The present invention relates to low sodium salt compositions and methods used to make them. More particularly, the invention relates to salt compositions having rounded particles and methods of making salt compositions having rounded particles.
Sodium chloride (NaCl) is well known. While salt imparts a desirable taste and flavor to food, too much use can result in long term adverse health risks. Because of the proliferation of salt in prepared foods and other products found in a grocery store, many people exceed the average recommended daily intake. Exceeding the recommended daily intake of sodium is a significant risk factor in developing high blood pressure and a cause or contributing factor in the rising incidence of heart disease. As such, medical professionals and governmental authorities recommend a reduction in per capita salt consumption of from about 4000 mg per day to a level of about 2300 mg or less per day.
Dietary Guidelines issued in the U.S. in 2005 suggest a proposed consumption limit of 2300 mg of sodium per day and the National Academy of Science (NAS) even suggests 1500-2300 mg of sodium per day. Health advocates at the American Heart Association and the Centers for Disease Control support changing the sodium limit to 1500 mg in the 2010 Dietary Guidelines. The NAS also recommends a potassium consumption of 4,700 mg per day. Typically potassium consumption is less than half of that level.
Because of these and other reasons, there are a variety of salt substitutes in the market. The classical approach to the production of salt substitutes involves combining sodium and potassium salts, or occasionally magnesium salts, in various ratios, and adding a wide variety of other modifiers (i.e., additives, flavorants, and masking agents) to this mix. The other additives are generally added to mask or at least partially reduce the generally metallic/bitter taste of potassium that has generally been associated with salt substitutes containing potassium and even magnesium. The processing techniques used to make these products include, among others, simple blending, agglomeration, extrusion cooking, and the like. Literature concerning reduced sodium compositions includes U.S. Patent Application Publication Nos. 2004/0047976 and 2012/0128830, U.S. Pat. No. 8,435,555, Japanese Patent Application Publication No. JP9173010, European Patent No. EP0090571, and PCT Application No. PCT/GB2010/050614, all of which are incorporated herein by reference.
U.S. Patent Application Publication No. 2004/0047976 discloses a granulated salt composition produced by mixing sodium chloride, potassium chloride, water and a flavor enhancer and granulating the resulting mass.
U.S. Patent Application Publication No. 2012/0128830 discloses low-sodium chloride compositions prepared by melting a mixture of sodium chloride and a non-sodium chloride and cooling the melted amalgamation to form a solid mass, which may be ground into smaller particles.
U.S. Pat. Nos. 7,989,016; 8,197,878; and 8,329,236 disclose the use of a wet process to make potassium chloride crystals that include a carrier and an acidulant for use as a salt substitute.
U.S. Pat. No. 8,435,555 discloses a salt product produced by mixing salt, a solvent (preferably water) and a polymeric organic material, and atomizing the mixture and evaporating the solvent. The resulting salt product can be in the form of hollow spheres formed from crystallites of salt.
Japanese Patent Application Publication No. JP9173010 discloses food additives produced by placing sodium chloride and, e.g., potassium chloride in cavities in a ceramic plate, melting the mixture after dehydration, slowly cooling to room temperature and taking the solidified product out of the cavities of the ceramic plate to obtain the food additive having a size corresponding to the size of the cavity.
European Patent No. EP090571 discloses flakes comprising sodium chloride and potassium chloride produced by separately grinding sodium chloride and potassium chloride to form particles having a size of less than 70 mesh. The particles are admixed and compacted into flakes.
PCT Application No. PCT/GB2010/050614 discloses a reduced sodium composition which is produced by melting sodium chloride together with one or more sodium chloride substitutes, cooling the melt to form a solid, and grinding the solid.
Generally, the taste of salt substitute mixtures without sodium chloride is unsatisfactory, so that most mixtures contain at least a portion of sodium chloride. However, even mixtures containing a portion of sodium chloride produce either a distinct off flavor or an inadequate salt taste, especially when the amount is intended not to differ significantly from the comparable amount of sodium chloride. Taste, functionality and consumer acceptance, not to mention cost, are all challenges in developing low sodium salt compositions and, thus far, no suitable salt replacement exists for all applications.
Accordingly, the problem of finding compositions that have a comparable appearance as sodium chloride, taste sufficiently salty, do not have an off flavor, and function like sodium chloride, while at the same time permitting the sodium content to be reduced in an economically feasible manner, continues to exist.
There is thus a need for improved salt compositions, and methods of making such compositions, that have reduced sodium content while at the same time having an appearance comparable to that of sodium chloride, tasting sufficiently salty, not having an off flavor, and functioning like sodium chloride.
These and other needs are addressed by the various embodiments of the present invention. The following presents a simplified summary of the invention to provide an understanding of some aspects of the invention. This summary is not an extensive overview of the invention and its various embodiments. It is intended neither to identify key or critical elements of the invention nor to delineate the scope of the invention but to present selected concepts of the invention together with the more detailed description presented below.
The present embodiments are directed generally to salt compositions and methods used to make them. Some embodiments are directed to methods for preparing salt compositions that include aerosolizing a melted salt composition to form droplets, where the droplets form rounded particles. Embodiments may include solid compositions, including rounded salt particles, where the particles are formed by aerosolizing a melted salt composition.
In embodiments, the salt composition is sodium chloride without additional components. In further embodiments, the salt composition is a composition selected from sodium salts, potassium salts, magnesium salts, calcium salts, and combinations thereof. The salt may be a chloride salt, and the salt composition may include sodium chloride. The salt composition may further include a non-sodium chloride salt, and the non-sodium chloride salt may be selected from potassium chloride, magnesium chloride, calcium chloride, and combinations thereof. In an embodiment, the salt composition further comprises from about 1 to about 5 wt % MgCl2.
