaaaaaa 2640
aaaaaaaaa 2649




13


2513


DNA


Pinus radiata



13
gaaatgaaga tttgagttct ccggaaacac actaaggata tcgtagctct ttgaaaatgg 60
gaaagaaaat tttgcaatgt ttgcggttaa ttattgctat attgacggcg tctattgcga 120
tatcgcacgg aactacggat ccagacgacg tttctgcgct caaaggcata tatagcagtc 180
taaattctcc ccagcaactt tctggatgga gtgcaaatgg aggagatcca tgtggtcagt 240
cctggaaagg ggtttcatgt tctggatcat cagttacatt aatcaagctc tcaggcttag 300
gattgtcagg atcattatat taccagcttt cagacctttc atcattgaca accttggatt 360
tgagcaacaa caacattcag ggcaacattc cttatgcact tccacagaaa ctccaggagt 420
taaaccttgc tagcaatggc ctcagtggta ctataccgta ttcaatttcg aacatgactg 480
gcctcacaga tttgaagttg agtcacaatc aactttcagg tcagatccaa gatatatttg 540
gacagctttc cagcctctct actctggatc tatccttcaa tactttgact caaaatctgc 600
cccagagttt cagctcattg tcgagtctca gtgtgctata tttgcaaaat aatcagcttg 660
ctggttctgt taatgttctt gccaatctgc cactcacaga tttgaatatt gaaaataacc 720
gttttagtgg ttgggtaccc aatgcctgga ggtccaacca aaactttaaa tatagcagtg 780
gtaatagttt cgccactggt cctgctcctc ctcccccacc atatactcca cctccacctt 840
ctaacaatcg gccacccaag tcctcaaatg tggtcccttc atcaggtggc tcaaagggtg 900
ggaacagcaa taagaaatct ctgagtggtg gtgccatagt gggtataata tttgcagtta 960
ttttgactgt tgttgctgct atattaggag ttattttata tgcacgtaag tctcctagaa 1020
gagagcagga tgaagaaaaa ctaagcaatc gtgtgtcttt caccccccta tctcccctcg 1080
atgctgaatt attgaaagag agtccagagc aaaaagtcag ctcatcacct cttgaaatcg 1140
ctcttaagcc tcccccttct gaacgcaaca agtctacagg ggacaaaggc ttcggaagta 1200
ttttttcaag taagaggact aaaaacccaa tatcagcaac tgaatattct attgcagacc 1260
tgcaaatggc aacaaatagt tttagtcaag ataatcttat tgcggagggt gctcttggac 1320
gaatctaccg agcagagttt ccagatggaa agattttggc agtgaaaaaa ttggacactt 1380
ctacgctgtc cctacaaagg cctgaagact tcctggacgc agtatctaat atatcgcgcc 1440
tacatcatcc taacattaca gaactagtgg gttattgcac agaacatgag caataccttc 1500
ttgtgtatga atatttcgac aatggatcac tctatgacgt attgcacatg gcagatgaga 1560
ctactagaaa tttgtcttgg aacattcgtg taaagattgc gctgggttca gctcgagttt 1620
tagagtattt gcatgaagtt tgctctccat ctattgtgca taaaaaattc aagtcgtcta 1680
atattttgct tgatgatgat ttcaaccctc gtctgtccga ctgtggaatt gcggccctca 1740
atccaaattc tgagcgtcag gttcaggtgc tgggttcatt tgggtacagt gctcctgaat 1800
atgtcatgtc aggaatctat acaatgaaga gcgatgtgta tagttttgga gtggtaatgc 1860
ttgagctttt gacaggccgg aagcccttgg atagttcaag aacaaggtca gaacagtcat 1920
tagtaagatg ggccacccct cagcttcatg atattgatgc attggcaaag atggttgatc 1980
cagctttgaa gggaagttat cctgcaaaat ctctctcgcg ctttgctgat attattgccc 2040
tctgcattca gcctgaacca gaattccgtc ctccaatgtc tgaagtggtg caagcattgg 2100
ttcgtatgat gcaacgggct agcctcaata agaggatgac aggagatgaa actgcagacc 2160
acgatcctgc agattattaa atgcagtgat attgctttgg tggtactcca gaagaaaata 2220
tttaattcta aaaagctcgt accgccttct ttggactttc caaaacagtt gaagagttga 2280
taacttcatt atttagctcc taaggccttc gttggacttc cacaacagtt gaaagagttg 2340
ttagcatcat ccttcgttgg acttccacaa cagttgaaag agttgatagc atcattattt 2400
tcataaattg aatctgttca agattttttt tagtccacgt tgtggtgaaa acaatgtaat 2460
tggaatatta ataaaatatt aatactggtt tgctcaaaaa aaaaaaaaaa aaa 2513




14


374


DNA


Pinus radiata



14
gttaggggtt taaaacctga ggaggctgct gtgtagggtc gagtttgagc ttgctggcgg 60
acgggagggg gcgaggctca taacacaatg cgacacaatg cgggttggat gtctgtcaag 120
ggttttaaag cctgaggagg ctgctgcgta gggttgagtt cgagcttact cgaggacccg 180
agggggcgaa gctgatgatg aggcttggag tgtgaatccg tggatgtttt agcgggacga 240
aggatcgagt ctcgtccgtg aggggaaatc aggcagttga aacaaagagg tgaagaaatt 300
tgcagcagag tcatgcagca gccgtatgta gtactggccc tgtggtggat attggtactg 360
cgtcacccgc tctg 374




15


490


DNA


Eucalyptus grandis



15
gtctaaagaa gcttgaggga tagacaagcc aaagtaagag agatagagag aaccagttga 60
tccaataaag gtcagatttt tatgctttgc tcacacacac ccatctgaag ctactttgtg 120
tcatgtcatt cccctatcct tctcctcaaa cccagcaaca tacaattgct ttgtctaaac 180
actagtggtc tatgtctgaa agcaacattt tctttgagaa tcaatgaggg tcctattcat 240
tgttctgggg gttgtacttc tgtgcactgt aattcctggt tcatcttctt ctgtcagtga 300
tgttgatgtc ctacttgcgc tgaagcaagg attccagtcc cctgaaccgg ctttaatcac 360
ttggagttct tcaaactcga gctcagtttg cttatggtat gggattagat gctcaagggg 420
acgcgtggtt tcgctccagc tgacggattt gaatctgggc ggctctgtct cccctcctgt 480
ttcaaggctc 490




16


468


DNA


Pinus radiata



16
gtttttctca tgctgctgtg ctttgtgctc gttgcaggga cctctgctgc tgtagacgat 60
catcaatatc tgtatcatcc ttctcattat gttatgaatg agcgccagga atctggaagc 120
tccatggccc gccacgagaa aagggatgtg gaagctcttc tctccttcag aaacgccata 180
acggccgacc cacatggatt gttgtccaac tggacggccc acaactctgc caacatatgc 240
tcgtggaatg ggatcggctg cagaaaacag agcagaagag ttgtttccat ataccttcgt 300
ttctcacacc tagaagggac gctttcgcct tctgtgggta atatctcttt actgcacacc 360
ttcgtactta ctgtcaataa attgacaggg agaattccgc cagagtttgg gcaacttaaa 420
gccctccaaa cgcttgactt gtaccgtaat cttttatcaa gttctggt 468




17


518


DNA


Pinus radiata



17
atagagtgag aaatacagag cctaatctga aggaagttgg agtgatagag tgagaaatgg 60
atcttcttct tctcctgctt gtgatgatgg gtgtagcaat gcctactcat tctcaacaca 120
cgggtggatt cacttctgtt caacgttttc cttttaatgg acggagtatg atggggaaac 180
cctccatagc cgggtatcat gaaaaaaggg atgtggaggc acttctcagc ttccggaagg 240
gcatcacatt ggatccatat ggatggctct ccaactggac ggccaataac tcacataacg 300
tctgcctgtg gaacggaatt tcgtgcagcc caaacacgaa tcgagtggtt gaaatttctc 360
tccgttacgg ccggttgaat ggtacgctct ccccgtatat tgggaacctc tctcttttgc 420
ggcatttaga tctttcttcg aatgctttga gtgggagaat tccagcaaaa tttgggcagc 480
tgaaagcgct acgaatactt gacctctcca ataatgct 518




18


630


DNA


Eucalyptus grandis



18
tgggtctctc tctctctctt tctctgtgtg tctcggtcct tgtgctcgcg ggctgtttcg 60
ctttaccctc ctctacttca ccgccaatga cttgcggaga gatcattctg ggtctgtgcc 120
tgtgacgtcc cttcttggga ttttcgtgct tcattcttct ggtacactcc tcgtttgtaa 180
aatcccggtt ggcgagctgg gtggagtgtt tctttgcgtt ttgtggtctt ttaggctctt 240
gggtcgtcgt tgttttggcc attgaggccg tttcttgtcc gtttcctggg agagtgaggt 300
gcgcagacga gaacggaagg aaaaaggtgg gaactttgaa gcgtggactg tacggagcgt 360
cgtgggctct gcgaaattga agatggtttt ccgacgattc gtggtgatgc tcttcatttg 420
cacggcgtcg gtctgcgctg gcctcactga tcctcgcgat gtggcggcaa tcaatagctt 480
gtatgtttca ctgggctatc cgcctctacg tgggtggtta cttgttggag gcgatccctg 540
tgttgacaat tgggaaggtg tcgagtgtgt tatctcaaac ataacgggac taaatctgag 600
cggagccaat ttgggtggag aattgggcga 630




19


385


DNA


Eucalyptus grandis



19
ggcagaaatc ctaagctagg cagagtctcc gacgatacca aacgatttat agttcctgct 60
tctcttgttt cgtgatgggt ttcttctacc aagtctttct catatttctg gcggtcgcgc 120
cgtctgctct gtgccaagtt actgagttcg tcagcataga ctgcggagga tccagcaact 180
acacagaccc gacaacaggg ctcgcatgga tcccggacac gggtctcatg agctatggcc 240
agtcttcgaa ggtgcagaat cccaacgtaa gctcggtgca gtattcgacg cgcagggact 300
tcccaataga cggccagaag tactgttaca ccctccggac cgaagagaga aggagataca 360
tcgtccgtac gacgttcttg tacgg 385




20


496


DNA


Pinus radiata



20
ctctcctcgt ctctgcattt caagcaccat ggcgtttcca tgtttttatt ttcctttccg 60
tatcttgttt ttcctcttcg tatgctcttt ttccttctcc ttctccttct ctgcgcacaa 120
atttcatgac ggtcggaaat ggctcttgtc attcaagatc gatattacca atgatcctca 180
tgcttccatg gccaactgga gtcctgcagt ccacctgtgc aactggactg ccgttacgtg 240
cagtcgcagg cacgcagata gggtggtctc tctcgaccta agtggcatgg atctgagcgg 300
ctccatatct ccttccctcg gcaatttgtc atttcttcat acccttaatc tcagtgccaa 360
tgctctccat ggtcatattc caccacaact gggacgcctc tttcgtttga gaaacctctg 420
gttacgcaac aattttctgc aaggaaatat ccctacagag ttcgcctccc tcaaacattt 480
gcaacagctt tacttg 496




21


352


DNA


Eucalyptus grandis



21
gagaactgaa ctgacccaga gacccacttt ttctctcatc atcatccctt caggatcatg 60
agattttcgt ctctcaaaag aagaaggtgg atcatgagga cagcaatcat cattaccagt 120
ctgatgtgtt gttcttccgc tagagacagc atgacgctca gcagcccgct cagcgatgag 180
cacggagaca ctctggtttc tgatggaggg accttccaac ttggcttctt cagccccaac 240
ggaagctcgg gctctgacca cagaaggtac cttggaatat ggtactacga ctccgacccg 300
cagaccgtag tttgggtagc taacagagac caccctgtgt tggatgtgac tg 352




22


635


DNA


Eucalyptus grandis



22
ccggtctgaa aaccgacact tttgagtgag aaccggttcc ttttgcggag ttttggaggg 60
acgggaagtg taatggggct cgcacgtttg ctcctggttg gcttcgtcct gctcgtgctt 120
ggctcgagag cgctcgtgtg cgggaatgcg gagctggagg cgctcatgga gatcaaggcc 180
tccttggacc cggagaacaa ggtcctcact tcgtggacca gcaatggcga cccctgcggc 240
ggctcgtttg acggggtggc gtgcaacgag catcagaaag tggcgaacat ctcgctgcaa 300
gggaagggcc tgtcggggaa ggtccctccc gcagtggctc agctgaagtg cttatcgggc 360
ttgtacctgc actacaatta cttgaccgga gagattccaa gagaaatctc tagtctgacc 420
gagctgacag atctctacct cgacgtgaat aatttaactg ggagtatacc ttctgaaatt 480
ggaagcatgg ctagccttca aggtgagttt tgtttgttgc tccaagggca ggggtgaatg 540
ctttcttgtg tatgatttca ctcccaaggg taccttatcg caatatcttg atttagaaga 600
tggaagcatc caggttcttg attggtccac aaggg 635




23


580


DNA


Eucalyptus grandis



23
cccaggagac atcacccatt ttcctaagta ttaccagatc aagagaataa cctgaagctg 60
tgttctttgc tactccgcat ccgttatttt cttcggactc tgctccgatg ggagtgaaga 120
gagcgaattc ctctctgtgc tgcgtggttt tgctcggctt gtgggcttgc gtacatgggt 180
tgctctctcc tagtggtgtc aatattgaag ttctagcttt gatggacata aggaatttgc 240
tagtggatcc tcatcaagtt ctgaacaatt gggacgcaaa cgaggttact ccttgtacct 300
ggactgcgat cacgtgtgag gctgatgtcg tcactaatct agaaattcca agacagaact 360
tatctggaac gctttcgcat agcattggga acttgattaa tcttaaatat ttgttccttc 420
aggacaacaa catttcagga tttattcctc ccgagcttgg gaagctccag aaacttgaaa 480
tgctcgacat ttccagtaac tcattctctg gtgaaattcc taccgagcta tcccatctca 540
agaacctcca acaactgaga atgaactaca ataacctttc 580




24


457


DNA


Eucalyptus grandis



24
ctcacctccc aaagaccaaa catccccaaa aatcatggtt tcttccttat tgctgtccag 60
ccagcctaat ttagtggtcg gcttcctctt cttgctcctc ttagttgaca ccactccatt 120
tcacggagca ggcgatatgg cttcctccac ttcctttttc accatcaaca tgaccaagag 180
taaggatgaa gtagaggctc tcttgaattg gaaatctact cttgacaact atagccagtg 240
tctcctctct tcatggcatg acaacaatcc ttgcggcttt agcggtgtca cttgtgacga 300
ctccaaagct gtcaacaatc taaatctttc caatcttggt ttgagaggaa ctctagacgg 360
tcttgacttc tcgtgcttaa ccaatttggt tacctttgat ctttcctaca acgcaatcta 420
tggctccatc ccctcaagta ttggtaacct ttccaaa 457




25


481


DNA


Eucalyptus grandis



25
ggaagagtgt aacttcttct tcttctccat ttgaattgtt tggcgctgtt tacagatgaa 60
gattggagtg acgagacaca tctttttgct gaggaaggag tgtgaaggtg cttcaatctt 120
ccccagaagc cggggaggct agaagagctg ctcgttcttc ttcgagccta actattctcc 180
aagtatattg ctgtgaactg gctgtagaaa atggaaggga agcacctcgt ttttctgaca 240
attctcttgt tggaatcgat ttgctcgaat gtctcggcga tacccaacga ggataagcaa 300
gcattactgg attttcttgg caatgtttcc ctctcgcgcc ctctcaattg gaacaaggat 360
tcttctgtgt gccggtcctg gacaggggtc aagtgtaata acgaccaatc gagggttgtc 420
gccctccagt tgcccggagt ggggatcaaa ggtcgaatac cgccgaacac actgagtcgc 480
t 481




26


648


DNA


Pinus radiata



26
tgattccatt gcgctgaaac caagaactct gtctgtctga tcaggctgta tcatggccta 60
caagcttttg agattttggc ttgaatttca ggccttacta gtcctctttc cattggctct 120
gagtgtctct caggagggct tggttttgct ggaagtgaag aaagaactga gtgaccccaa 180
tggatttctt ggtaactgga aggcagagga cgattctccc tgcaaatgga ggggtatctc 240
atgcgaccag aggtcaaaat cggtggtggg gattgaccta agcagcggag gtttagttgg 300
ggtttttcct agtgtcgttt gcaatcttcc acagctgaaa aatctgtcgt tgggggataa 360
caatattggc tcaatattac ctcgcaacct ttccatgtgc aggcagcttc agcgcttgaa 420
tttatcgcag aatctttttg tggggaacct tccggacttt atttcagagc tcgcagagct 480
ggaatacttg gatctctcga gtaacaattt ctctggttcg attcctgcag gcattgggaa 540
actgccaagg cttcaagtac tgaacctgtg ctgcaatctg ctaaacgaga caatcccaac 600
atttctggga aatctcagca atctgcagca attattgctg gcatacaa 648




27


427


DNA


Pinus radiata



27
atacattagt tctgcaaatc aagaatggga tcgtcggcct ccccttttat ggtgttgtta 60
ctcctttcca ctttgattct tgaaatattg ccaatgtatg ttgcaacaaa tagaagcgaa 120
gctgatctcc aaggtctcat agcattcaag gcatcaatca ccagtgaccc cttgaatgct 180
ttagctgatt ggactgcttc tgctcatcac tgtaattggt ccggtgtggc ctgcgatccc 240
ctccacaacg ttatctccat tagcttacca gagacacaaa tccaaggcct catctctccg 300
tttcttgcaa atatatctta tttggcttca ctagacctca ggtccaactt cttccatggt 360
gtcattcctc cgcagctcgc tctgtgctcc caacttatcg atctggagct ctttaacaat 420
tctttga 427




28


516


DNA


Pinus radiata



28
gctgaacata actgttttgc ccattctgat tttgctgaag caccaaggct tcataagagc 60
aaaatggaag tacggatgat aaccataatg atattatgtg ctgctttact atgtgaaggg 120
agcggagagg tggatgttct gatggagatg aaagctgcat tggaccccaa gggggagata 180
ctctactctt gggtgaaggg aggagatccc tgcagtggga cttttgatgg agtggcctgc 240
aatgagcaag gaaaagtggc taatgtttct ctgcaaggga aaggattatc aggctcaata 300
ccctcaacca ttggcaagct caagtgtctc actggacttt atttgcatta caacagcctt 360
ggaggggaga tacccagaga gctttctaac ttaactgagc tgctggacct ttatcttaat 420
gtcaatgggc tctctggtcc cattcctaag gagctgggag ccatgtccag cttgcaagca 480
ctccagctgt gctgcaacaa gttgacaggg cctata 516




29


418


DNA


Pinus radiata



29
ggaagttgga gtggtagagt gagaaactga cagcctaatc tgaaggaagt tggagtgata 60
gagtgagaaa tggatcttct tcttctcctg cttgtgatga tgggtgtagc aatgcctact 120
cattctcaac agacgggtgg attcacttct gttcaacgtt ttccttttaa tggacggagt 180
atgatgggga aaccctctct gttcccatcc tccatagccg ggtatcatga aaaaagggat 240
gtggaggcac ttctgagctt ccggaagggc atcatatcag atccagttgg atcgctctcc 300
gactggacgg ccaataactc acataacgtc tgcctgtgga acggaatttc gtgcaggcca 360
aacacgaaac gagtggtttc aatttctctc cctgaatgct tgttgaatgg tacgctct 418




30


468


DNA


Pinus radiata



30
catgagggag agagagacca aggtctgtat cttcattttc tgtattttca catcatgggc 60
tctggtcgat tttggggttc ctgcagtttt tgcagcacaa gagactcaga tacaaatact 120
cctgaggatg aaagaggctc tggaggatcc cacaaatgca ctcagggatt gggatgggtc 180
tgaggattct ccatgtagat ggagagggat tgattgtaac gatgaaggtg ctgtgactcg 240
catacaactc catggaagtt ctctgagtgg tcgcattctg cctgatatct gcaatctcca 300
gagcctgata atctttgagc tagatcgaaa ttccctttat gggaatttcc ctccagaatt 360
ttcgaattgc agtcggttgg aacaattgaa tttgagctcc aatttgctga acgggtcatt 420
gcccgacctt tcaaaattga aggctctgaa atatctggac ctgtctaa 468




31


409


DNA


Pinus radiata



31
ggcagttgga gtggtagagt gagaaataca cagcctaatc tgaaggaagt tcgagtaata 60
gactgagaaa tggatcttct tcttctcctc atcatgatgc ttgtgatgat gggtgtagca 120
atgcctactc attctcaacg ttttcccttt aatggatgga gtatgatggg gaaaccctct 180
ctgttcccat cctccatagc cgggtatcat gaaaaaaggg atgtggaggc acttctgacc 240
ttccggaagg gcatcacatt ggatccatat ggatggctct ccaactggac ggccaataac 300
tcacataacg tctgcctgtg gaacggaatt tcgtgcagcc caaacacgaa tcgagtggtt 360
tcaatttctc tccgttacgg ccggttgaat ggtacgctct ccccgtata 409




32


518


DNA


Pinus radiata



32
gtagagtgag aaatacacag cctaatctga aggaagttcg agtaatagag tgagaaatgg 60
atcttcttct cctcatgatg atgcttgtga tgatgggtgt agcaatgcct actcattctc 120
aacgttttcc ctttaatgga cggagtatga tggggaaacc ctctctcttc ccatcctcca 180
tagccgggta tcatgaaaaa agggatgtgg aggcacttct gaccttccgg aagggcatca 240
cattcgatcc acatgaatgg ctctccaact ggacggccaa taactcacat aacgtctgcc 300
tgtggaacgg aatttcgtgc aggccaaaca cgaaacgagt ggtttcaatt tctctccctc 360
agcgctcgtt gaatggtacg ctctccccgt atattgggaa cctctctctt ttgcagcaat 420
tagatctttc ctttaatgct ttgagtggga gaattccagc agagtttggg cagctgaaag 480
cgctacgaac atttgaagtc cgccataatg ctttgagt 518




33


401


DNA


Eucalyptus grandis



33
gttcttagat cctgaagaac ctatggcgtc ttgcggtggc cttgtgtcta ccttcttgtt 60
ggcaatcttt gtcactcaaa ttgtcgaatt cagtcattcc attgcttcga caaatgtaag 120
ttgtattggt gtggagaggg aagctcttct aaagttcaag catggtctca ctgatccttg 180
gaaacgcttg tcatcatgga ctggtgagga atgttgcaag tgggaaggag ttgaatgtaa 240
cgagaagaca ggccatgtcc tcaagctcga tcttcataat ccatgtattg aagagattga 300
tatgcttgaa ccttcatata agtgcaggtt gggaggtaac atagttcatt ctttaacaga 360
actgaagtat ctgaagcacc tggatcttag catcaacaac t 401




34


434


DNA


Eucalyptus grandis



34
ggagaaccca acattgcttt ctctgccact ctcactctcc ttctttcaat gtgttccaga 60
agagttgttt cttcaatgga gaccaaccca attcatctaa tctaccatgt atttttcatc 120
gtcatagggc ttgtctctgt ttctgcagcc gaacagagtg cttcctccag gaaaacggat 180
gcggaagccc tgatcctgtt caagaaaatg atccagaagg acccgagtgg agtgctatct 240
gggtggcagc tcgatcagga tctctgcgct tggtatggag tcacatgtta ctcagggagg 300
gtcactcaac tcgatcttca cggccaaagt cttgaagcga ccatgtcttt cgaccctttg 360
agttctttag acatgttaac tgtctcaatc tgtcatcaaa ctcgttcgcc atcgattcaa 420
cttccttgct tcaa 434




35


442


DNA


Pinus radiata



35
ggaagttgga gtggtagagt gagaaatact gaaggaagtt ggagtgatag agtgagaaat 60
ggatcttctt cttctcctgc ttgtgatgat gggtgtagca atgcctactc attctcaacg 120
ttttcctttt aatggacgga gtatgatggg gaaaccctct ctcttcccat cctccatagc 180
cgggtatcat gaaaaaaggg atgtggaggc acttctcagc ttccggaagg gcatcatatc 240
agatccacat ggatcgctct ccgactggac ggccaataac tcacataacg tctgcctgtg 300
gaacggaatt tcgtgcaggc caaacacgaa tcgagtggtt tcaatttctc tcccttactg 360
ccggttgagt ggtacgctct ccccgtatat tgggaacctc tctcttttgc ggtatttata 420
tctttcaaat aatgatttga gt 442




36


493


DNA


Pinus radiata



36
gctgctcggc actctcagac gaagttacga accatgaggt ccgtgtttcg aatctcgtcc 60
cttctcgtga tttctattct ggttctgctc acgctttctt ccgccattaa cgacgatgcc 120
gagatgctgc tcgcgttcaa gtcagccatg tcggatcccg acggcgccct ggccgggtgg 180
actgagtccg acgccgccaa tttctgtggg tggactggag tcctgtgcaa cgaattcaac 240
agaacgagtt cgctggactt gaccaacatg aatctgtcgg gcatcattcc gccccggaca 300
ttatcgagcc tcgacagtct cgtgaatctc agcttggcgc tcaacaaatt cagcacgccg 360
ttcccgtcgg cgatcctcga catttccact ctgcgattcc tcaatatatc caacaataac 420
ttcagcggcg agatcccggc aaacatttct cggttagtga atctggagtt gctggacacc 480
tacaacaaca att 493




37


536


DNA


Pinus radiata



37
ggagaagctg ctgctcatgg ctcccctgct gggaattctc cttcttcatg ctctcatttt 60
tagctatgga gaagaagctc acgtcgctgg ttcgaaccac acagaggttc gggcactcat 120
ggctctcaag gccgggattg ttgacacttc aggtcatctg agtgactggg aagtccatgg 180
cgatgaactt agtgcttcgc cttgttcttg gactggtgtg ttttgtgatt tggagtctga 240
gaacgtgacg gaactcgatc tctcacggat gaatctcact gggacgattt cagacgagat 300
tcgggagctg cagcacctga aagtactgaa tattagcttc aatcagtttt ccggggcctt 360
tccagttgta atctttaatc tcaccaggct gcggagcctg gacataaatc acaactcttt 420
cgaagggtat ttcccggccg ggatctcgaa gatgaagaat ctagtgaatt ttatagcttt 480
tagcaatagt ttcaaagggc ctctgccgct ggaattcgtg gagatgcttt tctgga 536




38


822


DNA


Eucalyptus grandis



38
ctctctcttc accaccactc ctcctcccct caccttaatc tctcctccga tcccacacca 60
aaacccccgc cccacctcca tggcggcccc ctcctcctcc gccgcctccg ccgccgtgtt 120
cgccctccac tcgctgctgc tgctgctgct gctcgccgcc gccgtcgagg acgacgtgct 180
ctgcctcgag ggcgtcaagc gctccctcgg cgacccccag ggttccctcg ccgactggac 240
cttcgccaac acctccgcct cccacatctg caacctcaac ggcgtcgcct gctggaacct 300
caacgagaac cgcatcatca gcctcagcct caccggcttc ggggtctccg gcggcctccc 360
cgagtccctc aagaactgcc acagcctcca gacgctggat ctctcccaga acaagctcga 420
cggccccatc cccgcccaaa tctgcgagtg gctgccttac ctcgtcaagc tcgatctctc 480
ctctaactcg ctcgccggcc ccatccccag ccagatcggc gactgtaagt tcctcaacaa 540
cttgattttg aacgacaaca agttgaccgg ccccattcct tacgaggtcg gtcgcctgga 600
ccggttgaag gtgttctccg tccggggcaa tgatctctcc ggatctatac cgtcggagct 660
gtccaaattc agttccgacg atttctccga caacgacgat ctgtgtggta ggcctcttgg 720
gtcgtgtggg gggttgagta agaaaagcct cgctataatt atcgctgcgg gtgttcttgg 780
agccgcagca tctttgttgc tagggtttgc gctctggtgg tg 822




