COMPOSITIONS OF PROTEIN COMPLEXES AND METHODS OF USE THEREOF

Information

  • Patent Application
  • 20220047714
  • Publication Number
    20220047714
  • Date Filed
    October 18, 2021
    3 years ago
  • Date Published
    February 17, 2022
    2 years ago
Abstract
Provided herein are protein complexes comprising a sensor domain and a therapeutic domain linked by a linker, and methods of use thereof. In aspects of the present disclosure, activity of the therapeutic domain comprises a dependence on sensor domain binding to target markers.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 21, 2021, is named 57824-701_601_SL.txt and is 870,829 bytes in size.


BACKGROUND

Many promising therapeutics that are needed locally exhibit toxicity upon systemic administration. There is a need for drugs that can be delivered systemically but can be regulated to exhibit therapeutic activity locally or in the presence of markers for disease.


SUMMARY

In various aspects, the present disclosure provides a complex comprising: a) a therapeutic domain; b) a linker; and c) a sensor domain, wherein the therapeutic domain is linked to the sensor domain by the linker, and wherein the sensor domain is capable of binding the therapeutic domain and a marker.


In some aspects, the sensor domain is bound to the therapeutic domain in an absence of the marker. In some aspects, the therapeutic domain is blocked from binding the sensor domain upon binding of the sensor domain to the marker. In some aspects, the activity of the therapeutic domain is reduced upon binding of the therapeutic domain to the sensor domain. In some aspects, the therapeutic domain is capable of exhibiting therapeutic activity upon binding of the sensor domain to the marker. In some aspects, the therapeutic domain is therapeutically active upon binding of the sensor domain to the marker.


In some aspects, the sensor domain comprises an antibody. In some aspects, the antibody is an antibody fragment or antibody derivative. In some aspects, the complex comprises an Fc domain. In some aspects, the complex comprises a domain that improves kinetic properties. In some aspects, the complex includes two heavy chains and two light chains.


In some aspects, the complex comprises two therapeutic domains. In some aspects, the complex comprises two sensor domains. In some aspects, the complex is a regulated therapeutic protein. In some aspects, the therapeutic domain is a cytokine, a chemokine, an antibody, an antibody fragment, a peptide agonist, a peptide antagonist, an enzyme, a soluble receptor, a growth factor, a protein toxin, a soluble ligand, a small molecule, or any combination thereof. In some aspects, the antibody or the antibody fragment comprises an IgG, a single domain antibody fragment, a nanobody, or a single chain variable fragment (scFv).


In some aspects, the therapeutic domain is an IL-2 receptor agonist. In some aspects, the IL-2 receptor agonist is IL-2, IL-15, or variants or fusions thereof. In some aspects, the therapeutic domain is IFNα, IFNγ IL-12, IL-4, IL-8, IL-10, IL-15, IL-18, IL-21, TGF beta, an anti-CD3 antibody, an anti-CD28 antibody or ligand, an antibody to or ligand of CD40, GITR, OX40, CD137, CD27, or Death Receptors, the extracellular domain of TGFBR2, VEGF-C, kynureninase, IL-7, TNF, MICA, MICB, CD47, an anti-CTLA4 antibody, an anti-PD-L1 antibody, or an anti-PD-1 antibody. In some aspects, the therapeutic domain binds to the sensor domain.


In some aspects, the linker is a polypeptide linker. In some aspects, the linker comprises from 2 to 200 amino acids in length. In some aspects, the linker is: attached to a heavy chain of the sensor domain, attached to a light chain of the sensor domain, is a fusion with an N-terminus of the sensor domain, or is a fusion with a C-terminus of the sensor domain. In some aspects, the linker is: attached to a heavy chain of the therapeutic domain, attached to a light chain of the therapeutic domain, is a fusion with an N-terminus of the therapeutic domain, or is a fusion with a C-terminus of the therapeutic domain.


In some aspects, the activity of the therapeutic domain is reduced when bound to the sensor domain. In some aspects, the therapeutic domain is inactive when bound to the sensor domain. In some aspects, the sensor domain blocks the activity of the therapeutic domain when bound to the therapeutic domain. In some aspects, the therapeutic domain is active when the sensor domain is bound to the marker. In some aspects, an affinity of the sensor domain for the marker is equal to or greater than an affinity of the sensor domain for the therapeutic domain.


In some aspects, an affinity of the sensor domain for the marker is at least 2 times, 5 times, 10 times, 100 times, 1000 times, 10000, or 100000 times greater than an affinity of the sensor domain for the therapeutic domain.


In some aspects, the sensor domain is an antibody or a fragment thereof. In some aspects, the sensor domain comprises one or both antigen binding domains of a bispecific antibody. In some aspects, the bispecific antibody comprises a first antigen binding domain that is capable of binding to the therapeutic domain and is capable of binding to the marker, and a second antigen binding domain that is capable of binding to the marker. In some aspects, the bispecific antibody comprises a first antigen binding domain that is capable of binding to the therapeutic domain and the marker and a second antigen binding domain that is capable of binding to a second marker. In some aspects, the bispecific antibody comprises a first antigen binding domain that is capable of binding to the therapeutic domain and the marker and a second antigen binding domain that is capable of binding to the therapeutic domain and a second marker. In some aspects, the bispecific antibody comprises a single therapeutic domain.


In some aspects, the therapeutic domain is IFNα, the first marker is ATP, and the second marker is CEA. In some aspects, the sensor domain binds to an IL-2 receptor agonist and to PD-1. In some aspects, the IL-2 receptor agonist is IL-2, IL-15, or variants or fusions thereof. In some aspects, the sensor domain binds to IFNα and PD-L1.


In some aspects, the marker is a surface protein, a cell surface marker, or soluble ATP. In some aspects, the marker is a secreted protein. In some aspects, the marker is expressed by a cancer cell. In some aspects, the marker is expressed by an immune cell. In some aspects, the marker is PD-1. In some aspects, the marker is PD-L1. In some aspects, the marker is CEACAM5. In some aspects, the marker is FAP. In some aspects, the marker is LRRC15. In some aspects, the marker is expressed by a stromal cell. In some aspects, the marker is expressed by an endothelial cell. In some aspects, the marker is a metabolite. In some aspects, the marker is adenosine, AMP, ADP, or ATP. In some aspects, the marker is kynurenine.


In some aspects, the sensor domain comprises a complementarity determining region selected from TABLE 13 or TABLE 18. In some aspects, the sensor domain is selected from TABLE 13. In some aspects, the complex is selected from TABLE 15.


In some aspects, the sensor domain comprises a complementarity determining region having at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, at least 99%, or 100% sequence identity to any one of SEQ ID NO: 1-SEQ ID NO: 20 or SEQ ID NO: 142-SEQ ID NO: 173, or SEQ ID NO: 238-252. In some aspects, the sensor domain has at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, at least 99%, or 100% sequence identity to any one of SEQ ID NO: 21-SEQ ID NO: 27, SEQ ID NO: 31-SEQ ID NO: 39, or SEQ ID NO: 127-SEQ ID NO: 141. In some aspects, the protein complex has at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, at least 99%, or 100% sequence identity to any one of SEQ ID NO: 41, SEQ ID NO: 44, SEQ ID NO: 80-SEQ ID NO: 112, SEQ ID NO: 174-175, SEQ ID NO: 181-182, SEQ ID NO: 195-196, SEQ ID NO: 205-206, SEQ ID NO: 210-212, SEQ ID NO: 220-223, SEQ ID NO: 226-231, SEQ ID NO: 259-261, SEQ ID NO: 266-282, SEQ ID NO: 289-293, or a fragment thereof.


In various aspects, the present disclosure provides a method comprising administering any of the above complexes to a subject in need thereof. In various aspects, the present disclosure provides a method of treating a subject in need thereof comprising administering any of the above complexes to the subject in need thereof. In some aspects, the administering comprises intravenous, intramuscular, or subcutaneous administration. In some aspects, the subject in need thereof has cancer. In some aspects, the subject in need thereof has an autoimmune disease. In some aspects, the subject in need thereof has a viral disease. In some aspects, the therapeutic domain treats the subject in need thereof. In some aspects, the subject in need thereof is a mammal. In some aspects, the subject in need thereof is a human.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the disclosure are set forth with particularity in the appended claims. The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee. A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the disclosure are utilized, and the accompanying drawings of which:



FIGS. 1A and 1B shows a schematic of the protein complexes of the present disclosure. FIG. 1A shows an exemplary dual binding protein complex in an inactive state. The protein complex has a sensor domain and a therapeutic domain. The sensor domain and therapeutic domain are linked by a linker. The sensor domain is shown bound to the therapeutic domain, rendering the therapeutic domain inactive. FIG. 1B shows an exemplary dual binding protein complex in an active state. The protein complex has a sensor domain and a therapeutic domain. The sensor domain and therapeutic domain are linked by a linker. The sensor domain is shown bound to a marker (e.g., a tumor marker or other disease marker), rendering the therapeutic domain active.



FIG. 2 shows an example of a protein complex in an active state when bound to a tumor and examples of protein complex in an inactive state when not bound to a tumor.



FIG. 3 shows an exemplary gBlock sequence used for cell-free expression of scFv antibodies.



FIG. 4 shows candidate PD-L1/IFNα DBAs bind IFNα.



FIG. 5 shows candidate PD-L1/IFNα DBAs bind PD-L1.



FIG. 6 shows inhibition of IFNα binding to IFNAR by candidate PD-L1/IFNα DBAs.



FIG. 7 shows IFNα can compete with PD-L1 for binding to candidate PD-L1/IFNα DBAs of SEQ ID NO: 24 and SEQ ID NO: 26.



FIG. 8 shows a schematic of a protein complex comprising a cytokine therapeutic domain and a DBA (at left) and said protein complex's sequence (at right).



FIGS. 9A-F show schematics of other protein complexes of the present disclosure comprising one or more sensor domains and one or more therapeutic domain. FIG. 9A shows a first embodiment of the protein complex disclosed herein; FIG. 9B shows a second embodiment of the protein complex disclosed herein; FIG. 9C shows a third embodiment of the protein complex disclosed herein; FIG. 9D shows a fourth embodiment of the protein complex disclosed herein; FIG. 9E shows a fifth embodiment of the protein complex disclosed herein; and FIG. 9F shows a sixth embodiment of the protein complex disclosed herein.



FIG. 10 shows that interferon signaling by two exemplary PD-L1/IFNα DBA cytokine protein complexes (C08 IFNα and B09 IFNα, SEQ ID NO: 57-SEQ ID NO: 58 and SEQ ID NO: 59-SEQ ID NO: 60 respectively) is reduced as compared to two control IFNα-antibody protein complexes (Anti-HER2 IFNα and Anti-PD-L1 IFNα, SEQ ID NO: 63-SEQ ID NO: 64 and SEQ ID NO: 61-SEQ ID NO: 62 respectively).



FIG. 11 shows that IL-2 signaling by five exemplary PD-1/IL-2 DBA-cytokine protein complexes (2_A08, 2_A11, 2_B05, 2_B07, and 7_A04, SEQ ID NO: 67-SEQ ID NO: 68, SEQ ID NO: 69-SEQ ID NO: 70, SEQ ID NO: 71-SEQ ID NO: 72, SEQ ID NO: 73-SEQ ID NO: 74 and SEQ ID NO: 75-SEQ ID NO: 76 respectively) is reduced as compared to a control IL-2-Anti-HER2 protein complex (SEQ ID NO: 65-SEQ ID NO: 66).



FIG. 12 shows PD-L1 regulated IFNα activity of an exemplary PD-L1/IFNα DBA-cytokine protein complex.



FIGS. 13A-C show a schematic of a bispecific antibody comprising a therapeutic domain and two sensor domains such that both sensor domains must bind their target marker to allow activity of the therapeutic domain. FIG. 13A shows that when neither target is present, the therapeutic domain is inactive; FIG. 13B shows that when only one target is present, the therapeutic domain is inactive; and FIG. 13C shows that when both targets are present, the therapeutic domain is active.



FIG. 14A-C illustrate immunoglobulin-containing protein complexes consistent with the present disclosure.



FIG. 15A-D provide IL-2 activity of IL-2-linked protein complexes comprising the structure depicted in FIG. 14A in wells coated with PD-1-Fc or an IgG1 control protein. Activity was measured as growth of a 630 nm signal from HEK-Blue™ IL-2 reporter cells (an engineered human kidney cell line which generates a detectable color change in upon activation of its IL-2 receptor). FIG. 15A provides the IL-2 activity of an PD-1/IL-2 DBA-IL-2 complex. FIG. 15B provides the IL-2 activity of an anti-Her2 antibody-IL-2 complex. FIG. 15C provides the activity of an anti-IL-2 antibody-IL-2 complex. FIG. 15D provides the activity of an anti-PD-1 antibody-IL-2 complex.



FIG. 16A-F provide IL-2 activity of protein complexes comprising the structure depicted in FIG. 14B in wells coated with PD-1-Fc or an IgG1 control protein. Activity was measured as growth of a 630 nm signal from HEK-Blue™ IL-2 reporter cells. FIG. 16A-C provide the IL-2 activities of three different PD-1/IL-2 DBA-IL-2 complexes. FIG. 16D provides the activity of an anti-PD-1 antibody-IL-2 complex. FIG. 16E provides the activity of an anti-Her-2 antibody-IL-2 complex. FIG. 16F provides the activity of an anti-IL-2 antibody-IL-2 complex.



FIG. 17A-F provide IL-2 activity of protein complexes comprising the structure depicted in FIG. 14C in wells coated with PD-1-Fc or an IgG1 control protein. Activity was measured as growth of a 630 nm signal from HEK-Blue™ IL-2 reporter cells. FIG. 17B17D provide results for two PD-1/IL-2 DBA complexes comprising anti-PD-1 domains in the Fab arms and a PD-1/IL-2 DBA scFv on the Fc arm. FIGS. 17A, 17C, and 17E-H provide results for control protein complexes.



FIG. 18 provides rates of serum concentration decreases in the blood of wild-type mice of a PD-1/IL-2 DBA-cytokine complex (‘2B07 IL-2 mut’) and two control complexes.



FIG. 19A-D provide CD8+ T cell and NK cell counts in blood and spleen tissue collected from wild-type mice 5 days following treatment with a PD-1/IL-2 DBA-cytokine complex (‘2B07 IL-2 mut’) and two control complexes.



FIG. 20 provides tumor volume measurements as a function of the number of days post tumor cell implant in mice. Mice received various intravenous doses of a PD-1/IL-2 DBA-IL-2 complex, a PD-1/IL-2 DBA complex lacking IL-2, or an isotype control.



FIG. 21A-F provide results for IFNAR2 binding in the presence (triangles) and absence (squares) of PD-L1 for six separate DBA PDL1-IFN variants.



FIG. 22A-H provide IFNAR2 binding by five PD-L1/IFNα DBA-cytokine complexes and three control complexes.



FIG. 23A-D provide ELISA measurements for PD-L1 and IL-15 binding by four separate anti-PD-L1 and anti-IL-15 DBAs.



FIG. 24A-F provide IL-15 activity as measured by HEK-Blue™ IL-2 reporter cell colorimetric responses for four scFv DBA-IL-15 complexes and two monospecific anti-IL-15 antibody IL-15 complexes.



FIG. 25A-D provide IL-15 activity as measured by HEK-Blue™ IL-2 reporter cell colorimetric responses for two DBA-IL-15 complexes and PDL1-IFN DBA control protein complexes.



FIG. 26 shows ELISA binding data for five dual-binding scFvs binding to CEA.



FIG. 27A-F demonstrate IFNAR2 binding by three DBA-cytokine protein complexes, an IFNα monospecific binding scFv, and two non-IFNα binding scFvs.



FIG. 28A provides ELISA binding data for six scFvs to LRRC15. Results from FIG. 28A are summarized in FIG. 28B.



FIG. 29A-F summarize IFNAR2 binding by four LRRC15-IFN-α DBA-IFNα complexes and two control complexes.





DETAILED DESCRIPTION

The present disclosure provides compositions of protein complexes and methods of use thereof. Promising therapeutics are often unable to be realized due to harmful side effects, or systemic on-target toxicity. Provided herein are protein complexes, which specifically exhibit therapeutic efficacy locally, where the relevant cells and targets are present. Moreover, protein complexes of the present disclosure are self-regulated, remaining inactive in the absence of a specific marker and activating in the presence of the specific marker. The protein complexes disclosed herein may include a sensor domain (e.g, an antibody or scFv) that is linked to a therapeutic domain (e.g., a cytokine, a therapeutic antibody domain, a receptor, a ligand) via a linker. The sensor domain may be a dual binding protein that has affinity for the therapeutic domain and a specific marker, such that the marker and the therapeutic domain compete for binding to the sensor domain. In some embodiments, the dual binding protein is a dual binding antibody. In the absence of the marker, the sensor domain binds the therapeutic domain, rendering the therapeutic domain unable to exert activity. When the sensor domain is bound to the marker, the therapeutic domain is unbound and may exert activity. In some embodiments, regulation of therapeutic activity by the complex may be reversible, that is, when the sensor domain disassociates from the marker, the sensor domain may bind the therapeutic domain, rendering the therapeutic domain once again unable to exert activity. Thus, the protein complexes of the present disclosure comprise sensor domains that regulate therapeutic domains in the presence of the marker, bind the marker, and render the therapeutic domain active. Various structures and compositions of protein complexes are disclosed herein, including pharmaceutical formulations. Also provided herein are methods for treating a subject in need thereof by administering the protein complex to the subject.


As used herein, a “marker” may refer to the moiety that is bound by the sensor domain of the protein complexes disclosed herein. Non-limiting examples of a “marker” include a protein, a protein modification, a carbohydrate, a metabolite, or any other molecule that can be bound by an antibody. A marker may also refer to a disease-specific marker, such as a molecular marker of a disease state (e.g., cancer).


As used herein, a “target” may refer to a molecule through which the therapeutic domain of the protein complexes disclosed herein may act. Non-limiting examples of a “target” include cytokine receptor, a cytokine, a ligand, an enzyme substrate, or any other molecule that, when contacted by the therapeutic domain, has a therapeutic impact on a subject (e.g., human or non-human animal) administered the protein complex.


As used herein, an “antibody” may refer to an antibody, an antibody derivative, or fragment(s) thereof that contains part or all of an antibody variable domain.


The term “recombinant nucleic acid” refers to synthetic nucleic acid having a nucleotide sequence that is not naturally occurring. A recombinant nucleic acid may be synthesized in the laboratory. A recombinant nucleic acid is prepared by using recombinant DNA technology by using enzymatic modification of DNA, such as enzymatic restriction digestion, ligation, and DNA cloning. A recombinant nucleic acid as used herein can be DNA, or RNA. A recombinant DNA may be transcribed in vitro, to generate a messenger RNA (mRNA), the recombinant mRNA may be isolated, purified and used to transfect a cell. A recombinant nucleic acid may encode a protein or a polypeptide. A recombinant nucleic acid, under suitable conditions, can be incorporated into a living cell, and can be expressed inside the living cell. As used herein, “expression” of a nucleic acid usually refers to transcription and/or translation of the nucleic acid. The product of a nucleic acid expression is usually a protein but can also be an mRNA. Detection of an mRNA encoded by a recombinant nucleic acid in a cell that has incorporated the recombinant nucleic acid, is considered positive proof that the nucleic acid is “expressed” in the cell.


The process of inserting or incorporating a nucleic acid into a cell can be via transformation, transfection or transduction. Transformation is the process of uptake of foreign nucleic acid by a bacterial cell. This process is adapted for propagation of plasmid DNA, protein production, and other applications. Transformation introduces recombinant plasmid DNA into competent bacterial cells that take up extracellular DNA from the environment. Some bacterial species are naturally competent under certain environmental conditions, but competence is artificially induced in a laboratory setting. Transfection is the forced introduction of small molecules such as DNA, RNA, or antibodies into eukaryotic cells. Just to make life confusing, ‘transfection’ also refers to the introduction of bacteriophage into bacterial cells. ‘Transduction’ is mostly used to describe the introduction of recombinant viral vector particles into target cells, while ‘infection’ refers to natural infections of humans or animals with wild-type viruses.


Protein Complexes

The present disclosure provides complexes that may self-regulate therapeutic activity. Protein complexes of the present disclosure may include a sensor domain and a therapeutic domain. The sensor domain and therapeutic domain may be linked by a linker. The sensor domain may regulate the activity of the therapeutic domain. Regulation of the activity of the therapeutic domain may include binding of the sensor domain to the therapeutic domain, rendering the therapeutic domain unable to exert therapeutic activity. Regulation of the activity of the therapeutic domain may further include unbinding, or release, of the therapeutic domain by the sensor domain upon binding of the sensor domain to a marker. The marker may be expressed by a cell associated with a disease. For example, the disease may be cancer, the cell may be a tumor cell, and the marker may be a tumor-specific marker that is expressed on tumor cells. Thus, the protein complexes of the present disclosure are superior drug candidates as the sensor domain-dependent activity of the therapeutic domain allows for localized activity, even upon systemic administration of the protein complex. Compared to therapeutic domains administered on their own, the protein complexes of the present disclosure exhibit regulated therapeutic activity of the therapeutic domain. As a result, compared to free therapeutic domains administered on their own, the protein complexes of the present disclosure exhibit reduced systemic on-target toxicity.


The protein complexes of the present disclosure can have an Fc region. The protein complexes of the present disclosure can have a domain that improves kinetic properties. For example, the protein complexes of the present disclosure may be further coupled to a half-life extender, such as an Fc region, albumin, PEG, or another zwitterionic polymer. The protein complexes of the present disclosure may have two heavy chains and two light chains. The protein complexes of the present disclosure may have two heavy chains and one light chain. The protein complexes of the present disclosure may include multiple sensor domains and multiple therapeutic domains. For example, a protein complex of the present disclosure may include two sensor domains and two therapeutic domains, all of which are linked and in which the two therapeutic domains are bound to the two sensor domains. In some embodiments, a protein complex of the present disclosure may include two sensor domains and one therapeutic domain, all of which are linked and in which the therapeutic domain may bind to both sensor domains or only one of the two sensor domains.


In some embodiments, the marker may be a surface protein, such as a cell surface protein. The marker may also be soluble ATP. In some embodiments, the marker may be a secreted protein. For example, the secreted protein may be a protein that is released by proliferating tumor cells. In some embodiments, the marker may be expressed by a cancer cell. The marker may be expressed by an immune cell. The marker may be expressed by a stromal cell. The marker may be expressed by an endothelial cell. Exemplary markers include PD1, PD-L1, CEACAM5, FAP, LRRC15, a metabolite, adenosine, AMP, ADP, ATP, or kynurenine. Other markers may include CRIPTO, CD19, CD20, CD22, CD30, CD33, Glycoprotein NMB, CanAg, HER2 (ErbB2/Neu), CD56 (NCAM), CD70, CD79, CD138, PSCA, PSMA (prostate specific membrane antigen), BCMA, E-selectin, EphB2, Melanotransferin, Muc16 and TMEFF2, or any other marker described in U.S. Pat. No. 10,561,739, incorporated herein by reference in its entirety. Other markers may also include BMPR1B, E16, STEAP1, 0772P, MPF, Naρi3b, Sema 5b, PSCA hlg, ETBR, MSG783, STEAP2, TrpM4, CD21, CD79b, FcRH2, NCA, MDP, IL20Rα, Brevican, EphB2R, ASLG659, PSCA, GEDA, BAFF-R, CD79a, CXCR5, HLA-DOB, P2X5, CD72, FCRHI, IRTA2, or any other marker described in WO 2005/082023, incorporated herein by reference in its entirety.


In some embodiments, binding of the sensor domain to the therapeutic domain versus binding of the sensor domain to a marker is regulated by the relative affinity of the sensor domain for the therapeutic domain. In some embodiments, the sensor domain may have a dissociation constant (Kd) for the marker that is lower than the dissociation constant of the sensor domain for the therapeutic domain. Thus, the sensor may have a higher affinity (lower Kd) for the marker than for the therapeutic domain. The sensor domains of the present disclosure may be engineered, for example by affinity maturation, to have a higher affinity (lower dissociation constant) for the marker than the therapeutic domain. In the absence of the marker, the sensor domain of the present disclosure may have a sufficiently high affinity for the therapeutic domain such that the therapeutic domain is bound by the sensor domain. In the presence of the marker, the affinity of the sensor domain for the marker is sufficiently high (low dissociation constant), such that the marker outcompetes the therapeutic domain for binding to the sensor domain. As a result, the equilibrium binding shifts from a state in which the sensor domain is bound to the therapeutic domain to a state in which the therapeutic domain is unbound and the sensor domain binds to the marker.


The sensor domain may have an affinity for the marker that is at least 2-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 5-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 10-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 15-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 20-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 25-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 30-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 35-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 40-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 45-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 50-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 60-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 70-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 80-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 90-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 100-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 150-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 200-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 250-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 300-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 350-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 400-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 450-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 500-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 1000-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 10000-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is at least 100000-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 2 to 10-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 10 to 20-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 20 to 30-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 30 to 40-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 40 to 50-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 50 to 100-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 100 to 150-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 150 to 200-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 200 to 250-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 250 to 300-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 300 to 350-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 350 to 400-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 400 to 450-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 450 to 500-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 500 to 1000-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 10 to 80-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 30 to 70-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 40 to 60-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 20 to 50-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 10 to 1000-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 70 to 500-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 100 to 500-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 500 to 750-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 250 to 750-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 1000 to 100000-fold higher than an affinity for the therapeutic domain. The sensor domain may have an affinity for the marker that is from 2 to 100000-fold higher than an affinity for the therapeutic domain.


A protein complex of the present disclosure, or a fragment thereof, may comprise one or more complementary determining regions (CDRs) having have at least 80% sequence identity to any one of the CDRs disclosed herein. For example, a protein complex of the present disclosure, or a fragment thereof, may comprise one or more CDRs having at least 80% sequence identity to any one of SEQ ID NO: 1-SEQ ID NO: 20, SEQ ID NO: 142-173, or SEQ ID NO: 238-252. A protein complex of the present disclosure, or a fragment thereof, may comprise one or more CDRs having at least 85% sequence identity to any one of SEQ ID NO: 1-SEQ ID NO: 20, SEQ ID NO: 142-173, or SEQ ID NO: 238-252. A protein complex of the present disclosure, or a fragment thereof, may comprise one or more CDRs having at least 90% sequence identity to any one of SEQ ID NO: 1-SEQ ID NO: 20, SEQ ID NO: 142-173, or SEQ ID NO: 238-252. A protein complex of the present disclosure, or a fragment thereof, may comprise one or more CDRs having at least 92% sequence identity to any one of SEQ ID NO: 1-SEQ ID NO: 20, SEQ ID NO: 142-173, or SEQ ID NO: 238-252. A protein complex of the present disclosure, or a fragment thereof, may comprise one or more CDRs having at least 95% sequence identity to any one of SEQ ID NO: 1-SEQ ID NO: 20, SEQ ID NO: 142-173, or SEQ ID NO: 238-252. A protein complex of the present disclosure, or a fragment thereof, may comprise one or more CDRs having at least 97% sequence identity to any one of SEQ ID NO: 1-SEQ ID NO: 20, SEQ ID NO: 142-173, or SEQ ID NO: 238-252. A protein complex of the present disclosure, or a fragment thereof, may comprise one or more CDRs having at least 99% sequence identity to any one of SEQ ID NO: 1-SEQ ID NO: 20, SEQ ID NO: 142-173, or SEQ ID NO: 238-252. A protein complex of the present disclosure, or a fragment thereof, may comprise one or more CDRs having any one of SEQ ID NO: 1-SEQ ID NO: 20, SEQ ID NO: 142-173, or SEQ ID NO: 238-252.


A protein complex, or a fragment thereof, can have at least 80% sequence identity to any one of SEQ ID NO: 41, SEQ ID NO: 44, SEQ ID NO: 80-SEQ ID NO: 112, SEQ ID NO: 174-175, SEQ ID NO: 181-182, SEQ ID NO: 195-196, SEQ ID NO: 205-206, SEQ ID NO: 210-212, SEQ ID NO: 220-223, SEQ ID NO: 226-231, SEQ ID NO: 259-261, SEQ ID NO: 266-282, or SEQ ID NO: 289-293, or a fragment thereof. A protein complex can have at least 85% sequence identity to any one of SEQ ID NO: 41, SEQ ID NO: 44, SEQ ID NO: 80-SEQ ID NO: 112, SEQ ID NO: 174-175, SEQ ID NO: 181-182, SEQ ID NO: 195-196, SEQ ID NO: 205-206, SEQ ID NO: 210-212, SEQ ID NO: 220-223, SEQ ID NO: 226-231, SEQ ID NO: 259-261, SEQ ID NO: 266-282, or SEQ ID NO: 289-293, or a fragment thereof. A protein complex can have at least 90% sequence identity to any one of SEQ ID NO: 41, SEQ ID NO: 44, SEQ ID NO: 80-SEQ ID NO: 112, SEQ ID NO: 174-175, SEQ ID NO: 181-182, SEQ ID NO: 195-196, SEQ ID NO: 205-206, SEQ ID NO: 210-212, SEQ ID NO: 220-223, SEQ ID NO: 226-231, SEQ ID NO: 259-261, SEQ ID NO: 266-282, or SEQ ID NO: 289-293, or a fragment thereof. A protein complex can have at least 92% sequence identity to any one of SEQ ID NO: 41, SEQ ID NO: 44, SEQ ID NO: 80-SEQ ID NO: 112, SEQ ID NO: 174-175, SEQ ID NO: 181-182, SEQ ID NO: 195-196, SEQ ID NO: 205-206, SEQ ID NO: 210-212, SEQ ID NO: 220-223, SEQ ID NO: 226-231, SEQ ID NO: 259-261, SEQ ID NO: 266-282, or SEQ ID NO: 289-293, or a fragment thereof. A protein complex can have at least 95% sequence identity to any one of SEQ ID NO: 41, SEQ ID NO: 44, SEQ ID NO: 80-SEQ ID NO: 112, SEQ ID NO: 174-175, SEQ ID NO: 181-182, SEQ ID NO: 195-196, SEQ ID NO: 205-206, SEQ ID NO: 210-212, SEQ ID NO: 220-223, SEQ ID NO: 226-231, SEQ ID NO: 259-261, SEQ ID NO: 266-282, or SEQ ID NO: 289-293, or a fragment thereof. A protein complex can have at least 97% sequence identity to any one of SEQ ID NO: 41, SEQ ID NO: 44, SEQ ID NO: 80-SEQ ID NO: 112, SEQ ID NO: 174-175, SEQ ID NO: 181-182, SEQ ID NO: 195-196, SEQ ID NO: 205-206, SEQ ID NO: 210-212, SEQ ID NO: 220-223, SEQ ID NO: 226-231, SEQ ID NO: 259-261, SEQ ID NO: 266-282, or SEQ ID NO: 289-293, or a fragment thereof. A protein complex can have at least 99% sequence identity to any one of SEQ ID NO: 41, SEQ ID NO: 44, SEQ ID NO: 80-SEQ ID NO: 112, SEQ ID NO: 174-175, SEQ ID NO: 181-182, SEQ ID NO: 195-196, SEQ ID NO: 205-206, SEQ ID NO: 210-212, SEQ ID NO: 220-223, SEQ ID NO: 226-231, SEQ ID NO: 259-261, SEQ ID NO: 266-282, or SEQ ID NO: 289-293, or a fragment thereof. A protein complex is any one of SEQ ID NO: 41, SEQ ID NO: 44, SEQ ID NO: 80-SEQ ID NO: 112, SEQ ID NO: 174-175, SEQ ID NO: 181-182, SEQ ID NO: 195-196, SEQ ID NO: 205-206, SEQ ID NO: 210-212, SEQ ID NO: 220-223, SEQ ID NO: 226-231, SEQ ID NO: 259-261, SEQ ID NO: 266-282, or SEQ ID NO: 289-293, or a fragment thereof.


A protein complex of the present disclosure may have at least 95% sequence identity to any one of SEQ ID NO: 41, SEQ ID NO: 44, SEQ ID NO: 80-SEQ ID NO: 112, SEQ ID NO: 174-175, SEQ ID NO: 181-182, SEQ ID NO: 195-196, SEQ ID NO: 205-206, SEQ ID NO: 210-212, SEQ ID NO: 220-223, SEQ ID NO: 226-231, SEQ ID NO: 259-261, SEQ ID NO: 266-282, or SEQ ID NO: 289-293, or a fragment thereof and have one or more CDRs with at least 80% sequence identity to any one SEQ ID NO: 1-SEQ ID NO: 20, SEQ ID NO: 142-173, or SEQ ID NO: 238-252. The protein complexes of the present disclosure can have CDRs selected from SEQ ID NO: 1-SEQ ID NO: 20, SEQ ID NO: 142-173, or SEQ ID NO: 238-252 arranged in any combination or order.


A fragment of any of the above may retain the functional binding domains of the sensor or any functional therapeutic domains of the therapeutic. For example, a dual binding antibody protein complex can include the entire antibody or a fragment having regions of the antibody that are capable of binding to a marker and the therapeutic domain. In the latter case, the fragment may be an scFv that can bind to a marker and the therapeutic domain. Exemplary sequence of protein complexes of the present disclosure is shown below in TABLE 1.









TABLE 1







Exemplary Protein Complexes









SEQ ID NO
Sequence
Description





SEQ ID NO: 41
MSTSTCDLPQTHSLGSRRTLMLLAQMRRISL
Protein complex comprising a



FSCLKDRHDFGFPQEEFGNQFQKAETIPVLH
DBA/cytokine complex having



EMIQQIFNLFSTKDSSAAWDETLLDKFYTEL
a PD-L1/IFNα scFv sensor domain



YQQLNDLEACVIQGVGVTETPLMKEDSILAV
and an IFNα therapeutic domain



RKYFQRITLYLKEKKYSPCAWEVVRAEIMRS
scFv_IFN-Heavy_GS20_PDL1-



FSLSTNLQESLRSKEGGGGSGGGGSGGGGSG
IFN_1A05_H_I39V_S58P_Q69H_K70Q



GGGSQVQLVQSGAEVKKPGASVKVSCKASGY




TFSNYYVHWVRQAPGQGLEWMGWMDPNSGGT




GYAHQFQGRVTMTRDTSTSTVYMELSSLRSE




DTAVYYCAKEVFSGWYDYWGQGTLVTVSSAS




GGGGSGGGGSGGGGSHASDIQMTQSPSSLSA




SVGDRVTITCRASQSISSYLNWYQQKPGKAP




KLLIYAASSLQSGVPSRFSGSGSGTDFTLTI




SSLQPEDFATYYCQQSYSTPYTFGQGTKVEI




KGKPIPNPLLGLDST






SEQ ID NO: 42
QVQLVQSGAEVKKPGASVKVSCKASGYTFTK
Protein complex comprising a



NYMHWVRQAPGQGLEWLGWVSPDSGYTGYAQ
DBA/cytokine complex having



KFQGRVTMTRDTSTSTVYMELSSLRSEDTAV
a PD-L1 antibody sensor domain



YYCTTDLLSLELDDAFDIWGQGTMVTVSSAS
and an IFNα therapeutic



GGGGSGGGGSGGGGSHASDIQMTQSPSSLSA
domain, where the DBA is an scFv



SVGDRVTITCRASQSISSWLAWYQQKPGKAP
PDL1-IFN_uIFN_2D10scFv_KiH_PDL1-



KLLIYAASTLQSGVPSRFSGSGSGTDFTLTI
IFN_1A05_H_N36G_Pep1



SSLQPEDFATYYCQQSYSTPLTFGGGTKLEI




KPRGPTIKPCPPCKCPAPNAAGGPSVFIFPP




KIKDVLMISLSPIVTCVVVDVSEDDPDVQIS




WFVNNVEVHTAQTQTHREDYNSTLRVVSALP




IQHQDWMSGKEFKCKVNNKDLGAPIERTISK




PKGSVRAPQVYVLPPCEEEMTKKQVTLSCAV




TDFMPEDIYVEWTNNGKTELNYKNTEPVLDS




DGSYFMVSKLRVEKKNWVERNSYSCSVVHE




GLHNHEITTKSFSRTPGK






SEQ ID NO: 43
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLK
First heavy chain of a protein



DRHDFGFPQEEFGNQFQKAETIPVLHEMIQQ
complex comprising a DBA/



IFNLFSTKDSSAAWDETLLDKFCTELYQQLN
cytokine complex having a PD-L1



DLEACVMQEERVGETPLMNADSILAVKKYFR
binding domain and an IFNα



RITLYLTEKKYSPCAWEVVRAEIVRSLSLST
therapeutic domain



NLQERLRRKEGGGGSGGGGSGGGGSGGGGSQ
PDL1-IFN_uIFN_2D10scFv_KiH_PDL1-



VQLVQSGAEVKKPGASVKVSCKASGYTFSGY
IFN_1A05_H_N36G_Pep2



YIHWVRQAPGQGLEWMGWMDSNSGGTGYAQK




FQGRVTMTRDTSTSTVYMELSSLRSEDTAVY




YCAKEVFSGWYDYWGQGTLVTVSSAKTTAPS




VYPLAPVCGDTTGSSVTLGCLVKGYFPEPVT




LTWNSGSLSSGVHTFPAVLQSDLYTLSSSVT




VTSSTWPSQSITCNVAHPASSTKVDKKIEPR




GPTIKPCPPCKCPAPNAAGGPSVFIFPPKIK




DVLMISLSPIVTCVVVDVSEDDPDVQISWFV




NNVEVHTAQTQTHREDYNSTLRVVSALPIQH




QDWMSGKEFKCKVNNKDLGAPIERTISKPKG




SVRAPQVCVLPPPEEEMTKKQVTLWCMVTDF




MPEDIYVEWTNNGKTELNYKNTEPVLDSDGS




YFMYSKLRVEKKNWVERNSYSCSVVHEGLHN




HEITTKSFSRTPGK






SEQ ID NO: 44
DIQMTQSPSSLSASVGDRVTITCRASQSISS
Light chain of a protein complex



YLNWYQQKPGKAPKLLIYAASSLQSGVPSRF
comprising a DBA/cytokine



SGSGSGTDFTLTISSLQPEDFATYYCQQSYS
complex having a PD-L1 scFv



TPYTFGQGTKVEIKRADAAPTVSIFPPSSEQ
sensor domain and an IFNα



LTSGGASVVCFLNNFYPKDINVKWKIDGSER
therapeutic domain



QNGVLNSWTDQDSKDSTYSMSSTLTLTKDEY
PDL1-IFN_uIFN_2D10scFv_KiH_PDL1-



ERHNSYTCEATHKTSTSPIVKSFNRNEC
IFN_1A05_H_N36G_Pep3





SEQ ID NO: 303
QVQLVESGGGVVQPGRSLRLDCKASGITFSN
PD1-IL2_3x_Cterm_Nivo_2B07_H_H37Y_



SGMHWVRQAPGKGLEWVAVIWYDGSKRYYAD
L_A107Y_S109R;



SVKGRFTISRDNSKNTLFLQMNSLRAEDTAV
AF4505_pep2



YYCATNDDYWGQGTLVTVSSAKTTAPSVYPL




APVCGDTTGSSVTLGCLVKGYFPEPVTLTWN




SGSLSSGVHTFPAVLQSDLYTLSSSVTVTSS




TWPSQSITCNVAHPASSTKVDKKIEPRGPTI




KPCPPCKCPAPNAAGGPSVFIFPPKIKDVLM




ISLSPIVTCVVVDVSEDDPDVQISWFVNNVE




VHTAQTQTHREDYNSTLRVVSALPIQHQDWM




SGKEFKCKVNNKDLGAPIERTISKPKGSVRA




PQVYVLPPPEKEMTKKQVSLTCLVKDFMPED




IYVEWTNNGKTELNYKNTEPVLKSDGSYFMY




SKLTVEKKNWVERNSYSCSVVHEGLHNHHTT




KSFSRTPGGGGGSGGGGSGGGGSGGGGSQVQ




LVQSGAEVKKPGASVKVSCKASGDTFTRYYV




HWVRQAPGQGLEWMGIINPSGGYASYAQKFQ




GRVTMTRDTSTSTVYMELSSLRSEDTAVYYC




AAGLFIWGQGTLVTVSSASGGGGSGGGGSGG




GGSHASDIQMTQSPSSLSASVGDRVTITCRA




SQSIGRWLAWYQQKPGKAPKLLIYSASNLET




GVPSRFSGSGSGTDFTLTISSLQPEDFATYY




CQQYNRFPVTFGPGTKVDIK






SEQ ID NO: 304
QVQLVESGGGVVQPGRSLRLDCKASGITFSN
PD1-IL2_3x_Cterm_Nivo_704var



SGMHWVRQAPGKGLEWVAVIWYDGSKRYYAD
AF4504_pep2



SVKGRFTISRDNSKNTLFLQMNSLRAEDTAV




YYCATNDDYWGQGTLVTVSSAKTTAPSVYPL




APVCGDTTGSSVTLGCLVKGYFPEPVTLTWN




SGSLSSGVHTFPAVLQSDLYTLSSSVTVTSS




TWPSQSITCNVAHPASSTKVDKKIEPRGPTI




KPCPPCKCPAPNAAGGPSVFIFPPKIKDVLM




ISLSPIVTCVVVDVSEDDPDVQISWFVNNVE




VHTAQTQTHREDYNSTLRVVSALPIQHQDWM




SGKEFKCKVNNKDLGAPIERTISKPKGSVRA




PQVYVLPPPEKEMTKKQVSLTCLVKDFMPED




IYVEWTNNGKTELNYKNTEPVLKSDGSYFMY




SKLTVEKKNWVERNSYSCSVVHEGLHNHHTT




KSFSRTPGGGGGSGGGGSGGGGSGGGGSQVQ




LVQSGAEVKKPGASVKVSCKASGYTFTRYYM




HWVRQAPGQGLEWMGIINPRAGYTSYALKFQ




GRVTMTRDTSTSTVYMELSSLRSEDTAVYYC




TSGWDVWGQGTLVTVSSASGGGGSGGGGSGG




GGSHASDIQMTQSPSSLSASVGDRVTITCRA




SQSISTWLAWYQQKPGKAPKLLIYAASSLDS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYY




CQQSYSFPVTFGQGTKVEIK






SEQ ID NO: 181
APTSSSTKKTQLQLEHLLLDLQMILNGINNY
PD1-IL2_3x_Asym_PD1-



KNPKLTDMLTFEFYMPKKATELKHLQCLERE
IL2_2B07_H_H37YL_W38Y_A107Y



LKPLEEVLNLAQSKNFHLRPRDLISNINVIV




LELKGSETTFMCEYADETATIVEFLNRWITF




CQSIISTLTGGGGSGGGGSGGGGSGGGGSQV




QLVQSGAEVKKPGASVKVSCKASGDTFTRYY




VHWVRQAPGQGLEWMGIINPSGGYASYAQKF




QGRVTMTRDTSTSTVYMELSSLRSEDTAVYY




CAAGLFIWGQGTLVTVSSAKTTAPSVYPLAP




VCGDTTGSSVTLGCLVKGYFPEPVTLTWNSG




SLSSGVHTFPAVLQSDLYTLSSSVTVTSSTW




PSQSITCNVAHPASSTKVDKKIEPRGPTIKP




CPPCKCPAPNAAGGPSVFIFPPKIKDVLMIS




LSPIVTCVVVDVSEDDPDVQISWFVNNVEVH




TAQTQTHREDYNSTLRVVSALPIQHQDWMSG




KEFKCKVNNKDLGAPIERTISKPKGSVRAPQ




VYVLPPPEEEMTKKQVTLTCMVTDFMPEDIY




VEWTNNGKTELNYKNTEPVLDSDGSYFMYSD




LRVEKKNWVERNSYSCSVVHEGLHNHHTTES




FSRTPGK






SEQ ID NO: 182
QVCILVOSGAEVKKPGASVKVSCKASGDTFT
PD1-IL2_3x_Asym_PD1-



RYYVHWVRQAPGQGLEWMGIINPSGGYASYA
IL2_2B07_H_H37Y_L_W38Y_A107Y



QKFQGRVTMTRDTSTSTVYMELSSLRSEDTA




VYYCAAGLFIWGQGTLVTVSSAKTTAPSVYP




LAPVCGDTTGSSVTLGCLVKGYFPEPVTLTW




NSGSLSSGVHTFPAVLQSDLYTLSSSVTVTS




STWPSQSITCNVAHPASSTKVDKKIEPRGPT




IKPCPPCKCPAPNAAGGPSVFIFPPKIKDVL




MISLSPIVTCVVVDVSEDDPDVQISWFVNNV




EVHTAQTQTHREDYNSTLRVVSALPIQHQDW




MSGKEFKCKVNNKDLGAPIERTISKPKGSVR




APQVYVLPPPEKEMTKKQVSLTCLVKDFMPE




DIYVEWTNNGKTELNYKNTEPVLKSDGSYFM




YSKLTVEKKNWVERNSYSCSVVHEGLHNHHT




TKSFSRTPGGGGSGGGSHHHHHH






SEQ ID NO: 183
APTSSSTKKTQLQLEHLLLDLQMILNGINNY
PD1-IL2_3x_Asym_PD1-



KNPKLTDMLTFEFYMPKKATELKHLQCLERE
IL2_7A04_H_M115W_L_Q68D



LKPLEEVLNLAQSKNFHLRPRDLISNINVIV




LELKGSETTFMCEYADETATIVEFLNRWITF




CQSIISTLTGGGGSGGGGSGGGGSGGGGSQV




QLVQSGAEVKKPGASVKVSCKASGYTFTDYY




MHWVRQAPGQGLEWMGIINPRAGYTSYALKF




QGRVTMTRDTSTSTVYMELSSLRSEDTAVYY




CTSGWDVWGQGTLVTVSSAKTTAPSVYPLAP




VCGDTTGSSVTLGCLVKGYFPEPVTLTWNSG




SLSSGVHTFPAVLQSDLYTLSSSVTVTSSTW




PSQSITCNVAHPASSTKVDKKIEPRGPTIKP




CPPCKCPAPNAAGGPSVFIFPPKIKDVLMIS




LSPIVTCVVVDVSEDDPDVQISWFVNNVEVH




TAQTQTHREDYNSTLRVVSALPIQHQDWMSG




KEFKCKVNNKDLGAPIERTISKPKGSVRAPQ




VYVLPPPEEEMTKKQVTLTCMVTDFMPEDIY




VEWTNNGKTELNYKNTEPVLDSDGSYFMYSD




LRVEKKNWVERNSYSCSVVHEGLHNHHTTES




FSRTPGK






SEQ ID NO: 184
QVQLVQSGAEVKKPGASVKVSCKASGYTFTD
PD1-IL2_3x_Asym_PD1-



YYMHWVRQAPGQGLEWMGIINPRAGYTSYAL
IL2_7A04_H_M115W_L_Q68D



KFQGRVTMTRDTSTSTVYMELSSLRSEDTAV




YYCTSGWDVWGQGTLVTVSSAKTTAPSVYPL




APVCGDTTGSSVTLGCLVKGYFPEPVTLTWN




SGSLSSGVHTFPAVLQSDLYTLSSSVTVTSS




TWPSQSITCNVAHPASSTKVDKKIEPRGPTI




KPCPPCKCPAPNAAGGPSVFIFPPKIKDVLM




ISLSPIVTCVVVDVSEDDPDVQISWFVNNVE




VHTAQTQTHREDYNSTLRVVSALPIQHQDWM




SGKEFKCKVNNKDLGAPIERTISKPKGSVRA




PQVYVLPPPEKEMTKKQVSLTCLVKDFMPED




IYVEWTNNGKTELNYKNTEPVLKSDGSYFMY




SKLTVEKKNWVERNSYSCSVVHEGLHNHHTT




KSFSRTPGGGGSGGGSHHHHHH









A. Sensor Domains


Protein complexes of the present disclosure include sensor domains. A sensor domain may be any protein that is capable of sensing the presence of a first moiety and regulating a second moiety, where the first moiety is a marker (e.g., a tumor cell marker) and the second moiety is a therapeutic domain (e.g., a cytokine therapeutic domain). For example, the present disclosure provides a sensor domain that may be an antibody or antibody fragment capable of binding a first moiety and binding and blocking the activity of a second moiety, wherein the first moiety is a marker (e.g., a tumor marker) and the second moiety is a therapeutic domain (e.g., a cytokine therapeutic domain). In the absence of the first moiety, the sensor domain binds the second moiety. If the first moiety is introduced into the system, the sensor domain binds the first moiety and unbinds the second moiety. Thus, the binding and unbinding of the second moiety is reversible. The sensor domain inactivates or blocks the activity of the therapeutic domain by binding the therapeutic domain and preventing it from binding to its target (e.g., a receptor, a ligand, or a substrate). The sensor domain regulates the therapeutic domain by releasing it to act on its target upon binding of a marker.


In some embodiments, the sensor domain is a dual binding protein such as a dual binding antibody. A dual binding protein may be capable of binding the marker and the therapeutic domain. A dual binding protein of the present disclosure may be selected or engineered to bind the marker and the therapeutic domain. The dual binding protein may have a higher affinity for the marker as compared to the therapeutic domain. The dual binding protein may be affinity matured to have a higher affinity for the marker as compared to the therapeutic domain.


In some embodiments, the sensor domain is an antibody. The sensor domain may also be a fragment of an antibody. A fragment of an antibody consistent with the sensor domains disclosed herein retains its ability to exhibit dual binding to both a marker and a therapeutic domain. One or both domains of a bispecific antibody may be sensor domains of the protein complexes of the present disclosure. In the instance that bispecific antibodies are used, the bispecific antibody may include a first antigen binding domain that may bind a therapeutic domain and a marker and may also include a second antigen binding domain capable of binding the marker. In some embodiments, the bispecific antibody may have a first antigen binding domain that binds a therapeutic domain and a first marker, and a second antigen binding domain that binds a second marker. In some embodiments, the bispecific antibody may have a first antigen binding domain that binds a therapeutic domain and a first marker, and a second antigen binding domain that binds a therapeutic domain and a second marker. In some embodiments the first and second antigen binding domains may bind to the same therapeutic domain (FIG. 13).


In some embodiments the two sensor domains may bind to a single IFNα domain attached by a linker to two antibody domains; a first antibody domain that may bind to CEA (a first marker) and to the IFNα domain, and a second antibody domain that may bind to ATP (a second marker), and to the IFNα domain such that the IFNα is able to bind its receptor only in the presence of CEA and ATP (FIG. 13).