Further, the melted salt composition may be produced by heating a salt composition in a furnace, and the temperature of the melted composition may be from about 650° C. to about 1000° C. The method may further include conveying the melted composition to at least one of a nebulizer, an ultrasonic atomizer, an electrospray atomizer, a centrifugal atomizer, and a gas atomizer.
Further embodiments may include food products, including a food material and rounded salt particles. The food products may be a fried food product, a baked food product, or an extruded food product. The food product may also be soups, sauces, baked goods, meat products, poultry products, snack products, dairy products, and breakfast cereals. The food product may be heated to a temperature from about 50° C. to about 250° C. during its preparation.
Embodiments include methods to make a food product, including combining a food material and rounded salt particles to form a food product; and treating the food product by a process selected from frying, baking, and extruding.
These embodiments can provide a number of benefits. For example, they can provide improved salt compositions, and methods of making such compositions, that have reduced sodium content while at the same time having an appearance comparable to that of sodium chloride, tasting sufficiently salty, not having an off flavor, and functioning like sodium chloride. The methods may provide improvement in sodium reduction using potassium chloride and NaCl without a masking agent. These and other advantages will be apparent from the disclosure contained herein.
As used herein, “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
It is to be noted that the term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising,” “including,” and “having” can be used interchangeably.
As used herein, “agglomeration” or “dry mixture” refers to a combination or mixture of components such that the constituent components in the combination or mixture are indistinguishable from one another upon non-magnified visual inspection.
As used herein, “amalgamation” refers to a combination or mixture of components such that the constituent components in the combination or mixture are indistinguishable from one another upon magnified visual inspection.
As used herein, “dietary supplement” refers to any product that contains a “dietary ingredient” intended to supplement the diet. The “dietary ingredients” in these products may include: vitamins, minerals, herbs or other botanicals, amino acids, and substances such as enzymes and metabolites. Dietary supplements can also be extracts or concentrates.
As used herein, “modifier(s)” refers to additives used to mask the off flavors in reduced sodium compositions. For instance, potassium chloride and magnesium chloride are known to impart bitter, metallic, or other off flavors when used to reduce the sodium content in salt replacement compositions. To mask these off flavors, additives are used. The term “modifier(s)” is used herein to include flavorants, masking agents, organic acids, and other terms used in the art to refer to additives used to alter the taste of a salt composition.
As used herein, “salt,” unless modified by another word (i.e., reduced-salt, potassium salt, calcium salt and the like) or used itself to modify another word (i.e., salt substitute, salt composition and the like), means sodium chloride (NaCl).
As used herein, “regular” means unmodified. For example, “regular” salt or NaCl means unmodified NaCl, or NaCl that has not been additionally processed by heating and/or aerosolizing.
As used herein, “rounded” refers to a shape having one or more rounded edges. For instance, a rounded shape may include a cube, rectangular, crystalline shape having rounded corners, concave shapes, or bowl shapes. In addition, a rounded shape may include spherical or elliptical shapes, or any shapes containing curves. Rounded shapes can be, but are not necessarily, regular shapes, such as a sphere. Rounded shapes include particle shapes formed by methods of the present invention, such as a shape formed by molten material, or droplets of molten material cooled to a hardened material in a gas. Whether a thing, such as a particle, is rounded or not is considered in the context of the scale of the thing being considered. For instance, a particle may be rounded because the particle is generally spherical or elliptical even though the particle is composed of crystalline material that at a smaller scale than the scale of the particle has component parts that do not have rounded edges, concave shapes, bowl shapes or any shape containing a curve.
As used herein, “aerosolizing” means creating particles of a material in a gas, or creating an aerosol, which is a colloid suspension of fine solid particles or liquid droplets in a gas, or a “mixture of gas and liquid particles.” An exemplary naturally occurring aerosol is a mist, formed when small vaporized water particles mixed with hot ambient air are cooled down and condense into a fine cloud of visible airborne water droplets. Aerosolizing may include atomizing, for example, using an atomizer nozzle. Aerosolizing may mean creating sprays, fogs, clouds, and/or smoke, which appear to be atomized.
As used herein, “similar appearance” refers to various aspects of an appearance. For instance, a “similar appearance” to salt or NaCl may mean having a similar color or transparency, or a similar particle size. Compositions may have a similar appearance without having a similar shape or surface area.
In an embodiment, a method is provided for preparing a salt composition, comprising aerosolizing a melted salt composition to form droplets, wherein the droplets form rounded particles. In another embodiment, a method is provided for producing a salt composition comprising melting a composition consisting essentially of chloride salts and aerosolizing the molten chloride salts to form particles. In another embodiment, a method is provided for producing a salt composition comprising melting a composition comprising chloride salts and aerosolizing the molten chloride salts to form particles.
In an embodiment, a solid composition is provided comprising rounded salt particles consisting essentially of chloride salts. In another embodiment, a solid composition is provided comprising rounded salt particles, wherein the particles are formed by aerosolizing a melted salt composition. In another embodiment, a particulate salt composition is provided that is formed from aerosolized molten chloride salts in the absence of a solvent. In another embodiment, a particulate salt composition is formed from aerosolized molten chloride salts in the absence of an organic material. In another embodiment, a particulate salt composition is formed from aerosolized molten chloride salts in the absence of a taste modifier.
In an embodiment, a food product is provided comprising a food material and rounded salt particles produced from molten salt. The food product can be selected from the group consisting of a fried food product, a baked food product, and an extruded food product. The food product can be selected from the group consisting of soups, sauces, baked goods, meat products, poultry products, snack products, dairy products, and breakfast cereals. The food product can be heated to a temperature from about 50° C. to about 250° C.