39


454


DNA


Pinus radiata



39
ggagtggtag agtcagaaat ggatcttctt ctgctcctcg tcatgatgtt tgtgtgctct 60
gtgatgatgg gtgtagcaat gcctacggat ggattcactt ctgttgaaag cgttcctttt 120
aatggacgga atcgccataa aagggatgtg gaggcgcttc tgagcttcaa agagagtatt 180
atatccgatc catatggatc gctcaccaac tggacggcca ataactcaca taacgtctgc 240
ctgtggaacg gaatttcgtg caggccaaac acgaaacgag tggtttcaat ttctctccct 300
gagtgctggt tgaatggtac gctctccccg tatattggga acctctctct tttgcggcat 360
ttagatcttt cttggaatgc tttgagtggg agaattccag cagagtttgg gcagctgaaa 420
gcgctacgaa tacttgacct ctctgctagt catg 454




40


504


DNA


Pinus radiata



40
caaaccctct gaaatatttt tgtaattcct tcattttatc gatcgcccat ctgaggagcc 60
gatggcacct tccacagatt tcatcctcat cacctccaca ctcatgctca tctttgtttc 120
tgcaaacgcc catcttcttc atcattatca tgagaaaagt cgtgaacgac tgcaggtcga 180
tatagaagcc ctgcaagcat tcaaggcctc cctcacatat gatccttctc acgccttggc 240
caactgggat tttgtcgcca atcatgtctg caattggact ggtgtcacct gcaaccctca 300
caaactgcgc gtatctgccc taaatctcta caacatgagc ctgcaaggga ctatacctcc 360
acatttgggc aatatctcct ttcttggcgt gttgaacctc actttgaaca gtttctctgg 420
cataatccca aacgaattgg gcaagctgcg tcggttaaaa cgtctgtccc tcaagcagaa 480
tcagttgatt tcgtccattc caga 504




41


403


DNA


Pinus radiata



41
cattccttct cttctcgttt gtgcaatgag aatgtttcta ttactcgttt atttgttccc 60
ccttgtcact cccttcgcgt tttccacagt gcaattatct aatggctcta atgctgtcga 120
tcaagaggct gtgcttggat tcctgtctgc aatcactaat gatccctacc aatcgttacc 180
cactaactgg aaatcaaatg tttcagtctg cgagtggaca attatcaaat gcaatgggtc 240
cagagtggtg tccctaaatg tgtcgagcat gggattagaa ggtacaatct ctcctcttct 300
cggcaatctc tcatttctgg aaaaactcga ccttcgcaat aacaattttc atggtcccat 360
tccctatcaa ttgggaagcc tggtgcgctt gcagatgctt atc 403




42


595


DNA


Eucalyptus grandis



42
gagagacggc gatggaggat gaggaagaag agacgacgac ggcgacgatg atgcgcggac 60
catgccgatc cagagacggc ggcgcagcag cggcggcggc ggcggcggag gcggcggggc 120
cttccaccgt gtgttgattt ctctctcccg gccctcccga ctccgccttc gggctcggcg 180
gacttgatta gtcgggcatg tgaaaaagaa tctttgactg ctcagattgt tgaacaacgt 240
gatggagtcc tgcaactgcg ttgagccaca gtggccagct gatgagcttt tgatgaagta 300
tcagtacctc tcagatttct ttattgctct ggcgtacttt tccatccctc tagaactcat 360
ctactttgtc aagaaatctg ctgtatttcc ctatagatgg gttcttgttc agtttggtgc 420
cttcatagtt ctgtgcggag caacccacct gatcaactta tggacatttg ccattcactc 480
aagaactgta gcatatgtta tgaccattgc aaaggtttta actgctgcgg tatcatgtat 540
tacagctctc atgcttgtgc atatcatccc cgatctactt agtgtgaaaa ccagg 595




43


397


DNA


Pinus radiata



43
gttcgttagc aatgcccact tctacctcaa agtgcaggtt aaggactctg gctgtggcat 60
acagccacaa gatattcctc aaatatttac cagatttatt catcctcgaa gtggatctaa 120
tcgaggtaat ggcagcggag gacttggact tgccatttgc aaaagattta taaatctcat 180
gggaggtcac atctccatcg agagtgaagg ccacgacaag ggcaccatcg tcacttttgt 240
cgtcaaacta cagaaatgca gcaatgcaaa tgactcggca gcccacgaga tcacatctag 300
agctcagtct attcatgaaa gcacccattt tgctcggcat aaacctctca tagacactga 360
cagaacggtc ccctccagct cccagtatca aagaagt 397




44


415


DNA


Pinus radiata



44
ataaattctc tcaaagagat ggtatgcact tatggtcctt atgctgccct ctgatagtgc 60
tcgcagatgg catgttcatg agttggagct tgtggaggtt gttgcagatc aggtagcggt 120
ggctctctca catgcggcaa ttttggaaga atcaatgaga gcacgagacc tgctcatgga 180
gcaaaatgtt gcacttgaga tagctcgaca ggaggcagaa acagctattc gcgctcgcaa 240
tgatttctta gcagttatga accatgagat gcgtactccg atgcatgcaa ttattgcttt 300
gtcatcgctt cttcaggaga cagagttgac tcctgaacaa cgatccatgg ttgagaccat 360
cttaaggagt agtaatctcc ttgcaacact catcaatgat gttttagatc tttca 415




45


526


DNA


Pinus radiata



45
atggcgagtc caccctcgac tccaacaggt atcaccaacg tagctcgtct cacgatgcgt 60
gctgaagccg gtggtgatgg tgacagtcac gcccttgccc tcggtagcga tccgatcgcg 120
acccaatcgc catcgacgaa gcgtcgtgcc gcatccgcgc catggccatg ggcgtatacg 180
cgtgtaccca ttgtggcggc gaccgcgggt gcactggaag aagagcagaa agagtgtatc 240
caagcaggta tggatgatgt cttgacgaaa cccatcgaca ggtatcagct gcaaaggaag 300
ctggccaggt tctcaccgcg tttcacatcg ctcgtagtag catcatctgc accagcaagc 360
cagcaagccc atcagtgaca tgtggcaata tgacatgcac aacagcatat taaagtcctc 420
tagttggtca tcataaccag caatacaagg caacaacaag caaatgcatt tcaatgtcat 480
agtcactgtt acacatcgcc accttgtccc aacttatcac catacc 526




46


255


DNA


Pinus radiata



46
gacaagagtg ttgctgattg atgaccatcc actgttccgg gagggactgg caggtgcgat 60
ccaggccgag ccagatttcg aagtcgtcgg ccaggccggg accgtggacg agctgcgcgg 120
gcttgcgccg cagatcgagc cggacgtcgc gatcgtcgac ctgttgatgc cgtcggtctc 180
cgggatcggc gtcacccgcg agctgtgcga gctgctggct aggtgccgag tgctggggct 240
gtcggtcttg gtcga 255




47


3567


DNA


Pinus radiata



47
aggcaatgca agggcaggca tggaggactt tttaaggatc gtgtagttgt taatgatggt 60
tcaagtgggt gcatctcaaa attttaaaca attatattga aggacttttg ggactttgta 120
taatatttga ctactatggg aaggatgggg agaatgcatg aatgtaaact gtagtccatt 180
cccctcccaa gtatcgagaa ttctttggat ttggattaca tttacatgtc attctcatat 240
tctgtgggtt ggcaagacca ggcggtatgg aagttgctgt gggtggctgt actgttcatt 300
ttcattaaaa gaatacagag gccaaagtct gtattaatcc cacgaagtca agctcggcat 360
tcatattttt tcctcctggc atttggttgc ggtactaatc cacaaatggc aattctgaat 420
atatgaattc tttctcttgt ggaaacctgg aaggacagaa accctcgatg aggttaagtt 480
tggtctgtat tcgttgagag gttcttcatc tgatatggat tggaccagaa ctggggcaca 540
tcatgtttat gttcaaggag aggcaatggg tttggtcgat aatccccagt ctcctagatt 600
tgggtttttg tttcgtgtga atgtaaatac aaattaagtt aagaaattcc tttggaaaac 660
ccatattagg gctttgggcc tacatgggta ccattggaca ccgatcagaa gggcggtttg 720
agtgcgctgt ataagtggtt tctgttttga ttcagaggag cccatgtgtg tgatccgagc 780
agattcaaac gcgtgacttt gtttgtgttt tttcaaaagg ccgctgctcc ctgttatcac 840
acagttcaca tgccgtaagg acttgacgag attgttgcaa tgatctgtct gggtgggatt 900
gtcattgttt cattcctcct ccagaacatt gcaatggcat cagaggatgg gggttccaga 960
tgcaactgtg acggggaagg atggtggaat gttgagaaca taatgcaatg ccagatggtc 1020
agtgattttc ttattgcctt agcgtacttt tccattcctc ttgagcttct gtactttttg 1080
agctgctcca atagtcttcc attcagatgg gtcatagttc agtttggagc attcattgtg 1140
ctttgtgggc taactcactt tatcaacatt tggacatatg gtcctcagtc tttccatgta 1200
atgctggcac taaccatctt caagttctta accgcccttg tttcttgtgc cacggccata 1260
actcttgtaa ctctaattcc tgaattgcta cgggtgaagg taagggaaat ttttcttaaa 1320
aacaaggcaa gggaacttga tagggaggta gacattgtga aaaggaagga ggaaactagt 1380
tggcatgtcc acatgctaac tcaagaaata cgaagttctc tagataggca cactattcta 1440
aatactactt tgatttcact agcaaagacg ttgaatttgg aaaactgcac tatatggatg 1500
ccactggcag atggtactgc catggaggta tcccatgagc tcaaacgacg gcatttgcaa 1560
gtaccattaa ctgttcccac aaccgaccca gatgtgaaaa agattatgca tagcgaggat 1620
gcaatccttt taagtcctga ttctgccttg ggaaaggaga gtaatcacca ctggtcatta 1680
gccgggcctg tggcagcaat aagggtgcct ttgtggaagg catcaaattt caagagtgga 1740
gcatcggtag atagagaaga atcatatgca ataatggtgc tagtcttacc ttgtgaagat 1800
gaaaggcagt ggagttctca agaattatat attgtcaaag atgtggcaga acaagttgct 1860
gttgccctat ctcatgcagc tgttttagaa gaatcacaga agctgaaggc tccacttatt 1920
gataagaata aaacattaca acaggcaaaa caggatgcat tgagagcaag caaggcacga 1980
cattcttttc aattggcaat gaaccgtgaa atgaggcttc ccatgcatgc tatttctgca 2040
ctctcatcta ttttacaaag tgctagactg aatgttgaac aactggctat gacaaatatg 2100
ctagctaaaa gtagcagcct tctctcaact ctcataaatg acataatgga tttttcagaa 2160
ttggaggata cttctttggt tcttcagtta caccccttcc agctacatgg tatgctgaaa 2220
gatgcagcac acctcacaga gaccatgtct agaagcaagg gtcttctatt aaatgttgaa 2280
ataggtgatg ggatgcctga ccatgtgata ggagatgaaa aacgaattct acggattatt 2340
ttacatatgg ttggaaatgc aatcaattca accaaacaag gaacaatatc aattcgcatc 2400
tgtgtcgaag acagagctga aggttggtgg gaccccaaca atcgacgatg gagaccctca 2460
ctatgcgaag gttttacata tttaagattt gagatcagga catctggctc tggaagtatt 2520
caaaatgaca atcccagttt cctgactgtt gtacaagatg gtaaaagtga ttcgtcatca 2580
tcaactgggg aaggacttgg ttttgctatt tgtaaaaagt ttgtgcagct tatgcatgga 2640
aatatttggc ttgagcctaa ctccaagggt gaaggctctg ttgtgacctt tttaattaga 2700
gtacaactgc agacatcaac tgcaaacaaa cattggctgt ctccagatga gaagatttac 2760
aagtcttcat ttaaaggttt gaaagttctt gtagcagatg acaataatgt aagtcgttca 2820
gttacgagaa ggctgcttca agagctaggt tgtcaaacaa ctgaagtaga ttcaggttac 2880
aggtgcttaa tgactttgct tcagtctgga agtgcatttc aattggtctt tctggaagtt 2940
tgcttggccc agatggatgg atatgaggta gccttccgta tacgacagaa attcagatca 3000
agaaaccgtc ctttggttgt ggctttaaca gctagtacag acaaggagac catggagagg 3060
tgccttcaaa ctgggatgga tggtgttata cggaagcctg ttacgttaag agaaatgagc 3120
aatgagcttt ttaaaattgt acatcagaca aataacatcc acgaatagtg actacaagtg 3180
tactttgttc tgaggtgcag tccatctggt gaagattgat tgctttgaca ggttcagagg 3240
agtgcaaatt atggtgacaa tgagaccatg ctacacagtc agttacgttg gagattcctg 3300
tgcttaaatt caaaaggtcc atggtcttct ccgagtgtta agaaacacgg tactttgcca 3360
tgtacttttt tccattgcta ctaaaatcat tctgtcacac acaggttctg tatgggtaat 3420
tacctcatct catgcatggc gatgttagaa gtcctgggac ccatttgaca agtcactgac 3480
tgttttagct caattcttac agaagatgaa atcaaaatta tattgatatg aagctcatga 3540
ttctttattg tgatcaaaaa aaaaaaa 3567




48


476


DNA


Eucalyptus grandis



48
agacgatgcg agcgaaacaa atgctagcaa caatgtcaca tgagataagg tctccccttg 60
ctggggttgt tagcatggcc gagattcttg cacaaactag acttgatcat gagcagcggc 120
aattgttaga tgtcatgctt tcttcgggag atttggtcct tcaactaata aatgacattc 180
ttgacctttc gaaggttgag tcaggggtaa tgaagctgga agctacaaaa ttccggccga 240
gggaggtagt aaagcacgtg ctgcagactg ctgcggcatc attacggaag atattaacat 300
tggaaggaca tgtagcagat gatgttccta ttgaggtcat cggagatgtt ctaagaatta 360
gacaaattct caccaacttg atcagcaatg ccatcaaatt tacacatgaa gggaaggttg 420
gcataaatct atatgtggtt ccagaaccat ctgtcgagaa aacagaagaa tgtcct 476




49


513


DNA


Eucalyptus grandis



49
gtaagattga gattgaggct gtgcagtttg atctaagggc catattggat gatgtcttgt 60
ccctcttctc ggggaaatct caagaaaaac gagtggagct agcagtttac atttctgaaa 120
atgttccgga gaagttgatt ggtgatccag ggagatttcg gcagatcatc acaaatctta 180
tggggaactc aattaaattc acagagaaag gacatatctt ggtcacagtc catcttgttg 240
atgaggtgat gaactcaact gatgctgaga tggaatcagc aacaaggagt acgttgagcg 300
gcttcccagt accagacaga cgactcagct gggcaaaatt taggacattc agccaggaag 360
gccctgcgtc tccggtgccg tcatccttct ctaatccaat caatctcatt atttcagtgg 420
aggatacagg gataggtatt cctccagagg cgcaaccccg cgttttcact cgtttcatgc 480
aagtgggccc atcaatttct cgaacacatg ggg 513




50


1995


DNA


Eucalyptus grandis



50
cttgagcata aaatatccat ttcttcactt aagacaaagt tgaagcaaca tggtagtcac 60
gcaagaaggg catccaagaa agacaacaaa gtgaccctct ggttcgaagt tgatgacact 120
ggctgtggaa ttgatccaag caaatgggaa tccgtttttg aaagctttga gcaggccgat 180
ccatcaacaa ctcgattaca tggcgggact ggtcttggcc tatgcatcgt acgaaccttg 240
gtcaacaaaa tgggtggaga aatcaaagtc atcaagaaga atggcccggg aactctcatg 300
agactttact tactcctcaa tgcacctgtt gatggcacgg aacataactg ctcagtggat 360
tatgccgtgc acaacataag agtgctactc gcacaacatg gaagcacggg tagatttata 420
atgtctggat ggctgcgcag aaatggagtt tccactctgg aagcatctgg atggaatgaa 480
ttgacccaga ttcttcagga actctaccaa ggcagaaatt caggtgctcc atacaggact 540
gttaatacgg aacatgcaca tgaactcccg agatcagaag tgacaacttt cgatgatatt 600
caaagtgaga tcctcatcat agtcgtggat atagagctac ttgacctaaa cacagatata 660
tggaaggaac agctcaattt cctggacaag taccacagga aggcaaagtt cgcgtggatg 720
ctaaaccatg acaccttcaa tgccattaag gtggagctcc gaaggaaagg acacatgctg 780
atggtcaaca agccgctata caaggccaag atgattcaaa ttctggatgc tgccataaag 840
gagaggaact ctgaactcct gaaaagggcc tccaattctt caaaaagcat gaataaagaa 900
gaggacttgc acgagtgtct agaaatcgac tctgagcact atgagggagc gagctctgat 960
gaactggaca cagttgaaac atcacgttct ggttgtacca atacatctcc tggtgaacaa 1020
aagcaacagg aagggatcaa aacccctcct gctctacaac acaggacatc gaactatcac 1080
tcattcaatt ctactctgct gtcttccgac tataacaatt tagggaacaa agaagaagcg 1140
tgtccaacta gtcccccttt ggaccaccca gataatgccg aaggcagatt caagtgcacg 1200
aggagcgtgt tttcttcaaa agaaaaggaa gatggaaatt cagaagcaca ggaacaactt 1260
ctgatcagca agcgtcctcc agccaaagtt gattcgtgtt ccagtaaaga attggaccag 1320
aaagggtctc tggagggcct gtgcatacta cttgccgaag acacgccagt gcttcagaga 1380
gttgctacga tcatgctgga aaagttgggg gctaaagtca ttgctgttgg agatggcttg 1440
caggcggtga atgccctgaa cagcagtcta gatgtagatg cagaagactt caggacgacg 1500
ttgcatttgc aaaacgcgaa caggatgcct caagcaggaa cacgaagttg gcaaccttac 1560
gacctgatcc ttatggactg tcaaatgccc cagatggacg ggtacgaagc aacgaaagca 1620
atcagaagat ccgaggccgg aagcggcctg cacattccga ttgttgcgct gaccgcgcat 1680
gccatgtcat cagatgaagc caagtgcttg gaggtgggaa tggacgcata cttgacgaag 1740
ccaatcgact ataagcttat ggtgtccaca attctgtcgc tcaccaaggg agtcaactga 1800
gagaacctgc taagacaact tagagagaac caaagaaagc cagattttaa agtttacaca 1860
gtttttgctt ttgaaatgtg aaagaatcag tatgattaac gaactgggca agtataccag 1920
tgaccccatc tgcaatctgt aaagacatct gagtttctct agcttatttc tgagcatatt 1980
cggaaaaaaa aaaaa 1995




51


461


DNA


Eucalyptus grandis



51
ctctttctac cggcgcttct tcagcaacaa ctggcatggc gagcaacggc ttggtctcgc 60
cgcggaggag gtcgtcgggc cagtttgacg gcagcgaccc gtctccgtgc ggttccgagg 120
aggtccacgt cctcgccgtc gacgacagcc tcgtcgatcg gaaagtcatc gagcgcttgc 180
ttaagatcac ttcctgcaaa gtgacggcag tggatagtgg actcagagcc cttcgatatc 240
ttggtctgga tgaggagaaa acggctggag attttaacgg gttgaaggtg gatatgataa 300
ttaccgacta ttgtatgccc ggaatgactg gttacgagct cctcaagaaa atcaaggaat 360
cctctgctct gagggaaatt ccggtggtga tcatgtcgtc cgagaacgtc ttggcgcgaa 420
tcgacaggtg tatggaggaa ggtgcggagg atttcatcgt g 461




52


570


DNA


Eucalyptus grandis



52
atcatttctt cctgcgcttc ttcagtaaaa actggtatgg cgaggaacgg cgtggcctcg 60
tggcggagga ggtcgtcgga ccagttcgac gacccgtcgc cgtgcgggtc cgaggatgtc 120
cacgtcctcg ccgtcgacga cagcctcgtc gaccggaagg tcatcgagca cttgcttaag 180
atctcttcct gcaaagttac ggcagtggat agtggaatca gagcccttca atttcttggc 240
ctggacgagg agaaagcagc tggcgatttt aacgggttga aggtggattt gataataaca 300
gactattgta tgcctggaat gactggttac gagctcctca agaaaatcaa ggaatcctct 360
gctctgaggg aaattccggt ggtgatcatg tcgtccgaga acgtcttggc acgaatcgac 420
aggtgtttgg aggaaggtgc ggaggacttc atcgtgaagc cggtgaagct gtcggacgtg 480
aagcggttga gggatttcat gacgagagac gtcggagaaa gagtgaggag cgacggggag 540
ggcaccaccc acaagaggaa gctgcaagag 570




53


1489


DNA


Pinus radiata



53
gcggccgcgt cgacggagga tacagggatt ggaattcctc tgcccgcaca acatcgagtt 60
ttcaccccat ttatgcaggc agacagctct acatctcgaa cttatggggg tacaggaatt 120
ggcctcagta ttagccgatg cttgattgaa ttaatgggcg gtgagataag atttataagc 180
cgcccaggta ttggaagtac attttctttc actgctttgt tcaaagtggg ccaagcaggg 240
gctgatggtg acggtgattt actacgaggt gcaagactgc cgactcattt caagggcatg 300
aaggcacttg tattggatgg taacccagta tgttccctag tcacgaaata ccatttacag 360
aggtttggca tagaggtgga cagcattact agttctaaag tggctttatc tatgctgaat 420
ggaatggatg gttttccaac agaaggttgt agcgtaaaag atggtataga tatggtgcta 480
atagagaagg atgcttgggg gtcccggcac tggcatctta tttccttcgc aagtacgagt 540
aggtctcttt ccaagaggac cctttctaca gtcaaagggt ttattaaaga tgattctttt 600
ggctacatcg ctgacagctg aagaaactca gaaagctaaa gctgcagggt ttgcagagac 660
agttattcta aagcctttac gtgctagcat gttggctgtt tgtcttcagc tagctcttgg 720
attttgcaac aggagagagc atctaagaga accttcgaag acctcctctc ctctaagtaa 780
tgtattgtct ggaaaatcca tacttgtggt agatgacaac atcgtcaatc gtcgagtcgc 840
tgctggtgca ctgaagaagt atggtgctaa tgttatttgc acagacagtg ggaaatctgc 900
aatatccatg cttcgacaac cacacaattt caatgcatgt ttcatggatg tgcagatgcc 960
agaaatggat gggtttgaag ctacgcgaca gatcagagca gcagaacttg ctaacatgga 1020
gtgtacaagc aacggcggtg aaactctggc taccaacaat agatggcatg tgccaatctt 1080
agcaatgacg gccgatgtaa tacaggcaac ccatgaggaa tgcctgcgat gtggcatgga 1140
tgggtatgtc tcaaaacctt ttgaagaaga acaactatac aaggccctag ctccattttt 1200
tgaggagtca ttatttagat attgtttaaa tattggcttt cagtgtttaa ggatttcata 1260
ttccccgtgt ataatatata gaataggatc caacgattcg gtttttgtct gaaagttaga 1320
cctccttgct tgaggccttg ttatggcatg tagattgatt gcaagcatgt agagttttat 1380
atgctgcggg tgaagtccgt gtaagatcaa tatttgtaaa tttgaagtta gggctgaatg 1440
gaaatttaaa ggcatttgct gtgcgggtat ttgcattaaa aaaaaaaaa 1489




54


370


DNA


Pinus radiata



54
gtcaaagggt ttattaaaga ttattctttt ggctacatcg ctgacagctg aagaaactca 60
gaaagctaaa gctgcaggtt ttgcagagac agttattctg aagcctttac gtgctagcgt 120
gttcgctgtt cgtctgcagc tagctcttgg attttgctac agaagagagc atctaagaga 180
acctttgaag acctcctctc ctttaagtaa tgtattgtct ggaaaaggca tacttgtcgt 240
agatgacaac attgtcaatc gtcgagtggc tgctggtgca ctgaagaagt atggtgccaa 300
tgttatttgc acagacggtg ggaaatctgc aatttccatg cttcgacaac cacacaattt 360
aatcactagt 370




55


398


DNA


Eucalyptus grandis



55
ggtaatcgaa agagagacgg aaaatacagc aaaaggaaga gcacgagttt cgcttcaact 60
atttctaccg gcgcttcttc agcaagtggt atggcgagca acggcttggt ctcgccgcgg 120
aggaggtcgt cggaccagtt tgacggcagc gacccgtctc cgtgcggttc cgaggaggtc 180
cacgtcctcg ccgtcgacga cagcctcgtc gatcggaaag tcatcgagcg cttgcttaag 240
atcacttcct gcaaagtgac agcagtggat agtggactca gagcccttcg atatcttggt 300
ctggatgagg agaaaacggc tggagatttt aacgggttga aggtggatat gataattacc 360
gactattgta tgcccggaat gactggttac gagctcct 398




56


438


DNA


Eucalyptus grandis



56
tgttctttca ccctttcctc ctcctccccg ttgttcctcg ccgttgttct tggtcgatcg 60
ccgatcgaaa tgggtgtcac cgccgcgtcg caatttcatg tcttggcggt tgatgacagt 120
ctcatcgaca ggaagctgat tgagaggctc ctcaaaacct cctcttatca agttactgca 180
gttgattctg gaagtaaggc tctggagttt ctgggcctga atgagcagca gcccagaaat 240
gccaacgcta cctctgtctc tccaagctat catcatcagg agatagaagt gaatttgatc 300
atcacagact atttcatgcc agaaatgaca ggatatgatc tcttgagaaa gatcaaggaa 360
tcgaatagtt acaaggacgt accagttgtg atcatgtcgt ctgagaatgt tccctcaaga 420
atcagccaat gtttggaa 438




57


1280


DNA


Eucalyptus grandis



57
gggaagttgg ctgtctatgt ctctgatcgg gtaccggaag ctgttattgg tgatcctggt 60
cgattccggc agataattac aaatcttgtt gggaactcaa tcaagtttac acatgaaggg 120
catatatttg tctcagttca tctgctagaa gaaggatgca gtcagcatga ttttagagat 180
gtggagaaga gactaagttc aaacttagtt gaagatacat cggacaaaac ttttaataca 240
ttgagtgggt ttcaagtggt tgacagaagg aaaagctggg agcgctttaa gaagttaaat 300
cggtccgatc aaattgatgt gaatgaatca gttgaagtac ttgttactgt tgaggataca 360
ggtgttggaa ttgccagaga ggcacaaagc cgcatattca caccttttgt gcaggctgat 420
agctccacat cacgtacata tggtggcact ggaattggct tgagtattag caaatgtcta 480
gtggatctta tgcacgggga gatcgggttt gtaagtgaac cgggcactgg aagtacattt 540
tcctttactg taccctttgc aaaatgtgaa atgaactgtc ttgaagtgaa ggggcaaaat 600
tacgattcaa tcatatcaga gttcagagga ttgagagcct tggtgataga taaaagacac 660
atccgagctg aggtcgcaag atatcatctt gagagactaa gaatatcagt ggacgtcgct 720
tgcagtttga agtcagcctg tacttacctt tccaactctt ctagcccaag ggaactatcg 780
gattttgaca tggttctcat cgacaaagat gtttgggaca ggcaaacagg tttagaactc 840
aatatttcac tttggaaaca caggcaaaat ggcagcaatg gagtgtcaat acgtcccaag 900
atttttcttc tggctacatc cattagtcca attgagcaca gcgagctcaa attagccaac 960
ctggtagata atgtgctggc aaagcctctc agattgagtg tcttgatatc ctttctccag 1020
gaagccctcg gtaatggtaa gaagaggcta tctgatagga gaaaagtatc aactcttggc 1080
agtttgctga aaggaagaag aatcttggtt gtggatgaca acttggtaaa cagaagagta 1140
gcagagggtg ctttaaagaa atatggtgcc attgttacct gtgttgggag cggtaaggat 1200
gctgtggcca agcttcagcc gccccatgac ttcgctgctt gcttcatgga tttgcaaatg 1260
ccagagatgg acgggtttgc 1280




58


582


DNA


Eucalyptus grandis



58
tcagcttcct cttcctcttc cccttataac cagacatcaa aaccccccca tttcctttct 60
tttcaaaact caccaggcca cccacagttc tttcccactt cagactctct ctctctctac 120
atctgcctct ggataatttt ccgttttcca cagaaagggt ccttttgttt cttgtcccta 180
gttgttcata catataggtt tgtatctctg ggaagcagag atttctggag gatcttttgt 240
tggccttcac ttttgattga tgatggagag cagcaaaggc ttctcttctc ctcggagcaa 300
cgggttcccc gccggattgc gcgtccttgt ggtcgatgac gaccccactt ggttgaagat 360
cctcgaaaag atgctcaaga aatgttctta tgaagttacc acatgtggtt tagcaagaga 420
cgccctgaaa ctgcttcggg aaaggaaggg tggatatgac attgttatta gcgatgttaa 480
catgccagac atggatggct tcaaactcct agaacttgtt ggcctcgaga tggatcttcc 540
tgtaataatg atgtctgtgg atggggagac gagcagagtt aa 582