In some embodiments, the sensor domain is an anti-PD1 or anti-PDL1 antibody or fragment thereof (e.g., an scFv that binds PD1 or PD-L1). In some embodiments, the sensor domain binds to a marker comprising a surface protein, such as a cell surface protein, soluble ATP, a secreted protein, PD1, PD-L1, CEACAM5, FAP, LRRC15, a metabolite, adenosine, AMP, ADP, ATP, or kynurenine, or CRIPTO, CD19, CD20, CD22, CD30, CD33, Glycoprotein NMB, CanAg, HER2 (ErbB2/Neu), CD56 (NCAM), CD70, CD79, CD138, PSCA, PSMA (prostate specific membrane antigen), BCMA, E-selectin, EphB2, Melanotransferin, Muc16 and TMEFF2, BMPR1B, E16, STEAP1, 0772P, MPF, Naρi3b, Sema 5b, PSCA hlg, ETBR, MSG783, STEAP2, TrpM4, CD21, CD79b, FcRH2, NCA, MDP, IL20Rα, Brevican, EphB2R, ASLG659, PSCA, GEDA, BAFF-R, CD79a, CXCR5, HLA-DOB, P2X5, CD72, FCRHI, IRTA2, a sialic acid, or any other marker described in U.S. Pat. No. 10,561,739, incorporated herein by reference in its entirety or WO 2005/082023, incorporated herein by reference in its entirety.


In some embodiments, the sensor domain comprises a condition-dependent target affinity. Many cell types, including a range of cancer cell types, generate specific extracellular and tissue-specific microenvironments distinct from those of healthy cells. Recently, significant attention has been placed on the link between extracellular sodium depletion and certain brain cancers. As a further example, some cancers generate low pH microenvironments which can affect changes in the membranome protonation and conformational patterns. Accordingly, a sensor domain may comprise enhanced affinity for a target marker in the presence of a particular condition. A sensor domain may be responsive to pH, temperature, salinity, osmotic pressure, or any combination thereof. For example, a sensor domain may comprise an order of magnitude greater affinity for a target molecule or an order of magnitude lower affinity for a therapeutic domain in the presence of a particular condition. The particular condition may affect the sensor (e.g., a charge or conformation of the sensor), the target (e.g., a charge or solubility of the target), or both.


B. Therapeutic Domains


Protein complexes of the present disclosure include therapeutic domains. A therapeutic domain of the present disclosure is linked to a sensor domain via a linker to form a protein complex. The therapeutic domain may exert therapeutic activity by binding to a target. For example, the therapeutic domain may be a cytokine and its target may be a receptor target. Upon binding of the cytokine to its receptor target, the cytokine may modulate cellular proliferation, activation, differentiation, and/or may exert anti-tumor or anti-viral activity. Therapeutic domains consistent with the protein complexes of the present disclosure include a cytokine, a chemokine, an antibody, an antibody fragment, a peptide agonist, a peptide antagonist, an enzyme, a soluble receptor, a growth factor, a protein toxin, a soluble ligand, a small molecule, or combinations thereof. In some embodiments, an antibody or antibody fragment comprises an IgG, an IgA, an IgD, an IgE, an IgM, an Fab, an F(ab)′2, a single domain antibody fragment (e.g., a nanobody), a diabody, an scFab, an scFv, an (scFv)2, or any fragment (e.g., an Fe domain or CH domain) or combination thereof.


In some embodiments, the protein complexes of the present disclosure comprise a therapeutic domain comprising an IL-2 receptor agonist, IL-12 receptor agonist, or IFNα, or variants or fusions of these cytokines. In some embodiments, the therapeutic domain may be IFNα, IFNγ IL-12 IL-4, IL-8, IL-10, IL-15, IL-18, IL-21, TGF beta, an anti-CD3 antibody, an anti-CD28 antibody or ligand, an antibody to or ligand of CD40, GITR, OX40, CD137, CD27, or Death Receptors, the extracellular domain of TGFBR2, VEGF-C, kynureninase, IL-7, TNF, MICA, MICB, CD47, an anti-CTLA4 antibody, an anti-PD-L1 antibody, or an anti-PD-1 antibody. The therapeutic domain may also be a fragment of any of the above mentioned moieties. A fragment retains functional regions of the moiety needed for binding to its target (e.g., IL-2 receptor) and any functional regions needed for activity.


C. Linkers


A protein complex disclosed herein may comprise a linker. The linker may connect two domains, such as a sensor domain and a therapeutic domain. The linker may connect two portions of a sensor domain, for example a light chain variable domain and a heavy chain variable domain. Various linkers are consistent with the protein complexes of the present disclosure. In some embodiments, the linker may be an amino acid linker or a chemical linker.


The linker may be a stable linker. For example, a linker may maintain a connection between a therapeutic domain and a sensor domain even upon binding of the sensor domain to a marker and, thereby, unbinding of the therapeutic domain from the sensor domain. For example, although the sensor domain may unbind the therapeutic domain, the therapeutic domain may remain linked to the sensor domain via the linker. Examples of linkers that are consistent with this activity may include non-cleavable linkers.


The linker may also be a flexible linker. A flexible linker is a linker that is long enough to allow for the therapeutic domain to bind to its target, once it is unbound from the sensor domain. Flexibility of the linker may affect therapeutic efficacy. For example, upon binding of the sensor domain to a marker and unbinding of the therapeutic domain, the therapeutic domain needs to be able to encounter and bind its therapeutic target (e.g., a receptor on the same cell surface as the marker or a receptor on an adjacent cell surface to the marker). If the linker is not flexible enough to allow for the therapeutic domain to binds its therapeutic target, therapeutic efficacy may be reduced or not exerted. When the linker is flexible, therapeutic domains may be able to bind their therapeutic target and exert high therapeutic efficacy. Flexibility of a linker may arise from the length of the linker. For example, short linkers may sterically hinder the therapeutic domain from binding its target. Longer linkers may allow for the protein complex to be more flexible and allow for therapeutic domains to bind their target. In some embodiments, a linker that is too long may impact the ability of the sensor domain to bind the therapeutic domain and inhibit activity in the absence of the marker. In some embodiments, a linker that is too long may impact the stability of a protein therapeutic domain or the half-life of the protein therapeutic domain in vivo.


In some embodiments, the linker may be attached to a heavy chain of the sensor domain or a light chain of the sensor domain. A linker may be fused to the N-terminus or C-terminus of the sensor domain. In some embodiments, the linker may be attached to a heavy chain or light chain of the therapeutic domain or is fused with the N-terminus or C-terminus of the therapeutic domain. For example, a linker may be attached to an N-terminus or C-terminus of an scFV or an ScFab.


Amino Acid Linkers. An amino acid linker may comprise any amino acid residues. In some embodiments, favored amino acid residues are amino acid residues that are entropically flexible. Favored amino acid residues in an amino acid linker of the present disclosure may include glycine and serine. Other preferred amino acid residues may include alanine, proline, threonine, and glutamic acid. In preferred embodiments, the amino acid linker may comprise from 3 to 60 amino acid residues in length. In some embodiments, the amino acid linker may comprise 20 amino acid residues. In some embodiments, the amino acid linker may comprise 40 amino acid residues. In some embodiments, the amino acid linker may comprise 60 amino acid residues. In some embodiments, the amino acid linker may comprise 80 amino acid residues. An amino acid linker may comprise at least 5 amino acid residues. An amino acid linker may comprise at least 10 amino acid residues. An amino acid linker may comprise at least 15 amino acid residues. An amino acid linker may comprise at least 20 amino acid residues. An amino acid linker may comprise at least 25 amino acid residues. An amino acid linker may comprise at least 30 amino acid residues. An amino acid linker may comprise at least 35 amino acid residues. An amino acid linker may comprise at least 40 amino acid residues. An amino acid linker may comprise at least 45 amino acid residues. An amino acid linker may comprise at least 50 amino acid residues. An amino acid linker may comprise at least 55 amino acid residues. An amino acid linker may comprise at least 60 amino acid residues. An amino acid linker may comprise at least 65 amino acid residues. An amino acid linker may comprise at least 70 amino acid residues. An amino acid linker may comprise at least 75 amino acid residues. An amino acid linker may comprise at least 80 amino acid residues. An amino acid linker may comprise at least 85 amino acid residues. An amino acid linker may comprise at least 90 amino acid residues. An amino acid linker may comprise at least 95 amino acid residues. An amino acid linker may comprise at least 100 amino acid residues. An amino acid linker may comprise at least 110 amino acid residues. An amino acid linker may comprise at least 120 amino acid residues. An amino acid linker may comprise at least 130 amino acid residues. An amino acid linker may comprise at least 140 amino acid residues. An amino acid linker may comprise at least 150 amino acid residues. An amino acid linker may comprise at least 160 amino acid residues. An amino acid linker may comprise at least 170 amino acid residues. An amino acid linker may comprise at least 180 amino acid residues. An amino acid linker may comprise at least 190 amino acid residues. An amino acid linker may comprise at least 200 amino acid residues. An amino acid linker may comprise at least 300 amino acid residues. An amino acid linker may comprise at least 400 amino acid residues. An amino acid linker may comprise at least 500 amino acid residues. An amino acid linker may comprise from 5 to 10 amino acid residues. An amino acid linker may comprise from 10 to 15 amino acid residues. An amino acid linker may comprise from 15 to 20 amino acid residues. An amino acid linker may comprise from 20 to 25 amino acid residues. An amino acid linker may comprise from 25 to 30 amino acid residues. An amino acid linker may comprise from 30 to 35 amino acid residues. An amino acid linker may comprise from 35 to 40 amino acid residues. An amino acid linker may comprise from 40 to 45 amino acid residues. An amino acid linker may comprise from 45 to 50 amino acid residues. An amino acid linker may comprise from 50 to 55 amino acid residues. An amino acid linker may comprise from 55 to 60 amino acid residues. An amino acid linker may comprise from 60 to 65 amino acid residues. An amino acid linker may comprise from 65 to 70 amino acid residues. An amino acid linker may comprise from 70 to 75 amino acid residues. An amino acid linker may comprise from 75 to 80 amino acid residues. An amino acid linker may comprise from 80 to 85 amino acid residues. An amino acid linker may comprise from 85 to 90 amino acid residues. An amino acid linker may comprise from 90 to 95 amino acid residues. An amino acid linker may comprise from 95 to 100 amino acid residues. An amino acid linker may comprise from 5 to 80 amino acid residues. An amino acid linker may comprise from 20 to 40 amino acid residues. An amino acid linker may comprise from 20 to 80 amino acid residues. An amino acid linker may comprise from 30 to 60 amino acid residues. An amino acid linker may comprise from 40 to 50 amino acid residues. An amino acid linker may comprise from 10 to 30 amino acid residues. An amino acid linker may comprise from 10 to 20 amino acid residues. An amino acid linker may comprise from 5 to 25 amino acid residues. An amino acid linker may comprise from 25 to 75 amino acid residues. An amino acid linker may comprise from 100 to 500 amino acid residues. An amino acid linker may comprise from 100 to 300 amino acid residues. An amino acid linker may comprise from 5 to 500 amino acid residues. An amino acid linker may comprise no more than 100 amino acid residues. An amino acid linker may comprise no more than 90 amino acid residues. An amino acid linker may comprise no more than 80 amino acid residues. An amino acid linker may comprise no more than 70 amino acid residues. An amino acid linker may comprise no more than 60 amino acid residues. An amino acid linker may comprise no more than 50 amino acid residues. An amino acid linker may comprise no more than 40 amino acid residues. An amino acid linker may comprise no more than 30 amino acid residues. An amino acid linker may comprise no more than 20 amino acid residues. An amino acid linker may comprise no more than 10 amino acid residues. An amino acid linker may comprise no more than 95 amino acid residues. An amino acid linker may comprise no more than 90 amino acid residues. An amino acid linker may comprise no more than 85 amino acid residues. An amino acid linker may comprise no more than 80 amino acid residues. An amino acid linker may comprise no more than 75 amino acid residues. An amino acid linker may comprise no more than 70 amino acid residues. An amino acid linker may comprise no more than 65 amino acid residues. An amino acid linker may comprise no more than 60 amino acid residues. An amino acid linker may comprise no more than 55 amino acid residues. An amino acid linker may comprise no more than 50 amino acid residues. An amino acid linker may comprise no more than 45 amino acid residues. An amino acid linker may comprise no more than 40 amino acid residues. An amino acid linker may comprise no more than 35 amino acid residues. An amino acid linker may comprise no more than 30 amino acid residues. An amino acid linker may comprise no more than 25 amino acid residues. An amino acid linker may comprise no more than 20 amino acid residues. An amino acid linker may comprise no more than 15 amino acid residues. An amino acid linker may comprise no more than 10 amino acid residues. An amino acid linker may comprise no more than 200 amino acid residues. An amino acid linker may comprise no more than 300 amino acid residues. An amino acid linker may comprise no more than 400 amino acid residues. An amino acid linker may comprise no more than 500 amino acid residues.


Non-Cleavable Linkers.

A non-cleavable linker of the present disclosure may include a chemical linker that is stable. Examples of non-cleavable linkers consistent for use in protein complexes of the present disclosure to link the sensor domain and the therapeutic domain may include a thioether linker, an alkyl linker, a polymeric linker. A linker may be an SMCC linker or a PEG linker. In preferred embodiments, the linker may be a PEG linker.


A non-cleavable linker may also include a non-proteolytically cleavable peptide. A non-proteolytically cleavable peptide may be inert to proteases present in a given sample or organism. For example, a peptide may be inert to all human protease cleavage sequences, and thereby may comprise a high degree of stability within humans and human samples. Such a peptide may also comprise a secondary structure which renders a protease cleavage site inert or inaccessible to a protease. A non-cleavable linker of the present disclosure may comprise a half-life for cleavage of at least 1 hour, at least 2 hours, at least 4 hours, at least 8 hours, at least 12 hours, at least 16 hours, at least 1 day, at least 2 days, at least 3 days, at least 1 week, at least 2 weeks, or at least 1 month in the presence of human proteases at 25° C. in pH 7 buffer.


D. Protein Complex Structures


The present disclosure provides a wide variety of protein complexes spanning a range of structures. A protein complex of the present disclosure may comprise a therapeutic domain and a sensor domain expressed as a single unit. A therapeutic domain may be expressed as an N-terminal extension of a sensor domain, as a C-terminal extension of a sensor domain, or disposed within a sensor domain. For example, a protein complex may comprise a peptide which comprises, from N-terminus to C-terminus, a therapeutic domain, a peptide linker, an scFv domain, and optionally a tag, such as a purification tag (e.g., a V5 or myc tag) or a localization signal. Alternatively, a therapeutic domain and a sensor domain may be coupled (e.g., chemically coupled) subsequent to expression.


A protein complex may comprise a plurality of protein subunits. The plurality of protein subunits (e.g., a therapeutic domain and a sensor domain, two sensor domains, or two subunits of a sensor domain) may be chemically or physically coupled following expression. The plurality of protein subunits may comprise a plurality of sensor and/or therapeutic domains. A sensor and/or a therapeutic domain may be comprised of a single protein subunit, of multiple protein subunits, or by portions thereof. For example, a sensor domain may comprise an antibody Fab region comprising portions of an immunoglobulin light chain and an immunoglobulin heavy chain.


A plurality of protein subunits may comprise physical handles which facilitate their selective coupling. The physical handles may enable spontaneous, irreversible, and/or non-mediated (e.g., not requiring a chaperone protein or a catalytic complex) coupling between the protein subunits, thereby enabling complex and asymmetric protein complexes. For example, two distinct protein complex subunits expressed in a single Chinese hamster ovary (CHO) cell, may comprise physical handles which spontaneously and irreversibly couple prior to cellular export. Such physical handles may comprise a ‘knob-into-hole’ (KIH) construct or a charge-swap construct, in which two protein subunits comprise physical structures with mutual binding affinities and specificities. Such physical handles may comprise a covalently binding pair, such as a plurality of thiols configured to form disulfide bonds. Physical handles may enable facile production of protein complexes comprising identical or distinct domains.


A protein complex may comprise two or more identical domains. An example of such a protein complex is provided in FIG. 14A, which illustrates an antibody (multi-sensor domain) coupled to two IL-2 therapeutic domains. In this example, the protein complex comprises two protein immunoglobulin light chain subunits and two immunoglobulin heavy chain subunits complexed to form a competent antibody. The two immunoglobulin heavy chain subunits comprise N-terminal linkers coupled to IL-2 therapeutic domains. Each immunoglobulin heavy chain is coupled to an immunoglobulin light chain, such that the protein complex comprises two Fab regions, each separately coupled to a therapeutic domain by a linker.


While the above example provides a symmetric protein complex with two identical sensor domains and two identical therapeutic domains, a protein complex may also comprise a plurality of distinct sensor and/or therapeutic domains. Such a protein complex may comprise an immunoglobulin unit with a first arm comprised of a heavy chain-light chain pair, and a second arm comprised of an antibody fragment such as an scFv, an scFab, a VH, or a fragment thereof. In such cases, the heavy chain, the antibody fragment, or the light chain may comprise an N-terminal extension with a linker and a therapeutic domain, as illustrated in FIGS. 9A, C, and F, respectively. Alternatively, the heavy chain, the antibody fragment, or the light chain may comprise a C-terminal extension with a linker and a therapeutic domain. A protein complex may also comprise a symmetric immunoglobulin unit with a single therapeutic domain. For example, as shown in FIG. 9B, an immunoglobulin unit may comprise an N-terminal linker and therapeutic unit on a single heavy chain. Alternatively, an immunoglobulin unit may comprise an N-terminal linker and therapeutic unit on a single light chain. An immunoglobulin unit may also comprise a pair of antibody fragments coupled to a single Fc region. An immunoglobulin unit may comprise a nanobody. An immunoglobulin unit may comprise a diabody.


In some cases, a plurality of distinct sensor domains are associated with a plurality of distinct therapeutic domains. Such a plurality of sensor domains may comprise common targets. For example, a protein complex may comprise a first sensor domain associated with an IL-2 therapeutic domain and comprising affinities for IL-2 and PD-1, and a second sensor domain associated with an IFNα therapeutic domain and comprising an affinity for IFNα and PD-1. Alternatively, a plurality of sensor domains may comprise separate targets. For example, a protein complex may comprise a first sensor domain associated with an IL-2 therapeutic domain and comprising affinities for IL-2 and PD-1, and a second sensor domain associated with an IFNα therapeutic domain and comprising an affinity for IFNα and CEACAM5.


A protein complex may comprise a therapeutic domain targeted by one or more than one sensor domain. A protein complex comprising such a plurality of sensor domains may comprise a multi-target dependence for activity. This concept is illustrated in FIGS. 13A-13C, which provides a protein complex comprising a therapeutic domain, a first sensor domain targeting the therapeutic domain and a first target (‘Marker 1’), and a second sensor domain targeting the therapeutic domain and a second target (‘Marker 2’). In this example, the presence of Marker 1 leads to therapeutic domain binding to DBA 2, while the presence of Marker 2 leads to therapeutic domain binding to DBA 1. However, the presence of Marker 1 and Marker 2 liberates the therapeutic domain, enhancing its activity. Accordingly, the activity of the protein complex is requisite upon the presence of both of its markers. An example of such a system may be a protein complex comprising a first sensor domain which targets IL-2 and PD-1, and a second sensor domain which targets IL-2 and CEACAM5, such that CEACAM5 and PD-1 are requisite for IL-2 activity by the protein complex. A protein complex may comprise a dependence for at least 2, at least 3, at least 4, or at least 5 target markers. A protein complex may comprise a dependence for at most 5, at most 4, at most 3, at most 2, or for a single target marker.


Multi-marker activity dependence may enhance the selectivity of a protein complex. Some cells, including many forms of cancerous cells, comprise minor variations in their surfaceomes relative to healthy cells, rendering monospecific targeting unfeasible for distinguishing diseased cells. Accordingly, selectively targeting a particular diseased cell or tissue may require targeting a plurality of markers. A protein complex of the present disclosure may target at least 2, at least 3, at least 4, or at least 5 markers. A protein complex of the present disclosure may target at most 5, at most 4, at most 3, or at most 2 markers. In some cases, at least one of the markers targeted by a protein complex is commonly shared between a target cell or tissue and a healthy cell or tissue. In some cases, all of the markers targeted by a protein complex are commonly shared between a target cell or tissue and a healthy cell or tissue.


A sensor domain of the present disclosure may target at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 markers and no therapeutic domain. A sensor domain of the present disclosure may target at most 2, at most 3, at most 4, at most 5, at most 6, at most 7, at most 8, at most 9, or at most 10 markers and no therapeutic domain. A sensor domain of the present disclosure may target a single therapeutic domain and at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 markers. A sensor domain of the present disclosure may target a single therapeutic domain and at most 1, at most 2, at most 3, at most 4, at most 5, at most 6, at most 7, at most 8, at most 9, or at most 10 markers. A sensor domain of the present disclosure may target at least two therapeutic domains and at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 markers. A sensor domain of the present disclosure may target at least two therapeutic domains and at most 1, at most 2, at most 3, at most 4, at most 5, at most 6, at most 7, at most 8, at most 9, or at most 10 markers.


Two sensor domains may comprise identical affinities for a therapeutic domain, or may comprise different affinities for the therapeutic domain. Two sensor domains may comprise affinities for a therapeutic domain differing by at least 1 order of magnitude, at least 2 orders of magnitude, at least 3 orders of magnitude, or at least 4 orders of magnitude for a therapeutic domain. Two sensor domains may comprise affinities for a therapeutic domain which differ by at most 4 orders of magnitude, at most 3 orders of magnitude, at most 2 orders of magnitude, or at most 1 order of magnitude. A combination of different therapeutic domain affinities by a plurality of sensor domains may enhance the affinity of a protein complex for a target marker. For example, a protein complex may comprise a first sensor domain which weakly targets a first cell surface marker and weakly targets a therapeutic domain, and a second sensor domain which strongly targets a second cell surface marker and strongly targets the therapeutic domain, such that the protein complex exhibits weak activity in the presence of the cell surface second marker and strong activity in the presence of the first and the second cell surface markers.


Two sensor domains of a protein complex may also target separate therapeutic domains. For example, a protein complex may comprise a first sensor domain which targets IL-2 and PD-1, and a second sensor domain which targets IFNα and CEACAM5. A protein complex may comprise a sensor domain which does not target a therapeutic domain. Such a sensor domain may aid in target localization, or may enhance the activity of a separate sensor domain for a therapeutic domain. An example of a protein complex comprising a sensor domain which does not target a therapeutic domain is provided in FIG. 14C. This system comprises a monospecific anti-PD-1 antibody, wherein a first heavy chain comprises a C-terminal linker coupled to a therapeutic domain, and a second heavy chain comprises a C-terminal linker coupled to a sensor domain with dual specificity for the therapeutic domain and for a target marker.


A protein complex may comprise a single target, 2 targets, 3 targets, 4 targets, or more than 4 targets. A protein complex may comprise at least 2 targets, at least 3 targets, or at least 4 targets. A protein complex may comprise at most 4 targets, at most 3 targets, or at most 2 targets. A protein complex may comprise a single sensor domain, 2 sensor domains, 3 sensor domains, 4 sensor domains, or more than 4 sensor domains. A protein complex may comprise at least 2 sensor domains, at least 3 sensor domains, or at least 4 sensor domains. For example, a protein complex may comprise an IgM antibody comprising Fab region sensor domains, or an IgA antibody comprising 4 Fab region sensor domains.


A protein complex may comprise a range of sensor-to-therapeutic domain ratios. A protein complex may comprise equal numbers of sensor domains and therapeutic domains, examples of which are provided by FIG. 14A, which illustrates a protein complex with 2 sensor domains and 2 therapeutic domains, and FIG. 8, which illustrates a protein complex with a single sensor domain and a single therapeutic domain. A protein complex may comprise a greater number of sensor domains than therapeutic domains, such as the protein complexes of FIGS. 9A, 9B, 9C, 9F, and 14B, which each comprise two sensor domains and one therapeutic domain. In such cases, a therapeutic domain may be capable of interacting with multiple sensor domains, or may be constrained from interacting with more than one sensor domain. The number of therapeutic domains with which a sensor domain may interact may depend on its linker. A linker may be sufficiently short so as to prevent a therapeutic domain from interacting with a sensor domain, or may be sufficiently long so as to allow a therapeutic domain to interact with multiple sensor domains.


In specific cases, a protein complex may comprise an antibody with Fc-coupled therapeutic and sensor domains. As illustrated in FIG. 14C, a protein complex may comprise an antibody with a first heavy chain C-terminal extension comprising a linker and a therapeutic domain, and a second heavy chain C-terminal extension comprising a linker and a sensor domain. An antibody of this design may comprise common targets across its Fab and C-terminal extension sensor domain. For example, the antibody Fab regions and C-terminal extension sensor domain may each target PD-1. Conversely, an antibody of this design may comprise separate targets across its Fab regions and C-terminal extension sensor domain.


In some embodiments, an amino acid in the protein complex described herein may comprise a conservative substitution. A conservative substitution may comprise a substitution of one amino acid with a different amino acid with similar biochemical properties (e.g. charge, hydrophobicity, and size). Examples of conservative substitutions, as well as substitutions that may be, but are not necessarily, preferred, are provided in TABLE 33.









TABLE 33







Exemplary Conservative Substitutions









Original

Preferred


Residue
Exemplary Substitutions
Substitutions





Ala (A)
Val; Leu; Ile
Val


Arg (R)
Lys; Gln; Asn
Lys


Asn (N)
Gln; His; Lys; Arg
Gln


Asp (D)
Glu
Glu


Cys (C)
Ser
Ser


Gln (Q)
Asn
Asn


Glu (E)
Asp
Asp


Gly (G)
Pro; Ala
Ala


His (H)
Asn; Gln; Lys; Arg
Arg


Ile (I)
Leu; Val; Met; Ala; Phe; Norleucine
Leu


Leu (L)
Norleucine; Ile; Val; Met; Ala; Phe
Ile


Lys (K)
Arg; Gln; Asn
Arg


Met (M)
Leu; Phe; Ile
Leu


Phe (F)
Leu; Val; Ile; Ala; Tyr
Leu


Pro (P)
Ala
Ala


Ser (S)
Thr
Thr


Thr (T)
Ser
Ser


Trp (W)
Tyr; Phe
Tyr


Tyr (Y)
Trp; Phe; Thr; Ser
Phe


Val (V)
Ile; Leu; Met; Phe; Ala; Norleucine
Leu









In some embodiments, the present disclosure describes a recombinant nucleic acid that encodes the protein complex disclosed herein. In some embodiments, the recombinant nucleic acid comprises a plasmid or a vector that encodes the entire protein complex. In some embodiments, the recombinant nucleic acid comprises plasmids or vectors that encode the therapeutic domain, the sensor domain, and the linker respectively. In some embodiments, the recombinant nucleic acid comprises plasmids or vectors that encode any two of the therapeutic domain, the sensor domain, and the linker together.


Pharmaceutical Formulations

A protein complex or a recombinant nucleic acid encoding the protein complex of the present disclosure may be formulated as a pharmaceutical composition. A pharmaceutical composition may comprise a pharmaceutically acceptable carrier or excipient. As used herein “pharmaceutically acceptable” or “pharmacologically acceptable” includes molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to a subject, as appropriate. “Pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients are often also incorporated into the compositions.


Applications

A protein complex of the present disclosure may be used for various therapeutic applications. A protein complex of the present disclosure may be used as a therapeutic to administer to a subject in need thereof. The subject may be a human or non-human mammal. The subject may have a disease. The disease may be cancer. The cancer may be acute lymphoblastic leukemia (ALL); acute myeloid leukemia (AML); cancer in adolescents; adrenocortical carcinoma; aids-related cancers; kaposi sarcoma (soft tissue sarcoma); aids-related lymphoma (lymphoma); primary cns lymphoma (lymphoma); anal cancer; appendix cancer—see gastrointestinal carcinoid tumors; astrocytomas, childhood (brain cancer); atypical teratoid/rhabdoid tumor, childhood, central nervous system (brain cancer); basal cell carcinoma of the skin—see skin cancer; bile duct cancer; bladder cancer; bone cancer (includes ewing sarcoma and osteosarcoma and malignant fibrous histiocytoma); brain tumors; breast cancer; bronchial tumors (lung cancer); burkitt lymphoma—see non-hodgkin lymphoma; carcinoid tumor (gastrointestinal); carcinoma of unknown primary; cardiac (heart) tumors, childhood; central nervous system; atypical teratoid/rhabdoid tumor, childhood (brain cancer); medulloblastoma and other cns embryonal tumors, childhood (brain cancer); germ cell tumor, childhood (brain cancer); primary cns lymphoma; cervical cancer; childhood cancers; cancers of childhood, unusual; cholangiocarcinoma—see bile duct cancer; chordoma, childhood (bone cancer); chronic lymphocytic leukemia (CLL); chronic myelogenous leukemia (CMIL); chronic myeloproliferative neoplasms; colorectal cancer; craniopharyngioma, childhood (brain cancer); cutaneous t-cell lymphoma—see lymphoma (mycosis fungoides and sezary syndrome); ductal carcinoma in situ (DCIS)—see breast cancer; embryonal tumors, medulloblastoma and other central nervous system, childhood (brain cancer); endometrial cancer (uterine cancer); ependymoma, childhood (brain cancer); esophageal cancer; esthesioneuroblastoma (head and neck cancer); ewing sarcoma (bone cancer); extracranial germ cell tumor, childhood; extragonadal germ cell tumor; eye cancer; intraocular melanoma; retinoblastoma; fallopian tube cancer; fibrous histiocytoma of bone, malignant, and osteosarcoma; gallbladder cancer; gastric (stomach) cancer; gastrointestinal carcinoid tumor; gastrointestinal stromal tumors (GIST) (soft tissue sarcoma); germ cell tumors; childhood central nervous system germ cell tumors (brain cancer); childhood extracranial germ cell tumors; extragonadal germ cell tumors; ovarian germ cell tumors; testicular cancer; gestational trophoblastic disease; hairy cell leukemia; head and neck cancer; heart tumors, childhood; hepatocellular (liver) cancer; histiocytosis, langerhans cell; hodgkin lymphoma; hypopharyngeal cancer (head and neck cancer); intraocular melanoma; islet cell tumors, pancreatic neuroendocrine tumors; kaposi sarcoma (soft tissue sarcoma); kidney (renal cell) cancer; langerhans cell histiocytosis; laryngeal cancer (head and neck cancer); leukemia; lip and oral cavity cancer (head and neck cancer); liver cancer; lung cancer (non-small cell, small cell, pleuropulmonary blastoma, and tracheobronchial tumor); lymphoma; male breast cancer; malignant fibrous histiocytoma of bone and osteosarcoma; melanoma; melanoma, intraocular (eye); merkel cell carcinoma (skin cancer); mesothelioma, malignant; metastatic cancer; metastatic squamous neck cancer with occult primary (head and neck cancer); midline tract carcinoma with nut gene changes; mouth cancer (head and neck cancer); multiple endocrine neoplasia syndromes; multiple myeloma/plasma cell neoplasms; mycosis fungoides (lymphoma); myelodysplastic syndromes, myelodysplastic/myeloproliferative neoplasms; myelogenous leukemia, chronic (CML); myeloid leukemia, acute (AML); myeloproliferative neoplasms, chronic; nasal cavity and paranasal sinus cancer (head and neck cancer); nasopharyngeal cancer (head and neck cancer); neuroblastoma; non-hodgkin lymphoma; non-small cell lung cancer; oral cancer, lip and oral cavity cancer and oropharyngeal cancer (head and neck cancer); osteosarcoma and malignant fibrous histiocytoma of bone; ovarian cancer; pancreatic cancer; pancreatic neuroendocrine tumors (islet cell tumors); papillomatosis (childhood laryngeal); paraganglioma; paranasal sinus and nasal cavity cancer (head and neck cancer); parathyroid cancer; penile cancer; pharyngeal cancer (head and neck cancer); pheochromocytoma; pituitary tumor; plasma cell neoplasm/multiple myeloma; pleuropulmonary blastoma (lung cancer); pregnancy and breast cancer; primary central nervous system (CNS) lymphoma; primary peritoneal cancer; prostate cancer; rectal cancer; recurrent cancer; renal cell (kidney) cancer; retinoblastoma; rhabdomyosarcoma, childhood (soft tissue sarcoma); salivary gland cancer (head and neck cancer); sarcoma; childhood rhabdomyosarcoma (soft tissue sarcoma); childhood vascular tumors (soft tissue sarcoma); ewing sarcoma (bone cancer); kaposi sarcoma (soft tissue sarcoma); osteosarcoma (bone cancer); soft tissue sarcoma; uterine sarcoma; Sezary syndrome (lymphoma); skin cancer; small cell lung cancer; small intestine cancer; soft tissue sarcoma; squamous cell carcinoma of the skin—see skin cancer; squamous neck cancer with occult primary, metastatic (head and neck cancer); stomach (gastric) cancer; t-cell lymphoma, cutaneous—see lymphoma (mycosis fungoides and Sezary syndrome); testicular cancer; throat cancer (head and neck cancer); nasopharyngeal cancer; oropharyngeal cancer; hypopharyngeal cancer; thymoma and thymic carcinoma; thyroid cancer; tracheobronchial tumors (lung cancer); transitional cell cancer of the renal pelvis and ureter (kidney (renal cell) cancer); unknown primary carcinoma; unusual cancers of childhood; ureter and renal pelvis, transitional cell cancer (kidney (renal cell) cancer; urethral cancer; uterine cancer, endometrial; uterine sarcoma; vaginal cancer; vascular tumors (soft tissue sarcoma); vulvar cancer; Wilms tumor and other childhood kidney tumors; or cancer in young adults or any cancer mentioned at https://www.cancer.gov/types.


In addition to the treatment of cancer, the protein complexes of the present disclosure have potential applications in a variety of other settings where targeted, conditional activity may be advantageous. In autoimmune and inflammatory disease, therapeutics that act through global immune suppression have the disadvantage of leaving patients more susceptible to a variety of opportunistic infections. Additionally, the short half-life and lack of accumulation in disease tissues may limit the efficacy of immune-dampening recombinant cytokines. The protein complexes of the present disclosure may address these shortcomings by allowing targeted delivery of immune modulators including IL-4, IL-10, TGF-β, and TNFR2 selectively to affected anatomical locations while remaining silent in the periphery. Additional applications may include cell type-specific therapeutic targeting, such Treg cell-directed IL-2. Targeted, conditional activation of opioid agonists in specific organs or in the presence of markers of inflammation may reduce the addictive risk of pain control.


A protein complex may be administered as a pharmaceutical composition. A pharmaceutical composition of the disclosure can be a combination of any protein complex described herein with other chemical components, such as carriers, stabilizers, diluents, dispersing agents, suspending agents, thickening agents, and/or excipients. The pharmaceutical composition facilitates administration of a protein complex described herein to an organism. Pharmaceutical compositions can be administered in therapeutically-effective amounts as pharmaceutical compositions by various forms and routes including, for example, intravenous, subcutaneous, intramuscular, rectal, aerosol, parenteral, ophthalmic, pulmonary, transdermal, vaginal, optic, nasal, oral, inhalation, dermal, intra-articular, intrathecal, intranasal, and topical administration. A pharmaceutical composition can be administered in a local or systemic manner, for example, via injection of the protein complex described herein directly into an organ, optionally in a depot.


Parenteral injections can be formulated for bolus injection or continuous infusion. The pharmaceutical compositions can be in a form suitable for parenteral injection as a sterile suspension, solution or emulsion in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Pharmaceutical formulations for parenteral administration include aqueous solutions of a protein complex described herein in water-soluble form. Suspensions of protein complexes described herein can be prepared as oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions can contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. The suspension can also contain suitable stabilizers or agents which increase the solubility and/or reduces the aggregation of such protein complexes described herein to allow for the preparation of highly concentrated solutions. Alternatively, the protein complexes described herein can be lyophilized or in powder form for re-constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use. In some embodiments, a purified protein complex is administered intravenously. A protein complex of the present disclosure may comprise a sufficiently long serum half life (e.g., as demonstrated in EXAMPLE 17) to enable dosing regimens comprising daily, alternating day, twice weekly, weekly, biweekly, or monthly dosing frequencies. A protein complex of the present disclosure may comprise a serum half-life of at least 12 hours, at least 24 hours, at least 36 hours, at least 48 hours, at least 72 hours, at least 96 hours, at least 120 hours, at least 168 hours, at least 250 hours, at least 320 hours, or at least 400 hours. The serum half-life may be a human serum half-life, a murine serum half-life, a porcine serum-half life, a bovine serum half-life, a canine serum half-life, a feline serum half-life, or a leporine serum half-life.


A protein complex of the disclosure can be applied directly to an organ, or an organ tissue or cells, during a surgical procedure, or via transdermal, subcutaneous, intramuscular, intratumoral, intrathecal, topical, or local delivery. In some embodiments, a protein complex of the present disclosure may be injected directly into the synovium (e.g., for administration of a protein complex comprising IL-10 for rheumatoid arthritis). In some embodiments, a protein complex may be applied directly to a cancerous tissue (e.g., a tumor). The protein complexes described herein can be administered topically and can be formulated into a variety of topically administrable compositions, such as solutions, suspensions, lotions, gels, pastes, medicated sticks, balms, creams, and ointments. Such pharmaceutical compositions can contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.


In practicing the methods of treatment or use provided herein, therapeutically-effective amounts of the protein complex described herein are administered in pharmaceutical compositions to a subject suffering from a condition. In some instances the pharmaceutical composition will affect the physiology of the animal, such as the immune system, inflammatory response, or other physiologic affect. In some embodiments, the subject is a mammal such as a human. A therapeutically-effective amount can vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compounds used, and other factors.


Pharmaceutical compositions can be formulated using one or more physiologically-acceptable carriers comprising excipients and auxiliaries, which facilitate processing of the active compounds into preparations that can be used pharmaceutically. Formulation can be modified depending upon the route of administration chosen. Pharmaceutical compositions comprising a protein complex described herein can be manufactured, for example, by expressing the protein complex in a recombinant system, purifying the protein complex, lyophilizing the protein complex, mixing, or dissolving. The pharmaceutical compositions can include at least one pharmaceutically acceptable carrier, diluent, or excipient and compounds described herein as free-base or pharmaceutically-acceptable salt form.


Methods for the preparation of protein complexes described herein include formulating the protein complex described herein with one or more inert, pharmaceutically-acceptable excipients or carriers to form a solid, semi-solid, or liquid composition. Solid compositions include, for example, powders, tablets, dispersible granules, capsules, cachets, and suppositories. These compositions can also contain minor amounts of nontoxic, auxiliary substances, such as wetting or emulsifying agents, pH buffering agents, and other pharmaceutically-acceptable additives.


Certain methods described herein comprise administering to the subject an intravenous pharmaceutical composition comprising a protein complex of the present disclosure, for example, as described herein. Intravenous pharmaceutical compositions of protein complexes include any formulation suitable for administration to a subject via any intravenous method, including a bolus, an infusion which occurs over time or any other intravenous method known in the art. In some aspects, the rate of infusion is such that the dose is administered over a period of less than five minutes, more than five minutes but less than 15 minutes or greater than 15 minutes. In other aspects, the rate of infusion is such that the dose is administered over a period of less than 5 minutes. In other aspects, the rate of infusion is such that the dose is administered over a period of greater than 5 minutes and less than 15 minutes. In some other aspects, the rate of infusion is such that the dose is administered over a period of greater than 15 minutes.


“Product” or “dosage form” as used herein refers to any solid, semi-solid, lyophilized, aqueous, liquid or frozen formulation or preparation used for administration. Upon administration, the rate of release of an active moiety from a product is often greatly influenced by the excipients and/or product characteristics which make up the product itself. For example, an enteric coat on a tablet is designed to separate that tablet's contents from the stomach contents to prevent, for example, degradation of the stomach which often induces gastrointestinal discomfort or injury. According to the currently accepted conventional understanding, systemic exposure of the active moiety will be relatively insensitive to the small formulation changes.


Non-limiting examples of pharmaceutically-acceptable excipients can be found, for example, in Remington: The Science and Practice of Pharmacy, Nineteenth Ed (Easton, Pa.: Mack Publishing Company, 1995); Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa. 1975; Liberman, H. A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y., 1980; and Pharmaceutical Dosage Forms and Drug Delivery Systems, Seventh Ed. (Lippincott Williams & Wilkins 1999), each of which is incorporated by reference in its entirety.


A protein complex of the present disclosure may be administered to a patient in an effective amount. The term “effective amount,” as used herein, can refer to a sufficient amount of an agent or a compound being administered which will relieve to some extent one or more of the symptoms of the disease or condition being treated. The result can be reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system. Compositions containing such agents or compounds can be administered for prophylactic, enhancing, and/or therapeutic treatments. An appropriate “effective” amount in any individual case can be determined using techniques, such as a dose escalation study.


The methods, compositions, and kits of this disclosure can comprise a method to prevent, treat, arrest, reverse, or ameliorate the symptoms of a condition. The treatment can comprise treating a subject (e.g., an individual, a domestic animal, a wild animal or a lab animal afflicted with a disease or condition) with a protein complex of the disclosure. Protein complexes of the present disclosure may be administered to treat a disease in a subject. The subject can be a human. A subject can be a human; a non-human primate such as a chimpanzee, or other ape or monkey species; a farm animal such as a cattle, horse, sheep, goat, swine; a domestic animal such as a rabbit, dog, and cat; a laboratory animal including a rodent, such as a rat, mouse and guinea pig, or the like. A subject can be of any age. A subject can be, for example, an elderly adult, adult, adolescent, pre-adolescent, child, toddler, infant, or fetus in utero.


Treatment can be provided to the subject before clinical onset of disease. Treatment can be provided to the subject after clinical onset of disease. Treatment can be provided to the subject after 1 day, 1 week, 6 months, 12 months, or 2 years or more after clinical onset of the disease. Treatment may be provided to the subject for more than 1 day, 1 week, 1 month, 6 months, 12 months, 2 years or more after clinical onset of disease. Treatment may be provided to the subject for less than 1 day, 1 week, 1 month, 6 months, 12 months, or 2 years after clinical onset of the disease. Treatment can also include treating a human in a clinical trial. A treatment can comprise administering to a subject a pharmaceutical composition, such as one or more of the pharmaceutical compositions described throughout the disclosure. A treatment can comprise a once daily dosing. A treatment can comprise delivering a protein complex of the disclosure to a subject, either intravenously, subcutaneously, intramuscularly, by inhalation, dermally, intra-articular injection, orally, intrathecally, transdermally, intranasally, via a peritoneal route, or directly onto or into a diseased tissue, e.g., via topical, intra-articular injection route or injection route of application.


In some embodiments, the present disclosure provides a method for treating a cancer, the method comprising administering to a subject in need thereof an effective amount of a protein complex of the present disclosure.


In some embodiments, the present disclosure provides a method for treating a cancer, the method comprising administering to a patient in need thereof an effective amount of a pharmaceutical composition comprising a protein complex of the present disclosure and a pharmaceutically acceptable carrier.


Kits

A protein complex of the present disclosure may be provided in various kits. In some embodiments, pharmaceutical compositions comprising a protein complex of the present disclosure may be supplied as a kit. A kit may comprise a container that comprises a protein complex. Therapeutic protein complexes can be provided in the form of an injectable solution for single or multiple doses, or as a sterile powder that will be reconstituted before injection. Alternatively, such a kit can include a dry-powder disperser, liquid aerosol generator, or nebulizer for administration of a therapeutic protein complexes. Such a kit may further comprise written information on indications and usage of the pharmaceutical composition.


Unless otherwise defined, all technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Any reference to “or” herein is intended to encompass “and/or” unless otherwise stated.


Whenever the term “at least,” “greater than,” or “greater than or equal to” precedes the first numerical value in a series of two or more numerical values, the term “at least,” “greater than” or “greater than or equal to” applies to each of the numerical values in that series of numerical values. For example, greater than or equal to 1, 2, or 3 is equivalent to greater than or equal to 1, greater than or equal to 2, or greater than or equal to 3.


Whenever the term “no more than,” “less than,” “less than or equal to,” or “at most” precedes the first numerical value in a series of two or more numerical values, the term “no more than,” “less than” or “less than or equal to,” or “at most” applies to each of the numerical values in that series of numerical values. For example, less than or equal to 3, 2, or 1 is equivalent to less than or equal to 3, less than or equal to 2, or less than or equal to 1.


Where values are described as ranges, it will be understood that such disclosure includes the disclosure of all possible sub-ranges within such ranges, as well as specific numerical values that fall within such ranges irrespective of whether a specific numerical value or specific sub-range is expressly stated.


EXAMPLES

The following examples are illustrative and non-limiting to the scope of the devices, methods, systems, and kits described herein.


Example 1
Selection of IFNα and PD-L1 Specific Dual Binding Antibodies (DBAs)

This example describes isolation of sensor domains of the present disclosure, specifically, selection of IFNα and PD-L1 specific dual binding antibodies (DBAs). Anti-PD-L1 and anti-IFNα DBAs were isolated from a Tumbler antibody phage display library (Distributed Bio, Inc.). The antibody phage display library was constructed to incorporate the heavy chain CDR1, heavy chain CDR2, and light chain diversity of the Superhuman 2.0 antibody library combined with 10 heavy chain (“HC”) CDR3 sequences (SEQ ID NO: 1-SEQ ID NO: 10) from the PD-L1 binding antibodies described, as shown below in TABLE 2.









TABLE 2







HC-CDR3 of PD-L1 binders









SEQ ID NO
Sequence
Description





SEQ ID NO: 1
CARDRIAVAGFDYW
HC-CDR3 of




PD-L1 binder





SEQ ID NO: 2
CAKEVFSGWYDYW
HC-CDR3 of




PD-L1 binder





SEQ ID NO: 3
CTTDLLSLELDDAF
HC-CDR3 of



DIW
PD-L1 binder





SEQ ID NO: 4
CARSLFPTIFGVEV
HC-CDR3 of



AFDIW
PD-L1 binder





SEQ ID NO: 5
CARDSYYYDSFDYW
HC-CDR3 of




PD-L1 binder





SEQ ID NO: 6
CARHGEWGSGWPFD
HC-CDR3 of



YW
PD-L1 binder





SEQ ID NO: 7
CARDLLPAIFSGEV
HC-CDR3 of



NDAFDIW
PD-L1 binder





SEQ ID NO: 8
CARETIAVAGFDPW
HC-CDR3 of




PD-L1 binder





SEQ ID NO: 9
CARDVLPTIFGVVS
HC-CDR3 of



DAFDIW
PD-L1 binder





SEQ ID NO: 10
CARGDYGDYFDYW
HC-CDR3 of




PD-L1 binder









The library was subjected to four rounds of selection alternating between PD-L1 (to develop the PD-L1 binding, where PD-L1 serves as a marker) and IFNα (to develop IFNα binding, where IFNα is the therapeutic domain regulated by the sensor domain). Each round the phage library was incubated with the antigen (PD-L1 or IFNα), captured on magnetic beads, washed on a Kingfisher magnetic particle processor, eluted from the magnetic beads, and amplified by passaging in E. coli. In Round 1, the phage library was incubated with 50 nM of a human PD-L1-Fc fusion (R&D Systems, Prod. Num. 156-B7) and captured on protein G magnetic beads. In Round 2, the phage library was incubated with 100 nM of biotinylated human IFNα (Genscript, Prod. Num. Z03003, biotinylated using standard protocols) and captured on streptavidin magnetic beads. In Round 3, the phage library was incubated with 50 nM of a cynomolgus PD-L1-Fc fusion and captured on protein G magnetic beads. In Round 4, the phage library was incubated with 50 nM of biotinylated human IFNα and captured on streptavidin magnetic beads. The final selection was plated as single colonies and 380 colonies were picked for Sanger sequencing. Forty-one unique clones were chosen for expression. The scFv sequence for each clone was codon-optimized for E. coli expression and the corresponding DNA sequences synthesized as gBlocks (Integrated DNA Technologies, Inc.) with a T7 promoter, a translation initiation site, a Myc tag, the scFv sequence, a V5 tag sequence, and a T7 terminator. If the framework sequence of the antibody variable regions differed from the germline sequence, a second version of the clone was synthesized with the germline sequence. An exemplary sequence of a gBlock expression fragment is shown in FIG. 3 (SEQ ID NO: 40, GCGAATTAATACGACTCACTATAGGGCTTAAGTATAAGGAGAATAATATATGTCTA CTTCAACAGAACAAAAGTTAATTAGTGAAGAAGATTTACAGGTCCAGTTGGTTCAG TCAGGCGCAGAAGTCAAAAAGCCGGGAGCGAGTGTCAAAGTATCTTGTAAAGCGA GCGGTGGTACTTTTAGTAGTTATGCGATTTCCTGGGTTCGCCAAGCCCCGGGACAGG GTCTGGAATGGATGGGTATTATTGACCCTTCCGTGACTTACACCCGCTACGCTCAGA AATTCCAGGGACGTGTTACCATGACCCGCGATACCAGCACCAGTACCGTTTACATG GAACTTTCCTCCCTGAGATCGGAAGACACGGCCGTGTATTATTGCGCTCGCTCACTC TTTCCGACCATCTTCGGCGTTGAAGTCGCCTTCGACATCTGGGGCCAGGGCACGCTG GTTACGGTAAGTTCCGCAAGTGGCGGTGGTGGTAGTGGTGGAGGTGGATCAGGAGG AGGTGGTTCTCACGCATCAGACATTCAAATGACACAGAGTCCATCATCCCTTTCTGC CTCCGTGGGTGACCGGGTGACGATAACCTGCCAAGCTAGCCAAGACATTAGCAACT ATCTGAACTGGTACCAGCAAAAGCCTGGGAAAGCTCCGAAACTATTGATTTACGGT GCGTCGACTCTCCAGAGTGGGGTACCTAGTCGTTTTTCCGGTTCAGGGTCGGGTACA GATTTTACCCTTACTATTTCCTCTCTGCAGCCAGAAGACTTTGCTACTTATTACTGCC AACAGACTTATTCGACTCCGATTACGTTTGGCCAGGGAACCAAAGTCGAAATCAAA GGCAAGCCGATCCCGAACCCTCTGCTGGGATTAGACAGCACGTAACTAGCATAACC CCTCTCTAAACGGAGGGGTTT). Proteins from each of the gBlock fragments were expressed using a cell-free transcription/translation system (Cosmo Bio USA, Inc., PUREfrex2.1, Product #GFK-PF213 with DS Supplement, Prod. #GFK-PFof5).


