Compositions, methods and kits for diagnosis of a gastroenteropancreatic neuroendocrine neoplasm

Information

  • Patent Grant
  • 10407730
  • Patent Number
    10,407,730
  • Date Filed
    Tuesday, September 15, 2015
    10 years ago
  • Date Issued
    Tuesday, September 10, 2019
    6 years ago
Abstract
Methods are provided for diagnosing, detecting, or prognosticating a GEP-NEN based on the expression level score of biomarkers exhibiting differential expression in subjects having a GEP-NEN relative to a reference or control sample. The invention also provides compositions and kits comprising these biomarkers and methods of using these biomarkers in subsets or panels thereof to diagnose, classify, and monitor GEP-NEN and types of GEP-NEN. The methods and compositions provided herein may be used to diagnose or classify a subject as having a GEP-NEN, to distinguish between different stages of GEP-NENs, e.g., stable or progressive, to provide a measure of risk of developing a progressive GEP-NEN, and to gauge the completeness of treatments for GEP-NEN including, but not limited to surgery and somatostatin therapy.
Description
SEQUENCE LISTING

The Sequence Listing associated with this application is provided in text format in lieu of a paper copy, and is hereby incorporated by reference into the specification. The name of the text file containing the Sequence Listing is CLSL-001-001US-SEQ.txt. The text file is 291 KB, was created on Nov. 18, 2015, and is being submitted electronically via EFS-Web.


BACKGROUND OF THE INVENTION

Gastroenteropancreatic (GEP) neuroendocrine neoplasm (GEP-NEN), also referred to as Gastroenteropancreatic Neuroendocrine Tumor and Neuroendocrine Tumor (NET), is the second most prevalent malignant tumor in the gastrointestinal (GI) tract in the U.S. Incidence and prevalence have increased between 100 and 600 percent in the U.S. over the last thirty years, with no significant increase in survival.


Heterogeneity and complexity of GEP-NENs has made diagnosis, treatment, and classification difficult. These neoplasms lack several mutations commonly associated with other cancers and microsatellite instability is largely absent. See Tannapfel A, Vomschloss S, Karhoff D, et al., “BRAF gene mutations are rare events in gastroenteropancreatic neuroendocrine tumors,” Am J Clin Pathol 2005; 123(2):256-60; Banck M, Kanwar R, Kulkarni A A, et al., “The genomic landscape of small intestine neuroendocrine tumors,” J Clin Invest 2013; 123(6):2502-8; Zikusoka M N, Kidd M, Eick G, et al., Molecular genetics of gastroenteropancreatic neuroendocrine tumors. Cancer 2005; 104:2292-309; Kidd M, Eick G, Shapiro M D, et al. Microsatellite instability and gene mutations in transforming growth factor-beta type II receptor are absent in small bowel carcinoid tumors,” Cancer 2005; 103(2):229-36.


Individual histopathologic subtypes as determined from tissue resources e.g., biopsy, associate with distinct clinical behavior, yet there is no definitive, generally accepted pathologic classification or prediction scheme, hindering treatment assessment and follow-up.


Existing diagnostic and prognostic approaches for GEP-NENs include imaging (e.g., CT or MRI), histology, measurements of circulating hormones and proteins associated with NENs e.g., chromogranin A and detection of some gene products. Available methods are limited, for example, by low sensitivity and/or specificity, inability to detect early-stage disease, or exposure to radiation risk. GEP-NENs often go undiagnosed until they are metastatic and often untreatable. In addition, follow-up is difficult, particularly in patients with residual disease burden.


There is a need for specific and sensitive methods and agents for the detection of GEP-NEN, including stable and progressive GEP-NEN, for example, for use in diagnosis, prognosis, prediction, staging, classification, treatment, monitoring, and risk assessment, and for investigating and understanding molecular factors of pathogenesis, malignancy, and aggressiveness of this disease. For example, such methods and agents are needed that can be repeatedly and directly collected with low risk exposure e.g., non-invasive peripheral blood test, be performed simply, rapidly, and at relatively low cost.


The present application overcomes the above-noted problems by providing novel compositions, methods, and kits for accurately diagnosing, detecting, and monitoring the presence of GEP-NENs and/or the types or stage of GEP-NEN in circulating peripheral blood samples. The described embodiments furthermore may be used to identify a level of risk for a patient to develop a progressive GEP-NEN, and/or to determine the risk of residual or reoccurring progressive GEP-NEN in a post-surgery or post-somatostatin treated human patient. In addition, it can be used as a prognostic for predicting response to therapy e.g., peptide receptor radiotherapy (PRRT).


SUMMARY OF THE INVENTION

In one aspect, the present invention relates to gastroenteropancreatic neuroendocrine neoplasm (GEP-NEN) biomarkers measured in circulating blood, the detection of which may be used in diagnostic, prognostic and predictive methods. Among the provided objects are GEP-NEN biomarkers, feature subsets and panels of the biomarkers, agents for binding and detecting the biomarkers, kits and systems containing such agents, and methods and compositions for detecting the biomarkers, for example, in biological samples e.g., blood, as well as prognostic, predictive, diagnostic, and therapeutic uses thereof.


Provided are agents, sets of agents, and systems containing the agents for GEP-NEN prognosis, detection and diagnosis. Typically, the systems include a plurality of agents (e.g., set of agents), where the plurality specifically binds to and/or detects a plurality of GEP-NEN biomarkers in a panel of GEP-NEN biomarkers. The agents may be isolated polypeptides or polynucleotides which specifically bind to one or more GEP-NEN biomarkers. For example, provided are sets of isolated polynucleotides and polypeptides that bind to a panel of GEP-NEN biomarkers, and methods and uses of the same.


Also provided are prognostic, diagnostic, and predictive methods and uses of the agents, compositions, systems, and kits for GEP-NEN and associated conditions, syndromes and symptoms. For example, provided are methods and uses for detection, diagnosis, classification, prediction, therapeutic monitoring, prognosis, or other evaluation of GEP-NEN or an outcome, stage or level of aggressiveness or risk thereof, or associated condition. In some embodiments, the methods are performed by determining the presence, absence, expression levels, or expression profile of a GEP-NEN biomarker, more typically a plurality of GEP-NEN biomarkers, such as a feature subset chosen from a panel of biomarkers, and/or comparing such information with normal or reference expression levels or profiles or standards. Thus, in some embodiments, the methods are carried out by obtaining a biological test sample and detecting the presence, absence, expression level score, or expression profile of a GEP-NEN biomarker as described herein. For example, the methods can be performed with any of the systems of agents, e.g., polynucleotides or polypeptides, provided herein. For example, the methods generally are carried out using one or more of the provided systems.


Provided are methods, agents and compositions for detection of and distinguishing between a number of different GEP-NEN types or stages. Exemplary GEP-NEN types and stages include stable disease (SD) and progressive (highly active) disease (PD).


In one aspect, the provided methods and compositions may be used to specifically and sensitively detect different stages of GEP-NENs, such as GEP-NENs in a stable disease (SD) or progressive disease (PD) states; in some aspects, the methods and compositions may be used to predict disease progression, treatment response, and metastasis. Methods and compositions provided herein are useful for diagnosis, prognosis, prediction, staging, classification, treatment, monitoring, assessing risk, and investigating molecular factors associated with GEP-NEN disease.


Provided are such methods capable of being carried out quickly, simply, and at relatively low cost, as compared to other diagnostic and prognostic methods.


Provided are methods and compositions that are useful for defining gene expression-based classification of GEP-NENs, and thus are useful for allowing the prediction of malignancy and metastasis, such as in early stage disease or using histologically negative samples, providing accurate staging, facilitating rational therapy, and in developing large validated clinical datasets for GEP-NEN-specific therapeutics.


The GEP-NEN biomarkers may include a subset of biomarkers, the expression of which is different in or is associated with the presence or absence of GEP-NEN, or is different in or is associated with a particular classification, stage, aggressiveness, severity, degree, metastasis, symptom, risk, treatment responsiveness or efficacy, or associated syndrome. The subset of GEP-NEN biomarkers typically includes at least 22 GEP-NEN biomarkers. In some embodiments, the subset of biomarkers includes at least 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51 GEP-NEN biomarkers, or includes at or about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51 GEP-NEN biomarkers.


For example, in some aspects, the subset of biomarkers includes at least 22, or at least 38, or at least 51 biomarkers. In a particular example, the subset contains at least 22 biomarkers, or about 22 biomarkers, or 22 biomarkers, chosen from a panel of 38 biomarkers. In some embodiments, the subset of biomarkers includes at least 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, or 38 biomarkers chosen from a panel of 38 biomarkers.


Because the systems, methods, and kits contain a plurality of agents that specifically bind to or hybridize to the biomarkers in the panel, the number of biomarkers generally relates to the number of agents in a particular system. For example, among the provided methods is a method that contains at least 22 binding agents, which specifically hybridizes to or binds to a subset of at least 22 GEP-NEN biomarkers, respectively.


In some aspects, the subset of biomarkers includes at least 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and/or all of the following group of gene products, including polynucleotides (e.g. 38 transcripts) and polypeptides: PNMA2, NAP1L1, FZD7, SLC18A2/VMAT2, NOL3, SSTR5, TPH1, RAF1, RSF1, SSTR3, SSTR1, CD59, ARAF, APLP2, KRAS, MORF4L2, TRMT112, MKI67/K67, SSTR4, CTGF, SPATA7, ZFHX3, PHF21A, SLC18A1/VMAT1, ZZZ3, TECPR2, ATP6V1H, OAZ2, PANK2, PLD3, PQBP1, RNF41, SMARCD3, BNIP3L, WDFY3, COMMD9, BRAF, and/or GLT8D1 gene products.


In a particular example, the subset of 22 biomarkers includes PNMA2, NAP1L1, FZD7, SLC18A2, NOL3, SSTR5, TPH1, RAF1, RSF1, SSTR3, SSTR1, CD59, ARAF, APLP2, KRAS, MORF4L2, TRMT112, MKI67, SSTR4, CTGF, SPATA7, and ZFHX3 gene products.


Among the provided methods, agents, and systems are those that are able to classify or detect a GEP-NEN in a human blood sample. In some embodiments, the provided systems and methods can identify or classify a GEP-NEN in a human blood sample. In some examples, the systems can provide such information with a specificity, sensitivity, and/or accuracy of at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%, e.g., at least 80%.


In some embodiments, the system can predict treatment responsiveness to, or determine whether a patient has become clinically stable following, or is responsive or non-responsive to, a GEP-NEN treatment, such as a surgical intervention or drug therapy (for example, somatostatin analog therapy). In some cases, the methods and systems do so with a specificity, sensitivity, and/or accuracy of at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%, e.g., with at least 90% accuracy. In some cases, it can differentiate between treated and untreated GEP-NEN with a specificity, sensitivity, and/or accuracy of at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%, e.g., with a sensitivity and specificity of at least 85%.


In some cases, the system can determine diagnostic or prognostic information regarding a subject previously diagnosed with GEP-NEN, for example, whether the subject has a stable disease (SD) or progressive disease (PD) state of GEP-NEN, or is in complete remission, for example, would be clinically categorized as having stable disease, progressive disease, or being in complete remission.


In some embodiments, the agents for detecting the biomarkers, e.g., the sets of polynucleotide or polypeptide agents, and uses thereof, are capable of distinguishing between the presence and absence of GEP-NEN in a biological sample, between GEP-NEN and mucosal samples and GEP-NEN samples, and/or between specific classes or subtypes of GEP-NENs, for example, between aggressive (high activity) and benign (low activity) GEP-NEN samples.


In one aspect, the system is able to classify or detect a GEP-NEN in a human blood sample or human saliva sample. In one aspect, the human sample is whole blood or nucleic acid or protein prepared from whole blood, without first sorting or enriching for any particular population of cells. In one aspect, the system includes agents that bind to biomarkers in a subset of at least 22 GEP-NEN biomarkers.


In some embodiments, in addition to the agents that bind the GEP-NEN biomarkers, the provided systems contain one or more agents that bind to gene products for use in normalization or as controls, for example, housekeeping gene products include ALG9 gene products;


In some embodiments, the methods include selecting a subset of at least 22 biomarkers chosen from a panel of 38 biomarkers useful in generating a classifier for GEP-NEN and different stages of GEP-NEN.


In some embodiments, the methods further include contacting a test sample from the human patient with a plurality of agents specific to the biomarkers in the subset.


The biological test sample used with the methods can be any biological sample, such as tissue, biological fluid, or other sample, including blood samples, such as plasma, serum, whole blood, buffy coat, or other blood sample, tissue, saliva, serum, urine, or semen sample. In some aspects, the sample is obtained from blood. Often, the test sample is taken from a GEP-NEN patient.


The agents can be any agents for detection of biomarkers, and typically are isolated polynucleotides or isolated polypeptides or proteins, such as antibodies, for example, those that specifically hybridize to or bind to a subset or panel of GEP-NEN biomarkers including at least 22 GEP-NEN biomarkers.


In some embodiments, the methods are performed by contacting the test sample with one of the provided agents, more typically with a plurality of the provided agents, for example, one of the provided systems, such as a set of polynucleotides that specifically bind to the subset of GEP-NEN biomarkers. In some embodiments, the set of polynucleotides includes DNA, RNA, cDNA, PNA, genomic DNA, or synthetic oligonucleotides. In some embodiments, the methods include the step of isolating RNA from the test sample prior to detection, such as by RT-PCR, e.g., QPCR. Thus, in some embodiments, detection of the GEP-NEN biomarkers, such as expression levels thereof, includes detecting the presence, absence, or amount of RNA. In one example, the RNA is detected by PCR or by hybridization.


In one aspect, the polynucleotides include sense and antisense primers, such as a pair of primers that is specific to each of the GEP-NEN biomarkers in the subset of biomarkers. In one aspect of this embodiment, the detection of the GEP-NEN biomarkers is carried out by PCR, typically quantitative or real-time PCR. For example, in one aspect, detection is carried out by producing cDNA from the test sample by reverse transcription; then amplifying the cDNA using the pairs of sense and antisense primers that specifically hybridize to the panel of GEP-NEN biomarkers, and detecting products of the amplification. In some embodiments, the GEP-NEN biomarkers include mRNA, cDNA, or protein.


In some embodiments, the methods further include determining a mathematically-derived expression level score of biomarkers selected in the subset in the test sample. This is the MAARC-NET score (Multi-Analyte Risk Classification for NETs). It has two scales 0-8 and the percentage-derivatives scaled to 100% i.e., 0-100%.


The mathematically-derived MAARC-NET score is the product of a classifier built from predictive classification algorithms, e.g. support vector machines (SVM), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and/or naive Bayes (NB). In some examples, the classifier is generated from a combination of SVM, LDA, KNN, and NB classification algorithms and a 10-fold cross-validation design.


In some embodiments, the methods further include a step of determining a mathematically-derived expression level score of biomarkers in the subset in a normal or reference sample, typically carried out prior to the normalization and comparing steps.


The normal or reference sample may be from a healthy patient or a patient who has GEP-NEN. Where the test sample is from a patient with GEP-NEN, the normal or reference sample or level may be from the same or a different patient. For example, the normal or reference sample may be from the GEP-NEN patient from a tissue, fluid or cell not expected to contain GEP-NEN or GEP-NEN cells. On another aspect, the normal or control sample is from the GEP-NEN patient before or after therapeutic intervention, such as after surgery or chemical intervention. In another aspect, the reference or normal sample is from a tissue or fluid that corresponds to the GEP-NEN or metastasis of the test sample, from a healthy individual, such as normal enterochromaffin cell (EC) preparation or small intestinal (SI) sample, or normal liver, lung, bone, blood, saliva, or other bodily fluid, tissue, or biological sample. In another embodiment, the test sample is from a metastasis, plasma, or whole blood or other fluid of a GEP-NEN patient and the reference sample is from primary tumor or fluorescent activated cell (FAC)-sorted tumor cells.


In other aspects, the test sample is from blood and the test biological sample is from the GEP-NEN patient after treatment and the reference sample is from the same GEP-NEN patient as the test biological sample, prior to treatment; the reference sample is from a tissue or fluid not containing GEP-NEN cells; the reference sample is from a healthy individual; the reference sample is from a cancer other than GEP-NEN; the reference sample is from an EC cell or SI tissue; the test biological sample is from a metastatic GEP-NEN and the reference sample is from a non-metastatic GEP-NEN; or the reference sample is from a GEP-NEN of a different classification compared to the GEP-NEN patient from which the test biological sample is obtained.


In one aspect, the test biological sample is from a GEP-NEN patient prior to treatment and the normal or reference sample is from the GEP-NEN patient after treatment. In another aspect, the normal or reference sample is from a non-metastatic tissue of the GEP-NEN patient.


In some cases, a normalization step is performed to normalize the level of expression score of the biomarkers in the subset in the test sample to the level of expression score of the biomarkers in the subset in the reference sample.


In some cases, a comparison step is performed to determine whether there is a difference, such as a significant difference, between the normalized expression level score and a predetermined cut-off value or score threshold. Certain predetermined cut-off values or score thresholds are indicative of different stages of GEP-NEN, while others are indicative of different levels of risk, i.e. low, intermediate, or high, for developing a progressive GEP-NEN.


In one aspect, the methods include comparing the normalized expression level score with a predetermined cutoff value chosen to exclude a control or reference sample, wherein a normalized expression level above the predetermined cutoff value is indicative of a GEP-NEN, wherein the cutoff value is about 2 (on a scale of 0-8, or 13.4% on a scale of 0-100%).


In another aspect, the methods include comparing the normalized expression level score with a predetermined cutoff value chosen to exclude a non-progressive GEP-NEN, wherein a normalized expression level above the predetermined cutoff value of 5 (on a scale of 0-8, or 43.4% on a scale of 0-100%) is indicative of progressive GEP-NEN.


In another aspect, the methods further include identifying the level of risk for a human patient to develop progressive GEP-NEN, wherein a normalized expression level score below about 5 (or 43.4%) is indicative of a low level of risk for developing a progressive GEP-NEN, a normalized expression level score between about 5 and 7 (43.4%-63.4%) is indicative of an intermediate level of risk for developing progressive GEP-NEN, and a normalized expression level score between about 7 and 8 (>63.4%) is indicative of a high level of risk for developing progressive GEP-NEN.


In some cases, a subsequent determination is performed for the actual expression level (not mathematically-derived expression level score) of individual genes, where identifying the intermediate level of risk for developing progressive GEP-NEN further includes determining a first state of intermediate risk, wherein the normalized expression level score between a non-progressive reference sample and the test sample is about 5 (43.4%), the normalized expression level of SMARCD3 is below a first threshold value, and the expression level of TPH1 is below a second threshold value.


In other cases, identifying the intermediate level of risk for developing progressive GEP-NEN further includes determining a second state of intermediate risk, wherein the normalized expression level score between a non-progressive reference sample and the test sample is about 6 (52.7%), the normalized expression level of VMAT1 is equal to or above 0, and the expression level of PHF21A is equal to or above a first threshold value.


In some cases, identifying the intermediate level of risk for developing progressive GEP-NEN further includes determining a third state of intermediate risk, wherein the normalized expression level score between a non-progressive reference sample and the test sample is about 7 (63.4%), the expression level of VMAT1 is equal to or above 0, and the expression level of PHF21A is equal to or below a first threshold value.


In other cases, identifying the high level of risk for developing progressive GEP-NEN further includes determining the normalized expression level score of ZZZ3, wherein the expression level score of ZZZ3 is equal to or less than 14.


Also provided are methods and uses of the provided biomarkers, agents, systems and detection methods for use in determining the risk of residual or reoccurring progressive GEP-NEN in a post-surgery human patient. In such cases, the level of risk for residual or reoccurring progressive GEP-NEN in the post-surgical test sample is identified, wherein a normalized expression level score below about 5 (43.4%) is indicative of a low level of risk, a normalized expression level score between about 5 and 7 (43.4-63.4%) is indicative of an intermediate level of risk, and a normalized expression level score between about 7 and 8>63.4%) is indicative of a high level of risk.


In some cases, identifying the level of risk for residual or reoccurring progressive GEP-NEN further includes determining an elevated expression level score of gene products in at least one gene cluster as determined between a pre-surgical test sample from the patient and the post-surgical test sample.


In some embodiments, the at least one gene cluster includes the proliferome, signalome, secretome I and II, plurome, epigenome, plurome, SSTRome, and combinations thereof.


In other embodiments, the at least one gene cluster includes the PD cluster, the ND cluster, the TD cluster, and the ID cluster. The PD cluster includes the proliferome, signalome, secretome II, plurome, and epigenome. The ND cluster includes the ARAF1, BRAF, KRAS, RAF1, Ki67, NAP1L1, NOL3, GLT8D1, PLD3, PNMA2, VMAT2, TPH1, FZD7, MORF4L2, and ZFHX3. The TD cluster includes the Secretome (I), the Plurome, and the SSTRome. The ID cluster includes the Proliferome, secretome (II), plurome, and epigenome.


In other embodiments, determining the elevated expression of gene products in at least one gene cluster includes evaluating a plurality of gene cluster algorithms including the PDA, NDA, TDA, and IDA algorithms.


In some embodiments, the methods further include treating the patient based on the indication of intermediate or high level of risk for residual or recurring progressive GEP-NEN by one of surgery or therapy.


Also provided are methods and uses of the provided biomarkers, agents, systems and detection methods for use in determining the risk of residual or reoccurring progressive GEP-NEN in a post-somatostatin analog treated patient. In such cases, the level of risk for somatostatin treatment failure is identified, wherein a normalized expression level score below about 5 (43.4%) is indicative of a low level of risk, a normalized expression level score between about 5 and 7 (43.4-63.4%) is indicative of an intermediate level of risk, and a normalized expression level score between about 7 and 8 (>63.4%) is indicative of a high level of risk.


The methods may further include determining the difference in expression level score in at least one of the SSTRome and Proliferome gene clusters between a pre-therapy test sample from the human patient and the post-therapy test sample, wherein an increased level of expression score is indicative of increased risk for residual or reoccurring progressive GEP-NEN.


In some cases, a somatostatin analog is administered to the human patient-based on the indication of intermediate or high level of risk for residual or recurring progressive GEP-NEN and an increased level of expression in at least one of the SSTRome and Proliferome gene clusters.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In the specification, the singular forms also include the plural unless the context clearly dictates otherwise. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference. The references cited herein are not admitted to be prior art to the claimed invention. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting.


Other features and advantages of the invention will be apparent from the following detailed description and claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1E are graphs showing differential exon expression in a marker gene panel inferred from an Affymetrix Human Exon 1.0 ST array in neuroendocrine tumor (NET) tissue relative to normal intestinal mucosa controls. RMA-normalized exon expressions of (FIG. 1A) Tph1, (FIG. 1B) VMAT2, (FIG. 1C) SCG5, (FIG. 1D) CgA, and (FIG. 1E) PTPRN2 were visualized in normal (green) and tumor (samples).



FIGS. 2A-2E are graphs showing the validation of alternative splicing in marker genes by Reverse transcriptase polymerase chain reaction (RT-PCR). Marker genes (FIG. 2A) Tph1, (FIG. 2B) VMAT2, (FIG. 2C) SCG5, (FIG. 2D) CgA, and (FIG. 2E) PTPRN2 were differentially expressed in NET samples relative to normal mucosa controls.



FIG. 3 is a line graph showing the prediction accuracy of four classification algorithms (SVM, LDA, KNN, and Bayes) using sequential addition of up to 22 significantly up-regulated genes (p<0.05) in GEP-NET samples obtained using the results of 10-fold cross validation.



FIGS. 4A-4C are graphs showing mathematically-derived MAARC-NET scores in the test set. (FIG. 4A) Frequency distribution for the 0-4 score in the controls, SD and PD; (FIG. 4B) Frequency distribution using a 0-8 score in the same sample set; (FIG. 4C) Correlation assessment for each of the two scores in (FIG. 4A) and (FIG. 4B).



FIGS. 5A-5B are graphs showing MAARC-NET scores in the test set and a Receiver Operating Characteristics (ROC) analysis. In FIGURE SA, NETs had a significantly elevated score compared to controls, where values for PD were higher than SD. In FIGURE SB, a ROC curve of controls versus GEP-NETS is shown, wherein the AUC was >0.98, p<0.0001. *p<0.05 vs. controls, #p<0.05 vs. SD (2-tailed Mann-Whitney U-test).



FIG. 6A-6B are (FIG. 6A) a graph of MAARC-NET scores in the independent set, wherein Progressive Disease (PD) NETs had a significantly higher elevated score compared to Stable Disease (SD); and (FIG. 6B) a frequency distribution graph for the 0-8 score in SD and PD. #p<0.0001 vs. SD (2-tailed Mann-Whitney U-test).



FIGS. 7A-7B are (FIG. 7A) a graph of ROC of SD versus PD NETs with an AUC of >0.93, p<0.0001 and (FIG. 7B) a graph of the percentage of SD and PD NETs correctly called using a cut-off score of ≥7.



FIG. 8 is a nomogram for NETest 1 demonstrating how the score is achieved and categorizing patients into different disease classes.



FIG. 9 is a graph of the utility of the nomogram of FIG. 8. The percentages of correctly predicted SD and PD NETs, including the level of disease activity, using the nomogram of FIG. 8 are shown.



FIGS. 10A-10B are graphs each showing the frequency distribution for the 0-8 score in SD and PD NET tumors in (FIG. 10A) the test set and (FIG. 10B) the independent set.



FIGS. 11A-11B are graphs of (FIG. 11A) the frequency distribution for the 0-8 score in SD and PD in the combined sets and (FIG. 11B) the risk probability for a score being either SD or PD vs. NETest Score.



FIG. 12 is a nomogram of NETest 2a with the inclusion of score and risk categorizations. Top figure includes MAARC-NET as 0-8 scores; bottom figure is the 0-100% scaled version.



FIG. 13 is a nomogram of NETest 2 with the inclusion of risk category delineation.



FIGS. 14A-14B are illustrations representing the Hallmarks of Neoplasia refocused on NETs. FIG. 14A shows a delineation of tumor (adenocarcinoma) derived hallmarks from Hanahan D, Weinberg R A: Hallmarks of cancer: the next generation. Cell 2011, 144(5): 646-674. FIG. 14B shows NET hallmark based on the Hanahan and Weinberg classification.



FIGS. 15A-15B are graphs showing normalized gene expression of gene clusters in (FIG. 15A) normal mucosa and (FIG. 15B) NETs.



FIG. 16 is a graph of normalized gene expression as evaluated by the PDA and NDA algorithms in normal mucosa (NM) and NET.



FIGS. 17A-17C are graphs of normalized gene expression in (FIG. 17A) normal mucosa, (FIG. 17B) a SD related gene cluster, and (FIG. 17C) a PD related gene cluster.



FIG. 18 is a graph of normalized gene expression in an independent test set, where the genes in PD and SD tumors were evaluated.



FIGS. 19A-19B are graphs showing normalized gene expression of PDA and NDA gene cluster algorithms in (FIG. 19A) the test set and (FIG. 19B) the independent set.



FIGS. 20A-20B are graphs showing (FIG. 20A) normalized gene expression of PDA and NDA gene cluster algorithms in the combined set, and (FIG. 20B) a ROC analysis curve of PDA and NDA for differentiating SD from PD, where *p<0.05 vs. SD.



FIGS. 21A-21B are graphs showing normalized gene expression as evaluated by TDA and IDA gene cluster algorithms in (FIG. 21A) the test set, and (FIG. 21B) the independent set.



FIGS. 22A-22B are graphs showing a ROC analysis of (FIG. 22A) TDA and IDA for differentiating SD from PD, and (FIG. 22B) for each of the individual gene clusters.



FIGS. 23A-23B are graphs showing the alternation in (FIG. 23A) NETest Score in Pre- and Post-Surgery conditions and (FIG. 23B) circulating Chromogranin A (CgA) levels in Pre- and Post-Surgery conditions.



FIGS. 24A-24B are illustrations showing differences in the NETest nomogram in (FIG. 24A) pre-surgical therapy conditions and (FIG. 24B) post-surgical therapy conditions.



FIGS. 25A-25B are graphs showing the percentage change in (FIG. 25A) mathematically-derived score and (FIG. 25B) Chromogranin A in both R0 (complete resections) and R1/2 (incomplete sections) conditions.



FIGS. 26A-26D are graphs showing the difference in NETest score for gene-derived algorithms, (FIG. 26A) PDA, (FIG. 26B) NDA, (FIG. 26C) TDA, and (FIG. 26D) IDA, in pre- and post-surgery conditions.



FIGS. 27A-27I are graphs showing the differences in NETest score for gene-derived clusters, (FIG. 27A) SSTRome, (FIG. 27B) Proliferome, (FIG. 27C) Signalome, (FIG. 27D) Metabolome, (FIG. 27E) Secretome, (FIG. 27F) Secretome, (FIG. 27G) Plurome, (FIG. 27H) EpiGenome, and (FIG. 27I) ApopTome, in pre- and post-surgery conditions.



FIG. 28 is a nomogram of NETest 3 with the inclusion of surgically-relevant algorithms and gene clusters.



FIGS. 29A-29B are graphs showing the differences in (FIG. 29A) NETest score and (FIG. 29B) circulating CgA levels, each in in stable disease (SD) conditions and somatostatin analog (SSA) treatment failure (equivalent of PD conditions).



FIGS. 30A-30D are graphs showing the differences in gene-derived algorithms, (FIG. 30A) PDA, (FIG. 30B) NDA, (FIG. 30C) TDA, and (FIG. 30D) IDA, in stably treated patients (SD) and treatment failure (PD).



FIGS. 31A-31I are graphs showing the differences in gene-derived clusters, specifically (FIG. 31A) SSTrome, (FIG. 31B) Proliferome, (FIG. 31C) Signalome, (FIG. 31D) Metabolome, (FIG. 31E) Secretome, (FIG. 31F) Secretome, (FIG. 31G) Plurome, (FIG. 31H) EpiGenome, and (FIG. 31I) ApopTome, in stably treated patients (SD) and SSA treatment failure (equivalent of PD conditions).



FIGS. 32A-32B are graphs showing a ROC analysis according to (FIG. 32A) gene-derived cluster algorithms and (FIG. 32B) gene clusters for differentiating treatment failure (equivalent of PD conditions) from controls.



FIGS. 33A-33B are graphs showing the percentage of correct calls for each of (FIG. 33A) the gene-derived cluster algorithms and clusters for defining treatment failure in patients categorized as SD and (FIG. 33B) a Best-of-3 outperformed by a combination of SSTRome and Proliferome.



FIG. 34 is a nomogram for somatostatin analog treated patients including the mathematically-derived score as well as the SSTRome, Proliferome, and their combination.



FIGS. 35A-35B are graphs that demonstrate therapeutic efficacy of SSAs and the proportion of patients with low/high NETest scores that developed disease recurrence.



FIGS. 36A-36B are graphs that demonstrate the time point when either the NETest was elevated (>80%) or CgA was abnormal prior to the development of image positive disease recurrence as well as the times that these events occurred prior to image-positive disease recurrence.



FIGS. 37A-37D are graphs that demonstrate the NETest scores prior to long-term follow up (FIG. 37A), and the times to relapse in patients with elevated scores (FIGS. 37B, 37D) or disease-free time (FIG. 37C).



FIGS. 38A-38F are graphs including predicted Ki67 index versus Ki67 index in (FIGS. 38A-38B) SSTRome, (FIGS. 38C-38E) All genes, and (FIGS. 38D-38F) high relevant genes (KRAS, SSTR4, and VPS13C).



FIGS. 39A-39F are graphs showing the correlations (linear regression) between gene clusters or algorithms, (FIG. 39A) SSTRome and Ki67, (FIG. 39B) TDA and Ki67, (FIG. 39C) Proliferome and Ki67, (FIG. 39D) PDA and Ki67, (FIG. 39E) IDA and Ki67, and (FIG. 39F) PDA and Ki67, each versus the Ki-67 index.



FIGS. 40A-40D are graphs modeling predicted SUVmax (tumor uptake—a measure of receptor density/target availability) for SSTRome (Group I: (FIG. 40A) and (FIG. 40C)) and all genes (Group II: (FIG. 40B) and (FIG. 40D)).



FIGS. 41A-41F are graphs modeling MTV (molecular tumor volume—a measure of the tumor burden) in individual genes (FIGS. 41A-41B), SSTRome (FIGS. 41C-41E), and all genes (FIGS. 41D-41F).



FIGS. 42A-42C are graphs showing ZFHX3 expression in patients identified with (FIG. 42A) new lesions by imaging, with (FIG. 42B) progressive disease by RECIST, and (FIG. 42C) following surgery.



FIGS. 43A-43B are graphs showing ZFHX3 expression in (FIG. 43A) patients who remain in a stable disease state of GEP-NEN versus (FIG. 43B) those who develop a progressive disease state of GEP-NEN.



FIGS. 44A-44C are graphs representing (FIG. 44A) the effectiveness of peptide receptor radionucleotide therapy (PRRT), (FIG. 44B) changes in NETest Score versus clinical status at 6M Follow-up (FuP) in responders (R) and non-responders (NR); and (FIG. 44C) change in CgA level versus clinical status at 6M FuP.



FIG. 45 are graphs showing concordance between the NETest in responders and non-responders prior to and after therapy and in addition the comparison to CgA.



FIGS. 46A-46B shows the accuracy of the NETest Score versus CgA for treatment responses.



FIG. 47A-47D shows expression of two subsets of NETest genes, the signalome and metabolome in blood samples prior to therapy and the differences between responders (R) and non-responders (NR), the predictive utility of each as well as when combined into a biological index (FIG. 47B), the utility for predicting treatment response alone (Quotient) or as a combination with grade (Combination) (FIG. 47C) and the metrics of the combination for predicting the outcome of PRRT therapy (FIG. 47D).





DETAILED DESCRIPTION OF THE INVENTION

Three-quarters of all human genes undergo alternative splicing. Identifying and defining cancer-specific splice variants is therefore advantageous for the development of biomarker assays. The described embodiments derive from the surprising discovery that particular cancer-specific splice variants of NET marker genes can be used to maximize the difference between neoplasia and normal samples in biomarker diagnostic methods.


The present invention provides a method for detecting a gastroenteropancreatic neuroendocrine neoplasm (GEP-NEN) in a subject in need thereof, including determining the expression level of at least 22 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 22 biomarkers, wherein the 22 biomarkers are selected from the group consisting of APLP2, ARAF, ATP6V1H, BNIP3L, BRAF, CD59, COMMD9, CTGF, FZD7, GLT8D1, KRAS, MKI67/KI67, MORF4L2, NAP1L1, NOL3, OAZ2, PANK2, PHF21A, PLD3, PNMA2, PQBP1, RAF1, RNF41, RSF1, SLC18A1/VMAT1, SLC18A2/VMAT2, SMARCD3, SPATA7, SSTR1, SSTR3, SSTR4, SSTR5, TECPR2, TPH1, TRMT112, WDFY3, ZFHX3 and ZZZ3; determining the expression level of the at least 22 biomarkers from a reference sample by contacting the reference sample with a plurality of agents specific to detect the expression of the at least 22 biomarkers; normalizing the expression level of the at least 22 biomarkers in the test sample to the expression level of the at least 22 biomarkers in the reference sample; comparing the normalized expression level of the at least 22 biomarkers in the test sample with a predetermined cutoff value; determining the presence of a GEP-NEN in the subject when the normalized expression level is equal to or greater than the predetermined cutoff value or determining the absence of a GEP-NEN in the subject when the normalized expression level is below the predetermined cutoff value, wherein the predetermined cutoff value is 2 on a MAARC-NET scoring system scale of 0-8, or 0% on a scale of 0-100%.


The score is based on a “majority vote” strategy and was developed from a binary classification system whereby a sample will be called “normal” and given a score of 0 or “tumor” and will be scored “1”. The score can range from 0 (four calls all “normal”) to 4 (four calls all “tumor”). Each “call” is the binary result (either “0” for normal or “1” for tumor) of one of four different learning algorithms: Support Vector Machine (SVM), Linear Discrimination Analysis (LDA), K-Nearest Neighbor (KNN), and Naive Bayes (Bayes). Each of these four learning algorithms were trained on an internal training set including 67 controls and 63 GEP-NEN. In this training set, differentially expressed genes (control versus GEP-NEN) were identified as significant using a t-test. Based upon the training set, each of the learning algorithms were trained to differentiate between normal and tumor gene expression to within a level of significance of at least p<0.05. According to the majority voting strategy, those samples with less than 2 “normal” calls are classified as GEP-NEN.


The at least 22 biomarkers can include APLP2, ARAF, CD59, CTGF, FZD7, KRAS, MKI67/KI67, MORF4L2, NAP1L1, NOL3, PNMA2, RAF1, RSF1, SLC18A2/VMAT2, SMARCD3, SPATA7, SSTR1, SSTR3, SSTR4, SSTR5, TPH1, TRMT112, and ZFHX3.


The methods can further include determining the presence of a progressive GEP-NEN in the subject when the normalized expression level is equal to or higher than the predetermined cutoff value, wherein the predetermined cutoff value is 5 on a scale of 0-8, or less than 55% on a scale of 0-100%.


The methods can further include identifying a level of risk for the subject to develop a progressive GEP-NEN the method further including identifying a low level of risk for developing a progressive GEP-NEN when the normalized expression level is less than a predetermined cutoff value of 5 on a scale of 0-8, or less than 55% on a scale of 0-100%; identifying an intermediate level of risk for developing a progressive GEP-NEN when the normalized expression level is equal to or greater than a predetermined cutoff value of 5 and less than a predetermined cutoff value of 7 on a scale of 0-8, or equal to or greater than 55% and less than 75% on a scale of 0-100%; or identifying a high level of risk for developing a progressive GEP-NEN when the normalized expression level is equal to or greater than a predetermined cutoff value of 7 on a scale of 0-8, or equal to or greater than 75% on a scale of 0-100%.


The biomarker can be RNA, cDNA, or protein. When the biomarker is RNA, the RNA can be reverse transcribed to produce cDNA (such as by RT-PCR, and the produced cDNA expression level is detected. The expression level of the biomarker can be detected by forming a complex between the biomarker and a labeled probe or primer. When the biomarker is RNA or cDNA, the RNA or cDNA detected by forming a complex between the RNA or cDNA and a labeled nucleic acid probe or primer. The complex between the RNA or cDNA and the labeled nucleic acid probe or primer can be a hybridization complex. When the biomarker is protein, the protein can be detected by forming a complex between the protein and a labeled antibody. The label can be any label for example a fluorescent label, chemiluminescence label, radioactive label, etc.


The test sample can be any biological fluid obtained from the subject. Preferably, the test sample is blood, serum, plasma or neoplastic tissue. The reference sample can be any biological fluid obtained from a subject not having, showing symptoms of or diagnosed with a neoplastic disease. Preferably, the reference sample is blood, serum, plasma or non-neoplastic tissue.


The subject in need thereof can be a subject diagnosed with a GEP-NEN, a subject having at least one GEP-NEN symptom or a subject having a predisposition or familial history for developing a GEP-NEN. The subject can be any mammal. Preferably, the subject is human. The terms subject and patient are used interchangeably herein.


The methods can further include treating a subject identified as having an intermediate level or high level of risk for developing a progressive GEP-NEN with surgery or drug therapy. The drug therapy can be somatostatin analog treatment or peptide receptor radiotherapy therapy (PRRT). The methods can further include treating a subject identified as having a low level of risk for developing a progressive GEP-NEN with regular or periodic monitoring over at least a six month period, a twelve month period, an eighteen month period or twenty four month period.


The present invention also provides a method for differentiating stable and progressive GEP-NEN in a subject comprising determining that the normalized expression level of the at least 22 biomarkers from the test sample from the subject is equal to or greater than a predetermined cutoff value of 5 and less than a predetermined cutoff value of 6, according to the methods of the present invention; detecting an expression level of SMARCD3 and TPH1 from the test sample and from a reference sample by contacting the test sample and the reference sample with a plurality of agents specific to detect the expression of SMARCD3 and the expression of TPH1; normalizing the expression level of SMARCD3 and TPH1 in the test sample to the expression level of SMARCD3 and TPH1 in the reference sample; comparing the normalized expression level of SMARCD3 and TPH1 in the test sample with a first and a second predetermined cutoff value, respectively; and determining the presence of stable GEP-NEN in the subject when the normalized expression level of SMARCD3 is greater than the first predetermined cutoff value and the expression level of TPH1 is equal to or greater than the second predetermined cutoff value, or determining the presence of progressive GEP-NEN in the subject when the normalized expression level of SMARCD3 is equal to or less than the first predetermined cutoff value and the expression level of TPH1 is less than the second predetermined cutoff value wherein the first predetermined cutoff value is 1.3 on a scale of 0-8 and wherein the second predetermined cutoff value is 4 on a scale of 0-8.


The first predetermined cutoff value of 1.3 corresponds to 12% on a scale of 0-100% and wherein the second predetermined cutoff value of 4 corresponds to 41% on a scale of 0-100%.


The present invention also provides a method for differentiating stable and progressive GEP-NEN in a subject comprising determining that the normalized expression level of the at least 22 biomarkers from the test sample from the subject is equal to or greater than a predetermined cutoff value of 6 and less than a predetermined cutoff value of 7, according to the methods of the present invention; detecting an expression level of VMAT1 and PHF21A from the test sample and from a reference sample by contacting the test sample and reference sample with a plurality of agents specific to detect the expression of VMAT1 and the expression of PHF21A, normalizing the expression level of VMAT1 and PHF21A in the test sample to the expression level of VMAT1 and PHF21A in the reference sample; comparing the normalized expression level of VMAT1 and PHF21A in the test sample with a first and a second predetermined cutoff value, respectively; and determining the presence of stable GEP-NEN in the subject when the normalized expression level of VMAT1 is equal to or greater than the first predetermined cutoff value and the expression level of PHF21A is less than the second predetermined cutoff value, or determining the presence of progressive GEP-NEN in the subject when the normalized expression level of VMAT1 is equal to or greater than the first predetermined cutoff value and the expression level of PHF21A is equal to or greater than the second predetermined cutoff value wherein the first predetermined cutoff value is 0 on a scale of 0-8 and wherein the second predetermined cutoff value is 1.2 on a scale of 0-8.


The first predetermined cutoff value of 0 corresponds to 0% on a scale of 0-100% and wherein the second predetermined cutoff value of 1.2 corresponds to 8% on a scale of 0-100%.


The present invention also provides a method for differentiating stable and progressive GEP-NEN in a subject comprising determining that the normalized expression level of the at least 22 biomarkers from the test sample from the subject is equal to or greater than a predetermined cutoff value of 7 and less than a predetermined cutoff value of 8, according to the methods of the present invention; detecting an expression level of VMAT1 and PHF21A from the test sample and a reference sample by contacting the test sample and the reference sample with a plurality of agents specific to detect the expression of VMAT1 and the expression of PHF21A; normalizing the expression level of VMAT1 and PHF21A in the test sample to the expression level of VMAT1 and PHF21A in the reference sample; comparing the normalized expression level of VMAT1 and PHF21A in the test sample with a first and a second predetermined cutoff value, respectively; and determining the presence of stable GEP-NEN in the subject when the normalized expression level of VMAT1 is equal to or greater than the first predetermined cutoff value and the expression level of PHF21A is greater than the second predetermined cutoff value, or determining the presence of progressive GEP-NEN in the subject when the normalized expression level of VMAT1 is equal to or greater than the first predetermined cutoff value and the expression level of PHF21A is equal to or less than the second predetermined cutoff value wherein the first predetermined cutoff value is 0 on a scale of 0-8 and wherein the second predetermined cutoff value is 1 on a scale of 0-8.


The first predetermined cutoff value of 0 corresponds to 0% on a scale of 0-100% and wherein the second predetermined cutoff value of 1 corresponds to 7% on a scale of 0-100%.


The present invention also provides a method for differentiating stable and progressive GEP-NEN in a subject comprising determining that the normalized expression level of the at least 22 biomarkers from the test sample from the subject is equal to a predetermined cutoff value of 8, according to the methods of the present invention; detecting an expression level of ZZZ3 from the test sample and a reference sample by contacting the test sample and the reference sample with at least one agent specific to detect the expression of ZZZ3; normalizing the expression level of ZZZ3 in the test sample to the expression level of ZZZ3 in the reference sample; comparing the normalized expression level of ZZZ3 in the test sample with a predetermined cutoff value; and determining the presence of progressive GEP-NEN in the subject when the normalized expression level of ZZZ3 is equal to or less than the predetermined cutoff value, wherein the predetermined cutoff value is 1 on a scale of 0-8.


The predetermined cutoff value of 1 corresponds to 18% on a scale of 0-100%.


The methods of the present invention further include determining the expression level of each of 16 biomarkers from a test sample from the subject and a reference sample by contacting the test sample and the reference sample with a plurality of agents specific to detect the expression of each of the 16 biomarkers, wherein the 16 biomarkers comprise Ki67, NAP1L1, NOL3, TECPR2, ARAF1, BRAF, KRAS, RAF1, PQBP1, TPH1, COMMD9, MORF4L2, RNF41, RSF1, SMARCD3, and ZFHX3; summing the expression level of each of the 16 biomarkers of the test sample to generate a progressive diagnostic I total test value and summing the expression level of each of the 16 biomarkers of the reference sample to generate a progressive diagnostic I total reference value, wherein an increased value of the progressive diagnostic I total test value compared to the progressive diagnostic I total reference value indicates the presence of progressive GEP-NEN in the subject.


The methods of the present invention further include determining the expression level of each of 15 biomarkers from a test sample from the subject and a reference sample by contacting the test sample and the reference sample with a plurality of agents specific to detect the amount of each of the 15 biomarkers, wherein the 15 biomarkers comprise ARAF1, BRAF, KRAS, RAF1, Ki67, NAP1L1, NOL3, GLT8D1, PLD3, PNMA2, VMAT2, TPH1, FZD7, MORF4L2 and ZFHX3; averaging the expression level of each of the 15 biomarkers of the test sample to generate a progressive diagnostic II test value and averaging the expression level of each of the 15 biomarkers of the reference sample to generate a progressive diagnostic II reference value, wherein an increased value of the progressive diagnostic II test value compared to the progressive diagnostic II reference value indicates the presence of progressive GEP-NEN in the subject.


The methods of the present invention further include determining the expression level of each of 7 biomarkers from a test sample from the subject and a reference sample by contacting the test sample and the reference sample with a plurality of agents specific to detect the amount of each of the 7 biomarkers, wherein the 7 biomarkers comprise PNMA2, VMAT2, COMMD9, SSTR1, SSTR3, SSTR4, and SSTR5; summing the expression level of each of the 7 biomarkers of the test sample to generate a progressive diagnostic III total test value and summing the expression level of each of the 7 biomarkers of the reference sample to generate a progressive diagnostic III total reference value, wherein an increased value of the progressive diagnostic III total test value compared to the progressive diagnostic III total reference value indicates the presence of progressive GEP-NEN in the subject.


The methods of the present invention further include determining the expression level of each of 11 biomarkers from a test sample from the subject and a reference sample by contacting the test sample and the reference sample with a plurality of agents specific to detect the amount of each of the 11 biomarkers, wherein the 11 biomarkers comprise Ki67, NAP1L1, NOL3, TECPR2, PQBP1, TPH1, MORF4L2, RNF41, RSF1, SMARCD3, and ZFHX3; summing the expression level of each of the 11 biomarkers of the test sample to generate a progressive diagnostic IV total test value and summing the expression level of each of the 11 biomarkers of the reference sample to generate a progressive diagnostic IV total reference value, wherein an increased value of the progressive diagnostic IV total test value compared to the progressive diagnostic IV total reference value indicates the presence of progressive GEP-NEN in the subject.


The present invention also provides a method for determining the risk of relapsing or reoccurring progressive GEP-NEN in a post-surgery subject, including determining the expression level of at least 22 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 22 biomarkers, wherein the 22 biomarkers are selected from the group consisting of APLP2, ARAF, ATP6V1H, BNIP3L, BRAF, CD59, COMMD9, CTGF, FZD7, GLT8D1, KRAS, MKI67/KI67, MORF4L2, NAP1L1, NOL3, OAZ2, PANK2, PHF21A, PLD3, PNMA2, PQBP1, RAF1, RNF41, RSF1, SLC18A1/VMAT1, SLC18A2/VMAT2, SMARCD3, SPATA7, SSTR1, SSTR3, SSTR4, SSTR5, TECPR2, TPH1, TRMT112, WDFY3, ZFHX3 and ZZZ3; determining the expression level of the at least 22 biomarkers from a reference sample by contacting the reference sample with a plurality of agents specific to detect the expression of the at least 22 biomarkers; normalizing the expression level of the at least 22 biomarkers in the test sample to the expression level of the at least 22 biomarkers in the reference sample; comparing the normalized expression level of the at least 22 biomarkers in the test sample with a predetermined cutoff value; identifying an absence of risk of relapsing or reoccurring progressive GEP-NEN post-surgery when the normalized expression level is less than a predetermined cutoff value of 2 on a scale of 0-8, or less than 0% on a scale of 0-100%; identifying a low level of risk of relapsing or reoccurring progressive GEP-NEN post-surgery when the normalized expression level is less than a predetermined cutoff value of 5 on a scale of 0-8, or less than 55% on a scale of 0-100%; identifying an intermediate level of risk of relapsing or reoccurring progressive GEP-NEN post-surgery when the normalized expression level is equal to or greater than a predetermined cutoff value of 5 and less than a predetermined cutoff value of 7 on a scale of 0-8, or equal to or greater than 55% and less than 75% on a scale of 0-100%; or identifying a high level of risk of relapsing or reoccurring progressive GEP-NEN post-surgery when the normalized expression level is equal to or greater than a predetermined cutoff value of 7 on a scale of 0-8, or equal to or greater than 75% on a scale of 0-100%.


The present invention also provides a method for determining the risk of relapsing or reoccurring progressive GEP-NEN in a subject treated with somatostatin, including determining the expression level of at least 22 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 22 biomarkers, wherein the 22 biomarkers are selected from the group consisting of APLP2, ARAF, ATP6V1H, BNIP3L, BRAF, CD59, COMMD9, CTGF, FZD7, GLT8D1, KRAS, MKI67/KI67, MORF4L2, NAP1L1, NOL3, OAZ2, PANK2, PHF21A, PLD3, PNMA2, PQBP1, RAF1, RNF41, RSF1, SLC18A1/VMAT1, SLC18A2/VMAT2, SMARCD3, SPATA7, SSTR1, SSTR3, SSTR4, SSTR5, TECPR2, TPH1, TRMT112, WDFY3, ZFHX3 and ZZZ3; determining the expression level of the at least 22 biomarkers from a reference sample by contacting the reference sample with a plurality of agents specific to detect the expression of the at least 22 biomarkers; normalizing the expression level of the at least 22 biomarkers in the test sample to the expression level of the at least 22 biomarkers in the reference sample; comparing the normalized expression level of the at least 22 biomarkers in the test sample with a predetermined cutoff value; determining the presence of a GEP-NEN in the subject when the normalized expression level is equal to or greater than the predetermined cutoff value or determining the absence of a GEP-NEN in the subject when the normalized expression level is below the predetermined cutoff value, wherein the predetermined cutoff value is 2 on a MAARC-NET scoring system scale of 0-8, or 0% on a scale of 0-100%; when a GEP-NEN is present, determining the expression level of each of 8 biomarkers from a test sample from the subject and a reference sample by contacting the test sample and the reference sample with a plurality of agents specific to detect the expression of each of the 8 biomarkers, wherein the 8 biomarkers comprise Ki67, NAP1L1, NOL3, TECPR2, SSTR1, SSTR2, SSTR4, and SSTR5; summing the expression level of each of the 8 biomarkers of the test sample to generate a progressive diagnostic V total test value and summing the expression level of each of the 8 biomarkers of the reference sample to generate a progressive diagnostic V total reference value, wherein an increased value of the progressive diagnostic V total test value compared to the progressive diagnostic V total reference value indicates the presence of relapsing or reoccurring progressive GEP-NEN in the subject.


The present invention also provides a method for determining a response of a peptide receptor radionucleotide therapy (PRRT) of a GEP-NEN in a subject in need thereof, including determining the expression level of each of 8 biomarkers from a test sample from the subject and a reference sample by contacting the test sample and the reference sample with a plurality of agents specific to detect the expression of each of the 8 biomarkers, wherein the 8 biomarkers comprise ARAF1, BRAF, KRAS, RAF1, ATP6V1H, OAZ2, PANK2, PLD3; normalizing the expression level of the 8 biomarkers in the test sample to the expression level of the 8 biomarkers in the reference sample; comparing the normalized expression level of the 8 biomarkers in the test sample with a predetermined cutoff value; determining the presence of a PRRT-responsive GEP-NEN in the subject when the normalized expression level of the 8 biomarkers is greater than a predetermined cutoff value, wherein the predetermined cutoff value is 5.9 on a scale of 0-8.


The present invention also provides a method for determining a response of a peptide receptor radionucleotide therapy (PRRT) of a GEP-NEN in a subject in need thereof, including (a) following a first cycle of PRRT therapy: determining the expression level of at least 22 biomarkers from a first cycle test sample from the subject by contacting the first cycle test sample with a plurality of agents specific to detect the expression of the at least 22 biomarkers, wherein the 22 biomarkers are selected from the group consisting of APLP2, ARAF, ATP6V1H, BNIP3L, BRAF, CD59, COMMD9, CTGF, FZD7, GLT8D1, KRAS, MKI67/KI67, MORF4L2, NAP1L1, NOL3, OAZ2, PANK2, PHF21A, PLD3, PNMA2, PQBP1, RAF1, RNF41, RSF1, SLC18A1/VMAT1, SLC18A2/VMAT2, SMARCD3, SPATA7, SSTR1, SSTR3, SSTR4, SSTR5, TECPR2, TPH1, TRMT112, WDFY3, ZFHX3 and ZZZ3; determining the expression level of the at least 22 biomarkers from a reference sample by contacting the reference sample with a plurality of agents specific to detect the expression of the at least 22 biomarkers; normalizing the expression level of the at least 22 biomarkers in the first cycle test sample to the expression level of the at least 22 biomarkers in the reference sample; (b) following a second cycle of PRRT therapy, determining the expression level of at least 22 biomarkers from a second cycle test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 22 biomarkers, wherein the 22 biomarkers are selected from the group consisting of APLP2, ARAF, ATP6V1H, BNIP3L, BRAF, CD59, COMMD9, CTGF, FZD7, GLT8D1, KRAS, MKI67/KI67, MORF4L2, NAP1L1, NOL3, OAZ2, PANK2, PHF21A, PLD3, PNMA2, PQBP1, RAF1, RNF41, RSF1, SLC18A1/VMAT1, SLC18A2/VMAT2, SMARCD3, SPATA7, SSTR1, SSTR3, SSTR4, SSTR5, TECPR2, TPH1, TRMT112, WDFY3, ZFHX3 and ZZZ3; determining the expression level of the at least 22 biomarkers from a reference sample by contacting the reference sample with a plurality of agents specific to detect the expression of the at least 22 biomarkers; normalizing the expression level of the at least 22 biomarkers in the second cycle test sample to the expression level of the at least 22 biomarkers in the reference sample; (c) determining a ratio of change of the normalized expression levels from (a) to the normalized expression levels from (b); (d) determining the presence of a PRRT-responsive GEP-NEN when the ratio of change is greater than a pre-PRRT therapy cutoff value, wherein the pre-PRRT therapy cutoff value is 1 on a scale of 0-8.


The present invention also provides a method for determining a progression of a GEP-NEN in a subject in need thereof, including determining the expression level of ZFHX3 from a test sample from the subject by contacting the test sample with an agent specific to detect the expression of ZFHX3; determining the expression level of ZFHX3 from a reference sample by contacting the reference sample with an agent specific to detect the expression of ZFHX3; normalizing the expression level of ZFHX3 in the test sample to the expression level of ZFHX3 in the reference sample; comparing the normalized expression level of ZFHX3 in the test sample with a predetermined cutoff value; determining the progression of a GEP-NEN in the subject when the normalized expression level is equal to or greater than the predetermined cutoff value, wherein the predetermined cutoff value is 0.5 on a scale of 0-8.


The present invention also provides a method for predicting tumor proliferation of a GEP-NEN in a subject in need thereof, including (a) determining the expression level of at least 22 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 22 biomarkers, wherein the 22 biomarkers are selected from the group consisting of APLP2, ARAF, ATP6V1H, BNIP3L, BRAF, CD59, COMMD9, CTGF, FZD7, GLT8D1, KRAS, MKI67/KI67, MORF4L2, NAP1L, NOL3, OAZ2, PANK2, PHF21A, PLD3, PNMA2, PQBP1, RAF1, RNF41, RSF1, SLC18A1/VMAT1, SLC18A2/VMAT2, SMARCD3, SPATA7, SSTR1, SSTR3, SSTR4, SSTR5, TECPR2, TPH1, TRMT112, WDFY3, ZFHX3 and ZZZ3; determining the expression level of the at least 22 biomarkers from a reference sample by contacting the reference sample with a plurality of agents specific to detect the expression of the at least 22 biomarkers; normalizing the expression level of the at least 22 biomarkers in the test sample to the expression level of the at least 22 biomarkers in the reference sample; comparing the normalized expression level of the at least 22 biomarkers in the test sample with a predetermined cutoff value; determining the presence of a GEP-NEN in the subject when the normalized expression level is equal to or greater than the predetermined cutoff value or determining the absence of a GEP-NEN in the subject when the normalized expression level is below the predetermined cutoff value, wherein the predetermined cutoff value is 2 on a MAARC-NET scoring system scale of 0-8, or 0% on a scale of 0-100%; (b) when a GEP-NEN is present, determining the expression level of each of 3 biomarkers from a test sample from the subject and a reference sample by contacting the test sample and the reference sample with a plurality of agents specific to detect the expression of each of the 3 biomarkers, wherein the 3 biomarkers comprise KRAS, SSTR4 and VPS13C; summing the expression level of each of the 3 biomarkers of the test sample to generate a progressive diagnostic VI total test value and summing the expression level of each of the 3 biomarkers of the reference sample to generate a progressive diagnostic VI total reference value, wherein an increased value of the progressive diagnostic VI total test value compared to the progressive diagnostic VI total reference value indicates the presence of tumor proliferation of a GEP-NEN in the subject.


The method wherein (b) further includes determining the expression level of each of 3 biomarkers from a test sample from the subject and a reference sample by contacting the test sample and the reference sample with a plurality of agents specific to detect the expression of each of the 3 biomarkers, wherein the 3 biomarkers comprise SSTR1, SSTR2 and SSTR5; summing the expression level of each of the 3 biomarkers of the test sample to generate a progressive diagnostic VII total test value and summing the expression level of each of the 3 biomarkers of the reference sample to generate a progressive diagnostic VII total reference value, wherein an increased value of the progressive diagnostic VII total test value compared to the progressive diagnostic VII total reference value indicates the presence of tumor proliferation of a GEP-NEN in the subject.


As used herein, the term “GEP-NEN biomarker” and “NET biomarker” refer synonymously to a biological molecule, such as a gene product, the expression or presence of which (e.g., the expression level or expression profile) on its own or as compared to one or more other biomarkers (e.g., relative expression) differs (i.e., is increased or decreased) depending on the presence, absence, type, class, severity, metastasis, location, stage, prognosis, associated symptom, outcome, risk, likelihood or treatment responsiveness, or prognosis of GEP-NEN disease, or is associated positively or negatively with such factors of the prediction thereof.


As used herein, the term “polynucleotide” or nucleic acid molecule means a polymeric form of nucleotides of at least 10 bases or base pairs in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide, and is meant to include single and double stranded forms of DNA. As used herein, a nucleic acid molecule or nucleic acid sequence that serves as a probe in a microarray analysis preferably comprises a chain of nucleotides, more preferably DNA and/or RNA. In other embodiments, a nucleic acid molecule or nucleic acid sequence comprises other kinds of nucleic acid structures such a for instance a DNA/RNA helix, peptide nucleic acid (PNA), locked nucleic acid (LNA) and/or a ribozyme. Hence, as used herein the term “nucleic acid molecule” also encompasses a chain comprising non-natural nucleotides, modified nucleotides and/or non-nucleotide building blocks which exhibit the same function as natural nucleotides.


As used herein, the terms “hybridize,” “hybridizing”, “hybridizes,” and the like, used in the context of polynucleotides, are meant to refer to conventional hybridization conditions, preferably such as hybridization in 50% formamide/6×SSC/0.1% SDS/100 μg/ml ssDNA, in which temperatures for hybridization are above 37 degrees and temperatures for washing in 0.1×SSC/0.1% SDS are above 55 degrees C., and most preferably to stringent hybridization conditions.


The term “blood biopsy” refers to a diagnostic study of the blood to determine whether a patient presenting with symptoms has a condition that may be classified as either benign (low activity) or malignant (high activity/metastatic).


The term “classifying” as used herein with regard to different types or stages of GEP-NEN refers to the act of compiling and analyzing expression data for using statistical techniques to provide a classification to aid in diagnosis of a stage or type of GEP-NEN.


The term “classifier” as used herein refers to an algorithm that discriminates between disease states with a predetermined level of statistical significance. A two-class classifier is an algorithm that uses data points from measurements from a sample and classifies the data into one of two groups. A multi-class classifier is an algorithm that uses data points from measurements from a sample and classifies the data into one of multiple groups. The “classifier” maximizes the probability of distinguishing a randomly selected cancer sample from a randomly selected benign sample, i.e., the area under a curve (AUC) of receiver operating characteristic (ROC) curve.


The term “normalization” or “normalizer” as used herein refers to the expression of a differential value in terms of a standard value to adjust for effects which arise from technical variation due to sample handling, sample preparation and mass spectrometry measurement rather than biological variation of protein concentration in a sample. For example, when measuring the expression of a differentially expressed protein, the absolute value for the expression of the protein can be expressed in terms of an absolute value for the expression of a standard protein that is substantially constant in expression.


The term “condition” as used herein refers generally to a disease, event, or change in health status.


The terms “diagnosis” and “diagnostics” also encompass the terms “prognosis” and “prognostics”, respectively, as well as the applications of such procedures over two or more time points to monitor the diagnosis and/or prognosis over time, and statistical modeling based thereupon. Furthermore the term diagnosis includes: a. prediction (determining if a patient will likely develop aggressive disease (hyperproliferative/invasive)), b. prognosis (predicting whether a patient will likely have a better or worse outcome at a pre-selected time in the future), c. therapy selection, d. therapeutic drug monitoring, and e. relapse monitoring.


The term “providing” as used herein with regard to a biological sample refers to directly or indirectly obtaining the biological sample from a subject. For example, “providing” may refer to the act of directly obtaining the biological sample from a subject (e.g., by a blood draw, tissue biopsy, lavage and the like). Likewise, “providing” may refer to the act of indirectly obtaining the biological sample. For example, providing may refer to the act of a laboratory receiving the sample from the party that directly obtained the sample, or to the act of obtaining the sample from an archive.


“Accuracy” refers to the degree of conformity of a measured or calculated quantity (a test reported value) to its actual (or true) value. Clinical accuracy relates to the proportion of true outcomes (true positives (TP) or true negatives (TN) versus misclassified outcomes (false positives (FP) or false negatives (FN)), and may be stated as a sensitivity, specificity, positive predictive values (PPV) or negative predictive values (NPV), or as a likelihood, odds ratio, among other measures.


The term “biological sample” as used herein refers to any sample of biological origin potentially containing one or more biomarker proteins. Examples of biological samples include tissue, organs, or bodily fluids such as whole blood, plasma, serum, tissue, lavage or any other specimen used for detection of disease.


The term “subject” as used herein refers to a mammal, preferably a human.


“Treating” or “treatment” as used herein with regard to a condition may refer to preventing the condition, slowing the onset or rate of development of the condition, reducing the risk of developing the condition, preventing or delaying the development of symptoms associated with the condition, reducing or ending symptoms associated with the condition, generating a complete or partial regression of the condition, or some combination thereof.


Biomarker levels may change due to treatment of the disease. The changes in biomarker levels may be measured by the present invention. Changes in biomarker levels may be used to monitor the progression of disease or therapy.


“Altered”, “changed” or “significantly different” refer to a detectable change or difference from a reasonably comparable state, profile, measurement, or the like. Such changes may be all or none. They may be incremental and need not be linear. They may be by orders of magnitude. A change may be an increase or decrease by 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 100%, or more, or any value in between 0% and 100%. Alternatively the change may be 1-fold, 1.5-fold 2-fold, 3-fold, 4-fold, 5-fold or more, or any values in between 1-fold and five-fold. The change may be statistically significant with a p value of 0.1, 0.05, 0.001, or 0.0001.


The term “disease prevalence” refers to the number of all new and old cases of a disease or occurrences of an event during a particular period. Prevalence is expressed as a ratio in which the number of events is the numerator and the population at risk is the denominator.


The term “disease incidence” refers to a measure of the risk of developing some new condition within a specified period of time; the number of new cases during some time period, it is better expressed as a proportion or a rate with a denominator.


The term “stable disease” refers to a diagnosis for the presence of GEP-NEN, however GEP-NEN has been treated and remains in a stable condition, i.e. one that that is not progressive, as determined by imaging data and/or best clinical judgment.


The term “progressive disease” refers to a diagnosis for the presence of a highly active state of GEP-NEN, i.e. one has not been treated and is not stable or has been treated and has not responded to therapy, or has been treated and active disease remains, as determined by imaging data and/or best clinical judgment.


The term “expression level score” or “NETest score” refers to the output of a mathematically-derived classifier algorithm generated from the combination of classification algorithms, i.e. SVM, LDA, KNN, and Bayes. This score ranges between 0 and 100%. The expression level score from a test sample, once compared to the expression level score for a reference or control sample, may be used to diagnose the presence of GEP-NEN, the different stages of GEP-NEN, predict the risk of contracting a stage of GEP-NEN, or determines the risk of recurrence of GEP-NEN in post-therapy human patients. Distinctions between GEP-NEN disease states are based on pre-determined expression level score thresholds and/or ranges as further defined in the present application.


Diagnosis and prognosis of GEP-NEN has been difficult, in part due to the prosaic symptoms and syndromes of the disease, such as carcinoid syndrome, diarrhea, flushing, sweating, bronchoconstriction, gastrointestinal bleeding, cardiac disease, intermittent abdominal pain, which often remain silent for years. Available diagnostic methods include anatomical localization, such as by imaging, e.g., X-ray, gastrointestinal endoscopy, abdominal computed tomography (CT), combined stereotactic radiosurgery (SRS)/CT, and MRI, and detection of some gene products e.g., chromogranin A. Known methods are limited, for example by low specificity and/or sensitivity and/or in the ability to detect early-stage disease.


Detection of single biomarkers has not been entirely satisfactory, for example, to identify malignancy in human blood samples and to predict complex outcomes like fibrosis and metastasis. See Michiels S, Koscielny S, Hill C, “Interpretation of microarray data in cancer,” Br J Cancer 2007; 96(8): 1155-8. Limitations in available methods have contributed to difficulties in pathological classification, staging, and prediction, treatment developing and monitoring therapeutic effects. Among the embodiments provided herein are methods and compositions that address these limitations.


In one aspect, the present application relates to the detection and identification of GEP-NEN biomarkers and panels of such biomarkers, for example, in biological samples. Provided are methods and compositions (e.g., agents, such as polynucleotides), for detecting, determining expression levels of, and recognizing or binding to the biomarkers, in biological samples, typically blood samples.


Also provided are models and biomathematical algorithms, e.g., supervised learning algorithms, and methods using the same, for prediction, classification, and evaluation of GEP-NEN and associated outcomes, for example, predicting degree of risk, responsiveness to treatment, metastasis or aggressiveness, and for determining GEP-NEN subtype.


Detection of the biomarkers using the provided embodiments is useful for improving GEP-NEN diagnostics and prognostics, and to inform treatment protocols. In some aspects, detection of the biomarkers and/or expression levels by the provided embodiments confirms or indicates the presence, absence, stage, class, location, sub-type, aggressiveness, malignancy, metastasis, prognosis, or other outcome of GEP-NEN, or a GEP-NEN cell, such as a circulating GEP-NEN cell (CNC). The provided methods and compositions may be used for tumor localization, and for predicting or detecting metastases, micrometastases, and small lesions, and/or for determining degree of risk, likelihood of recurrence, treatment responsiveness or remission, and informing appropriate courses of treatment. For example, detecting the biomarkers, e.g., in circulation may be used to detect early-stage and primary GEP-NENs (e.g., to identify GEP-NEN disease or metastases in a patient previously deemed “negative” by another approach, such as anatomic localization).


The provided methods and compositions may be used for designing, implementing, and monitoring treatment strategies, including patient-specific treatment strategies. In one example, detected expression levels of the GEP-NEN biomarkers serve as surrogate markers for treatment efficacy, e.g., to monitor the effects of surgical therapy, e.g., removal of tumors, targeted medical therapy, e.g., inhibition of tumor secretion/proliferation, and other therapeutic approaches, by detecting remission or recurrence of tumors, even in the form of small micrometastases. The methods also may be used in evaluating clinical symptoms and outcomes, and for histological grading and molecular characterization of GEP-NENs.


The provided biomarkers including GEP-NEN biomarkers, and subsets and panels of the same. Among the provided GEP-NEN biomarkers are gene products, such as DNA, RNA, e.g., transcripts, and protein, which are differentially expressed in GEP-NEN disease, and/or in different stages or sub-types of GEP-NEN, or in different GEP-NEN tumors, such as gene products differentially expressed in metastatic versus non-metastatic tumors, tumors with different degrees of aggressiveness, high versus low-risk tumors, responsive versus non-responsive tumors, tumors exhibiting different pathological classifications and/or likelihood of response to particular courses of treatment, as well as those associated with features of GEP-NEN disease, stage, or type, or with neuroendocrine cells or related cell-types.


For example, the biomarkers include gene products whose expression is associated with or implicated in tumorogenicity, metastasis, or hormone production, or a phenotype of primary or metastatic GEP-NEN, such as adhesion, migration, proliferation, apoptosis, metastasis, and hormone secretion, and those associated with neoplasia or malignancy in general.


Among the biomarkers are GEP-NEN cell secretion products, including hormones and amines, e.g., gastrin, ghrelin, pancreatic polypeptide, substance P, histamine, and serotonin, and growth factors such as tumor growth factor-beta (TGF-β) and connective tissue growth factor (CTGF), which are detectable in the circulation. Secretion products can vary with tumor sub-type and origin.


In one example, the biomarkers are gene products associated with regulatory genotypes (i.e., adhesion, migration, proliferation, apoptosis, metastasis, and/or hormone secretion) that underlay various GEP-NEN subtypes, stages, degrees of aggressiveness, or treatment responsiveness.


A total of 51 differentially expressed biomarker genes have been discovered for the diagnosis, prognosis, and/or monitoring of GEP-NENs. Further details regarding the 51 differentially expressed GEP-NEN biomarkers as well as the housekeeping gene, ALG9, are found in TABLE 1.









TABLE 1







GEP-NEN Biomarker/Houskeeper Sequence Information













SEQ ID


Gene Name
RefSeq Accession
Sequence
NO:













ALG9
NM_024740.2
GTCTTTTGTCCCTCGGCGGACACCGTTTGCCAGCCAAAGC
1




TATGTCTGCGCGCTCACCGACTTCATAGGGTGCCGAATTC




TTTTTTCCCCAGGCTTGCCATGGCTAGTCGAGGGGCTCGG




CAGCGCCTGAAGGGCAGCGGGGCCAGCAGTGGGGATACGG




CCCCGGCTGCGGACAAGCTGCGGGAGCTGCTGGGCAGCCG




AGAGGCGGGCGGCGCGGAGCACCGGACCGAGTTATCTGGG




AACAAAGCAGGACAAGTCTGGGCACCTGAAGGATCTACTG




CTTTCAAGTGTCTGCTTTCAGCAAGGTTATGTGCTGCTCT




CCTGAGCAACATCTCTGACTGTGATGAAACATTCAACTAC




TGGGAGCCAACACACTACCTCATCTATGGGGAAGGGTTTC




AGACTTGGGAATATTCCCCAGCATATGCCATTCGCTCCTA




TGCTTACCTGTTGCTTCATGCCTGGCCAGCTGCATTTCAT




GCAAGAATTCTACAAACTAATAAGATTCTTGTGTTTTACT




TTTTGCGATGTCTTCTGGCTTTTGTGAGCTGTATTTGTGA





ACTTTACTTTTACAAGGCTGTGTGCAAGAAGTTTGGGTTG





CACGTGAGTCGAATGATGCTAGCCTTCTTGGTTCTCAGCA




CTGGCATGTTTTGCTCATCATCAGCATTCCTTCCTAGTAG




CTTCTGTATGTACACTACGTTGATAGCCATGACTGGATGG




TATATGGACAAGACTTCCATTGCTGTGCTGGGAGTAGCAG




CTGGGGCTATCTTAGGCTGGCCATTCAGTGCAGCTCTTGG




TTTACCCATTGCCTTTGATTTGCTGGTCATGAAACACAGG




TGGAAGAGTTTCTTTCATTGGTCGCTGATGGCCCTCATAC




TATTTCTGGTGCCTGTGGTGGTCATTGACAGCTACTATTA




TGGGAAGTTGGTGATTGCACCACTCAACATTGTTTTGTAT




AATGTCTTTACTCCTCATGGACCTGATCTTTATGGTACAG




AACCCTGGTATTTCTATTTAATTAATGGATTTCTGAATTT




CAATGTAGCCTTTGCTTTGGCTCTCCTAGTCCTACCACTG




ACTTCTCTTATGGAATACCTGCTGCAGAGATTTCATGTTC




AGAATTTAGGCCACCCGTATTGGCTTACCTTGGCTCCAAT




GTATATTTGGTTTATAATTTTCTTCATCCAGCCTCACAAA




GAGGAGAGATTTCTTTTCCCTGTGTATCCACTTATATGTC




TCTGTGGCGCTGTGGCTCTCTCTGCACTTCAGCACAGTTT




TCTGTACTTCCAGAAATGTTACCACTTTGTGTTTCAACGA




TATCGCCTGGAGCACTATACTGTGACATCGAATTGGCTGG




CATTAGGAACTGTCTTCCTGTTTGGGCTCTTGTCATTTTC




TCGCTCTGTGGCACTGTTCAGAGGATATCACGGGCCCCTT




GATTTGTATCCAGAATTTTACCGAATTGCTACAGACCCAA




CCATCCACACTGTCCCAGAAGGCAGACCTGTGAATGTCTG




TGTGGGAAAAGAGTGGTATCGATTTCCCAGCAGCTTCCTT




CTTCCTGACAATTGGCAGCTTCAGTTCATTCCATCAGAGT




TCAGAGGTCAGTTACCAAAACCTTTTGCAGAAGGACCTCT




GGCCACCCGGATTGTTCCTACTGACATGAATGACCAGAAT




CTAGAAGAGCCATCCAGATATATTGATATCAGTAAATGCC




ATTATTTAGTGGATTTGGACACCATGAGAGAAACACCCCG




GGAGCCAAAATATTCATCCAATAAAGAAGAATGGATCAGC




TTGGCCTATAGACCATTCCTTGATGCTTCTAGATCTTCAA




AGCTGCTGCGGGCATTCTATGTCCCCTTCCTGTCAGATCA




GTATACAGTGTACGTAAACTACACCATCCTCAAACCCCGG




AAAGCAAAGCAAATCAGGAAGAAAAGTGGAGGTTAGCAAC




ACACCTGTGGCCCCAAAGGACAACCATCTTGTTAACTATT




GATTCCAGTGACCTGACTCCCTGCAAGTCATCGCCTGTAA




CATTTGTAATAAAGGTCTTCTGACATGAATACTGGAATCT




GGGTGCTCTGGGCTAGTCAAAGTCTATTTCAAAGTCTAAT




CAAAGTCACATTTGCTCCCTGTGTGTGTCTCTGTTCTGCA




TGTAAACTTTTTGCAGCTAGGCAGAGAAAGGCCCTAAAGC




ACAGATAGATATATTGCTCCACATCTCATTGTTTTTCCTC




TGTTCAATTATTTACTAGACCGGAGAAGAGCAGAACCAAC




TTACAGGAAGAATTGAAAATCCTGGTACTGGATGGCTGTG




ATAAGCTGTTCTCCACACTCTGGCCTGGCATCTGAGAACT




AGCAAGCCTCTCTTAGGCCATATGGGCTTCTCCACCAAAG




CTGTTTGGCAGCTCCTAGCAGACCTTCTTATTGAAATCCT




CATGCTGAAAATGAACACAGCCTAGTTGCCAACCCACATG




TCCTTTTCACCTCCAGCAAGACTAAGCTTCTTTAAAGCAC




TTCACAGGACTAGGACCCTGTCCTGGAGCTATCTCAGGAA




AAAGGTGACCATTTGAGGAACTGTGACCTAATTTTATTAT




AATGATGCCTCTAATTTTCATTTCCTTTACAACCAACTGT




AACTATAAGGTTGTATTGCTTTTTTGTTCAGTTTTAGCAT




GCTATTTTTTGAATTCTAGACTCCTCCATGTGAAGATATC




AACAGACAAAACTACAACTGTATAGGACATATTTGGAGAA




AATTCTATCAATTGATACATTTGGATGACATCACATTTTT




AAGTAATGTAATCTGAGGCCATTGCTGAGGAAATTAAGAA




TTTTCCTTTTTTTTTAACCACCCCCAGTGAAAAGGATCAG




TGTATATTTATAGCACCTATTTTTTAGTTCTGTCTGTTGT




GAGGCACATCCTGCATGGGGCACTTCTAGTCAAATAGGCA




ATGATAAGGACCTAATTAAAATGTGATAAGTGTATACTAT




TACTTTAAAAGCCTTTACAGTCAGTACTTCAGTTTACAAG




GCACTTTCACAGCATCTCGTTTGATCCTCACAGTCACAAC




ATGTGGTAGACAAGGCAGGTGATTTTTATCCCCATTTTAC




AGATAAGGAAACAGGCTGCGGGTGGGGAGTGAGGGGAGGT




AAAGATAGTTAGTTGCCTAAGGTCACACAGCCAGTAAGTA




ATAGAGCTGGGACTGGAACCCAGGTTTCCTTACTCTCATC




TATTGCTCCTCCATATTCCTCACTCAACCATGAAAACATT




ACTTGAAAGGACTGATGAGGTTAACCAGAGACCTAACTGA




TATTGTAACTTTCTATTTTAAGGAAGAATTGTGTCTGTAT




TTGAGTTCTTTGGAGCCTCCAGTCTGCCTGTGTGTTAGAC




CAGCACAGCAGTGCTGTGTGATGCAGCCTGACCTGTGGCA




GGAAAGTAGTGCTTCTGTTTGGAAGTCATGTTCTTTTGCA




GCCACACAGGATCCAAATATCAGTACTATTCCTGTAGTCA




ATCTGGGGTCACATTATAGGTGCCTTATTTCCCTAAGGGT




AACTGATCTGAATATCTGCAAATAGGATGAATCTATTTTT




CAGAAGTTCCATCTTTCATTTTTCTTTTTTTTTTTGAGAC




AGAGTCTCATTCTGTCGCCCATGCTGGAGTGCAGTGGCGC




GATCTCGGCTCGCTGCAACCTCTGCCTCCCAGGTTGAAGC




AATTCTCATGCCTCAGCCACCCGAGTAGCTGGGATTACAG




GCATGCGCCATCATGCCCAGCTAATTTATGTATTTTTAGT




AGAGTTGGAGTTTCACCATGTTGGCCAGGCTGGTCTTGGA




CTCCTGACCTCAGGTCATCCACCCGCCTCAGCCTCCCAAA




GTGCTGGTATTACAGGCGTGAGCCACCGCACCCAGCCCCA




TCTTTCATTTTCAAAGAGAAGGGCATTCTAATAGGAACTG




GTGCCAAGAGAGAAGAAAAGAAGTGATAACAGAAGAAATG




GCTAGTTACAATATTAAAAAGCTCCTCTTTGAGATCTCCT




CTGCAGGAATATCAGAGACGGAGTTGAAGCGCTGGAGAGG




TAATAGGTCTAGACAGTACAGAACAATAACTGGGGAGTGT




GTGAGGATAGACTGGGCTCCCCCTTGCTTGAAAGATCTCT




GGCATTTAATTCTCAATTCTTGATTACTATTTTCCAGTGT




AAAACTAGCACATATGATCTGACTACAGGACAGAGAATTT




TAAGTGAAACATTTGCCTTACTTGCAGTAATAATGTGCTG




TTCTTCACAGTAGCTAAGGCCCTCTATGTTTCCCAGAGGT




AAATAAGAATCCAGGAATGGAGGTCCATCTGTGATGAATG




GCTTTTTTCTAATCAAAGTAGTATAATGCTGTTTTATCTG




TTTTGTCATCTTGTTTTTTTTTTTTTTTAAAAAAACAAAA




CCTTAATTATAATATAGCGCAAAGAAAGGCCAGGACTGAT




GCAGGGATTCCTTGGAAATATCAGTTCCTATCACTTTTAA




AACCTGATTTTGGATCTCTCTGTTCTATGTATGTCTTTAG




TGAGAGCACAATACATGGCAGAACGCTGTGCCAAATGTTA




TAGGTAAGGAATATAGAAATGAATGTTTTTTGTTGTGAAG




GTGTTTTCATGTGATATTTTATAAACACATTTTAAAAAAT




CTCCATCACTTTTTAGTATAGGAAGGATAGCTTTGCCTGG




GAAAAACAGTTTCAACACACCTGCTCAGAGTAGCAGTTCT




CCCTCAAAAAAGCAGTGTTCAGCCTGCACTGACTGTTCTG




CTTGCCAAAAGGAGGAAGCATGCAAGATACTTATTTCTCC




ATAGATTGTGGAGTATAGAGGGATGTGGGACTACAGATTA




TTATTTTTTTTCCCCGAGACAGAGTCTTGCTCTGTCGCCC




AGGTTGGAACACAATGGCACGACCTCAGCTCACTGCAACC




TCTGTCTCCCGGGTTCAAGCAATTCTCCTGCTTCAGCCTC




CTGAGTAGCTGGGATTACAGGCACACACCACCACCGCACT




CAGCTAATTTTTGTATTTTTAGTAGAGGTGGGGTTTTACC




ATGTTGGCCAGGCTGGTCTTAAACTCCTGACCTTGTAATC




ATCCCGCCTCGGCCTCCTAAAGTGCTAGGATTACAGGCAT




GAGCCACCGCACCCGGCCCAGATAATTTTTAATAGCCTTT




GATCATGGGGTGAGTGAGGGAGTAGGTATACTTGGCAAAT




GCATGGTTCTCTGATTTCTAGCTCTAAAGCAGCCTTATCT




GAATCCCCAAATCTTGTGATGCTGAGTACCATTACTGAAC




CAGTCTGCACGGTAGGCATCTGCTACCAAAATTTACCTCC




TACCTGGTAGGTGTCATCTGATAAGAAAGAAGACAGGTTA




TTTTAATTTTTTGAGATAATCACAGAAAATTGCAGCCCAT




ACTCTTTATTACCGAATTCAAGTTTGGAAATAGACCCTTT




GTTTTAAATCATGATGGGTCTTTATCCCAATCATTTATCT




GGGTCATTTTTCCAACTTTGGAGTTCTAGGAAAGAACCTT




GAAAACCTGATATGATTCTGCAGCATGAGGTCTACGGTGA




CCATTTGGGCAAAGCTCCAGTGGCAATCATTTATTGTGTT




TTGCATTTCCTGGGATTTATTGAAATAAGAATTCACTGTG




ATTATGTAGTCTTCTGGCTAGTATCAGGCAGCTCTGCTTT




TAATTTGGTTAATTTTATTTTCTCTGAAGAGGGAGAAGAG




GTACAATTTAATCTTGGCCTCCACAAGCATATTAAAGCTC




ACGTGTTAATCAGTGCATTCTTATGCTCCTACATTAAATG




CCTTGGGTAAATGGATAAATGGACATGTGCCCAGCTTTAA




TTTTTTTTGCAACAGAAAGATCAGACTTCCGTATGGCATC




GTTGGATTTCAGAGGCTTTCTGGTGTATCTGTAAATCTGA




ATGTTGCCTTCTGCCAGTCTGTATAACCAGGTGATTCATG




CTGCAAATGAAATCAGGAAGCAGTAAAGTGTTAAAGCAAG




AGTATTGTCCAATTCACTTGTCTTCCTGATCCTTGTACTT




TATTTCACGTGTCGGTGTTTACATTACATACTTATATTTC




CTGTGAAAGAAAGAGTTAAATAAATTGTAGCAGTTTGA





AKAP8L
NM_014371.3
ACTGATATGAGGAGGCATAGAGATAGACAGCGGTTCCTTC
2




CAATAGACGTGAAGCCGAGGCCGGTATGAGCCAATGCGGT




CGGGAGGCGGGGCTCGGGTGTGTGTGGAGGGGACCCTGTG




GTTAGCAGCAGCTATCGCAGCGTCGGATGTTCAGAGCAGC




AGAAGCCGGCGTCGTCGGATGTTGTGTTGCCCGCCACCAT




GAGCTACACAGGCTTTGTCCAGGGATCTGAAACCACTTTG




CAGTCGACATACTCGGATACCAGCGCTCAGCCCACCTGTG




ATTATGGATATGGAACTTGGAACTCTGGGACAAATAGAGG




CTACGAGGGCTATGGCTATGGCTATGGCTATGGCCAGGAT




AACACCACCAACTATGGGTATGGTATGGCCACTTCACACT




CTTGGGAAATGCCTAGCTCTGACACAAATGCAAACACTAG




TGCCTCGGGTAGCGCCAGTGCCGATTCCGTTTTATCCAGA




ATTAACCAGCGCTTAGATATGGTGCCGCATTTGGAGACAG




ACATGATGCAAGGAGGCGTGTACGGCTCAGGTGGAGAAAG




GTATGACTCTTATGAGTCCTGCGACTCGAGGGCCGTCCTG




AGTGAGCGCGACCTGTACCGGTCAGGCTATGACTACAGCG




AGCTTGACCCTGAGATGGAAATGGCCTATGAGGGCCAATA




CGATGCCTACCGCGACCAGTTCCGCATGCGTGGCAACGAC




ACCTTCGGTCCCAGGGCACAGGGCTGGGCCCGGGATGCCC




GGAGCGGCCGGCCAATGGCCTCAGGCTATGGGCGCATGTG




GGAAGACCCCATGGGGGCCCGGGGCCAGTGCATGTCTGGT




GCCTCTCGGCTGCCCTCCCTCTTCTCCCAGAACATCATCC




CCGAGTACGGCATGTTCCAGGGCATGCGAGGTGGGGGCGC




CTTCCCGGGCGGCTCCCGCTTTGGTTTCGGGTTTGGCAAT




GGCATGAAGCAGATGAGGCGGACCTGGAAGACCTGGACCA




CAGCCGACTTCCGAACCAAGAAGAAGAAGAGAAAGCAGGG




CGGCAGTCCTGATGAGCCAGATAGCAAAGCCACCCGCACG




GACTGCTCGGACAACAGCGACTCAGACAATGATGAGGGCA




CCGAGGGGGAAGCCACAGAGGGCCTTGAAGGCACCGAGGC




TGTGGAGAAGGGCTCCAGAGTGGACGGAGAGGATGAGGAG




GGAAAAGAGGATGGGAGAGAAGAAGGCAAAGAGGATCCAG




AGAAGGGGGCCCTAACCACCCAGGATGAAAATGGCCAGAC




CAAGCGCAAGTTGCAGGCAGGCAAGAAGAGTCAGGACAAG




CAGAAAAAGCGGCAGCGAGACCGCATGGTGGAAAGGATCC




AGTTTGTGTGTTCTCTGTGCAAATACCGGACCTTCTATGA




GGACGAGATGGCCAGCCATCTTGACAGCAAGTTCCACAAG




GAACACTTTAAGTACGTAGGCACCAAGCTCCCTAAGCAGA




CGGCTGACTTTCTGCAGGAGTACGTCACTAACAAGACCAA




GAAGACAGAGGAGCTCCGAAAAACCGTGGAGGACCTTGAT




GGCCTCATCCAGCAAATCTACAGAGACCAGGATCTGACCC





AGGAAATTGCCATGGAGCATTTTGTGAAGAAGGTGGAGGC






AGCCCATTGTGCAGCCTGCGACCTCTTCATTCCCATGCAG





TTTGGGATCATCCAGAAGCATCTGAAGACCATGGATCACA




ACCGGAACCGCAGGCTCATGATGGAGCAGTCCAAGAAGTC




CTCCCTCATGGTGGCCCGCAGTATTCTCAACAACAAGCTC




ATCAGCAAGAAGCTGGAGCGCTACCTGAAGGGCGAGAACC




CTTTCACCGACAGCCCCGAGGAGGAGAAGGAGCAGGAGGA




GGCTGAGGGCGGTGCCCTGGACGAGGGGGCGCAGGGCGAA




GCGGCAGGGATCTCGGAGGGCGCAGAGGGCGTGCCGGCGC




AGCCTCCCGTGCCCCCAGAGCCAGCCCCCGGGGCCGTGTC




GCCGCCACCGCCGCCGCCCCCAGAGGAGGAGGAGGAGGGC




GCCGTGCCCTTGCTGGGAGGGGCGCTGCAACGCCAGATCC




GCGGCATCCCGGGCCTCGACGTGGAGGACGACGAGGAGGG




CGGCGGGGGCGCCCCGTGACCCGAGCTCGGGGCGGGCGGA




GCCCGCGTGGCCGAAGCTGGAAACCAAACCTAATAAAGTT




TTCCCATCCCACCAAAAAAAAAAAAAAAAAA





APLP2
NM_001142276.1
AGAAGGAGGGCGTGGTAATATGAAGTCAGTTCCGGTTGGT
3




GTAAAACCCCCGGGGCGGCGGCGAACTGGCTTTAGATGCT




TCTGGGTCGCGGTGTGCTAAGCGAGGAGTCCGAGTGTGTG




AGCTTGAGAGCCGCGCGCTAGAGCGACCCGGCGAGGGATG




GCGGCCACCGGGACCGCGGCCGCCGCAGCCACGGGCAGGC




TCCTGCTTCTGCTGCTGGTGGGGCTCACGGCGCCTGCCTT




GGCGCTGGCCGGCTACATCGAGGCTCTTGCAGCCAATGCC




GGAACAGGATTTGCTGTTGCTGAGCCTCAAATCGCAATGT




TTTGTGGGAAGTTAAATATGCATGTGAACATTCAGACTGG




GAAATGGGAACCTGATCCAACAGGCACCAAGAGCTGCTTT




GAAACAAAAGAAGAAGTTCTTCAGTACTGTCAGGAGATGT




ATCCAGAGCTACAGATCACAAATGTGATGGAGGCAAACCA




GCGGGTTAGTATTGACAACTGGTGCCGGAGGGACAAAAAG




CAATGCAAGAGTCGCTTTGTTACACCTTTCAAGTGTCTCG




TGGGTGAATTTGTAAGTGATGTCCTGCTAGTTCCAGAAAA




GTGCCAGTTTTTCCACAAAGAGCGGATGGAGGTGTGTGAG




AATCACCAGCACTGGCACACGGTAGTCAAAGAGGCATGTC




TGACTCAGGGAATGACCTTATATAGCTACGGCATGCTGCT




CCCATGTGGGGTAGACCAGTTCCATGGCACTGAATATGTG




TGCTGCCCTCAGACAAAGATTATTGGATCTGTGTCAAAAG




AAGAGGAAGAGGAAGATGAAGAGGAAGAGGAAGAGGAAGA




TGAAGAGGAAGACTATGATGTTTATAAAAGTGAATTTCCT




ACTGAAGCAGATCTGGAAGACTTCACAGAAGCAGCTGTGG




ATGAGGATGATGAGGATGAGGAAGAAGGGGAGGAAGTGGT




GGAGGACCGAGATTACTACTATGACACCTTCAAAGGAGAT




GACTACAATGAGGAGAATCCTACTGAACCCGGCAGCGACG




GCACCATGTCAGACAAGGAAATTACTCATGATGTCAAAGC




TGTCTGCTCCCAGGAGGCGATGACGGGGCCCTGCCGGGCC




GTGATGCCTCGTTGGTACTTCGACCTCTCCAAGGGAAAGT




GCGTGCGCTTTATATATGGTGGCTGCGGCGGCAACAGGAA




CAATTTTGAGTCTGAGGATTATTGTATGGCTGTGTGTAAA




GCGATGATTCCTCCAACTCCTCTGCCAACCAATGATGTTG




ATGTGTATTTCGAGACCTCTGCAGATGATAATGAGCATGC




TCGCTTCCAGAAGGCTAAGGAGCAGCTGGAGATTCGGCAC




CGCAACCGAATGGACAGGGTAAAGAAGGAATGGGAAGAGG




CAGAGCTTCAAGCTAAGAACCTCCCCAAAGCAGAGAGGCA




GACTCTGATTCAGCACTTCCAAGCCATGGTTAAAGCTTTA




GAGAAGGAAGCAGCCAGTGAGAAGCAGCAGCTGGTGGAGA




CCCACCTGGCCCGAGTGGAAGCTATGCTGAATGACCGCCG




TCGGATGGCTCTGGAGAACTACCTGGCTGCCTTGCAGTCT




GACCCGCCACGGCCTCATCGCATTCTCCAGGCCTTACGGC




GTTATGTCCGTGCTGAGAACAAAGATCGCTTACATACCAT




CCGTCATTACCAGCATGTGTTGGCTGTTGACCCAGAAAAG




GCGGCCCAGATGAAATCCCAGGTGATGACACATCTCCACG




TGATTGAAGAAAGGAGGAACCAAAGCCTCTCTCTGCTCTA




CAAAGTACCTTATGTAGCCCAAGAAATTCAAGAGGAAATT




GATGAGCTCCTTCAGGAGCAGCGTGCAGATATGGACCAGT




TCACTGCCTCAATCTCAGAGACCCCTGTGGACGTCCGGGT




GAGCTCTGAGGAGAGTGAGGAGATCCCACCGTTCCACCCC




TTCCACCCCTTCCCAGCCCTACCTGAGAACGAAGGATCTG




GAGTGGGAGAGCAGGATGGGGGACTGATCGGTGCCGAAGA





GAAAGTGATTAACAGTAAGAATAAAGTGGATGAAAACATG






GTCATTGACGAGACTCTGGATGTTAAGGAAATGATTTTCA






ATGCCGAGAGAGTTGGAGGCCTCGAGGAAGAGCGGGAATC





CGTGGGCCCACTGCGGGAGGACTTCAGTCTGAGTAGCAGT




GCTCTCATTGGCCTGCTGGTCATCGCAGTGGCCATTGCCA




CGGTCATCGTCATCAGCCTGGTGATGCTGAGGAAGAGGCA




GTATGGCACCATCAGCCACGGGATCGTGGAGGTTGATCCA




ATGCTCACCCCAGAAGAGCGTCACCTGAACAAGATGCAGA




ACCATGGCTATGAGAACCCCACCTACAAATACCTGGAGCA




GATGCAGATTTAGGTGGCAGGGAGCGCGGCAGCCCTGGCG




GAGGGATGCAGGTGGGCCGGAAGATCCCACGATTCCGATC




GACTGCCAAGCAGCAGCCGCTGCCAGGGGCTGCGTCTGAC




ATCCTGACCTCCTGGACTGTAGGACTATATAAAGTACTAC




TGTAGAACTGCAATTTCCATTCTTTTAAATGGGTGAAAAA




TGGTAATATAACAATATATGATATATAAACCTTAAATGAA




AAAAATGATCTATTGCAGATATTTGATGTAGTTTTCTTTT




TTAAATTAATCAGAAACCCCACTTCCATTGTATTGTCTGA




CACATGCTCTCAATATATAATAAATGGGAAATGTCGATTT




TCAATAATAGACTTATATGCAGGCTGTCGTTCCGGTTATG




TTGTGTAAGTCAACTCTTCAGCCTCATTCACTGTCCTGGC




TTTTATTTAAAGAAAAAAAAGGCAGTATTCCCTTTTTAAA




TGAGCTTTCAGGAAGTTGCTGAGAAATGGGGTGGAATAGG




GAACTGTAATGGCCACTGAAGCACGTGAGAGACCCTCGCA




AAATGATGTGAAAGGACCAGTTTCTTGAAGTCCAGTGTTT




CCACGGCTGGATACCTGTGTGTCTCCATAAAAGTCCTGTC




ACCAAGGACGTTAAAGGCATTTTATTCCAGCGTCTTCTAG




AGAGCTTAGTGTATACAGATGAGGGTGTCCGCTGCTGCTT




TCCTTCGGAATCCAGTGCTTCCACAGAGATTAGCCTGTAG




CTTATATTTGACATTCTTCACTGTCTGTTGTTTACCTACC




GTAGCTTTTTACCGTTCACTTCCCCTTCCAACTATGTCCA




GATGTGCAGGCTCCTCCTCTCTGGACTTTCTCCAAAGGCA




CTGACCCTCGGCCTCTACTTTGTCCCCTCACCTCCACCCC




CTCCTGTCACCGGCCTTGTGACATTCACTCAGAGAAGACC




ACACCAAGGAGGCGGCCGCTGGCCCAGGAGAGAACACGGG




GAGGTTTGTTTGTGTGAAAGGAAAGTAGTCCAGGCTGTCC




CTGAAACTGAGTCTGTGGACACTGTGGAAAGCTTTGAACA




ATTGTGTTTTCGTCACAGGAGTCTTTGTAATGCTTGTACA




GTTGATGTCGATGCTCACTGCTTCTGCTTTTTCTTTCTTT




TTATTTTAAATCTGAAGGTTCTGGTAACCTGTGGTGTATT




TTTATTTTCCTGTGACTGTTTTTGTTTTGTTTTTTTCCTT




TTTCCTCCCCTTTGACCCTATTCATGTCTCTACCCACTAT




GCACAGATTAAACTTCACCTACAAACTCCTTAATATGATC




TGTGGAGAATGTACACAGTTTAAACACATCAATAAATACT




TTAACTTCCACCGAGAAAAAAAAAAAAAAAA





ARAF1
NM_001654.4
CTTGACAGACGTGACCCTGACCCAATAAGGGTGGAAGGCT
4




GAGTCCCGCAGAGCCAATAACGAGAGTCCGAGAGGCGACG




GAGGCGGACTCTGTGAGGAAACAAGAAGAGAGGCCCAAGA




TGGAGACGGCGGCGGCTGTAGCGGCGTGACAGGAGCCCCA




TGGCACCTGCCCAGCCCCACCTCAGCCCATCTTGACAAAA




TCTAAGGCTCCATGGAGCCACCACGGGGCCCCCCTGCCAA




TGGGGCCGAGCCATCCCGGGCAGTGGGCACCGTCAAAGTA




TACCTGCCCAACAAGCAACGCACGGTGGTGACTGTCCGGG




ATGGCATGAGTGTCTACGACTCTCTAGACAAGGCCCTGAA




GGTGCGGGGTCTAAATCAGGACTGCTGTGTGGTCTACCGA




CTCATCAAGGGACGAAAGACGGTCACTGCCTGGGACACAG




CCATTGCTCCCCTGGATGGCGAGGAGCTCATTGTCGAGGT




CCTTGAAGATGTCCCGCTGACCATGCACAATTTTGTACGG




AAGACCTTCTTCAGCCTGGCGTTCTGTGACTTCTGCCTTA




AGTTTCTGTTCCATGGCTTCCGTTGCCAAACCTGTGGCTA




CAAGTTCCACCAGCATTGTTCCTCCAAGGTCCCCACAGTC




TGTGTTGACATGAGTACCAACCGCCAACAGTTCTACCACA




GTGTCCAGGATTTGTCCGGAGGCTCCAGACAGCATGAGGC




TCCCTCGAACCGCCCCCTGAATGAGTTGCTAACCCCCCAG




GGTCCCAGCCCCCGCACCCAGCACTGTGACCCGGAGCACT




TCCCCTTCCCTGCCCCAGCCAATGCCCCCCTACAGCGCAT




CCGCTCCACGTCCACTCCCAACGTCCATATGGTCAGCACC




ACGGCCCCCATGGACTCCAACCTCATCCAGCTCACTGGCC




AGAGTTTCAGCACTGATGCTGCCGGTAGTAGAGGAGGTAG




TGATGGAACCCCCCGGGGGAGCCCCAGCCCAGCCAGCGTG




TCCTCGGGGAGGAAGTCCCCACATTCCAAGTCACCAGCAG




AGCAGCGCGAGCGGAAGTCCTTGGCCGATGACAAGAAGAA




AGTGAAGAACCTGGGGTACCGGGACTCAGGCTATTACTGG




GAGGTACCACCCAGTGAGGTGCAGCTGCTGAAGAGGATCG




GGACGGGCTCGTTTGGCACCGTGTTTCGAGGGCGGTGGCA




TGGCGATGTGGCCGTGAAGGTGCTCAAGGTGTCCCAGCCC




ACAGCTGAGCAGGCCCAGGCTTTCAAGAATGAGATGCAGG




TGCTCAGGAAGACGCGACATGTCAACATCTTGCTGTTTAT




GGGCTTCATGACCCGGCCGGGATTTGCCATCATCACACAG




TGGTGTGAGGGCTCCAGCCTCTACCATCACCTGCATGTGG




CCGACACACGCTTCGACATGGTCCAGCTCATCGACGTGGC





CCGGCAGACTGCCCAGGGCATGGACTACCTCCATGCCAAG





AACATCATCCACCGAGATCTCAAGTCTAACAACATCTTCC




TACATGAGGGGCTCACGGTGAAGATCGGTGACTTTGGCTT




GGCCACAGTGAAGACTCGATGGAGCGGGGCCCAGCCCTTG




GAGCAGCCCTCAGGATCTGTGCTGTGGATGGCAGCTGAGG




TGATCCGTATGCAGGACCCGAACCCCTACAGCTTCCAGTC




AGACGTCTATGCCTACGGGGTTGTGCTCTACGAGCTTATG




ACTGGCTCACTGCCTTACAGCCACATTGGCTGCCGTGACC




AGATTATCTTTATGGTGGGCCGTGGCTATCTGTCCCCGGA




CCTCAGCAAAATCTCCAGCAACTGCCCCAAGGCCATGCGG




CGCCTGCTGTCTGACTGCCTCAAGTTCCAGCGGGAGGAGC




GGCCCCTCTTCCCCCAGATCCTGGCCACAATTGAGCTGCT




GCAACGGTCACTCCCCAAGATTGAGCGGAGTGCCTCGGAA




CCCTCCTTGCACCGCACCCAGGCCGATGAGTTGCCTGCCT




GCCTACTCAGCGCAGCCCGCCTTGTGCCTTAGGCCCCGCC




CAAGCCACCAGGGAGCCAATCTCAGCCCTCCACGCCAAGG




AGCCTTGCCCACCAGCCAATCAATGTTCGTCTCTGCCCTG




ATGCTGCCTCAGGATCCCCCATTCCCCACCCTGGGAGATG




AGGGGGTCCCCATGTGCTTTTCCAGTTCTTCTGGAATTGG




GGGACCCCCGCCAAAGACTGAGCCCCCTGTCTCCTCCATC




ATTTGGTTTCCTCTTGGCTTTGGGGATACTTCTAAATTTT




GGGAGCTCCTCCATCTCCAATGGCTGGGATTTGTGGCAGG




GATTCCACTCAGAACCTCTCTGGAATTTGTGCCTGATGTG




CCTTCCACTGGATTTTGGGGTTCCCAGCACCCCATGTGGA




TTTTGGGGGGTCCCTTTTGTGTCTCCCCCGCCATTCAAGG




ACTCCTCTCTTTCTTCACCAAGAAGCACAGAATTCTGCTG




GGCCTTTGCTTGTTTAAAAAAAAAAAAAAAAAAAAAAAAA




AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA




AA





ATP6V1H
NM_015941.3
AGCAGTCACGTGCCTCCGATCACGTGACCGGCGCCTCTGT
5




CATTCTACTGCGGCCGCCCTGGCTTCCTTCTACCTGTGCG




GCCCTCAACGTCTCCTTGGTGCGGGACCCGCTTCACTTTC




GGCTCCCGGAGTCTCCCTCCACTGCTCAGACCTCTGGACC




TGACAGGAGACGCCTACTTGGCTCTGACGCGGCGCCCCAG




CCCGGCTGTGTCCCCGGCGCCCCGGACCACCCTCCCTGCC




GGCTTTGGGTGCGTTGTGGGGTCCCGAGGATTCGCGAGAT




TTGTTGAAAGACATTCAAGATTACGAAGTTTAGATGACCA




AAATGGATATCCGAGGTGCTGTGGATGCTGCTGTCCCCAC




CAATATTATTGCTGCCAAGGCTGCAGAAGTTCGTGCAAAC




AAAGTCAACTGGCAATCCTATCTTCAGGGACAGATGATTT




CTGCTGAAGATTGTGAGTTTATTCAGAGGTTTGAAATGAA




ACGAAGCCCTGAAGAGAAGCAAGAGATGCTTCAAACTGAA




GGCAGCCAGTGTGCTAAAACATTTATAAATCTGATGACTC




ATATCTGCAAAGAACAGACCGTTCAGTATATACTAACTAT




GGTGGATGATATGCTGCAGGAAAATCATCAGCGTGTTAGC




ATTTTCTTTGACTATGCAAGATGTAGCAAGAACACTGCGT




GGCCCTACTTTCTGCCAATGTTGAATCGCCAGGATCCCTT




CACTGTTCATATGGCAGCAAGAATTATTGCCAAGTTAGCA




GCTTGGGGAAAAGAACTGATGGAAGGCAGTGACTTAAATT




ACTATTTCAATTGGATAAAAACTCAGCTGAGTTCACAGAA




ACTGCGTGGTAGCGGTGTTGCTGTTGAAACAGGAACAGTC




TCTTCAAGTGATAGTTCGCAGTATGTGCAGTGCGTGGCCG




GGTGTTTGCAGCTGATGCTCCGGGTCAATGAGTACCGCTT




TGCTTGGGTGGAAGCAGATGGGGTAAATTGCATAATGGGA




GTGTTGAGTAACAAGTGTGGCTTTCAGCTCCAGTATCAAA




TGATTTTTTCAATATGGCTCCTGGCATTCAGTCCTCAAAT




GTGTGAACACCTGCGGCGCTATAATATCATTCCAGTTCTG




TCTGATATCCTTCAGGAGTCTGTCAAAGAGAAAGTAACAA




GAATCATTCTTGCAGCATTTCGTAACTTTTTAGAAAAATC




AACTGAAAGAGAAACTCGCCAAGAATATGCCCTGGCTATG




ATTCAGTGCAAAGTTCTGAAACAGTTGGAGAACTTGGAAC




AGCAGAAGTACGATGATGAAGATATCAGCGAAGATATCAA




ATTTCTTTTGGAAAAACTTGGAGAGAGTGTCCAGGACCTT




AGTTCATTTGATGAATACAGTTCAGAACTTAAATCTGGAA




GGTTGGAATGGAGTCCTGTGCACAAATCTGAGAAATTTTG




GAGAGAGAATGCTGTGAGGTTAAATGAGAAGAATTATGAA




CTCTTGAAAATCTTGACAAAACTTTTGGAAGTGTCAGATG




ATCCCCAAGTCTTAGCTGTTGCTGCTCACGATGTTGGAGA




ATATGTGCGGCATTATCCACGAGGCAAACGGGTCATCGAG




CAGCTCGGTGGGAAGCAGCTGGTCATGAACCACATGCATC





ATGAAGACCAGCAGGTCCGCTATAATGCTCTGCTGGCCGT






GCAGAAGCTCATGGTGCACAACTGGGAATACCTTGGCAAG






CAGCTCCAGTCCGAGCAGCCCCAGACCGCTGCCGCCCGAA





GCTAAGCCTGCCTCTGGCCTTCCCCTCCGCCTCAATGCAG




AACCAGTAGTGGGAGCACTGTGTTTAGAGTTAAGAGTGAA




CACTGTTTGATTTTACTTGGAATTTCCTCTGTTATATAGC




TTTTCCCAATGCTAATTTCCAAACAACAACAACAAAATAA




CATGTTTGCCTGTTAAGTTGTATAAAAGTAGGTGATTCTG




TATTTAAAGAAAATATTACTGTTACATATACTGCTTGCAA




TTTCTGTATTTATTGTTCTCTGGAAATAAATATAGTTATT




AAAGGATTCTCACTCCAAACATGGCCTCTCTCTTTACTTG




GACTTTGAACAAAAGTCAACTGTTGTCTCTTTTCAAACCA




AATTGGGAGAATTGTTGCAAAGTAGTGAATGGCAAATAAA




TGTTTTAAAATCTATCGCTCTATCAA





BNIP3L
NM_004331.2
CGTCAGGGGCAGGGGAGGGACGGCGCAGGCGCAGAAAAGG
6




GGGCGGCGGACTCGGCTTGTTGTGTTGCTGCCTGAGTGCC




GGAGACGGTCCTGCTGCTGCCGCAGTCCTGCCAGCTGTCC




GACAATGTCGTCCCACCTAGTCGAGCCGCCGCCGCCCCTG




CACAACAACAACAACAACTGCGAGGAAAATGAGCAGTCTC




TGCCCCCGCCGGCCGGCCTCAACAGTTCCTGGGTGGAGCT




ACCCATGAACAGCAGCAATGGCAATGATAATGGCAATGGG




AAAAATGGGGGGCTGGAACACGTACCATCCTCATCCTCCA




TCCACAATGGAGACATGGAGAAGATTCTTTTGGATGCACA





ACATGAATCAGGACAGAGTAGTTCCAGAGGCAGTTCTCAC





TGTGACAGCCCTTCGCCACAAGAAGATGGGCAGATCATGT




TTGATGTGGAAATGCACACCAGCAGGGACCATAGCTCTCA




GTCAGAAGAAGAAGTTGTAGAAGGAGAGAAGGAAGTCGAG




GCTTTGAAGAAAAGTGCGGACTGGGTATCAGACTGGTCCA




GTAGACCCGAAAACATTCCACCCAAGGAGTTCCACTTCAG




ACACCCTAAACGTTCTGTGTCTTTAAGCATGAGGAAAAGT




GGAGCCATGAAGAAAGGGGGTATTTTCTCCGCAGAATTTC




TGAAGGTGTTCATTCCATCTCTCTTCCTTTCTCATGTTTT




GGCTTTGGGGCTAGGCATCTATATTGGAAAGCGACTGAGC




ACACCCTCTGCCAGCACCTACTGAGGGAAAGGAAAAGCCC




CTGGAAATGCGTGTGACCTGTGAAGTGGTGTATTGTCACA




GTAGCTTATTTGAACTTGAGACCATTGTAAGCATGACCCA




ACCTACCACCCTGTTTTTACATATCCAATTCCAGTAACTC




TCAAATTCAATATTTTATTCAAACTCTGTTGAGGCATTTT




ACTAACCTTATACCCTTTTTGGCCTGAAGACATTTTAGAA




TTTCCTAACAGAGTTTACTGTTGTTTAGAAATTTGCAAGG




GCTTCTTTTCCGCAAATGCCACCAGCAGATTATAATTTTG




TCAGCAATGCTATTATCTCTAATTAGTGCCACCAGACTAG




ACCTGTATCATTCATGGTATAAATTTTACTCTTGCAACAT




AACTACCATCTCTCTCTTAAAACGAGATCAGGTTAGCAAA




TGATGTAAAAGAAGCTTTATTGTCTAGTTGTTTTTTTTCC




CCCAAGACAAAGGCAAGTTTCCCTAAGTTTGAGTTGATAG




TTATTAAAAAGAAAACAAAACAAAAAAAAAAGGCAAGGCA




CAACAAAAAAATATCCTGGGCAATAAAAAAAATATTTTAA




ACCAGCTTTGGAGCCACTTTTTTGTCTAAGCCTCCTAATA




GCGTCTTTTAATTTATAGGAGGCAAACTGTATAAATGATA




GGTATGAAATAGAATAAGAAGTAAAATACATCAGCAGATT




TTCATACTAGTATGTTGTAATGCTGTCTTTTCTATGGTGT




AGAATCTTTCTTTCTGATAAGGAACGTCTCAGGCTTAGAA




ATATATGAAATTGCTTTTTGAGATTTTTGCGTGTGTGTTT




GATATTTTTTACGATAATTAGCTGCATGTGAATTTTTCAT




GACCTTCTTTACATTTTTTATTTTTTATTTCTTTATTTTT




TTTTCTCTAAGAAGAGGCTTTGGAATGAGTTCCAATTTGT




GATGTTAATACAGGCTTCTTGTTTTAGGAAGCATCACCTA




TACTCTGAAGCCTTTAAACTCTGAAGAGAATTGTTTCAGA




GTTATTCCAAGCACTTGTGCAACTTGGAAAAACAGACTTG




GGTTGTGGGAACAGTTGACAGCGTTCTGAAAAGATGCCAT




TTGTTTCCTTCTGATCTCTCACTGAATAATGTTTACTGTA




CAGTCTTCCCAAGGTGATTCCTGCGACTGCAGGCACTGGT




CATTTTCTCATGTAGCTGTCTTTTCAGTTATGGTAAACTC




TTAAAGTTCAGAACACTCAACAGATTCCTTCAGTGATATA




CTTGTTCGTTCATTTCTAAAATGTGAAGCTTTAGGACCAA




ATTGTTAGAAAGCATCAGGATGACCAGTTATCTCGAGTAG




ATTTTCTTGGATTTCAGAACATCTAGCATGACTCTGAAGG




ATACCACATGTTTTATATATAAATAATTACTGTTTATGAT




ATAGACATTGATATTGACTATTTAGAGAACCGTTGTTAAT




TTTAAAACTAGCAATCTATAAAGTGCACCAGGTCAACTTG




AATAAAAACACTATGACAGACAGGTTTGCCAGTTTGCAGA




AACTAACTCTTTTCTCACATCAACATTTGTAAAATTGATG




TGTTATAGTGGAAAATAACATATAGATTAAACAAAATTTT




TATCTTTTTTCAAGAATATAGCTGGCTATCTTTAAGAAAG




ATGATATATCCTAGTTTTGAAAGTAATTTTCTTTTTTCTT




TCTAGCATTTGATGTCTAAATAATTTTGGACATCTTTTTC




CTAGACCATGTTTCTGTCTTACTCTTAAACCTGGTAACAC




TTGATTTGCCTTCTATAACCTATTTATTTCAAGTGTTCAT




ATTTGAATTTCTTTGGGAAGAAAGTAAATCTGATGGCTCA




CTGATTTTTGAAAAGCCTGAATAAAATTGGAAAGACTGGA




AAGTTAGGAGAACTGACTAGCTAAACTGCTACAGTATGCA




ATTTCTATTACAATTGGTATTACAGGGGGGAAAAGTAAAA




TTACACTTTACCTGAAAGTGACTTCTTACAGCTAGTGCAT




TGTGCTCTTTCCAAGTTCAGCAGCAGTTCTATCAGTGGTG




CCACTGAAACTGGGTATATTTATGATTTCTTTCAGCGTTA




AAAAGAAACATAGTGTTGCCCTTTTTCTTAAAGCATCAGT




GAAATTATGGAAAATTACTTAAAACGTGAATACATCATCA




CAGTAGAATTTATTATGAGAGCATGTAGTATGTATCTGTA




GCCCTAACACATGGGATGAACGTTTTACTGCTACACCCAG




ATTTGTGTTGAACGAAAACATTGTGGTTTGGAAAGGAGAA




TTCAACAATTAATAGTTGAAATTGTGAGGTTAATGTTTAA




AAAGCTTTACACCTGTTTACAATTTGGGGACAAAAAGGCA




GGCTTCATTTTTCATATGTTTGATGAAAACTGGCTCAAGA




TGTTTGTAAATAGAATCAAGAGCAAAACTGCACAAACTTG




CACATTGGAAAGTGCAACAAGTTCCCGTGATTGCAGTAAA




AATATTTACTATTCTAAAAAAATGAGAATTGAAGACTTAG




CCAGTCAGATAAGTTTTTTCATGAACCCGTTGTGGAAATT




ATTGGAATTAACTGAGCCAAAGTGATTATGCATTCTTCAT




CTATTTTAGTTAGCACTTTGTATCGTTATATACAGTTTAC




AATACATGTATAACTTGTAGCTATAAACATTTTGTGCCAT




TAAAGCTCTCACAAAACTTTAAAAA





BRAF
NM_004333.4
CGCCTCCCTTCCCCCTCCCCGCCCGACAGCGGCCGCTCGG
7




GCCCCGGCTCTCGGTTATAAGATGGCGGCGCTGAGCGGTG




GCGGTGGTGGCGGCGCGGAGCCGGGCCAGGCTCTGTTCAA




CGGGGACATGGAGCCCGAGGCCGGCGCCGGCGCCGGCGCC




GCGGCCTCTTCGGCTGCGGACCCTGCCATTCCGGAGGAGG





TGTGGAATATCAAACAAATGATTAAGTTGACACAGGAACA





TATAGAGGCCCTATTGGACAAATTTGGTGGGGAGCATAAT




CCACCATCAATATATCTGGAGGCCTATGAAGAATACACCA




GCAAGCTAGATGCACTCCAACAAAGAGAACAACAGTTATT




GGAATCTCTGGGGAACGGAACTGATTTTTCTGTTTCTAGC




TCTGCATCAATGGATACCGTTACATCTTCTTCCTCTTCTA




GCCTTTCAGTGCTACCTTCATCTCTTTCAGTTTTTCAAAA




TCCCACAGATGTGGCACGGAGCAACCCCAAGTCACCACAA




AAACCTATCGTTAGAGTCTTCCTGCCCAACAAACAGAGGA




CAGTGGTACCTGCAAGGTGTGGAGTTACAGTCCGAGACAG




TCTAAAGAAAGCACTGATGATGAGAGGTCTAATCCCAGAG




TGCTGTGCTGTTTACAGAATTCAGGATGGAGAGAAGAAAC




CAATTGGTTGGGACACTGATATTTCCTGGCTTACTGGAGA




AGAATTGCATGTGGAAGTGTTGGAGAATGTTCCACTTACA




ACACACAACTTTGTACGAAAAACGTTTTTCACCTTAGCAT




TTTGTGACTTTTGTCGAAAGCTGCTTTTCCAGGGTTTCCG




CTGTCAAACATGTGGTTATAAATTTCACCAGCGTTGTAGT




ACAGAAGTTCCACTGATGTGTGTTAATTATGACCAACTTG




ATTTGCTGTTTGTCTCCAAGTTCTTTGAACACCACCCAAT




ACCACAGGAAGAGGCGTCCTTAGCAGAGACTGCCCTAACA




TCTGGATCATCCCCTTCCGCACCCGCCTCGGACTCTATTG




GGCCCCAAATTCTCACCAGTCCGTCTCCTTCAAAATCCAT




TCCAATTCCACAGCCCTTCCGACCAGCAGATGAAGATCAT




CGAAATCAATTTGGGCAACGAGACCGATCCTCATCAGCTC




CCAATGTGCATATAAACACAATAGAACCTGTCAATATTGA




TGACTTGATTAGAGACCAAGGATTTCGTGGTGATGGAGGA




TCAACCACAGGTTTGTCTGCTACCCCCCCTGCCTCATTAC




CTGGCTCACTAACTAACGTGAAAGCCTTACAGAAATCTCC




AGGACCTCAGCGAGAAAGGAAGTCATCTTCATCCTCAGAA




GACAGGAATCGAATGAAAACACTTGGTAGACGGGACTCGA




GTGATGATTGGGAGATTCCTGATGGGCAGATTACAGTGGG




ACAAAGAATTGGATCTGGATCATTTGGAACAGTCTACAAG




GGAAAGTGGCATGGTGATGTGGCAGTGAAAATGTTGAATG




TGACAGCACCTACACCTCAGCAGTTACAAGCCTTCAAAAA




TGAAGTAGGAGTACTCAGGAAAACACGACATGTGAATATC




CTACTCTTCATGGGCTATTCCACAAAGCCACAACTGGCTA




TTGTTACCCAGTGGTGTGAGGGCTCCAGCTTGTATCACCA




TCTCCATATCATTGAGACCAAATTTGAGATGATCAAACTT




ATAGATATTGCACGACAGACTGCACAGGGCATGGATTACT




TACACGCCAAGTCAATCATCCACAGAGACCTCAAGAGTAA




TAATATATTTCTTCATGAAGACCTCACAGTAAAAATAGGT




GATTTTGGTCTAGCTACAGTGAAATCTCGATGGAGTGGGT




CCCATCAGTTTGAACAGTTGTCTGGATCCATTTTGTGGAT




GGCACCAGAAGTCATCAGAATGCAAGATAAAAATCCATAC




AGCTTTCAGTCAGATGTATATGCATTTGGAATTGTTCTGT




ATGAATTGATGACTGGACAGTTACCTTATTCAAACATCAA




CAACAGGGACCAGATAATTTTTATGGTGGGACGAGGATAC




CTGTCTCCAGATCTCAGTAAGGTACGGAGTAACTGTCCAA




AAGCCATGAAGAGATTAATGGCAGAGTGCCTCAAAAAGAA




AAGAGATGAGAGACCACTCTTTCCCCAAATTCTCGCCTCT




ATTGAGCTGCTGGCCCGCTCATTGCCAAAAATTCACCGCA




GTGCATCAGAACCCTCCTTGAATCGGGCTGGTTTCCAAAC




AGAGGATTTTAGTCTATATGCTTGTGCTTCTCCAAAAACA




CCCATCCAGGCAGGGGGATATGGTGCGTTTCCTGTCCACT




GAAACAAATGAGTGAGAGAGTTCAGGAGAGTAGCAACAAA




AGGAAAATAAATGAACATATGTTTGCTTATATGTTAAATT




GAATAAAATACTCTCTTTTTTTTTAAGGTGAACCAAAGAA




CACTTGTGTGGTTAAAGACTAGATATAATTTTTCCCCAAA




CTAAAATTTATACTTAACATTGGATTTTTAACATCCAAGG




GTTAAAATACATAGACATTGCTAAAAATTGGCAGAGCCTC




TTCTAGAGGCTTTACTTTCTGTTCCGGGTTTGTATCATTC




ACTTGGTTATTTTAAGTAGTAAACTTCAGTTTCTCATGCA




ACTTTTGTTGCCAGCTATCACATGTCCACTAGGGACTCCA




GAAGAAGACCCTACCTATGCCTGTGTTTGCAGGTGAGAAG




TTGGCAGTCGGTTAGCCTGGGTTAGATAAGGCAAACTGAA




CAGATCTAATTTAGGAAGTCAGTAGAATTTAATAATTCTA




TTATTATTCTTAATAATTTTTCTATAACTATTTCTTTTTA




TAACAATTTGGAAAATGTGGATGTCTTTTATTTCCTTGAA




GCAATAAACTAAGTTTCTTTTTATAAAAA





C21ORF7
NM_020152.3
CGCAGCCCCGGTTCCTGCCCGCACCTCTCCCTCCACACCT
8




CCCCGCAAGCTGAGGGAGCCGGCTCCGGCCTCGGCCAGCC




CAGGAAGGCGCTCCCACAGCGCAGTGGTGGGCTGAAGGGC




TCCTCAAGTGCCGCCAAAGTGGGAGCCCAGGCAGAGGAGG




CGCCGAGAGCGAGGGAGGGCTGTGAGGACTGCCAGCACGC




TGTCACCTCTCAATAGCAGCCCAAACAGATTAAGACATGG




GAGATGTACAAGGGCAGCCGTGGGGCTGGCAACAGCTTCG




TAATCCTGGCTTCCTGCTTTCTGGGTCAAAGCCCTGGTGG




TGTGTTCTTGATATCGGTCCATCTAGTGGCGTTGTTTGAT




TCCTCCCACCTTGCTGATCATTCGTAGTGTAGCCCCCAAG




GTGTGGAATAACCCTTAAGCCCTTACCGGGGTCCTTCTGG




ACTGAGAATTGTTGTAAAGTAATACTGCTCAGGTGAAAGA




CAACTTGAGTGGTTAAATTACTGTCATGCAAAGCGACTAG




ATGGTTCAGCTGATTGCACCTTTAGAAGTTATGTGGAACG




AGGCAGCAGATCTTAAGCCCCTTGCTCTGTCACGCAGGCT




GGAATGCAGTGGTGGAATCATGGCTCACTACAGCCCTGAC





CTCCTGGGCCCAGAGATGGAGTCTCGCTATTTTGCCCAGG






TTGGTCTTGAACACCTGGCTTCAAGCAGTCCTCCTGCTTT





TGGCTTCTTGAAGTGCTTGGATTACAGTATTTCAGTTTTA




TGCTCTGCAACAAGTTTGGCCATGTTGGAGGACAATCCAA




AGGTCAGCAAGTTGGCTACTGGCGATTGGATGCTCACTCT




GAAGCCAAAGTCTATTACTGTGCCCGTGGAAATCCCCAGC




TCCCCTCTGGATGATACACCCCCTGAAGACTCCATTCCTT




TGGTCTTTCCAGAATTAGACCAGCAGCTACAGCCCCTGCC




GCCTTGTCATGACTCCGAGGAATCCATGGAGGTGTTCAAA




CAGCACTGCCAAATAGCAGAAGAATACCATGAGGTCAAAA




AGGAAATCACCCTGCTTGAGCAAAGGAAGAAGGAGCTCAT




TGCCAAGTTAGATCAGGCAGAAAAGGAGAAGGTGGATGCT




GCTGAGCTGGTTCGGGAATTCGAGGCTCTGACGGAGGAGA




ATCGGACGTTGAGGTTGGCCCAGTCTCAATGTGTGGAACA




ACTGGAGAAACTTCGAATACAGTATCAGAAGAGGCAGGGC




TCGTCCTAACTTTAAATTTTTCAGTGTGAGCATACGAGGC




TGATGACTGCCCTGTGCTGGCCAAAAGATTTTTATTTTAA




ATGAATAGTGAGTCAGATCTATTGCTTCTCTGTATTACCC




ACATGACAACTGTCTATAATGAGTTTACTGCTTGCCAGCT




TCTAGCTTGAGAGAAGGGATATTTTAAATGAGATCATTAA




CGTGAAACTATTACTAGTATATGTTTTTGGAGATCAGAAT




TCTTTTCCAAAGATATATGTTTTTTTCTTTTTTAGGAAGA




TATGATCATGCTGTACAACAGGGTAGAAAATGATAAAAAT




AGACTATTGACTGACCCAGCTAAGAATCGTGGGCTGAGCA




GAGTTAAACCATGGGACAAACCCATAACATGTTCACCATA




GTTTCACGTATGTGTATTTTTAAATTTCATGCCTTTAATA




TTTCAAATATGCTCAAATTTAAACTGTCAGAAACTTCTGT




GCATGTATTTATATTTGCCAGAGTATAAACTTTTATACTC




TGATTTTTATCCTTCAATGATTGATTATACTAAGAATAAA




TGGTCACATATCCTAAAAGCTTCTTCATGAAATTATTAGC




AGAAACCATGTTTGTAACCAAAGCACATTTGCCAATGCTA




ACTGGCTGTTGTAATAATAAACAGATAAGGCTGCATTTGC




TTCATGCCATGTGACCTCACAGTAAACATCTCTGCCTTTG




CCTGTGTGTGTTCTGGGGGAGGGGGGACATGGAAAAATAT




TGTTTGGACATTACTTGGGTGAGTGCCCATGAAAACATCA




GTGAACTTGTAACTATTGTTTTGTTTTGGATTTAAGGAGA




TGTTTTAGATCAGTAACAGCTAATAGGAATATGCGAGTAA




ATTCAGAATTGAAACAATTTCTCCTTGTTCTACCTATCAC




CACATTTTCTCAAATTGAACTCTTTGTTATATGTCCATTT




CTATTCATGTAACTTCTTTTTCATTAAACATGGATCAAAA




CTGACAAAAAAAAAAAAAAA





CD59
NM_203331.2
GGGGCCGGGGGGCGGAGCCTTGCGGGCTGGAGCGAAAGAA
9




TGCGGGGGCTGAGCGCAGAAGCGGCTCGAGGCTGGAAGAG




GATCTTGGGCGCCGCCAGTCTTTAGCACCAGTTGGTGTAG




GAGTTGAGACCTACTTCACAGTAGTTCTGTGGACAATCAC




AATGGGAATCCAAGGAGGGTCTGTCCTGTTCGGGCTGCTG





CTCGTCCTGGCTGTCTTCTGCCATTCAGGTCATAGCCTGC






AGTGCTACAACTGTCCTAACCCAACTGCTGACTGCAAAAC





AGCCGTCAATTGTTCATCTGATTTTGATGCGTGTCTCATT




ACCAAAGCTGGGTTACAAGTGTATAACAAGTGTTGGAAGT




TTGAGCATTGCAATTTCAACGACGTCACAACCCGCTTGAG




GGAAAATGAGCTAACGTACTACTGCTGCAAGAAGGACCTG




TGTAACTTTAACGAACAGCTTGAAAATGGTGGGACATCCT




TATCAGAGAAAACAGTTCTTCTGCTGGTGACTCCATTTCT




GGCAGCAGCCTGGAGCCTTCATCCCTAAGTCAACACCAGG




AGAGCTTCTCCCAAACTCCCCGTTCCTGCGTAGTCCGCTT




TCTCTTGCTGCCACATTCTAAAGGCTTGATATTTTCCAAA




TGGATCCTGTTGGGAAAGAATAAAATTAGCTTGAGCAACC




TGGCTAAGATAGAGGGGCTCTGGGAGACTTTGAAGACCAG




TCCTGTTTGCAGGGAAGCCCCACTTGAAGGAAGAAGTCTA




AGAGTGAAGTAGGTGTGACTTGAACTAGATTGCATGCTTC




CTCCTTTGCTCTTGGGAAGACCAGCTTTGCAGTGACAGCT




TGAGTGGGTTCTCTGCAGCCCTCAGATTATTTTTCCTCTG




GCTCCTTGGATGTAGTCAGTTAGCATCATTAGTACATCTT




TGGAGGGTGGGGCAGGAGTATATGAGCATCCTCTCTCACA




TGGAACGCTTTCATAAACTTCAGGGATCCCGTGTTGCCAT




GGAGGCATGCCAAATGTTCCATATGTGGGTGTCAGTCAGG




GACAACAAGATCCTTAATGCAGAGCTAGAGGACTTCTGGC




AGGGAAGTGGGGAAGTGTTCCAGATAGCAGGGCATGAAAA




CTTAGAGAGGTACAAGTGGCTGAAAATCGAGTTTTTCCTC




TGTCTTTAAATTTTATATGGGCTTTGTTATCTTCCACTGG




AAAAGTGTAATAGCATACATCAATGGTGTGTTAAAGCTAT




TTCCTTGCCTTTTTTTTATTGGAATGGTAGGATATCTTGG




CTTTGCCACACACAGTTACAGAGTGAACACTCTACTACAT




GTGACTGGCAGTATTAAGTGTGCTTATTTTAAATGTTACT




GGTAGAAAGGCAGTTCAGGTATGTGTGTATATAGTATGAA




TGCAGTGGGGACACCCTTTGTGGTTACAGTTTGAGACTTC




CAAAGGTCATCCTTAATAACAACAGATCTGCAGGGGTATG




TTTTACCATCTGCATCCAGCCTCCTGCTAACTCCTAGCTG




ACTCAGCATAGATTGTATAAAATACCTTTGTAACGGCTCT




TAGCACACTCACAGATGTTTGAGGCTTTCAGAAGCTCTTC




TAAAAAATGATACACACCTTTCACAAGGGCAAACTTTTTC




CTTTTCCCTGTGTATTCTAGTGAATGAATCTCAAGATTCA




GTAGACCTAATGACATTTGTATTTTATGATCTTGGCTGTA




TTTAATGGCATAGGCTGACTTTTGCAGATGGAGGAATTTC




TTGATTAATGTTGAAAAAAAACCCTTGATTATACTCTGTT




GGACAAACCGAGTGCAATGAATGATGCTTTTCTGAAAATG




AAATATAACAAGTGGGTGAATGTGGTTATGGCCGAAAAGG




ATATGCAGTATGCTTAATGGTAGCAACTGAAAGAAGACAT




CCTGAGCAGTGCCAGCTTTCTTCTGTTGATGCCGTTCCCT




GAACATAGGAAAATAGAAACTTGCTTATCAAAACTTAGCA




TTACCTTGGTGCTCTGTGTTCTCTGTTAGCTCAGTGTCTT




TCCTTACATCAATAGGTTTTTTTTTTTTTTTTTGGCCTGA




GGAAGTACTGACCATGCCCACAGCCACCGGCTGAGCAAAG




AAGCTCATTTCATGTGAGTTCTAAGGAATGAGAAACAATT




TTGATGAATTTAAGCAGAAAATGAATTTCTGGGAACTTTT




TTGGGGGCGGGGGGGTGGGGAATTCAGCCACACTCCAGAA




AGCCAGGAGTCGACAGTTTTGGAAGCCTCTCTCAGGATTG




AGATTCTAGGATGAGATTGGCTTACTGCTATCTTGTGTCA




TGTACCCACTTTTTGGCCAGACTACACTGGGAAGAAGGTA




GTCCTCTAAAGCAAAATCTGAGTGCCACTAAATGGGGAGA




TGGGGCTGTTAAGCTGTCCAAATCAACAAGGGTCATATAA




ATGGCCTTAAACTTTGGGGTTGCTTTCTGCAAAAAGTTGC




TGTGACTCATGCCATAGACAAGGTTGAGTGCCTGGACCCA




AAGGCAATACTGTAATGTAAAGACATTTATAGTACTAGGC




AAACAGCACCCCAGGTACTCCAGGCCCTCCTGGCTGGAGA




GGGCTGTGGCAATAGAAAATTAGTGCCAACTGCAGTGAGT




CAGCCTAGGTTAAATAGAGAGTGTAAGAGTGCTGGACAGG




AACCTCCACCCTCATGTCACATTTCTTCAATGTGACCCTT




CTGGCCCCTCTCCTCCTGACAGCGGAACAATGACTGCCCC




GATAGGTGAGGCTGGAGGAAGAATCAGTCCTGTCCTTGGC




AAGCTCTTCACTATGACAGTAAAGGCTCTCTGCCTGCTGC




CAAGGCCTGTGACTTTCTAACCTGGCCTCACGCTGGGTAA




GCTTAAGGTAGAGGTGCAGGATTAGCAAGCCCACCTGGCT




ACCAGGCCGACAGCTACATCCTCCAACTGACCCTGATCAA




CGAAGAGGGATTCATGTGTCTGTCTCAGTTGGTTCCAAAT




GAAACCAGGGAGCAGGGGAGTTAGGAATCGAACACCAGTC




ATGCCTACTGGCTCTCTGCTCGAGAGCCAATACCCTGTGC




CCTCCACTCATCTGGATTTACAGGAACTGTCATAGTGTTC




AGTATTGGGTGGTGATAAGCCCATTGGATTGTCCCCTTGG




GGGGATGAGCTAGGGGTGCAAGGAACACCTGATGAGTAGA




TAAGTGGAGCTCATGGTATTTCCTGAAAGATGCTAATCTA




TTTGCCAAACTTGGTCTTGAATGTACTGGGGGCTTCAAGG




TATGGGTATATTTTTCTTGTGTCCTTGCAGTTAGCCCCCA




TGTCTTATGTGTGTCCTGAAAAAATAAGAGCCTGCCCAAG




ACTTTGGGCCTCTTGACAGAATTAACCACTTTTATACATC




TGAGTTCTCTTGGTAAGTTCTTTAGCAGTGTTCAAAGTCT




ACTAGCTCGCATTAGTTTCTGTTGCTGCCAACAGATCTGA




ACTAATGCTAACAGATCCCCCTGAGGGATTCTTGATGGGC




TGAGCAGCTGGCTGGAGCTAGTACTGACTGACATTCATTG




TGATGAGGGCAGCTTTCTGGTACAGGATTCTAAGCTCTAT




GTTTTATATACATTTTCATCTGTACTTGCACCTCACTTTA




CACAAGAGGAAACTATGCAAAGTTAGCTGGATCGCTCAAG




GTCACTTAGGTAAGTTGGCAAGTCCATGCTTCCCACTCAG




CTCCTCAGGTCAGCAAGTCTACTTCTCTGCCTATTTTGTA




TACTCTCTTTAATATGTGCCTAGCTTTGGAAAGTCTAGAA




TGGGTCCCTGGTGCCTTTTTACTTTGAAGAAATCAGTTTC




TGCCTCTTTTTGGAAAAGAAAACAAAGTGCAATTGTTTTT




TACTGGAAAGTTACCCAATAGCATGAGGTGAACAGGACGT




AGTTAGGCCTTCCTGTAAACAGAAAATCATATCAAAACAC




TATCTTCCCATCTGTTTCTCAATGCCTGCTACTTCTTGTA




GATATTTCATTTCAGGAGAGCAGCAGTTAAACCCGTGGAT




TTTGTAGTTAGGAACCTGGGTTCAAACCCTCTTCCACTAA




TTGGCTATGTCTCTGGACAAGTTTTTTTTTTTTTTTTTTT




TTAAACCCTTTCTGAACTTTCACTTTCTATGTCTACCTCA




AAGAATTGTTGTGAGGCTTGAGATAATGCATTTGTAAAGG




GTCTGCCAGATAGGAAGATGCTAGTTATGGATTTACAAGG




TTGTTAAGGCTGTAAGAGTCTAAAACCTACAGTGAATCAC




AATGCATTTACCCCCACTGACTTGGACATAAGTGAAAACT




AGCCAGAAGTCTCTTTTTCAAATTACTTACAGGTTATTCA




ATATAAAATTTTTGTAATGGATAATCTTATTTATCTAAAC




TAAAGCTTCCTGTTTATACACACTCCTGTTATTCTGGGAT




AAGATAAATGACCACAGTACCTTAATTTCTAGGTGGGTGC




CTGTGATGGTTCATTGTAGGTAAGGACATTTTCTCTTTTT




CAGCAGCTGTGTAGGTCCAGAGCCTCTGGGAGAGGAGGGG




GGTAGCATGCACCCAGCAGGGGACTGAACTGGGAAACTCA




AGGTTCTTTTTACTGTGGGGTAGTGAGCTGCCTTTCTGTG




ATCGGTTTCCCTAGGGATGTTGCTGTTCCCCTCCTTGCTA




TTCGCAGCTACATACAACGTGGCCAACCCCAGTAGGCTGA




TCCTATATATGATCAGTGCTGGTGCTGACTCTCAATAGCC




CCACCCAAGCTGGCTATAGGTTTACAGATACATTAATTAG




GCAACCTAAAATATTGATGCTGGTGTTGGTGTGACATAAT




GCTATGGCCAGAACTGAAACTTAGAGTTATAATTCATGTA




TTAGGGTTCTCCAGAGGGACAGAATTAGTAGGATATATGT




ATATATGAAAGGGAGGTTATTAGGGAGAACTGGCTCCCAC




AGTTAGAAGGCGAAGTCGCACAATAGGCCGTCTGCAAGCT




GGGTTAGAGAGAAGCCAGTAGTGGCTCAGCCTGAGTTCAA




AAACCTCAAAACTGGGGAAGCTGACAGTGCAGCCAGCCTT




CAGTCTGTGGCCAAAGGCCCAAGAGCCCCTGGCAACCAAC




CCACTGGTGCAAGTCCTAGATTCCAAAGGCTGAAGAACCT




GGAGTCTGATGTCCAAGAGCAGGAAGAGTGGAAGAAAGCC




AGAAGACTCAGCAAACAAGGTAGACAGTGTCTACCACCAT




AGTGGCCATACCAAAGAGGCTACCGATTCCTTCCTGCTAC




CTGGATCCCTGAAGTTGCCCTGGTCTCTGCACCTTCTAAA




CCTAGTTCTTAAGAGCTTTCCATTACATGAGCTGTCTCAA




AGCCCTCCAATAAATTCTCAGTGTAAGCTTCTGTTGCTTG




TGGACAGAAAATTCTGACAGACCTACCCTATAAGTGTTAC




TGTCAGGATAACATGAGAACGCACAACAGTAAGTGGTCAC




TAAGTGTTAGCTACGGTTATTTTGCCCAAGGTAGCATGGC




TAGTTGATGCCGGTTGATGGGGCTTAAACCCAGCTCCCTC




ATCTTCCAGGCCTCTGTACTCCCTATTCCACTAAACTACC




TCTCAGGTTTATTTTTTTAAATTCTTACTCTGCAAGTACA




TAGGACCACATTTACCTGGGAAAACAAGAATAAAGGCTGC




TCTGCATTTTTTAGAAACTTTTTTGAAAGGGAGATGGGAA




TGCCTGCACCCCCAAGTCCAGACCAACACAATGGTTAATT




GAGATGAATAATAAAGGAAAGACTGTTCTGGGCTTCCCAG




AATAGCTTGGTCCTTAAATTGTGGCACAAACAACCTCCTG




TCAGAGCCAGCCTCCTGCCAGGAAGAGGGGTAGGAGACTA




GAGGCCGTGTGTGCAGCCTTGCCCTGAAGGCTAGGGTGAC




AATTTGGAGGCTGTCCAAACACCCTGGCCTCTAGAGCTGG




CCTGTCTATTTGAAATGCCGGCTCTGATGCTAATCGGCGA




CCCTCAGGCAAGTTACTTAACCTTACATGCCTCAGTTTTC




TCATCTGGAAAATGAGAACCCTAGGTTTAGGGTTGTTAGA




AAAGTTAAATGAGTTAAGACAAGTGCCTGGGACACAGTAG




CCTCTTGTGTGTGTTTATCATTATGTCCTCAGCAGGTCGT




AGAAGCAGCTTCTCAGGTGTGAGGCTGGCGCGATTATCTG




GAGTGGGTTGGGTTTTCTAGGATGGACCCCCTGCTGCATT




TTCCTCATTCATCCACCAGGGCTTAATGGGGAATCAAGGA




ATCCATGTGTAACTGTATAATAACTGTAGCCACACTCCAA




TGACCACCTACTAGTTGTCCCTGGCACTGCTTATACATAT




GTCCATCAAATCAATCCTATGAAGTAGATACTGTCTTCAT




TTTATAGATCAGAGACAATTGGGGTTCAGAGAGCTGATGT




GATTTTCCCAGGGTCACAGAGAGTCCCAGATTCAGGCACA




ACTCTTGTATTCCAAGACACAACCACTACATGTCCAAAGG




CTGCCCAGAGCCACCGGGCACGGCAAATTGTGACATATCC




CTAAAGAGGCTGAGCACCTGGTCAGGATCTGATGGCTGAC




AGTGTGTCCAGATGCAGAGCTGGAGTGGGGGAGGGGAAGG




GGGGCTCCTTGGGACAGAGAAGGCTTTCTGTGCTTTCTCT




GAAGGGAGCAGTCTGAGGACCAAGGGAACCCGGCAAACAG




CACCTCAGGTACTCCAGGCCCTCCTGGCTGGAGAGGGCTG




TGGCAATGGAAAATTAGTGCCAACTGCAATGAGTCAGCCT




CGGTTAAATAGAGAGTGAAGAATGCTGGACAGGAACCTCC




ACCCTCATGTCACATTTCTTCAGTGTGACCCTTCTGGCCC




CTCTCCTCCTGACAGCGGAACAATGACTGCCCCGATAGGT




GAGGCTGGAGGAAGAATCAGTCCTGTCCTTGGCAAGCTCT




TCACTATGACAGTAAAGGCTCTCTGCCTGCTGCCAAGGCC




TGTGACTTTCTAACCTGGCCTCACGCTGGGTAAGCTTAAG




GTAGAGGTGCAGGATTAGCAAGCCCACCTGGCTACCAGGC




CGACAGCTACATCTTTCAACTGACCCTGATCAACGAAGAG




GGACTTGTGTCTCTCAGTTGGTTCCAAATGAAACCAGGGA




GCAGGGGCGTTAGGAAGCTCCAACAGGATGGTACTTAATG




GGGCATTTGAGTGGAGAGGTAGGTGACATAGTGCTTTGGA




GCCCAGGGAGGGAAAGGTTCTGCTGAAGTTGAATTCAAGA




CTGTTCTTTCATCACAAACTTGAGTTTCCTGGACATTTGT




TTGCAGAAACAACCGTAGGGTTTTGCCTTAACCTCGTGGG




TTTATTATTACCTCATAGGGACTTTGCCTCCTGACAGCAG




TTTATGGGTGTTCATTGTGGCACTTGAGTTTTCTTGCATA




CTTGTTAGAGAAACCAAGTTTGTCATCAACTTCTTATTTA




ACCCCCTGGCTATAACTTCATGGATTATGTTATAATTAAG




CCATCCAGAGTAAAATCTGTTTAGATTATCTTGGAGTAAG




GGGGAAAAAATCTGTAATTTTTTCTCCTCAACTAGATATA




TACATAAAAAATGATTGTATTGCTTCATTTAAAAAATATA




ACGCAAAATCTCTTTTCCTTCTAAAAAAAAAAAAAAAAAA





COMMD9
NM_001101653.1
GCTTCCCTGGGTGCCACGGTCATGTGACTTCGGCAAGATG
10




GCTGCCCTGACAGCGGAGCATTTTGCAGCACTCCAGAGCC




TGCTCAAGCTGCTCCAGGCTCTGCACCGCCTCACTAGGCT




GGTGGCATTCCGTGACCTGTCCTCTGCCGAGGCAATTCTG




GCTCTCTTTCCAGAAAATTTCCACCAAAACCTCAAAAACC





TGCTGACAAAGATCATCCTAGAACATGTGTCTACTTGGAG






AACCGAAGCCCAGGCAAATCAGATCTCTCTGCCACGCCTG





GTCGATCTGGACTGGAGAGTGGATATCAAAACCTCCTCAG




ACAGCATCAGCCGCATGGCCGTCCCCACCTGCCTGCTCCA




GATGAAGATCCAAGAAGATCCCAGCCTATGCGGAGACAAA




CCCTCCATCTCAGCTGTCACCGTGGAGCTGAGCAAAGAAA




CACTGGACACCATGTTAGATGGCCTGGGCCGCATCCGAGA




CCAACTCTCTGCCGTGGCCAGTAAATGATCCAGCCAGCTG




CCAGGGCCACTGCCATGACCCAGCTGCTCATGAGTGATAA




ATGTCTCCCCATATGCAGGCTGCCCTTGCAGCTGCAGCTG




ACAACAGGCAGGATGGTGGGGACAGCAGGGGGCTACTGCC




ATCCAGAAGTTACAGTTGGATTGGGAAGAAGCAGCCAGAT




CCCCCGCTGTTCTCACTCATCTTCTTTCTCTTTCTGAAGC




TGGAGAGCAGAAGCCCCCATCTTTGAAAAGCTCCTGAGTG




CAACTTAATTACCACCATGGCAGGGTGAGGGAACATTTGC




ATCGTCAGCTGCCTCTGCATAGCTGTTTGAGAAATTCAGG




CCCAAATCATGCAGCCTATCCAATAAGTAAGTTTATTTCC




AACATTAGCTCTAATTAGTTCATTTCCAATCCCAGAACAC




ATGGAGGGAATCGGACAGGTGATGCCAGCAGTTCCTGCTC




CTCTGTCAGGGAAGCCAGGCAGAGCCCACAGAGCATGGTC




CATCCAGAGTGTTCCCTGAGCCCCCTCCACCATACTGGAA




CCCCTCTTCAGTGTAGGAAGTCTGAAATGGGTGCTAATTC




CCTTCTTCATGAAACCAGGGCCCTCTTCCTTCATCTAATG




CAGCCACTCCTAGGTGAAGAAGTGGGAATAATTGGAAATA




AACAACAGTTCTAAAACTTCCATGATTTTTGTAGCTTCTT




TTGTCCCCAAGTTGAAGCTTTTGGCCAGTACCTTCTCTAG




TTTTTAAAGATGATCCCAACTTCCTAATTCCCAGCTAAGC




CCTTGACCCATGGTGTGACATGAAATCAGGCAATTGAATC




GCACCACTTTCTGTGTTTTCACCTGTTACGTAGAACAAAA




GGAAGCAAGGTGGCCAGGCGCAATGGCTCACGCCTGTAAT




CCCAGCACTTTGGGAGGCCGAGGCAGGCAGATCATGAGGT




CAGGAGATCGAGACCATGGTGAAACCCCATCTCTACTAAA




AATACAAAAAATTAGCTGGGCGCGGTGGCGGGCATCTGTA




GTCCCAGCTCCTCGGGAGGCTGAGGCAGGAGAATGGCGTG




AACCTGGGAGGCAGAGCTTGCAGTGAGCCGAGATCGTGCC




ACTGCACTCCAGTCTGGGTGACAGAGAAGGACTCGTCTCA




AAAAATAAAAATAAATAAAAAGGAAGCAAGGCTAATCATC




AGTATGTGCTTGTTACAAGAGCTATGATGAAGGCACTCCT




TCGAGTTTAACCAAATGAGATCATCTCTGTCATGTGCCTC




ACGCCTCACAGGGACTCCATGTGTGAAGATTCCCCCTTCA




CTCACCAGATCATCTCCATGGCAACAGCTTGCAGCCTGCT




CTTGGAGTGCTTTGTTTTGGCAGCTTCTCTGCTAGTTTGT




GTATGGAGTGAATGGAGGAGGTAAATCCACAGATTAAGAA




TATGCTGTCAGGAGTCAGGCAGCCAAGGTCAGAAGCCAGC




TCTGCTTCTCAGTGGTAAGGTGCTTGACTTCTACATCTCA




ATTTTCACCCACTTTGTACTTTTTTCCTAAATTAAATGAG




TATAATAGTAGTACCTACTTGATAGGACTTTTGTGAAAAT




TAAATGATATAATGCACCTAAAAACAGTACTGTTACAACT




AATAGGAAAGGCTTTGATTATTAATGGATGAGAGTAGAAA




GCTTGGTGCATTTATTGTCTCATCTACTATAACAGAGTTG




GTGTGAGAATTAGTATTATCATCCTCCCTTTATTGACCAG




GAAACCAGCTCATTGAGATTGAGTCATCTGCTGGTAAATG




GTCTCATTAAGAGGTGGACCCATATTTCTCTAGCTTTCTC




TTTACAACACAGGACTTTGCAAGGAACATATAATTCTGTG




ACTAGCGCCATTTGGAAAATGTTGAAACTGAAGTAGAGAT




GAGAGATCTTACGTCTGCCTACCCAGTGAGATACGAGGAA




GGTCAAGGGAAAAAAAATTCCAAGCTCTTCTTTATCTGCT




ATAGGAAATGAACATTCAATTTTTTGCATGCAACGACAAG




AGGTCAAGGACCCCAGAAGCCAGCCCGCTACTTCCAAGTT




GAGAGCCCCTGGTCATACCCTCCAGTTGAGCTCAGATTTG




TCACAAATTTACCCCTCTCCTTTCCTTCCATTCCCCATGA




CCTGCAGAGAGAGATGTCAGATACCTTCCTCTTGGCCTCC




CATGGGCATCCATAAGAAACTTACTTGAAGCAAGAAGCCC




AGTATAGGTGTCTGGGCAGTTGGACATTTCCTCTAGCCAG




ATCTGTCCGAATAGAGCCATCTGGGTACATGACGCAGAGG




GCATTTGATAAATAACTGGAAAAGTCAATAAATCTTTGCT




ACCCTTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





CTGF
NM_001901.2
AAACTCACACAACAACTCTTCCCCGCTGAGAGGAGACAGC
11




CAGTGCGACTCCACCCTCCAGCTCGACGGCAGCCGCCCCG




GCCGACAGCCCCGAGACGACAGCCCGGCGCGTCCCGGTCC




CCACCTCCGACCACCGCCAGCGCTCCAGGCCCCGCCGCTC




CCCGCTCGCCGCCACCGCGCCCTCCGCTCCGCCCGCAGTG




CCAACCATGACCGCCGCCAGTATGGGCCCCGTCCGCGTCG




CCTTCGTGGTCCTCCTCGCCCTCTGCAGCCGGCCGGCCGT




CGGCCAGAACTGCAGCGGGCCGTGCCGGTGCCCGGACGAG




CCGGCGCCGCGCTGCCCGGCGGGCGTGAGCCTCGTGCTGG




ACGGCTGCGGCTGCTGCCGCGTCTGCGCCAAGCAGCTGGG




CGAGCTGTGCACCGAGCGCGACCCCTGCGACCCGCACAAG




GGCCTCTTCTGTGACTTCGGCTCCCCGGCCAACCGCAAGA




TCGGCGTGTGCACCGCCAAAGATGGTGCTCCCTGCATCTT




CGGTGGTACGGTGTACCGCAGCGGAGAGTCCTTCCAGAGC




AGCTGCAAGTACCAGTGCACGTGCCTGGACGGGGCGGTGG




GCTGCATGCCCCTGTGCAGCATGGACGTTCGTCTGCCCAG




CCCTGACTGCCCCTTCCCGAGGAGGGTCAAGCTGCCCGGG




AAATGCTGCGAGGAGTGGGTGTGTGACGAGCCCAAGGACC




AAACCGTGGTTGGGCCTGCCCTCGCGGCTTACCGACTGGA




AGACACGTTTGGCCCAGACCCAACTATGATTAGAGCCAAC




TGCCTGGTCCAGACCACAGAGTGGAGCGCCTGTTCCAAGA




CCTGTGGGATGGGCATCTCCACCCGGGTTACCAATGACAA




CGCCTCCTGCAGGCTAGAGAAGCAGAGCCGCCTGTGCATG




GTCAGGCCTTGCGAAGCTGACCTGGAAGAGAACATTAAGA





AGGGCAAAAAGTGCATCCGTACTCCCAAAATCTCCAAGCC





TATCAAGTTTGAGCTTTCTGGCTGCACCAGCATGAAGACA




TACCGAGCTAAATTCTGTGGAGTATGTACCGACGGCCGAT




GCTGCACCCCCCACAGAACCACCACCCTGCCGGTGGAGTT




CAAGTGCCCTGACGGCGAGGTCATGAAGAAGAACATGATG




TTCATCAAGACCTGTGCCTGCCATTACAACTGTCCCGGAG




ACAATGACATCTTTGAATCGCTGTACTACAGGAAGATGTA




CGGAGACATGGCATGAAGCCAGAGAGTGAGAGACATTAAC




TCATTAGACTGGAACTTGAACTGATTCACATCTCATTTTT




CCGTAAAAATGATTTCAGTAGCACAAGTTATTTAAATCTG




TTTTTCTAACTGGGGGAAAAGATTCCCACCCAATTCAAAA




CATTGTGCCATGTCAAACAAATAGTCTATCAACCCCAGAC




ACTGGTTTGAAGAATGTTAAGACTTGACAGTGGAACTACA




TTAGTACACAGCACCAGAATGTATATTAAGGTGTGGCTTT




AGGAGCAGTGGGAGGGTACCAGCAGAAAGGTTAGTATCAT




CAGATAGCATCTTATACGAGTAATATGCCTGCTATTTGAA




GTGTAATTGAGAAGGAAAATTTTAGCGTGCTCACTGACCT




GCCTGTAGCCCCAGTGACAGCTAGGATGTGCATTCTCCAG




CCATCAAGAGACTGAGTCAAGTTGTTCCTTAAGTCAGAAC




AGCAGACTCAGCTCTGACATTCTGATTCGAATGACACTGT




TCAGGAATCGGAATCCTGTCGATTAGACTGGACAGCTTGT




GGCAAGTGAATTTGCCTGTAACAAGCCAGATTTTTTAAAA




TTTATATTGTAAATATTGTGTGTGTGTGTGTGTGTGTATA




TATATATATATGTACAGTTATCTAAGTTAATTTAAAGTTG




TTTGTGCCTTTTTATTTTTGTTTTTAATGCTTTGATATTT




CAATGTTAGCCTCAATTTCTGAACACCATAGGTAGAATGT




AAAGCTTGTCTGATCGTTCAAAGCATGAAATGGATACTTA




TATGGAAATTCTGCTCAGATAGAATGACAGTCCGTCAAAA




CAGATTGTTTGCAAAGGGGAGGCATCAGTGTCCTTGGCAG




GCTGATTTCTAGGTAGGAAATGTGGTAGCCTCACTTTTAA




TGAACAAATGGCCTTTATTAAAAACTGAGTGACTCTATAT




AGCTGATCAGTTTTTTCACCTGGAAGCATTTGTTTCTACT




TTGATATGACTGTTTTTCGGACAGTTTATTTGTTGAGAGT




GTGACCAAAAGTTACATGTTTGCACCTTTCTAGTTGAAAA




TAAAGTGTATATTTTTTCTATAAAAAAAAAAAAAAAAA





ENPP4
NM_014936.4
AGACGCTCGCCTGGCAGCTGCGCACACTCGGAGCGCCCCG
12




AGCGGCGCAGATAGGGACGTTGGGGCTGTGCCCCGCGGCG




CGGCGCCTGCCACTGCGCAGGCGCCTCAGGAAGAGCTCGG




CATCGCCCCTCTTCCTCCAGGTCCCCCTTCCCCGCAACTT




CCCACGAGTGCCAGGTGCCGCGAGCGCCGAGTTCCGCGCA




TTGGAAAGAAGCGACCGCGGCGGCTGGAACCCTGATTGCT




GTCCTTCAACGTGTTCATTATGAAGTTATTAGTAATACTT




TTGTTTTCTGGACTTATAACTGGTTTTAGAAGTGACTCTT




CCTCTAGTTTGCCACCTAAGTTACTACTAGTATCCTTTGA




TGGCTTCAGAGCTGATTATCTGAAGAACTATGAATTTCCT




CATCTCCAGAATTTTATCAAAGAAGGTGTTTTGGTAGAGC




ATGTTAAAAATGTTTTTATCACAAAAACATTTCCAAACCA




CTACAGTATTGTGACAGGCTTGTATGAAGAAAGCCATGGC




ATTGTGGCTAATTCCATGTATGATGCAGTCACAAAGAAAC




ACTTTTCTGACTCTAATGACAAGGATCCTTTTTGGTGGAA




TGAGGCAGTACCTATTTGGGTGACCAATCAGCTTCAGGAA




AACAGATCAAGTGCTGCTGCTATGTGGCCTGGTACTGATG




TACCCATTCACGATACCATCTCTTCCTATTTTATGAATTA




CAACTCCTCAGTGTCATTTGAGGAAAGACTAAATAATATT




ACTATGTGGCTAAACAATTCGAACCCACCAGTCACCTTTG




CAACACTATATTGGGAAGAACCAGATGCAAGTGGCCACAA




ATACGGACCTGAAGATAAAGAAAACATGAGCAGAGTGTTG




AAAAAAATAGATGATCTTATCGGTGACTTAGTCCAAAGAC




TCAAGATGTTAGGGCTATGGGAAAATCTTAATGTGATCAT




TACAAGTGATCATGGGATGACCCAGTGTTCTCAGGACAGA




CTGATAAACCTGGATTCCTGCATCGATCATTCATACTACA




CTCTTATAGATTTGAGCCCAGTTGCTGCAATACTTCCCAA




AATAAATAGAACAGAGGTTTATAACAAACTGAAAAACTGT




AGCCCTCATATGAATGTTTATCTCAAAGAAGACATTCCTA




ACAGATTTTATTACCAACATAATGATCGAATTCAGCCCAT




TATTTTGGTTGCCGATGAAGGCTGGACAATTGTGCTAAAT





GAATCATCACAAAAATTAGGTGACCATGGTTATGATAATT






CTTTGCCTAGTATGCATCCATTTCTAGCTGCCCACGGACC





TGCATTTCACAAAGGCTACAAGCATAGCACAATTAACATT




GTGGATATTTATCCAATGATGTGCCACATCCTGGGATTAA




AACCACATCCCAATAATGGGACCTTTGGTCATACTAAGTG




CTTGTTAGTTGACCAGTGGTGCATTAATCTCCCAGAAGCC




ATCGCGATTGTTATCGGTTCACTCTTGGTGTTAACCATGC




TAACATGCCTCATAATAATCATGCAGAATAGACTTTCTGT




ACCTCGTCCATTTTCTCGACTTCAGCTACAAGAAGATGAT




GATGATCCTTTAATTGGGTGACATGTGCTAGGGCTTATAC




AAAGTGTCTTTGATTAATCACAAAACTAAGAATACATCCA




AAGAATAGTGTTGTAACTATGAAAAAGAATACTTTGAAAG




ACAAAGAACTTAGACTAAGCATGTTAAAATTATTACTTTG




TTTTCCTTGTGTTTTGTTTCGGTGCATTTGCTAATAAGAT




AACGCTGACCATAGTAAAATTGTTAGTAAATCATTAGGTA




ACATCTTGTGGTAGGAAATCATTAGGTAACATCAATCCTA




ACTAGAAATACTAAAAATGGCTTTTGAGAAAAATACTTCC




TCTGCTTGTATTTTGCGATGAAGATGTGATACATCTTTAA




ATGAAAATATACCAAAATTTAGTAGGCATGTTTTTCTAAT




AAATTTATATATTTGTAAAGAAAACAACAGAAATCTTTAT




GCAATTTGTGAATTTTGTATATTAGGGAGGAAAAGCTTCC




TATATTTTTATATTTACCTTTAATTAGTTTGTATCTCAAG




TACCCTCTTGAGGTAGGAAATGCTCTGTGATGGTAAATAA




AATTGGAGCAGACAGAAAAGATATAGCAAATGAAGAAATA




TTTTAAGGAAACCTATTTGAAAAAAAAAGCAAAGACCATT




TGATAAAAGCCTGAGTTGTCACCATTATGTCTTAAGCTGT




TAGTCTTAAAGATTATTGTTAAAAAATTCAGAAGAAAAGA




GAGACAAGTGCTCTTCTCTCTATCTATGCTTAATGCCTTT




ATGTAAGTTACTTAGTTGTTTGCGTGTGCCTGTGCAAGTG




TGTTTGTGTGTGGTTGTGTGGACATTATGTGATTTACTAT




ATAAGGAGGTCAGAGATGGACTGTGGCCAGGCTTCCACAT




TCCTGAAGCACACAGATCTCAGGAAAGGTTATTTTTGCAC




TTCATATTTGTTTACTTTCTCCTAACTCACAAGTTAAAAT




CATAACTTAATTTCATTAACTTTTATCATTTAACTCTCTC




ATGTTTGTTGTAACCTGAGGTATCCAAATGCTACAGAAAA




ATTTATGACCCAAATACAAATCTCAATTTGACTGGGACAG




AATGAGGAATGGAGATTTTTGTATTTATCTTTGGGACTTT




ATGCCTTACTTTTTAGGCTATAGAATAGTTAAGAAATTTT




AAACAAAATTTAGTATCTTTTGGTCTTTCACACCATTCAT




ATGTTAAGTGGCAGAATAGCCTTAGTGCTACCTCCACTTT




TTTCTCCAGTATTTGCATCACAGAAATAATCCCTCTGTTT




AACATGTTTGTTCAGAGCCAAGGGTTTATTGTGAAGAACT




GTCATCCTGCCTTTGCTAGCTGGTACCTTCTAGTAATCAA




AATTAATATGAAGAAACTAGGTTGTGACAGACTAGATTAT




ATTTAGTAGGGGAAAAATTGGGCTCAAGAACCATTCATCA




GTACGTGAGACAAGCAGTTAATAGTATGATCTTTAAAGTT




TTGACAATATAAAATAAACTTGGTAACTGTTTTACAAATA




TAAAAGTATAATAAATATGCAGCCCAGTTAAATATTGATT




ATCTGTGATGGTAAAGAACAACAGTGGTGCCAGTCATCAA




ACATACAGTGCGTCCTATTGAGTCACTGCTAATTTCTTGA




GCCTGGTATTTGCTGCCTATTGTATTTGTGGTTGTTGAGA




GGCATTTTCAAACCCTGTATAAATAATCCATGCTGTTGGT




CATAAGTTAACTGTATTAAGAACAGTAAAATAAATAAAAA




CCAATAGTACTAATTTTGCTTTAAAAAAATTTCTAATTTT




TTTCACATAAAACAATTATCCTAAAGGTTAATAGTTGATC




GAAACAGAATAATAGAAAAATTCTACTTTAATTTCCATTA




AAAAGCAAATAGCATTGACACATTTAAAGCTTTTCATTTA




AAGTAGTGGATGTTTTTGAAGTATCTAAAATAGTAGCAGA




ATATTTTATACTTGGTCCTTGCAATGGTGTGAGTTTTAAT




GATTGCATTATCGTGATTGGTGGTTATGAGTTTCAGAAAT




CTATACTTGGCATCCAACTCATGAGTGGATTTTATATAGG




ATGGAACAGGAAGGTATGTCCTGTCAGTATCTTAACCCTT




TCAACAAGACATTTACCTATTTGTCTTTCCTTACGTTCTC




AAAATATTAACTCGAATTGTAAATTAAGCAAAAATTTAAA




AAGTATATGTTGATGGGACAAGAAGAATAGTATTTATTTA




ATAAAACATATATTATATTGAACTATGTGTTAATTCATTT




GTATCTTTTAAAAAATTATCACTGTTAAAGCCATTGACTC




CTTTAGTACACTGAGAAAAATCTTATAGTAAAACTAGCCT




TTCACATTAAGGTTTTGGTGTGTATTTTGTTAAATAACTA




ACATGCTGCTCTATTTTCTGGGTGTAGAAAGTATTTGGCT




CTAGGAAACATTTACTTGTTTGTGAAAACAATACCCCAAG




GTAATAGGAAAAGTTTGAGTTAAGTGTTTTTAATTCAGTC




AGTGAATTCAGAATAAGTACATTCATGTATAACATAGGGA




CAGTTCTGCTGCTGTTATTTATATGCAATTCTTCTGGTAA




ATAGCAATAGAATAAAACATATTTCAATGTTTGTGTATAG




GTTTTATATTATTATTCCACTAGGAATGGCATAAGAATTT




ATAGATAAATTCTTGTAACATTAAAGGATTAAAATGTTTT




TACATTGTTTTTGGGTGTCTCCTTCTTGTGCCCATATCTG




ATAAGCTTTATGGATTATTGCATTTAATTCCTTTTATTTG




GAGGGTTTTACTTCCTTGTTAACATATAAAGTTATAAATG




AAGGACAAGGAGGAGATGGAAAATGTGTATTTATTGTTAA




TTCTTAAAATAGTGTGTAAATAAAATAACATCAGTGTGCT




TTAAAGAAATGTGTATGTAGTGCCTTAATTTAAATTAAAA




TATTTTTGACTGTTACTTGAGTTCAGAATTAATGACTTTG




TTCATGATTTTTAAAATGTGTGTGAATAAAATCTACCAAA




AAATTCTTACTGTAATTATTAAATATAAAGTTCAGTGTCA




AAAAAAAAAAAAAAAAA





FAM131A
NM_001171093.1
ACCGGCCCGGTTCCCTCTCCGGGGAGCGGCGGCGGACGCG
13




CGGCTCCCACCCCTCCCCTCTCACGGGCTCTCCCCTCCCC




AGTGTGGCCGCGACCCTACCCTCTGCAAGGCGATGGCCCG




CGCCCCGAGCGCAGGCTAGCGTGCCTGGGTGCCCGGCCAT




GGGCTGTATCGGCTCTCGGAGCCCGGCGGGTCAGGCATTT




CTGGGGACCAACAGCTGGCCGAGGCTCAGGGATAGAGACG




GCTGCTCCAGCTAAAGGTGAATGTTGGAGACACAGTCGCG




ATGCTGCCCAAGTCCCGGCGAGCCCTAACTATCCAGGAGA




TCGCTGCGCTGGCCAGGTCCTCCCTGCATGGTATTTCCCA




GGTGGTGAAGGACCACGTGACCAAGCCTACCGCCATGGCC




CAGGGCCGAGTGGCTCACCTCATTGAGTGGAAGGGCTGGA




GCAAGCCGAGTGACTCACCTGCTGCCCTGGAATCAGCCTT




TTCCTCCTATTCAGACCTCAGCGAGGGCGAACAAGAGGCT





CGCTTTGCAGCAGGAGTGGCTGAGCAGTTTGCCATCGCGG






AAGCCAAGCTCCGAGCATGGTCTTCGGTGGATGGCGAGGA





CTCCACTGATGACTCCTATGATGAGGACTTTGCTGGGGGA




ATGGACACAGACATGGCTGGGCAGCTGCCCCTGGGGCCGC




ACCTCCAGGACCTGTTCACCGGCCACCGGTTCTCCCGGCC




TGTGCGCCAGGGCTCCGTGGAGCCTGAGAGCGACTGCTCA




CAGACCGTGTCCCCAGACACCCTGTGCTCTAGTCTGTGCA




GCCTGGAGGATGGGTTGTTGGGCTCCCCGGCCCGGCTGGC




CTCCCAGCTGCTGGGCGATGAGCTGCTTCTCGCCAAACTG




CCCCCCAGCCGGGAAAGTGCCTTCCGCAGCCTGGGCCCAC




TGGAGGCCCAGGACTCACTCTACAACTCGCCCCTCACAGA




GTCCTGCCTTTCCCCCGCGGAGGAGGAGCCAGCCCCCTGC




AAGGACTGCCAGCCACTCTGCCCACCACTAACGGGCAGCT




GGGAACGGCAGCGGCAAGCCTCTGACCTGGCCTCTTCTGG




GGTGGTGTCCTTAGATGAGGATGAGGCAGAGCCAGAGGAA




CAGTGACCCACATCATGCCTGGCAGTGGCATGCATCCCCC




GGCTGCTGCCAGGGGCAGAGCCTCTGTGCCCAAGTGTGGG




CTCAAGGCTCCCAGCAGAGCTCCACAGCCTAGAGGGCTCC




TGGGAGCGCTCGCTTCTCCGTTGTGTGTTTTGCATGAAAG




TGTTTGGAGAGGAGGCAGGGGCTGGGCTGGGGGCGCATGT




CCTGCCCCCACTCCCGGGGCTTGCCGGGGGTTGCCCGGGG




CCTCTGGGGCATGGCTACAGCTGTGGCAGACAGTGATGTT




CATGTTCTTAAAATGCCACACACACATTTCCTCCTCGGAT




AATGTGAACCACTAAGGGGGTTGTGACTGGGCTGTGTGAG




GGTGGGGTGGGAGGGGGCCCAGCAACCCCCCACCCTCCCC




ATGCCTCTCTCTTCTCTGCTTTTCTTCTCACTTCCGAGTC




CATGTGCAGTGCTTGATAGAATCACCCCCACCTGGAGGGG




CTGGCTCCTGCCCTCCCGGAGCCTATGGGTTGAGCCGTCC




CTCAAGGGCCCCTGCCCAGCTGGGCTCGTGCTGTGCTTCA




TTCACCTCTCCATCGTCTCTAAATCTTCCTCTTTTTTCCT




AAAGACAGAAGGTTTTTGGTCTGTTTTTTCAGTCGGATCT




TCTCTTCTCTGGGAGGCTTTGGAATGATGAAAGCATGTAC