In accordance with an embodiment, a method to make a food product is provided, comprising combining a food material and rounded salt particles produced from molten salt to form a food product; and treating the food product by a process selected from the group consisting of frying, baking, and extruding. The food product can be selected from soups, sauces, baked goods, meat products, poultry products, snack products, dairy products, and breakfast cereals. The food product can be heated to a temperature from about 50° C. to about 250° C.
The salt can be selected from the group consisting of sodium salts, potassium salts, magnesium salts, calcium salts, and combinations thereof. The salts can be chloride salts. The salt can be sodium chloride. The salt can further comprise a non-sodium chloride salt. The non-sodium chloride salt can be selected from the group consisting of potassium chloride, magnesium chloride, calcium chloride, and combinations thereof. Preferably, the non-sodium chloride salt is potassium chloride. The salt can further include from about 1 to about 5 wt % magnesium chloride.
In an embodiment, there can be sodium and non-sodium salts located closely adjacent, uniformly distributed and intermingled in the particulate salts. In an embodiment chloride salts comprise potassium and sodium salts, and the potassium and sodium ions are closely adjacent, uniformly distributed and intermingled in the particulate salt composition.
The salt composition can comprise between about 1 wt % and about 100 wt % sodium chloride and between about 0 wt % and about 99 wt % potassium chloride. In an embodiment, the salt composition can include between about 30 wt % and about 70 wt % sodium chloride and between about 30 wt % and about 70 wt % potassium chloride. In an embodiment, the salt composition can include between about 45 wt % and about 55 wt % sodium chloride and between about 35 wt % and about 65 wt % potassium chloride. In an embodiment, the salt composition contains less than about 1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% of sodium chloride.
The aerosolizing can include treating the melted salt composition in at least one of a nebulizer, an ultrasonic atomizer, an electrospray atomizer, a centrifugal atomizer, and a gas atomizer. The melted salt composition can be produced by heating a salt in a furnace. The temperature of the melted composition can be from about 650° C. to about 1000° C.
The rounded particles can further be sieved to isolate a particle size range. The rounded particles can have a diameter from about 1 micron to about 1000 microns or from about 3 microns to about 150 microns. The rounded particles can be ground. The rounded particles can be combined with at least one additive. The additive can be selected from the group consisting of an antioxidant, a dietary supplement, a phosphate, an anti-caking agent, a colorant, a salt enhancer, an organic acid, an amino acid, an amino acid derivative, a sugar, a sugar derivative, and combinations thereof. In an embodiment, the rounded particles are semisolid particles with internal voids. A salt substitute can be produced from the rounded particles.
The embodiments and configurations described herein are neither complete nor exhaustive. As will be appreciated, other embodiments of the invention are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below.
The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art. All patents, applications, published applications and other publications are incorporated by reference in their entirety. In the event that there is a plurality of definitions for a term herein, those provided in the Summary prevail unless stated otherwise.
The present embodiments are directed generally to salt compositions and methods used to make them. Various embodiments are directed to methods for preparing salt compositions that include aerosolizing a melted salt composition to form droplets, where the droplets form rounded particles. Further embodiments include solid compositions, including rounded salt particles, where the particles are formed by aerosolizing a melted salt composition. The rounded particles may be solid or hollow, but in embodiments are neither hollow nor solid, but rather possess void spaces in the center of semisolid particles. The particles may be fully enclosed, partially enclosed, or a concave shape.
In accordance with the present invention, processes for making a salt composition having a similar appearance to salt and taste as salt, while having a reduced sodium content, have been discovered. In addition, the salt compositions may include rounded particles that provide increased surface area to thereby increase the salty taste by increasing the area of the particle in contact with taste receptors, while not increasing the sodium content. Further, the salt composition may not require one or more, and may exclude or be in the absence of, the usual modifiers for masking the bitterness or off-taste of non-sodium chlorides. Related to the processes, resultant salt compositions that include an amalgamation of sodium chloride and one or more non-sodium chlorides, which lack the need to mask bitterness or off flavors, have been discovered. This is advantageous over prior art salt compositions because prior art salt compositions are primarily mixtures of components (for example, dry mixtures) and mixtures where particles of the mixtures did not have rounded shapes or homogenous component distribution. This means that the surface area of the prior art compositions in contact with taste receptors is less than that of the present invention. This variation in taste receptor activation where components are not simultaneously received, results in a combination of salty and bitter taste sensations. The combination of salty and bitter taste sensations is perceived as off flavors. Salt compositions of the prior art often include modifiers to mask the perception of off flavors.
In embodiments, the salt compositions may be solid homogeneous salt products that contact taste receptors such that the components are simultaneously received, resulting in a salty taste sensation. This is advantageous over prior art salt compositions because prior art salt compositions are primarily mixtures of components where each component does not necessarily contact a taste receptor at the same time as the other components, thereby resulting in a combination of salty and bitter taste sensations and off flavors. Salt compositions of the prior art include modifiers to mask the perception of off flavors.
The surprising and unexpected nature of this discovery can be appreciated by reference to the literature, which abundantly reports the non-rounded shape of salt composition particles, the bitter taste of non-sodium chlorides (e.g., potassium chloride and magnesium chloride), and the multiplicity of additives, other than sodium chloride, which have been used to alter this unpleasant taste. The fact that compositions of the present invention, such as sodium chloride, or a combination of sodium chloride and non-sodium chloride, heated to or beyond their respective melting points and aerosolized to form rounded particles lack the bitterness and off flavors associated with non-sodium chloride containing salt compositions is completely unexpected and entirely unpredictable.