The cell-free expression samples containing V5-tagged scFvs were serially diluted in a 384-well plate. Alexa Fluor 647-labeled anti-V5 antibody was added to each well along with Eu-labeled IFNα 2a or PD-L. Plates were incubated at room temperature for 2 hours and the HTRF signal was read on an Envision (Perkin Elmer) equipped with an HTRF laser module. To examine the ability of DBA binding domains to block Interferon alpha Receptor 2 (dFNAR2) binding to IFNα, V5-tagged DBA scFvs were synthesized using the PUREfrex 2.1 in vitro translation system and serially diluted in a 384 well plate. Eu-labeled IFNα was added to each well along with IFNAR2-Fc and an APC-labeled anti-Fc antibody. Plates were incubated at room temperature for 2 hours, and the HTRF signal was read on an Envision (Perkin Elmer) as a measure of IFNα:IFNAR2 binding. Fluorescence signal values from the binding and inhibition curves is summarized in TABLE 4 and binding curves for IFNα and PD-L1 are shown in FIG. 4 and FIG. 5, respectively. IFNAR2 blocking curves are shown in FIG. 6. DBAs having sequences of SEQ TD NO: 21-SEQ TD NO: 27 were able to bind both IFNα (FIG. 4) and PD-L1 (FIG. 5). SEQ TD NO: 24 blocked binding of IFNα to IFNAR2, and SEQ TD NO: 26 reduced binding of IFNα to IFNAR2 (FIG. 6).









TABLE 3







DBAs and Controls









SEQ ID NO
Sequence
Description





SEQ ID NO: 21
QVQLVQSGAEVKKPGASVKVSCKASGYTF
DBA capable of



SNYYIHWVRQAPGQGLEWMGWMDSNSGGT
binding a PD-L1



GYAQKFQGRVTMTRDTSTSTVYMELSSLR
marker and IFNα



SEDTAVYYCAKEVFSGWYDYWGQGTLVTV
therapeutic



SSASGGGGSGGGGSGGGGSHASDIQMTQS
domain



PSSLSASVGDRVTITCRASQSISSYLNWY




QQKPGKAPKLLIYAASSLQSGVPSRFSGS




GSGTDFTLTISSLQPEDFATYYCQQSYST




PYTFGQGTKVEIK






SEQ ID NO: 22
QVQLVQSGAEVKKPGASVKVSCKASGGTF
DBA capable of



SSYAISWVRQAPGQGLEWVGWMDPKSGNT
binding a PD-L1



GYAQKFQGRVTMTRDTSTSTVYMELSSLR
marker and IFNα



SEDTAVYYCARSLFPTIFGVEVAFDIWGQ
therapeutic



GTLVTVSSASGGGGSGGGGSGGGGSHASD
domain



IQMTQSPSSLSASVGDRVTITCQASQDIN




NYLNWYQQKPGKAPKLLIYKASSLEPGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYC




QKSNDVPFTFGQGTKVEIK






SEQ ID NO: 23
QVQLVQSGAEVKKPGASVKVSCKASGGTF
DBA capable of



SSYYMHWVRQAPGQGLEWMGWMNPNSGNT
binding a PD-L1



GYAQKFQGRVTMTRDTSTSTVYMELSSLR
marker and IFNα



SEDTAVYYCARSLFPTIFGVEVAFDIWGQ
therapeutic



GTLVTVSSASGGGGSGGGGSGGGGSHASD
domain



IQMTQSPSSLSASVGDRVTITCQASQDIT




NYLNWYQQKPGKAPKLLIYAASSLESGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYC




QQSYSIPITFGQGTRLEIK






SEQ ID NO: 24
QVQLVQSGAEVKKPGASVKVSCKASGGTF
DBA capable of



TGYYMHWVRQAPGQGLEWMGWVNPNSGNT
binding a PD-L1



GYAQKFQGRVTMTRDTSTSTVYMELSSLR
marker and IFNα



SEDTAVYYCARSLFPTIFGVEVAFDIWGQ
therapeutic



GTLVTVSSASGGGGSGGGGSGGGGSHASD
domain



IQMTQSPSSLSASVGDRVTITCQASQDIS




NYLNWYQQKPGKAPKLLIYAASSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYC




QQSYSPPPTFGQGTKLEIK






SEQ ID NO: 25
QVQLVQSGAEVKKPGASVKVSCKASGNTF
DBA capable of



TDYYMHWVRQAPGQGLEWMGWMNPNSGNT
binding a PD-L1



GYAQKFQGRVTMTRDTSTSTVYMELSSLR
marker and IFNα



SEDTAVYYCARSLFPTIFGVEVAFDIWGQ
therapeutic



GTLVTVSSASGGGGSGGGGSGGGGSHASD
domain



IQMTQSPSSLSASVGDRVTITCQASQDIS




NYLNWYQQKPGKAPKLLIYAASSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYC




QQSYSTPPTFGQGTRLEIK






SEQ ID NO: 26
QVQLVQSGAEVKKPGASVKVSCKASGGTF
DBA capable of



SSYAISWVRQAPGQGLEWMGIIDPSVTYT
binding a PD-L1



RYAQKFQGRVTMTRDTSTSTVYMELSSLR
marker and IFNα



SEDTAVYYCARSLFPTIFGVEVAFDIWGQ
therapeutic



GTLVTVSSASGGGGSGGGGSGGGGSHASD
domain



IQMTQSPSSLSASVGDRVTITCQASQDIS




NYLNWYQQKPGKAPKLLIYGASTLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYC




QQTYSTPITFGQGTKVEIK






SEQ ID NO: 27
QVQLVQSGAEVKKPGASVKVSCKASGGTF
DBA capable of



SSYAISWVRQAPGQGLEWMGWMDANNGNT
binding a PD-L1



GYAQKFQGRVTMTRDTSTSTVYMELSSLR
marker and IFNα



SEDTAVYYCARSLFPTIFGVEVAFDIWGQ
therapeutic



GTLVTVSSASGGGGSGGGGSGGGGSHASD
domain



IQMTQSPSSLSASVGDRVTITCRASQSVS




SYLNWYQQKPGKAPKLLIYKASSLESGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYC




QQSSSTPLSFGGGTKVEIK






SEQ ID NO: 28
EVQLVESGGGLVQPGGSLRLSCAASGFNI
Anti-HER2



KDTYIHWVRQAPGKGLEWVARIYPTNGYT
control



RYADSVKGRFTISADTSKNTAYLQMNSLR




AEDTAVYYCSRWGGDGFYAMDYWGQGTLV




TVSSASGGGGSGGGGSGGGGSHASDIQMT




QSPSSLSASVGDRVTITCRASQDVNTAVA




WYQQKPGKAPKLLIYSASFLYSGVPSRFS




GSRSGTDFTLTISSLQPEDFATYYCQQHY




TTPPTFGQGTKVEIK






SEQ ID NO: 29
EVQLVESGGGLVQPGGSLRLSCAASGFTF
Anti-PD-L1



SDSWIHWVRQAPGKGLEWVAWISPYGGST
control



YYADSVKGRFTISADTSKNTAYLQMNSLR




AEDTAVYYCARRHWPGGFDYWGQGTLVTV




SSAASGGGGSGGGGSGGGGSHASDIQMTQ




SPSSLSASVGDRVTITCRASQDVSTAVAW




YQQKPGKAPKLLIYSASFLYSGVPSRFSG




SGSGTDFTLTISSLQPEDFATYYCQQYLY




HPATFGQGTKVEIK






SEQ ID NO: 30
EVQLVESGGGLVQPGGSLRLSCATSGYTF
Anti-IFNα



TEYIIHWVRQAPGKGLEWVASINPDYDIT
control



NYNQRFKGRFTISLDKSKRTAYLQMNSLR




AEDTAVYYCASWISDFFDYWGQGTLVTVS




SASGGGGSGGGGSGGGGSHASDIQMTQSP




SSLSASVGDRVTITCRASQSVSTSSYSYM




HWYQQKPGKAPKVLISYASNLESGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQHS




WGIPRTFGQGTKVEIK
















TABLE 4







Fluorescence Signal Values from Binding and Inhibition Curves











PDL1
IFNα
IFNAR2-


Name
Binding
Binding
IFN binding













PDL1-IFN-R01-A03
2,715
20,447
42,528


PDL1-IFN-R01-A04
2,377
10,890
45,590


PDL1-IFN-R01-A05 (SEQ ID NO: 21)
3,113
7,115
50,505


PDL1-IFN-R01-A06 (SEQ ID NO: 22)
2,781
8,563
44,019


PDL1-IFN-R01-A07
3,010
4,496
52,343


PDL1-IFN-R01-A08
2,274
19,905
40,314


PDL1-IFN-R01-A09
1,628
6,585
50,070


PDL1-IFN-R01-A09V2
1,894
5,264
49,709


PDL1-IFN-R01-A10
1,969
6,105
48,781


PDL1-IFN-R01-A11 (SEQ ID NO: 23)
2,965
14,613
41,796


PDL1-IFN-R01-Al2
2,133
9,478
53,273


PDL1-IFN-R01-B01
3,172
7,460
44,230


PDL1-IFN-R01-B02
2,695
7,190
42,135


PDL1-IFN-R01-B03
2,383
4,072
44,076


PDL1-IFN-R01-B04
2,518
12,736
42,948


PDL1-IFN-R01-B04V2
2,703
12,952
43,748


PDL1-IFN-R01-B05
2,074
3,480
50,563


PDL1-IFN-R01-B06
3,084
17,212
43,958


PDL1-IFN-R01-B07
2,897
6,271
40,647


PDL1-IFN-R01-B07V2
2,907
6,111
42,880


PDL1-IFN-R01-B08
2,924
4,042
46,089


PDL1-IFN-R01-B09 (SEQ ID NO: 24)
1,378
35,717
31,232


PDL1-IFN-R01-B10
899
4,118
46,508


PDL1-IFN-R01-B11
2,525
14,580
43,204


PDL1-IFN-R01-B12 (SEQ ID NO: 25)
2,977
9,230
44,505


PDL1-IFN-R01-C01
2,780
6,975
47,032


PDL1-IFN-R01-C02
2,923
4,123
49,398


PDL1-IFN-R01-C03
2,671
6,522
46,323


PDL1-IFN-R01-C04
2,917
7,761
48,699


PDL1-IFN-R01-C05
2,802
3,427
47,470


PDL1-IFN-R01-C06
399
4,380
49,878


PDL1-IFN-R01-C06V2
391
4,130
47,685


PDL1-IFN-R01-C07
2,139
24,494
43,262


PDL1-IFN-R01-C08 (SEQ ID NO: 26)
2,746
45,175
14,739


PDL1-IFN-R01-C08V2
2,812
55,319
16,753


PDL1-IFN-R01-C09
2,388
4,346
48,696


PDL1-IFN-R01-C10
2,489
12,727
43,275


PDL1-IFN-R01-C10V2
2,665
11,972
43,576


PDL1-IFN-R01-C11 (SEQ ID NO: 27)
3,043
7,730
40,503


PDL1-IFN-R01-C12
1,006
13,135
44,871


PDL1-IFN-R01-D01
582
7,018
39,109


PDL1-IFN-R01-D03
2,904
6,084
42,638


PDL1-IFN-R01-D05
2,325
6,402
49,246


PDL1-IFN-R01-D06
2,907
8,326
45,581


PDL1-IFN-R01-D07
414
4,974
38,164


anti-Her2 control (SEQ ID NO: 28)
425
4,275
52,922


Anti-PD-L1 control (SEQ ID NO: 29)
2,445
1,803
39,121


Anti-IFN control (SEQ ID NO: 30)
416
19,098
51,190


No DNA control
422
4,135
45,042









Example 2
Isolation of a Set of Dual-Binding Antibodies (DBAs) that Bind Human PD-1 and Human IL-2

This example describes the isolation of sensor domains of the present disclosure, specifically, a set of DBAs that bind human PD-1 and human IL-2. Anti-PD-1 and anti-IL-2 DBAs were isolated from a Tumbler antibody phage display library (Distributed Bio, Inc.). The antibody phage display library was constructed to incorporate the heavy chain CDR1, heavy chain CDR2, and light chain diversity of the Superhuman 2.0 antibody library combined with 10 heavy chain CDR3 sequences from PD-1 binding antibodies (SEQ ID NO: 11-SEQ ID NO: 20).









TABLE 5







HC-CDR3 of PD-1 binders









SEQ ID NO
Sequence
Description





SEQ ID NO: 11
CAAGLFIW
HC-CDR3 of




PD-1 binder





SEQ ID NO: 12
CAGGWLDW
HC-CDR3 of




PD-1 binder





SEQ ID NO: 13
CARDHLGGSYQPW
HC-CDR3 of




PD-1 binder





SEQ ID NO: 14
CARDLVGVSPGINY
HC-CDR3 of



VPRYYYYYYGMDVW
PD-1 binder





SEQ ID NO: 15
CARDTGLGYYYGSG
HC-CDR3 of



DFDYW
PD-1 binder





SEQ ID NO: 16
CARSGYSYGYYFDY
HC-CDR3 of



W
PD-1 binder





SEQ ID NO: 17
CARTGGYPAIDSW
HC-CDR3 of




PD-1 binder





SEQ ID NO: 18
CASGWDVW
HC-CDR3 of




PD-1 binder





SEQ ID NO: 19
CASSPLQWVDVW
HC-CDR3 of




PD-1 binder





SEQ ID NO: 20
CTSGMDVW
HC-CDR3 of




PD-1 binder









This library was subjected to four rounds of selection with standard protocols. In brief, the phage library was incubated with the antigen, then captured on magnetic beads and washed on a Kingfisher magnetic particle processor, eluted form the magnetic beads and amplified by passaging in E. coli. Round 1 was incubated with 50 nM human PD-1-His fusion (R&D Systems, Prod. Num. 8986-PD) and captured with TRIS NTA Biotin (Sigma-Aldrich Prod. Num. 75543) and streptavidin magnetic beads. Round 2 was incubated with 100 nM biotinylated IL-2 (Creative Biomart, Prod. Num. IL2-501H, biotinylated using standard protocols) and captured on streptavidin magnetic beads. Round 3 was incubated with 50 nM cynomolgus PD-1-Fc fusion (R&D Systems, Prod. Num. 8578-PD) and captured on protein G magnetic beads. Round 4 was incubated with 50 nM biotinylated human IL-2 and captured on streptavidin magnetic beads. The final selection was plated as single colonies and 380 colonies picked for Sanger sequencing. One hundred and fifty-one unique clones were chosen for expression. The scFv sequence for each clone was codon-optimized for E. coli expression and the corresponding DNA sequences sent to Integrated DNA Technologies, Inc. (IDT) for synthesis as gBlocks with a T7 promoter, a translation initiation site and a T7 terminator (see an exemplary gBlock sequence in FIG. 3). Protein from each gBlock encoding an scFv was expressed using the PURExpress In vitro Protein Synthesis Kit (New England Biolabs, Inc., Prod. Num. E6800). The PURExpress scFv proteins were used directly in HTRF binding assays and cell-based functional assays. Each scFv was tested for binding to PD-1 and to human IL-2. Eighty-one of the antibodies showed dual-binding activity for both PD-1 and IL-2 and a summary of fluorescence signal values of binding curves is shown in TABLE 7. To examine the ability of DBA binding domains to block IL-2 receptor binding, V5-tagged DBA scFvs were serially diluted in a 384 well plate. Europium-labeled Streptavidin, biotin-labeled IL-2 (Acro Biosystems, Prod. Num. IL2-H82E4), IL-2 Receptor beta (Fc-IL2RB) (Acro Biosystems, Prod. Num. ILB-H5253), and APC-labeled anti-Fc antibody. Plates were incubated at room temperature for 2 hours, and the HTRF signal was read on an Envision (Perkin Elmer) as a measure of IL-2:IL2RB binding. Four scFvs (SEQ TD NO: 31-SEQ TD NO: 34) bound PD-1, bound IL-2 and blocked binding of IL-2 to IL-2RB (TABLE 7).









TABLE 6







DBAs and Controls









SEQ ID NO
Sequence
Description





SEQ ID NO: 31
QVQLVQSGAEVKKPGVSVKVSCKASGYTF
DBA capable of



PRSYIHWVRQAPGQGLEWMGWINPHSGDT
binding a PD-1



YYAQNFQGRVTMTRDTSTSTVYMELSSLR
marker and IL-2



SEDTAVYYCARDTGLGYYYGSGDFDYWGQ
therapeutic



GTLVTVSSASGGGGSGGGGSGGGGSHASD




IQMTQSPSSLSASVGDRVTITCRASQSIS




RYLNWYQQKPGKAPKLLIYTASSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYC




QQANRFPLTFGPGTKVDIK






SEQ ID NO: 32
QVQLVQSGAEVKKPGASVKVSCKASGYTF
DBA capable of



PRYHIHWVRQAPGQGLEWMGMINPSGGTT
binding a PD-1



TYAQKFQGRVTMTRDTSTSTVYMELSSLR
marker and IL-2



SEDTAVYYCARDTGLGYYYGSGDFDYWGQ
therapeutic



GTLVTVSSASGGGGSGGGGSGGGGSHASD




IQMTQSPSSLSASVGDRVTITCRASQSIS




SWLAWYQQKPGKAPKLLIYAASSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYC




QQSHSFPLTFGGGTKVEIK






SEQ ID NO: 33
QVQLVQSGAEVKKPGASVKVSCKASGYTF
DBA capable of



TRYYIHWVRQAPGQGLEWMGWINAYNGDT
binding a PD-1



NYAQKLQGRVTMTRDTSTSTVYMELSSLR
marker and IL-2



SEDTAVYYCARDSYYYDSFDYWGQGTLVT
therapeutic



VSSASGGGGSGGGGSGGGGSHASDIQMTQ




SPSSLSASVGDRVTITCRASQTITDWLAW




YQQKPGKAPKLLIYGASNLQGGVPSRFSG




SGSGTDFTLTISSLQPEDFATYYCQQYYS




SWTFGQGTKVEIK






SEQ ID NO: 34
QVQLVQSGAEVKKPGASVKVSCKASGYTF
DBA capable of



TSYYMHWVRQAPGQGLEWMGIINPSDGST
binding a PD-1



TYAQSFQGRVTMTRDTSTSTVYMELSSLR
marker and IL-2



SEDTAVYYCASGWDVWGQGTLVTVSSASG
therapeutic



GGGSGGGGSGGGGSHASDIVMTQSPDSLA




VSLGERATINCKSSQSVFSSANNKNYLAW




YQQKPGQPPKLLIYWASTRESGVPDRFSG




SGSGTDFTLTISSLQAEDVAVYYCQQYFG




TPVTFGGGTKVEIK





















TABLE 7








PD1
IL2
IL2RB



Name
Binding
Binding
Blocking





















No DNA
5
6
1,490



PD1-IL2-R01-H08
576
−9
1,829



PD1-IL2-R01-H09
1,015
131
1,772



PD1-IL2-R02-A03
1,508
635
1,714



PD1-IL2-R02-A04
909
978
1,618



PD1-IL2-R02-A05
1,557
23
1,735



PD1-IL2-R02-A06
357
515
1,772



PD1-IL2-R02-A08
995
520
1,612



PD1-IL2-R02-A09
1,421
1,470
1,495



PD1-IL2-R02-A10
500
838
1,847



PD1-IL2-R02-A11
1,625
1,559
1,783



PD1-IL2-R02-Al2
1,725
130
1,586



PD1-IL2-R02-B01
746
1,077
1,516



PD1-IL2-R02-B02
1,740
1,107
1,849



PD1-IL2-R02-B04
11
2,346
1,536



PD1-IL2-R02-B05
1,665
2,489
1,613



PD1-IL2-R02-B06
1,527
32
1,605



PD1-IL2-R02-B07
1,685
628
1,814



PD1-IL2-R02-B08
1,446
92
1,680



PD1-IL2-R02-B10
211
343
1,607



PD1-IL2-R02-B11
1,426
915
1,509



PD1-IL2-R02-B12
1,264
316
1,762



PD1-IL2-R02-C01
1,463
296
1,743



PD1-IL2-R02-C02
1,299
298
1,069



(SEQ ID NO: 31)






PD1-IL2-R02-C03
1,383
293
1,211



(SEQ ID NO: 32)






PD1-IL2-R02-C04
1,622
575
1,857



PD1-IL2-R02-C06
1,376
34
1,684



PD1-IL2-R02-C07
34
87
1,607



PD1-IL2-R02-C08
1,468
619
1,671



PD1-IL2-R02-C10
174
256
1,757



PD1-IL2-R02-C12
1,367
340
1,723



PD1-IL2-R02-D01
1,421
68
1,614



PD1-IL2-R02-D02
1,473
539
1,726



PD1-IL2-R06-A10
1,269
9
1,796



PD1-IL2-R06-A11
1,376
34
1,762



PD1-IL2-R06-Al2
1,305
7
1,681



PD1-IL2-R06-B01
10
2,109
1,307



PD1-IL2-R06-B02
1,666
15
1,799



PD1-IL2-R06-B03
923
4
1,661



PD1-IL2-R06-B04
1,782
28
1,666



PD1-IL2-R06-B06
1,223
17
1,648



PD1-IL2-R06-B08
1,777
1,160
1,738



PD1-IL2-R06-B10
13
31
1,847



PD1-IL2-R06-B11
1,534
24
1,699



PD1-IL2-R06-B12
822
1,125
1,604



PD1-IL2-R06-C02
1,667
26
1,671



PD1-IL2-R06-C04
1,491
7
1,759



PD1-IL2-R06-C08
1,448
8
1,693



PD1-IL2-R06-C09
1,158
1,525
1,602



PD1-IL2-R06-C11
1,879
−2
1,785



PD1-IL2-R06-C12
1,669
1,998
1,033



PD1-IL2-R06-D02
280
432
1,677



PD1-IL2-R06-D03
9
93
1,606



PD1-IL2-R06-D05
505
−3
1,786



PD1-IL2-R06-D07
1,577
24
1,820



PD1-IL2-R06-D10
1,751
49
1,719



PD1-IL2-R06-D11
405
593
1,576



PD1-IL2-R06-D12
1,024
1,423
1,649



PD1-IL2-R06-E01
1,628
3
1,724



PD1-IL2-R06-E02
1,554
16
1,598



PD1-IL2-R06-E04
50
247
1,108



(SEQ ID NO: 33)






PD1-IL2-R06-E05
1,364
14
1,734



PD1-IL2-R06-E06
1,627
15
1,735



PD1-IL2-R06-E07
1,801
12
1,698



PD1-IL2-R06-E09
1,467
11
1,511



PD1-IL2-R06-E11
1,805
294
1,767



PD1-IL2-R06-E12
4
−7
1,735



PD1-IL2-R06-F01
196
280
1,629



PD1-IL2-R06-F03
1,377
28
1,642



PD1-IL2-R06-F04
26
779
1,726



PD1-IL2-R06-F05
1,493
18
1,625



PD1-IL2-R06-F06
1,577
46
1,595



PD1-IL2-R06-F07
1,544
335
1,682



PD1-IL2-R06-F08
1,570
9
1,780



PD1-IL2-R06-F09
30
41
1,776



PD1-IL2-R06-F10
1,745
24
1,607



PD1-IL2-R06-F11
1,586
12
1,574



PD1-IL2-R06-F12
623
8
1,645



PD1-IL2-R06-G01
130
184
1,640



PD1-IL2-R06-G02
1,754
20
1,623



PD1-IL2-R06-G04
1,348
13
1,596



PD1-IL2-R06-G05
1,382
10
1,846



PD1-IL2-R06-G06
1,383
4
1,744



PD1-IL2-R06-G08
1,708
124
1,533



PD1-IL2-R06-G09
557
756
1,527



PD1-IL2-R06-G10
1,595
35
1,703



PD1-IL2-R06-G11
1,469
17
1,709



PD1-IL2-R06-G12
1,281
1,479
1,713



PD1-IL2-R06-H01
381
4
1,647



PD1-IL2-R06-H02
1,501
20
1,748



PD1-IL2-R06-H03
1,132
1,449
1,617



PD1-IL2-R06-H04
355
1
1,677



PD1-IL2-R06-H05
1,409
21
1,561



PD1-IL2-R06-H06
1,491
23
1,650



PD1-IL2-R06-H07
12
13
1,701



PD1-IL2-R06-H08
847
1,118
1,746



PD1-IL2-R06-H09
1,732
22
1,662



PD1-IL2-R06-H10
830
1,151
1,569



PD1-IL2-R07-A03
1,786
28
1,511



PD1-IL2-R07-A04
730
973
1,613



PD1-IL2-R07-A05
477
663
1,327



PD1-IL2-R07-A08
1,628
841
1,618



PD1-IL2-R07-A09
1,235
2,040
910



(SEQ ID NO: 34)






PD1-IL2-R07-A10
1,716
63
1,518



PD1-IL2-R07-B01
1,397
32
1,565



PD1-IL2-R07-B02
192
321
1,634



PD1-IL2-R07-B03
65
202
1,604



PD1-IL2-R07-B04
1,862
410
1,527



PD1-IL2-R07-B05
965
351
1,389



PD1-IL2-R07-B06
1,882
44
1,497



PD1-IL2-R07-B07
6
2,549
1,517



PD1-IL2-R07-B08
906
1,047
1,475



PD1-IL2-R07-B09
1,788
27
1,384



PD1-IL2-R07-B10
18
19
1,635



PD1-IL2-R07-B11
1,765
9
1,641



PD1-IL2-R07-C01
230
367
1,536



PD1-IL2-R07-C02
236
304
1,500



PD1-IL2-R07-C03
20
1,347
1,536



PD1-IL2-R07-C07
15
275
1,665



PD1-IL2-R07-C10
1,064
317
1,550



PD1-IL2-R07-C11
1,523
642
1,460



PD1-IL2-R07-C12
1,377
49
1,707



PD1-IL2-R07-D01
1,541
79
1,657



PD1-IL2-R07-D03
1,483
33
1,481



PD1-IL2-R07-D04
923
1,104
1,517



PD1-IL2-R07-D06
1,664
416
1,734



PD1-IL2-R07-D07
6
835
1,512



PD1-IL2-R07-D10
1,580
193
1,572



PD1-IL2-R07-D11
1,401
798
1,614



PD1-IL2-R07-E02
1,473
992
1,830



PD1-IL2-R07-E03
1,459
422
1,683



PD1-IL2-R07-E05
512
913
1,513



PD1-IL2-R07-E06
1,483
1,178
1,526



PD1-IL2-R07-E07
1,181
1,060
1,524



PD1-IL2-R07-E08
1,604
472
1,717



PD1-IL2-R07-E09
1,733
23
1,569



PD1-IL2-R07-E10
1,472
251
1,545



PD1-IL2-R07-E11
1,146
56
1,777



PD1-IL2-R07-E12
1,698
106
1,764



PD1-IL2-R07-F01
3
17
1,529



PD1-IL2-R07-F02
348
752
1,537



PD1-IL2-R07-F03
1,788
520
1,750



PD1-IL2-R07-F04
1,416
145
1,767



PD1-IL2-R07-F06
1,422
438
1,579



PD1-IL2-R07-F09
1,589
17
1,456



PD1-IL2-R07-F10
24
19
1,778



PD1-IL2-R07-F12
505
196
1,553



PD1-IL2-R07-G01
4
214
1,560



PD1-IL2-R07-G02
1,610
61
1,735



PD1-IL2-R07-G04
82
147
1,600



PD1-IL2-R07-G05
981
216
1,475



PD1-IL2-R07-G06
860
512
1,655



PD1-R04-C10
1,552
4
1,550



PD1-R07-A05
653
19
1,730



PD1-R07-A10
484
25
2,290



PD1-R07-C09
1,911
20
2,080



PD1-R07-D03
1,733
22
2,208



PD1-R07-D05
1,760
16
1,578



PD1-R07-D06
1,997
22
1,749



PD1-R07-E05
633
24
2,246



PD1-R07-G12
907
11
1,577



PD1-R15-B02
1,671
28
1,797



PDL1-DB03-H02
18
11
1,725



Anti-Her2
4
20
1,636



(SEQ ID NO: 28)










Example 3
Competitive Binding for Targets of Dual Binding Antibodies (DBAs)

This example describes competitive binding between the marker and the therapeutic domain of dual binding antibodies (DBAs). To test the ability of PD-L1 (marker) to compete with IFNα (therapeutic) for binding to the DBA binding domains, V5-tagged DBA or control scFvs were synthesized using the PUREfrex 2.1 in vitro translation system and added to a 384 well plate at a single dilution. Eu-labeled PD-L1 and Alexa Fluor 647-labeled anti-V5 antibody were added to all wells and incubated for 30 minutes at room temperature. Titrated concentrations of IFNα were added to all wells and the plate was incubated for 1 hour at room temperature. The HTRF signal was read on Envision (Perkin Elmer). As shown in FIG. 7, IFNα competed with PD-L1 for binding to DBA clones B09 (SEQ ID NO: 24) and C08 (SEQ ID NO: 26), whereas the binding of an anti-PD-L1 mono-specific antibody was unaffected by the concentration of IFNα.


Example 4
Screening Dual Binding Antibodies (DBAs) for Improved Binding Affinity

This example illustrates screening dual binding antibodies (DBAs) for improved binding affinity. The sequences for each DBA were aligned with the parental, single specificity antibody from which it was derived and with other DBAs derived from the same parental, single specificity antibody. Using this sequence information, variants with amino acid substitutions in and adjacent to the CDR regions were designed to test for altered binding to either antigen. Additionally, consideration was given to sequence variants that may improve stability. Representative variants are shown in TABLE 8 and TABLE 9. CDR sequences provided in TABLE 8 and TABLE 9 correspond to HCDR1-HCDR2-HCDR3, with substitutions underlined and in bold. Sequences of dual binding PD-L1 and IFNα variants are provided in TABLE 10.









TABLE 8







Heavy chain CDR regions of anti-PDL1 02_A08,


DBA PDL1-IFN JA05, and variants









SEQ ID NO
Description
CDR Sequence





SEQ ID NO: 305
Parental monospecific
CKASGYTFSGYYMHW-WMGW



antibody PDL1_02_A08
MDPNSGYTGYAHQFQGRV-C




AKEVFSGWYDYWGQ





SEQ ID NO: 306
Dual-binding antibody
CKASGYTFSNYYIHW-WMGW



(DBA) PDL1-IFN R01 A05
MDSNSGGTGYAQKFQGRV-C




AKEVFSGWYDYWGQ





SEQ ID NO: 307
DBA variant H_N36G
CKASGYTFSGYYIHW-WMGW




MDSNSGGTGYAQKFQGRV-C




AKEVFSGWYDYWGQ





SEQ ID NO: 308
DBA variant
CKASGYTFSNYYVHW-WMGW



H_I39V_S58P_Q69H_K70Q
MDPNSGGTGYAHQFQGRV-C




AKEVFSGWYDYWGQ





SEQ ID NO: 309
DBA variant H_G64Y_Q69H
CKASGYTFSNYYIHW-WMGW




MDSNSGYTGYAHKFQGRVCA




KEVFSGWYDYWGQ
















TABLE 9







Light chain CDR regions of anti-PDL1


02_A08, DBA PDL1-IFN_1A05, and variants









SEQ ID NO
Construct
CDR Sequence





SEQ ID NO 310
Parental
CRASQTISSYLNWY-



monospecific
IYAASTLESGVPSR-



antibody
YYCQQGYSTPITFGP



PDL1 02 A08
GTKVDIK





SEQ ID NO: 311
Dual-binding
CRASQSISSYLNWY-



antibody (DBA)
IYAASSLQSGVPSR-



PDL1-IFN_R01_A05
YYCQQSYSTPYTFGQ




GTKVEIK





SEQ ID NO: 312
L_Q68E
CRASQSISSYLNWY-




IYAASSLESGVPSR-




YYCQQSYSTPYTFGQ




GTKVEIK





SEQ ID NO: 313
L_Q68E_E125D
CRASQSISSYLNWY-




IYAASSLESGVPSR-




YYCQQSYSTPYTFGQ




GTKVDIK
















TABLE 10







Sequences of dual binding PD-L1 and IFNα variants









SEQ ID NO
Variant
Sequence





SEQ ID NO: 35
H_N36G
QVQLVQSGAEVKKPGASVKVSCKASGYTFSGYYIHW




VRQAPGQGLEWMGWMDSNSGGTGYAQKFQGRVTMTR




DTSTSTVYMELSSLRSEDTAVYYCAKEVFSGWYDYW




GQGTLVTVSSASGGGGSGGGGSGGGGSHASDIQMTQ




SPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGK




APKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSYSTPYTFGQGTKVEIK





SEQ ID NO: 36
H_I39V_S58P_Q69H_K70Q
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYYVHW




VRQAPGQGLEWMGWMDPNSGGTGYAHQFQGRVTMTR




DTSTSTVYMELSSLRSEDTAVYYCAKEVFSGWYDYW




GQGTLVTVSSASGGGGSGGGGSGGGGSHASDIQMTQ




SPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGK




APKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSYSTPYTFGQGTKVEIK





SEQ ID NO: 37
H_G64Y_Q69H
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYYIHW




VRQAPGQGLEWMGWMDSNSGYTGYAHKFQGRVTMTR




DTSTSTVYMELSSLRSEDTAVYYCAKEVFSGWYDYW




GQGTLVTVSSASGGGGSGGGGSGGGGSHASDIQMTQ




SPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGK




APKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSYSTPYTFGQGTKVEIK





SEQ ID NO: 38
L_Q68E
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYYIHW




VRQAPGQGLEWMGWMDSNSGGTGYAQKFQGRVTMTR




DTSTSTVYMELSSLRSEDTAVYYCAKEVFSGWYDYW




GQGTLVTVSSASGGGGSGGGGSGGGGSHASDIQMTQ




SPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGK




APKLLIYAASSLESGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSYSTPYTFGQGTKVEIK





SEQ ID NO: 39
L_Q68E_E_125D
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYYIHW




VRQAPGQGLEWMGVVMDSNSGGTGYAQKFQGRVTMT




RDTSTSTVYMELSSLRSEDTAVYYCAKEVFSGWYDY




WGQGTLVTVSSASGGGGSGGGGSGGGGSHASDIQMT




QSPSSLSASVGDRVTITCRASQSISSYLNWYQOKPG




KAPKLLIYAASSLESGVPSRFSGSGSGTDFTLTISS




LQPEDFATYYCQQSYSTPYTFGQGTKVDIK









The scFv sequence for each variant was codon-optimized for E. coli expression and the corresponding DNA sequences synthesized as gBlocks (Integrated DNA Technologies, Inc.) with a T7 promoter, a translation initiation site, a Myc tag, the scFv sequence, a V5 tag sequence and a T7 terminator. Proteins encoded by the gBlock fragments were expressed using a cell-free transcription/translation system (Cosmo Bio USA, Inc., PUREfrex2.1, Product #GFK-PF213 with DS Supplement, Prod. #GFK-PF005). The cell-free expression samples were assayed for PD-L1 and IFNα binding as described in EXAMPLE 1.


Variants with different binding affinities may also be generated by display methods, such as phage display and mRNA display. Libraries for use in these methods may be created from the parental antibody by varying CDRs with random amino acid changes or by varying positions in the CDRs identified as suitable for change.


Example 5
Binding Affinity of Dual Binding Antibodies (DBAs)

This example describes binding affinity of protein complexes, specifically, dual binding antibodies (DBAs). Variants were synthesized as V5-tagged scFvs using the PUREfrex 2.1 in vitro translation system and diluted 1:30 in 1× kinetics buffer (KB, forteBIO) for testing. Biotinylated anti-V5 antibody (clone SV5-Pk1 BioRad, biotinylated using EZ-Link® Sulfo-NHS-LC-Biotin, THERMO) was diluted to 80 nM in 1× KB, then loaded onto streptavidin biosensor tips (SA, forteBIO) on an OctetRED96e instrument. These tips were then loaded with scFv for 240 seconds. The loaded tips were transferred to 1× KB for 60 seconds to establish baseline, then dipped into 160 nM ACRO human PDL1-his for 150 seconds to measure association, then into 1× KB for 180 seconds to measure dissociation. Immediately following this dissociation, baseline signal in 1× KB was measured, the tips were dipped into 5,000 nM IFNα2b (GenScript) for 150 seconds to measure association, then into 1× KB for 240 seconds to measure dissociation. Data were fit to a 1:1 kinetics model. Response for binding of IFNα2b was qualitative negative or positive. Sequences of the DBA variants used in TABLE 11 are provided in TABLE 8 and TABLE 9.









TABLE 11







Kinetics of binding of DBA variants












KD
IFNα




(PD-L1,
binding




nM)
(@5uM)















H_G64Y_Q69H
13
+/−



H_I39V_S58P_Q69H_K70Q
8




H_N36G
37
+



L_Q68E
21
+



L_Q68E_E125D
21
+



PDL1-IFN_R01_A05
120
Not tested










The affinity of the DBA in this or other antibody formats may be measured in a similar manner to generate quantitative or semi-quantitative measurements using standard methods of measurement of protein interaction, including biolayer interferometry (e.g., Octet, Molecular Devices LLC.) surface plasmon resonance (e.g., BiaCore, GE Healthcare Life Sciences), kinetic exclusion (KinExA, Sapidyne Instruments, Inc.), or other biophysical methods. In addition, apparent affinity of a target for the DBA in the covalently linked construct may be measured with these methods by competition for a nonlinked binding agent.


Example 6
Dual Binding Antibody (DBA)-Cytokine Protein Complexes

This example describes dual binding antibody (DBA)-cytokine protein complexes of the present disclosure. Various DBA-cytokine protein complexes of the present disclosure were designed to include a cytokine, a linker, and one or more dual binding antibody domains. An exemplary protein complex is shown in FIG. 8 (at left) and its amino acid sequence is shown in FIG. 8 (at right). Pictorial representations of other exemplary constructs are shown in FIG. 9 (SEQ ID NO: 42-SEQ ID NO: 54 and SEQ ID NO: 77-SEQ ID NO: 79).


A series of DBA-cytokine protein complexes may be designed with two marker binding domains and one therapeutic domain. The DBAs used in this series, provided in TABLE 13 with sequences provided in TABLE 14, exhibit a range of affinities for the marker and the therapeutic domain. Exemplary DBA complexes are provided in TABLE 12, TABLE 15, and TABLE 16.









TABLE 12







Exemplary DBA Cytokine Protein Complexes









SEQ ID NO
Sequences
Description





SEQ ID NO: 42
QVQLVQSGAEVKKPGASVKVSCKASGYTFTK
PD-L1/IFNα



NYMEHWVRQAPGQGLEWLGWVSPDSGYTGYA
protein complexes



QKFQGRVTMTRDTSTSTVYMELSSLRSEDTA
having a DBA



VYYCTTDLLSLELDDAFDIWGQGTMVTVSSA
sensor domain



SGGGGSGGGGSGGGGSHASDIQMTQSPSSLS
capable of binding



ASVGDRVTITCRASQSISSWLAWYQQKPGKA
a PD-L1 marker



PKLLIYAASTLQSGVPSRFSGSGSGTDFTLT
and IFNα



ISSLQPEDFATYYCQQSYSTPLTFGGGTKLE
therapeutic domain



IKPRGPTIKPCPPCKCPAPNAAGGPSVFIFP
and having an IFNα



PKIKDVLMISLSPIVTCVVVDVSEDDPDVQI
therapeutic activity



SWFVNNVEVHTAQTQTHREDYNSTLRVVSAL




PIQHQDWMSGKEFKCKVNNKDLGAPIERTIS




KPKGSVRAPQVYVLPPCEEEMTKKQVTLSCA




VTDFMPEDIYVEWTNNGKTELNYKNTEPVLD




SDGSYFMVSKLRVEKKNWVERNSYSCSVVHE




GLHNHHTTKSFSRTPGK






SEQ ID NO: 43
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLK
PD-L1/IFNα



DRHDFGFPQEEFGNQFQKAETIPVLHEMIQQ
protein complexes



IFNLFSTKDSSAAWDETLLDKFCTELYQQLN
having a DBA



DLEACVMQEERVGETPLMNADSILAVKKYFR
sensor domain



RITLYLTEKKYSPCAWEVVRAEIVRSLSLST
capable of binding



NLQERLRRKEGGGGSGGGGSGGGGSGGGGSQ
a PD-L1 marker



VQLVQSGAEVKKPGASVKVSCKASGYTFSGY
and IFNα



YIHWVRQAPGQGLEWMGWMDSNSGGTGYAQK
therapeutic domain



FQGRVTMTRDTSTSTVYMELSSLRSEDTAVY
and having an IFNα



YCAKEVFSGWYDYWGQGTLVTVSSAKTTAPS
therapeutic activity



VYPLAPVCGDTTGSSVTLGCLVKGYFPEPVT




LTWNSGSLSSGVHTFPAVLQSDLYTLSSSVT




VTSSTWPSQSITCNVAHPASSTKVDKKIEPR




GPTIKPCPPCKCPAPNAAGGPSVFIFPPKIK




DVLMISLSPIVTCVVVDVSEDDPDVQISWFV




NNVEVHTAQTQTHREDYNSTLRVVSALPIQH




QDWMSGKEFKCKVNNKDLGAPIERTISKPKG




SVRAPQVCVLPPPEEEMTKKQVTLWCMVTDF




MPEDIYVEWTNNGKTELNYKNTEPVLDSDGS




YFMYSKLRVEKKNWVERNSYSCSVVHEGLHN




HHTTKSFSRTPGK






SEQ ID NO: 44
DIQMTQSPSSLSASVGDRVTITCRASQSISS
PD-L1/IFNα



YLNWYQQKPGKAPKLLIYAASSLQSGVPSRF
protein complexes



SGSGSGTDFTLTISSLQPEDFATYYCQQSYS
having a DBA



TPYTFGQGTKVEIKRADAAPTVSIFPPSSEQ
sensor domain



LTSGGASVVCFLNNFYPKDINVKWKIDGSER
capable of binding



QNGVLNSWTDQDSKDSTYSMSSTLTLTKDEY
a PD-L1 marker



ERHNSYTCEATHKTSTSPIVKSFNRNEC
and IFNα




therapeutic domain




and having an IFNα




therapeutic activity





SEQ ID NO: 45
QVQLVQSGAEVKKPGASVKVSCKASGGTFSS
PD-L1/IFNα



YAISWVRQAPGQGLEWMGIIDPSVTYTRYAQ
protein complexes



KFQGRVTMTRDTSTSTVYMELSSLRSEDTAV
having a DBA



YYCARSLFPTIFGVEVAFDIWGQGTLVTVSS
sensor domain



AKTTAPSVYPLAPVCGDTTGSSVTLGCLVKG
capable of binding



YFPEPVTLTWNSGSLSSGVHTFPAVLQSDLY
a PD-L1 marker



TLSSSVTVTSSTWPSQSITCNVAHPASSTKV
and IFNα



DKKIEPRGPTIKPCPPCKCPAPNAAGGPSVF
therapeutic domain



IFPPKIKDVLMISLSPIVTCVVVDVSEDDPD
and having an IFNα



VQISWFVNNVEVHTAQTQTHREDYNSTLRVV
therapeutic activity



SALPIQHQDWMSGKEFKCKVNNKDLGAPIER




TISKPKGSVRAPQVYVLPPCEEEMTKKQVTL




SCAVTDFMPEDIYVEWTNNGKTELNYKNTEP




VLDSDGSYFMVSKLRVEKKNWVERNSYSCSV




VHEGLHNHHTTKSFSRTPGK






SEQ ID NO: 46
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLK
PD-L1/IFNα



DRHDFGFPQEEFGNQFQKAETIPVLHEMIQQ
protein complexes



IFNLFSTKDSSAAWDETLLDKFCTELYQQLN
having a DBA



DLEACVMQEERVGETPLMNADSILAVKKYFR
sensor domain



RITLYLTEKKYSPCAWEVVRAEIVRSLSLST
capable of binding



NLQERLRRKEGGGGSGGGGSGGGGSGGGGSQ
a PD-L1 marker



VQLVQSGAEVKKPGASVKVSCKASGGTFSSY
and IFNα



AISWVRQAPGQGLEWMGIIDPSVTYTRYAQK
therapeutic domain



FQGRVTMTRDTSTSTVYMELSSLRSEDTAVY
and having an IFNα



YCARSLFPTIFGVEVAFDIWGQGTLVTVSSA
therapeutic activity



KTTAPSVYPLAPVCGDTTGSSVTLGCLVKGY




FPEPVTLTWNSGSLSSGVHTFPAVLQSDLYT




LSSSVTVTSSTWPSQSITCNVAHPASSTKVD




KKIEPRGPTIKPCPPCKCPAPNAAGGPSVFI




FPPKIKDVLMISLSPIVTCVVVDVSEDDPDV




QISWFVNNVEVHTAQTQTHREDYNSTLRVVS




ALPIQHQDWMSGKEFKCKVNNKDLGAPIERT




ISKPKGSVRAPQVCVLPPPEEEMTKKQVTLW




CMVTDFMPEDIYVEWTNNGKTELNYKNTEPV




LDSDGSYFMYSKLRVEKKNWVERNSYSCSVV




HEGLHNHHTTKSFSRTPGK






SEQ ID NO: 47
DIQMTQSPSSLSASVGDRVTITCQASQSISN
PD-L1/IFNα



YLAWYQQKPGKAPKLLIYKASSLESGVPSRF
protein complexes



SGSGSGTDFTLTISSLQPEDFATYYCQQTYS
having a DBA



TPITFGQGTKVEIKRADAAPTVSIFPPSSEQ
sensor domain



LTSGGASVVCFLNNFYPKDINVKWKIDGSER
capable of binding



QNGVLNSWTDQDSKDSTYSMSSTLTLTKDEY
a PD-L1 marker



ERHNSYTCEATHKTSTSPIVKSFNRNEC
and IFNα




therapeutic domain




and having an IFNα




therapeutic activity





SEQ ID NO: 48
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLK
ExemplarySeq_C_Pep1