CCTCCACCCTTTTCCTGGCCCCCTAATGGGGCCTGGGCCC




TTTCCCAACCCCTCCTAGGATGTGCGGGCAGTGTGCTGGC




GCCTCACAGCCAGCCGGGCTGCCCATTCACGCAGAGCTCT




CTGAGCGGGAGGTGGAAGAAAGGATGGCTCTGGTTGCCAC




AGAGCTGGGACTTCATGTTCTTCTAGAGAGGGCCACAAGA




GGGCCACAGGGGTGGCCGGGAGTTGTCAGCTGATGCCTGC




TGAGAGGCAGGAATTGTGCCAGTGAGTGACAGTCATGAGG




GAGTGTCTCTTCTTGGGGAGGAAAGAAGGTAGAGCCTTTC




TGTCTGAATGAAAGGCCAAGGCTACAGTACAGGGCCCCAC




CCCAGCCAGGGTGTTAATGCCCACGTAGTGGAGGCCTCTG




GCAGATCCTGCATTCCAAGGTCACTGGACTGTACGTTTTT




ATGGTTGTGGGAAGGGTGGGTGGCTTTAGAATTAAGGGCC




TTGTAGGCTTTGGCAGGTAAGAGGGCCCAAGGTAAGAACG




AGAGCCAACGGGCACAAGCATTCTATATATAAGTGGCTCA




TTAGGTGTTTATTTTGTTCTATTTAAGAATTTGTTTTATT




AAATTAATATAAAAATCTTTGTAAATCTCTAAAAAAAAAA




AAAAAAAA





FLJ10357
NM_018071.4
GGAGCGGGCCGAGCCGCCACCGCGGCCGGAGCTGTCCCTT
14




AGCCAGACCCGGCGAGACACGAGCGGCGGGAGGGAGGCGG




TGGCGCGCCCGGCCCCGCCCGCCCGACCAAGCGTCGGACG




CGGCCCGGCGCCGAGCCATGGAGCCTGAGCCAGTGGAGGA




CTGTGTGCAGAGCACTCTCGCCGCCCTGTATCCACCCTTT




GAGGCAACAGCCCCCACCCTGTTGGGCCAGGTGTTCCAGG




TGGTGGAGAGGACTTATCGGGAGGACGCACTGAGGTACAC




GCTGGACTTCCTGGTACCAGCCAAGCACCTGCTTGCCAAG




GTCCAGCAGGAAGCCTGTGCCCAATACAGTGGATTCCTCT




TCTTCCATGAGGGGTGGCCGCTCTGCCTGCATGAACAGGT




GGTGGTGCAGCTAGCAGCCCTACCCTGGCAACTGCTGCGC




CCAGGAGACTTCTATCTGCAGGTGGTGCCCTCAGCTGCCC




AAGCACCCCGACTAGCACTCAAGTGTCTGGCCCCTGGGGG




TGGGCGGGTGCAGGAGGTTCCTGTGCCCAATGAGGCTTGT




GCCTACCTATTCACACCTGAGTGGCTACAAGGCATCAACA




AGGACCGGCCAACAGGTCGCCTCAGTACCTGCCTACTGTC




TGCGCCCTCTGGGATTCAGCGGCTGCCCTGGGCTGAGCTC




ATCTGTCCACGATTTGTGCACAAAGAGGGCCTCATGGTTG




GACATCAGCCAAGTACACTGCCCCCAGAACTGCCCTCTGG




ACCTCCAGGGCTTCCCAGCCCTCCACTTCCTGAGGAGGCG




CTGGGTACCCGGAGTCCTGGGGATGGGCACAATGCCCCTG




TGGAAGGACCTGAGGGCGAGTATGTGGAGCTGTTAGAGGT




GACGCTGCCCGTGAGGGGGAGCCCAACAGATGCTGAAGGC




TCCCCAGGCCTCTCCAGAGTCCGGACGGTACCCACCCGCA




AGGGCGCTGGAGGGAAGGGCCGCCACCGGAGACACCGGGC




GTGGATGCACCAGAAGGGCCTGGGGCCTCGGGGCCAGGAT




GGAGCACGCCCACCCGGCGAGGGGAGCAGCACCGGAGCCT




CCCCTGAGTCTCCCCCAGGAGCTGAGGCTGTCCCAGAGGC




AGCAGTCTTGGAGGTGTCTGAGCCCCCAGCAGAGGCTGTG




GGAGAAGCCTCCGGATCTTGCCCCCTGAGGCCAGGGGAGC




TTAGAGGAGGAGGAGGAGGAGGCCAGGGGGCTGAAGGACC




ACCTGGTACCCCTCGGAGAACAGGCAAAGGAAACAGAAGA




AAGAAGCGAGCTGCAGGTCGAGGGGCTCTTAGCCGAGGAG




GGGACAGTGCCCCACTGAGCCCTGGGGACAAGGAAGATGC




CAGCCACCAAGAAGCCCTTGGCAATCTGCCCTCACCAAGT




GAGCACAAGCTTCCAGAATGCCACCTGGTTAAGGAGGAAT




ATGAAGGCTCAGGGAAGCCAGAATCTGAGCCAAAAGAGCT




CAAAACAGCAGGCGAGAAAGAGCCTCAGCTCTCTGAAGCC




TGTGGGCCTACAGAAGAGGGGGCCGGAGAGAGAGAGCTGG




AGGGGCCAGGCCTGCTGTGTATGGCAGGACACACAGGCCC




AGAAGGCCCCCTGTCTGACACTCCAACACCTCCGCTGGAG




ACTGTGCAGGAAGGAAAAGGGGACAACATTCCAGAAGAGG




CCCTTGCAGTCTCCGTCTCTGATCACCCTGATGTAGCTTG




GGACTTGATGGCATCTGGATTCCTCATCCTGACGGGAGGG




GTGGACCAGAGTGGGCGAGCTCTGCTGACCATTACCCCAC




CGTGCCCTCCTGAGGAGCCCCCACCCTCCCGAGACACGCT




GAACACAACTCTTCATTACCTCCACTCACTGCTCAGGCCT




GATCTACAGACACTGGGGCTGTCCGTCCTGCTGGACCTTC




GTCAGGCACCTCCACTGCCTCCAGCACTCATTCCTGCCTT




GAGCCAACTTCAGGACTCAGGAGATCCTCCCCTTGTTCAG




CGGCTGCTGATTCTCATTCATGATGACCTTCCAACTGAAC




TCTGTGGATTTCAGGGTGCTGAGGTGCTGTCAGAGAATGA




TCTGAAAAGAGTGGCCAAGCCAGAGGAGCTGCAGTGGGAG




TTAGGAGGTCACAGGGACCCCTCTCCCAGTCACTGGGTAG




AGATACACCAGGAAGTGGTAAGGCTATGTCGCCTGTGCCA




AGGTGTGCTGGGCTCGGTACGGCAGGCCATTGAGGAGCTG




GAGGGAGCAGCAGAGCCAGAGGAAGAGGAGGCAGTGGGAA




TGCCCAAGCCACTGCAGAAGGTGCTGGCAGATCCCCGGCT




GACGGCACTGCAGAGGGATGGGGGGGCCATCCTGATGAGG




CTGCGCTCCACTCCCAGCAGCAAGCTGGAGGGCCAAGGCC




CAGCTACACTGTATCAGGAAGTGGACGAGGCCATTCACCA




GCTTGTGCGCCTCTCCAACCTGCACGTGCAGCAGCAAGAG




CAGCGGCAGTGCCTGCGGCGACTCCAGCAGGTGTTGCAGT




GGCTCTCGGGCCCAGGGGAGGAGCAGCTGGCAAGCTTTGC




TATGCCTGGGGACACCTTGTCTGCCCTGCAGGAGACAGAG




CTGCGATTCCGTGCTTTCAGCGCTGAGGTCCAGGAGCGCC




TGGCCCAGGCACGGGAGGCCCTGGCTCTGGAGGAGAATGC




CACCTCCCAGAAGGTGCTGGATATCTTTGAACAGCGGCTG




GAGCAGGTTGAGAGTGGCCTCCATCGGGCCCTGCGGCTAC




AGCGCTTCTTCCAGCAGGCACATGAATGGGTGGATGAGGG




CTTTGCTCGGCTGGCAGGAGCTGGGCCGGGTCGGGAGGCT




GTGCTGGCTGCACTGGCCCTGCGGCGGGCCCCAGAGCCCA




GTGCCGGCACCTTCCAGGAGATGCGGGCCCTGGCCCTGGA




CCTGGGCAGCCCAGCAGCCCTGCGAGAATGGGGCCGCTGC




CAGGCCCGCTGCCAAGAGCTAGAGAGGAGGATCCAGCAAC




ACGTGGGAGAGGAGGCGAGCCCACGGGGCTACCGACGACG




GCGGGCAGACGGTGCCAGCAGTGGAGGGGCCCAGTGGGGG




CCCCGCAGCCCCTCGCCCAGCCTCAGCTCCTTGCTGCTCC




CCAGCAGCCCTGGGCCACGGCCAGCCCCATCCCATTGCTC




CCTGGCCCCATGTGGAGAGGACTATGAGGAAGAGGGCCCT




GAGCTGGCTCCAGAAGCAGAGGGCAGGCCCCCAAGAGCTG




TGCTGATCCGAGGCCTGGAGGTCACCAGCACTGAGGTGGT




AGACAGGACGTGCTCACCACGGGAACACGTGCTGCTGGGC




CGGGCTAGGGGGCCAGACGGACCCTGGGGAGTAGGCACCC




CCCGGATGGAGCGCAAGCGAAGCATCAGTGCCCAGCAGCG




GCTGGTGTCTGAGCTGATTGCCTGTGAACAAGATTACGTG




GCCACCTTGAGTGAGCCAGTGCCACCCCCTGGGCCTGAGC




TGACGCCTGAACTTCGGGGCACCTGGGCTGCTGCCCTGAG




TGCCCGGGAAAGGCTTCGCAGCTTCCACCGGACACACTTT





CTGCGGGAGCTTCAGGGCTGCGCCACCCACCCCCTACGCA






TTGGGGCCTGCTTCCTTCGCCACGGGGACCAGTTCAGCCT






TTATGCACAGTACGTGAAGCACCGACACAAACTGGAGAAT





GGTCTGGCTGCGCTCAGTCCCTTAAGCAAGGGCTCCATGG




AGGCTGGCCCTTACCTGCCCCGAGCCCTGCAGCAGCCTCT




GGAACAGCTGACTCGGTATGGGCGGCTCCTGGAGGAGCTC




CTGAGGGAAGCTGGGCCTGAGCTCAGTTCTGAGTGCCGGG




CCCTTGGGGCTGCTGTACAGCTGCTCCGGGAACAAGAGGC




CCGTGGCAGAGACCTGCTGGCCGTGGAGGCGGTGCGTGGC




TGTGAGATAGATCTGAAGGAGCAGGGACAGCTCTTGCATC




GAGACCCCTTCACTGTCATCTGTGGCCGAAAGAAGTGCCT




TCGCCATGTCTTTCTCTTCGAGCATCTCCTCCTGTTCAGC




AAGCTCAAGGGCCCTGAAGGGGGGTCAGAGATGTTTGTTT




ACAAGCAGGCCTTTAAGACTGCTGATATGGGGCTGACAGA




AAACATCGGGGACAGCGGACTCTGCTTTGAGTTGTGGTTT




CGGCGGCGGCGTGCACGAGAGGCATACACTCTGCAGGCAA




CCTCACCAGAGATCAAACTCAAGTGGACAAGTTCTATTGC




CCAGCTGCTGTGGAGACAGGCAGCCCACAACAAGGAGCTC




CGAGTGCAGCAGATGGTGTCCATGGGCATTGGGAATAAAC




CCTTCCTGGACATCAAAGCCCTTGGGGAGCGGACGCTGAG




TGCCCTGCTCACTGGAAGAGCCGCCCGCACCCGGGCCTCC




GTGGCCGTGTCATCCTTTGAGCATGCCGGCCCCTCCCTTC




CCGGCCTTTCGCCGGGAGCCTGCTCCCTGCCTGCCCGCGT




CGAGGAGGAGGCCTGGGATCTGGACGTCAAGCAAATTTCC




CTGGCCCCAGAAACACTTGACTCTTCTGGAGATGTGTCCC




CAGGACCAAGAAACAGCCCCAGCCTGCAACCCCCCCACCC




TGGGAGCAGCACTCCCACCCTGGCCAGTCGAGGGATCTTA




GGGCTATCCCGACAGAGTCATGCTCGAGCCCTGAGTGACC




CCACCACGCCTCTGTGACCTGGAGAAGATCCAGAACTTGC




GTGCAGCTTCTCCTCTCAGCACACTTTGGGCTGGGATGGC




AGTGGGGCATAATGGAGCCCTGGGCGATCGCTGAATTTCT




TCCCTCTGCTTCCTGGACACAGAGGAGGTCTAACGACCAG




AGTATTGCCCTGCCACCACTATCTCTAGTCTCCCTAGCTT




GGTGCCTTCTCCTGCAGGAGTCAGAGCAGCCACATTGCTT




GCCTTCATACCCTGGAGGTGGGGAAGTTATCCCTCTTCCG




GTGCTTTCCCATCCTGGGCCACTGTATCCAGGACATCACT




CCCATGCCAGCCCTCCCTGGCAGCCCATGTTCTCCTCTTT




TCTCACCCCCTGACTTTCCCTGAGAAGAATCATCTCTGCC




AGGTCAACTGGAGTCCCTGGTGACTCCATTCTGAGGTGTC




ACAAGCAATGAAGCTATGCAAACAATAGGAGGGTGTGACA




GGGGAACCGTAGACTTTATATATGTAATTACTGTTATTAT




AATACTATTGTTATATTAAATGTATTTACTCACACTTTGC




CTCTAAGGAGCTAGAGTAGTCCTCTGGATTAAGGTGATAA




ATAACTTGAGCACTTTCCCTCAACCAGCCCTTAACTAGAA




CACAGAAAATAAAACCAAGACTGGAAGGTCCCCTCTACCC




CTCCCAGGCCCAGAGCTAGCTGACTGTGTATGAGCCTGGG




AGAATGTGTCTCCTCCACAGTGGCTCCCAGAGGTTCCACA




CACTCTCTGAAGCTCCTTCTCCCACACTGCACCTACTCCT




TGAGGCTGAACTGGTCACAGACAAACTGGGATCCAGCACA




GTCCAGCAGTTCTCAAAATGAGGTCCTCAGGCCACAGTGC




GTGAGAACTTGCTTGGCTGTTTGTTAAATGCTAATTCTTG




GGCCCCATCAGAGCTACTGCATCGAAACCTGGGGGTAAAA




CCCAATATTCTGCATTTCTTATCAAACTCTTTGGGTGATA




ACTAAGTGTCTGAAGAGGTGACTATTTCCTGACAGAAGGA




CCCAAAGAGGGAAGCAGGACATAGGTAGGCAGACAGACAC




AGGGCCCTGTGCCTCAAGACACCTGTTTATTGGGGACACG




ACTCTGCAATAGGGATGACAGGAATCGTACCAAAAATAGC




GACGTCTACAGGGCCCCTGATGGGGCTAGAAGGGTACAGT




GCCCCCCACCCTCACCCCTTGTACAAAAATAAACTCTCAC




GCCTATGGACCAGCAAAAAAAAAAAAAA





FZD7
NM_003507.1

CTCTCCCAACCGCCTCGTCGCACTCCTCAGGCTGAGAGCA

15





CCGCTGCACTCGCGGCCGGCGATGCGGGACCCCGGCGCGG





CCGCTCCGCTTTCGTCCCTGGGCCTCTGTGCCCTGGTGCT




GGCGCTGCTGGGCGCACTGTCCGCGGGCGCCGGGGCGCAG




CCGTACCACGGAGAGAAGGGCATCTCCGTGCCGGACCACG




GCTTCTGCCAGCCCATCTCCATCCCGCTGTGCACGGACAT




CGCCTACAACCAGACCATCCTGCCCAACCTGCTGGGCCAC




ACGAACCAAGAGGACGCGGGCCTCGAGGTGCACCAGTTCT




ACCCGCTGGTGAAGGTGCAGTGTTCTCCCGAACTCCGCTT




TTTCTTATGCTCCATGTATGCGCCCGTGTGCACCGTGCTC




GATCAGGCCATCCCGCCGTGTCGTTCTCTGTGCGAGCGCG




CCCGCCAGGGCTGCGAGGCGCTCATGAACAAGTTCGGCTT




CCAGTGGCCCGAGCGGCTGCGCTGCGAGAACTTCCCGGTG




CACGGTGCGGGCGAGATCTGCGTGGGCCAGAACACGTCGG




ACGGCTCCGGGGGCCCAGGCGGCGGCCCCACTGCCTACCC




TACCGCGCCCTACCTGCCGGACCTGCCCTTCACCGCGCTG




CCCCCGGGGGCCTCAGATGGCAGGGGGCGTCCCGCCTTCC




CCTTCTCATGCCCCCGTCAGCTCAAGGTGCCCCCGTACCT




GGGCTACCGCTTCCTGGGTGAGCGCGATTGTGGCGCCCCG




TGCGAACCGGGCCGTGCCAACGGCCTGATGTACTTTAAGG




AGGAGGAGAGGCGCTTCGCCCGCCTCTGGGTGGGCGTGTG




GTCCGTGCTGTGCTGCGCCTCGACGCTCTTTACCGTTCTC




ACCTACCTGGTGGACATGCGGCGCTTCAGCTACCCAGAGC




GGCCCATCATCTTCCTGTCGGGCTGCTACTTCATGGTGGC




CGTGGCGCACGTGGCCGGCTTCCTTCTAGAGGACCGCGCC




GTGTGCGTGGAGCGCTTCTCGGACGATGGCTACCGCACGG




TGGCGCAGGGCACCAAGAAGGAGGGCTGCACCATCCTCTT




CATGGTGCTCTACTTCTTCGGCATGGCCAGCTCCATCTGG




TGGGTCATTCTGTCTCTCACTTGGTTCCTGGCGGCCGGCA




TGAAGTGGGGCCACGAGGCCATCGAGGCCAACTCGCAGTA




CTTCCACCTGGCCGCGTGGGCCGTGCCCGCCGTCAAGACC




ATCACTATCCTGGCCATGGGCCAGGTAGACGGGGACCTGC




TGAGCGGGGTGTGCTACGTTGGCCTCTCCAGTGTGGACGC




GCTGCGGGGCTTCGTGCTGGCGCCTCTGTTCGTCTACCTC




TTCATAGGCACGTCCTTCTTGCTGGCCGGCTTCGTGTCCC




TCTTCCGTATCCGCACCATCATGAAACACGACGGCACCAA




GACCGAGAAGCTGGAGAAGCTCATGGTGCGCATCGGCGTC




TTCAGCGTGCTCTACACAGTGCCCGCCACCATCGTCCTGG




CCTGCTACTTCTACGAGCAGGCCTTCCGCGAGCACTGGGA




GCGCACCTGGCTCCTGCAGACGTGCAAGAGCTATGCCGTG




CCCTGCCCGCCCGGCCACTTCCCGCCCATGAGCCCCGACT




TCACCGTCTTCATGATCAAGTACCTGATGACCATGATCGT




CGGCATCACCACTGGCTTCTGGATCTGGTCGGGCAAGACC




CTGCAGTCGTGGCGCCGCTTCTACCACAGACTTAGCCACA




GCAGCAAGGGGGAGACTGCGGTATGAGCCCCGGCCCCTCC




CCACCTTTCCCACCCCAGCCCTCTTGCAAGAGGAGAGGCA




CGGTAGGGAAAAGAACTGCTGGGTGGGGGCCTGTTTCTGT




AACTTTCTCCCCCTCTACTGAGAAGTGACCTGGAAGTGAG




AAGTTCTTTGCAGATTTGGGGCGAGGGGTGATTTGGAAAA




GAAGACCTGGGTGGAAAGCGGTTTGGATGAAAAGATTTCA




GGCAAAGACTTGCAGGAAGATGATGATAACGGCGATGTGA




ATCGTCAAAGGTACGGGCCAGCTTGTGCCTAATAGAAGGT




TGAGACCAGCAGAGACTGCTGTGAGTTTCTCCCGGCTCCG




AGGCTGAACGGGGACTGTGAGCGATCCCCCTGCTGCAGGG




CGAGTGGCCTGTCCAGACCCCTGTGAGGCCCCGGGAAAGG




TACAGCCCTGTCTGCGGTGGCTGCTTTGTTGGAAAGAGGG




AGGGCCTCCTGCGGTGTGCTTGTCAAGCAGTGGTCAAACC




ATAATCTCTTTTCACTGGGGCCAAACTGGAGCCCAGATGG




GTTAATTTCCAGGGTCAGACATTACGGTCTCTCCTCCCCT




GCCCCCTCCCGCCTGTTTTTCCTCCCGTACTGCTTTCAGG




TCTTGTAAAATAAGCATTTGGAAGTCTTGGGAGGCCTGCC




TGCTAGAATCCTAATGTGAGGATGCAAAAGAAATGATGAT




AACATTTTGAGATAAGGCCAAGGAGACGTGGAGTAGGTAT




TTTTGCTACTTTTTCATTTTCTGGGGAAGGCAGGAGGCAG




AAAGACGGGTGTTTTATTTGGTCTAATACCCTGAAAAGAA




GTGATGACTTGTTGCTTTTCAAAACAGGAATGCATTTTTC




CCCTTGTCTTTGTTGTAAGAGACAAAAGAGGAAACAAAAG




TGTCTCCCTGTGGAAAGGCATAACTGTGACGAAAGCAACT




TTTATAGGCAAAGCAGCGCAAATCTGAGGTTTCCCGTTGG




TTGTTAATTTGGTTGAGATAAACATTCCTTTTTAAGGAAA




AGTGAAGAGCAGTGTGCTGTCACACACCGTTAAGCCAGAG




GTTCTGACTTCGCTAAAGGAAATGTAAGAGGTTTTGTTGT




CTGTTTTAAATAAATTTAATTCGGAACACATGATCCAACA




GACTATGTTAAAATATTCAGGGAAATCTCTCCCTTCATTT




ACTTTTTCTTGCTATAAGCCTATATTTAGGTTTCTTTTCT




ATTTTTTTCTCCCATTTGGATCCTTTGAGGTAAAAAAACA




TAATGTCTTCAGCCTCATAATAAAGGAAAGTTAATTAAAA




AAAAAAAGCAAAGAGCCATTTTGTCCTGTTTTCTTGGTTC




CATCAATCTGTTTATTAAACATCATCCATATGCTGACCCT




GTCTCTGTGTGGTTGGGTTGGGAGGCGATCAGCAGATACC




ATAGTGAACGAAGAGGAAGGTTTGAACCATGGGCCCCATC




TTTAAAGAAAGTCATTAAAAGAAGGTAAACTTCAAAGTGA




TTCTGGAGTTCTTTGAAATGTGCTGGAAGACTTAAATTTA




TTAATCTTAAATCATGTACTTTTTTTCTGTAATAGAACTC




GGATTCTTTTGCATGATGGGGTAAAGCTTAGCAGAGAATC




ATGGGAGCTAACCTTTATCCCACCTTTGACACTACCCTCC




AATCTTGCAACACTATCCTGTTTCTCAGAACAGTTTTTAA




ATGCCAATCATAGAGGGTACTGTAAAGTGTACAAGTTACT




TTATATATGTAATGTTCACTTGAGTGGAACTGCTTTTTAC




ATTAAAGTTAAAATCGATCTTGTGTTTCTTCAACCTTCAA




AACTATCTCATCTGTCAGATTTTTAAAACTCCAACACAGG




TTTTGGCATCTTTTGTGCTGTATCTTTTAAGTGCATGTGA




AATTTGTAAAATAGAGATAAGTACAGTATGTATATTTTGT




AAATCTCCCATTTTTGTAAGAAAATATATATTGTATTTAT




ACATTTTTACTTTGGATTTTTGTTTTGTTGGCTTTAAAGG




TCTACCCCACTTTATCACATGTACAGATCACAAATAAATT




TTTTTAAATAC





GLT8D1
NM_001010983.2
GACGGGCCGGTACAGCCCGTGTCCCCGCCCCGCGCCATCG
16




CTAGGCGACGTGCGCTTTTGCCGCGCCGTGCTGCCCGCGA




GGGCAGCTGAGGTGGTGGTGGCGGCCGCCTTGTCGAGGCA




TCGCGCGCCCGTGAAGTGTTCGCCGTCAGTGCTGTTGGGT




GCCTGGAGCCGCGTCCCCCGTCCCGAAAACTGTCCTTGAC




AGTACTTGCGCGGCCCAACGGCCGCCGGCGCCCCCGCGTC




TCCATGGCGACGGCCTTTTTCCCTGCGAGGACCCCGGCGG




CAGGGCTGCCCCGCGGCGCCTGCTTGGCGCGACGCTCTAG




CGGTTACCGCTGCGGGCTGGCTGGGCGTAGTGGGGCTGCG




CGGCTGCCACGGAGCTAGAGGGCAAGTGTGCTCGGCCCAG




CGTGCAGGGAACGCGGGCGGCCAGACAACGGGCTGGGCTC




CGGGGCCTGCGGCGCGGGCGCTGAGCTGGCAGGGCGGGTC




GGGGCGCGGGCTGCATCCGCATCTCCTCCATCGCCTGCAG




TAAGGGCGGCCGCGGCGAGCCTTTGAGGGGAACGACTTGT




CGGAGCCCTAACCAGGGGTATCTCTGAGCCTGGTGGGATC




CCCGGAGCGTCACATCACTTTCCGATCACTTCAAAGTACA




GCAGACCGAGGACACGGTTGTTACCAAGACCAGGCTGTTG




CCTTGGAAGAGCCCAGAGCGTGTCAAGGGAGACAGCCACA




TCACGCCAGAAATACATGACAGCTGGATTAGCCCTGGGAG




AGGGAGGCCCAGATGTGGGAGCTCAGGGGAGGTGCAGCTC




AACGTGGAGTTTGGAGGAGGCTACCTTGACCTTTGAATGC




CAAGTGGGAGCCAGCCAGATGAAAGGGGTTAAAAACTAAT




ATTTATATGACAGAAGAAAAAGATGTCATTCCGTAAAGTA




AACATCATCATCTTGGTCCTGGCTGTTGCTCTCTTCTTAC





TGGTTTTGCACCATAACTTCCTCAGCTTGAGCAGTTTGTT






AAGGAATGAGGTTACAGATTCAGGAATTGTAGGGCCTCAA





CCTATAGACTTTGTCCCAAATGCTCTCCGACATGCAGTAG




ATGGGAGACAAGAGGAGATTCCTGTGGTCATCGCTGCATC




TGAAGACAGGCTTGGGGGGGCCATTGCAGCTATAAACAGC




ATTCAGCACAACACTCGCTCCAATGTGATTTTCTACATTG




TTACTCTCAACAATACAGCAGACCATCTCCGGTCCTGGCT




CAACAGTGATTCCCTGAAAAGCATCAGATACAAAATTGTC




AATTTTGACCCTAAACTTTTGGAAGGAAAAGTAAAGGAGG




ATCCTGACCAGGGGGAATCCATGAAACCTTTAACCTTTGC




AAGGTTCTACTTGCCAATTCTGGTTCCCAGCGCAAAGAAG




GCCATATACATGGATGATGATGTAATTGTGCAAGGTGATA




TTCTTGCCCTTTACAATACAGCACTGAAGCCAGGACATGC




AGCTGCATTTTCAGAAGATTGTGATTCAGCCTCTACTAAA




GTTGTCATCCGTGGAGCAGGAAACCAGTACAATTACATTG




GCTATCTTGACTATAAAAAGGAAAGAATTCGTAAGCTTTC




CATGAAAGCCAGCACTTGCTCATTTAATCCTGGAGTTTTT




GTTGCAAACCTGACGGAATGGAAACGACAGAATATAACTA




ACCAACTGGAAAAATGGATGAAACTCAATGTAGAAGAGGG




ACTGTATAGCAGAACCCTGGCTGGTAGCATCACAACACCT




CCTCTGCTTATCGTATTTTATCAACAGCACTCTACCATCG




ATCCTATGTGGAATGTCCGCCACCTTGGTTCCAGTGCTGG




AAAACGATATTCACCTCAGTTTGTAAAGGCTGCCAAGTTA




CTCCATTGGAATGGACATTTGAAGCCATGGGGAAGGACTG




CTTCATATACTGATGTTTGGGAAAAATGGTATATTCCAGA




CCCAACAGGCAAATTCAACCTAATCCGAAGATATACCGAG




ATCTCAAACATAAAGTGAAACAGAATTTGAACTGTAAGCA




AGCATTTCTCAGGAAGTCCTGGAAGATAGCATGCGTGGGA




AGTAACAGTTGCTAGGCTTCAATGCCTATCGGTAGCAAGC




CATGGAAAAAGATGTGTCAGCTAGGTAAAGATGACAAACT




GCCCTGTCTGGCAGTCAGCTTCCCAGACAGACTATAGACT




ATAAATATGTCTCCATCTGCCTTACCAAGTGTTTTCTTAC




TACAATGCTGAATGACTGGAAAGAAGAACTGATATGGCTA




GTTCAGCTAGCTGGTACAGATAATTCAAAACTGCTGTTGG




TTTTAATTTTGTAACCTGTGGCCTGATCTGTAAATAAAAC




TTACATTTTTCAATAGGTAAAAAAAAAAAAAAAA





HDAC9
NM_001204144.1
GCAGCGCGCACCGAGCCGGCCGCGCCGCGCCCGCCGCTCT
17




CGCCGCTTTCGCCGCGGTCTCCTCCTCTAGCGCCCGCCGC




GGCCGGTAAATCTCGGCTGGAGGAGCAGCGGCGGCCCCCG




AGTCAACTTTCATTCCCTTTTTGCTTCTGCCTCACCATTC




TCTTCTCCTCCTCGAAAGATGGCTGTTTGGAGAAGGGGGA




GAAGTTAAGAGGTCGCCAGCGCGGAGCGAAGGAGGGCGCG




ATAGCCTCAGCAGGAGCGGGCGGAGGTTTCTCCTCTGCCA




ACCCCTCCTGGACCATTGTCAGCAGTTGAACGACAAAGGC




TGTGAATCTGCATCCTAGTCTTAGCAGTCCCTCTGATTCT




CATGATGAGCTCACCTGCACAGCCTGACCTCATGTGGAAC




CTTGTACCATGGGTGCTATTCTGTGGCTGCTGTAGGATCT




TCCCAGATGGGGTGGCTGGACGAGAGCAGCTCTTGGCTCA




GCAAAGAATGCACAGTATGATCAGCTCAGTGGATGTGAAG




TCAGAAGTTCCTGTGGGCCTGGAGCCCATCTCACCTTTAG




ACCTAAGGACAGACCTCAGGATGATGATGCCCGTGGTGGA




CCCTGTTGTCCGTGAGAAGCAATTGCAGCAGGAATTACTT




CTTATCCAGCAGCAGCAACAAATCCAGAAGCAGCTTCTGA




TAGCAGAGTTTCAGAAACAGCATGAGAACTTGACACGGCA




GCACCAGGCTCAGCTTCAGGAGCATATCAAGGAACTTCTA




GCCATAAAACAGCAACAAGAACTCCTAGAAAAGGAGCAGA




AACTGGAGCAGCAGAGGCAAGAACAGGAAGTAGAGAGGCA




TCGCAGAGAACAGCAGCTTCCTCCTCTCAGAGGCAAAGAT




AGAGGACGAGAAAGGGCAGTGGCAAGTACAGAAGTAAAGC




AGAAGCTTCAAGAGTTCCTACTGAGTAAATCAGCAACGAA




AGACACTCCAACTAATGGAAAAAATCATTCCGTGAGCCGC




CATCCCAAGCTCTGGTACACGGCTGCCCACCACACATCAT




TGGATCAAAGCTCTCCACCCCTTAGTGGAACATCTCCATC




CTACAAGTACACATTACCAGGAGCACAAGATGCAAAGGAT




GATTTCCCCCTTCGAAAAACTGAATCCTCAGTCAGTAGCA




GTTCTCCAGGCTCTGGTCCCAGTTCACCAAACAATGGGCC




AACTGGAAGTGTTACTGAAAATGAGACTTCGGTTTTGCCC




CCTACCCCTCATGCCGAGCAAATGGTTTCACAGCAACGCA




TTCTAATTCATGAAGATTCCATGAACCTGCTAAGTCTTTA




TACCTCTCCTTCTTTGCCCAACATTACCTTGGGGCTTCCC




GCAGTGCCATCCCAGCTCAATGCTTCGAATTCACTCAAAG




AAAAGCAGAAGTGTGAGACGCAGACGCTTAGGCAAGGTGT




TCCTCTGCCTGGGCAGTATGGAGGCAGCATCCCGGCATCT




TCCAGCCACCCTCATGTTACTTTAGAGGGAAAGCCACCCA




ACAGCAGCCACCAGGCTCTCCTGCAGCATTTATTATTGAA




AGAACAAATGCGACAGCAAAAGCTTCTTGTAGCTGGTGGA




GTTCCCTTACATCCTCAGTCTCCCTTGGCAACAAAAGAGA




GAATTTCACCTGGCATTAGAGGTACCCACAAATTGCCCCG




TCACAGACCCCTGAACCGAACCCAGTCTGCACCTTTGCCT




CAGAGCACGTTGGCTCAGCTGGTCATTCAACAGCAACACC




AGCAATTCTTGGAGAAGCAGAAGCAATACCAGCAGCAGAT





CCACATGAACAAACTGCTTTCGAAATCTATTGAACAACTG






AAGCAACCAGGCAGTCACCTTGAGGAAGCAGAGGAAGAGC





TTCAGGGGGACCAGGCGATGCAGGAAGACAGAGCGCCCTC




TAGTGGCAACAGCACTAGGAGCGACAGCAGTGCTTGTGTG




GATGACACACTGGGACAAGTTGGGGCTGTGAAGGTCAAGG




AGGAACCAGTGGACAGTGATGAAGATGCTCAGATCCAGGA




AATGGAATCTGGGGAGCAGGCTGCTTTTATGCAACAGGTA




ATAGGCAAAGATTTAGCTCCAGGATTTGTAATTAAAGTCA




TTATCTGAACATGAAATGCATTGCAGGTTTGGTAAATGGA




TATGATTTCCTATCAGTTTATATTTCTCTATGATTTGAGT




TCAGTGTTTAAGGATTCTACCTAATGCAGATATATGTATA




TATCTATATAGAGGTCTTTCTATATACTGATCTCTATATA




GATATCAATGTTTCATTGAAAATCCACTGGTAAGGAAATA




CCTGTTATACTAAAATTATGATACATAATATCTGAGCAGT




TAATAGGCTTTAAATTTATCCCAAAGCCTGCTACACCAAT




TACTTCTAAAGAAAACAAATTCACTGTTATTTTGAGTTTA




TGTGTTGAGATCAGTGACTGCTGGATAGTCTCCCAGTCTG




ATCAATGAAGCATTCGATTAGTTTTTGATTTTTTGCAACA




TCTAGAATTTAATTTTCACATCACTGTACATAATGTATCA




TACTATAGTCTTGAACACTGTTAAAGGTAGTCTGCCCCTT




CCTTCCTCTCTCTTTTTTTAGTTAAGTAGAAATGTTCTGG




TCACCATGCCAGTAGTCCTAGGTTATTGTGTAGGTTGCAA




TTGAACATATTAGGAATACAGGTGGTTTTAAATATATAGA




TGCAAATTGCAGCACTACTTTAAATATTAGATTATGTCTC




ACATAGCACTGCTCATTTTACTTTTATTTTGTGTAATTTG




ATGACACTGTCTATCAAAAAAGAGCAAATGAAGCAGATGC




AAATGTTAGTGAGAAGTAATGTGCAGCATTATGGTCCAAT




CAGATACAATATTGTGTCTACAATTGCAAAAAACACAGTA




ACAGGATGAATATTATCTGATATCAAGTCAAAATCAGTTT




GAAAAGAAGGTGTATCATATTTTATATTGTCACTAGAATC




TCTTAAGTATAATTCCATAATGACATGGGCATATACCGTA




ACATTCTGGCAAATAACAATTAGAAAAGATAGGTTTAACA




AAAAAATTTACTTGTATATAATGCACCTTCAGGAGGACTA




TGTCCTTTGATGCTATAAAATACAAACAACTTTGAAGGCA




ACAGAAGACACTGTTTATTCAAGTCAGTTCTTTGTCAGGT




TCCTGCTGTTCTCCTACAGAAAAGTGATTCTGTGAGGGTG




AACAGGAAATGCCTTGTGGAAACAGGAAGTCCAAGTGATT




CATGTACTGAGGAATGTAGGAAAAAAAATCTGAGGATAGT




GCTTTACTCTTTCTGTTTTTAAAGGGCACTCTATGAATTG




ATTTATTGTCTAAGAAAATAACACCACAAGTAGGGAAATT




GTTACGGAAGCTTTTCACTGGAACATTTCCTTCATATTCC




CTTTTGATATGTTTACCTTGTTTTATAGGTTTACTTTTGT




TAAGCTAGTTAAAGGTTCGTTGTATTAAGACCCCTTTAAT




ATGGATAATCCAAATTGACCTAGAATCTTTGTGAGGTTTT




TTCTATTAAAATATTTATATTTCTAAATCCGAGGTATTTC




AAGGTGTAGTATCCTATTTCAAAGGAGATATAGCAGTTTT




GCCAAATGTAGACATTGTTCAACTGTATGTTATTGGCACG




TGTTGTTTACATTTTGCTGTGACATTTAAAAATATTTCTT




TAAAAATGTTACTGCTAAAGATACATTATCCTTTTTTAAA




AAGTCTCCATTCAAATTAAATTAACATAACTAGAAGTTAG




AAAGTTTAAAAGTTTTCCACATAATGAAAGTCCTTCTGAT




AATTTGACAAATAGCTATAATAGGAACACTCCCTATCACC




AACATATTTTGGTTAGTATATTCCTTCATATTAAAATGAC




TTTTTGTCAGTTGTTTTGCATTAAAAATATGGCATGCCTA




AGATAAAATTGTATATTTTTTCCATCTCATAAATATTCAT




TTTCTTCAAAGTCTTTTTTCAATCTCATAAAAAAGGGATA




GTGCATCTTTTAAAATACATTTTATTTGGGGAGGAACATG




TGGCTGAGCAGACTTTTGTATAATATTACTTCAAAGATAT




GTAATCACAAACAAAAAAAACTATTTTTTATAATGTCATT




TGAGAGAGTTTCATCAGTACAGTTGGTGGACGTTAATTGT




TTGAATTTGATAGTCTTTGAATTTAATCAAGAAACTACCT




GGAACCAGTGAAAAGGAAAGCTGGACTTAAATAATCTTAG




AATTAATTGATAAATGTCTCTTTTAAAATCTACTGTATTT




ATTATAATTTACACCCTTGAAGGTGATCTCTTGTTTTGTG




TTGTAAATATATTGTTTGTATGTTTCCCTTCTTGCCTTCT




GTTATAAGTCTCTTCCTTTCTCAAATAAAGTTTTTTTTAA




AAGAAAAAAAAAAAAAAAAAAAA





HSF2
NM_004506.3
ACTTGTCCGTCACGTGCGGCCGCCCGGCCTCTCGGCCTTG
18




CCGCGCGCCTGGCGGGGTTGGGGGGGCGGGGACCAAGATC




TGCTGCGCCTGCGTTGTGGGCGTTCTCGGGGAGCTGCTGC




CGTAGCTGCCGCCGCCGCTACCACCGCGTTCGGGTGTAGA




ATTTGGAATCCCTGCGCCGCGTTAACAATGAAGCAGAGTT




CGAACGTGCCGGCTTTCCTCAGCAAGCTGTGGACGCTTGT




GGAGGAAACCCACACTAACGAGTTCATCACCTGGAGCCAG




AATGGCCAAAGTTTTCTGGTCTTGGATGAGCAACGATTTG




CAAAAGAAATTCTTCCCAAATATTTCAAGCACAATAATAT




GGCAAGCTTTGTGAGGCAACTGAATATGTATGGTTTCCGT




AAAGTAGTACATATCGACTCTGGAATTGTAAAGCAAGAAA




GAGATGGTCCTGTAGAATTTCAGCATCCTTACTTCAAACA




AGGACAGGATGACTTGTTGGAGAACATTAAAAGGAAGGTT




TCATCTTCAAAACCAGAAGAAAATAAAATTCGTCAGGAAG




ATTTAACAAAAATTATAAGTAGTGCTCAGAAGGTTCAGAT




AAAACAGGAAACTATTGAGTCCAGGCTTTCTGAATTAAAA




AGTGAGAATGAGTCCCTTTGGAAGGAGGTGTCAGAATTAC




GAGCAAAGCATGCACAACAGCAACAAGTTATTCGAAAGAT




TGTCCAGTTTATTGTTACATTGGTTCAAAATAACCAACTT




GTGAGTTTAAAACGTAAAAGGCCTCTACTTCTAAACACTA




ATGGAGCCCAAAAGAAGAACCTGTTTCAGCACATAGTCAA




AGAACCAACTGATAATCATCATCATAAAGTTCCACACAGT




AGGACTGAAGGTTTAAAGCCAAGGGAGAGGATTTCAGATG




ACATCATTATTTATGATGTTACTGATGATAATGCAGATGA




AGAAAATATCCCAGTTATTCCAGAAACTAATGAGGATGTT




ATATCTGATCCCTCCAACTGTAGCCAGTACCCTGATATTG




TCATCGTTGAAGATGACAATGAAGATGAGTATGCACCTGT




CATTCAGAGTGGAGAGCAGAATGAACCAGCCAGAGAATCC




CTAAGTTCAGGCAGTGATGGCAGCAGCCCTCTCATGTCTA




GTGCTGTCCAGCTAAATGGCTCATCCAGTCTGACCTCAGA




AGATCCAGTGACCATGATGGATTCCATTTTGAATGATAAC




ATCAATCTTTTGGGAAAGGTTGAGCTGTTGGATTATCTTG




ACAGTATTGACTGCAGTTTAGAGGACTTCCAGGCCATGCT




ATCAGGAAGACAATTTAGCATAGACCCAGATCTCCTGGTT





GATCTTTTCACTAGTTCTGTGCAGATGAATCCCACAGATT






ACATCAATAATACAAAATCTGAGAATAAAGGATTAGAAAC





TACCAAGAACAATGTAGTTCAGCCAGTTTCGGAAGAGGGA




AGAAAATCTAAATCCAAACCAGATAAGCAGCTTATCCAGT




ATACCGCCTTTCCACTTCTTGCATTCCTCGATGGGAACCC




TGCTTCTTCTGTTGAACAGGCGAGTACAACAGCATCATCA




GAAGTTTTGTCCTCTGTAGATAAACCCATAGAAGTTGATG




AGCTTCTGGATAGCAGCCTAGACCCAGAACCAACCCAAAG




TAAGCTTGTTCGCCTGGAGCCATTGACTGAAGCTGAAGCT




AGTGAAGCTACACTGTTTTATTTATGTGAACTTGCTCCTG




CACCTCTGGATAGTGATATGCCACTTTTAGATAGCTAAAT




CCCCAGGAAGTGGACTTTACATGTATATATTCATCAAAAT




GATGAACTATTTATTTTAAAGTATCATTTGGTACTTTTTT




TGTAAATTGCTTTGTTTTGTTTAATCAGATACTGTGGAAT




AAAAGCACCTTTTGCTTTTCTCACTAACCACACACTCTTG




CAGAGCTTTCAGGTGTTACTCAGCTGCATAGTTACGCAGA




TGTAATGCACATTATTGGCGTATCTTTAAGTTGGATTCAA




ATGGCCATTTTTCTCCAATTTTGGTAAATTGGATATCTTT




TTTTTACAAATACGACCATTAACCTCAGTTAAATTTTTGT




TTGTTTTCCTGTTTGATGCTGTCTATTTGCATTGAGTGTA




AGTCATTTGAACTAATGGTATAACTCCTAAAGCTTTCTCT




GCTCCAGTTATTTTTATTAAATATTTTTCACTTGGCTTAT




TTTTAAAACTGGGAACATAAAGTGCCTGTATCTTGTAAAA




CTTCATTTGTTTCTTTTGGTTCAGAGAAGTTCATTTATGT




TCAAAGACGTTTATTCATGTTCAACAGGAAAGACAAAGTG




TACGTGAATGCTCGCTGTCTGATAGGGTTCCAGCTCCATA




TATATAGAAAGATCGGGGGTGGGATGGGATGGAGTGAGCC




CCATCCAGTTAGTTGGACTAGTTTTAAATAAAGGTTTTCC




GGTTTGTGTTTTTTTGAACCATACTGTTTAGTAAAATAAA




TACAATGAATGTTGAGTACTAGTGTCTGTTATGTGTCTTC




TTTAGAGGTGACACTCACATGAAACAATTTTTTCTTCTCA




TAGGAAGCAGTAGCTTTAAACTGTCTGTGGTTCATTATTC




TCAATATGAATCATACCAAGATATTTGTGCCTCATCTCGA




AAATATATTGTATATTG





Ki-67
NM_001145966.1
TACCGGGCGGAGGTGAGCGCGGCGCCGGCTCCTCCTGCGG
19




CGGACTTTGGGTGCGACTTGACGAGCGGTGGTTCGACAAG




TGGCCTTGCGGGCCGGATCGTCCCAGTGGAAGAGTTGTAA




ATTTGCTTCTGGCCTTCCCCTACGGATTATACCTGGCCTT




CCCCTACGGATTATACTCAACTTACTGTTTAGAAAATGTG




GCCCACGAGACGCCTGGTTACTATCAAAAGGAGCGGGGTC




GACGGTCCCCACTTTCCCCTGAGCCTCAGCACCTGCTTGT




TTGGAAGGGGTATTGAATGTGACATCCGTATCCAGCTTCC




TGTTGTGTCAAAACAACATTGCAAAATTGAAATCCATGAG




CAGGAGGCAATATTACATAATTTCAGTTCCACAAATCCAA




CACAAGTAAATGGGTCTGTTATTGATGAGCCTGTACGGCT




AAAACATGGAGATGTAATAACTATTATTGATCGTTCCTTC




AGGTATGAAAATGAAAGTCTTCAGAATGGAAGGAAGTCAA




CTGAATTTCCAAGAAAAATACGTGAACAGGAGCCAGCACG





TCGTGTCTCAAGATCTAGCTTCTCTTCTGACCCTGATGAG






AGTGAGGGAATACCTTTGAAAAGAAGGCGTGTGTCCTTTG





GTGGGCACCTAAGACCTGAACTATTTGATGAAAACTTGCC




TCCTAATACGCCTCTCAAAAGGGGAGAAGCCCCAACCAAA




AGAAAGTCTCTGGTAATGCACACTCCACCTGTCCTGAAGA




AAATCATCAAGGAACAGCCTCAACCATCAGGAAAACAAGA




GTCAGGTTCAGAAATCCATGTGGAAGTGAAGGCACAAAGC




TTGGTTATAAGCCCTCCAGCTCCTAGTCCTAGGAAAACTC




CAGTTGCCAGTGATCAACGCCGTAGGTCCTGCAAAACAGC




CCCTGCTTCCAGCAGCAAATCTCAGACAGAGGTTCCTAAG




AGAGGAGGGAGAAAGAGTGGCAACCTGCCTTCAAAGAGAG




TGTCTATCAGCCGAAGTCAACATGATATTTTACAGATGAT




ATGTTCCAAAAGAAGAAGTGGTGCTTCGGAAGCAAATCTG




ATTGTTGCAAAATCATGGGCAGATGTAGTAAAACTTGGTG




CAAAACAAACACAAACTAAAGTCATAAAACATGGTCCTCA




AAGGTCAATGAACAAAAGGCAAAGAAGACCTGCTACTCCA




AAGAAGCCTGTGGGCGAAGTTCACAGTCAATTTAGTACAG




GCCACGCAAACTCTCCTTGTACCATAATAATAGGGAAAGC




TCATACTGAAAAAGTACATGTGCCTGCTCGACCCTACAGA




GTGCTCAACAACTTCATTTCCAACCAAAAAATGGACTTTA




AGGAAGATCTTTCAGGAATAGCTGAAATGTTCAAGACCCC




AGTGAAGGAGCAACCGCAGTTGACAAGCACATGTCACATC




GCTATTTCAAATTCAGAGAATTTGCTTGGAAAACAGTTTC




AAGGAACTGATTCAGGAGAAGAACCTCTGCTCCCCACCTC




AGAGAGTTTTGGAGGAAATGTGTTCTTCAGTGCACAGAAT




GCAGCAAAACAGCCATCTGATAAATGCTCTGCAAGCCCTC




CCTTAAGACGGCAGTGTATTAGAGAAAATGGAAACGTAGC




AAAAACGCCCAGGAACACCTACAAAATGACTTCTCTGGAG




ACAAAAACTTCAGATACTGAGACAGAGCCTTCAAAAACAG




TATCCACTGCAAACAGGTCAGGAAGGTCTACAGAGTTCAG




GAATATACAGAAGCTACCTGTGGAAAGTAAGAGTGAAGAA




ACAAATACAGAAATTGTTGAGTGCATCCTAAAAAGAGGTC




AGAAGGCAACACTACTACAACAAAGGAGAGAAGGAGAGAT




GAAGGAAATAGAAAGACCTTTTGAGACATATAAGGAAAAT




ATTGAATTAAAAGAAAACGATGAAAAGATGAAAGCAATGA




AGAGATCAAGAACTTGGGGGCAGAAATGTGCACCAATGTC




TGACCTGACAGACCTCAAGAGCTTGCCTGATACAGAACTC




ATGAAAGACACGGCACGTGGCCAGAATCTCCTCCAAACCC




AAGATCATGCCAAGGCACCAAAGAGTGAGAAAGGCAAAAT




CACTAAAATGCCCTGCCAGTCATTACAACCAGAACCAATA




AACACCCCAACACACACAAAACAACAGTTGAAGGCATCCC




TGGGGAAAGTAGGTGTGAAAGAAGAGCTCCTAGCAGTCGG




CAAGTTCACACGGACGTCAGGGGAGACCACGCACACGCAC




AGAGAGCCAGCAGGAGATGGCAAGAGCATCAGAACGTTTA




AGGAGTCTCCAAAGCAGATCCTGGACCCAGCAGCCCGTGT




AACTGGAATGAAGAAGTGGCCAAGAACGCCTAAGGAAGAG




GCCCAGTCACTAGAAGACCTGGCTGGCTTCAAAGAGCTCT




TCCAGACACCAGGTCCCTCTGAGGAATCAATGACTGATGA




GAAAACTACCAAAATAGCCTGCAAATCTCCACCACCAGAA




TCAGTGGACACTCCAACAAGCACAAAGCAATGGCCTAAGA




GAAGTCTCAGGAAAGCAGATGTAGAGGAAGAATTCTTAGC




ACTCAGGAAACTAACACCATCAGCAGGGAAAGCCATGCTT




ACGCCCAAACCAGCAGGAGGTGATGAGAAAGACATTAAAG




CATTTATGGGAACTCCAGTGCAGAAACTGGACCTGGCAGG




AACTTTACCTGGCAGCAAAAGACAGCTACAGACTCCTAAG




GAAAAGGCCCAGGCTCTAGAAGACCTGGCTGGCTTTAAAG




AGCTCTTCCAGACTCCTGGTCACACCGAGGAATTAGTGGC




TGCTGGTAAAACCACTAAAATACCCTGCGACTCTCCACAG




TCAGACCCAGTGGACACCCCAACAAGCACAAAGCAACGAC




CCAAGAGAAGTATCAGGAAAGCAGATGTAGAGGGAGAACT




CTTAGCGTGCAGGAATCTAATGCCATCAGCAGGCAAAGCC




ATGCACACGCCTAAACCATCAGTAGGTGAAGAGAAAGACA




TCATCATATTTGTGGGAACTCCAGTGCAGAAACTGGACCT




GACAGAGAACTTAACCGGCAGCAAGAGACGGCCACAAACT




CCTAAGGAAGAGGCCCAGGCTCTGGAAGACCTGACTGGCT




TTAAAGAGCTCTTCCAGACCCCTGGTCATACTGAAGAAGC




AGTGGCTGCTGGCAAAACTACTAAAATGCCCTGCGAATCT




TCTCCACCAGAATCAGCAGACACCCCAACAAGCACAAGAA




GGCAGCCCAAGACACCTTTGGAGAAAAGGGACGTACAGAA




GGAGCTCTCAGCCCTGAAGAAGCTCACACAGACATCAGGG




GAAACCACACACACAGATAAAGTACCAGGAGGTGAGGATA




AAAGCATCAACGCGTTTAGGGAAACTGCAAAACAGAAACT




GGACCCAGCAGCAAGTGTAACTGGTAGCAAGAGGCACCCA




AAAACTAAGGAAAAGGCCCAACCCCTAGAAGACCTGGCTG




GCTTGAAAGAGCTCTTCCAGACACCAGTATGCACTGACAA




GCCCACGACTCACGAGAAAACTACCAAAATAGCCTGCAGA




TCACAACCAGACCCAGTGGACACACCAACAAGCTCCAAGC




CACAGTCCAAGAGAAGTCTCAGGAAAGTGGACGTAGAAGA




AGAATTCTTCGCACTCAGGAAACGAACACCATCAGCAGGC




AAAGCCATGCACACACCCAAACCAGCAGTAAGTGGTGAGA




AAAACATCTACGCATTTATGGGAACTCCAGTGCAGAAACT




GGACCTGACAGAGAACTTAACTGGCAGCAAGAGACGGCTA




CAAACTCCTAAGGAAAAGGCCCAGGCTCTAGAAGACCTGG




CTGGCTTTAAAGAGCTCTTCCAGACACGAGGTCACACTGA




GGAATCAATGACTAACGATAAAACTGCCAAAGTAGCCTGC




AAATCTTCACAACCAGACCCAGACAAAAACCCAGCAAGCT




CCAAGCGACGGCTCAAGACATCCCTGGGGAAAGTGGGCGT




GAAAGAAGAGCTCCTAGCAGTTGGCAAGCTCACACAGACA




TCAGGAGAGACTACACACACACACACAGAGCCAACAGGAG




ATGGTAAGAGCATGAAAGCATTTATGGAGTCTCCAAAGCA




GATCTTAGACTCAGCAGCAAGTCTAACTGGCAGCAAGAGG




CAGCTGAGAACTCCTAAGGGAAAGTCTGAAGTCCCTGAAG




ACCTGGCCGGCTTCATCGAGCTCTTCCAGACACCAAGTCA




CACTAAGGAATCAATGACTAACGAAAAAACTACCAAAGTA




TCCTACAGAGCTTCACAGCCAGACCTAGTGGACACCCCAA




CAAGCTCCAAGCCACAGCCCAAGAGAAGTCTCAGGAAAGC




AGACACTGAAGAAGAATTTTTAGCATTTAGGAAACAAACG




CCATCAGCAGGCAAAGCCATGCACACACCCAAACCAGCAG




TAGGTGAAGAGAAAGACATCAACACGTTTTTGGGAACTCC




AGTGCAGAAACTGGACCAGCCAGGAAATTTACCTGGCAGC




AATAGACGGCTACAAACTCGTAAGGAAAAGGCCCAGGCTC




TAGAAGAACTGACTGGCTTCAGAGAGCTTTTCCAGACACC




ATGCACTGATAACCCCACGACTGATGAGAAAACTACCAAA




AAAATACTCTGCAAATCTCCGCAATCAGACCCAGCGGACA




CCCCAACAAACACAAAGCAACGGCCCAAGAGAAGCCTCAA




GAAAGCAGACGTAGAGGAAGAATTTTTAGCATTCAGGAAA




CTAACACCATCAGCAGGCAAAGCCATGCACACGCCTAAAG




CAGCAGTAGGTGAAGAGAAAGACATCAACACATTTGTGGG




GACTCCAGTGGAGAAACTGGACCTGCTAGGAAATTTACCT




GGCAGCAAGAGACGGCCACAAACTCCTAAAGAAAAGGCCA




AGGCTCTAGAAGATCTGGCTGGCTTCAAAGAGCTCTTCCA




GACACCAGGTCACACTGAGGAATCAATGACCGATGACAAA




ATCACAGAAGTATCCTGCAAATCTCCACAACCAGACCCAG




TCAAAACCCCAACAAGCTCCAAGCAACGACTCAAGATATC




CTTGGGGAAAGTAGGTGTGAAAGAAGAGGTCCTACCAGTC




GGCAAGCTCACACAGACGTCAGGGAAGACCACACAGACAC




ACAGAGAGACAGCAGGAGATGGAAAGAGCATCAAAGCGTT




TAAGGAATCTGCAAAGCAGATGCTGGACCCAGCAAACTAT




GGAACTGGGATGGAGAGGTGGCCAAGAACACCTAAGGAAG




AGGCCCAATCACTAGAAGACCTGGCCGGCTTCAAAGAGCT




CTTCCAGACACCAGACCACACTGAGGAATCAACAACTGAT




GACAAAACTACCAAAATAGCCTGCAAATCTCCACCACCAG




AATCAATGGACACTCCAACAAGCACAAGGAGGCGGCCCAA




AACACCTTTGGGGAAAAGGGATATAGTGGAAGAGCTCTCA




GCCCTGAAGCAGCTCACACAGACCACACACACAGACAAAG




TACCAGGAGATGAGGATAAAGGCATCAACGTGTTCAGGGA




AACTGCAAAACAGAAACTGGACCCAGCAGCAAGTGTAACT




GGTAGCAAGAGGCAGCCAAGAACTCCTAAGGGAAAAGCCC




AACCCCTAGAAGACTTGGCTGGCTTGAAAGAGCTCTTCCA




GACACCAATATGCACTGACAAGCCCACGACTCATGAGAAA




ACTACCAAAATAGCCTGCAGATCTCCACAACCAGACCCAG




TGGGTACCCCAACAATCTTCAAGCCACAGTCCAAGAGAAG




TCTCAGGAAAGCAGACGTAGAGGAAGAATCCTTAGCACTC




AGGAAACGAACACCATCAGTAGGGAAAGCTATGGACACAC




CCAAACCAGCAGGAGGTGATGAGAAAGACATGAAAGCATT




TATGGGAACTCCAGTGCAGAAATTGGACCTGCCAGGAAAT




TTACCTGGCAGCAAAAGATGGCCACAAACTCCTAAGGAAA




AGGCCCAGGCTCTAGAAGACCTGGCTGGCTTCAAAGAGCT




CTTCCAGACACCAGGCACTGACAAGCCCACGACTGATGAG




AAAACTACCAAAATAGCCTGCAAATCTCCACAACCAGACC




CAGTGGACACCCCAGCAAGCACAAAGCAACGGCCCAAGAG




AAACCTCAGGAAAGCAGACGTAGAGGAAGAATTTTTAGCA




CTCAGGAAACGAACACCATCAGCAGGCAAAGCCATGGACA




CACCAAAACCAGCAGTAAGTGATGAGAAAAATATCAACAC




ATTTGTGGAAACTCCAGTGCAGAAACTGGACCTGCTAGGA




AATTTACCTGGCAGCAAGAGACAGCCACAGACTCCTAAGG




AAAAGGCTGAGGCTCTAGAGGACCTGGTTGGCTTCAAAGA




ACTCTTCCAGACACCAGGTCACACTGAGGAATCAATGACT




GATGACAAAATCACAGAAGTATCCTGTAAATCTCCACAGC




CAGAGTCATTCAAAACCTCAAGAAGCTCCAAGCAAAGGCT




CAAGATACCCCTGGTGAAAGTGGACATGAAAGAAGAGCCC




CTAGCAGTCAGCAAGCTCACACGGACATCAGGGGAGACTA




CGCAAACACACACAGAGCCAACAGGAGATAGTAAGAGCAT




CAAAGCGTTTAAGGAGTCTCCAAAGCAGATCCTGGACCCA




GCAGCAAGTGTAACTGGTAGCAGGAGGCAGCTGAGAACTC




GTAAGGAAAAGGCCCGTGCTCTAGAAGACCTGGTTGACTT




CAAAGAGCTCTTCTCAGCACCAGGTCACACTGAAGAGTCA




ATGACTATTGACAAAAACACAAAAATTCCCTGCAAATCTC




CCCCACCAGAACTAACAGACACTGCCACGAGCACAAAGAG




ATGCCCCAAGACACGTCCCAGGAAAGAAGTAAAAGAGGAG




CTCTCAGCAGTTGAGAGGCTCACGCAAACATCAGGGCAAA




GCACACACACACACAAAGAACCAGCAAGCGGTGATGAGGG




CATCAAAGTATTGAAGCAACGTGCAAAGAAGAAACCAAAC




CCAGTAGAAGAGGAACCCAGCAGGAGAAGGCCAAGAGCAC




CTAAGGAAAAGGCCCAACCCCTGGAAGACCTGGCCGGCTT




CACAGAGCTCTCTGAAACATCAGGTCACACTCAGGAATCA




CTGACTGCTGGCAAAGCCACTAAAATACCCTGCGAATCTC




CCCCACTAGAAGTGGTAGACACCACAGCAAGCACAAAGAG




GCATCTCAGGACACGTGTGCAGAAGGTACAAGTAAAAGAA




GAGCCTTCAGCAGTCAAGTTCACACAAACATCAGGGGAAA




CCACGGATGCAGACAAAGAACCAGCAGGTGAAGATAAAGG




CATCAAAGCATTGAAGGAATCTGCAAAACAGACACCGGCT




CCAGCAGCAAGTGTAACTGGCAGCAGGAGACGGCCAAGAG




CACCCAGGGAAAGTGCCCAAGCCATAGAAGACCTAGCTGG




CTTCAAAGACCCAGCAGCAGGTCACACTGAAGAATCAATG




ACTGATGACAAAACCACTAAAATACCCTGCAAATCATCAC




CAGAACTAGAAGACACCGCAACAAGCTCAAAGAGACGGCC




CAGGACACGTGCCCAGAAAGTAGAAGTGAAGGAGGAGCTG




TTAGCAGTTGGCAAGCTCACACAAACCTCAGGGGAGACCA




CGCACACCGACAAAGAGCCGGTAGGTGAGGGCAAAGGCAC




GAAAGCATTTAAGCAACCTGCAAAGCGGAAGCTGGACGCA




GAAGATGTAATTGGCAGCAGGAGACAGCCAAGAGCACCTA




AGGAAAAGGCCCAACCCCTGGAAGATCTGGCCAGCTTCCA




AGAGCTCTCTCAAACACCAGGCCACACTGAGGAACTGGCA




AATGGTGCTGCTGATAGCTTTACAAGCGCTCCAAAGCAAA




CACCTGACAGTGGAAAACCTCTAAAAATATCCAGAAGAGT




TCTTCGGGCCCCTAAAGTAGAACCCGTGGGAGACGTGGTA




AGCACCAGAGACCCTGTAAAATCACAAAGCAAAAGCAACA




CTTCCCTGCCCCCACTGCCCTTCAAGAGGGGAGGTGGCAA




AGATGGAAGCGTCACGGGAACCAAGAGGCTGCGCTGCATG




CCAGCACCAGAGGAAATTGTGGAGGAGCTGCCAGCCAGCA




AGAAGCAGAGGGTTGCTCCCAGGGCAAGAGGCAAATCATC




CGAACCCGTGGTCATCATGAAGAGAAGTTTGAGGACTTCT




GCAAAAAGAATTGAACCTGCGGAAGAGCTGAACAGCAACG




ACATGAAAACCAACAAAGAGGAACACAAATTACAAGACTC




GGTCCCTGAAAATAAGGGAATATCCCTGCGCTCCAGACGC




CAAAATAAGACTGAGGCAGAACAGCAAATAACTGAGGTCT




TTGTATTAGCAGAAAGAATAGAAATAAACAGAAATGAAAA




GAAGCCCATGAAGACCTCCCCAGAGATGGACATTCAGAAT




CCAGATGATGGAGCCCGGAAACCCATACCTAGAGACAAAG




TCACTGAGAACAAAAGGTGCTTGAGGTCTGCTAGACAGAA




TGAGAGCTCCCAGCCTAAGGTGGCAGAGGAGAGCGGAGGG




CAGAAGAGTGCGAAGGTTCTCATGCAGAATCAGAAAGGGA




AAGGAGAAGCAGGAAATTCAGACTCCATGTGCCTGAGATC




AAGAAAGACAAAAAGCCAGCCTGCAGCAAGCACTTTGGAG




AGCAAATCTGTGCAGAGAGTAACGCGGAGTGTCAAGAGGT




GTGCAGAAAATCCAAAGAAGGCTGAGGACAATGTGTGTGT




CAAGAAAATAAGAACCAGAAGTCATAGGGACAGTGAAGAT




ATTTGACAGAAAAATCGAACTGGGAAAAATATAATAAAGT




TAGTTTTGTGATAAGTTCTAGTGCAGTTTTTGTCATAAAT




TACAAGTGAATTCTGTAAGTAAGGCTGTCAGTCTGCTTAA




GGGAAGAAAACTTTGGATTTGCTGGGTCTGAATCGGCTTC




ATAAACTCCACTGGGAGCACTGCTGGGCTCCTGGACTGAG




AATAGTTGAACACCGGGGGCTTTGTGAAGGAGTCTGGGCC




AAGGTTTGCCCTCAGCTTTGCAGAATGAAGCCTTGAGGTC




TGTCACCACCCACAGCCACCCTACAGCAGCCTTAACTGTG




ACACTTGCCACACTGTGTCGTCGTTTGTTTGCCTATGTCC




TCCAGGGCACGGTGGCAGGAACAACTATCCTCGTCTGTCC




CAACACTGAGCAGGCACTCGGTAAACACGAATGAATGGAT




GAGCGCACGGATGAATGGAGCTTACAAGATCTGTCTTTCC




AATGGCCGGGGGCATTTGGTCCCCAAATTAAGGCTATTGG




ACATCTGCACAGGACAGTCCTATTTTTGATGTCCTTTCCT




TTCTGAAAATAAAGTTTTGTGCTTTGGAGAATGACTCGTG




AGCACATCTTTAGGGACCAAGAGTGACTTTCTGTAAGGAG




TGACTCGTGGCTTGCCTTGGTCTCTTGGGAATACTTTTCT




AACTAGGGTTGCTCTCACCTGAGACATTCTCCACCCGCGG




AATCTCAGGGTCCCAGGCTGTGGGCCATCACGACCTCAAA




CTGGCTCCTAATCTCCAGCTTTCCTGTCATTGAAAGCTTC




GGAAGTTTACTGGCTCTGCTCCCGCCTGTTTTCTTTCTGA




CTCTATCTGGCAGCCCGATGCCACCCAGTACAGGAAGTGA




CACCAGTACTCTGTAAAGCATCATCATCCTTGGAGAGACT




GAGCACTCAGCACCTTCAGCCACGATTTCAGGATCGCTTC




CTTGTGAGCCGCTGCCTCCGAAATCTCCTTTGAAGCCCAG




ACATCTTTCTCCAGCTTCAGACTTGTAGATATAACTCGTT




CATCTTCATTTACTTTCCACTTTGCCCCCTGTCCTCTCTG




TGTTCCCCAAATCAGAGAATAGCCCGCCATCCCCCAGGTC




ACCTGTCTGGATTCCTCCCCATTCACCCACCTTGCCAGGT




GCAGGTGAGGATGGTGCACCAGACAGGGTAGCTGTCCCCC




AAAATGTGCCCTGTGCGGGCAGTGCCCTGTCTCCACGTTT




GTTTCCCCAGTGTCTGGCGGGGAGCCAGGTGACATCATAA




ATACTTGCTGAATGAATGCAGAAATCAGCGGTACTGACTT




GTACTATATTGGCTGCCATGATAGGGTTCTCACAGCGTCA




TCCATGATCGTAAGGGAGAATGACATTCTGCTTGAGGGAG




GGAATAGAAAGGGGCAGGGAGGGGACATCTGAGGGCTTCA




CAGGGCTGCAAAGGGTACAGGGATTGCACCAGGGCAGAAC




AGGGGAGGGTGTTCAAGGAAGAGTGGCTCTTAGCAGAGGC




ACTTTGGAAGGTGTGAGGCATAAATGCTTCCTTCTACGTA




GGCCAACCTCAAAACTTTCAGTAGGAATGTTGCTATGATC




AAGTTGTTCTAACACTTTAGACTTAGTAGTAATTATGAAC




CTCACATAGAAAAATTTCATCCAGCCATATGCCTGTGGAG




TGGAATATTCTGTTTAGTAGAAAAATCCTTTAGAGTTCAG




CTCTAACCAGAAATCTTGCTGAAGTATGTCAGCACCTTTT




CTCACCCTGGTAAGTACAGTATTTCAAGAGCACGCTAAGG




GTGGTTTTCATTTTACAGGGCTGTTGATGATGGGTTAAAA




ATGTTCATTTAAGGGCTACCCCCGTGTTTAATAGATGAAC




ACCACTTCTACACAACCCTCCTTGGTACTGGGGGAGGGAG




AGATCTGACAAATACTGCCCATTCCCCTAGGCTGACTGGA




TTTGAGAACAAATACCCACCCATTTCCACCATGGTATGGT




AACTTCTCTGAGCTTCAGTTTCCAAGTGAATTTCCATGTA




ATAGGACATTCCCATTAAATACAAGCTGTTTTTACTTTTT




CGCCTCCCAGGGCCTGTGGGATCTGGTCCCCCAGCCTCTC




TTGGGCTTTCTTACACTAACTCTGTACCTACCATCTCCTG




CCTCCCTTAGGCAGGCACCTCCAACCACCACACACTCCCT




GCTGTTTTCCCTGCCTGGAACTTTCCCTCCTGCCCCACCA




AGATCATTTCATCCAGTCCTGAGCTCAGCTTAAGGGAGGC




TTCTTGCCTGTGGGTTCCCTCACCCCCATGCCTGTCCTCC




AGGCTGGGGCAGGTTCTTAGTTTGCCTGGAATTGTTCTGT




ACCTCTTTGTAGCACGTAGTGTTGTGGAAACTAAGCCACT




AATTGAGTTTCTGGCTCCCCTCCTGGGGTTGTAAGTTTTG




TTCATTCATGAGGGCCGACTGCATTTCCTGGTTACTCTAT




CCCAGTGACCAGCCACAGGAGATGTCCAATAAAGTATGTG




ATGAAATGGTCTTAAAAAAAAAAAAAA





KRAS
NM_004985.4
TCCTAGGCGGCGGCCGCGGCGGCGGAGGCAGCAGCGGCGG
20




CGGCAGTGGCGGCGGCGAAGGTGGCGGCGGCTCGGCCAGT




ACTCCCGGCCCCCGCCATTTCGGACTGGGAGCGAGCGCGG




CGCAGGCACTGAAGGCGGCGGCGGGGCCAGAGGCTCAGCG




GCTCCCAGGTGCGGGAGAGAGGCCTGCTGAAAATGACTGA




ATATAAACTTGTGGTAGTTGGAGCTGGTGGCGTAGGCAAG




AGTGCCTTGACGATACAGCTAATTCAGAATCATTTTGTGG




ACGAATATGATCCAACAATAGAGGATTCCTACAGGAAGCA




AGTAGTAATTGATGGAGAAACCTGTCTCTTGGATATTCTC




GACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGGGACC




AGTACATGAGGACTGGGGAGGGCTTTCTTTGTGTATTTGC




CATAAATAATACTAAATCATTTGAAGATATTCACCATTAT




AGAGAACAAATTAAAAGAGTTAAGGACTCTGAAGATGTAC




CTATGGTCCTAGTAGGAAATAAATGTGATTTGCCTTCTAG




AACAGTAGACACAAAACAGGCTCAGGACTTAGCAAGAAGT





TATGGAATTCCTTTTATTGAAACATCAGCAAAGACAAGAC






AGGGTGTTGATGATGCCTTCTATACATTAGTTCGAGAAAT






TCGAAAACATAAAGAAAAGATGAGCAAAGATGGTAAAAAG





AAGAAAAAGAAGTCAAAGACAAAGTGTGTAATTATGTAAA




TACAATTTGTACTTTTTTCTTAAGGCATACTAGTACAAGT




GGTAATTTTTGTACATTACACTAAATTATTAGCATTTGTT




TTAGCATTACCTAATTTTTTTCCTGCTCCATGCAGACTGT




TAGCTTTTACCTTAAATGCTTATTTTAAAATGACAGTGGA




AGTTTTTTTTTCCTCTAAGTGCCAGTATTCCCAGAGTTTT




GGTTTTTGAACTAGCAATGCCTGTGAAAAAGAAACTGAAT




ACCTAAGATTTCTGTCTTGGGGTTTTTGGTGCATGCAGTT




GATTACTTCTTATTTTTCTTACCAATTGTGAATGTTGGTG




TGAAACAAATTAATGAAGCTTTTGAATCATCCCTATTCTG




TGTTTTATCTAGTCACATAAATGGATTAATTACTAATTTC




AGTTGAGACCTTCTAATTGGTTTTTACTGAAACATTGAGG




GAACACAAATTTATGGGCTTCCTGATGATGATTCTTCTAG




GCATCATGTCCTATAGTTTGTCATCCCTGATGAATGTAAA




GTTACACTGTTCACAAAGGTTTTGTCTCCTTTCCACTGCT




ATTAGTCATGGTCACTCTCCCCAAAATATTATATTTTTTC




TATAAAAAGAAAAAAATGGAAAAAAATTACAAGGCAATGG




AAACTATTATAAGGCCATTTCCTTTTCACATTAGATAAAT




TACTATAAAGACTCCTAATAGCTTTTCCTGTTAAGGCAGA




CCCAGTATGAAATGGGGATTATTATAGCAACCATTTTGGG




GCTATATTTACATGCTACTAAATTTTTATAATAATTGAAA




AGATTTTAACAAGTATAAAAAATTCTCATAGGAATTAAAT




GTAGTCTCCCTGTGTCAGACTGCTCTTTCATAGTATAACT




TTAAATCTTTTCTTCAACTTGAGTCTTTGAAGATAGTTTT




AATTCTGCTTGTGACATTAAAAGATTATTTGGGCCAGTTA




TAGCTTATTAGGTGTTGAAGAGACCAAGGTTGCAAGGCCA




GGCCCTGTGTGAACCTTTGAGCTTTCATAGAGAGTTTCAC




AGCATGGACTGTGTCCCCACGGTCATCCAGTGTTGTCATG




CATTGGTTAGTCAAAATGGGGAGGGACTAGGGCAGTTTGG




ATAGCTCAACAAGATACAATCTCACTCTGTGGTGGTCCTG




CTGACAAATCAAGAGCATTGCTTTTGTTTCTTAAGAAAAC




AAACTCTTTTTTAAAAATTACTTTTAAATATTAACTCAAA




AGTTGAGATTTTGGGGTGGTGGTGTGCCAAGACATTAATT




TTTTTTTTAAACAATGAAGTGAAAAAGTTTTACAATCTCT




AGGTTTGGCTAGTTCTCTTAACACTGGTTAAATTAACATT




GCATAAACACTTTTCAAGTCTGATCCATATTTAATAATGC




TTTAAAATAAAAATAAAAACAATCCTTTTGATAAATTTAA




AATGTTACTTATTTTAAAATAAATGAAGTGAGATGGCATG




GTGAGGTGAAAGTATCACTGGACTAGGAAGAAGGTGACTT




AGGTTCTAGATAGGTGTCTTTTAGGACTCTGATTTTGAGG




ACATCACTTACTATCCATTTCTTCATGTTAAAAGAAGTCA




TCTCAAACTCTTAGTTTTTTTTTTTTACAACTATGTAATT




TATATTCCATTTACATAAGGATACACTTATTTGTCAAGCT




CAGCACAATCTGTAAATTTTTAACCTATGTTACACCATCT




TCAGTGCCAGTCTTGGGCAAAATTGTGCAAGAGGTGAAGT




TTATATTTGAATATCCATTCTCGTTTTAGGACTCTTCTTC




CATATTAGTGTCATCTTGCCTCCCTACCTTCCACATGCCC




CATGACTTGATGCAGTTTTAATACTTGTAATTCCCCTAAC




CATAAGATTTACTGCTGCTGTGGATATCTCCATGAAGTTT




TCCCACTGAGTCACATCAGAAATGCCCTACATCTTATTTC




CTCAGGGCTCAAGAGAATCTGACAGATACCATAAAGGGAT




TTGACCTAATCACTAATTTTCAGGTGGTGGCTGATGCTTT




GAACATCTCTTTGCTGCCCAATCCATTAGCGACAGTAGGA




TTTTTCAAACCTGGTATGAATAGACAGAACCCTATCCAGT




GGAAGGAGAATTTAATAAAGATAGTGCTGAAAGAATTCCT




TAGGTAATCTATAACTAGGACTACTCCTGGTAACAGTAAT




ACATTCCATTGTTTTAGTAACCAGAAATCTTCATGCAATG




AAAAATACTTTAATTCATGAAGCTTACTTTTTTTTTTTGG




TGTCAGAGTCTCGCTCTTGTCACCCAGGCTGGAATGCAGT




GGCGCCATCTCAGCTCACTGCAACCTCCATCTCCCAGGTT




CAAGCGATTCTCGTGCCTCGGCCTCCTGAGTAGCTGGGAT




TACAGGCGTGTGCCACTACACTCAACTAATTTTTGTATTT




TTAGGAGAGACGGGGTTTCACCCTGTTGGCCAGGCTGGTC




TCGAACTCCTGACCTCAAGTGATTCACCCACCTTGGCCTC




ATAAACCTGTTTTGCAGAACTCATTTATTCAGCAAATATT




TATTGAGTGCCTACCAGATGCCAGTCACCGCACAAGGCAC




TGGGTATATGGTATCCCCAAACAAGAGACATAATCCCGGT




CCTTAGGTAGTGCTAGTGTGGTCTGTAATATCTTACTAAG




GCCTTTGGTATACGACCCAGAGATAACACGATGCGTATTT




TAGTTTTGCAAAGAAGGGGTTTGGTCTCTGTGCCAGCTCT




ATAATTGTTTTGCTACGATTCCACTGAAACTCTTCGATCA




AGCTACTTTATGTAAATCACTTCATTGTTTTAAAGGAATA




AACTTGATTATATTGTTTTTTTATTTGGCATAACTGTGAT




TCTTTTAGGACAATTACTGTACACATTAAGGTGTATGTCA




GATATTCATATTGACCCAAATGTGTAATATTCCAGTTTTC




TCTGCATAAGTAATTAAAATATACTTAAAAATTAATAGTT




TTATCTGGGTACAAATAAACAGGTGCCTGAACTAGTTCAC




AGACAAGGAAACTTCTATGTAAAAATCACTATGATTTCTG




AATTGCTATGTGAAACTACAGATCTTTGGAACACTGTTTA




GGTAGGGTGTTAAGACTTACACAGTACCTCGTTTCTACAC




AGAGAAAGAAATGGCCATACTTCAGGAACTGCAGTGCTTA




TGAGGGGATATTTAGGCCTCTTGAATTTTTGATGTAGATG




GGCATTTTTTTAAGGTAGTGGTTAATTACCTTTATGTGAA




CTTTGAATGGTTTAACAAAAGATTTGTTTTTGTAGAGATT




TTAAAGGGGGAGAATTCTAGAAATAAATGTTACCTAATTA




TTACAGCCTTAAAGACAAAAATCCTTGTTGAAGTTTTTTT




AAAAAAAGCTAAATTACATAGACTTAGGCATTAACATGTT




TGTGGAAGAATATAGCAGACGTATATTGTATCATTTGAGT




GAATGTTCCCAAGTAGGCATTCTAGGCTCTATTTAACTGA




GTCACACTGCATAGGAATTTAGAACCTAACTTTTATAGGT




TATCAAAACTGTTGTCACCATTGCACAATTTTGTCCTAAT




ATATACATAGAAACTTTGTGGGGCATGTTAAGTTACAGTT




TGCACAAGTTCATCTCATTTGTATTCCATTGATTTTTTTT




TTCTTCTAAACATTTTTTCTTCAAACAGTATATAACTTTT




TTTAGGGGATTTTTTTTTAGACAGCAAAAACTATCTGAAG




ATTTCCATTTGTCAAAAAGTAATGATTTCTTGATAATTGT




GTAGTAATGTTTTTTAGAACCCAGCAGTTACCTTAAAGCT




GAATTTATATTTAGTAACTTCTGTGTTAATACTGGATAGC




ATGAATTCTGCATTGAGAAACTGAATAGCTGTCATAAAAT




GAAACTTTCTTTCTAAAGAAAGATACTCACATGAGTTCTT




GAAGAATAGTCATAACTAGATTAAGATCTGTGTTTTAGTT




TAATAGTTTGAAGTGCCTGTTTGGGATAATGATAGGTAAT




TTAGATGAATTTAGGGGAAAAAAAAGTTATCTGCAGATAT




GTTGAGGGCCCATCTCTCCCCCCACACCCCCACAGAGCTA




ACTGGGTTACAGTGTTTTATCCGAAAGTTTCCAATTCCAC




TGTCTTGTGTTTTCATGTTGAAAATACTTTTGCATTTTTC




CTTTGAGTGCCAATTTCTTACTAGTACTATTTCTTAATGT




AACATGTTTACCTGGAATGTATTTTAACTATTTTTGTATA




GTGTAAACTGAAACATGCACATTTTGTACATTGTGCTTTC




TTTTGTGGGACATATGCAGTGTGATCCAGTTGTTTTCCAT




CATTTGGTTGCGCTGACCTAGGAATGTTGGTCATATCAAA




CATTAAAAATGACCACTCTTTTAATTGAAATTAACTTTTA




AATGTTTATAGGAGTATGTGCTGTGAAGTGATCTAAAATT




TGTAATATTTTTGTCATGAACTGTACTACTCCTAATTATT




GTAATGTAATAAAAATAGTTACAGTGACTATGAGTGTGTA




TTTATTCATGAAATTTGAACTGTTTGCCCCGAAATGGATA




TGGAATACTTTATAAGCCATAGACACTATAGTATACCAGT




GAATCTTTTATGCAGCTTGTTAGAAGTATCCTTTATTTCT




AAAAGGTGCTGTGGATATTATGTAAAGGCGTGTTTGCTTA




AACTTAAAACCATATTTAGAAGTAGATGCAAAACAAATCT




GCCTTTATGACAAAAAAATAGGATAACATTATTTATTTAT




TTCCTTTTATCAAAGAAGGTAATTGATACACAACAGGTGA




CTTGGTTTTAGGCCCAAAGGTAGCAGCAGCAACATTAATA




ATGGAAATAATTGAATAGTTAGTTATGTATGTTAATGCCA




GTCACCAGCAGGCTATTTCAAGGTCAGAAGTAATGACTCC




ATACATATTATTTATTTCTATAACTACATTTAAATCATTA




CCAGG





LEO1
NM_138792.3
CGTAAAGAGAGGCCGGGAGCTGCCCCTAACCGAGGCAGCA
21




GCGGACGTGAGCGATAATGGCGGATATGGAGGATCTCTTC




GGGAGCGACGCCGACAGCGAAGCTGAGCGTAAAGATTCTG




ATTCTGGATCTGACTCAGATTCTGATCAAGAGAATGCTGC




CTCTGGCAGTAATGCCTCTGGAAGTGAAAGTGATCAGGAT




GAAAGAGGTGATTCAGGACAACCAAGTAATAAGGAACTGT




TTGGAGATGACAGTGAGGACGAGGGAGCTTCACATCATAG




TGGTAGTGATAATCACTCTGAAAGATCAGACAATAGATCA




GAAGCTTCTGAGCGTTCTGACCATGAGGACAATGACCCCT




CAGATGTAGATCAGCACAGTGGATCAGAAGCCCCTAATGA




TGATGAAGACGAAGGTCATAGATCGGATGGAGGGAGCCAT




CATTCAGAAGCAGAAGGTTCTGAAAAAGCACATTCAGATG




ATGAAAAATGGGGCAGAGAAGATAAAAGTGACCAGTCAGA




TGATGAAAAGATACAAAATTCTGATGATGAGGAGAGGGCA




CAAGGATCTGATGAAGATAAGCTGCAGAATTCTGACGATG




ATGAGAAAATGCAGAACACAGATGATGAGGAGAGGCCTCA




GCTTTCCGATGATGAGAGACAACAGCTATCTGAGGAGGAA




AAGGCTAATTCTGATGATGAACGGCCGGTAGCTTCTGATA




ATGATGATGAGAAACAGAATTCTGATGATGAAGAACAACC




ACAGCTGTCTGATGAAGAGAAAATGCAAAATTCTGATGAT




GAAAGGCCACAGGCCTCAGATGAAGAACACAGGCATTCAG




ATGATGAAGAGGAACAGGATCATAAATCAGAATCTGCAAG




AGGCAGTGATAGTGAAGATGAAGTTTTACGAATGAAACGC




AAGAATGCGATTGCATCTGATTCAGAAGCGGATAGTGACA




CTGAGGTGCCAAAAGATAATAGTGGAACCATGGATTTATT




TGGAGGTGCAGATGATATCTCTTCAGGGAGTGATGGAGAA




GACAAACCACCTACTCCAGGACAGCCTGTTGATGAAAATG




GATTGCCTCAGGATCAACAGGAAGAGGAGCCAATTCCTGA




GACCAGAATAGAAGTAGAAATACCCAAAGTAAACACTGAT




TTAGGAAACGACTTATATTTTGTTAAACTGCCCAACTTTC




TCAGTGTAGAGCCCAGACCTTTTGATCCTCAGTATTATGA




AGATGAATTTGAAGATGAAGAAATGCTGGATGAAGAAGGT




AGAACCAGGTTAAAATTAAAGGTAGAAAATACTATAAGAT




GGAGGATACGCCGAGATGAAGAAGGAAATGAAATTAAAGA




AAGCAATGCTCGGATAGTCAAGTGGTCAGATGGAAGCATG




TCCCTGCATTTAGGCAATGAAGTGTTTGATGTGTACAAAG




CCCCACTGCAGGGCGACCACAATCATCTTTTTATAAGACA




AGGTACTGGTCTACAGGGACAAGCAGTCTTTAAAACGAAA




CTCACCTTCAGACCTCACTCTACGGACAGTGCCACACATA




GAAAGATGACTCTGTCACTTGCAGATAGGTGTTCAAAGAC




ACAGAAGATTAGAATCTTGCCAATGGCTGGTCGTGATCCT




GAATGCCAACGCACAGAAATGATTAAGAAAGAAGAAGAAC




GTTTGAGGGCTTCCATACGTAGGGAATCTCAGCAGCGCCG




AATGAGAGAGAAACAGCACCAGCGGGGGCTGAGCGCCAGT





TACCTGGAACCTGATCGATACGATGAGGAGGAGGAAGGCG






AGGAGTCCATCAGCTTGGCTGCCATTAAAAACCGATATAA






AGGGGGCATTCGAGAGGAACGAGCCAGAATCTATTCATCA





GACAGTGATGAGGGATCAGAAGAAGATAAAGCTCAAAGAT




TACTCAAAGCAAAGAAACTTACCAGTGATGAGGAAGGTGA




ACCTTCCGGAAAGAGAAAAGCAGAAGATGATGATAAAGCA




AATAAAAAGCATAAGAAGTATGTGATCAGCGATGAAGAGG




AAGAAGATGATGATTGAAGTATGAAATATGAAAACATTTT




ATATATTTTATTGTACAGTTATAAATATGTAAACATGAGT




TATTTTGATTGAAATGAATCGATTTGCTTTTGTGTAATTT




TAATTGTAATAAAACAATTTAAAAGCAAAAAAAAAAAAAA




AA





MORF4L2
NM_001142418.1
TTGATTATGGAACATTCTAAAACTTAGACAAGACGATTGT
22




GATTGGCTGAAGGGCATACGCCCTCCTCCAGGGTGACGTG




TCTGCCTATGGATATCAGTTGCCAGAGAAACCTGGCTTTA




CTATGGCGGTTGGAGGAACGGCAGTGATCACACGTCGGCT




GCTGGGAAGATCTGGATTCTCGTTTCAGGTCACCATCAGA




AAAGCTAAGTTTGCTGTATAGTGAGGATCAGGAGATCTGA




TCCTGATTGCAGAACCTTCCCTGATTACAGAATCTTGGGA




TTGTTGAGAGGATTACATGTAAAGTACCAGGACAGTGCAT




GGCACATATGATTTCACAAAAGTTCATCTTCATTGCAGAT




ACCTGCCTTTCTTTCTAGGTTGTATCTCCCACTTCACCCT




TCTAGACCATCCCAGAAGATCTATAAGATTTCATCTGGGA




AATCACTAGGAGTTCTTGGAAGGGAAAGAAGGAAGATTGT




TGGTTGGAATAAAAACAGGGTTGAATGAGTTCCAGAAAGC




AGGGTTCTCAACCTCGTGGACAGCAATCTGCAGAAGAAGA




GAACTTCAAAAAACCAACTAGAAGCAACATGCAGAGAAGT




AAAATGAGAGGGGCCTCCTCAGGAAAGAAGACAGCTGGTC




CACAGCAGAAAAATCTTGAACCAGCTCTCCCAGGAAGATG




GGGTGGTCGCTCTGCAGAGAACCCCCCTTCAGGATCCGTG




AGGAAGACCAGAAAGAACAAGCAGAAGACTCCTGGAAACG




GAGATGGTGGCAGTACCAGCGAAGCACCTCAGCCCCCTCG




GAAGAAAAGGGCCCGGGCAGACCCCACTGTTGAAAGTGAG




GAGGCGTTTAAGAATAGAATGGAGGTTAAAGTGAAGATTC




CTGAAGAATTAAAACCATGGCTTGTTGAGGACTGGGACTT




AGTTACCAGGCAGAAGCAGCTGTTTCAACTCCCTGCCAAG




AAAAATGTAGATGCAATTCTGGAGGAGTATGCAAATTGCA




AGAAATCGCAGGGAAATGTTGATAATAAGGAATATGCGGT




TAATGAAGTTGTGGCAGGAATAAAAGAATATTTCAATGTG




ATGTTGGGCACTCAGCTGCTCTACAAATTTGAGAGGCCCC




AGTATGCTGAAATCCTCTTGGCTCACCCTGATGCTCCAAT




GTCCCAGGTTTATGGAGCACCACACCTACTGAGATTATTT




GTAAGAATTGGAGCAATGTTGGCCTATACGCCCCTTGATG




AGAAAAGCCTTGCATTATTGTTGGGCTATTTGCATGATTT




CCTAAAATATCTGGCAAAGAATTCTGCATCTCTCTTTACT





GCCAGTGATTACAAAGTGGCTTCTGCTGAGTACCACCGCA






AAGCCCTGTGAGCGTCTACAGACAGCTCACCATTTTTGTC






CTGTATCTGTAAACACTTTTTGTTCTTAGTCTTTTTCTTG






TAAAATTGATGTTCTTTAAAATCGTTAATGTATAACAGGG





CTTATGTTTCAGTTTGTTTTCCGTTCTGTTTTAAACAGAA




AATAAAAGGAGTGTAAGCTCCTTTTCTCATTTCAAAGTTG




CTACCAGTGTATGCAGTAATTAGAACAAAGAAGAAACATT




CAGTAGAACATTTTATTGCCTAGTTGACAACATTGCTTGA




ATGCTGGTGGTTCCTATCCCTTTGACACTACACAATTTTC




TAATATGTGTTAATGCTATGTGACAAAACGCCCTGATTCC




TAGTGCCAAAGGTTCAACTTAATGTATATACCTGAAAACC




CATGCATTTGTGCTCTTTTTTTTTTTTTATGGTGCTTGAA




GTAAAACAGCCCATCCTCTGCAAGTCCATCTATGTTGTTC




TTAGGCATTCTATCTTTGCTCAAATTGTTGAAGGATGGTG




ATTTGTTTCATGGTTTTTGTATTTGAGTCTAATGCACGTT




CTAACATGATAGAGGCAATGCATTATTGTGTAGCCACGGT




TTTCTGGAAAAGTTGATATTTTAGGAATTGTATTTCAGAT




CTTAAATAAAATTTGTTTCTAAATTTCAAAGCAAAAAAAA




AAAAAAA





NAP1L1
NM_139207.2
AAAAGATATGGTGGGGTGCTTAACAGAGGAGGTTAGACAC
23




CGGCGGGAACCAGAGGAGCCCAAGCGCGGCGCCTGGGCCT




CGGGGCTGCAGGAGTCCTCGGTGGGGGTATGGAGGTCGCC




GGGGAAGGAGGACGGTTCAGTTGCTAGGCAACCCGGCCTG




GACCCGCCTCTCGCTCGCGTTGCTGGGAGACTACAAGGCC




GGGAGGAGGGCGGCGAAAGGGCCCTACGTGCTGACGCTAA




TTGTATATGAGCGCGAGCGGCGGGCTCTTGGGTCTTTTTT




AGCGCCATCTGCTCGCGGCGCCGCCTCCTGCTCCTCCCGC




TGCTGCTGCCGCTGCCGCCCTGAGTCACTGCCTGCGCAGC




TCCGGCCGCCTGGCTCCCCATACTAGTCGCCGATATTTGG




AGTTCTTACAACATGGCAGACATTGACAACAAAGAACAGT




CTGAACTTGATCAAGATTTGGATGATGTTGAAGAAGTAGA




AGAAGAGGAAACTGGTGAAGAAACAAAACTCAAAGCACGT




CAGCTAACTGTTCAGATGATGCAAAATCCTCAGATTCTTG




CAGCCCTTCAAGAAAGACTTGATGGTCTGGTAGAAACACC




AACAGGATACATTGAAAGCCTGCCTAGGGTAGTTAAAAGA




CGAGTGAATGCTCTCAAAAACCTGCAAGTTAAATGTGCAC




AGATAGAAGCCAAATTCTATGAGGAAGTTCACGATCTTGA




AAGGAAGTATGCTGTTCTCTATCAGCCTCTATTTGATAAG




CGATTTGAAATTATTAATGCAATTTATGAACCTACGGAAG




AAGAATGTGAATGGAAACCAGATGAAGAAGATGAGATTTC




GGAGGAATTGAAAGAAAAGGCCAAGATTGAAGATGAGAAA




AAAGATGAAGAAAAAGAAGACCCCAAAGGAATTCCTGAAT




TTTGGTTAACTGTTTTTAAGAATGTTGACTTGCTCAGTGA




TATGGTTCAGGAACACGATGAACCTATTCTGAAGCACTTG




AAAGATATTAAAGTGAAGTTCTCAGATGCTGGCCAGCCTA




TGAGTTTTGTCTTAGAATTTCACTTTGAACCCAATGAATA




TTTTACAAATGAAGTGCTGACAAAGACATACAGGATGAGG




TCAGAACCAGATGATTCTGATCCCTTTTCTTTTGATGGAC




CAGAAATTATGGGTTGTACAGGGTGCCAGATAGATTGGAA




AAAAGGAAAGAATGTCACTTTGAAAACTATTAAGAAGAAG




CAGAAACACAAGGGACGTGGGACAGTTCGTACTGTGACTA




AAACAGTTTCCAATGACTCTTTCTTTAACTTTTTTGCCCC




TCCTGAAGTTCCTGAGAGTGGAGATCTGGATGATGATGCT




GAAGCTATCCTTGCTGCAGACTTCGAAATTGGTCACTTTT




TACGTGAGCGTATAATCCCAAGATCAGTGTTATATTTTAC




TGGAGAAGCTATTGAAGATGATGATGATGATTATGATGAA




GAAGGTGAAGAAGCGGATGAGGAAGGGGAAGAAGAAGGAG




ATGAGGAAAATGATCCAGACTATGACCCAAAGAAGGATCA




AAACCCAGCAGAGTGCAAGCAGCAGTGAAGCAGGATGTAT




GTGGCCTTGAGGATAACCTGCACTGGTCTACCTTCTGCTT





CCCTGGAAAGGATGAATTTACATCATTTGACAAGCCTATT






TTCAAGTTATTTGTTGTTTGTTTGCTTGTTTTTGTTTTTG






CAGCTAAAATAAAAATTTCAAATACAATTTTAGTTCTTAC






AAGATAATGTCTTAATTTTGTACCAATTCAGGTAGAAGTA





GAGGCCTACCTTGAATTAAGGGTTATACTCAGTTTTTAAC




ACATTGTTGAAGAAAAGGTACCAGCTTTGGAACGAGATGC




TATACTAATAAGCAAGTGTAAAAAAAAAAAAAAAAGAGGA




AGAAAATCTTAAGTGATTGATGCTGTTTTCTTTTAAAAAA




AAAAAAAAAAATTCATTTTCTTTGGGTTAGAGCTAGAGAG




AAGGCCCCAAGCTTCTATGGTTTCTTCTAATTCTTATTGC




TTAAAGTATGAGTATGTCACTTACCCGTGCTTCTGTTTAC




TGTGTAATTAAAATGGGTAGTACTGTTTACCTAACTACCT




CATGGATGTGTTAAGGCATATTGAGTTAAATCTCATATAA




TGTTTCTCAATCTTGTTAAAAGCTCAAAATTTTGGGCCTA




TTTGTAATGCCAGTGTGACACTAAGCATTTTGTTCACACC




ACGCTTTGATAACTAAACTGGAAAACAAAGGTGTTAAGTA




CCTCTGTTCTGGATCTGGGCAGTCAGCACTCTTTTTAGAT




CTTTGTGTGGCTCCTATTTTTATAGAAGTGGAGGGATGCA




CTATTTCACAAGGTCCAAGATTTGTTTTCAGATATTTTTG




ATGACTGTATTGTAAATACTACAGGGATAGCACTATAGTA




TTGTAGTCATGAGACTTAAAGTGGAAATAAGACTATTTTT




GACAAAAGATGCCATTAAATTTCAGACTGTAGAGCCACAT




TTACAATACCTCAGGCTAATTACTGTTAATTTTGGGGTTG




AACTTTTTTTTGACAGTGAGGGTGGATTATTGGATTGTCA




TTAGAGGAAGGTCTAGATTTCCTGCTCTTAATAAAATTAC




ATTGAATTGATTTTTAGAGGTAATGAAAACTTCCTTTCTG




AGAAGTTAGTGTTAAGGTCTTGGAATGTGAACACATTGTT




TGTAGTGCTATCCATTCCTCTCCTGAGATTTTAACTTACT




ACTGGAAATCCTTAACCAATTATAATAGCTTTTTTTCTTT




ATTTTCAAAATGATTTCCTTTGCTTTGATTAGACACTATG




TGCTTTTTTTTTTTAACCATAGTTCATCGAAATGCAGCTT




TTTCTGAACTTCAAAGATAGAATCCCATTTTTAATGAACT




GAAGTAGCAAAATCATCTTTTTCATTCTTTAGGAAATAGC




TATTGCCAAAGTGAAGGTGTAGATAATACCTAGTCTTGTT




ACATAAAGGGGATGTGGTTTGCAGAAGAATTTTCTTTATA




AAATTGAAGTTTTAAGGGACGTCAGTGTTTATGCCATTTT




TCCAGTTCCAAAATGATTCCATTCCATTCTAGAAATTTGA




AGTATGTAACCTGAAATCCTTAATAAAATTTGGATTTAAT




TTTATAAAATGTACTGGTGATATTTTGGGTGTTTTTTTTT




AAATGAATGTATATACTTTTTTTTTGAAGAGTGGAGAGTA




GTGATGTCTAGAGGGAGCTATTTTGTGCTGAGGCCACTAT




GTTCTGTAAATATATAATTTTAAGAGCAACCTCACAATCC




CTGCTAAGTGGAGTTTATTATTTGAAGACTAAAATGGAAT




TCCATAGTTCCTGATAGGTTATATTCTGGGTTATTATTCT




GAGTTATCTACAAACATTTTTGAGATTTGTCTTTACACTC




TGATTGTAGTTTCCAGCAGCCCATGCACACTGCCAAGTAA




GTCTCATTTTTTCCTGTTAGAAATGGTGAAATATCATATA




ATCACTTATAAAGAAAACTGATATGAAAAAATTTTAGAGT




TGTTTGCTTTATGGTCACTCAAGTAGGGTAAGTGTTCCAC




AAATTCCACAAGTTGATAGTTTAACATGGATGTCTGAAAG