59


534


DNA


Pinus radiata



59
gctgaaactt gatagaagct gcagagttac acgagttgta tgattagtca gcattattga 60
aggaacggca ccttttggtt cttgcttcga gattttggag cccggattcc cgatgtacac 120
aatagcgcat gaaagtaaat acgcaactgc ataattttcc cttcagcagc catggttacc 180
tcacgaatgt cttcggcgat gagaatgaag aaggaaaaaa atgctgcatg tggtgagcat 240
ggggatgaac tggttcgatg cgacgaaatg catgtattgg cggttgatga ttgcctgata 300
gaacggaagg tcattgaaaa gcttttgaag actaactttt tcaaagttac ctctgtagat 360
agtgccgaaa gagcgctaga agtcttgggg tttcatgaag agcagtcgac atgtgcgacc 420
actaacgcgt tcaaggttaa tatgatcatt accgattatt gtatgccagg aatgacgggc 480
tatgatctgc tgaagaaagt caaggaaacc aaatgtctga aggagattcc tggt 534




60


584


DNA


Pinus radiata



60
caggaatgga tggatttgaa actacaaaaa gaatttgaca gatggaacaa agtccaagct 60
aggaattcct actgggacag tcatcctcag agccacgtga aaatatctcg aatttccacc 120
tactgatctt ggccatgact gcagatgtga ttcacgctac tcatgaataa tgcacaaagt 180
atggaatgga cggatatgtt tcaaagccct ttgaagcgga acaacttttt agagaagttt 240
cgctcctttt cctggtcatc actgaatcaa aacttgtaga gaggccacca tagatggtta 300
attgttttgg tgagcaaaag tcttggttgt ttaggcactt tggcagcctt actggtgaac 360
tttcgaattc tttaacaaga gagttttctc tggcctctcc ttagctacac atttcttgat 420
tctcttgctt ttagagcagt tggatttcct tttgatagat gcaattgaaa ttcgctgaca 480
tatctcatgt gaaaccaaag ggattttctt cggaaaccat atacataaag aagctaaggt 540
cacctgctgg agttgaattt tcaaaaaaaa aaaaaaaaaa aaaa 584




61


702


DNA


Pinus radiata



61
agaagggctg tttcagtttg agttgccctt gaacaaaatc ttctatgaat ttattcaaga 60
aaagattcaa gccagcaatg cttgggtttg agctgaaaaa aacagagaca gagacagaag 120
aactaaattt attagaaaga aaaaactaaa attactaaca ggtggataca gatgcagagg 180
gttaaagtaa tgaagaagat aaagagaggg tgattcaatt tgtttgtaga agccgacgca 240
gggcttcaac aacctcaacc tcaagacgac tacgggtttc tttcatggtt ggttggagaa 300
cgaagagcaa agcaccagaa ttagaagaag aaggatgttt agggttcaaa gagggtttgg 360
attaggtttc accaaccgag gtcgatctat ctcaagtatc tatgatggtt cccatcagat 420
agaagcttcc aagattttat acgagcttaa aacagtgaat tcaagcgaag gaaaaaagtt 480
catgcaaata aatggaaaac aggtggaggg aggagggtga tacgaattta atgaacaata 540
gaacatcaat gagccataag gcaaggtcga aggaagcata agagcagagc cataaggcaa 600
ggttgtagga agcattagag cagaacaaag cacaacatag aggaaataaa tacctggaat 660
tagaagaaaa gcagccctgt cggtacatca aattgtctta cg 702




62


600


DNA


Pinus radiata



62
gtcgacagac aggcaaagca aggaaggagg acagagggca gatggtttct gatgtcaatt 60
aatgagacag gcacagtaag gaaggaggac agagagaggg gttcatgtga aacccaacgg 120
acacagaagg aagaaggaca cagaaggaat aagggctgct tcagtttgag ttgccgttga 180
acaaaatctt cgatgagttt attcaagaat agattcaagc aagcaatgct tgggtttgag 240
cagagaaaaa acagagacag agacagaaag aactaaattt attagaaaga aaaagctaaa 300
attaataaca ggtggataca gatgcagggg gttaaagtaa tgaagaggat aaagagaggg 360
tgattcaatt tgttggcagg agccgacgca gggcttcaac aagctcaacc tcaagacgac 420
tacgggtttc tttcatggtt ggttgaagaa cgaagaagag caaagcacca gaattacaag 480
aaggaggatg tttagggttc aaagagggtt tggattgggt ttcaccaacc gaggtcgatc 540
tatctatcat ggttcccatc agatagaagc ttccaagatt ttatacaagc ttaaaacagt 600




63


1656


DNA


Pinus radiata



63
gcggccgcgt cgacctttat aaaccatatt ataagactga gtaatgtgac aattaccatt 60
accatatacc ccacagaaga agagagtcag tatttgggtt cccagcttct gcacaatctg 120
taatattttg ggtttattga gatggctgta tctcaacatc tgtttttgag tgctcaacgc 180
ctaaatggga gagaggatga aggcagtctg taccttttga gagcaggggt gaactgggac 240
ctgctgataa tgggtgttgc tctggtggcc tgtttggcta ttttagggat ggtttggaag 300
cgtaggagga catggtctta ttgtgagggt ttgcaggaag aagatgcagg ccagagagct 360
caggaaaccc aatgctctaa aggattcatg accaacgtgt ttcacaatac aagagattgc 420
agatcagaac agattatttg ggatgatatc cacatttcat ctcagactga aaccagaagt 480
cagaaagtta gaactgtgaa gtcaaaaagt tccatgattt ctcgggattc ttgtagctcc 540
cccagacgaa tcttgctcgt ggaagacaca caaatcaaca gaataatttt cgggagggtg 600
cttcaaagcc ttaatcttta ctgtgaagaa gctgagaatg ggaaagtagc agtggactat 660
ttcaagcagg gcagaacata tgatcttgtg ttaatggaca aagagatgcc tgttatggat 720
gggcatgagg caacaaggca actgagatca atgggagtca agacacccat tgttgcactt 780
acagcaaata ccttgcaatc tgataaagac ctcttctttg aggctggtgt tgatgatttt 840
caatcaaagc ctctgtccag agacagactt gtacaattac tagatcaata tggtgtggat 900
ggttgtgctg gcaacagaag gggttgaaag agtttcaagg tttcattgta ttatacccat 960
ggcttcgtta tgaaaaaaaa cagtgcagat tgcaggttgc ctgctttgta agtcttgatc 1020
tgcattattg cagtgatttg attaagccac gaggaatatg gttttagggt ttccagacat 1080
ttgcaatcct gcaatcctcc tgagcaacac tgaactttcc tacatcttgg ggaaggcagg 1140
taggctagag ctggaagtaa aatgtgaaca agttgtgaaa agtgcataaa ctggtataaa 1200
gcaaaacaat tgattttttt caagcagcag tgtcaaagct gaagttgcag cactattaaa 1260
aagctggaaa tgaatcttgg tggggagaga aagaatttga agttgcagca ctattaaaag 1320
gctggaaatg aatcttggtg ggggagagaa cgattctttc tctcgactat ccaagttata 1380
ctcaattgat cttcatcttc tgtgaaggac tttggtcaca ggaattcctt ctcaagatca 1440
atcaaaacgg ttttgagcca cacaaattgg caacaggctg ggatcaacaa gaagacttat 1500
gagagagctt ttagtttttt cagtggagcc gaacagtggg actttgggaa atgcttgttc 1560
aaagttctta actccttcgc ctatatgggt ggcctgcaca atttgtatct ataataagga 1620
tttcttaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 1656




64


360


DNA


Pinus radiata



64
gggtatttgg gttctacgtc ttctgtgcaa cctgttaatt tctatctgtt ttggtttatt 60
gaggtggctg tacctcaaca tctggttttg ggtcatcaat acctaagtgg gacagaggga 120
ggagacggtc tgtactttct gagagcaggg ttgaactggg tccttctgat aatgggtgtt 180
gccctggtgg cctgtttggc tatttttggg atggtttgga agcgtaggag gacatggtct 240
tattgtgggg ctatgcagaa agaggatgca agccagagag ctcaggaggc ccaatgctct 300
aaaggatgca tgaccaatgt gttgccgaat acgagagctt gtagaggagc acacattata 360




65


466


DNA


Pinus radiata



65
aacagattgc agatcagcac gcattatttg ggatgatatc cacatttcat ctcagactga 60
aaccacaagt cagaaagtta gaactgtaaa gtcaaaaagt tccatgattt ctcaggattc 120
ttgtagctcc cccagacgaa tcttgctcgt ggaagacaca caaatcaaca gagtaagtta 180
taccaggact gattcgttgt ttggttttag gatgctgctt gtggccatat aaggttaatt 240
ttcctggagc ttgctgctga ggtctcattc attattttac actgaatcaa cctcagataa 300
ttttcgggag ggtgcttcaa agccttaatc tttactgtga agaagctgag aatggaaagg 360
tagcagtgga ctatttcaag cagggcagaa catatgatct tgtattaatg gacaaagaga 420
tgcctgttat ggatgggcat gaggtatgca actgttaaat ctgtaa 466




66


642


DNA


Pinus radiata



66
aagcgatttc tggagggcca cgagctgtct tatctccgag ccatcggtgt tattattctg 60
tccgctgtgc tgaagcggcg catgatcctg gcggacaagg cgaagagtct cttcatctcc 120
aacatatcac acgagttacg gacaccgctg catgggattc tcgcagcggc ggaactgctc 180
ggcgatagcc cgttaaatca ctcgcagctc tccttcctcg agactgtaca ggcgtgtggg 240
acttcgcttg tcgagacggt aaatcacgtg ttagatttca ccaagctgag cgggaactcc 300
aaggcgggcg gggtggagaa ggtgatcgtg ccgaccaggg tggatctgat gcagctcatc 360
gaggaggcgg tggatgggtg ctggattgga catcgggccc ggacagcgat catgggcgac 420
acgggcatcg gaagcgtgta ttcgccaccg gaggatttat cttctcccaa gcagctcgtt 480
gagaccgtcg tcgacattgg atggcgcaaa aagggatggt cgctcaagtg cgagaaaggc 540
gggatccggc gggtgctgat gaatgtgttt gggaacagcc tgaagtttac tactaacgga 600
tacgtgcacg taattctgcg tgagctgcct cggagcggcg at 642




67


909


DNA


Eucalyptus grandis



67
gttgaaaact cctcaacaag aaatcgtgcg ttcgtacagt ttcatctaca tcaggaaagg 60
ctctttgctc tgatcttttc cttgcgagtt aatcattatg acgatggccg gcgaaattct 120
ccggcggcag tcgccggcgg aggtcgactt gtgtggtggg tcgggtcagg agctgcatgt 180
tcttgcggtg gatgatagcc ttgtggatag gaaggtcatt gagaagctgc ttaagagatt 240
gtcttgtaaa gttacggctg ttgatagtgg attgagggct ttgcagtttc tgggattgga 300
tggagagaag agctctgttg gacttgatga tttgaaggtt aatctgataa tgactgatta 360
ctccatgccg ggcatgactg gatatgagct tctcaagaag atcaaggaat catcagcttt 420
cagagaaacg ccggtggtga tcatgtcctc cgaaagaatc ctcgcccgta ttaaccgatg 480
tctagaggaa ggagcagagg aatttcttgc gaagccagtg caactgtccg atgttcagcg 540
cctgaaaaat ttcgtgatgg gtgggggaga agtttgcccg gacagaagaa tcaacaagag 600
aagactcgaa gaaaataacg ataacgacga caacgaaaat catgccccat cgccggtgtc 660
gcccctgtgc agtcgcgatt gggcagtgtg ctcatcttca tcgtccgatt cttcatcgcc 720
atctatagcc gtgtcttcat cgaagaggct taagatacat catcaagctt gaggatattc 780
attcgtatat accagaattt gatttattgt tgttttttgg ccgatgatcg gcatattcat 840
ggctaggaat ggcgcacctt ttgttcagta aatataatat gatctctttc ccctaaaaaa 900
aaaaaaaaa 909




68


666


PRT


Pinus radiata



68
Met Glu Arg Leu Glu Met Ala Met Phe Leu Met Leu Leu Ile Ile Phe
1 5 10 15
Phe Phe Arg Asp Cys Glu Ala Gln Gly Lys Ser Asp Tyr His Ala Leu
20 25 30
Ile Ala Phe Lys Ala Ser Ser Asp Ile Asn Asn Thr Leu Ala Phe Ser
35 40 45
Trp Thr His Lys Asn Pro Cys Arg Arg Lys Trp Tyr Gly Val Gly Cys
50 55 60
Glu Asn Gly Arg Val Val Arg Leu Val Leu Gln Asp Leu Asp Leu Val
65 70 75 80
Gly Pro Ile Asp Ala Leu Thr Gly Leu His Glu Leu Arg Ile Leu Ser
85 90 95
Leu Lys Arg Asn Ser Leu Asn Gly Thr Ile Pro Asp Phe Leu Asn Trp
100 105 110
Arg Ser Leu Lys Phe Leu Phe Leu Ser Asp Asn Tyr Phe Ser Gly Pro
115 120 125
Leu Pro Ser Thr Ile Ala Ser Leu Asp His Leu Leu Arg Leu Asp Val
130 135 140
Ser Asn Asn His Leu Gly Gly Gln Ile Pro Leu Ser Ile Thr Ser Met
145 150 155 160
Thr His Leu Leu Thr Leu Arg Leu Glu Asn Asn Glu Phe Ser Gly Ser
165 170 175
Ile Ser Asp Leu Met Leu Pro Asn Thr Val Glu Glu Phe Asn Val Ser
180 185 190
Asp Asn Arg Leu Ser Gly Met Ile Pro Ala Ser Leu Ser Arg Phe Pro
195 200 205
Ser Ser Gly Phe Val Asn Asn Glu Glu Leu Cys Gly Ser Pro Leu Gln
210 215 220
Ser Cys Asn Glu Ser Asn Asn Ala Ser Ser Ala Ser Asn Pro Tyr Met
225 230 235 240
Ala Ser Ser Pro Ser Met Ile Ser Gly Ser Leu Pro Val His Arg Asn
245 250 255
Asn Ser Ser Thr Gln Leu Ser Lys Gly Asp Ile Ile Ala Ile Val Val
260 265 270
Gly Asp Val Ala Val Leu Ser Leu Ile Gly Cys Val Ile Phe Cys Tyr
275 280 285
Tyr Trp Lys Lys Lys Gly Val Lys Gln Lys Lys Pro Lys Pro Lys Pro
290 295 300
Ala Gln Arg Cys Pro Thr Asp Arg Leu Ala Val His Ser Ser Asp Gln
305 310 315 320
Cys Pro Asn Asn Gln Ser Ile Thr Ala Gly Lys Cys Lys Leu Ile Phe
325 330 335
Phe Asp Asp Gly Arg Pro Phe Glu Leu Glu His Leu Leu Arg Ala Ser
340 345 350
Ala Glu Met Leu Gly Lys Gly Asn Phe Gly Ser Ala Tyr Lys Ala Ile
355 360 365
Met Glu Asp Gly Ser Val Val Ala Val Lys Arg Leu Lys Asp Leu Tyr
370 375 380
Gly Ile Gly Arg Lys Glu Phe Glu Gln His Met Glu Leu Met Gly Ser
385 390 395 400
Leu Arg His Gln Asn Val Val Asn Leu Arg Ala Tyr Tyr Phe Ala Arg
405 410 415
Asp Glu Lys Leu Leu Val Tyr Asp Tyr Met Pro Asn Gly Ser Leu Tyr
420 425 430
Ala Leu Leu His Gly Ser Arg Gly Pro Gly Arg Thr Pro Leu Asp Trp
435 440 445
Thr Thr Arg Met Lys Ile Ala Leu Gly Ala Ala Lys Gly Leu Ala Phe
450 455 460
Ile His Ser His Cys Lys Ser Pro Lys Ile Gly His Gly Asn Ile Lys
465 470 475 480
Ser Ser Asn Ile Leu Leu Asp Arg Asn Gly Asn Ala Cys Ile Ser Asp
485 490 495
Phe Gly Leu Ala Leu Leu Val Ser Pro Ser Val Ala Ala Ser Arg Met
500 505 510
Val Gly Tyr Thr Ala Pro Glu Gln Ala Ala Thr Lys Lys Ile Ser Gln
515 520 525
Lys Ala Asp Val Tyr Ser Phe Gly Val Leu Leu Leu Glu Met Leu Thr
530 535 540
Gly Lys Ala Pro Val Gln Ala His Met Gln Glu Asp Tyr His Ser Ala
545 550 555 560
Ile Asp Leu Pro Arg Trp Val Gln Ser Ile Val Pro Glu Glu Trp Thr
565 570 575
Ser Glu Val Phe Asp Ile Glu Leu Met Arg Phe Lys Asn Ile Glu Glu
580 585 590
Glu Leu Val Ser Met Leu Gln Ile Ala Leu Leu Cys Ala Ser Gln Ser
595 600 605
Pro Gln Gln Arg Pro Lys Met Ser His Val Val Arg Val Ile Gln Asp
610 615 620
Ile Arg Gly Asp His His Ser Pro Ser Met Gln Asn Ser Leu Ser Gln
625 630 635 640
Ser Pro Ser Met Gln Glu Pro Gly His Ser Ile Ser Asp Ser Pro Ser
645 650 655
Val Ser Glu Asp Ser Gly Ile Arg Gly Leu
660 665




69


690


PRT


Eucalyptus grandis



69
Met Gly Phe Ala Ser Leu Arg Ser Gln Cys Leu Phe Phe Phe Leu Leu
1 5 10 15
Trp Val Phe Ile Phe Phe Ala Ser Arg Ser Asp Val Leu Val Ser Ala
20 25 30
Ala Thr Ser Ala Glu Leu Arg Ala Leu Met Asp Met Lys Ala Ser Leu
35 40 45
Asp Pro Glu Ser Arg Tyr Leu Ser Ser Trp Thr Val Asp Gly Asp Pro
50 55 60
Cys Asp Gly Ser Phe Gln Gly Val Cys Cys Asp Asp Glu Gly Arg Val
65 70 75 80
Ala Asn Val Ser Leu Gln Gly Arg Arg Leu Thr Gly Arg Leu Ser Pro
85 90 95
Ala Ile Ala Gly Leu Thr His Leu Thr Gly Leu Tyr Leu His Tyr Asn
100 105 110
Ser Leu Cys Gly Glu Ile Pro Arg Glu Leu Gly Asn Leu Ser Ala Leu
115 120 125
Ser Asp Leu Tyr Leu Asn Met Asn Asn Leu Ser Gly Gln Ile Pro Pro
130 135 140
Glu Met Ala Asp Val Ala Ser Leu Gln Val Met Gln Leu Ser Tyr Asn
145 150 155 160
Gln Leu Thr Gly Ser Ile Pro Thr Lys Leu Gly Ser Leu Lys Lys Leu
165 170 175
Ser Val Leu Ala Leu Gln Ser Asn Gln Leu Thr Gly Ala Ile Pro Ala
180 185 190
Ser Leu Gly Asp Leu Gly Thr Leu Thr Arg Leu Tyr Leu Ser Phe Asn
195 200 205
Arg Leu Phe Gly Ser Ile Pro Met Lys Ile Ala Asp Leu Pro Leu Leu
210 215 220
Glu Val Leu Asp Val Gln Asn Asn Thr Leu Ser Gly Asn Val Pro Pro
225 230 235 240
Ala Leu Lys Arg Leu Asn Glu Gly Phe Leu Tyr Glu Asn Asn Phe Asp
245 250 255
Leu Cys Gly Thr Gly Phe Leu Ser Leu Arg Thr Cys Asn Ala Leu Glu
260 265 270
Gly Arg Lys Pro Ser Gln Pro Gln Pro Tyr Gly Ala Ala Thr Thr Val
275 280 285
Pro Ser Thr Ser Ile Pro Glu Thr Ala Asn Val Val Leu Pro Cys Asn
290 295 300
Leu Thr Glu Cys Ser Ser Leu Pro Lys Ser Ala His Pro Ser Ala Leu
305 310 315 320
Ile Gly Ser Ile Leu Ala Thr Val Ala Leu Ser Ala Ile Gly Phe Leu
325 330 335
Leu Phe Thr His Tyr Arg Arg Arg Lys Gln Lys Leu Gly Phe Ser Ala
340 345 350
Glu Val Cys Asp Gly His Leu Ser Thr Asp Gln Pro Lys Ser Ala Tyr
355 360 365
Lys Lys Asn Gly Ser Pro Leu Ala Ser Leu Glu Tyr Ser Asn Gly Trp
370 375 380
Asp Pro Leu Ala Asp Ala Arg Ile Phe Asn Glu Phe Ser Glu Glu Ala
385 390 395 400
Phe Gln Ser Phe Arg Phe Asn Leu Glu Glu Val Glu Ser Ala Thr Gln
405 410 415
Tyr Phe Ser Glu Leu Asn Val Leu Gly Lys Ser Asn Phe Ser Thr Thr
420 425 430
Tyr Arg Gly Ile Leu Arg Asp Gly Ser Val Val Ser Ile Lys Cys Ile
435 440 445
Asn Lys Thr Ser Cys Lys Ala Asp Glu Ser Glu Phe Leu Lys Gly Leu
450 455 460
Asn Met Leu Thr Ser Leu Arg His Glu Asn Leu Val Arg Leu Arg Gly
465 470 475 480
Phe Cys Cys Ser Thr Ala Arg Gly Glu Cys Phe Leu Ile Tyr Asp Tyr
485 490 495
Val Pro Asn Gly Thr Leu Leu Ser Phe Leu Asp Leu Glu Glu Gly Asp
500 505 510
Ser Gly Thr Leu Glu Trp Ser Thr Arg Val Ser Ile Val Lys Gly Ile
515 520 525
Ala Lys Gly Ile Ala Tyr Leu His Ala His Lys Pro Asn Lys Ala Pro
530 535 540
Leu Leu His Gln Asn Ile Ser Ala Asp Lys Val Leu Ile Asp Gln Arg
545 550 555 560
Phe Asn Pro Leu Leu Tyr Gln Ser Gly Leu His Arg Leu Leu Thr Asn
565 570 575
Asp Val Val Phe Ser Leu Leu Lys Ala Ser Ala Ala Met Gly Tyr Leu
580 585 590
Ala Pro Glu Tyr Met Ser Thr Gly Arg Phe Thr Glu Lys Ser Asp Val
595 600 605
Tyr Ala Phe Gly Met Ile Val Phe Gln Ile Leu Ser Gly Lys Gln Lys
610 615 620
Val Asp His Ser Met Arg Leu Ala Ala Glu Ser Cys Arg Phe Gln Glu
625 630 635 640
Phe Ile Asp Ala Asn Ile His Gly Arg Phe Phe Glu Tyr Glu Ala Ala
645 650 655
Lys Leu Ala Lys Ile Ala Ser Leu Cys Thr Asn Glu Ser Pro Tyr Asp
660 665 670
Arg Pro Ser Met Asp Ala Val Ile His Glu Leu Ser Asn Cys Ser Ser
675 680 685
Cys Leu
690




70


655


PRT


Pinus radiata



70
Met Tyr Trp Ser Gln Met Gly Asn Ile Arg Gln Leu Phe Asn Gly Phe
1 5 10 15
Phe Met Leu Val Leu Val Val Ala Val Val Lys Gly Glu Pro Thr Gly
20 25 30
Asp Lys Gln Ala Leu Leu Asp Phe Leu Ser Lys Val Pro His Gly Arg
35 40 45
Arg Leu Asn Trp Asn Ala Ser Ser Ser Ala Cys Thr Trp Val Gly Val
50 55 60
Thr Cys Asn Ser Asn Lys Asp Arg Ile Trp Glu Val Arg Leu Pro Gly
65 70 75 80
Val Gly Leu Phe Gly Pro Ile Pro Pro Gly Thr Leu Gly Arg Leu Thr
85 90 95
Glu Leu Arg Val Leu Ser Leu Arg Ser Asn Leu Leu Thr Gly Ser Leu
100 105 110
Pro Ser Asp Leu Ala Asn Ala Lys Ala Leu Arg Ser Ile Tyr Leu Gln
115 120 125
His Asn Leu Phe Ser Gly Pro Leu Pro Pro Phe Leu Ser Gln Trp Gly
130 135 140
Arg Leu Ser Arg Leu Asp Leu Ser Phe Asn Arg Leu Asn Gly Ser Ile
145 150 155 160
Pro Phe Ser Leu Asn Asn Leu Thr His Leu Thr Gly Leu Leu Leu Gln
165 170 175
Asn Asn Ser Leu Ser Gly Ser Ile Pro Asn Leu Asn Ile Gln Asn Leu
180 185 190
Thr Leu Leu Ser Val Ala Asn Asn Gln Leu Asn Gly Ser Ile Pro Arg
195 200 205
Ser Leu Gln Lys Phe Pro Lys Thr Ser Phe Gln Gly Asn Ala Gln Leu
210 215 220
Cys Gly Val Pro Leu Lys Leu Cys Lys Ser Phe Phe Pro Ser Pro Ser
225 230 235 240
Pro Ser Pro Asn Gly Ser Ala Val Pro Arg Arg Ser Lys Lys Ser Lys
245 250 255
Leu Ser Thr Gly Val Val Val Ala Ile Ile Val Gly Ala Val Ala Val
260 265 270
Leu Phe Leu Leu Leu Ala Cys Leu Phe Leu Cys Cys Val Arg Lys His
275 280 285
Arg Gly Glu Ser Ala Thr Glu Lys Pro Gln Lys Asp Glu Arg Thr Thr
290 295 300
Val Glu Lys Gly Gly Pro Ser Lys Glu Glu Tyr Met Gly Thr Ala Gln
305 310 315 320
Glu Thr Glu Arg Asn Lys Leu Val Phe Phe Glu Gly Ser Gln Tyr Thr
325 330 335
Phe Asp Leu Glu Asp Leu Leu Arg Ala Ser Ala Glu Val Leu Gly Lys
340 345 350
Gly Ser Val Gly Thr Ala Tyr Lys Ala Val Leu Glu Asp Gly Thr Thr
355 360 365
Val Val Val Lys Arg Leu Lys Asp Val Ala Val Asn Arg Arg Asp Phe
370 375 380
Glu Gln Gln Met Glu Leu Val Gly Arg Ile Arg His Arg Asn Leu Val
385 390 395 400
Pro Leu Arg Ala Phe Tyr Phe Ser Lys Asp Glu Lys Leu Leu Val Tyr
405 410 415
Asp Tyr Met Pro Ala Gly Ser Leu Ser Ala Leu Leu His Gly Ser Arg
420 425 430
Gly Ser Gly Arg Thr Pro Leu Asp Trp Glu Thr Arg Met Arg Ile Ala
435 440 445
Leu Gly Ala Ala Arg Gly Ile Ser His Ile His Glu Glu Gly Gly Gly
450 455 460
Lys Phe Thr His Gly Asn Ile Lys Ser Ser Asn Val Leu Leu Thr Ser
465 470 475 480
Asp Leu Asp Gly Cys Val Ser Asp Phe Gly Leu Val Pro Leu Phe Ser
485 490 495
Ala Ala Ala Ala Ala Asn Arg Ile Ala Gly Tyr Arg Ala Pro Glu Val
500 505 510
Ile Glu Thr Arg Lys Val Thr Gln Lys Ser Asp Val Tyr Ser Phe Gly
515 520 525
Val Leu Leu Leu Glu Leu Leu Thr Gly Lys Ala Pro Asn Gln Ala Ser
530 535 540
Leu Asn Asp Glu Gly Ile Asp Leu Pro Arg Trp Val Gln Ser Val Val
545 550 555 560
Arg Glu Glu Trp Thr Ala Glu Val Phe Asp Val Glu Leu Met Arg Tyr
565 570 575
Gln Asn Ile Glu Glu Glu Met Val Gln Leu Leu Gln Ile Ala Met Ala
580 585 590
Cys Val Ala Thr Val Pro Asp Gln Arg Pro Arg Met Gln Asp Val Val
595 600 605
Lys Met Ile Glu Asp Met Arg Gln Phe Glu Thr Asp Glu Gly Asn Arg
610 615 620
Gln Ser Ser Asp Asp Lys Ser Lys Glu Ser Asn Gly Gln Thr Pro Pro
625 630 635 640
Gln Gln Ala Thr Pro Glu Ala Arg Thr Pro Thr Ala Arg Thr Pro
645 650 655