DRHDFGFPQEEFGNQFQKAETIPVLHEMIQQ
Asymmetric DBA-



IFNLFSTKDSSAAWDETLLDKFCTELYQQLN
Cytokine Complex



DLEACVMQEERVGETPLMNADSILAVKKYFR
scFv-IgG format



RITLYLTEKKYSPCAWEVVRAEIVRSLSLST




NLQERLRRKEGGGGSGGGGSGGGGSGGGGSQ




VQLVQSGAEVKKPGASVKVSCKASGGTFSSY




AISWVRQAPGQGLEWMGIIDPSVTYTRYAQK




FQGRVTMTRDTSTSTVYMELSSLRSEDTAVY




YCARSLFPTIFGVEVAFDIWGQGTLVTVSSA




SGGGGSGGGGSGGGGSHASDIQMTQSPSSLS




ASVGDRVTITCQASQDISNYLNWYQQKPGKA




PKLLIYGASTLQSGVPSRFSGSGSGTDFTLT




ISSLQPEDFATYYCQQTYSTPITFGQGTKVE




IKAKTTAPSVYPLAPVCGDTTGSSVTLGCLV




KGYFPEPVTLTWNSGSLSSGVHTFPAVLQSD




LYTLSSSVTVTSSTWPSQSITCNVAHPASST




KVDKKIEPRGPTIKPCPPCKCPAPNAAGGPS




VFIFPPKIKDVLMISLSPIVTCVVVDVSEDD




PDVQISWFVNNVEVHTAQTQTHREDYNSTLR




VVSALPIQHQDWMSGKEFKCKVNNKDLGAPI




ERTISKPKGSVRAPQVYVLPPCEEEMTKKQV




TLSCAVTDFMPEDIYVEWTNNGKTELNYKNT




EPVLDSDGSYFMVSKLRVEKKNWVERNSYSC




SVVHEGLHNHHTTKSFSRTPGK






SEQ ID NO: 49
QVQLVQSGAEVKKPGASVKVSCKASGYTFSG
ExemplarySeq_C_Pep2



YYIHWVRQAPGQGLEWMGWMDSNSGGTGYAQ
Asymmetric DBA-



KFQGRVTMTRDTSTSTVYMELSSLRSEDTAV
Cytokine Complex



YYCAKEVFSGWYDYWGQGTLVTVSSAKTTAP
scFv-IgG format



SVYPLAPVCGDTTGSSVTLGCLVKGYFPEPV




TLTWNSGSLSSGVHTFPAVLQSDLYTLSSSV




TVTSSTWPSQSITCNVAHPASSTKVDKKIEP




RGPTIKPCPPCKCPAPNAAGGPSVFIFPPKI




KDVLMISLSPIVTCVVVDVSEDDPDVQISWF




VNNVEVHTAQTQTHREDYNSTLRVVSALPIQ




HQDWMSGKEFKCKVNNKDLGAPIERTISKPK




GSVRAPQVCVLPPPEEEMTKKQVTLWCMVTD




FMPEDIYVEWTNNGKTELNYKNTEPVLDSDG




SYFMYSKLRVEKKNWVERNSYSCSVVHEGLH




NHHTTKSFSRTPGK






SEQ ID NO: 50
DIQMTQSPSSLSASVGDRVTITCRASQSISS
ExemplarySeq_C_Pep3



YLNWYQQKPGKAPKLLIYAASSLQSGVPSRF
Asymmetric DBA-



SGSGSGTDFTLTISSLQPEDFATYYCQQSYS
Cytokine Complex



TPYTFGQGTKVEIKRADAAPTVSIFPPSSEQ
scFv-IgG format



LTSGGASVVCFLNNFYPKDINVKWKIDGSER




QNGVLNSWTDQDSKDSTYSMSSTLTLTKDEY




ERHNSYTCEATHKTSTSPIVKSFNRNEC






SEQ ID NO: 51
QVQLVQSGAEVKKPGASVKVSCKASGYTFST
PD1-



YYIHWVRQAPGQGLEWMGIINPSGGGTVYAQ
IL2_6C12_N36T_Sym_L_Long_Pep1



KFQGRVTMTRDTSTSTVYMELSSLRSEDTAV
Symmetric DBA-



YYCAAGLFIWGQGTLVTVSSAKTTAPSVYPL
Cytokine Complex



APVCGDTTGSSVTLGCLVKGYFPEPVTLTWN
IgG format



SGSLSSGVHTFPAVLQSDLYTLSSSVTVTSS




TWPSQSITCNVAHPASSTKVDKKIEPRGPTI




KPCPPCKCPAPNAAGGPSVFIFPPKIKDVLM




ISLSPIVTCVVVDVSEDDPDVQISWFVNNVE




VHTAQTQTHREDYNSTLRVVSALPIQHQDWM




SGKEFKCKVNNKDLGAPIERTISKPKGSVRA




PQVYVLPPPEEEMTKKQVTLTCMVTDFMPED




IYVEWTNNGKTELNYKNTEPVLDSDGSYFMY




SKLRVEKKNWVERNSYSCSVVHEGLHNHHTT




KSFSRTPGK






SEQ ID NO: 52
APTSSSTKKTQLQLEHLLLDLQMILNGINNY
PD1-



KNPKLTRIVILTFKFYMPKKATELKHLQCLE
IL2_6C12_N36T_Sym_L_Long_Pep2



EELKPLEEVLNLAQSKNFHLRPRDLISNINV
Symmetric DBA-



IVLELKGSETTFMCEYADETATIVEFLNRWI
Cytokine Complex



TFCQSIISTLTVPGVGVPGAGVPGVGVPGGG
IgG format



VPGVGVPGGGVPGAGVPGGGVPGVGVPGAGV




PGVGVPGGGDIQMTQSPSSLSASVGDRVTIT




CRASQYISSGLAWYQQKPGKAPKLLIYKASS




LDNGVPSRFSGSGSGTDFTLTISSLQPEDFA




TYYCQQYERLPLTFGGGTKVEIKRADAAPTV




SIFPPSSEQLTSGGASVVCFLNNFYPKDINV




KWKIDGSERQNGVLNSWTDQDSKDSTYSMSS




TLTLTKDEYERHNSYTCEATHKTSTSPIVKS




FNRNEC






SEQ ID NO: 53
APTSSSTKKTQLQLEHLLLDLQMILNGINNY
PD1-



KNPKLTRMLTFKFYMPKKATELKHLQCLEEE
IL2_6C12_N36T_D68E_Sym_H_Short_Pep1



LKPLEEVLNLAQSKNFHLRPRDLISNINVIV
Symmetric DBA-



LELKGSETTFMCEYADETATIVEFLNRWITF
Cytokine Complex



CQSIISTLTGGGGSGGGGSGGGGSGGGGSQV
IgG format



QLVQSGAEVKKPGASVKVSCKASGYTFSTYY




IHWVRQAPGQGLEWMGIINPSGGGTVYAQKF




QGRVTMTRDTSTSTVYMELSSLRSEDTAVYY




CAAGLFIWGQGTLVTVSSAKTTAPSVYPLAP




VCGDTTGSSVTLGCLVKGYFPEPVTLTWNSG




SLSSGVHTFPAVLQSDLYTLSSSVTVTSSTW




PSQSITCNVAHPASSTKVDKKIEPRGPTIKP




CPPCKCPAPNAAGGPSVFIFPPKIKDVLMIS




LSPIVTCVVVDVSEDDPDVQISWFVNNVEVH




TAQTQTHREDYNSTLRVVSALPIQHQDWMSG




KEFKCKVNNKDLGAPIERTISKPKGSVRAPQ




VYVLPPPEEEMTKKQVTLTCMVTDFMPEDIY




VEWTNNGKTELNYKNTEPVLDSDGSYFMYSK




LRVEKKNWVERNSYSCSVVHEGLHNHHTTKS




FSRTPGK






SEQ ID NO: 54
DIQMTQSPSSLSASVGDRVTITCRASQYISS
PD1-



GLAWYQQKPGKAPKLLIYKASSLENGVPSRF
IL2_6C12_N36T_D68E_Sym_H_Short_Pep2



SGSGSGTDFTLTISSLQPEDFATYYCQQYER
Symmetric DBA-



LPLTFGGGTKVEIKRADAAPTVSIFPPSSEQ
Cytokine Complex



LTSGGASVVCFLNNFYPKDINVKWKIDGSER
IgG format



QNGVLNSWTDQDSKDSTYSMSSTLTLTKDEY




ERHNSYTCEATHKTSTSPIVKSFNRNEC






SEQ ID NO: 77
QVQLVQSGAEVKKPGASVKVSCKASGYTFTT
PD1-



YYVHWVRQAPGQGLEWMGIINPSGGSTSYAQ
IL2_L_7A05scFv_PD1-R07-A05_Pep1



NFQGRVTMTRDTSTSTVYMELSSLRSEDTAV
Asymmetric DBA-



YYCASGWDVWGQGTTVTVSSAKTTAPSVYPL
Cytokine Complex



APVCGDTTGSSVTLGCLVKGYFPEPVTLTWN
IgG-scFv format



SGSLSSGVHTFPAVLQSDLYTLSSSVTVTSS




TWPSQSITCNVAHPASSTKVDKKIEPRGPTI




KPCPPCKCPAPNAAGGPSVFIFPPKIKDVLM




ISLSPIVTCVVVDVSEDDPDVQISWFVNNVE




VHTAQTQTHREDYNSTLRVVSALPIQHQDWM




SGKEFKCKVNNKDLGAPIERTISKPKGSVRA




PQVYVLPPPEEEMTKKQVTLTCMVTDFMPED




IYVEWTNNGKTELNYKNTEPVLDSDGSYFMY




SDLRVEKKNWVERNSYSCSVVHEGLHNHHTT




ESFSRTPGK






SEQ ID NO: 78
QVQLVQSGAEVKKPGASVKVSCKASGYTFTT
PD1-



YYVHWVRQAPGQGLEWMGIINPSGGSTSYAQ
IL2_L_7A05scFv_PD1-R07-A05_Pep2



NFQGRVTMTRDTSTSTVYMELSSLRSEDTAV
Asymmetric DBA-



YYCASGWDVWGQGTTVTVSSASGGGGSGGGG
Cytokine Complex



SGGGGSHASEIVMTQSPATLSVSPGERATLS
IgG-scFv format



CRASQSVNTYLAWYQQKPGQAPRLLIYGAST




RATGIPARFSGSGSGTEFTLTISSLQSEDFA




VYYCQQYGSSPVTFGQGTRLEIKPRGPTIKP




CPPCKCPAPNAAGGPSVFIFPPKIKDVLMIS




LSPIVTCVVVDVSEDDPDVQISWFVNNVEVH




TAQTQTHREDYNSTLRVVSALPIQHQDWMSG




KEFKCKVNNKDLGAPIERTISKPKGSVRAPQ




VYVLPPPEKEMTKKQVSLTCLVKDFMPEDIY




VEWTNNGKTELNYKNTEPVLKSDGSYFMYSK




LTVEKKNWVERNSYSCSVVHEGLHNHHTTKS




FSRTPGGGGSGGGSHHHHHH






SEQ ID NO: 79
APTSSSTKKTQLQLEHLLLDLQMILNGINNY
PD1-



KNPKLTDMLTFKFYMPKKATELKHLQCLEEE
IL2_L_7A05scFv_PD1-R07-A05_Pep3



LKPLEEVLNLAQSKNFHLRPRDLISNINVIV
Asymmetric DBA-



LELKGSETTFMCEYADETATIVEFLNRWITF
Cytokine Complex



CQSIISTLTGGGGSGGGGSGGGGSGGGGSEI
IgG-scFv format



VMTQSPATLSVSPGERATLSCRASQSVNTYL




AWYQQKPGQAPRLLIYGASTRATGIPARFSG




SGSGTEFTLTISSLQSEDFAVYYCQQYGSSP




VTFGQGTRLEIKRADAAPTVSIFPPSSEQLT




SGGASVVCFLNNFYPKDINVKWKIDGSERQN




GVLNSWTDQDSKDSTYSMSSTLTLTKDEYER




HNSYTCEATHKTSTSPIVKSFNRNEC
















TABLE 13







Dual-Binding Antibodies (DBAs)




















HV*
LV**








Dual-


SEQ
SEQ
HV_cdr1
HV_cdr2
HV_cdr3
LV_cdr1
LV_cdr2
LV_cdr3


Binding


ID
ID
SEQ ID
SEQ ID
SEQ ID
SEQ ID
SEQ ID
SEQ ID


Antibody
Marker
Therapeutic
NO:
NO:
NO:
NO:
NO:
NO:
NO:
NO:




















AB001718
PD-1
IL-2
127
135
142
148
154
157
163
168


AB001744
PD-1
IL-2
128
136
143
148
154
158
163
169


AB002022
PD-1
IL-2
129
137
144
149
154
159
164
170


AB001609
PD-L1
IFNα
130
138
145
150
155
160
165
171


AB001638
PD-L1
IFNα
130
139
145
150
155
161
165
172


AB001843
PD-L1
IFNα
131
140
146
151
156
162
166
173


AB001866
PD-L1
IFNα
132
140
147
152
156
162
166
173


AB001875
PD-L1
IFNα
133
140
143
153
156
162
166
173


AB001909
PD-L1
IFNα
134
141
143
151
156
162
167
173





*HV refers to the heavy chain variable region of the respective antibodies


**LV refers to the light chain variable region of the respective antibodies













TABLE 14







Sequences of DBA Protein Components










DBA Protein



SEQ ID NO:
Component
Sequence





SEQ ID NO: 127
AB001718_HV
QVQLVQSGAEVKKPGASVKVSCKASG




DTFSTYYVHWVRQAPGQGLEWMGIIN




PSGGGTVYAQKFQGRVTMTRDTSTST




VYMELSSLRSEDTAVYYCAAGLFIWG




QGTLVTVSS





SEQ ID NO: 128
AB001744_HV
QVQLVQSGAEVKKPGASVKVSCKASG




YTFSNYYIHWVRQAPGQGLEWMGIIN




PSGGGTVYAQKFQGRVTMTRDTSTST




VYMELSSLRSEDTAVYYCAAGLFIWG




QGTLVTVSS





SEQ ID NO: 129
AB002022_HV
QVQLVQSGAEVKKPGASVKVSCKASG




DTFTRHYVHWVRQAPGQGLEWMGIIN




PSGGYASYAQKFQGRVTMTRDTSTST




VYMELSSLRSEDTAVYYCAAGLFIWG




QGTLVTVSS


SEQ ID NO: 130
AB001609_HV
QVQLVQSGAEVKKPGASVKVSCKASG




GTFSSYAISWVRQAPGQGLEWMGIID




PSVTYTRYAQKFQGRVTMTRDTSTST




VYMELSSLRSEDTAVYYCARSLFPTI




FGVEVAFDIWGQGTLVTVSS





SEQ ID NO: 131
AB001843_HV
QVQLVQSGAEVKKPGASVKVSCKASG




YTFSGYYIHWVRQAPGQGLEWMGWMD




SNSGGTGYAQKFQGRVTMTRDTSTST




VYMELSSLRSEDTAVYYCAKEVFSGW




YDYWGQGTLVTVSS





SEQ ID NO: 132
AB001866_HV
QVQLVQSGAEVKKPGASVKVSCKASG




YTFSNYYVHWVRQAPGQGLEWMGWMD




PNSGGTGYAHQFQGRVTMTRDTSTST




VYMELSSLRSEDTAVYYCAKEVFSGW




YDYWGQGTLVTVSS





SEQ ID NO: 133
AB001875_HV
QVQLVQSGAEVKKPGASVKVSCKASG




YTFSNYYIHWVRQAPGQGLEWMGWMD




SNSGYTGYAQQFQGRVTMTRDTSTST




VYMELSSLRSEDTAVYYCAKEVFSGW




YDYWGQGTLVTVSS





SEQ ID NO: 134
AB001909_HV
QVQLVQSGAEVKKPGASVKVSCKASG




YTFSNYYIHWVRQAPGQGLEWMGWMD




SNSGGTGYAQKFQGRVTMTRDTSTST




VYMELSSLRSEDTAVYYCAKEVFSGW




YDYWGQGTLVTVSS





SEQ ID NO: 135
AB001718_LV
DIQMTQSPSSLSASVGDRVTITCRAS




QYISSGLAWYQQKPGKAPKLLIYKAS




SLDNGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQYERLPLTFGGGTKV




EIK





SEQ ID NO: 136
AB001744_LV
DIQMTQSPSSLSASVGDRVTITCRAS




QSIGTGLAWYQQKPGKAPKLLIYKAS




SLDNGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQYNRAPLTFGGGTKV




EIK





SEQ ID NO: 137
AB002022_LV
DIQMTQSPSSLSASVGDRVTITCRAS




QSIGRWLAWYQQKPGKAPKLLIYSAS




NLETGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQYESFPVTFGPGTKV




DIK





SEQ ID NO: 138
AB001609_LV
DIQMTQSPSSLSASVGDRVTITCRAS




QSISNRLAWYQQKPGKAPKLLIYKAS




SLESGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSNSTPFTFGQGTKV




EIK





SEQ ID NO: 139
AB001638_LV
DIQMTQSPSSLSASVGDRVTITCQAS




QSISNYLAWYQQKPGKAPKLLIYKAS




SLESGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQTYSTPITFGQGTKV




EIK





SEQ ID NO: 140
AB001843_LV
DIQMTQSPSSLSASVGDRVTITCRAS




QSISSYLNWYQQKPGKAPKLLIYAAS




SLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSYSTPYTFGQGTKV




EIK





SEQ ID NO: 141
AB001909_LV
DIQMTQSPSSLSASVGDRVTITCRAS




QSISSYLNWYQQKPGKAPKLLIYAAS




SLESGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSYSTPYTFGQGTKV




DIK





SEQ ID NO: 142
AB001718_HV_cdr1
GDTFSTYYVH





SEQ ID NO: 143
AB001744_HV_cdr1
GYTFSNYYIH





SEQ ID NO: 144
AB002022_HV_cdr1
GDTFTRHYVH





SEQ ID NO: 145
AB001609_HV_cdr1
GGTFSSYAIS





SEQ ID NO: 146
AB001843_HV_cdr1
GYTFSGYYIH





SEQ ID NO: 147
AB001866_HV_cdr1
GYTFSNYYVH





SEQ ID NO: 148
AB001718_HV_cdr2
IINPSGGGTVYAQKFQG





SEQ ID NO: 149
AB002022_HV_cdr2
IINPSGGYASYAQKFQG





SEQ ID NO: 150
AB001609_HV_cdr2
IIDPSVTYTRYAQKFQG





SEQ ID NO: 151
AB001843_HV_cdr2
WMDSNSGGTGYAQKFQG





SEQ ID NO: 152
AB001866_HV_cdr2
WMDPNSGGTGYAHQFQG





SEQ ID NO: 153
AB001875_HV_cdr2
WMDSNSGYTGYAQQFQG





SEQ ID NO: 154
AB001718_HV_cdr3
AAGLFI





SEQ ID NO: 155
AB001609_HV_cdr3
ARSLFPTIFGVEVAFDI





SEQ ID NO: 156
AB001843_HV_cdr3
AKEVFSGWYDY





SEQ ID NO: 157
AB001718_LV_cdr1
RASQYISSGLA





SEQ ID NO: 158
AB001744_LV_cdr1
RASQSIGTGLA





SEQ ID NO: 159
AB002022_LV_cdr1
RASQSIGRWLA





SEQ ID NO: 160
AB001609_LV_cdr1
RASQSISNRLA





SEQ ID NO: 161
AB001638_LV_cdr1
QASQSISNYLA





SEQ ID NO: 162
AB001843_LV_cdr1
RASQSISSYLN





SEQ ID NO: 163
AB001718_LV_cdr2
KASSLDN





SEQ ID NO: 164
AB002022_LV_cdr2
SASNLET





SEQ ID NO: 165
AB001609_LV_cdr2
KASSLES





SEQ ID NO: 166
AB001843_LV_cdr2
AASSLQS





SEQ ID NO: 167
AB001909_LV_cdr2
AASSLES





SEQ ID NO: 168
AB001718_LV_cdr3
QQYERLPL





SEQ ID NO: 169
AB001744_LV_cdr3
QQYNRAPL





SEQ ID NO: 170
AB002022_LV_cdr3
QQYESFPV





SEQ ID NO: 171
AB001609_LV_cdr3
QQSNSTPF





SEQ ID NO: 172
AB001638_LV_cdr3
QQTYSTPI





SEQ ID NO: 173
AB001843_LV_cdr3
QQSYSTPY
















TABLE 15







Exemplary DBA-Cytokine Protein Complexes























Heavy
Heavy
Heavy









Chain 1
Chain 2
Chain 3



DBA/


DBA
Therapeutic
2nd Ab
SEQ ID
SEQ ID
SEQ ID


Name
Therapeutic
DBA
Type
domains
domains
domain
NO:
NO:
NO:



















AF00
PD-1/IL-2
AB001
FIG. 9b
2
1
N/A
80
97
114


3229

718









AF00
PD-1/IL-2
AB001
FIG. 9b
2
1
N/A
81
98
115


3230

744









AF00
PD-1/IL-2
AB002
FIG. 9b
2
1
N/A
82
99
116


3232

022









AF00
PD-1/1L-2
AB001
FIG. 9a
1
1
anti-PD-1
83
100
117


3250

718









AF00
PD-1/IL-2
AB001
FIG. 9a
1
1
anti-PD-1
84
101
118


3251

744









AF00
PD-1/IL-2
AB002
FIG. 9a
1
1
anti-PD-1
85
102
119


3253

022









AF00
PD-L1/
AB001
FIG. 9b
2
1
N/A
86
103
120


3103
IFNα
609









AF00
PD-L1/
AB001
FIG. 9b
2
1
N/A
87
104
126


3104
IFNα
909









AF00
PD-L1/
AB001
FIG. 9b
2
1
N/A
88
105
122


3105
IFNα
843









AF00
PD-L1/
AB001
FIG. 9b
2
1
N/A
89
106
123


3106
IFNα
875









AF00
PD-L1/
AB001
FIG. 9a
1
1
anti-PD-
90
107
124


3217
IFNα
609



L1





AF00
PD-L1/
AB001
FIG. 9a
1
1
anti-PD-
91
108
125


3218
IFNα
843



L1





AF00
PD-L1/
AB001
FIG. 9a
1
1
anti-PD-
92
109
126


3219
IFNα
909



L1





AF00
PD-L1/
AB001
FIG. 9d
2
2
N/A
93

110


2618
IFNα
609









AF00
PD-L1/
AB001
FIG. 9d
2
2
N/A
94

111


2639
IFNα
875









AF00
PD-L1/
AB001
FIG. 9e
2
2
N/A
95

112


2645
IFNα
609









AF00
PD-L1/
AB001
FIG. 9e
2
2
N/A
96

277


2666
IFNα
875
















TABLE 16







Sequences of Peptides in TABLE 15









SEQ ID




NO:
DBA
Sequence





SEQ ID
AF003229_Pep1
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTDMLT


NO: 80

FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRP




RDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWIT




FCQSIISTLTGGGGSGGGGSGGGGSGGGGSQVQLVQSGAEV




KKPGASVKVSCKASGDTFSTYYVHWVRQAPGQGLEWMGIIN




PSGGGTVYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAV




YYCAAGLFIWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGS




SVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLY




TLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPT




IKPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTC




VVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRV




VSALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSV




RAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNN




GKTELNYKNTEPVLDSDGSYFMYSDLRVEKKNWVERNSYSC




SVVHEGLHNHHTTESFSRTPGK





SEQ ID
AF003230_Pep1
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTDMLT


NO: 81

FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRP




RDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWIT




FCQSIISTLTGGGGSGGGGSGGGGSGGGGSQVQLVQSGAEV




KKPGASVKVSCKASGYTFSNYYIHWVRQAPGQGLEWMGIIN




PSGGGTVYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAV




YYCAAGLFIWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGS




SVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLY




TLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPT




IKPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTC




VVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRV




VSALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSV




RAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNN




GKTELNYKNTEPVLDSDGSYFMYSDLRVEKKNWVERNSYSC




SVVHEGLHNHHTTESFSRTPGK





SEQ ID
AF003232_Pep1
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTDMLT


NO: 82

FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRP




RDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWIT




FCQSIISTLTGGGGSGGGGSGGGGSGGGGSQVQLVQSGAEV




KKPGASVKVSCKASGDTFTRHYVHWVRQAPGQGLEWMGIIN




PSGGYASYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAV




YYCAAGLFIWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGS




SVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLY




TLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPT




IKPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTC




VVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRV




VSALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSV




RAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNN




GKTELNYKNTEPVLDSDGSYFMYSDLRVEKKNWVERNSYSC




SVVHEGLHNHHTTESFSRTPGK





SEQ ID
AF003250_Pep1
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTDMLT


NO: 83

FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRP




RDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWIT




FCQSIISTLTGGGGSGGGGSGGGGSGGGGSQVQLVQSGAEV




KKPGASVKVSCKASGDTFSTYYVHWVRQAPGQGLEWMGIIN




PSGGGTVYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAV




YYCAAGLFIWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGS




SVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLY




TLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPT




IKPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTC




VVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRV




VSALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSV




RAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNN




GKTELNYKNTEPVLDSDGSYFMYSDLRVEKKNWVERNSYSC




SVVHEGLHNHHTTESFSRTPGK





SEQ ID
AF003251_Pep1
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTDMLT


NO: 84

FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRP




RDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWIT




FCQSIISTLTGGGGSGGGGSGGGGSGGGGSQVQLVQSGAEV




KKPGASVKVSCKASGYTFSNYYIHWVRQAPGQGLEWMGIIN




PSGGGTVYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAV




YYCAAGLFIWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGS




SVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLY




TLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPT




IKPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTC




VVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRV




VSALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSV




RAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNN




GKTELNYKNTEPVLDSDGSYFMYSDLRVEKKNWVERNSYSC




SVVHEGLHNHHTTESFSRTPGK





SEQ ID
AF003253_Pep1
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTDMLT


NO: 85

FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRP




RDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWIT




FCQSIISTLTGGGGSGGGGSGGGGSGGGGSQVQLVQSGAEV




KKPGASVKVSCKASGDTFTRHYVHWVRQAPGQGLEWMGIIN




PSGGYASYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAV




YYCAAGLFIWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGS




SVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLY




TLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPT




IKPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTC




VVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRV




VSALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSV




RAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNN




GKTELNYKNTEPVLDSDGSYFMYSDLRVEKKNWVERNSYSC




SVVHEGLHNHHTTESFSRTPGK





SEQ ID
AF003103_Pep1
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQE


NO: 86

EFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWDETLLD




KFCTELYQQLNDLEACVMQEERVGETPLMNADSILAVKKYF




RRITLYLTEKKYSPCAWEVVRAEIVRSLSLSTNLQERLRRK




EGGGGSGGGGSGGGGSGGGGSQVQLVQSGAEVKKPGASVKV




SCKASGGTFSSYAISWVRQAPGQGLEWMGIIDPSVTYTRYA




QKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARSLFP




TIFGVEVAFDIWGQGTLVTVSSAKTTAPSVYPLAPVCGDTT




GSSVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSD




LYTLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRG




PTIKPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIV




TCVVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTL




RVVSALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKG




SVRAPQVCVLPPPEEEMTKKQVTLWCMVTDFMPEDIYVEWT




NNGKTELNYKNTEPVLDSDGSYFMYSKLRVEKKNWVERNSY




SCSVVHEGLHNHHTTKSFSRTPGK





SEQ ID
AF003104_Pep1
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQE


NO: 87

EFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWDETLLD




KFCTELYQQLNDLEACVMQEERVGETPLMNADSILAVKKYF




RRITLYLTEKKYSPCAWEVVRAEIVRSLSLSTNLQERLRRK




EGGGGSGGGGSGGGGSGGGGSQVQLVQSGAEVKKPGASVKV




SCKASGYTFSNYYIHWVRQAPGQGLEWMGWMDSNSGGTGYA




QKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAKEVFS




GWYDYWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGSSVTL




GCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLYTLSS




SVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTIKPC




PPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTCVVVD




VSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVVSAL




PIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSVRAPQ




VCVLPPPEEEMTKKQVTLWCMVTDFMPEDIYVEWTNNGKTE




LNYKNTEPVLDSDGSYFMYSKLRVEKKNWVERNSYSCSVVH




EGLHNHHTTKSFSRTPGK





SEQ ID
AF003105_Pep1
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQE


NO: 88

EFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWDETLLD




KFCTELYQQLNDLEACVMQEERVGETPLMNADSILAVKKYF




RRITLYLTEKKYSPCAWEVVRAEIVRSLSLSTNLQERLRRK




EGGGGSGGGGSGGGGSGGGGSQVQLVQSGAEVKKPGASVKV




SCKASGYTFSGYYIHWVRQAPGQGLEWMGWMDSNSGGTGYA




QKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAKEVFS




GWYDYWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGSSVTL




GCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLYTLSS




SVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTIKPC




PPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTCVVVD




VSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVVSAL




PIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSVRAPQ




VCVLPPPEEEMTKKQVTLWCMVTDFMPEDIYVEWTNNGKTE




LNYKNTEPVLDSDGSYFMYSKLRVEKKNWVERNSYSCSVVH




EGLHNHHTTKSFSRTPGK





SEQ ID
AF003106_Pep1
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQE


NO: 89

EFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWDETLLD




KFCTELYQQLNDLEACVMQEERVGETPLMNADSILAVKKYF




RRITLYLTEKKYSPCAWEVVRAEIVRSLSLSTNLQERLRRK




EGGGGSGGGGSGGGGSGGGGSQVQLVQSGAEVKKPGASVKV




SCKASGYTFSNYYIHWVRQAPGQGLEWMGWMDSNSGYTGYA




QQFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAKEVFS




GWYDYWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGSSVTL




GCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLYTLSS




SVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTIKPC




PPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTCVVVD




VSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVVSAL




PIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSVRAPQ




VCVLPPPEEEMTKKQVTLWCMVTDFMPEDIYVEWTNNGKTE




LNYKNTEPVLDSDGSYFMYSKLRVEKKNWVERNSYSCSVVH




EGLHNHHTTKSFSRTPGK





SEQ ID
AF003217_Pep1
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQE


NO: 90

EFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWDETLLD




KFCTELYQQLNDLEACVMQEERVGETPLMNADSILAVKKYF




RRITLYLTEKKYSPCAWEVVRAEIVRSLSLSTNLQERLRRK




EGGGGSGGGGSGGGGSGGGGSQVQLVQSGAEVKKPGASVKV




SCKASGGTFSSYAISWVRQAPGQGLEWMGIIDPSVTYTRYA




QKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARSLFP




TIFGVEVAFDIWGQGTLVTVSSAKTTAPSVYPLAPVCGDTT




GSSVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSD




LYTLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRG




PTIKPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIV




TCVVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTL




RVVSALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKG




SVRAPQVCVLPPPEEEMTKKQVTLWCMVTDFMPEDIYVEWT




NNGKTELNYKNTEPVLDSDGSYFMYSKLRVEKKNWVERNSY




SCSVVHEGLHNHHTTKSFSRTPGK





SEQ ID
AF003218_Pep1
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQE


NO: 91

EFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWDETLLD




KFCTELYQQLNDLEACVMQEERVGETPLMNADSILAVKKYF




RRITLYLTEKKYSPCAWEVVRAEIVRSLSLSTNLQERLRRK




EGGGGSGGGGSGGGGSGGGGSQVQLVQSGAEVKKPGASVKV




SCKASGYTFSGYYIHWVRQAPGQGLEWMGWMDSNSGGTGYA




QKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAKEVFS




GWYDYWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGSSVTL




GCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLYTLSS




SVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTIKPC




PPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTCVVVD




VSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVVSAL




PIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSVRAPQ




VCVLPPPEEEMTKKQVTLWCMVTDFMPEDIYVEWTNNGKTE




LNYKNTEPVLDSDGSYFMYSKLRVEKKNWVERNSYSCSVVH




EGLHNHHTTKSFSRTPGK





SEQ ID
AF003219_Pep1
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQE


NO: 92

EFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWDETLLD




KFCTELYQQLNDLEACVMQEERVGETPLMNADSILAVKKYF




RRITLYLTEKKYSPCAWEVVRAEIVRSLSLSTNLQERLRRK




EGGGGSGGGGSGGGGSGGGGSQVQLVQSGAEVKKPGASVKV




SCKASGYTFSNYYIHWVRQAPGQGLEWMGWMDSNSGGTGYA




QKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAKEVFS




GWYDYWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGSSVTL




GCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLYTLSS




SVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTIKPC




PPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTCVVVD




VSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVVSAL




PIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSVRAPQ




VCVLPPPEEEMTKKQVTLWCMVTDFMPEDIYVEWTNNGKTE




LNYKNTEPVLDSDGSYFMYSKLRVEKKNWVERNSYSCSVVH




EGLHNHHTTKSFSRTPGK





SEQ ID
AF002618_Pep1
QVQLVQSGAEVKKPGASVKVSCKASGGTFSSYAISWVRQAP


NO: 93

GQGLEWMGIIDPSVTYTRYAQKFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCARSLFPTIFGVEVAFDIWGQGTLVTVS




SAKTTAPSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLT




WNSGSLSSGVHTFPAVLQSDLYTLSSSVTVTSSTWPSQSIT




CNVAHPASSTKVDKKIEPRGPTIKPCPPCKCPAPNAAGGPS




VFIFPPKIKDVLMISLSPIVTCVVVDVSEDDPDVQISWFVN




NVEVHTAQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKC




KVNNKDLGAPIERTISKPKGSVRAPQVYVLPPPEEEMTKKQ




VTLTCMVTDFMPEDIYVEWTNNGKTELNYKNTEPVLDSDGS




YFMYSKLRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRT




PGK





SEQ ID
AF002639_Pep1
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYYIHWVRQAP


NO: 94

GQGLEWMGWMDSNSGYTGYAQQFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCAKEVFSGWYDYWGQGTLVTVSSAKTTA




PSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSL




SSGVHTFPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHP




ASSTKVDKKIEPRGPTIKPCPPCKCPAPNAAGGPSVFIFPP




KIKDVLMISLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHT




AQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKD




LGAPIERTISKPKGSVRAPQVYVLPPPEEEMTKKQVTLTCM




VTDFMPEDIYVEWTNNGKTELNYKNTEPVLDSDGSYFMYSK




LRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGK





SEQ ID
AF002645_Pep1
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQE


NO: 95

EFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWDETLLD




KFYTELYQQLNDLEACVIQGVGVTETPLMKEDSILAVRKYF




QRITLYLKEKKYSPCAWEVVRAEIMRSFSLSTNLQESLRSK




EVPGVGVPGAGVPGVGVPGGGVPGVGVPGGGVPGAGVPGGG




VPGVGVPGAGVPGVGVPGGGQVQLVQSGAEVKKPGASVKVS




CKASGGTFSSYAISWVRQAPGQGLEWMGIIDPSVTYTRYAQ




KFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARSLFPT




IFGVEVAFDIWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTG




SSVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDL




YTLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGP




TIKPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVT




CVVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLR




VVSALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGS




VRAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTN




NGKTELNYKNTEPVLDSDGSYFMYSKLRVEKKNWVERNSYS




CSVVHEGLHNHHTTKSFSRTPGK





SEQ ID
AF002666_Pep1
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQE


NO: 96

EFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWDETLLD




KFYTELYQQLNDLEACVIQGVGVTETPLMKEDSILAVRKYF




QRITLYLKEKKYSPCAWEVVRAEIMRSFSLSTNLQESLRSK




EVPGVGVPGAGVPGVGVPGGGVPGVGVPGGGVPGAGVPGGG




VPGVGVPGAGVPGVGVPGGGQVQLVQSGAEVKKPGASVKVS




CKASGYTFSNYYIHWVRQAPGQGLEWMGWMDSNSGYTGYAQ




QFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAKEVFSG




WYDYWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGSSVTLG




CLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLYTLSSS




VTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTIKPCP




PCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTCVVVDV




SEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVVSALP




IQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSVRAPQV




YVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNNGKTEL




NYKNTEPVLDSDGSYFMYSKLRVEKKNWVERNSYSCSVVHE




GLHNHHTTKSFSRTPGK





SEQ ID
AF003229_Pep2
QVQLVQSGAEVKKPGASVKVSCKASGDTFSTYYVHWVRQAP


NO: 97

GQGLEWMGIINPSGGGTVYAQKFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCAAGLFIWGQGTLVTVSSAKTTAPSVYP




LAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSLSSGVH




TFPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHPASSTK




VDKKIEPRGPTIKPCPPCKCPAPNAAGGPSVFIFPPKIKDV




LMISLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHTAQTQT




HREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLGAPI




ERTISKPKGSVRAPQVYVLPPPEKEMTKKQVSLTCLVKDFM




PEDIYVEWTNNGKTELNYKNTEPVLKSDGSYFMYSKLTVEK




KNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGGGGSGGGSH




HHHHH





SEQ ID
AF003230_Pep2
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYYIHWVRQAP


NO: 98

GQGLEWMGIINPSGGGTVYAQKFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCAAGLFIWGQGTLVTVSSAKTTAPSVYP




LAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSLSSGVH




TFPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHPASSTK




VDKKIEPRGPTIKPCPPCKCPAPNAAGGPSVFIFPPKIKDV




LMISLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHTAQTQT




HREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLGAPI




ERTISKPKGSVRAPQVYVLPPPEKEMTKKQVSLTCLVKDFM




PEDIYVEWTNNGKTELNYKNTEPVLKSDGSYFMYSKLTVEK




KNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGGGGSGGGSH




HHHHH





SEQ ID
AF003232_Pep2
QVQLVQSGAEVKKPGASVKVSCKASGDTFTRHYVHWVRQAP


NO: 99

GQGLEWMGIINPSGGYASYAQKFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCAAGLFIWGQGTLVTVSSAKTTAPSVYP




LAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSLSSGVH




TFPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHPASSTK




VDKKIEPRGPTIKPCPPCKCPAPNAAGGPSVFIFPPKIKDV




LMISLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHTAQTQT




HREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLGAPI




ERTISKPKGSVRAPQVYVLPPPEKEMTKKQVSLTCLVKDFM




PEDIYVEWTNNGKTELNYKNTEPVLKSDGSYFMYSKLTVEK




KNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGGGGSGGGSH




HHHHH





SEQ ID
AF003250_Pep2
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYYVHWVRQAP


NO: 100

GQGLEWMGIINPSGGSTSYAQNFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCASGWDVWGQGTTVTVSSASGGGGSGGG




GSGGGGSHASEIVMTQSPATLSVSPGERATLSCRASQSVNT




YLAWYQQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFT




LTISSLQSEDFAVYYCQQYGSSPVTFGQGTRLEIKPRGPTI




KPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTCV




VVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVV




SALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSVR




APQVYVLPPPEKEMTKKQVSLTCLVKDFMPEDIYVEWTNNG




KTELNYKNTEPVLKSDGSYFMYSKLTVEKKNWVERNSYSCS




VVHEGLHNHHTTKSFSRTPGGGGSGGGSHHHHHH





SEQ ID
AF003251_Pep2
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYYVHWVRQAP


NO: 101

GQGLEWMGIINPSGGSTSYAQNFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCASGWDVWGQGTTVTVSSASGGGGSGGG




GSGGGGSHASEIVMTQSPATLSVSPGERATLSCRASQSVNT




YLAWYQQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFT




LTISSLQSEDFAVYYCQQYGSSPVTFGQGTRLEIKPRGPTI




KPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTCV




VVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVV




SALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSVR




APQVYVLPPPEKEMTKKQVSLTCLVKDFMPEDIYVEWTNNG




KTELNYKNTEPVLKSDGSYFMYSKLTVEKKNWVERNSYSCS




VVHEGLHNHHTTKSFSRTPGGGGSGGGSHHHHHH





SEQ ID
AF003253_Pep2
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYYVHWVRQAP


NO: 102

GQGLEWMGIINPSGGSTSYAQNFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCASGWDVWGQGTTVTVSSASGGGGSGGG




GSGGGGSHASEIVMTQSPATLSVSPGERATLSCRASQSVNT




YLAWYQQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFT




LTISSLQSEDFAVYYCQQYGSSPVTFGQGTRLEIKPRGPTI




KPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTCV




VVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVV




SALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGSVR




APQVYVLPPPEKEMTKKQVSLTCLVKDFMPEDIYVEWTNNG




KTELNYKNTEPVLKSDGSYFMYSKLTVEKKNWVERNSYSCS




VVHEGLHNHHTTKSFSRTPGGGGSGGGSHHHHHH





SEQ ID
AF003103_Pep2
QVQLVQSGAEVKKPGASVKVSCKASGGTFSSYAISWVRQAP


NO: 103

GQGLEWMGIIDPSVTYTRYAQKFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCARSLFPTIFGVEVAFDIWGQGTLVTVS




SAKTTAPSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLT




WNSGSLSSGVHTFPAVLQSDLYTLSSSVTVTSSTWPSQSIT




CNVAHPASSTKVDKKIEPRGPTIKPCPPCKCPAPNAAGGPS




VFIFPPKIKDVLMISLSPIVTCVVVDVSEDDPDVQISWFVN




NVEVHTAQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKC




KVNNKDLGAPIERTISKPKGSVRAPQVYVLPPCEEEMTKKQ




VTLSCAVTDFMPEDIYVEWTNNGKTELNYKNTEPVLDSDGS




YFMVSKLRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRT




PGKHHHHHH





SEQ ID
AF003104_Pep2
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYYIHWVRQAP


NO: 104

GQGLEWMGWMDSNSGGTGYAQKFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCAKEVFSGWYDYWGQGTLVTVSSAKTTA




PSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSL




SSGVHTFPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHP




ASSTKVDKKIEPRGPTIKPCPPCKCPAPNAAGGPSVFIFPP




KIKDVLMISLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHT




AQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKD




LGAPIERTISKPKGSVRAPQVYVLPPCEEEMTKKQVTLSCA




VTDFMPEDIYVEWTNNGKTELNYKNTEPVLDSDGSYFMVSK




LRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGKHHH




HHH





SEQ ID
AF003105_Pep2
QVQLVQSGAEVKKPGASVKVSCKASGYTFSGYYIHWVRQAP


NO: 105

GQGLEWMGWMDSNSGGTGYAQKFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCAKEVFSGWYDYWGQGTLVTVSSAKTTA




PSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSL




SSGVHTFPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHP




ASSTKVDKKIEPRGPTIKPCPPCKCPAPNAAGGPSVFIFPP




KIKDVLMISLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHT




AQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKD




LGAPIERTISKPKGSVRAPQVYVLPPCEEEMTKKQVTLSCA




VTDFMPEDIYVEWTNNGKTELNYKNTEPVLDSDGSYFMVSK




LRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGKHHH




HHH





SEQ ID
AF003106_Pep2
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYYIHWVRQAP


NO: 106

GQGLEWMGWMDSNSGYTGYAQQFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCAKEVFSGWYDYWGQGTLVTVSSAKTTA




PSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSL




SSGVHTFPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHP




ASSTKVDKKIEPRGPTIKPCPPCKCPAPNAAGGPSVFIFPP




KIKDVLMISLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHT




AQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKD




LGAPIERTISKPKGSVRAPQVYVLPPCEEEMTKKQVTLSCA




VTDFMPEDIYVEWTNNGKTELNYKNTEPVLDSDGSYFMVSK




LRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGKHHH




HHH





SEQ ID
AF003217_Pep2
QVQLVQSGAEVKKPGASVKVSCKASGYTFTKNYMHWVRQAP


NO: 107

GQGLEWLGWVSPDSGYTGYAQKFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCTTDLLSLELDDAFDIWGQGTMVTVSSA




SGGGGSGGGGSGGGGSHASDIQMTQSPSSLSASVGDRVTIT




CRASQSISSWLAWYQQKPGKAPKLLIYAASTLQSGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKL




EIKPRGPTIKPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMI




SLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHTAQTQTHRE




DYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLGAPIERT




ISKPKGSVRAPQVYVLPPCEEEMTKKQVTLSCAVTDFMPED




IYVEWTNNGKTELNYKNTEPVLDSDGSYFMVSKLRVEKKNW




VERNSYSCSVVHEGLHNHHTTKSFSRTPGK





SEQ ID
AF003218_Pep2
QVQLVQSGAEVKKPGASVKVSCKASGYTFTKNYMHWVRQAP


NO: 108

GQGLEWLGWVSPDSGYTGYAQKFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCTTDLLSLELDDAFDIWGQGTMVTVSSA




SGGGGSGGGGSGGGGSHASDIQMTQSPSSLSASVGDRVTIT




CRASQSISSWLAWYQQKPGKAPKLLIYAASTLQSGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKL




EIKPRGPTIKPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMI




SLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHTAQTQTHRE




DYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLGAPIERT




ISKPKGSVRAPQVYVLPPCEEEMTKKQVTLSCAVTDFMPED




IYVEWTNNGKTELNYKNTEPVLDSDGSYFMVSKLRVEKKNW




VERNSYSCSVVHEGLHNHHTTKSFSRTPGK





SEQ ID
AF003219_Pep2
QVQLVQSGAEVKKPGASVKVSCKASGYTFTKNYMHWVRQAP


NO: 109

GQGLEWLGWVSPDSGYTGYAQKFQGRVTMTRDTSTSTVYME




LSSLRSEDTAVYYCTTDLLSLELDDAFDIWGQGTMVTVSSA




SGGGGSGGGGSGGGGSHASDIQMTQSPSSLSASVGDRVTIT




CRASQSISSWLAWYQQKPGKAPKLLIYAASTLQSGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKL




EIKPRGPTIKPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMI




SLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHTAQTQTHRE




DYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLGAPIERT




ISKPKGSVRAPQVYVLPPCEEEMTKKQVTLSCAVTDFMPED




IYVEWTNNGKTELNYKNTEPVLDSDGSYFMVSKLRVEKKNW




VERNSYSCSVVHEGLHNHHTTKSFSRTPGK





SEQ ID
AF002618_Pep2
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQE


NO: 110

EFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWDETLLD




KFYTELYQQLNDLEACVIQGVGVTETPLMKEDSILAVRKYF




QRITLYLKEKKYSPCAWEVVRAEIMRSFSLSTNLQESLRSK




EGGGGSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVT




ITCRASQSISNRLAWYQQKPGKAPKLLIYKASSLESGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSNSTPFTFGQGT




KVEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKD




INVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKD




EYERHNSYTCEATHKTSTSPIVKSFNRNEC





SEQ ID
AF002639_Pep2
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQE


NO: 111

EFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWDETLLD




KFYTELYQQLNDLEACVIQGVGVTETPLMKEDSILAVRKYF




QRITLYLKEKKYSPCAWEVVRAEIMRSFSLSTNLQESLRSK




EGGGGSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVT




ITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPYTFGQGT




KVEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKD




INVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKD




EYERHNSYTCEATHKTSTSPIVKSFNRNEC





SEQ ID
AF002645_Pep2
DIQMTQSPSSLSASVGDRVTITCRASQSISNRLAWYQQKPG


NO: 112

KAPKLLIYKASSLESGVPSRFSGSGSGTDFTLTISSLQPED




FATYYCQQSNSTPFTFGQGTKVEIKRADAAPTVSIFPPSSE




QLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWT




DQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPI




VKSFNRNEC





SEQ ID
AF003229_Pep3
DIQMTQSPSSLSASVGDRVTITCRASQYISSGLAWYQQKPG


NO: 114

KAPKLLIYKASSLDNGVPSRFSGSGSGTDFTLTISSLQPED




FATYYCQQYERLPLTFGGGTKVEIKRADAAPTVSIFPPSSE




QLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWT




DQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPI




VKSFNRNEC





SEQ ID
AF003230_Pep3
DIQMTQSPSSLSASVGDRVTITCRASQSIGTGLAWYQQKPG


NO: 115

KAPKLLIYKASSLDNGVPSRFSGSGSGTDFTLTISSLQPED




FATYYCQQYNRAPLTFGGGTKVEIKRADAAPTVSIFPPSSE




QLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWT




DQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPI




VKSFNRNEC





SEQ ID
AF003232_Pep3
DIQMTQSPSSLSASVGDRVTITCRASQSIGRWLAWYQQKPG


NO: 116

KAPKLLIYSASNLETGVPSRFSGSGSGTDFTLTISSLQPED




FATYYCQQYESFPVTFGPGTKVDIKRADAAPTVSIFPPSSE




QLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWT




DQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPI




VKSFNRNEC





SEQ ID
AF003219_Pep3
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPG


NO: 126

KAPKLLIYAASSLESGVPSRFSGSGSGTDFTLTISSLQPED




FATYYCQQSYSTPYTFGQGTKVDIKRADAAPTVSIFPPSSE




QLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWT




DQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPI




VKSFNRNEC









Example 7
Reduced Type I IFNα Reporter Activation by a PD-L1/IFNα Protein Complex

This example demonstrates reduced Type I IFNα reporter activation by a PD-L1/IFNα protein complex of the present disclosure, specifically a PD-L1/IFNα DBA/cytokine complexes, relative to unregulated antibody-IFNα immune cytokines. The DBA-cytokine protein complexes and control immune cytokines used in this experiment were IgG proteins with IFNα fused to the N-terminus of the heavy chain through a linker composed of 4 repeats of “GGGGS,” as exemplified in FIG. 9E. The genes for two DBA-cytokine complexes, C08 IFNα (CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQEEFGNQFQKAETIPVLHEM IQQIFNLFSTKDSSAAWDETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKEDSILAV RKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSLSTNLQESLRSKEGGGGSGGGGSGGG GSGGGGSQVQLVQSGAEVKKPGASVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGII DPSVTYTRYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARSLFPTIFGVEVA FDIWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGS LSSGVHTFPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTIKP CPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTCVVVDVSEDDPDVQISWFVNNVE VHTAQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKG SVRAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNNGKTELNYKNTEPVLD SDGSYFMYSKLRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGK; SEQ ID NO: 57 and DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYGASTLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQTYSTPITFGQGTKVEIKRADAAPTVSIFPPSS EQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLT LTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC; SEQ ID NO: 58) and B09 IFNα (CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQEEFGNQFQKAETIPVLHEM IQQIFNLFSTKDSSAAWDETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKEDSILAV RKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSLSTNLQESLRSKEGGGGSGGGGSGGG GSGGGGSQVQLVQSGAEVKKPGASVKVSCKASGGTFTGYYMHWVRQAPGQGLEWM GWVNPNSGNTGYAQKFQGRVTMTRDTSTSTVYMEL SSLRSEDTAVYYCARSLFPTIFG VEVAFDIWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTW NSGSLSSGVHTFPAVLQSDLYTL SSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGP TIKPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTCVVVDVSEDDPDVQISWFVN NVEVHTAQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISK PKGSVRAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNNGKTELNYKNTEP VLDSDGSYFMYSKLRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGK; SEQ ID NO: 59 and DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSPPPTFGQGTKLEIKRADAAPTVSIFPPSS EQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLT LTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC; SEQ ID NO: 60), and two control immune-cytokines, anti-Her2 IFNα (CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQEEFGNQFQKAETIPVLHEM IQQIFNLFSTKDSSAAWDETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKEDSILAV RKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSLSTNLQESLRSKEGGGGSGGGGSGGG GSGGGGSQVQLVQSGAEVKKPGASVKVSCKASGGTFSSYAISWVRQAPGQGLEWMG WINPNSGGTNYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARSLFPTIFGVE VAFDIWGQGTTVTVSSAKTTAPSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNS GSLSSGVHTFPAVLQSDLYTL SSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTI KPCPPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTCVVVDVSEDDPDVQISWFVNN VEVHTAQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKP KGSVRAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNNGKTELNYKNTEP VLDSDGSYFMYSKLRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGK; SEQ ID NO: 61 and DIQMTQSPSSLSASVGDRVTITCRASQSIIDRLAWYQQKPGKAPKLLIYKASSLESGVPSR FSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPFTFGPGTKVDIKRADAAPTVSIFPPSSE QLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTL TKDEYERHNSYTCEATTHKTSTSPIVKSFNRNEC; SEQ ID NO: 62) and anti-PD-L1 IFNα (CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQEEFGNQFQKAETIPVLHEM IQQIFNLFSTKDSSAAWDETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKEDSILAV RKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSLSTNLQESLRSKEGGGGSGGGGSGGG GSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARI YPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMD YWGQGTLVTVSSAKTTAPSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSL SSGVHTFPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTIKPC PPCKCPAPNAAGGPSVFIFPPKIKDVLMISLSPIVTCVVVDVSEDDPDVQISWFVNNVEV HTAQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLGAPIERTISKPKGS VRAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNNGKTELNYKNTEPVLDS DGSYFMYSKLRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGK; SEQ ID NO: 63 and DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVP SRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKVEIKRADAAPTVSIFPPS SEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTL TLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC; SEQ ID NO: 64) were synthesized, expressed in HEK293 cells and Protein A purified (GenScript). Titrated concentrations of the DBA-cytokine complexes and antibody-cytokine controls were added to a 96-well plate along with 50,000 type I IFNα reporter cells (InvivoGen) in complete DMEM (+10% FBS, 2 mM L-glutamine, sodium pyruvate). Plates were incubated at 37° C. overnight and developed by adding 20 uL of culture supernatant to 180 uL QUANTI-Blue Solution (InvivoGen). After a 30 minute incubation at room temperature, plates were read on an Envision (Perkin Elmer) at 630 nm. In the absence of PD-L1, the IFNα tethered PD-L1-IFNα DBA complexes C08 and B09 show decreased reporter activation compared to equimolar amounts of the control anti-PD-L1 or anti-HER2 IFNα immunocytokines (FIG. 10).


Example 8
Reduced CD8+ T Cell STAT5 Phosphorylation by a PD-1/IL-2 Dual Binding Antibody (DBA) Cytokine Complexes

This example describes CD8+ T-cell STAT5 phosphorylation by PD-1/IL-2 DBA-cytokine complexes of the present disclosure. Genes for the PD-1/IL-2 DBAs shown in TABLE 17 were synthesized and expressed in HEK293 as IgG proteins with IL-2 fused to the N-terminus of the heavy or light chain through a linker (Genscript). Although only two of the antibodies blocked IL-2 binding to IL-2RB as scFvs, over 30 of the antibodies were able to reduce IL-2 signaling by a linked IL-2 domain. An exemplary set of these DBAs were chosen for analysis and compared to a control anti-HER2-IL-2 immunocytokine (TABLE 17).