CCACATATATAATTTCTTAGGATTCTTAAATTAGTAAATC




TAGCTTACTGAAGCAGTATTAGCATCACTATTTTAGATTG




CAAAAATACCTTAATTGTGTGGAACTGGCTTGTAGAGTGG




TACTTAAGAAAAATGGGATTCTACCTCTATTTCTGTTTTA




GCACACTTAATCAGGAAAGGATATATTAACTTTCATAAAA




ATATTTTTGTTGTGTGAATAGGTTAATGATATGGTAAGGC




CCCTAAAATAACTGAATTAATTGTTTATTGTAATTGTAGG




CCATTCCCATTATTAAAAATAAAGACAAAACTTGAAGTAA




CTGAAAATCTTATCGTGCTATGTAGAAATATTGAACTAAT




ATTCAAATATTTGAATGCTTTGGTTTCAGGGATTGGTTTA




AAATTGGAGTCCTTTTTTATGGGTTAGTCTTACAAAAATT




TAAGCCTTTATATTTTTGACTTTAAATCAAAACAAATGTT




ATTTTAAATGTACAGAATAGATTGGTAGTGCAGAAGAGTG




TAAGTTCTTCATAGGAGCTTTAGAAAAGAGAAATATGTGC




TAATTCAGTTTTTTTTTAATCTGCACTGTACATATATACT




TGGTAATTATGAGCTTGATTTTGTTTTTGGAAATATGTGT




TCATAATTTAGGTAATTTGCTACTTAAAGCACTAAGTCTC




TGATACCTGAAAAGTACATGTAAATGGTGATGGTGAAATA




ATACTGCAGTTAACTTAATAGATGTATACTGGTGATTTTT




GTATGCTGGATTAAAACTCCAGATATTAAAATATAACCTG




GATAAAAAGCC





NOL3
NM_001185057.2
GGCATTCAGAGAGTAGATGCCAGTCCTGGGAAAGGCAGGG
24




GAGGAGAGGAGAGCCACGGCTGACGCTTGGGGACAGAAGG




AGGAGCCTGAGGAGGAGACAGGACAGAGCGTCTGGAGAGG




CAGGAGGACACCGAGTTCCCCGTGTTGGCCTCCAGGTCCT





GTGCTTGCGGAGCCGTCCGGCGGCTGGGATCGAGCCCCGA






CAATGGGCAACGCGCAGGAGCGGCCGTCAGAGACTATCGA






CCGCGAGCGGAAACGCCTGGTCGAGACGCTGCAGGCGGAC





TCGGGACTGCTGTTGGACGCGCTGCTGGCGCGGGGCGTGC




TCACCGGGCCAGAGTACGAGGCATTGGATGCACTGCCTGA




TGCCGAGCGCAGGGTGCGCCGCCTACTGCTGCTGGTGCAG




GGCAAGGGCGAGGCCGCCTGCCAGGAGCTGCTACGCTGTG




CCCAGCGTACCGCGGGCGCGCCGGACCCCGCTTGGGACTG




GCAGCACGCTACCGGGACCGCAGCTATGACCCTCCATGCC




CAGGCCACTGGACGCCGGAGGCACCCGGCTCGGGGACCAC




ATGCCCCGGGTTGCCCAGAGCTTCAGACCCTGACGAGGCC




GGGGGCCCTGAGGGCTCCGAGGCGGTGCAATCCGGGACCC




CGGAGGAGCCAGAGCCAGAGCTGGAAGCTGAGGCCTCTAA




AGAGGCTGAACCGGAGCCGGAGCCAGAGCCAGAGCTGGAA




CCCGAGGCTGAAGCAGAACCAGAGCCGGAACTGGAGCCAG




AACCGGACCCAGAGCCCGAGCCCGACTTCGAGGAAAGGGA




CGAGTCCGAAGATTCCTGAAGGCCAGAGCTCTGACAGGCG




GTGCCCCGCCCATGCTGGATAGGACCTGGGATGCTGCTGG




AGCTGAATCGGATGCCACCAAGGCTCGGTCCAGCCCAGTA




CCGCTGGAAGTGAATAAACTCCGGAGGGTCGGACGGGACC




TGGGCTCTCTCCACGATTCTGGCTGTTTGCCCAGGAACTT




AGGGTGGGTACCTCTGAGTCCCAGGGACCTGGGCAGGCCC




AAGCCCACCACGAGCATCATCCAGTCCTCAGCCCTAATCT




GCCCTTAGGAGTCCAGGCTGCACCCTGGAGATCCCAAACC




TAGCCCCCTAGTGGGACAAGGACCTGACCCTCCTGCCCGC




ATACACAACCCATTTCCCCTGGTGAGCCACTTGGCAGCAT




ATGTAGGTACCAGCTCAACCCCACGCAAGTTCCTGAGCTG




AACATGGAGCAAGGGGAGGGTGACTTCTCTCCACATAGGG




AGGGCTTAGAGCTCACAGCCTTGGGAAGTGAGACTAGAAG




AGGGGAGCAGAAAGGGACCTTGAGTAGACAAAGGCCACAC




ACATCATTGTCATTACTGTTTTAATTGTCTGGCTTCTCTC




TGGACTGGGAGCTCAGTGAGGATTCTGACCAGTGACTTAC




ACAAAAGGCGCTCTATACATATTATAATATATTCGCTTAC




TAAATGAATAAGGACTTTCCAAAAAAAAAAAAAAAAAAAA




AAAAAAAAAA





NUDT3
NM_006703.3
GGTGCAGCCTTACGCCGCTGACGCATCGCGCCCAAGATGG
25




CGGCGCGGTCGTCGTCGGGGGTGGCGGCGGCAGAGGGGGC




GGCGGCCCTGGCGGCAGCGGAGACGGCAGCCGTGACGGTG




GCAGCGGCGGCGCGGGACCTGGGCCTGGGGGAATGAGGCG




GCCGCGGCGGGCCAGCGGCGGAGCCGTGTAGCGGAGAAGC




TCCCCCTCCCTGCTTCCCTTGGCCGAGCCGGGGGCGCGCG




CGCACGCGGCCGTCCAGAGCGGGCTCCCCACCCCTCGACT




CCTGCGACCCGCACCGCACCCCCACCCGGGCCCGGAGGAT




GATGAAGCTCAAGTCGAACCAGACCCGCACCTACGACGGC




GACGGCTACAAGAAGCGGGCCGCATGCCTGTGTTTCCGCA




GCGAGAGCGAGGAGGAGGTGCTACTCGTGAGCAGTAGTCG




CCATCCAGACAGATGGATTGTCCCTGGAGGAGGCATGGAG




CCCGAGGAGGAGCCAAGTGTGGCAGCAGTTCGTGAAGTCT





GTGAGGAGGCTGGAGTAAAAGGGACATTGGGAAGATTAGT






TGGAATTTTTGAGAACCAGGAGAGGAAGCACAGGACGTAT





GTCTATGTGCTCATTGTCACTGAAGTGCTGGAAGACTGGG




AAGATTCAGTTAACATTGGAAGGAAGAGGGAATGGTTTAA




AATAGAAGACGCCATAAAAGTGCTGCAGTATCACAAACCC




GTGCAGGCATCATATTTTGAAACATTGAGGCAAGGCTACT




CAGCCAACAATGGCACCCCAGTCGTGGCCACCACATACTC




GGTTTCTGCTCAGAGCTCGATGTCAGGCATCAGATGACTG




AAGACTTCCTGTAAGAGAAATGGAAATTGGAAACTAGACT




GAAGTGCAAATCTTCCCTCTCACCCTGGCTCTTTCCACTT




CTCACAGGCCTCCTCTTTCAAATAAGGCATGGTGGGCAGC




AAAGAAAGGGTGTATTGATAATGTTGCTGTTTGGTGTTAA




GTGATGGGGCTTTTTCTTCTGTTTTTATTGAGGGTGGGGG




TTGGGTGTGTAATTTGTAAGTACTTTTGTGCATGATCTGT




CCCTCCCTCTTCCCACCCCTGCAGTCCTCTGAAGAGAGGC




CAACAGCCTTCCCCTGCCTTGGATTCTGAAGTGTTCCTGT




TTGTCTTATCCTGGCCCTGGCCAGACGTTTTCTTTGATTT




TTAATTTTTTTTTTTTATTAAAAGATACCAGTATGAGATG




AAAACTTCCAATAATTTGTCCTATAATGTGCTGTACAGTT




CAGTAGAGTGGTCACTTTCACTGCAGTATACATTTATCTA




CACATTATATATCGGACATATAATATGTAAATAAATGACT




TCTAGAAAGAGAAATTTGTTTAATTTTTCAAGGTTTTTTT




CTCTTTTAATTTGGGCATTTCTAGAATTGAGAGCCTCACA




ATTAACATACCTTTTTGTTTTCGATGCTAGTGGCTGGGCA




GGTTGCCCTGTCCTTTCTCTATTTCCCAGTCATTGACTGT




AGATATGGGAAGAGTTTAGCTACCTTCATAGTGCTCCCAG




GACTCATGGCCTTTCCTTCTTTAAGCTGTATTTCCCTGCC




CAGAAAGAAACAGGAAGAAACCTTTTTTTATTTTTTTATT




TTTTTTTAACCAAGCAAGGAGCAAATGGCCTCAGCCCAGA




TCTGTAAAAACAATGATAGAAATTGAATTCTGCCCCACAT




GTTGACAGTAGAGTTGGAACTGGATTCTTGGGATTACTTA




TCTAAAAAACTGGAGCATCAGGTCCATTTCTGTTCTGCTG




GTTTGGAATCTTTTCCGTAATGCTATTTATTGCCAACAAT




GGCCTCTCTTTGTGTCCATATATGCCTTACACCGTGCTGA




CCTGGGTATCATCCATGTGCTCTGAAGCATCCAACTTTAC




TTTGCAGGTGCATCAATGTAGTCCTGTCCCTGAACTGAGT




AACCGTGTTCCTGAAAAGTACACTAGGGAAATTCACCTGC




TTGCTTGTCTTTGTATTGGCATGGCACTTGTGATTGCACC




ATGGAGCATGCTCAGAGCTATTAAATTGGTCTCCCATCTC




CCACCAGGATATGAAAGGTCCATATGGGAGGCCACGTAAT




CACTTATTACAGTGGTTACATAATACACTGGCTCACTGCA




GACTCTCTTGTTTTTTGATACAGTTTCGTGCTGGCTTCAT




TTGCCAATTGTGTTGTTTAGTTCGGAAGTAAGAGGGTCTT




GAGATTGAGGGGTAGGGAGGGCTACACTGACTGATCCGTG




GCTTAAGACAGGAGATTATCTCTGTACTCCAGTGGCATCT




CCTTAGCCAAGATGTGAAATTAAAATCATAGTTCGCCTCA




TTTAAAAATTCTAATAAAGCACTCAAACTTTGAAAAAAAA




AAAAAAAAAA





OAZ2
NM_002537.3
ATGCAGATGAGGCACTCGGGGGCGGGGCGGCGGCGGCGGC
26




GGCGGCGGTGGCGGCCGGGGAGGGTCAGTTGGAGGCAGGC




GCTCGCTGAGGCAAAAGGAGGCGCTCGGCCCGCGGCCTGA




CAGGGACTTAGCCCGCAGAGATCGACCCCGCGCGCGTGAC




CCCACACCCACCCACTCATCCATCTATCCACTCCCTGCGC





CGCCTCCTCCCACCCTGAGCAGAGCCGCCGAGGATGATAA






ACACCCAGGACAGTAGTATTTTGCCTTTGAGTAACTGTCC






CCAGCTCCAGTGCTGCAGGCACATTGTTCCAGGGCCTCTG





TGGTGCTCCTGATGCCCCTCACCCACTGTCGAAGATCCCC




GGTGGGCGAGGGGGCGGCAGGGATCCTTCTCTCTCAGCTC




TAATATATAAGGACGAGAAGCTCACTGTGACCCAGGACCT




CCCTGTGAATGATGGAAAACCTCACATCGTCCACTTCCAG




TATGAGGTCACCGAGGTGAAGGTCTCTTCTTGGGATGCAG




TCCTGTCCAGCCAGAGCCTGTTTGTAGAAATCCCAGATGG




ATTATTAGCTGATGGGAGCAAAGAAGGATTGTTAGCACTG




CTAGAGTTTGCTGAAGAGAAGATGAAAGTGAACTATGTCT




TCATCTGCTTCAGGAAGGGCCGAGAAGACAGAGCTCCACT




CCTGAAGACCTTCAGCTTCTTGGGCTTTGAGATTGTACGT




CCAGGCCATCCCTGTGTCCCCTCTCGGCCAGATGTGATGT




TCATGGTTTATCCCCTGGACCAGAACTTGTCCGATGAGGA




CTAATAGTCATAGAGGATGCTTTACCCAAGAGCCACAGTG




GGGGAAGAGGGGAAGTTAGGCAGCCCTGGGACAGACGAGA




GGGCTCCTCGCTGTCTAGGGAAGGACACTGAGGGGCTCAG




GGTGAGGGTTGCCTATTGTGTTCTCGGAGTTGACTCGTTG




AAATTGTTTTCCATAAAGAACAGTATAAACATATTATTCA




CATGTAATCACCAATAGTAAATGAAGATGTTTATGAACTG




GCATTAGAAGCTTTCTAAACTGCGCTGTGTGATGTGTTCT




ATCTAGCCTAGGGGAGGACATTGCCTAGAGGGGGAGGGAC




TGTCTGGGTTCAGGGGCATGGCCTGGAGGGCTGGTGGGCA




GCACTGTCAGGCTCAGGTTTCCCTGCTGTTGGCTTTCTGT




TTTGGTTATTAAGACTTGTGTATTTTCTTTCTTTGCTTCC




TGTCACCCCAGGGGCTCCTGAGTATAGGCTTTTCAGTCCC




TGGGCAGTGTCCTTGAGTTGTTTTTTGACACTCTTACCTG




GGCTTCTCTGTGTGCATTTGCGTCTGGCCTGGAGTAAGCA




GGTCCGACCCCTCCTTCTTTACAGCTTAGTGTTATTCTGG




CATTTGGTTAAGCTGGCTTAATCTGTTTAATGTTATCAGT




ACATTTTAAATAGGGGCATTGAAATTTACTCCCACCACCA




GGGCTTTTTTGGGGGATGCCTGGGCCTTTAAAACACTAGC




CAAACTCTAATTAATTCTCAAATCACTGCCAGGAGTTCTT




GCTCCTGGCTGCAGGCCCAGGCCCCAAGGTCTCCTTCTTG




GGGTCACAAACAGCAGTAAGGAAGAGGAATATATAGCAAC




TCAGGGCCTGGGAATTGTGGGGCAATCCGTTCTTAGGGAC




TGGATACTTCTGGCTGGCTGAGTATAGTACTAGCTGCCTC




CCCACCAGGTTCCGAGTAGTGTCTGAGACTCTGCTCTGCA




GGGCCTAGGGTAGCGCTGGGAGTGTAGAAGTGGCCTGCCC




TTAACTGTTTTCACTAAACAGCTTTTTCTAAGGGGAGAGC




AAGGGGGAGAGATCTAGATTGGGTGAGGGGGACGGGGATG




TCAGGGAGGCAAGTGTGTTGTGTTACTGTGTCAATAAACT




GATTTAAAGTTGTGAAAAAAAAAAAAA





PANK2
NM_024960.4
ATGCTGGGGGAGGGGCTGGCGGCCTCGACGGCAGCTGCGG
27




AACTAGGCCGAGGGACAAAGGCTAAGTTTTTCCATGGTTT




GGACTGGATATCGGTGGAACTCTGGTCAAGCTGGTATATT




TTGAACCCAAAGACATCACTGCTGAAGAAGAAGAGGAAGA




AGTGGAAAGTCTTAAAAGCATTCGGAAGTACCTGACCTCC




AATGTGGCTTATGGGTCTACAGGCATTCGGGACGTGCACC




TCGAGCTGAAGGACCTGACTCTGTGTGGACGCAAAGGCAA




TCTGCACTTTATACGCTTTCCCACTCATGACATGCCTGCT




TTTATTCAAATGGGCAGAGATAAAAACTTCTCGAGTCTCC




ACACTGTCTTTTGTGCCACTGGAGGTGGAGCGTACAAATT




TGAGCAGGATTTTCTCACAATAGGTGATCTTCAGCTTTGC




AAACTGGATGAACTAGATTGCTTGATCAAAGGAATTTTAT




ACATTGACTCAGTCGGATTCAATGGACGGTCACAGTGCTA




TTACTTTGAAAACCCTGCTGATTCTGAAAAGTGTCAGAAG




TTACCATTTGATTTGAAAAATCCGTATCCTCTGCTTCTGG




TGAACATTGGCTCAGGGGTTAGCATCTTAGCAGTATATTC




CAAAGATAATTACAAACGGGTCACAGGTACTAGTCTTGGA




GGAGGAACTTTTTTTGGTCTCTGCTGTCTTCTTACTGGCT




GTACCACTTTTGAAGAAGCTCTTGAAATGGCATCTCGTGG




AGATAGCACCAAAGTGGATAAACTAGTACGAGATATTTAT





GGAGGGGACTATGAGAGGTTTGGACTGCCAGGCTGGGCTG






TGGCTTCAAGCTTTGGAAACATGATGAGCAAGGAGAAGCG






AGAGGCTGTCAGTAAAGAGGACCTGGCCAGAGCGACTTTG





ATCACCATCACCAACAACATTGGCTCAATAGCAAGAATGT




GTGCCCTTAATGAAAACATTAACCAGGTGGTATTTGTTGG




AAATTTCTTGAGAATTAATACGATCGCCATGCGGCTTTTG




GCATATGCTTTGGATTATTGGTCCAAGGGGCAGTTGAAAG




CACTTTTTTCGGAACACGAGGGTTATTTTGGAGCTGTTGG




AGCACTCCTTGAGCTGTTGAAGATCCCGTGATCATTACCT




GGGGAGGGGTTCCTGAAACCTTCCACAATGGGATCTGTGG




ACTTTCATTTTTTTAAGAGACTTACTCAATTTCATGACTG




TACTACCTGAAACAAAGTGAGAAAGGACAGGTGTATTTTT




CTAAGTCATCAAGATAAATCCTTAAGAATTCAGTCTAAAT




TAGCAACCAGGAAGGAAAAATATATTAAAAACAACAAAAA




AGTGGCACATGTCCAGGCAGTGTGAGGATTTGCTGTATAT




AAGTTGCCTGCTTTGTATTTTTGAAATCTCTGCATCACTC




ATTGGAAGTGCTTCTGAAGAGAGCTGCTCTGTGTTCAGTT




GACTGGTTTTGTGTCCTGTTTGAACTTGCTGAATGTAAGG




CAGGCTACTATGCGTTATAATCTAATCACAATTTGTCAAT




ATGGTCTTGGCAATCATCTGTGCATTACTCTGGTTTGCAT




TAAGCCTGTGTGTGAACTTACTGTAAAACATGTTTTATTT




CAAGGTTCTGCAAAATTAATTGGGCAGGTTAATTGTGTAC




CTGAAACTTAACAAGCAGTTTTTGGAAGGGCA





PHF21A
NM_001101802.1
GGTGAATGGGCTGGTGGTGCTCGCTGCTGCTGCTGAGAGG
28




AGGAGGAGGATGAAGAGTTGGGCTTGTTTGTCTCCTACAG




TTTCTCTCCTGCTGCTCTGATTCCCCCCTCCCGATTCCGG




CCCGGGGCCTGTGTGTGTCCCTCCTGGAGGAGGAGGAGGA




TCCAGTTCCTCCCCCCAACCCCCTCCTCCCCACCCCCCCT




TGCCTGGGGAAGAGGAGGAAAGAAACAGCCCAGAGAGAGA




GAGAGAGAGAGAGTGAGTGAGAGAGAGAGGAGAGGAGAGG




AGGAGGAGGAGGAGGGAGAAGGGAACAACCTACCATCTTA




ACACACTAATATCTAAAAAGTGCGAGAGGCCCAGAGCAGC




AGCAGAAGCAGCAGCAGCAGCTCCAGCTTCTTCCCTCCCT




CCCCATGAAGAAGAGTTCCCTCCTCCTCCTCCTCCTGCTT




CTCCTGCTCAGAGTTCCTGCCTCCAGCTGCCAGGGGGGAC




AGCCAGCCAGCAGCAGGAGGGGGGCTAGAGAGCTGAAGGA




GAGCCAGTTTCCCCAAAATTGCTGCAGTGAGAAGAGGAGT




TTGTTACTTTAAACAGAGGCTGAAGAAACTATAGAATTAG




CAGAGAAAGTGGAGAAGGTAGAGGATGGAGTTGCAGACTC




TACAGGAGGCTCTTAAAGTGGAAATTCAGGTTCACCAGAA




ACTGGTTGCTCAAATGAAGCAGGATCCACAGAATGCTGAC




TTAAAGAAACAGCTTCATGAACTCCAAGCCAAAATCACAG




CTTTGAGTGAGAAACAGAAAAGAGTAGTTGAACAGCTACG




GAAGAACCTGATAGTAAAGCAAGAACAACCGGACAAGTTC




CAAATACAGCCATTGCCACAATCTGAAAACAAACTACAAA




CAGCACAGCAGCAACCACTACAGCAACTACAACAACAGCA




GCAGTACCACCACCACCACGCCCAGCAGTCAGCTGCAGCC




TCTCCCAACCTGACTGCTTCACAGAAGACTGTAACTACAG




CTTCTATGATTACCACAAAGACACTACCTCTCGTCTTGAA




AGCAGCAACTGCGACCATGCCTGCCTCTGTGGTGGGCCAG




AGACCTACCATTGCTATGGTGACCGCCATCAACAGTCAGA




AGGCTGTGCTCAGCACTGATGTGCAGAACACACCAGTCAA




CCTCCAGACGTCTAGTAAGGTCACTGGGCCTGGGGCAGAG




GCTGTCCAAATTGTGGCAAAAAACACAGTCACTCTGGTTC




AGGCAACACCTCCTCAGCCCATCAAAGTACCACAGTTTAT




CCCCCCTCCTAGACTCACTCCACGTCCAAACTTTCTTCCA




CAGGTTCGACCCAAGCCTGTGGCCCAGAATAACATTCCTA




TTGCCCCAGCACCACCTCCCATGCTCGCAGCTCCTCAGCT




TATCCAGAGGCCCGTCATGCTGACCAAGTTCACCCCCACA




ACCCTTCCCACATCCCAGAATTCCATCCACCCCGTCCGTG




TCGTCAATGGGCAGACTGCAACCATAGCCAAAACGTTCCC




CATGGCCCAGCTCACCAGCATTGTGATAGCTACTCCAGGG




ACCAGACTCGCTGGACCTCAAACTGTACAGCTTAGCAAGC




CAAGTCTTGAAAAACAGACAGTTAAATCTCACACAGAAAC




AGATGAGAAACAAACAGAGAGCCGCACCATCACCCCACCT




GCTGCACCCAAACCAAAACGGGAGGAGAACCCTCAGAAAC




TTGCCTTCATGGTGTCTCTAGGGTTGGTAACACATGACCA




TCTAGAAGAAATCCAAAGCAAGAGGCAAGAGCGAAAAAGA




AGAACAACAGCAAATCCGGTCTACAGTGGAGCAGTCTTTG




AGCCAGAGCGTAAGAAGAGTGCAGTGACATACCTAAACAG




CACAATGCACCCTGGGACCCGGAAGAGAGGTCGTCCTCCA




AAATACAATGCAGTGCTGGGGTTTGGAGCCCTTACCCCAA




CATCCCCCCAATCCAGTCATCCTGACTCCCCTGAAAATGA




AAAGACAGAGACCACATTCACTTTCCCTGCACCTGTTCAG




CCTGTGTCCCTGCCCAGCCCCACCTCCACAGACGGTGATA




TTCATGAGGATTTTTGCAGCGTTTGCAGAAAAAGTGGCCA




GTTACTGATGTGCGACACATGTTCCCGTGTATATCATTTG




GACTGCTTAGACCCCCCTCTGAAAACAATTCCCAAGGGCA




TGTGGATCTGTCCCAGATGTCAGGACCAGATGCTGAAGAA





GGAAGAAGCAATTCCATGGCCTGGAACTTTAGCAATTGTT






CATTCCTATATTGCCTACAAAGCAGCAAAAGAAGAAGAGA






AACAGAAGTTACTTAAATGGAGTTCAGATTTAAAACAAGA






ACGAGAACAACTAGAGCAAAAGGTGAAACAGCTCAGCAAT





TCCATAAGTAAATGCATGGAAATGAAGAACACCATCCTGG




CCCGGCAGAAGGAGATGCACAGCTCCCTGGAGAAGGTAAA




ACAGCTGATTCGCCTCATCCACGGCATCGACCTCTCCAAA




CCTGTAGACTCTGAGGCCACTGTGGGGGCCATCTCCAATG




GCCCGGACTGCACCCCCCCTGCCAATGCCGCCACCTCCAC




GCCGGCCCCTTCCCCCTCCTCCCAGAGCTGCACAGCGAAC




TGTAACCAGGGGGAAGAGACTAAATAACAGAGCCCCTCTA




GGAGAAGCCACGGGATCCCGGCGGCAAGGAGAACAGAACA




CTGAAGACTCTAGAAAAGCAAAGCCGGATTTCTGGAAAGT




GCAGAATTCTTTTGGTTCTTTGGTTCCAGAGAGAGAGAAG




ATGCTTGTGCCAGGTGGCACCAGAGTTTGCCAATTGATCC




TTCTTATTCTGTGTGTACATGCAAAGATTGGACCATGTTA




CATGAAATAGTGCCAGCTGGAGGTTCTTTGCCAGCACCAT




GCCAAGTGAAATAATATATTTACTCTCTCTATTATACACC




AGTGTGTGCCTGCAGCAGCCTCCACAGCCACGATGGGTTT




GTTTCTGTTTTCTTGGGTGGGGAGCAGGGACGGGCGGAGG




GAGGAGAGCAGGTTTCAGATCCTTACTTGCCGAGCCGTTT




GTTTAGGTAGAGAAGACAAGTCCAAAGAGTGTGTGGGCTT




TCCTGTTTCTAAACTTTCGCTACTATAAAACCAAAAAAAG




GAATTGAGATTTCACCAACCCCAGTGCCCAGAAGAGGGAA




GGGGAGTGGCTGGAGGGAGCAGGGGGTGGGACAGTGTATC




AAATAAGCAGTATTTAATCACCTCTGGCGGGGGCCTCGTG




CAAGGGGAGACTGACACCAAGAACAGCCAGTAGGTTCTTC




TCCCCTGCACTCTGCTCCCTGCGCGGTAACCCCACCACTC




CTGAAGCCTGCCCAGTCTCCTTCCTTCCCTGCTTGGTGAG




TCGCGCATCTCCGTGGTTATCCCGCTGTCTCCTCTCCAAG




AACAAGCAGAGCCCGGGCCACTGGCCCTTGCCCAAGGCAG




GGAAGAAGGATGTGTGTGTCCAGGAAGGAAAAAAAGGTGG




ATCAGTGATTTTACTTGAAAACAAGCTCCATCCCTTTTCT




ATATTTATAAGAAGAGAAGATCTTGAGTGAAGCAGCACGC




GACCCAGGTGTGTGTGAATTGAATGGAGACGTTTCTTTTC




TCTTTCTTTAATTTTTGTTTTTGTTCTTTTTTTCTTTAAG




GAAAGTTTTATTTTACTGTTCATTTTACTTTCTTGGTAAC




AAAAACTAAAATAAGGAATAGAAAAGCTGTTTTTCAGGCT




GACAGTCCAATTAAGGGTAGCCAAGACCTTGCATGGTAGA




GTAGGAATCATAGTGTCAGTGAGGTCCCGTGAGTCTTTGT




GAGTCCTTGTGTCATCGTTCGGGCACTGTTTTTTTATGCA




AGGGCAAAAATCTTTGTATCTGGGGAAAAAAAACTTTTTT




TTAAATTAAAAAGGAAAATAAAAGATATTGAGGTCTTCCT




AGTGTTACTTAAATTAAGATCAAGGTAAGAAACATTGTAA




AAAAAAATTACAAAAGTGCTATTTGTTTCCTAAAAACAGT




GATTTCTATTAAAAAGGTGTCAGAACTGGAGAAAATGCCG




TGTAGTTATAATTTTTTAGCACAGACCCTGCTGATCACGA




TGACATTTTGCCGTGTGTGTGTCTCTAGACTGGTGGGCCA




GTCTCCTTGAAGGACAGAGGCGGAGCTCCCCACCCTTCTC




TCTCCTCAGAAAAGACCGTGCTCTCTTCTTGGTGCAGGGA




TCTTGTCTCCTGTTGTGAAGCCCAAATGGAAGCGTGGATG




GTATCAGGGCCCTACCCGTGGTCTTCTCAGATTCTGCTAG




AGCAAAAGGCTGGTGCCTAAATAAGATCCCTTCCTTTGGT




GCTGCTTTTGGTCTTTCAGCCACCAGCATTATGAGTGCCT




GGGGGACACCTCCGAGGGAACTGGCCAGCGGAGCTCTGTG




GTGCGCACGCACCCTGGCCGTGACAGGAGGGTGCGGGAGT




ACAGGCTGGCTGCATCAGCCCTTGGTGCTTAGAACAGAGG




AGGAGTGACATGTTTTGAGGGTACGTCTCTGAGACAGAGC




CCCAGCGTGGCCTTCGCTCTGTCTTGCCTTTGGGGAGAGG




TCTGAAGCTCCCACTCCTTTCTCTGCCTGTTGGCTCCAGG




CACCAGAAATTTACTCCACTCCACCCACCCACAAGCCTCC




TGGGTGACCCTGGGCTAGAATTGCTGCGCTTGCCTCGGCT




TGGCCGGTTGTGGCCTCTCCTTGAGAAAACCAGGGTTGTG




AAAGACTCAGACCATTCTCTCATCTTGCCTTGTCAGAAGT




AAATTGTGTCAGATTTGTGCTCTCGCTGGAGACCTTTGCC




CCTTGCGTGCCCCTGGCCGATGGGAGGGCGGTGGAGGCTC




TGTACCCTGGCCCTGCTGGAGCATCTCCCCCAAGCCCACT




CCAGGCCCTGGGAATGGCCAGAGTCTAGGAGAGGTAGAAA




CGATCCTATCAGCTTCTCTCCCACCCAATTAGGCCCAGAG




AGACAAAGACAGATCTGAAAGCAAATGCAACAGAGAAGAG




ACACTTCTTAGAGTAAAATGTGTCTCATCTCTATCAGCCA




TCGCCTTTCATCTTCCCAGGGGCCTCAGAAGAAGGAATTA




AGTTAGGCTGAACAGGCCTCAGAGTTAGGCCCTGGCTGCT




TGATTGGCTGAGGGGGAAAGAGTTCCCTTTTCTCATTCAG




AAACCAAGGTGCTGTGTCTAGTCAGGGAGCCTTGGAGATG




CCTGGACTAGTTGGAGGAATCGTTGGCAGAGGATCAGAGA




CCAGCAGCAGGCTGTCTGCCCTGTCTAGAGCTCTTCCCCT




CAACTTGTCTGGGCCCATCTGGGGGTTGCCACACAACACC




TAACTTACCTTTTCCTGAAAGAAGTTGGGAAACCATCATC




ACTAGAGGCCTTTGCTCAGAGAGGAGCTGCCTTAGGAGTC




TTGGGTCGGAGGACGGGGCTAGGAATTGACCAGGGCTTTG




CCTGCCGCCCTCAGCAGTGTCGGGTACATTCTGACCTCGC




CTGCAGCTGGGCTGTGGATTCTTCCTGACATTCAGATGTG




AGCTGTTTTGGGAGTCAGCTAGTATGGAGTACGAGATGCA




ACCCAGCCCCCAAACCTACATTCTGCACTCAAATTCCAAA




ACACTGCTTTACTGTAAAGAAGAGGCCCCTGGCACCCAAT




CTCCCTGTCCTTCACTGTCCCCTCAGACCTGGGCGGGGAG




GGGGGGGGGCCTGTGACCACCTGAGACATACGCTCGTGAC




ACTGCCCCACCCCAGCCACCTCCACTTGCTTCCTCCTCCT




TCCCTCCGCTGCTCTTTCCCCACGGCCCAGAATTTAGCTG




CTCTGACAGCCACTTTTGAGACCAGCTGGCTTTGTAGTCA




CTTCAGAGAGCTGGAGCGGCTGCCCACTGGGCCCTGACTG




GGAGTCCCCTGCCAGCTCCTGATCAGGCGCTGCGCCCTGG




TGGCAGTGATGACTGGGAGTCCCCTGCCAGCTCCTGTCCA




GGCGCTGCATCCTGGTAACAGTGAGGCCATGTTGCTGTCA




TCTCCACCTCTGCATTCTTGCTGCCTGTGGGTCCTTTTTC




TTTCATGGAGCCTGCTGGGTCTTGTCTCACCTGTGCTGAG




CTCCTCTGGGGTTTTGATTTCTTCCTTCCTTATCAGGCCC




TTTGGGGTAAGCCTGCTGGTTGTACCTGACATAGGGAGGC




AGTTAGGGGCAGTCCCTGGTGGGGCCGCCCTGGCAGCCTC




CAGCTGGCACCATCGTGTGCCTGGTTTCCCTGCAACACCT




GCCTCTCTGTCCCTGCTGCTGCTTGGCTCAGGCCCAACAG




GCAGCGTGCATGGAGGTGGTTACACACAGCTGTTTCCGTG




AGGGTGACCGTGTCTGCAGCACGCTTCCGTCTCCGCATGC




ACGGCTGCCTCTCCAGCCACCTCTGATACTTCTCTCTTGG




GGCCATCAGAGCCTCCCTTGGGCTGTCACCTCCCAGCTCA




CACACACTCTTCAGTGGTTTCCTCTCTTCATTCTCTTATA




GGGCGTGGTCCTTCTTATTTATCTAAAGGGCTGAATTTAG




GAGACTTTTTACCCAGGGGCAAAAGGCTCTTAGGGTAATG




AGATGGATGGTGGCCCAGGTGCATTTTCCAGGGCCTGGGT




TCTCCAGATCCCGTGGCTTCTGTTGAGTGGAGGCAACTTT




GCTCTGTGTGAACCTCGCCCCTGTCCCTCTGCCGGGCACC




CCTGGCAGGAAGCAGGACTCCCATCCTCACCCTGACTTAG




ACTGTCCTCTGAGTCAGCTCCTCTCCAAGACAGGAGTGGG




CAGCCCTGGGCAGTCTTCTGGCCCCTTGCTAAAGTGAGGG




GCAGGAAGCTGGGGCTGCCCTCCAGAAAGCCGGGGTAGGA




ACTCTGAAAAATACCTCCTCTAAACGGAAGCAGGGCTCTC




CAGTTCCACTTGGCGCCCCCTCCCACAAGGCCCTTCCTCC




CTGAGGACCCCACCCCCCTACCCCTTCCCCAGCAGCCTTT




GGACCCTCACCTCTCTCCGGTGTCCGTGGGTCCTCAGCCC




AGGGTGAGCTGCAGTCAGGCGGGATGGGACGGGCAGGCCA




GAGGTCAGCCAGCTCCTAGCAGAGAAGAGCCAGCCAGACC




CCAACCCTGTCTCTTGTCCATGCCCTTTGTGATTTCAGTC




TTGGTAGACTTGTATTTGGAGTTTTGTGCTTCAAAGTTTT




TGTTTTTGTTTGTTTGGTTTTTGTTTTGAGGGGGTGGGGG




GGGATACAGAGCAGCTGATCAATTTGTATTTATTTATTTT




AACATTTTACTAAATAAAGCCAAATAAAGCCTCTCAAAAA




AAAAAAAAAAAA





PKD1
NM_000296.3
GCACTGCAGCGCCAGCGTCCGAGCGGGCGGCCGAGCTCCC
29




GGAGCGGCCTGGCCCCGAGCCCCGAGCGGGCGTCGCTCAG




CAGCAGGTCGCGGCCGCAGCCCCATCCAGCCCCGCGCCCG




CCATGCCGTCCGCGGGCCCCGCCTGAGCTGCGGCCTCCGC




GCGCGGGCGGGCCTGGGGACGGCGGGGCCATGCGCGCGCT




GCCCTAACGATGCCGCCCGCCGCGCCCGCCCGCCTGGCGC




TGGCCCTGGGCCTGGGCCTGTGGCTCGGGGCGCTGGCGGG




GGGCCCCGGGCGCGGCTGCGGGCCCTGCGAGCCCCCCTGC




CTCTGCGGCCCAGCGCCCGGCGCCGCCTGCCGCGTCAACT




GCTCGGGCCGCGGGCTGCGGACGCTCGGTCCCGCGCTGCG




CATCCCCGCGGACGCCACAGCGCTAGACGTCTCCCACAAC




CTGCTCCGGGCGCTGGACGTTGGGCTCCTGGCGAACCTCT




CGGCGCTGGCAGAGCTGGATATAAGCAACAACAAGATTTC




TACGTTAGAAGAAGGAATATTTGCTAATTTATTTAATTTA




AGTGAAATAAACCTGAGTGGGAACCCGTTTGAGTGTGACT




GTGGCCTGGCGTGGCTGCCGCGATGGGCGGAGGAGCAGCA




GGTGCGGGTGGTGCAGCCCGAGGCAGCCACGTGTGCTGGG




CCTGGCTCCCTGGCTGGCCAGCCTCTGCTTGGCATCCCCT




TGCTGGACAGTGGCTGTGGTGAGGAGTATGTCGCCTGCCT




CCCTGACAACAGCTCAGGCACCGTGGCAGCAGTGTCCTTT




TCAGCTGCCCACGAAGGCCTGCTTCAGCCAGAGGCCTGCA




GCGCCTTCTGCTTCTCCACCGGCCAGGGCCTCGCAGCCCT




CTCGGAGCAGGGCTGGTGCCTGTGTGGGGCGGCCCAGCCC




TCCAGTGCCTCCTTTGCCTGCCTGTCCCTCTGCTCCGGCC




CCCCGCCACCTCCTGCCCCCACCTGTAGGGGCCCCACCCT




CCTCCAGCACGTCTTCCCTGCCTCCCCAGGGGCCACCCTG




GTGGGGCCCCACGGACCTCTGGCCTCTGGCCAGCTAGCAG




CCTTCCACATCGCTGCCCCGCTCCCTGTCACTGCCACACG




CTGGGACTTCGGAGACGGCTCCGCCGAGGTGGATGCCGCT




GGGCCGGCTGCCTCGCATCGCTATGTGCTGCCTGGGCGCT




ATCACGTGACGGCCGTGCTGGCCCTGGGGGCCGGCTCAGC




CCTGCTGGGGACAGACGTGCAGGTGGAAGCGGCACCTGCC




GCCCTGGAGCTCGTGTGCCCGTCCTCGGTGCAGAGTGACG




AGAGCCTTGACCTCAGCATCCAGAACCGCGGTGGTTCAGG




CCTGGAGGCCGCCTACAGCATCGTGGCCCTGGGCGAGGAG




CCGGCCCGAGCGGTGCACCCGCTCTGCCCCTCGGACACGG




AGATCTTCCCTGGCAACGGGCACTGCTACCGCCTGGTGGT




GGAGAAGGCGGCCTGGCTGCAGGCGCAGGAGCAGTGTCAG




GCCTGGGCCGGGGCCGCCCTGGCAATGGTGGACAGTCCCG




CCGTGCAGCGCTTCCTGGTCTCCCGGGTCACCAGGAGCCT




AGACGTGTGGATCGGCTTCTCGACTGTGCAGGGGGTGGAG




GTGGGCCCAGCGCCGCAGGGCGAGGCCTTCAGCCTGGAGA




GCTGCCAGAACTGGCTGCCCGGGGAGCCACACCCAGCCAC




AGCCGAGCACTGCGTCCGGCTCGGGCCCACCGGGTGGTGT




AACACCGACCTGTGCTCAGCGCCGCACAGCTACGTCTGCG




AGCTGCAGCCCGGAGGCCCAGTGCAGGATGCCGAGAACCT




CCTCGTGGGAGCGCCCAGTGGGGACCTGCAGGGACCCCTG




ACGCCTCTGGCACAGCAGGACGGCCTCTCAGCCCCGCACG




AGCCCGTGGAGGTCATGGTATTCCCGGGCCTGCGTCTGAG




CCGTGAAGCCTTCCTCACCACGGCCGAATTTGGGACCCAG




GAGCTCCGGCGGCCCGCCCAGCTGCGGCTGCAGGTGTACC




GGCTCCTCAGCACAGCAGGGACCCCGGAGAACGGCAGCGA




GCCTGAGAGCAGGTCCCCGGACAACAGGACCCAGCTGGCC




CCCGCGTGCATGCCAGGGGGACGCTGGTGCCCTGGAGCCA




ACATCTGCTTGCCGCTGGACGCCTCCTGCCACCCCCAGGC




CTGCGCCAATGGCTGCACGTCAGGGCCAGGGCTACCCGGG




GCCCCCTATGCGCTATGGAGAGAGTTCCTCTTCTCCGTTC




CCGCGGGGCCCCCCGCGCAGTACTCGGTCACCCTCCACGG




CCAGGATGTCCTCATGCTCCCTGGTGACCTCGTTGGCTTG




CAGCACGACGCTGGCCCTGGCGCCCTCCTGCACTGCTCGC




CGGCTCCCGGCCACCCTGGTCCCCAGGCCCCGTACCTCTC




CGCCAACGCCTCGTCATGGCTGCCCCACTTGCCAGCCCAG




CTGGAGGGCACTTGGGCCTGCCCTGCCTGTGCCCTGCGGC




TGCTTGCAGCCACGGAACAGCTCACCGTGCTGCTGGGCTT




GAGGCCCAACCCTGGACTGCGGCTGCCTGGGCGCTATGAG




GTCCGGGCAGAGGTGGGCAATGGCGTGTCCAGGCACAACC




TCTCCTGCAGCTTTGACGTGGTCTCCCCAGTGGCTGGGCT




GCGGGTCATCTACCCTGCCCCCCGCGACGGCCGCCTCTAC




GTGCCCACCAACGGCTCAGCCTTGGTGCTCCAGGTGGACT




CTGGTGCCAACGCCACGGCCACGGCTCGCTGGCCTGGGGG




CAGTGTCAGCGCCCGCTTTGAGAATGTCTGCCCTGCCCTG




GTGGCCACCTTCGTGCCCGGCTGCCCCTGGGAGACCAACG




ATACCCTGTTCTCAGTGGTAGCACTGCCGTGGCTCAGTGA




GGGGGAGCACGTGGTGGACGTGGTGGTGGAAAACAGCGCC




AGCCGGGCCAACCTCAGCCTGCGGGTGACGGCGGAGGAGC




CCATCTGTGGCCTCCGCGCCACGCCCAGCCCCGAGGCCCG




TGTACTGCAGGGAGTCCTAGTGAGGTACAGCCCCGTGGTG




GAGGCCGGCTCGGACATGGTCTTCCGGTGGACCATCAACG




ACAAGCAGTCCCTGACCTTCCAGAACGTGGTCTTCAATGT




CATTTATCAGAGCGCGGCGGTCTTCAAGCTCTCACTGACG




GCCTCCAACCACGTGAGCAACGTCACCGTGAACTACAACG




TAACCGTGGAGCGGATGAACAGGATGCAGGGTCTGCAGGT




CTCCACAGTGCCGGCCGTGCTGTCCCCCAATGCCACGCTA




GCACTGACGGCGGGCGTGCTGGTGGACTCGGCCGTGGAGG




TGGCCTTCCTGTGGACCTTTGGGGATGGGGAGCAGGCCCT




CCACCAGTTCCAGCCTCCGTACAACGAGTCCTTCCCGGTT




CCAGACCCCTCGGTGGCCCAGGTGCTGGTGGAGCACAATG




TCATGCACACCTACGCTGCCCCAGGTGAGTACCTCCTGAC




CGTGCTGGCATCTAATGCCTTCGAGAACCTGACGCAGCAG




GTGCCTGTGAGCGTGCGCGCCTCCCTGCCCTCCGTGGCTG




TGGGTGTGAGTGACGGCGTCCTGGTGGCCGGCCGGCCCGT




CACCTTCTACCCGCACCCGCTGCCCTCGCCTGGGGGTGTT




CTTTACACGTGGGACTTCGGGGACGGCTCCCCTGTCCTGA




CCCAGAGCCAGCCGGCTGCCAACCACACCTATGCCTCGAG




GGGCACCTACCACGTGCGCCTGGAGGTCAACAACACGGTG




AGCGGTGCGGCGGCCCAGGCGGATGTGCGCGTCTTTGAGG




AGCTCCGCGGACTCAGCGTGGACATGAGCCTGGCCGTGGA




GCAGGGCGCCCCCGTGGTGGTCAGCGCCGCGGTGCAGACG




GGCGACAACATCACGTGGACCTTCGACATGGGGGACGGCA




CCGTGCTGTCGGGCCCGGAGGCAACAGTGGAGCATGTGTA




CCTGCGGGCACAGAACTGCACAGTGACCGTGGGTGCGGCC




AGCCCCGCCGGCCACCTGGCCCGGAGCCTGCACGTGCTGG




TCTTCGTCCTGGAGGTGCTGCGCGTTGAACCCGCCGCCTG




CATCCCCACGCAGCCTGACGCGCGGCTCACGGCCTACGTC




ACCGGGAACCCGGCCCACTACCTCTTCGACTGGACCTTCG




GGGATGGCTCCTCCAACACGACCGTGCGGGGGTGCCCGAC




GGTGACACACAACTTCACGCGGAGCGGCACGTTCCCCCTG




GCGCTGGTGCTGTCCAGCCGCGTGAACAGGGCGCATTACT




TCACCAGCATCTGCGTGGAGCCAGAGGTGGGCAACGTCAC




CCTGCAGCCAGAGAGGCAGTTTGTGCAGCTCGGGGACGAG




GCCTGGCTGGTGGCATGTGCCTGGCCCCCGTTCCCCTACC




GCTACACCTGGGACTTTGGCACCGAGGAAGCCGCCCCCAC




CCGTGCCAGGGGCCCTGAGGTGACGTTCATCTACCGAGAC




CCAGGCTCCTATCTTGTGACAGTCACCGCGTCCAACAACA




TCTCTGCTGCCAATGACTCAGCCCTGGTGGAGGTGCAGGA




GCCCGTGCTGGTCACCAGCATCAAGGTCAATGGCTCCCTT




GGGCTGGAGCTGCAGCAGCCGTACCTGTTCTCTGCTGTGG




GCCGTGGGCGCCCCGCCAGCTACCTGTGGGATCTGGGGGA




CGGTGGGTGGCTCGAGGGTCCGGAGGTCACCCACGCTTAC




AACAGCACAGGTGACTTCACCGTTAGGGTGGCCGGCTGGA




ATGAGGTGAGCCGCAGCGAGGCCTGGCTCAATGTGACGGT




GAAGCGGCGCGTGCGGGGGCTCGTCGTCAATGCAAGCCGC




ACGGTGGTGCCCCTGAATGGGAGCGTGAGCTTCAGCACGT




CGCTGGAGGCCGGCAGTGATGTGCGCTATTCCTGGGTGCT




CTGTGACCGCTGCACGCCCATCCCTGGGGGTCCTACCATC




TCTTACACCTTCCGCTCCGTGGGCACCTTCAATATCATCG




TCACGGCTGAGAACGAGGTGGGCTCCGCCCAGGACAGCAT




CTTCGTCTATGTCCTGCAGCTCATAGAGGGGCTGCAGGTG




GTGGGCGGTGGCCGCTACTTCCCCACCAACCACACGGTAC




AGCTGCAGGCCGTGGTTAGGGATGGCACCAACGTCTCCTA




CAGCTGGACTGCCTGGAGGGACAGGGGCCCGGCCCTGGCC




GGCAGCGGCAAAGGCTTCTCGCTCACCGTGCTCGAGGCCG




GCACCTACCATGTGCAGCTGCGGGCCACCAACATGCTGGG




CAGCGCCTGGGCCGACTGCACCATGGACTTCGTGGAGCCT




GTGGGGTGGCTGATGGTGGCCGCCTCCCCGAACCCAGCTG




CCGTCAACACAAGCGTCACCCTCAGTGCCGAGCTGGCTGG




TGGCAGTGGTGTCGTATACACTTGGTCCTTGGAGGAGGGG




CTGAGCTGGGAGACCTCCGAGCCATTTACCACCCATAGCT




TCCCCACACCCGGCCTGCACTTGGTCACCATGACGGCAGG




GAACCCGCTGGGCTCAGCCAACGCCACCGTGGAAGTGGAT




GTGCAGGTGCCTGTGAGTGGCCTCAGCATCAGGGCCAGCG




AGCCCGGAGGCAGCTTCGTGGCGGCCGGGTCCTCTGTGCC




CTTTTGGGGGCAGCTGGCCACGGGCACCAATGTGAGCTGG




TGCTGGGCTGTGCCCGGCGGCAGCAGCAAGCGTGGCCCTC




ATGTCACCATGGTCTTCCCGGATGCTGGCACCTTCTCCAT




CCGGCTCAATGCCTCCAACGCAGTCAGCTGGGTCTCAGCC




ACGTACAACCTCACGGCGGAGGAGCCCATCGTGGGCCTGG




TGCTGTGGGCCAGCAGCAAGGTGGTGGCGCCCGGGCAGCT




GGTCCATTTTCAGATCCTGCTGGCTGCCGGCTCAGCTGTC




ACCTTCCGCCTGCAGGTCGGCGGGGCCAACCCCGAGGTGC




TCCCCGGGCCCCGTTTCTCCCACAGCTTCCCCCGCGTCGG




AGACCACGTGGTGAGCGTGCGGGGCAAAAACCACGTGAGC




TGGGCCCAGGCGCAGGTGCGCATCGTGGTGCTGGAGGCCG




TGAGTGGGCTGCAGGTGCCCAACTGCTGCGAGCCTGGCAT




CGCCACGGGCACTGAGAGGAACTTCACAGCCCGCGTGCAG




CGCGGCTCTCGGGTCGCCTACGCCTGGTACTTCTCGCTGC




AGAAGGTCCAGGGCGACTCGCTGGTCATCCTGTCGGGCCG




CGACGTCACCTACACGCCCGTGGCCGCGGGGCTGTTGGAG




ATCCAGGTGCGCGCCTTCAACGCCCTGGGCAGTGAGAACC




GCACGCTGGTGCTGGAGGTTCAGGACGCCGTCCAGTATGT




GGCCCTGCAGAGCGGCCCCTGCTTCACCAACCGCTCGGCG




CAGTTTGAGGCCGCCACCAGCCCCAGCCCCCGGCGTGTGG




CCTACCACTGGGACTTTGGGGATGGGTCGCCAGGGCAGGA




CACAGATGAGCCCAGGGCCGAGCACTCCTACCTGAGGCCT




GGGGACTACCGCGTGCAGGTGAACGCCTCCAACCTGGTGA




GCTTCTTCGTGGCGCAGGCCACGGTGACCGTCCAGGTGCT




GGCCTGCCGGGAGCCGGAGGTGGACGTGGTCCTGCCCCTG




CAGGTGCTGATGCGGCGATCACAGCGCAACTACTTGGAGG




CCCACGTTGACCTGCGCGACTGCGTCACCTACCAGACTGA




GTACCGCTGGGAGGTGTATCGCACCGCCAGCTGCCAGCGG




CCGGGGCGCCCAGCGCGTGTGGCCCTGCCCGGCGTGGACG




TGAGCCGGCCTCGGCTGGTGCTGCCGCGGCTGGCGCTGCC




TGTGGGGCACTACTGCTTTGTGTTTGTCGTGTCATTTGGG




GACACGCCACTGACACAGAGCATCCAGGCCAATGTGACGG




TGGCCCCCGAGCGCCTGGTGCCCATCATTGAGGGTGGCTC




ATACCGCGTGTGGTCAGACACACGGGACCTGGTGCTGGAT




GGGAGCGAGTCCTACGACCCCAACCTGGAGGACGGCGACC




AGACGCCGCTCAGTTTCCACTGGGCCTGTGTGGCTTCGAC




ACAGAGGGAGGCTGGCGGGTGTGCGCTGAACTTTGGGCCC




CGCGGGAGCAGCACGGTCACCATTCCACGGGAGCGGCTGG




CGGCTGGCGTGGAGTACACCTTCAGCCTGACCGTGTGGAA





GGCCGGCCGCAAGGAGGAGGCCACCAACCAGACGGTGCTG






ATCCGGAGTGGCCGGGTGCCCATTGTGTCCTTGGAGTGTG






TGTCCTGCAAGGCACAGGCCGTGTACGAAGTGAGCCGCAG





CTCCTACGTGTACTTGGAGGGCCGCTGCCTCAATTGCAGC




AGCGGCTCCAAGCGAGGGCGGTGGGCTGCACGTACGTTCA




GCAACAAGACGCTGGTGCTGGATGAGACCACCACATCCAC




GGGCAGTGCAGGCATGCGACTGGTGCTGCGGCGGGGCGTG




CTGCGGGACGGCGAGGGATACACCTTCACGCTCACGGTGC




TGGGCCGCTCTGGCGAGGAGGAGGGCTGCGCCTCCATCCG




CCTGTCCCCCAACCGCCCGCCGCTGGGGGGCTCTTGCCGC




CTCTTCCCACTGGGCGCTGTGCACGCCCTCACCACCAAGG




TGCACTTCGAATGCACGGGCTGGCATGACGCGGAGGATGC




TGGCGCCCCGCTGGTGTACGCCCTGCTGCTGCGGCGCTGT




CGCCAGGGCCACTGCGAGGAGTTCTGTGTCTACAAGGGCA




GCCTCTCCAGCTACGGAGCCGTGCTGCCCCCGGGTTTCAG




GCCACACTTCGAGGTGGGCCTGGCCGTGGTGGTGCAGGAC




CAGCTGGGAGCCGCTGTGGTCGCCCTCAACAGGTCTTTGG




CCATCACCCTCCCAGAGCCCAACGGCAGCGCAACGGGGCT




CACAGTCTGGCTGCACGGGCTCACCGCTAGTGTGCTCCCA




GGGCTGCTGCGGCAGGCCGATCCCCAGCACGTCATCGAGT




ACTCGTTGGCCCTGGTCACCGTGCTGAACGAGTACGAGCG




GGCCCTGGACGTGGCGGCAGAGCCCAAGCACGAGCGGCAG




CACCGAGCCCAGATACGCAAGAACATCACGGAGACTCTGG




TGTCCCTGAGGGTCCACACTGTGGATGACATCCAGCAGAT




CGCTGCTGCGCTGGCCCAGTGCATGGGGCCCAGCAGGGAG




CTCGTATGCCGCTCGTGCCTGAAGCAGACGCTGCACAAGC




TGGAGGCCATGATGCTCATCCTGCAGGCAGAGACCACCGC




GGGCACCGTGACGCCCACCGCCATCGGAGACAGCATCCTC




AACATCACAGGAGACCTCATCCACCTGGCCAGCTCGGACG




TGCGGGCACCACAGCCCTCAGAGCTGGGAGCCGAGTCACC




ATCTCGGATGGTGGCGTCCCAGGCCTACAACCTGACCTCT




GCCCTCATGCGCATCCTCATGCGCTCCCGCGTGCTCAACG




AGGAGCCCCTGACGCTGGCGGGCGAGGAGATCGTGGCCCA




GGGCAAGCGCTCGGACCCGCGGAGCCTGCTGTGCTATGGC




GGCGCCCCAGGGCCTGGCTGCCACTTCTCCATCCCCGAGG




CTTTCAGCGGGGCCCTGGCCAACCTCAGTGACGTGGTGCA




GCTCATCTTTCTGGTGGACTCCAATCCCTTTCCCTTTGGC




TATATCAGCAACTACACCGTCTCCACCAAGGTGGCCTCGA




TGGCATTCCAGACACAGGCCGGCGCCCAGATCCCCATCGA




GCGGCTGGCCTCAGAGCGCGCCATCACCGTGAAGGTGCCC




AACAACTCGGACTGGGCTGCCCGGGGCCACCGCAGCTCCG




CCAACTCCGCCAACTCCGTTGTGGTCCAGCCCCAGGCCTC




CGTCGGTGCTGTGGTCACCCTGGACAGCAGCAACCCTGCG




GCCGGGCTGCATCTGCAGCTCAACTATACGCTGCTGGACG




GCCACTACCTGTCTGAGGAACCTGAGCCCTACCTGGCAGT




CTACCTACACTCGGAGCCCCGGCCCAATGAGCACAACTGC




TCGGCTAGCAGGAGGATCCGCCCAGAGTCACTCCAGGGTG




CTGACCACCGGCCCTACACCTTCTTCATTTCCCCGGGGAG




CAGAGACCCAGCGGGGAGTTACCATCTGAACCTCTCCAGC




CACTTCCGCTGGTCGGCGCTGCAGGTGTCCGTGGGCCTGT




ACACGTCCCTGTGCCAGTACTTCAGCGAGGAGGACATGGT




GTGGCGGACAGAGGGGCTGCTGCCCCTGGAGGAGACCTCG




CCCCGCCAGGCCGTCTGCCTCACCCGCCACCTCACCGCCT




TCGGCGCCAGCCTCTTCGTGCCCCCAAGCCATGTCCGCTT




TGTGTTTCCTGAGCCGACAGCGGATGTAAACTACATCGTC




ATGCTGACATGTGCTGTGTGCCTGGTGACCTACATGGTCA




TGGCCGCCATCCTGCACAAGCTGGACCAGTTGGATGCCAG




CCGGGGCCGCGCCATCCCTTTCTGTGGGCAGCGGGGCCGC




TTCAAGTACGAGATCCTCGTCAAGACAGGCTGGGGCCGGG




GCTCAGGTACCACGGCCCACGTGGGCATCATGCTGTATGG




GGTGGACAGCCGGAGCGGCCACCGGCACCTGGACGGCGAC




AGAGCCTTCCACCGCAACAGCCTGGACATCTTCCGGATCG




CCACCCCGCACAGCCTGGGTAGCGTGTGGAAGATCCGAGT




GTGGCACGACAACAAAGGGCTCAGCCCTGCCTGGTTCCTG




CAGCACGTCATCGTCAGGGACCTGCAGACGGCACGCAGCG




CCTTCTTCCTGGTCAATGACTGGCTTTCGGTGGAGACGGA




GGCCAACGGGGGCCTGGTGGAGAAGGAGGTGCTGGCCGCG




AGCGACGCAGCCCTTTTGCGCTTCCGGCGCCTGCTGGTGG




CTGAGCTGCAGCGTGGCTTCTTTGACAAGCACATCTGGCT




CTCCATATGGGACCGGCCGCCTCGTAGCCGTTTCACTCGC




ATCCAGAGGGCCACCTGCTGCGTTCTCCTCATCTGCCTCT




TCCTGGGCGCCAACGCCGTGTGGTACGGGGCTGTTGGCGA




CTCTGCCTACAGCACGGGGCATGTGTCCAGGCTGAGCCCG




CTGAGCGTCGACACAGTCGCTGTTGGCCTGGTGTCCAGCG




TGGTTGTCTATCCCGTCTACCTGGCCATCCTTTTTCTCTT




CCGGATGTCCCGGAGCAAGGTGGCTGGGAGCCCGAGCCCC




ACACCTGCCGGGCAGCAGGTGCTGGACATCGACAGCTGCC




TGGACTCGTCCGTGCTGGACAGCTCCTTCCTCACGTTCTC




AGGCCTCCACGCTGAGGCCTTTGTTGGACAGATGAAGAGT




GACTTGTTTCTGGATGATTCTAAGAGTCTGGTGTGCTGGC




CCTCCGGCGAGGGAACGCTCAGTTGGCCGGACCTGCTCAG




TGACCCGTCCATTGTGGGTAGCAATCTGCGGCAGCTGGCA




CGGGGCCAGGCGGGCCATGGGCTGGGCCCAGAGGAGGACG




GCTTCTCCCTGGCCAGCCCCTACTCGCCTGCCAAATCCTT




CTCAGCATCAGATGAAGACCTGATCCAGCAGGTCCTTGCC




GAGGGGGTCAGCAGCCCAGCCCCTACCCAAGACACCCACA




TGGAAACGGACCTGCTCAGCAGCCTGTCCAGCACTCCTGG




GGAGAAGACAGAGACGCTGGCGCTGCAGAGGCTGGGGGAG




CTGGGGCCACCCAGCCCAGGCCTGAACTGGGAACAGCCCC




AGGCAGCGAGGCTGTCCAGGACAGGACTGGTGGAGGGTCT




GCGGAAGCGCCTGCTGCCGGCCTGGTGTGCCTCCCTGGCC




CACGGGCTCAGCCTGCTCCTGGTGGCTGTGGCTGTGGCTG




TCTCAGGGTGGGTGGGTGCGAGCTTCCCCCCGGGCGTGAG




TGTTGCGTGGCTCCTGTCCAGCAGCGCCAGCTTCCTGGCC




TCATTCCTCGGCTGGGAGCCACTGAAGGTCTTGCTGGAAG




CCCTGTACTTCTCACTGGTGGCCAAGCGGCTGCACCCGGA




TGAAGATGACACCCTGGTAGAGAGCCCGGCTGTGACGCCT




GTGAGCGCACGTGTGCCCCGCGTACGGCCACCCCACGGCT




TTGCACTCTTCCTGGCCAAGGAAGAAGCCCGCAAGGTCAA




GAGGCTACATGGCATGCTGCGGAGCCTCCTGGTGTACATG




CTTTTTCTGCTGGTGACCCTGCTGGCCAGCTATGGGGATG




CCTCATGCCATGGGCACGCCTACCGTCTGCAAAGCGCCAT




CAAGCAGGAGCTGCACAGCCGGGCCTTCCTGGCCATCACG




CGGTCTGAGGAGCTCTGGCCATGGATGGCCCACGTGCTGC




TGCCCTACGTCCACGGGAACCAGTCCAGCCCAGAGCTGGG




GCCCCCACGGCTGCGGCAGGTGCGGCTGCAGGAAGCACTC




TACCCAGACCCTCCCGGCCCCAGGGTCCACACGTGCTCGG




CCGCAGGAGGCTTCAGCACCAGCGATTACGACGTTGGCTG




GGAGAGTCCTCACAATGGCTCGGGGACGTGGGCCTATTCA




GCGCCGGATCTGCTGGGGGCATGGTCCTGGGGCTCCTGTG




CCGTGTATGACAGCGGGGGCTACGTGCAGGAGCTGGGCCT




GAGCCTGGAGGAGAGCCGCGACCGGCTGCGCTTCCTGCAG




CTGCACAACTGGCTGGACAACAGGAGCCGCGCTGTGTTCC




TGGAGCTCACGCGCTACAGCCCGGCCGTGGGGCTGCACGC




CGCCGTCACGCTGCGCCTCGAGTTCCCGGCGGCCGGCCGC




GCCCTGGCCGCCCTCAGCGTCCGCCCCTTTGCGCTGCGCC




GCCTCAGCGCGGGCCTCTCGCTGCCTCTGCTCACCTCGGT




GTGCCTGCTGCTGTTCGCCGTGCACTTCGCCGTGGCCGAG




GCCCGTACTTGGCACAGGGAAGGGCGCTGGCGCGTGCTGC




GGCTCGGAGCCTGGGCGCGGTGGCTGCTGGTGGCGCTGAC




GGCGGCCACGGCACTGGTACGCCTCGCCCAGCTGGGTGCC




GCTGACCGCCAGTGGACCCGTTTCGTGCGCGGCCGCCCGC




GCCGCTTCACTAGCTTCGACCAGGTGGCGCAGCTGAGCTC




CGCAGCCCGTGGCCTGGCGGCCTCGCTGCTCTTCCTGCTT




TTGGTCAAGGCTGCCCAGCAGCTACGCTTCGTGCGCCAGT




GGTCCGTCTTTGGCAAGACATTATGCCGAGCTCTGCCAGA




GCTCCTGGGGGTCACCTTGGGCCTGGTGGTGCTCGGGGTA




GCCTACGCCCAGCTGGCCATCCTGCTCGTGTCTTCCTGTG




TGGACTCCCTCTGGAGCGTGGCCCAGGCCCTGTTGGTGCT




GTGCCCTGGGACTGGGCTCTCTACCCTGTGTCCTGCCGAG




TCCTGGCACCTGTCACCCCTGCTGTGTGTGGGGCTCTGGG




CACTGCGGCTGTGGGGCGCCCTACGGCTGGGGGCTGTTAT




TCTCCGCTGGCGCTACCACGCCTTGCGTGGAGAGCTGTAC




CGGCCGGCCTGGGAGCCCCAGGACTACGAGATGGTGGAGT




TGTTCCTGCGCAGGCTGCGCCTCTGGATGGGCCTCAGCAA




GGTCAAGGAGTTCCGCCACAAAGTCCGCTTTGAAGGGATG




GAGCCGCTGCCCTCTCGCTCCTCCAGGGGCTCCAAGGTAT




CCCCGGATGTGCCCCCACCCAGCGCTGGCTCCGATGCCTC




GCACCCCTCCACCTCCTCCAGCCAGCTGGATGGGCTGAGC




GTGAGCCTGGGCCGGCTGGGGACAAGGTGTGAGCCTGAGC




CCTCCCGCCTCCAAGCCGTGTTCGAGGCCCTGCTCACCCA




GTTTGACCGACTCAACCAGGCCACAGAGGACGTCTACCAG




CTGGAGCAGCAGCTGCACAGCCTGCAAGGCCGCAGGAGCA




GCCGGGCGCCCGCCGGATCTTCCCGTGGCCCATCCCCGGG




CCTGCGGCCAGCACTGCCCAGCCGCCTTGCCCGGGCCAGT




CGGGGTGTGGACCTGGCCACTGGCCCCAGCAGGACACCCC




TTCGGGCCAAGAACAAGGTCCACCCCAGCAGCACTTAGTC




CTCCTTCCTGGCGGGGGTGGGCCGTGGAGTCGGAGTGGAC




ACCGCTCAGTATTACTTTCTGCCGCTGTCAAGGCCGAGGG




CCAGGCAGAATGGCTGCACGTAGGTTCCCCAGAGAGCAGG




CAGGGGCATCTGTCTGTCTGTGGGCTTCAGCACTTTAAAG




AGGCTGTGTGGCCAACCAGGACCCAGGGTCCCCTCCCCAG




CTCCCTTGGGAAGGACACAGCAGTATTGGACGGTTTCTAG




CCTCTGAGATGCTAATTTATTTCCCCGAGTCCTCAGGTAC




AGCGGGCTGTGCCCGGCCCCACCCCCTGGGCAGATGTCCC




CCACTGCTAAGGCTGCTGGCTTCAGGGAGGGTTAGCCTGC




ACCGCCGCCACCCTGCCCCTAAGTTATTACCTCTCCAGTT




CCTACCGTACTCCCTGCACCGTCTCACTGTGTGTCTCGTG




TCAGTAATTTATATGGTGTTAAAATGTGTATATTTTTGTA




TGTCACTATTTTCACTAGGGCTGAGGGGCCTGCGCCCAGA




GCTGGCCTCCCCCAACACCTGCTGCGCTTGGTAGGTGTGG




TGGCGTTATGGCAGCCCGGCTGCTGCTTGGATGCGAGCTT




GGCCTTGGGCCGGTGCTGGGGGCACAGCTGTCTGCCAGGC




ACTCTCATCACCCCAGAGGCCTTGTCATCCTCCCTTGCCC




CAGGCCAGGTAGCAAGAGAGCAGCGCCCAGGCCTGCTGGC




ATCAGGTCTGGGCAAGTAGCAGGACTAGGCATGTCAGAGG




ACCCCAGGGTGGTTAGAGGAAAAGACTCCTCCTGGGGGCT




GGCTCCCAGGGTGGAGGAAGGTGACTGTGTGTGTGTGTGT




GTGCGCGCGCGCACGCGCGAGTGTGCTGTATGGCCCAGGC




AGCCTCAAGGCCCTCGGAGCTGGCTGTGCCTGCTTCTGTG




TACCACTTCTGTGGGCATGGCCGCTTCTAGAGCCTCGACA




CCCCCCCAACCCCCGCACCAAGCAGACAAAGTCAATAAAA




GAGCTGTCTGACTGC





PLD3
NM_001031696.3
GCATCCTCTCACCGCCGGAAGCTGAACTGACTCGTCCGCG
30




GCCGCTCTACCCCAACAGGCCGCCACCAGCGAGAGTGCGG




CCATAACCATCACGTGACCGCCCACCGACACCAGCGAGAG




TGCAGTCGTAACCGTCACGTGACCGCCCACCGTCGGCCCG




GCGCTCCCCTCCGCCCGAAGCTAGCAAGCGGCGCGGCCAA




TGAGAAAGGCGCATGCCTGGCCCCCGCCGGCCTGCAGTCT




AGCCGTAGTGCGCCTGCGCGCGGCTAGGAGGGGCCGTCAG




GCGGGGATACAGCCTGGAAGGTAATGCATGTCCATGGTAC




ACAAATTCACAAGTTTGGAGACCCTGACACACCCACCTTC




TCACCTGGGCTCTGCGTATCCCCCAGCCTTGAGGGAAGAT




GAAGCCTAAACTGATGTACCAGGAGCTGAAGGTGCCTGCA




GAGGAGCCCGCCAATGAGCTGCCCATGAATGAGATTGAGG




CGTGGAAGGCTGCGGAAAAGAAAGCCCGCTGGGTCCTGCT




GGTCCTCATTCTGGCGGTTGTGGGCTTCGGAGCCCTGATG




ACTCAGCTGTTTCTATGGGAATACGGCGACTTGCATCTCT




TTGGGCCCAACCAGCGCCCAGCCCCCTGCTATGACCCTTG




CGAAGCAGTGCTGGTGGAAAGCATTCCTGAGGGCCTGGAC




TTCCCCAATGCCTCCACGGGGAACCCTTCCACCAGCCAGG




CCTGGCTGGGCCTGCTCGCCGGTGCGCACAGCAGCCTGGA




CATCGCCTCCTTCTACTGGACCCTCACCAACAATGACACC





CACACGCAGGAGCCCTCTGCCCAGCAGGGTGAGGAGGTCC






TCCGGCAGCTGCAGACCCTGGCACCAAAGGGCGTGAACGT






CCGCATCGCTGTGAGCAAGCCCAGCGGGCCCCAGCCACAG





GCGGACCTGCAGGCTCTGCTGCAGAGCGGTGCCCAGGTCC




GCATGGTGGACATGCAGAAGCTGACCCATGGCGTCCTGCA




TACCAAGTTCTGGGTGGTGGACCAGACCCACTTCTACCTG




GGCAGTGCCAACATGGACTGGCGTTCACTGACCCAGGTCA




AGGAGCTGGGCGTGGTCATGTACAACTGCAGCTGCCTGGC




TCGAGACCTGACCAAGATCTTTGAGGCCTACTGGTTCCTG




GGCCAGGCAGGCAGCTCCATCCCATCAACTTGGCCCCGGT




TCTATGACACCCGCTACAACCAAGAGACACCAATGGAGAT




CTGCCTCAATGGAACCCCTGCTCTGGCCTACCTGGCGAGT




GCGCCCCCACCCCTGTGTCCAAGTGGCCGCACTCCAGACC




TGAAGGCTCTACTCAACGTGGTGGACAATGCCCGGAGTTT




CATCTACGTCGCTGTCATGAACTACCTGCCCACTCTGGAG




TTCTCCCACCCTCACAGGTTCTGGCCTGCCATTGACGATG




GGCTGCGGCGGGCCACCTACGAGCGTGGCGTCAAGGTGCG




CCTGCTCATCAGCTGCTGGGGACACTCGGAGCCATCCATG




CGGGCCTTCCTGCTCTCTCTGGCTGCCCTGCGTGACAACC




ATACCCACTCTGACATCCAGGTGAAACTCTTTGTGGTCCC




CGCGGATGAGGCCCAGGCTCGAATCCCATATGCCCGTGTC




AACCACAACAAGTACATGGTGACTGAACGCGCCACCTACA




TCGGAACCTCCAACTGGTCTGGCAACTACTTCACGGAGAC




GGCGGGCACCTCGCTGCTGGTGACGCAGAATGGGAGGGGC




GGCCTGCGGAGCCAGCTGGAGGCCATTTTCCTGAGGGACT




GGGACTCCCCTTACAGCCATGACCTTGACACCTCAGCTGA




CAGCGTGGGCAACGCCTGCCGCCTGCTCTGAGGCCCGATC




CAGTGGGCAGGCCAAGGCCTGCTGGGCCCCCGCGGACCCA




GGTGCTCTGGGTCACGGTCCCTGTCCCCGCGCCCCCGCTT




CTGTCTGCCCCATTGTGGCTCCTCAGGCTCTCTCCCCTGC




TCTCCCACCTCTACCTCCACCCCCACCGGCCTGACGCTGT




GGCCCCGGGACCCAGCAGAGCTGGGGGAGGGATCAGCCCC




CAAAGAAATGGGGGTGCATGCTGGGCCTGGCCCCCTGGCC




CACCCCCACTTTCCAGGGCAAAAAGGGCCCAGGGTTATAA




TAAGTAAATAACTTGTCTGTACAGCCTGAAAAAAAAAAAA




AAAAAAA





PNMA2
NM_007257.5
GAGCGGTGCTCAGGGGAGGGCTGGAGGGGAGGGAAGGAGA
31




GAGAGAGGGGAGGGCGGCACCGCCCCTAGCCCCGCGCTCC




GGAAGTGAAGCGGCCAGACCACCAGCTAATGGATGCGGAG




CGGAGGGCCCGCTGACCGCTCTCCGCGCCTGGAGCAGCTT




GGCTTGGCTGGAGCTAAGAGCCAGACACACCACTGTGTGG




AGGTGGGTGATGTCTTCCTGTGCTAAAAGGTGAATAAATA




AGCTCCTCACCTCTCGCGGAACACTCGGGAACACATCAAC




AGGGGTCCAAGCCGCCCTGCTGGGAGGCTTCTCTTCAAGA





GTTCTGGGTCCCAGAGTGGAAGGCATTTTCCCATCAACTG





GAGAGAGACGAAACATCAGAGACCAGGAGGCTGTGGAGAA




AGCAGCTGTCCCAGGTGCCTCAACTATCAGAGAAGGGTCA




GCGTCACGTGGCTGCCAGCATCTTTGAGAAAATCACTGGC




AATCGGACTTCAGAGCTGCGGGCACAGGTGTGGTTAGAAC




TGAGATACGACCTGCCCACCTGGGTCAGGCCTAAAGACAA




GAAGTCCTGAGTTCTTGCCACTGAGTAGGCCAGGGTCATT




TGTCCAGAAAACTTTGTGACTGTCTTTGAGTGACCTAGTC




TGGGACCCATTCATTGGTGGGTTCTAAGGTTAGAAGCTCA




TCCAGGATATTTTCAATATTAAGTCAGTGCATAGCTGCAC




CACTAACAAATTGGTGCCTGTAGAGTCAGAGTGGGTCAAT




TCTTAGGACAATGGCGCTGGCACTGTTAGAGGACTGGTGC




AGGATAATGAGTGTGGATGAGCAGAAGTCACTGATGGTTA




CGGGGATACCGGCGGACTTTGAGGAGGCTGAGATTCAGGA




GGTCCTTCAGGAGACTTTAAAGTCTCTGGGCAGGTATAGA




CTGCTTGGCAAGATATTCCGGAAGCAGGAGAATGCCAATG




CTGTCTTACTAGAGCTTCTGGAAGATACTGATGTCTCGGC




CATTCCCAGTGAGGTCCAGGGAAAGGGGGGTGTCTGGAAG




GTGATCTTTAAGACCCCTAATCAGGACACTGAGTTTCTTG




AAAGATTGAACCTGTTTCTAGAAAAAGAGGGGCAGACGGT




CTCGGGTATGTTTCGAGCCCTGGGGCAGGAGGGCGTGTCT




CCAGCCACAGTGCCCTGCATCTCACCAGAATTACTGGCCC




ATTTGTTGGGACAGGCAATGGCACATGCGCCTCAGCCCCT




GCTACCCATGAGATACCGGAAACTGCGAGTATTCTCAGGG




AGTGCTGTCCCAGCCCCAGAGGAAGAGTCCTTTGAGGTCT




GGTTGGAACAGGCCACGGAGATAGTCAAAGAGTGGCCAGT




AACAGAGGCAGAAAAGAAAAGGTGGCTGGCGGAAAGCCTG




CGGGGCCCTGCCCTGGACCTCATGCACATAGTGCAGGCAG




ACAACCCGTCCATCAGTGTAGAAGAGTGTTTGGAGGCCTT




TAAGCAAGTGTTTGGGAGCCTAGAGAGCCGCAGGACAGCC




CAGGTGAGGTATCTGAAGACCTATCAGGAGGAAGGAGAGA




AGGTCTCAGCCTATGTGTTACGGCTAGAAACCCTGCTCCG




GAGAGCGGTGGAGAAACGCGCCATCCCTCGGCGTATTGCG




GACCAGGTCCGCCTGGAGCAGGTCATGGCTGGGGCCACTC




TTAACCAGATGCTGTGGTGCCGGCTTAGGGAGCTGAAGGA




TCAGGGCCCGCCCCCCAGCTTCCTTGAGCTAATGAAGGTA




ATACGGGAAGAAGAGGAGGAAGAGGCCTCCTTTGAGAATG




AGAGTATCGAAGAGCCAGAGGAACGAGATGGCTATGGCCG




CTGGAATCATGAGGGAGACGACTGAAAACCACCTGGGGGC




AGGACCCACAGCCAGTGGGCTAAGACCTTTAAAAAATTTT




TTTCTTTAATGTATGGGACTGAAATCAAACCATGAAAGCC




AATTATTGACCTTCCTTCCTTCCTTCCTTCCCTCCCTTCC




TCCTTCTCTCCTTCTCTCCTCCTCTCTCCTCTCCTCTCCT




CTCTTTCCTTCCTTCCTTCCTTTTTTCTTTTTCTCTTTCT




TCTTTATTTCTTGGGTCTCACTCTCATCACCCAGGCTAGA




GTGCAGTGGCACAAAAATCTCGGCTCACTGCAGCCTTGAC




TTCCCAGGCTCAGGCTCAGGTGATCCTCACACCTTAGCCT




CCCAAGTACCTGGGACTACAGGCACGCACCACCATGCCTA




GCTATTCTTTTGTATTTTTGGTAGAGACAGGGTTTTGCTG




TGTTGCTCAGGCTGGTCTGGAACCCCTAGGCTCAAATGAT




GTGCCCAACTCGGCCTCCCAAAGTGCTGGGATTACAGGCA




TGAACCGCCATGCCTGGCCCTTGATTTTTCTTTTTAAGAA




AAAAATATCTAGGAGTTTCTTAGACCCTATGTAGATTATT




AATGAACAAAAGATTAAACTCCAAATATTAAATAGTAAGC




CTGAAGGAATCTGAAACACTTGTACTTCCAATTTTCTTTA




AATAATCCCAAATAGACCAGAATTGGCCCATACCATAGAA




GAAAGAATTGGCAGTCAAAAAAAAAAATACCTTTTGTAAT




GTTTGAAAAATAAAGCTGTTTGACTTGTCAGGTGTTTTCC




TTTCTCAAATCAGCAAATTCTCTCTGAGTGCCTGGCTTTG




TGAGACACTGTACAAGGAGTTACAAGACTACAGCTATAAC




CTGCAGTTGAGCAGTTATAAACCTACAAAATGGGCCCTGC




CCTCAGAGAGGTTCCAGTCTAGATGAGGAGCTGATCTAGA




CAGGTAAAAGGCTAACTAACCCTTTGTGTAAATAAGTTCA




TCACCCCAGTAAAAGTGTCATCACCCAGTGAATAGGACCA




CCTCTGCCTGCAGATTTTTGTTGTTGTTGTTGTCATTGTT




GTTGTTGTTTTAACCTGGGAAGTGTTCTTCCTGCCTTTCT




GCTAGGTGTCAGATAGATGGTCCCAGAGCTAGGTGCTGTG




TCAGGCCCTGAAGACACAGATGACTCAACCTAAGCTTTAC




TTTCCAGAGGTCCACAGCCTGAGAGGTGTCCCCAAAGAAA




GGGGGACATGAGGGGACTGCATGCTTGAGAGCAGGGTTGT




TTAGGGCAGGTTTGGATTTAGTGAGCAGGCTGGTTTGCTT




AGAGAAGGCTTTTAGTGGCAACAAAGGATGAAGAGGAGAG




AAAAGGAACTCACATTTATTGAGGGCCTACTGTGTGCAAA




GTGTTTCATGTATATCTCATTGAATGTATACAGCCACCCT




GTTGTGGTATAATTTTGCTCTTTATAAAGAGAAAGACCGA




AGCTCAGATGAGTTAAGTGGTCTCCTCAACACCAAAATGC




CAAGAAGTGATGGAGCCTAGACAGAAGCCCAGAACTTTCT




GACTCACACTAGTCCATCCTCTACCATCACGATGACTTTC




AAATTGTGCTCTGCAGTTCTGCAGATTTTCTAGCAGTGCC




ATCTCCAAAATGTGTTTTAAACTCTTTATTTTTTTAATTA




TTATTAGTATTATTTTGAGACTGAGTCTTGCTCTATCACC




CAGGCTGGAGTGCAGTGGTGCAATCTCAGCTCACTGCAAC




CTCCGCCTCCCAGGTTCAAGCGATTTCGTGCCTCAGCCTC




CCGAGTAGCTGGGATTACAGGCACCCACCACCACGCCCAG




CTAATTTTTGTATTTTTAGTAGAAATGGGGTTTCACCATG




TTGGCCAGGCTGGTCTCGAACTCCTGACCTCAAGTGATCC




ACTCACCTCGGCCTCCCAAAGTGCTGGGATTACAGGTGTG




AGCCACCATGCCTGGGCTAAACTCTTTAAGTCTCTAGTAA




ATGCAGCTAGATTCAAATGGGCTGATAACCAAATTTTAAC




ACATCAGCATTCACCACCAGGTTTACTTTTATTTTCAGAT




TGGCTCATTTTGTGCAGACCTTAGAGCAAAGTTTCCTTTA




TGGTATCTGTGTACGTATCCAAACTTCTTTTAATTGTTCA




CAGATTTTAAAAGCGGTAGCACCACATGGTTGTGTAGATC




AGACCTGTGTATTTAGATCAGACCTGTGTATCACGTAAGT




GTGTGAGTGCAGTGCAGATGAGCACCATTTAGTTATATGT




GCTAGGCAAATCTCCAACACAGTTGATGTGTAGTCTTGTG




GTAGATTTGTGCATACTGTAAGCAAATTGCTTAGCTTCTC




TAGACATCAGTTTCCACATCTGAAAAATAAGAAGATGAGA




GTACACGGTTGTTATGAACAAATGACTTAATGCTTTTTAA




GCACGTTGCATGACATCTGGAACACAGAAAGCCCTCAATA




CATTGAAGCTCTTAGGATTTTCACGATGTTCCTGTCTGCT




CAATGCATGCTTTCTTTATTGTTCTGACAGTTGTGTGGTA




ACAAGCTAATATGCTTCCAGTTGACTTCCAGTCTACCCTG




GTGTTAGAAACCGTTTCATCTCTTATTGTAAATTTGAGTG




CTTGTTGTTTTTTATATTTGTGATGACTCTTCCAGCAGTT




GTTGACAATTGTTAGAGGTTTGACTTTTAAATAATTACTT




ATTTTTTCTGATTGTGGTTCAGTTTAACTGAAGAATATCC




TGAGATTGTAAGAAAAGCATTTTTTAAAAGGTATCACTTG




TGATCATTTATCTTTCTAAATTCTATTTTTAATACTGTTC




CACCAAAGTGATGCAGTGGTTACCATGACACCCTAATTTC




ATGTGTTTTTGTATTTATGAAAATAGTTTCATTGTCATTT




ATTGGCGGTATACAAAGTAAAATGTTATAAATGTGAAGTT




ATAAAATAAATATATGCTAATAAAATCCTGAGTTTTTCTG




TTTCCT





PQBP1
NM_001032381.1
TGCCTCCTGAGCGTAGTCCAGTTACTTTCAGGCTCGGGGA
32




GTGAAGGCCTCGTTGAGAGAAGGTCTCATTCGGTGTTTTG




GGAAGAGAGTCGTGTGGGCCCAGGTCTGTCTGCTATCAGC




TATGCCGCTGCCCGTTGCGCTGCAGACCCGCTTGGCCAAG





AGAGGCATCCTCAAACATCTGGAGCCTGAACCAGAGGAAG






AGATCATTGCCGAGGACTATGACGATGATCCTGTGGACTA





CGAGGCCACCAGGTTGGAGGGCCTACCACCAAGCTGGTAC




AAGGTGTTCGACCCTTCCTGCGGGCTCCCTTACTACTGGA




ATGCAGACACAGACCTTGTATCCTGGCTCTCCCCACATGA




CCCCAACTCCGTGGTTACCAAATCGGCCAAGAAGCTCAGA




AGCAGTAATGCAGATGCTGAAGAAAAGTTGGACCGGAGCC




ATGACAAGTCGGACAGGGGCCATGACAAGTCGGACCGCAG




CCATGAGAAACTAGACAGGGGCCACGACAAGTCAGACCGG




GGCCACGACAAGTCTGACAGGGATCGAGAGCGTGGCTATG




ACAAGGTAGACAGAGAGAGAGAGCGAGACAGGGAACGGGA




TCGGGACCGCGGGTATGACAAGGCAGACCGGGAAGAGGGC




AAAGAACGGCGCCACCATCGCCGGGAGGAGCTGGCTCCCT




ATCCCAAGAGCAAGAAGGCAGTAAGCCGAAAGGATGAAGA




GTTAGACCCCATGGACCCTAGCTCATACTCAGACGCCCCC




CGGGGCACGTGGTCAACAGGACTCCCCAAGCGGAATGAGG




CCAAGACTGGCGCTGACACCACAGCAGCTGGGCCCCTCTT




CCAGCAGCGGCCGTATCCATCCCCAGGGGCTGTGCTCCGG




GCCAATGCAGAGGCCTCCCGAACCAAGCAGCAGGATTGAA




GCTTCGGCCTCCCTGGCCCTGGGTTAAAATAAAAGCTTTC




TGGTGATCCTGCCCACCAAAAAAAAAAAAAAAAAAAAAAA




AAAAAAAAAAAAAA





RAF1
NM_002880.3
AGAATCGGAGAGCCGGTGGCGTCGCAGGTCGGGAGGACGA
33




GCACCGAGTCGAGGGCTCGCTCGTCTGGGCCGCCCGAGAG




TCTTAATCGCGGGCGCTTGGGCCGCCATCTTAGATGGCGG




GAGTAAGAGGAAAACGATTGTGAGGCGGGAACGGCTTTCT




GCTGCCTTTTTTGGGCCCCGAAAAGGGTCAGCTGGCCGGG




CTTTGGGGCGCGTGCCCTGAGGCGCGGAGCGCGTTTGCTA




CGATGCGGGGGCTGCTCGGGGCTCCGTCCCCTGGGCTGGG




GACGCGCCGAATGTGACCGCCTCCCGCTCCCTCACCCGCC




GCGGGGAGGAGGAGCGGGCGAGAAGCTGCCGCCGAACGAC




AGGACGTTGGGGCGGCCTGGCTCCCTCAGGTTTAAGAATT




GTTTAAGCTGCATCAATGGAGCACATACAGGGAGCTTGGA




AGACGATCAGCAATGGTTTTGGATTCAAAGATGCCGTGTT




TGATGGCTCCAGCTGCATCTCTCCTACAATAGTTCAGCAG




TTTGGCTATCAGCGCCGGGCATCAGATGATGGCAAACTCA




CAGATCCTTCTAAGACAAGCAACACTATCCGTGTTTTCTT




GCCGAACAAGCAAAGAACAGTGGTCAATGTGCGAAATGGA




ATGAGCTTGCATGACTGCCTTATGAAAGCACTCAAGGTGA




GGGGCCTGCAACCAGAGTGCTGTGCAGTGTTCAGACTTCT




CCACGAACACAAAGGTAAAAAAGCACGCTTAGATTGGAAT




ACTGATGCTGCGTCTTTGATTGGAGAAGAACTTCAAGTAG




ATTTCCTGGATCATGTTCCCCTCACAACACACAACTTTGC




TCGGAAGACGTTCCTGAAGCTTGCCTTCTGTGACATCTGT




CAGAAATTCCTGCTCAATGGATTTCGATGTCAGACTTGTG




GCTACAAATTTCATGAGCACTGTAGCACCAAAGTACCTAC




TATGTGTGTGGACTGGAGTAACATCAGACAACTCTTATTG




TTTCCAAATTCCACTATTGGTGATAGTGGAGTCCCAGCAC




TACCTTCTTTGACTATGCGTCGTATGCGAGAGTCTGTTTC




CAGGATGCCTGTTAGTTCTCAGCACAGATATTCTACACCT




CACGCCTTCACCTTTAACACCTCCAGTCCCTCATCTGAAG




GTTCCCTCTCCCAGAGGCAGAGGTCGACATCCACACCTAA





TGTCCACATGGTCAGCACCACCCTGCCTGTGGACAGCAGG






ATGATTGAGGATGCAATTCGAAGTCACAGCGAATCAGCCT





CACCTTCAGCCCTGTCCAGTAGCCCCAACAATCTGAGCCC




AACAGGCTGGTCACAGCCGAAAACCCCCGTGCCAGCACAA




AGAGAGCGGGCACCAGTATCTGGGACCCAGGAGAAAAACA




AAATTAGGCCTCGTGGACAGAGAGATTCAAGCTATTATTG




GGAAATAGAAGCCAGTGAAGTGATGCTGTCCACTCGGATT




GGGTCAGGCTCTTTTGGAACTGTTTATAAGGGTAAATGGC




ACGGAGATGTTGCAGTAAAGATCCTAAAGGTTGTCGACCC




AACCCCAGAGCAATTCCAGGCCTTCAGGAATGAGGTGGCT




GTTCTGCGCAAAACACGGCATGTGAACATTCTGCTTTTCA




TGGGGTACATGACAAAGGACAACCTGGCAATTGTGACCCA




GTGGTGCGAGGGCAGCAGCCTCTACAAACACCTGCATGTC




CAGGAGACCAAGTTTCAGATGTTCCAGCTAATTGACATTG




CCCGGCAGACGGCTCAGGGAATGGACTATTTGCATGCAAA




GAACATCATCCATAGAGACATGAAATCCAACAATATATTT




CTCCATGAAGGCTTAACAGTGAAAATTGGAGATTTTGGTT




TGGCAACAGTAAAGTCACGCTGGAGTGGTTCTCAGCAGGT




TGAACAACCTACTGGCTCTGTCCTCTGGATGGCCCCAGAG




GTGATCCGAATGCAGGATAACAACCCATTCAGTTTCCAGT




CGGATGTCTACTCCTATGGCATCGTATTGTATGAACTGAT




GACGGGGGAGCTTCCTTATTCTCACATCAACAACCGAGAT




CAGATCATCTTCATGGTGGGCCGAGGATATGCCTCCCCAG




ATCTTAGTAAGCTATATAAGAACTGCCCCAAAGCAATGAA




GAGGCTGGTAGCTGACTGTGTGAAGAAAGTAAAGGAAGAG




AGGCCTCTTTTTCCCCAGATCCTGTCTTCCATTGAGCTGC




TCCAACACTCTCTACCGAAGATCAACCGGAGCGCTTCCGA




GCCATCCTTGCATCGGGCAGCCCACACTGAGGATATCAAT




GCTTGCACGCTGACCACGTCCCCGAGGCTGCCTGTCTTCT




AGTTGACTTTGCACCTGTCTTCAGGCTGCCAGGGGAGGAG




GAGAAGCCAGCAGGCACCACTTTTCTGCTCCCTTTCTCCA




GAGGCAGAACACATGTTTTCAGAGAAGCTGCTGCTAAGGA




CCTTCTAGACTGCTCACAGGGCCTTAACTTCATGTTGCCT




TCTTTTCTATCCCTTTGGGCCCTGGGAGAAGGAAGCCATT




TGCAGTGCTGGTGTGTCCTGCTCCCTCCCCACATTCCCCA




TGCTCAAGGCCCAGCCTTCTGTAGATGCGCAAGTGGATGT




TGATGGTAGTACAAAAAGCAGGGGCCCAGCCCCAGCTGTT




GGCTACATGAGTATTTAGAGGAAGTAAGGTAGCAGGCAGT




CCAGCCCTGATGTGGAGACACATGGGATTTTGGAAATCAG




CTTCTGGAGGAATGCATGTCACAGGCGGGACTTTCTTCAG




AGAGTGGTGCAGCGCCAGACATTTTGCACATAAGGCACCA




AACAGCCCAGGACTGCCGAGACTCTGGCCGCCCGAAGGAG




CCTGCTTTGGTACTATGGAACTTTTCTTAGGGGACACGTC




CTCCTTTCACAGCTTCTAAGGTGTCCAGTGCATTGGGATG




GTTTTCCAGGCAAGGCACTCGGCCAATCCGCATCTCAGCC




CTCTCAGGGAGCAGTCTTCCATCATGCTGAATTTTGTCTT




CCAGGAGCTGCCCCTATGGGGCGGGGCCGCAGGGCCAGCC




TTGTTTCTCTAACAAACAAACAAACAAACAGCCTTGTTTC




TCTAGTCACATCATGTGTATACAAGGAAGCCAGGAATACA




GGTTTTCTTGATGATTTGGGTTTTAATTTTGTTTTTATTG




CACCTGACAAAATACAGTTATCTGATGGTCCCTCAATTAT




GTTATTTTAATAAAATAAATTAAATTTAGGTGTAAAAAAA




AAAAAAAAAAA





RNF41
NM_001242826.1
GATGTCCCAGGGGTATTGGGGCGGGGGGTTGAAATAACTG
34




GGGTTCAGGAGGAGGGATGGTGGTAGAGATAAAAATGTGA




GAAGGGAGCAGCACTGGCGAGGAGTCGGGAGAGTACTCCT




GATTGTGACATCACATTCATCCCCTGGGCGATGGAGCTTG




TCACTGGGAAGGAATACTCAGTCGGAGAATAGCCAACAAG




ATGGGTTACTGGGAGAATCTCTTCAGTGGCACTGAGTGGA




GGCATCAGGGGGTTGGAGCCTTGTGAACAGGGAACCTGCC





CCCCAACACTTGGAAGGACCTGGGTTTCAGTGATGAGACA






TGGGGTATGATGTAACCCGTTTCCAGGGGGATGTTGACGA





AGATCTTATCTGCCCTATTTGCAGTGGAGTCTTGGAGGAG




CCAGTACAGGCACCTCATTGTGAACATGCTTTCTGCAACG




CCTGCATCACCCAGTGGTTCTCTCAGCAACAGACATGTCC




AGTGGACCGTAGTGTTGTGACGGTCGCCCATCTGCGCCCA




GTACCTCGGATCATGCGGAACATGTTGTCAAAGCTGCAGA




TTGCCTGTGACAACGCTGTGTTCGGCTGTAGTGCCGTTGT




CCGGCTTGACAACCTCATGTCTCACCTCAGCGACTGTGAG




CACAACCCGAAGCGGCCTGTGACCTGTGAACAGGGCTGTG




GCCTGGAGATGCCCAAAGATGAGCTGCCCAACCATAACTG




CATTAAGCACCTGCGCTCAGTGGTACAGCAGCAGCAGACA




CGCATCGCAGAGCTGGAGAAGACGTCAGCTGAACACAAAC




ACCAGCTGGCGGAGCAGAAGCGAGACATCCAGCTGCTAAA




GGCATACATGCGTGCAATCCGCAGTGTCAACCCCAACCTT




CAGAACCTGGAGGAGACAATTGAATACAACGAGATCCTAG




AGTGGGTGAACTCCCTTCAGCCAGCAAGAGTGACCCGCTG




GGGAGGGATGATCTCGACTCCTGATGCTGTGCTCCAGGCT




GTAATCAAGCGCTCCCTGGTGGAGAGTGGCTGTCCTGCTT




CTATTGTCAACGAGCTGATTGAAAATGCCCACGAGCGTAG




CTGGCCCCAGGGTCTGGCCACACTAGAGACTAGACAGATG




AACCGACGCTACTATGAGAACTACGTGGCCAAGCGCATCC




CTGGCAAGCAGGCTGTTGTCGTGATGGCCTGTGAGAACCA




GCACATGGGGGATGACATGGTGCAAGAGCCAGGCCTTGTC




ATGATATTTGCGCATGGCGTGGAAGAGATATAAGAGAACT




CGACTGGCTATCAGGAAGAGATGGAAATCAGAAAATCCCA




TCACTCCAGCAGCTGGGACCTGAGTCCTACCCACCATTCT




TAATACTGTGGCTTATACCTGAGCCACACATCTCCCTGCC




CTTCTGGCACTGAAGGGCCTTGGGGTAGTTTGCTCAGCCT




TTCAGGTGGGAAACCCAGATTTCCTCCCTTTGCCATATTC




CCCTAAAATGTCTATAAATTATCAGTCTGGGTGGGAAAGC




CCCCACCTCCATCCATTTTCCTGCTTAGGGTCCCTGGTTC




CAGTTATTTTCAGAAAGCACAAAGAGATTCAATTTCCCTG




GAGGATCAGGACAGAGGAAGGAATCTCTAATCGTCCCTCT




CCTCCAAAACCAGGGAATCAGAGCAGTCAGGCCTGTTGAC




TCTAAGCAGCAGACATCCTGAAGAAATGGTAAGGGTGGAG




CCAAATCTCTAGAAATAAGTAGTGAGGCCGTTAATTGGCC




ATCACTGATGGCCCTTAGGGAAAGACTGGACCTCTGTGCC




AAGCAGTATCCCTGTTCAGCCCACCTTAAAGGTGTAGGCA




CCCACTGGGTCTACCAGTATGCAGGTTGGGATACTGAAAA




TTTCCAGATGAGCTCTTCTTTCCTACAAGTTTTCATAATT




AGGGAATGCCAGGGTTTAGGGTAGGGGTTAATCTGTTGGG




GGTTGATGTGTTTAGCAAGAAGCTACTCCTAGCTTTTGCT




AAAATATGGTTGGCACTGCCTCTTGTGGCACAGGCCATAA




TTGTTCCATAGACCCCTCTCTAGCCCTGTGACTGTAGTTA




GTTACTTTGATAATTTTCTTTGGCCATTGTTTGTTTATAT




TTCACAAACTCCACCTACTGCCCCCCCCCCTCTTTTTTTT




AAGAATGGCCTGATCATGGCTATCTCAGCCACATTGTTGG




CAATTTAATTTATTTACTTCCTTTTTTTTTTTTTAAGAAA




GGAAAAAAGAAAAAAAAATCAAACTTGAAACTTTTCTTTT




GATGTTCCTATTGTGGGGGTTCTGGATAGGGTGGGACAGG




GATGGGGGTGTGTTTTATATTTTTTCCTTTTCAGCACAAC




CTTTGGCTTTAATATAGGAAGAGCCAAGGGAGTCCTCGGC




TGAACTTACGATATCTGCCCCAAACCTCTGTAACCCCAAC




TGAAATGAGGAGCTTCCTCTCTTCCTGTGAAGGATATGAC




AGTCCAGCATCGATGCCTGTGCCCTCTGGAAAAATTTCCT




CCTAGCCCTTCCAGGGCCTTATCATAAAACTCTGGATTTA




GAGTATTCATTTTGAAGGCAACTCCCCCTTCCCCAAGTTT




CCTTGGAGCTGTATAGCTGGGTTCTAAGCTTCACCATGCA




AATCAGAAATTTTATCTCTAAGTACAGGCTGTGCCGTGTC




TCACCCACACCCCCCTGGGGACTTCAGTTCCATTTCAGGT




TACCTGGGGTATACCTTGATCCCTAGAGTGACTGGCAGAG




TAAGAGAAGGGGAGAGATAATAGGTGTGATTATTTTAATA




TGGAGGTGGGAGTGTGGTTGGAGATAGAAAGGCTCCTCCC




CACCATGTAATGGCTTCCTCTCAGAATTTTATTCCAGGCT




AGCTTGCTGCAGGTCTGGGTAGTTGGATCATGGCTCCACT




GGGATTGGGGTGGAAAGCTTGAGGGGAGTAGGGTTCCAGC




TCTGGGACATTGTGCTCAGGAATTTGAAAACGCTGCTATA




CTTACTCTGGTTACTACATTTCTTCCACTCCCCTTTCCCC




TACCTGCCTTAACCAAGGCTCATACTGTCCTGTCCTTACC




CTCAGATGGAGCCAGGAAGCTCAGTGAAAGGCTTCCCTAC




CCTTTGCACTAGTGTCTCTGCAGGTTGCTGGTTGTGTTGT




ATGTGCTGTTCCATGGTGTTGACTGCACTAATAATAAACC




TTTTACTCAACTCTCTAAATTCTTCAGCATTACTCCCTTT




CTTGAGAAGGTTTCCCCTCTGCTTTTGCCTTTCTCTCACC




TTAATTCCCTTTCTTCCTTACTTTGTTACCTACCCTTATC




TTAGTGCTAACTTCTCTTTCAGGAGGATGTCTGGGAGTAG




TGTGCACTTCACAGCTGCTTTCCCATGTACCCTCCTGCAT




TCTTCCCTCCTATCTCCTGTTCTGTAGCAGCCAAAGCTCT




CTAGTGATCTGAACTGTGTGCTTCCCAGGGTCTGCCTTTA




TCCTAAATTCCATGTCTTCCCTGAGTGGTCCTGAGTTTTT




GGGATAATTTCTACAGAAGATATGTATATATCTTTTTCCT




TTGTCCCACAAGCAACTTTGCTTTAGAATCTAGAATTCCT




TTGCAGGCAGAGAAGTCTCTACCTCCCAGTGTTTCCTAGC




TAAGAACGTAAATGTGAGGAGGGAAATGTACTTGCAGAGG




TTTCATAATTATTTACTTATAAAAATAGTCTTCATAGCCG




GGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAG




GCCGAGGTGGGTGGATCACAAGGTCAGGAGTTCGAGACCA




TCCTGGCTAACACAGTGAAACCCCGTCTCTACTAAAAATA