71


630


PRT


Pinus radiata



71
Met Gln Gln Pro Tyr Val Val Leu Ala Leu Leu Trp Met Leu Leu Leu
1 5 10 15
His His Pro Leu Trp Arg Val Phe Ala Asn Thr Glu Gly Asp Ala Leu
20 25 30
His Ser Leu Arg Ser Asn Leu Leu Asp Pro Asn Asn Val Leu Gln Ser
35 40 45
Trp Asp Pro Thr Leu Val Asn Pro Cys Thr Trp Phe His Val Thr Cys
50 55 60
Asn Asn Asp Asn Ser Val Ile Arg Val Asp Leu Gly Asn Ala Gln Leu
65 70 75 80
Ser Gly Ser Leu Val Pro Gln Leu Gly Leu Leu Asn Asn Leu Gln Tyr
85 90 95
Leu Glu Leu Tyr Ser Asn Asn Ile Ser Gly Pro Ile Pro Ser Asp Leu
100 105 110
Gly Asn Leu Thr Asn Leu Val Ser Leu Asp Leu Tyr Leu Asn Asn Phe
115 120 125
Thr Gly Leu Ile Pro Glu Ser Leu Gly Lys Leu Ser Arg Leu Arg Phe
130 135 140
Leu Arg Leu Asn Asn Asn Ser Leu Val Gly Arg Ile Pro Met Ser Leu
145 150 155 160
Thr Thr Ile Thr Ala Leu Gln Val Leu Asp Leu Ser Asn Asn Asn Leu
165 170 175
Thr Gly Glu Val Pro Ala Asn Gly Ser Phe Ser Leu Phe Thr Pro Ile
180 185 190
Ser Phe Gly Gly Asn Gln Tyr Leu Cys Gly Pro Val Ala Gln Lys Pro
195 200 205
Cys Pro Gly Ser Pro Pro Phe Ser Pro Pro Pro Pro Phe Val Pro Pro
210 215 220
Pro Pro Val Ala Gly Ser Asn Gly Ala Arg Val Gln Ser Ser Ser Ser
225 230 235 240
Thr Gly Ala Ile Ala Gly Gly Val Ala Ala Gly Ala Ala Leu Leu Phe
245 250 255
Ala Ala Pro Ala Ile Gly Phe Ala Trp Trp Arg Arg Arg Lys Pro Gln
260 265 270
Glu His Phe Phe Asp Val Pro Ala Glu Glu Asp Pro Glu Val His Leu
275 280 285
Gly Gln Leu Lys Arg Phe Ser Leu Arg Glu Leu Gln Val Ala Thr Asp
290 295 300
Gly Phe Ser Asn Arg Asn Ile Leu Gly Arg Gly Gly Phe Gly Lys Val
305 310 315 320
Tyr Lys Gly Arg Leu Ala Asp Gly Ser Leu Val Ala Val Lys Arg Leu
325 330 335
Lys Glu Glu Arg Thr Pro Gly Gly Glu Leu Gln Phe Gln Thr Glu Val
340 345 350
Glu Met Ile Ser Met Ala Val His Arg Asn Leu Leu Arg Leu Arg Gly
355 360 365
Phe Cys Met Thr Pro Thr Glu Arg Leu Leu Val Tyr Pro Tyr Met Ala
370 375 380
Asn Gly Ser Val Ala Ser Cys Leu Arg Glu Arg Ala Gln Asn Asp Pro
385 390 395 400
Pro Leu Asp Trp Pro Thr Arg Lys Arg Ile Ala Leu Gly Ser Ala Arg
405 410 415
Gly Leu Ser Tyr Leu His Asp His Cys Asp Pro Lys Ile Ile His Arg
420 425 430
Asp Val Lys Ala Ala Asn Ile Leu Leu Asp Glu Glu Tyr Glu Ala Val
435 440 445
Val Gly Asp Phe Gly Leu Ala Lys Leu Met Asp Tyr Lys Asp Thr His
450 455 460
Val Thr Thr Ala Val Arg Gly Thr Ile Gly His Ile Ala Pro Glu Tyr
465 470 475 480
Leu Ser Thr Gly Lys Ser Ser Glu Lys Thr Asp Val Phe Gly Tyr Gly
485 490 495
Ile Met Leu Leu Glu Leu Ile Thr Gly Gln Arg Ala Phe Asp Leu Ala
500 505 510
Arg Leu Ala Asn Asp Asp Asp Val Met Leu Leu Asp Trp Val Lys Gly
515 520 525
Leu Leu Lys Glu Arg Arg Leu Asp Met Leu Val Asp Pro Asp Leu Lys
530 535 540
Asn Asn Tyr Val Glu Ala Glu Val Glu Gln Leu Ile Gln Val Ala Leu
545 550 555 560
Leu Cys Thr Gln Gly Ser Pro Met Asp Arg Pro Lys Met Ser Glu Val
565 570 575
Val Arg Met Leu Glu Gly Asp Gly Leu Ala Glu Arg Trp Glu Glu Trp
580 585 590
Gln Lys Val Glu Val Val Arg Ser Gln Glu Val Glu Leu Val Pro His
595 600 605
Arg Asn Ser Glu Trp Ile Val Asp Ser Thr Asp Asn Leu His Ala Val
610 615 620
Glu Leu Ser Gly Pro Arg
625 630




72


910


PRT


Pinus radiata



72
Met Leu Leu Leu Ala Thr Leu Ser Phe Ile Leu Phe Leu Asn Pro Phe
1 5 10 15
Ala Phe Ser Thr Pro Ile Ala His Phe Pro His His Pro Pro Arg Leu
20 25 30
Thr Asn Ala Ser Asp Gln His Ala Leu Leu Ala Phe Lys Ser Ala Ile
35 40 45
Thr Tyr Asp Pro Ser Gln Ser Leu Ala Thr Ser Trp Leu Pro Asn Val
50 55 60
Ser Phe Cys Gln Trp Thr Gly Ile Ile Cys Ser Arg Arg Arg Gln Arg
65 70 75 80
Val Ile Ser Leu Asn Val Ser Ser Met Gly Leu Gln Gly Thr Ile Ser
85 90 95
Pro Leu Leu Ala Asn Leu Ser Phe Leu Thr Val Leu Asp Leu His Asn
100 105 110
Asn Ser Phe Asp Cys His Ile Pro Tyr Gln Leu Gly Thr Leu Phe Arg
115 120 125
Leu Lys Met Leu Arg Leu Ser Lys Asn Gln Leu Gln Gly Ser Ile Pro
130 135 140
Pro Thr Leu Ala Asn Cys Arg Ser Leu Arg Asn Leu Thr Leu Ser Phe
145 150 155 160
Asn Asn Leu Thr Gly Asn Ile Pro Pro Gln Leu Cys Leu Leu Pro Asn
165 170 175
Leu Ile Cys Met Ser Leu Gly Ile Asn Asn Leu Thr Gly Thr Ile Pro
180 185 190
Asp Cys Leu Gly Asn Ile Ser Ser Leu Gln Tyr Leu Ser Leu Ser Gln
195 200 205
Gly Asn Leu Gln Gly Ser Val Pro Ser Glu Leu Gly Arg Leu Ser Gln
210 215 220
Leu Ile Val Leu Asp Leu Phe Gly Asn His Leu Thr Gly Cys Ile Pro
225 230 235 240
Ser Ser Leu Ser Asn Cys Thr Asn Leu Glu Leu Leu Asp Ile Gly Asp
245 250 255
Asn Gln Leu Val Gly His Ile Pro Ser His Leu Cys Thr Lys Lys Thr
260 265 270
Thr Gln Leu Met Tyr Leu Arg Leu Gly Ala Asn Gln Leu Ser Gly Ser
275 280 285
Val Pro Ser Ser Leu Phe Asn Cys Thr Lys Leu Gln Glu Ile Ala Leu
290 295 300
Pro Tyr Asn Gln Leu Ser Gly Ile Val Pro Met Glu Leu Gly Lys Leu
305 310 315 320
Thr His Leu Gln Arg Leu Phe Phe Gly Gly Asn Tyr Phe Ile Ser Gly
325 330 335
Asn Thr Met Arg Cys Pro Ile Leu Thr Ala Leu Ser Asn Cys Ser Asp
340 345 350
Leu Gln Tyr Val Asp Leu Ser Glu Asn Asn Phe Thr Gly Gln Leu Pro
355 360 365
Phe Ser Ile Gly His Leu Ser Lys Lys Leu Tyr His Leu Asp Leu Gly
370 375 380
Ser Asn Glu Leu Ala Gly Glu Ile Pro Pro Ala Ile Gly Asn Leu Ser
385 390 395 400
Ser Leu Thr Phe Leu Asn Leu Gly Arg Asn Tyr Phe Thr Gly Ser Ile
405 410 415
Pro Ser Ser Leu Ile Met Leu Gln Lys Leu Glu Arg Leu Tyr Met Asp
420 425 430
Ser Asn Asn Leu Gln Gly Asn Ile Pro Met Glu Ile Gly Gln Leu Lys
435 440 445
Ser Leu Gly Leu Leu Tyr Leu Ser Gly Asn Asn Leu Ser Gly Lys Ile
450 455 460
Pro Asp Phe Val Ala Asn Leu Gln Gln Leu Arg Tyr Leu Tyr Leu Asn
465 470 475 480
His Asn Gln Leu Ser Gly Asp Ile Asn Ala Asn Leu Gly Lys Cys Val
485 490 495
Asn Leu Leu Leu Leu Asp Leu Ser Tyr Asn Lys Leu Ser Gly His Ile
500 505 510
Pro Gln Glu Leu Ala Gly Leu Ala Asn Leu Ala Phe Tyr Phe Asn Leu
515 520 525
Ser Asn Asn Leu Leu Ser Gly His Val Pro Leu Glu Leu Gly Lys Phe
530 535 540
Asp Met Leu Gln Ala Ile Asp Ile Ser Ala Asn Gln Ile Thr Gly Tyr
545 550 555 560
Ile Pro Ser Ile Val Gly Ser Trp Lys Glu Val Ala Tyr Leu Asn Leu
565 570 575
Ser Tyr Asn Ala Leu Glu Gly Pro Ile Pro Val Ser Ile Ser Glu Leu
580 585 590
Leu Ser Leu Gln Asp Leu Asp Leu Ser Ser Asn Asn Leu Ser Gly Gly
595 600 605
Ile Pro Ile Ser Leu Ala Asn Leu Thr Met Leu His His Leu Asn Phe
610 615 620
Ser Phe Asn Lys Leu Ser Gly Glu Val Pro Lys Glu Gly Val Phe Lys
625 630 635 640
Asn Ile Gly Ala Thr Ala Phe Met Gly Asn Leu Gly Leu Cys Gly Pro
645 650 655
Trp Val Asn Leu Pro Pro Cys Tyr Ala His Lys His Lys Ser Val Leu
660 665 670
Asn Leu Lys Arg Val Ile Ile Leu Val Val Val Val Ala Ile Val Val
675 680 685
Leu Cys Leu Phe Leu Ala Ile Leu Trp Arg Lys Asn Cys Arg Arg Asn
690 695 700
Ile Gln Arg Asp Ile Gly Pro Ser Leu Asn Val Gly His Arg Arg Ile
705 710 715 720
Ser Tyr Ala Glu Leu Val Ile Ala Thr Asn Glu Phe Ser Asp Ala Asn
725 730 735
Leu Leu Gly Ile Gly Ser Phe Gly Lys Val Tyr Lys Gly Ile Leu Asn
740 745 750
Asp Gly Thr Met Val Ala Val Lys Leu Leu Asn Leu Gln Asn Glu Gly
755 760 765
Ala Gln Lys Ser Phe Asp Arg Glu Cys Lys Val Leu Gly Arg Val Arg
770 775 780
His Arg Asn Leu Ile Arg Val Ile Thr Cys Tyr Ser Asp Leu Gln Ile
785 790 795 800
Lys Ala Leu Ile Phe Pro Leu Met Pro Lys Gly Ser Leu Glu Lys Trp
805 810 815
Leu Tyr Pro Asp Asp Gly Glu Gln Ser Cys Leu Asn Leu Ile Gln Arg
820 825 830
Leu Asn Ile Ala Ile Asp Ile Ala Gln Gly Met Thr Tyr Leu His His
835 840 845
His Cys Phe Val Gln Val Ile His Cys Asp Leu Lys Pro Asn Asn Val
850 855 860
Leu Leu Gly Glu Asp Met Thr Ala Tyr Leu Ile Asp Phe Gly Ile Ala
865 870 875 880
Thr Ile Cys Phe Ala Asn Asn Glu Asp Gly Ala Leu Thr Ser Thr Asn
885 890 895
Ala Leu Lys Gly Ser Thr Gly Tyr Ile Pro Pro Gly Ile Ile
900 905 910




73


947


PRT


Pinus radiata



73
Met Arg Tyr Ser Trp Thr Cys Ser Pro Phe Leu Ser Leu Leu Phe Ile
1 5 10 15
Leu Ser Cys Leu Asp Ser Gly Ile Cys Leu Asp Asn Gln Gln Thr Gln
20 25 30
Val Met Lys Lys Leu Ser Ser Tyr Thr Pro Ser Trp Thr Thr Val Lys
35 40 45
Ser Asp Asn Pro Cys Gly Trp Ser Gly Val Asn Cys Thr Ala Glu Glu
50 55 60
Ser Asn Val Thr Glu Leu His Met Ser Gly Phe Arg Met Lys Gly Asn
65 70 75 80
Ala Trp Gln Thr Ile Cys Lys Leu Gln Ala Leu Gln Val Leu Asp Val
85 90 95
Ser Asp Asn Leu Leu Ser Thr Pro Ser Asp Asn Asp Ile Gln Ala Cys
100 105 110
Thr Asn Leu Phe Ser Leu Asn Ile Ser Ser Asn Phe Leu Pro Gly Ser
115 120 125
Ser Leu Pro Ser Leu Ala Pro Met Arg Lys Leu His Phe Leu Asp Val
130 135 140
Ser His Asn Gly Phe Ala Gly Glu Phe Gly Pro Gln Ile Gln His Leu
145 150 155 160
Thr Asp Leu Arg Val Leu Asn Leu Thr Tyr Asn Asn Phe Ser Gly Pro
165 170 175
Ile Pro Ser Phe Leu Gly Asn Leu Thr Thr Leu Glu Lys Ile Asp Phe
180 185 190
Ser Gln Asn Tyr Phe Glu Gly Glu Phe Pro Lys Glu Leu Val Arg Cys
195 200 205
Thr Ser Leu Thr Tyr Leu Asp Leu Ser Phe Asn Arg Leu Thr Gly Gln
210 215 220
Ile Pro Asp Asn Ile Ser Asn Leu Ile His Leu Glu Thr Leu Ile Leu
225 230 235 240
Ser Ser Asn Asn Leu Thr Gly Thr Ile Pro Lys Thr Leu Asp Arg Leu
245 250 255
Val Asn Leu Thr His Phe Ala Ser Asn Lys Asn Gln Leu Ile Gly Arg
260 265 270
Ile Pro Val Gln Leu Ala Lys Leu Thr Glu Leu His Phe Leu Asp Leu
275 280 285
Ser Tyr Asn Gly Leu Asn Glu Thr Ile Pro Pro Glu Leu Phe Ala Leu
290 295 300
Ser Asn Leu Gln Thr Leu Asp Leu Thr Lys Asn Leu Leu Thr Gly Glu
305 310 315 320
Ile Pro Gln Asn Phe Ser Arg Lys Leu Ile Arg Leu Arg Ile Gly Gln
325 330 335
Asn Leu Leu Lys Gly Asn Ile Pro Leu Thr Ile Gly Asn Trp Ser Asn
340 345 350
Leu Thr Tyr Leu Glu Met Asn Asp Asn Ser Leu Asp Gly Gln Ile Pro
355 360 365
Gln Gln Leu Val Asn Cys Ile Lys Leu Gln Leu Leu Asp Leu Gly Asn
370 375 380
Asn Asn Leu Ser Gly Ser Leu Thr Asn Gln Leu Pro Ser Leu Leu Gln
385 390 395 400
Leu Gln Val Leu Lys Leu His Asn Asn Asn Phe Val Gly Ser Ile Pro
405 410 415
Tyr Ile Leu Ser Ser Phe Ser Asn Leu Ser Tyr Val Asp Leu Ser Asp
420 425 430
Asn Thr Leu Asn Gly Ser Ile Pro Ser Asn Ile Phe Asn Leu Ser Lys
435 440 445
Leu Gln Asn Leu Arg Leu Gln Asn Asn Lys Leu Thr Gly Ala Ile Pro
450 455 460
Asn Thr Val Gly Gly Ser Gln Val Leu Leu Glu Leu Gln Leu Gly Gly
465 470 475 480
Asn Asn Leu Thr Gly Thr Met Pro Leu Glu Ile Gly Phe Val Arg Lys
485 490 495
Leu Gln Ile Gln Leu Asn Leu Ser Cys Asn Ser Leu Glu Gly Glu Ile
500 505 510
Pro Asn Thr Leu Ser Gly Leu Tyr Met Leu Glu Ile Leu Asp Leu Ser
515 520 525
Asn Asn Lys Leu Thr Gly Glu Val Pro Gly Ser Leu Thr Ala Met Leu
530 535 540
Ser Leu Thr Leu Leu Asn Ile Ser Asn Asn Ser Leu Thr Gly Val Leu
545 550 555 560
Pro Lys Phe Pro Asn Ser Thr Ser Ala Leu Ile Ile Ile Asp Thr Gly
565 570 575
Asn Pro Gly Leu Thr Ala Gly Gln Asn Gly Ser Ala Pro Ala Ala Ser
580 585 590
Ala Arg Lys Lys Ile Ser Ala Ile Leu Ile Ile Gly Val Ala Val Ala
595 600 605
Gly Ala Val Phe Ala Ile Val Ala Val Gly Leu Phe Ile Val Ala Ser
610 615 620
Lys Tyr Phe Gly Arg Gly Asp Gln Gln Met Pro Glu Val Gln Leu Ala
625 630 635 640
Arg Lys Ile Glu Gly His Phe Ile His Pro Asp Ser Ile His Arg Leu
645 650 655
Arg Ile Asp Phe Glu Lys Gly Val Glu Ala Thr Leu Asp Pro Ala Asn
660 665 670
Val Phe Leu Lys Asn Lys Phe Ser Thr Tyr Tyr Lys Ala Val Met Pro
675 680 685
Ser Gly Ile Ser Tyr Ser Val Lys Lys Leu Asn Trp Ser Asp Arg Ile
690 695 700
Phe Lys Ser Gly Ser Tyr Arg Lys Leu Gly Ala Glu Leu Glu Lys Gln
705 710 715 720
Gly Lys Leu Arg His Pro Asn Ile Leu Thr Pro Leu Ala His Val Leu
725 730 735
Asp Thr Asp Ser Ala Tyr Leu Phe Tyr Glu Tyr Val His Lys Gly Ser
740 745 750
Leu Ser Glu Phe Leu His Thr Ser Asn Val Ser Val Leu Asp Trp Pro
755 760 765
Ser Arg Cys Arg Ile Ala Ile Gly Val Ala Gln Gly Leu Ala Phe Leu
770 775 780
His Gly Cys Gln His Pro Ile Phe His Leu Asp Leu Thr Thr Lys Asn
785 790 795 800
Ile Leu Leu Lys Ser Leu Thr Glu Pro Gln Ile Gly Asp Ile Glu Leu
805 810 815
Cys Lys Ile Val Asp Pro Ser Lys Ser Thr Gly Ser Ile Ser Ala Ile
820 825 830
Ala Gly Ser Val Gly Tyr Val Pro Pro Glu Tyr Ala Tyr Thr Met Arg
835 840 845
Val Thr Ala Ala Gly Asn Val Tyr Ser Phe Gly Val Ile Leu Leu Glu
850 855 860
Leu Leu Thr Gly Arg Thr Pro Ile Thr Ser Gly Met Asp Leu Ala Lys
865 870 875 880
Trp Val Gln Ser Thr Leu Ser Gly Glu Glu Thr Trp Glu Gln Ile Leu
885 890 895
Asp Thr Gly Ile Arg Asn Phe Ser Val Gln Ile Gln Asn Glu Met Ile
900 905 910
Ala Met Leu Lys Val Ala Leu Ser Cys Val Ser Ser Ser Pro Glu Ser
915 920 925
Arg Pro Lys Met Arg Asn Val Val Gly Met Leu Gln Met Val Arg Gln
930 935 940
Val Ala Glu
945




74


638


PRT


Pinus radiata



74
Met His Phe Lys Ile Leu Phe Asp Ala Lys Glu Glu Lys Ile Lys Ser
1 5 10 15
Ser Phe Asp Met Leu Thr Ala Phe Leu Val Leu Cys Phe Thr Thr Thr
20 25 30
Ala Ala Ser Ala Thr Gln Leu Ser Pro Ser Gly Leu Asn Tyr Glu Val
35 40 45
Ala Ala Leu Met Ala Ile Lys Asn Ser Leu Asn Asp Pro His Asn Val
50 55 60
Leu Glu Asn Trp Asp Ile Asn Ser Val Asp Pro Cys Gly Trp Arg Met
65 70 75 80
Val Thr Cys Thr Leu Glu Gly Ser Val Ser Ile Leu Gly Ile Gln Cys
85 90 95
Gln Asn Leu Ser Gly Ser Leu Ser Pro Ser Ile Arg Asn Leu Thr Asn
100 105 110
Leu Gln Ser Val Leu Leu Gln Asn Asn Ala Ile Ser Gly Ser Ile Pro
115 120 125
Ala Glu Leu Gly Lys Leu Asp Lys Leu Asp Thr Leu Asp Leu Ser Asn
130 135 140
Asn His Phe Asn Gly Leu Ile Pro Ser Ser Leu Gly Lys Leu Lys Asn
145 150 155 160
Leu Asn Tyr Leu Arg Leu Asn Asn Asn Asn Leu Ser Gly Pro Ile Pro
165 170 175
Pro Ser Leu Ala Thr Ile Thr Gly Leu Thr Leu Leu Asp Leu Ser Cys
180 185 190
Asn Asn Leu Ser Gly Ser Val Pro Arg Ile Ser Ala Arg Thr Phe Asn
195 200 205
Ile Val Gly Asn Pro Leu Ile Cys Gly Pro Asn Ser Thr Tyr Lys Cys
210 215 220
Pro Gly Gln Phe Pro Thr Pro Ile Pro Leu Val Val Glu Thr Pro Gln
225 230 235 240
Gly Arg Val Pro Ser Arg Gln Ser Lys Thr Arg Lys Leu Ala Val Ala
245 250 255
Leu Val Ala Ser Leu Gly Phe Val Phe Val Val Ser Ile Gly Leu Leu
260 265 270
Leu Trp Trp Arg Lys Arg His Asn Gln Gln Ile Phe Ile Asp Val Asn
275 280 285
Glu Gln His Asn Val Asp Ile Cys Leu Gly His Leu Lys Arg Phe Ser
290 295 300
Phe Lys Glu Leu Arg Val Ser Thr Asn Asn Phe Ser Ser Lys Asn Ile
305 310 315 320
Leu Gly Val Gly Gly Tyr Gly Ile Val Tyr Lys Gly Phe Leu Gln Asp
325 330 335
Gly Thr Ile Val Ala Ile Lys Arg Leu Lys Asp Gly Asn Val Gly Gly
340 345 350
Gly Glu Ile Gln Phe Gln Thr Glu Val Glu Met Ile Ser Leu Ala Val
355 360 365
His Arg Asn Leu Leu Arg Leu Tyr Gly Phe Cys Thr Thr Ser Arg Glu
370 375 380
Arg Leu Leu Val Tyr Pro Tyr Met Pro Asn Gly Ser Val Ala Ser Cys
385 390 395 400
Leu Arg Asp His Ile Asn Gly Lys Leu Ala Leu Asp Trp Pro Thr Arg
405 410 415
Lys Arg Ile Ala Leu Gly Ala Ala Arg Gly Leu Leu Tyr Leu His Glu
420 425 430
Gln Cys Asp Pro Lys Ile Ile His Arg Asp Val Lys Ala Ala Asn Ile
435 440 445
Leu Leu Asp Glu Tyr Phe Glu Ala Val Val Gly Asp Phe Gly Leu Ala
450 455 460
Lys Leu Leu Asp His Arg Asp Ser His Val Thr Thr Ala Val Arg Gly
465 470 475 480
Thr Val Gly His Ile Ala Pro Glu Tyr Leu Ser Thr Gly Gln Ser Ser
485 490 495
Glu Lys Thr Asp Val Phe Gly Phe Gly Ile Leu Leu Leu Glu Leu Ile
500 505 510
Thr Gly Gln Arg Ala Leu Asp Phe Gly Gln Ala Ala Lys Gln Lys Val
515 520 525
Val Met Leu Asp Trp Val Lys Lys Leu His Gln Glu Lys Lys Leu His
530 535 540
Leu Leu Ala Asp Lys Asp Leu Lys Gly Asn Phe Asp Arg Val Glu Leu
545 550 555 560
Glu Glu Met Val Gln Val Ser Leu Leu Cys Thr Gln Phe Gln Pro Gly
565 570 575
His Arg Pro Lys Met Cys Asp Val Leu Arg Met Leu Glu Gly Asp Gly
580 585 590
Leu Thr Glu Arg Trp Glu Thr Leu Gln Lys Ile Glu Thr Pro Arg Tyr
595 600 605
Arg Val Thr Glu Ile Pro Ile Thr Tyr Ser Glu Leu Val Glu Glu Asp
610 615 620
Ser Ser Trp Leu Val Gln Ala Ile Glu Leu Ser Gly Pro Arg
625 630 635