TABLE 17







IgG PD-1/IL-2 DBA protein complexes












Heavy Chain
Light Chain




Sequence
Sequence



Name
SEQ ID NO
SEQ ID NO






Anti-
(SEQ ID NO: 65)
(SEQ ID NO: 66)



HER2
EVQLVESGGGLVQPGG
APTSSSTKKTQLQLEH




SLRLSCAASGFNIKD
LLLDLQMILNGINNY




TYIHWVRQAPGKGLE
KNPKLTRMLTFKFYM




WVARIYPTNGYTRYA
PKKATELKHLQCLEE




DSVKGRFTISADTSK
ELKPLEEVLNLAQSK




NTAYLQMNSLRAEDT
NFHLRPRDLISNINV




AVYYCSRWGGDGFYA
IVLELKGSETTFMCE




MDYWGQGTLVTVSSA
YADETATIVEFLNRW




KTTAPSVYPLAPVCG
ITFCQSIISTLTVPG




DTTGSSVTLGCLVKG
VGVPGAGVPGVGVPG




YFPEPVTLTWNSGSL
GGVPGVGVPGGGVPG




SSGVHTFPAVLQSDL
AGVPGGGVPGVGVPG




YTLSSSVTVTSSTWP
AGVPGVGVPGGGDIQ




SQSITCNVAHPASST
MTQSPSSLSASVGDR




KVDKKIEPRGPTIKP
VTITCRASQDVNTAV




CPPCKCPAPNAAGGP
AWYQQKPGKAPKLLI




SVFIFPPKIKDVLMI
YSASFLYSGVPSRFS




SLSPIVTCVVVDVSE
GSRSGTDFTLTISSL




DDPDVQISWFVNNVE
QPEDFATYYCQQHYT




VHTAQTQTHREDYNS
TPPTFGQGTKVEIKR




TLRVVSALPIQHQDW
ADAAPTVSIFPPSSE




MSGKEFKCKVNNKDL
QLTSGGASVVCFLNN




GAPIERTISKPKGSV
FYPKDINVKWKIDGS




RAPQVYVLPPPEEEM
ERQNGVLNSWTDQDS




TKKQVTLTCMVTDFM
KDSTYSMSSTLTLTK




PEDIYVEWTNNGKTE
DEYERHNSYTCEATH




LNYKNTEPVLDSDGS
KTSTSPIVKSFNRNE




YFMYSKLRVEKKNWV
C




ERNSYSCSVVHEGLH





NHHTTKSFSRTPGK







2-A08
(SEQ ID NO: 67)
(SEQ ID NO: 68)




QVQLVQSGAEVKKPG
APTSSSTKKTQLQLE




ASVKVSCKVSGYTFT
HLLLDLQMILNGINN




SYDINWVRQAPGQGL
YKNPKLTRMLTFKFY




EWMGWINPNSGDTGY
MPKKATELKHLQCLE




AQKFQGRVTMTRDTS
EELKPLEEVLNLAQS




TSTVYMELSSLRSED
KNFHLRPRDLISNIN




TAVYYCARDTGLGYY
VIVLELKGSETTFMC




YGSGDFDYWGQGTLV
EYADETATIVEFLNR




TVSSAKTTAPSVYPL
WITFCQSIISTLTVP




APVCGDTTGSSVTLG
GVGVPGAGVPGVGVP




CLVKGYFPEPVTLTW
GGGVPGVGVPGGGVP




NSGSLSSGVHTFPAV
GAGVPGGGVPGVGVP




LQSDLYTLSSSVTVT
GAGVPGVGVPGGGDI




SSTWPSQSITCNVAH
QMTQSPSSLSASVGD




PASSTKVDKKIEPRG
RVTITCQASQDIHNY




PTIKPCPPCKCPAPN
LNWYQQKPGKAPKLL




AAGGPSVFIFPPKIK
IYDVSNLETGVPSRF




DVLMISLSPIVTCVV
SGSGSGTDFTLTISS




VDVSEDDPDVQISWF
LQPEDFATYYCQQAI




VNNVEVHTAQTQTHR
SFPLTFGGGTKVEIK




EDYNSTLRVVSALPI
RADAAPTVSIFPPSS




QHQDWMSGKEFKCKV
EQLTSGGASVVCFLN




NNKDLGAPIERTISK
NFYPKDINVKWKIDG




PKGSVRAPQVYVLPP
SERQNGVLNSWTDQD




PEEEMTKKQVTLTCM
SKDSTYSMSSTLTLT




VTDFMPEDIYVEWTN
KDEYERHNSYTCEAT




NGKTELNYKNTEPVL
HKTSTSPIVKSFNRN




DSDGSYFMYSKLRVE
EC




KKNWVERNSYSCSVV





HEGLHNHHTTKSFSR





TPGK







2-A11
(SEQ ID NO: 69)
(SEQ ID NO: 70)




QVQLVQSGAEVKKPG
APTSSSTKKTQLQLE




ASVKVSCKASGHTFT
HLLLDLQMILNGINN




RYYMHWVRQAPGQGL
YKNPKLTRMLTFKFY




EWMGIINPSGGYATY
MPKKATELKHLQCLE




AQKFQGRVTMTRDTS
EELKPLEEVLNLAQS




TSTVYMELSSLRSED
KNFHLRPRDLISNIN




TAVYYCASGWDVWGQ
VIVLELKGSETTFMC




GTLVTVSSAKTTAPS
EYADETATIVEFLNR




VYPLAPVCGDTTGSS
WITFCQSIISTLTVP




VTLGCLVKGYFPEPV
GVGVPGAGVPGVGVP




TLTWNSGSLSSGVHT
GGGVPGVGVPGGGVP




FPAVLQSDLYTLSSS
GAGVPGGGVPGVGVP




VTVTSSTWPSQSITC
GAGVPGVGVPGGGDI




NVAHPASSTKVDKKI
QMTQSPSSLSASVGD




EPRGPTTKPCPPCKC
RVTITCRASQSINSW




PAPNAAGGPSVFIFP
LAWYQQKPGKAPKLL




PKIKDVLMISLSPIV
IYATSTLESGVPSRF




TCVVVDVSEDDPDVQ
SGSGSGTDFTLTISS




ISWFVNNVEVHTAQT
LQPEDFATYYCQQSY




QTHREDYNSTLRVVS
SFPPTFGQGTKVEIK




ALPIQHQDWMSGKEF
RADAAPTVSIFPPSS




KCKVNNKDLGAPIER
EQLTSGGASVVCFLN




TISKPKGSVRAPQVY
NFYPKDINVKWKIDG




VLPPPEEEMTKKQVT
SERQNGVLNSWTDQD




LTCMVTDFMPEDIYV
SKDSTYSMSSTLTLT




EWTNNGKTELNYKNT
KDEYERHNSYTCEAT




EPVLDSDGSYFMYSK
HKTSTSPIVKSFNRN




LRVEKKNWVERNSYS
EC




CSVVHEGLHNHHTTK





SFSRTPGK







2-B05
(SEQ ID NO: 71)
(SEQ ID NO: 72)




QVQLVQSGAEVKKPG
APTSSSTKKTQLQLE




ASVKVSCKASGYTFT
HLLLDLQMILNGINN




NYYIHWVRQAPGQGL
YKNPKLTRMLTFKFY




EWMGIINPRAGYTSY
MPKKATELKHLQCLE




ALKFQGRVTMTRDTS
EELKPLEEVLNLAQS




TSTVYMELSSLRSED
KNFHLRPRDLISNIN




TAVYYCAGGWLDWGQ
VIVLELKGSETTFMC




GTLVTVSSAKTTAPS
EYADETATIVEFLNR




VYPLAPVCGDTTGSS
WITFCQSIISTLTVP




VTLGCLVKGYFPEPV
GVGVPGAGVPGVGVP




TLTWNSGSLSSGVHT
GGGVPGVGVPGGGVP




FPAVLQSDLYTLSSS
GAGVPGGGVPGVGVP




VTVTSSTWPSQSITC
GAGVPGVGVPGGGDI




NVAHPASSTKVDKKI
QMTQSPSSLSASVGD




EPRGPTTKPCPPCKC
RVTITCRASQSISSW




PAPNAAGGPSVFIFP
LAWYQQKPGKAPKLL




PKIKDVLMISLSPIV
IYAASSLQSGVPSRF




TCVVVDVSEDDPDVQ
SGSGSGTDFTLTISS




ISWFVNNVEVHTAQT
LQPEDFATYYCQQSF




QTHREDYNSTLRVVS
TMPITFGQGTRLEIK




ALPIQHQDWMSGKEF
RADAAPTVSIFPPSS




KCKVNNKDLGAPIER
EQLTSGGASVVCFLN




TISKPKGSVRAPQVY
NFYPKDINVKWKIDG




VLPPPEEEMTKKQVT
SERQNGVLNSWTDQD




LTCMVTDFMPEDIYV
SKDSTYSMSSTLTLT




EWTNNGKTELNYKNT
KDEYERHNSYTCEAT




EPVLDSDGSYFMYSK
HKTSTSPIVKSFNRN




LRVEKKNWVERNSYS
EC




CSVVHEGLHNHHTTK





SFSRTPGK







2-B07
(SEQ ID NO: 73)
(SEQ ID NO: 74)




QVQLVQSGAEVKKPG
APTSSSTKKTQLQLE




ASVKVSCKASGDTFT
HLLLDLQMILNGINN




RHYVHWVRQAPGQGL
YKNPKLTRMLTFKFY




EWMGIINPSGGYASY
MPKKATELKHLQCLE




AQKFQGRVTMTRDTS
EELKPLEEVLNLAQS




TSTVYMELSSLRSED
KNFHLRPRDLISNIN




TAVYYCAAGLFIWGQ
VIVLELKGSETTFMC




GTLVTVSSAKTTAPS
EYADETATIVEFLNR




VYPLAPVCGDTTGSS
WITFCQSIISTLTVP




VTLGCLVKGYFPEPV
GVGVPGAGVPGVGVP




TLTWNSGSLSSGVHT
GGGVPGVGVPGGGVP




FPAVLQSDLYTLSSS
GAGVPGGGVPGVGVP




VTVTSSTWPSQSITC
GAGVPGVGVPGGGDI




NVAHPASSTKVDKKI
QMTQSPSSLSASVGD




EPRGPTIKPCPPCKC
RVTITCRASQSIGRW




PAPNAAGGPSVFIFP
LAWYQQKPGKAPKLL




PKIKDVLMISLSPIV
IYSASNLETGVPSRF




TCVVVDVSEDDPDVQ
SGSGSGTDFTLTISS




ISWFVNNVEVHTAQT
LQPEDFATYYCQQAN




QTHREDYNSTLRVVS
SFPVTFGPGTKVDIK




ALPIQHQDWMSGKEF
RADAAPTVSIFPPSS




KCKVNNKDLGAPIER
EQLTSGGASVVCFLN




TISKPKGSVRAPQVY
NFYPKDINVKWKIDG




VLPPPEEEMTKKQVT
SERQNGVLNSWTDQD




LTCMVTDFMPEDIYV
SKDSTYSMSSTLTLT




EWTNNGKTELNYKNT
KDEYERHNSYTCEAT




EPVLDSDGSYFMYSK
HKTSTSPIVKSFNRN




LRVEKKNWVERNSYS
EC




CSVVHEGLHNHHTTK





SFSRTPGK







7-A04
(SEQ ID NO: 75)
(SEQ ID NO: 76)




QVQLVQSGAEVKKPG
APTSSSTKKTQLQLE




ASVKVSCKASGYTFT
HLLLDLQMILNGINN




DYYMHWVRQAPGQGL
YKNPKLTRMLTFKFY




EWMGIINPRAGYTSY
MPKKATELKHLQCLE




ALKFQG
EELKPLEEVLNLAQS




RVTMTRDTSTSTVYM
KNFHLRPRDLISNIN




ELSSLRSEDTAVYYC
VIVLELKGSETTFMC




TSGMDVWGQGTLVTV
EYADETATIVEFLNR




SSAKTTAPSVYPLAP
WITFCQSIISTLTVP




VCGDTTGSSVTLGCL
GVGVPGAGVPGVGVP




VKGYFPEPVTLTWNS
GGGVPGVGVPGGGVP




GSLSSGVHTFPAVLQ
GAGVPGGGVPGVGVP




SDLYTLSSSVTVTSS
GAGVPGVGVPGGGDI




TWPSQSITCNVAHPA
QMTQSPSSLSASVGD




SSTKVDKKIEPRGPT
RVTITCRASQSISTW




IKPCPPCKCPAPNAA
LAWYQQKPGKAPKLL




GGPSVFIFPPKIKDV
IYAASSLQSGVPSRF




LMISLSPIVTCVVVD
SGSGSGTDFTLTISS




VSEDDPDVQISWFVN
LQPEDFATYYCQQSY




NVEVHTAQTQTHRED
SFPVTFGQGTKVEIK




YNSTLRVVSALPIQH
RADAAPTVSIFPPSS




QDWMSGKEFKCKVNN
EQLTSGGASVVCFLN




KDLGAPIERTISKPK
NFYPKDINVKWKIDG




GSVRAPQVYVLPPPE
SERQNGVLNSWTDQD




EEMTKKQVTLTCMVT
SKDSTYSMSSTLTLT




DFMPEDIYVEWTNNG
KDEYERHNSYTCEAT




KTELNYKNTEPVLDS
HKTSTSPIVKSFNRN




DGSYFMYSKLRVEKK
EC




NWVERNSYSCSVVHE





GLHNHHTTKSFSRTP





GK









The PD-1/IL-2 DBA-cytokine complexes were serially diluted in complete RPMI (+1000 FBS, 2 mM L-glutamine, sodium pyruvate) and added to a 96-well plate. 2×105 human PBMCs were added to each well and plates were incubated at 37° C. for 20 minutes. An equal volume prewarmed fixation buffer (Biolegend) was then added to each well and plates were incubated at 37° C. for 10 minutes. Cells were then fixed in pre-chilled Perm Buffer III (BD Biosciences) for 30 minutes at 4′° C. Cells were washed with FACS wash buffer (PBS+2% FBS, 2 mM EDTA) and stained with fluorophore labeled antibodies directed against CD3, CD4, CD8, (BioLegend) and phospho-STAT5 (BD Biosciences) diluted 1:20 in FACS wash buffer. Cells were incubated 1 hour at 4° C., washed with FACS wash buffer, and analyzed on a SA3800 Spectral Analyzer. In the absence of PD-1, the PD-1/IL-2 DBA/cytokine complexes induced less STAT5 phosphorylation in T cells compared to the monospecific control anti-HER2 IL-2 immunocytokine (FIG. 11).


Example 9
Regulated Interferon Receptor Binding by a PD-L1/IFNα Dual Binding Antibody (DBA) Cytokine Complex

This example describes regulated interferon receptor binding by a PD-L1/IFNα DBA-cytokine complex. DBA-cytokine complexes of SEQ ID NO: 41 and SEQ ID NO: 55 (MSTSTCDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQEEFGNQFQKAETIP VLHEMIQQIFNLFSTKDSSAAWDETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKE DSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSLSTNLQESLRSKEGGGGSGG GGSGGGGSGGGGSQVQLVQSGAEVKKPGASVKVSCKASGNTFTDYYMHWVRQAPGQ GLEWMGWMNPNSGNTGYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARS LFPTIFGVEVAFDIWGQGTLVTVSSASGGGGSGGGGSGGGGSHASDIQMTQSPSSLSAS VGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYAASSLESGVPSRFSGSGSGTDFTLT ISSLQPEDFATYYCQQSYSTPPTFGQGTRLEIKGKPIPNPLLGLDST) were chosen for analysis with a negative control with a similar structure based on a HER2 binding scFv (SEQ ID NO: 56, MSTSTCDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQEEFGNQFQKAETIPV LHEMIQQIFNLFSTKDSSAAWDETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKED SILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSL STNLQESLRSKEGGGGSGGG GSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLE WVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDG FYAMDYWGQGTLVTVSSASGGGGSGGGGSGGGGSHASDIQMTQSPSSLSASVGDRVTI TCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPE DFATYYCQQHYTTPPTFGQGTKVEIKGKPIPNPLLGLDST). The proteins were expressed using a cell-free transcription/translation system (Cosmo Bio USA, Inc., PUREfrex2.1, Product #GFK-PF213 with DS Supplement, Prod. #GFK-PF005). 96-well ELISA plates were coated with anti-V5 antibody (SV5-pk1) at 50 ng/well overnight at 4° C. The plates were washed twice by adding 200 ul/well of SuperBlock with 0.05% Tween 20 (SBT), and the final SBT wash was incubated for 15 min at room temperature before aspiration. A dilution series of the protein for each construct in SBT was then added to the anti-V5-coated plates at 50 μl/well and incubated for 1 hour at room temperature. Each plate was then washed three times with PBS with 0.05% Tween 20 (PBST). Bound constructs were then probed with either anti-IFNα, IFNAR2-Biotin, PDL1-hFc-Avi or the combination of IFNAR2-Biotin and PDL1-hFc-Avi in SBT at 50 ul/well for 1 hour at room temperature. Plates were washed 3× with PBST. Goat anti-mIgG-TRP or Streptavidin-TRP was added at 50 ul/well and incubated for 30 min at room temperature followed by 3× wash with PBST. Plates were developed by adding 50 ul/well of TMB and the reaction was terminated with an equal volume of ELISA stop solution. As shown in FIG. 12 (top left), IFNAR2 binding to the DBA-IFNα complex (SEQ ID NO: 41) increased in a dose dependent manner with the addition of PD-L1. IFNAR2 binding to a control HER2-specific antibody-IFNα complex (SEQ ID NO: 56) was unaffected by the addition of PD-L1 (FIG. 12 top right). IFNAR2 binding to a DBA-IFNα complex containing SEQ ID NO: 55, was not affected by addition of PD-L1 at these concentrations (FIG. 12 bottom). The protein complex of SEQ ID NO: 55 is similar to the protein complex of SEQ ID NO: 41, except that the sensor domain of SEQ ID NO: 55 has a higher affinity for IFNα than the sensor domain of SEQ ID NO: 41. Protein complexes of the present invention may need the correct balance between their affinity for the marker and their affinity for the therapeutic domain.


Example 10
PD-L1/IFNα Protein Complexes for PD-L1 Dependent IFNα Activity In Vitro

This example describes PD-L1/IFNα protein complexes for PD-L1 dependent IFNα activity in vitro. PD-L1/IFNα protein complexes comprise a DBA capable of binding PD-L1 marker and an IFNα therapeutic domain where the protein complex is linked to the IFNα therapeutic cytokine via a linker. In the absence of PD-L1, the PD-L1 sensor domain binds the IFNα therapeutic domain, rendering the IFNα therapeutic inert. In the presence of PD-L1 (e.g., PD-L1 is expressed on a cell, such as a tumor cell or immune cell), the PD-L1 sensor domain binds PD-L1, thereby unbinding the IFNα therapeutic domain and allowing for IFNα to exhibit therapeutic activity.


PD-L1/IFNα protein complexes are designed and recombinantly expressed or chemically synthesized. PD-L1/IFNα protein complexes are administered in vitro to a cell (e.g., in cell culture). In the absence of the PD-L1 marker, the IFNα domain remains bound to the PD-L1 sensor domain and no therapeutic effect is observed. The cell may express PD-L1 endogenously or after activation, or following introduction of a gene encoding PD-L1. If the cell is a tumor cell expressing a PD-L1 marker, the therapeutic effect may be inhibition of cell growth or induction of IFNα-responsive genes. Where the cell is an immune cell, the therapeutic effect may be cell growth, activation or induction of IFN-responsive genes. Where the cell is part of a mixture of cell types, any of these changes may be monitored for a responding cell population in the mixture.


Example 11
PD-L1 Dependent IFNα Activity In Vivo

This example describes PD-L1/IFNα protein complexes for PD-L1 dependent IFNα activity in vivo. PD-L1/IFNα protein complexes comprise a PD-L1 sensor domain (e.g., an anti-PD-L1 antibody or an anti-PD-L1 scFv) linked to an IFNα cytokine via a linker, where the IFNα cytokine is a therapeutic. In the absence of PD-L1, the PD-L1 sensor domain binds the IFNα therapeutic domain, rendering the IFNα therapeutic inert. In the presence of PD-L1 (e.g., PD-L1 is expressed on a cell, such as a tumor cell or immune cell), the PD-L1 sensor domain binds PD-L1, thereby unbinding the IFNα therapeutic domain and allowing for IFNα to exhibit therapeutic activity.


PD-L1/IFNα protein complexes are recombinantly expressed or chemically synthesized. PD-L1/IFNα protein complexes are administered in vivo to a subject in need thereof. Administration is performed intravenously, intramuscularly, subcutaneously, intradermally, intraperitoneally, or mucosally. In the absence of PD-L1, the IFNα therapeutic domain remains bound to the PD-L1 sensor domain and no therapeutic efficacy is observed (e.g., cell proliferation in the subject is uninhibited). In the presence of PD-L1, the PD-L1 sensor domain binds PD-L1 and unbinds the IFNα therapeutic domain. Therapeutic efficacy is observed (e.g., cell proliferation is inhibited or immune cell activation occurs). The cell is a tumor cell expressing PD-L1. The subject is a human or non-human animal in need thereof. The subject has a disease. The disease is cancer.


Example 12
PD-1 Dependent IL-2 Activity In Human Cells

This example describes PD-1/IL-2 protein complexes for PD-1 dependent IL-2 activity in human cells, in vitro and in vivo. PD-1/IL-2 protein complexes comprise a PD-1 sensor domain (e.g., an anti-PD-1 antibody or an anti-PD-1 scFv) linked to an IL-2 cytokine therapeutic domain via a linker, where the IL-2 cytokine is a therapeutic. In the absence of PD-1, the PD-1 sensor domain binds the IL-2 therapeutic domain, rendering the IL-2 therapeutic inert. In the presence of PD-1 (e.g., PD-1 is expressed on a cell, such as an immune cell), the PD-1 sensor domain binds PD-1, thereby unbinding the IL-2 therapeutic domain and allowing for IL-2 to exhibit therapeutic activity.


PD-1/IL-2 protein complexes are recombinantly expressed or chemically synthesized. PD-1/IL-2 protein complexes are administered in vitro to a human cell or in vivo to a mouse or to a human subject in need thereof. The human cell is a cell expressing PD-1. Administration to a mouse or to a human subject is performed intravenously, intramuscularly, subcutaneously, intradermally, intraperitoneally, or mucosally. In the absence of PD-1, the IL-2 therapeutic domain remains bound to the PD-1 sensor domain and no therapeutic efficacy is observed (e.g., cell activation in vitro and in the subject is unaltered). In the presence of PD-1, the PD-1 sensor domain binds PD-1 and unbinds the IL-2 therapeutic domain. Therapeutic efficacy is observed (e.g., cell activation is observed in vitro and, in the subject, in vivo). The subject has a disease. The disease is cancer. The cell may express PD-1 endogenously or after activation, or following introduction of a gene encoding PD-1. The therapeutic effect may be cell growth, differentiation, activation or induction of IL2-responsive genes. In vitro, if the cell is part of a mixture of cell types, any of these changes may be monitored for a responding cell population in the mixture.


Example 13
Bioactivity in Tumor Tissues

This example describes bioactivity in tumor tissues. A protein complex of the present disclosure is recombinantly expressed or chemically synthesized. The protein complex includes a sensor domain linked to a therapeutic domain. The linker is a peptide linker. The sensor domain is capable of binding to the therapeutic and a marker. In the absence if the marker, the sensor domain binds the therapeutic domain, rendering the therapeutic domain unable to bind to its target and unable to exert therapeutic activity. In the presence of the marker, the sensor domain binds the marker rendering the therapeutic domain free to bind to its target and able to exert therapeutic activity. The protein complex is administered in vitro to a cell or in vivo to a subject in need thereof. The cell expresses the marker to which the sensor domain binds. The cell is a tumor cell or immune cell. The subject is a human or non-human animal. The subject has a disease. The disease is cancer. Administration to a subject is performed intravenously, intramuscularly, subcutaneously, intradermally, intraperitoneally, or mucosally.


Upon administration of the protein-complex, the sensor domain binds the marker in vitro or in vivo in the subject and unbinds the therapeutic domain. Therapeutic efficacy is observed in vitro or in vivo in the subject, for example, cell proliferation of tumor cells is slowed down or completely halted and tumor cells are eliminated.


Example 14
Activity in Tumor Models of Protein Complexes

This example describes activity in tumor models. The tumor models assess the efficacy and systemic on-target effects of the protein complexes. The tumor model assesses the ability of a protein complex of the present disclosure to exhibit sensor domain regulated activity of the therapeutic domain.


A protein complex of the present disclosure is recombinantly expressed or chemically synthesized. The protein complex includes a sensor domain linked to a therapeutic domain. The linker is a peptide linker. The sensor domain is capable of binding to the therapeutic domain and a marker. In the absence of the marker, the sensor domain binds the therapeutic domain rendering the therapeutic domain unable to bind to its target and unable to exert therapeutic activity. In the presence of the marker, the sensor domain binds the marker rendering the therapeutic domain free to bind to its target and able to exert therapeutic activity. The protein complex is administered in a tumor model, in vitro or in vivo. The tumor cells or the immune cells in the tumor model express the marker to which the sensor domain binds. Administration in vivo is performed intravenously, intramuscularly, subcutaneously, intradermally, intraperitoneally, or mucosally.


Tumor measurement. Prior to administration of the protein-complex, or in a control sample where the protein-complex is not administered, measurements of the tumor indicate that the tumor is continuing to proliferate. For example, a solid tumor in a tumor model (e.g., a mouse model of a tumor) is measured using calipers. Prior to administration of the protein-complex, or in a control sample where the protein-complex is not administered, the solid tumor continues to grow in size, as indicated by increasing measurements of tumor size with calipers. Upon administration of the protein-complex, over time, the sensor domain binds the marker expressed on the tumor and the therapeutic domain is unbound, thus, resulting in therapeutic efficacy. Therapeutic efficacy is validated by observing decreasing measurements of tumor size with calipers over time.


Immune activation. Prior to administration of the protein-complex, or in a control sample where the protein-complex is not administered, the solid tumor continues to grow in size, as indicated by increasing measurements of tumor size with calipers. Upon administration of the protein-complex, over time, the sensor domain binds the marker and the therapeutic domain is unbound, thus, resulting in therapeutic efficacy. Therapeutic efficacy is validated by observing differences in the immune cells in the tumor, lymph node or systemically, when compared to the control sample. The differences may be immune cell phenotypes, activation state, differentiation state or specificity.


Systemic induction of cytokine markers. No induction of cytokine markers or reduced systemic induction of cytokine markers, when compared to the control, is observed upon administration of the protein complex.


Weight loss. No weight loss or reduced weight loss, when compared to the control, is observed upon administration of the protein complex.


Example 15
PD-1/IL-2 DBA Cytokine Complex Induction of STAT5 Phosphorylation in a Lymphocyte Cell Line

This example describes PD-1/IL-2 DBA-cytokine complex induction of STAT5 phosphorylation in a lymphocytic cell line. To assess the dependence of PD-1/IL-2 DBA-cytokine complex activity on binding to PD-1, a PD-1-expressing variant is generated of an IL-2R+ T cell line such as Hut78 or Jurkat E6.1. The PD-1+ and PD-1− variant cell lines are treated with titrating concentrations of a PD-1/IL-2 DBA-cytokine complex of this disclosure, and STAT5 phosphorylation is assessed by phospho-flow, TR-FRET, or other assays for measuring IL-2 signaling.


A HEK 293 IL-2 reporter cell line is engineered to express PD-1. The PD-1+ and PD-1-variant cell lines are treated with titrating concentrations of PD-1/IL-2 DBA-cytokine complexes, and reporter activity is assessed as a measurement of IL-2 signaling. The PD-1/IL-2 DBA-cytokine complex exhibits increased potency on PD-1+ variant cell lines.


Example 16
PD-1/IL-2 DBA Cytokine Complex Induction of STAT5 Phosphorylation and Other Markers of Activation, and Proliferation in Primary Lymphocytes

This example describes PD-1/IL-2 DBA-cytokine complex induction of STAT5 phosphorylation and other markers of activation and proliferation in primary lymphocytes. PBMCs are labeled with cell proliferation dye and incubated for 4 days with titrating concentrations of a PD-1/IL-2 DBA-cytokine complex of the present disclosure. PBMCs are stained with antibodies directed against immune cell phenotyping markers to distinguish CD4+ and CD8+ T cells, Treg cells, and natural killer (NK) cells and markers of cell activation, such as CD25. Dye dilution on immune cell subsets is examined by flow cytometry as a measurement of proliferation.


Total T cells are isolated from PBMCs using immunomagnetic negative selection (STEMCELL) and stimulated with plate-bound anti-CD3 and soluble anti-CD28 for 72 hours to induce expression of PD-1. The PD-1+ T cells are incubated for 20 minutes with titrating concentrations of PD-1/IL-2 DBA-cytokine complexes. STAT5 phosphorylation is measured in fixed and permeabilized T cells by flow cytometry. In some experiments, PD-1 may be blocked on T cells with anti-PD-1 prior to treatment with PD-1/IL-2 DBA-cytokine complexes to assess the dependence of PD-1/IL-2 DBA-cytokine complex activity on binding to PD-1. The PD-1/IL-2 DBA-cytokine complex induces minimal STAT5 phosphorylation when PD-1 is blocked, showing activity that is conditional on its ability to bind PD-1.


Example 17
In Vivo PD-1/IL-2 DBA Cytokine Complex Signaling in Non-Tumor Peripheral Tissues

This example describes PD-1/IL-2 DBA-cytokine complex pharmacokinetics in the blood of wild-type mice and the signaling of the complex in non-tumor peripheral tissue. The serum half-lives and peripheral tissue activities of PD-1/IL-2 DBA-cytokine complexes and suitable non-regulated controls such as anti-PD-1, anti-HER2-IL-2, or anti-PD-1-IL-2 were measured in mice dosed intravenously (i.v.) with the complexes. Blood, spleens, or both were collected at various timepoints after treatment and stained to identify CD8+ T cells and NK cells.


To examine the half-life of PD-1/IL-2 DBA-cytokine complex in circulation, wild-type C57BL/6 mice received a single 2.5 milligrams per kilogram intravenous dose of a PD-1/IL-2 DBA-cytokine complex (2B07 IL-2 mut; SEQ ID NO: 205-206), anti-HER2/IL-2-cytokine complex (Always-on IL-2 mut; SEQ ID NO: 64 and SEQ ID NO: 207), or anti-IL-2/IL-2-cytokine complex (Always-off IL-2 mut; SEQ ID SEQ ID NO: 208-209), as outlined in TABLE 20. Mice were bled via retro-orbital sinus at 30 minutes, 4, 24, 48, 72, 96, and 168 hours post-dosing. The blood was collected into serum separator tubes, and the isolated serum was frozen at −80° C. until analysis. To determine serum levels of the cytokine complexes, 96-well high-binding ELISA plates were coated with 1 ug/mL rabbit anti-hu IL-2 capture antibody (clone ab9618, Abcam) in carbonate-bicarbonate buffer overnight at 4 C. Plates were washed three times and blocked for 1 hour with SuperBlock blocking buffer (Thermo Scientific). Serum samples from the various timepoints and treatment groups were diluted in SuperBlock, added to the plates, and incubated 1 hr. To detect cytokine complexes, plates were incubated with goat anti-mouse Fc-HRP (Jackson ImmunoResearch) at 1:5000 in SuperBlock for 1 hour. The plates were then washed and developed with TMB substrate. Absorbance (GD) was measured using an EnVision 2105 microplate reader (PerkinElmer) at 450 nm. As shown in FIG. 18, at all timepoints examined the PD-1/IL-2 DBA-cytokine complex was detected at similar serum concentrations as the anti-IL-2/IL-2-cytokine complex. In contrast, the serum concentration of the non-regulated anti-HER2/IL-2-cytokine complex showed a greater decrease in serum concentration over time.









TABLE 20







IgG PD-1/IL-2 DBA and control


protein complexes









Protein
SEQ ID



Complexes
NO:
Sequence





2B07 IL-2
SEQ ID
APASSSTKKTQLQLEHLLLD


mut
NO: 205
LQMILNGINNYKNPKLTRML




TAKFAMPKKATELKHLQCLE




EELKPLEEVLNGAQSKNFHL




RPRDLISNINVIVLELKGSE




TTFMCEYADETATIVEFLNR




WITFAQSIISTLTGGGGSGG




GGSGGGGSGGGGSQVQLVQS




GAEVKKPGASVKVSCKASGD




TFTRHYVHWVRQAPGQGLEW




MGIINPSGGYASYAQKFQGR




VTMTRDTSTSTVYMELSSLR




SEDTAVYYCAAGLFIWGQGT




LVTVSSAKTTAPSVYPLAPV




CGDTTGSSVTLGCLVKGYFP




EPVTLTWNSGSLSSGVHTFP




AVLQSDLYTLSSSVTVTSST




WPSQSITCNVAHPASSTKVD




KKIEPRGPTIKPCPPCKCPA




PNAAGGPSVFIFPPKIKDVL




MISLSPIVTCVVVDVSEDDP




DVQISWFVNNVEVHTAQTQT




HREDYNSTLRVVSALPIQHQ




DWMSGKEFKCKVNNKDLGAP




IERTISKPKGSVRAPQVYVL




PPPEEEMTKKQVTLTCMVTD




FMPEDIYVEWTNNGKTELNY




KNTEPVLDSDGSYFMYSKLR




VEKKNWVERNSYSCSVVHEG




LHNHHTTKSFSRTPGK






SEQ ID
DIQMTQSPSSLSASVGDRVT



NO: 206
ITCRASQSIGRWLAWYQQKP




GKAPKLLIYSASNLETGVPS




RFSGSGSGTDFTLTISSLQP




EDFATYYCQQYESFPVTFGP




GTKVDIKRADAAPTVSIFPP




SSEQLTSGGASVVCFLNNFY




PKDINVKWKIDGSERQNGVL




NSWTDQDSKDSTYSMSSTLT




LTKDEYERHNSYTCEATHKT




STSPIVKSFNRNEC





anti-
SEQ ID
DIQMTQSPSSLSASVGDRVT


HER2/IL-2-
NO: 64
ITCRASQDVNTAVAWYQQKP


cytokine

GKAPKLLIYSASFLYSGVPS


complex

RFSGSRSGTDFTLTISSLQP




EDFATYYCQQHYTTPPTFGQ




GTKVEIKRADAAPTVSIFPP




SSEQLTSGGASVVCFLNNFY




PKDINVKWKIDGSERQNGVL




NSWTDQDSKDSTYSMSSTLT




LTKDEYERHNSYTCEATHKT




STSPIVKSFNRNEC






SEQ ID
APASSSTKKTQLQLEHLLLD



NO: 207
LQMILNGINNYKNPKLTRML




TAKFAMPKKATELKHLQCLE




EELKPLEEVLNGAQSKNFHL




RPRDLISNINVIVLELKGSE




TTFMCEYADETATIVEFLNR




WITFAQSIISTLTGGGGSGG




GGSGGGGSGGGGSEVQLVES




GGGLVQPGGSLRLSCAASGF




NIKDTYIHWVRQAPGKGLEW




VARIYPTNGYTRYADSVKGR




FTISADTSKNTAYLQMNSLR




AEDTAVYYCSRWGGDGFYAM




DYWGQGTLVTVSSAKTTAPS




VYPLAPVCGDTTGSSVTLGC




LVKGYFPEPVTLTWNSGSLS




SGVHTFPAVLQSDLYTLSSS




VTVTSSTWPSQSITCNVAHP




ASSTKVDKKIEPRGPTIKPC




PPCKCPAPNAAGGPSVFIFP




PKIKDVLMISLSPIVTCVVV




DVSEDDPDVQISWFVNNVEV




HTAQTQTHREDYNSTLRVVS




ALPIQHQDWMSGKEFKCKVN




NKDLGAPIERTISKPKGSVR




APQVYVLPPPEEEMTKKQVT




LTCMVTDFMPEDIYVEWTNN




GKTELNYKNTEPVLDSDGSY




FMYSKLRVEKKNWVERNSYS




CSVVHEGLHNHHTTKSFSRT




PGK





Always-off
SEQ ID
APASSSTKKTQLQLEHLLLD


IL-2 mut
NO: 208
LQMILNGINNYKNPKLTRML




TAKFAMPKKATELKHLQCLE




EELKPLEEVLNGAQSKNFFI




LRPRDLISNINVIVLELKGS




ETTFMCEYADETATIVEFLN




RWITFAQSIISTLTGGGGSG




GGGSGGGGSGGGGSEVQLVE




SGGGLVKPGGSLRLSCAASG




FTFSSYTLAWVRQAPGKGLE




WVAAIDSSSYTYSPDTVRGR




FTISRDNAKNSLYLQMNSLR




AEDTAVYYCARDSNWDALDY




WGQGTLVTVSSAKTTAPSVY




PLAPVCGDTTGSSVTLGCLV




KGYFPEPVTLTWNSGSLSSG




VHTFPAVLQSDLYTLSSSVT




VTSSTWPSQSITCNVAHPAS




STKVDKKIEPRGPTIKPCPP




CKCPAPNAAGGPSVFIFPPK




IKDVLMISLSPIVTCVVVDV




SEDDPDVQISWFVNNVEVHTA




QTQTHREDYNSTLRVVSALP




IQHQDWMSGKEFKCKVNNKD




LGAPIERTISKPKGSVRAPQ




VYVLPPPEEEMTKKQVTLTC




MVTDFMPEDIYVEWTNNGKT




ELNYKNTEPVLDSDGSYFMY




SKLRVEKKNWVERNSYSCSV




VHEGLHNHHTTKSFSRTPGK






SEQ ID
DIQMTQSPSSLSASVGDRVS



NO: 209
ITCKASQNVGTNVGWYQQKP




GKAPKALIYSASFRYSGVPS




RFSGSGSGTDFTLTISSLQP




EDFATYFCQQYYTYPYTFGG




GTKLEIKRADAAPTVSIFPP




SSEQLTSGGASWCFLNNFYP




KDINVKWKIDGSERQNGVLN




SWTDQDSKDSTYSMSSTLTL




TKDEYERHNSYTCEATHKTS




TSPIVKSFNRNEC









To examine the activity of PD-1/IL-2 DBA-cytokine complexes in peripheral tissues, wild-type C57BL/6 mice received a single 2.5 milligrams per kilogram intravenous dose of PD-1/IL-2 DBA-cytokine complex (2B07 IL-2 mut; SEQ ID NO: 205-206), anti-HER2/IL-2-cytokine complex (Always-on IL-2 mut; SEQ ID NO: 64 and SEQ ID NO: 207), anti-IL-2/IL-2-cytokine complex (Always-off IL-2 mut; SEQ ID NO: 208-209), as shown in TABLE 20 or PBS. Prior to dosing, the presence of intact IL-2 within each IL-2 cytokine complex was confirmed by ELISA as a means of verifying their potential for biological activity. Blood and spleens were collected 5 days following treatment and analyzed by flow cytometry to quantify the number of CD8+ T cells and NK cells per spleen and per microliter of blood. The PD-1/IL-2 DBA-cytokine complex did not induce expansion of CD8 T cells or NK cells, whereas the HER2/IL-2-cytokine complex induced expansion of peripheral CD8+ T cells and NK cells (FIG. 19A-D).


Example 18
PD-1/IL-2 DBA Cytokine Complex Modulation of Anti-Tumor Immunity in Syngeneic Tumor Models

This example describes PD-1/IL-2 DBA-cytokine complex modulation of anti-tumor immunity in a MC38 syngeneic mouse tumor model. A PD-1/IL-2 DBA-cytokine complex was assessed for the ability to drive anti-tumor immunity in vivo. 500,000 MC38 tumor cells were implanted subcutaneously in human PD-1 knock-in mice (GenOway). Tumors were measured twice weekly, and volumes calculated as (Length×Width×Width/2). Mice were randomized into treatment groups, and treatments were initiated when tumors reached a volume of ˜100 mm3. Mice were treated intravenously with PD-1/IL-2 DBA-cytokine complex (2B07 IL-2 mut; SEQ ID NO: 210-212), PD-1/IL-2 DBA lacking IL-2 (2B07; SEQ ID NO: 212-213), or an isotype control (SEQ ID NO: 214-215), as shown in TABLE 21 below, at the indicated doses of 5 or 0.5 milligrams per kilogram on days 7, 10, and 13 post tumor implantation. The PD-1/IL-2 DBA-cytokine complex showed increased tumor growth inhibition compared to either the PD-1/IL-2 DBA lacking IL-2 or the isotype control (FIG. 20).









TABLE 21







IgG PD-1/IL-2 DBA and control


protein complexes











Protein
SEQ ID




Complex
NO:
Sequence






2B07 IL-2
SEQ ID
APASSSTKKTQLQLEHLLLD



mut
NO: 210
LQMILNGINNYKNPKLTRML





TAKFAMPKKATELKHLQCLE





EELKPLEEVLNGAQSKNFHL





RPRDLISNINVIVLELKGSE





TTFMCEYADETATIVEFLNR





WITFAQSIISTLTGGGGSGG





GGSGGGGSGGGGSQVQLVQS





GAEVKKPGASVKVSCKASGD





TFTRYYVHWVRQAPGQGLEW





MGIINPSGGYASYAQKFQGR





VTMTRDTSTSTVYMELSSLR





SEDTAVYYCAAGLFIWGQGT





LVTVSSAKTTAPSVYPLAPV





CGDTTGSSVTLGCLVKGYFP





EPVTLTWNSGSLSSGVHTFP





AVLQSDLYTLSSSVTVTSST





WPSQSITCNVAHPASSTKVD





KKIEPRGPTIKPCPPCKCPA





PNAAGGPSVFIFPPKIKDVL





MISLSPIVTCVVVDVSEDDP





DVQISWFVNNVEVHTAQTQT





HREDYNSTLRVVSALPIQHQ





DWMSGKEFKCKVNNKDLGAP





IERTISKPKGSVRAPQVYVL





PPPEEEMTKKQVTLTCMVTD





FMPEDIYVEWTNNGKTELNY





KNTEPVLDSDGSYFMYSDLR





VEKKNWVERNSYSCSVVHEG





LHNHHTTESFSRTPGK







SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 211
SCKASGDTFTRYYVHWVRQA





PGQGLEWMGIINPSGGYASY





AQKFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCAAGL





FIWGQGTLVTVSSAKTTAPS





VYPLAPVCGDTTGSSVTLGC





LVKGYFPEPVTLTWNSGSLS





SGVHTFPAVLQSDLYTLSSS





VTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPC





PPCKCPAPNAAGGPSVFIFP





PKIKDVLMISLSPIVTCVVV





DVSEDDPDVQISWFVNNVEV





HTAQTQTHREDYNSTLRVVS





ALPIQHQDWMSGKEFKCKVN





NKDLGAPIERTISKPKGSVR





APQVYVLPPPEKEMTKKQVS





LTCLVKDFMPEDIYVEWTNN





GKTELNYKNTEPVLKSDGSY





FMYSKLTVEKKNWVERNSYS





CSVVHEGLHNHHTTKSFSRT





PGK







SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 212
ITCRASQSIGRYLAWYQQKP





GKAPKLLIYSASNLETGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQYNSFPVTFGP





GTKVDIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC






PD-1/IL-2
SEQ ID
DIQMTQSPSSLSASVGDRVT



DBA
NO: 212
ITCRASQSIGRYLAWYQQKP



lacking

GKAPKLLIYSASNLETGVPS



IL-2

RFSGSGSGTDFTLTISSLQP





EDFATYYCQQYNSFPVTFGP





GTKVDIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 213
SCKASGDTFTRYYVHWVRQA





PGQGLEWMGIINPSGGYASY





AQKFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCAAGL





FIWGQGTLVTVSSAKTTAPS





VYPLAPVCGDTTGSSVTLGC





LVKGYFPEPVTLTWNSGSLS





SGVHTFPAVLQSDLYTLSSS





VTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPC





PPCKCPAPNAAGGPSVFIFP





PKIKDVLMISLSPIVTCVVV





DVSEDDPDVQISWFVNNVEV





HTAQTQTHREDYNSTLRVVS





ALPIQHQDWMSGKEFKCKVN





NKDLGAPIERTISKPKGSVR





APQVYVLPPPEEEMTKKQVT





LTCMVTDFMPEDIYVEWTNN





GKTELNYKNTEPVLDSDGSY





FMYSKLRVEKKNWVERNSYS





CSVVHEGLHNHHTTKSFSRT





PGK






isotype
SEQ ID
EVQLVESGGGLVQPGGSLRL



control
NO: 214
SCAASGFNIKDTYIHWVRQA





PGKGLEWVARIYPTNGYTRY





ADSVKGRFTISADTSKNTAY





LQMNSLRAEDTAVYYCSRWG





GDGFYAMDYWGQGTLVTVSS





AKTTAPSVYPLAPVCGDTTG





SSVTLGCLVKGYFPEPVTLT





WNSGSLSSGVHTFPAVLQSD





LYTLSSSVTVTSSTWPSQSI





TCNVAHPASSTKVDKKIEPR





GPTIKPCPPCKCPAPNAAGG





PSVFIFPPKIKDVLMISLSP





IVTCVVVDVSEDDPDVQISW





FVNNVEVHTAQTQTHREDYN





STLRVVSALPIQHQDWMSGK





EFKCKVNNKDLGAPIERTIS





KPKGSVRAPQVYVLPPPEEE





MTKKQVTLTCMVTDFMPEDI





YVEWTNNGKTELNYKNTEPV





LDSDGSYFMYSKLRVEKKNW





VERNSYSCSWHEGLHNHHTT





KSFSRTPGK







SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 215
ITCRASQDVNTAVAWYQQKP





GKAPKLLIYSASFLYSGVPS





RFSGSRSGTDFTLTISSLQP





EDFATYYCQQHYTTPPTFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC









Example 19
PD-1/IL-2 DBA Cytokine Complex Modulation of Anti-Tumor Immunity in Xenograft/Human Immune Cell Admixture Models

This example describes PD-1/IL-2 DBA-cytokine complex modulation of anti-tumor immunity in xenograft/human immune cell admixture models. To examine the ability of PD-1/IL-2 DBA-cytokine complexes to drive anti-tumor immunity in an in vivo setting, an admixture system is used. Total human PBMCs or a combination of human T cells and monocyte-derived dendritic cells (moDCs) are mixed with human tumor cells (e.g., HPAC, A375, H441) at a 1:4 ratio and co-implanted subcutaneously into the flanks of NSG mice. One day later, treatment with a PD-1/IL-2 DBA-cytokine complex of the present disclosure, or suitable non-regulated controls such as anti-PD-1, anti-HER2-IL-2, or anti-PD-1-IL-2, is initiated. Tumors are measured at least twice weekly and volumes calculated as (Length×Width×Height/2). PD-1/IL-2 DBA-cytokine complexes exhibit increased anti-tumor efficacy compared to anti-PD-1 and anti-HER2-IL-2 and decreased off-tumor activity compared to anti-PD-1-IL-2.


Example 20
PD-L1/IFN-α DBA Cytokine Complex Induction of Myeloid Cell Maturation in the Presence of Plate-Bound PD-L1 or PD-L1-Expressing Tumor Cells

This example describes PD-L1/IFN-α DBA-cytokine complex induction of myeloid cell maturation in the presence of plate-bound PD-L1 or PD-L1-expressing tumor cells. CD14+ monocytes are purified from fresh human PBMCs by immunomagnetic negative selection (STEMCELL). Monocyte-derived dendritic cells (moDCs) are generated by culturing purified monocytes with hGM-CSF and hIL-4 in RPMI-1640 medium containing 10% FBS for 5 days. To examine the conditional activity of PD-L1/IFN-α DBA-cytokine complex, monocytes or moDCs are added to plates coated with either PD-L1 or HER-2 along with titrating concentrations of a PD-L1/IFN-α DBA-cytokine complex of the present disclosure. In some experiments, human monocytes or moDCs are co-cultured with tumor cell lines expressing varying levels of PD-L1 and titrating concentrations of PD-L1/IFN-α DBA-cytokine complex. Cultures are incubated overnight at 37° C., and expression of CD80, CD83, CD86, and HLA-DR is assessed by flow cytometry as a measurement of myeloid cell activation. PD-L1/IFN-α DBA-cytokine complex is expected to induce monocyte and moDC activation solely in the presence of PD-L1.


Example 21

PD-L1/IFN-α DBA Cytokine Complex Induction of T cell Activation in a Mixed Lymphocyte Reaction


This example describes PD-L1/IFN-α DBA-cytokine complex induction of T cell activation in a mixed lymphocyte reaction. To assess the direct and indirect effects of PD-L1/IFN-α DBA-cytokine complex on T cell function, CD14+ monocytes are isolated from human PBMCs using immunomagnetic negative selection (STEMCELL) and cultured for 5 days in the presence of hGM-CSF and hIL-4 to induce moDCs. CD8+ T cells are purified from human PBMCs of a different healthy donor and labeled with cell proliferation dye. The two cell types are combined in plates coated with PD-L1 or HER2 along with titrating concentrations of a PD-L1/IFN-α DBA-cytokine complex of the present disclosure. In other experiments, the two cell types are cultured with titrating concentrations of PD-L1/IFN-α DBA-cytokine complex and tumor cell lines expressing varying levels of PD-L1. In other experiments, the cells may be of mouse origin. Cultures are incubated for 5 days, and T cell dye dilution is assessed by flow cytometry as a measurement of proliferation. The concentration of cytokines (e.g., IFN-γ) in culture supernatants is assessed by ELISA. The PD-L1/IFN-α DBA-cytokine complex increases T cell activation and proliferation solely in the presence of PD-L1.


Example 22
In Vivo PD-L1/IFN-α DBA Cytokine Complex Signaling in Peripheral Tissues

This example describes in vivo PD-L1/IFN-α DBA-cytokine complex signaling in peripheral tissues. To examine PD-L1/IFN-α DBA-cytokine complex activity in non-tumor tissue, wild-type C57BL/6 mice are injected intravenously (i.v.) with 100 ug of either a PD-L1/IFN-α DBA-cytokine complex of the present disclosure or a nonregulated immunocytokine of a comparable structure consisting of anti-PD-L1 and IFN-α (PD-L1-IFNα immunocytokine). Animals are weighed daily to monitor IFN-α induced toxicity. Serum is collected at 6 and 24 hours post dosing, and MCP-1, IL-6, IL-10, TNF-α, and IFN-γ levels are quantified by ELISA. In some groups, RNA is isolated from the spleen and liver 6 and 24 hours post dosing. Induction of IFN-stimulated genes including ISG15, IRF7, and MX2 is assessed by qPCR. Mice that received unregulated anti-PD-L1-IFN-α immunocytokine experience weight loss, increased serum cytokine levels, and IFN target gene induction, whereas those dosed with the PD-L1/IFN-α DBA-cytokine complex display minimal evidence of peripheral IFN-α signaling.


Example 23
PD-L1-IFN-α DBA-Cytokine Complex Modulation of Anti-Tumor Immunity in Syngeneic Tumor Models

This example describes PD-L1/IFN-α DBA-cytokine complex modulation of anti-tumor immunity in syngeneic tumor models. PD-L1/IFN-α DBA cytokine complex proteins are assessed for their ability to drive anti-tumor immunity in vivo. Wild-type or human PD-L1-expressing syngeneic mouse tumor cells (e.g., MC38, CT26, 4T1, or A20) are implanted subcutaneously into wild-type or human PD-L1 knock-in mice (Genoway). Tumors are measured at least twice weekly and volumes are calculated as (Length×Width×Height/2). Mice are randomized into different groups and therapy is initiated when tumors reached a volume of ˜100 mm3. Mice are treated i.v. or intratumorally with a PD-L1/IFN-α DBA-cytokine complex of the present disclosure or suitable nonregulated controls such as anti-PD-L1, anti-HER2-IFN-α immunocytokine, or anti-PD-L1-IFN-α immunocytokine. In some experiments, mice are sacrificed 5 days post treatment, and tumors are harvested and enzymatically dissociated for immunophenotyping. The frequency and phenotype of tumor-infiltrating immune cell subsets, including CD4+ and CD8+ T cells, Treg cells, NK cells, and DCs, is determined by flow cytometry. The PD-L1/IFN-α DBA-cytokine complex inhibits tumor growth to an equal or greater extent than anti-HER2-IFN-α, but with less off-tumor activity. The PD-L1/IFNα DBA-cytokine complex increases an anti-tumor immune response as indicated by the amount and phenotype of immune infiltrates to an equal or greater extent than anti-HER2-IFNα immunocytokine, but with less off-tumor activity.