CAAAAAATTAGCCGGGCGTGGTGGCAGGCACCTGTAGTCC




CAGCTACTTAGGAGGCTGAGGCAGGAGAATGGCGTGAACC




CGGGAGGCAGAGCTTGCAGTGAGCAGAGATTGGGCCACTG




CATTCCAGCCTGGGCGACAGAGCAAGGCTCCGTCTAAAAA




AAAAAAAAAAAAAAAAAGTCTTCATAGGCCGGGCACGGTG




GCTCACGTCTGTAATCCCAGCACTTTGGGAGGCCAAGGTG




GGTGGATCACAACGTCAGGAGATCGAGACCATCCTGGCTA




ACATGGTGAAACCCTGTCTCTACTAAAAATATAAATAAAT




TAGCCGGACAGGCGCCTGTCCTCCCAGCTACTCAGGAGGC




TGAGGCAGGAGAATGGTGTGAACCTGGGAGGCGGAGCTTG




CAGTGAGCTGAGATCACGCCACTGCACTCCAGCCTGGGCA




ACAGAGCAAGACTCCGTCTCAAAAAAAAAAAAAAAAAAAC




CAGTCTTCATAAGTATTTGCTGCTACCTTTCCCTGTCATA




AGAAAAAGGATAGCCAGACATGGTGGGACGCCACTATGAT




CCCAGCTCCTTGGAAGGCTAAGGCACAAGAATCGCTTGAA




CCTGGGAGGTGGAGGTTGCAGTGAGCTGAGATCATGCCAC




TGCACTCCAGCCTGGTGACAGAGCAAGAGCCTGTCTCAAA




AAAAAAAAAGAAAAGAAAAGAAAAAGGGATATCTTTTCCT




CCTCCCAGAAGTTTGTTTTAAATTTGAGCATTTATCATGC




ACCTGATGTAAACCTAATAGTACTCTTGATACTCTAGTGG




CTTGAAAAAAAAAAAAAAGGCATTTCTGTGCTGAGTCTGC




GCTTCTATGCACACAAGGTATGTTTATAAAATACTGATAA




GCATGTCACAGTATAGAGCATAAGAGGCAATGTATGTATC




CTAGTGACATTAGCAGTGCTTTTCCCCCCTTAAACTCCTT




TAAAATTACTTTTAGAACTTGCTGCTCATTCTTGTGAATG




TTATGAATGGTGTCATATTGTCCTTTTACAGAAGATACGA




TTTTTAGAAACAAATATTCATTGAATGTCTGCCCTGTGAG




ATACTCACTAGAGTGAACATGAGGAGGCTTATGTAGCAAA




ATGGCACCTACCTGCAAAGAACTTAGTCCCTAATGGAGAT




GAATATATAATAAGGGATCATAAATGTGCTAAGTGGATTT




ACTAGTAATATGTGAGCCAAGGACGATAAAGCTCCTGATT




CTGATGGGTATCAGGAAAGGCTTTTCAGGAAGTGTTACTT




GTTATAGGTCAGAGGTCAGCAAACTACAGGTTACAACCCC




ACTGCCTGCTTTTGTAAAAAACTTTATTGGAATACAGTTA




TGCCCACTTGTTTATA





RSF1
NM_016578.3
GATCCGCAGAGGAGCCCACTTGAGAGCGCCTCCTGTCGTC
35




TGTAAGGTTGCCTTGCCATCCCTCGGCACCCCAACTTCCC




CCGCCCCCCCATCGCCTCCTCCTCCATCCTCCAGTTCAAA




ATGGCGACGGCGGCGGCAGCGGCGGCGGTGATGGCTCCTC




CGGGCTGCCCGGGTTCGTGCCCCAACTTCGCCGTAGTCTG




CTCCTTCTTGGAGCGCTACGGGCCGCTGCTAGACCTGCCT




GAGTTGCCGTTCCCTGAGCTGGAGCGGGTGCTGCAGGCGC




CGCCGCCGGACGTCGGCAACGGAGAAGTACCAAAAGAATT




GGTGGAGCTCCATTTGAAGCTGATGAGGAAAATTGGCAAA




TCTGTTACTGCAGACAGATGGGAAAAATATTTGATCAAGA




TATGCCAAGAGTTTAACAGTACCTGGGCATGGGAGATGGA




GAAGAAGGGCTATCTTGAAATGAGTGTTGAATGCAAACTA




GCACTCTTAAAGTACCTCTGTGAGTGTCAGTTTGATGACA




ATCTCAAATTCAAGAATATTATTAATGAGGAGGATGCCGA




TACTATGCGTCTCCAGCCAATTGGTCGAGACAAAGATGGC




CTCATGTACTGGTACCAATTGGATCAAGATCACAATGTCA




GAATGTACATAGAAGAACAAGATGATCAAGATGGCTCTTC




ATGGAAATGCATTGTCAGAAATCGAAACGAGTTGGCTGAG




ACTCTTGCACTCCTGAAAGCACAAATTGATCCTGTACTAT




TGAAAAACTCTAGCCAACAAGACAACTCTTCTCGGGAAAG




TCCCAGCTTAGAGGATGAGGAGACTAAAAAAGAGGAAGAA




ACACCTAAACAAGAGGAACAGAAAGAAAGTGAAAAGATGA




AAAGTGAGGAGCAGCCTATGGATTTAGAAAACCGTTCTAC




AGCCAATGTTCTAGAAGAGACTACTGTGAAAAAAGAAAAA




GAAGATGAAAAGGAACTTGTGAAACTGCCAGTCATAGTGA




AGCTAGAAAAACCTTTGCCAGAAAATGAAGAAAAAAAGAT




TATCAAAGAAGAAAGTGATTCCTTCAAGGAAAATGTCAAA




CCCATTAAAGTTGAGGTGAAGGAATGTAGAGCAGATCCTA




AAGATACCAAAAGTAGCATGGAGAAGCCAGTGGCACAGGA




GCCTGAAAGGATCGAATTTGGTGGCAATATTAAATCTTCT




CACGAAATTACTGAGAAATCTACTGAAGAAACTGAGAAAC




TTAAAAATGACCAGCAGGCCAAGATACCACTAAAAAAACG




AGAAATTAAACTGAGTGATGATTTTGACAGTCCAGTCAAG




GGACCTTTGTGTAAATCAGTTACTCCAACAAAAGAGTTTT




TGAAAGATGAAATAAAACAAGAGGAAGAGACTTGTAAAAG




GATCTCTACAATCACTGCTTTGGGTCATGAAGGGAAACAG




CTGGTAAATGGAGAAGTTAGTGATGAAAGGGTAGCTCCAA




ATTTTAAGACAGAACCAATAGAGACAAAGTTTTATGAGAC




AAAGGAAGAGAGCTATAGCCCCTCTAAGGACAGAAATATC




ATCACGGAGGGAAATGGAACAGAGTCCTTAAATTCTGTCA




TAACAAGTATGAAAACAGGTGAGCTTGAGAAAGAAACAGC




CCCTTTGAGGAAAGATGCAGATAGTTCAATATCAGTCTTA




GAGATCCATAGTCAAAAAGCACAAATAGAGGAACCCGATC




CTCCAGAAATGGAAACTTCTCTTGATTCTTCTGAGATGGC




AAAAGATCTCTCTTCAAAAACTGCTTTATCTTCCACCGAG




TCGTGTACCATGAAAGGTGAAGAGAAGTCTCCCAAAACTA




AGAAGGATAAGCGCCCACCAATCCTAGAATGTCTTGAAAA




GTTAGAGAAGTCCAAAAAGACTTTTCTTGATAAGGACGCA




CAAAGATTGAGTCCAATACCAGAAGAAGTTCCAAAGAGTA




CTCTAGAGTCAGAAAAGCCTGGCTCTCCTGAGGCAGCTGA




AACTTCTCCACCATCTAATATCATTGACCACTGTGAGAAA




CTAGCCTCAGAAAAAGAAGTGGTAGAATGCCAGAGTACAA




GTACTGTTGGTGGCCAGTCTGTGAAAAAAGTAGACCTAGA




AACCCTAAAAGAGGATTCTGAGTTCACAAAGGTAGAAATG




GATAATCTGGACAATGCCCAGACCTCTGGCATAGAGGAGC




CTTCTGAGACAAAGGGTTCTATGCAAAAAAGCAAATTCAA




ATATAAGTTGGTTCCTGAAGAAGAAACCACTGCCTCAGAA




AATACAGAGATAACCTCTGAAAGGCAGAAAGAGGGCATCA




AATTAACAATCAGGATATCAAGTCGGAAAAAGAAGCCCGA




TTCTCCCCCCAAAGTTCTAGAACCAGAAAACAAGCAAGAG




AAGACAGAAAAGGAAGAGGAGAAAACAAATGTGGGTCGTA




CTTTAAGAAGATCTCCAAGAATATCTAGACCCACTGCAAA




AGTGGCTGAGATCAGAGATCAGAAAGCTGATAAAAAAAGA




GGGGAAGGAGAAGATGAGGTGGAAGAAGAGTCAACAGCTT




TGCAAAAAACTGACAAAAAGGAAATTTTGAAAAAATCAGA




GAAAGATACAAATTCTAAAGTAAGCAAGGTAAAACCCAAA




GGCAAAGTTCGATGGACTGGTTCTCGGACACGTGGCAGAT




GGAAATATTCCAGCAATGATGAAAGTGAAGGGTCTGGCAG




TGAAAAATCATCTGCAGCTTCAGAAGAGGAGGAAGAAAAG




GAAAGTGAAGAAGCCATCCTAGCAGATGATGATGAACCAT




GCAAAAAATGTGGCCTTCCAAACCATCCTGAGCTAATTCT





TCTGTGTGACTCTTGCGATAGTGGATACCATACTGCCTGC





CTTCGCCCTCCTCTGATGATCATCCCAGATGGAGAATGGT




TCTGCCCACCTTGCCAACATAAACTGCTCTGTGAAAAATT




AGAGGAACAGTTGCAGGATTTGGATGTTGCCTTAAAGAAG




AAAGAGCGTGCCGAACGAAGAAAAGAACGCTTGGTGTATG




TTGGTATCAGTATTGAAAACATCATTCCTCCACAAGAGCC




AGACTTTTCTGAAGATCAAGAAGAAAAGAAAAAAGATTCA




AAAAAATCCAAAGCAAACTTGCTTGAAAGGAGGTCAACAA




GAACAAGGAAATGTATAAGCTACAGATTTGATGAGTTTGA




TGAAGCAATTGATGAAGCTATTGAAGATGACATCAAAGAA




GCCGATGGAGGAGGAGTTGGCCGAGGAAAAGATATCTCCA




CCATCACAGGTCATCGTGGGAAAGACATCTCTACTATTTT




GGATGAAGAAAGAAAAGAAAATAAACGACCCCAGAGGGCA




GCTGCTGCTCGAAGGAAGAAACGCCGGCGATTAAATGATC




TGGACAGTGATAGCAACCTGGATGAAGAAGAGAGCGAGGA




TGAATTCAAGATCAGTGATGGATCTCAAGATGAGTTTGTT




GTGTCTGATGAAAACCCAGATGAAAGTGAAGAAGATCCGC




CATCTAATGATGACAGTGACACTGACTTTTGTAGCCGTAG




ACTGAGGCGACACCCCTCTCGGCCAATGAGGCAGAGCAGG




CGTTTGCGAAGAAAGACCCCAAAGAAAAAATATTCCGATG




ATGATGAAGAGGAGGAATCTGAGGAGAATAGTAGAGACTC




TGAAAGTGACTTCAGTGATGATTTTAGTGATGATTTTGTA




GAAACTCGGCGAAGGCGGTCAAGGAGAAATCAGAAAAGAC




AAATTAACTACAAAGAAGACTCAGAAAGTGACGGTTCCCA




GAAGAGTTTGCGACGTGGTAAAGAAATAAGGCGAGTACAC




AAGCGAAGACTTTCCAGCTCAGAGAGTGAAGAGAGCTATT




TGTCCAAGAACTCTGAAGATGATGAGCTAGCTAAAGAATC




AAAGCGGTCAGTTCGAAAGCGGGGCCGAAGCACAGACGAG




TATTCAGAAGCAGATGAGGAGGAGGAGGAAGAGGAAGGCA




AACCATCCCGCAAACGGCTACACCGGATTGAGACGGATGA




GGAGGAGAGTTGTGACAATGCTCATGGAGATGCAAATCAG




CCTGCCCGTGACAGCCAGCCTAGGGTCCTGCCCTCAGAAC




AAGAGAGCACCAAGAAGCCCTACCGGATAGAAAGTGATGA




GGAAGAGGACTTTGAAAATGTAGGCAAAGTGGGGAGCCCA




TTGGACTATAGCTTAGTGGACTTACCTTCAACCAATGGAC




AGAGCCCTGGCAAAGCCATTGAGAACTTGATTGGCAAGCC




TACTGAGAAGTCTCAGACCCCCAAGGACAACAGCACAGCC




AGTGCAAGCCTAGCCTCCAATGGGACAAGTGGTGGGCAGG




AGGCAGGAGCACCAGAAGAGGAGGAAGATGAGCTTTTGAG




AGTGACTGACCTTGTTGATTATGTCTGTAACAGTGAACAG




TTATAAGACTTTTTTTCCATTTTTGTGCTAATTTATTCCA




CGGTAGCTCTCACACCAGCGGGCCAGTTATTAAAAGCTGT




TTAATTTTTCCTAGAAAACTCCACTACAGAATGACTTTTA




GAAGAAAAATTTCAACAAATCCTGAAGTCTTTCTGTGAAG




TGACCAGTTCTGAACTTTGAAGATAAATAATTGCTGTAAA




TTCCTTTTGATTTTCTTTTTCCAGGTTCATGGTCCTTGGT




AATTTCATTCATGGAAAAAAATCTTATTATAATAACAACA




AAGATTTGTATATTTTTGACTTTATATTTCCTGAGCTCTC




CTGACTTTGTGAAAAAGGGTGGATGAAAATGCATTCCGAA




TCTGTGAGGGCCCAAAACAGAATTTAGGGGTGGGTGAAAG




CACTTGTGCTTTAGCTTTTTCATATTAAATATATATTATA




TTTAAACATTCATGGCATAGATGATGATTTACAGACAATT




TAAAAGTTCAAGTCTGTACTGTTACAGTTTGAGAATTGTA




GATAACATCATACATAAGTCATTTAGTAACAGCCTTTGTG




AAATGAACTTGTTTACTATTGGAGATAACCACACTTAATA




AAGAAGAGACAGTGAAAGTACCATCATAATTAACCTAAAT




TTTTGTTATAGCAGAGTTTCTTGTTTAAAAAAAAATAAAA




TCATCTGAAAAGCAAAAA





RTN2
NM_005619.4
CGCGCGCTGCAGTGCCTTCCCCACCTCGGCCCCGCCCGCC
36




CCCGCCGAGCCGAGCACCAGGGCGGCGGCGGCGGCGGCGG




CGGCGGCGGCGGCTGGAGCAGCCCGGGAGGAGGAGGCGGC




GAGAATGGCAGCGGCGTCGTGGGCGCGGCGGAGATGAGCG




CCCGCGACCCCGGGCCCAGGGCGGCACAGCCGGAGTGGGC




GGGGGTCCCGATGCAGGCCCGAGGGGGGCCATGGGGCAGG




TCCTGCCGGTCTTCGCCCACTGCAAAGAAGCTCCGTCTAC




AGCCTCCTCAACTCCTGATTCCACAGAAGGAGGGAACGAC




GACTCTGATTTTCGAGAGCTGCACACAGCCCGGGAATTCT




CAGAGGAGGACGAGGAGGAGACCACGTCGCAGGACTGGGG




CACCCCCCGGGAGCTGACCTTCTCCTACATCGCCTTTGAT




GGTGTAGTGGGCTCCGGGGGCCGCAGGGATTCAACTGCCC




GCCGCCCCCGCCCCCAGGGCCGCTCAGTCTCGGAACCACG




AGACCAGCACCCTCAGCCCAGCCTGGGCGACAGCTTGGAG




AGCATCCCCAGCCTGAGCCAATCCCCGGAGCCTGGACGAC




GGGGTGATCCTGACACCGCGCCTCCATCCGAGCGCCCTCT




GGAAGACCTGAGGCTTCGGTTGGACCATCTGGGCTGGGTG




GCCCGGGGAACGGGATCCGGGGAGGACTCTTCCACCAGCA




GCTCCACCCCGCTGGAAGACGAAGAACCCCAAGAACCCAA




CAGATTGGAGACAGGAGAAGCTGGGGAAGAACTGGACCTA




CGACTCCGACTTGCTCAGCCCTCATCGCCCGAGGTCTTGA




CTCCCCAGCTCAGTCCGGGCTCTGGGACACCCCAGGCCGG




TACTCCGTCCCCATCCCGATCGCGAGATTCGAACTCTGGG




CCCGAAGAGCCATTGCTGGAAGAGGAAGAAAAGCAGTGGG




GGCCACTGGAGCGAGAGCCAGTAAGGGGACAGTGCCTCGA




TAGCACGGACCAATTAGAATTCACGGTGGAGCCACGCCTT




CTAGGAACAGCTATGGAATGGTTAAAGACATCATTGCTTT




TGGCTGTTTACAAGACGGTTCCAATTTTGGAATTGTCCCC




ACCTCTGTGGACAGCCATTGGCTGGGTCCAAAGGGGCCCC




ACCCCCCCTACTCCTGTCCTCCGGGTTCTACTGAAGTGGG




CAAAATCCCCGAGAAGCAGCGGTGTCCCCAGCCTCTCACT




CGGAGCCGATATGGGGAGTAAAGTGGCGGACCTGCTGTAC




TGGAAGGACACGAGGACGTCAGGAGTGGTCTTCACAGGCC




TGATGGTCTCCCTCCTCTGCCTCCTGCACTTTAGCATCGT




GTCCGTGGCCGCGCACTTGGCTCTGTTGCTGCTCTGCGGC




ACCATCTCTCTCAGGGTTTACCGCAAAGTGCTGCAGGCCG




TGCACCGGGGGGATGGAGCCAACCCTTTCCAGGCCTACCT




GGATGTGGACCTCACCCTGACTCGGGAGCAGACGGAACGT




TTGTCCCACCAGATCACCTCCCGCGTGGTCTCGGCGGCCA




CGCAGCTGCGGCACTTCTTCCTGGTAGAAGACCTCGTGGA




TTCCCTCAAGCTGGCCCTCCTCTTCTACATCTTGACCTTC




GTGGGTGCCATCTTCAATGGTTTGACTCTTCTCATTCTGG





GAGTGATTGGTCTATTCACCATCCCCCTGCTGTACCGGCA






GCACCAGGCTCAGATCGACCAATATGTGGGGTTGGTGACC






AATCAGTTGAGCCACATCAAAGCTAAGATCCGAGCTAAAA





TCCCAGGGACCGGAGCCCTGGCCTCTGCAGCAGCCGCAGT




CTCCGGATCCAAAGCCAAAGCCGAATGAGAACGGTGTCTC




TGCCCGCAGGACGCCTGCCCCCAGCCCCCGCAGCCCTCTG




GCCCCCTCCATCTCTTGTCCGTTCCCACCCACCCCCCTCC




TCGGCCCGAGCCTTTTCCCGGTGGGTGTCAGGATCACTCC




CACTAGGGACTCTGCGCTAATTACCTGAGCGACCAGGACT




ACATTTCCCAAGAGGCTCTGCTCCAGGAGTCCAGGAAAGA




CGAGGCACCTTGGCCGCGGGGCCTGCTGGGACTTGTAGTT




GCCTAGACAGGGCACCACCCTGCACTTCCGGACCCGCCGC




TGGAGGCGCCGTGAGGCGTTGGTGTCTCCTGGATGCTACT




AGCCCCAACGCCGGGGCTTTGCATGGGGCCCAGGGGAGGC




CTGAGCTTGGATTTACACTGTAATAAAGACTCCTGTGGAA




AACCCGAG





SMARCD3
NM_001003801.1
AGCAGGACTCAGAGGGGAGAGTTGGAGGAAAAAAAAAGGC
37




AGAAAAGGGAAAGAAAGAGGAAGAGAGAGAGAGAGTGAGA




GGAGCCGCTGAGCCCACCCCGATGGCCGCGGACGAAGTTG




CCGGAGGGGCGCGCAAAGCCACGAAAAGCAAACTTTTTGA




GTTTCTGGTCCATGGGGTGCGCCCCGGGATGCCGTCTGGA




GCCCGGATGCCCCACCAGGGGGCGCCCATGGGCCCCCCGG




GCTCCCCGTACATGGGCAGCCCCGCCGTGCGACCCGGCCT




GGCCCCCGCGGGCATGGAGCCCGCCCGCAAGCGAGCAGCG




CCCCCGCCCGGGCAGAGCCAGGCACAGAGCCAGGGCCAGC




CGGTGCCCACCGCCCCCGCGCGGAGCCGCAGTGCCAAGAG




GAGGAAGATGGCTGACAAAATCCTCCCTCAAAGGATTCGG




GAGCTGGTCCCCGAGTCCCAGGCTTACATGGACCTCTTGG




CATTTGAGAGGAAACTGGATCAAACCATCATGCGGAAGCG




GGTGGACATCCAGGAGGCTCTGAAGAGGCCCATGAAGCAA




AAGCGGAAGCTGCGACTCTATATCTCCAACACTTTTAACC




CTGCGAAGCCTGATGCTGAGGATTCCGACGGCAGCATTGC




CTCCTGGGAGCTACGGGTGGAGGGGAAGCTCCTGGATGAT




CCCAGCAAACAGAAGCGGAAGTTCTCTTCTTTCTTCAAGA




GTTTGGTCATCGAGCTGGACAAAGATCTTTATGGCCCTGA




CAACCACCTCGTTGAGTGGCATCGGACACCCACGACCCAG




GAGACGGACGGCTTCCAGGTGAAACGGCCTGGGGACCTGA




GTGTGCGCTGCACGCTGCTCCTCATGCTGGACTACCAGCC




TCCCCAGTTCAAACTGGATCCCCGCCTAGCCCGGCTGCTG




GGGCTGCACACACAGAGCCGCTCAGCCATTGTCCAGGCCC




TGTGGCAGTATGTGAAGACCAACAGGCTGCAGGACTCCCA





TGACAAGGAATACATCAATGGGGACAAGTATTTCCAGCAG






ATTTTTGATTGTCCCCGGCTGAAGTTTTCTGAGATTCCCC






AGCGCCTCACAGCCCTGCTATTGCCCCCTGACCCAATTGT





CATCAACCATGTCATCAGCGTGGACCCTTCAGACCAGAAG




AAGACGGCGTGCTATGACATTGACGTGGAGGTGGAGGAGC




CATTAAAGGGGCAGATGAGCAGCTTCCTCCTATCCACGGC




CAACCAGCAGGAGATCAGTGCTCTGGACAGTAAGATCCAT




GAGACGATTGAGTCCATAAACCAGCTCAAGATCCAGAGGG




ACTTCATGCTAAGCTTCTCCAGAGACCCCAAAGGCTATGT




CCAAGACCTGCTCCGCTCCCAGAGCCGGGACCTCAAGGTG




ATGACAGATGTAGCCGGCAACCCTGAAGAGGAGCGCCGGG




CTGAGTTCTACCACCAGCCCTGGTCCCAGGAGGCCGTCAG




TCGCTACTTCTACTGCAAGATCCAGCAGCGCAGGCAGGAG




CTGGAGCAGTCGCTGGTTGTGCGCAACACCTAGGAGCCCA




AAAATAAGCAGCACGACGGAACTTTCAGCCGTGTCCCGGG




CCCCAGCATTTTGCCCCGGGCTCCAGCATCACTCCTCTGC




CACCTTGGGGTGTGGGGCTGGATTAAAAGTCATTCATCTG




ACAAAAAAAAAAAAAAAAAA





SPATA7
NM_001040428.3
ACAATAGCGACTCACTGGACCCAGCCCTTAGCAACGGCCT
38




GGCGACGGTTTCCCTGCTGCTGCAGCCCCCGTCGGCTCCT




CTTTTCCAGTCCTCCACTGCCGGGGCTGGGCCCGGCCGCG




GGAAGGACCGAAGGGGATACAGCGTGTCCCTGCGGCGGCT





GCAAGAGGACTAAGCATGGATGGCAGCCGGAGAGTCAGAG






CAACCTCTGTCCTTCCCAGATATGGTCCACCGTGCCTATT






TAAAGGACACTTGAGCACCAAAAGTAATGCTGCAGTAGAC





TGCTCGGTTCCAGTAAGCGTGAGTACCAGCATAAAGTATG




CAGACCAACAACGAAGAGAGAAACTCAAAAAGGAATTAGC




ACAATGTGAAAAAGAGTTCAAATTAACTAAAACTGCAATG




CGAGCCAATTATAAAAATAATTCCAAGTCACTTTTTAATA




CCTTACAAAAGCCCTCAGGCGAACCGCAAATTGAGGATGA




CATGTTAAAAGAAGAAATGAATGGATTTTCATCCTTTGCA




AGGTCACTAGTACCCTCTTCAGAGAGACTACACCTAAGTC




TACATAAATCCAGTAAAGTCATCACAAATGGTCCTGAGAA




GAACTCCAGTTCCTCCCCGTCCAGTGTGGATTATGCAGCC




TCCGGGCCCCGGAAACTGAGCTCTGGAGCCCTGTATGGCA




GAAGGCCCAGAAGCACATTCCCAAATTCCCACCGGTTTCA




GTTAGTCATTTCGAAAGCACCCAGTGGGGATCTTTTGGAT




AAACATTCTGAACTCTTTTCTAACAAACAATTGCCATTCA




CTCCTCGCACTTTAAAAACAGAAGCAAAATCTTTCCTGTC




ACAGTATCGCTATTATACACCTGCCAAAAGAAAAAAGGAT




TTTACAGATCAACGGATAGAAGCTGAAACCCAGACTGAAT




TAAGCTTTAAATCTGAGTTGGGGACAGCTGAGACTAAAAA




CATGACAGATTCAGAAATGAACATAAAGCAGGCATCTAAT




TGTGTGACATATGATGCCAAAGAAAAAATAGCTCCTTTAC




CTTTAGAAGGGCATGACTCAACATGGGATGAGATTAAGGA




TGATGCTCTTCAGCATTCCTCACCAAGGGCAATGTGTCAG




TATTCCCTGAAGCCCCCTTCAACTCGTAAAATCTACTCTG




ATGAAGAAGAACTGTTGTATCTGAGTTTCATTGAAGATGT




AACAGATGAAATTTTGAAACTTGGTTTATTTTCAAACAGG




TTTTTAGAACGACTGTTCGAGCGACATATAAAACAAAATA




AACATTTGGAGGAGGAAAAAATGCGCCACCTGCTGCATGT




CCTGAAAGTAGACTTAGGCTGCACATCGGAGGAAAACTCG




GTAAAGCAAAATGATGTTGATATGTTGAATGTATTTGATT




TTGAAAAGGCTGGGAATTCAGAACCAAATGAATTAAAAAA




TGAAAGTGAAGTAACAATTCAGCAGGAACGTCAACAATAC




CAAAAGGCTTTGGATATGTTATTGTCGGCACCAAAGGATG




AGAACGAGATATTCCCTTCACCAACTGAATTTTTCATGCC




TATTTATAAATCAAAGCATTCAGAAGGGGTTATAATTCAA




CAGGTGAATGATGAAACAAATCTTGAAACTTCAACTTTGG




ATGAAAATCATCCAAGTATTTCAGACAGTTTAACAGATCG




GGAAACTTCTGTGAATGTCATTGAAGGTGATAGTGACCCT




GAAAAGGTTGAGATTTCAAATGGATTATGTGGTCTTAACA




CATCACCCTCCCAATCTGTTCAGTTCTCCAGTGTCAAAGG




CGACAATAATCATGACATGGAGTTATCAACTCTTAAAATC




ATGGAAATGAGCATTGAGGACTGCCCTTTGGATGTTTAAT




CTTCATTAATAAATACCTCAAATGGCCAGTAACTCAAAAA




AAAAAAAAAAAAAAA





SST1
NM_001049.2
TGGTCATCGCACGGCGGCAGCTCCTCACCTGGATTTAGAA
39




GAGCTGGCGTCCCCGCCCGCCCAAGCCTTTAAACTCTCGT




CTGCCAGAACCCGCCAACTCTCCAGGCTTAGGGCCAGTTT




CCGCGATTCTAAGAGTAATTGCGTGGGCACCTGTGCTGGG




GCCAGGCGCAAAGAAGGGAGTTGGTCTGCGCGAAGATCGT




CAACCTGCTAACAGACCGCACATGCACTTTGCACCGACCA




TCTACGTCTCAGTCTGGAGGTTGCGCACTTTGGCTGCTGA




CGCGCTGGTGGTGCCTATTAATCATTTACCAGTCCAGAGC




CGCGCCAGTTAATGGCTGTGCCGTGCGGTGCTCCCACATC




CTGGCCTCTCCTCTCCACGGTCGCCTGTGCCCGGGCACCC




CGGAGCTGCAAACTGCAGAGCCCAGGCAACCGCTGGGCTG




TGCGCCCCGCCGGCGCCGGTAGGAGCCGCGCTCCCCGCAG




CGGTTGCGCTCTACCCGGAGGCGCTGGGCGGCTGTGGGCT




GCAGGCAAGCGGTCGGGTGGGGAGGGAGGGCGCAGGCGGC




GGGTGCGCGAGGAGAAAGCCCCAGCCCTGGCAGCCCCACT




GGCCCCCCTCAGCTGGGATGTTCCCCAATGGCACCGCCTC




CTCTCCTTCCTCCTCTCCTAGCCCCAGCCCGGGCAGCTGC




GGCGAAGGCGGCGGCAGCAGGGGCCCCGGGGCCGGCGCTG




CGGACGGCATGGAGGAGCCAGGGCGAAATGCGTCCCAGAA





CGGGACCTTGAGCGAGGGCCAGGGCAGCGCCATCCTGATC






TCTTTCATCTACTCCGTGGTGTGCCTGGTGGGGCTGTGTG





GGAACTCTATGGTCATCTACGTGATCCTGCGCTATGCCAA




GATGAAGACGGCCACCAACATCTACATCCTAAATCTGGCC




ATTGCTGATGAGCTGCTCATGCTCAGCGTGCCCTTCCTAG




TCACCTCCACGTTGTTGCGCCACTGGCCCTTCGGTGCGCT




GCTCTGCCGCCTCGTGCTCAGCGTGGACGCGGTCAACATG




TTCACCAGCATCTACTGTCTGACTGTGCTCAGCGTGGACC




GCTACGTGGCCGTGGTGCATCCCATCAAGGCGGCCCGCTA




CCGCCGGCCCACCGTGGCCAAGGTAGTAAACCTGGGCGTG




TGGGTGCTATCGCTGCTCGTCATCCTGCCCATCGTGGTCT




TCTCTCGCACCGCGGCCAACAGCGACGGCACGGTGGCTTG




CAACATGCTCATGCCAGAGCCCGCTCAACGCTGGCTGGTG




GGCTTCGTGTTGTACACATTTCTCATGGGCTTCCTGCTGC




CCGTGGGGGCTATCTGCCTGTGCTACGTGCTCATCATTGC




TAAGATGCGCATGGTGGCCCTCAAGGCCGGCTGGCAGCAG




CGCAAGCGCTCGGAGCGCAAGATCACCTTAATGGTGATGA




TGGTGGTGATGGTGTTTGTCATCTGCTGGATGCCTTTCTA




CGTGGTGCAGCTGGTCAACGTGTTTGCTGAGCAGGACGAC




GCCACGGTGAGTCAGCTGTCGGTCATCCTCGGCTATGCCA




ACAGCTGCGCCAACCCCATCCTCTATGGCTTTCTCTCAGA




CAACTTCAAGCGCTCTTTCCAACGCATCCTATGCCTCAGC




TGGATGGACAACGCCGCGGAGGAGCCGGTTGACTATTACG




CCACCGCGCTCAAGAGCCGTGCCTACAGTGTGGAAGACTT




CCAACCTGAGAACCTGGAGTCCGGCGGCGTCTTCCGTAAT




GGCACCTGCACGTCCCGGATCACGACGCTCTGAGCCCGGG




CCACGCAGGGGCTCTGAGCCCGGGCCACGCAGGGGCCCTG




AGCCAAAAGAGGGGGAGAATGAGAAGGGAAGGCCGGGTGC




GAAAGGGACGGTATCCAGGGCGCCAGGGTGCTGTCGGGAT




AACGTGGGGCTAGGACACTGACAGCCTTTGATGGAGGAAC




CCAAGAAAGGCGCGCGACAATGGTAGAAGTGAGAGCTTTG




CTTATAAACTGGGAAGGCTTTCAGGCTACCTTTTTCTGGG




TCTCCCACTTTCTGTTCCTTCCTCCACTGCGCTTACTCCT




CTGACCCTCCTTCTATTTTCCCTACCCTGCAACTTCTATC




CTTTCTTCCGCACCGTCCCGCCAGTGCAGATCACGAACTC




ATTAACAACTCATTCTGATCCTCAGCCCCTCCAGTCGTTA




TTTCTGTTTGTTTAAGCTGAGCCACGGATACCGCCACGGG




TTTCCCTCGGCGTTAGTCCCTAGCCGCGCGGGGCCGCTGT




CCAGGTTCTGTCTGGTGCCCCTACTGGAGTCCCGGGAATG




ACCGCTCTCCCTTTGCGCAGCCCTACCTTAAGGAAAGTTG




GACTTGAGAAAGATCTAAGCAGCTGGTCTTTTCTCCTACT




CTTGGGTGAAGGTGCATCTTTCCCTGCCCTCCCCTGTCCC




CCTCTCGCCGCCCGCCCGCCACCACCACTCTCACTCCACC




CAGAGTAGAGCCAGGTGCTTAGTAAAATAGGTCCCGCGCT




TCGAACTCCAGGCTTTCTGGAGTTCCCACCCAAGCCCTCC




TTTGGAGCAAAGAAGGAGCTGAGAACAAGCCGAATGAGGA




GTTTTTATAAGATTGCGGGGTCGGAGTGTGGGCGCGTAAT




AGGAATCACCCTCCTACTGCGCGTTTTCAAAGACCAAGCG




CTGGGCGCTCCCGGGCCGCGCGTCTGCGTTAGGCAGGGCA




GGGTAGTGCAGGGCACACCTTCCCCGGGGTTCGGGGTTCG




GGGTTCGGTTGCAGGGCTGCAGCCCGCCTTGGCTTTCTCC




CTCACCCAAGTTTCCGGAGGAGCCGACCTAAAAGTAACAA




TAGATAAGGTTTCCTGCTCCAGTGTATCTCAAAAGACCGG




GCGCCAGGGGCGGGGGACCTAGGGCGACGTCTTCAGAGTC




CGCCAGTGTTGGCGGTGTCGCCGCAACCTGCAGGCTCCCG




AGTGGGGCCTGCCTGGTCTCTAGAGGGTTGCTGCCTTTCA




AGCGGTGCCTAAGAAGTTATTTTCTTGTTTAACATATATA




TTTATTAATTTATTTGTCGTGTTGGAAAATGTGTCTCTGC




TTTCCTTTTCTCTGCTTGCCTAGCCCCAGGTCTTTTCTTT




GGGACCCTGGGGGCGGGCATGGAAGTGGAAGTAGGGGCAA




GCTCTTGCCCCACTCCCTGGCCATCTCAACGCCTCTCCTC




AATGCTGGGCCCTCTTATCTCATCCTTTCCTCTAGCTTTT




CTATTTTTGATTGTGTTGAGTGAAGTTTGGAGATTTTTCA




TACTTTTCTTACTATAGTCTCTTGTTTGTCTTATTAGGAT




AATACATAAATGATAATGTGGGTTATCCTCCTCTCCATGC




ACAGTGGAAAGTCCTGAACTCCTGGCTTTCCAGGAGACAT




ATATAGGGGAACATCACCCTATATATAATTTGAGTGTATA




TATATTTATATATATGATGTGGACATATGTATACTTATCT




TGCTCCATTGTCATGAGTCCATGAGTCTAAGTATAGCCAC




TGATGGTGACAGGTGTGAGTCTGGCTGGAACACTTTCAGT




TTCAGGAGTGCAAGCAGCACTCAAACCTGGAGCTGAGGAA




TCTAATTCAGACAGAGACTTTAATCACTGCTGAAGATGCC




CCTGCTCCCTCTGGGTTCCAGCAGAGGTGATTCTTACATA




TGATCCAGTTAACATCATCACTTTTTTTGAGGACATTGAA




AGTGAAATAATTTGTGTCTGTGTTTAATATTACCAACTAC




ATTGGAAGCCTGAGCAGGGCGAGGACCAATAATTTTAATT




ATTTATATTTCCTGTATTGCTTTAGTATGCTGGCTTGTAC




ATAGTAGGCACTAAATACATGTTTGTTGGTTGATTGTTTA




AGCCAGAGTGTATTACAACAATCTGGAGATACTAAATCTG




GGGTTCTCAGGTTCACTCATTGACATGATATACAATGGTT




AAAATCACTATTGAAAAATACGTTTTGTGTATATTTGCTT




CAACAACTTTGTGCTTTCCTGAAAGCAGTAACCAAGAGTT




AAGATATCCCTAATGTTTTGCTTAAACTAATGAACAAATA




TGCTTTGGGTCATAAATCAGAAAGTTTAGATCTGTCCCTT




AATAAAAATATATATTACTACTCCTTTGGAAAATAGATTT




TTAATGGTTAAGAACTGTGAAATTTACAAATCAAAATCTT




AATCATTATCCTTCTAAGAGGATACAAATTTAGTGCTCTT




AACTTGTTACCATTGTAATATTAACTAAATAAACAGATGT




ATTATGCTGTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAA




AAAAAAAAAAAAAAAAAAAAAAA





SST3
NM_001051.4
CTGCATCTCTCCCTCTCACCCGTGTCTCCTCTCCTCTCTT
40




TCCTTCTCGTCTTCTCCCTGTCACGCATCTCTCATCACTC




CCCCTCATTCTGCCTTTCCTCCTACTCACGGTCTCCTCTC




CCTCTCCCTCTCTCTCTCTCCCCCTCCCTCTTTCTCTCTC




TCTCTCTTTCTCCACCTCCTCCCGACCCCCTTTCCCCTCT




ATTTCTATTGGCTTCTGTGTCCCTTGCTCCCCTCTTCTCT




TCCTCACCCTGGGAAGCTTCTCCCCCCTATCCTTGCCCCT




GCCCCCCCAGGATGTGTCCTGGAGATGGGGGGTGACGTAC




CAGGCTCTGGTTGGGAAGTCAGGGCCGGAGACCAGATGGG




AGAGGCTCTGTGGACAGCCGTGGCCGAGGGCCTGGGAGGG




AACCTGAGCCCGCAAGCGGTCTAGAAGTGGGTGCCTTGTG




GGGACCCTAGTTAGGAGTGCCCTGGGGGCACCTGGGGACT




GGGCAGGGAGAGGGGACAGCAGAATGATAACCAGCCTGGC




GGCAAGGAGGGAAGCCCTCACCCCATGGGCAGGCAAATAG




CTGACTGCTGACCACCCTCCCCTCAGCCATGGACATGCTT




CATCCATCATCGGTGTCCACGACCTCAGAACCTGAGAATG





CCTCCTCGGCCTGGCCCCCAGATGCCACCCTGGGCAACGT






GTCGGCGGGCCCAAGCCCGGCAGGGCTGGCCGTCAGTGGC





GTTCTGATCCCCCTGGTCTACCTGGTGGTGTGCGTGGTGG




GCCTGCTGGGTAACTCGCTGGTCATCTATGTGGTCCTGCG




GCACACGGCCAGCCCTTCAGTCACCAACGTCTACATCCTC




AACCTGGCGCTGGCCGACGAGCTCTTCATGCTGGGGCTGC




CCTTCCTGGCCGCCCAGAACGCCCTGTCCTACTGGCCCTT




CGGCTCCCTCATGTGCCGCCTGGTCATGGCGGTGGATGGC




ATCAACCAGTTCACCAGCATATTCTGCCTGACTGTCATGA




GCGTGGACCGCTACCTGGCCGTGGTACATCCCACCCGCTC




GGCCCGCTGGCGCACAGCTCCGGTGGCCCGCACGGTCAGC




GCGGCTGTGTGGGTGGCCTCAGCCGTGGTGGTGCTGCCCG




TGGTGGTCTTCTCGGGAGTGCCCCGCGGCATGAGCACCTG




CCACATGCAGTGGCCCGAGCCGGCGGCGGCCTGGCGAGCC




GGCTTCATCATCTACACGGCCGCACTGGGCTTCTTCGGGC




CGCTGCTGGTCATCTGCCTCTGCTACCTGCTCATCGTGGT




GAAGGTGCGCTCAGCTGGGCGCCGGGTGTGGGCACCCTCG




TGCCAGCGGCGGCGGCGCTCCGAACGCAGGGTCACGCGCA




TGGTGGTGGCCGTGGTGGCGCTCTTCGTGCTCTGCTGGAT




GCCCTTCTACGTGCTCAACATCGTCAACGTGGTGTGCCCA




CTGCCCGAGGAGCCTGCCTTCTTTGGGCTCTACTTCCTGG




TGGTGGCGCTGCCCTATGCCAACAGCTGTGCCAACCCCAT




CCTTTATGGCTTCCTCTCCTACCGCTTCAAGCAGGGCTTC




CGCAGGGTCCTGCTGCGGCCCTCCCGCCGTGTGCGCAGCC




AGGAGCCCACTGTGGGGCCCCCGGAGAAGACTGAGGAGGA




GGATGAGGAGGAGGAGGATGGGGAGGAGAGCAGGGAGGGG




GGCAAGGGGAAGGAGATGAACGGCCGGGTCAGCCAGATCA




CGCAGCCTGGCACCAGCGGGCAGGAGCGGCCGCCCAGCAG




AGTGGCCAGCAAGGAGCAGCAGCTCCTACCCCAAGAGGCT




TCCACTGGGGAGAAGTCCAGCACGATGCGCATCAGCTACC




TGTAGGGGCCTGGGGAAAGCCAGGATGGCCCGAGGAAGAG




GCAGAAGCCGTGGGTGTGCCTAGGGCCTACTTCCCAAGGT




GCCACAGGCCCATGATGGGATGTTGAGGGGCCTGGACTTT




GATGCTATTGCTGCCAGGTCTTGCTGTGTGACCTTGGGTA




GGTTGCTTCTACTCTCTGGGCCTTGTTTTCTCCTCTGTGA




CTCAGGGATAGGAGTCATCAGCCTGGATGAGCTATGTCAG




ATGAGAGGTTTGGAGGGCACTGTTGCTGGGCTGACCTGGC




TGAGCAGGCAAAAGGTGGGTGCAGACTGGCCTCCCCCCAG




GGATGGAGTGTCTTGGGGCATCAACTAGAATCTTGGCCCT




CAGAGGGATAAACCAAGGCCAGGATTTCTTGGGCTCAGAG




TCAGGAACACAGGAGCTGCTGGGGGCTGGGCTGGAAACCT




AAACAGAAGAAAGCCTAACCCGGTGGGAGGAGTGGGGCAG




AAATGGTCAGGCCCCAGATCAGCTCCCTCCCCTCGACTGT




GAGGCCTTGGACCAGCTCTGCTCCTCTCTAGGCCTCAGGC




TTCACCTGGGTAAAACCCAACAACCTCTACACCCTTTTGG




CCCAGGCAGTCAATGCTGGAGGTCCTGTGCTCCTGGACGG




GAAGAGCAGGTGAATTTCCTGCTCATGGAAGCGAATGAAG




TCCAGCTTCAGGGTCTCTCACTGCCTGGGCTTTTGCAAGG




CCCTGCATCTACTTTTGTACTTGTCATTTTGTATTCGTTT




TCTTAAAGAGGGACCTCGAACTGCATAAGCTTAGGCCACC




CAAAGCCTGGCTCTGCCCCTGCTGAGGTCAGCCACCCAAT




CCCCAAGGAAGCTCATGTTGGGTCTTATGGCTGGAGTAGG




GGCCCCCGGGGGTTCCCAGGTCTTTTGAGGGCTTCCAGGC




ACCTCCTTGTAGGAAGGGCCATCCCTGTTCCTCTCCTTGT




GACCCATATTCTCCCTTCCTGGAGACCGAGACAGGGACCC




AGCCCATGAGGACTGGCATGGAAAGGCAGAGTGTCTGAAG




AGCGCTGTGAGGAGAAGGAAGAGGAAGGGAGAAGAGGAAG




AGGAAGGAGAAGGAAGAGGAAGACAAGGGGGAAAGGGGAG




GATGAGGAGGGGGAAGGAGAAGTACAGATCTGTTTCCTGG




AGCCGTCTTTGGCCCCCCTGGGCTGAGCTCAGTGGTAGCA




TCTGTGAACCTGAGTTGCCGACAACAGCCCCACCCAACCA




GTACTGAGGGAAGGACACGATCAGGGTGGAACAGCCAGGG




TGCAATGGCAAATGCACAGAGTACAGACAGGCACAGGGCC




TGCGTCCCTGAGGGGCCTCAGAGTGCTGCCAAGAGGGCTC




AGGCCTTAATAAAGCCCTAGGGTGGAGCTGGCTACCAGGG




ACATTGGGAGGACTGGGGAGCTCCCTCCCCATGCTCTATC




ATCCTGGAGACTACAGGTCGGGAGGCCCAGGGAAGACAAG




AAGAGGCTGAAGTGGGACTGTGGAGGGGGACCATGGGGAG




CAGCCACCATCCAAGGCTGGGCCTAGACTCCCTCCCAGAG




ATGGTCCCTCAGAGCTGTGGTGAGGCTGGCCCTGGGAGGG




TGAGACCCCCGGTGAAATCCTTCCGCTTCCCCACCCCTTG




CAGAGGGCAGGGGTCCTCAGGGAAAGCACAGGAACCAGAC




TTTTGGAGACTTGGATCTTCAGCACACCTCAGGGTCCTGG




GCTGGCATTGGCCTTCCGGGCCTCAATTTCCCCATCAACA




AATGGAGATGAATCCCAGCTTGGCTGCCTCCTGGGATCTA




ACGAGAAAATGAGTCATGTGAGGTAACTTCCAGGCTCACT




GCAATGGGTACGGTGGGGTGTATCAGATTATAAAGTGGGG




GTGCCCTCCTCACCCCCAGGCTTGGCCTATACCCCCCTCT




CCATCAAGTGGCCTCTCTGTGTCTGTCCTTTGGGGTGAGG




ACACTGTAGGCCATGAGAAATGGGCAGTTGGGGGGTCAGA




GGCCAAGGGTTAGGGAGGCAGGGCTTGGGGAGAGTGTGGG




ACCATCAGAAGAGAAGGAAGTTTACAAAACCACATTTTGT




GTGGAGATGGAGGCTGGAGGCCCGGCCCTGGGACTTGGTC




TGGGGTTTCTTGAGGAAGATCTGAGGGTCCAAGGGAGGAA




GGATGCCCTGGCCTTCTGGCCTTCTCTGGCTGATCCTGCC




TTCTTGCTGCCTAGGACAGGAGAGTAATGTCCTAGAATGG




TCCCTGGGAGGCCAGTTAGGAAACCCTTTGCTGCTTCTGT




CTCTAGCTCTTGTCAATAAAGACGGTGACACCTGAAAAAA




AAAAAAAAAAA





SST4
NM_001052.2
CCGAGCTCTCTGGCGCAGCGCTAGCTCCGCCGCGCTCAGC
41




TGCCCTGCGCCGGCACCCCTGGTCATGAGCGCCCCCTCGA




CGCTGCCCCCCGGGGGCGAGGAAGGGCTGGGGACGGCCTG





GCCCTCTGCAGCCAATGCCAGTAGCGCTCCGGCGGAGGCG






GAGGAGGCGGTGGCGGGGCCCGGGGACGCGCGGGCGGCGG





GCATGGTCGCTATCCAGTGCATCTACGCGCTGGTGTGCCT




GGTGGGGCTGGTGGGCAACGCCCTGGTCATCTTCGTGATC




CTTCGCTACGCCAAGATGAAGACGGCTACCAACATCTACC




TGCTCAACCTGGCCGTAGCCGACGAGCTCTTCATGCTGAG




CGTGCCCTTCGTGGCCTCGTCGGCCGCCCTGCGCCACTGG




CCCTTCGGCTCCGTGCTGTGCCGCGCGGTGCTCAGCGTCG




ACGGCCTCAACATGTTCACCAGCGTCTTCTGTCTCACCGT




GCTCAGCGTGGACCGCTACGTGGCCGTGGTGCACCCTCTG




CGCGCGGCGACCTACCGGCGGCCCAGCGTGGCCAAGCTCA




TCAACCTGGGCGTGTGGCTGGCATCCCTGTTGGTCACTCT




CCCCATCGCCATCTTCGCAGACACCAGACCGGCTCGCGGC




GGCCAGGCCGTGGCCTGCAACCTGCAGTGGCCACACCCGG




CCTGGTCGGCAGTCTTCGTGGTCTACACTTTCCTGCTGGG




CTTCCTGCTGCCCGTGCTGGCCATTGGCCTGTGCTACCTG




CTCATCGTGGGCAAGATGCGCGCCGTGGCCCTGCGCGCTG




GCTGGCAGCAGCGCAGGCGCTCGGAGAAGAAAATCACCAG




GCTGGTGCTGATGGTCGTGGTCGTCTTTGTGCTCTGCTGG




ATGCCTTTCTACGTGGTGCAGCTGCTGAACCTCTTCGTGA




CCAGCCTTGATGCCACCGTCAACCACGTGTCCCTTATCCT




TAGCTATGCCAACAGCTGCGCCAACCCCATTCTCTATGGC




TTCCTCTCCGACAACTTCCGCCGATTCTTCCAGCGGGTTC




TCTGCCTGCGCTGCTGCCTCCTGGAAGGTGCTGGAGGTGC




TGAGGAGGAGCCCCTGGACTACTATGCCACTGCTCTCAAG




AGCAAAGGTGGGGCAGGGTGCATGTGCCCCCCACTCCCCT




GCCAGCAGGAAGCCCTGCAACCAGAACCCGGCCGCAAGCG




CATCCCCCTCACCAGGACCACCACCTTCTGAGGAGCCCTT




CCCCTACCCACCCTGCGT





SST5
NM_001053.3
ATGCCTGCATGTGCTGGTTCAGGGACTCACCACCCTGGCG
42




TCCTCCCTTCTTCTCTTGCAGAGCCTGACGCACCCCAGGG




CTGCCGCCATGGAGCCCCTGTTCCCAGCCTCCACGCCCAG




CTGGAACGCCTCCTCCCCGGGGGCTGCCTCTGGAGGCGGT




GACAACAGGACGCTGGTGGGGCCGGCGCCCTCGGCAGGGG




CCCGGGCGGTGCTGGTGCCCGTGCTGTACCTGCTGGTGTG




TGCGGCCGGGCTGGGCGGGAACACGCTGGTCATCTACGTG




GTGCTGCGCTTCGCCAAGATGAAGACCGTCACCAACATCT




ACATTCTCAACCTGGCAGTGGCCGACGTCCTGTACATGCT




GGGGCTGCCTTTCCTGGCCACGCAGAACGCCGCGTCCTTC




TGGCCCTTCGGCCCCGTCCTGTGCCGCCTGGTCATGACGC




TGGACGGCGTCAACCAGTTCACCAGTGTCTTCTGCCTGAC




AGTCATGAGCGTGGACCGCTACCTGGCAGTGGTGCACCCG




CTGAGCTCGGCCCGCTGGCGCCGCCCGCGTGTGGCCAAGC




TGGCGAGCGCCGCGGCCTGGGTCCTGTCTCTGTGCATGTC




GCTGCCGCTCCTGGTGTTCGCGGACGTGCAGGAGGGCGGT




ACCTGCAACGCCAGCTGGCCGGAGCCCGTGGGGCTGTGGG




GCGCCGTCTTCATCATCTACACGGCCGTGCTGGGCTTCTT




CGCGCCGCTGCTGGTCATCTGCCTGTGCTACCTGCTCATC




GTGGTGAAGGTGAGGGCGGCGGGCGTGCGCGTGGGCTGCG




TGCGGCGGCGCTCGGAGCGGAAGGTGACGCGCATGGTGTT




GGTGGTGGTGCTGGTGTTTGCGGGATGTTGGCTGCCCTTC




TTCACCGTCAACATCGTCAACCTGGCCGTGGCGCTGCCCC




AGGAGCCCGCCTCCGCCGGCCTCTACTTCTTCGTGGTCAT




CCTCTCCTACGCCAACAGCTGTGCCAACCCCGTCCTCTAC




GGCTTCCTCTCTGACAACTTCCGCCAGAGCTTCCAGAAGG




TTCTGTGCCTCCGCAAGGGCTCTGGTGCCAAGGACGCTGA




CGCCACGGAGCCGCGTCCAGACAGGATCCGGCAGCAGCAG




GAGGCCACGCCACCCGCGCACCGCGCCGCAGCCAACGGGC




TTATGCAGACCAGCAAGCTGTGAGAGTGCAGGCGGGGGGT




GGGCGGCCCCGTGTCACCCCCAGGAGCGGAGGTTGCACTG




CGGTGACCCCCACCCATGACCTGCCAGTCAGGATGCTCCC




CGGCGGTGGTGTGAGGACAGAGCTGGCTGAAGCCAGGCTG




GGGTAGACACAGGGCAGTAGGTTCCCCACCGTGACCGACC




ATCCCCTCTAACCGTCTGCCACACAGCGGGGGCTCCCGGG




AGGTAGGGGAGGTGGCCAGACCGGTGGGGGGCTCCGCCAT




GCCGTGCAAGTGCTCAGGGCCGCCTCACCCTCCATCTGGC




CCCAGCCCATGCCGGCCTTCCCTCTGGGGAGCGACTTTTC





CAGAAGGCCGGCCAGGCGAGAGGGTCTTCCTGACGGCGGA






GCTGACCTGCCCGGCCCACCAGCTGCATGTCAGCTCCGAG






CCACCGGGTCCCCGTCCAAGGCTGCTCTGCTAAGTTAAAG






ACACCCGAAAGCGCTTGACTCAGGTCCCCGGAGTCCCTGG





CCAGGGCCCCAGCCCCTCGCTTGCCCTGCACTGTGTGGAC




TCTGGGGATGCAGGTGTAAGGGGAGTGTGGCTGGGCAGCC




CCTGGTCAGCCAGGGTCACGCCTGTCCTGGGGGCCCCACC




CTGCTGCCCGACACCCCCCATGGGAGGCTGCGGGCGGCAG




TTGCTGTCTCAGAGAGGGGAGTGTGGGGGCTTGGGCGCTG




GCCTAGCCAGGGGCGAGGTGGGGAGGCGGCTGGTGCAGAG




GAGAGCTGGGGGCTGAGGTTGGGGTGAAGGCTGCAGCCCT




CCAGGCTGCTGGGGGTGCAGATGGCTGTGCCGTGCTGAGA




TTGGCTCTGTCTGGAGGGGTCCAGTGTGGGGTGCCTGAGG




GCACTAGGGAGAGGTGCTCCTGCTGCAGGAGGACCTGAGG




GTCAGGGCTTGGAGAGGACAGGGAACCTGCGGCCGTCTCT




TCTGCTTTGGGGCAGGGGCTCTGGCCCGGGAGAGGGAACG




GGGACAGGAGCAGAGGACGGTCATCCAGGCGCAGCGGGGA




GCTGCTCCCCAGGCCACAGCAGACAGCACTGCTGAGAGGC




AGCGGCCGCGCGGGTGACGCAAATGGCAGGCCCTGGGAAT




CCCGCCGCCTCCCACCTAGAATTGTCCTACCTCCCCCACC




CCAAACACCAGCTTTTCCTGGCGCCCCAGGCCCAGAACGT




GGGCCCAGAGAGCCTTGCTGGGGTCTCTGGGGCACCTTGG




CCTTGCTCTGAGGCTGGAAGGAGAAGGACCAGGGTGCGGC




ATCACTCGGCCTCAGGGACCCCTCTGCCCTGCCCAGCACT




GGCCCCGACCCGTGCTCCCGCCGTCTGCCCAGAGCAGGAC




CTCAACCTCCTGGAGGGCACAGGGAGCGGCTGAGTGGGCA




CAAATCCTGGCAGGAGAAAGGCCCAGGCTGAGGCCAGGCC




TGGGAAACATCCAAGCAGTGAGGACACGCGTGTTTGACAA




CTGCTCCCCTGAATAAATGCGAGGATAAATGTTT





TECPR2
NM_001172631.1
CCCCCGGCGGAGCCAGCTGCTGCTCTTCGGTGCTGGCCCC
43




GGTGCCGGCCCCGTTGCCCAGGGAACAGGCTCCCGGCAGC




CCCCGCGGCCCGGAGTCCATCCCGCCTCCTCCGGCCCGGC




GGGGCCGACGAGTCCGGAGGGGCTGCCGCGGGAGCCCCCA




GGTTTCCCTAGATGACAAATAAACATTCCTTTTCCTGCGT




GAAGATAGTCTGTGGAAACCTTGGCCATGGCATCGATATC




AGAGCCTGTTACATTCAGAGAGTTCTGCCCGTTGTACTAT




CTCCTCAATGCCATTCCGACAAAGATCCAGAAGGGTTTCC




GCTCTATCGTGGTCTATCTCACGGCCCTCGACACCAACGG




GGACTACATCGCGGTGGGCAGCAGCATCGGCATGCTCTAT




CTGTACTGCCGGCACCTCAACCAGATGAGGAAGTACAACT




TTGAGGGGAAGACGGAATCTATCACTGTGGTGAAGCTGCT




GAGCTGCTTTGATGACCTGGTGGCAGCAGGCACAGCCTCT




GGCAGGGTTGCAGTTTTTCAACTTGTATCTTCATTGCCAG




GGAGAAATAAACAGCTTCGGAGATTTGATGTCACTGGTAT




TCACAAAAATAGCATTACAGCTCTGGCTTGGAGCCCCAAT




GGAATGAAATTGTTCTCTGGAGATGACAAAGGCAAAATTG




TTTATTCTTCTCTGGATCTAGACCAGGGGCTCTGTAACTC




CCAGCTGGTGTTGGAGGAGCCATCTTCCATTGTGCAGCTG




GATTATAGCCAGAAAGTGCTGCTGGTCTCTACTCTGCAAA




GAAGTCTGCTCTTTTACACTGAAGAAAAGTCTGTAAGGCA




AATTGGAACACAACCAAGGAAAAGTACTGGGAAATTTGGT




GCTTGTTTTATACCAGGACTCTGTAAGCAAAGTGATCTAA




CCTTGTATGCGTCACGGCCCGGGCTCCGGCTATGGAAGGC




TGATGTCCACGGGACTGTTCAAGCCACGTTTATCTTAAAA




GATGCTTTTGCCGGGGGAGTCAAGCCTTTTGAACTGCACC




CGCGTCTGGAATCCCCCAACAGTGGAAGTTGCAGCTTACC




TGAGAGGCACCTGGGGCTTGTTTCATGTTTCTTTCAAGAA




GGCTGGGTGCTGAGTTGGAATGAATATAGTATCTATCTCC




TAGACACAGTCAACCAGGCCACAGTTGCTGGTTTGGAAGG




ATCCGGTGATATTGTGTCTGTTTCGTGCACAGAAAATGAA




ATATTTTTCTTGAAAGGAGATAGGAACATTATAAGAATTT




CAAGCAGGCCTGAAGGATTAACATCAACAGTGAGAGATGG




TCTGGAGATGTCTGGATGCTCAGAGCGTGTCCACGTGCAG




CAAGCGGAGAAGCTGCCAGGGGCCACAGTTTCTGAGACGA




GGCTCAGAGGCTCTTCCATGGCCAGCTCCGTGGCCAGCGA




GCCAAGGAGCAGGAGCAGCTCGCTCAACTCCACCGACAGC




GGCTCCGGGCTCCTGCCCCCTGGGCTCCAGGCCACCCCTG




AGCTGGGCAAGGGCAGCCAGCCCCTGTCACAGAGATTCAA




CGCCATCAGCTCAGAGGACTTTGACCAGGAGCTTGTCGTG




AAGCCTATCAAAGTGAAAAGGAAGAAGAAGAAGAAGAAGA




CAGAAGGTGGAAGCAGGAGCACCTGTCACAGCTCCCTGGA




ATCGACACCCTGCTCCGAATTTCCTGGGGACAGTCCCCAG




TCCTTGAACACAGACTTGCTGTCGATGACCTCAAGTGTCC




TGGGCAGTAGCGTGGATCAGTTAAGTGCAGAGTCTCCAGA




CCAGGAAAGCAGCTTCAATGGTGAAGTGAACGGTGTCCCA




CAGGAAAATACTGACCCCGAAACGTTTAATGTCCTGGAGG




TGTCAGGATCAATGCCTGATTCTCTGGCTGAGGAAGATGA




CATTAGAACTGAAATGCCACACTGTCACCATGCACATGGG




CGGGAGCTGCTCAATGGAGCGAGGGAAGATGTGGGAGGCA




GTGATGTCACGGGACTCGGAGATGAGCCGTGTCCTGCAGA




TGATGGACCAAATAGCACACAGTTACCCTTCCAAGAACAG




GACAGCTCTCCTGGGGCGCATGATGGGGAAGACATCCAAC




CCATTGGCCCCCAAAGCACTTTTTGTGAAGTCCCCCTCCT




GAACTCACTCACTGTGCCTTCCAGCCTCAGCTGGGCCCCA




AGTGCTGAACAGTGGCTGCCTGGGACCAGAGCTGATGAAG




GCAGCCCCGTGGAGCCCAGCCAAGAGCAGGACATCCTAAC




CAGCATGGAGGCCTCTGGCCACCTCAGCACAAATCTCTGG




CATGCTGTCACTGATGATGACACAGGTCAGAAAGAAATAC




CCATTTCTGAACGTGTCTTGGGGAGTGTGGGAGGACAGCT




GACTCCGGTCTCTGCCTTGGCAGCCAGCACTCACAAGCCC




TGGCTTGAGCAGCCTCCACGGGATCAGACATTGACGTCCA




GCGATGAGGAGGACATCTATGCCCACGGGCTTCCTTCTTC




ATCCTCAGAGACGAGTGTGACAGAGCTCGGACCTAGTTGC




TCCCAGCAGGACCTGAGCCGGCTGGGTGCAGAGGACGCCG




GGCTGCTCAAGCCAGATCAGTTTGCAGAAAGCTGGATGGG




CTACTCGGGTCCCGGCTATGGCATCCTCAGCTTGGTGGTC




TCCGAGAAGTATATCTGGTGCCTGGACTACAAAGGCGGCC




TGTTCTGCAGCGCGTTGCCGGGCGCCGGGCTGCGCTGGCA




GAAGTTTGAAGATGCTGTCCAGCAGGTGGCAGTCTCGCCC




TCAGGAGCCCTTCTCTGGAAGATTGAACAGAAATCTAACC




GGGCTTTTGCTTGTGGGAAAGTCACCATCAAGGGGAAGCG




GCACTGGTACGAAGCCCTGCCCCAGGCAGTGTTTGTGGCC




CTGAGCGATGACACGGCCTGGATCATCAGGACCAGTGGGG




ACCTATACTTGCAGACAGGTCTGAGCGTGGATCGCCCTTG




TGCCAGAGCCGTAAAGGTGGACTGTCCCTACCCGCTGTCC




CAGATCACAGCCCGGAACAATGTGGTGTGGGCGCTGACAG




AGCAGAGGGCCCTCCTGTACCGGGAGGGCGTGAGCAGCTT




CTGTCCGGAAGGCGAGCAGTGGAAGTGTGACATTGTCAGC





GAAAGGCAAGCTTTAGAACCCGTCTGCATAACGCTCGGGG





ATCAGCAGACTCTCTGGGCCCTGGACATCCATGGGAACCT




GTGGTTCAGAACTGGCATTATTTCCAAGAAGCCCCAAGGA




GATGACGACCATTGGTGGCAAGTGAGCATCACGGACTATG




TGGTGTTTGACCAGTGCAGCTTATTTCAGACGATAATCCA




TGCCACTCACTCGGTGGCCACAGCAGCCCAAGCCCCCGTA




GAAAAGGTGGCAGATAAGCTGCGCATGGCGTTTTGGTCCC




AGCAGCTTCAGTGCCAGCCAAGCCTTCTCGGGGTCAATAA




CAGCGGTGTCTGGATCTCCTCGGGCAAGAATGAATTCCAC




GTCGCTAAGGGAAGTCTCATAGGCACCTACTGGAATCATG




TGGTTCCCCGTGGGACAGCTTCTGCTACAAAATGGGCCTT




TGTGTTGGCTTCTGCAGCTCCCACGAAGGAAGGAAGCTTC




CTGTGGCTGTGCCAGAGCAGCAAGGACCTGTGCAGCGTCA




GCGCCCAGAGCGCACAGTCGCGGCCCTCCACGGTGCAGCT




GCCTCCCGAAGCCGAGATGCGCGCCTATGCCGCCTGCCAG




GATGCGCTGTGGGCGCTGGACAGCCTCGGCCAGGTGTTCA




TCAGGACGCTCTCCAAGAGCTGCCCCACGGGCATGCACTG




GACCAGGCTGGACCTCTCCCAGCTAGGAGCTGTAAAATTG




ACAAGCTTGGCATGTGGAAATCAGCACATCTGGGCCTGTG




ATTCCAGGGGTGGAGTTTACTTCCGTGTAGGGACTCAGCC




TCTCAATCCCAGTCTCATGCTTCCAGCCTGGATAATGATT




GAGCCACCTGTCCAGGTAAGCAGAAGTTAGCTGGTGGAAC




TCACTCTTCAGTAAGACAGAAACTGTGAGGATGCTGGTAC




TGGGAAAAAGGATCTGCACAGCCTCTAGAGGCCTCCCAGC




AAATGCGGGGAGCCATGCCCCCAGGGTCTACACACTCTCG




TTCATCAACATCACAACTGGAATTCGGGATTTGTGAAGTT




TAGAGCTGAACAGACTGTTACAGATTATGAGTCAACACGT




ATATTTTCTCTTTCAAAATAATAATATTTCGTTTTTGACT




TTTTACTAAGTGAATATTATTTTTTAAATCTGCCTATATA




TTGGAACCTCTATTTTATAATAATAATGATAATAAATCAG




TACCCAGAAGTATAAAGAAGGTAAAAGTTACTTTGAAAAA




AAAAAAAAAAAAAAAAAAAAAAAAAAA





TPH1
NM_004179.2
TTTTAGAGAATTACTCCAAATTCATCATGATTGAAGACAA
44




TAAGGAGAACAAAGACCATTCCTTAGAAAGGGGAAGAGCA





AGTCTCATTTTTTCCTTAAAGAATGAAGTTGGAGGACTTA






TAAAAGCCCTGAAAATCTTTCAGGAGAAGCATGTGAATCT






GTTACATATCGAGTCCCGAAAATCAAAAAGAAGAAACTCA






GAATTTGAGATTTTTGTTGACTGTGACATCAACAGAGAAC





AATTGAATGATATTTTTCATCTGCTGAAGTCTCATACCAA




TGTTCTCTCTGTGAATCTACCAGATAATTTTACTTTGAAG




GAAGATGGTATGGAAACTGTTCCTTGGTTTCCAAAGAAGA




TTTCTGACCTGGACCATTGTGCCAACAGAGTTCTGATGTA




TGGATCTGAACTAGATGCAGACCATCCTGGCTTCAAAGAC




AATGTCTACCGTAAACGTCGAAAGTATTTTGCGGACTTGG




CTATGAACTATAAACATGGAGACCCCATTCCAAAGGTTGA




ATTCACTGAAGAGGAGATTAAGACCTGGGGAACCGTATTC




CAAGAGCTCAACAAACTCTACCCAACCCATGCTTGCAGAG




AGTATCTCAAAAACTTACCTTTGCTTTCTAAATATTGTGG




ATATCGGGAGGATAATATCCCACAATTGGAAGATGTCTCC




AACTTTTTAAAAGAGCGTACAGGTTTTTCCATCCGTCCTG




TGGCTGGTTACTTATCACCAAGAGATTTCTTATCAGGTTT




AGCCTTTCGAGTTTTTCACTGCACTCAATATGTGAGACAC




AGTTCAGATCCCTTCTATACCCCAGAGCCAGATACCTGCC




ATGAACTCTTAGGTCATGTCCCGCTTTTGGCTGAACCTAG




TTTTGCCCAATTCTCCCAAGAAATTGGCTTGGCTTCTCTT




GGCGCTTCAGAGGAGGCTGTTCAAAAACTGGCAACGTGCT




ACTTTTTCACTGTGGAGTTTGGTCTATGTAAACAAGATGG




ACAGCTAAGAGTCTTTGGTGCTGGCTTACTTTCTTCTATC




AGTGAACTCAAACATGCACTTTCTGGACATGCCAAAGTAA




AGCCCTTTGATCCCAAGATTACCTGCAAACAGGAATGTCT




TATCACAACTTTTCAAGATGTCTACTTTGTATCTGAAAGT




TTTGAAGATGCAAAGGAGAAGATGAGAGAATTTACCAAAA




CAATTAAGCGTCCATTTGGAGTGAAGTATAATCCATATAC




ACGGAGTATTCAGATCCTGAAAGACACCAAGAGCATAACC




AGTGCCATGAATGAGCTGCAGCATGATCTCGATGTTGTCA




GTGATGCCCTTGCTAAGGTCAGCAGGAAGCCGAGTATCTA




ACAGTAGCCAGTCATCCAGGAACATTTGAGCATCAATTCG




GAGGTCTGGGCCATCTCTTGCTTTCCTTGAACACCTGATC




CTGGAGGGACAGCATCTTCTGGCCAAACAATATTATCGAA




TTCCACTACTTAAGGAATCACTAGTCTTTGAAAATTTGTA




CCTGGATATTCTATTTACCACTTATTTTTTTGTTTAGTTT




TATTTCTTTTTTTTTTTGGTAGCAGCTTTAATGAGACAAT




TTATATACCATACAAGCCACTGACCACCCATTTTTAATAG




AGAAGTTGTTTGACCCAATAGATAGATCTAATCTCAGCCT




AACTCTATTTTCCCCAATCCTCCTTGAGTAAAATGACCCT




TTAGGATCGCTTAGAATAACTTGAGGAGTATTATGGCGCT




GACTCATATTGTTACCTAAGATCCCCTTATTTCTAAAGTA




TCTGTTACTTATTGC





TRMT112
NM_016404.2
GGCCACCCGCAGAACAGAGCTTCCGGGACCCACGCCTCGT
45




TTGCACTGGGTGCTGGACAGCCGACGCAACTACAAATGGG





GCGGAGCTTTCGGCACTGGAGCAGCTAATTTGCATATAGG






AATGAGGTGCGGCTCGGCTTCCATGGGCCTAATTTACAGA





TAGGGCGGTATTTCTGCCCCTTAACCGAAAGTGGGATACA




GAGGACGACGGTGTTAGGCGCCTGTGTAGGAGTAAAATGT




GTTTATTTTGCATTCAACGAGAGCTCCTGCATTGCAGCTA




TTTTGCATATGATTTGCATCTTACGAAGAATTTGTGGCAA




AAAAAAGCTGGGCGTGCGCCGTAGGAACCTCCTGCTGAGA




CGCTTCCGGTAGCGGCGCGTGACCCGACAGGTCTTTCACC




TACCTACCTCAGCTCCCACAAACACGAGAAGTTCCAGCAA




GTTCGCCACTTCCGGTTCTCCTGGCTATCCAATAGCATCG




AGAGGAGCATCCCCGGAAGTGAGGCAGCGGAGGACGACCT




TTTTCCGGTTCCGGCCTGGCGAGAGTTTGTGCGGCGACAT




GAAACTGCTTACCCACAATCTGCTGAGCTCGCATGTGCGG




GGGGTGGGGTCCCGTGGCTTCCCCCTGCGCCTCCAGGCCA




CCGAGGTCCGTATCTGCCCTGTGGAATTCAACCCCAACTT




CGTGGCGCGTATGATACCTAAAGTGGAGTGGTCGGCGTTC




CTGGAGGCGGCCGATAACTTGCGTCTGATCCAGGTGCCGA




AAGGGCCGGTTGAGGGATATGAGGAGAATGAGGAGTTTCT




GAGGACCATGCACCACCTGCTGCTGGAGGTGGAAGTGATA




GAGGGCACCCTGCAGTGCCCGGAATCTGGACGTATGTTCC




CCATCAGCCGCGGGATCCCCAACATGCTGCTGAGTGAAGA




GGAAACTGAGAGTTGATTGTGCCAGGCGCCAGTTTTTCTT




GTTATGACTGTGTATTTTTGTTGATCTATACCCTGTTTCC




GAATTCTGCCGTGTGTATCCCCAACCCTTGACCCAATGAC




ACCAAACACAGTGTTTTTGAGCTCGGTATTATATATTTTT




TTCTCATTAAAGGTTTAAAACCAAAAGCGGTTTCTCTTTG




CAGCAAATATACATTAAAATAGAGTCTCTGTACAGCCAAG




GGCTCTGGGCCCTGGCTTGCCCCATGTCCCTGCGCCTCCC




TGGCCAAACCCAAAAATAAATATAGTGTTATTGCTCTGCA




GGGCATAGAGGCAGTGCTCTCCTACCCCCTGAGGAGGCTC




GTTGGGAGCTGATGGGGAAGCCCTG





VMAT1
NM_003053.3
CACACACACACATACACAGAATCCTCAGATAACAGGAGGC
46




AATAAATCCAACAGCACATCCACGTTCAGAGAACAGTGTC




CCTGCTGTCTTGCTAACAGCTGCCAATACCTCACTGAGTG





CCTCACACCAACATGGGCTCCAAGTGAGTTTCCTTCGTCT






GGGCAGACTCCCTCCCCTCTTCCATAAAGGCTGCAGGAGA





CCTGTAGCTGTCACAGGACCTTCCCTAAGAGCCCGCAGGG




GAAGACTGCCCCAGTCCGGCCATCACCATGCTCCGGACCA




TTCTGGATGCTCCCCAGCGGTTGCTGAAGGAGGGGAGAGC




GTCCCGGCAGCTGGTGCTGGTGGTGGTATTCGTCGCTTTG




CTCCTGGACAACATGCTGTTTACTGTGGTGGTGCCAATTG




TGCCCACCTTCCTATATGACATGGAGTTCAAAGAAGTCAA




CTCTTCTCTGCACCTCGGCCATGCCGGAAGTTCCCCACAT




GCCCTCGCCTCTCCTGCCTTTTCCACCATCTTCTCCTTCT




TCAACAACAACACCGTGGCTGTTGAAGAAAGCGTACCTAG




TGGAATAGCATGGATGAATGACACTGCCAGCACCATCCCA




CCTCCAGCCACTGAAGCCATCTCAGCTCATAAAAACAACT




GCTTGCAAGGCACAGGTTTCTTGGAGGAAGAGATTACCCG




GGTCGGGGTTCTGTTTGCTTCAAAGGCTGTGATGCAACTT




CTGGTCAACCCATTCGTGGGCCCTCTCACCAACAGGATTG




GATATCATATCCCCATGTTTGCTGGCTTTGTTATCATGTT




TCTCTCCACAGTTATGTTTGCTTTTTCTGGGACCTATACT




CTACTCTTTGTGGCCCGAACCCTTCAAGGCATTGGATCTT




CATTTTCATCTGTTGCAGGTCTTGGAATGCTGGCCAGTGT




CTACACTGATGACCATGAGAGAGGACGAGCCATGGGAACT




GCTCTGGGGGGCCTGGCCTTGGGGTTGCTGGTGGGAGCTC




CCTTTGGAAGTGTAATGTACGAGTTTGTTGGGAAGTCTGC




ACCCTTCCTCATCCTGGCCTTCCTGGCACTACTGGATGGA




GCACTCCAGCTTTGCATCCTACAGCCTTCCAAAGTCTCTC




CTGAGAGTGCCAAGGGGACTCCCCTCTTTATGCTTCTCAA




AGACCCTTACATCCTGGTGGCTGCAGGGTCCATCTGCTTT




GCCAACATGGGGGTGGCCATCCTGGAGCCCACACTGCCCA




TCTGGATGATGCAGACCATGTGCTCCCCCAAGTGGCAGCT




GGGTCTAGCTTTCTTGCCTGCCAGTGTGTCCTACCTCATT




GGCACCAACCTCTTTGGTGTGTTGGCCAACAAGATGGGTC




GGTGGCTGTGTTCCCTAATCGGGATGCTGGTAGTAGGTAC




CAGCTTGCTCTGTGTTCCTCTGGCTCACAATATTTTTGGT




CTCATTGGCCCCAATGCAGGGCTTGGCCTTGCCATAGGCA




TGGTGGATTCTTCTATGATGCCCATCATGGGGCACCTGGT




GGATCTACGCCACACCTCGGTGTATGGGAGTGTCTACGCC




ATCGCTGATGTGGCTTTTTGCATGGGCTTTGCTATAGGTC




CATCCACCGGTGGTGCCATTGTAAAGGCCATCGGTTTTCC




CTGGCTCATGGTCATCACTGGGGTCATCAACATCGTCTAT




GCTCCACTCTGCTACTACCTGCGGAGCCCCCCGGCAAAGG




AAGAGAAGCTTGCTATTCTGAGTCAGGACTGCCCCATGGA




GACCCGGATGTATGCAACCCAGAAGCCCACGAAGGAATTT




CCTCTGGGGGAGGACAGTGATGAGGAGCCTGACCATGAGG




AGTAGCAGCAGAAGGTGCTCCTTGAATTCATGATGCCTCA




GTGACCACCTCTTTCCCTGGGACCAGATCACCATGGCTGA




GCCCACGGCTCAGTGGGCTTCACATACCTCTGCCTGGGAA




TCTTCTTTCCTCCCCTCCCATGGACACTGTCCCTGATACT




CTTCTCACCTGTGTAACTTGTAGCTCTTCCTCTATGCCTT




GGTGCCGCAGTGGCCCATCTTTTATGGGAAGACAGAGTGA




TGCACCTTCCCGCTGCTGTGAGGTTGATTAAACTTGAGCT




GTGACGGGTTCTGCAAGGGGTGACTCATTGCATAGAGGTG




GTAGTGAGTAATGTGCCCCTGAAACCAGTGGGGTGACTGA




CAAGCCTCTTTAATCTGTTGCCTGATTTTCTCTGGCATAG




TCCCAACAGATCGGAAGAGTGTTACCCTCTTTTCCTCAAC




GTGTTCTTTCCCGGGTTTTCCCAGCCGAGTTGAGAAAATG




TTCTCAGCATTGTCTTGCTGCCAAATGCCAGCTTGAAGAG




TTTTGTTTTGTTTTTTTTCATTTATTTTTTTTTTTAATAA




AGTGAGTGATTTTTCTGTGGCTAAATCTAGAGCTGCTAAA




AGGGCTTTACCCTCAGTGAAAAGTGTCTTCTATTTTCATT




ATCTTTCAGAAACAGGAGCCCATTTCTCTTCTGCTGGAGT




TATTGACATTCTCCTGACCTCCCCTGTGTGTTCCTACCTT




TTCTGAACCTCTTAGACTCTTAGAAATAAAAGTAGAAGAA




AGACAGAAAAAATAACTGATTAGACCCAAGATTTCATGGG




AAGAAGTTAAAAGAAACTGCCTTGAAATCCCTCCTGATTG




TAGATTTCCTAACAGGAGGGGTGTAATGTGACATTGTTCA




TACTTGCTAATAAATACATTATTGCCTAATTCAAAAAAAA




AAAAAAAAAA





VMAT2
NM_003054.4
AGAGCCGGACGGGGTAAACTGAGCGGCGGCGGCGGGGCGC
47




TGGGGCGGAGACTGCGACCCGGAGCCGCCCGGACTGACGG




AGCCCACTGCGGTGCGGGCGTTGGCGCGGGCACGGAGGAC




CCGGGCAGGCATCGCAAGCGACCCCGAGCGGAGCCCCGGA




GCCATGGCCCTGAGCGAGCTGGCGCTGGTCCGCTGGCTGC




AGGAGAGCCGCCGCTCGCGGAAGCTCATCCTGTTCATCGT




GTTCCTGGCGCTGCTGCTGGACAACATGCTGCTCACTGTC




GTGGTCCCCATCATCCCAAGTTATCTGTACAGCATTAAGC




ATGAGAAGAATGCTACAGAAATCCAGACGGCCAGGCCAGT




GCACACTGCCTCCATCTCAGACAGCTTCCAGAGCATCTTC




TCCTATTATGATAACTCGACTATGGTCACCGGGAATGCTA




CCAGAGACCTGACACTTCATCAGACCGCCACACAGCACAT




GGTGACCAACGCGTCCGCTGTTCCTTCCGACTGTCCCAGT




GAAGACAAAGACCTCCTGAATGAAAACGTGCAAGTTGGTC




TGTTGTTTGCCTCGAAAGCCACCGTCCAGCTCATCACCAA




CCCTTTCATAGGACTACTGACCAACAGAATTGGCTATCCA




ATTCCCATATTTGCGGGATTCTGCATCATGTTTGTCTCAA




CAATTATGTTTGCCTTCTCCAGCAGCTATGCCTTCCTGCT




GATTGCCAGGTCGCTGCAGGGCATCGGCTCGTCCTGCTCC




TCTGTGGCTGGGATGGGCATGCTTGCCAGTGTCTACACAG




ATGATGAAGAGAGAGGCAACGTCATGGGAATCGCCTTGGG




AGGCCTGGCCATGGGGGTCTTAGTGGGCCCCCCCTTCGGG




AGTGTGCTCTATGAGTTTGTGGGGAAGACGGCTCCGTTCC





TGGTGCTGGCCGCCCTGGTACTCTTGGATGGAGCTATTCA





GCTCTTTGTGCTCCAGCCGTCCCGGGTGCAGCCAGAGAGT




CAGAAGGGGACACCCCTAACCACGCTGCTGAAGGACCCGT




ACATCCTCATTGCTGCAGGCTCCATCTGCTTTGCAAACAT




GGGCATCGCCATGCTGGAGCCAGCCCTGCCCATCTGGATG




ATGGAGACCATGTGTTCCCGAAAGTGGCAGCTGGGCGTTG




CCTTCTTGCCAGCTAGTATCTCTTATCTCATTGGAACCAA




TATTTTTGGGATACTTGCACACAAAATGGGGAGGTGGCTT




TGTGCTCTTCTGGGAATGATAATTGTTGGAGTCAGCATTT




TATGTATTCCATTTGCAAAAAACATTTATGGACTCATAGC




TCCGAACTTTGGAGTTGGTTTTGCAATTGGAATGGTGGAT




TCGTCAATGATGCCTATCATGGGCTACCTCGTAGACCTGC




GGCACGTGTCCGTCTATGGGAGTGTGTACGCCATTGCGGA




TGTGGCATTTTGTATGGGGTATGCTATAGGTCCTTCTGCT




GGTGGTGCTATTGCAAAGGCAATTGGATTTCCATGGCTCA




TGACAATTATTGGGATAATTGATATTCTTTTTGCCCCTCT




CTGCTTTTTTCTTCGAAGTCCACCTGCCAAAGAAGAAAAA




ATGGCTATTCTCATGGATCACAACTGCCCTATTAAAACAA




AAATGTACACTCAGAATAATATCCAGTCATATCCGATAGG




TGAAGATGAAGAATCTGAAAGTGACTGAGATGAGATCCTC




AAAAATCATCAAAGTGTTTAATTGTATAAAACAGTGTTTC




CAGTGACACAACTCATCCAGAACTGTCTTAGTCATACCAT




CCATCCCTGGTGAAAGAGTAAAACCAAAGGTTATTATTTC




CTTTCCATGGTTATGGTCGATTGCCAACAGCCTTATAAAG




AAAAAGAAGCTTTTCTAGGGGTTTGTATAAATAGTGTTGA




AACTTTATTTTATGTATTTAATTTTATTAAATATCATACA




ATATATTTTGATGAAATAGGTATTGTGTAAATCTATAAAT




ATTTGAATCCAAACCAAATATAATTTTTTAACTTACATTA




ACAAACATTTGGGCAAAAATCATATTGGTAATGAGTGTTT




AAAATTAAAGCACACATTATCTCTGAGACTCTTCCAACAA




AGAGAAACTAGAATGAAGTCTGAAAAACAGAATCAAGTAA




GACAGCATGTTATATAGTGACACTGAATGTTATTTAACTT




GTAGTTACTATCAATATATTTATGCGTTAAACAGCTAGTT




CTCTCAAGTGTAGAGGACAAGAACTTGTGTCAGTTATCTT




TTGAATCCATAAATCTTAGCTGGCATTAGTTTTCTATGTA




ATCACCTACCTAGAGAGAGTTGTAAATTATATGTTAACAT




GTTATCTGGTTGGCAGCAAACACTAAAGCCAATAAAGGAA




AAACAGTAAATGTTCCGAAAGCAGAGAAAAGCAACCAAAC




ATATTGTTATGAACTAAAAGCTTTCCCTTTAAGATGCATA




CTTGTCTTACTGGATGAAGAAAATTGAGGGTACATGTACC




TTATACTGTCAAGGTTGTTTAAACATGATAAGGTTAATCG




CCATCTACTTCAAGTTTTAGAAAAGGAAACAAGAAGCTGA




AAACAGCTGCTCTGACTTTAATATCTGACTATATCTTTGA




TCTGTTTGCAGGTCATCCAAGTGTTTTCTAGGAATATATT




TATTTTAGGTTGTCTGAAACTACTATTTTTTAGACTCCTG




AAAGTTGTTCACATCAATGTGAAGACAAATTTTAAATGAA




AATGAAGAATGAAATTATGTCTTGAATCATATATTAAGAA




GTAAAAATAATAGTGATCAGGCAGAAAAGAAAAATGGAAC




ATCTAAAAATGTATGTGCTAACTATATCATCCAGTGTGCA




GTGTTGTGTATTTTTCTAAGCATGACAACATTGATGTGCC




TTTTCAGTGTAACAGCAAATACTGTTAGTGAACATTGTCA




ATTTATGTCATTTTGTTAAGAGATATGACTGGAGTGTGCA




GTGTGGAATGTCTCTAATACTACTTGTGAATCCTGCAGTT




CTATAATCATAAACAAAAATTACTTAGTTTCGTTAAGCTA




AGATTGTGTTTGTGTTAACTTCGACATCAAGGAGCAAAGA




ACTTTAGAACAGACTCCTCAATCTTGTGACTTTCTTATTC




TCTAGGAAAGTAACACTTCGTTTCATGAAGCTTTTCTGTG




GGGCTTCGATTATTTCAAGTCTGGTTTCTAAGTGCAGTGT




GTTTGAAGCAAACGAACTTCCAACTCACTTATTTGGCATT




GGGCAACTTGGCCAAGTCTGCCACTTTGGAAGATGGCTCT




GGAGGAAACTCTCATATGGCTAAAAAGGCAGGCTAGTTTC




TTACTTCTACAGGGGTAGAGCCTTAAAAAAGAACGTGCTA




CAAATTGGTTCTCTTTGAGGGTTTCTGGTTCTCCCTGCCC




CCAATACCATATACTTTATTGCAATTTTATTTTTGCCTTT




ACGGCTCTGTGTCTTTCTGCAAGAAGGCCTGGCAAAGGTA




TGCCTGCTGTTGGTCCCTCGGGATAAGATAAAATATAAAT




AAAACCTTCAGAACTGTTTTGGAGCAAAAGATAGCTTGTA




CTTGGGGAAAAAAATTCTAAGTTCTTTTATATGACTAATA




TTCTTGGTTAGCAAGACTGGAAAGAGGTGTTTTTTTAAAA




TGTACATACCAGAACAAAGAACATACAGCTCTCTGAACAT




TTATTTTTTGAACAGAGGTGGTTTTTATGTTTGGACCTGG




TAATACAGATACAAAAACTTTAATGAGGTAGCAATGAATA




TTCAACTGTTTGACTGCTAAGTGTATCTGTCCATATTTTA




GCAAGTTTACTTAATAAATCTTCTGAACCATGAAAAAAAA




AAAAA





VPS13C
NM_001018088.2
CCGGAGGGGCTGTCATTTGCAGCGCTGGTCGCAGCCCTCA
48




GCTGCGCCGGGCGGTTCCGGCTCCTCCCTCTCCTTGTGCC




TCAGCGCCACCATGGTGCTGGAGTCGGTGGTCGCGGACTT




GCTGAACCGCTTCCTGGGGGACTATGTGGAGAACCTGAAC




AAGTCCCAGCTGAAGCTGGGCATCTGGGGCGGAAATGTGG




CTTTAGATAATCTACAGATAAAAGAAAATGCCCTGAGTGA




ATTGGATGTTCCTTTTAAAGTCAAGGCTGGCCAAATTGAT




AAATTAACTTTGAAGATTCCTTGGAAGAACCTTTATGGAG




AAGCAGTTGTTGCGACCCTGGAAGGATTATACCTGCTTGT




TGTCCCTGGAGCAAGTATTAAGTATGATGCTGTAAAAGAA




GAAAAATCCTTGCAGGATGTTAAACAGAAAGAGCTATCCC




GAATTGAAGAAGCCCTTCAAAAAGCAGCAGAAAAAGGCAC




ACATTCAGGGGAGTTCATATATGGCTTGGAGAACTTTGTT




TACAAGGACATCAAGCCTGGACGTAAACGTAAAAAGCACA




AAAAACATTTTAAGAAACCTTTTAAAGGTCTTGATCGTTC




AAAAGATAAGCCAAAAGAAGCCAAAAAGGATACATTTGTG




GAAAAATTGGCAACTCAAGTAATAAAAAATGTACAAGTAA




AAATCACAGATATTCACATTAAATATGAAGATGATGTCAC




TGATCCAAAGCGGCCTCTTTCATTTGGTGTCACACTGGGA




GAGCTTAGTCTACTGACTGCAAATGAACACTGGACTCCAT




GCATATTAAATGAAGCAGACAAAATTATATACAAGCTTAT




ACGACTTGATAGTCTTAGCGCCTACTGGAATGTAAATTGC




AGCATGTCTTACCAGAGATCAAGGGAACAGATTTTGGATC




AGCTGAAAAATGAAATTCTTACAAGTGGAAATATACCCCC




AAATTATCAATACATTTTCCAGCCAATATCAGCCTCTGCA




AAACTCTACATGAATCCTTATGCAGAATCAGAGCTCAAAA




CGCCCAAACTGGATTGCAACATAGAAATACAAAATATTGC




CATTGAACTGACCAAACCTCAGTACTTAAGTATGATTGAC




CTTTTGGAGTCAGTGGATTATATGGTTAGGAATGCGCCTT




ATAGGAAATACAAGCCTTATTTACCACTTCATACCAATGG




TCGACGATGGTGGAAATATGCAATTGATTCTGTTCTTGAA




GTTCATATAAGAAGGTATACACAGATGTGGTCATGGAGTA




ACATAAAAAAGCACAGGCAGTTACTCAAGAGTTATAAAAT




TGCCTACAAAAACAAGTTAACACAGTCTAAAGTCTCAGAA




GAAATACAGAAAGAAATTCAGGACTTGGAGAAGACTCTAG




ATGTTTTTAACATAATTTTAGCAAGGCAACAAGCACAAGT




TGAGGTGATTCGGTCTGGGCAAAAATTAAGGAAAAAGTCT




GCTGACACAGGCGAGAAACGTGGAGGCTGGTTTAGTGGGT




TGTGGGGTAAGAAAGAGTCTAAGAAAAAGGACGAAGAATC




ATTGATTCCTGAAACTATTGATGACCTTATGACTCCAGAG




GAAAAAGATAAACTCTTCACTGCCATTGGTTATAGTGAGA




GTACCCACAACCTAACTTTACCTAAGCAGTATGTTGCCCA




TATTATGACCCTGAAGTTAGTAAGCACCTCTGTTACGATA




AGAGAAAACAAGAATATTCCAGAAATACTAAAAATTCAGA




TAATTGGCCTGGGCACTCAAGTATCTCAGCGACCAGGAGC




ACAAGCACTTAAGGTAGAAGCGAAATTAGAACACTGGTAT




ATAACAGGTTTGAGACAGCAGGATATTGTGCCATCACTTG




TGGCTTCAATTGGTGACACTACATCATCCTTGCTTAAAAT




TAAATTTGAAACCAATCCGGAGGATAGTCCTGCTGACCAG




ACTCTGATTGTTCAGTCCCAGCCTGTGGAGGTCATCTATG




ATGCTAAAACTGTCAATGCAGTGGTTGAATTCTTTCAATC




AAATAAGGGATTGGATCTTGAGCAAATAACATCAGCAACA




TTGATGAAGCTGGAAGAAATTAAGGAGAGAACAGCTACAG




GACTTACACATATTATTGAAACTCGAAAAGTCCTTGATTT




AAGGATAAATCTGAAGCCTTCTTATCTAGTAGTTCCACAG




ACGGGTTTCCACCATGAAAAGTCAGATCTTCTGATTTTAG




ATTTTGGTACATTTCAGCTCAACAGTAAAGATCAAGGTTT




ACAGAAGACTACTAATTCATCTCTGGAAGAAATAATGGAT




AAGGCATATGACAAGTTTGATGTTGAAATAAAAAATGTAC




AACTACTTTTTGCAAGAGCAGAGGAAACCTGGAAAAAGTG




TCGATTTCAGCATCCATCAACTATGCATATATTGCAACCC




ATGGATATTCATGTTGAGTTGGCTAAGGCCATGGTAGAAA




AAGACATTAGAATGGCCAGATTTAAAGTGTCAGGAGGACT




TCCTTTGATGCATGTGAGAATTTCTGACCAGAAGATGAAA




GATGTGCTATATTTGATGAACAGTATACCTTTGCCACAGA




AATCATCAGCCCAGTCTCCAGAGAGACAGGTATCCTCAAT




TCCTATTATTTCAGGTGGTACAAAAGGTCTACTTGGTACT




TCACTATTGCTAGACACTGTGGAATCAGAGTCTGATGATG




AGTATTTTGATGCTGAAGATGGAGAACCACAGACTTGTAA




AAGTATGAAAGGATCAGAACTTAAAAAAGCTGCAGAGGTC




CCAAATGAGGAGCTCATCAATCTTCTACTCAAGTTTGAAA




TTAAAGAAGTGATTTTGGAATTTACTAAACAGCAGAAAGA




AGAAGATACAATTCTAGTATTTAATGTTACTCAGTTAGGA




ACAGAGGCCACAATGAGAACATTTGACTTAACTGTGGTAT




CTTATTTAAAGAAAATCAGCTTGGATTATCATGAAATTGA




AGGATCCAAAAGGAAGCCCCTTCACTTGATTAGCTCTTCT




GACAAACCTGGATTAGATCTTTTGAAAGTGGAGTATATTA




AGGCTGATAAGAATGGACCTAGTTTTCAAACTGCTTTTGG




AAAAACTGAACAAACAGTTAAGGTGGCCTTTTCATCTTTA




AATCTGTTGCTGCAAACACAAGCTCTTGTCGCTTCTATTA




ATTACCTCACAACCATTATTCCATCTGATGATCAAAGCAT




AAGTGTTGCTAAGGAGGTACAAATTTCAACTGAAAAACAA




CAAAAAAATTCAACTCTGCCAAAAGCGATTGTATCCTCCA




GAGATAGTGACATTATTGATTTCAGGCTATTTGCCAAGTT




GAATGCTTTCTGTGTCATTGTTTGCAACGAAAAGAACAAT




ATCGCCGAAATCAAGATTCAAGGACTGGATTCCTCCCTTT




CTCTCCAGTCAAGAAAGCAGTCACTTTTTGCCCGACTAGA




AAATATTATTGTCACAGATGTTGATCCAAAGACAGTTCAT




AAGAAAGCTGTGTCAATAATGGGAAATGAAGTTTTCCGTT




TTAATTTGGATTTGTATCCAGATGCTACTGAGGGGGATTT




GTATACTGACATGTCCAAAGTGGATGGTGTGCTGTCTCTG




AATGTTGGCTGTATTCAGATTGTCTATCTTCATAAATTCC




TTATGTCACTTCTGAACTTCCTGAATAATTTCCAGACAGC




CAAAGAGTCTCTGAGTGCTGCCACTGCCCAGGCTGCAGAA




AGGGCTGCCACAAGTGTGAAAGATCTTGCCCAGAGGAGTT




TTCGTGTTTCCATCAATATTGATTTGAAAGCACCGGTTAT




AGTCATCCCACAGTCTTCTATTTCCACCAATGCAGTAGTG




GTAGATCTTGGGTTAATCAGAGTTCATAATCAGTTCAGTC




TGGTGTCTGATGAAGACTACTTAAATCCTCCAGTAATTGA




TAGAATGGATGTGCAGCTAACAAAGCTTACACTTTATAGG




ACAGTGATCCAGCCAGGCATCTACCATCCTGATATTCAGC




TGTTGCACCCAATTAACTTGGAATTTCTTGTAAATCGGAA




TCTAGCTGCATCTTGGTACCACAAGGTGCCTGTTGTGGAA




ATTAAAGGACATCTTGATTCAATGAATGTTAGTCTAAATC




AAGAAGATCTTAATCTTTTATTTAGGATACTAACAGAAAA




TCTCTGTGAGGGTACTGAAGACTTGGATAAAGTGAAACCA




AGAGTACAAGAGACAGGTGAAATTAAAGAGCCCCTTGAAA




TCTCTATATCACAAGATGTACATGATTCAAAAAATACTTT




AACAACTGGAGTGGAAGAAATTAGGTCTGTAGACATCATT




AATATGCTGCTGAATTTTGAAATTAAAGAGGTTGTGGTTA




CTTTGATGAAAAAATCAGAAAAGAAAGGAAGGCCTTTACA




TGAGCTAAATGTCCTGCAACTTGGAATGGAAGCTAAAGTT




AAAACCTATGACATGACTGCTAAAGCTTATCTAAAAAAAA




TTAGTATGCAGTGCTTTGATTTCACTGACTCTAAAGGGGA




ACCTCTTCACATTATTAACTCTTCTAATGTGACTGACGAA




CCCCTTCTGAAAATGTTACTGACAAAGGCAGACAGTGATG




GACCAGAATTTAAAACTATTCATGACAGTACCAAACAGAG




ACTGAAGGTTTCATTTGCATCCTTAGACTTAGTACTTCAT




TTGGAAGCTTTACTTTCCTTCATGGATTTTTTATCATCTG




CTGCTCCATTCTCTGAGCCTTCCTCTTCTGAGAAGGAATC




CGAGCTGAAACCACTTGTGGGGGAGTCCAGAAGTATCGCT




GTCAAAGCTGTATCCAGCAACATTTCCCAAAAGGATGTGT




TTGATTTAAAGATCACAGCTGAATTAAATGCATTTAATGT




CTTTGTCTGTGATCAGAAGTGTAACATTGCAGATATTAAA




ATACATGGAATGGATGCCTCTATTTCTGTGAAGCCTAAGC




AGACTGATGTGTTTGCCAGACTTAAAGATATTATAGTTAT




GAATGTAGATTTGCAGTCCATTCACAAAAAGGCTGTCTCT




ATTTTGGGAGATGAAGTCTTTAGGTTCCAACTGACTCTTT




ATCCAGATGCCACAGAAGGAGAGGCCTATGCTGATATGTC




CAAAGTAGACGGCAAACTTAGTTTTAAAGTGGGTTGTATT




CAGATTGTTTATGTTCATAAATTCTTCATGTCTCTTTTGA




ACTTCCTCAACAATTTCCAAACTGCTAAAGAAGCTTTGAG




TACAGCCACAGTCCAGGCTGCAGAAAGAGCTGCTTCCAGC




ATGAAAGACTTGGCTCAAAAGAGTTTCCGCCTTTTGATGG




ATATTAATTTGAAAGCACCAGTTATTATTATTCCTCAGTC




TTCAGTATCACCTAATGCTGTTATAGCAGATCTGGGTTTA




ATCAGAGTTGAAAACAAGTTTAGCTTGGTTCCTATGGAAC




ATTATTCTCTTCCTCCAGTCATTGATAAAATGAACATCGA




ACTCACTCAGTTGAAGCTGTCAAGAACTATTTTGCAGGCT




AGCTTGCCACAAAATGACATTGAAATTTTAAAACCAGTCA




ACATGCTTTTGTCCATACAGCGAAACTTAGCAGCAGCATG




GTATGTGCAAATTCCAGGGATGGAGATAAAAGGAAAACTA




AAACCTATGCAGGTTGCTCTCAGTGAAGATGACTTGACAG




TTTTAATGAAAATTTTGCTAGAAAATCTTGGAGAAGCTTC




CTCACAACCAAGCCCTACACAGTCTGTGCAGGAGACTGTA




AGAGTGAGAAAAGTTGATGTTTCAAGTGTACCTGACCATC




TCAAAGAACAAGAAGATTGGACAGACTCAAAGCTCTCTAT




GAACCAGATTGTCAGTCTCCAATTTGACTTTCACTTTGAA