75


659


PRT


Eucalyptus grandis



75
Met His Phe Arg Ile Leu Ala Leu Leu Gly Phe Phe Phe Leu Ala Val
1 5 10 15
Leu Phe Pro Ser Ala Glu Pro Asp Leu Ala Ser Asp Arg Ala Ala Leu
20 25 30
Leu Ala Leu Arg Ser Ala Val Gly Gly Arg Thr Leu Leu Trp Asn Ala
35 40 45
Asn Leu Pro Ser Pro Cys Ser Trp Ala Gly Val Gln Cys Glu Gly Asn
50 55 60
Arg Val Thr Ala Leu Arg Leu Pro Gly Val Ala Leu Ser Gly Gln Ile
65 70 75 80
Pro Asp Gly Val Leu Gly Asn Leu Thr Gln Leu Arg Thr Leu Ser Leu
85 90 95
Arg Phe Asn Ala Leu Ser Gly Thr Leu Pro Ser Asp Leu Ala Ser Cys
100 105 110
Ala Asp Leu Arg Asn Leu Tyr Val Gln Gly Asn Leu Phe Ser Gly Pro
115 120 125
Ile Pro Ala Ser Leu Phe Gly Leu Ser Asp Leu Val Arg Leu Asn Leu
130 135 140
Ala Ser Asn Lys Phe Ser Gly Asp Phe Pro Ala Gly Phe Gly Asn Leu
145 150 155 160
Thr Arg Leu Lys Thr Leu Leu Leu Glu Asn Asn Gln Leu Ser Gly Ser
165 170 175
Ile Pro Ala Asp Leu Lys Gln Leu Lys Leu Glu Gln Phe Asn Val Ser
180 185 190
Asn Asn Leu Leu Asn Gly Ser Ile Pro Glu Gly Leu Gly Ala Phe Ala
195 200 205
Thr Ser Ser Phe Ser Gly Asn Ser Leu Cys Gly Lys Pro Leu Ala Ser
210 215 220
Cys Ser Gln Asp Ile Ala Leu Pro Ala Gly Glu Pro Ser Gly Ser Pro
225 230 235 240
Gly Gln Pro Gly Gly Lys Lys Lys Lys Leu Ser Gly Ala Val Val Ala
245 250 255
Gly Ile Val Ile Gly Cys Val Phe Gly Phe Ile Phe Leu Val Ile Leu
260 265 270
Leu Ile Tyr Leu Cys Arg Lys Lys Gly Ser Lys Lys Ser Arg Ser Val
275 280 285
Asp Val Ala Thr Phe Lys His Gln Glu Leu Glu Ile Pro Gly Glu Lys
290 295 300
Pro Val Gly Glu Val Glu Asn Gly Gly Phe Ser Asn Gly Tyr Ser Val
305 310 315 320
Ala Ala Ala Ala Ala Ala Ala Met Thr Gly Ser Gly Lys Gly Glu Val
325 330 335
Asn Gly Ser Ala Gly Ala Ala Ala Lys Lys Leu Ile Phe Phe Gly Asn
340 345 350
Ser Ala Arg Ala Phe Asp Leu Glu Asp Leu Leu Arg Ala Ser Ala Glu
355 360 365
Val Leu Gly Lys Gly Thr Phe Gly Thr Ala Tyr Lys Ala Val Leu Glu
370 375 380
Ala Gly Ile Thr Val Ala Val Lys Arg Leu Lys Asp Val Asn Val Ala
385 390 395 400
Ala Lys Glu Phe Lys Glu Lys Ile Glu Ala Val Gly Ala Met Asp His
405 410 415
Gln Ser Leu Val Pro Leu Arg Ala Tyr Tyr Tyr Ser Asn Asp Glu Lys
420 425 430
Leu Leu Val Tyr Asp Tyr Met Pro Met Gly Ser Leu Ser Ala Leu Leu
435 440 445
His Gly Asn Lys Gly Ala Gly Arg Thr Pro Leu Asn Trp Glu Ile Arg
450 455 460
Ser Ala Ile Ala Leu Gly Ala Ala Arg Gly Ile Glu Tyr Leu His Ser
465 470 475 480
Gln Gly Pro Ile Val Ser His Gly Asn Ile Lys Ser Ser Asn Ile Leu
485 490 495
Leu Thr Thr Ser Tyr Asp Ala Arg Val Ser Asp Phe Gly Leu Ala His
500 505 510
Leu Val Gly Pro Ser Ser Thr Pro Asn His Val Ala Gly Tyr Arg Ala
515 520 525
Pro Glu Val Thr Asp Pro Arg Lys Val Ser Gln Lys Ala Asp Val Tyr
530 535 540
Ser Phe Gly Val Leu Leu Leu Glu Leu Leu Thr Gly Lys Ala Pro Ile
545 550 555 560
His Ser Gln Leu Asn Glu Glu Gly Val Asp Leu Pro Arg Trp Val Gln
565 570 575
Ser Ile Val Arg Glu Glu Trp Thr Ser Glu Val Phe Asp Leu Glu Leu
580 585 590
Leu Arg Tyr Gln Asn Ile Glu Glu Glu Met Val Gln Leu Leu Gln Leu
595 600 605
Ala Ile Asp Cys Ala Ala Gln Tyr Pro Asp Lys Arg Pro Ser Met Ser
610 615 620
Glu Val Arg Ser Gln Ile Glu Glu Leu Cys His Ser Ser Ser Gln Lys
625 630 635 640
Asp Arg Ala Pro Gln Leu Asp Gln Val Asn Glu Val Asn Asp Asp Thr
645 650 655
Ser Ser Arg




76


968


PRT


Eucalyptus grandis



76
Met Glu Glu Ala Phe Leu Arg Leu Ile Phe Leu Val Ala Val Leu Leu
1 5 10 15
Phe Gly Lys Asp Leu Gln Leu Val Phe Ser Phe Thr Asn Pro Asp Asp
20 25 30
Ser Val Ala Leu Gln Ser Leu Lys Met Ser Trp Gln Asn Thr Pro Pro
35 40 45
Ser Trp Glu Arg Ser Ser Asp Pro Cys Gly Leu Pro Trp Glu Gly Val
50 55 60
Thr Cys Asn Ser Asn Ser Arg Val Thr Ser Leu Gly Leu Ser Thr Met
65 70 75 80
Gly Ile Lys Gly Gln Leu Ile Ser Glu Ile Ala Gly Leu Ala Glu Leu
85 90 95
Arg Ser Leu Asp Leu Ser Phe Asn Lys Glu Leu Thr Gly Pro Leu Ala
100 105 110
Arg Gln Leu Gly Asn Leu Gln Lys Leu Asn Ile Leu Ile Leu Ala Gly
115 120 125
Cys Ser Phe Thr Gly Ser Ile Pro Asp Glu Leu Gly Asn Leu Ala Glu
130 135 140
Leu Ser Phe Leu Ala Leu Asn Ser Asn Asn Leu Thr Gly Asn Ile Pro
145 150 155 160
Ala Ser Leu Gly Asn Leu Ser Lys Leu Tyr Trp Phe Asp Leu Ala Asp
165 170 175
Asn Gln Leu Thr Gly Pro Ile Pro Ile Ser Thr Asp Thr Ser Pro Gly
180 185 190
Leu Asp Leu Leu Leu Lys Ala Lys His Phe His Phe Asn Lys Asn Lys
195 200 205
Leu Ser Gly Pro Ile Pro Glu Lys Leu Phe Asn Ser Ala Met Val Leu
210 215 220
Ile His Val Leu Phe Asp Gly Asn Gln Leu Asn Gly Ser Ile Pro Ser
225 230 235 240
Ser Val Gly Leu Leu Pro Asp Leu Glu Val Leu Arg Leu Asp Arg Asn
245 250 255
Lys Leu Ser Gly Lys Val Pro Leu Asn Leu Asn Asn Leu Thr Asn Leu
260 265 270
Ser Glu Leu Asn Phe Ala His Asn Ala Leu Thr Gly Pro Leu Pro Asp
275 280 285
Leu Thr Asp Met Asn Ser Leu Asn Tyr Val Asp Leu Ser Asn Asn Phe
290 295 300
Phe Asp Pro Ser Glu Ala Pro Asp Trp Phe Ser Thr Leu Pro Thr Leu
305 310 315 320
Thr Thr Leu Val Ile Glu Tyr Gly Pro Leu Lys Gly Val Val Pro Gln
325 330 335
Lys Leu Phe Ser Phe Pro Gln Leu Gln Gln Val Lys Leu Lys Asn Asn
340 345 350
Glu Phe Asn Gly Thr Leu Asn Met Gly Asp Asn Ile Ser Pro Gln Leu
355 360 365
Gln Leu Val Asp Leu Gln Asn Asn Gln Ile Ser Ser Val Thr Leu Gly
370 375 380
Ser Ser Gly Tyr Ser Asn Thr Leu Met Leu Ile Gly Asn Pro Val Cys
385 390 395 400
Thr Thr Glu Leu Ser Asn Thr Asn Tyr Cys Gln Leu Gln Gln Gln Thr
405 410 415
Val Lys Pro Tyr Ser Thr Ser Leu Ala Ser Cys Gly Ser Lys Ser Cys
420 425 430
Pro Pro Asp Glu Arg Leu Asn Pro Gln Ser Cys Glu Cys Ala Phe Pro
435 440 445
Tyr Glu Gly Thr Leu Tyr Phe Arg Gly Pro Ser Phe Arg Glu Leu Ser
450 455 460
Asn Val Thr Leu Phe His Met Leu Glu Met Asp Leu Trp Thr Lys Leu
465 470 475 480
Asn Leu Thr Pro Gly Ser Val Ser Leu Gln Asn Pro Phe Phe Asn Leu
485 490 495
Asp Asp Tyr Leu Gln Val Gln Leu Ser Leu Phe Pro Pro Ser Gly Lys
500 505 510
Tyr Phe Ser Arg Ser Asp Ile Gln Ser Ile Gly Phe Asp Leu Thr Asn
515 520 525
Gln Thr Phe Lys Pro Pro Lys Pro Phe Gly Pro Tyr Tyr Phe Ile Ala
530 535 540
Ser Pro Tyr Ala Phe Pro Asp Asn Gly Gly Thr Ala Ile Ser Lys Gly
545 550 555 560
Val Ile Val Gly Ile Ala Ile Gly Gly Thr Val Leu Val Leu Gly Leu
565 570 575
Val Val Leu Gly Leu Tyr Ala Ile Arg Gln Lys Lys Arg Ala Glu Lys
580 585 590
Ala Leu Glu Leu Ser Arg Pro Phe Ala Ser Trp Ala Pro Ser Gly Lys
595 600 605
Asp Ser Gly Gly Ala Pro Gln Leu Lys Gly Ala Arg Trp Phe Ser Tyr
610 615 620
Asp Glu Leu Lys Arg Cys Thr Asn Asn Phe Ser Asp Ser Asn Glu Leu
625 630 635 640
Gly Phe Gly Gly Tyr Gly Lys Val Tyr Arg Gly Val Leu Pro Asp Gly
645 650 655
His Ile Leu Ala Ile Lys Arg Ala Gln Gln Gly Ser Met Gln Gly Ala
660 665 670
Thr Glu Phe Lys Thr Glu Ile Glu Leu Leu Ser Arg Val His His Lys
675 680 685
Asn Leu Val Gly Leu Ile Gly Phe Cys Phe Glu Gln Gly Glu Gln Met
690 695 700
Leu Val Tyr Glu Tyr Met Pro Asn Gly Thr Leu Arg Asp Ser Leu Thr
705 710 715 720
Gly Lys Ser Gly Ile Tyr Leu Asp Trp Lys Arg Arg Leu Arg Ile Ala
725 730 735
Leu Gly Ser Ala Arg Gly Leu Ala Tyr Leu His Glu Leu Ala Asn Pro
740 745 750
Pro Ile Ile His Arg Asp Val Lys Ser Thr Asn Ile Leu Leu Asp Glu
755 760 765
His Leu Thr Ala Lys Val Ala Asp Phe Gly Leu Ser Lys Leu Val Ser
770 775 780
Asp Ser Gly Lys Gly His Val Ser Thr Gln Val Lys Gly Thr Leu Gly
785 790 795 800
Tyr Leu Asp Pro Glu Tyr Tyr Met Ser Gln Gln Leu Thr Glu Lys Ser
805 810 815
Asp Val Tyr Ser Phe Gly Val Val Met Leu Glu Leu Ile Thr Ala Lys
820 825 830
Gln Pro Ile Glu Lys Gly Lys Tyr Val Val Arg Glu Ile Arg Thr Ala
835 840 845
Met Asp Lys Asn Asp Gln Asp Tyr Tyr Gly Val Arg Glu Met Met Asp
850 855 860
Pro Ser Met Arg Ser Met Gly Tyr Leu Val Gly Phe Ser Arg Phe Leu
865 870 875 880
Asp Leu Ala Met Arg Cys Val Glu Glu Ser Ala Ala Asp Arg Pro Thr
885 890 895
Met Ser Glu Val Val Lys Ala Ile Glu Thr Met Leu Gln Asn Asp Gly
900 905 910
Ile His Thr Asn Ser Thr Ser Ala Ser Ser Ser Ala Thr Asp Phe Gly
915 920 925
Ser Thr Lys Gly Ala Pro Arg His Pro Tyr Asn Asp Ala Leu Pro Lys
930 935 940
Lys Glu Val Ser Tyr Ser Asp Ser Phe Asp Tyr Ser Gly Gly Tyr Gly
945 950 955 960
Leu Ser Thr Lys Ile Glu Pro Lys
965




77


632


PRT


Pinus radiata



77
Met Leu Phe Pro Trp Arg Ser Leu Val Leu Ile Ala Phe Thr Ser Leu
1 5 10 15
Val Val Gln Leu Ile Pro Ala Gln Ala Val Glu Asp Arg Arg His Asp
20 25 30
Thr Thr Phe Leu Phe Asp Gly Phe Asn Gly Thr Asn Leu Ile Leu Glu
35 40 45
Ala Asn Ala Ser Val Ile Gly Ser Glu Ser Val Leu Ser Leu Thr Asn
50 55 60
His Ser His Glu Phe Met Leu Gly Arg Ala Leu Tyr Ala Ala Pro Val
65 70 75 80
Gln Met Lys Asn Asn His Thr Val Ser Ser Phe Ser Thr Thr Phe Val
85 90 95
Phe Ser Ile Val Pro Pro Pro Ser Asn Glu Gly Gly His Gly Leu Ala
100 105 110
Phe Ile Met Thr Pro Tyr Thr Ser Pro Met Gly Ala Gln Pro Val Gln
115 120 125
Tyr Leu Gly Leu Leu Asn Leu Thr Ser Asn Gly Gln Pro Tyr Asn His
130 135 140
Leu Phe Ala Val Glu Phe Asp Thr Ile Met Asn Val Glu Phe Lys Asp
145 150 155 160
Pro Asp Arg Asn His Val Gly Val Asp Ile Asn Ser Leu Ile Ser Val
165 170 175
Gln Thr Glu Thr Ala Gly Tyr Trp Asn Gly Glu Glu Phe His Glu Leu
180 185 190
Asn Leu Arg Ser Gly Arg Asn Ile Gln Ala Trp Ile Asp Tyr Asp His
195 200 205
Leu Glu Ser Ser Leu Asn Val Thr Ile Thr Val Ala Gly Leu Pro Arg
210 215 220
Pro Gln Arg Pro Leu Ile Ser Leu Gln Ile Asp Leu Gln Asn Ile Val
225 230 235 240
Glu Glu Lys Met Leu Val Gly Phe Ser Ala Ala Thr Gly Leu Leu Val
245 250 255
Glu Asp His Tyr Ile Leu Ala Trp Ser Phe Thr Thr Glu Asp Thr Ala
260 265 270
Pro Pro Leu Asp Val Ser Cys Leu Ser Ser Phe Ala Asn Met Tyr Ser
275 280 285
Glu Pro Leu Ser Arg Gly Phe Ile Ala Gly Val Thr Val Val Ser Val
290 295 300
Val Leu Phe Trp Leu Val Ile Ala Ala Ala Met Phe Leu Arg Arg Thr
305 310 315 320
Leu Asn Arg Glu Thr Val Glu Glu Trp Glu Gln Glu Tyr Trp Pro His
325 330 335
Arg Phe Asp Tyr Lys Glu Leu Arg Ile Ala Thr Arg Gly Phe Arg Asp
340 345 350
Glu Asn Leu Leu Gly Tyr Gly Gly Phe Gly Met Val Tyr Lys Gly Phe
355 360 365
Leu Pro Arg Ser Gly Gln Glu Val Ala Val Lys Cys Ile Thr Thr Glu
370 375 380
Phe Lys Glu Gly Ile Lys Gly Phe Val Ala Glu Ile Ser Ser Met Gly
385 390 395 400
Arg Leu Gln His Arg Asn Leu Val Gln Leu Arg Gly Trp Cys Arg Arg
405 410 415
His Thr Gln Leu Phe Ile Val Tyr Asp Tyr Met Pro Asn Gly Ser Leu
420 425 430
His Lys Leu Ile Phe Gly Ser Pro Thr Thr Val Leu Pro Trp His Arg
435 440 445
Arg Tyr Ala Ile Leu Lys Gly Val Ala Ala Gly Leu Leu Tyr Leu His
450 455 460
Glu Gln Trp Glu Lys Arg Val Val His Arg Asp Ile Lys Ser Ser Asn
465 470 475 480
Val Leu Leu Asp Ser Glu Phe Asn Gly Arg Leu Ser Asp Phe Gly Leu
485 490 495
Ala Arg Leu Tyr Asp His Ser Glu Asn Pro Glu Thr Thr Tyr Val Val
500 505 510
Gly Thr Leu Gly Tyr Ile Ala Pro Glu Leu Ile Gln Thr Gly Lys Ala
515 520 525
Thr Pro Ser Ser Asp Val Phe Ser Phe Gly Val Leu Leu Leu Glu Val
530 535 540
Ala Cys Gly Lys Ser Pro Val Asp Ser Leu Glu Asp Ser Glu Arg Met
545 550 555 560
Ile Leu Val Glu Trp Ala Trp Glu Leu Tyr Thr Glu Gly Arg Leu Leu
565 570 575
Glu Ala Ser Asp Pro Lys Leu Ala Ala Lys Gly Gly Tyr Asp Glu Gly
580 585 590
Glu Met Glu Lys Val Leu Lys Leu Gly Leu Leu Cys Ser His Pro Glu
595 600 605
Pro Glu Ser Arg Leu Ser Met Arg Gln Val Cys Gln Val Leu Asn Gly
610 615 620
Glu Ala Pro Val Pro Cys Arg Trp
625 630




78


903


PRT


Eucalyptus grandis



78
Met Gly Leu Lys Ile Phe Ser Val Gly Phe Ala Leu Leu Cys Cys Phe
1 5 10 15
Cys Ser Leu Gly Phe Cys Asp Gln Asp Gly Phe Leu Ser Leu Ala Cys
20 25 30
Gly Gly Thr Thr Asn Tyr Thr Asp Ser Ser Asn Ile Trp Trp Ile Thr
35 40 45
Asp Ser Asp Phe Ile Ser Thr Gly Lys Thr Thr Tyr Val Asp Asn Ile
50 55 60
Glu Gly Asn Ser Ser Gly Val Ser Leu Arg Phe Phe Pro Asp Ser Lys
65 70 75 80
Val His Asn Cys Tyr Arg Leu Pro Val Arg Asn Ile Ser Ser Leu Ile
85 90 95
Leu Val Arg Ser Gln Phe Val Tyr Lys Asn Tyr Asp Gly Arg Gly Lys
100 105 110
Pro Pro Ala Phe Ser Val Ser Leu Gly Thr Ala Met Ala Ser Thr Ile
115 120 125
Asn Leu Thr Thr Asn Asp Pro Trp Thr Glu Glu Phe Ile Trp Pro Val
130 135 140
Asp Lys Asp Thr Leu Ser Phe Cys Leu His Arg Ile Arg Asn Gly Gly
145 150 155 160
Thr Pro Val Ile Ser Leu Leu Glu Val Arg Pro Leu Pro Pro Glu Ala
165 170 175
Tyr Lys Ser Gly Met Gly Asp Tyr Pro Asn Lys Leu Leu Arg Lys Ser
180 185 190
Tyr Arg Ile Asp Ser Gly Tyr Thr Asn Gly Ser Leu Lys Tyr Pro Ala
195 200 205
Asp Pro Tyr Asp Arg Ile Trp Asp Ala Asp Lys Ser Phe Thr Pro Phe
210 215 220
His Val Thr Thr Gly Phe Lys Ile Gln Val Glu Phe Asn Leu Ser Gly
225 230 235 240
Leu Ser Glu Ser Pro Pro Pro Ala Val Leu Gln Thr Ala Arg Val Leu
245 250 255
Ala Arg Lys Glu Val Leu Thr Tyr Asn Phe Pro Leu Asp Ser Leu Gly
260 265 270
Asp Tyr Tyr Val Val Leu Tyr Phe Ala Gly Ile Leu Pro Ile Ser Pro
275 280 285
Ser Phe Asp Val Ile Ile Asn Gly Asp Ile Val Gln Ser Asn Tyr Thr
290 295 300
Val Lys Thr Ser Ala Ala Ser Ala Leu Tyr Val Thr Arg Lys Lys Ile
305 310 315 320
Lys Ser Leu Asn Val Thr Leu Lys Ser Lys Arg Phe Phe Pro Gln Val
325 330 335
Asn Ala Ile Glu Val Tyr Glu Leu Val Asp Ile Pro Pro Glu Ala Ser
340 345 350
Ser Thr Thr Val Ser Ala Leu Gln Val Ile Glu Gln Phe Thr Gly Leu
355 360 365
Asp Leu Gly Trp Glu Asp Asp Pro Cys Ser Pro Lys Pro Trp Asp His
370 375 380
Val Gly Cys Glu Gly Ser Leu Val Thr Ser Leu Asp Leu Ser Asp Ile
385 390 395 400
Asn Leu Arg Ser Ile Ser Pro Thr Phe Gly Asp Leu Leu Asp Leu Lys
405 410 415
Thr Leu Asp Leu His Asn Ala Ser Leu Ala Gly Glu Ile Gln Asn Leu
420 425 430
Asp Ser Leu Gln Asn Leu Glu Lys Leu Asn Leu Ser Phe Asn Lys Leu
435 440 445
Thr Ser Phe Gly Ser Asp Trp Glu Asn Leu Ile Ser Leu Gln Val Leu
450 455 460
Asp Val Gln Asn Asn Ser Leu Asp Gly Val Val Pro Asp Gly Leu Gly
465 470 475 480
Glu Leu Lys Asp Leu His Leu Leu Asp Leu Glu Asn Asn Leu Leu Gln
485 490 495
Gly Thr Leu Pro Asp Ser Leu Asn Arg Gln Ser Leu Glu Val Arg Thr
500 505 510
Ser Gly Asn Leu Cys Leu Ser Phe Ser Thr Thr Ala Cys Gly Asp Ala
515 520 525
Ser Ser Ser Pro Ser Ile Glu Ala Pro Gln Val Thr Ile Val Pro Glu
530 535 540
Arg Asn Lys Gly Gly His Asn Arg Leu Ala Ile Ile Leu Gly Ala Val
545 550 555 560
Gly Gly Val Ser Leu Ala Ile Leu Leu Ile Pro Leu Phe Val Phe Met
565 570 575
Tyr Arg Arg Arg Gly Arg Thr Glu Met Ser Tyr Thr Glu Arg Ala Val
580 585 590
Ala Asp Val Arg Asn Trp Asn Ala Ala Lys Ile Phe Ser Tyr Lys Glu
595 600 605
Ile Lys Thr Ala Thr Asn Asn Phe Lys Glu Val Ile Gly His Gly Ser
610 615 620
Phe Gly Ser Val Tyr Leu Gly Asn Leu Pro Val Gly Lys Leu Val Ala
625 630 635 640
Val Lys Val Arg Phe Asp Lys Thr Gln Leu Gly Ala Asp Ser Phe Ile
645 650 655
Asn Glu Val Arg Leu Leu Ser Gln Val Arg His Gln Asn Leu Val Ser
660 665 670
Leu Glu Gly Phe Cys Tyr Glu Ser Gln Arg Gln Ile Leu Val Tyr Glu
675 680 685
Tyr Leu Pro Gly Gly Ser Leu Ala Asp Gln Leu Tyr Gly Pro Asn Ser
690 695 700
Arg Lys Phe Ser Leu Ser Trp Val Arg Arg Leu Lys Ile Ala Val Asp
705 710 715 720
Ala Ala Lys Gly Leu Asp Tyr Leu His Asn Gly Ser Asn Pro Arg Ile
725 730 735
Ile His Arg Asp Ile Lys Cys Ser Asn Ile Leu Leu Asp Lys Glu Met
740 745 750
Asn Ala Arg Leu Cys Asp Phe Gly Leu Ser Lys Gln Met Ile Gln Pro
755 760 765
Asp Ala Thr His Val Thr Thr Val Val Lys Gly Thr Ala Gly Tyr Leu
770 775 780
Asp Pro Glu Tyr Tyr Ser Thr Gln Gln Leu Thr Glu Lys Ser Asp Val
785 790 795 800
Tyr Ser Phe Gly Val Val Leu Leu Glu Leu Ile Cys Gly Arg Glu Pro
805 810 815
Leu Asn His Ser Gly Thr Pro Asp Ser Phe Asn Leu Val Leu Trp Ala
820 825 830
Lys Pro Tyr Leu Gln Ala Gly Ala Phe Glu Ile Val Asp Glu Ser Leu
835 840 845
Gly Gly Ser Phe Asp Val Glu Ser Met Arg Lys Val Ala Lys Ile Ala
850 855 860
Val Arg Ser Val Glu Arg Asp Ala Ser Leu Arg Pro Thr Ile Ala Gln
865 870 875 880
Ile Leu Ser Val Leu Lys Glu Ala Tyr Ser Ile Gln Leu Ser Tyr Leu
885 890 895
Ala Ala Ser Gly His Val Asn
900




79


711


PRT


Pinus radiata



79
Met Gly Cys Arg Lys Ala Val Arg Ser Val Ser Pro Gln Asn Pro Ser
1 5 10 15
Ser Ser Leu Met His Leu Arg Leu Leu Gly Val Leu Leu Met Leu His
20 25 30
Cys Ile Asp Gly Leu Ile Leu Asn Pro Glu Val Ser Thr Leu Leu Thr
35 40 45
Leu Lys Pro Thr Leu Ser Gly Thr Gly Val Asn Val Val Leu Ala Ser
50 55 60
Trp Ser Ala Ser Arg Pro Leu Cys Gly Trp Lys Gly Val Met Trp Met
65 70 75 80
Tyr Asn Gly Ile Pro Val Asn Cys Ser Val Pro Lys Phe Arg His Ser
85 90 95
Val Ala Leu Ala Tyr Ser Arg Lys Val Ser Val Leu Gly Ile Asp Leu
100 105 110
Glu Ala Thr Gly Leu Lys Gly Thr Val Pro Lys Glu Leu Gly Ser Phe
115 120 125
Ile Tyr Leu Gln Gln Leu Asn Leu Asn Asn Asn Ser Leu Thr Gly Gly
130 135 140
Met Pro Pro Glu Leu Gly Asn Val Pro Asn Leu Ser Ser Leu Gln Leu
145 150 155 160
Lys Asn Asn Gly Leu Asn Gly Gly Ile Pro Thr Ala Ile Trp Asn Leu
165 170 175
Cys Asp Asn Ile Thr Glu Leu Glu Leu Gly Phe Asn Glu Leu Ser Gly
180 185 190
Ser Ile Pro Glu Pro Gly Asn Gly Ser Asn Ile Gly Cys Pro Gln Leu
195 200 205
Arg Arg Phe Glu Val Asn Asn Asn Ser Leu Thr Gly Thr Ile Pro Ser
210 215 220
Phe Leu Ala Asn Cys Ile Ser Leu Gln Glu Leu Asp Leu Ser Gly Asn
225 230 235 240
Ser Phe Thr Gly Glu Ile Pro Asn Glu Leu Ala Asn Leu Pro Asn Leu
245 250 255
Thr Thr Leu Asn Leu Ala His Asn Asn Leu Ser Gly Arg Ile Pro Ser
260 265 270
Phe Arg Gln Lys Phe Asp Lys Asn Ser Phe Val Glu Asn Ser Gly Ser
275 280 285
Leu Cys Gly Gln Pro Leu Leu Asn Pro Cys Gly Val Ala Pro Asn Ala
290 295 300
Ala Ser Ala Ala Ser Ala Asn Val Thr Ala Ala Gln Phe Asn Val Thr
305 310 315 320
Lys Ala His Phe Lys Ser Met Ser Thr Gly Ala Ile Ala Gly Ile Ile
325 330 335
Ile Gly Ser Ile Ala Val Val Val Ile Ala Ser Ser Leu Leu Ile Gly
340 345 350
Cys Tyr His Arg Phe Ser Thr Asp Ala Thr Asp Lys Ser Ser Ser Ser
355 360 365
Ser Ala Pro Ser Lys Lys Asp Lys Glu Glu Asp Met Asp Asn Val Ser
370 375 380
Gly Lys Leu Ile Asn Phe Gln Gly Gly Glu His Leu Thr Val Asp Asp
385 390 395 400
Val Leu Asn Ala Thr Gly Glu Val Leu Gly Lys Ser Ser Tyr Gly Thr
405 410 415
Val Tyr Lys Ala Arg Leu Ser Ser Gly Cys Met Ile Ala Leu Arg Leu
420 425 430
Leu Arg Asp Gly Cys Leu Arg Ser Thr Asp Glu Phe Met Pro Ala Ile
435 440 445
Gln Glu Leu Gly Thr Ile Arg His Lys His Leu Val Ser Leu Arg Ala
450 455 460
Phe Tyr Ser Gly Thr Arg Gly Glu Lys Leu Leu Ala Tyr Asp Tyr Leu
465 470 475 480
Pro Arg Gly Ser Leu Ala Glu Leu Leu His Ser Thr Asn Arg Pro Ala
485 490 495
Pro Gly Trp Ala Arg Arg His Lys Ile Ala Leu Gly Ala Ala Arg Gly
500 505 510
Leu Ala Tyr Leu His Thr Gly Phe His Lys Ser Ile Ile His Gly Asn
515 520 525
Ile Lys Ser Lys Asn Ile Leu Val Asp Asp Asn Tyr Val Ala His Leu
530 535 540
Ser Asp Tyr Gly Leu Asn Lys Leu Met Asn Ser Thr Ala Asn Ile Glu
545 550 555 560
Met Leu Glu Ala Ala Ala Ser Gln Gly Tyr Lys Ala Pro Glu Leu Ile
565 570 575
Lys Met Lys Arg Ala Asn Ala Lys Thr Asp Ile Tyr Ser Phe Gly Ile
580 585 590
Gly Leu Leu Glu Ile Leu Thr Gly Arg Arg Pro Gly Arg Thr Ser Ser
595 600 605
Ser Asn His Ile Val Asp Leu Pro Thr Val Val Lys Asn Ala Val Leu
610 615 620
Glu Glu Arg Ile Ser Glu Leu Phe Asp Leu Glu Leu Leu Arg Ala Met
625 630 635 640
Arg Ser Pro Ala Asp Glu Gly Leu Leu Gln Val Leu Gln Leu Ala Met
645 650 655
Gly Cys Cys Ala Pro Ser Pro Ser Val Arg Pro His Ile Lys Glu Val
660 665 670
Val Arg Gln Leu Glu Glu Ile Arg Pro Lys Pro Gln Ser Pro His Leu
675 680 685
Ala Leu Ser Pro Gln Tyr Asn Ser Asp Asp Lys Ser Ser Arg Glu Phe
690 695 700
Leu Leu Asp Gly Gly Gln Asn
705 710