Compositions
The salt compositions of the present invention, that include rounded particles of sodium chloride, or sodium chloride and a non-sodium chloride, can have less sodium, but still have the same taste and a similar appearance to that of a composition that includes only regular NaCl.
In embodiments, the salt composition is sodium chloride without additional components. In further embodiments, the salt composition is a composition selected from sodium salts, potassium salts, magnesium salts, calcium salts, and combinations thereof. The salt may be a chloride salt, and the salt composition may include sodium chloride. The salt composition may further include a non-sodium chloride salt, and the non-sodium chloride salt may be selected from potassium chloride, magnesium chloride, calcium chloride, and combinations thereof. Embodiments may include salt compositions that do not have organic components (e.g., ammonium salts) due to the fact that organic components burn or decompose at temperatures exceeding 500° C. In embodiments, organic components may be added after aerosolizing the particles of the present invention. In an embodiment, the salt composition further comprises from about 1 to about 5 wt % magnesium chloride.
The salt compositions may include 100 wt % sodium chloride, or between about 1 wt % and about 100 wt % sodium chloride and between about 0 wt % and about 99 wt % non-sodium chloride salt (e.g., potassium chloride), or between about 30 wt % and about 70 wt % sodium chloride and between about 30 wt % and about 70 wt % non-sodium chloride salt (e.g., potassium chloride), or between about 35 wt % and about 55 wt % sodium chloride and between about 45 wt % and about 65 wt % non-sodium chloride salt (e.g., potassium chloride). The salt composition may contain less than about 1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 99% of sodium chloride
Further, the salt compositions may be low sodium salt compositions. In particular, the compositions may contain about 10 wt % to 95 wt % lower sodium than regular salt. The compositions may contain about 15 wt %, 20 wt %, 25 wt %, 30 wt %, 35 wt %, 40 wt %, 45 wt %, 50 wt %, 55 wt %, 60 wt %, 65 wt %, 70 wt %, 75 wt %, 80 wt %, 85 wt %, 90 wt %, or 95 wt % lower sodium than regular salt. In embodiments, the compositions may contain about 40 wt % to about 60 wt % lower sodium than regular salt, or about 50 wt % lower sodium than regular salt.
In embodiments, the salt compositions of the present invention may be combined with at least one additive. Additives other than inorganic salts may be added after processing the composition, because the melt temperatures will typically volatilize or decompose organic materials. Additives may be selected from one or more of an antioxidant, a dietary supplement, a phosphate, an anti-caking agent, a colorant, a salt enhancer, an organic acid, an amino acid, an amino acid derivative, a sugar, a sugar derivative, other ingredients typically present in table salt and salt substitute products, and combinations thereof.
For example, antioxidants may be added to reduce the rancidity of the salted products when cooked. Exemplary methods are discussed in U.S. Patent Publication No. 2012/0128830. In embodiments, suitable antioxidants may include rosemary extract, butylated hydroxytoluene, butylated hydroxyanisole, and tocopherols, among others. Phosphates may be added to tenderize the salted food product. Suitable phosphates may include monosodium phosphate, tetrasodium pyrophosphate, sodium hexametaphosphate, monopotassium phosphate, tetrapotassium pyrophosphate, disodium phosphate, sodium tripolyphosphate, sodium acid pyrophosphate, dipotassium phosphate, and potassium tripolyphosphate. Colorants may be added to give the salt compositions a distinct color. Suitable natural colorants include caramel color, turmeric, annatto, beta-carotene, paprika oleoresin, red cabbage juice, beet juice, grape skin extract, and carmine, among others. Dietary supplements may be added to support a nutritious diet. Suitable dietary supplements include vitamins, minerals, herbs or other botanicals, amino acids, substances such as enzymes, metabolites, and combinations thereof. In embodiments, the salt compositions of the present invention include magnesium chloride, vitamin D and calcium as dietary supplements. All types of magnesium, vitamin D and calcium are contemplated. Suitable anti-caking agents may be included in the salt composition of the present invention to prevent caking or the formation of lumps, or to provide a free flowing product and may include sodium hexacyanoferrate (II) (YPS), potassium hexacyanoferrate (II) tri hydrate (potassium ferrocyanide or YPP), tricalcium phosphate carbonate, magnesium carbonate, silicates, propylene glycol and silicon dioxide. In embodiments, an antioxidant used may also act as a colorant. In embodiments, the salt compositions of the present invention include magnesium chloride.
The salt compositions of the present invention may optionally contain other ingredients typically present in table salt and salt substitute products. Other suitable ingredients include iodide sources, flavors and flavor enhancers. An exemplary iodide source is KI with a dextrose stabilizer. Exemplary flavor enhancers include monosodium glutamate (MSG), meat extracts, protein hydrolysates, amino acids, hydrolyzed vegetable protein, autolyzed yeast and mononucleotide salts.
Various ranges of additives may be added. For example, an antioxidant may be added in the amount of about 0.01 wt % to about 1 wt %, a dietary supplement may be added in the amount of about 0.1 wt % to about 5 wt %, a phosphate may be added in the amount of about 0.1 wt % to about 10 wt %, an anti-caking agent may be added in the amount of about 0.1 wt % to about 2 wt %, a colorant additive may be added in the amount of about 0.01 wt % to about 1 wt %, a salt enhancer may be added in the amount of about 0.01 wt % to about 5 wt %, an organic acid may be added in the amount of about 0.01 wt % to about 5 wt %, an amino acid may be added in the amount of about 0.01 wt % to about 5 wt %, an amino acid derivative may be added in the amount of about 0.01 wt % to about 5 wt %, a sugar may be added in the amount of about 0.1 wt % to about 10 wt %, or a sugar derivative additive may be added in the amount of about 0.01 wt % to about 10 wt %. In embodiments, from about 0.1% to about 2% by weight of silicon dioxide may be added to the composition, or about 1% by weight of silicon dioxide.