Example 24
PD-L1/IFN-α DBA Modulation of Anti-Tumor Immunity in Xenograft/Human Immune Cell Admixture Models

This example describes PD-L1/IFN-α DBA-cytokine complex modulation of anti-tumor immunity in xenograft/human immune cell admixture models. To examine the ability of PD-L1/IFN-α DBA-cytokine complexes to drive anti-tumor immunity in an in vivo setting, an admixture system is used. Total human PBMCs or a combination of human T cells and moDCs are mixed with human tumor cells (e.g., HPAC, A375, H441) at a 1:4 ratio and co-implanted subcutaneously into the flanks of NSG mice. One day later, i.v. treatment with a PD-L1/IFN-α DBA-cytokine complex of the present disclosure or suitable non-regulated controls such as anti-PD-L1, anti-HER2-IFN-α immunocytokine, or anti-PD-L1-IFN-α immunocytokine is initiated. Tumors are measured at least twice weekly and volumes are calculated as (Length×Width×Height/2). The PD-L1/IFN-α DBA-cytokine complex inhibits tumor growth to an equal or greater extent than anti-HER2-IFN-α, but with less off-tumor activity.


Example 25
In Vitro and In Vivo Characterization of Protein Complexes

This example describes the evaluation of DBA-cytokine complexes for in vitro and in vivo stability. A protein complex of the present disclosure is recombinantly expressed or chemically synthesized. The protein complex includes a sensor domain linked to a therapeutic domain. The linker is a peptide linker. The sensor domain is capable of binding to the therapeutic domain and a marker. In the absence if the marker, the sensor domain binds the therapeutic domain rendering the therapeutic domain unable to bind to its target and unable to exert therapeutic activity. In the presence of the marker, the sensor domain binds the marker rendering the therapeutic domain free to bind to its target and able to exert therapeutic activity.


In vitro, the protein complexes are tested for stability and functionality at baseline or after incubation in conditions of stress, such as elevated temperature, pH changes, oxidative buffers, or serum/plasma, using methods of biophysical characterization to measure fragmentation, unfolding, or aggregation, and/or using methods to test for changes in functional activity. In vivo, the pharmacokinetic properties of the proteins are measured following dosing in a mammal, such as a mouse, rat, or non-human primate, and properties of distribution, clearance and degradation are measured. These measurements are used to engineer or select the optimal therapeutic form of the DBA-protein complex.


Example 26
Regulated IL-2 Receptor Signaling by a PD-1/IL-2 Dual Binding Antibody (DBA) Cytokine Complex

This example describes PD-1 regulated IL-2 activity in a HEK-Blue™ IL-2 reporter cell by PD-1/IL-2 DBA-cytokine complexes. The DBA-cytokine complexes and control antibody-cytokine complexes were produced in three formats shown in FIGS. 14A-C by expression in mammalian cells using standard protocols. The wells of a 384-well ELISA plate were coated with constant concentration of PD-1-Fc or an IgG1 control protein captured with an anti-Fc antibody (Jackson ImmunoResearch, Prod. #109-005-098). The cytokine complexes were serially diluted 1:4 for 8 points in growth media from a starting concentration of 6 nM and incubated briefly before addition of the HEK-Blue™ IL-2 reporter cells.


Results with a protein complexes comprising the structure shown in FIG. 14A are shown in FIG. 15A-D. As depicted in FIG. 14A, this symmetric format is comprised of one IL-2 linked to each antibody variable domain. The IL-2 activity of the PD-1/IL-2 DBA-IL-2 complex AF4379 comprising SEQ ID NO: 174-175 had an EC50 of 31 pM in the PD-1 coated wells versus 62 pM in the IgG1 coated wells, as shown in FIG. 15A, demonstrating PD-1 dependence. The IL-2 activity of antibody-cytokine complexes AF4377 comprising SEQ ID NO: 64 and 176 (anti-Her2 antibody) and AF4378 comprising SEQ ID NO: 177-178 (anti-IL-2 antibody) was unchanged in the presence of PD-1 (as shown in FIG. 15B and FIG. 15C, respectively), while the IL-2 activity of the anti-PD-1 antibody AF4376 comprising SEQ ID NO: 179-180 is reduced in the presence of PD-1, as shown in FIG. 15D. Sequences of the protein complexes are summarized in TABLE 22 below.









TABLE 22







IgG PD-1/IL-2 DBA with heavy chain


IL-2 therapeutic domains, and


Control protein complexes











Protein
SEQ ID




Complex
NO:
Sequence






AF4379
SEQ ID
APTSSSTKKTQLQLEHLLLD




NO: 174
LQMILNGINNYKNPKLTDML





TFEFYMPKKATELKHLQCLE





RELKPLEEVLNLAQSKNFHL





RPRDLISNINVIVLELKGSE





TTFMCEYADETATIVEFLNR





WITFCQSIISTLTGGGGSGG





GGSGGGGSGGGGSQVQLVQS





GAEVKKPGASVKVSCKASGD





TFTRYYVHWVRQAPGQGLEW





MGIINPSGGYASYAQKFQGR





VTMTRDTSTSTVYMELSSLR





SEDTAVYYCAAGLFIWGQGT





LVTVSSAKTTAPSVYPLAPV





CGDTTGSSVTLGCLVKGYFP





EPVTLTWNSGSLSSGVHTFP





AVLQSDLYTLSSSVTVTSST





WPSQSITCNVAHPASSTKVD





KKIEPRGPTIKPCPPCKCPA





PNAAGGPSVFIFPPKIKDVL





MISLSPIVTCVVVDVSEDDP





DVQISWFVNNVEVHTAQTQT





HREDYNSTLRVVSALPIQHQ





DWMSGKEFKCKVNNKDLGAP





IERTISKPKGSVRAPQVYVL





PPPEEEMTKKQVTLTCMVTD





FMPEDIYVEWTNNGKTELNY





KNTEPVLDSDGSYFMYSKLR





VEKKNWVERNSYSCSVVHEG





LHNHHTTKSFSRTPGK







SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 175
ITCRASQSIGRYLAWYQQKP





GKAPKLLIYSASNLETGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQYNSFPVTFGP





GTKVDIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC






AF4377
SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 64
ITCRASQDVNTAVAWYQQKP





GKAPKLLIYSASFLYSGVPS





RFSGSRSGTDFTLTISSLQP





EDFATYYCQQHYTTPPTFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







SEQ ID
APTSSSTKKTQLQLEHLLLD




NO: 176
LQMILNGINNYKNPKLTDML





TFEFYMPKKATELKHLQCLE





RELKPLEEVLNLAQSKNFHL





RPRDLISNINVIVLELKGSE





TTFMCEYADETATIVEFLNR





WITFCQSIISTLTGGGGSGG





GGSGGGGSGGGGSEVQLVES





GGGLVQPGGSLRLSCAASGF





NIKDTYIHWVRQAPGKGLEW





VARIYPTNGYTRYADSVKGR





FTISADTSKNTAYLQMNSLR





AEDTAVYYCSRWGGDGFYAM





DYWGQGTLVTVSSAKTTAPS





VYPLAPVCGDTTGSSVTLGC





LVKGYFPEPVTLTWNSGSLS





SGVHTFPAVLQSDLYTLSSS





VTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPC





PPCKCPAPNAAGGPSVFIFP





PKIKDVLMISLSPIVTCVVV





DVSEDDPDVQISWFVNNVEV





HTAQTQTHREDYNSTLRVVS





ALPIQHQDWMSGKEFKCKVN





NKDLGAPIERTISKPKGSVR





APQVYVLPPPEEEMTKKQVT





LTCMVTDFMPEDIYVEWTNN





GKTELNYKNTEPVLDSDGSY





FMYSKLRVEKKNWVERNSYS





CSVVHEGLHNHHTTKSFSRT





PGK






AF4378
SEQ ID
APTSSSTKKTQLQLEHLLLD




NO: 177
LQMILNGINNYKNPKLTDML





TFEFYMPKKATELKHLQCLE





RELKPLEEVLNLAQSKNFHL





RPRDLISNINVIVLELKGSE





TTFMCEYADETATIVEFLNR





WITFCQSIISTLTGGGGSGG





GGSGGGGSGGGGSEVQLVES





GGGLVKPGGSLRLSCAASGF





TFSSYTLAWVRQAPGKGLEW





VAAIDSSSYTYSPDTVRGRF





TISRDNAKNSLYLQMNSLRA





EDTAVYYCARDSNWDALDYW





GQGTLVTVSSAKTTAPSVYP





LAPVCGDTTGSSVTLGCLVK





GYFPEPVTLTWNSGSLSSGV





HTFPAVLQSDLYTLSSSVTV





TSSTWPSQSITCNVAHPASS





TKVDKKIEPRGPTIKPCPPC





KCPAPNAAGGPSVFIFPPKI





KDVLMISLSPIVTCVVVDVS





EDDPDVQISWFVNNVEVHTA





QTQTHREDYNSTLRVVSALP





IQHQDWMSGKEFKCKVNNKD





LGAPIERTISKPKGSVRAPQ





VYVLPPPEEEMTKKQVTLTC





MVTDFMPEDIYVEWTNNGKT





ELNYKNTEPVLDSDGSYFMY





SKLRVEKKNWVERNSYSCSV





VHEGLHNHHTTKSFSRTPGK







SEQ ID
DIQMTQSPSSLSASVGDRVS




NO: 178
ITCKASQNVGTNVGWYQQKP





GKAPKALIYSASFRYSGVPS





RFSGSGSGTDFTLTISSLQ





PEDFATYFCQQYYTYP





YTFGGGTKLEIKRADAAPTV





SIFPPSSEQLTSGGASVVCF





LNNFYPKDINVKWKIDGSER





QNGVLNSWTDQDSKDSTYSM





SSTLTLTKDEYERHNSYTCE





ATHKTSTSPIVKSFNRNEC






AF4376
SEQ ID
APTSSSTKKTQLQLEHLLLD




NO: 179
LQMILNGINNYKNPKLTDML





TFEFYMPKKATELKHLQCLE





RELKPLEEVLNLAQSKNFHL





RPRDLISNINVIVLELKGSE





TTFMCEYADETATIVEFLNR





WITFCQSIISTLTGGGGSGG





GGSGGGGSGGGGSQVQLVES





GGGVVQPGRSLRLDCKASGI





TFSNSGMHWVRQAPGKGLEW





VAVIWYDGSKRYYADSVKGR





FTISRDNSKNTLFLQMNSLR





AEDTAVYYCATNDDYWGQGT





LVTVSSAKTTAPSVYPLAPV





CGDTTGSSVTLGCLVKGYFP





EPVTLTWNSGSLSSGVHTFP





AVLQSDLYTLSSSVTVTSST





WPSQSITCNVAHPASSTKVD





KKIEPRGPTIKPCPPCKCPA





PNAAGGPSVFIFPPKIKDVL





MISLSPIVTCVVVDVSEDDP





DVQISWFVNNVEVHTAQTQT





HREDYNSTLRVVSALPIQHQ





DWMSGKEFKCKVNNKDLGAP





IERTISKPKGSVRAPQVYVL





PPPEEEMTKKQVTLTCMVTD





FMPEDIYVEWTNNGKTELNY





KNTEPVLDSDGSYFMYSKLR





VEKKNWVERNSYSCSVVHEG





LHNHHTTKSFSRTPGK







SEQ ID
EIVLTQSPATLSLSPGERAT




NO: 180
LSCRASQSVSSYLAWYQQKP





GQAPRLLIYDASNRATGIPA





RFSGSGSGTDFTLTISSLEP





EDFAVYYCQQSSNWPRTFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC









Results with protein complexes comprising the structures depicted in FIG. 14B, are shown in FIGS. 16A-F. This format is composed of an asymmetric complex comprised of two antibody domains with a single IL-2 linked to one of the domains. The IL-2 activity of the PD-1/IL-2 DBA-IL-2 complexes AF4386 (comprising SEQ ID NO: 212 and 181-182, results shown in FIG. 16A), AF4387 (comprising SEQ ID NO: 183-185, results shown in FIG. 16B) and AF4389 (comprising SEQ ID NO: 186-188, results shown in FIG. 16C) had an EC50 of 50 pM, 57 pM and 118 pM respectively in the PD-1 coated wells and 1.79 nM, 419 pM and 1.67 nM respectively in the IgG1 coated wells, demonstrating PD-1 dependence. The IL-2 activity of the anti-PD1 control protein AF4380 (comprising SEQ ID NO: 180, 189-190, results shown in FIG. 16D), the anti-Her2 control protein AF4383 (comprising SEQ ID NO: 64, 191-192, results shown in FIG. 16E), and the anti-IL-2 control protein AF4384 (comprising SEQ ID NO: 178, 193-194, results shown in FIG. 16F) were unchanged. Sequences of the protein complexes are summarized in TABLE 23 below.









TABLE 23







IgG PD-1/IL-2 PDA with single IL-2,


and control protein complexes











Protein
SEQ ID




Complex
NO:
Sequence






AF4386
SEQ ID
APTSSSTKKTQLQLEHLLLD




NO: 181
LQMILNGINNYKNPKLTDML





TFEFYMPKKATELKHLQCLE





RELKPLEEVLNLAQSKNFHL





RPRDLISNINVIVLELKGSE





TTFMCEYADETATIVEFLNR





WITFCQSIISTLTGGGGSGG





GGSGGGGSGGGGSQVQLVQS





GAEVKKPGASVKVSCKASGD





TFTRYYVHWVRQAPGQGLEW





MGIINPSGGYASYAQKFQGR





VTMTRDTSTSTVYMELSSLR





SEDTAVYYCAAGLFIWGQGT





LVTVSSAKTTAPSVYPLAPV





CGDTTGSSVTLGCLVKGYFP





EPVTLTWNSGSLSSGVHTFP





AVLQSDLYTLSSSVTVTSST





WPSQSITCNVAHPASSTKVD





KKIEPRGPTIKPCPPCKCPA





PNAAGGPSVFIFPPKIKDVL





MISLSPIVTCVVVDVSEDDP





DVQISWFVNNVEVHTAQTQT





HREDYNSTLRVVSALPIQHQ





DWMSGKEFKCKVNNKDLGAP





IERTISKPKGSVRAPQVYVL





PPPEEEMTKKQVTLTCMVTD





FMPEDIYVEWTNNGKTELNY





KNTEPVLDSDGSYFMYSDLR





VEKKNWVERNSYSCSVVHEG





LHNHHTTESFSRTPGK







SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 182
SCKASGDTFTRYYVHWVRQA





PGQGLEWMGIINPSGGYASY





AQKFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCAAGL





FIWGQGTLVTVSSAKTTAPS





VYPLAPVCGDTTGSSVTLGC





LVKGYFPEPVTLTWNSGSLS





SGVHTFPAVLQSDLYTLSSS





VTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPC





PPCKCPAPNAAGGPSVFIFP





PKIKDVLMISLSPIVTCVVV





DVSEDDPDVQISWFVNNVEV





HTAQTQTHREDYNSTLRVVS





ALPIQHQDWMSGKEFKCKVN





NKDLGAPIERTISKPKGSVR





APQVYVLPPPEKEMTKKQVS





LTCLVKDFMPEDIYVEWTNN





GKTELNYKNTEPVLKSDGSY





FMYSKLTVEKKNWVERNSYS





CSVVHEGLHNHHTTKSFSRT





PGGGGSGGGSHHHHHH







SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 212
ITCRASQSIGRYLAWYQQKP





GKAPKLLIYSASNLETGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQYNSFPVTFGP





GTKVDIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC






AF4387
SEQ ID
APTSSSTKKTQLQLEHLLLD




NO: 183
LQMILNGINNYKNPKLTDML





TFEFYMPKKATELKHLQCLE





RELKPLEEVLNLAQSKNFHL





RPRDLISNINVIVLELKGSE





TTFMCEYADETATIVEFLNR





WITFCQSIISTLTGGGGSGG





GGSGGGGSGGGGSQVQLVQS





GAEVKKPGASVKVSCKASGY





TFTDYYMHWVRQAPGQGLEW





MGIINPRAGYTSYALKFQGR





VTMTRDTSTSTVYMELSSLR





SEDTAVYYCTSGWDVWGQGT





LVTVSSAKTTAPSVYPLAPV





CGDTTGSSVTLGCLVKGYFP





EPVTLTWNSGSLSSGVHTFP





AVLQSDLYTLSSSVTVTSST





WPSQSITCNVAHPASSTKVD





KKIEPRGPTIKPCPPCKCPA





PNAAGGPSVFIFPPKIKDVL





MISLSPIVTCVVVDVSEDDP





DVQISWFVNNVEVHTAQTQT





HREDYNSTLRVVSALPIQHQ





DWMSGKEFKCKVNNKDLGAP





IERTISKPKGSVRAPQVYVL





PPPEEEMTKKQVTLTCMVTD





FMPEDIYVEWTNNGKTELNY





KNTEPVLDSDGSYFMYSDLR





VEKKNWVERNSYSCSVVHEG





LHNHHTTESFSRTPGK







SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 184
SCKASGYTFTDYYMHWVRQA





PGQGLEWMGIINPRAGYTSY





ALKFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCTS





GWDVWGQGTLVTVSSAKTTA





PSVYPLAPVCGDTTGSSVTL





GCLVKGYFPEPVTLTWNSGS





LSSGVHTFPAVLQSDLYTLS





SSVTVTSSTWPSQSITCNVA





HPASSTKVDKKIEPRGPTIK





PCPPCKCPAPNAAGGPSVFI





FPPKIKDVLMISLSPIVTCV





VVDVSEDDPDVQISWFVNNV





EVHTAQTQTHREDYNSTLRV





VSALPIQHQDWMSGKEFKCK





VNNKDLGAPIERTISKPKGS





VRAPQVYVLPPPEKEMTKKQ





VSLTCLVKDFMPEDIYVEWT





NNGKTELNYKNTEPVLKSDG





SYFMYSKLTVEKKNWVERNS





YSCSVVHEGLHNHHTTKSFS





RTPGGGGSGGGSHHHHHH







SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 185
ITCRASQSISTWLAWYQQKP





GKAPKLLIYAASSLDSGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQSYSFPVTFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC






AF4389
SEQ ID
APTSSSTKKTQLQLEHLLLD




NO: 186
LQMILNGINNYKNPKLTDML





TFEFYMPKKATELKHLQCLE





RELKPLEEVLNLAQSKNFHL





RPRDLISNINVIVLELKGSE





TTFMCEYADETATIVEFLNR





WITFCQSIISTLTGGGGSGG





GGSGGGGSGGGGSQVQLVQS





GAEVKKPGASVKVSCKASGH





TFTRYYMHWVRQAPGQGLEW





MGIINPSGGYATYAQKFQGR





VTMTRDTSTSTVYMELSSLR





SEDTAVYYCASGLFIWGQGT





LVTVSSAKTTAPSVYPLAPV





CGDTTGSSVTLGCLVKGYFP





EPVTLTWNSGSLSSGVHTFP





AVLQSDLYTLSSSVTVTSST





WPSQSITCNVAHPASSTKVD





KKIEPRGPTIKPCPPCKCPA





PNAAGGPSVFIFPPKIKDVL





MISLSPIVTCVVVDVSEDDP





DVQISWFVNNVEVHTAQTQT





HREDYNSTLRVVSALPIQHQ





DWMSGKEFKCKVNNKDLGAP





IERTISKPKGSVRAPQVYVL





PPPEEEMTKKQVTLTCMVTD





FMPEDIYVEWTNNGKTELNY





KNTEPVLDSDGSYFMYSDLR





VEKKNWVERNSYSCSVVHEG





LHNHHTTESFSRTPGK







SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 187
SCKASGHTFTRYYMHWVRQA





PGQGLEWMGIINPSGGYATY





AQKFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCASGL





FIWGQGTLVTVSSAKTTAPS





VYPLAPVCGDTTGSSVTLGC





LVKGYFPEPVTLTWNSGSLS





SGVHTFPAVLQSDLYTLSSS





VTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPC





PPCKCPAPNAAGGPSVFIFP





PKIKDVLMISLSPIVTCVVVD





VSEDDPDVQISWFVNNVEVH





TAQTQTHREDYNSTLRVVSA





LPIQHQDWMSGKEFKCKVNN





KDLGAPIERTISKPKGSVRA





PQVYVLPPPEKEMTKKQVSL





TCLVKDFMPEDIYVEWTNNG





KTELNYKNTEPVLKSDGSYF





MYSKLTVEKKNWVERNSYSC





SVVHEGLHNHHTTKSFSRTP





GGGGSGGGSHHHHHH







SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 188
ITCRASQSINSWLAWYQQKP





GKAPKLLIYATSTLESGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQYYRFPVTFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC






AF4380
SEQ ID
EIVLTQSPATLSLSPGERAT




NO: 180
LSCRASQSVSSYLAWYQQKP





GQAPRLLIYDASNRATGIPA





RFSGSGSGTDFTLTISSLEP





EDFAVYYCQQSSNWPRTFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







SEQ ID
APTSSSTKKTQLQLEHLLLD




NO: 189
LQMILNGINNYKNPKLTDML





TFEFYMPKKATELKHLQCLE





RELKPLEEVLNLAQSKNFHL





RPRDLISNINVIVLELKGSE





TTFMCEYADETATIVEFLNR





WITFCQSIISTLTGGGGSGG





GGSGGGGSGGGGSQVQLVES





GGGVVQPGRSLRLDCKASGI





TFSNSGMHWVRQAPGKGLEW





VAVIWYDGSKRYYADSVKGR





FTISRDNSKNTLFLQMNSLR





AEDTAVYYCATNDDYWGQGT





LVTVSSAKTTAPSVYPLAPV





CGDTTGSSVTLGCLVKGYFP





EPVTLTWNSGSLSSGVHTFP





AVLQSDLYTLSSSVTVTSST





WPSQSITCNVAHPASSTKVD





KKIEPRGPTIKPCPPCKCPA





PNAAGGPSVFIFPPKIKDVL





MISLSPIVTCVVVDVSEDDP





DVQISWFVNNVEVHTAQTQT





HREDYNSTLRVVSALPIQHQ





DWMSGKEFKCKVNNKDLGAP





IERTISKPKGSVRAPQVYVL





PPPEEEMTKKQVTLTCMVTD





FMPEDIYVEWTNNGKTELNY





KNTEPVLDSDGSYFMYSDLR





VEKKNWVERNSYSCSVVHEG





LHNHHTTESFSRTPGK







SEQ ID
QVQLVESGGGVVQPGRSLRL




NO: 190
DCKASGITFSNSGMHWVRQA





PGKGLEWVAVIWYDGSKRYY





ADSVKGRFTISRDNSKNTLF





LQMNSLRAEDTAVYYCATND





DYWGQGTLVTVSSAKTTAPS





VYPLAPVCGDTTGSSVTLGC





LVKGYFPEPVTLTWNSGSLS





SGVHTFPAVLQSDLYTLSSS





VTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPC





PPCKCPAPNAAGGPSVFIFP





PKIKDVLMISLSPIVTCVVV





DVSEDDPDVQISWFVNNVEV





HTAQTQTHREDYNSTLRVVS





ALPIQHQDWMSGKEFKCKVN





NKDLGAPIERTISKPKGSVR





APQVYVLPPPEKEMTKKQVS





LTCLVKDFMPEDIYVEWTNN





GKTELNYKNTEPVLKSDGSY





FMYSKLTVEKKNWVERNSYS





CSVVHEGLHNHHTTKSFSRT





PGGGGSGGGSHHHHHH






AF4383
SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 64
ITCRASQDVNTAVAWYQQKP





GKAPKLLIYSASFLYSGVPS





RFSGSRSGTDFTLTISSLQP





EDFATYYCQQHYTTPPTFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







SEQ ID
APTSSSTKKTQLQLEHLLLD




NO: 191
LQMILNGINNYKNPKLTDML





TFEFYMPKKATELKHLQCLE





RELKPLEEVLNLAQSKNFHL





RPRDLISNINVIVLELKGSE





TTFMCEYADETATIVEFLNR





WITFCQSIISTLTGGGGSGG





GGSGGGGSGGGGSEVQLVES





GGGLVQPGGSLRLSCAASGF





NIKDTYIHWVRQAPGKGLEW





VARIYPTNGYTRYADSVKGR





FTISADTSKNTAYLQMNSLR





AEDTAVYYCSRWGGDGFYAM





DYWGQGTLVTVSSAKTTAPS





VYPLAPVCGDTTGSSVTLGC





LVKGYFPEPVTLTWNSGSLS





SGVHTFPAVLQSDLYTLSSS





VTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPC





PPCKCPAPNAAGGPSVFIFP





PKIKDVLMISLSPIVTCVVV





DVSEDDPDVQISWFVNNVEV





HTAQTQTHREDYNSTLRVVS





ALPIQHQDWMSGKEFKCKVN





NKDLGAPIERTISKPKGSVR





APQVYVLPPPEEEMTKKQVT





LTCMVTDFMPEDIYVEWTNN





GKTELNYKNTEPVLDSDGSY





FMYSDLRVEKKNWVERNSYS





CSVVHEGLHNHHTTESFSRT





PGK







SEQ ID
EVQLVESGGGLVQPGGSLRL




NO: 192
SCAASGFNIKDTYIHWVRQA





PGKGLEWVARIYPTNGYTRY





ADSVKGRFTISADTSKNTAY





LQMNSLRAEDTAVYYCSRWG





GDGFYAMDYWGQGTLVTVSS





AKTTAPSVYPLAPVCGDTTG





SSVTLGCLVKGYFPEPVTLT





WNSGSLSSGVHTFPAVLQSD





LYTLSSSVTVTSSTWPSQSI





TCNVAHPASSTKVDKKIEPR





GPTIKPCPPCKCPAPNAAGG





PSVFIFPPKIKDVLMISLSP





IVTCVVVDVSEDDPDVQISW





FVNNVEVHTAQTQTHREDYN





STLRVVSALPIQHQDWMSGK





EFKCKVNNKDLGAPIERTIS





KPKGSVRAPQVYVLPPPEKE





MTKKQVSLTCLVKDFMPEDI





YVEWTNNGKTELNYKNTEPV





LKSDGSYFMYSKLTVEKKNW





VERNSYSCSVVHEGLHNHHT





TKSFSRTPGGGGSGGGSHHH





HHH






AF4384
SEQ ID
DIQMTQSPSSLSASVGDRVS




NO: 178
ITCKASQNVGTNVGWYQQKP





GKAPKALIYSASFRYSGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYFCQQYYTYPYTFGG





GTKLEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







SEQ ID
APTSSSTKKTQLQLEHLLLD




NO: 193
LQMILNGINNYKNPKLTDML





TFEFYMPKKATELKHLQCLE





RELKPLEEVLNLAQSKNFHL





RPRDLISNINVIVLELKGSE





TTFMCEYADETATIVEFLNR





WITFCQSIISTLTGGGGSGG





GGSGGGGSGGGGSEVQLVES





GGGLVKPGGSLRLSCAASGF





TFSSYTLAWVRQAPGKGLEW





VAAIDSSSYTYSPDTVRGRF





TISRDNAKNSLYLQMNSLRA





EDTAVYYCARDSNWDALDYW





GQGTLVTVSSAKTTAPSVYP





LAPVCGDTTGSSVTLGCLVK





GYFPEPVTLTWNSGSLSSGV





HTFPAVLQSDLYTLSSSVTV





TSSTWPSQSITCNVAHPASS





TKVDKKIEPRGPTIKPCPPC





KCPAPNAAGGPSVFIFPPKI





KDVLMISLSPIVTCVVVDVS





EDDPDVQISWFVNNVEVHTA





QTQTHREDYNSTLRVVSALP





IQHQDWMSGKEFKCKVNNKD





LGAPIERTISKPKGSVRAPQ





VYVLPPPEEEMTKKQVTLTC





MVTDFMPEDIYVEWTNNGKT





ELNYKNTEPVLDSDGSYFMY





SDLRVEKKNWVERNSYSCSV





VHEGLHNHHTTESFSRTPGK







SEQ ID
EVQLVESGGGLVKPGGSLRL




NO: 194
SCAASGFTFSSYTLAWVRQA





PGKGLEWVAAIDSSSYTYSP





DTVRGRFTISRDNAKNSLYL





QMNSLRAEDTAVYYCARDSN





WDALDYWGQGTLVTVSSAKT





TAPSVYPLAPVCGDTTGSSV





TLGCLVKGYFPEPVTLTWNS





GSLSSGVHTFPAVLQSDLYT





LSSSVTVTSSTWPSQSITCN





VAHPASSTKVDKKIEPRGPT





IKPCPPCKCPAPNAAGGPSV





FIFPPKIKDVLMISLSPIVT





CVVVDVSEDDPDVQISWFVN





NVEVHTAQTQTHREDYNSTL





RVVSALPIQHQDWMSGKEFK





CKVNNKDLGAPIERTISKPK





GSVRAPQVYVLPPPEKEMTK





KQVSLTCLVKDFMPEDIYVE





WTNNGKTELNYKNTEPVLKS





DGSYFMYSKLTVEKKNWVER





NSYSCSVVHEGLHNHHTTKS





FSRTPGGGGSGGGSHHHHHH









Results with protein complexes comprising the structures depicted in FIG. 14C are shown in FIGS. 17A-H. As depicted in FIG. 14C, these complexes are asymmetric and comprised of two identical monospecific Fab arms with a single IL-2 attached to one Fc domain by flexible linker and a single scFv attached to the other Fc domain by a flexible linker. The active PD-1/IL-2 DBA complexes, AF4403 comprising SEQ ID NO: 180, 195, 199 and AF4404 comprising SEQ ID NO: 180, 196, 199, are composed of anti-PD-1 domains in the Fab arms and a PD-1/IL-2 DBA scFv on the Fc arm. The control antibody-cytokine complexes are composed of a) antibody-cytokine complexes with an irrelevant antibody on the Fab arms with the DBA scFv on the Fc (AF4395 comprising SEQ ID NO: 64, 197, 202 and AF4396 comprising SEQ ID NO: 64, 198, 202), b) antibody-cytokine complexes with a non-DBA scFv on the Fc arm (AF4400 comprising SEQ ID NO: 180, 199-200 and AF4401 comprising SEQ ID NO: 180, 199, 201), and c) antibody-cytokine complexes with non-DBA antibodies in both the Fab and scFv domains (AF4392 comprising SEQ ID NO: 64, 202-203 and AF4393 comprising SEQ ID NO: 64, 202, 204). As shown in FIGS. 17B and 17D, the IL-2 activity of the DBA-cytokine complexes AF4403 and AF4404 had an EC50 of 31 pM and 26 pM respectively in the PD-1 coated wells and 62 pM and 64 pM respectively in the control wells, demonstrating PD-1 dependence of the IL-2 activity. None of the control proteins AF4395, AF4396, AF4400, AF4401, AF4392 and AF4393 described above showed a lower EC50 on PD-1 coated wells than on wells coated with the IgG1 protein, as shown in FIGS. 17A, 17C and 17E-H. Sequences of the protein complexes are summarized in TABLE 24 below.