80


707


PRT


Pinus radiata



80
Met Gly Lys Lys Ile Leu Gln Cys Leu Arg Leu Ile Ile Ala Ile Leu
1 5 10 15
Thr Ala Ser Ile Ala Ile Ser His Gly Thr Thr Asp Pro Asp Asp Val
20 25 30
Ser Ala Leu Lys Gly Ile Tyr Ser Ser Leu Asn Ser Pro Gln Gln Leu
35 40 45
Ser Gly Trp Ser Ala Asn Gly Gly Asp Pro Cys Gly Gln Ser Trp Lys
50 55 60
Gly Val Ser Cys Ser Gly Ser Ser Val Thr Leu Ile Lys Leu Ser Gly
65 70 75 80
Leu Gly Leu Ser Gly Ser Leu Tyr Tyr Gln Leu Ser Asp Leu Ser Ser
85 90 95
Leu Thr Thr Leu Asp Leu Ser Asn Asn Asn Ile Gln Gly Asn Ile Pro
100 105 110
Tyr Ala Leu Pro Gln Lys Leu Gln Glu Leu Asn Leu Ala Ser Asn Gly
115 120 125
Leu Ser Gly Thr Ile Pro Tyr Ser Ile Ser Asn Met Thr Gly Leu Thr
130 135 140
Asp Leu Lys Leu Ser His Asn Gln Leu Ser Gly Gln Ile Gln Asp Ile
145 150 155 160
Phe Gly Gln Leu Ser Ser Leu Ser Thr Leu Asp Leu Ser Phe Asn Thr
165 170 175
Leu Thr Gln Asn Leu Pro Gln Ser Phe Ser Ser Leu Ser Ser Leu Ser
180 185 190
Val Leu Tyr Leu Gln Asn Asn Gln Leu Ala Gly Ser Val Asn Val Leu
195 200 205
Ala Asn Leu Pro Leu Thr Asp Leu Asn Ile Glu Asn Asn Arg Phe Ser
210 215 220
Gly Trp Val Pro Asn Ala Trp Arg Ser Asn Gln Asn Phe Lys Tyr Ser
225 230 235 240
Ser Gly Asn Ser Phe Ala Thr Gly Pro Ala Pro Pro Pro Pro Pro Tyr
245 250 255
Thr Pro Pro Pro Pro Ser Asn Asn Arg Pro Pro Lys Ser Ser Asn Val
260 265 270
Val Pro Ser Ser Gly Gly Ser Lys Gly Gly Asn Ser Asn Lys Lys Ser
275 280 285
Leu Ser Gly Gly Ala Ile Val Gly Ile Ile Phe Ala Val Ile Leu Thr
290 295 300
Val Val Ala Ala Ile Leu Gly Val Ile Leu Tyr Ala Arg Lys Ser Pro
305 310 315 320
Arg Arg Glu Gln Asp Glu Glu Lys Leu Ser Asn Arg Val Ser Phe Thr
325 330 335
Pro Leu Ser Pro Leu Asp Ala Glu Leu Leu Lys Glu Ser Pro Glu Gln
340 345 350
Lys Val Ser Ser Ser Pro Leu Glu Ile Ala Leu Lys Pro Pro Pro Ser
355 360 365
Glu Arg Asn Lys Ser Thr Gly Asp Lys Gly Phe Gly Ser Ile Phe Ser
370 375 380
Ser Lys Arg Thr Lys Asn Pro Ile Ser Ala Thr Glu Tyr Ser Ile Ala
385 390 395 400
Asp Leu Gln Met Ala Thr Asn Ser Phe Ser Gln Asp Asn Leu Ile Ala
405 410 415
Glu Gly Ala Leu Gly Arg Ile Tyr Arg Ala Glu Phe Pro Asp Gly Lys
420 425 430
Ile Leu Ala Val Lys Lys Leu Asp Thr Ser Thr Leu Ser Leu Gln Arg
435 440 445
Pro Glu Asp Phe Leu Asp Ala Val Ser Asn Ile Ser Arg Leu His His
450 455 460
Pro Asn Ile Thr Glu Leu Val Gly Tyr Cys Thr Glu His Glu Gln Tyr
465 470 475 480
Leu Leu Val Tyr Glu Tyr Phe Asp Asn Gly Ser Leu Tyr Asp Val Leu
485 490 495
His Met Ala Asp Glu Thr Thr Arg Asn Leu Ser Trp Asn Ile Arg Val
500 505 510
Lys Ile Ala Leu Gly Ser Ala Arg Val Leu Glu Tyr Leu His Glu Val
515 520 525
Cys Ser Pro Ser Ile Val His Lys Lys Phe Lys Ser Ser Asn Ile Leu
530 535 540
Leu Asp Asp Asp Phe Asn Pro Arg Leu Ser Asp Cys Gly Ile Ala Ala
545 550 555 560
Leu Asn Pro Asn Ser Glu Arg Gln Val Gln Val Leu Gly Ser Phe Gly
565 570 575
Tyr Ser Ala Pro Glu Tyr Val Met Ser Gly Ile Tyr Thr Met Lys Ser
580 585 590
Asp Val Tyr Ser Phe Gly Val Val Met Leu Glu Leu Leu Thr Gly Arg
595 600 605
Lys Pro Leu Asp Ser Ser Arg Thr Arg Ser Glu Gln Ser Leu Val Arg
610 615 620
Trp Ala Thr Pro Gln Leu His Asp Ile Asp Ala Leu Ala Lys Met Val
625 630 635 640
Asp Pro Ala Leu Lys Gly Ser Tyr Pro Ala Lys Ser Leu Ser Arg Phe
645 650 655
Ala Asp Ile Ile Ala Leu Cys Ile Gln Pro Glu Pro Glu Phe Arg Pro
660 665 670
Pro Met Ser Glu Val Val Gln Ala Leu Val Arg Met Met Gln Arg Ala
675 680 685
Ser Leu Asn Lys Arg Met Thr Gly Asp Glu Thr Ala Asp His Asp Pro
690 695 700
Ala Asp Tyr
705




81


20


PRT


Pinus radiata



81
Met Gln Gln Pro Tyr Val Val Leu Ala Leu Trp Trp Ile Leu Val Leu
1 5 10 15
Arg His Pro Leu
20




82


89


PRT


Eucalyptus grandis



82
Met Arg Val Leu Phe Ile Val Leu Gly Val Val Leu Leu Cys Thr Val
1 5 10 15
Ile Pro Gly Ser Ser Ser Ser Val Ser Asp Val Asp Val Leu Leu Ala
20 25 30
Leu Lys Gln Gly Phe Gln Ser Pro Glu Pro Ala Leu Ile Thr Trp Ser
35 40 45
Ser Ser Asn Ser Ser Ser Val Cys Leu Trp Tyr Gly Ile Arg Cys Ser
50 55 60
Arg Gly Arg Val Val Ser Leu Gln Leu Thr Asp Leu Asn Leu Gly Gly
65 70 75 80
Ser Val Ser Pro Pro Val Ser Arg Leu
85




83


153


PRT


Pinus radiata



83
Met Leu Leu Cys Phe Val Leu Val Ala Gly Thr Ser Ala Ala Val Asp
1 5 10 15
Asp His Gln Tyr Leu Tyr His Pro Ser His Tyr Val Met Asn Glu Arg
20 25 30
Gln Glu Ser Gly Ser Ser Met Ala Arg His Glu Lys Arg Asp Val Glu
35 40 45
Ala Leu Leu Ser Phe Arg Asn Ala Ile Thr Ala Asp Pro His Gly Leu
50 55 60
Leu Ser Asn Trp Thr Ala His Asn Ser Ala Asn Ile Cys Ser Trp Asn
65 70 75 80
Gly Ile Gly Cys Arg Lys Gln Ser Arg Arg Val Val Ser Ile Tyr Leu
85 90 95
Arg Phe Ser His Leu Glu Gly Thr Leu Ser Pro Ser Val Gly Asn Ile
100 105 110
Ser Leu Leu His Thr Phe Val Leu Thr Val Asn Lys Leu Thr Gly Arg
115 120 125
Ile Pro Pro Glu Phe Gly Gln Leu Lys Ala Leu Gln Thr Leu Asp Leu
130 135 140
Tyr Arg Asn Leu Leu Ser Ser Ser Gly
145 150




84


154


PRT


Pinus radiata



84
Met Asp Leu Leu Leu Leu Leu Leu Val Met Met Gly Val Ala Met Pro
1 5 10 15
Thr His Ser Gln His Thr Gly Gly Phe Thr Ser Val Gln Arg Phe Pro
20 25 30
Phe Asn Gly Arg Ser Met Met Gly Lys Pro Ser Ile Ala Gly Tyr His
35 40 45
Glu Lys Arg Asp Val Glu Ala Leu Leu Ser Phe Arg Lys Gly Ile Thr
50 55 60
Leu Asp Pro Tyr Gly Trp Leu Ser Asn Trp Thr Ala Asn Asn Ser His
65 70 75 80
Asn Val Cys Leu Trp Asn Gly Ile Ser Cys Ser Pro Asn Thr Asn Arg
85 90 95
Val Val Glu Ile Ser Leu Arg Tyr Gly Arg Leu Asn Gly Thr Leu Ser
100 105 110
Pro Tyr Ile Gly Asn Leu Ser Leu Leu Arg His Leu Asp Leu Ser Ser
115 120 125
Asn Ala Leu Ser Gly Arg Ile Pro Ala Lys Phe Gly Gln Leu Lys Ala
130 135 140
Leu Arg Ile Leu Asp Leu Ser Asn Asn Ala
145 150




85


82


PRT


Eucalyptus grandis



85
Met Val Phe Arg Arg Phe Val Val Met Leu Phe Ile Cys Thr Ala Ser
1 5 10 15
Val Cys Ala Gly Leu Thr Asp Pro Arg Asp Val Ala Ala Ile Asn Ser
20 25 30
Leu Tyr Val Ser Leu Gly Tyr Pro Pro Leu Arg Gly Trp Leu Leu Val
35 40 45
Gly Gly Asp Pro Cys Val Asp Asn Trp Glu Gly Val Glu Cys Val Ile
50 55 60
Ser Asn Ile Thr Gly Leu Asn Leu Ser Gly Ala Asn Leu Gly Gly Glu
65 70 75 80
Leu Gly




86


103


PRT


Eucalyptus grandis



86
Met Gly Phe Phe Tyr Gln Val Phe Leu Ile Phe Leu Ala Val Ala Pro
1 5 10 15
Ser Ala Leu Cys Gln Val Thr Glu Phe Val Ser Ile Asp Cys Gly Gly
20 25 30
Ser Ser Asn Tyr Thr Asp Pro Thr Thr Gly Leu Ala Trp Ile Pro Asp
35 40 45
Thr Gly Leu Met Ser Tyr Gly Gln Ser Ser Lys Val Gln Asn Pro Asn
50 55 60
Val Ser Ser Val Gln Tyr Ser Thr Arg Arg Asp Phe Pro Ile Asp Gly
65 70 75 80
Gln Lys Tyr Cys Tyr Thr Leu Arg Thr Glu Glu Arg Arg Arg Tyr Ile
85 90 95
Val Arg Thr Thr Phe Leu Tyr
100




87


156


PRT


Pinus radiata



87
Met Ala Phe Pro Cys Phe Tyr Phe Pro Phe Arg Ile Leu Phe Phe Leu
1 5 10 15
Phe Val Cys Ser Phe Ser Phe Ser Phe Ser Phe Ser Ala His Lys Phe
20 25 30
His Asp Gly Arg Lys Trp Leu Leu Ser Phe Lys Ile Asp Ile Thr Asn
35 40 45
Asp Pro His Ala Ser Met Ala Asn Trp Ser Pro Ala Val His Leu Cys
50 55 60
Asn Trp Thr Ala Val Thr Cys Ser Arg Arg His Ala Asp Arg Val Val
65 70 75 80
Ser Leu Asp Leu Ser Gly Met Asp Leu Ser Gly Ser Ile Ser Pro Ser
85 90 95
Leu Gly Asn Leu Ser Phe Leu His Thr Leu Asn Leu Ser Ala Asn Ala
100 105 110
Leu His Gly His Ile Pro Pro Gln Leu Gly Arg Leu Phe Arg Leu Arg
115 120 125
Asn Leu Trp Leu Arg Asn Asn Phe Leu Gln Gly Asn Ile Pro Thr Glu
130 135 140
Phe Ala Ser Leu Lys His Leu Gln Gln Leu Tyr Leu
145 150 155




88


98


PRT


Eucalyptus grandis



88
Met Arg Phe Ser Ser Leu Lys Arg Arg Arg Trp Ile Met Arg Thr Ala
1 5 10 15
Ile Ile Ile Thr Ser Leu Met Cys Cys Ser Ser Ala Arg Asp Ser Met
20 25 30
Thr Leu Ser Ser Pro Leu Ser Asp Glu His Gly Asp Thr Leu Val Ser
35 40 45
Asp Gly Gly Thr Phe Gln Leu Gly Phe Phe Ser Pro Asn Gly Ser Ser
50 55 60
Gly Ser Asp His Arg Arg Tyr Leu Gly Ile Trp Tyr Tyr Asp Ser Asp
65 70 75 80
Pro Gln Thr Val Val Trp Val Ala Asn Arg Asp His Pro Val Leu Asp
85 90 95
Val Thr




89


154


PRT


Eucalyptus grandis



89
Met Gly Leu Ala Arg Leu Leu Leu Val Gly Phe Val Leu Leu Val Leu
1 5 10 15
Gly Ser Arg Ala Leu Val Cys Gly Asn Ala Glu Leu Glu Ala Leu Met
20 25 30
Glu Ile Lys Ala Ser Leu Asp Pro Glu Asn Lys Val Leu Thr Ser Trp
35 40 45
Thr Ser Asn Gly Asp Pro Cys Gly Gly Ser Phe Asp Gly Val Ala Cys
50 55 60
Asn Glu His Gln Lys Val Ala Asn Ile Ser Leu Gln Gly Lys Gly Leu
65 70 75 80
Ser Gly Lys Val Pro Pro Ala Val Ala Gln Leu Lys Cys Leu Ser Gly
85 90 95
Leu Tyr Leu His Tyr Asn Tyr Leu Thr Gly Glu Ile Pro Arg Glu Ile
100 105 110
Ser Ser Leu Thr Glu Leu Thr Asp Leu Tyr Leu Asp Val Asn Asn Leu
115 120 125
Thr Gly Ser Ile Pro Ser Glu Ile Gly Ser Met Ala Ser Leu Gln Gly
130 135 140
Glu Phe Cys Leu Leu Leu Gln Gly Gln Gly
145 150




90


157


PRT


Eucalyptus grandis



90
Met Gly Val Lys Arg Ala Asn Ser Ser Leu Cys Cys Val Val Leu Leu
1 5 10 15
Gly Leu Trp Ala Cys Val His Gly Leu Leu Ser Pro Ser Gly Val Asn
20 25 30
Ile Glu Val Leu Ala Leu Met Asp Ile Arg Asn Leu Leu Val Asp Pro
35 40 45
His Gln Val Leu Asn Asn Trp Asp Ala Asn Glu Val Thr Pro Cys Thr
50 55 60
Trp Thr Ala Ile Thr Cys Glu Ala Asp Val Val Thr Asn Leu Glu Ile
65 70 75 80
Pro Arg Gln Asn Leu Ser Gly Thr Leu Ser His Ser Ile Gly Asn Leu
85 90 95
Ile Asn Leu Lys Tyr Leu Phe Leu Gln Asp Asn Asn Ile Ser Gly Phe
100 105 110
Ile Pro Pro Glu Leu Gly Lys Leu Gln Lys Leu Glu Met Leu Asp Ile
115 120 125
Ser Ser Asn Ser Phe Ser Gly Glu Ile Pro Thr Glu Leu Ser His Leu
130 135 140
Lys Asn Leu Gln Gln Leu Arg Met Asn Tyr Asn Asn Leu
145 150 155




91


141


PRT


Eucalyptus grandis



91
Met Val Ser Ser Leu Leu Leu Ser Ser Gln Pro Asn Leu Val Val Gly
1 5 10 15
Phe Leu Phe Leu Leu Leu Leu Val Asp Thr Thr Pro Phe His Gly Ala
20 25 30
Gly Asp Met Ala Ser Ser Thr Ser Phe Phe Thr Ile Asn Met Thr Lys
35 40 45
Ser Lys Asp Glu Val Glu Ala Leu Leu Asn Trp Lys Ser Thr Leu Asp
50 55 60
Asn Tyr Ser Gln Cys Leu Leu Ser Ser Trp His Asp Asn Asn Pro Cys
65 70 75 80
Gly Phe Ser Gly Val Thr Cys Asp Asp Ser Lys Ala Val Asn Asn Leu
85 90 95
Asn Leu Ser Asn Leu Gly Leu Arg Gly Thr Leu Asp Gly Leu Asp Phe
100 105 110
Ser Cys Leu Thr Asn Leu Val Thr Phe Asp Leu Ser Tyr Asn Ala Ile
115 120 125
Tyr Gly Ser Ile Pro Ser Ser Ile Gly Asn Leu Ser Lys
130 135 140




92


90


PRT


Eucalyptus grandis



92
Met Glu Gly Lys His Leu Val Phe Leu Thr Ile Leu Leu Leu Glu Ser
1 5 10 15
Ile Cys Ser Asn Val Ser Ala Ile Pro Asn Glu Asp Lys Gln Ala Leu
20 25 30
Leu Asp Phe Leu Gly Asn Val Ser Leu Ser Arg Pro Leu Asn Trp Asn
35 40 45
Lys Asp Ser Ser Val Cys Arg Ser Trp Thr Gly Val Lys Cys Asn Asn
50 55 60
Asp Gln Ser Arg Val Val Ala Leu Gln Leu Pro Gly Val Gly Ile Lys
65 70 75 80
Gly Arg Ile Pro Pro Asn Thr Leu Ser Arg
85 90




93


198


PRT


Pinus radiata



93
Met Ala Tyr Lys Leu Leu Arg Phe Trp Leu Glu Phe Gln Ala Leu Leu
1 5 10 15
Val Leu Phe Pro Leu Ala Leu Ser Val Ser Gln Glu Gly Leu Val Leu
20 25 30
Leu Glu Val Lys Lys Glu Leu Ser Asp Pro Asn Gly Phe Leu Gly Asn
35 40 45
Trp Lys Ala Glu Asp Asp Ser Pro Cys Lys Trp Arg Gly Ile Ser Cys
50 55 60
Asp Gln Arg Ser Lys Ser Val Val Gly Ile Asp Leu Ser Ser Gly Gly
65 70 75 80
Leu Val Gly Val Phe Pro Ser Val Val Cys Asn Leu Pro Gln Leu Lys
85 90 95
Asn Leu Ser Leu Gly Asp Asn Asn Ile Gly Ser Ile Leu Pro Arg Asn
100 105 110
Leu Ser Met Cys Arg Gln Leu Gln Arg Leu Asn Leu Ser Gln Asn Leu
115 120 125
Phe Val Gly Asn Leu Pro Asp Phe Ile Ser Glu Leu Ala Glu Leu Glu
130 135 140
Tyr Leu Asp Leu Ser Ser Asn Asn Phe Ser Gly Ser Ile Pro Ala Gly
145 150 155 160
Ile Gly Lys Leu Pro Arg Leu Gln Val Leu Asn Leu Cys Cys Asn Leu
165 170 175
Leu Asn Glu Thr Ile Pro Thr Phe Leu Gly Asn Leu Ser Asn Leu Gln
180 185 190
Gln Leu Leu Leu Ala Tyr
195




94


151


PRT


Pinus radiata



94
Met Gly Ser Ser Ala Ser Pro Phe Met Val Leu Leu Leu Leu Ser Thr
1 5 10 15
Leu Ile Leu Glu Ile Leu Pro Met Tyr Val Ala Thr Asn Arg Ser Glu
20 25 30
Ala Asp Leu Gln Gly Leu Ile Ala Phe Lys Ala Ser Ile Thr Ser Asp
35 40 45
Pro Leu Asn Ala Leu Ala Asp Trp Thr Ala Ser Ala His His Cys Asn
50 55 60
Trp Ser Gly Val Ala Cys Asp Pro Leu His Asn Val Ile Ser Ile Ser
65 70 75 80
Leu Pro Glu Thr Gln Ile Gln Gly Leu Ile Ser Pro Phe Leu Ala Asn
85 90 95
Ile Ser Tyr Leu Ala Ser Leu Asp Leu Arg Ser Asn Phe Phe His Gly
100 105 110
Val Ile Pro Pro Gln Leu Ala Leu Cys Ser Gln Leu Ile Asp Leu Glu
115 120 125
Leu Phe Asn Asn Ser Leu Thr Gly Ile Lys Leu Ile Asp Thr Val Asp
130 135 140
Leu Glu Gly Gly Pro Gly Thr
145 150




95


151


PRT


Pinus radiata



95
Met Glu Val Arg Met Ile Thr Ile Met Ile Leu Cys Ala Ala Leu Leu
1 5 10 15
Cys Glu Gly Ser Gly Glu Val Asp Val Leu Met Glu Met Lys Ala Ala
20 25 30
Leu Asp Pro Lys Gly Glu Ile Leu Tyr Ser Trp Val Lys Gly Gly Asp
35 40 45
Pro Cys Ser Gly Thr Phe Asp Gly Val Ala Cys Asn Glu Gln Gly Lys
50 55 60
Val Ala Asn Val Ser Leu Gln Gly Lys Gly Leu Ser Gly Ser Ile Pro
65 70 75 80
Ser Thr Ile Gly Lys Leu Lys Cys Leu Thr Gly Leu Tyr Leu His Tyr
85 90 95
Asn Ser Leu Gly Gly Glu Ile Pro Arg Glu Leu Ser Asn Leu Thr Glu
100 105 110
Leu Leu Asp Leu Tyr Leu Asn Val Asn Gly Leu Ser Gly Pro Ile Pro
115 120 125
Lys Glu Leu Gly Ala Met Ser Ser Leu Gln Ala Leu Gln Leu Cys Cys
130 135 140
Asn Lys Leu Thr Gly Pro Ile
145 150




96


116


PRT


Pinus radiata



96
Met Asp Leu Leu Leu Leu Leu Leu Val Met Met Gly Val Ala Met Pro
1 5 10 15
Thr His Ser Gln Gln Thr Gly Gly Phe Thr Ser Val Gln Arg Phe Pro
20 25 30
Phe Asn Gly Arg Ser Met Met Gly Lys Pro Ser Leu Phe Pro Ser Ser
35 40 45
Ile Ala Gly Tyr His Glu Lys Arg Asp Val Glu Ala Leu Leu Ser Phe
50 55 60
Arg Lys Gly Ile Ile Ser Asp Pro Val Gly Ser Leu Ser Asp Trp Thr
65 70 75 80
Ala Asn Asn Ser His Asn Val Cys Leu Trp Asn Gly Ile Ser Cys Arg
85 90 95
Pro Asn Thr Lys Arg Val Val Ser Ile Ser Leu Pro Glu Cys Leu Leu
100 105 110
Asn Gly Thr Leu
115




97


155


PRT


Pinus radiata



97
Met Arg Glu Arg Glu Thr Lys Val Cys Ile Phe Ile Phe Cys Ile Phe
1 5 10 15
Thr Ser Trp Ala Leu Val Asp Phe Gly Val Pro Ala Val Phe Ala Ala
20 25 30
Gln Glu Thr Gln Ile Gln Ile Leu Leu Arg Met Lys Glu Ala Leu Glu
35 40 45
Asp Pro Thr Asn Ala Leu Arg Asp Trp Asp Gly Ser Glu Asp Ser Pro
50 55 60
Cys Arg Trp Arg Gly Ile Asp Cys Asn Asp Glu Gly Ala Val Thr Arg
65 70 75 80
Ile Gln Leu His Gly Ser Ser Leu Ser Gly Arg Ile Leu Pro Asp Ile
85 90 95
Cys Asn Leu Gln Ser Leu Ile Ile Phe Glu Leu Asp Arg Asn Ser Leu
100 105 110
Tyr Gly Asn Phe Pro Pro Glu Phe Ser Asn Cys Ser Arg Leu Glu Gln
115 120 125
Leu Asn Leu Ser Ser Asn Leu Leu Asn Gly Ser Leu Pro Asp Leu Ser
130 135 140
Lys Leu Lys Ala Leu Lys Tyr Leu Asp Leu Ser
145 150 155




98


96


PRT


Pinus radiata



98
Met Pro Thr His Ser Gln Arg Phe Pro Phe Asn Gly Trp Ser Met Met
1 5 10 15
Gly Lys Pro Ser Leu Phe Pro Ser Ser Ile Ala Gly Tyr His Glu Lys
20 25 30
Arg Asp Val Glu Ala Leu Leu Thr Phe Arg Lys Gly Ile Thr Leu Asp
35 40 45
Pro Tyr Gly Trp Leu Ser Asn Trp Thr Ala Asn Asn Ser His Asn Val
50 55 60
Cys Leu Trp Asn Gly Ile Ser Cys Ser Pro Asn Thr Asn Arg Val Val
65 70 75 80
Ser Ile Ser Leu Arg Tyr Gly Arg Leu Asn Gly Thr Leu Ser Pro Tyr
85 90 95




99


154


PRT


Pinus radiata



99
Met Asp Leu Leu Leu Leu Met Met Met Leu Val Met Met Gly Val Ala
1 5 10 15
Met Pro Thr His Ser Gln Arg Phe Pro Phe Asn Gly Arg Ser Met Met
20 25 30
Gly Lys Pro Ser Leu Phe Pro Ser Ser Ile Ala Gly Tyr His Glu Lys
35 40 45
Arg Asp Val Glu Ala Leu Leu Thr Phe Arg Lys Gly Ile Thr Phe Asp
50 55 60
Pro His Glu Trp Leu Ser Asn Trp Thr Ala Asn Asn Ser His Asn Val
65 70 75 80
Cys Leu Trp Asn Gly Ile Ser Cys Arg Pro Asn Thr Lys Arg Val Val
85 90 95
Ser Ile Ser Leu Pro Gln Arg Ser Leu Asn Gly Thr Leu Ser Pro Tyr
100 105 110
Ile Gly Asn Leu Ser Leu Leu Gln Gln Leu Asp Leu Ser Phe Asn Ala
115 120 125
Leu Ser Gly Arg Ile Pro Ala Glu Phe Gly Gln Leu Lys Ala Leu Arg
130 135 140
Thr Phe Glu Val Arg His Asn Ala Leu Ser
145 150