Methods of Preparation
The process of making the salt compositions of the present invention include aerosolizing a salt composition, such as sodium chloride, or a composition of sodium chloride and a non-sodium chloride, that is heated to or beyond their respective melting points to form droplets wherein the droplets form rounded particles. The process can include mixing from about 1 wt % to about 100 wt % by weight sodium chloride and from about 99 wt % to about 0 wt % by weight of a non-sodium chloride, or from about 30 wt % to about 70 wt % by weight sodium chloride and from about 70 wt % to about 30 wt % by weight of a non-sodium chloride. In embodiments, the process includes mixing about 50 wt % by weight sodium chloride and about 50 wt % by weight of a non-sodium chloride.
In exemplary embodiments, sodium chloride may be mixed with non-sodium chloride, for example as a dry mix. The mixing of the sodium chloride and non-sodium chloride may be conducted in any suitable vessel. After the non-sodium chloride and the sodium chloride are mixed, the dry mixture is melted at a temperature at or above their respective melting points. In embodiments, sodium chloride may be the only component in the mixture. For instance, sodium chloride has a melting temperature of 801° C. and potassium chloride has a melting temperature of 770° C. Because the mixtures can have a lower melting temperature than the individual components, a temperature of about 650° C. or above can melt the combined components. Accordingly, the heating temperature may be from about 650° C. to about 1200° C., or from about 700° C. to about 1000° C. and above. A suitable heating temperature is one at which the components of the mixture will melt and form a homogeneous liquid amalgamation. In embodiments, the furnace temperature is at least about 650° C., 660° C., 670° C., 680° C., 690° C., 700° C., 710° C., 720° C., 730° C., 740° C., 750° C., 760° C., 770° C., 780° C., 790° C., 800° C., 810° C., 820° C., 830° C., 840° C., 850° C., 860° C., 870° C., 880° C., 890° C., 900° C., 910° C., 920° C., 930° C., 940° C., 950° C., 960° C., 970° C., 980° C., 990° C., 1000° C., 1010° C., 1025° C., or 1050° C. or more. In further embodiments, the heating temperature is at least about 800° C., 801° C., 802° C., 803° C., 804° C., 805° C., 850° C., 900° C., 910° C., 950° C., or 1000° C. In further embodiments, the heating temperature is at least about 850° C.
The mixture can be heated to form a molten mixture of the components. A suitable heating time is one at which the components of the mixture will melt and form a molten liquid from the salt, or a homogeneous liquid amalgamation. For example, the mixture can be heated for about 1 to about 60 minutes. In embodiments, the mixture is heated for about at least about 5, 10, 15, 20, 25, 30, 35, 40, or 45 minutes. In further embodiments, the mixture is heated for about 15 minutes or for a time based on the furnace power. The mixture may be heated in any suitable vessel and/or oven. The time and temperature of the heating process may vary depending upon how the heat is delivered to the material.
The heated composition, which is molten or liquefied by the application of heat, is then aerosolized. The method may further include conveying the melted composition to be aerosolized. The step of aerosolizing may include treating the melted salt composition in at least one of a nebulizer, an ultrasonic atomizer, an electrospray atomizer, a centrifugal atomizer, and a gas atomizer.
In embodiments, a nebulizer may be used to aerosolize the heated composition. Exemplary nebulizers use nitrogen, compressed air or ultrasonic power to break up medical solutions and suspensions into droplets. An exemplary nebulizer 100 used in embodiments of the present invention is shown in
The nebulizer may be constructed of any suitable material, such as stainless steel, hastelloy, palladium, platinum, etc. A nebulizer may also be coated with materials such as gold, palladium and platinum. Coatings are often more cost-effective than solid materials.
Commonly used nebulizers include jet nebulizers, which are also called “atomizers.” Jet nebulizers are connected by tubing to a compressor that causes compressed air or nitrogen to flow at high velocity through a liquid medicine to turn it into an aerosol, which is then inhaled by the patient. Ultrasonic wave nebulizers may also be used. Ultrasonic wave nebulizers use an electronic oscillator to generate a high frequency ultrasonic wave, which causes the mechanical vibration of a piezoelectric element. This vibrating element is in contact with a liquid reservoir and its high frequency vibration is sufficient to produce a vapor mist.
Another type of nebulizer that may be used is an ultrasonic vibrating mesh technology. In ultrasonic vibrating mesh technology, a mesh/membrane with 1000-7000 laser drilled holes vibrates at the top of a liquid reservoir, and thereby pressures out a mist of droplets through the holes.
Electronic nebulizers may be used in the present invention. Electronic nebulizers produce a substantially monodisperse spectrum of particles when they aerosolize a solution into particles. Thus, nebulizers that produce aerosols having substantially monodisperse particle sizes, as well as nebulizers that produce aerosols having polydisperse particle sizes, may be used in the present invention.
Nebulizers used by the present invention may be included in parallel or in series, or in a showerhead assembly, for example, where the showerhead assembly includes one or more nebulizers configured to dispense a mixture as a mist with droplets. Advantages in processing may be achieved by methods of the present invention. For example, the methods may advantageously include improvements in efficiency and shorter processing times, and/or reduction in the amount of processing steps. Further advantages may include decreased waste and reduced heating and/or cooling costs, or other processing costs. Other technologies known in the art, and not discussed herein, may be used for aerosolizing.