TABLE 24







IgG PD-1 with C-terminal scFv and


IL-2, and control protein complexes











Protein
SEQ ID




Complex
NO:
Sequence






AF4403
SEQ ID
EIVLTQSPATLSLSPGERATLSCRA




NO: 180
SQSVSSYLAWYQQKPGQAPRLLIYD





ASNRATGIPARFSGSGSGTDFTLTI





SSLEPEDFAVYYCQQSSNWPRTFGQ





GTKVEIKRADAAPTVSIFPPSSEQL





TSGGASVVCFLNNFYPKDINVKWKI





DGSERQNGVLNSWTDQDSKDSTYSM





SSTLTLTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







SEQ ID
QVQLVESGGGVVQPGRSLRLLDCKA




NO: 195
SGITFSNSGMHWVRQAPGKGLEWVA





VIWYDGSKRYYADSVKGRFTISRDN





SKNTLFLQMNSLRAEDTAVYYCATN





DDYWGQGTLVTVSSAKTTAPSVYPL





APVCGDTTGSSVTLGCLVKGYFPEP





VTLTWNSGSLSSGVHTFPAVLQSDL





YTLSSSVTVTSSTWPSQSITCNVAH





PASSTKVDKKIEPRGPTIKPCPPCK





CPAPNAAGGPSVFIFPPKIKDVLMI





SLSPIVTCVVVDVSEDDPDVQISWF





VNNVEVHTAQTQTHREDYNSTLRVV





SALPIQHQDWMSGKEFKCKVNNKDL





GAPIERTISKPKGSVRAPQVYVLPP





PEKEMTKKQVSLTCLVKDFMPEDIY





VEWTNNGKTELNYKNTEPVLKSDGS





YFMYSKLTVEKKNWVERNSYSCSVV





HEGLHNHHTTKSFSRTPGGGGGSGG





GGSGGGGSGGGGSQVQLVQSGAEVK





KPGASVKVSCKASGDTFTRYYVHWV





RQAPGQGLEWMGIINPSGGYASYAQ





KFQGRVTMTRDTSTSTVYMELSSLR





SEDTAVYYCAAGLFIWGQGTLVTVS





SASGGGGSGGGGSGGGGSHASDIQM





TQSPSSLSASVGDRVTITCRASQSI





GRYLAWYQQKPGKAPKLLIYSASNL





ETGVPSRFSGSGSGTDFTLTISSLQ





PEDFATYYCQQYNSFPVTFGPGTKV





DIKGGGSGGGSHHHHHH







SEQ ID
QVQLVESGGGVVQPGRSLRLDCKAS




NO: 199
GITFSNSGMHWVRQAPGKGLEWVAV





IWYDGSKRYYADSVKGRFTISRDNS





KNTLFLQMNSLRAEDTAVYYCATND





DYWGQGTLVTVSSAKTTAPSVYPLA





PVCGDTTGSSVTLGCLVKGYFPEPV





TLTWNSGSLSSGVHTFPAVLQSDLY





TLSSSVTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPCPPCKC





PAPNAAGGPSVFIFPPKIKDVLMIS





LSPIVTCVVVDVSEDDPDVQISWFV





NNVEVHTAQTQTHREDYNSTLRVVS





ALPIQHQDWMSGKEFKCKVNNKDLG





APIERTISKPKGSVRAPQVYVLPPP





EEEMTKKQVTLTCMVTDFMPEDIYV





EWTNNGKTELNYKNTEPVLDSDGSY





FMYSDLRVEKKNWVERNSYSCSVVH





EGLHNHHTTESFSRTPGGGGGSGGG





GSGGGGSAPTSSSTKKTQLQLEHLL





LDLQMILNGINNYKNPKLTDMLTFE





FYMPKKATELKHLQCLERELKPLEE





VLNLAQSKNFHLRPRDLISNINVIV





LELKGSETTFMCEYADETATIVEFL





NRWITFCQSIISTLT






AF4404
SEQ ID
EIVLTQSPATLSLSPGERATLSCRA




NO: 180
SQSVSSYLAWYQQKPGQAPRLLIYD





ASNRATGIPARFSGSGSGTDFTLTI





SSLEPEDFAVYYCQQSSNWPRTFGQ





GTKVEIKRADAAPTVSIFPPSSEQL





TSGGASVVCFLNNFYPKDINVKWKI





DGSERQNGVLNSWTDQDSKDSTYSM





SSTLTLTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







SEQ ID
QVQLVESGGGVVQPGRSLRLDCKAS




NO: 196
GITFSNSGMHWVRQAPGKGLEWVAV





IWYDGSKRYYADSVKGRFTISRDNS





KNTLFLQMNSLRAEDTAVYYCATND





DYWGQGTLVTVSSAKTTAPSVYPLA





PVCGDTTGSSVTLGCLVKGYFPEPV





TLTWNSGSLSSGVHTFPAVLQSDLY





TLSSSVTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPCPPCKC





PAPNAAGGPSVFIFPPKTKDVLMIS





LSPIVTCVVVDVSEDDPDVQISWFV





NNVEVHTAQTQTHREDYNSTLRVVS





ALPIQHQDWMSGKEFKCKVNNKDLG





APIERTISKPKGSVRAPQVYVLPPP





EKEMTKKQVSLTCLVKDFMPEDIYV





EWTNNGKTELNYKNTEPVLKSDGSY





FMYSKLTVEKKNWVERNSYSCSVVH





EGLHNHHTTKSFSRTPGGGGGSGGG





GSGGGGSGGGGSQVQLVQSGAEVKK





PGASVKVSCKASGYTFTDYYMHWVR





QAPGQGLEWMGIINPRAGYTSYALK





FQGRVTMTRDTSTSTVYMELSSLRS





EDTAVYYCTSGWDVWGQGTLVTVSS





ASGGGGSGGGGSGGGGSHASDIQMT





QSPSSLSASVGDRVTITCRASQSIS





TWLAWYQQKPGKAPKLLIYAASSLD





SGVPSRFSGSGSGTDFTLTISSLQP





EDFATYYCQQSYSFPVTFGQGTKVE





IKGGGSGGGSHHHHHH







SEQ ID
QVQLVESGGGVVQPGRSLRLDCKAS




NO: 199
GITFSNSGMHWVRQAPGKGLEWVAV





IWYDGSKRYYADSVKGRFTISRDNS





KNTLFLQMNSLRAEDTAVYYCATND





DYWGQGTLVTVSSAKTTAPSVYPLA





PVCGDTTGSSVTLGCLVKGYFPEPV





TLTWNSGSLSSGVHTFPAVLQSDLY





TLSSSVTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPCPPCKC





PAPNAAGGPSVFIFPPKIKDVLMIS





LSPIVTCVVVDVSEDDPDVQISWFV





NNVEVHTAQTQTHREDYNSTLRVVS





ALPIQHQDWMSGKEFKCKVNNKDLG





APIERTISKPKGSVRAPQVYVLPPP





EEEMTKKQVTLTCMVTDFMPEDIYV





EWTNNGKTELNYKNTEPVLDSDGSY





FMYSDLRVEKKNWVERNSYSCSVVH





EGLHNHHTTESFSRTPGGGGGSGGG





GSGGGGSAPTSSSTKKTQLQLEHLL





LDLQMILNGINNYKNPKLTDMLTFE





FYMPKKATELKHLQCLERELKPLEE





VLNLAQSKNFHLRPRDLISNINVIV





LELKGSETTFMCEYADETATIVEFL





NRWITFCQSIISTLT






AF4395
SEQ ID
DIQMTQSPSSLSASVGDRVTITCRA




NO: 64
SQDVNTAVAWYQQKPGKAPKLLIYS





ASFLYSGVPSRFSGSRSGTDFTLTI





SSLQPEDFATYYCQQHYTTPPTFGQ





GTKVEIKRADAAPTVSIFPPSSEQL





TSGGASVVCFLNNFYPKDINVKWKI





DGSERQNGVLNSWTDQDSKDSTYSM





SSTLTLTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







SEQ ID
EVQLVESGGGLVQPGGSLRLSCAAS




NO: 197
GFNIKDTYIHWVRQAPGKGLEWVAR





IYPTNGYTRYADSVKGRFTISADTS





KNTAYLQMNSLRAEDTAVYYCSRWG





GDGFYAMDYWGQGTLVTVSSAKTTA





PSVYPLAPVCGDTTGSSVTLGCLVK





GYFPEPVTLTWNSGSLSSGVHTFPA





VLQSDLYTLSSSVTVTSSTWPSQSI





TCNVAHPASSTKVDKKIEPRGPTIK





PCPPCKCPAPNAAGGPSVFIFPPKI





KDVLMISLSPIVTCVVVDVSEDDPD





VQISWFVNNVEVHTAQTQTHREDYN





STLRVVSALPIQHQDWMSGKEFKCK





VNNKDLGAPIERTISKPKGSVRAPQ





VYVLPPPEKEMTKKQVSLTCLVKDF





MPEDIYVEWTNNGKTELNYKNTEPV





LKSDGSYFMYSKLTVEKKNWVERNS





YSCSVVHEGLHNHHTTKSFSRTPGG





GGGSGGGGSGGGGSGGGGSQVQLVQ





SGAEVKKPGASVKVSCKASGDTFTR





YYVHWVRQAPGQGLEWMGIINPSGG





YASYAQKFQGRVTMTRDTSTSTVYM





ELSSLRSEDTAVYYCAAGLFIWGQG





TLVTVSSASGGGGSGGGGSGGGGSH





ASDIQMTQSPSSLSASVGDRVTITC





RASQSIGRYLAWYQQKPGKAPKLLI





YSASNLETGVPSRFSGSGSGTDFTL





TISSLQPEDFATYYCQQYNSFPVTF





GPGTKVDIKGGGSGGGSHHHHHH







SEQ ID
EVQLVESGGGLVQPGGSLRLSCAAS




NO: 202
GFNIKDTYIHWVRQAPGKGLEWVAR





IYPTNGYTRYADSVKGRFTISADTS





KNTAYLQMNSLRAEDTAVYYCSRWG





GDGFYAMDYWGQGTLVTVSSAKTTA





PSVYPLAPVCGDTTGSSVTLGCLVK





GYFPEPVTLTWNSGSLSSGVHTFPA





VLQSDLYTLSSSVTVTSSTWPSQSI





TCNVAHPASSTKVDKKIEPRGPTIK





PCPPCKCPAPNAAGGPSVFIFPPKI





KDVLMISLSPIVTCVVVDVSEDDPD





VQISWFVNNVEVHTAQTQTHREDYN





STLRVVSALPIQHQDWMSGKEFKCK





VNNKDLGAPIERTISKPKGSVRAPQ





VYVLPPPEEEMTKKQVTLTCMVTDF





MPEDIYVEWTNNGKTELNYKNTEPV





LDSDGSYFMYSDLRVEKKNWVERNS





YSCSVVHEGLHNHHTTESFSRTPGG





GGGSGGGGSGGGGSAPTSSSTKKTQ





LQLEHLLLDLQMILNGINNYKNPKL





TDMLTFEFYMPKKATELKHLQCLER





ELKPLEEVLNLAQSKNFHLRPRDLI





SNINVIVLELKGSETTFMCEYADET





ATIVEFLNRWITFCQSIISTLT







SEQ ID
DIQMTQSPSSLSASVGDRVTITCRA




NO: 64
SQDVNTAVAWYQQKPGKAPKLLIYS





ASFLYSGVPSRFSGSRSGTDFTLTI





SSLQPEDFATYYCQQHYTTPPTFGQ





GTKVEIKRADAAPTVSIFPPSSEQL





TSGGASVVCFLNNFYPKDINVKWKI





DGSERQNGVLNSWTDQDSKDSTYSM





SSTLTLTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC






AF4396
SEQ ID
EVQLVESGGGLVQPGGSLRLSCAAS




NO: 198
GFNIKDTYIHWVRQAPGKGLEWVAR





IYPTNGYTRYADSVKGRFTISADTS





KNTAYLQMNSLRAEDTAVYYCSRWG





GDGFYAMDYWGQGTLVTVSSAKTTA





PSVYPLAPVCGDTTGSSVTLGCLVK





GYFPEPVTLTWNSGSLSSGVHTFPA





VLQSDLYTLSSSVTVTSSTWPSQSI





TCNVAHPASSTKVDKKIEPRGPTIK





PCPPCKCPAPNAAGGPSVFIFPPKI





KDVLMISLSPIVTCVVVDVSEDDPD





VQISWFVNNVEVHTAQTQTHREDYN





STLRVVSALPIQHQDWMSGKEFKCK





VNNKDLGAPIERTISKPKGSVRAPQ





VYVLPPPEKEMTKKQVSLTCLVKDF





MPEDIYVEWTNNGKTELNYKNTEPV





LKSDGSYFMYSKLTVEKKNWVERNS





YSCSVVHEGLHNHHTTKSFSRTPGG





GGGSGGGGSGGGGSGGGGSQVQLVQ





SGAEVKKPGASVKVSCKASGYTFTD





YYMHWVRQAPGQGLEWMGIINPRAG





YTSYALKFQGRVTMTRDTSTSTVYM





ELSSLRSEDTAVYYCTSGWDVWGQG





TLVTVSSASGGGGSGGGGSGGGGSH





ASDIQMTQSPSSLSASVGDRVTITC





RASQSISTWLAWYQQKPGKAPKLLI





YAASSLDSGVPSRFSGSGSGTDFTL





TISSLQPEDFATYYCQQSYSFPVTF





GQGTKVEIKGGGSGGGSHHHHHH







SEQ ID
EVQLVESGGGLVQPGGSLRLSCAAS




NO: 202
GFNIKDTYIHWVRQAPGKGLEWVAR





IYPTNGYTRYADSVKGRFTISADTS





KNTAYLQMNSLRAEDTAVYYCSRWG





GDGFYAMDYWGQGTLVTVSSAKTTA





PSVYPLAPVCGDTTGSSVTLGCLVK





GYFPEPVTLTWNSGSLSSGVHTFPA





VLQSDLYTLSSSVTVTSSTWPSQSI





TCNVAHPASSTKVDKKIEPRGPTIK





PCPPCKCPAPNAAGGPSVFIFPPKI





KDVLMISLSPIVTCVVVDVSEDDPD





VQISWFVNNVEVHTAQTQTHREDYN





STLRVVSALPTQHQDWMSGKEFKCK





VNNKDLGAPIERTISKPKGSVRAPQ





VYVLPPPEEEMTKKQVTLTCMVTDF





MPEDIYVEWTNNGKTELNYKNTEPV





LDSDGSYFMYSDLRVEKKNWVERNS





YSCSVVHEGLHNHHTTESFSRTPGG





GGGSGGGGSGGGGSAPTSSSTKKTQ





LQLEHLLLDLQMILNGINNYKNPKL





TDMLTFEFYMPKKATELKHLQCLER





ELKPLEEVLNLAQSKNFHLRPRDLI





SNINVIVLELKGSETTFMCEYADET





ATIVEFLNRWITFCQSIISTLT







SEQ ID
EIVLTQSPATLSLSPGERATLSCRA




NO: 180
SQSVSSYLAWYQQKPGQAPRLLIYD





ASNRATGIPARFSGSGSGTDFTLTI





SSLEPEDFAVYYCQQSSNWPRTFGQ





GTKVEIKRADAAPTVSIFPPSSEQL





TSGGASVVCFLNNFYPKDINVKWKI





DGSERQNGVLNSWTDQDSKDSTYSM





SSTLTLTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC






AF4400
SEQ ID
QVQLVESGGGVVQPGRSLRLDCKAS




NO: 199
GITFSNSGMHWVRQAPGKGLEWVAV





IWYDGSKRYYADSVKGRFTISRDNS





KNTLFLQMNSLRAEDTAVYYCATND





DYWGQGTLVTVSSAKTTAPSVYPLA





PVCGDTTGSSVTLGCLVKGYFPEPV





TLTWNSGSLSSGVHTFPAVLQSDLY





TLSSSVTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPCPPCKC





PAPNAAGGPSVFIFPPKIKDVLMIS





LSPIVTCVVVDVSEDDPDVQISWFV





NNVEVHTAQTQTHREDYNSTLRVVS





ALPIQHQDWMSGKEFKCKVNNKDLG





APIERTISKPKGSVRAPQVYVLPPP





EEEMTKKQVTLTCMVTDFMPEDIYV





EWTNNGKTELNYKNTEPVLDSDGSY





FMYSDLRVEKKNWVERNSYSCSVVH





EGLHNHHTTESFSRTPGGGGGSGGG





GSGGGGSAPTSSSTKKTQLQLEHLL





LDLQMILNGINNYKNPKLTDMLTFE





FYMPKKATELKHLQCLERELKPLEE





VLNLAQSKNFHLRPRDLISNINVIV





LELKGSETTFMCEYADETATIVEFL





NRWITFCQSIISTLT







SEQ ID
QVQLVESGGGVVQPGRSLRLDCKAS




NO: 200
GITFSNSGMHWVRQAPGKGLEWVAV





IWYDGSKRYYADSVKGRFTISRDNS





KNTLFLQMNSLRAEDTAVYYCATND





DYWGQGTLVTVSSAKTTAPSVYPLA





PVCGDTTGSSVTLGCLVKGYFPEPV





TLTWNSGSLSSGVHTFPAVLQSDLY





TLSSSVTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPCPPCKC





PAPNAAGGPSVFIFPPKIKDVLMIS





LSPIVTCVVVDVSEDDPDVQISWFV





NNVEVHTAQTQTHREDYNSTLRVVS





ALPIQHQDWMSGKEFKCKVNNKDLG





APIERTISKPKGSVRAPQVYVLPPP





EKEMTKKQVSLTCLVKDFMPEDIYV





EWTNNGKTELNYKNTEPVLKSDGSY





FMYSKLTVEKKNWVERNSYSCSVVH





EGLHNHHTTKSFSRTPGGGGGSGGG





GSGGGGSGGGGSEVQLVESGGGLVQ





PGGSLRLSCAASGFNIKDTYIHWVR





QAPGKGLEWVARIYPTNGYTRYADS





VKGRFTISADTSKNTAYLQMNSLRA





EDTAVYYCSRWGGDGFYAMDYWGQG





TLVTVSSASGGGGSGGGGSGGGGSH





ASDIQMTQSPSSLSASVGDRVTITC





RASQDVNTAVAWYQQKPGKAPKLLI





YSASFLYSGVPSRFSGSRSGTDFTL





TISSLQPEDFATYYCQQHYTTPPTF





GQGTKVEIKGGGSGGGSHHHHHH






AF4401
SEQ ID
EIVLTQSPATLSLSPGERATLSCRA




NO: 180
SQSVSSYLAWYQQKPGQAPRLLIYD





ASNRATGIPARFSGSGSGTDFTLTI





SSLEPEDFAVYYCQQSSNWPRTFGQ





GTKVEIKRADAAPTVSIFPPSSEQL





TSGGASVVCFLNNFYPKDINVKWKI





DGSERQNGVLNSWTDQDSKDSTYSM





SSTLTLTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







SEQ ID
QVQLVESGGGVVQPGRSLRLDCKAS




NO: 199
GITFSNSGMHWVRQAPGKGLEWVAV





IWYDGSKRYYADSVKGRFTISRDNS





KNTLFLQMNSLRAEDTAVYYCATND





DYWGQGTLVTVSSAKTTAPSVYPLA





PVCGDTTGSSVTLGCLVKGYFPEPV





TLTWNSGSLSSGVHTFPAVLQSDLY





TLSSSVTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPCPPCKC





PAPNAAGGPSVFIFPPKIKDVLMIS





LSPIVTCVVVDVSEDDPDVQISWFV





NNVEVHTAQTQTHREDYNSTLRVVS





ALPIQHQDWMSGKEFKCKVNNKDLG





APIERTISKPKGSVRAPQVYVLPPP





EEEMTKKQVTLTCMVTDFMPEDIYV





EWTNNGKTELNYKNTEPVLDSDGSY





FMYSDLRVEKKNWVERNSYSCSVVH





EGLHNHHTTESFSRTPGGGGGSGGG





GSGGGGSAPTSSSTKKTQLQLEHLL





LDLQMILNGINNYKNPKLTDMLTFE





FYMPKKATELKHLQCLERELKPLEE





VLNLAQSKNFHLRPRDLISNINVIV





LELKGSETTFMCEYADETATIVEFL





NRWITFCQSIISTLT







SEQ ID
QVQLVESGGGVVQPGRSLRLDCKAS




NO: 201
GITFSNSGMHWVRQAPGKGLEWVAV





IWYDGSKRYYADSVKGRFTISRDNS





KNTLFLQMNSLRAEDTAVYYCATND





DYWGQGTLVTVSSAKTTAPSVYPLA





PVCGDTTGSSVTLGCLVKGYFPEPV





TLTWNSGSLSSGVHTFPAVLQSDLY





TLSSSVTVTSSTWPSQSITCNVAHP





ASSTKVDKKIEPRGPTIKPCPPCKC





PAPNAAGGPSVFIFPPKIKDVLMIS





LSPIVTCVVVDVSEDDPDVQISWFV





NNVEVHTAQTQTHREDYNSTLRVVS





ALPIQHQDWMSGKEFKCKVNNKDLG





APIERTISKPKGSVRAPQVYVLPPP





EKEMTKKQVSLTCLVKDFMPEDIYV





EWTNNGKTELNYKNTEPVLKSDGSY





FMYSKLTVEKKNWVERNSYSCSVVH





EGLHNHHTTKSFSRTPGGGGGSGGG





GSGGGGSGGGGSEVQLVESGGGLVK





PGGSLRLSCAASGFTFSSYTLAWVR





QAPGKGLEWVAAIDSSSYTYSPDTV





RGRFTISRDNAKNSLYLQMNSLRAE





DTAVYYCARDSNWDALDYWGQGTLV





TVSSASGGGGSGGGGSGGGGSHASD





IQMTQSPSSLSASVGDRVSITCKAS





QNVGTNVGWYQQKPGKAPKALIYSA





SFRYSGVPSRFSGSGSGTDFTLTIS





SLQPEDFATYFCQQYYTYPYTFGGG





TKLEIKGGGSGGGSHHHHHH






AF4392
SEQ ID
DIQMTQSPSSLSASVGDRVTITCRA




NO: 64
SQDVNTAVAWYQQKPGKAPKLLIYS





ASFLYSGVPSRFSGSRSGTDFTLTI





SSLQPEDFATYYCQQHYTTPPTFGQ





GTKVEIKRADAAPTVSIFPPSSEQL





TSGGASVVCFLNNFYPKDINVKWKI





DGSERQNGVLNSWTDQDSKDSTYSM





SSTLTLTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







SEQ ID
EVQLVESGGGLVQPGGSLRLSCAAS




NO: 202
GFNIKDTYIHWVRQAPGKGLEWVAR





IYPTNGYTRYADSVKGRFTISADTS





KNTAYLQMNSLRAEDTAVYYCSRWG





GDGFYAMDYWGQGTLVTVSSAKTTA





PSVYPLAPVCGDTTGSSVTLGCLVK





GYFPEPVTLTWNSGSLSSGVHTFPA





VLQSDLYTLSSSVTVTSSTWPSQSI





TCNVAHPASSTKVDKKIEPRGPTIK





PCPPCKCPAPNAAGGPSVFIFPPKI





KDVLMISLSPIVTCVVVDVSEDDPD





VQISWFVNNVEVHTAQTQTHREDYN





STLRVVSALPIQHQDWMSGKEFKCK





VNNKDLGAPIERTISKPKGSVRAPQ





VYVLPPPEEEMTKKQVTLTCMVTDF





MPEDIYVEWTNNGKTELNYKNTEPV





LDSDGSYFMYSDLRVEKKNWVERNS





YSCSVVHEGLHNHHTTESFSRTPGG





GGGSGGGGSGGGGSAPTSSSTKKTQ





LQLEHLLLDLQMILNGINNYKNPKL





TDMLTFEFYMPKKATELKHLQCLER





ELKPLEEVLNLAQSKNFHLRPRDLI





SNINVIVLELKGSETTFMCEYADET





ATIVEFLNRWITFCQSIISTLT







SEQ ID
EVQLVESGGGLVQPGGSLRLSCAAS




NO: 203
GFNIKDTYIHWVRQAPGKGLEWVAR





IYPTNGYTRYADSVKGRFTISADTS





KNTAYLQMNSLRAEDTAVYYCSRWG





GDGFYAMDYWGQGTLVTVSSAKTTA





PSVYPLAPVCGDTTGSSVTLGCLVK





GYFPEPVTLTWNSGSLSSGVHTFPA





VLQSDLYTLSSSVTVTSSTWPSQSI





TCNVAHPASSTKVDKKIEPRGPTIK





PCPPCKCPAPNAAGGPSVFIFPPKI





KDVLMISLSPIVTCVVVDVSEDDPD





VQISWFVNNVEVHTAQTQTHREDYN





STLRVVSALPTQHQDWMSGKEFKCK





VNNKDLGAPIERTISKPKGSVRAPQ





VYVLPPPEKEMTKKQVSLTCLVKDF





MPEDIYVEWTNNGKTELNYKNTEPV





LKSDGSYFMYSKLTVEKKNWVERNS





YSCSVVHEGLHNHHTTKSFSRTPGG





GGGSGGGGSGGGGSGGGGSEVQLVE





SGGGLVQPGGSLRLSCAASGFNIKD





TYIHWVRQAPGKGLEWVARIYPTNG





YTRYADSVKGRFTISADTSKNTAYL





QMNSLRAEDTAVYYCSRWGGDGFYA





MDYWGQGTLVTVSSASGGGGSGGGG





SGGGGSHASDIQMTQSPSSLSASVG





DRVTITCRASQDVNTAVAWYQQKPG





KAPKLLIYSASFLYSGVPSRFSGSR





SGTDFTLTISSLQPEDFATYYCQQH





YTTPPTFGQGTKVEIKGGGSGGGSH





HHHHH







SEQ ID
DIQMTQSPSSLSASVGDRVTITCRA




NO: 64
SQDVNTAVAWYQQKPGKAPKLLIYS





ASFLYSGVPSRFSGSRSGTDFTLTI





SSLQPEDFATYYCQQHYTTPPTFGQ





GTKVEIKRADAAPTVSIFPPSSEQL





TSGGASVVCFLNNFYPKDINVKWKI





DGSERQNGVLNSWTDQDSKDSTYSM





SSTLTLTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC






AF4393
SEQ ID
EVQLVESGGGLVQPGGSLRLSCAAS




NO: 202
GFNIKDTYIHWVRQAPGKGLEWVAR





IYPTNGYTRYADSVKGRFTISADTS





KNTAYLQMNSLRAEDTAVYYCSRWG





GDGFYAMDYWGQGTLVTVSSAKTTA





PSVYPLAPVCGDTTGSSVTLGCLVK





GYFPEPVTLTWNSGSLSSGVHTFPA





VLQSDLYTLSSSVTVTSSTWPSQSI





TCNVAHPASSTKVDKKIEPRGPTIK





PCPPCKCPAPNAAGGPSVFIFPPKI





KDVLMISLSPIVTCVVVDVSEDDPD





VQISWFVNNVEVHTAQTQTHREDYN





STLRVVSALPIQHQDWMSGKEFKCK





VNNKDLGAPIERTISKPKGSVRAPQ





VYVLPPPEEEMTKKQVTLTCMVTDF





MPEDIYVEWTNNGKTELNYKNTEPV





LDSDGSYFMYSDLRVEKKNWVERNS





YSCSVVHEGLHNHHTTESFSRTPGG





GGGSGGGGSGGGGSAPTSSSTKKTQ





LQLEHLLLDLQMILNGINNYKNPKL





TDMLTFEFYMPKKATELKHLQCLER





ELKPLEEVLNLAQSKNFHLRPRDLI





SNINVIVLELKGSETTFMCEYADET





ATIVEFLNRWITFCQSIISTLT







SEQ ID
EVQLVESGGGLVQPGGSLRLSCAAS




NO: 204
GFNIKDTYIHWVRQAPGKGLEWVAR





IYPTNGYTRYADSVKGRFTISADTS





KNTAYLQMNSLRAEDTAVYYCSRWG





GDGFYAMDYWGQGTLVTVSSAKTTA





PSVYPLAPVCGDTTGSSVTLGCLVK





GYFPEPVTLTWNSGSLSSGVHTFPA





VLQSDLYTLSSSVTVTSSTWPSQSI





TCNVAHPASSTKVDKKIEPRGPTIK





PCPPCKCPAPNAAGGPSVFIFPPKI





KDVLMISLSPIVTCVVVDVSEDDPD





VQISWFVNNVEVHTAQTQTHREDYN





STLRVVSALPIQHQDWMSGKEFKCK





VNNKDLGAPIERTISKPKGSVRAPQ





VYVLPPPEKEMTKKQVSLTCLVKDF





MPEDIYVEWTNNGKTELNYKNTEPV





LKSDGSYFMYSKLTVEKKNWVERNS





YSCSVVHEGLHNHHTTKSFSRTPGG





GGGSGGGGSGGGGSGGGGSEVQLVE





SGGGLVKPGGSLRLSCAASGFTFSS





YTLAWVRQAPGKGLEWVAAIDSSSY





TYSPDTVRGRFTISRDNAKNSLYLQ





MNSLRAEDTAVYYCARDSNWDALDY





WGQGTLVTVSSASGGGGSGGGGSGG





GGSHASDIQMTQSPSSLSASVGDRV





SITCKASQNVGTNVGWYQQKPGKAP





KALIYSASFRYSGVPSRFSGSGSGT





DFTLTISSLQPEDFATYFCQQYYTY





PYTFGGGTKLEIKGGGSGGGSHHHH





HH









Example 27
Improved Regulation by Engineering DBA Affinity Using Standard Methods

This example describes the use of standard techniques to modify DBA affinity and improve the range of sensor-dependent activation of a DBA-cytokine construct. A series of variants of the DBA PDL1-IFN R01 A05 (EXAMPLE 1) were prepared as described in EXAMPLE 4, assembled into DBA-cytokine-complexes and assayed as described in EXAMPLE 9. Results with six exemplary variant DBA-cytokine complexes are shown in FIG. 21A-F. Each plot includes data for IFNAR2 binding in the presence (triangles) and absence (squares) of PD-L1. Binding to a control IFNα antibody (circles) is used to confirm the presence of intact DBA-complex and provide a relative estimate of the amount of DBA-complex captured in the wells. AF2719 and the five variant DBA-cytokine complexes show negligible IFNAR2 binding in the absence of PD-L1 and different levels of IFNAR2 binding in the presence of PD-L1. AF3099 (SEQ ID NO: 293) shows negligible IFNAR2 binding at all concentrations of PD-L1, while the IFNAR2 binding signal with AF3092 (SEQ ID NO: 292) is similar to the anti-IFNα antibody binding. AF2719 (SEQ ID NO: 41), AF3101 (SEQ ID NO: 289), AF3093 (SEQ ID NO: 290) and AF3094 (SEQ ID NO: 291) show intermediate levels of IFNAR binding relative to anti-IFNα binding. Together, these results demonstrate that standard methods of antibody engineering may be used to improve the regulation of the therapeutic activity of a DBA-cytokine complex. Protein complex sequences are provided in TABLE 25 below.









TABLE 25







DBA-cytokine protein complexes











Protein
SEQ ID




Complex
NO:
Sequence







AF3099
SEQ ID
MSTSTCDLPQTHSLGSRRTLMLLAQ




NO: 293
MRRISLFSCLKDRHDFGFPQEEFGN





QFQKAETIPVLHEMIQQIFNLFSTK





DSSAAWDETLLDKFYTELYQQLNDL





EACVIQGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAWEVVRA





EIMRSFSLSTNLQESLRSKEGGGGS





GGGGSGGGGSGGGGSQVQLVQSGAE





VKKPGASVKVSCKASGYTFSGYYIH





WVRQAPGQGLEWMGWMDSNSGGTGY





AQKFQGRVTMTRDTSTSTVYMELSS





LRSEDTAVYYCAKEVFSGWYDYWGQ





GTLVTVSSASGGGGSGGGGSGGGGS





HASDIQMTQSPSSLSASVGDRVTIT





CRASQSISSYLNWYQQKPGKAPKLL





IYAASSLQSGVPSRFSGSGSGTDFT





LTISSLQPEDFATYYCQQSYSTPYT





FGQGTKVEIKGKPIPNPLLGLDST







AF3092
SEQ ID
MSTSTCDLPQTHSLGSRRTLMLLAQ




NO: 292
MRRISLFSCLKDRHDFGFPQEEFGN





QFQKAETIPVLHEMIQQIFNLFSTK





DSSAAWDETLLDKFYTELYQQLNDL





EACVIQGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAWEVVRA





EIMRSFSLSTNLQESLRSKEGGGGS





GGGGSGGGGSGGGGSQVQLVQSGAE





VKKPGASVKVSCKASGYTFSNYYIH





WVRQAPGQGLEWMGWMDPNSGGTGY





AQKFQGRVTMTRDTSTSTVYMELSS





LRSEDTAVYYCAKEVFSGWYDYWGQ





GTLVTVSSASGGGGSGGGGSGGGGS





HASDIQMTQSPSSLSASVGDRVTIT





CRASQSISSYLNWYQQKPGKAPKLL





IYAASSLQSGVPSRFSGSGSGTDFT





LTISSLQPEDFATYYCQQSYSTPYT





FGQGTKVEIKGKPIPNPLLGLDST







AF2719
SEQ ID
MSTSTCDLPQTHSLGSRRTLMLLAQ




NO: 41
MRRISLFSCLKDRHDFGFPQEEFGN





QFQKAETIPVLHEMIQQIFNLFSTK





DSSAAWDETLLDKFYTELYQQLNDL





EACVIQGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAWEVVRA





EIMRSFSLSTNLQESLRSKEGGGGS





GGGGSGGGGSGGGGSQVQLVQSGAE





VKKPGASVKVSCKASGYTFSNYYVH





WVRQAPGQGLEWMGWMDPNSGGTGY





AHQFQGRVTMTRDTSTSTVYMELSS





LRSEDTAVYYCAKEVFSGWYDYWGQ





GTLVTVSSASGGGGSGGGGSGGGGS





HASDIQMTQSPSSLSASVGDRVTIT





CRASQSISSYLNWYQQKPGKAPKLL





IYAASSLQSGVPSRFSGSGSGTDFT





LTISSLQPEDFATYYCQQSYSTPYT





FGQGTKVEIKGKPIPNPLLGLDST







AF3101
SEQ ID
MSTSTCDLPQTHSLGSRRTLMLLAQ




NO: 289
MRRISLFSCLKDRHDFGFPQEEFGN





QFQKAETIPVLHEMIQQIFNLFSTK





DSSAAWDETLLDKFYTELYQQLNDL





EACVIQGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAWEVVRA





EIMRSFSLSTNLQESLRSKEGGGGS





GGGGSGGGGSGGGGSQVQLVQSGAE





VKKPGASVKVSCKASGYTFSNYYIH





WVRQAPGQGLEWMGWMDGNSGGTGY





AQKFQGRVTMTRDTSTSTVYMELSS





LRSEDTAVYYCAKEVFSGWYDYWGQ





GTLVTVSSASGGGGSGGGGSGGGGS





HASDIQMTQSPSSLSASVGDRVTIT





CRASQSISSYLNWYQQKPGKAPKLL





IYAASSLQSGVPSRFSGSGSGTDFT





LTISSLQPEDFATYYCQQSYSTPYT





FGQGTKVEIKGKPIPNPLLGLDST







AF3093
SEQ ID
MSTSTCDLPQTHSLGSRRTLMLLAQ




NO: 290
MRRISLFSCLKDRHDFGFPQEEFGN





QFQKAETIPVLHEMIQQIFNLFSTK





DSSAAWDETLLDKFYTELYQQLNDL





EACVIQGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAWEVVRA





EIMRSFSLSTNLQESLRSKEGGGGS





GGGGSGGGGSGGGGSQVQLVQSGAE





VKKPGASVKVSCKASGYTFSNYYIH





WVRQAPGQGLEWMGWMDSNSGYTGY





AQKFQGRVTMTRDTSTSTVYMELSS





LRSEDTAVYYCAKEVFSGWYDYWGQ





GTLVTVSSASGGGGSGGGGSGGGGS





HASDIQMTQSPSSLSASVGDRVTIT





CRASQSISSYLNWYQQKPGKAPKLL





IYAASSLQSGVPSRFSGSGSGTDFT





LTISSLQPEDFATYYCQQSYSTPYT





FGQGTKVEIKGKPIPNPLLGLDST







AF3094
SEQ ID
MSTSTCDLPQTHSLGSRRTLMLLAQ




NO: 291
MRRISLFSCLKDRHDFGFPQEEFGN





QFQKAETIPVLHEMIQQIFNLFSTK





DSSAAWDETLLDKFYTELYQQLNDL





EACVIQGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAWEVVRA





EIMRSFSLSTNLQESLRSKEGGGGS





GGGGSGGGGSGGGGSQVQLVQSGAE





VKKPGASVKVSCKASGYTFSNYYIH





WVRQAPGQGLEWMGWMDPNSGYTGY





AHQFQGRVTMTRDTSTSTVYMELSS





LRSEDTAVYYCAKEVFSGWYDYWGQ





GTLVTVSSASGGGGSGGGGSGGGGS





HASDIQMTQSPSSLSASVGDRVTIT





CRASQSISSYLNWYQQKPGKAPKLL





IYAASSLQSGVPSRFSGSGSGTDFT





LTISSLQPEDFATYYCQQSYSTPYT





FGQGTKVEIKGKPIPNPLLGLDST










Example 28
Regulated Interferon Receptor Binding by PD-L1/IFNα Dual Binding Antibodies

This example describes regulated interferon receptor binding by PD-L1/IFNα DBA-cytokine complexes. DBA-cytokine complexes AF2659 (SEQ ID NO: 276-277), AF2666 (SEQ ID NO: 96 and 277), AF2645 (SEQ ID NO: 95 and 112), AF2615 (SEQ ID NO: 279-280) and AF2616 (SEQ ID NO: 281-282) were chosen for analysis. The DBAs used to assemble these complexes were derived from three parental PD-L1/IFNα DBAs described in EXAMPLE 1: PDL1-IFN-R01-A05 (AF2659 and AF2666), PDL1-IFN-R01-C08 (AF2645) and PDL1-IFN-R01-B12 (AF2615 and AF2616) using standard antibody engineering techniques as described in EXAMPLE 4. Three control antibody-cytokine constructs were assembled from monospecific antibodies: AF2696 (anti-PDL1, SEQ ID NO: 283-284), AF2697 (anti-Her2, SEQ ID NO: 214 and 286) and AF2698 (anti-IFNα, SEQ ID NO: 287-288). Protein complex sequences are provided in TABLE 26 below. The eight antibody-cytokine complexes were produced as symmetric IgG molecules with IFNα appended to the N-terminus of the heavy chain through a flexible linker (AF2659, AF2666 and AF2645, shown schematically in FIG. 9e) or the N-terminus of the light chain through a flexible linker (AF2615, AF2616, AF2696, AF2697 and AF2698, shown schematically in FIG. 9d). The proteins were expressed in mammalian cells and purified using standard protocols. An ELISA assay was performed with a constant amount of the antibody-cytokine construct coated on each well probed with biotinylated interferon receptor (IFNAR2) in the presence of varying amounts of PD-L1-Fc or Her2-Fc. 384-well ELISA plates were coated with anti-Fc antibody at 10 micrograms/ml overnight at 4° C. and washed twice with SuperBlock. Twenty microliters of a 66.7 nM antibody-cytokine complex was added to each well, incubated for one hour and washed three times in PBS. Biotinylated IFNAR2 protein was added to each well at a final concentration of 5 nM with PD-L1-Fc protein or HER2-Fc protein at a final concentration of 0.64 nM, 3.2 nM, 16 nM, 80 nM, or 400 nM. The plates were incubated for an hour, washed and biotinylated IFNAR2 detection was performed using streptavidin-HRP and standard ELISA protocols. As shown in FIG. 22A-H, DBA-cytokine complexes AF2659, AF2666, AF2645, AF2615 and AF2616 show a dose-dependent induction of IFNAR2 binding in the presence of PD-L1 protein but were not affected by the same dose range of Her2 protein, demonstrating PD-L1 dependent INF activity in five DBA constructs derived from three different parental PD-L1/IFNA dual-binding antibodies. IFNAR2 binding to the three control antibody complexes AF2696, AF2697 and AF2698 was not significantly affected by PD-L1 concentration. Protein complexes of the present invention can be produced from multiple dual-binding antibodies using standard antibody engineering methods.









TABLE 26







DBA-cytokine protein complexes











Protein
SEQ ID




Complex
NO:
Sequence







AF2659
SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 276
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAEIMRSFSLSTNLQES





LRSKEVPGVGVPGAGVPGVG





VPGGGVPGVGVPGGGVPGAG





VPGGGVPGVGVPGAGVPGVG





VPGGGQVQLVQSGAEVKKPG





ASVKVSCKASGYTFSNYYIH





WVRQAPGQGLEWMGWMDSNS





GYTGYAQKFQGRVTMTRDTS





TSTVYMELSSLRSEDTAVYY





CAKEVFSGWYDYWGQGTLVT





VSSAKTTAPSVYPLAPVCGD





TTGSSVTLGCLVKGYFPEPV





TLTWNSGSLSSGVHTFPAVL





QSDLYTLSSSVTVTSSTWPS





QSITCNVAHPASSTKVDKKI





EPRGPTIKPCPPCKCPAPNA





AGGPSVFIFPPKIKDVLMIS





LSPIVTCVVVDVSEDDPDVQI





SWFVNNVEVHTAQTQTHRED





YNSTLRVVSALPIQHQDWMS





GKEFKCKVNNKDLGAPIERT





ISKPKGSVRAPQVYVLPPPE





EEMTKKQVTLTCMVTDFMPE





DIYVEWTNNGKTELNYKNTE





PVLDSDGSYFMYSKLRVEKK





NWVERNSYSCSVVHEGLHNH





HTTKSFSRTPGK








SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 277
ITCRASQSISSYLNWYQQKP





GKAPKLLIYAASSLQSGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQSYSTPYTFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFYP





KDINVKWKIDGSERQNGVLN





SWTDQDSKDSTYSMSSTLTL





TKDEYERHNSYTCEATHKTS





TSPIVKSFNRNEC







AF2666
SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 96
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAEIMRSFSLSTNLQES





LRSKEVPGVGVPGAGVPGVG





VPGGGVPGVGVPGGGVPGAG





VPGGGVPGVGVPGAGVPGVG





VPGGGQVQLVQSGAEVKKPG





ASVKVSCKASGYTFSNYYIH





WVRQAPGQGLEWMGWMDSNS





GYTGYAQQFQGRVTMTRDTS





TSTVYMELSSLRSEDTAVYY





CAKEVFSGWYDYWGQGTLVT





VSSAKTTAPSVYPLAPVCGD





TTGSSVTLGCLVKGYFPEPV





TLTWNSGSLSSGVHTFPAVL





QSDLYTLSSSVTVTSSTWPS





QSITCNVAHPASSTKVDKKI





EPRGPTIKPCPPCKCPAPNA





AGGPSVFIFPPKIKDVLMIS





LSPIVTCVVVDVSEDDPDVQ





ISWFVNNVEVHTAQTQTHRE





DYNSTLRWSALPIQHQDWMS





GKEFKCKVNNKDLGAPIERT





ISKPKGSVRAPQVYVLPPPE





EEMTKKQVTLTCMVTDFMPE





DIYVEWTNNGKTELNYKNTE





PVLDSDGSYFMYSKLRVEKK





NWVERNSYSCSVVHEGLHNH





HTTKSFSRTPGK








SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 277
ITCRASQSISSYLNWYQQKP





GKAPKLLIYAASSLQSGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQSYSTPYTFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







AF2645
SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 95
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAEIMRSFSLSTNLQES





LRSKEVPGVGVPGAGVPGVG





VPGGGVPGVGVPGGGVPGAG





VPGGGVPGVGVPGAGVPGVG





VPGGGQVQLVQSGAEVKKPG





ASVKVSCKASGGTFSSYAIS





WVRQAPGQGLEWMGIIDPSV





TYTRYAQKFQGRVTMTRDTS





TSTVYMELSSLRSEDTAVYY





CARSLFPTIFGVEVAFDIWG





QGTLVTVSSAKTTAPSVYPL





APVCGDTTGSSVTLGCLVKG





YFPEPVTLTWNSGSLSSGVH





TFPAVLQSDLYTLSSSVTVT





SSTWPSQSITCNVAHPASST





KVDKKIEPRGPTIKPCPPCK





CPAPNAAGGPSVFIFPPKIK





DVLMISLSPIVTCWVDVSED





DPDVQISWFVNNVEVHTAQT





QTHREDYNSTLRWSALPIQH





QDWMSGKEFKCKVNNKDLGA





PIERTISKPKGSVRAPQVYV





LPPPEEEMTKKQVTLTCMVT





DFMPEDIYVEWTNNGKTELN





YKNTEPVLDSDGSYFMYSKL





RVEKKNWVERNSYSCSVVHE





GLHNHHTTKSFSRTPGK








SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 112
ITCRASQSISNRLAWYQQKP





GKAPKLLIYKASSLESGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQSNSTPFTFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFYP





KDINVKWKIDGSERQNGVLN





SWTDQDSKDSTYSMSSTLTL





TKDEYERHNSYTCEATHKTS





TSPIVKSFNRNEC







AF2615
SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 279
SCKASGNTFTDYYMHWVRQA





PGQGLEWMGWMNPNSGNTGY





AQKFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCARSL





FPTIFGVEVAFDIWGQGTLV





TVSSAKTTAPSVYPLAPVCG





DTTGSSVTLGCLVKGYFPEP





VTLTWNSGSLSSGVHTFPAV





LQSDLYTLSSSVTVTSSTWP





SQSITCNVAHPASSTKVDKK





IEPRGPTIKPCPPCKCPAPN





AAGGPSVFIFPPKIKDVLMI





SLSPIVTCVVVDVSEDDPDV





QISWFVNNVEVHTAQTQTHR





EDYNSTLRWSALPIQHQDWM





SGKEFKCKVNNKDLGAPIER





TISKPKGSVRAPQVYVLPPP





EEEMTKKQVTLTCMVTDFMP





EDIYVEWTNNGKTELNYKNT





EPVLDSDGSYFMYSKLRVEK





KNWVERNSYSCSVVHEGLHN





HHTTKSFSRTPGK








SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO 280
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAEIMRSFSLSTNLQES





LRSKEGGGGSGGGGSGGGGS





GGGGSDIQMTQSPSSLSASV





GDRVTITCQASQDISNY





LNWYQQKPGKAPKLL





IYAASSLQSGVPSRFSGSGS





GTDFTLTISSLQPEDFATYY





CQQSYSTPPTFGQGTRLEIK





RADAAPTVSIFPPSSEQLTS





GGASVVCFLNNFYPKDINVK





WKIDGSERQNGVLNSWTDQD





SKDSTYSMSSTLTLTKDEYE





RHNSYTCEATHKTSTSPIVK





SFNRNEC







AF2616
SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 281
SCKASGGTFSSYAISWVRQA





PGQGLEWMGIIDPSVTYTRY





AQKFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCARSL





FPTIFGVEVAFDIWGQGTLV





TVSSAKTTAPSVYPLAPVCG





DTTGSSVTLGCLVKGYFPEP





VTLTWNSGSLSSGVHTFPAV





LQSDLYTLSSSVTVTSSTWP





SQSITCNVAHPASSTKVDKK





IEPRGPTIKPCPPCKCPAPN





AAGGPSVFIFPPKIKDVLMI





SLSPIVTCWVDVSEDDPDVQ





ISWFVNNVEVHTAQTQTHRE





DYNSTLRWSALPIQHQDWMS





GKEFKCKVNNKDLGAPIERT





ISKPKGSVRAPQVYVLPPPE





EEMTKKQVTLTCMVTDFMPE





DIYVEWTNNGKTELNYKNTE





PVLDSDGSYFMYSKLRVEKK





NWVERNSYSCSVVHEGLHNH





HTTKSFSRTPGK








SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 282
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAEIMRSFSLSTNLQES





LRSKEGGGGSGGGGSGGGGS





GGGGSDIQMTQSPSSLSASV





GDRVTITCQASQSISNRLAW





YQQKPGKAPKLLIYKASSLE





SGVPSRFSGSGSGTDFTLTI





SSLQPEDFATYYCQQTYSTP





ITFGQGTKVEIKRADAAPTV





SIFPPSSEQLTSGGASVVCFL





NNFYPKDINVKWKIDGSERQ





NGVLNSWTDQDSKDSTYSMS





STLTLTKDEYERHNSYTCEA





THKTSTSPIVKSFNRNEC







AF2696
SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 283
SCKASGYTFSGYYMHWVRQA





PGQGLEWMGWMDPNSGYTGY





AHQFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCAKEV





FSGWYDYWGQGTLVTVSSAK





TTAPSVYPLAPVCGDTTGSS





VTLGCLVKGYFPEPVTLTWN





SGSLSSGVHTFPAVLQSDLY





TLSSSVTVTSSTWPSQSITC





NVAHPASSTKVDKKIEPRGP





TIKPCPPCKCPAPNAAGGPS





VFIFPPKIKDVLMISLSPIV





TCVVVDVSEDDPDVQISWFV





NNVEVHTAQTQTHREDYNST





LRVVSALPIQHQDWMSGKEF





KCKVNNKDLGAPIERTISKP





KGSVRAPQVYVLPPPEEEMT





KKQVTLTCMVTDFMPEDIYV





EWTNNGKTELNYKNTEPVLD





SDGSYFMYSKLRVEKKNWVE





RNSYSCSVVHEGLHNHHTTK





SFSRTPGK








SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 284
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAEIMRSFSLSTNLQES





LRSKEGGGGSGGGGSGGGGS





GGGGSDIQMTQSPSSLSASV





GDRVTITCRASQTISSYLNW





YQQKPGKAPKLLIYAASTLE





SGVPSRFSGSGSGTDFTLTI





SSLQPEDFATYYCQQGYSTP





ITFGPGTKVDIKRADAAPTV





SIFPPSSEQLTSGGASVVCF





LNNFYPKDINVKWKIDGSER





QNGVLNSWTDQDSKDSTYSM





SSTLTLTKDEYERHNSYTCE





ATHKTSTSPIVKSFNRNEC







AF2697
SEQ ID
EVQLVESGGGLVQPGGSLRL




NO: 214
SCAASGFNIKDTYIHWVRQA





PGKGLEWVARIYPTNGYTRY





ADSVKGRFTISADTSKNTAY





LQMNSLRAEDTAVYYCSRWG





GDGFYAMDYWGQGTLVTVSS





AKTTAPSVYPLAPVCGDTTG





SSVTLGCLVKGYFPEPVTLT





WNSGSLSSGVHTFPAVLQSD





LYTLSSSVTVTSSTWPSQSI





TCNVAHPASSTKVDKKIEPR





GPTIKPCPPCKCPAPNAAGG





PSVFIFPPKIKDVLMISLSP





IVTCVVVDVSEDDPDVQISW





FVNNVEVHTAQTQTHREDYN





STLRVVSALPIQHQDWMSGK





EFKCKVNNKDLGAPIERTIS





KPKGSVRAPQVYVLPPPEEE





MTKKQVTLTCMVTDFMPEDI





YVEWTNNGKTELNYKNTEPV





LDSDGSYFMYSKLRVEKKNW





VERNSYSCSVVHEGLHNHHT





TKSFSRTPGK








SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 286
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAEIMRSFSLSTNLQES





LRSKEGGGGSGGGGSGGGGS





GGGGSDIQMTQSPSSLSASV





GDRVTITCRASQDVNTAVAW





YQQKPGKAPKLLIYSASFLY





SGVPSRFSGSRSGTDFTLTI





SSLQPEDFATYYCQQHYTTP





PTFGQGTKVEIKRADAAPTV





SIFPPSSEQLTSGGASVVCF





LNNFYPKDINVKWKIDGSER





QNGVLNSWTDQDSKDSTYSM





SSTLTLTKDEYERHNSYTCE





ATHKTSTSPIVKSFNRNEC







AF2698
SEQ ID
EVQLVESGGGLVQPGGSLRL




NO: 287
SCATSGYTFTEYIIHWVRQA





PGKGLEWVASINPDYDITNY





NQRFKGRFTISLDKSKRTAY





LQMNSLRAEDTAVYYCASWI





SDFFDYWGQGTLVTVSSAKT





TAPSVYPLAPVCGDTTGSSV





TLGCLVKGYFPEPVTLTWNS





GSLSSGVHTFPAVLQSDLYT





LSSSVTVTSSTWPSQSITCN





VAHPASSTKVDKKIEPRGPT





IKPCPPCKCPAPNAAGGPSV





FIFPPKIKDVLMISLSPIVT





CVVVDVSEDDPDVQISWFVN





NVEVHTAQTQTHREDYNSTL





RWSALPIQHQDWMSGKEFKC





KVNNKDLGAPIERTISKPKG





SVRAPQVYVLPPPEEEMTKK





QVTLTCMVTDFMPEDIYVEW





TNNGKTELNYKNTEPVLDSD





GSYFMYSKLRVEKKNWVERN





SYSCSVVHEGLHNHHTTKSF





SRTPGK








SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 288
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAEIMRSFSLSTNLQES





LRSKEGGGGSGGGGSGGGGS





GGGGSDIQMTQSPSSLSASV





GDRVTITCRASQSVSTSSYS





YMHWYQQKPGKAPKVLISYA





SNLESGVPSRFSGSGSGTDF





TLTISSLQPEDFATYYCQHS





WGIPRTFGQGTKVEIKRADA





APTVSIFPPSSEQLTSGGAS





VVCFLNNFYPKDINVKWKID





GSERQNGVLNSWTDQDSKDS





TYSMSSTLTLTKDEYERHNS





YTCEATHKTSTSPIVKSFNR





NEC










Example 29
Selection of IL-15 and PD-L1 Specific Dual Binding Antibodies

This example describes isolation of sensor domains of the present disclosure, specifically, selection of IL-15 and PD-L1 specific dual binding antibodies (DBAs). Anti-PD-L1 and anti-IL-15 DBAs were isolated from the IFNα Tumbler antibody phage display library described in EXAMPLE 1. The selection was similar to the protocol described in EXAMPLE 1, alternating between PD-L1 selection and IL-15 selection.


The final selection was plated as single colonies and 380 colonies were picked for Sanger sequencing. Thirty-eight unique clones were screened for PD-L1 and IL-15 binding. The scFv DNA sequence for each clone was synthesized as a gBlock (Integrated DNA Technologies, Inc.) with a T7 promoter, a translation initiation site, a Myc tag, the scFv sequence, a V5 tag and a T7 terminator. Proteins were expressed using the PUREfrex2.1 cell-free transcription/translation system as described in previous examples. The scFv samples were subjected to ELISA analysis to detect PDL1 and IL15 binding. In these experiments, wells of a 384-well plate were coated with an anti-V5 antibody (Sv5-Pk1, BioRad) at 1 ug/ml overnight at 4 degrees. After washing, wells were blocked with SuperBlock (ThermoFisher, 37515) followed by addition of saturating levels of scFvs in SuperBlock. After washing, antigens were added and plates incubated for one hour (PDL1-hFc-Avi, Acro Biosystems, PDL-H82F2); AF33 (SEQ ID NO: 298-299), biotinylated using standard methods; controls of PD1-hFc-Avi (Acro Biosystems, PD1-H82F1); AF35 (SEQ ID 63-64), biotinylated using standard methods). Biotinylated antigens were detected using streptavidin HRP using standard methods. Varying amounts of labeled test antigen were added to show binding and to estimate relative affinities of the different scFvs. FIGS. 23A-D show the ELISA binding data for four exemplary dual-binding scFvs AF635 (SEQ ID NO: 216), AF636 (SEQ ID NO: 217), AF666 (SEQ ID NO: 218) and AF614 (SEQ ID NO: 219). All four antibodies show binding to both PD-L1 and IL-15, with binding to PD-L1 detectable at a lower concentration of the antigen. Protein complex sequences are summarized in TABLE 27 below.









TABLE 27







DBA-cytokine protein complexes,


and control protein complexes











Protein
SEQ ID




Complex
NO:
Sequence







AF33
SEQ ID
EVQLVESGGGLVQPGGSLRL




NO: 298
SCAASGFNIKDTYIHWVRQA





PGKGLEWVARIYPTNGYTRY





ADSVKGRFTISADTSKNTAY





LQMNSLRAEDTAVYYCSRWG





GDGFYAMDYWGQGTLVTVSS





AKTTAPSVYPLAPVCGDTTG





SSVTLGCLVKGYFPEPVTLT





WNSGSLSSGVHTFPAVLQSD





LYTLSSSVTVTSSTWPSQSI





TCNVAHPASSTKVDKKIEPR





GPTIKPCPPCKCPAPNAAGG





PSVFIFPPKIKDVLMISLSP





IVTCVVVDVSEDDPDVQISW





FVNNVEVHTAQTQTHREDYN





STLRVVSALPIQHQDWMSGK





EFKCKVNNKDLGAPIERTIS





KPKGSVRAPQVYVLPPPEEE





MTKKQVTLTCMVTDFMPEDI





YVEWTNNGKT





ELNYKNTEPVLDSDGSYFMY





SKLRVEKKNWVERNSYSCSV





VHEGLHNHHTTKSFSRTPGK





GGGSGGGSHHHHHH








SEQ ID
ITCPPPMSVEHADIWVKSYS




NO: 299
LYSRERYICNSGFKRKAGTS





SLTECVLNKATNVAHWTTPS





LKCIRDPALVHQRPAPPSGG





SGGGGSGGGSGGGGSLQNWV





NVISDLKKIEDLIQSMHIDA





TLYTESDVHPSCKVTAMKCF





LLELQVISLESGDASIHDTV





ENUILANNSLSSNGNVTESG





CKECEELEEKNIKEFLQSFV





HIVQMFINTSGGGGSGGGGS





GGGGSGGGGSDIQMTQSPSS





LSASVGDRVTITCRASQDVN





TAVAWYQQKPGKAPKLLIYS





ASFLYSGVPSRFSGSRSGTD





FTLTISSLQPEDFATYYCQQ





HYTTPPTFGQGTKVEIKRAD





AAPTVSIFPPSSEQLTSGGA





SVVCFLNNFYPKDINVKWKI





DGSERQNGVLNSWTDQDSKD





STYSMSSTLTLTKDEYERHN





SYTCEATHKTSTSPIVKSFN





RNEC







AF35
SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 63
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAEIMRSFSLSTNLQES





LRSKEGGGGSGGGGSGGGGS





GGGGSEVQLVESGGGLVQPG





GSLRLSCAASGFNIKDTYIH





WVRQAPGKGLEWVARIYPTN





GYTRYADSVKGRFTISADTS





KNTAYLQMNSLRAEDTAVYY





CSRWGGDGFYAMDYWGQGTL





VTVSSAKTTAPSVYPLAPVC





GDTTGSSVTLGCLVKGYFPE





PVTLTWNSGSLSSGVHTFPA





VLQSDLYTLSSSVTVTSSTW





PSQSITCNVAHPASSTKVDK





KIEPRGPTIKPCPPCKCPAP





NAAGGPSVFIFPPKIKDVLM





ISLSPIVTCVVVDVSEDDPDV





QISWFVNNVEVHTAQTQTHR





EDYNSTLRWSALPIQHQDWM





SGKEFKCKVNNKDLGAPIER





TISKPKGSVRAPQVYVLPPP





EEEMTKKQVTLTCMVTDFMP





EDIYVEWTNNGKTELNYKNT





EPVLDSDGSYFMYSKLRVEK





KNWVERNSYSCSVVHEGLHN





HHTTKSFSRTPGK








SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 64
ITCRASQDVNTAVAWYQQKP





GKAPKLLIYSASFLYSGVPS





RFSGSRSGTDFTLTISSLQP





EDFATYYCQQHYTTPPTFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







AF635
SEQ ID
MSTSTEQKLISEEDLQVQLV




NO: 216
QSGAEVKKPGASVKVSCKAS





GYTFTGYYIHWVRQAPGQGL





EWMGIINPSGGSTRYAQKFQ





GRVTMTRDTSTSTVYMELSS





LRSEDTAVYYCARSLFPTIF





GVEVAFDIWGQGTLVTVSSA





SGGGGSGGGGSGGGGSHASD





IQMTQSPSSLSASVGDRVTI





TCRASQSIRTYLNWYQQKPG





KAPKLLIYSASNLQSGVPSR





FSGSGSGTDFTLTISSLQPE





DFATYYCQQANSFPFTFGPG





TKVDIKGKPIPNPLLGLDST







AF636
SEQ ID
MSTSTEQKLISEEDLQVQLV




NO: 217
QSGAEVKKPGASVKVSCKAS





GYSFTSYYLHWVRQAPGQGL





EWMGRISPRSGGTKNAQNFQ





GRVTMTRDTSTSTVYMELSS





LRSEDTAVYYCVRSLFPTIF





GVEVAFDIWGQGTLVTVSSA





SGGGGSGGGGSGGGGSHASD





IQMTQSPSSLSASVGDRVTI





TCRASQSISSWLAWYQQKPG





KAPKLLIYYASSLQSGVPSR





FSGSGSGTDFTLTISSLQPE





DFATYYCQQGYQYPYTFGQG





TKLEIKGKPIPNPLLGLDST







AF666
SEQ ID
MSTSTEQKLISEEDLQVQLV




NO: 218
QSGAEVKKPGASVKVSCKAS





GYTFSTYYIHWVRQAPGQGL





EWMGWMNPNSGNTGYAQTFQ





GRVTMTRDTSTSTVYMELSS





LRSEDTAVYYCARSLFPTIF





GVEVAFDIWGQGTLVTVSSA





SGGGGSGGGGSGGGGSHASD





IQMTQSPSSLSASVGDRVTI





TCRASQSISSYLNWYQQKPG





KAPKLLIYAASSLQSGVPSR





FSGSGSGTDFTLTISSLQPE





DFATYYCQQGYSTPRTFGQG





TKVEIKGKPIPNPLLGLDST







AF614
SEQ ID
MSTSTEQKLISEEDLQVQLV




NO: 219
QSGAEVKKPGASVKVSCKAS





GYTFTNYYMHWVRQAPGQGL





EWMGWMNPNSGNTGYAQKFQ





GRVTMTRDTSTSTVYMELSS





LRSEDTAVYYCARSLFPTIF





GVEVAFDIWGQGTLVTVSSA





SGGGGSGGGGSGGGGSHASD





IQMTQSPSSLSASVGDRVTI





TCRASQSISSYLNWYQQKPG





KAPKLLIYAASSLQSGVPSR





FSGSGSGTDFTLTISSLQPE





DFATYYCQQSYSTPRTFGQG





TKLEIKGKPIPNPLLGLDST










Example 30
Regulated IL-2 Receptor Signaling by a PD-L1/IL-15 Dual Binding Antibody (DBA) Cytokine Complex

This example describes regulated IL-15 activity in a reporter cell line by PD-L1/IL-15 DBA-cytokine complexes. HEK-Blue™ IL-2 reporter cells (Invivogen Catalog #hkb-il2) were grown according to the vendors instructions. The cells express IL-2 receptor and respond to IL-2 or IL-15 signaling by induction of an enzyme that can be read with a colorimetric assay. The exemplary dual-binding scFv sequences AF635 (SEQ ID NO: 216), AF636 (SEQ ID NO: 217), AF666 (SEQ ID NO: 218) and AF614 (SEQ ID NO: 219) described in EXAMPLE 29 and TABLE 28, were used to assemble scFv DBA-cytokine complexes AF4455 (SEQ ID NO: 220), AF4456 (SEQ ID NO: 221), AF4457 (SEQ ID NO: 222), and AF4440 (SEQ ID NO: 223) respectively. Two monospecific anti-IL-15 scFv sequences were assembled into cytokine-scFv complexes AF4478 (SEQ ID NO: 224) and AF4479 (SEQ ID NO: 225) to serve as negative controls. Protein complex sequences are provided in TABLE 28 below. The proteins were expressed using a PUREfrex2.1 cell-free transcription/translation system. 384-well ELISA plates (Corning 3700) were coated with 25 microliters per well of 1 microgram per ml anti-V5 antibody (SV5-pk1) in 100 mM bicarbonate solution pH 9.0 overnight at 4° C. The plates were washed three times with 100 microliters PBS+ Tween and once with 50 ul/well of SuperBlock. The PUREfrex reactions for each sample were diluted 1:2,160 in Superblock, added to the anti-V5-coated plates at 20 μl/well and incubated for 1 hour at room temperature to capture a uniform quantity of the scFv protein on the plate. Each plate was then washed three times with PBS with 0.05% Tween 20 (PBST). PDL-1 protein (Acro Biosystems Product #PD1-H5358) or Fc protein (Acro Biosystems Product #FCC-H5214) was diluted in growth media (DMEM complete) to 2-fold higher than the final concentration and 12.5 microliters added per well. After a 15 minute incubation 12.5 microliters of HEK-Blue™ IL-2 reporter cells (12,500 cells) were added to each well and incubated overnight. Five microliters from each well was transferred to a new plate containing 45 microliters of QuantiBlue solution (Invivogen Product #rep-qbs). After 30 to 60 minutes the absorbance at 630 nm was determined using a Perkin-Elmer Envision.









TABLE 28







DBA-cytokine protein complexes,


and control protein complexes











Protein
SEQ ID




Complex
NO:
Sequence







AF4455
SEQ ID
MSTSTITCPPPMSVEHADIW




NO: 220
VKSYSLYSRERYICNSGFKR





KAGTSSLTECVLNKATNVAH





WTTPSLKCIRDPALVHQRPA





PPSGGSGGGGSGGGSGGGGS





LQNWVNVISDLKKIEDLIQS





MHIDATLYTESDVHPSCKVT





AMKCFLLELQVISLESGDAS





IHDTVENLIILANNSLSSNG





NVTESGCKECEELEEKNIKE





FLQSFVHIVQMFINTSGGSG





SGSGGSGGSGSGGSGSQVQL





VQSGAEVKKPGASVKVSCKA





SGYTFTGYYIHWVRQAPGQG





LEWMGIINPSGGSTRYAQKF





QGRVTMTRDTSTSTVYMELS





SLRSEDTAVYYCARSLFPTI





FGVEVAFDIWGQGTLVTVSS





ASGGGGSGGGGSGGGGSHAS





DIQMTQSPSSLSASVGDRVT





ITCRASQSIRTYLNWYQQKP





GKAPKLLIYSASNLQSGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQANSFPFTFGP





GTKVDIKAAAGSGSEQKLIS





EEDLGKPIPNPLLGLDSTNA







AF4456
SEQ ID
MSTSTITCPPPMSVEHADIW




NO: 221
VKSYSLYSRERYICNSGFKR





KAGTSSLTECVLNKATNVAH





WTTPSLKCIRDPALVHQRPA





PPSGGSGGGGSGGGSGGGGS





LQNWVNVISDLKKIEDLIQS





MHIDATLYTESDVHPSCKVT





AMKCFLLELQVISLESGDAS





IHDTVENLIILANNSLSSNG





NVTESGCKECEELEEKNIKE





FLQSFVHIVQMFINTSGGSG





SGSGGSGGSGSGGSGSQVQL





VQSGAEVKKPGASVKVSCKA





SGYSFTSYYLHWVRQAPGQG





LEWMGRISPRSGGTKNAQNF





QGRVTMTRDTSTSTVYMELS





SLRSEDTAVYYCVRSLFPTI





FGVEVAFDIWGQGTLVTVSS





ASGGGGSGGGGSGGGGSHAS





DIQMTQSPSSLSASVGDRVT





ITCRASQSISSWLAWYQQKP





GKAPKLLIYYASSLQSGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQGYQYPYTFGQ





GTKLEIKAAAGSGSEQKLIS





EEDLGKPIPNPLLGLDSTNA







AF4457
SEQ ID
MSTSTITCPPPMSVEHADIW




NO: 222
VKSYSLYSRERYICNSGFKR





KAGTSSLTECVLNKATNVAH





WTTPSLKCIRDPALVHQRPA





PPSGGSGGGGSGGGSGGGGS





LQNWVNVISDLKKIEDLIQS





MHIDATLYTESDVHPSCKVT





AMKCFLLELQVISLESGDAS





IHDTVENLIILANNSLSSNG





NVTESGCKECEELEEKNIKE





FLQSFVHIVQMFINTSGGSG





SGSGGSGGSGSGGSGSQVQL





VQSGAEVKKPGASVKVSCKA





SGYTFSTYYIHWVRQAPGQG





LEWMGWMNPNSGNTGYAQTF





QGRVTMTRDTSTSTVYMELS





SLRSEDTAVYYCARSLFPTI





FGVEVAFDIWGQGTLVTVSS





ASGGGGSGGGGSGGGGSHAS





DIQMTQSPSSLSASVGDRVT





ITCRASQSISSYLNWYQQKP





GKAPKLLIYAASSLQSGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQGYSTPRTFGQ





GTKVEIKAAAGSGSEQKLIS





EEDLGKPIPNPLLGLDSTNA







AF4440
SEQ ID
MSTSTITCPPPMSVEHADIW




NO: 223
VKSYSLYSRERYICNSGFKR





KAGTSSLTECVLNKATNVAH





WTTPSLKCIRDPALVHQRPA





PPSGGSGGGGSGGGSGGGGS





LQNWVNVISDLKKIEDLIQS





MHIDATLYTESDVHPSCKVT





AMKCFLLELQVISLESGDAS





IHDTVENLIILANNSLSSNG





NVTESGCKECEELEEKNIKE





FLQSFVHIVQMFINTSGGSG





SGSGGSGGSGSGGSGSQVQL





VQSGAEVKKPGASVKVSCKA





SGYTFTNYYMHWVRQAPGQG





LEWMGWMNPNSGNTGYAQKF





QGRVTMTRDTSTSTVYMELS





SLRSEDTAVYYCARSLFPTI





FGVEVAFDIWGQGTLVTVSS





ASGGGGSGGGGSGGGGSHAS





DIQMTQSPSSLSASVGDRVT





ITCRASQSISSYLNWYQQKP





GKAPKLLIYAASSLQSGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQSYSTPRTFGQ





GTKLEIKAAAGSGSEQKLIS





EEDLGKPIPNPLLGLDSTNA







AF4478
SEQ ID
MSTSTITCPPPMSVEHADIW




NO: 224
VKSYSLYSRERYICNSGFKR





KAGTSSLTECVLNKATNVAH





WTTPSLKCIRDPALVHQRPA





PPSGGSGGGGSGGGSGGGGS





LQNWVNVISDLKKIEDLIQS





MHIDATLYTESDVHPSCKVT





AMKCFLLELQVISLESGDAS





IHDTVENLIILANNSLSSNG





NVTESGCKECEELEEKNIKE





FLQSFVHIVQMFINTSGGSG





SGSGGSGGSGSGGSGSQVQL





VQSGAEVKKPGASVKVSCKA





SGYTFTGYYIHWVRQAPGQG





LEWMGWMNPNSGNTGYAQKF





QGRVTMTRDTSTSTVYMELS





SLRSEDTAVYYCARSLFPTI





FGVEVAFDIWGQGTLVTVSS





ASGGGGSGGGGSGGGGSHAS





DIQMTQSPSSLSASVGDRVT





ITCRASRSISSYLNWYQQKP





GKAPKLLIYAASSLQSGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQSYSTPRTFGQ





GTKVEIKAAAGSGSEQKIIS





EEDLGKPIPNPLLGLDSTNA







AF4479
SEQ ID
MSTSTITCPPPMSVEHADIW




NO: 225
VKSYSLYSRERYICNSGFKR





KAGTSSLTECVLNKATNVAH





WTTPSLKCIRDPALVHQRPA





PPSGGSGGGGSGGGSGGGGS





LQNWVNVISDLKKIEDLIQS





MHIDATLYTESDVHPSCKVT





AMKCFLLELQVISLESGDAS





IHDTVENLIILANNSLSSNG





NVTESGCKECEELEEKNIKE





FLQSFVHIVQMFINTSGGSG





SGSGGSGGSGSGGSGSQVQL





VQSGAEVKKPGSSVKVSCKA





SGYSFTDYYVHWVRQAPGQG





LEWVGGINPKRGDTVFAQKF





QGRVTITADESTSTAYMELS





SLRSEDTAVYYCARGGLGVF





GVVDVWGQGTTVTVSSASGG





GGSGGGGSGGGGSHASDIVM





TQSPLSLPVTPGEPASISCR





SSQSLLHSNGYNYLDWYLQK





PGQSPQLLIYAATTLQSGVP





DRFSGSGSGTDFTLKISRVE





AEDVGVYYCMQALQTPLTFG





GGTKLEIKAAAGSGSEQKLI





SEEDLGKPIPNPLLGLDST










The results are shown in FIGS. 24A-F. IL-15 activity increased in a dose dependent manner with the addition of PD-L1 (circles) but not with the addition of Fc protein (squares) for DBA-cytokine complexes AF4455 (SEQ ID NO: 220), AF4456 (SEQ TD NO: 221), AF4457 (SEQ TD NO: 222) and AF4440 (SEQ IDF: 223). IL-15 activity from the monospecific IL-15 scFv cytokine complexes AF4478 (SEQ TD NO: 224) and AF4479 (SEQ TD NO: 225) did not change with the addition of PD-L1 or Fc protein.