TCTCTTTCCATTATCCTTTATAACAATGATATCAACCAGG




AATCTGGAGTTGCATTTCATAATGACAGTTTCCAACTTGG




TGAACTCAGACTACATCTTATGGCCTCCTCAGGGAAGATG




TTTAAGGATGGCTCAATGAATGTCAGCGTTAAACTTAAGA




CATGCACCCTTGATGATCTCAGAGAAGGAATTGAGAGAGC




AACATCGAGAATGATTGACAGAAAGAATGACCAAGATAAC




AACAGTTCTATGATTGATATAAGTTACAAACAAGACAAAA




ATGGAAGTCAAATTGATGCTGTTCTTGACAAGCTGTATGT




ATGTGCCAGTGTGGAATTTCTGATGACTGTGGCAGATTTC




TTTATCAAAGCTGTGCCTCAGAGTCCAGAAAATGTGGCAA




AAGAAACACAGATTTTACCAAGACAGACTGCCACAGGGAA




GGTCAAGATAGAGAAAGATGACTCTGTTAGACCAAATATG




ACTTTAAAGGCCATGATCACAGATCCAGAAGTGGTATTTG




TTGCCAGCCTGACAAAGGCTGATGCTCCTGCTCTGACAGC




CTCGTTTCAGTGCAACCTTTCTCTGTCAACATCCAAACTC




GAACAGATGATGGAAGCTTCTGTGAGAGATCTGAAAGTGC




TCGCTTGCCCTTTTCTCAGAGAAAAGAGAGGGAAAAACAT




TACCACAGTCTTGCAGCCCTGTTCTTTATTTATGGAAAAA




TGTACGTGGGCTTCAGGAAAGCAAAATATAAATATTATGG




TTAAAGAATTTATAATTAAGATTTCACCCATAATTCTTAA




TACTGTGTTGACAATCATGGCTGCATTGTCTCCAAAAACA




AAAGAAGATGGATCCAAAGATACGTCTAAGGAAATGGAAA




ATCTTTGGGGTATCAAATCGATTAATGATTATAACACTTG




GTTTCTTGGTGTTGACACGGCAACAGAAATAACGGAAAGC




TTCAAAGGCATTGAACATTCACTGATAGAGGAAAATTGTG




GTGTTGTTGTAGAATCCATTCAAGTTACCTTAGAATGTGG




CCTTGGACATCGAACTGTACCTTTATTATTGGCAGAGTCT




AAGTTTTCAGGAAATATTAAAAATTGGACTTCTCTAATGG




CTGCTGTTGCTGACGTGACACTACAGGTGCACTATTACAA




TGAGATCCATGCTGTCTGGGAGCCACTGATTGAGAGAGTG




GAGGGGAAGAGACAATGGAATTTAAGGCTTGATGTAAAGA




AGAACCCAGTTCAGGATAAAAGTTTGCTGCCAGGAGATGA




TTTTATTCCTGAGCCACAAATGGCAATTCATATTTCTTCA




GGAAATACAATGAATATAACAATATCCAAAAGTTGTCTTA




ATGTTTTCAACAATTTAGCAAAAGGTTTTTCAGAGGGCAC




TGCTTCTACTTTTGACTACTCTTTAAAGGACAGAGCTCCT




TTTACGGTAAAAAATGCTGTAGGTGTTCCCATTAAGGTGA




AGCCCAATTGTAATCTCAGAGTAATGGGCTTCCCTGAGAA




AAGTGATATTTTTGATGTTGATGCTGGCCAGAATTTGGAA




CTGGAGTATGCCAGCATGGTACCTTCAAGTCAAGGGAACC




TATCTATATTGAGCCGTCAAGAAAGCTCCTTCTTCACTCT




GACCATTGTACCTCATGGATATACAGAAGTTGCAAATATC




CCTGTGGCCAGACCTGGACGGCGATTGTATAATGTACGGA




ATCCCAATGCCAGTCATTCTGACTCTGTCTTGGTACAAAT




TGATGCAACTGAAGGGAATAAAGTAATTACCCTTCGCTCT




CCTCTACAGATCAAAAACCATTTCTCCATTGCATTTATCA




TCTATAAATTTGTTAAGAATGTTAAGCTATTGGAGCGCAT




TGGGATAGCCAGACCTGAAGAGGAGTTCCATGTTCCTTTA




GATTCATATAGATGTCAATTGTTTATCCAGCCAGCTGGAA




TCTTAGAGCATCAGTACAAAGAATCTACCACTTATATTTC




CTGGAAGGAAGAACTTCATAGGAGCAGGGAAGTCAGATGC




ATGTTGCAGTGTCCATCAGTAGAAGTCAGCTTCTTACCTC




TCATAGTGAATACAGTTGCTCTGCCTGATGAATTGAGCTA




CATATGTACACATGGGGAAGACTGGGATGTAGCTTACATT




ATTCATCTTTATCCTTCTCTCACTTTGCGGAATCTTCTCC




CATATTCCCTAAGATATTTACTTGAGGGAACAGCAGAAAC




TCATGAGCTGGCAGAAGGCAGTACTGCTGATGTTCTGCAT




TCGAGAATCAGTGGTGAAATAATGGAATTAGTCCTGGTGA




AATACCAGGGCAAAAACTGGAATGGACATTTCCGCATACG




TGATACACTACCAGAATTCTTTCCTGTGTGTTTTTCTTCT




GACTCCACAGAAGTGACGACAGTCGACCTGTCAGTCCACG




TCAGGAGAATTGGCAGCCGGATGGTGCTGTCTGTCTTTAG




TCCCTATTGGTTAATCAACAAGACTACCCGGGTTCTCCAG




TATCGTTCAGAAGATATTCATGTGAAACATCCAGCTGATT




TCAGGGATATTATTTTATTTTCTTTCAAGAAGAAGAACAT




TTTTACTAAAAATAAGGTACAATTAAAAATTTCAACCAGT




GCCTGGTCCAGTAGTTTCTCATTGGATACAGTGGGAAGTT




ATGGGTGTGTGAAGTGTCCTGCCAACAATATGGAGTACCT




GGTTGGTGTTAGCATCAAAATGAGCAGTTTCAACCTTTCA




CGAATAGTTACCCTGACTCCCTTTTGTACCATTGCAAACA




AGTCATCATTAGAACTAGAAGTTGGCGAGATTGCATCTGA




TGGCTCAATGCCAACTAATAAATGGAACTATATTGCTTCT




TCAGAGTGCCTTCCATTTTGGCCAGAAAGTTTGTCAGGCA




AACTTTGTGTGAGAGTGGTGGGCTGTGAAGGATCTTCCAA




ACCATTCTTTTATAACCGACAGGATAATGGCACTTTATTG




AGCTTAGAAGATCTGAATGGGGGTATCTTGGTGGATGTAA




ACACTGCCGAACATTCAACTGTCATAACTTTTTCTGATTA




CCATGAGGGATCTGCACCTGCCTTGATAATGAACCATACA




CCATGGGACATCCTCACATACAAACAGAGTGGGTCACCAG




AAGAAATGGTCTTGCTGCCAAGACAGGCTCGACTTTTTGC




CTGGGCAGATCCTACTGGTACCAGAAAACTTACATGGACA




TATGCAGCAAATGTTGGGGAACATGATCTGTTAAAGGATG




GATGTGGACAGTTTCCATATGATGCAAACATCCAGATACA




CTGGGTATCATTTCTGGATGGGCGCCAGAGAGTTTTGCTT




TTCACCGATGATGTTGCCTTGGTTTCCAAAGCACTGCAGG




CAGAAGAAATGGAACAGGCTGATTATGAAATAACCTTGTC




TCTCCACAGTCTTGGGCTTTCACTGGTTAACAATGAAAGC




AAGCAGGAAGTTTCCTATATTGGGATAACCAGTTCTGGTG




TTGTTTGGGAGGTGAAACCAAAGCAGAAATGGAAGCCATT




TAGTCAAAAGCAGATAATCTTATTGGAACAATCCTATCAG




AAACATCAAATATCAAGAGACCATGGCTGGATTAAGCTAG




ATAATAATTTTGAGGTCAATTTTGATAAAGATCCAATGGA




AATGCGCCTCCCTATTCGTAGCCCTATTAAACGAGACTTT




TTATCAGGAATTCAGATTGAATTTAAGCAGTCTTCTCACC




AGAGAAGTTTAAGGGCCAGGTTGTACTGGCTTCAGGTTGA





TAATCAGTTACCAGGTGCAATGTTCCCTGTTGTATTTCAT





CCTGTTGCCCCTCCAAAATCTATTGCTTTAGATTCAGAGC




CCAAGCCTTTCATTGATGTGAGTGTCATCACAAGATTTAA




TGAGTACAGTAAAGTCTTACAGTTCAAGTATTTTATGGTC




CTCATTCAGGAAATGGCCTTAAAAATTGATCAAGGGTTTC




TAGGAGCTATTATTGCACTGTTTACCCCAACAACAGACCC




TGAAGCTGAAAGAAGACGGACAAAGTTAATCCAACAAGAT




ATTGATGCTCTAAATGCAGAATTAATGGAGACTTCAATGA




CTGATATGTCAATTCTTAGTTTCTTTGAACATTTCCATAT




TTCTCCTGTGAAGTTGCATTTGAGTTTGTCTTTGGGTTCC




GGAGGTGAAGAATCAGACAAAGAAAAACAGGAAATGTTTG




CAGTTCATTCTGTCAACTTGCTGTTGAAAAGCATAGGTGC




TACTCTGACTGATGTGGATGACCTTATATTCAAACTTGCT




TATTATGAAATTCGATATCAGTTCTACAAGAGAGATCAGC




TTATATGGAGTGTTGTTAGGCATTACAGTGAACAGTTCTT




GAAACAGATGTATGTCCTTGTATTGGGGTTAGATGTACTT




GGAAACCCATTTGGATTAATTAGAGGTCTGTCTGAAGGAG




TTGAAGCTTTATTCTATGAACCCTTCCAGGGTGCTGTTCA




AGGCCCTGAAGAATTTGCAGAGGGGTTAGTGATTGGAGTG




AGAAGCCTCTTTGGACACACAGTAGGTGGTGCAGCAGGAG




TTGTATCTCGAATCACCGGTTCTGTTGGGAAAGGTTTGGC




AGCAATTACAATGGACAAGGAATATCAGCAAAAAAGAAGA




GAAGAGTTGAGTCGACAGCCCAGAGATTTTGGAGACAGCC




TGGCCAGAGGAGGAAAGGGCTTTCTGCGAGGAGTTGTTGG




TGGAGTGACTGGAATAATAACAAAACCTGTGGAAGGTGCC




AAAAAGGAAGGAGCTGCTGGATTCTTTAAAGGAATTGGAA




AAGGGCTTGTGGGTGCTGTGGCCCGTCCAACTGGTGGAAT




CGTAGATATGGCCAGTAGTACCTTCCAAGGCATTCAGAGG




GCAGCAGAATCAACTGAGGAAGTATCTAGCCTCCGTCCCC




CTCGCCTGATCCATGAAGATGGCATCATTCGTCCTTATGA




CAGACAGGAATCTGAGGGCTCTGACTTACTTGAGCAAGAA




CTGGAAATACAGGAATAAATGTTTCCTAAACTACTACTTG




ATTTCATCCTTAAAAATCAAAACAAACTGTGGTGTTAATT




GACTGTGTGTGAATTCCATTGTCAATTTTAATGAAATTTT




CTTTAAAACTCTCACCTCCATCTGAACTTTTCATAGTAGT




GGGATTGACTACAAATAAAAACTTGTGGTATTCCTGGTAA




TACTGTCCAGAAATAAGAGATTAGTATAAAATATTAAAGG




ATGCAGAGAATCAGCTCTCTTCTGCGTTTAATAGATGAAA




GCCTTTATTGAGCTCAGAAGCAGATACTGTTACTATCATT




TCGAAAATTTTATCTTATGGTGTTCATGTGCATTTCAGGT




AAAATTGAAAAACAGGACAATTATTATGTCCAATTAATAT




GTTTATGTTTGTGAGTCTTGATGATGGAATTACATAGCTT




TCTGTTTCACAAATGGCTCTAAATTTGCTTAAGTTACGGG




ACTATTACCTGGAGCATCTGCTTTAATAATTGAATTGTCA




GTTGCTCTGAGCCTGCCCTTAGACCTCAAGTAATAAATAG




TTGGCACATGAATTTTGAGGATATGTTTCCTCTTCCCTCT




TTTTCCTATTTAACCCCTTGGTACTGTTGCTAAATAAATG




ATAGCCATTTTATAATTATGTTATATACATTTTCAGCCTT




TAGCATTTCTGCTTTTCAAAAATTGAATCTCCTTGTTGGT




TATGCTTATTTCATAATTATTAGTTTTAATTAATGTAGAT




AGAAGTTGAACATGTAATTAGGCAAATTGCTGTGTGGCAC




TTGAATACATAGATTTCTTTATTTTCAAAAACCAACCTTT




TGCTTTTAAATCCTTAGAGAGGGTTTATTATCTTAGAGAA




AAAATAATTATAATCATTATTTTTGAAATTAGTATCCTCT




TAATTCTCAACATAAGTTATGTTTCAATTTCTTTTTTTTG




TAATAAATGATGGAAATGTTTAACAATGTCTTATCTAGCA




ACTTTCATGCTTCTCCTCAGAAATGAAGCCAAAGTATAAA




CTTAGATTTAATGTGTTGTATATTTGAAGAGAATGAAACT




ATTAACATATAATTGTTCAGTTGGATTATGTATTTTAAGG




ATTGCAGTTATCAAAATAATAAATTGAATGTTTTATGTTT




AACCACTTTAAAGAAGAAAGACTGACATCCAAAAACCAGC




GTGTGCTAGATATACAAAGGAAATTACTTCTGTCCTTAAG




GGACCAAGTATAACAAAACATGTAACTGTTAAAAGTAGCT




GACAAACCTTTCTTGTGCCTAGATAATTTAGCATTGGCAA




AAATGTCACCACATGCAGTTTTCTAGGAGAGTCAAGCACA




AATAACTAATTCAAGATGCTGACTTAAATCATCTCCAATA




GTTACCCTTCCTGAGATTCTAAAGTAACAATTTTTAATTT




TACTGGTTATATTGCTGTTTTACTGAGACTTACTTTTAAG




AACCCCTGTAACTTAAGATTTTTTCTTAATTGTTTTGTTT




AGCTCTGTTATTAATTTTTTCCTTGTGATATCTTTTTATA




ACTCTCTGTCAAAAAGCACAAAACTTCAAGAAACTTTTAA




TTATTTTGTCTGAACATATAATCTTGTCTGATTTCTTAGT




TTTTATTAAGATATCAGACAACTTTTAAAACTTTAGTGCA




TTATTATAATTACTGGAAGAAAAAGAATGATTATACACTA




ATGAGAGGACTTGGTAGTTTTTGTCGTGGATGTCAAGTGT




GGGCATGGATAATTGAAATATTTAGGCTATTTCATTCTTT




GCCCATCTTGCTGTGATCAGTTAGTTGGGTAAAAATATTT




ATTGATTATTTAGACTGTACTGGATATACAAAAGAAGCCT




TCTGTCCTTAAGGGACCGAGTAAAACAAAACATGGAAATA




TTAAAGAGTATTAGAGTATAAAAGTATATCTTTTTAGCCC




TTTGTAATATGGCCAAATTCTAAATAATTTATTTGGGGAT




CTTTTGATCCTCATGTTCCTTTTTCTCCTAAGTACTACTT




TGTATTCTTTAATATGCAGCTTTGAGAGTTACTGAATCAT




ATATTATATTTCCATGAGATGTACTATTCTACTTATCCTC




TAATCTTCATATATATATACACACACACATATATATACAC




ATACATATATACACACGTACATATATGTACACATACAGAT




ATACATACACACAAACACATATATACACACATACATATAC




ACACATATATATACACATACAAATATACACATATATACAC




ATACATATATATACACACATACAAATATACCCATATGTAC




ACATACATATATACACATACATATATACACACACATATAC




ACACATATATACGCAAACATACACATATTTACACATACAT




ATATACATACATTATATGTATGTATATATAGTCATTTAAT




ACTCATTTTGGTTCACATACTTATGATCATGCAACGTTTA




AAACAGCATTTCTTGCTTTTTAGTTTTAGTTATATTTTTC




CATGTTCTTAGAAATGCCTCATTAACATTTTTAATTCTTG




TATTGCCATCTATTGAGGTGACATTACATTGTGTTTTTAT




CTCGTCTTAATTCATGACATTAAATTATTCTACTAACAGT




AATAATGCTGTAATAAACATCATTATAGATTTTGCTTTTT




TATATCTTGTTTGCTTTTTCATATTTCCTTAGAATTTACT




TGAAAAAATTGAATTACTGGGTAAAGGGCTTTTGCAAAGT




ATTGTTAAATTCCTCGAGTTGCATTTTTGGAAAGGGGACG




TGAATATTTTATCAACTAATTTGGTCTCCCTGCTGCCATT




AGTGACTGAATATCTTAATCTGAATCTCAGAGTGTAGTGG




GTTTTTAGTAGTGCTGAAGACAAGTTTTCTAAAGTGTATT




ATGGTGATAAATTATATTTTAAAAACTGTCAATGGCTTGA




AGCACAATAGCCTAATAACTAACGAAAATACATACAAGAT




AGAAAGTGGGTAGTATTTCTTGTACTTGCATTTCAGATCT




AAATATTTTAACATATTTAAATTTCAAGCTGCAGATAAAT




GCATTACATTATTAAATTCATTTCCCATTTTCTCTTTGAA




GAAATTAAGGCAAAAGTGTTAAAAGATTTTAACTAATTCG




CACAAGTGAATTGTGAAACAAGTAGCTATTGCTGTGAAAT




CTGCACTCCTCTCTGAGACTCATTCTGAAGATGAGATCCC




AGTTCTTTGTGGATTCCTCTTCCTTATTCATGGCTTTTTG




CAATTGTCAAGGAATGACTAGGTACCAAGCAACTTTAAAA




AATGTATATTTAAGCATTGAAATAATATCAAATGTGATTT




CTCTGCTTGTGGTTATATTGATTATATTATCCTTTTAATA




ATATTGGCATTATATTCTTGGTCGTAAAATGTCAAGGTCT




TATTTATTCAGTATATTTATGTTCTGTATTTTCATATATA




TTATCTATTTTCAGCCATGCATTATATATAATGTCAGTAA




TAGTATTTCATTAGCATTCATTATAAAAAAACTCGTTTTT




AATATTTGACTAATTCAAGTCACAGTACTTTTGAGATAGC




TGAAAAGGAAAATAAATGTGTTTTAATGTGCTACTAAAAA




AAAAAAA





WDFY3
NM_014991.4
GCGGCCGCAGAATCGAGCTCGGGCCCCGGCCCCCGGCCCG
49




CGGCGCGGGGCTCCCGGGCCCCGCCGCGGACGTCGCGCCG




GTCGCCCCTTCCCCGTAGCCCGTGCGCCCTCGGCGCGGAG




CCCCGGCCCGCCGCGGTCCCGTCTCCTGGGCCTGTCCCGC




CCGCGCCCTCCGCCGGCCCTCAGGTATAATACTTCTCCAC




GTCTGCTTCAGGAAGAAAGTGCCTGCCATTCTTATCATTT




CTAAGCAGGTTCATGCCAGCCCAGAACAGAGAATCAGCTG




GAGCCCAGATTTCAAGTTTTGAGTAAAATACCTTCAAGCG




AATGGGCCCTATTGTGCTCACACATTCAGAACCTGTTACC




CAAGGAATTCCCTAAAGAATTAGAAGTGCGTCTCACCAAC




CAGCCAAGATGAACATGGTGAAGAGGATCATGGGGCGGCC




GAGGCAGGAGGAGTGCAGCCCACAAGACAACGCCTTAGGA




CTGATGCACCTCCGCCGGCTCTTCACGGAGTTGTGCCATC




CTCCCCGGCACATGACTCAGAAGGAACAAGAAGAGAAACT




GTATATGATGCTGCCAGTGTTTAACAGGGTTTTTGGAAAT




GCTCCGCCGAATACAATGACAGAAAAATTTTCTGATCTTC




TGCAGTTCACAACACAAGTCTCACGACTAATGGTGACAGA




AATTCGAAGGAGAGCATCAAACAAATCCACAGAGGCTGCA




AGTCGGGCCATAGTTCAGTTCCTAGAGATTAATCAGAGTG




AAGAAGCCAGTAGAGGCTGGATGCTTCTAACGACAATTAA




TTTGTTAGCTTCCTCTGGTCAGAAAACCGTGGACTGCATG




ACAACAATGTCAGTGCCTTCCACCCTGGTTAAATGTTTAT




ATCTGTTTTTTGACCTTCCACATGTGCCTGAGGCAGTTGG




AGGTGCACAGAATGAGCTACCTCTAGCAGAACGTCGAGGA




CTACTCCAGAAAGTTTTTGTACAGATCTTAGTGAAACTGT




GCAGTTTTGTTTCCCCTGCGGAGGAGCTGGCTCAGAAAGA




TGATCTCCAGCTTCTATTCAGTGCAATAACCTCTTGGTGC




CCTCCCTATAACCTGCCTTGGAGAAAGAGTGCTGGAGAAG




TCCTCATGACCATATCTCGTCATGGTCTTAGTGTCAATGT




AGTGAAGTATATTCATGAGAAAGAGTGTTTATCTACATGT




GTTCAGAATATGCAGCAATCAGATGACCTGTCTCCCCTAG




AAATTGTCGAAATGTTTGCTGGGCTTTCTTGTTTCCTCAA




AGATTCCAGCGATGTTTCCCAAACACTTCTGGATGATTTT




CGGATATGGCAAGGATATAATTTTCTTTGTGATCTCTTGC




TTAGATTGGAACAAGCAAAAGAGGCAGAATCCAAAGATGC




CTTGAAAGATCTGGTTAATCTGATAACTTCCCTAACAACA




TATGGTGTCAGTGAACTAAAACCAGCTGGTATTACCACAG




GGGCACCCTTTTTATTGCCTGGATTTGCAGTACCTCAGCC




TGCAGGCAAAGGTCACAGTGTGAGAAACGTCCAGGCCTTT




GCAGTTCTTCAGAATGCATTTTTAAAAGCAAAAACCAGCT




TCCTTGCCCAAATCATCCTTGATGCTATCACAAATATTTA




CATGGCTGACAATGCCAATTACTTCATCCTAGAGTCACAG




CACACATTGTCACAGTTTGCAGAGAAGATTTCTAAACTCC




CAGAAGTACAAAACAAATACTTTGAGATGCTGGAGTTTGT




TGTTTTTAGCTTAAATTATATACCTTGTAAAGAACTTATT




AGTGTCAGTATCCTCTTAAAATCTAGCTCTTCTTATCACT




GTAGCATTATTGCAATGAAAACACTTCTTAAGTTTACAAG




ACATGACTACATATTTAAAGACGTGTTCAGGGAGGTTGGC




CTTTTGGAGGTCATGGTAAACCTTTTGCATAAATATGCTG




CCCTGTTGAAGGATCCAACTCAGGCACTAAATGAACAAGG




GGACTCAAGAAATAATAGTTCAGTTGAAGACCAAAAACAC




CTGGCTTTATTGGTTATGGAGACCTTGACAGTGCTTCTTC




AAGGATCAAACACAAATGCAGGAATTTTTCGAGAATTTGG




AGGTGCAAGATGTGCACATAATATAGTAAAGTACCCTCAA




TGCCGGCAGCATGCCTTGATGACTATCCAACAGCTGGTGC




TCTCCCCAAATGGGGACGATGACATGGGCACTCTCCTGGG




GCTAATGCATTCAGCCCCACCGACGGAATTGCAGTTGAAG




ACTGATATTTTAAGGGCCCTCCTGTCGGTCCTTCGAGAAA




GCCATCGTTCAAGAACAGTTTTTAGGAAAGTTGGAGGATT




TGTGTACATTACATCCTTGCTCGTTGCTATGGAAAGATCT




TTGAGCTGTCCACCCAAGAATGGCTGGGAGAAAGTGAACC




AGAATCAAGTGTTTGAACTTCTTCACACTGTGTTCTGCAC




GTTGACTGCAGCAATGCGCTATGAGCCAGCCAACTCTCAT




TTCTTCAAAACAGAGATTCAGTATGAGAAGTTGGCAGATG




CTGTTCGATTTCTTGGCTGCTTCTCAGACCTAAGAAAAAT




AAGCGCCATGAATGTCTTCCCCTCAAATACACAGCCATTT




CAAAGACTTTTAGAGGAAGATGTAATCTCAATAGAATCAG




TGTCACCCACGTTACGGCACTGCAGTAAACTTTTTATTTA




TCTTTACAAAGTAGCCACAGATTCTTTTGACAGTCGTGCA




GAACAGATCCCTCCTTGCCTGACAAGTGAGTCTTCTCTCC




CCTCTCCTTGGGGTACACCAGCTTTGTCCAGGAAAAGGCA




TGCATATCATTCTGTTTCAACTCCCCCTGTTTACCCTCCT




AAAAATGTTGCCGACCTGAAACTACATGTGACAACTTCAT




CTCTGCAGAGTTCTGATGCAGTCATCATTCATCCTGGAGC




CATGCTTGCCATGCTGGACCTACTGGCCTCTGTTGGGTCA




GTGACACAGCCAGAACATGCTTTGGATCTTCAACTTGCCG




TGGCAAATATTTTACAATCCCTGGTGCACACAGAAAGGAA




CCAGCAAGTCATGTGTGAAGCTGGTCTTCATGCACGACTG




CTGCAGAGGTGCAGTGCTGCATTGGCTGATGAGGACCACT




CACTGCACCCGCCCCTGCAGCGGATGTTTGAACGATTAGC




CTCTCAGGCTCTGGAACCCATGGTGTTGAGGGAGTTTTTA




CGTTTGGCAAGTCCTTTAAATTGTGGTGCCTGGGACAAAA




AACTGCTAAAACAATATAGGGTCCACAAACCAAGTTCACT




GAGTTATGAACCAGAAATGAGAAGTAGTATGATCACATCT




CTGGAAGGTCTGGGTACTGATAATGTTTTTAGCTTACATG




AAGATAACCATTACCGGATAAGCAAGAGCCTGGTAAAATC




TGCGGAAGGAAGTACTGTACCCCTGACCAGGGTGAAGTGT




CTGGTCTCCATGACAACCCCACATGACATCAGACTTCATG




GGTCATCAGTTACTCCAGCTTTTGTTGAATTTGACACATC




ACTTGAAGGGTTTGGATGTCTTTTTTTGCCCAGTTTGGCC




CCTCATAATGCTCCTACAAATAATACCGTCACAACAGGTC




TTATTGATGGGGCTGTGGTCAGTGGCATTGGTTCTGGTGA




AAGATTCTTCCCTCCTCCCTCCGGCTTAAGTTACTCTAGC




TGGTTTTGTATTGAACATTTTAGTTCTCCTCCAAATAACC




ACCCTGTCAGACTTCTTACTGTTGTGCGCCGAGCAAATTC




TTCTGAGCAACATTACGTGTGCCTTGCAATAGTTCTATCA




GCAAAAGACCGATCTCTGATTGTTTCCACCAAAGAGGAAC




TCCTCCAAAATTATGTTGATGATTTTAGTGAAGAGTCCTC




ATTTTATGAAATTCTCCCATGCTGTGCTCGCTTTCGATGT




GGAGAGCTTATCATTGAGGGACAGTGGCATCATTTGGTCC




TGGTAATGAGCAAAGGCATGTTGAAAAACAGTACTGCAGC




CCTTTATATTGATGGACAGCTTGTTAACACTGTAAAGCTT




CATTATGTCCACAGTACTCCAGGGGGTTCAGGTTCGGCAA




ATCCACCAGTGGTGAGCACGGTCTATGCCTACATTGGTAC




TCCACCTGCCCAACGCCAAATTGCCTCATTGGTTTGGCGC




CTGGGACCCACACATTTTCTAGAAGAAGTTTTACCTTCTT




CAAATGTTACTACCATTTATGAACTTGGACCAAATTATGT




TGGAAGCTTTCAGGCTGTATGTATGCCATGTAAAGATGCA




AAATCCGAAGGGGTGGTGCCATCCCCTGTGTCATTAGTAC




CAGAGGAGAAAGTGTCATTTGGCCTCTATGCACTCTCTGT




GTCGTCTCTAACAGTGGCAAGAATCCGGAAAGTGTATAAC




AAATTGGATAGCAAAGCCATTGCTAAGCAGTTAGGCATTT




CCTCACATGAGAATGCCACTCCTGTGAAGTTGATACACAA




TTCAGCAGGACATCTTAATGGATCTGCACGGACAATTGGG




GCCGCTCTGATTGGATACTTGGGAGTAAGAACATTTGTCC




CTAAGCCTGTTGCCACTACTTTGCAGTACGTTGGTGGAGC




TGCAGCCATCCTGGGCCTGGTGGCCATGGCCTCTGATGTG




GAAGGGTTATATGCAGCAGTCAAGGCCCTGGTTTGTGTGG




TCAAGAGTAACCCACTAGCCAGCAAAGAAATGGAAAGAAT




CAAGGGCTACCAGTTGCTGGCAATGTTGCTTAAGAAGAAA




CGTTCCCTTCTTAACAGCCACATCCTCCATCTAACTTTTT




CTTTGGTGGGAACTGTTGATAGTGGACATGAGACCTCCAT




TATTCCAAATTCAACTGCTTTCCAGGACCTCCTCTGTGAT




TTTGAAGTCTGGCTCCATGCACCATATGAACTTCATCTTT




CCTTATTTGAACACTTTATTGAACTGCTCACAGAGTCCAG




TGAAGCCTCAAAGAATGCCAAATTAATGAGAGAATTCCAG




TTAATCCCAAAGCTGCTCCTGACTCTTCGAGATATGTCTT




TATCCCAGCCTACTATTGCTGCTATTAGTAATGTCCTGAG




CTTCTTACTGCAAGGTTTTCCTAGCAGCAATGATCTGCTC




AGATTTGGGCAGTTTATTTCTTCTACTTTGCCAACCTTTG




CGGTTTGTGAGAAATTTGTAGTAATGGAAATAAATAATGA




AGAGAAGCTTGACACTGGAACTGAAGAGGAGTTTGGAGGT




CTTGTATCAGCTAATCTTATACTTTTGAGGAACAGACTTC




TGGATATCTTGCTAAAACTAATTTATACATCTAAAGAAAA




GACAAGCATTAATTTGCAAGCTTGTGAAGAACTGGTGAAG




ACACTGGGTTTTGACTGGATCATGATGTTTATGGAGGAAC




ACTTACATTCCACCACAGTTACAGCAGCCATGAGGATTCT




TGTTGTCCTACTAAGTAATCAGTCTATTCTCATCAAGTTT




AAAGAAGGACTCAGTGGTGGAGGATGGCTTGAACAGACAG




ATTCTGTCTTAACTAATAAGATTGGAACTGTATTAGGATT




CAACGTGGGCAGAAGTGCTGGTGGGAGATCGACGGTCAGG




GAGATTAACCGAGATGCTTGTCATTTTCCTGGTTTTCCAG




TCCTTCAGTCATTCCTTCCTAAACACACTAATGTCCCTGC




CCTCTATTTTCTCCTCATGGCCTTGTTTCTGCAGCAGCCA




GTTAGTGAGCTGCCTGAGAACCTGCAGGTCAGTGTGCCTG




TCATCAGCTGCCGGAGTAAGCAGGGTTGCCAGTTTGATTT




GGATTCCATTTGGACATTCATCTTTGGAGTTCCTGCCTCC




AGCGGAACTGTGGTCTCTTCTATCCATAACGTATGCACAG




AAGCTGTTTTTTTATTATTGGGAATGCTCCGCAGCATGCT




GACTTCACCTTGGCAATCAGAAGAAGAGGGATCTTGGCTC




CGAGAATATCCTGTGACCCTGATGCAGTTCTTCAGATATT




TGTATCACAACGTGCCAGACCTTGCCTCCATGTGGATGAG




CCCTGACTTCCTGTGTGCATTAGCAGCCACCGTCTTCCCC




TTCAATATTCGCCCTTACTCAGAGATGGTGACTGACCTTG




ATGATGAAGTTGGATCTCCAGCAGAAGAGTTTAAAGCGTT




TGCAGCAGACACAGGGATGAACAGGAGCCAATCAGAGTAC




TGCAATGTGGGCACCAAGACATATCTGACCAATCACCCGG




CTAAAAAGTTCGTTTTTGACTTCATGCGGGTCTTAATCAT




AGACAACCTCTGTCTCACTCCTGCCAGCAAGCAAACTCCA




CTAATTGATCTTTTGTTGGAGGCTTCCCCTGAAAGGTCTA




CAAGAACTCAGCAAAAAGAATTTCAAACTTACATTTTGGA




TAGCGTGATGGACCATTTGCTTGCAGCTGATGTGTTATTA




GGGGAAGATGCATCTCTGCCTATTACCAGTGGAGGAAGCT




ACCAGGTATTGGTGAACAATGTGTTTTATTTCACACAGCG




TGTGGTGGACAAGCTTTGGCAAGGCATGTTCAACAAAGAA




TCTAAACTTCTTATAGATTTTATAATTCAACTAATTGCAC




AGTCAAAGAGAAGATCACAGGGATTGTCACTGGATGCAGT




GTATCATTGCCTCAATAGGACCATCTTGTACCAGTTCTCA




CGGGCACACAAAACCGTTCCTCAGCAAGTAGCTCTGCTTG




ATTCACTCAGGGTCCTCACTGTAAACAGAAACTTGATCCT




GGGACCTGGGAACCATGACCAAGAATTCATTAGCTGTCTG




GCCCACTGCTTGATAAATCTACATGTTGGAAGCAACGTGG




ATGGATTTGGACTGGAAGCAGAAGCCCGCATGACCACATG




GCACATTATGATCCCCTCGGACATTGAACCAGATGGTAGT




TACAGCCAAGATATTAGTGAAGGGCGTCAGCTTCTCATAA




AAGCTGTCAACAGAGTTTGGACTGAACTGATACATAGTAA




GAAACAAGTCTTAGAGGAACTTTTCAAAGTAACTCTACCT




GTGAATGAAAGGGGCCACGTGGACATAGCTACAGCAAGGC




CACTCATTGAAGAAGCTGCCCTGAAGTGCTGGCAGAATCA




TTTGGCCCATGAAAAGAAATGCATAAGTCGAGGAGAAGCT




TTAGCGCCCACCACACAGTCCAAATTATCCCGTGTCAGCA




GTGGCTTTGGTCTTTCCAAGTTAACAGGATCAAGAAGGAA




TCGAAAAGAAAGTGGTCTTAATAAACACAGTCTTTCCACC




CAGGAGATTTCGCAGTGGATGTTTACTCACATTGCTGTTG




TTCGTGACTTAGTAGATACACAATATAAAGAATATCAGGA




GCGTCAGCAGAATGCCCTGAAGTACGTGACAGAAGAGTGG




TGTCAGATCGAGTGCGAGCTGTTGAGGGAGCGGGGGCTGT




GGGGCCCTCCCATCGGCTCCCACCTCGACAAGTGGATGCT




GGAGATGACAGAAGGGCCCTGCAGGATGAGGAAAAAGATG




GTGCGAAATGATATGTTTTATAACCATTACCCTTACGTGC




CAGAAACTGAGCAAGAGACAAATGTGGCGTCTGAGATCCC




AAGTAAACAGCCTGAGACACCCGATGATATTCCTCAAAAG




AAACCTGCTCGATATAGAAGAGCCGTAAGTTATGACAGTA




AAGAGTACTACATGCGACTGGCCTCTGGCAATCCCGCCAT




TGTCCAAGACGCCATTGTGGAGAGTTCAGAAGGTGAAGCT




GCTCAGCAAGAACCAGAGCATGGGGAAGACACTATTGCTA




AAGTCAAAGGTTTGGTCAAGCCTCCTCTAAAACGCTCCCG




ATCTGCACCTGATGGAGGAGATGAGGAGAACCAGGAGCAG




CTACAAGACCAGATTGCTGAGGGCAGCTCCATAGAAGAGG




AGGAGAAAACAGATAATGCTACCTTACTGCGCCTGTTAGA




GGAAGGAGAAAAGATCCAACACATGTACCGCTGTGCTCGA




GTCCAGGGCCTAGATACCAGTGAGGGGCTCCTTCTTTTTG




GTAAAGAGCATTTTTATGTGATTGATGGATTTACCATGAC




AGCAACCAGGGAAATAAGAGATATTGAAACCTTACCTCCA




AATATGCATGAGCCTATTATTCCTAGAGGAGCCAGGCAAG




GCCCTAGTCAACTCAAGAGAACATGCAGCATTTTTGCATA




TGAAGATATCAAGGAAGTTCATAAAAGGAGATATCTCCTG




CAGCCTATTGCTGTGGAAGTTTTCTCTGGAGATGGACGGA




ATTACCTCCTTGCTTTTCAGAAAGGAATCAGAAACAAAGT




CTATCAAAGGTTTTTGGCTGTAGTGCCATCTCTAACGGAC




AGTTCAGAATCTGTATCTGGGCAACGACCAAACACGAGTG




TGGAGCAGGGATCTGGGTTACTTAGCACTTTGGTTGGAGA




GAAGTCTGTGACTCAGAGATGGGAGAGAGGTGAAATCAGC




AACTTCCAATATTTGATGCATTTGAACACTTTGGCTGGCA




GATCATATAATGATCTCATGCAGTATCCTGTCTTCCCCTG




GATCCTTGCAGATTATGACTCAGAGGAGGTGGATCTTACT




AATCCCAAGACGTTTAGAAACCTGGCTAAGCCAATGGGAG




CACAAACAGATGAACGATTAGCTCAGTATAAGAAGCGGTA




TAAAGACTGGGAGGATCCTAATGGAGAAACTCCTGCATAC




CACTATGGGACCCACTATTCATCTGCAATGATTGTGGCCT




CATACCTTGTAAGGATGGAGCCTTTCACACAGATATTCTT




AAGGCTACAGGGTGGCCACTTTGACCTGGCTGACCGGATG




TTTCACAGTGTGCGCGAGGCCTGGTATTCAGCGTCAAAGC




ACAATATGGCAGATGTAAAAGAACTTATCCCAGAGTTCTT




TTATTTACCAGAATTCCTGTTCAATTCCAACAACTTTGAT




CTAGGCTGTAAACAAAATGGCACCAAGCTTGGAGATGTTA




TCCTTCCACCCTGGGCAAAAGGGGACCCACGAGAATTCAT




CAGAGTCCATCGTGAGGCTTTGGAGTGTGATTACGTGAGT




GCCCATCTACATGAGTGGATTGACTTAATCTTCGGTTATA




AACAGCAAGGCCCTGCTGCAGTAGAAGCTGTAAATGTCTT




CCATCATCTTTTTTATGAGGGTCAAGTGGATATCTACAAC




ATCAATGACCCACTAAAGGAGACAGCCACAATTGGGTTCA




TTAATAACTTCGGTCAGATCCCTAAACAGTTATTTAAAAA




ACCTCATCCACCAAAGCGAGTGAGAAGTCGACTCAATGGA




GACAATGCAGGAATCTCTGTCCTACCAGGATCTACAAGTG




ACAAGATCTTTTTTCATCATCTAGACAACTTGAGGCCTTC




TCTAACACCTGTAAAAGAACTCAAAGAACCTGTAGGACAA




ATCGTATGTACAGATAAAGGTATTCTTGCGGTGGAACAGA




ATAAGGTTCTTATCCCACCAACCTGGAATAAAACTTTTGC




TTGGGGCTATGCAGACCTCAGTTGCAGACTGGGAACCTAT




GAGTCAGACAAGGCCATGACTGTTTATGAATGCTTGTCTG




AGTGGGGCCAGATTCTCTGTGCAATCTGCCCCAACCCCAA




GCTGGTCATCACGGGTGGAACAAGCACGGTTGTGTGTGTG




TGGGAGATGGGCACCTCCAAAGAAAAGGCCAAGACCGTCA




CCCTCAAACAGGCCTTACTGGGCCACACTGATACCGTCAC




CTGCGCCACAGCATCATTAGCCTATCACATAATTGTCAGT




GGGTCCCGTGATCGAACCTGTATCATTTGGGATTTGAACA




AACTGTCATTTCTAACCCAGCTTCGAGGGCATCGAGCTCC




AGTTTCTGCTCTTTGTATCAATGAATTAACAGGGGACATT




GTGTCCTGCGCTGGCACATATATCCATGTGTGGAGCATCA




ATGGGAACCCTATCGTGAGTGTCAACACGTTCACAGGTAG




GAGCCAGCAGATCATCTGCTGCTGCATGTCGGAGATGAAC




GAATGGGACACGCAGAACGTCATAGTGACAGGACACTCAG




ATGGAGTGGTTCGGTTTTGGAGAATGGAATTTTTGCAAGT




TCCTGAAACACCAGCTCCTGAGCCTGCTGAAGTCCTAGAA





ATGCAGGAAGACTGTCCAGAAGCACAAATAGGGCAGGAAG






CCCAAGACGAGGACAGCAGTGATTCAGAAGCAGATGAGCA





GAGCATCAGCCAGGACCCTAAGGACACTCCAAGCCAACCC




AGCAGCACCAGCCACAGGCCCCGGGCAGCCTCCTGCCGCG




CAACAGCCGCCTGGTGTACTGACAGTGGCTCTGACGACTC




CAGACGCTGGTCCGACCAGCTCAGTCTAGATGAGAAAGAC




GGCTTCATATTTGTGAACTATTCAGAGGGCCAGACCAGAG




CCCATCTGCAGGGCCCCCTTAGCCACCCCCACCCCAATCC




CATTGAGGTGCGGAATTACAGCAGATTGAAACCTGGGTAC




CGATGGGAACGGCAGCTGGTGTTCAGGAGTAAGCTGACTA




TGCACACAGCCTTTGATCGAAAGGACAATGCACACCCAGC




TGAGGTCACTGCCTTGGGCATCTCCAAGGATCACAGTAGG




ATCCTCGTTGGTGACAGTCGAGGCCGAGTTTTCAGCTGGT




CTGTGAGTGACCAGCCAGGCCGTTCTGCTGCTGATCACTG




GGTGAAGGATGAAGGTGGTGACAGCTGCTCAGGCTGCTCG




GTGAGGTTTTCACTCACAGAAAGACGACACCATTGCAGGA




ACTGTGGTCAGCTCTTCTGCCAGAAGTGCAGTCGCTTTCA




ATCTGAAATCAAACGCTTGAAAATCTCATCCCCGGTGCGT




GTTTGTCAGAACTGTTATTATAACTTACAGCATGAGAGAG




GTTCAGAAGATGGGCCTCGAAATTGTTGAAGATTCAACAA




GCTGAGTGGAGACCATGGTCTGTAGACCCCTTCCCGATTC




TCCTGTCCCAGCTTGGAAGGCATTGAAAACAGTCTCCGTT




TACACATCTCTTCATACCACGTGTTTGAAGTGTTAAAATT




CAAAGGGATCATTGAATAAAACGGGTGTAGAGTACAGGAA




TGGGGCAGACGCGATTCAGGTGAACAGCACAAGAAGAATA




TGAGGTGGTTCCTAGGAGCAACACTTTCGACCTCCAGTTC




TCCCTGATGACAGTAGCTGTCTCCAAGAGAAAAATCCTCA




CTTATTAACTCTCTTTTCTTGCATCTCATTTTTATAGAGC




TACTCATCCTTATTTGGAAAAACCAACAACAAAAAAGGCT




TTTAGAAAATGGTTGTAAATCTGACTTCTTTGCAAGTAAC




TATGTATATTGTAAATAGATATAAAAGGCCTTTTTTCTAA




ATAAGGACTTAACTGCCTGTAACATGAAACTTCAAACTAA




ACCACTAACTCAATGAACTACTTATGGTTTGTCTGACATC




CCTCACTTACCAATTAATTATAAATATGTTTTTTTAAATC




CCCAAAGACATTATCTGTGGTCTTTTTTTCCTTTCAAGCT




CAGCCTGTGTGCCTGATGTCATTTCTTTCAAGTTGCCCAC




AGTATCTCCACTTAAACTAGGCTAGTAACCAAAATAATGT




GGACCTTCTTTAGGAAACAGTGTGGGAGAATAGGAGTCCA




GCCGTAAGATAAACTGGAAATATTTGGGCGTCTTGTACCT




GGCTACGCACCACCTCAGTGTTGTTCCTACATAAACAGGG




CCCCTTTTAAACTTGTATGTGGACTGCTGTTTGGTCAAAG




AATACCTTCTTAGCATTGCAGAAAGGTGGTCAGATGACCA




GTGTAGTGCAGGAAACAGCCCTGTCTCAACTAATGGAAAT




ATATTTGCATGTAACCCAAAATTAGCTTATCTTGCATAGA




ACATAATAAGTATGTGTCTTTGGTGACACTAATGTTCTAC




TATAGCTTATTTTCAAACAAGGGGTAAAAAAAGGAAAGAA




AGAAGTGTACAGAATTAACATATAAACTTTGTTGTAAAAC




TGAATCATGTCAGAACTGCTTAAAATTAACCTTTACCATT




TAATGTCATCTACCTGAAAACAGTGAGATTTATACTGTAT




CAATGTCTATTTTTTTGTTTTTGCTATGAATATAATTACA




GTATTTTAATATTTAGTTATTTAATTTGTTCTACTAGTTG




GATACAGAACACACAAATCCAGGGGGATTAAAGCTGGAAG




GGGCTAAGAGATTAGTTTACAGAGAAAAGGCTTGGTGGTG




GGATTTTTTTAAATGTGTGTTATGTACATATATATATATA




TATAATATATATTAAAAATGAAACAATTAATCTAGATTTT




AACATTTTCAGAAACTTAGTGATAACATTATGAACAATTC




TAAAAGCCCTGTGATTTGAAAAATATAGAATCATTAATGG




CCCAAGATAGGCCTTCACACCTTCACAGGTGCGAAAGGAA




AGGCCTTCACACCCTCACAGAGGCATCATGCAAAGGACAG




CGGCTTTGGCTTTTCCAATTTTCCATCTTTAGGCCCTGGT




GAGAGGCACACTTATGCACTAAAATGCACATATATGCACA




TGCATTCAAAAATAGGCATTTGGTACAATGGTGATCTTGT




ACCTGATGGGCTGAAACCAGCTTAAGAACAAATTTGTTCT




TCCTGATATGATAACTAGGTCTCCAAGAGAAAATAGAAAG




GCTGCTTTAGTGCCTTACGCTTACTAAATTTAAATCTTTA




TTTACCTGGGTTTGAGCCTACAGTCTATTTATGATTACAT




ATCAAAATTGATTAAAACACTTCCATTTCTAAAAGTTCAA




ATATACTTGTTAATAAAAGGATTATCGGCATTAATACTTT




AATTTAAAGAAAAGTTGTGTTCTGTTTTCCTTTCTGTGTC




TTACTCCCCCCACACTCTCCCTCCCCCATCACCATCTTCA




ATTCTAATAAATAATGCTGATGTTCAACAGTTGCAGAAAT




TGTGCTATTATGTAACTGTGGGCCTTGCCCCTGTCTGGCC




CTCTAGATGATTTGTAGCAGTGTTATTCTACACTTTTTAA




AAGAAGCGTCCTCCTTTTGTCCATGAATCATGTTTACCCC




ATACCCAGTGGCAGAGGTGTTCTTTAAAGACTTGAATATA




TGAATGTGTGTGTGTAGTTACTTAAAGGTTATTCCTCTTT




GTAATAGGAAACTATATGGGATGAACACTTTTAAACTTTC




CGACACAACTTCCATTACTAACTTTCTAACAGAACTTCCA




TAACTAGAAGGTGGAAACCAAAACCCTCATGGTAGTATTT




CCTCTGGCAGCTGGTGCTGTGGGCAACTGTTTTGTTCAAT




CGGGTTTCTTTTCTTTTTGCCTCTAATGCAGAAATCAACA




GAATCACTCACACATACAAGTACACTCACATACATAAACT




AATTATTTCTCTGGATATCTTTCTGTGTTCCATGTAAATT




TATTTACCAACATCTATTGTCAACATGTACATCTACCTTA




GTATGGTCTGCATTCTTTTTCTGAGAGTACCTCATAGGGC




TCCTGCCTGATCTTTGTAGTTTGTTCATTCATCCATCCAC




CTGTTCATTTGTTCATCCATGTATTCTAACATTTCTATGT




AGTGTGCAACTCTAATGTCATGCTTTTGAAGAAGAGAATA




GCTGCCCATAGCAGCCATCCGTCTGGATAATAGCAAAACA




CTCTAGATAAGTTATTTTGCACTTTCTTATGTATAAAGTT




GGTAGAAACTTATTTTTGCTTTGTATCATTTAAATACATT




TTGTTTTGGTAAATGAACTGTGTATAAAATATTTATGCCG




TTAAAACTGTTTTTAGAAAGTATTTTTAATTTCAGCAAGT




TTGGTTACTTGTTGCATGACTCTTAACACAGCTGACTTTT




TGTGTCAGTGCAATGTATATTTTTTGTCCTGTTATTAACT




TGTAAGCCCTAGTAATGGCCAATTATTTGTACAGCAACAG




AAGTAAATTGAAGATACTGGCTAAGACTGGATTGATTGTG




GACTTTTATACTATATTGCAGAAACCAATATCTGTTTCTT




GGTGGTTATGTAAAAGACCTGAAGAATTACTATCTAGTGT




GCAGTCTGTGATATCTGAATGTTCATTGTATATTTGTCTC




TGATGCAAAAAGGTAGAGTAACACAATTACAATACATGAT




TAAATGCAATAGTCCAGGTACTTAAGTAATTTTTTTTTCA




TTTCAAATAAATACCTATTTACCACCAAAAGAAAGAAAAA




AAAAAAAAA





ZFHX3
NM_001164766.1
CGCGGCCCGAGCGCCTCTTTTCGGGATTAAAAGCGCCGCC
50




AGCTCCCGCCGCCGCCGCCGTCGCCAGCAGCGCCGCTGCA




GCCGCCGCCGCCGGAGAAGCAACCGCTGGGCGGTGAGATC




CCCCTAGACATGCGGCTCGGGGGCGGGCAGCTGGTGTCAG




AGGAGCTGATGAACCTGGGCGAGAGCTTCATCCAGACCAA




CGACCCGTCGCTGAAGCTCTTCCAGTGCGCCGTCTGCAAC




AAGTTCACGACGGACAACCTGGACATGCTGGGCCTGCACA




TGAACGTGGAGCGCAGCCTGTCGGAGGACGAGTGGAAGGC




GGTGATGGGGGACTCATACCAGTGCAAGCTCTGCCGCTAC




AACACCCAGCTCAAGGCCAACTTCCAGCTGCACTGCAAGA




CAGACAAGCACGTGCAGAAGTACCAGCTGGTGGCCCACAT




CAAGGAGGGCGGCAAGGCCAACGAGTGGAGGCTCAAGTGT




GTGGCCATCGGCAACCCCGTGCACCTCAAGTGCAACGCCT




GTGACTACTACACCAACAGCCTGGAGAAGCTGCGGCTGCA




CACGGTCAACTCCAGGCACGAGGCCAGCCTGAAGTTGTAC




AAGCACCTGCAGCAGCATGAGAGTGGTGTAGAAGGTGAGA




GCTGCTACTACCACTGCGTTCTGTGCAACTACTCCACCAA




GGCCAAGCTCAACCTCATCCAGCATGTGCGCTCCATGAAG




CACCAGCGAAGCGAGAGCCTGCGAAAGCTGCAGCGGCTGC




AGAAGGGCCTTCCAGAGGAGGACGAGGACCTGGGGCAGAT




CTTCACCATCCGCAGGTGCCCCTCCACGGACCCAGAAGAA




GCCATTGAAGATGTTGAAGGACCCAGTGAAACAGCTGCTG




ATCCAGAGGAGCTTGCTAAGGACCAAGAGGGCGGAGCATC





GTCCAGCCAAGCAGAGAAGGAGCTGACAGATTCTCCTGCA





ACCTCCAAACGCATCTCCTTCCCAGGTAGCTCAGAGTCTC




CCCTCTCTTCGAAGCGACCAAAAACAGCTGAGGAGATCAA




ACCGGAGCAGATGTACCAGTGTCCCTACTGCAAGTACAGT




AATGCCGATGTCAACCGGCTCCGGGTGCATGCCATGACGC




AGCACTCGGTGCAACCCATGCTTCGCTGCCCCCTGTGCCA




GGACATGCTCAACAACAAGATCCACCTCCAGCTGCACCTC




ACCCACCTCCACAGCGTGGCACCTGACTGCGTGGAGAAGC




TCATTATGACGGTGACCACCCCTGAGATGGTGATGCCAAG




CAGCATGTTCCTCCCAGCAGCTGTTCCAGATCGAGATGGG




AATTCCAATTTGGAAGAGGCAGGAAAGCAGCCTGAAACCT




CAGAGGATCTGGGAAAGAACATCTTGCCATCCGCAAGCAC




AGAGCAAAGCGGAGATTTGAAACCATCCCCTGCTGACCCA




GGCTCTGTGAGAGAAGACTCAGGCTTCATCTGCTGGAAGA




AGGGGTGCAACCAGGTTTTCAAAACTTCTGCTGCCCTTCA




GACGCATTTTAATGAAGTGCATGCCAAGAGGCCTCAGCTG




CCGGTGTCAGATCGCCATGTGTACAAGTACCGCTGTAATC




AGTGTAGCCTGGCCTTCAAGACCATTGAAAAGTTGCAGCT




CCATTCTCAGTACCATGTGATCAGAGCTGCCACCATGTGC




TGTCTTTGTCAGCGCAGTTTCCGAACTTTCCAGGCTCTGA




AGAAGCACCTTGAGACAAGCCACCTGGAGCTGAGTGAGGC




TGACATCCAACAGCTTTATGGTGGCCTGCTGGCCAATGGG




GACCTCCTGGCAATGGGAGACCCCACTCTGGCAGAGGACC




ATACCATAATTGTTGAGGAAGACAAGGAGGAAGAGAGTGA




CTTGGAAGATAAACAGAGCCCAACGGGCAGTGACTCTGGG




TCAGTACAAGAAGACTCGGGCTCAGAGCCAAAGAGAGCTC




TGCCTTTCAGAAAAGGTCCCAATTTTACTATGGAAAAGTT




CCTAGACCCTTCTCGCCCTTACAAGTGTACCGTCTGCAAG




GAATCTTTCACTCAAAAGAATATCCTGCTAGTACACTACA




ATTCTGTCTCCCACCTGCATAAGTTAAAGAGAGCCCTTCA




AGAATCAGCAACCGGTCAGCCAGAACCCACCAGCAGCCCA




GACAACAAACCTTTTAAGTGTAACACTTGTAATGTGGCCT




ACAGCCAGAGTTCCACTCTGGAGATCCATATGAGGTCTGT




GTTACATCAAACCAAGGCCCGGGCAGCCAAGCTGGAGGCT




GCAAGTGGCAGCAGCAATGGGACTGGGAACAGCAGCAGTA




TTTCCTTGAGCTCCTCCACGCCAAGTCCTGTGAGCACCAG




TGGCAGTAACACCTTTACCACCTCCAATCCAAGCAGTGCT




GGCATTGCTCCAAGCTCTAACTTACTAAGCCAAGTGCCCA




CTGAGAGTGTAGGGATGCCACCCCTGGGGAATCCTATTGG




TGCCAACATTGCTTCCCCTTCAGAGCCCAAAGAGGCCAAT




CGGAAGAAACTGGCAGATATGATTGCATCCAGGCAGCAGC




AACAACAGCAGCAGCAACAGCAACAACAACAACAACAACA




ACAACAACAAGCACAAACGCTGGCCCAGGCCCAGGCTCAA




GTTCAAGCTCACCTGCAGCAGGAGCTGCAGCAACAGGCTG




CCCTGATCCAGTCTCAGCTGTTTAACCCCACCCTCCTTCC




TCACTTCCCCATGACAACTGAGACCCTGCTGCAACTACAG




CAGCAGCAGCACCTCCTCTTCCCTTTCTACATCCCCAGTG




CTGAGTTCCAGCTTAACCCCGAGGTGAGCTTGCCAGTGAC




CAGTGGGGCACTGACACTGACTGGGACAGGCCCAGGCCTG




CTGGAAGATCTGAAGGCTCAGGTTCAGGTCCCACAGCAGA




GCCATCAGCAGATCTTGCCGCAGCAGCAGCAGAACCAACT




CTCTATAGCCCAGAGTCACTCTGCCCTCCTTCAGCCAAGC




CAGCACCCCGAAAAGAAGAACAAATTGGTCATCAAAGAAA




AGGAAAAAGAAAGCCAGAGAGAGAGGGACAGCGCCGAGGG




GGGAGAGGGCAACACCGGTCCGAAGGAAACACTGCCAGAT




GCCTTGAAGGCCAAAGAGAAGAAAGAGTTGGCACCAGGGG




GTGGTTCTGAGCCTTCCATGCTCCCTCCACGCATTGCTTC




AGATGCCAGAGGGAACGCCACCAAGGCCCTGCTGGAGAAC




TTTGGCTTTGAGTTGGTCATCCAGTATAATGAGAACAAGC




AGAAGGTGCAGAAAAAGAATGGGAAGACTGACCAGGGAGA




GAACCTGGAAAAGCTCGAGTGTGACTCCTGCGGCAAGTTG




TTTTCCAACATCTTGATTTTAAAGAGTCATCAAGAGCACG




TTCATCAGAATTACTTTCCTTTCAAACAGCTCGAGAGGTT




TGCCAAACAGTACAGAGACCACTACGATAAACTGTACCCA




CTGAGGCCCCAGACCCCAGAGCCACCACCACCTCCCCCTC




CACCCCCTCCACCCCCACTTCCGGCAGCGCCGCCTCAGCC




GGCGTCCACACCAGCCATCCCCGCATCAGCCCCACCCATC




ACCTCACCTACAATTGCACCGGCCCAGCCATCAGTGCCGC




TCACCCAGCTCTCCATGCCGATGGAGCTGCCCATCTTCTC




GCCGCTGATGATGCAGACGATGCCGCTGCAGACCTTGCCG




GCTCAGCTACCCCCGCAGCTGGGACCTGTGGAGCCTCTGC




CTGCGGACCTGGCCCAACTCTACCAGCATCAGCTCAATCC




AACCCTGCTCCAGCAGCAGAACAAGAGGCCTCGCACCAGG




ATCACAGATGATCAGCTCCGAGTCTTGCGGCAATATTTTG




ACATTAACAACTCCCCCAGTGAAGAGCAAATAAAAGAGAT




GGCAGACAAGTCCGGGTTGCCCCAGAAAGTGATCAAGCAC




TGGTTCAGGAACACTCTCTTCAAAGAGAGGCAGCGTAACA




AGGACTCCCCTTACAACTTCAGTAATCCTCCTATCACCAG




CCTGGAGGAGCTCAAGATTGACTCCCGGCCCCCTTCGCCG




GAACCTCCAAAGCAGGAGTACTGGGGAAGCAAGAGGTCTT




CAAGAACAAGGTTTACGGACTACCAGCTGAGGGTCTTACA




GGACTTCTTCGATGCCAATGCTTACCCAAAGGATGATGAA




TTTGAGCAACTCTCTAATTTACTGAACCTTCCAACCCGAG




TGATAGTGGTGTGGTTTCAGAATGCCCGACAGAAGGCCAG




GAAGAATTATGAGAATCAGGGAGAGGGCAAAGATGGAGAG




CGGCGTGAGCTTACAAATGATAGATACATTCGAACAAGCA




ACTTGAACTACCAGTGCAAAAAATGTAGCCTGGTGTTTCA




GCGCATCTTTGATCTCATCAAGCACCAGAAGAAGCTGTGT




TACAAGGATGAGGATGAGGAGGGGCAGGACGACAGCCAAA




ATGAGGATTCCATGGATGCCATGGAAATCCTGACGCCTAC




CAGCTCATCCTGCAGTACCCCGATGCCCTCACAGGCTTAC




AGCGCCCCAGCACCATCAGCCAATAATACAGCTTCCTCCG




CTTTCTTGCAGCTTACAGCGGAGGCTGAGGAACTGGCCAC




CTTCAATTCAAAAACAGAGGCAGGCGATGAGAAACCAAAG




CTGGCGGAAGCTCCCAGTGCACAGCCAAACCAAACCCAAG




AAAAGCAAGGACAACCAAAGCCAGAGCTGCAGCAGCAAGA




GCAGCCCGAGCAGAAGACCAACACTCCCCAGCAGAAGCTC




CCCCAGCTGGTGTCCCTGCCTTCGTTGCCACAGCCTCCTC




CACAAGCGCCCCCTCCACAGTGCCCCTTACCCCAGTCGAG




CCCCAGTCCTTCCCAGCTCTCCCACCTGCCCCTCAAGCCC




CTCCACACATCAACTCCTCAACAGCTCGCAAACCTACCTC




CTCAGCTAATCCCCTACCAGTGTGACCAGTGTAAGTTGGC




ATTTCCGTCATTTGAGCACTGGCAGGAGCATCAGCAGCTC




CACTTCCTGAGCGCGCAGAACCAGTTCATCCACCCCCAGT




TTTTGGACAGGTCCCTGGATATGCCTTTCATGCTCTTTGA




TCCCAGTAACCCACTCCTGGCCAGCCAGCTGCTCTCTGGG




GCCATACCTCAGATTCCAGCAAGCTCAGCCACTTCTCCTT




CAACTCCAACCTCCACAATGAACACTCTCAAGAGGAAGCT




GGAGGAAAAGGCCAGTGCAAGCCCTGGCGAAAACGACAGT




GGGACAGGAGGAGAAGAGCCTCAGAGAGACAAGCGTTTGA




GAACAACCATCACACCGGAACAACTAGAAATTCTCTACCA




GAAGTATCTACTGGATTCCAATCCGACTCGAAAGATGTTG




GATCACATTGCACACGAGGTGGGCTTGAAGAAACGTGTGG




TACAAGTCTGGTTTCAGAACACCCGAGCTCGGGAAAGGAA




AGGACAGTTCCGGGCTGTAGGCCCAGCGCAGGCCCACAGG




AGATGCCCTTTTTGCAGAGCGCTCTTCAAAGCCAAGACTG




CTCTTGAGGCTCATATCCGGTCCCGTCACTGGCATGAAGC




CAAGAGAGCTGGCTACAACCTAACTCTGTCTGCGATGCTC




TTAGACTGTGATGGGGGACTCCAGATGAAAGGAGATATTT




TTGACGGAACTAGCTTTTCCCACCTACCCCCAAGCAGTAG




TGATGGTCAGGGTGTCCCCCTCTCACCTGTGAGTAAAACC




ATGGAATTGTCACCCAGAACTCTTCTAAGCCCTTCCTCCA




TTAAGGTGGAAGGGATTGAAGACTTTGAAAGCCCCTCCAT




GTCCTCAGTTAATCTAAACTTTGACCAAACTAAGCTGGAC




AACGATGACTGTTCCTCTGTCAACACAGCAATCACAGATA




CCACAACTGGAGACGAGGGCAACGCAGATAACGACAGTGC




AACGGGAATAGCAACTGAAACCAAATCCTCTTCTGCACCC




AACGAAGGGTTGACCAAAGCGGCCATGATGGCAATGTCTG




AGTATGAAGATCGGTTGTCATCTGGTCTGGTCAGCCCGGC




CCCGAGCTTTTATAGCAAGGAATATGACAATGAAGGTACA




GTGGACTACAGTGAAACCTCAAGCCTTGCAGATCCCTGCT




CCCCGAGTCCTGGTGCGAGTGGATCTGCAGGCAAATCTGG




TGACAGCGGAGATCGGCCTGGGCAGAAACGTTTTCGCACT




CAAATGACCAATCTGCAGCTGAAGGTCCTCAAGTCATGCT




TTAATGACTACAGGACACCCACTATGCTAGAATGTGAGGT




CCTGGGCAATGACATTGGACTGCCAAAGAGAGTCGTTCAG




GTCTGGTTCCAGAATGCCCGGGCAAAAGAAAAGAAGTCCA




AGTTAAGCATGGCCAAGCATTTTGGTATAAACCAAACGAG




TTATGAGGGACCCAAAACAGAGTGCACTTTGTGTGGCATC




AAGTACAGCGCTCGGCTGTCTGTACGTGACCATATCTTTT




CCCAACAGCATATCTCCAAAGTTAAAGACACCATTGGAAG




CCAGCTGGACAAGGAGAAAGAATACTTTGACCCAGCCACC




GTACGTCAGTTGATGGCTCAACAAGAGTTGGACCGGATTA




AAAAGGCCAACGAGGTCCTTGGACTGGCAGCTCAGCAGCA




AGGGATGTTTGACAACACCCCTCTTCAGGCCCTTAACCTT




CCTACAGCATATCCAGCGCTCCAGGGCATTCCTCCTGTGT




TGCTCCCGGGCCTCAACAGCCCCTCCTTGCCAGGCTTTAC




TCCATCCAACACAGCTTTAACGTCTCCTAAGCCGAACTTG




ATGGGTCTGCCCAGCACAACTGTTCCTTCCCCTGGCCTCC




CCACTTCTGGATTACCAAATAAACCGTCCTCAGCGTCGCT




GAGCTCCCCAACCCCAGCACAAGCCACGATGGCGATGGGC




CCTCAGCAACCCCCCCAGCAGCAGCAGCAGCAGCAGCAAC




CACAGGTGCAGCAGCCTCCCCCGCCGCCAGCAGCCCAGCC




GCCACCCACACCACAGCTCCCACTGCAACAGCAGCAGCAA




CGCAAGGACAAAGACAGTGAGAAAGTAAAGGAGAAGGAAA




AGGCACACAAAGGGAAAGGGGAACCCCTGCCTGTCCCCAA




GAAGGAGAAAGGAGAGGCCCCCACGGCAACTGCAGCCACG




ATCTCAGCCCCGCTGCCCACCATGGAGTATGCGGTAGACC




CTGCACAGCTGCAGGCCCTGCAGGCCGCGTTGACTTCGGA




CCCCACAGCATTGCTCACAAGCCAGTTCCTTCCTTACTTT




GTACCAGGCTTTTCTCCTTATTATGCTCCCCAGATCCCTG




GCGCCCTGCAGAGCGGGTACCTGCAGCCTATGTATGGCAT




GGAAGGCCTGTTCCCCTACAGCCCTGCACTGTCGCAGGCC




CTGATGGGGCTGTCCCCAGGCTCCCTACTGCAGCAGTACC




AGCAATACCAGCAGAGTCTGCAGGAGGCAATTCAGCAGCA




GCAGCAGCGGCAACTACAGCAGCAGCAGCAGCAAAAAGTG




CAGCAGCAGCAGCCCAAAGCAAGCCAAACCCCAGTCCCCC




CCGGGGCTCCTTCCCCAGACAAAGACCCTGCCAAAGAATC




CCCCAAACCAGAAGAACAGAAAAACACCCCCCGTGAGGTG




TCCCCCCTCCTGCCGAAACTCCCTGAAGAGCCAGAAGCAG




AAAGCAAAAGTGCGGACTCCCTCTACGACCCCTTCATTGT




TCCAAAGGTGCAGTACAAGTTGGTCTGCCGCAAGTGCCAG




GCGGGCTTCAGCGACGAGGAGGCAGCGAGGAGCCACCTGA




AGTCCCTCTGCTTCTTCGGCCAGTCTGTGGTGAACCTGCA




AGAGATGGTGCTTCACGTCCCCACCGGCGGCGGCGGCGGT




GGCAGTGGCGGCGGCGGCGGCGGTGGCGGCGGCGGCGGCG




GCGGCGGCTCGTACCACTGCCTGGCGTGCGAGAGCGCGCT




CTGTGGGGAGGAAGCTCTGAGTCAACATCTCGAGTCGGCC




TTGCACAAACACAGAACAATCACGAGAGCAGCAAGAAACG




CCAAAGAGCACCCTAGTTTATTACCTCACTCTGCCTGCTT




CCCCGATCCTAGCACCGCATCTACCTCGCAGTCTGCCGCT




CACTCAAACGACAGCCCCCCTCCCCCGTCGGCCGCCGCCC




CCTCCTCCGCTTCCCCCCACGCCTCCAGGAAGTCTTGGCC




GCAAGTGGTCTCCCGGGCTTCGGCAGCGAAGCCCCCTTCT




TTTCCTCCTCTCTCCTCATCTTCAACGGTTACCTCAAGTT




CATGCAGCACCTCAGGGGTTCAGCCCTCGATGCCAACAGA




CGACTATTCGGAGGAGTCTGACACGGATCTCAGCCAAAAG




TCCGACGGACCGGCGAGCCCGGTGGAGGGTCCCAAAGACC




CCAGCTGCCCCAAGGACAGTGGTCTGACCAGTGTAGGAAC




GGACACCTTCAGATTGTAAGCTTTGAAGATGAACAATACA




AACAAATGAATTTAAATACAAAAATTAATAACAAACCAAT




TTCAAAAATAGACTAACTGCAATTCCAAAGCTTCTAACCA




AAAAACAAAAAAAAAAAAAAAAAGAAAAAAAAGAAAAAGC




GTGGGTTGTTTTCCCATATACCTATCTATGCCGGTGATTT




TACATTCTTGTCTTTTTCTTTTCTTTTAATATTAAAAAAA




AAAAAAAAGCCCTAACCCTGTTACATTGTGTCCTTTTGAA




GGTACTATTGGTCTGGGAAACAGAAGTCCGCAGGGCCTCC




CTAATGTCTTTGGAGCTTAAACCCCTTGTATATTTGCCCC




TTTTCAATAAACGCCCCACGCTGATAGCACAGAGGAGCCC




GGCATGCACTGTATGGGAAAGCAGTCCACCTTGTTACAGT




TTTAAATTTCTTGCTATCTTAGCATTCAGATACCAATGGC




TTGCTAAAAGAAAAAAAGAAATGTAATGTCTTTTTATTCT




CAGGTCAATCGCTCACACTTTGTTTTCAGAATCATTGTTT




TATATATTATTGTTTTTTCAGTTTTTTTTTTTTTTTTTGT




TCCAGAAAAGATTTTTTGTTTTGTTAACTTAAAAATGGGC




AGAAAGTATTCAAGAAAAACAATGTGAACTGCTTTAGCTT




TCTGGGGATTTTTAAGGATAGCTTTTCTGCTGAAGCCAAT




TTCAAGGGGAAAAGTTAAGCACTCCCACTTTCAAAAAAAA




AAAAAAATAATAACCCACACACACAAAGAGTGTTGAGGAC




TTGTAGCTTAAAAAAAATAAGTTTTAAAAACTGACTTTCT




GTATTTATGATAGATATGACCATTTTTGGTGTTGAGTAGA




TTGTTGCATTGGAAATGAACTGAAGCAGTATGGTAGATTT




AAAAGGAAAAAAAAAAAAAAACCTTTTGTGTACATTTAGC




TTTTTGTATGGTCCAGCTGACAGCTCCTCATTTGATGTTG




TCTTGTTCATTCCTAGCAGATGATAGATTGCAATCCGTTG




ATTCGCCTAAGCTTTTCTCCCCTTGTCCCTTAATTCCACT




TTCTCTTTCTTGTCCCTTAATTCCACTTTCTCTTTCCTTC




TCCCACCTCCCGTCCTATAATCTCCCACTTAAGGTAGCTG




CCTTCATTTCTTAGAGGGAGCTGCAGAATTATTTTATAAA




ACTAAAGAAAGAATTTCAAGGGATTCTAGGGGTCATTAGG




ATCCTCACAGATTATTTTTGGTTGGGGAGTTGAAACTTTT




TAAAGGCATATAATTCTAGTTACCTGTGTCTGTTAGCTTT




GTGCATTTATTTTTTATTTATCCTTCTTTTGGCTTTTTTT




TCTTTGTACCCCTTCTTTTCCTCCTTGTTTGGTAGGAGCT




TCAAATATTCTTTTTTTTTCTATACTAAAGGATTTGTTTC




CATTTGTGTAATTGGCTGTGTACTTTTCTTTTCTAAAAAA




AGTTTTTGGTTAGGGATTTGGTTTTTGGTTTTGTGTTTGT




TTTTTCTTTCCTCTCTCAGAAAAAAAAATTTCATGCTTTA




AATAAAATCCAAAGACACACCCTTTCACTGCTGATGCAGA




AAAAAGGGAAAGGGTTCTTGTTACTTGAGAATTTGTTTCT




GATTTAAACAAACAAGACTTAGTTTAATAAAAGAAAGAGA




AAAACAAAAGATTCCCAGGTTGTTATGTGCTTCTTCTGCA




AGCAGAGAGGCAAATGTTAATGACAATTCCATATACCAAA




AGACACATTTTTTACTTCAAAGTTTTGTCCTTGTGTTAGG




CAGTCTGAGCAGCGAGTGATCCAGAGCGCAGCCAACAAAG




CAGCAGATAGCAGTGTACAGAAAGCAAAAAAGGAACTGTA




TGTGAGGCACTTGTTTCTGTTAATATCCATATTCCTGTTA




ACACACACCCTTTCTCATGTAAAAAGAAAAATAAATAAAT




GGTCTGAACTTTGAAAACTTTGTGCTGCTAAAACATAGAT




TTTGGAGACAAATAAATAGATGCTTTGCTGTTTCACTTTC




ATAGCTAAACATCAACAGAAACCATCTCCCCTTGCCCCCA




AAGTGTGAAATCCTTCTTCCCTTCGTTTTCTTCCTTATGT




TTCAAAAGGGAACTTTGAAGACTGTGAATACAGGTTCCAT




TGGTCACCTTTCGGGCTTCTTTCCCCAGTGCTGAAGCCAC




TCATCGACTTTGCAAAAGACTGGAGCATTCCAAGATCTGA




AAATGGATTTTTTTTCTTTTTTTCTTTTTTAGCCGGGACT




ATTTTATTTTTATGAATTTGTTTTTAGTTTAATGAAATAG




TAGATCCTGAAATGTTGTACATATTTCTAACTAGGCTGAT




GCACAGTGCAAATTCCTTTTTTAATTGTTTTTTTTAAGTA




GAAATACTAAAGAAAGAATACCATCTAACTATTCATACCA




GTATCCAGTTGTAGCATAAGGTGTCAAAAGCAAGTACGCA




AAACATTTACTGTTTTAACAAGCTATTTCCTTTTAACAAG




AAATCTTGTATTTCTTCCTGTGTTTGAGATGAACATTTTT




AAATTTTAAAGTTGTACAGTTTTTTGTTTTCCATTATTTT




ATCTTGTTTGTAACTCTATGAAATATATATATATATATTT




TTTGCCATTTAACTGTTGTATGTTACTCTGTGTCTGTACC




ATATAGAAAAAAAATTGTTTTTGTTTTTGGTTCTCTATGT




GATATCAGTTAACAATGTAACACTAGCTTTACCTGTCAAA




TTCTGCTAGGTCTTCTCTGAAAACGTTGTTTTTAAAAATG




ATATTGCTTGGTAATAGTGCAATTTCTATCCTTTTCCCTC




CCCCCTCAACTTTTAAGTTCTTTTCTTTATAATTTTGCTG




CCCCCTCCCTGATGGTTTGGGTTTTTGTTTTTGTTTTTGT




TTTTTTTTTTCATGGAGCTACTATGCCATCCTCCCTCTGT




GAGGCAGAGTGACTGTCAGTGTTTTGTTATGCCATGCCTT




GAGCTGTGGGTGTTTGGCGACAATAAGGTGGTTGAATAGA




TTGGCTGAGCACACTTCCACCCACCTAGTGTTCTCAGAGG




GGTTATGTGATTGTTTCAACCTGGAGTGGGTTGCACCCTT




AATGCTTTCCTCTGCAACTAAACCGCCCACATATATGTTC




ATTGAAAAAAGTAAGAATAATTCTCAGCACTAACCCAGAA




GTAGCAAAGCAGTCAGTGATGGTGAACATTAGAGGTCAAA




CATGAGTTAGATGTTTGTGGGCTGACAGCCATCGTGGCTA




TGACCAGTACTATTTACAAAGCATGAATTCACTACAATGC




TCAACTGTTTGTTTAGCTTTATCTCACTTGGGGAATTTAT




TCCTGTCTGCTGCATTGTAGGTAGCTGGGTAGGATATATT




TCCACTTGCTTTTTAAATTAGTTCTTCACCTCCATTGACA




CTCGTTTTTTGGTTTTCTCCCTATAGTGTGGGTTGGTGCT




AGACACCAGTCTGACCCACAGAATGGGAGTTATTTCATCC




ATCTTTCCTCCATCCTTCCAAAAACCACATATCTACACAA




GGAAAAATTTAATACATCTAGGAATTTTTTTTTTAATTAC




AAGCTATTTAAAGAGATGAATGTGGCCAAAGTTTTACACA




ATTGAAAATAAAGTAAAACAGACGGCATGTGTTTAAACCT




GAGTTTATCAGGCATGGCAGGAAGTTGCAGGAGAGAGAGG




CAGTGACCCAAGCCAGTGCACTTGATGTTCATGGACATAT




ATTTTTTTTAAATAATAAATTAAAACATTTTAAATAGAAG




CATAAATTGAGTTGTTTGTTGGCGCTGAGATACTGCCCAC




TGTGAAACAAAGCTTTGACTAGTTTTTTGTTTGTTTACTT




TCTTCAGGGGGGAGGGGGGCAAGTTTGGGTAGGAAAGAAA




GCATAAATGAACGTGACCCTGAGGTGAAGAGGTATATGAA




CAGCCTTTGCAATGTACAAAAAGAAAAAAAAACAAAAAAC




AACAAAAAAAATAGAGCAAGTGAAACCAAAAATGATGTTC




TTGGTGTTTTTCTATAATGTAGTCTTGTTAGCTTTTTTGT




TACTGTAACAATGCTGATCTCGAACTGTACCAAAATACAT




GGAGACTAACAAACAGAACCACATGGAACTTTCAAACTGA




AAAAAAAATTTGTCACAAAAACTTTGTTGTCATAGTTAAG




TTGATTGTAGATGGTAATTGAATATACTCCTTTGAAAATA




TTTCATCAAGTATGTTTCCTGCTCATTGTGATACATTAAA




AAAAAAATATGAGCAAAA





ZXDC
NM_001040653.3
GGGCGCGGGCAGCTCTGCGTCCGAAGCTGCTCCGACGCCG
51




TCGCTGGGACCAAGATGGACCTCCCGGCGCTGCTCCCCGC




CCCGACTGCGCGCGGAGGGCAACATGGCGGCGGCCCCGGC




CCGCTCCGCCGAGCCCCAGCGCCGCTCGGCGCGAGCCCCG




CGCGCCGCCGCCTGCTACTGGTGCGGGGCCCTGAAGATGG




CGGGCCCGGGGCGCGGCCCGGGGAGGCCTCCGGGCCAAGC




CCGCCGCCCGCCGAGGACGACAGCGACGGCGACTCTTTCT




TGGTGCTGCTGGAAGTGCCGCACGGCGGCGCTGCCGCCGA




GGCTGCCGGATCACAGGAGGCCGAGCCTGGCTCCCGTGTC




AACCTGGCGAGCCGCCCCGAGCAGGGCCCCAGCGGCCCGG




CCGCCCCCCCCGGCCCTGGCGTAGCCCCGGCGGGCGCCGT




CACCATCAGCAGCCAGGACCTGCTGGTGCGTCTCGACCGC




GGCGTCCTCGCGCTGTCTGCGCCGCCCGGCCCCGCAACCG




CGGGCGCCGCCGCTCCCCGCCGCGCGCCCCAGGCCTCCGG




CCCCAGCACGCCCGGCTACCGCTGCCCCGAGCCGCAGTGC




GCGCTGGCCTTCGCCAAGAAGCACCAGCTCAAGGTGCACC




TGCTCACGCACGGCGGCGGTCAGGGCCGGCGGCCCTTCAA




GTGCCCACTGGAGGGCTGTGGTTGGGCCTTCACAACGTCC




TACAAGCTCAAGCGGCACCTGCAGTCGCACGACAAGCTGC




GGCCCTTCGGCTGTCCAGTGGGCGGCTGTGGCAAGAAGTT




CACTACGGTCTATAACCTCAAGGCGCACATGAAGGGCCAC




GAGCAGGAGAGCCTGTTCAAGTGCGAGGTGTGCGCCGAGC




GCTTCCCCACGCACGCCAAGCTCAGCTCCCACCAGCGCAG




CCACTTCGAGCCCGAGCGCCCTTACAAGTGTGACTTTCCC





GGCTGTGAGAAGACATTTATCACAGTGAGTGCCCTGTTTT






CCCATAACCGAGCCCACTTCAGGGAACAAGAGCTCTTTTC





CTGCTCCTTTCCTGGGTGCAGCAAGCAGTATGATAAAGCC




TGTCGGCTGAAAATTCACCTGCGGAGCCATACAGGTGAAA




GACCATTTATTTGTGACTCTGACAGCTGTGGCTGGACCTT




CACCAGCATGTCCAAACTTCTAAGGCACAGAAGGAAACAT




GACGATGACCGGAGGTTTACCTGCCCTGTCGAGGGCTGTG




GGAAATCATTCACCAGAGCAGAGCATCTGAAAGGCCACAG




CATAACCCACCTAGGCACAAAGCCGTTCGAGTGTCCTGTG




GAAGGATGTTGCGCGAGGTTCTCCGCTCGTAGCAGTCTGT




ACATTCACTCTAAGAAACACGTGCAGGATGTGGGTGCTCC




GAAAAGCCGTTGCCCAGTTTCTACCTGCAACAGACTCTTC




ACCTCCAAGCACAGCATGAAGGCGCACATGGTCAGACAGC




ACAGCCGGCGCCAAGATCTCTTACCTCAGCTAGAAGCTCC




GAGTTCTCTTACTCCCAGCAGTGAACTCAGCAGCCCAGGC




CAAAGTGAGCTCACTAACATGGATCTTGCTGCACTCTTCT




CTGACACACCTGCCAATGCTAGTGGTTCTGCAGGTGGGTC




GGATGAGGCTCTGAACTCCGGAATCCTGACTATTGACGTC




ACTTCTGTGAGCTCCTCTCTGGGAGGGAACCTCCCTGCTA




ATAATAGCTCCCTAGGGCCGATGGAACCCCTGGTCCTGGT




GGCCCACAGTGATATTCCCCCAAGCCTGGACAGCCCTCTG




GTTCTCGGGACAGCAGCCACGGTTCTGCAGCAGGGCAGCT




TCAGTGTGGATGACGTGCAGACTGTGAGTGCAGGAGCATT




AGGCTGTCTGGTGGCTCTGCCCATGAAGAACTTGAGTGAC




GACCCACTGGCTTTGACCTCCAATAGTAACTTAGCAGCAC




ATATCACCACACCGACCTCTTCGAGCACCCCCCGAGAAAA




TGCCAGTGTCCCGGAACTGCTGGCTCCAATCAAGGTGGAG




CCGGACTCGCCTTCTCGCCCAGGAGCAGTTGGGCAGCAGG




AAGGAAGCCATGGGCTGCCCCAGTCCACGTTGCCCAGTCC




AGCAGAGCAGCACGGTGCCCAGGACACAGAGCTCAGTGCA




GGCACTGGCAACTTCTATTTGGTATGAAGCACTCTATTCA




GTCACCACCATATAGGTCACTTCTCTCATACTCGGTCTTG




AGGATATTCTGGATTAATCCTTTCTATGCAGACGTTTCTG




GTTTACAAAAGGACGCAGCCCTGGACTACAAGTCTGGAAC




TGACAAGTTCTTATGACCTTGACAAATCACCTTAACCCAT




CTGAGCCTTAAATTCTCATTTATTTCCTGCATAAGGAGAT




TTGGCTAAATGCTTTCTGAGGTCCTTTGGAGTCCTGTGGC




TCCATGGTAATGTGCTCCTTTCCTTGAAGATTGGGGGTTT




TGTAATGTTGAGATACTTTGCCTCTATGCTTGTCAGCTCA




TGACCAGTCCTAGAAGAGGAGTCGAGACATAAGCCACCTT




CAGAGGTTCAATGGAAACTTTAAAACCATACCAAACTCTT




TTTTAAAATTAGAATTAACAAGAAAAAAAAAAAGGGTGGG




GTTTATGAGCCTTAGTTCTTGGAGGATTATAAGAGTACTT




CCCCAGTTTTGAGGCTGGACAGTTAATATACTTTATATCA




ATTATACATTTAATATAATTTAATTTAAAATAATTTAAAG




ATTCTTAGGAGATAGTCTGACTTTCCTGACCTAGATGGGA




ATGATCAGATAGGGATTTTTTTTGTGGCACAGGCTAAATT




TGATGGTGACATTTATATTGTTGAGAATGTTACATCTTAT




TTTACCACAACTTTTAAAAAATGTTACATCTTTTGCAGTA




GGATCAGTTGTGAGGCACATAGTAGCTGAGGCTCCATGGA




GCCACCTTTCATTTCTTTCAGTCAGAGAGGAGGACAGTCT




CTGTCTCTGCATTTCTGGTGTCTTGCTTGTCGGTGGCAGA




GCCATGCTTGCCGGCATTTGCTTAGGCGGCCATAGTAGTT




GCTAAGTGTACAGGTGACTGGGCAGGGATGGGAGGTGGCC




ACAGGTCAGAGACAAGTGCTCAGTCAGTCCCTGGTGCCAG




GACTGTGTGCCTCGGTGCCTTGGGAAATGGAAGCTCCCTG




GTGCAGCTGCAGCTGTGGGTGGAGGTAGAGAAGCCAGCAA




GACCTTGGTCTTAACCCCGTGTTCATTTTCTTGCTAGCTG




TGTGACGTTGGGCTACCTCGCTTCTCTGAGTACAAATGGT




GTGTGGTGAATGGGTCCCAGGTATGCTACGAGCTTTGAGG




GCTGCTCTTTTTCTCTTCATAGCGATAAGTGTTAAACTGT




CTTTCTTAGGAAACGTTCACAGACTTGCAACAGCTGATGT




CCTCTGAGTACTGTCTGACTCCCTCAGGCAAGTTCCTGAA




TTCAGTACCATCATTATTATTTTTGTGTAAGACTTTGACA




AAGTATAGCCCCTGCCACCAGAGCAGCCTGTACAGTGGGT




CTCTAAGGTGGGACCTGCCCCGGGCCTGCCATGCACGTGT




GTGAAACAGCGTGAAAAGTGTCGCGGTAAGGTGACCCTGG




GTTACCCAGGCAAGGCTCGGTGTTTGTTTCAGAAAGCAGA




GAAGTATGTAATTGATTTTAAAAGTTTCTGTTTAAAATAT




TTGGCTATGTTTTAGACTATGAAGGAATGAACTTTGCTTC




TCTGGATAAGAAAGTCACATACATTGTTCCAGCTCCAAGT




TTGTTCGGCCCTCGCCACAAGTGGATGTAGCGTTTGGCCC




TTTGTGTGCCTTGCTGGTGACTCTGGTTTTGGGAGCTCGG




ATATGTCCCAGAAGCAGGCTTATGGCACTTCTGTAGCTCC




CTTGCTACCCTTCCTTTGTGTCTAGATAAGTGACTGACAT




GCTTTTCTTTGGTCTCAGGAAAGTGGGGGCTCAGCAAGAA




CTGATTACCGAGCCATTCAACTAGCCAAGGAAAAAAAGCA




GAGAGGAGCGGGGAGCAATGCAGGTGAGGCCGTGTGTGCT




GCAGCCGGACGAGCAAGGGCCTGAGGGTTCTCTGTCACTG




TTACTGGCAGAAGAAACACAGCAGGTGTTTCTGTGCTCTT




GGTTTTACTTTTCTGTTCAGAATACCCTTTTATCAACTCC




TTAGTTTTATTTGAACTTAAGGGAAAAAATTAGTAACAAA




ATTCCCAGCATCAGTATGAACATATTTTATTTGCCTAAAC




AAGCTTTGTGAAAGTTAAGCGTTCAAACACCAGTGTCAGT




TACCTGGAAGGCTACTAAGGTAAATAAGCAAAGCAGGCCA




GTTGTCAGGAAAGCAGAGATTGTGCCTGGTGCTGAATGGC




CTTGGGGCCTGATCTTGGCATGGCAGAGACCTGGGGACTG




CCACTGTCCCCAGGTACGTGTACATGGAGCCAAACTGTGT




GTCCTGTGGCATTGTCAGAGTTATGTTGAAATCTTATTTG




AAAATGTTAGCAACTTACTTGCATTTTTAAAGACCAAACA




AGAGCTGGTAACCTATGGCCTCAAGCATCTGTCCTTCCTA




AAAATGGAATAGTGGGATGTAGTGCTTAATGGAAACTGCT




AAATCTTTTTCTAAAAACTAACAGTGGATTTTTAAAATAT




ATTGTTTTTTGTGTATTTCATTTGTCCTTTGTATTTATCT




AAAAGGGTTGATATGATTTTATATCTTGCTCTCTATTCCT




AATAGTATTATGACTTCTTATTTAAAATAAATAACAATTG




CCGGTTTTCTGTTAAAAAAAAAAAAA





ZZZ3
NM_015534.4
GTTGGCAGAGCAGTTGTCCTGGATGGCGGAGCCTTGGGTT
52




CCGGGGGCCTGGGACCTGCAACTCTTTCTACAAGATATCA




AGTTATTCTAGTACAACCATATAAATAAATAATACCTGAA




GTCTCAGTGTAACATGGACAATTAACAGTGATGACAGATA




AATACAGACGCATGGGGATCAAATACTAGGCAAAACGCTT




TTTAAAAGTGTATCAGGCTTTTAAGAAACACTGCAGGATC




CTGTCTATCTTAATGCTGATAGAGCTCAGCTAAAAATTTA




GGAGGTTCTAGTATTCTTCATGGCTGAAGCTGAGAGAGTC




TGAAACCCTGATGCTTAAGCTCCATTCTAGATCATAGCTC




CAACTCCTTCAGGATATAAGGAAAAGAGATTATATTTCCA




CAATGATAGATCTTTGGTTGTACAGGTTTCCCAATGAGTG




GATCATGATGACCGTATTGTAGGGACTTGCCATAGTATGG




CTGCTTCCCGATCTACTCGTGTTACAAGATCAACAGTGGG




GTTAAACGGCTTGGATGAATCTTTTTGTGGTAGAACTTTA




AGGAATCGTAGCATTGCGCATCCTGAAGAAATCTCTTCTA




ATTCTCAAGTACGATCAAGATCACCAAAGAAGAGACCAGA




GCCTGTGCCAATTCAGAAAGGAAATAATAATGGGAGAACC




ACTGATTTAAAACAGCAGAGTACCCGAGAATCATGGGTAA




GCCCTAGGAAAAGAGGACTTTCTTCTTCAGAAAAGGATAA




CATAGAAAGGCAGGCTATAGAAAATTGTGAGAGAAGGCAA




ACAGAACCTGTTTCACCAGTTTTAAAAAGAATTAAGCGTT




GTCTTAGATCTGAAGCACCAAACAGTTCAGAAGAAGATTC




TCCTATAAAATCAGACAAGGAGTCAGTAGAACAGAGGAGT




ACAGTAGTGGACAATGATGCAGATTTTCAAGGGACTAAAC




GAGCTTGTCGATGTCTTATACTGGATGATTGTGAGAAAAG




GGAAATTAAAAAGGTGAATGTCAGTGAGGAAGGGCCACTT




AATTCTGCAGTAGTTGAAGAAATCACAGGCTATTTGGCTG




TCAATGGTGTTGATGACAGTGATTCAGCTGTTATAAACTG




TGATGACTGTCAGCCTGATGGGAACACTAAACAAAATAGC




ATTGGTTCCTATGTGTTACAGGAAAAATCAGTAGCTGAAA




ATGGGGATACGGATACCCAAACTTCAATGTTCCTTGATAG




TAGGAAGGAGGACAGTTATATAGACCATAAGGTGCCTTGC




ACAGATTCACAAGTGCAGGTCAAGTTGGAGGACCACAAAA




TAGTAACTGCCTGCTTGCCTGTGGAACATGTTAATCAGCT




GACTACTGAGCCAGCTACAGGGCCCTTTTCTGAAACTCAG




TCATCTTTAAGGGATTCTGAGGAGGAAGTAGATGTGGTGG




GAGATAGCAGTGCCTCAAAAGAGCAGTGTAAAGAAAACAC




CAATAACGAACTGGACACAAGTCTTGAGAGTATGCCAGCC




TCCGGAGAACCTGAACCATCTCCTGTTCTAGACTGTGTTT




CAGCTCAAATGATGTCTTTATCAGAACCTCAAGAACATCG




TTATACTCTGAGAACCTCACCACGAAGGGCAGCCCCTACC




AGAGGTAGTCCCACTAAAAACAGTTCTCCTTACAGAGAAA




ATGGACAATTTGAGGAGAATAATCTTAGTCCTAATGAAAC




AAATGCAACTGTTAGTGATAATGTAAGTCAATCTCCTACA




AATCCTGGTGAAATTTCTCAAAATGAAAAAGGGATATGTT




GTGACTCTCAAAATAATGGAAGTGAAGGAGTAAGTAAACC




ACCCTCAGAGGCAAGACTCAATATTGGACATTTGCCATCT




GCCAAAGAGAGTGCCAGTCAGCACATTACAGAAGAGGAAG




ATGATGATCCTGATGTTTATTACTTTGAATCAGATCATGT




GGCACTGAAACACAACAAAGATTATCAGAGACTATTACAG




ACGATTGCTGTACTCGAGGCTCAGCGTTCTCAAGCAGTCC




AAGACCTTGAAAGTTTAGGCAGGCACCAGAGAGAAGCACT




GAAAAATCCCATTGGATTTGTGGAAAAACTCCAGAAGAAG




GCTGATATTGGGCTTCCATATCCACAGAGAGTTGTTCAAT




TGCCTGAGATCGTATGGGACCAATATACCCATAGCCTTGG




GAATTTTGAAAGAGAATTTAAAAATCGTAAAAGACATACT




AGAAGAGTTAAGCTAGTTTTTGATAAAGTAGGTTTACCTG




CTAGACCAAAAAGTCCTTTAGATCCTAAGAAGGATGGAGA




GTCCCTTTCATATTCTATGTTGCCTTTGAGTGATGGTCCA




GAAGGCTCAAGCAGTCGTCCTCAGATGATAAGAGGACGCT




TGTGTGATGATACCAAACCTGAAACATTTAACCAGTTGTG




GACTGTTGAAGAACAGAAAAAGCTGGAACAGCTACTCATC




AAATACCCTCCTGAAGAAGTAGAATCTCGACGCTGGCAGA




AGATAGCAGATGAATTGGGCAACAGGACAGCAAAACAGGT




TGCCAGCCGAGTACAGAAGTATTTCATAAAGCTAACTAAA




GCTGGCATTCCAGTACCAGGCAGAACACCAAACTTATATA




TATACTCCAAAAAGTCTTCAACAAGCAGACGACAGCACCC




TCTTAATAAGCATCTCTTTAAGCCTTCCACTTTCATGACT




TCACATGAACCGCCAGTGTATATGGATGAAGATGATGACC




GATCTTGTTTTCATAGCCACATGAACACTGCTGTTGAAGA




TGCATCAGATGACGAAAGTATTCCTATCATGTATAGGAAT




TTACCTGAATATAAAGAACTATTACAGTTTAAAAAGTTAA




AGAAGCAGAAACTTCAGCAAATGCAAGCTGAAAGTGGATT





TGTGCAACATGTGGGCTTTAAGTGTGATAACTGTGGCATA






GAACCCATCCAGGGTGTTCGGTGGCATTGCCAGGATTGTC





CTCCAGAAATGTCTTTGGATTTCTGTGATTCTTGTTCAGA




CTGTCTACATGAAACAGATATTCACAAGGAAGATCACCAA




TTAGAACCTATTTATAGGTCAGAGACATTCTTAGACAGAG




ACTACTGTGTGTCTCAGGGCACCAGTTACAATTACCTTGA




CCCAAACTACTTTCCAGCAAACAGATGACATGGAAGAGAA




CATCATTTACTAGTCCTCTTCAACACATAGCAATGGTATC




ATTGTTAATTATGTGCACAGTTTGGAAAGATTCTCTGCTT




TCCCAGAAATGACACTCACAGCATGAGAGCTTCCTGAGTG




TTCTCGTCAAGTACAGCTCTGCACCGTTGTGGCTCTAGAT




CACTGTTCAGCAGCTGAACATTCCTGGTGAGCAAAGGTTT




CCCTGGTGAATTTTTCACCACTGCGTTTTAGGTGGTGATC




TTAAATGGGTGAGATGGAACGAGAGCACACATTAAAGAGA




GAGTAAATTCCAAAGGTTTCAAAGAACTTGGTCATAAATA




TGATAATGAGAAGACAAAGTATTTATATTAAAACAGTTTA




GTAGCCTTCAGTTTTGTGAAAATAGTTTTCAGCACAGAAA




CTGACTTCTTTAGACAAAGTTTTAACCAATGATGGTGTTT




GCTTCTAGGATATACACTTTAAAAGAACTCACTGTCCCAG




TGGTGGTCATTGATGGCCTTTAGTAAATTGGAGCTGCTTA




ATCATATTGATATCTAATTTCTTTTAACCACAATGAATTG




TCCTTAATTACCAACAGTGAAGCACTACAGGAGGCAACTG




TGGCATTGCTTCCTTAACCAGCTCATGGTGTGTGAATGTT




ATAAAATTGTCACTCAGATATATTTTTTAAATGTAATGTT




ATATAAGATGATCATGTGATGTGTACAAACTATGGTGAAA




AGTGCCAGTGGTAGTAACTGTGTAAAGTTTCTAATTCACA




ACATTAATTCCTTTAAAATACACAGCCTTCTGCCTCTGTA




TTTGGAGTTGTCAGTACAACTCATCAAAGAAAACTGCCTA




ATATAAAAATCATATATATGGTAATAATTTCCCTCTTTTG




TAGTCTGCACAAGATCCATAAAAGATTGTATTTTTATTAC




TATTTAAACAAGTGATTAAATTTAGTCTGCACAGTGAGCA




AGGGTTCACATGCATTCTTTTATACTGCTGGATTTTGTTG




TGCATCATTTAAAACATTTTGTATGTTTCTTCTTATCTGT




GTATACAGTATGTTCTTGAATGATGTTCATTTGTCAGGAG




AACTGTGAGAAATAAACTATGTGGATACTGTCTGTTTATA




TTAAAAGAAAAAAAAAAAAAAAAA