The step of aerosolizing a melted salt composition forms droplets of the composition. As used herein, the term “droplet” refers to portions of the melted salt composition formed during the step of aerosolizing while the portion is in liquid form. As described below, such portions will solidify to form particles. The droplets will have a size that depends on the apparatus for forming the aerosol and how it is operated. The droplet size can be between about 1 micron to about 1000 microns, or from about 1 micron to about 500 microns, or from about 1 micron to about 300 microns, or from about 5 microns to about 150 microns, or from about 10 microns to about 100 microns, or from about 10 microns to about 50 microns.
Aerosolized particles solidify after being aerosolized to form rounded particles. In embodiments, they may solidify in the air, prior to touching a surface, or they may solidify after touching a surface. The aerosolized particles may be rounded particles and may be hollow or solid, and may solidify as hollow or solid particles. In embodiments, the rounded particles are sphere-like and are neither hollow nor solid, but instead are semisolid with void spaces. The void spaces can make up from about 5 volume percent to about 50 volume percent, and more typically from about 10 volume percent to about 20 volume percent of the total volume of the particle. In embodiments, the rounded surfaces (e.g., absence or reduction of crystal faces) indicate that the particles are amorphous or microcrystalline. In embodiments, collections of particles may be heterogeneous with respect to shape, size, or other attributes.
The salt compositions may have various particle sizes. Additionally, the hollow particles may have various sizes of inner diameters and outer diameters. In embodiments, the rounded particles have an outer diameter from about 1 micron to about 1000 microns, or from about 1 micron to about 500 microns, or from about 1 micron to about 300 microns, or from about 3 microns to about 150 microns, or from about 5 microns to about 100 microns, or from about 10 microns to about 50 microns.
The aerosolizing and solidification may produce a wide range of particle morphologies. For example, the particles may be formed as aerosol particles that are formed in the free gas phase without any interaction with other particles or droplets (also called primary aerosol particles), or particles that are formed as they were subject to various transformations and interactions with other particles or droplets after being aerosolized (also called secondary aerosol particles). The rounded particles may be formed in a free gas phase, e.g., having enough time to assume a rounded shape (driven by surface tension) before solidifying. The rounded particles may also be formed in other shapes, such as drop shapes, e.g., having solidified prior to forming a wholly rounded shape. Particles of the salt compositions may have holes or cracks of various shapes (e.g., holes or cracks caused by overpressurization inside of particles that have solidified). In addition, the particles may have other surface features, such as wrinkles or fault lines (e.g., due to shrinkage from the particles cooling during the process, collision with other particles, equipment surfaces, etc.). The salt compositions may also include varying particle shapes resulting from the processing, such as splatters, coalesced particles, etc.
The methods may further include isolating a particle size range, e.g., by sieving the rounded particles. The methods may further include grinding and/or agglomerating the rounded particles. Larger particles may be screened out by gravitational settling (e.g., in a drift tube), or by other methods, such as in a cyclone. In embodiments, the large particles that are screened out may be recycled into the aerosolizing process. The salt compositions may be ground or milled. In embodiments, it may be ground or milled to a salt composition's desired particle size. Any suitable grinder or mill may be used in accordance with this invention. Grinding the rounded particles may advantageously increase surface area.
In embodiments, the salt compositions may have particle sizes of between about 20 mesh and about 100 mesh, or between about 35 mesh and about 100 mesh, or between about 35 mesh and about 90 mesh, or between about 35 mesh and about 80 mesh, or between about 35 mesh and about 60 mesh. It should be recognized that the particle sizes of the compositions may be selected to meet the particular end use application. “Pretzel grade” salt generally has a particle size that passes through a 35 mesh sieve, whereas “shaker grade” salt has a particle size that passes through between a 35 and a 60 mesh sieve. “Popcorn grade” salt has a particle size that passes through a 60 mesh sieve. Once ground, the salt composition may have less than about 10% of all granules, which are finer than 100 mesh. All mesh sizes are by U.S. standard sieve size.
A person of ordinary skill in the art will recognize that salt compositions of the present invention containing components in addition to salts, such as sodium chloride and/or a non-sodium chloride salt, may be prepared by several methods, including those described above. Additional methods include adding the additional components prior to heating the composition or adding the additional components after the composition has been heated, aerosolized, and/or ground. One skilled in the art will appreciate that the method of preparation depends upon the additional components to be included in the salt composition. For instance, some components, such as organic components, will be destroyed by the high melting temperatures and may cause off flavors in the resultant product or not retain the properties or characteristics desired for inclusion in the salt composition. Some components, such as inorganic components, may not be altered by the high melting temperatures and may advantageously be included prior to the heating step. An advantage to including additional components prior to the heating step is that the additional component will be incorporated into the salt compositions.
An exemplary flow chart 200 of the process is shown in
In step 204, before or after melting the mixture, additional steps may occur, such as mixing. In step 206, liquid particles are formed. In embodiments, the liquid particles are formed by spraying or the use of a nebulizer to aerosolize the melted composition. In step 208, the aerosolized particles are cooled to form solidified particles. The particles have a homogeneous chemical composition, and the particles are amorphous or partially crystalline. In step 210, the particles are collected. In embodiments, the particles are collected using a collection unit.