100


126


PRT


Eucalyptus grandis



100
Met Ala Ser Cys Gly Gly Leu Val Ser Thr Phe Leu Leu Ala Ile Phe
1 5 10 15
Val Thr Gln Ile Val Glu Phe Ser His Ser Ile Ala Ser Thr Asn Val
20 25 30
Ser Cys Ile Gly Val Glu Arg Glu Ala Leu Leu Lys Phe Lys His Gly
35 40 45
Leu Thr Asp Pro Trp Lys Arg Leu Ser Ser Trp Thr Gly Glu Glu Cys
50 55 60
Cys Lys Trp Glu Gly Val Glu Cys Asn Glu Lys Thr Gly His Val Leu
65 70 75 80
Lys Leu Asp Leu His Asn Pro Cys Ile Glu Glu Ile Asp Met Leu Glu
85 90 95
Pro Ser Tyr Lys Cys Arg Leu Gly Gly Asn Ile Val His Ser Leu Thr
100 105 110
Glu Leu Lys Tyr Leu Lys His Leu Asp Leu Ser Ile Asn Asn
115 120 125




101


128


PRT


Eucalyptus grandis



101
Met Cys Ser Arg Arg Val Val Ser Ser Met Glu Thr Asn Pro Ile His
1 5 10 15
Leu Ile Tyr His Val Phe Phe Ile Val Ile Gly Leu Val Ser Val Ser
20 25 30
Ala Ala Glu Gln Ser Ala Ser Ser Arg Lys Thr Asp Ala Glu Ala Leu
35 40 45
Ile Leu Phe Lys Lys Met Ile Gln Lys Asp Pro Ser Gly Val Leu Ser
50 55 60
Gly Trp Gln Leu Asp Gln Asp Leu Cys Ala Trp Tyr Gly Val Thr Cys
65 70 75 80
Tyr Ser Gly Arg Val Thr Gln Leu Asp Leu His Gly Gln Ser Leu Glu
85 90 95
Ala Thr Met Ser Phe Asp Pro Leu Ser Ser Leu Asp Met Leu Thr Val
100 105 110
Ser Ile Cys His Gln Thr Arg Ser Pro Ser Ile Gln Leu Pro Cys Phe
115 120 125




102


128


PRT


Pinus radiata



102
Met Asp Leu Leu Leu Leu Leu Leu Val Met Met Gly Val Ala Met Pro
1 5 10 15
Thr His Ser Gln Arg Phe Pro Phe Asn Gly Arg Ser Met Met Gly Lys
20 25 30
Pro Ser Leu Phe Pro Ser Ser Ile Ala Gly Tyr His Glu Lys Arg Asp
35 40 45
Val Glu Ala Leu Leu Ser Phe Arg Lys Gly Ile Ile Ser Asp Pro His
50 55 60
Gly Ser Leu Ser Asp Trp Thr Ala Asn Asn Ser His Asn Val Cys Leu
65 70 75 80
Trp Asn Gly Ile Ser Cys Arg Pro Asn Thr Asn Arg Val Val Ser Ile
85 90 95
Ser Leu Pro Tyr Cys Arg Leu Ser Gly Thr Leu Ser Pro Tyr Ile Gly
100 105 110
Asn Leu Ser Leu Leu Arg Tyr Leu Tyr Leu Ser Asn Asn Asp Leu Ser
115 120 125




103


153


PRT


Pinus radiata



103
Met Arg Ser Val Phe Arg Ile Ser Ser Leu Leu Val Ile Ser Ile Leu
1 5 10 15
Val Leu Leu Thr Leu Ser Ser Ala Ile Asn Asp Asp Ala Glu Met Leu
20 25 30
Leu Ala Phe Lys Ser Ala Met Ser Asp Pro Asp Gly Ala Leu Ala Gly
35 40 45
Trp Thr Glu Ser Asp Ala Ala Asn Phe Cys Gly Trp Thr Gly Val Leu
50 55 60
Cys Asn Glu Phe Asn Arg Thr Ser Ser Leu Asp Leu Thr Asn Met Asn
65 70 75 80
Leu Ser Gly Ile Ile Pro Pro Arg Thr Leu Ser Ser Leu Asp Ser Leu
85 90 95
Val Asn Leu Ser Leu Ala Leu Asn Lys Phe Ser Thr Pro Phe Pro Ser
100 105 110
Ala Ile Leu Asp Ile Ser Thr Leu Arg Phe Leu Asn Ile Ser Asn Asn
115 120 125
Asn Phe Ser Gly Glu Ile Pro Ala Asn Ile Ser Arg Leu Val Asn Leu
130 135 140
Glu Leu Leu Asp Thr Tyr Asn Asn Asn
145 150




104


173


PRT


Pinus radiata



104
Met Ala Pro Leu Leu Gly Ile Leu Leu Leu His Ala Leu Ile Phe Ser
1 5 10 15
Tyr Gly Glu Glu Ala His Val Ala Gly Ser Asn His Thr Glu Val Arg
20 25 30
Ala Leu Met Ala Leu Lys Ala Gly Ile Val Asp Thr Ser Gly His Leu
35 40 45
Ser Asp Trp Glu Val His Gly Asp Glu Leu Ser Ala Ser Pro Cys Ser
50 55 60
Trp Thr Gly Val Phe Cys Asp Leu Glu Ser Glu Asn Val Thr Glu Leu
65 70 75 80
Asp Leu Ser Arg Met Asn Leu Thr Gly Thr Ile Ser Asp Glu Ile Arg
85 90 95
Glu Leu Gln His Leu Lys Val Leu Asn Ile Ser Phe Asn Gln Phe Ser
100 105 110
Gly Ala Phe Pro Val Val Ile Phe Asn Leu Thr Arg Leu Arg Ser Leu
115 120 125
Asp Ile Asn His Asn Ser Phe Glu Gly Tyr Phe Pro Ala Gly Ile Ser
130 135 140
Lys Met Lys Asn Leu Val Asn Phe Ile Ala Phe Ser Asn Ser Phe Lys
145 150 155 160
Gly Pro Leu Pro Leu Glu Phe Val Glu Met Leu Phe Trp
165 170




105


247


PRT


Eucalyptus grandis



105
Met Ala Ala Pro Ser Ser Ser Ala Ala Ser Ala Ala Val Phe Ala Leu
1 5 10 15
His Ser Leu Leu Leu Leu Leu Leu Leu Ala Ala Ala Val Glu Asp Asp
20 25 30
Val Leu Cys Leu Glu Gly Val Lys Arg Ser Leu Gly Asp Pro Gln Gly
35 40 45
Ser Leu Ala Asp Trp Thr Phe Ala Asn Thr Ser Ala Ser His Ile Cys
50 55 60
Asn Leu Asn Gly Val Ala Cys Trp Asn Leu Asn Glu Asn Arg Ile Ile
65 70 75 80
Ser Leu Ser Leu Thr Gly Phe Gly Val Ser Gly Gly Leu Pro Glu Ser
85 90 95
Leu Lys Asn Cys His Ser Leu Gln Thr Leu Asp Leu Ser Gln Asn Lys
100 105 110
Leu Asp Gly Pro Ile Pro Ala Gln Ile Cys Glu Trp Leu Pro Tyr Leu
115 120 125
Val Lys Leu Asp Leu Ser Ser Asn Ser Leu Ala Gly Pro Ile Pro Ser
130 135 140
Gln Ile Gly Asp Cys Lys Phe Leu Asn Asn Leu Ile Leu Asn Asp Asn
145 150 155 160
Lys Leu Thr Gly Pro Ile Pro Tyr Glu Val Gly Arg Leu Asp Arg Leu
165 170 175
Lys Val Phe Ser Val Arg Gly Asn Asp Leu Ser Gly Ser Ile Pro Ser
180 185 190
Glu Leu Ser Lys Phe Ser Ser Asp Asp Phe Ser Asp Asn Asp Asp Leu
195 200 205
Cys Gly Arg Pro Leu Gly Ser Cys Gly Gly Leu Ser Lys Lys Ser Leu
210 215 220
Ala Ile Ile Ile Ala Ala Gly Val Leu Gly Ala Ala Ala Ser Leu Leu
225 230 235 240
Leu Gly Phe Ala Leu Trp Trp
245




106


145


PRT


Pinus radiata



106
Met Asp Leu Leu Leu Leu Leu Val Met Met Phe Val Cys Ser Val Met
1 5 10 15
Met Gly Val Ala Met Pro Thr Asp Gly Phe Thr Ser Val Glu Ser Val
20 25 30
Pro Phe Asn Gly Arg Asn Arg His Lys Arg Asp Val Glu Ala Leu Leu
35 40 45
Ser Phe Lys Glu Ser Ile Ile Ser Asp Pro Tyr Gly Ser Leu Thr Asn
50 55 60
Trp Thr Ala Asn Asn Ser His Asn Val Cys Leu Trp Asn Gly Ile Ser
65 70 75 80
Cys Arg Pro Asn Thr Lys Arg Val Val Ser Ile Ser Leu Pro Glu Cys
85 90 95
Trp Leu Asn Gly Thr Leu Ser Pro Tyr Ile Gly Asn Leu Ser Leu Leu
100 105 110
Arg His Leu Asp Leu Ser Trp Asn Ala Leu Ser Gly Arg Ile Pro Ala
115 120 125
Glu Phe Gly Gln Leu Lys Ala Leu Arg Ile Leu Asp Leu Ser Ala Ser
130 135 140
His
145




107


150


PRT


Pinus radiata



107
Met Ala Pro Ser Thr Asp Phe Ile Leu Ile Thr Ser Thr Leu Met Leu
1 5 10 15
Ile Phe Val Ser Ala Asn Ala His Leu Leu His His Tyr His Glu Lys
20 25 30
Ser Arg Glu Arg Leu Gln Val Asp Ile Glu Ala Leu Gln Ala Phe Lys
35 40 45
Ala Ser Leu Thr Tyr Asp Pro Ser His Ala Leu Ala Asn Trp Asp Phe
50 55 60
Val Ala Asn His Val Cys Asn Trp Thr Gly Val Thr Cys Asn Pro His
65 70 75 80
Lys Leu Arg Val Ser Ala Leu Asn Leu Tyr Asn Met Ser Leu Gln Gly
85 90 95
Thr Ile Pro Pro His Leu Gly Asn Ile Ser Phe Leu Gly Val Leu Asn
100 105 110
Leu Thr Leu Asn Ser Phe Ser Gly Ile Ile Pro Asn Glu Leu Gly Lys
115 120 125
Leu Arg Arg Leu Lys Arg Leu Ser Leu Lys Gln Asn Gln Leu Ile Ser
130 135 140
Ser Ile Pro Arg Leu Lys
145 150




108


126


PRT


Pinus radiata



108
Met Arg Met Phe Leu Leu Leu Val Tyr Leu Phe Pro Leu Val Thr Pro
1 5 10 15
Phe Ala Phe Ser Thr Val Gln Leu Ser Asn Gly Ser Asn Ala Val Asp
20 25 30
Gln Glu Ala Val Leu Gly Phe Leu Ser Ala Ile Thr Asn Asp Pro Tyr
35 40 45
Gln Ser Leu Pro Thr Asn Trp Lys Ser Asn Val Ser Val Cys Glu Trp
50 55 60
Thr Ile Ile Lys Cys Asn Gly Ser Arg Val Val Ser Leu Asn Val Ser
65 70 75 80
Ser Met Gly Leu Glu Gly Thr Ile Ser Pro Leu Leu Gly Asn Leu Ser
85 90 95
Phe Leu Glu Lys Leu Asp Leu Arg Asn Asn Asn Phe His Gly Pro Ile
100 105 110
Pro Tyr Gln Leu Gly Ser Leu Val Arg Leu Gln Met Leu Ile
115 120 125




109


118


PRT


Eucalyptus grandis



109
Met Glu Ser Cys Asn Cys Val Glu Pro Gln Trp Pro Ala Asp Glu Leu
1 5 10 15
Leu Met Lys Tyr Gln Tyr Leu Ser Asp Phe Phe Ile Ala Leu Ala Tyr
20 25 30
Phe Ser Ile Pro Leu Glu Leu Ile Tyr Phe Val Lys Lys Ser Ala Val
35 40 45
Phe Pro Tyr Arg Trp Val Leu Val Gln Phe Gly Ala Phe Ile Val Leu
50 55 60
Cys Gly Ala Thr His Leu Ile Asn Leu Trp Thr Phe Ala Ile His Ser
65 70 75 80
Arg Thr Val Ala Tyr Val Met Thr Ile Ala Lys Val Leu Thr Ala Ala
85 90 95
Val Ser Cys Ile Thr Ala Leu Met Leu Val His Ile Ile Pro Asp Leu
100 105 110
Leu Ser Val Lys Thr Arg
115




110


132


PRT


Pinus radiata



110
Phe Val Ser Asn Ala His Phe Tyr Leu Lys Val Gln Val Lys Asp Ser
1 5 10 15
Gly Cys Gly Ile Gln Pro Gln Asp Ile Pro Gln Ile Phe Thr Arg Phe
20 25 30
Ile His Pro Arg Ser Gly Ser Asn Arg Gly Asn Gly Ser Gly Gly Leu
35 40 45
Gly Leu Ala Ile Cys Lys Arg Phe Ile Asn Leu Met Gly Gly His Ile
50 55 60
Ser Ile Glu Ser Glu Gly His Asp Lys Gly Thr Ile Val Thr Phe Val
65 70 75 80
Val Lys Leu Gln Lys Cys Ser Asn Ala Asn Asp Ser Ala Ala His Glu
85 90 95
Ile Thr Ser Arg Ala Gln Ser Ile His Glu Ser Thr His Phe Ala Arg
100 105 110
His Lys Pro Leu Ile Asp Thr Asp Arg Thr Val Pro Ser Ser Ser Gln
115 120 125
Tyr Gln Arg Ser
130




111


117


PRT


Pinus radiata



111
Ile Leu Ser Lys Arg Trp Tyr Ala Leu Met Val Leu Met Leu Pro Ser
1 5 10 15
Asp Ser Ala Arg Arg Trp His Val His Glu Leu Glu Leu Val Glu Val
20 25 30
Val Ala Asp Gln Val Ala Val Ala Leu Ser His Ala Ala Ile Leu Glu
35 40 45
Glu Ser Met Arg Ala Arg Asp Leu Leu Met Glu Gln Asn Val Ala Leu
50 55 60
Glu Ile Ala Arg Gln Glu Ala Glu Thr Ala Ile Arg Ala Arg Asn Asp
65 70 75 80
Phe Leu Ala Val Met Asn His Glu Met Arg Thr Pro Met His Ala Ile
85 90 95
Ile Ala Leu Ser Ser Leu Leu Gln Glu Thr Glu Leu Thr Pro Glu Gln
100 105 110
Arg Ser Met Val Glu
115




112


232


PRT


Pinus radiata



112
Val Ala Thr Pro Ser Ser His Ser Cys Ser Ser Phe Pro Leu Leu Pro
1 5 10 15
Ser Thr Thr Val Thr Thr Arg Asp Arg Ser Ala Ser Asn Ala Ser Ser
20 25 30
Ser Ser Gly Thr Ser Ser Thr Cys Val Ser Thr Ser Tyr Gly Ala Ile
35 40 45
Ala Thr Gly Ser Asp Asn Ala Ala Ile Glu Gly Ser Pro Pro Ala Ala
50 55 60
Val Ala Ala Ala Ile Met Thr Pro Ser Ser Asp Gln His His His Leu
65 70 75 80
His Ala Pro Gln Pro Ile Asn Val Gly Asn Thr Cys Ala Val Ala Met
85 90 95
Asp Thr Leu Ala Gln His Ser Cys Ser Ser Gly Met Ala Ser Pro Pro
100 105 110
Ser Thr Pro Thr Gly Ile Thr Asn Val Ala Arg Leu Thr Met Arg Ala
115 120 125
Gly Ala Gly Gly Asp Gly Asp Ser His Ala Leu Ala Leu Gly Ser Asp
130 135 140
Pro Ile Ala Thr Gln Ser Pro Ser Thr Lys Arg Arg Ala Ala Ser Ala
145 150 155 160
Pro Trp Pro Trp Ala Tyr Thr Arg Val Pro Ile Val Ala Ala Thr Ala
165 170 175
Gly Ala Leu Glu Glu Glu Gln Lys Glu Cys Ile Gln Ala Gly Met Asp
180 185 190
Asp Val Leu Thr Lys Pro Ile Asp Arg Tyr Gln Leu Gln Arg Lys Leu
195 200 205
Ala Arg Phe Ser Pro Arg Phe Thr Ser Leu Val Val Ala Ser Ser Ala
210 215 220
Pro Ala Ser Gln Gln Ala His Gln
225 230




113


166


PRT


Pinus radiata



113
Thr Arg Val Leu Leu Ile Asp Asp His Pro Leu Phe Arg Glu Gly Leu
1 5 10 15
Ala Gly Ala Ile Gln Ala Glu Pro Asp Phe Glu Val Val Gly Gln Ala
20 25 30
Gly Thr Val Asp Glu Leu Arg Gly Leu Ala Pro Gln Ile Glu Pro Asp
35 40 45
Val Ala Ile Val Asp Leu Leu Met Pro Ser Val Ser Gly Ile Gly Val
50 55 60
Thr Arg Glu Leu Cys Glu Leu Leu Pro Arg Cys Arg Val Leu Gly Leu
65 70 75 80
Ser Ala Val Val Asp Ala Ala Ala Ile Ala Glu Met Leu Arg Ala Gly
85 90 95
Ala Ser Gly Phe Ala Leu Lys Thr Gln Pro Ala Pro Asp Ile Leu Asp
100 105 110
Ala Val Arg Arg Thr Val Ala Gly Glu Ser Tyr Leu Pro Pro Ser Val
115 120 125
Ser Arg Glu Ala Ile Asp Ala Glu Leu Ala Gly Gly Ala Pro Pro Ser
130 135 140
Leu Ala Gln Leu Thr Lys Ala Arg Ala Arg Asp Leu Arg Ala Asp Asp
145 150 155 160
Pro Arg Leu His Gln Ser
165




114


762


PRT


Pinus radiata



114
Met Ile Cys Leu Gly Gly Ile Val Ile Val Ser Phe Leu Leu Gln Asn
1 5 10 15
Ile Ala Met Ala Ser Glu Asp Gly Gly Ser Arg Cys Asn Cys Asp Gly
20 25 30
Glu Gly Trp Trp Asn Val Glu Asn Ile Met Gln Cys Gln Met Val Ser
35 40 45
Asp Phe Leu Ile Ala Leu Ala Tyr Phe Ser Ile Pro Leu Glu Leu Leu
50 55 60
Tyr Phe Leu Ser Cys Ser Asn Ser Leu Pro Phe Arg Trp Val Ile Val
65 70 75 80
Gln Phe Gly Ala Phe Ile Val Leu Cys Gly Leu Thr His Phe Ile Asn
85 90 95
Ile Trp Thr Tyr Gly Pro Gln Ser Phe His Val Met Leu Ala Leu Thr
100 105 110
Ile Phe Lys Phe Leu Thr Ala Leu Val Ser Cys Ala Thr Ala Ile Thr
115 120 125
Leu Val Thr Leu Ile Pro Glu Leu Leu Arg Val Lys Val Arg Glu Ile
130 135 140
Phe Leu Lys Asn Lys Ala Arg Glu Leu Asp Arg Glu Val Asp Ile Val
145 150 155 160
Lys Arg Lys Glu Glu Thr Ser Trp His Val His Met Leu Thr Gln Glu
165 170 175
Ile Arg Ser Ser Leu Asp Arg His Thr Ile Leu Asn Thr Thr Leu Ile
180 185 190
Ser Leu Ala Lys Thr Leu Asn Leu Glu Asn Cys Thr Ile Trp Met Pro
195 200 205
Leu Ala Asp Gly Thr Ala Met Glu Val Ser His Glu Leu Lys Arg Arg
210 215 220
His Leu Gln Val Pro Leu Thr Val Pro Thr Thr Asp Pro Asp Val Lys
225 230 235 240
Lys Ile Met His Ser Glu Asp Ala Ile Leu Leu Ser Pro Asp Ser Ala
245 250 255
Leu Gly Lys Glu Ser Asn His His Trp Ser Leu Ala Gly Pro Val Ala
260 265 270
Ala Ile Arg Val Pro Leu Trp Lys Ala Ser Asn Phe Lys Ser Gly Ala
275 280 285
Ser Val Asp Arg Glu Glu Ser Tyr Ala Ile Met Val Leu Val Leu Pro
290 295 300
Cys Glu Asp Glu Arg Gln Trp Ser Ser Gln Glu Leu Tyr Ile Val Lys
305 310 315 320
Asp Val Ala Glu Gln Val Ala Val Ala Leu Ser His Ala Ala Val Leu
325 330 335
Glu Glu Ser Gln Lys Leu Lys Ala Pro Leu Ile Asp Lys Asn Lys Thr
340 345 350
Leu Gln Gln Ala Lys Gln Asp Ala Leu Arg Ala Ser Lys Ala Arg His
355 360 365
Ser Phe Gln Leu Ala Met Asn Arg Glu Met Arg Leu Pro Met His Ala
370 375 380
Ile Ser Ala Leu Ser Ser Ile Leu Gln Ser Ala Arg Leu Asn Val Glu
385 390 395 400
Gln Leu Ala Met Thr Asn Met Leu Ala Lys Ser Ser Ser Leu Leu Ser
405 410 415
Thr Leu Ile Asn Asp Ile Met Asp Phe Ser Glu Leu Glu Asp Thr Ser
420 425 430
Leu Val Leu Gln Leu His Pro Phe Gln Leu His Gly Met Leu Lys Asp
435 440 445
Ala Ala His Leu Thr Glu Thr Met Ser Arg Ser Lys Gly Leu Leu Leu
450 455 460
Asn Val Glu Ile Gly Asp Gly Met Pro Asp His Val Ile Gly Asp Glu
465 470 475 480
Lys Arg Ile Leu Arg Ile Ile Leu His Met Val Gly Asn Ala Ile Asn
485 490 495
Ser Thr Lys Gln Gly Thr Ile Ser Ile Arg Ile Cys Val Glu Asp Arg
500 505 510
Ala Glu Gly Trp Trp Asp Pro Asn Asn Arg Arg Trp Arg Pro Ser Leu
515 520 525
Cys Glu Gly Phe Thr Tyr Leu Arg Phe Glu Ile Arg Thr Ser Gly Ser
530 535 540
Gly Ser Ile Gln Asn Asp Asn Pro Ser Phe Leu Thr Val Val Gln Asp
545 550 555 560
Gly Lys Ser Asp Ser Ser Ser Ser Thr Gly Glu Gly Leu Gly Phe Ala
565 570 575
Ile Cys Lys Lys Phe Val Gln Leu Met His Gly Asn Ile Trp Leu Glu
580 585 590
Pro Asn Ser Lys Gly Glu Gly Ser Val Val Thr Phe Leu Ile Arg Val
595 600 605
Gln Leu Gln Thr Ser Thr Ala Asn Lys His Trp Leu Ser Pro Asp Glu
610 615 620
Lys Ile Tyr Lys Ser Ser Phe Lys Gly Leu Lys Val Leu Val Ala Asp
625 630 635 640
Asp Asn Asn Val Ser Arg Ser Val Thr Arg Arg Leu Leu Gln Glu Leu
645 650 655
Gly Cys Gln Thr Thr Glu Val Asp Ser Gly Tyr Arg Cys Leu Met Thr
660 665 670
Leu Leu Gln Ser Gly Ser Ala Phe Gln Leu Val Phe Leu Glu Val Cys
675 680 685
Leu Ala Gln Met Asp Gly Tyr Glu Val Ala Phe Arg Ile Arg Gln Lys
690 695 700
Phe Arg Ser Arg Asn Arg Pro Leu Val Val Ala Leu Thr Ala Ser Thr
705 710 715 720
Asp Lys Glu Thr Met Glu Arg Cys Leu Gln Thr Gly Met Asp Gly Val
725 730 735
Ile Arg Lys Pro Val Thr Leu Arg Glu Met Ser Asn Glu Leu Phe Lys
740 745 750
Ile Val His Gln Thr Asn Asn Ile His Glu
755 760




115


158


PRT


Eucalyptus grandis



115
Thr Met Arg Ala Lys Gln Met Leu Ala Thr Met Ser His Glu Ile Arg
1 5 10 15
Ser Pro Leu Ala Gly Val Val Ser Met Ala Glu Ile Leu Ala Gln Thr
20 25 30
Arg Leu Asp His Glu Gln Arg Gln Leu Leu Asp Val Met Leu Ser Ser
35 40 45
Gly Asp Leu Val Leu Gln Leu Ile Asn Asp Ile Leu Asp Leu Ser Lys
50 55 60
Val Glu Ser Gly Val Met Lys Leu Glu Ala Thr Lys Phe Arg Pro Arg
65 70 75 80
Glu Val Val Lys His Val Leu Gln Thr Ala Ala Ala Ser Leu Arg Lys
85 90 95
Ile Leu Thr Leu Glu Gly His Val Ala Asp Asp Val Pro Ile Glu Val
100 105 110
Ile Gly Asp Val Leu Arg Ile Arg Gln Ile Leu Thr Asn Leu Ile Ser
115 120 125
Asn Ala Ile Lys Phe Thr His Glu Gly Lys Val Gly Ile Asn Leu Tyr
130 135 140
Val Val Pro Glu Pro Ser Val Glu Lys Thr Glu Glu Cys Pro
145 150 155




116


170


PRT


Eucalyptus grandis



116
Lys Ile Glu Ile Glu Ala Val Gln Phe Asp Leu Arg Ala Ile Leu Asp
1 5 10 15
Asp Val Leu Ser Leu Phe Ser Gly Lys Ser Gln Glu Lys Arg Val Glu
20 25 30
Leu Ala Val Tyr Ile Ser Glu Asn Val Pro Glu Lys Leu Ile Gly Asp
35 40 45
Pro Gly Arg Phe Arg Gln Ile Ile Thr Asn Leu Met Gly Asn Ser Ile
50 55 60
Lys Phe Thr Glu Lys Gly His Ile Leu Val Thr Val His Leu Val Asp
65 70 75 80
Glu Val Met Asn Ser Thr Asp Ala Glu Met Glu Ser Ala Thr Arg Ser
85 90 95
Thr Leu Ser Gly Phe Pro Val Pro Asp Arg Arg Leu Ser Trp Ala Lys
100 105 110
Phe Arg Thr Phe Ser Gln Glu Gly Pro Ala Ser Pro Val Pro Ser Ser
115 120 125
Phe Ser Asn Pro Ile Asn Leu Ile Ile Ser Val Glu Asp Thr Gly Ile
130 135 140
Gly Ile Pro Pro Glu Ala Gln Pro Arg Val Phe Thr Arg Phe Met Gln
145 150 155 160
Val Gly Pro Ser Ile Ser Arg Thr His Gly
165 170