The 51 GEP-NEN biomarkers include: AKAP8L (A kinase (PRKA) anchor protein 8-like), APLP2 (amyloid beta (A4) precursor-like protein 2), ARAF1 (v-raf murine sarcoma 3611 viral oncogene homolog), ATP6V1H (ATPase, H+ transporting, lysosomal 50/57 kDa, VI subunit H), BNIP3L (BCL2/adenovirus E1B19 kDa interacting protein 3-like), BRAF (v-raf murine sarcoma viral oncogene homolog B1), C21ORF7 (chromosome 21 open reading frame 7), CD59 (CD59 molecule, complement regulatory protein), COMMD9 (COMM domain containing 9), CTGF (connective tissue growth factor), ENPP4 (ectonucleotide pyrophosphatase/phosphodiesterase 4), FAM131A (family with sequence similarity 131, member A, transcript variant 2), FLJ10357 (Rho guanine nucleotide exchange factor (GEF) 40 (ARHGEF40), FZD7 (frizzled homolog 7 (Drosophila)), GLT8D1 (glycosyltransferase 8 domain containing 1, transcript variant 3), HDAC9 (histone deacetylase 9, transcript variant 6), HSF2 (heat shock transcription factor 2, transcript variant 1), Ki-67 (antigen identified by monoclonal antibody Ki-67), KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog), LEO1 (Paf1/RNA polymerase II complex component homolog (S. cerevisiae)), MORF4L2 (mortality factor 4 like 2, transcript variant 1), NAP1L1 (nucleosome assembly protein 1-like 1), NOL3 (nucleolar protein 3 (apoptosis repressor with CARD domain), transcript variant 3), NUDT3 (nudix (nucleoside diphosphate linked moiety X)-type motif 3), OAZ2 (ornithine decarboxylase antizyme 2), PANK2 (pantothenate kinase 2), PHF21A (PHD finger protein 21A, transcript variant 1), PKD1 (polycystic kidney disease 1 (autosomal dominant), transcript variant 2), PLD3 (phospholipase D family, member 3, transcript variant 1), PNMA2 (paraneoplastic antigen MA2), PQBP1 (polyglutamine binding protein 1, transcript variant 2), RAF1 (v-raf-1 murine leukemia viral oncogene homolog 1), RNF41 (ring finger protein 41, transcript variant 4), RSF1 (remodeling and spacing factor 1), RTN2 (reticulon 2, transcript variant 1), SMARCD3 (SWL/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 3, transcript variant 3), SPATA7 (spermatogenesis associated 7, transcript variant 2), SST1 (somatostatin receptor 1), SST3 (somatostatin receptor 3), SST4 (somatostatin receptor 4), SST5 (somatostatin receptor 5, transcript variant 1). TECPR2 (tectonin beta-propeller repeat containing 2, transcript variant 2), TPH1 (tryptophan hydroxylase 1), TRMT112 (tRNA methyltransferase 11-2 homolog (S. cerevisiae)), VMAT1 (solute carrier family 18 (vesicular monoamine), member 1), VMAT2 (solute carrier family 18 (vesicular monoamine), member 2), VPS13C (vacuolar protein sorting 13 homolog C (S. cerevisiae), transcript variant 2B), WDFY3 (WD repeat and FYVE domain containing 3), ZFHX3 (zinc finger homeobox 3, transcript variant B), ZXDC (zinc finger C, transcript variant 2), and ZZZ3 (zinc finger, ZZ-type containing 3), including gene products typically human gene products, including transcripts, mRNA, cDNA, coding sequences, proteins and polypeptides, as well as polynucleotides (nucleic acids) encoding the proteins and polypeptides, including naturally occurring variants, e.g., allelic variants, splice variants, transcript variants, and single nucleotide polymorphism (SNP) variants. For example, the biomarkers include polynucleotides, proteins, and polypeptides having the sequences disclosed herein, and naturally occurring variants thereof.


The housekeeping gene used to normalize expression of the 51 marker genes is the human ALG9 (asparagine-linked glycosylation 9, alpha-1,2-mannosyltransferase homolog).


Of these 51 differentially expressed biomarker genes, 38 biomarker genes are useful for the generation of mathematically-derived expression level scores for diagnosing, monitoring, and/or prognosticating the presence of GEP-NEN and/or different states of GEP-NENs. These 38 GEP-NEN biomarkers include: PNMA2, NAP1L1, FZD7, SLC18A2/VMAT2, NOL3, SSTR5, TPH1, RAF1, RSF1, SSTR3, SSTR1. CD59. ARAF, APLP2, KRAS, MORF4L2, TRMT112, MKI67/KI67, SSTR4, CTGF, SPATA7, ZFHX3, PHF21A, SLC18A1/VMAT1, ZZZ3, TECPR2, ATP6V1H, OAZ2, PAN K2, PLD3, PQBP1, RNF41, SMARCD3, BNIP3L, WDFY3, COMMD9, BRAF, and GLT8D1.


Of the 38 biomarker genes useful for the generation of a mathematically-derived expression level score for diagnosing, monitoring, and/or prognosticating the presence of GEP-NENs, at least 22 biomarker genes may be needed to generate an adequate classifier. These at least 22 biomarker genes include PNMA2, NAP1L1, FZD7, SLC18A2, NOL3, SSTR5, TPH1, RAF1, RSF1, SSTR3, SSTR1, CD59, ARAF, APLP2, KRAS, MORF4L2, TRMT112, MKI67, SSTR4, CTGF, SPATA7, and ZFHX3.


The ALG9 biomarkers/housekeeping genes include human ALG9 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the ALG9 biomarker/housekeeping gene is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 1 (referenced at NM_024740.2), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The AKAP8L biomarkers include human AKAP8L gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the AKAP8L biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 2 (referenced at NM_014371.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The APLP2 biomarkers include human APLP2 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the APLP2 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 3 (referenced at NM_001142276.1) or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The ARAF1 biomarkers include human ARAF1 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the ARAF1 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 4 (referenced at NM_001654.4), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The ATP6V1H biomarkers include human ATP6VIH gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the ATP6V1H biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 5 (referenced at NM_015941.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The BNIP3L biomarkers include human BNIP3L gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the BNIP3L biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 6 (referenced at NM_004331.2), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The BRAF biomarkers include BRAF gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the BRAF biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 7 (referenced at NM_004333.4), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The C21ORF7 biomarkers include C21ORF7 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the C21ORF7 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 8 (referenced at NM_020152.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The CD59 biomarkers include CD59 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the CD59 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 9 (referenced at NM_203331.2), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The COMMD9 biomarkers include COMMD9 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the COMMD9 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 10 (referenced at NM_001101653.1), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The CTGF biomarkers include CTGF gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the CTGF biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 11 (referenced at NM_001901.2), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The ENPP4 biomarkers include ENPP4 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the ENPP4 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 12 (referenced at NM_014936.4), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The FAM131A biomarkers include FAM131A gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the FAM131A biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 13 (referenced at NM_001171093.1), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The FLJ1035 biomarkers include FLJ1035 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the FLJ1035 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 14 (referenced at NM_018071.4), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The FZD7 biomarkers include FZD7 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the FZD7 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 15 (referenced at NM_003507.1), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The GLT8D1 biomarkers include GLT8D1 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the GLT8D1 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 16 (referenced at NM_001010983.2), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The HDAC9 biomarkers include HDAC9 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the HDAC9 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 17 (referenced at NM_001204144.1), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The HSF2 biomarkers include HSF2 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the HSF2 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 18 (referenced at NM_004506.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The Ki-67 biomarkers include Ki-67 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the Ki-67 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 19 (referenced at NM_001145966.1), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The KRAS biomarkers include KRAS gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the KRAS biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 20 (referenced at NM_004985.4), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The LEO1 biomarkers include LEO1 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the LEO1 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 21 (referenced at NM_138792.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The MORF4L2 biomarkers include MORF4L2 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the MORF4L2 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 22 (referenced at NM_001142418.1), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The NAP1L1 biomarkers include NAP1L1 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the NAP1L1 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 23 (referenced at NM_139207.2), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The NOL3 biomarkers include NOL3 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the NOL3 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 24 (referenced at NM_001185057.2), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The NUDT3 biomarkers include NUDT3 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the NUDT3 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 25 (referenced at NM_006703.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The OAZ2 biomarkers include OAZ2 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the OAZ2 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 26 (referenced at NM_002537.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The PANK2 biomarkers include PANK2 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the PANK2 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 27 (referenced at NM_024960.4), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The PHF21A biomarkers include PHF21A gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the PHF21A biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 28 (referenced at NM_001101802.1), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The PKD1 biomarkers include PKD1 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the PKD1 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 29 (referenced at NM_000296.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The PLD3 biomarkers include PLD3 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the PLD3 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 30 (referenced at NM_001031696.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The PNMA2 biomarkers include PNMA2 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the PNMA2 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 31 (referenced at NM_007257.5), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The PQBP1 biomarkers include PQBP1 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the PQBP1 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 32 (referenced at NM_001032381.1), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The RAF1 biomarkers include RAF1 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the RAF1 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 33 (referenced at NM_002880.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The RNF41 biomarkers include RNF41 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the RNF41 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 34 (referenced at NM_001242826.1), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The RSF1 biomarkers include RSF1 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the RSF1 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 35 (referenced at NM_016578.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The RTN2 biomarkers include RTN2 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the RTN2 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 36 (referenced at NM_005619.4), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The SMARCD3 biomarkers include SMARCD3 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the SMARCD3 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 37 (referenced at NM_001003801.1), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The SPATA7 biomarkers include SPATA7 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the SPATA7 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 38 (referenced at NM_001040428.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The SSTR1 biomarkers include SSTR1 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the SSTR1 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 39 (referenced at NM_001049.2), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The SSTR3 biomarkers include SSTR3 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the SSTR3 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 40 (referenced at NM_001051.4), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The SST4 biomarkers include SST4 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the SST4 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 41 (referenced at NM_001052.2), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The SST5 biomarkers include SST5 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the SST5 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 42 (referenced at NM_001053.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The TECPR2 biomarkers include TECPR2 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the TECPR2 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 43 (referenced at NM_001172631.1), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The TPH1 biomarkers include TPH1 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the TPH1 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 44 (referenced at NM_004179.2), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The TRMT112 biomarkers include TRMT112 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the TRMT112 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 45 (referenced at NM_016404.2), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The VMAT1 biomarkers include VMAT1 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the VMAT1 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 46 (referenced at NM_003053.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The VMAT2 biomarkers include VMAT2 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the VMAT2 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 47 (referenced at NM_003054.4), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The VPS13C biomarkers include VPS13C gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the VPS3C biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 48 (referenced at NM_001018088.2), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The WDFY3 biomarkers include WDFY3 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the WDFY3 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 49 (referenced at NM_014991.4), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The ZFHX3 biomarkers include ZFHX3 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the ZFHX3 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 50 (referenced at NM_001164766.1), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The ZXDC biomarkers include ZXDC gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the ZXDC biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 51 (referenced at NM_001040653.3), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


The ZZZ3 biomarkers include ZZZ3 gene products, including natural variants, e.g., allelic variants, and homologs and analogs thereof. In one example, the ZZZ3 biomarker is a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 52 (referenced at NM_015534.4), or containing a protein-coding portion thereof, a natural variant thereof, or a protein encoded by such a polynucleotide.


In some embodiments, the panel of polynucleotides further includes one or more polynucleotide able to specifically hybridize to “housekeeping,” or reference genes, for example, genes for which differences in expression is known or not expected to correlate with differences in the variables analyzed, for example, with the presence or absence of GEP-NEN or other neoplastic disease, differentiation of various GEP-NEN sub-types, metastasis, mucosal or other tissue types, prognostic indications, and/or other phenotype, prediction, or outcome. In some aspects, expression levels of such housekeeping genes are detected and used as an overall expression level standards, such as to normalize expression data obtained for GEP-NEN biomarkers across various samples.


Housekeeping genes are well known in the art. Typically, the housekeeping genes include one or more genes characterized as particularly appropriate for analyzing GEP-NEN samples, such as ALG9. See Kidd M, et al., “GeneChip, geNorm and Gastrointestinal tumors: novel reference genes for real-time PCR.” Physiol Genomics 2007; 30:363-70. In the current application, ALG9 is the housekeeping gene of choice.


The present invention provides methods, compositions, and systems, for the detection of the GEP-NEN biomarkers and for identifying, isolating, and enriching tumors and cells that express the GEP-NEN biomarkers. For example, provided are agents, sets of agents, and systems for detecting the GEP-NEN biomarkers and methods for use of the same, including for diagnostic and prognostic uses.


In one embodiment, the agents are proteins, polynucleotides or other molecules which specifically bind to or specifically hybridize to the GEP-NEN biomarkers. The agents include polynucleotides, such as probes and primers, e.g. sense and antisense PCR primers, having identity or complementarity to the polynucleotide biomarkers, such as mRNA, or proteins, such as antibodies, which specifically bind to such biomarkers. Sets and kits containing the agents, such as agents specifically hybridizing to or binding the panel of biomarkers, also are provided.


Thus, the systems, e.g., microarrays, sets of polynucleotides, and kits, provided herein include those with nucleic acid molecules, typically DNA oligonucleotides, such as primers and probes, the length of which typically varies between 15 bases and several kilo bases, such as between 20 bases and 1 kilobase, between 40 and 100 bases, and between 50 and 80 nucleotides or between 20 and 80 nucleotides. In one aspect, most (i.e. at least 60% of) nucleic acid molecules of a nucleotide microarray, kit, or other system, are capable of hybridizing to GEP-NEN biomarkers.


In one example, systems containing polynucleotides that specifically hybridize to the biomarkers, e.g., nucleic acid microarrays, are provided to detect and measure changes in expression levels and determine expression profiles of the biomarkers according to the provided methods. Among such systems, e.g., microarrays, are those comprising polynucleotides able to hybridize to at least as at least 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 80, 85, 90, 95, or 100 or more biomarkers, such as to at least 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51, and/or all of the following sets of biomarkers:


PNMA2, NAP1L1, FZD7, SLC18A2/VMAT2, NOL3, SSTR5, TPH1, RAF1, RSF1, SSTR3, SSTR1, CD59, ARAF, APLP2, KRAS, MORF4L2, TRMT112, MKI67/KI67, SSTR4, CTGF, SPATA7, ZFHX3, PHF21A, SLC18A1/VMAT1, ZZZ3, TECPR2, ATP6V1H, OAZ2, PANK2, PLD3, PQBP1, RNF41, SMARCD3, BNIP3L, WDFY3, COMMD9, BRAF, and GLT8D1 gene products;


In some aspects, at least 60%, or at least 70%, at least 80%, or more, of the nucleic acid molecules of the system, e.g., microarray, are able to hybridize to biomarkers in the panel of biomarkers. In one example, probes immobilized on such nucleotide microarrays comprise at least 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 80, 85, 90, 95, or 100 or more biomarkers, such as to at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51, or more nucleic acid molecules able to hybridize to at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 80, 85, 90, 95, or 100 or more biomarkers, such as to at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51, or more of the biomarkers, where each of the nucleic acid molecules is capable of specifically hybridizing to a different one of the biomarkers, such that at least that many different biomarkers can be bound.


In one example, the remaining nucleic acid molecules, such as 40% or at most 40% of the nucleic acid molecules on the microarray or in the set of polynucleotides are able to hybridize to a set of reference genes or a set of normalization genes (such as housekeeping genes), for example, for normalization in order to reduce systemic bias. Systemic bias results in variation by inter-array differences in overall performance, which can be due to for example inconsistencies in array fabrication, staining and scanning, and variation between labeled RNA samples, which can be due for example to variations in purity. Systemic bias can be introduced during the handling of the sample in a microarray experiment. To reduce systemic bias, the determined RNA levels are preferably corrected for background non-specific hybridization and normalized.


The use of such reference probes is advantageous but not mandatory. In one embodiment a set of polynucleotides or system, e.g., microarray, is provided wherein at least 90% of the nucleic acid sequences are able to hybridize to the GEP-NEN biomarkers; further embodiments include such systems and sets in which at least 95% or even 100% of the polynucleotides hybridize to the biomarkers.


Disclosed herein are exemplary suitable polynucleotides, such as PCR primers. Other nucleic acid probes and primers, able to hybridize to different regions of the biomarkers are of course also suitable for use in connection with the provided systems, kits and methods.


The present invention provides methods for detecting and quantifying the biomarkers, including detecting the presence, absence, amount or relative amount, such as expression levels or expression profile of the biomarkers. Typically, the methods are nucleic acid based methods, for example, measuring the presence, amount or expression levels of biomarker mRNA expression. Such methods typically are carried out by contacting polynucleotide agents to biological samples, such as test samples and normal and reference samples, for example, to quantify expression levels of nucleic acid biomarkers (e.g., mRNA) in the samples.


Detection and analysis of biomarkers according to the provided embodiments can be performed with any suitable method known in the art. For example, where the biomarkers are RNA biomarkers, RNA detection and quantification methods are used.


Exemplary methods for quantifying or detecting nucleic acid expression levels, e.g., mRNA expression, are well known, and include northern blotting and in situ hybridization (Parker and Barnes, Methods in Molecular Biology 106:247-283, 1999); RNAse protection assays (Hod. Biotechniques 13:852-854, 1992); and quantitative or semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) (Weis et al., Trends in Genetics 8:263-264, 1992), representative methods for sequencing-based gene expression analysis include Serial Analysis of Gene Expression (SAGE), and gene expression analysis by massively parallel signature sequencing (MPSS).


Therefore, in one embodiment, expression of the biomarker or biomarker panel includes RNA expression; the methods include determining levels of RNA of the biomarkers, such as RNA obtained from and/or present in a sample of a patient, and performing analysis, diagnosis, or predictive determinations based upon the RNA expression levels determined for the biomarkers or panel of biomarkers.


RNA samples can be processed in numerous ways, as is known to those in the art. Several methods are well known for isolation of RNA from samples, including guanidinium thiocyanate-phenol-chloroform extraction, which may be carried out using the TRIZOL® reagent, a proprietary formulation (see Chomczynski P, Sacchi N (2006). “The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on”. Nat Protoc 1 (2): 581-5). In this method, TRIZOL® is used to extract RNA and DNA; chloroform and centrifugation are used to separate RNA from other nucleic acids, followed by a series of washes with ethanol for cleanup of the RNA sample.


The RNA samples can be freshly prepared from samples e.g., cells or tissues at the moment of harvesting; alternatively, they can be prepared from samples that stored at −70° C. until processed for sample preparation. Alternatively, tissues or cell samples can be stored under and/or subjected to other conditions known in the art to preserve the quality of the RNA, including fixation for example with formalin or similar agent; and incubation with RNase inhibitors such as RNASIN® (ribonuclease inhibitors) or RNASECURE™ (RNase inactivation reagents); aqueous solutions such as RNALATER® (RNA stabilization solutions), Hepes-Glutamic acid buffer mediated Organic solvent Protection Effect (HOPE®), and RCL2® (formalin-free tissue fixatives); and non-aqueous solutions such as Universal Molecular Fixative (Sakura Finetek USA Inc.). A chaotropic nucleic acid isolation lysis buffer (Boom method, Boom et al. J Clin Microbiol. 1990; 28:495-503) may also be used for RNA isolation.


In one embodiment, RNA is isolated from buffy coat by incubating samples with TRIZOL®, followed by RNA clean-up. RNA is dissolved in diethyl pyrocarbonate water and measured spectrophotometrically, and an aliquot analyzed on a Bioanalyzer (Agilent Technologies, Palo Alto, Calif.) to assess the quality of the RNA (Kidd M, et al. “The role of genetic markers—NAP1L1, MAGE-D2, and MTA1—in defining small-intestinal carcinoid neoplasia,” Ann Surg Oncol 2006; 13(2):253-62). In another embodiment, RNA is isolated from plasma using the QIAamp RNA Blood Mini Kit; in some cases, this method allows better detection by real-time PCR of significantly more housekeeping genes from plasma compared to the TRIZOL® approach. In another embodiment, RNA is isolated directly from whole blood, for example, using the QIAamp RNA Blood Mini Kit in a similar manner.


Methods for isolating RNA from fixed, paraffin-embedded tissues as the RNA source are well-known and generally include mRNA isolation, purification, primer extension and amplification (for example: T. E. Godfrey et al, Molec. Diagnostics 2: 84-91 [2000]; K. Specht et al., Am. J. Pathol. 158: 419-29 [2001]). In one example, RNA is extracted from a sample such as a blood sample using the QIAamp RNA Blood Mini Kit RNA. Typically, RNA is extracted from tissue, followed by removal of protein and DNA and analysis of RNA concentration. An RNA repair and/or amplification step may be included, such as a step for reverse transcription of RNA for RT-PCR.


Expression levels or amounts of the RNA biomarkers may be determined or quantified by any method known in the art, for example, by quantifying RNA expression relative to housekeeping gene or with relation to RNA levels of other genes measured at the same time. Methods to determine RNA levels of genes are known to a skilled person and include, but are not limited to, Northern blotting, (quantitative) PCR, and microarray analysis.


RNA biomarkers can be reverse transcribed to produce cDNA and the methods of the present invention can include detecting and quantifying that produced cDNA. In some embodiments, the cDNA is detected by forming a complex with a labeled probe. In some embodiments, the RNA biomarkers are directed detected by forming a complex with a labeled probe or primer.


Northern blotting may be performed for quantification of RNA of a specific biomarker gene or gene product, by hybridizing a labeled probe that specifically interacts with the RNA, following separation of RNA by gel electrophoresis. Probes are for example labeled with radioactive isotopes or chemiluminescent substrates. Quantification of the labeled probe that has interacted with said nucleic acid expression product serves as a measure for determining the level of expression. The determined level of expression can be normalized for differences in the total amounts of nucleic acid expression products between two separate samples with for instance an internal or external calibrator by comparing the level of expression of a gene that is known not to differ in expression level between samples or by adding a known quantity of RNA before determining the expression levels.


For RT-PCR, biomarker RNA is reverse transcribed into cDNA. Reverse transcriptase polymerase chain reaction (RT-PCR) is, for example, performed using specific primers that hybridize to an RNA sequence of interest and a reverse transcriptase enzyme. Furthermore, RT-PCR can be performed with random primers, such as for instance random hexamers or decamers which hybridize randomly along the RNA, or oligo d(T) which hybridizes to the poly(A) tail of mRNA, and reverse transcriptase enzyme.


In some embodiments, RNA expression levels of the biomarkers in a sample, such as one from a patient suffering from or suspected of suffering from GEP-NEN or associated symptom or syndrome, are determined using quantitative methods such as by real-time rt-PCR (qPCR) or microarray analysis. In some embodiments, quantitative Polymerase Chain Reaction (QPCR) is used to quantify the level of expression of nucleic acids. In one aspect, detection and determining expression levels of the biomarkers is carried out using RT-PCR, GeneChip analysis, quantitative real-time PCR (Q RT-PCR), or carcinoid tissue microarray (TMA) immunostaining/quantitation, for example, to compare biomarker RNA, e.g., mRNA, or other expression product, levels in different sample populations, characterize patterns of gene expression, to discriminate between closely related mRNAs, and to analyze RNA structure.


In one example, QPCR is performed using real-time PCR (RTPCR), where the amount of product is monitored during the amplification reaction, or by end-point measurements, in which the amount of a final product is determined. As is known to a skilled person, rtPCR is for instance performed by the use of a nucleic acid intercalator, such as for example ethidium bromide or SYBR® Green 1 dye, which interacts which all generated double stranded products resulting in an increase in fluorescence during amplification, or for instance by the use of labeled probes that react specifically with the generated double stranded product of the gene of interest. Alternative detection methods that can be used are provided by amongst other things dendrimer signal amplification, hybridization signal amplification, and molecular beacons.


In one embodiment, reverse transcription on total RNA is carried out using the High Capacity cDNA Archive Kit (Applied Biosystems (ABI), Foster City, Calif.) following the manufacturer's suggested protocol (briefly, using 2 micrograms of total RNA in 50 microliters water, mixing with 50 uL of 2×RT mix containing Reverse Transcription Buffer, deoxynucleotide triphosphate solution, random primers, and Multiscribe Reverse Transcriptase). RT reaction conditions are well known. In one example, the RT reaction is performed using the following thermal cycler conditions: 10 mins, 25° C.; 120 min., 37° C. {see Kidd M, et al., “The role of genetic markers—NAP1L1, MAGE-D2, and MTA1—in defining small-intestinal carcinoid neoplasia,” Ann Surg Oncol 2006; 13(2):253-62).


For measurement of individual transcript levels, in one embodiment, Assays-on-Demand™ products are used with the ABI 7900 Sequence Detection System according to the manufacturer's suggestions see Kidd M, Eick G, Shapiro M D, et al. Microsatellite instability and gene mutations in transforming growth factor-beta type II receptor are absent in small bowel carcinoid tumors. Cancer 2005; 103(2):229-36). In one example, cycling is performed under standard conditions, using the TaqMan® Universal PCR Master Mix Protocol, by mixing cDNA in 7.2 uL water, 0.8 uL 20. ASSAYS-ON-DEMAND™ (gene expression products) primer and probe mix and 8 uL of 2× TaqMan Universal Master mix, in a 384-well optical reaction plate, under the following conditions: 50° C., 2 min.; 95° C.; 10 min.; 50 cycles at 95° C. for 15 min., 60° for 1 min {see Kidd M, et al, “The role of genetic markers—NAP 1 LI, MAGE-D2, and MTA1 in defining small-intestinal carcinoid neoplasia,” Ann Surg Oncol 2006; 13(2):253-62).


Typically, results from real-time PCR are normalized, using internal standards and/or by comparison to expression levels for housekeeping genes. For example, in one embodiment, Raw ACT (delta CT=change in cycle time as a function of amplification) data from QPCR as described above is normalized using well-known methods, such as geNorm {see Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3(7):RESEARCH0034). Normalization by house-keeping gene expression levels is also well-known. See Kidd M, et al., “GeneChip, geNorm, and gastrointestinal tumors: novel reference genes for real-time PCR.” Physiol Genomics 2007; 30(3):363-70.


Microarray analysis involves the use of selected nucleic acid molecules that are immobilized on a surface. These nucleic acid molecules, termed probes, are able to hybridize to nucleic acid expression products. In a preferred embodiment the probes are exposed to labeled sample nucleic acid, hybridized, washed and the (relative) amount of nucleic acid expression products in the sample that are complementary to a probe is determined. Microarray analysis allows simultaneous determination of nucleic acid expression levels of a large number of genes. In a method according to the invention it is preferred that at least 5 genes according to the invention are measured simultaneously.


Background correction can be performed for instance according to the “offset” method that avoids negative intensity values after background subtraction. Furthermore, normalization can be performed in order to make the two channels on each single array comparable for instance using global loess normalization, and scale normalization which ensures that the log-ratios are scaled to have the same median-absolute-deviation (MAD) across arrays.


Protein levels may, for example, be measured using antibody-based binding assays. Enzyme labeled, radioactively labeled or fluorescently labeled antibodies may be used for detection of protein. Exemplary assays include enzyme-linked immunosorbent assays (ELISA), radio-immuno assays (RIA), Western Blot assays and immunohistochemical staining assays. Alternatively, in order to determine the expression level of multiple proteins simultaneously protein arrays such as antibody-arrays are used.


Typically, the biomarkers and housekeeping markers are detected in a biological sample, such as a tissue or fluid sample, such as a blood, such as whole blood, plasma, serum, stool, urine, saliva, tears, serum or semen sample, or a sample prepared from such a tissue or fluid, such as a cell preparation, including of cells from blood, saliva, or tissue, such as intestinal mucosa, tumor tissue, and tissues containing and/or suspected of containing GEP-NEN metastases or shed tumor cells, such as liver, bone, and blood. In one embodiment, a specific cell preparation is obtained by fluorescence-activated cell sorting (FACS) of cell suspensions or fluid from tissue or fluid, such as mucosa, e.g., intestinal mucosa, blood or buffy coat samples.


In some embodiments, the sample is taken from a GEP-NEN patient, a patient suspected of having GEP-NEN, a patient having and/or suspected of having cancer generally, a patient exhibiting one or more GEP-NEN symptoms or syndromes or determined to be at-risk for GEP-NEN, or a GEP-NEN patient undergoing treatment or having completed treatment, including patients whose disease is and/or is thought to be in remission.


In other embodiments, the sample is taken from a human without GEP-NEN disease, such as a healthy individual or an individual with a different type of cancer, such as an adenocarcinoma, for example, a gastrointestinal adenocarcinoma or one of the breast, prostate, or pancreas, or a gastric or hepatic cancer, such as esophageal, pancreatic, gallbladder, colon, or rectal cancer.


In some embodiments, the sample is taken from the GEP-NEN tumor or metastasis. In other embodiments, the sample is taken from the GEP-NEN patient, but from a tissue or fluid not expected to contain GEP-NEN or GEP-NEN cells; such samples may be used as reference or normal samples. Alternatively, the normal or reference sample may be a tissue or fluid or other biological sample from a patient without GEP-NEN disease, such as a corresponding tissue, fluid or other sample, such as a normal blood sample, a normal small intestinal (SI) mucosa sample, a normal enterochromaffin (EC) cell preparation.


In some embodiments, the sample is a whole blood sample. As neuroendocrine tumors metastasize, they typically shed cells into the blood. Accordingly, detection of the panels of GEP-NEN biomarkers provided herein in plasma and blood samples may be used for identification of GEP-NENs at an early time point and for predicting the presence of tumor metastases, e.g., even if anatomic localization studies are negative. Accordingly, the provided agents and methods are useful for early diagnosis.


Thus, in some embodiments, the methods can identify a GEP-NEN molecular signature or expression profile in 1 mL or about 1 mL of whole blood. In some aspects, the molecular signature or expression profile is stable for up to four hours (for example, when samples are refrigerated 4-8° C. following phlebotomy) prior to freezing. In one aspect, the approach able to diagnose, prognosticate or predict a given GEP-NEN-associated outcome using a sample obtained from tumor tissue is also able to make the same diagnosis, prognosis, or prediction using a blood sample.


A number of existing detection and diagnostic methodologies require 7 to 10 days to produce a possible positive result, and can be costly. Thus, in one aspect, the provided methods and compositions are useful in improving simplicity and reducing costs associated with GEP-NEN diagnosis, and make early-stage diagnosis feasible.


Thus in one example, the biomarkers are detected in circulation, for example by detection in a blood sample, such as a serum, plasma, cells, e.g., peripheral blood mononuclear cells (PBMCs), obtained from buffy coat, or whole blood sample.


Tumor-specific transcripts have been detected in whole blood in some cancers. See Sicuwerts A M, et al., “Molecular characterization of circulating tumor cells in large quantities of contaminating leukocytes by a multiplex real-time PCR,” Breast Cancer Res Treat 2009; 118(3):455-68 and Mimori K, et al, “A large-scale study of MT1-MMP as a marker for isolated tumor cells in peripheral blood and bone marrow in gastric cancer cases,” Ann Surg Oncol 2008; 15(10):2934-42.


The CELLSEARCH® CTC Test (circulating tumor cell kits) (described by Kahan L., “Medical devices; immunology and microbiology devices; classification of the immunomagnetic circulating cancer cell selection and enumeration system. Final rule,” Fed Regist 2004; 69:26036-8) uses magnetic beads coated with EpCAM-specific antibodies that detects epithelial cells (CK—8/18/19) and leukocytes (CD45), as described by Sieuwerts A M, Kraan J, Bolt-de Vries J, et al., “Molecular characterization of circulating tumor cells in large quantities of contaminating leukocytes by a multiplex real-time PCR,” Breast Cancer Res Treat 2009; 118(3):455-68. This method has been used to detect circulating tumor cells (CTCs), and monitoring disease progression and therapy efficacy in metastatic prostate (Danila D C, Heller G, Gignac G A, et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res 2007; 13(23):7053-8), colorectal (Cohen S J, Alpaugh R K, Gross S, et al.)


Isolation and characterization of circulating tumor cells in patients with metastatic colorectal cancer. Clin Colorectal Cancer 2006; 6(2): 125-32, and breast (Cristofanilli M, Budd G T. Ellis M J, et al., Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004; 351(8):781-91).


This and other existing approaches have not been entirely satisfactory for detection of GEP-NEN cells, which can exhibit variable expression and/or not express cytokeratin (See Van Ecden S, et al, Classification of low-grade neuroendocrine tumors of midgut and unknown origin,” Hum Pathol 2002; 33(11): 1126-32; Cai Y C, et al., “Cytokeratin 7 and 20 and thyroid transcription factor 1 can help distinguish pulmonary from gastrointestinal carcinoid and pancreatic endocrine tumors,” Hum Pathol 2001; 32(10): 1087-93, and studies described herein, detecting EpCAM transcript expression in two of twenty-nine GEP-NEN samples).


Factors to consider in the available detection methods for circulating tumor cells are relatively low numbers of the cells in peripheral blood, typically about 1 per 106 peripheral blood mononuclear cells (PBMCs) (see Ross A A. et al. “Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques.” Blood 1993; 82(9):2605-10), and the potential for leukocyte contamination. See Sieuwerts A M, et al. “Molecular characterization of circulating tumor cells in large quantities of contaminating leukocytes by a multiplex real-time PCR,” Breast Cancer Res Treat 2009; 118(3):455-68; Mimori K, et al) and technical complexity of available approaches. These factors can render available methods not entirely satisfactory for use in the clinical laboratory.


In some embodiments, Neuroendocrine cells are FACS-sorted to heterogeneity, using known methods, following acridine orange (AO) staining and uptake, as described Kidd M, et al., “Isolation, Purification and Functional Characterization of the Mastomys E C cell,” Am J Physiol 2006; 291:G778-91; Modlin E V I, et al., “The functional characterization of normal and neoplastic human enterochromaffin cells,” Clin Endocrinol Metab 2006; 91(6):2340-8.


In some embodiments, the provided detection methods are used to detect, isolate, or enrich for the GEP-NEN cells and/or biomarkers in two to three mL of blood or less. The methods are performed using standard laboratory apparatuses and thus are easily performed in the clinical laboratory setting. In one example, a readout is obtained within 12 hours, at an average cost of approximately 20-30 per sample.


The present invention provides diagnostic, prognostic, and predictive uses for the agents and detection methods provided herein, such as for the diagnosis, prognosis, and prediction of GEP-NEN, associated outcomes, and treatment responsiveness. For example, available GEP-NEN classification methods are limited, in part due to incorrect classifications and that individual lesions or tumors can evolve into different GEP-NEN sub-types or patterns, and/or contain more than one GEP-NEN sub-type. Known classification frameworks are limited, for example, in the ability to predict response to treatment or discriminate accurately between tumors with similar histopathologic features that may vary substantially in clinical course and treatment response, and to predict treatment responsiveness.


There is therefore a need for molecular or gene-based classification schemes. The provided methods and systems, including GEP-NEN-specific predictive gene-based models, address these issues, and may be used in identifying and analyzing molecular parameters that are predictive of biologic behavior and prediction based on such parameters.


Among the provided diagnostic, prognostic, and predictive methods are those which employ statistical analysis and biomathematical algorithms and predictive models to analyze the detected information about expression of GEP-NEN biomarkers and other markers such as housekeeping genes. In some embodiments, expression levels, detected binding or other information is normalized and assessed against reference value(s), such as expression levels in normal samples or standards. Provided embodiments include methods and systems for classification and prediction of GEP-NENs using the detected and measured information about the expression of the GEP-NEN biomarkers, for example, in classification, staging, prognosis, treatment design, evaluation of treatment options, and prediction of GEP-NEN disease outcomes, e.g., predicting development of metastases.


In some embodiments, the methods are used to establish GEP-NEN diagnosis, such as diagnosis or detection of early-stage disease or metastasis, define or predict the extent of disease, identify early spread or metastasis, predict outcome or prognosis, predict progression, classify disease activity, monitor treatment responsiveness, detect or monitor for recurrence, and to facilitate early therapeutic intervention. For example, among the provided methods and algorithms are those for use in classification, staging, prognosis, treatment design, evaluation of treatment options, and prediction of GEP-NEN disease outcomes, e.g., predicting development of metastases.


In one embodiment, the methods, algorithms and models are useful for diagnostic surveillance, such as routine surveillance and patient follow-up. In some embodiments, the methods, algorithms and models provide for early diagnosis; in one aspect, the methods are capable of detection of low-volume tumors, and detection of circulating tumor cells, including at early stages of disease, such as detection of as few as at or about 3 circulating GEP-NEN cells per milliliter of blood. In some embodiments, early evidence of disease allows early therapeutic intervention, at a time when therapies are more effective, which can improve survival rates and disease outcomes.


For example, in one embodiment, the methods useful for early detection of the recurrence and/or metastasis of GEP-NEN, such as after treatment for example following surgical or chemical intervention. In some aspect, the methods are performed weekly or monthly following therapeutic intervention, for example, on human blood samples. In some aspects, the methods are capable of detecting micrometastases that are too small to be detected by conventional means, such as by imaging methods. For example, in one aspect the methods are capable of detecting metastases less than one centimeter (cm), such as at or about 1 cm, 0.9 cm, 0.8 cm, 0.7 cm, 0.6 cm, 0.5 cm, 0.4 cm, 0.3 cm, 0.2 cm, or 0.1 cm metastases, such as in the liver.


For example, among the provided methods and systems are those that determine the presence or absence (or both) of a GEP-NEN in a subject or sample with a correct call rate of between 56 and 92%, such as at least or at least about a 65%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% correct call rate. In some cases, the methods are useful for diagnosis with a specificity or sensitivity of at least or at least about 70%, 7%5, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%.


In other aspects, the methods are capable of detecting the recurrence, metastasis, or spread of GEP-NEN following treatment or during initial disease progression at an earlier stage as compared with other diagnostic methods, such as imaging and detection of available biomarkers. In some aspects, the detected expression levels and/or expression signature of the biomarkers correlate significantly with the progression of disease, disease severity or aggressiveness, lack of responsiveness of treatment, reduction in treatment efficacy, GEP-NEN-associated events, risk, prognosis, type or class of GEP-NEN or disease stage.


Among the provided embodiments are methods that use the provided biomarkers and detection thereof in treatment development, strategy, and monitoring, including evaluation of response to treatment and patient-specific or individualized treatment strategies that take into consideration the likely natural history of the tumor and general health of the patient.


GEP-NEN management strategies include surgery—for cure (rarely achieved) or cytoreduction—radiological intervention—for example, by chemoembolization or radiofrequency ablation—chemotherapy, cryoablation, and treatment with somatostatin and somatostatin analogues (such as SANDOSTATIN® LAR (Octreotide acetate injection)) to control symptoms caused by released peptides and neuroamines. Biological agents, including interferon, and hormone therapy, and somatostatin-tagged radionucleotides are under investigation.


In one example, Cryoablation liberates GEP-NEN tissue for entry into the blood, which in turn induces symptoms, as described by Mazzaglia P J, et ah, “Laparoscopic radiofrequency ablation of neuroendocrine liver metastases: a 10-year experience evaluating predictors of survival,” Surgery 2007; 142(1): 10-9. Chemo therapeutic agents, e.g., systemic cytotoxic chemo therapeutic agents, include etoposide, cisplatin, 5-fluorouracil, streptozotocin, doxorubicin; vascular endothelial growth factor inhibitors, receptor tyrosine kinase inhibitors (e.g., Sunitinib, Sorafenib, and Vatalanib), and mammalian target of rapamycin (mTOR) inhibitors (e.g., Temsirolimus and Everolimus), and combinations thereof, for example to treat disseminated and/or poorly differentiated/aggressive disease. Other treatment approaches are well known.


In some embodiments, the detection and diagnostic methods are used in conjunction with treatment, for example, by performing the methods weekly or monthly before and/or after treatment. In some aspects, the expression levels and profiles correlate with the progression of disease, ineffectiveness or effectiveness of treatment, and/or the recurrence or lack thereof of disease. In some aspects, the expression information indicates that a different treatment strategy is preferable. Thus, provided herein are therapeutic methods, in which the GEP-NEN biomarker detection methods are performed prior to treatment, and then used to monitor therapeutic effects.