Another view of the process is illustrated in
Methods of Use
The salt compositions of the present invention may be used as a salt substitute in food products, as a table salt, or in spice mixtures. Additionally, the salt compositions of the present invention can be used in commercial food manufacturing processes in order to reduce the proportion of sodium in the product while maintaining the salty taste. For example, embodiments may include a food material and rounded salt composition particles. The food product may be a fried food product, a baked food product, or an extruded food product. The food product may also be selected from soups, sauces, baked goods, meat products, poultry products, snack products, dairy products, and breakfast cereals. Further representative food products include vegetables, fish, cheese, breads, frozen foods, canned foods and snack foods, such as potato chips, pretzels, peanuts, seeds, corn chips, tortilla chips, popcorn, crackers and bread sticks. The salt compositions may be applied to the foods in amounts sufficient to provide the saltiness desired. The food product may further include at least one additive, and the additive may be selected from an antioxidant, a dietary supplement, a phosphate, an anti-caking agent, a colorant, a salt enhancer, an organic acid, an amino acid, an amino acid derivative, a sugar, a sugar derivative, and combinations thereof.
In embodiments, the food product may be heated to a temperature from about 50° C. to about 250° C. Without being bound by theory, it is believed that the food product including a food material and salt compositions of the present disclosure may be heated without imparting any significant effect on the quality or taste of the food product due to the lack of organic components. As explained herein, in prior art salt compositions, organic components were added to mask or reduce off-flavors (e.g., metallic/bitter tastes of potassium or magnesium). Prior art food products were unable to be heated after the addition of prior art salt compositions because heating the organic components in the prior art salt compositions caused the organic components to degrade, thereby causing an unsatisfactory taste or off-flavor. Thus, advantageously, the salt compositions of the present invention may allow the heating of food products after the addition of the presently disclosed salt compositions, without losing the advantageous attributes of the present salt compositions (e.g., improved taste or reduced sodium content).
A person of ordinary skill in the art will recognize that the taste aspect is very important with food production. Foods, in which the sodium content is reduced, frequently lose their taste and are regarded as tasteless by the consumer. A bitter character also frequently arises due to the use of other salts. Use of the salt compositions of the invention minimize, if not eliminate, these effects.
The following examples are intended to illustrate and explain exemplary embodiments. Embodiments of the disclosure, therefore, should not be limited to any of the details in these examples.
Prior Art Salt Compositions
The prior art salt composition of
A SEM is a type of electron microscope that produces images of a sample by scanning over it with a high energy focused beam of electrons. The electrons interact with electrons in the sample, producing secondary electrons, back-scattered electrons, and characteristic X-rays that can be detected and that contain information about the sample's surface topography and composition. The electron beam is generally scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. As can be seen, the prior art composition of
Characterization of Present Salt Compositions
In
The rounded particles provide advantages over prior art salt compositions. For example, the increased surface area advantageously increases the amount of surface area that intercepts taste receptors, thereby increasing the salty taste without increasing the amount of sodium in the composition. In addition, the rounded particles may be advantageously able to withstand higher processing temperatures necessitated by the preparation of food products. For example, food products combined with the salt compositions of the present invention may be able to be baked, fried, or extruded without reducing or eliminating advantageous aspects associated with the present compositions.
Characterization of Present Salt Compositions
The salt composition made in Example 2 was analyzed to determine its inherent properties, and its inherent properties were compared with those of prior art compositions.
In particular, using x-ray diffraction (XRD) techniques, a salt composition of a raw blend of 65 wt % NaCl and 35 wt % KCl was determined to have a typical diffraction pattern (
In comparison to a dry mixture of sodium chloride and potassium chloride (
Next, XRD analysis was done on compositions of the present invention.
Characterization of Present Salt Compositions
The composition of the present invention was analyzed using an energy-dispersive X-ray spectroscopy analysis and electron imaging.
Differential Thermal Analysis data for exemplary salt compositions
Differential Thermal Analysis (DTA) was collected to show the melting behaviors of three NaCl/KCl salt samples. The samples were analyzed from room temperature to 760° C., in argon atmosphere.
Size Distributions
Energy Disruptive X-Ray
Characterization of 50/50 Salt Composition
In
Grinding Particles to Reveal the Interior
Particles produced in accordance with the present invention were ground to reveal the interior of the particles.
Taste Panel
A taste panel compared meatballs flavored with two compositions of the present invention to meatballs flavored with (1) regular table salt and (2) sodium chloride/potassium chloride fines, which are ground 50 wt %/50 wt % blend of NaCl/KCl which are melted together and then ground (without aerosolization), with a size of minus 100 mesh. The two compositions of the present invention are (1) 50 wt % NaCl/50 wt % KCl (NBZ5050) in accordance with the present invention, and (2) 100% NaCl composition (NBZNaCl) in accordance with the present invention. The results are set forth in the Table 1 below for each of five panelists as well as the sum and the average. The panelists ranked the samples for saltiness, flavor and overall likability. The panelists ranked the samples on a scale of 1 to 10, with 1 being the lowest rank and 10 being the highest rank. As can be seen from Table 1, the two compositions of the present invention compared quite favorably with regular table salt and the Classic Fines.
The invention illustratively disclosed herein suitably may be practiced in the absence of any element, which is not specifically disclosed herein. It is apparent to those skilled in the art, however, that many changes, variations, modifications, other uses, and applications to the method are possible, and also changes, variations, modifications, other uses, and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention, which is limited only by the claims which follow.
The foregoing discussion of the invention has been presented for purposes of illustration and description. The foregoing is not intended to limit the invention to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the invention are grouped together in one or more embodiments for the purpose of streamlining the disclosure. The features of the embodiments of the invention may be combined in alternate embodiments other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the invention.