117


599


PRT


Eucalyptus grandis



117
Leu Glu His Lys Ile Ser Ile Ser Ser Leu Lys Thr Lys Leu Lys Gln
1 5 10 15
His Gly Ser His Ala Arg Arg Ala Ser Lys Lys Asp Asn Lys Val Thr
20 25 30
Leu Trp Phe Glu Val Asp Asp Thr Gly Cys Gly Ile Asp Pro Ser Lys
35 40 45
Trp Glu Ser Val Phe Glu Ser Phe Glu Gln Ala Asp Pro Ser Thr Thr
50 55 60
Arg Leu His Gly Gly Thr Gly Leu Gly Leu Cys Ile Val Arg Thr Leu
65 70 75 80
Val Asn Lys Met Gly Gly Glu Ile Lys Val Ile Lys Lys Asn Gly Pro
85 90 95
Gly Thr Leu Met Arg Leu Tyr Leu Leu Leu Asn Ala Pro Val Asp Gly
100 105 110
Thr Glu His Asn Cys Ser Val Asp Tyr Ala Val His Asn Ile Arg Val
115 120 125
Leu Leu Ala Gln His Gly Ser Thr Gly Arg Phe Ile Met Ser Gly Trp
130 135 140
Leu Arg Arg Asn Gly Val Ser Thr Leu Glu Ala Ser Gly Trp Asn Glu
145 150 155 160
Leu Thr Gln Ile Leu Gln Glu Leu Tyr Gln Gly Arg Asn Ser Gly Ala
165 170 175
Pro Tyr Arg Thr Val Asn Thr Glu His Ala His Glu Leu Pro Arg Ser
180 185 190
Glu Val Thr Thr Phe Asp Asp Ile Gln Ser Glu Ile Leu Ile Ile Val
195 200 205
Val Asp Ile Glu Leu Leu Asp Leu Asn Thr Asp Ile Trp Lys Glu Gln
210 215 220
Leu Asn Phe Leu Asp Lys Tyr His Arg Lys Ala Lys Phe Ala Trp Met
225 230 235 240
Leu Asn His Asp Thr Phe Asn Ala Ile Lys Val Glu Leu Arg Arg Lys
245 250 255
Gly His Met Leu Met Val Asn Lys Pro Leu Tyr Lys Ala Lys Met Ile
260 265 270
Gln Ile Leu Asp Ala Ala Ile Lys Glu Arg Asn Ser Glu Leu Leu Lys
275 280 285
Arg Ala Ser Asn Ser Ser Lys Ser Met Asn Lys Glu Glu Asp Leu His
290 295 300
Glu Cys Leu Glu Ile Asp Ser Glu His Tyr Glu Gly Ala Ser Ser Asp
305 310 315 320
Glu Leu Asp Thr Val Glu Thr Ser Arg Ser Gly Cys Thr Asn Thr Ser
325 330 335
Pro Gly Glu Gln Lys Gln Gln Glu Gly Ile Lys Thr Pro Pro Ala Leu
340 345 350
Gln His Arg Thr Ser Asn Tyr His Ser Phe Asn Ser Thr Leu Leu Ser
355 360 365
Ser Asp Tyr Asn Asn Leu Gly Asn Lys Glu Glu Ala Cys Pro Thr Ser
370 375 380
Pro Pro Leu Asp His Pro Asp Asn Ala Glu Gly Arg Phe Lys Cys Thr
385 390 395 400
Arg Ser Val Phe Ser Ser Lys Glu Lys Glu Asp Gly Asn Ser Glu Ala
405 410 415
Gln Glu Gln Leu Leu Ile Ser Lys Arg Pro Pro Ala Lys Val Asp Ser
420 425 430
Cys Ser Ser Lys Glu Leu Asp Gln Lys Gly Ser Leu Glu Gly Leu Cys
435 440 445
Ile Leu Leu Ala Glu Asp Thr Pro Val Leu Gln Arg Val Ala Thr Ile
450 455 460
Met Leu Glu Lys Leu Gly Ala Lys Val Ile Ala Val Gly Asp Gly Leu
465 470 475 480
Gln Ala Val Asn Ala Leu Asn Ser Ser Leu Asp Val Asp Ala Glu Asp
485 490 495
Phe Arg Thr Thr Leu His Leu Gln Asn Ala Asn Arg Met Pro Gln Ala
500 505 510
Gly Thr Arg Ser Trp Gln Pro Tyr Asp Leu Ile Leu Met Asp Cys Gln
515 520 525
Met Pro Gln Met Asp Gly Tyr Glu Ala Thr Lys Ala Ile Arg Arg Ser
530 535 540
Glu Ala Gly Ser Gly Leu His Ile Pro Ile Val Ala Leu Thr Ala His
545 550 555 560
Ala Met Ser Ser Asp Glu Ala Lys Cys Leu Glu Val Gly Met Asp Ala
565 570 575
Tyr Leu Thr Lys Pro Ile Asp Tyr Lys Leu Met Val Ser Thr Ile Leu
580 585 590
Ser Leu Thr Lys Gly Val Asn
595




118


153


PRT


Eucalyptus grandis



118
Leu Ser Thr Gly Ala Ser Ser Ala Thr Thr Gly Met Ala Ser Asn Gly
1 5 10 15
Leu Val Ser Pro Arg Arg Arg Ser Ser Gly Gln Phe Asp Gly Ser Asp
20 25 30
Pro Ser Pro Cys Gly Ser Glu Glu Val His Val Leu Ala Val Asp Asp
35 40 45
Ser Leu Val Asp Arg Lys Val Ile Glu Arg Leu Leu Lys Ile Thr Ser
50 55 60
Cys Lys Val Thr Ala Val Asp Ser Gly Leu Arg Ala Leu Arg Tyr Leu
65 70 75 80
Gly Leu Asp Glu Glu Lys Thr Ala Gly Asp Phe Asn Gly Leu Lys Val
85 90 95
Asp Met Ile Ile Thr Asp Tyr Cys Met Pro Gly Met Thr Gly Tyr Glu
100 105 110
Leu Leu Lys Lys Ile Lys Glu Ser Ser Ala Leu Arg Glu Ile Pro Val
115 120 125
Val Ile Met Ser Ser Glu Asn Val Leu Ala Arg Ile Asp Arg Cys Met
130 135 140
Glu Glu Gly Ala Glu Asp Phe Ile Val
145 150




119


190


PRT


Eucalyptus grandis



119
Ile Ile Ser Ser Cys Ala Ser Ser Val Lys Thr Gly Met Ala Arg Asn
1 5 10 15
Gly Val Ala Ser Trp Arg Arg Arg Ser Ser Asp Gln Phe Asp Asp Pro
20 25 30
Ser Pro Cys Gly Ser Glu Asp Val His Val Leu Ala Val Asp Asp Ser
35 40 45
Leu Val Asp Arg Lys Val Ile Glu His Leu Leu Lys Ile Ser Ser Cys
50 55 60
Lys Val Thr Ala Val Asp Ser Gly Ile Arg Ala Leu Gln Phe Leu Gly
65 70 75 80
Leu Asp Glu Glu Lys Ala Ala Gly Asp Phe Asn Gly Leu Lys Val Asp
85 90 95
Leu Ile Ile Thr Asp Tyr Cys Met Pro Gly Met Thr Gly Tyr Glu Leu
100 105 110
Leu Lys Lys Ile Lys Glu Ser Ser Ala Leu Arg Glu Ile Pro Val Val
115 120 125
Ile Met Ser Ser Glu Asn Val Leu Ala Arg Ile Asp Arg Cys Leu Glu
130 135 140
Glu Gly Ala Glu Asp Phe Ile Val Lys Pro Val Lys Leu Ser Asp Val
145 150 155 160
Lys Arg Leu Arg Asp Phe Met Thr Arg Asp Val Gly Asp Arg Val Arg
165 170 175
Ser Asp Gly Glu Gly Thr Thr His Lys Arg Lys Leu Gln Glu
180 185 190




120


206


PRT


Pinus radiata



120
Ala Ala Ala Ser Thr Glu Asp Thr Gly Ile Gly Ile Pro Leu Pro Ala
1 5 10 15
Gln His Arg Val Phe Thr Pro Phe Met Gln Ala Asp Ser Ser Thr Ser
20 25 30
Arg Thr Tyr Gly Gly Thr Gly Ile Gly Leu Ser Ile Ser Arg Cys Leu
35 40 45
Ile Glu Leu Met Gly Gly Glu Ile Arg Phe Ile Ser Arg Pro Gly Ile
50 55 60
Gly Ser Thr Phe Ser Phe Thr Ala Leu Phe Lys Val Gly Gln Ala Gly
65 70 75 80
Ala Asp Gly Asp Gly Asp Leu Leu Arg Gly Ala Arg Leu Pro Thr His
85 90 95
Phe Lys Gly Met Lys Ala Leu Val Leu Asp Gly Asn Pro Val Cys Ser
100 105 110
Leu Val Thr Lys Tyr His Leu Gln Arg Phe Gly Ile Glu Val Asp Ser
115 120 125
Ile Thr Ser Ser Lys Val Ala Leu Ser Met Leu Asn Gly Met Asp Gly
130 135 140
Phe Pro Thr Glu Gly Cys Ser Val Lys Asp Gly Ile Asp Met Val Leu
145 150 155 160
Ile Glu Lys Asp Ala Trp Gly Ser Arg His Trp His Leu Ile Ser Phe
165 170 175
Ala Ser Thr Ser Arg Ser Leu Ser Lys Arg Thr Leu Ser Thr Val Lys
180 185 190
Gly Phe Ile Lys Asp Asp Ser Phe Gly Tyr Ile Ala Asp Ser
195 200 205




121


123


PRT


Pinus radiata



121
Ser Lys Gly Leu Leu Lys Ile Ile Leu Leu Ala Thr Ser Leu Thr Ala
1 5 10 15
Glu Glu Thr Gln Lys Ala Lys Ala Ala Gly Phe Ala Glu Thr Val Ile
20 25 30
Leu Lys Pro Leu Arg Ala Ser Val Phe Ala Val Arg Leu Gln Leu Ala
35 40 45
Leu Gly Phe Cys Tyr Arg Arg Glu His Leu Arg Glu Pro Leu Lys Thr
50 55 60
Ser Ser Pro Leu Ser Asn Val Leu Ser Gly Lys Gly Ile Leu Val Val
65 70 75 80
Asp Asp Asn Ile Val Asn Arg Arg Val Ala Ala Gly Ala Leu Lys Lys
85 90 95
Tyr Gly Ala Asn Val Ile Cys Thr Asp Gly Gly Lys Ser Ala Ile Ser
100 105 110
Met Leu Arg Gln Pro His Asn Leu Ile Thr Ser
115 120




122


142


PRT


Eucalyptus grandis



122
Met Ala Ser Asn Gly Leu Val Ser Pro Arg Arg Arg Ser Ser Asp Gln
1 5 10 15
Phe Asp Gly Ser Asp Pro Ser Pro Cys Gly Ser Glu Glu Val His Val
20 25 30
Leu Ala Val Asp Asp Ser Leu Val Asp Arg Lys Val Ile Glu Arg Leu
35 40 45
Leu Lys Ile Thr Ser Cys Lys Val Thr Ala Val Asp Ser Gly Leu Arg
50 55 60
Ala Leu Arg Tyr Leu Gly Leu Asp Glu Glu Lys Thr Ala Gly Asp Phe
65 70 75 80
Asn Gly Leu Lys Val Asp Met Ile Ile Thr Asp Tyr Cys Met Pro Gly
85 90 95
Met Thr Gly Tyr Glu Leu Leu Lys Lys Ile Lys Glu Ser Ser Ala Leu
100 105 110
Arg Glu Ile Pro Val Val Ile Met Ser Ser Glu Asn Val Leu Ala Arg
115 120 125
Ile Asp Arg Cys Met Glu Glu Gly Ala Glu Asp Phe Ile Val
130 135 140




123


146


PRT


Eucalyptus grandis



123
Cys Ser Phe Thr Leu Ser Ser Ser Ser Pro Leu Phe Leu Ala Val Val
1 5 10 15
Leu Gly Arg Ser Pro Ile Glu Met Gly Val Thr Ala Ala Ser Gln Phe
20 25 30
His Val Leu Ala Val Asp Asp Ser Leu Ile Asp Arg Lys Leu Ile Glu
35 40 45
Arg Leu Leu Lys Thr Ser Ser Tyr Gln Val Thr Ala Val Asp Ser Gly
50 55 60
Ser Lys Ala Leu Glu Phe Leu Gly Leu Asn Glu Gln Gln Pro Arg Asn
65 70 75 80
Ala Asn Ala Thr Ser Val Ser Pro Ser Tyr His His Gln Glu Ile Glu
85 90 95
Val Asn Leu Ile Ile Thr Asp Tyr Phe Met Pro Glu Met Thr Gly Tyr
100 105 110
Asp Leu Leu Arg Lys Ile Lys Glu Ser Asn Ser Tyr Lys Asp Val Pro
115 120 125
Val Val Ile Met Ser Ser Glu Asn Val Pro Ser Arg Ile Ser Gln Cys
130 135 140
Leu Glu
145




124


426


PRT


Eucalyptus grandis



124
Gly Lys Leu Ala Val Tyr Val Ser Asp Arg Val Pro Glu Ala Val Ile
1 5 10 15
Gly Asp Pro Gly Arg Phe Arg Gln Ile Ile Thr Asn Leu Val Gly Asn
20 25 30
Ser Ile Lys Phe Thr His Glu Gly His Ile Phe Val Ser Val His Leu
35 40 45
Leu Glu Glu Gly Cys Ser Gln His Asp Phe Arg Asp Val Glu Lys Arg
50 55 60
Leu Ser Ser Asn Leu Val Glu Asp Thr Ser Asp Lys Thr Phe Asn Thr
65 70 75 80
Leu Ser Gly Phe Gln Val Val Asp Arg Arg Lys Ser Trp Glu Arg Phe
85 90 95
Lys Lys Leu Asn Arg Ser Asp Gln Ile Asp Val Asn Glu Ser Val Glu
100 105 110
Val Leu Val Thr Val Glu Asp Thr Gly Val Gly Ile Ala Arg Glu Ala
115 120 125
Gln Ser Arg Ile Phe Thr Pro Phe Val Gln Ala Asp Ser Ser Thr Ser
130 135 140
Arg Thr Tyr Gly Gly Thr Gly Ile Gly Leu Ser Ile Ser Lys Cys Leu
145 150 155 160
Val Asp Leu Met His Gly Glu Ile Gly Phe Val Ser Glu Pro Gly Thr
165 170 175
Gly Ser Thr Phe Ser Phe Thr Val Pro Phe Ala Lys Cys Glu Met Asn
180 185 190
Cys Leu Glu Val Lys Gly Gln Asn Tyr Asp Ser Ile Ile Ser Glu Phe
195 200 205
Arg Gly Leu Arg Ala Leu Val Ile Asp Lys Arg His Ile Arg Ala Glu
210 215 220
Val Ala Arg Tyr His Leu Glu Arg Leu Arg Ile Ser Val Asp Val Ala
225 230 235 240
Cys Ser Leu Lys Ser Ala Cys Thr Tyr Leu Ser Asn Ser Ser Ser Pro
245 250 255
Arg Glu Leu Ser Asp Phe Asp Met Val Leu Ile Asp Lys Asp Val Trp
260 265 270
Asp Arg Gln Thr Gly Leu Glu Leu Asn Ile Ser Leu Trp Lys His Arg
275 280 285
Gln Asn Gly Ser Asn Gly Val Ser Ile Arg Pro Lys Ile Phe Leu Leu
290 295 300
Ala Thr Ser Ile Ser Pro Ile Glu His Ser Glu Leu Lys Leu Ala Asn
305 310 315 320
Leu Val Asp Asn Val Leu Ala Lys Pro Leu Arg Leu Ser Val Leu Ile
325 330 335
Ser Phe Leu Gln Glu Ala Leu Gly Asn Gly Lys Lys Arg Leu Ser Asp
340 345 350
Arg Arg Lys Val Ser Thr Leu Gly Ser Leu Leu Lys Gly Arg Arg Ile
355 360 365
Leu Val Val Asp Asp Asn Leu Val Asn Arg Arg Val Ala Glu Gly Ala
370 375 380
Leu Lys Lys Tyr Gly Ala Ile Val Thr Cys Val Gly Ser Gly Lys Asp
385 390 395 400
Ala Val Ala Lys Leu Gln Pro Pro His Asp Phe Ala Ala Cys Phe Met
405 410 415
Asp Leu Gln Met Pro Glu Met Asp Gly Phe
420 425




125


107


PRT


Eucalyptus grandis



125
Met Met Glu Ser Ser Lys Gly Phe Ser Ser Pro Arg Ser Asn Gly Phe
1 5 10 15
Pro Ala Gly Leu Arg Val Leu Val Val Asp Asp Asp Pro Thr Trp Leu
20 25 30
Lys Ile Leu Glu Lys Met Leu Lys Lys Cys Ser Tyr Glu Val Thr Thr
35 40 45
Cys Gly Leu Ala Arg Asp Ala Leu Lys Leu Leu Arg Glu Arg Lys Gly
50 55 60
Gly Tyr Asp Ile Val Ile Ser Asp Val Asn Met Pro Asp Met Asp Gly
65 70 75 80
Phe Lys Leu Leu Glu Leu Val Gly Leu Glu Met Asp Leu Pro Val Ile
85 90 95
Met Met Ser Val Asp Gly Glu Thr Ser Arg Val
100 105




126


121


PRT


Pinus radiata



126
Met Val Thr Ser Arg Met Ser Ser Ala Met Arg Met Lys Lys Glu Lys
1 5 10 15
Asn Ala Ala Cys Gly Glu His Gly Asp Glu Leu Val Arg Cys Asp Glu
20 25 30
Met His Val Leu Ala Val Asp Asp Cys Leu Ile Glu Arg Lys Val Ile
35 40 45
Glu Lys Leu Leu Lys Thr Asn Phe Phe Lys Val Thr Ser Val Asp Ser
50 55 60
Ala Glu Arg Ala Leu Glu Val Leu Gly Phe His Glu Glu Gln Ser Thr
65 70 75 80
Cys Ala Thr Thr Asn Ala Phe Lys Val Asn Met Ile Ile Thr Asp Tyr
85 90 95
Cys Met Pro Gly Met Thr Gly Tyr Asp Leu Leu Lys Lys Val Lys Glu
100 105 110
Thr Lys Cys Leu Lys Glu Ile Pro Gly
115 120




127


261


PRT


Pinus radiata



127
Met Ala Val Ser Gln His Leu Phe Leu Ser Ala Gln Arg Leu Asn Gly
1 5 10 15
Arg Glu Asp Glu Gly Ser Leu Tyr Leu Leu Arg Ala Gly Val Asn Trp
20 25 30
Asp Leu Leu Ile Met Gly Val Ala Leu Val Ala Cys Leu Ala Ile Leu
35 40 45
Gly Met Val Trp Lys Arg Arg Arg Thr Trp Ser Tyr Cys Glu Gly Leu
50 55 60
Gln Glu Glu Asp Ala Gly Gln Arg Ala Gln Glu Thr Gln Cys Ser Lys
65 70 75 80
Gly Phe Met Thr Asn Val Phe His Asn Thr Arg Asp Cys Arg Ser Glu
85 90 95
Gln Ile Ile Trp Asp Asp Ile His Ile Ser Ser Gln Thr Glu Thr Arg
100 105 110
Ser Gln Lys Val Arg Thr Val Lys Ser Lys Ser Ser Met Ile Ser Arg
115 120 125
Asp Ser Cys Ser Ser Pro Arg Arg Ile Leu Leu Val Glu Asp Thr Gln
130 135 140
Ile Asn Arg Ile Ile Phe Gly Arg Val Leu Gln Ser Leu Asn Leu Tyr
145 150 155 160
Cys Glu Glu Ala Glu Asn Gly Lys Val Ala Val Asp Tyr Phe Lys Gln
165 170 175
Gly Arg Thr Tyr Asp Leu Val Leu Met Asp Lys Glu Met Pro Val Met
180 185 190
Asp Gly His Glu Ala Thr Arg Gln Leu Arg Ser Met Gly Val Lys Thr
195 200 205
Pro Ile Val Ala Leu Thr Ala Asn Thr Leu Gln Ser Asp Lys Asp Leu
210 215 220
Phe Phe Glu Ala Gly Val Asp Asp Phe Gln Ser Lys Pro Leu Ser Arg
225 230 235 240
Asp Arg Leu Val Gln Leu Leu Asp Gln Tyr Gly Val Asp Gly Cys Ala
245 250 255
Gly Asn Arg Arg Gly
260




128


120


PRT


Pinus radiata



128
Gly Tyr Leu Gly Ser Thr Ser Ser Val Gln Pro Val Asn Phe Tyr Leu
1 5 10 15
Phe Trp Phe Ile Glu Val Ala Val Pro Gln His Leu Val Leu Gly His
20 25 30
Gln Tyr Leu Ser Gly Thr Glu Gly Gly Asp Gly Leu Tyr Phe Leu Arg
35 40 45
Ala Gly Leu Asn Trp Val Leu Leu Ile Met Gly Val Ala Leu Val Ala
50 55 60
Cys Leu Ala Ile Phe Gly Met Val Trp Lys Arg Arg Arg Thr Trp Ser
65 70 75 80
Tyr Cys Gly Ala Met Gln Lys Glu Asp Ala Ser Gln Arg Ala Gln Glu
85 90 95
Ala Gln Cys Ser Lys Gly Cys Met Thr Asn Val Leu Pro Asn Thr Arg
100 105 110
Ala Cys Arg Gly Ala His Ile Ile
115 120




129


214


PRT


Pinus radiata



129
Lys Arg Phe Leu Glu Gly His Glu Leu Ser Tyr Leu Arg Ala Ile Gly
1 5 10 15
Val Ile Ile Leu Ser Ala Val Leu Lys Arg Arg Met Ile Leu Ala Asp
20 25 30
Lys Ala Lys Ser Leu Phe Ile Ser Asn Ile Ser His Glu Leu Arg Thr
35 40 45
Pro Leu His Gly Ile Leu Ala Ala Ala Glu Leu Leu Gly Asp Ser Pro
50 55 60
Leu Asn His Ser Gln Leu Ser Phe Leu Glu Thr Val Gln Ala Cys Gly
65 70 75 80
Thr Ser Leu Val Glu Thr Val Asn His Val Leu Asp Phe Thr Lys Leu
85 90 95
Ser Gly Asn Ser Lys Ala Gly Gly Val Glu Lys Val Ile Val Pro Thr
100 105 110
Arg Val Asp Leu Met Gln Leu Ile Glu Glu Ala Val Asp Gly Cys Trp
115 120 125
Ile Gly His Arg Ala Arg Thr Ala Ile Met Gly Asp Thr Gly Ile Gly
130 135 140
Ser Val Tyr Ser Pro Pro Glu Asp Leu Ser Ser Pro Lys Gln Leu Val
145 150 155 160
Glu Thr Val Val Asp Ile Gly Trp Arg Lys Lys Gly Trp Ser Leu Lys
165 170 175
Cys Glu Lys Gly Gly Ile Arg Arg Val Leu Met Asn Val Phe Gly Asn
180 185 190
Ser Leu Lys Phe Thr Thr Asn Gly Tyr Val His Val Ile Leu Arg Glu
195 200 205
Leu Pro Arg Ser Gly Asp
210




130


224


PRT


Eucalyptus grandis



130
Met Thr Met Ala Gly Glu Ile Leu Arg Arg Gln Ser Pro Ala Glu Val
1 5 10 15
Asp Leu Cys Gly Gly Ser Gly Gln Glu Leu His Val Leu Ala Val Asp
20 25 30
Asp Ser Leu Val Asp Arg Lys Val Ile Glu Lys Leu Leu Lys Arg Leu
35 40 45
Ser Cys Lys Val Thr Ala Val Asp Ser Gly Leu Arg Ala Leu Gln Phe
50 55 60
Leu Gly Leu Asp Gly Glu Lys Ser Ser Val Gly Leu Asp Asp Leu Lys
65 70 75 80
Val Asn Leu Ile Met Thr Asp Tyr Ser Met Pro Gly Met Thr Gly Tyr
85 90 95
Glu Leu Leu Lys Lys Ile Lys Glu Ser Ser Ala Phe Arg Glu Thr Pro
100 105 110
Val Val Ile Met Ser Ser Glu Arg Ile Leu Ala Arg Ile Asn Arg Cys
115 120 125
Leu Glu Glu Gly Ala Glu Glu Phe Leu Ala Lys Pro Val Gln Leu Ser
130 135 140
Asp Val Gln Arg Leu Lys Asn Phe Val Met Gly Gly Gly Glu Val Cys
145 150 155 160
Pro Asp Arg Arg Ile Asn Lys Arg Arg Leu Glu Glu Asn Asn Asp Asn
165 170 175
Asp Asp Asn Glu Asn His Ala Pro Ser Pro Val Ser Pro Leu Cys Ser
180 185 190
Arg Asp Trp Ala Val Cys Ser Ser Ser Ser Ser Asp Ser Ser Ser Pro
195 200 205
Ser Ile Ala Val Ser Ser Ser Lys Arg Leu Lys Ile His His Gln Ala
210 215 220






Claims
  • 1. An isolated polynucleotide consisting of the sequence recited in SEQ ID NO: 9 or its complementary sequence.
  • 2. An isolated polynucleotide consisting of the reverse sequence of a polynucleotide of claim 1.
  • 3. A DNA construct comprising a polynucleotide of claim 1 or claim 2.
  • 4. A transgenic cell comprising a DNA construct according to claim 3.
  • 5. A DNA construct comprising, in the 5′-3′ direction:(a) a gene promoter sequence, (b) an open reading frame of an isolated polynucleotide of claim 1; and (c) a gene termination sequence.
  • 6. The DNA construct of claim 5 wherein the open reading frame is in a sense orientation.
  • 7. The DNA construct of claim 5 wherein the open reading frame is in an antisense orientation.
  • 8. The DNA construct of claim 5 wherein the gene promoter sequence and gene termination sequences are functional in a plant host.
  • 9. The DNA construct of claim 5 further comprising a marker for identification of transformed cells.
  • 10. A DNA construct comprising, in the 5′-3′ direction:(a) a gene promoter sequence, (b) a untranslated region of an isolated polynucleotide of claim 1, and (c) a gene termination sequence.
  • 11. The DNA construct of claim 10 wherein the untranslated region is in a sense orientation.
  • 12. The DNA construct of claim 10 wherein the untranslated region is in an antisense orientation.
  • 13. The DNA construct of claim 10 wherein the gene promoter sequence and gene termination sequences are functional in a plant host.
  • 14. A transgenic plant cell comprising a DNA construct of any one of claims 5-13.
  • 15. A plant comprising a transgenic plant cell according to claim 14, or fruit or seeds thereof.
  • 16. The plant of claim 15 wherein the plant is a woody plant.
  • 17. The plant of claim 16 wherein the plant is selected from the group consisting of eucalyptus, pine, acacia, poplar, sweetgum, teak and mahogany species.
  • 18. A plant comprising a transgenic cell according to claim 4.
US Referenced Citations (4)
Number Name Date Kind
5484905 Nasrallah et al. Jan 1996 A
5650553 Ecker et al. Jul 1997 A
5689055 Meyerowitz et al. Nov 1997 A
5766878 Wallis Jun 1998 A
Non-Patent Literature Citations (17)
Entry
Smith et al. Nature 1988. vol. 334: 724-726.*
Martin et al. Science, 1993. vol. 262: 1432-1436.*
Bork, “Go hunting in sequence databases but watch out for the traps”, 1996, TIG vol. 12, No. 10 pp. 425-427.*
Smith et al, The challenges of genome sequence annotation or “The devil is in the details”, 1997, Nature Biotechnology vol. 15 pp. 1222-1223.*
Brenner, “Errors in genome annotation”, 1999, TIG vol. 15 No. 4 pp. 132-133.*
Chang et al, “Arabidopsis Ethylene-Response Gene ETR1: Similarity of Product to Two-Component Regulators”, 1993 Science vol. 262 pp. 539-544.*
Doerks, “Protein annotation” detective work for function prediction, 1998, TIG vol. 14 No. 6 pp. 248-250.*
Bugos, Robert C., et al., “cDNA Cloning, Sequence Analysis and Seasonal Expression of Lignin-Bispecific Caffeic Acid/5-Hydroxyferulic Acid O-Methyltransferase of Aspen,” Plant Molecular Biology, vol. 17, pp. 1203-1215 (1991).
Dwivedi, Upendra N., et al., “Modification of Lignin Biosynthesis in Transgenic Nicotiana Through Expression of an Antisense O-Methyltransferase Gene from Populus,” Plant Molecular Biology, vol. 26, pp. 61-71 (1994).
Sakai, Hajime et al., “ETR2 is an ETR1-like gene involved in ethylene signaling in Arbidopsis,” Proc. Natl. Acad. Sci., vol. 95, pp. 5812-5817 (May, 1998).
Brandstatter, Ingrid et al., “Two Genes with Similarity to Bacterial Response Regulators Are Rapidly and Specifically Induced by Cytokinin in Arabidopsis,” The Plant Cell, vol. 10, pp. 1009-1019 (Jun. 1998).
Kakimoto, Tatsuo, “CKI1, a Histidine Kinase Homolog Implicated in Cytokinin Signal Transduction,” Science, vol. 274, pp. 982-985 (Nov. 8, 1996).
Song, Wen-Yuen, et al., “A receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, Xa21,” Science, vol. 270, pp. 1804-1806 (Dec. 15, 1995).
He, Zheng-Hui, et al., “Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response,” The Plant Journal, vol. 14(1), pp. 55-63 (1998).
Maeda, Tatsuya et al., “A two-component system that regulates an osmosensing MAP kinase cascade in yeast,” Nature, vol. 369, pp. 242-245 (May 19, 1994).
Alex, Lisa A. et al., “Hyphal development in Neurospora crassa: Involvement of a two-component histidine kinase,” Proc. Natl. Acad. Sci, USA, vol. 93, pp. 3416-3421 (Apr., 1996).
Chang, Caren et al., “Arabidopsis Ehtylene-Response Gene ETR1: Similarity of Product to Two-Component Regulators,” Science, vol. 262, pp. 539-544 (Oct. 22, 1993).