At various points in time after initiating or resuming treatment, significant changes in expression levels or expression profiles of the biomarkers (e.g., as compared to expression or expression profiles before treatment, or at some other point after treatment, and/or in a normal or reference sample) indicates that a therapeutic strategy is or is not successful, that disease is recurring, or that a different therapeutic approach should be used. In some embodiments, the therapeutic strategy is changed following performing of the detection methods, such as by adding a different therapeutic intervention, either in addition to or in place of the current approach, by increasing or decreasing the aggressiveness or frequency of the current approach, or stopping or reinstituting the treatment regimen.


In another aspect, the detected expression levels or expression profile of the biomarkers identifies the GEP-NEN disease for the first time or provides the first definitive diagnosis or classification of GEP-NEN disease. In some aspects of this embodiment, a treatment approach is designed based upon the expression levels or expression profiles, and/or the determined classification. The methods include iterative approaches, whereby the biomarker detection methods are followed by initiation or shift in therapeutic intervention, followed by continued periodic monitoring, reevaluation, and change, cessation, or addition of a new therapeutic approach, optionally with continued monitoring.


In some aspects, the methods and systems determine whether or not the assayed subject is responsive to treatment, such as a subject who is clinically categorized as in complete remission or exhibiting stable disease. In some aspects, the methods and systems determine whether or not the subject is untreated (or treatment-I, i.e., has not received treatment) or is non-responsive (i.e., clinically categorized as “progressive.” For example, methods are provided for distinguishing treatment-responsive and non-responsive patients, and for distinguishing patients with stable disease or those in complete remission, and those with progressive disease. In various aspects, the methods and systems make such calls with at least at or about 65%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% correct call rate (i.e., accuracy), specificity, or sensitivity.


In some aspects, the sensitivity or correct call rate for the diagnostic or predictive or prognostic outcome is greater than, e.g., significantly greater than, that obtained using a known diagnosis or prognostic method, such as detection and measurement of circulating CgA or other single protein.


Typically, the diagnostic, prognostic, and predictive methods, often in an initial step, select a subset of biomarkers based on their ability to build a classifier that may accurately predict and classify GEP-NEN and/or different stages of GEP-NEN.


Any of a number of well-known methods for evaluating differences in gene expression may be used to select the subset of biomarkers. For example, an accurate classifier may be based on topographic, pattern-recognition based protocols e.g., support vector machines (SVM) (Noble W S. What is a support vector machine? Nat Biotechnol. 2006; 24(12): 1565-7). Machine-learning based techniques are typically desirable for developing sophisticated, automatic, and/or objective algorithms for analyzing high-dimensional and multimodal biomedical data. In some examples, SVM—a variant of the supervised learning algorithm—is used in connection with the provided methods and systems. SVMs have been used to predict the grading of astrocytomas with a >90 accuracy, and prostatic carcinomas with an accuracy of 74-80% (Glotsos D, Tohka J, Ravazoula P, Cavouras D, Nikiforidis G. Automated diagnosis of brain tumours astrocytomas using probabilistic neural network clustering and support vector machines. Int J Neural Syst 2005; 15(1-2): 1-11; Glotsos D, Tohka J, Ravazoula P, Cavouras D, Nikiforidis G. Automated diagnosis of brain tumours astrocytomas using probabilistic neural network clustering and support vector machines. Int J Neural Syst 2005; 15(1-2): 1-11).


Other algorithms for building an accurate classifier include linear discriminant analysis (LDA), naive Bayes (NB), and K-nearest neighbor (KNN) protocols. Such approaches are useful for identifying individual or multi-variable alterations in neoplastic conditions (Drozdov I, Tsoka S, Ouzounis C A, Shah A M. Genome-wide expression patterns in physiological cardiac hypertrophy. BMC Genomics. 2010; 11: 55; Freeman T C, Goldovsky L, Brosch M, et al. Construction, visualization, and clustering of transcription networks from microarray expression data. PLoS Comput Biol 2007; 3(10): 2032-42; Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010; 107(6): 810-7. Epub 2010 Jul. 22; Dhawan M, Selvaraja S, Duan Z H. Application of committee kNN classifiers for gene expression profile classification. Int J Bioinform Res Appl. 2010:6(4): 344-52; Kawarazaki S, Taniguchi K, Shirahata M, et al. Conversion of a molecular classifier obtained by gene expression profiling into a classifier based on real-time PCR: a prognosis predictor for gliomas. BMC Med Genomics. 2010; 3: 52; Vandebriel R J, Van Loveren H, Meredith C. Altered cytokine (receptor) mRNA expression as a tool in immunotoxicology. Toxicology. 1998; 130(1): 43-67; Urgard E, Vooder T, Vosa U, et al. Metagenes associated with survival in non-small cell lung cancer. Cancer Inform. 2011; 10: 175-83. Epub 2011 Jun. 2; Pimentel M, Amichai M, Chua K, Braham L. Validating a New Genomic Test for Irritable Bowel Syndrome Gastroenterology 2011; 140 (Suppl 1): S-798; Lawlor G, Rosenberg L. Ahmed A, et al. Increased Peripheral Blood GATA-3 Expression in Asymptomatic Patients With Active Ulcerative Colitis at Colonoscopy. Gastroenterology 2011; 140 (Suppl 1)).


In some embodiments, an accurate classifier for GEP-NEN and/or different stages of GEP-NEN is based on a combination of the SVM, LDA, NB, and KNN protocols. This is termed the Multi-Analyte-Algorithm Risk Classifier for NETs (MAARC-NET).


Methods using the predictive algorithms and models use statistical analysis and data compression methods, such as those well known in the art. For example, expression data may be transformed, e.g., In-transformed, and imported into a statistical analysis program, such as PARTEK® GENOMICS SUITE® (genomic data analysis software) or similar program, for example. Data are compressed and analyzed for comparison.


Whether differences in expression level score or values are deemed significant may be determined by well-known statistical approaches, and typically is done by designating a threshold for a particular statistical parameter, such as a threshold p-value (e.g., p<0.05), threshold S-value (e.g., +0.4, with S<−0.4 or S>0.4), or other value, at which differences are deemed significant, for example, where expression of a biomarker is considered significantly down- or up-regulated, respectively, among two different samples, for example, representing two different GEP-NEN sub-types, tumors, stages, localizations, aggressiveness, or other aspect of GEP-NEN or normal or reference sample.


In one aspect, the algorithms, predictive models, and methods are based on biomarkers expressed from genes associated with regulatory gene clusters (i.e., SSTRome, Proliferome. Signalome. Metabolome, Secretome, Secretome, Plurome, EpiGenome, and Apoptome) underlying various GEP-NEN subtypes.


In one aspect, the methods apply the mathematical formulations, algorithms or models identify specific cutoff points, for example, pre-determined expression level scores, which distinguish between normal and GEP-NEN samples, between GEP-NEN and other cancers, and between various sub-types, stages, and other aspects of disease or disease outcome. In another aspect, the methods are used for prediction, classification, prognosis, and treatment monitoring and design. In one aspect, the predictive embodiments are useful for identifying molecular parameters predictive of biologic behavior, and prediction of various GEP-NEN-associated outcomes using the parameters. In one aspect of these embodiments, machine learning approaches are used, e.g., to develop sophisticated, automatic and objective algorithms for the analysis of high-dimensional and multimodal biomedical data.


A “ROC curve” as used herein refers to a plot of the true positive rate (sensitivity) against the false positive rate (specificity) for a binary classifier system as its discrimination threshold is varied. A ROC curve can be represented equivalently by plotting the fraction of true positives out of the positives (TPR=true positive rate) versus the fraction of false positives out of the negatives (FPR=false positive rate). Each point on the ROC curve represents a sensitivity/specificity pair corresponding to a particular decision threshold.


AUC represents the area under the ROC curve. The AUC is an overall indication of the diagnostic accuracy of 1) a subset or panel of GEP-NEN biomarkers and 2) a ROC curve. AUC is determined by the “trapezoidal rule.” For a given curve, the data points are connected by straight line segments, perpendiculars are erected from the abscissa to each data point, and the sum of the areas of the triangles and trapezoids so constructed is computed. In certain embodiments of the methods provided herein, a subset or panel of GEP-NEN has an AUC in the range of about 0.75 to 1.0. In certain of these embodiments, the AUC is in the range of about 0.50 to 0.85, 0.85 to 0.9, 0.9 to 0.95, or 0.95 to 1.0.


For the comparison of expression level scores or other values, and to identify expression profiles (expression signatures) or regulatory signatures based on GEP-NEN biomarker expression, data are compressed. Compression typically is by Principal Component Analysis (PCA) or similar technique for describing and visualizing the structure of high-dimensional data. PCA allows the visualization and comparison of GEP-NEN biomarker expression and determining and comparing expression profiles (expression signatures, expression patterns) among different samples, such as between normal or reference and test samples and among different tumor types.


In some embodiments, expression level data are acquired, e.g., by real-time PCR, and reduced or compressed, for example, to principal components.


PCA is used to reduce dimensionality of the data (e.g., measured expression values) into uncorrelated principal components (PCs) that explain or represent a majority of the variance in the data, such as about 50%, 60%, 70%, 75%, 80%. 85%, 90%, 95%, or 99% of the variance.


In one example, the PCA is 3-component PCA, in which three PCs are used that collectively represent most of the variance, for example, about 75%, 80%, 85%. 90%, or more variance in the data (Jolliffe I T, “Principle Component Analysis,” Springer, 1986).


PCA mapping, e.g., 3-component PCA mapping is used to map data to a three dimensional space for visualization, such as by assigning first (1st), second (2nd) and third (3rd) PCs to the X-, Y-, and Z-axes, respectively.


PCA may be used to determine expression profiles for the biomarkers in various samples. For example, reduced expression data for individual sample types (e.g., each tumor type, sub-type or grade, or normal sample type) are localized in a PCA coordinate system and localized data used to determine individual transcript expression profiles or signatures.


In one aspect, the expression profile is determined for each sample by plotting or defining a centroid (center of mass; average expression), corresponding to or representing the sample's individual transcript expression profile (regulatory signature), as given by the principal component vector, as determined by PCA for the panel of biomarkers.


Generally, two centroids or points of localization separated by a relatively large distance in this coordinate system represent two relatively distinct transcript expression profiles. Likewise, relatively close centroids represent relatively similar profiles. In this representation, the distance between centroids is inversely equivalent to the similarity measure (greater distance=less similarity) for the different samples, such that large distances or separation between centroids indicates samples having distinct transcript expression signatures. Proximity of centroids indicates similarity between samples. For example, the relative distance between centroids for different GEP-NEN tumor samples represents the relative similarity of their regulatory signatures or transcript expression profiles.


In one aspect, the statistical and comparative analysis includes determining the inverse correlation between expression levels or values for two biomarkers. In one example, this correlation and the cosine of the angle between individual expression vectors (greater angle=less similarity), is used to identify related gene expression clusters (Gabriel K R, “The biplot graphic display of matrices with application to principal component analysis,” Biometrika 1971; 58(3):453).


In some embodiments, there is a linear correlation between expression levels of two or more biomarkers, and/or the presence or absence of GEP-NEN, sub-type, stage, or other outcome. In one aspect, there is an expression-dependent correlation between the provided GEP-NEN biomarkers and characteristics of the biological samples, such as between biomarkers (and expression levels thereof) and various GEP-NEN sub-types (e.g., benign versus active disease).


Pearson's Correlation (PC) coefficients (R2) may be used to assess linear relationships (correlations) between pairs of values, such as between expression levels of a biomarker for different biological samples (e.g., tumor sub-types) and between pairs of biomarkers. This analysis may be used to linearly separate distribution in expression patterns, by calculating PC coefficients for individual pairs of the biomarkers (plotted on x- and y-axes of individual Similarity Matrices). Thresholds may be set for varying degrees of linear correlation, such as a threshold for highly linear correlation of (R>0.50, or 0.40). Linear classifiers can be applied to the datasets. In one example, the correlation coefficient is 1.0.


In one embodiment, regulatory clusters are determined by constructing networks of correlations using statistical analyses, for example, to identify regulatory clusters composed of subsets of the panel of biomarkers. In one example, PC correlation coefficients are determined and used to construct such networks of correlations. In one example, the networks are identified by drawing edges between transcript pairs having R above the pre-defined threshold. Degree of correlation can provide information on reproducibility and robustness.


Also provided herein are objective algorithms, predictive models, and topographic analytical methods, and methods using the same, to analyze high-dimensional and multimodal biomedical data, such as the data obtained using the provided methods for detecting expression of the GEP-NEN biomarker panels. As discussed above, the objective algorithms, models, and analytical methods include mathematical analyses based on topographic, pattern-recognition based protocols e.g., support vector machines (SVM) (Noble W S. What is a support vector machine? Nat Biotechnol. 2006; 24(12): 1565-7), linear discriminant analysis (LDA), naive Bayes (NB), and K-nearest neighbor (KNN) protocols, as well as other supervised learning algorithms and models, such as Decision Tree, Perceptron, and regularized discriminant analysis (RDA), and similar models and algorithms well-known in the art (Gallant S I, “Perceptron-based learning algorithms,” Perceptron-based learning algorithms 1990; 1(2): 179-91).


In some embodiments, Feature Selection (FS) is applied to remove the most redundant features from a dataset, such as a GEP-NEN biomarker expression dataset, and generate a relevant subset of GEP-NEN biomarkers. FS enhances the generalization capability, accelerates the learning process, and improves model interpretability. In one aspect, FS is employed using a “greedy forward” selection approach, selecting the most relevant subset of features for the robust learning models. (Peng H, Long F, Ding C, “Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005; 27(8): 1226-38).


In some embodiments, Support Vector Machines (SVM) algorithms are used for classification of data by increasing the margin between the n data sets (Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge: Cambridge University Press, 2000).


In some embodiments, the predictive models include Decision Tree, which maps observations about an item to a conclusion about its target value (Zhang H, Singer B. “Recursive Partitioning in the Health Sciences,” (Statistics for Biology and Health): Springer, 1999.). The leaves of the tree represent classifications and branches represent conjunctions of features that devolve into the individual classifications. It has been used effectively (70-90%) to predict prognosis of metastatic breast cancer (Yu L et al “TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses,” Embo J 2002; 21(14):3749-59), as well as colon cancer (Zhang H et al “Recursive partitioning for tumor classification with gene expression microarray data.,” Proc Natl Acad Sci USA 2001; 98(12):6730-5), to predict the grading of astrocytomas (Glotsos D et al “Automated diagnosis of brain tumours astrocytomas using probabilistic neural network clustering and support vector machines,” Int J Neural Syst 2005; 15(1-2): 1-11) with a >90% accuracy, and prostatic carcinomas with an accuracy of 74-80% (Mattfeldt T et al. “Classification of prostatic carcinoma with artificial neural networks using comparative genomic hybridization and quantitative stereological data,” Pathol Res Pract 2003; 199(12):773-84). The efficiency of this technique has been measured by 10-fold cross-validation (Pirooznia M et al “A comparative study of different machine learning methods on microarray gene expression data,” BMC Genomics 2008; 9 Suppl 1:S13).


The predictive models and algorithms further include Perceptron, a linear classifier that forms a feed forward neural network and maps an input variable to a binary classifier (Gallant S I. “Perceptron-based learning algorithms,” Perceptron-based learning algorithms 1990; 1(2): 179-91). It has been used to predict malignancy of breast cancer (Markey M K et al. “Perceptron error surface analysis: a case study in breast cancer diagnosis,” Comput Biol Med 2002; 32(2):99-109). In this model, the learning rate is a constant that regulates the speed of learning. A lower learning rate improves the classification model, while increasing the time to process the variable (Markey M K et al. “Perceptron error surface analysis: a case study in breast cancer diagnosis,” Comput Biol Med 2002; 32(2):99-109). In one example, a learning rate of 0.05 is used. In one aspect, a Perceptron algorithm is used to distinguish between localized or primary tumors and corresponding metastatic tumors. In one aspect, three data scans are used to generate decision boundaries that explicitly separate data into classes.


The predictive models and algorithms further include Regularized Discriminant Analysis (RDA), which can be used as a flexible alternative to other data mining techniques, including Linear and Quadratic Discriminant Analysis (LDA, QDA) (Lilien R H, Farid H, Donald B R. “Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum.,” J Comput Biol 2003; 10(6):925-46.; Cappellen D, Luong-Nguyen N H, Bongiovanni S, et al. “Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFkappa B.” J Biol Chem 2002; 277(24):21971-82.). RDA's regularization parameters, γ and λ, are used to design an intermediate classifier between LDA and QDA. QDA is performed when γ=0 and λ{circumflex over ( )}O while LDA is performed when γ=0 and λ=1 (Picon A, Gold L I, Wang J, Cohen A, Friedman E. A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor beta 1. Cancer Epidemiol. Biomarkers Prev. 1998; 7(6):497-504).


To reduce over-fitting, RDA parameters are selected to minimize cross-validation error while not being equal 0.0001, thus forcing RDA to produce a classifier between LDA, QDA, and L2 (Pima I, Aladjem M., “Regularized discriminant analysis for face recognition,” Pattern Recognition 2003; 37(9): 1945-48). Finally, regularization itself has been used widely to overcome over-fitting in machine learning (Evgeniou T, Pontil M, Poggio T. “Regularization Networks and Support Vector Machines.,” Advances in Computational Math 2000; 13(1): 1-50.; Ji S, Ye J. Kernel “Uncorrelated and Regularized Discriminant Analysis: A Theoretical and Computational Study.,” IEEE Transactions on Knowledge and Data Engineering 2000; 20(10): 1311-21.).


In one example, regularization parameters are defined as γ=0.002 and λ=0. In one example, for each class pair, S-values are assigned to all transcripts which are then arranged by a decreasing S-value. RDA is performed, e.g., 21 times, such that the Nth iteration consists of top N scoring transcripts. Error estimation can be carried out by a 10-fold cross-validation of the RDA classifier. This can be done by partitioning the tissue data set into complementary subsets, performing the analysis on one subset (called the training set), and validating the analysis on the other subset (called the validation set or testing set).


In one example, misclassification error is averaged to reduce variability in the overall predictive assessment, which can provide a more accurate approach to error estimation compared to other approaches, including bootstrapping and leave-one-out cross-validation (Kohavi R. “A study of cross-validation and bootstrap for accuracy estimation and model selection.,” Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1995; 2(12): 1137-43.).


In one example, selection for tissue classification is performed, for example, by computing the rank score (S) for each gene and for each class pair as:






S
=





μ

c





2


-

μ

c





1







σ

c





1


+

σ

c





2








where μC1 and μC2 represent means of first and second class respectively and αC1 and σC2 are inter-class standard deviations. A large S value is indicative of a substantial differential expression (“Fold Change”) and a low standard deviation (“transcript stability”) within each class. Genes may be sorted by a decreasing S-value and used as inputs for the regularized discriminant analysis algorithm (RDA).


The algorithms and models may be evaluated, validated and cross-validated, for example, to validate the predictive and classification abilities of the models, and to evaluate specificity and sensitivity. In one example, radial basis function is used as a kernel, and a 10-fold cross-validation used to measure the sensitivity of classification (Cristianini N, Shawe-Taylor J. “An Introduction to Support Vector Machines and other kernel-based learning methods.,” Cambridge: Cambridge University Press, 2000.). Various classification models and algorithms may be compared by the provided methods, for example, using training and cross-validation, as provided herein, to compare performance of the predictive models for predicting particular outcomes.


Embodiments of the provided methods, systems, and predictive models are reproducible, with high dynamic range, can detect small changes in data, and are performed using simple methods, at low cost, e.g., for implementation in a clinical laboratory.


Kits and other articles of manufacture are provided for use in the diagnostic, prognostic, predictive, and therapeutic applications described herein. In some embodiments, the kits include a carrier, package, or packaging, compartmentalized to receive one or more containers such as vials, tubes, plates, and wells, in which each of the containers includes one of the separate elements for use in the methods provided herein, and in some aspects further include a label or insert with instructions for use, such as the uses described herein. In one example, the individual containers include individual agents for detection of the GEP-NEN biomarkers as provided herein; in some examples, individual containers include agents for detection of housekeeping genes and/or normalization.


For example, the container(s) can comprise an agent, such as a probe or primer, which is or can be detectably labeled. Where the method utilizes nucleic acid hybridization for detection, the kit can also have containers containing nucleotide(s) for amplification of the target nucleic acid sequence. Kits can comprise a container comprising a reporter, such as a biotin-binding protein, such as avidin or streptavidin, bound to a reporter molecule, such as an enzymatic, fluorescent, or radioisotope label; such a reporter can be used with, e.g., a nucleic acid or antibody.


The kits will typically comprise the container(s) described above and one or more other containers associated therewith that comprise materials desirable from a commercial and user standpoint, including buffers, diluents, filters, needles, syringes; carrier, package, container, vial and/or tube labels listing contents and/or instructions for use, and package inserts with instructions for use.


A label can be present on or with the container to indicate that the composition is used for a specific therapeutic or non-therapeutic application, such as a prognostic, prophylactic, diagnostic or laboratory application, and can also indicate directions for either in vivo or in vitro use, such as those described herein. Directions and or other information can also be included on an insert(s) or label(s) which is included with or on the kit. The label can be on or associated with the container. A label a can be on a container when letters, numbers or other characters forming the label are molded or etched into the container itself; a label can be associated with a container when it is present within a receptacle or carrier that also holds the container, e.g., as a package insert. The label can indicate that the composition is used for diagnosing, treating, prophylaxing or prognosing a condition, such as GEP-NEN.


In another embodiment, an article(s) of manufacture containing compositions, such as amino acid sequence(s), small molecule(s), nucleic acid sequence(s), and/or antibody(s), e.g., materials useful for the diagnosis, prognosis, or therapy of GEP-NEN is provided. The article of manufacture typically comprises at least one container and at least one label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers can be formed from a variety of materials such as glass, metal or plastic. The container can hold amino acid sequence(s), small molecule(s), nucleic acid sequence(s), cell population(s) and/or antibody(s). In one embodiment, the container holds a polynucleotide for use in examining the mRNA expression profile of a cell, together with reagents used for this purpose. In another embodiment a container comprises an antibody, binding fragment thereof or specific binding protein for use in evaluating protein expression of GEP-NEN biomarkers in biological samples, e.g., blood or cells and tissues, or for relevant laboratory, prognostic, diagnostic, prophylactic and therapeutic purposes; indications and/or directions for such uses can be included on or with such container, as can reagents and other compositions or tools used for these purposes.


The article of manufacture can further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution and/or dextrose solution. It can further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, stirrers, needles, syringes, and/or package inserts with indications and/or instructions for use.


Differential Expression of NET Marker GENESIN Primary NETs—An exon-level screen of localized small intestinal NETs using Affymetrix Human Exon 1.0 ST arrays was performed to define alternative splicing events in neuroendocrine tumor tissue in comparison to a control (normal intestinal mucosa). Exon expression analysis identified 1287 differentially expressed genes between normal intestinal mucosa and NET tumor tissues. Five hundred and twenty nine genes were upregulated and 758 were downregulated. As an example, a subset of NET marker genes was focused on, in particular CgA, Tph1, VMAT2, SCG5, and PTPRN2. The RMA-normalized exon expression of the NET marker genes in this subset is shown in FIGS. 1A-1E in normal (green) and tumor (red) samples. Of these genes, Tph1 was the only gene where all exons were differentially expressed in tumor (FC>1.5, p<0.05), while CgA was the only gene where all exon expressions remained constant between tumor and normal samples.


Two of 17 differentially expressed exons were identified in VMAT2 and eight of 9 in SCG5. In PTPRN2 six of 30 exons were differentially expressed. These results demonstrate that specific primer/probe sets are required to maximize differences between neoplasia and normal gene expression.


Validating Alternative Splicing in NET Marker Genes by RT-PCR—With reference to FIGS. 2A-2E, the findings of differential exon transcript levels was validated using reverse transcriptase polymerase chain reaction (RT-PCR). All marker gene exons, including Tph11-2, VMAT29-10, SCG52-3, and PTPRN212-13, were confirmed to be differentially expressed in tumor samples versus normal mucosa, with the exception of CgA4-5.


Genomic and RT-PCR data from FIGS. 1A-1E and 2A-2E, respectively, identify that differential splicing occurs in NETs and that candidate biomarkers, e.g., VMAT2, require the use of specific primer/probe sets to effectively capture differences in expression of target transcripts.


To evaluate the relevance in blood, a microarray analysis of peripheral NET blood samples was performed. Up-regulated genes (n=1,397) included GO-Fat terms such as “RNA splicing”, “Vesicle-mediated transport”, and “Chromatin modification” which is consistent with known roles for these processes in NET pathobiology. Comparisons of the blood transcriptome with GEP-NET transcriptomes identified 236 up-regulated genes, 72 of which were examined for utility as biomarkers. A preliminary screen identified 51 genes as upregulated in tumor blood samples compared to controls. Forty-two genes (83%) were transcribed from multiple exons. A minimum of two primer/probe sets were tested for these genes in blood to define the most relevant combinations for target amplification. The housekeeping gene and 51 validated targets and exons of interest for primer/probe sets are described in TABLE 2. The amplicon positions identified for each GEN-NEN biomarker in Table 2 are the identified as underlined sequences in Table 1.









TABLE 2







Primer Details













GEP-NEN
NCBI


Amplicon




Biomarker
Chromosome
UniGene

Size
Exon















Symbol
Name
location
ID
RefSeq
Length
Boundary
Position

















ALG9
asparagine-linked
Chr. 11 - 111652919-111742305
Hs.503850
NM_024740.2
68
4-5
541-600



glycosylation 9,









alpha-1,2-mannosyl









transferase homolog








AKAP8L
A kinase (PRKA) anchor
Chr. 19: 15490859-15529833
Hs.399800
NM_014371.3
75
12-13
1596-1670



protein 8-like








APLP2
amyloid beta (A4)
Chr. 11 - 129939716-130014706
Hs.370247
NM_001142276.1
102
14-15
2029-2132



precursor-like protein 2








ARAF1
v-raf murine sarcoma 3611
Chr. X - 47420578-47431320
Hs.446641
NM_001654.4
74
10-11
1410-1475



viral oncogene homolog








ATP6V1H
ATPase, H+ transporting,
Chr. 8: 54628115-54755850
Hs.491737
NM_015941.3
102
13-14
1631-1732



lysosomal 50/57 kDa, V1,









Subunit H








BNIP3L
BCL2/adenovirus E1B
Chr. 8: 26240523-26270644
Hs.131226
NM_004331.2
69
2-3
374-342



19 kDa interacting protein









3-like








BRAF
v-raf murine sarcoma viral
Chr. 7 - 140433812-140624564
Hs.550061
NM_004333.4
77
1-2
165-233



oncogene homolog B1








C21ORF7
chromosome 21 open reading
Chr. 21: 30452873-30548204
Hs.222802
NM_020152.3
76

611-686



frame 7








CD59
CD59 molecule, complement
Chr. 11 - 33724556-33758025
Hs.278573
NM_203331.2
70
3-4
193-264



regulatory protein








COMMD9
COMM domain containing 9
Chr. 11: 36293842-36310999
Hs.279836
NM_001101653.1
85
2-3
191-275


CTGF
connective tissue growth
Chr. 6 - 132269316-132272518
Hs.410037
NM_001901.2
60
4-5
929-990



factor








ENPP4
ectonucleotide
Chr. 6: 46097701-46114436
Hs.643497
NM_014936.4
82
3-4
1221-1303



pyrophosphatase/









phosphodiesterase 4








FAM131A
family with sequence
Chr. 3: 184053717-184064063
Hs.591307
NM_001171093.1
64
4-5
498-561



similarity 131, member A,









transcript variant 2








FLJ10357
Rho guanine nucleotide
Chr. 14: 21538527-21558036
Hs.35125
NM_018071.4
102
16-17
3557-3658



exchange factor









(GEF) 40 (ARHGEF40)








FZD7
frizzled homolog 7
Chr. 2 - 202899310-202903160
Hs.173859
NM_003507.1
70
1-1
 1-70



(Drosophila)








GLT8D1
glycosyltransferase 8
Chr. 3: 52728504-52740048
Hs.297304
NM_001010983.2
87
4-5
 924-1010



domain containing 1,









transcript variant 3








HDAC9
histone deacetylase 9,
Chr. 7: 18535369-19036993
Hs.196054
NM_001204144.1
69
11-12
1777-1845



transcript variant 6








HSF2
heat shock transcription
Chr. 6: 122720696-122754264
Hs.158195
NM_004506.3
82
10-11
1324-1405



factor 2, transcript









variant 1








Ki-67
antigen identified by
Chr. 10 - 129894923-129924655
Hs.689823
NM_001145966.1
78
6-7
556-635



monoclonal antibody Ki-67








KRAS
v-Ki-ras2 Kirsten rat
Chr. 12 - 25358180-25403854
Hs.505033
NM_004985.4
130
4-5
571-692



sarcoma viral oncogene









homolog








LEO1
Leo1, Paf1/RNA polymerase
Chr. 15: 52230222-52263958
Hs.567662
NM_138792.3
122
10-11
1753-1874



II complex component









homolog (S. cerevisiae)








MORF4L2
mortality factor 4 like 2,
Chr. X: 102930426-102943086
Hs.326387
NM_001142418.1
153
5-5
1294-1447



transcript variant 1








NAP1L1
nucleosome assembly
Chr. 12 - 76438672-76478738
Hs.524599
NM_139207.2
139
16-16
1625-1764



protein 1-like 1








NOL3
nucleolar protein 3
Chr. 16: 67204405-67209643
Hs.513667
NM_001185057.2
118
1-2
131-248



(apoptosis repressor with









CARD domain), transcript









variant 3








NUDT3
nudix (nucleoside diphosphate
Chr. 6: 34255997-34360441
Hs.188882
NM_006703.3
62
2-3
500-561



linked moiety X)-type motif 3








OAZ2
ornithine decarboxylase
Chr. 15: 64979773-64995462
Hs.713816
NM_002537.3
96
1-2
189-284



antizyme 2








PANK2
pantothenate kinase 2
Chr. 20: 3869486-3904502
Hs.516859
NM_024960.4
126
4-5
785-910


PHF21A
PHD finger protein 21A,
Chr. 11: 45950870-46142985
Hs.502458
NM_001101802.1
127
16-17
2241-2367



transcript variant 1








PKD1
polycystic kidney disease 1
Chr. 16: 2138711-2185899
Hs.75813
NM_000296.3
110
16-17
7224-7333



(autosomal dominant),









transcript variant 2








PLD3
phospholipase D family,
Chr. 19: 40854332-40884390
Hs.257008
NM_001031696.3
104
6-7
780-883



member 3, transcript









variant 1








PNMA2
paraneoplastic antigen MA2
Chr. 8 - 26362196-26371483
Hs.591838
NM_007257.5
60
3-3
283-343


PQBP1
polyglutamine binding
Chr. X: 48755195-48760422
Hs.534384
NM_001032381.1
68
2-3
157-224



protein 1, transcript









variant 2








RAF1
v-raf-1 murine leukemia
Chr. 3 - 12625100-12705700
Hs.159130
NM_002880.3
90
7-8
1186-1277



viral oncogene homolog 1








RNF41
ring finger protein 41,
Chr. 12: 56598285-56615735
Hs.524502
NM_001242826
72
2-3
265-336



transcript variant 4








RSF1
remodeling and spacing
Chr. 11: 77377274-77531880
Hs.420229
NM_016578.3
60
7-8
2804-2863



factor 1








RTN2
reticulon 2, transcript
Chr. 19: 45988550-46000313
Hs.47517
NM_005619.4
87
 9-10
1681-1766



variant 1








SMARCD3
SWI/SNF related, matrix
Chr. 7: 150936059-150974231
Hs.647067
NM_001003801.1
109
8-9
 986-1094



associated, actin dependent









regulator of chromatin,









subfamily d, member 3,









transcript variant 3








SPATA7
spermatogenesis associated 7,
Chr. 14: 88851988-88904804
Hs.525518
NM_001040428.3
81
1-2
160-241



transcript variant 2








SST1
somatostatin receptor 1
Chr. 14: 38677204-38682268
Hs.248160
NM_001049.2
85
3-3
724-808


SST3
somatostatin receptor 3
Chr. 22: 37602245-37608353
Hs.225995
NM_001051.4
84
2-2
637-720


SST4
somatostatin receptor 4
Chr. 20: 23016057-23017314
Hs.673846
NM_001052.2
104
1-1
 91-194


SST5
somatostatin receptor 5,
Chr. 16: 1122756-1131454
Hs.449840
NM_001053.3
157
1-1
1501-1657



transcript variant 1








TECPR2
tectonin beta-propeller
Chr. 14: 102829300-102968818
Hs.195667
NM_001172631.1
61
12-13
3130-3191



repeat containing 2,









transcript variant 2








TPH1
tryptophan hydroxylase 1
Chr. 11 - 18042538-18062309
Hs.591999
NM_004179.2
145
1-2
 73-219


TRMT112
tRNA methyltransferase 11-2
Chr. 11: 64084163-64085033
Hs.333579
NM_016404.2
91
1-2
 45-135



homolog (S. cerevisiae)








VMAT1
solute carrier family 18
Chr. 8 - 20002366-20040717
Hs.158322
NM_003053.3
102
1-2
 93-196



(vesicular monoamine),









member 1








VMAT2
solute carrier family 18
Chr. 10 - 119000716-119037095
Hs.596992
NM_003054.4
60
 9-10
896-957



(vesicular monoamine),









member 2








VPS13C
vacuolar protein sorting 13
Chr. 15: 62144588-62352647
Hs.511668
NM_001018088.2
65
69-70
9685-9749



homolog C (S. cerevisiae),









transcript variant 2B








WDFY3
WD repeat and FYVE domain
Chr. 4: 85590690-85887544
Hs.480116
NM_014991.4
81
64-65
10190-10270



containing 3








ZFHX3
zinc finger homeobox 3,
Chr. 16: 72816784-73092534
Hs.598297
NM_001164766.1
68
5-6
886-953



transcript variant B








ZXDC
zinc finger C, transcript
Chr. 3: 126156444-126194762
Hs.440049
NM_001040653.3
61
1-2
 936-1001



variant 2








ZZZ3
zinc finger, ZZ-type
Chr. 1: 78030190-78148343
Hs.480506
NM_015534.4
62
13-14
2909-2971



containing 3









Delineation of Minimum Gene Set for Mathematically-Derived (MAARC-NET) Scoring System-Four classification algorithms (SVM, LDA, KNN, and Bayes) and a 10-fold cross-validation design were used to build a classifier for the identification of GEP-NETs in blood. See Modlin I, Drozdov I, Kidd M: The Identification of gut neuroendocrine tumor disease by multiple synchronous transcript analysis in blood. Plos One 2013, e63364. These classifiers were built on a training set and significantly up-regulated features between control and tumor cases were calculated by t-test. With reference to FIG. 3, an examination of the 51 genes featured in TABLE 2 identified that inclusion of at least 22 genes was sufficient to build an accurate (>0.85) classifier. FIG. 3 shows the prediction accuracy of each classifier algorithm using sequential addition of up to 27 significantly up-regulated genes (p<0.05) in the GEP-NET samples obtained using results of the 10-fold cross validation. The average accuracy of the SVM, LDA, KNN, and Bayes algorithms to distinguish GEP-NET from control blood samples using the sequentially added 27 genes was comparable—0.89 (0.85-1.0), 0.89 (0.86-0.93), 0.88 (0.85-0.93), and 0.86 (0.85-0.93) respectively. The “majority voting” combination of the four classifiers achieved an accuracy of 0.88. The at least 22 genes sufficient to build an accurate classifier were used to develop the MAARC-NET scoring system, and are featured in TABLE 3.









TABLE 3







Twenty Two Genes Included in the Mathematically-


Derived MAARC-NET Scoring System













Fold Change
p-value
Adjusted p-value
















PNMA2
0.819515
6.74E−21
3.43E−19



NAP1L1
0.662434
 4.9E−18
1.25E−16



FZD7
0.799858
3.82E−15
 6.5E−14



SLC18A2
0.524046
1.08E−12
1.37E−11



NOL3
0.809571
7.22E−10
7.36E−09



SSTR5
0.877322
1.64E−09
 1.4E−08



TPH1
0.459185
1.75E−07
1.27E−06



RAFT
0.316509
1.54E−06
7.86E−06



RSF1
0.530054
1.74E−06
8.07E−06



SSTR3
0.555269
3.82E−06
1.62E−05



SSTR1
0.493052
1.73E−05
6.81E−05



CD59
0.26257
 2.7E−05
9.82E−05



ARAF
0.228332
4.07E−05
0.000138



APLP2
0.228153
4.42E−05
0.000141



KRAS
0.205822
9.92E−05
0.000298



MORF4L2
0.319826
0.000169
0.000453



TRMT112
0.269618
0.001125
0.002524



MKI67
0.191245
0.003468
0.007074



SSTR4
0.313807
0.003734
0.007324



CTGF
0.196845
0.007665
0.01303



SPATA7
0.288625
0.01467
0.02338



ZFHX3
0.13248
0.031354
0.045687










Refinement of Mathematically-Derived MAARC-NET Scoring System—Individual PCR-based gene expressions are included in a score. See Modlin I, Drozdov I, Kidd M, Plos One 2013. The score is based on a “majority vote” strategy and was developed from a binary classification system whereby a sample will be called “normal” and given a score of 0 or “tumor” and will be scored “1”. The score can range from 0 (four calls all “normal”) to 4 (four calls all “tumor”). Each “call” is the binary result (either “0” for normal or “1” for tumor) of one of four different learning algorithms: Support Vector Machine (SVM), Linear Discrimination Analysis (LDA), K-Nearest Neighbor (KNN), and Naive Bayes (Bayes). Each of these four learning algorithms were trained on an internal training set including 67 controls and 63 GEP-NEN. In this training set, differentially expressed genes (control versus GEP-NEN) were identified as significant using a t-test. Based upon the training set, each of the learning algorithms were trained to differentiate between normal and tumor gene expression to within a level of significance of at least p<0.05. According to the majority voting strategy, those samples with less than 2 “normal” calls are classified as GEP-NEN. With reference to FIG. 4A, an audit of samples identified that 85% of controls exhibited a score of “0.” No tumors scored “0.” ROC analyses identified that a score of 2 was the cut-off for normal samples (controls) versus tumors (score ≥2). This approach exhibited correct call rates of 91-97% with sensitivities and specificities of 85-98% and 93-97% for the identification of GEP-NETs in two independent sets. See Modlin I, Drozdov I, Kidd M, Plos One 2013.


These data were initially derived from a test data set of 130 samples (n=67 controls, n=63 NETs). Inherent in the test set are two classes of NETs—clinically defined as treated, stable disease (SD: n=35) and untreated, progressive disease (PD: n=28). The classification algorithm also segregated the tumor call into two units “treated” and “untreated.” The 0-4 binary classification was therefore amended to represent 3 possible calls for each particular sample: “normal”, “tumor (treated)” and “tumor (untreated)”.


A number of rules were implemented to generate an amended majority vote strategy. A call of “normal” was assigned a value of 0; a call of tumor “treated” was assigned a value of 1; a call of tumor “untreated” was assigned a value of 2. By way of example, if a sample results in four calls of “normal,” a value of 0 was assigned for each call, thereby totaling a score of 0. If a sample results in four calls of tumor “treated,” a value of 1 was assigned for call, thereby totaling a score of 4. If a sample results in four calls of tumor “untreated,” a “2” is assigned for each, thereby totaling a score of 8. Scores in the amended majority vote strategy can therefore range between 0 and 8.


Examination of the test dataset (n=130) was used to establish whether the amended majority vote-derived score could serve as a measure of “treatment” responses. Similarly to the published 0-4 score shown in FIG. 4A, the majority of NET patients exhibited an amended majority vote score ≥2 as shown in FIG. 4B. With reference to FIG. 4C, majority vote and amended majority vote scores were significantly related (R2=0.89, p<0.0001).


With reference to FIG. 5A, analysis of the data in the test set identified that an amended mathematically-derived score (0-8) was significantly elevated in tumors compared to controls and was highest in PD relative to SD.


With reference to FIG. 5B, a receiver operating characteristic (ROC) curve was generated of controls versus GEP-NETs (SD and PD combined). A ROC curve is a generalization of the set of potential combinations of sensitivity and specificity possible for predictors. A ROC curve is a plot of the true positive rate (sensitivity) against the false positive rate (1-specificity) for the different possible cut-points of a diagnostic test. FIG. 5B is a graphical representation of the functional relationship between the distribution of the sensitivity and specificity values in the test set and in a cohort of control samples. The area under the curve (AUC) is an overall indication of the diagnostic accuracy of (1) the amended mathematically-derived scores and (2) a receiver operating characteristic (ROC) curve. AUC may be determined by the “trapezoidal rule.” For a given ROC curve, the data points are connected by straight line segments, perpendiculars are erected from the abscissa to each data point, and the sum of the areas of the triangles and trapezoids so constructed is computed.


The ROC curve in FIG. 5B identifies that the amended mathematically-derived score may be utilized to differentiate between controls and GEP-NETs—exhibiting an AUC of >0.98, and a p<0.0001; *p<0.05 vs. controls; #p<0.05 vs. SD (2-tailed Mann-Whitney U-test).


Amended mathematically-derived scores were subsequently examined in an independent set (SD: n=111, PD: n=48). With reference to FIG. 6A, the scores were significantly elevated in the independent set, exhibiting a p<0.0001. With reference to FIG. 6B, a frequency distribution plot of amended mathematically-derived scores in SD and PD patients confirmed that PD samples exhibited higher scores, with #p<0.0001 vs. SD (2-tailed Mann-Whitney U-test).


With reference to FIG. 7A, a second ROC curve was generated to determine whether the amended mathematically-derived score could be utilized to differentiate SD from PD.


In the test set (SD: n=35, PD: n=28), the ROC analysis identified that the score could be used to differentiate PD from SD tumors with an AUC of 0.93. A score cutoff of >6.5 (i.e. a score of ≥7) had a sensitivity of 85% and 83% specificity for detecting PDs (Likelihood ratio: 4.97).


With reference to FIG. 7B, the utility of the amended mathematically-derived scoring system to differentiate between SD and PD in the independent set (n=111 SD, n=48 PD) was assessed. The percentage correctly called ranged between 70-90% using a cut-off of ≥7. For SD, 89% of NETs were correctly predicted using the cut-off of ≥7 while 67% of PD were correctly predicted. The performance metrics were: sensitivity=67%, specificity=89%, PPV=73% and NPV=86%. Accordingly, the data indicate that a mathematically-derived MAARC-NET score ranging from 0-8 has utility for discriminating between controls and GEP-NETs.


Application of Scoring System and Developing a Nomogram for “NETEST 1”—To differentiate between controls and NETs, a cut-off of ≥3 has a sensitivity of 95% and 94% specificity. The sensitivity can be improved to 98% using a cut-off of ≥2. To differentiate between SD and PD, a cut-off of ≥7 can be used (sensitivity of 85% and 83% specificity). The sensitivity can be improved to 96% using a cut-off of ≥5.


The mathematically-derived MAARC-NET scores therefore range from 0-2 (control); 2-5 (SD); and 5-8 (PD). These scores can be converted to a percentage as displayed in TABLE 4.









TABLE 4





Mathematically-Derived Scores Percentage



















Mathematically-derived
0-2
2-5
 5-7
 7-8


Score






Disease Nomogram
0
0-55%
55-75%
75-100%


Score








Low
Moderate
High









With reference to FIG. 8, the score percentages from TABLE 4 can be displayed within a nomogram representing “NETest 1.” The NETest 1 nomogram demonstrates how the amended mathematically-derived score is achieved and how it categorizes patients into different classes of GEP-NEN (no disease, stable disease, or progressive disease).


With reference to FIG. 9, the utility of the NETest 1 nomogram was assessed. Values for the correct predictions of SD and PD using the NETest 1 nomogram of FIG. 8 are shown. Overall, the NETest 1 nomogram identified 80% of SD patients as exhibiting low or moderate disease activity and 84% of PD patients as exhibiting high disease activity.


Application of Scoring System and Developing a Nomogram for “NETEST 2”-MAARC-NET-derived NETest Scores (0-8) in patients clinically defined as either stable or progressive disease (best clinical judgment and/or imaging data) were examined. The frequency distribution of scores for each subtype in both the test set (FIG. 10A) or the independent set (FIG. 10B) demonstrate that SD patients have a median NETest value of 4 and PD patients range from 7-8. However, SD patients can exhibit MAARC-NET-derived scores >4 while PD can exhibit scores <7.


An assessment of the complete patient group (test set+independent set) demonstrated that the highest frequency SD score was 4 (30%—FIG. 11A), while 46% of PD had a score of 8 (FIG. 11A). A risk probability assessment identified that NETest scores ranging between 0-5 were associated with SD with a ≥90% certainty (FIG. 11B). A score of 8 was most likely PD (>90%). However, scores of 6 and 7 could not accurately differentiate SD versus PD.


Based on these results from FIGS. 11A and 11B, the NETest 1 nomogram from FIG. 8 can be updated to include risk values. The NETest 2a nomogram of FIG. 12 includes the NETest with the inclusion of score and risk categorizations.


To upgrade the risk assessment NETest 2a nomogram, individual gene expression in SD and PD samples may be evaluated. The genes that were most differentially expressed in SD and PD samples were identified and used in decision trees to generate the rules for defining whether a NETest score was SD or PD. This approach provides the basis for NETest 2.


A NETest score of 5 has a >90% chance of identifying an SD sample (as shown in FIGS. 11A-11B and 12). Comparisons of the individual 51 gene expression profiles between patients scored as 5 (SD versus PD) identified expression of SMARCD3 and TPH1 as candidate differentiation markers. Using the rule:


If SMARCD3≤0.13 and TPH1<4 then call PD.


This allowed for 100% accuracy in defining progressive disease.


A NETest score of 6 has a ˜50% chance of differentiating SD from PD samples. Gene expression profile analysis identified VMAT1 and PHF21A as candidates. A ROC analysis defined the AUCs for each to differentiate PD from SD to be:


VMAT1: ROC=0.835


PHF21A: ROC=0.733


Using the rule:


If VMAT1≥0 and PHF21A<1.2 then SD


If VMAT1≥0 and PHF21A≥1.2 then PD


This allowed for 100% accuracy in defining progressive disease and 90% accuracy in defining SD. The overall accuracy was 93%.


A NETest score of 7 has a ˜50% chance of differentiating SD from PD samples.


As for NETest scores of 6, gene expression profile analysis identified both VMAT1 and PHF21A as candidates. A ROC analysis defined the AUCs for each to differentiate PD from SD to be:


VMAT1: ROC=0.835


PHF21A: ROC=0.733


Using the rule:


If VMAT1≥0 and PHF21A>1 then SD


If VMAT1≥0 and PHF21A≤1 then PD


This allowed for a 100% accuracy for defining progressive disease and 95% accuracy for SD. The overall accuracy was 97.5%.


A NETest score of 8 has a >90% chance of identifying a sample as PD. Expression of ZZZ3 was identified as a candidate. A ROC analysis defined the AUC for this gene to be 1.0.


Using the rule:


If ZZZ3≤14 then PD


This allowed for a 100% accuracy for defining progressive disease and differentiating from SD.


With reference to FIG. 13, this individual gene expression information was used to finalize the “NETest 2” nomogram, which provides an accurate disease categorization profile for the patient. The combination of NETest scores and individual gene expression information used in the NETest 2 nomogram of FIG. 13 is further detailed in TABLE 5.









TABLE 5







NETEST 2 Nomogram Information











Accuracy












Low risk stable disease
NETest score 0-5
  90-100%


Intermediate risk stable
NETest score 6 (low PHF21A)
  90-100%


disease (I)




Intermediate risk stable
NETest score 7 (high
  95-100%


disease (II)
PHF21A)



Intermediate risk stable
NETest score 8 (high ZZZ3)
100%


disease (III)




Intermediate risk progressive
NETest score 6 (high
100%


disease (I)
PHF21A)



Intermediate risk progressive
NETest score 7 (low PHF21A)
97.5-100%


disease (II)




High risk progressive disease
NETest score 8 (low ZZZ3)
100%









Defining Clinically Relevant Genes—To further refine the scoring system, gene cluster expression was examined and algorithms were developed to capture the information. Individual gene clusters incorporate biological information that may augment the mathematically-derived MAARC-NET scoring systems. One focus may be given to literature-curated gene clusters which are included in TABLE 6.









TABLE 6







Genes included in each Cluster










Cluster Name
Genes







Proliferome
Ki67, NAP1L1, NOL3, TECPR2



Growth Factor Signalome
ARAF1, BRAF, KRAS, RAF1



Metabolome
ATP6V1H, OAZ2, PANK2, PLD3



Secretome I (General)
PNMA2, VMAT2



Secretome II (Progressive)
PQBP1, TPH1



Epigenome
MORF4L2, NAP1L1, PQBP1, RNF41,




RSF1, SMARCD3, ZFHX3



Apoptome
BNIP3L, WDFY3



Plurome
COMMD9



SSTRome
SSTR1, SSTR3, SSTR4, SSTR5










With reference to FIG. 14A, the Hallmarks of Neoplasia are illustrated, including the delineation of tumor (adenocarcinoma)-derived hallmarks. With reference to FIG. 14B, the NET hallmarks based on the Hanahan and Weinberg classifications are illustrated.


Values for the nine clusters represented in FIGS. 14A-14B were derived from gene addition. In addition to the gene clusters, two algorithms were also assessed:


1) the “PDA” algorithm, which included a summation of the proliferome, signalome, secretome II, plurome and epigenome (the PDA algorithm is also referred to as Progressive Diagnostic I);


2) the “NDA” algorithm, which included expression of 15 genes associated with disease: these included ARAF1, BRAF, KRAS, RAF1, Ki67, NAP1L1, NOL3, GLT8D1, PLD3, PNMA2, VMAT2, TPH1, FZD7, MORF4L2 and ZFHX3 (the NDA algorithm is also referred to as Progressive Diagnostic II). Genes were summated and an averaged value was derived.


Prior to assessing the value of the nine gene clusters and two algorithms in blood samples, their expression in NET tumor tissue was assessed to confirm that these were NET-relevant. With reference to FIGS. 15B and 15A, respectively, expression in 22 NETs may be compared to expression in normal mucosa (n=10). Assessment identified that seven of the nine clusters were specific to NETs (in comparison to normal mucosa). In particular, expression of the signalome, metabolome, secretome (I) and (II), epigenome, apoptome and SSTRome were elevated in NETs (p<0.05). Genes in the apoptome were decreased in NETs, while the proliferome was not different between NETs and normal mucosa. With respect to the algorithms, FIG. 16 shows that each of the PDA and NDA were significantly increased (p<0.05) in NET tumor tissue compared to normal mucosa.


Thereafter, the expression of each of the clusters was assessed in blood samples. We examined the test (n=130) set and evaluated whether expression they were related to SD or PD. Significant differences were noted in gene expression between controls and SD/PD, as shown in FIGS. 17A-17C and TABLE 7.









TABLE 7







Gene Clusters and Clinical Outcome










Cluster Name
Con vs SD
Con vs PD
SD vs PD





Proliferome
p < 0.05
p < 0.05
ns


Growth Factor Signalome
p < 0.05
ns
p < 0.05


Metabolome
ns
p < 0.05
ns


Secretome I (General)
p < 0.05
p < 0.05
p < 0.05


Secretome II (Progressive)
p < 0.05
p < 0.05
p < 0.05


Epigenome
ns
p < 0.05
p < 0.05


Apoptome
p < 0.05
p < 0.05
ns


Plurome
p < 0.05
p < 0.05
ns


SSTRome
p < 0.05
p < 0.05
p < 0.05





ns = not significant


Two-tailed Mann-Whitney U-test






These data demonstrate that gene clusters can be used to differentiate SD and PD from controls as well as identify differences between SD and PD.


With reference to FIG. 18, gene cluster results were examined in the independent set (n=159), evaluating each of the clusters in SD vs PD. In the independent set, the proliferome, secretome (II), plurome and epigenome were significantly increased.


Next the PDA and NDA were evaluated in each of the two datasets (independent and test sets). With reference to FIG. 19A, no significant differences were identified between SD and PD for either of the two algorithms in the test set. With reference to FIG. 19B, each of the PDA and NDA were elevated in the independent set.


Next each of the algorithms were included in a combined set (test+independent: n=222) and their utility to predict SD versus PD was evaluated. With reference to FIG. 20A, both PDA and NDA were elevated in PD compared to SD in the combined sets. With reference to FIG. 20B, a ROC analysis identified the following parameters for PDA and NDA listed in TABLE 8.









TABLE 8







ROC Analysis Parameters, PDA and NDA in Combined Set












PDA
NDA







AUC
 0.72 ± 0.034
 0.6 ± 0.038



95% CI
0.652-0.785
0.525-0.675



p-value
<0.0001
0.014



ROC cut-off
58
74










Two additional algorithms based on gene cluster expression differences in the test (TDA) and independent (IDA) set were evaluated. TDA included a summation of gene clusters significantly different between SD and PD in the test set.


These included TDA: Secretome (I), Plurome and SSTRome (the TDA algorithm is also referred to as Progressive Diagnostic III); and


IDA: Proliferome, secretome (II), plurome and epigenome (the IDA algorithm is also referred to as Progressive Diagnostic IV).


Each of the algorithms in the test set and independent set were evaluated. With reference to FIG. 21A, TDA was significantly elevated in PD compared to SD in the test set.


With reference to FIG. 21B, both TDA and IDA algorithms were significantly elevated in the independent set.


Next, a ROC analyses with both algorithms in the combined dataset was performed. The ROC analysis identified the following parameters for TDA and IDA listed in TABLE 9.









TABLE 9







ROC Analysis Parameters, TDA and IDA in Combined Set












TDA
IDA







AUC
0.62 ± 0.04
 0.70 ± 0.034



95% CI
0.542-0.698
0.637-0.770



p-value
0.003
<0.001



ROC-cut-off
>43
>46










Algorithm-generated ROC curves of TDA and IDA for differentiating between SD and PD are shown in FIG. 22A. Algorithm-generated ROC curves for each of the clusters for differentiating between SD and PD are shown in FIG. 22B. The ROC curves in FIGS. 22A and 22B demonstrate that AUCs range from 0.51 (GF signalome) to 0.72 (plurome) for the differentiation of SD and PD.


Accordingly, individual gene cluster expression and algorithms that capture this information contain biologically relevant information that correlates with clinical observations. These provide the basis for defining clinically relevant MAARC-NET scoring systems.


Demonstration of Clinical Utility of NETEST Genes—The clinical utility of NETest scores, as well as the scores from pertinent gene clusters and algorithms, will now be defined. An examination of how surgical removal of a NET altered the circulating gene signature was performed to demonstrate how the test will have utility as a measure of the completeness of surgical therapy.


Parameters in 29 surgically treated patients prior to surgery and >1 month post-surgery was examined. As a group, MAARC-NET scores were significantly decreased (p<0.0001) from a mean of 6.58±1.48 to 3.65±1.6, as shown in in FIG. 23A. Chromogranin A (CgA), a gene used in a prior known single biomarker assay for NETs, was not significantly decreased (58.5±137.9 ng/ml vs. 55.25154.8), as shown in FIG. 23B.


An examination of how NETest 1 performed, i.e. changes in NETest score pre- and post-surgical therapy, is included in FIGS. 24A-24B. Prior to surgery, 62% of patients were included in the high disease category; after surgery this was 0% (χ2=24, p=5×10−8).


An alternative assessment of how surgery affected disease status is provided by the percentage changes in surgical approaches—no evidence of residual disease (R0) versus evidence of residual disease including metastases. With reference to FIG. 25A, levels for the MAARC-NET score were significantly decreased (p<0.003) in the R0 group (complete resection) compared to the R1/R2 group (incomplete resection).


To better define the role of surgery each of the four algorithms were examined. Significant decreases were identified (post-surgery) in PDA (99.3±21 vs. 41.1±7.5, p<0.0001; FIG. 26A), NDA (45.8±10.3 vs. 29.6±7.8, p<0.01; FIG. 26B), TDA (133.3±32.3 vs. 43.8±9.3, p<0.0001; FIG. 26C) and IDA (86.1±19.3 vs. 34.1±7.2, p<0.0001; FIG. 26D).


With reference to FIGS. 27A-27I, an examination of individual clusters identified significant decreases in the SSTRome, proliferome, GF signalome, metabolome, secretome I/II and the epigenome pre- and post-surgery.


With reference to TABLE 10, surgical removal of the tumor tissue was associated with decreases in circulating gene expression to levels not different to or below ROC cut-off values for SD for each of the four algorithms and for 6 of the 9 gene clusters.









TABLE 10







Relationship Between Surgical Excision,


Gene Clusters and Each of the Algorithms












Algorithm/


Pre-
Post-
ROC for


Cluster
p-value
Change
surgery
surgery
SD















NDA
0.009

45
30
<74


PDA
<0.0001

99
41
<58


TDA
<0.0001

133
44
<74


IDA
<0.0001

86
34
<46


SSTRome
<0.0001

93
23
<25.5


Proliferome
<0.0001

34
15
<20


GF Signalome
0.009

14.8
8
<9


Metabolome
0.004

8.2
6.8
<6.5


Secretome (I)
0.004

39.2
19.5
<11


Secretome (II)
0.04

2.4
0.85
<1.6


Plurome
NS
custom character
0.8
0.8
<0.9


Epigenome
0.005

48.7
17.7
<2.3


Apoptome
NS
custom character
0.72
0.84
>0.5









All patients who had surgery can be considered as exhibiting progressive/active disease. Following surgery, the scores or algorithms were indicative of progressive disease in 3-7 of the twenty-nine patients (10-24%) depending on the algorithm used.


Surgery significantly reduced the circulating tumor signature and can provide evidence for the degree both of tumor removal as well as for evidence of residual active disease.


The clinical utility of the test therefore is defined by the examination of scores, algorithms and clusters and evaluation in comparison to pre-surgical bloods. Evidence of elevated expression of e.g., PDA or proliferome in post-surgical samples is indicative of residual progressive (highly active disease).


With reference to FIG. 28, a NETest 3 nomogram is illustrated with the inclusion of surgically-relevant algorithms and gene clusters. A combination score, as well as alterations in gene clusters e.g., a significant increase in the proliferome, will be indicative of disease regrowth following surgery. Of note, is that while post-operative imaging identified disease in n=1 (10%) of the R0 patients, elevated gene scores were evident in 6 (60%) at 1 month. Subsequently, two R0 individuals developed positive imaging at 6 months.


Effect of Standard Drug Therapies on Circulating NET Signature—The efficacy of a standard pharmacological therapy for NETs, somatostatin (used to treat >80% of patients), was evaluated on the circulating NET signature. Signatures were evaluated in patients treated with a somatostatin analog who were considered as either SD (n=63) or PD (n=26) by imaging and best clinical judgment. Those patients who were SD on somatostatin analogs were considered to be stable-treated patients, while those patients who were PD on somatostatin analogs were considered to be failing therapy.


With reference to FIG. 29A, MAARC-NET scores were significantly lower in the SD group than those failing therapy: 3.33±0.21 vs 5.77±0.3 (p<0.001). With reference to FIG. 29B, Chromogranin A was not significantly different in the two groups (44.7±17.2 ng/ml vs. 102.4±58.7).


An assessment of the algorithms demonstrated significant differences in each of them in SD compared to PD. Specifically, PDA (62.8±11.4 vs. 153.9±36.2, p<0.002; FIG. 30A), NDA (6±0.6 vs. 13.5±3, p<0.03; FIG. 30B), TDA (56.8±7.4 vs. 154±37.2, p<0.02; FIG. 30C) and IDA (51.7±11.1 vs. 140.5±36, p<0.0005; FIG. 30D).


With reference to FIGS. 31A-31I, examination of individual clusters identified that the SSTRome, proliferome, secretome II, plurome and the epigenome were significantly lower in the SD group relative to the PD group.


These data demonstrate that patients who exhibit progressive disease despite somatostatin analog (SSA) therapy exhibit increases in the MAARC-NET score, as well as each of the four algorithms and specific gene clusters including an increase in proliferation, as well as the epigenome. One mechanism to evaluate whether the SSA treatment is effective therefore is to evaluate whether scores for these parameters alter. However, given the overlap in each of these parameters between the SD and PD groups, it would be helpful to better define the PD group. To do this, the expression may be compared of the circulating signature in those failing therapy to that in controls. The hypothesis behind this approach was that an effective therapy (i.e. SD) would normalize the signatures. The corollary is that PD will be significantly different to normal. To establish this, ROC analyses were used to examine normal circulating transcripts and compared to PD. All four algorithms were examined as well as the gene clusters.


With reference to FIGS. 32A-32B, analysis of the data identified that algorithms (FIG. 32A) and selected clusters (FIG. 32B) differentiated controls from PD treated with SSAs. Data for the individual clusters are included in TABLE 11.









TABLE 11







Relationship between Gene Clusters and each of the Algorithms


for those Failing SSA Therapyand Controls











Algorithm/



ROC for


Cluster
AUC
95% CI
p-value
PD














NDA
0.98 ± 0.01
0.965-1.00 
<0.0001
>3


PDA
0.92 ± 0.04
0.851-0.994
<0.0001
>40


TDA
0.99 ± 0.01
0.975-1.01 
<0.0001
>29


IDA
0.91 ± 0.04
0.828-0.998
<0.0001
>31


SSTRome
0.98 ± 0.01
0.95-1  
<0.0001
>22


Proliferome
0.97 ± 0.02
0.94-1  
<0.0001
>14


GF Signalome
0.71 ± 0.07
0.564-0.855
<0.002
>5


Metabolome
0.56 ± 0.07
0.41-0.7 
NS
<8


Secretome (I)
0.98 ± 0.02
0.944-1   
<0.0001
>4


Secretome (II)
0.62 ± 0.07
0.486-0.759
NS
>1.6


Plurome
0.61 ± 0.08
0.454-0.763
NS
<0.7


Epigenome
0.86 ± 0.05
0.756-0.962
<0.0001
>16


Apoptome
0.73 ± 0.06
0.618-0.834
<0.001
<0.95









Based on the data in TABLE 11, NDA and TDA were examined as well as the SSTRome, Proliferome, and Secretome (I) in the SD cases to evaluate whether these parameters correlated with clinical assessments of therapeutic efficacy.


An assessment of individual algorithms or gene clusters identified that samples would be categorized as exhibiting disease in 33-75% of cases (FIG. 33A). In comparison to a best of 3 score (56%) a combination of elevations in the SSTRome and Proliferome resulted in the lowest number of cases (28%) predicted as exhibiting progressive disease (FIG. 33B). With reference to FIG. 34, the nomogram for somatostatin analog treated patients, named “NETest 4,” therefore includes the MAARC-NET score as well as the SSTRome, proliferome and their combination.


Utility of NETEST and Gene Expression for the Prediction of Somatostatin Analog Efficacy—To evaluate the utility of the NETest in therapy, the relationship between SSAs and clinically defined outcomes (per RECIST criteria) were evaluated. Samples were collected both pre-therapy as well as monthly in twenty-eight patients. Imaging was available to stage and categorize disease patterns pre- and during therapy (up to 12 months follow-up). In this prospective sample set, SSA resulted in a significant reduction in the number of patients with progressive disease (FIG. 35A).


Scores were also determined in blood samples collected prior to as well as monthly during SSA treatment to evaluate whether early alterations were predictive of outcome, i.e., response to therapy.


With reference to FIG. 35B, the results identify that elevated NETest scores (80-100% activity) measured at any time point during therapy were predictive of therapeutic responsiveness. With reference to FIG. 36A, a significant rise in the NETest (80-100%) occurred from 48-252 days (mean=105 days) prior to the detection of clinically significant disease (PD). The mean time for CgA was 70 days (range: 0-196 days). The NETest was more informative, occurring at an earlier time (p=0.04), and in more patients (high activity was noted in 100%) than CgA (57% exhibited >25% elevation, p=0.016).


With reference to FIG. 36B, the elevation in NETest (80-100% score) occurred at a significantly earlier time (94.5 days) than image-identifiable disease progression (241 days) in the 14 patients (*p<0.0001, Chi2=19). A similar analysis for CgA identified that this was not different to image-based assessment (FIG. 36B, 185.5 days vs. 241 days). CgA alterations occurred significantly later than the NETest (p=0.002, Chi2=13.6).


Utility of NETEST and Gene Expression for the Prediction of Disease Recurrence—Utility of NETEST To evaluate the utility of the NETest disease recurrence, the relationship between the NETest and clinically defined outcomes (per RECIST criteria) was evaluated in a long-term prospective study. Samples were collected both pre-therapy as well as at intervals up to five years in thirty four patients. Imaging was available to stage and categorize disease patterns pre- and during therapy (up to 65 months follow-up).


In this prospective sample set, the initial NETest scores were significantly elevated in the PD patients (median: 75%, range 53-94%) compared to the SD patients (median: 26%, range 7-94%; p=0.01) (FIG. 37A). Eight SD patients had levels >40%. Of these 7 developed disease recurrence in a median of 12.2 months (range 3.6-57.7; FIG. 37B). With reference to FIG. 37C, seven of the initial SD patients (with low NETest scores) did not develop recurrent disease. The median follow-up time was 58 months (range: 32-64).


Sixteen events of progressive disease were identified over the time course. Each was associated with elevated NETest (scores >80%). With reference to FIG. 37D, the median time to progression for patients with elevated scores was 13.4 months (range: 3.6-57).


Overall, 23/24 events where the NETest was elevated was associated with development of disease recurrence in median ˜13 months. Seven of seven with consistently low scores were disease free (up to 5 years). The accuracy of the test was 97%.


Utility of NET Genes as Surrogate Measure of Tumor Proliferation and Imaging—The utility of NETest genes as well as clusters of genes to function as surrogate markers of histopathological and imaging parameters was evaluated. A particular focus was placed on the Ki-67 index (a marker of tumor proliferation) and on somatostatin-based imaging e.g., 68Ga-PET. This was undertaken to demonstrate that the NETest and elements thereof could have clinical utility as adjuncts for standard clinical measures. As an example, Ki-67 measurements are tissue based and therefore are invasive. Demonstrating a blood-derived correlate would provide a real-time measure of tumor growth without the need for a biopsy.


These analyses were conducted in two separate datasets: Dataset 1 (n=28) and Dataset 2 (n=22). Dataset 1 included patients who were collected for therapeutic intervention, namely peptide receptor radionucleotide therapy (PRRT). Dataset 2 included patients who exhibited stable disease and were undergoing routine follow-up.


A Surrogate for the Ki-67 Index: Multivariate regression analysis did not identify any significant correlation between individual gene expression and the Ki-67 index (a marker of tumor proliferation) in either of the two groups. With reference to FIGS. 38A and 38B, examination of somatostatin receptor expression identified significant correlations (R=0.9, p=2×10−8) with Ki67 in each of the tumor groups.


An examination of all genes in the NETest identified significantly higher correlations with Ki-67 (R=0.93-98, p=10−9-10−13, FIGS. 38C-38E). The single most informative gene was SSTR4 (FIG. 38D-38F). These data demonstrate firstly, that the NETest as a whole can be used as a liquid biopsy to determine the proliferative index of the tumor i.e., provides a surrogate marker for a tissue-based histopathological measurement. Secondly, expression of circulating somatostatin receptor genes can also be used as a measure of tumor proliferation.


Proliferome+SSTRome algorithm is also referred to as Progressive Diagnostic V; the highly relevant genes (KRAS, SSTR4, and VPS13C) algorithm is also referred to as Progressive Diagnostic VI; the highly relevant genes+SSTRome algorithm is also referred to as Progressive Diagnostic VII.


With reference to FIGS. 39A-39F, correlations (linear regression) between gene clusters (SSTRome and proliferome) or each of the algorithms and the Ki-67 index, are shown. Examination of individual gene clusters confirmed that the SSTRome and Proliferome correlated with the Ki-67 index (R=0.16-0.25, p<0.05, FIGS. 39A, 39C). Analysis of the algorithms identified that the NDA and TDA algorithms were highly correlated with the Ki-67 index (R=0.34-0.42, p<0.002, FIGS. 39B, 39F) while the PDA and IDA were less well-correlated (R=0.14-0.17, p=0.06, FIGS. 39D, 39E). These results demonstrate that gene clusters and algorithms including biologically relevant tumor information e.g., SSTRome can be utilized as a measure of tumor tissue proliferation.


Relationship with Somatostatin-Based Imaging: Next was examined whether genes in the test correlated with two variables from somatostatin-based imaging, the SUVbmax (tumor uptake—a measure of receptor density/target availability) and the MTV (molecular tumor volume—a measure of the tumor burden). Multivariate regression analysis did not identify any single gene to correlate with the SUVmax. However, both the SSTRome as well as the NETest genes as a group were well correlated with the SUVmax. Correlations in both groups ranged between R=0.88-0.94 (p<10−7) for the SSTRome (FIGS. 40A-40B) and R=0.97-0.98, p<10−13 for the NET gene set (FIGS. 40C-40D).


Multivariate regression analysis identified ZFHX3 as a marker of MTV in Group 1 (R=0.98, FIG. 41A) while TPH1 was correlated with MTV in Group 2 (R=0.76, FIG. 41B).


Similarly to the SUVmax, both the SSTRome as well as the NETest genes as a group were well correlated with the MTV. Correlations in both groups ranged between R=0.72-0.77 (p<10−4) for the SSTRome (FIGS. 41C-41E) and R=0.91-0.95, p<10−12 for the NET gene set (FIGS. 41D-41F).


These data demonstrate that genes in the NETest correlate and can be used to estimate both the target availability for somatostatin analog-based therapies as well as provide a measure of the tumor burden. Both these aspects are critical for directing therapy as well as measuring the efficacy of therapy.


ZFHX3 as a Marker for Disease Assessment: The identification of ZFHX3 as the best marker for MTV, as shown in FIG. 41A, suggests that expression of this gene may have clinical utility as a measure of tumor burden and changes thereof. ZFHX3 is a zinc finger protein involved in the regulation of neuronal differentiation through the control of cell cycle arrest. Loss of ZFHX3 expression with a subsequent loss of cell cycle arrest therefore is related to tumor proliferation and the development of new lesions and/or progression of disease.


It was examined whether measurements of ZFHX3 may provide a marker of new growth/progression in NETs and if that alteration in ZFHX3 may reflect response to therapy or therapy failure (progression). Expression of this gene was initially assessed in patients who had evidence of new lesions.


With reference to FIG. 42A, patients who had developed new lesions (identified by imaging) expressed significantly decreased ZFHX3. With reference to FIG. 42B, those patients that were determined as SD also have significantly higher levels than those who were progressive. Moreover, with reference to FIG. 42C, expression of the gene was increased following surgery.


With reference to FIGS. 43A-43B, long-term follow-up (>3 years) in a group identified that patients who remained stable exhibited no changes in ZFHX3 expression over this time period, while patients who developed progressive disease had significantly lower expression levels.


These data demonstrate that ZFHX3 expression correlates with the development of new lesions and a decrease in expression can be used to define disease progression.


Utility of NETEST and Gene Expression for the Prediction of Therapeutic Efficacy—To further evaluate the utility of the NETest in therapy, the relationship between PRRT and clinically defined (per RECIST criteria) outcomes were evaluated. Samples were collected both pre-therapy as well as at follow-up in fifty-four patients. Imaging was available to stage and categorize disease patterns pre- and post-therapy (at 3 and 6 month follow-up).


In this prospective sample set, radiotherapy significantly resulted in a reduction in the number of patients with progressive disease (FIG. 44A). Patients who did not respond to therapy i.e., categorized as progressive disease at the 6 month follow-up period exhibited an increase in the NETest score. The score was significantly reduced in patients with SD at this time point (FIG. 44B). No significant alterations were noted for CgA (FIG. 44C). Alterations in NETest paralleled changes in therapeutic responses (FIG. 45). The metrics for biomarkers and outcome identified that the NETest had an accuracy of 89%, sensitivity 75%, specificity 100%, PPV 100% and NPV 83% (FIG. 46A). With reference to FIG. 46B, CgA had an accuracy of 24%, sensitivity 17%, specificity 40%, PPV 40% and NPV 17%. The NETest significantly outperformed CgA (Chi-square=27.4; p=1.2×10−7).


Pre-treatment NETest scores as well as grading were available and used to identify whether a combination of gene expression and clinical parameters were predictive of outcome, i.e., response to therapy.


With reference to FIG. 47A, a subset of NETest gene expression levels were significantly different between responders and non-responders prior to therapy. These included genes linked to growth factor signaling (GF signalome: ARA4F, BRAF, KRAS and RAF1) as well as genes linked to metabolism (including A TP6V1H, OAZ2, PANK2, PLD3). Specifically, PRRT-responders exhibited significantly elevated growth factor signaling (9.4±1.3 vs. 5.3±0.7, p=0.05) and significantly elevated metabolomic gene expression (4.37 vs. 2.3±0.6, p=0.03) prior to PRRT. An integration of the two “clusters” (GF signalome+metabolome) into a “Biological Index” through summation of gene expression enabled prediction of future PRRT-responders from non-responders. A cut-off of 5.9 (normalized gene expression) exhibited >85% specificity for predicting response (>5.9 predicted PRRT responders) and resulted in an AUC of 0.74±0.08 (z-statistic=2.915, p=0.0036) (FIG. 47B).


No clinical parameters were predictive of PRRT response except tumor grade. Low grade tumors responded (77%) to therapy while ˜50% of high grade lesions were associated with responses. Grading alone was only 65% accurate (p=0.1). In contrast a “Prediction Quotient” which comprised the combination of the Biological Index (“GF signalome”+“metabolome”) and the tumor grade was significantly (92%) more accurate. The Prediction Quotient had a significantly better AUC (0.90±0.07) than histological grade alone for predicting treatment response (AUC=0.66, difference between areas 0.23, z-statistic 2.25, p=0.024) (FIG. 47C).


The Prediction Quotient was also clinically useful. Patients could be segregated into Low Grade/High Ome and High Grade/Low Ome groups. The latter had a significantly lower PFS (17 months) than the low grade/high Ome group (PFS not reached, Log-rank: 26.8; p<0.0001: FIG. 47D). The Hazard Ratio was 53.3.


These results demonstrate that alterations in score correlate with treatment responses and that circulating NET transcript measurements prior to therapy are predictive of outcome to PRRT.

Claims
  • 1. A method for treating a gastroenteropancreatic neuroendocrine neoplasm (GEP-NEN) in a human subject in need thereof, comprising: determining the expression levels of at least 23 biomarkers from a test sample from the human subject by performing reverse transcription polymerase chain reaction (RT-PCR) with a plurality of probes or primers specific to detect the expression of the at least 23 biomarkers, wherein the at least 23 biomarkers comprise APLP2, ARAF, CD59, CTGF, FZD7, KRAS, MKI67/K167, MORF4L2, NAP1L1, NOL3, PNMA2, RAF1, RSF1, SLC18A2/VMAT2, SPATA7, SSTR1, SSTR3, SSTR4, SSTR5, TPH1, TRMT112, ZFHX3, and ALG9, wherein the test sample is blood, serum, plasma, or neoplastic tissue;normalizing the expression levels of APLP2, ARAF, CD59, CTGF, FZD7, KRAS, MKI67/K167, MORF4L2, NAP1L1, NOL3, PNMA2, RAF1, RSF1, SLC18A2/VMAT2, SPATA7, SSTR1, SSTR3, SSTR4, SSTR5, TPH1, TRMT112, and ZFHX3 to the expression level of ALG9 to obtain normalized expression levels;classifying the test sample with respect to the presence or development of a GEP-NEN using the normalized expression levels in a classification system, wherein the classification system is a machine learning system that comprises four different algorithms: Support Vector Machine, Linear Discrimination Analysis, K-Nearest Neighbor, and Naïve Bayes;assigning a score based on a result of each of the four different algorithms;comparing the score with a predetermined cutoff value;determining the presence of a GEP-NEN in the subject when the score is equal to or greater than the predetermined cutoff value, wherein the predetermined cutoff value is 2 on a MAARC-NET scoring system scale of 0-8;identifying a level of risk for the human subject to develop a progressive GEP-NEN comprising (a) identifying an intermediate level of risk for developing a progressive GEP-NEN when the score is equal to or greater than a predetermined cutoff value of 5 and less than a predetermined cutoff value of 7 on the MAARC-NET scoring system scale of 0-8; or(b) identifying a high level of risk for developing a progressive GEP-NEN when the score is equal to or greater than a predetermined cutoff value of 7 on the MAARC-NET scoring system scale of 0-8; andadministering a treatment to the subject identified as having an intermediate level or high level of risk for developing a progressive GEP-NEN, wherein the treatment comprises surgery or drug therapy.
  • 2. The method of claim 1, further comprising, determining the presence of a progressive GEP-NEN in the human subject when the score is equal to or higher than the predetermined cutoff value, wherein the predetermined cutoff value is 5 on the MAARC-NET scoring system scale of 0-8.
  • 3. The method of claim 1, wherein the biomarker is RNA or cDNA.
  • 4. The method of claim 3, wherein when the biomarker is RNA, the RNA is reverse transcribed to produce cDNA, and the produced cDNA expression level is detected.
  • 5. The method of claim 3, wherein when the biomarker is RNA or cDNA, the RNA or cDNA detected by forming a complex between the RNA or cDNA and a labeled nucleic acid probe or primer.
  • 6. The method of claim 5, wherein when the label is a fluorescent label.
  • 7. The method of claim 5, wherein the complex between the RNA or cDNA and the labeled nucleic acid probe or primer is a hybridization complex.
  • 8. The method of claim 1, wherein the expression level of the biomarker is detected by forming a complex between the biomarker and a labeled probe or primer.
  • 9. The method of claim 1, wherein a subject in need thereof is a subject diagnosed with a GEP-NEN, a subject having at least one GEP-NEN symptom or a subject having a predisposition or familial history for developing a GEP-NEN.
CROSS REFERENCE TO RELATED APPLICATIONS

The present invention claims the benefit of, and priority to, U.S. Ser. No. 62/050,465, filed on Sep. 15, 2014, the contents of which are herein incorporated in its entirety.

Foreign Referenced Citations (2)
Number Date Country
WO2005020795 Mar 2005 WO
WO2012119013 Sep 2012 WO
Non-Patent Literature Citations (62)
Entry
Simon et al. Journal of Clinical Oncology. 2005. 23(29):7332-7341.
Whitehead et al. Genome Biology. 2005. 6(2): Article R13.
Hoshikawa et al. Physical Genomics. 2003. 12: 209-219.
Wong et al. BioTechniques. 2005. 39(1):1-11.
Supplementary Methods for Modlin et al. PloS ONE. 2013. 8(5):e63364.
International Search Report and Written Opinion corresponding to International Application No. PCT/US2015/050274, dated Dec. 2, 2015.
Schimmack et al., “The Clinical Implications and Biologic Relevance of Neurofilament Expression in Gastroenteropancreatic Neuroendocrine Neoplasms”, May 15, 2012, Cancer, vol. 118, No. 10, pp. 2763-2775.
Kinross et al., “Metabonomic profiling: A Novel Approach in Neuroendocrine Neoplasias” Surgery, Dec. 1, 2013, vol. 154, No. 6, pp. 1185-1193.
Banck M. et al., “The genomic landscape of small intestine neuroendocrine tumors,” J Clin Invest 2013; 123(6):2502-2508.
Cai YC, et al., “Cytokeratin 7 and 20 and thyroid transcription factor 1 can help distinguish pulmonary from gastrointestinal carcinoid and pancreatic endocrine tumors,” Hum Pathol 2001;32(10): 1087-1093.
Cohen SJ et al. “Isolation and characterization of circulating tumor cells in patients with metastatic colorectal cancer”, Clin Colorectal Cancer 2006; 6(2): 125-132.
Cristofanilli M. et al., “Circulating tumor cells, disease progression, and survival in metastatic breast cancer”, N Engl J Med 2004, 351(8):781-791.
Danila D. et al. “Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer”, Clin Cancer Res 2007; 13(23):7053-7058.
Kahan L., “Medical devices; immunology and microbiology devices; classification of the immunomagnetic circulating cancer cell selection and enumeration system”, Final rule, Fed Regist 2004; 69:26036-26038.
Kidd M. et al. Microsatellite instability and gene mutations in transforming growth factor-beta type II receptor are absent in small bowel carcinoid tumors, Cancer 2005; 103(2):229-236.
Kidd M, et al., “Isolation, Functional Characterization and transcriptome of the Mastomys ileal enterochromaffin cells,” Am J Physiol Gastrointest Liver Physiol 2006; 291:G778-791.
Mimori K, et al, “A large-scale study of MT1-MMP as a marker for isolated tumor cells in peripheral blood and bone marrow in gastric cancer cases,” Ann Surg Oncol 2008; 15(10):2934-2942.
Modlin I. et al. “The Identification of gut neuroendocrine tumor disease by multiple synchronous transcript analysis in blood”, Plos One 2013, vol. 8, Issue 5, e63364 (12 pages).
Modlin I. et al., “The functional characterization of normal and neoplastic human enterochromaffin cells”, Clin Endocrinol Metab 2006; 91(6):2340-2348.
Ross AA, et al. “Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques,” Blood 1993; 82(9):2605-2610.
Sieuwerts AM, et al., “Molecular characterization of circulating tumor cells in large quantities of contaminating leukocytes by a multiplex real-time PCR,” Breast Cancer Res Treat 2009; 118(3):455-468.
Tannapfel A. et al., “BRAF gene mutations are rare events in gastroenteropancreatic neuroendocrine tumors,” Am J Clin Pathol 2005; 123(2):256-260.
Van Feden S. et al. “Classification of low-grade neuroendocrine tumors of midgut and unknown origin,” Hum Pathol 2002; 33(11): 1126-1132.
Zikusoka MN et al., “Molecular genetics of gastroenteropancreatic neuroendocrine tumors”, Cancer 2005; 104:2292-2309.
Boom, R. et al. (1990) “Rapid and Simple Method for Purification of Nucleic Acids” J Clin Microbiol, 28(3):495-503.
Chomczynski, P. (2006). “The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on” Nat Protoc, 1(2):581-585.
Dhawan, M. et al. (2010) “Application of committee κNN classifiers for gene expression profile classification” Int J Bioinform Res Appl, 6(4):344-352.
Drozdov, I. et al. (2010) “Genome-wide expression patterns in physiological cardiac hypertrophy” BMC Genomics, 11:557, 13 pages.
Evgeniou, T. et al. (1999) “Regularization Networks and Support Vector Machines” Advances in Computational Math, 13(1):1-53.
Freeman, T.C. et al. (Oct. 2007) “Construction, visualization, and clustering of transcription networks from microarray expression data” PLoS Comput Biol, 3(10):2032-2042.
Gabriel, K.R. (Dec. 1971) “The Biplot Graphic Display of Matrices with Application to Principal Component Analysis” Biometrika, 58(3):453-467.
Gallant, S.I. (Jun. 1990) “Perceptron-Based Learning Algorithms” IEEE Transactions on Neural Networks, 1(2):179-191.
Glotsos, D. et al. (2005) “Automated diagnosis of brain tumours astrocytomas using probabilistic neural network clustering and support vector machines” Int J Neural Syst, 15(1-2):1-11.
Godfrey, T.E. et al. (May 2000) “Quantitative mRNA Expression Analysis from Formalin-Fixed, Paraffin-Embedded Tissues Using 5′ Nuclease Quantitative Reverse Transcription-Polymerase Chain Reaction” Molec Diagnostics, 2(2):84-91.
Hanahan, D and R.A. Weinberg (Mar. 4, 2011) “Hallmarks of cancer: The next generation” Cell, 144(5):646-674.
Hod, Y. (1992) “A Simplified Ribonuclease Protection Assay” Biotechniques, 13(6):852-853.
Ji, S. and J. Ye (Oct. 2008) “Kernel Uncorrelated and Regularized Discriminant Analysis: A Theoretical and Computational Study” IEEE Transactions on Knowledge and Data Engineering, 20(10):1311-1321.
Kawarazaki, S. et al. (2010) “Conversion of a molecular classifier obtained by gene expression profiling into a classifier based on real-time PCR: a prognosis predictor for gliomas” BMC Med Genomics, 3:52, 8 pages.
Kidd, M. et al. (2006) “The Role of Genetic Markers—Nap1L1, MAGE-D2, and MTA1—in Defining Small-Intestinal Carcinoid Neoplasia” Ann Surg Oncol, 13(2):253-262.
Kidd, M. et al. (2007) “GeneChip, geNorm, and Gastrointestinal tumors: novel reference genes for real-time PCR” Physiol Genomics, 30:363-370.
Kohavi, R. (1995) “A Sudy of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection” Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 2(12): 1137-1143.
Lawlor, G, et al. (2011) “Increased Peripheral Blood GATA-3 Expression in Asymptomatic Patients With Active Ulcerative Colitis at Colonoscopy” Gastroenterology, 140(Suppl 1):S-842, Abstract Tul827.
Lilien, R.H. et al. (2003) “Probabilistic Disease Classification of Expression-Dependent Proteomic Data from Mass Spectrometry of Human Serum” J Comput Biol, 10(6):925-946.
Markey, M.K. et al. (2002) “Perceptron error surface analysis: a case study in breast cancer diagnosis” Comput Biol Med, 32(2):99-109.
Mattfeldt, T. et al. (2003) “Classification of Prostatic Carcinoma with Artificial Neural Networks Using Comparative Genomic Hybridization and Quantitative Stereological Data” Pathol Res Pract, 199(12):773-784.
Mazzaglia, P.J. et al. (2007) “Laparoscopic radiofrequency ablation of neuroendocrine liver metastases: a 10-year experience evaluating predictors of survival” Surgery, 142(1):10-19.
Michiels, et al. (2007) “Interpretation of microarray data in cancer” Br J Cancer, 96(8):1155-1158.
Noble, W.S. (Dec. 2006) “What is a support vector machine?” Nat Biotechnol, 24(12):1565-1567.
Parker, R.M.C. and N.M. Barnes (1999) “mRNA: Detection by In Situ and Northern Hypridization” Methods in Molecular Biology, 106:247-283.
Peng, H. et al. (Aug. 2005) “Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy” IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):1226-1238.
Picon, A. et al. (1998) “A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor beta 1” Cancer Epidemiol Biomarkers Prev, 7(6):497-504.
Pima, I. and M. Aladjem (2004) “Regularized discriminant analysis for face recognition” Pattern Recognition, 37(9):1945-1948.
Pimentel, M. et al. (2011) “Validating a New Genomic Test for Irritable Bowel Syndrome” Gastroenterology, 140(Suppl 1):S-798, Abstract Tul329.
Pirooznia, M. et al. (2008) “A comparative study of different machine learning methods on microarray gene expression data” BMC Genomics, 9(Suppl 1):S13, 13 pages.
Specht, K. et al. (Feb. 2001) “Quantitative Gene Expression Analysis in Microdissected Archival Formalin-Fixed and Paraffin-Embedded Tumor Tissue” Am J Pathol, 158:419-429.
Urgard, E. et al. (2011) “Metagenes Associated with Survival in Non-Small Cell Lung Cancer” Cancer Inform, 10:175-183.
Vandebriel, R.J. et al. (1998) “Altered cytokine (receptor) mRNA expression as a tool in immunotoxicology” Toxicology, 130(1): 43-67.
Vandesompele, J. et al. (2002) “Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes” Genome Biol, 3(7):research0034.1-0031.11.
Weis, J.H. et al. (Aug. 1992) “Detection of rare mRNAs via quantitative RT-PCT” Trends in Genetics, 8:263-264.
Yu, L. et al (2002) “TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses” EMBO J, 21(14):3749-3759.
Zampetaki, A. et al. (2010) “Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes” Circ Res, 107(6): 810-817.
Zhang, H. et al (2001) “Recursive Partitioning for Tumor Classification with Gene Expression Microarray Data” Proc Natl Acad Sci USA, 98(12):6730-6735.
Related Publications (1)
Number Date Country
20160076106 A1 Mar 2016 US
Provisional Applications (1)
Number Date Country
62050465 Sep 2014 US