Moreover, though the description of the invention has included description of one or more embodiments and certain variations and modifications, other variations, combinations, and modifications are within the scope of the invention, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
This application claims the benefit of U.S. Provisional Patent Application No. 61/729,199 filed Nov. 21, 2012, of which the entire disclosure is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3514296 | Frank et al. | May 1970 | A |
4293535 | Arendt | Oct 1981 | A |
4473595 | Rood et al. | Sep 1984 | A |
5034378 | Cox | Jul 1991 | A |
5447543 | Sadan | Sep 1995 | A |
5562942 | Koh et al. | Oct 1996 | A |
5871803 | Bonorden et al. | Feb 1999 | A |
6090419 | Popplewell et al. | Jul 2000 | A |
6541050 | Bonorden et al. | Apr 2003 | B1 |
6749835 | Lipp et al. | Jun 2004 | B1 |
6787169 | Maki | Sep 2004 | B1 |
7276224 | Zachariah et al. | Oct 2007 | B2 |
7402328 | Vasquez | Jul 2008 | B2 |
7452563 | Salemme et al. | Nov 2008 | B2 |
7455872 | Salemme et al. | Nov 2008 | B2 |
7820225 | Zuniga | Oct 2010 | B2 |
7854956 | Flores Zuniga | Dec 2010 | B2 |
7989016 | Chigurupati | Aug 2011 | B2 |
8197878 | Chigurupati | Jun 2012 | B2 |
8329236 | Chigurupati | Dec 2012 | B2 |
8435555 | Minter et al. | May 2013 | B2 |
20040047976 | Narayan et al. | Mar 2004 | A1 |
20060286378 | Chiruvolu et al. | Dec 2006 | A1 |
20070059428 | Chigurupati | Mar 2007 | A1 |
20070207084 | Zachariah et al. | Sep 2007 | A1 |
20080003339 | Johnson et al. | Jan 2008 | A1 |
20080003344 | Jensen et al. | Jan 2008 | A1 |
20080008790 | Jensen et al. | Jan 2008 | A1 |
20080038411 | Jensen et al. | Feb 2008 | A1 |
20080085360 | Chigurupati | Apr 2008 | A1 |
20090041900 | Zuniga | Feb 2009 | A1 |
20090117254 | Chigurupati | May 2009 | A1 |
20090169701 | Pfeiffer et al. | Jul 2009 | A1 |
20090297631 | Adkins et al. | Dec 2009 | A1 |
20110052785 | Zuniga et al. | Mar 2011 | A1 |
20110217553 | Warner et al. | Sep 2011 | A1 |
20120114948 | Dale et al. | May 2012 | A1 |
20120128826 | Chigurupati | May 2012 | A1 |
20120128830 | Chigurupati | May 2012 | A1 |
20130196049 | Brown et al. | Aug 2013 | A1 |
20130243924 | Bhandari et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
0090571 | Oct 1983 | EP |
2396793 | Jul 2004 | GB |
H9086923 | Mar 1997 | JP |
H09173010 | Jul 1997 | JP |
3890512 | Mar 2007 | JP |
WO0235991 | May 2002 | WO |
WO2008043054 | Apr 2008 | WO |
WO 2010119282 | Oct 2010 | WO |
WO2012067673 | May 2012 | WO |
Entry |
---|
USPTO Non-Final Office Action in U.S. Appl. No. 13/083,179, dated Jun. 19, 2012, 15 pages. |
Mary Ellen Kuhn, Strategies for Reducing Sodium in the U.S., Food Technology, May 2010, pp. 34-36. |
Barbara Katz et al., Salt Reduction Gains Momentum, Food Technology, May 2010, pp. 25-32. |
Christopher M. Parry et al., Monkeying Around With Taste, FoodScienceCentral.Com, May 5, 2005, 4 pages. |
Nathan Gray, Taste Receptors Understanding May Hold Key for Low-Cal Sweeteners: Review, FoodNavigator.Com, Mar. 3, 2011, 2 pages. |
Fidel Toldra et al., Recent Patents for Sodium Reduction in Foods, Jul. 25, 2008, vol. 1, No. 1, 2009 Bentham Science Publishers Ltd., pp. 80-86. |
Thomas Hofmann, et al., Challenges in Taste Research Present Knowledge and Future Implications, American Chemical Society 2004, Nov. 11, 2003, 24 pages. |
Understandingfoodadditives.org, Anti-Caking Agents, archive.org, Aug. 25, 2006, 2 pages. |
Authorized Officer, Lee W. Young, International Search Report and Written Opinion of The International Searching Authority for International Application No. PCT/US2011/031803, mailed Aug. 31, 2011, 6 pages. |
Authorized Officer, Simin Baharlou, International Preliminary Report on Patentability for International Application No. PCT/US2011/031803, dated May 21, 2013, 5 pages. |
U.S. Appl. No. 13/668,838, filed Nov. 5, 2012, Chigurupati. |
U.S. Appl. No. 13/971,602, filed Aug. 20, 2013, Chigurupati et al. |
U.S. Appl. No. 14/145,647, filed Dec. 31, 2013, Chigurupati et al. |
Matsen et al., “Rates and Mechanism of Phase Changes in Binary Mixtures of Alkali Halides,” J. Am. Chem. Soc., 1941, vol. 63(12), pp. 3470-3473. |
Pinho et al., “Solubility of NaCl, NaBr, and KCl in Water, Methanol, Ethanol, and Their Mixed Solvents,” J. Chem. Eng. Data, 2005, vol. 50, pp. 29-32. |
Rama et al., “Impact of Salt Crystal Size on In-Mouth Delivery of Sodium and Saltiness Perception from Snack Foods,” J. Texture Studies, 2013, vol. 44, pp. 338-345. |
Swientek, “SODA-LO salt microspheres,” Innovative Showstoppers, Sep. 2013, vol. 67, No. 9, p. 47. |
Young, International Search Report and Written Opinion for International Application No. PCT/US 13/71316, mailed Mar. 27, 2014, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20140255589 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61729199 | Nov 2012 | US |