The exemplary dual-binding antibody sequences from AF614 (SEQ TD NO: 219) and AF666 (SEQ TD NO: 218) were assembled into asymmetric IgG molecules with IL-15 appended to the N-terminus of one heavy chain through a flexible linker (as shown schematically in FIG. 9b) to create AF4591 (SEQ TD NO: 226-228) and AF4592 (SEQ TD NO: 229-231) respectively. Two controls were assembled in the same format from an anti-G-15 antibody (AF4659, SEQ ID NO: 232-234) and a PDL1-IFN dual-binding antibody (AF4660, SEQ TD NO: 235-237). Protein complex sequences are summarized in TABLE 29. The proteins were expressed in mammalian cells and purified using standard protocols. The four antibody-cytokine complexes were assayed for IL-15 activity using HEK-Blue™ IL-2 reporter cells in an assay similar to that described above, with the exception that all of the proteins were in solution in the growth media. The purified antibody-cytokine complexes were diluted to a final concentration of 100 pM and assayed in varying concentrations of PD-L1 or a control IgG1 antibody.









TABLE 29







DBA-cytokine protein complexes,


and control protein complexes











Protein
SEQ ID




Complex
NO:
Sequence







AF4591
SEQ ID
ITCPPPMSVEHADIWVKSYS




NO: 226
LYSRERYICNSGFKRKAGTS





SLTECVLNKATNVAHWTTPS





LKCIRDPALVHQRPAPPSGG





SGGGGSGGGSGGGGSLQNW





VNVISDLKKIEDLIQSMHID





ATLYTESDVHPSCKVTAMKC





FLLELQVISLESGDASIHDT





VENLIILANNSLSSNGNVTE





SGCKECEELEEKNIKEFLQS





FVHIVQMFINTSGGGGSGGG





GSGGGGSGGGGSQVQLVQSG





AEVKKPGASVKVSCKASGYT





FTNYYMHWVRQAPGQGLEWM





GWMNPNSGNTGYAQKFQGRV





TMTRDTSTSTVYMELSSLRS





EDTAVYYCARSLFPTIFGVE





VAFDIWGQGTLVTVSSAKTT





APSVYPLAPVCGDTTGSSVT





LGCLVKGYFPEPVTLTWNSG





SLSSGVHTFPAVLQSDLYTL





SSSVTVTSSTWPSQSITCNV





AHPASSTKVDKKIEPRGPTI





KPCPPCKCPAPNAAGGPSVF





IFPPKIKDVLMISLSPIVTC





VVVDVSEDDPDVQISWFVNN





VEVHTAQTQTHREDYNSTLR





WSALPIQHQDWMSGKEFKCK





VNNKDLGAPIERTISKPKGS





VRAPQVYVLPPPEEEMTKKQ





VTLTCMVTDFMPEDIYVEWT





NNGKTELNYKNTEPVLDSDG





SYFMYSDLRVEKKNWVERNS





YSCSVVHEGLHNHHTTESFS





RTPGK








SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 227
SCKASGYTFTNYYMHWVRQA





PGQGLEWMGWMNPNSGNTGY





AQKFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCARSL





FPTIFGVEVAFDIWGQGTLV





TVSSAKTTAPSVYPLAPVCG





DTTGSSVTLGCLVKGYFPEP





VTLTWNSGSLSSGVHTFPAV





LQSDLYTLSSSVTVTSSTWP





SQSITCNVAHPASSTKVDKK





IEPRGPTIKPCPPCKCPAPN





AAGGPSVFIFPPKIKDVLMI





SLSPIVTCVVVDVSEDDPDV





QISWFVNNVEVHTAQTQTHR





EDYNSTLRVVSALPIQHQDW





MSGKEFKCKVNNKDLGAPIE





RTISKPKGSVRAPQVYVLPP





PEKEMTKKQVSLTCLVKDFM





PEDIYVEWTNNGKTELNYKN





TEPVLKSDGSYFMYSKLTVE





KKNWVERNSYSCSVVHEGLH





NHHTTKSFSRTPGK








SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 228
ITCRASQSISSYLNWYQQKP





GKAPKLLIYAASSLQSGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQSYSTPRTFGQ





GTKLEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







AF4592
SEQ ID
ITCPPPMSVEHADIWVKSYS




NO: 229
LYSRERYICNSGFKRKAGTS





SLTECVLNKATNVAHWTTPS





LKCIRDPALVHQRPAPPSGG





SGGGGSGGGSGGGGSLQNWV





NVISDLKKIEDLIQSMHIDA





TLYTESDVHPSCKVTAMKCF





LLELQVISLESGDASIHDTV





ENLIILANNSLSSNGNVTES





GCKECEELEEKNIKEFLQSF





VHIVQMFINTSGGGGSGGGG





SGGGGSGGGGSQVQLVQSGA





EVKKPGASVKVSCKASGYTF





STYYIHWVRQAPGQGLEWMG





WMNPNSGNTGYAQTFQGRVT





MTRDTSTSTVYMELSSLRSE





DTAVYYCARSLFPTIFGVEV





AFDIWGQGTLVTVSSAKTTA





PSVYPLAPVCGDTTGSSVTL





GCLVKGYFPEPVTLTWNSGS





LSSGVHTFPAVLQSDLYTLS





SSVTVTSSTWPSQSITCNVA





HPASSTKVDKKIEPRGPTIK





PCPPCKCPAPNAAGGPSVFI





FPPKIKDVLMISLSPIVTCV





VVDVSEDDPDVQISWFVNNV





EVHTAQTQTHREDYNSTLRV





VSALPIQHQDWMSGKEFKCK





VNNKDLGAPIERTISKPKGS





VRAPQVYVLPPPEEEMTKKQ





VTLTCMVTDFMPEDIYVEWT





NNGKTELNYKNTEPVLDSDG





SYFMYSDLRVEKKNWVERNS





YSCSVVHEGLHNHHTTESFS





RTPGK








SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 230
SCKASGYTFSTYYIHWVRQA





PGQGLEWMGWMNPNSGNTGY





AQTFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCARSL





FPTIFGVEVAFDIWGQGTLV





TVSSAKTTAPSVYPLAPVCG





DTTGSSVTLGCLVKGYFPEP





VTLTWNSGSLSSGVHTFPAV





LQSDLYTLSSSVTVTSSTWP





SQSITCNVAHPASSTKVDKK





IEPRGPTIKPCPPCKCPAPN





AAGGPSVFIFPPKIKDVLMI





SLSPIVTCVVVDVSEDDPDV





QISWFVNNVEVHTAQTQT





HREDYNSTLRVVSAL





PIQHQDWMSGKEFKCKVNNK





DLGAPIERTISKPKGSVRAP





QVYVLPPPEKEMTKKQVSLT





CLVKDFMPEDIYVEWTNNGK





TELNYKNTEPVLKSDGSYFM





YSKLTVEKKNWVERNSYSCS





VVHEGLHNHHTTKSFSRTPG





K








SEQ ID
DIQMTQSPSSLSASVGDRVTI




NO: 231
TCRASQSISSYLNWYQQKPGK





APKLLIYAASSLQSGVPSRF





SGSGSGTDFTLTISSLQPED





FATYYCQQGYSTPRTFGQGT





KVEIKRADAAPTVSIFPPSS





EQLTSGGASVVCFLNNFYPK





DINVKWKIDGSERQNGVLNS





WTDQDSKDSTYSMSSTLTLT





KDEYERHNSYTCEATHKTST





SPIVKSFNRNEC







AF4659
SEQ ID
ITCPPPMSVEHADIWVKSYS




NO: 232
LYSRERYICNSGFKRKAGTS





SLTECVLNKATNVAHWTTPS





LKCIRDPALVHQRPAPPSGG





SGGGGSGGGSGGGGSLQNWV





NVISDLKKIEDLIQSMHIDA





TLYTESDVHPSCKVTAMKCF





LLELQVISLESGDASIHDTV





ENLIILANNSLSSNGNVTES





GCKECEELEEKNIKEFLQSF





VHIVQMFINTSGGGGSGGGG





SGGGGSGGGGSQVQLVQSGA





EVKKPGASVKVSCKASGDTF





SSYAISWVRQAPGQGLEWMG





WMNPNSGNTGYAQKFQGRVT





MTRDTSTSTVYMELSSLRSE





DTAVYYCATGITMIGYWGQG





TLVTVSSAKTTAPSVYPLAP





VCGDTTGSSVTLGCLVKGYF





PEPVTLTWNSGSLSSGVHTF





PAVLQSDLYTLSSSVTVTSS





TWPSQSITCNVAHPASSTKV





DKKIEPRGPTIKPCPPCKCP





APNAAGGPSVFIFPPKIKDV





LMISLSPIVTCVVVDVSEDD





PDVQISWFVNNVEVHTAQTQ





THREDYNSTLRVVSALPIQH





QDWMSGKEFKCKVNNKDLGA





PIERTISKPKGSVRAPQVYV





LPPPEEEMTKKQVTLTCMVT





DFMPEDIYVEWTNNGKTELN





YKNTEPVLDSDGSYFMYSDL





RVEKKNWVERNSYSCSVVHE





GLHNHHTTESFSRTPGK








SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 233
SCKASGDTFSSYAISWVRQA





PGQGLEWMGWMNPNSGNTGY





AQKFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCATGI





TMIGYWGQGTLVTVSSAKTT





APSVYPLAPVCGDTTGSSVT





LGCLVKGYFPEPVTLTWNSG





SLSSGVHTFPAVLQSDLYTL





SSSVTVTSSTWPSQSITCNV





AHPASSTKVDKKIEPRGPTI





KPCPPCKCPAPNAAGGPSVF





IFPPKIKDVLMISLSPIVTC





VVVDVSEDDPDVQISWFVNN





VEVHTAQTQTHREDYNSTLR





VVSALPIQHQDWMSGKEFKC





KVNNKDLGAPIERTISKPKG





SVRAPQVYVLPPPEKEMTKK





QVSLTCLVKDFMPEDIYVEW





TNNGKTELNYKNTEPVLKSD





GSYFMYSKLTVEKKNWVERN





SYSCSVVHEGLHNHHTTKSF





SRTPGK








SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 234
ITCQASQDISSYLNWYQQKP





GKAPKLLIYAASTLQSGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQSYSTPYTFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







AF4660
SEQ ID
ITCPPPMSVEHADIWVKSYS




NO: 235
LYSRERYICNSGFKRKAGTS





SLTECVLNKATNVAHWTTPS





LKCIRDPALVHQRPAPPSGG





SGGGGSGGGSGGGGSLQNWV





NVISDLKKIEDLIQSMHIDA





TLYTESDVHPSCKVTAMKCF





LLELQVISLESGDASIHDTV





ENLIILANNSLSSNGNVTES





GCKECEELEEKNIKEFLQSF





VHIVQMFINTSGGGGSGGGG





SGGGGSGGGGSQVQLVQSGA





EVKKPGASVKVSCKASGGTF





SSYAISWVRQAPGQGLEWMG





IIDPSMTYTRYAQKFQGRVT





MTRDTSTSTVYMELSSLRSE





DTAVYYCARSLFPTIFGLEV





AFDIWGQGTLVTVSSAKTTA





PSVYPLAPVCGDTTGSSVTL





GCLVKGYFPEPVTLTWNSGS





LSSGVHTFPAVLQSDLYTLS





SSVTVTSSTWPSQSITCNVA





HPASSTKVDKKIEPRGPTIK





PCPPCKCPAPNAAGGPSVFI





FPPKIKDVLMISLSPIVTCV





VVDVSE





DDPDVQISWFVNNVEVHTAQ





TQTHREDYNSTLRVVSALPI





QHQDWMSGKEFKCKVNNKDL





GAPIERTISKPKGSVRAPQV





YVLPPPEEEMTKKQVTLTCM





VTDFMPEDIYVEWTNNGKTE





LNYKNTEPVLDSDGSYFMYS





DLRVEKKNWVERNSYSCSVV





HEGLHNHHTTESFSRTPGK








SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 236
SCKASGGTFSSYAISWVRQA





PGQGLEWMGIIDPSMTYTRY





AQKFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCARSL





FPTIFGLEVAFDIWGQGTLV





TVSSAKTTAPSVYPLAPVCG





DTTGSSVTLGCLVKGYFPEP





VTLTWNSGSLSSGVHTFPAV





LQSDLYTLSSSVTVTSSTWP





SQSITCNVAHPASSTKVDKK





IEPRGPTIKPCPPCKCPAPN





AAGGPSVFIFPPKIKDVLMI





SLSPIVTCVVVDVSEDDPDV





QISWFVNNVEVHTAQTQTHR





EDYNSTLRVVSALPIQHQDW





MSGKEFKCKVNNKDLGAPIE





RTISKPKGSVRAPQVYVLPP





PEKEMTKKQVSLTCLVKDFM





PEDIYVEWTNNGKTELNYKN





TEPVLKSDGSYFMYSKLTVE





KKNWVERNSYSCSVVHEGLH





NHHTTKSFSRTPGK








SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 237
ITCQASQSISNRLAWYQQKP





GKAPKLLIYKASSLESGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQTYSTPITFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC










The results are shown in FIGS. 25A-D. IL-15 activity increased in a dose dependent manner with the addition of PD-L1 but not with the addition of Fc protein for DBA-cytokine complexes AF4591 (SEQ ID NO: 226-228) and AF4592 (SEQ ID NO: 229-231). IL-15 activity from the monospecific IL-15 scFv cytokine complexes AF4659 (SEQ ID NO: 232-234) and AF4660 (SEQ ID NO: 235-237) did not change with the addition of PD-L1 or Fc protein.


Protein complexes of the present invention based on four different PD-L1/IL-15 dual-binding antibodies produced in two different formats showed PD-L1-dependent IL-15 activity.


Example 31
Selection and Binding of IFN and CEA Specific Dual Binding Antibodies

This example describes isolation of sensor domains of the present disclosure, specifically, selection of IFNα and CEA specific dual binding antibodies (DBAs). Anti-CEA and anti-IFNα DBAs were isolated from a Tumbler antibody phage display library similar to the library described in EXAMPLE 1. The antibody phage display library was constructed to incorporate the heavy chain CDR1, heavy chain CDR2, and light chain diversity of the Superhuman 2.0 antibody library combined with various heavy chain (“HC”) CDR3 sequences from anti-IFNα antibodies (TABLE 18). The selection was similar to the protocol described in EXAMPLE 1, using one round of IFNα selection (IFNα2b, GenScript, Z03002, biotinylated using standard protocols) and one round of CEA selection (CEA-hFc, Sino Biologicals, 11077-H02H).









TABLE 18







HC-CDR3 of IFNα binders









SEQ ID




NO
Sequence
Description





SEQ ID

CASGGSYSPWYFDLW

HC-CDR3 of


NO: 238

IFNα binder





SEQ ID

CASLAAAGPYYYYGMDVW

HC-CDR3 of


NO: 239

IFNα binder





SEQ ID

CVSSVGAGAYYYQGLDVW

HC-CDR3 of


NO: 240

IFNα binder





SEQ ID

CARDHDYLTSFGYW

HC-CDR3 of


NO: 241

IFNα binder





SEQ ID

CAFSSPTYYYYYGMDVW

HC-CDR3 of


NO: 242

IFNα binder





SEQ ID

CARVNYDFWSGQSLRFDPW

HC-CDR3 of


NO: 243

IFNα binder





SEQ ID

CATIKGLGAYYYYGMDVW

HC-CDR3 of


NO: 244

IFNα binder





SEQ ID

CASDHGWLDAFDIW

HC-CDR3 of


NO: 245

IFNα binder





SEQ ID

CARDWYGDYFDYW

HC-CDR3 of


NO: 246

IFNα binder





SEQ ID

CARGILSDYGDHAFDYW

HC-CDR3 of


NO: 247

IFNα binder





SEQ ID

CARVDSSSSLHFDYW

HC-CDR3 of


NO: 248

IFNα binder





SEQ ID

CARTSGYDLLFDYW

HC-CDR3 of


NO: 249

IFNα binder





SEQ ID

CARVGGWGIYYYYGMDVW

HC-CDR3 of


NO: 250

IFNα binder





SEQ ID

CARDPSYSTGYYDYW

HC-CDR3 of


NO: 251

IFNα binder





SEQ ID

CARGSRADYW

HC-CDR3 of


NO: 252

IFNα binder









Following two rounds of selection in phage, the resulting library of DBAs was subcloned into a yeast surface display vector and transformed into yeast for further screening using standard protocols. The yeast library was sorted four times for binding to CEA and IFNα. In each round of sorting, the library was labeled with either CEA-Fc-biotin or IFNα-biotin, then with Streptavidin-PE (Abcam #ab239759), and sorted based on PE fluorescence on a Sony MA900 cell sorter. The four sorts were carried out with labelling at 100 nM CEA-Fc-biotin, 1000 nM IFNα-biotin, 10 nM CEA-Fc-biotin, and 20 nM CEA-Fc-biotin. Plasmids were rescued from the yeast after the final sort using a Zymoprep Yeast Plasmid Miniprep II kit (Zymo research D2004) and transformed into DH5a E. coli for cloning. Ninety-six colonies were picked for Sanger sequencing, from which thirty-four unique clones were identified and screened for IFNα and CEA binding. The scFv DNA sequence for each clone, including c-myc and V5 tags, was amplified by PCR using a forward primer containing a T7 promoter and a translation initiation site, and a reverse primer containing a T7 terminator. Proteins were expressed using the PUREfrex2.1 cell-free transcription/translation system as described in previous examples. The scFv samples were subjected to ELISA analysis to detect CEA and IFNα binding. In these experiments, wells of a 384-well plate are coated with an anti-V5 antibody (Sv5-Pk1, BioRad) at 1 ug/ml overnight at 4 degrees. After washing, wells are blocked with SuperBlock (ThermoFisher, 37515) followed by addition of saturating levels of scFvs in SuperBlock. After washing, antigens are added and plates incubated for one hour. Biotinylated IFNα is detected using streptavidin HRP and CEA-Fc is detected using anti-hFc-HRP, and developed using standard methods. Varying amounts of labelled test antigen were added to show binding and to estimate relative affinities of the different scFvs. FIG. 26 shows the ELISA binding data for five exemplary dual-binding scFvs binding to CEA. Because the binding affinity for IFNα was too low to detect by ELISA, the binding to IFNα was measured by Biolayer Interferometry (OctetRED96e) as described in Example 5. Results are tabulated in TABLE 19. All five show binding to both CEA and IFN, with binding to CEA detectable at a lower concentration of the antigen.









TABLE 19 







Anti-IFNα Binding Results












IFNα






binding





CloneID
(@5 uM)
ELISA
SEQUENCES
HC-CDR3














8b2_A09
+

(SEQ ID NO: 253)
SEQ ID





MSTSTEVQLLESGGGLVQPG
NO: 240





GSLRLSCAASGFTFSSYAMH






WVRQAPGKGLEWVSAIGAGG






GTYYADSVKGRFTISRDDSK






NTLYLQMNSLKTEDTAVYYC






VSSVGAGAYYYQGLDVWGQG






TLVTVSSASGGGGSGGGGSG






GGGSHASDIQMTQSPSSLSA






SVGDRVTITCRASQDIFTYL






NWYQQRPGKAPKLLIYDASR






LQTGVPSRFSGSGSGTDFTL






TISSLQPEDFATYYCQQSYS






IPYTFGQGTKLEIKRAAAGS






GSEQKLISEEDLGKPIPNPL






LLGDST






8b2_B10
+

(SEQ ID NO: 254)
SEQ ID





MSTSTEVQLLESGAEVKKPG
NO: 240





GSLRLSCAASGFTVSSNYMS






WVRQAPGKGLEWVSAISGSG






GSTYYADFVKGRFTISRDNS






KNTLYLQMNSLRAEDTAVYY






CVSSVGAGAYYYQGLDVWGQ






GTLVTVSSASGGGGSGGGGS






GGGGSHASDIQMTQSPSSLS






ASVGDRVTITCRASQGVGNF






LAWYQQKPGKAPKLLIYGAS






TLQSGVPSRFSGSGSGTDFT






LTISSLQPEDFATYYCOQSY






STPFTFGGGTKLEIKRAAAG






SGSEQKLISEEDLGKPIPNP






LLGLDST






8b2_C02
+








8b2_C03
+








8b2_C08
+

(SEQ ID NO: 256)
SEQ ID





MSTSTEVQLLESGAEVKKPG
NO: 248





GSLRLSCAASGFTFSSYAMS






WVRQAPGKGLEWVSAISGS






GGSTYYADSVKGRFTIS






RDNSKNTLYLQMNSLRAEDT






AVYYCARVDSSSSLHFDYWG






QGTLVTVSSASGGGGSGGGG






SGGGGSHASDIQMTQSPSSL






SASVGDRVTITCRASQRIGT






YLNWYQQKPGKAPKLLIYAA






SNLQSGVPSRFSGSGSGTDF






TLTISSLQPEDFATYYCLQT






FNTPFTFGPGTKVDTKRAAA






GSGSEQKLISEEDLGKPIPN






PLLGLDST






AF317
(KD <
+++
(SEQ ID NO: 257)
SEQ ID



10 nM)

MSTSTEQKLISEEDLQVQLV
NO: 244





QSGAEVKKPGASVKVSCKAS






GYSFTSYDINWVRQAPGQGL






EWIGMINPSSGFTSA






AQTFQGRVTMT






RDTSTSTVYMELSSLRSEDT






AVYYCATIKGLGAYYYYGMD






VWGQGTTVTVSSASGGGGSG






GGGSGGGGSHASDIQMTQSP






SSLSASVGDRVTITCRASQS






IDRYLNWYQQKPGKAPKLLI






YAASSLQSGVPSRFSGSGSG






TDFTLTISSLQPEDFATYYC






QQSYSPPLTFGGGTKVEIKG






SGLNDIFEAQKIEWFIEGKP






IPNPLLGLDST






AF372


(SEQ ID NO: 258)






MSTSTEQKLISEEDLEVQLV






ESGGGLVQPGGSLRLSCAAS






GFNIKDTYIHWVRQAPGKGL






EWVARIYPTNGYTRYADSVK






GRFTISADTSKNTAYLQMNS






LRAEDTAVYYCSRWGGDGFY






AMDYWGQGTLVTVSSASGGG






GSGGGGSGGGGSHASDIQMT






QSPSSLSASVGDRVTITCRA






SQDVNTAVAWYQQKPGKAPK






LLIYSASFLYSGVPSRFSGS






RSGTDFTLTISSLQPEDFAT






YYCQQHYTTPPTFGQGTKVE






IKGSGLNDIFEAQKIEWHEG






KPIPNPLLGLDST









Example 32
Regulated IFNAR2 (IFNα Receptor 2) Binding by a CEA-IFNα Dual Binding Antibody (DBA) Cytokine Complex

This example describes regulated binding of IFN to the receptor IFNAR2 by CEA/IFN DBA-cytokine complexes in the form shown in FIG. 8. DBA-cytokine complexes of SEQ ID NO: 259, SEQ ID NO: 260 and SEQ ID NO: 261 were chosen for analysis with a negative control with a similar structure based on an IFNα monospecific binding scFv (SEQ ID NO: 300) and two non-IFNα binding scFvs (one with SEQ ID NO: 301 and one with SEQ ID NO: 302). DBA-cytokine complex and control protein complex sequences are summarized in TABLE 30. To test the ability of Carcino Embryonic Antigen (CEA) to regulate the binding of IFNAR2, V5-tagged constructs were generated consisting of a CEA-IFN-α DBA scFv linked to IFN-α. scFvs were synthesized using the PUREfrex 2.1 in vitro translation system and added to a 384 well plate at a single dilution. Titrating concentrations of either CEA-Fc (SINO Biological) or PDL1-Fc (ACROBiosystems) were added, and the plate was incubated for 30 minutes at room temperature. Eu-labeled IFNAR2 (ACROBiosystems) and Alexa Fluor 647-labeled anti-V5 antibody (Perkin Elmer) were added to all wells and incubated for 24 hours at room temperature. The HTRF signal was then read on an Envision 2105 microplate reader (Perkin Elmer). IFNAR2 was able to bind IFN-α on the DBA-scFv complex in the presence of increasing concentrations of CEA-Fc. No increase in IFNAR2 binding was seen in the presence of the PD-L1-Fc control protein, which does not bind the DBA-scFv protein complex. Results shown in FIGS. 27A-F demonstrate IFNAR2 binding increased in a dose dependent manner with the addition of CEA but not with the addition of control protein PDL1 for DBA-cytokine complexes of SEQ ID NO: 259 (FIG. 27A), SEQ ID NO: 260 (FIG. 27B) and SEQ ID NO: 261 (FIG. 27C). IFNAR2 binding from the monospecific IFN scFv cytokine complexes did not change with the addition of CEA or PD-L1.









TABLE 30







DBA-cytokine protein complexes,


and control protein complexes











Protein
SEQ ID




Complex
NO:
Sequence







DBA-
SEQ ID
MSTSTCDLPQTHSLGSRRTL



cytokine
NO: 259
MLLAQMRRISLFSCLKDRHD



complex

FGFPQEEFGNQFQKAETIPV





LHEMIQQIFNLFSTKDSSAA





WDETLLDKFYTELYQQLNDL





EACVIQGVGVTETPLMKEDS





ILAVRKYFQRITLYLKEKKY





SPCAWEVVRAEIMRSFSLST





NLQESLRSKEGGSGSGSGGS





GGSGSGGSGSEVQLLESGGG





LVQPGGSLRLSCAASGFTFS





SYAMHWVRQAPGKGLEWVSA





IGAGGGTYYADSVKGRFTIS





RDDSKNTLYLQMNSLKTEDT





AVYYCVSSVGAGAYYYQGLD





VWGQGTLVTVSSASGGGGSG





GGGSGGGGSHASDIQMTQSP





SSLSASVGDRVTITCRASQD





IFTYLNWYQQRPGKAPKLLI





YDASRLQTGVPSRFSGSGSG





TDFTLTISSLQPEDFATYYC





QQSYSIPYTFGQGTKLEIKR





AAAGSGSEQKLISEEDLGKP





IPNPLLGLDST







DBA-
SEQ ID
MSTSTCDLPQTHSLGSRRTL



cytokine
NO: 260
MLLAQMRRISLFSCLKDRHD



complex

FGFPQEEFGNQFQKAETIPV





LHEMIQQIFNLFSTKDSSAA





WDETLLDKFYTELYQQLNDL





EACVIQGVGVTETPLMKEDS





ILAVRKYFQRITLYLKEKKY





SPCAWEVVRAETMRSFSLST





NLQESLRSKEGGSGSGSGGS





GGSGSGGSGSEVQLLESGAE





VKKPGGSLRLSCAASGFTVS





SNYMSWVRQAPGKGLEWVSA





ISGSGGSTYYADFVKGRFTI





SRDNSKNTLYLQMNSLRAED





TAVYYCVSSVGAGAYYYQGL





DVWGQGTLVTVSSASGGGGS





GGGGSGGGGSHASDIQMTQS





PSSLSASVGDRVTITCRASQ





GVGNFLAWYQQKPGKAPKLL





IYGASTLQSGVPSRFSGSGS





GTDFTLTISSLQPEDFATYY





CQQSYSTPFTFGGGTKLEIK





RAAAGSGSEQKLISEEDLGK





PIPNPLLGLDST







DBA-
SEQ ID
MSTSTCDLPQTHSLGSRRTL



cytokine
NO: 261
MLLAQMRRISLFSCLKDRHD



complex

FGFPQEEFGNQFQKAETIPV





LHEMIQQIFNLFSTKDSSAA





WDETLLDKFYTELYQQLNDL





EACVIQGVGVTETPLMKEDS





ILAVRKYFQRITLYLKEKKY





SPCAWEVVRAEIMRSFSLST





NLQESLRSKEGGSGSGSGGS





GGSGSGGSGSEVQLLESGAE





VKKPGGSLRLSCAASGFTFS





SYAMSWVRQAPGKGLEWVSA





ISGSGGSTYYADSVKGRFTI





SRDNSKNTLYLQMNSLRAED





TAVYYCARVDSSSSLHFDYW





GQGTLVTVSSASGGGGSGGG





GSGGGGSHASDIQMTQSPSS





LSASVGDRVTTTCRASQRIG





TYLNWYQQKPGKAPKLLIYA





ASNLQSGVPSRFSGSGSGTD





FTLTISSLQPEDFATYYCLQ





TFNTPFTFGPGTKVDIKRAA





AGSGSEQKLISEEDLGKPIP





NPLLGLDST







AF2589
SEQ ID
MSTSTCDLPQTHSLGSRRTL




NO: 300
MLLAQMRRISLFSCLKDRHD





FGFPQEEFGNQFQKAETIPV





LHEMIQQIFNLFSTKDSSAA





WDETLLDKFYTELYQQLNDL





EACVIQGVGVTETPLMKEDS





ILAVRKYFQRITLYLKEKKY





SPCAWEVVRAEIMRSFSLST





NLQESLRSKEGGGGSGGGGS





GGGGSGGGGSQVQLVQSGAE





VKKPGASVKVSCKASGYSFT





SYDINWVRQAPGQGLEWIGM





INPSSGFTSAAQTFQGRVTM





TRDTSTSTVYMELSSLRSED





TAVYYCATIKGLGAYYYYGM





DVWGQGTTVTVSSASGGGGS





GGGGSGGGGSHASDIQMTQS





PSSLSASVGDRVTITCRASQ





SIDRYLNWYQQKPGKAPKLU





YAASSLQSGVPSRFSGSGSG





TDFTLTISSLQPEDFATYYC





QQSYSPPLTFGGGTKVEIKG





KPIPNPLLGLDST







AF2592
SEQ ID
MSTSTCDLPQTHSLGSRRTL




NO: 301
MLLAQMRRISLFSCLKDRHD





FGFPQEEFGNQFQKAETIPV





LHEMIQQIFNLFSTKDSSAA





WDETLLDKFYTELYQQLNDL





EACVIQGVGVTETPLMKEDS





ILAVRKYFQRITLYLKEKKY





SPCAWEVVRAEIMRSFSLST





NLQESLRSKEGGGGSGGGGS





GGGGSGGGGSQVQLVQSGAE





VKKPGASVKVSCKASGGTFS





SYAISWVRQAPGQGLEWMGW





INPNSGGTNYAQKFQGRVTM





TRDTSTSTVYMELSSLRSED





TAVYYCARSLFPTIFGVEVA





FDIWGQGTTVTVSSASGGGG





SGGGGSGGGGSHASDIQMTQ





SPSSLSASVGDRVTITCRAS





QSIIDRLAWYQQKPGKAPKL





LIYKASSLESGVPSRFSGSG





SGTDFTLTISSLQPEDFATY





YCQQSYSTPFTFGPGTKVDI





KGKPIPNPLLGLDST







AF2594
SEQ ID
MSTSTCDLPQTHSLGSRRTL




NO: 302
MLLAQMRRISLFSCLKDRHD





FGFPQEEFGNQFQKAETIPV





LHEMIQQIFNLFSTKDSSAA





WDETLLDKFYTELYQQLNDL





EACVIQGVGVTETPLMKEDS





ILAVRKYFQRITLYLKEKKY





SPCAWEVVRAEIMRSFSLST





NLQESLRSKEGGGGSGGGGS





GGGGSGGGGSEVQLVESGGG





LVQPGGSLRLSCAASGFNIK





DTYIHWVRQAPGKGLEWVAR





IYPTNGYTRYADSVKGRFTI





SADTSKNTAYLQMNSLRAED





TAVYYCSRWGGDGFYAMDYW





GQGTLVTVSSASGGGGSGGG





GSGGGGSHASDIQMTQSPSS





LSASVGDRVTITCRASQDVN





TAVAWYQQKPGKAPKLLIYS





ASFLYSGVPSRFSGSRSGTD





FTLTISSLQPEDFATYYCQQ





HYTTPPTFGQGTKVEIKGKP





IPNPLLGLDST










Example 33
Selection and Binding of LRRC15 and IFNα Specific Dual Binding Antibodies

This example describes isolation of sensor domains of the present disclosure, specifically, selection of LRRC15 and IFNα specific dual binding antibodies (DBAs). Anti-LRRC15 and anti-IFNα DBAs were isolated from the IFNα Tumbler antibody phage display library described in EXAMPLE 31. The selection was similar to the protocol described in EXAMPLE 1, using one round of IFNα selection (IFNα2b, GenScript, Z03002, biotinylated using standard protocols) and one round of LRRC15 selection (LRRC15-hFc, Sino Biologicals, 15786-H02H).


After a first round of selection in phage on 100 nM IFNα and a second round on 100 nM LRRC15, the resulting library of DBAs was subcloned into a yeast surface display vector and transformed into yeast for further screening using standard protocols. The yeast library was sorted four times for binding to LRRC15 and IFNα. In each round of sorting, the library was labeled with either LRRC15-Fc-biotin or IFNα-biotin, then with Streptavidin-PE (Abcam #ab239759) and sorted based on PE fluorescence on a Sony MA900 cell sorter. The four sorts were carried out with labelling at 100 nM LRRC15-Fc-biotin, 1000 nM IFNα-biotin, 10 nM LRRC15-Fc-biotin, and 10 nM LRRC15-Fc-biotin. Plasmids were rescued from the yeast after the final sort using a Zymoprep Yeast Plasmid Miniprep II kit (Zymo research D2004) and transformed into DH5a E. coli for cloning. Ninety-six colonies were picked for Sanger sequencing, from which twenty-four unique clones were identified and screened for IFNα and LRRC15 binding. The scFv DNA sequence for each clone, including c-myc and V5 tags, was amplified by PCR using a forward primer containing a T7 promoter and a translation initiation site, and a reverse primer containing a T7 terminator. Proteins were expressed using the PUREfrex2.1 cell-free transcription/translation system as described in previous examples. The scFv samples were subjected to ELISA analysis to detect LRRC15 and IFNα binding. FIG. 28A shows the ELISA binding data for six exemplary scFvs to LRRC15. Because the IFNα binding affinity was too low to detect by ELISA for some scFvs, the binding to IFNα was also measured by Biolayer Interferometry (OctetRED96e) as described in Example 5. Results and antibody sequences are tabulated in FIG. 28B. All six show binding to both LRRC15 and IFNα, with binding to LRRC15 detectable at a lower concentration of the antigen. Protein complex sequences are provided in TABLE 31.









TABLE 31







DBA-cytokine protein complexes,


and control protein complexes











Protein
SEQ ID




Complex
NO:
Sequence







A03
SEQ ID
MSTSTQVQLVQSGAEVKKPG




NO: 262
ASVKVSCKASGYTFTGYYMH





WVRQAPGQGLEWMGWMDPNN





DDADYAQRFQGRVTMTRDTS





TSTVYMELSSLRSEDTAVYY





CASLAAAGPYYYYGMDVWGQ





GTLVTVSSASGGGGSGGGGS





GGGGSHASDIQMTQSPSSLS





ASVGDRVTITCRASQSINNY





LNWYQQKPGKAPKLLIYGAS





NLETGVPSRFSGSGSGTDFT





LTISSLQPEDFATYYCQQSY





GTPLTFGGGTKVEIKRAAAG





SGSEQKLISEEDLGKPIPNP





LLGLDST







i47_A11
SEQ ID
MSTSTQVQLVQSGAEVKKPG




NO: 314
SSVKVSCKASGYTFTSYDIN





WVRQAPGQGLEWMGTINPSD





GDTTYAQKFQGRVTITADES





TSTAYMELSSLRSEDTAVYY





CARVGGWGIYYYYGMDVWGQ





GTLVTVSSASGGGGSGGGGS





GGGGSHASDIQMTQSPSSLS





ASVGDRVTITCRASQSINSW





LAWYQQKPGKAPKLLIYAAS





SLQSGVPSRFSGSGSGTDFT





LTISSLQPEDFATYYCQQTY





TVPFSFGQGTKLEIKRAAAG





SGSEQKLISEEDLGKPIPNP





LLGLDST







i47_A12
SEQ ID
MSTSTQVQLVQSGAEVKKPG




NO: 315
SSVKVSCKASGYTFINNDIN





WVRQAPGQGLEWMGGTIPIF





GVHIYAQKFQGRVTITADES





TSTAYMELSSLRSEDTAVYY





CVSSVGAGAYYYYGMDVWGQ





GTLVTVSSASGGGGSGGGGS





GGGGSHASDIQMTQSPSSLS





ASVGDRVTITCQASQDISNY





LNWYQQKPGKAPKLLIYAAS





SLQSGVPSRFSGSGSGTDFT





LTISSLQPEDFATYYCQQSY





SLPYTFGQGTRLEIKRAAAG





SGSEQKLISEEDLGKPIPNP





LLGLDST







B03
SEQ ID
MSTSTQVQLVQSGAEVKKPG




NO: 263
ASVEVSCKASGGTFSSYAIN





WVRQAPGQGLEWMGWIDPKS





GDTTYAQKFQGRVTMTRDTS





TSTVYMELSSLRSEDTAVYY





CASGGSYSPWYFDLWGQGTL





VTVSSASGGGGSGGGGSGGG





GSHASDIQMTQSPSSLSASV





GDRVTITCRASQSISSWLAW





YQQKSGKAPKLLIYAASSLQ





SGVPSRFSGSGSGTDFTLTI





SSLQPEDFATYYCQQAYSFP





FTFGPGTKVDIKRAAAGSGS





EQKLISEEDLGKPIPNPLLG





LDST







B07
SEQ ID
MSTSTQVQIVQSGAEVKKPG




NO: 264
ASVKVSCKASGYTFTGYYMH





WVRQAPGQGLEWMGWMDPNN





DDADYAQRFQGRVTMTRDTS





TSTVYMELSSLRSEDTAVYY





CASLAAAGPYYYYGMDVWGQ





GTLVTVSSASGGGGSGGGGS





GGGGSHASDIQMTQSPS





SLSASVGDRVTITCQASQDI





SNYLNWYQQKPGKAPKLLIY





GASILEAGVPSRFSGSGSGT





DFTLTISSLQPEDFATYYCQ





QSYSAPITFGQGTRLEIKRA





AAGSGSEQKLISEEDLGKPI





PNPLLGLDST







B11
SEQ ID
MSTSTQVQLVQSGAEVKKPG




NO: 265
SSVKVSCKASGYTFTSYDIN





WVRQAPGQGLEWLGGTVPLF





GISHYAQKFQGRVTITADES





TSTAYMELSSLRSEDTAVYY





CVSSVGAGAYYYQGLDVWGQ





GTLVTVSSASGGGGSGGGGS





GGGGSHASDIQMTQSPSSLS





ASVGDRVTITCRASQSISSY





LNWYQQKPGKAPKLLIYAAS





SLQSGVPSRFSGSGSGTDFT





LTISSLLPEDFATYYCQQSY





LPPYSFGQGTKLEIKRAAAG





SGSEQKLISEEDLGKPIPNP





LLGLDST







AF372
SEQ ID
MSTSTEQKUSEEDLEVQLVE




NO: 258
SGGGLVQPGGSLRLSCAASG





FNIKDTYIHWVRQAPGKGLE





WVARIYPTNGYTRYADSVKG





RFTISADTSKNTAYLQMNSL





RAEDTAVYYCSRWGGDGFYA





MDYWGQGTLVTVSSASGGGG





SGGGGSGGGGSHASDIQMTQ





SPSSLSASVGDRVTITCRAS





QDVNTAVAWYQQKPGKAPKL





LIYSASFLYSGVPSRFSGSR





SGTDFTLTISSLQPEDFATY





YCQQHYTTPPTFGQGTKVEI





KGSGLNDIFEAQKIEWHEGK





PIPNPLLGLDST










Example 34
Regulated IFNAR2 (IFNα Receptor 2) Binding by a LRRC15-IFNα Dual Binding Antibody (DBA) Cytokine Complex

This example describes LRRC15 dependent binding of IFN to the receptor IFNAR2 by LRRC15/IFN DBA-cytokine complexes. The cytokine complexes of this example are composed of a LRRC15-IFN-αL DBA IgG with IFN-α linked to the N-terminus of one heavy chain (a schematic of the structure is shown in FIG. 9B). DBA-cytokine complexes AF4581 (SEQ ID NO: 266-268), AF4586 (SEQ TD NO: 269-271), AF4587 (SEQ TD NO: 266-267, 272) and AF4588 (SEQ TD NO: 273-275) were chosen for analysis. Two cytokine complexes with the same structure were included as controls: AF4305 (SEQ TD NO: 294-296), which is based on a neutralizing anti-IFNα antibody, and AF4306 (SEQ TD NO: 64, 192, 297), which is based on an anti-Her2 antibody. Protein complex sequences are provided in TABLE 32. The six IgG-cytokines were expressed in mammalian cells using standard protocols and added to a 384 well plate at a single dilution. Titrating concentrations of either LRRC15-Fc (SINO Biological), PDL1-Fc (ACROBiosystems) or CEA-Fc (SINO Biological) were added, and the plate was incubated for 30 minutes at room temperature. Eu-labeled IFNAR2 (ACROBiosystems) and Alexa Fluor 647-labeled anti-V5 antibody (Perkin Elmer) were added to all wells and incubated for 24 hours at room temperature. The HTRF signal was then read on an Envision 2105 microplate reader (Perkin Elmer). Results shown in FIGS. 29A-F demonstrate IFNAR2 binding increased in a dose dependent manner with the addition of LRRC15 but not with the addition of control protein PDL1 for DBA-cytokine complexes of AF4581, AF4586 and AF4587, demonstrating LRRC15-dependent regulation of IFNAR-binding activity. IFNAR2 binding from AF4588 and the monospecific IFN scFv cytokine complexes AF4305 and AF4306 did not change with the addition of LRRC15 or PD-L1.


While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosure. It should be understood that various alternatives to the embodiments of the disclosure described herein may be employed in practicing the disclosure. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.









TABLE 32







DBA-cytokine protein complexes,


and control protein complexes











Protein
SEQ ID




Complex
NO:
Sequence







AF4581
SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 266
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAEIMRSFSLSTNLQES





LRSKEGGGGSGGGGSGGGGS





GGGGSQVQLVQSGAEVKKPG





ASVKVSCKASGYTFTGYYMH





WVRQAPGQGLEWMGWMDPNN





DDADYAQRFQGRVTMTRDTS





TSTVYMELSSLRSEDTAVYY





CASLAAAGPYYYYGMDVWGQ





GTLVTVSSAKTTAPSVYPLA





PVCGDTTGSSVTLGCLVKGY





FPEPVTLTWNSGSLSSGVHT





FPAVLQSDLYTLSSSVTVTS





STWPSQSITCNVAHPASSTK





VDKKIEPRGPTIKPCPPCKC





PAPNAAGGPSVFIFPPKIKD





VLMISLSPIVTCVVVDVSED





DPDVQISWFVNNVEVHTAQT





QTHREDYNSTLRVVSALPIQ





HQDWMSGKEFKCKVNNKDLG





APIERTISKPKGSVRAPQVY





VLPPPEEEMTKKQVTLTCMV





TDFMPEDIYVEWTNNGKTEL





NYKNTEPVLDSDGSYFMYSD





LRVEKKNWVERNSYSCSVVH





EGLHNHHTTESFSRTPGK








SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 267
SCKASGYTFTGYYMHWVRQA





PGQGLEWMGWMDPNNDDADY





AQRFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCASLA





AAGPYYYYGMDVWGQGTLVT





VSSAKTTAPSVYPLAPVCGD





TTGSSVTLGCLVKGYFPEPV





TLTWNSGSLSSGVHTFPAVL





QSDLYTLSSSVTVTSSTWPS





QSITCNVAHPASSTKVDKKI





EPRGPTIKPCPPCKCPAPNA





AGGPSVFIFPPKIKDVLMIS





LSPIVTCVVVDVSEDDPDVQ





ISWFVNNVEVHTAQTQTHRE





DYNSTLRVVSALPIQHQDWM





SGKEFKCKVNNKDLGAPIER





TISKPKGSVRAPQVYVLPPP





EKEMTKKQVSLTCLVKDFMP





EDIYVEWTNNGKTELNYKNT





EPVLKSDGSYFMYSKLTVEK





KNWVERNSYSCSVVHEGLHN





HHTTKSFSRTPGK








SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 268
ITCRASQSINNYLNWYQQKP





GKAPKLLIYGASNLETGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQSYGTPLTFGG





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







AF4586
SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 269
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAEIMRSFSLSTNLQES





LRSKEGGGGSGGGGSGGGGS





GGGGSQVQLVQSGAEVKKPG





ASVEVSCKASGGTFSSYAIN





WVRQAPGQGLEWMGWIDPKS





GDTTYAQKFQGRVTMTRDTS





TSTVYMELSSLRSEDTAVYY





CASGGSYSPWYFDLWGQGTL





VTVSSAKTTAPSVYPLAPVC





GDTTGSSVTLGCLVKGYFPE





PVTLTWNSGSLSSGVHTFPA





VLQSDLYTLSSSVTVTSSTW





PSQSITCNVAHPASSTKVDK





KIEPRGPTIKPCPPCKCPAP





NAAGGPSVFIFPPKIKDVLM





ISLSPIVTCVVVDVSEDDPD





VQISWFVNNVEVHTAQTQTH





REDYNSTLRVVSALPIQHQD





WMSGKEFKCKVNNKDLGAPI





ERTISKPKGSVRAPQVYVLP





PPEEEMTKKQVTLTCMVTDF





MPEDIYVEWTNNGKTELNYK





NTEPVLDSDGSYFMYSDLRV





EKKNWVERNSYSCSVVHEGL





HNHHTTESFSRTPGK








SEQ ID
QVQLVQSGAEVKKPGASVEV




NO: 270
SCKASGGTFSSYAINWVRQA





PGQGLEWMGWIDPKSGDTTY





AQKFQGRVTMTRDTSTSTWM





ELSSLRSEDTAVYYCASGGS





YSPWYFDLWGQGTLVTVSSA





KTTAPSVYPLAPVCGDTTGS





SVTLGCLVKGYFPEPVTLTW





NSGSLSSGVHTFPAVLQSDL





YTLSSSVTVTSSTWPSQSUC





NVAHPASSTKVDKKIEPRGP





TIKPCPPCKCPAPNAAGGPS





VFIFPPKIKDVLMISLSPIV





TCVVVDVSEDDPDVQISWFV





NNVEVHTAQTQTHREDYNST





LRVVSALPIQHQDWMSGKEF





KCKVNNKDLGAPIERTISKP





KGSVRAPQVYVLPPPEKEMT





KKQVSLTCLVKDFMPEDIYV





EWTNNGKTELNYKNTEPVLK





SDGSYFMYSKLTVEKKNWVE





RNSYSCSVVHEGLHNHHTTK





SFSRTPGK








SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 271
ITCRASQSISSWLAWYQQKS





GKAPKLLIYAASSLQSGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQAYSFPFTFGP





GTKVDIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC








SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 266
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAFIMRSFSLSTNLQES





LRSKEGGGGSGGGGSGGGGS





GGGGSQVQLVQSGAEVKKPG





ASVKVSCKASGYTFTGYYMH





WVRQAPGQGLEWMGWMDPNN





DDADYAQRFQGRVTMTRDTS





TSTVYMELSSLRSEDTAVYY





CASLAAAGPYYYYGMDVWGQ





GTLVTVSSAKTTAPSVYPLA





PVCGDTTGSSVTLGCLVKGY





FPEPVTLTWNSGSLSSGVHT





FPAVLQSDLYTLSSSVTVTS





STWPSQSITCNVAHPASSTK





VDKKIEPRGPTIKPCPPCKC





PAPNAAGGPSVFIFPPKIKD





VLMISLSPIVTCVVVDVSED





DPDVQISWFVNNVEVHTAQT





QTHREDYNSTLRVVSALPIQ





HQDWMSGKEFKCKVNNKDLG





APIERTISKPKGSVRAPQVY





VLPPPEEEMTKKQVTLTCMV





TDFMPEDIYVEWTNNGKTEL





NYKNTEPVLDSDGSYFMYSD





LRVEKKNWVERNSYSCSVVH





EGLHNHHTTESFSRTPGK







AF4587
SEQ ID
QVQLVQSGAEVKKPGASVKV




NO: 267
SCKASGYTFTGYYMHWVRQA





PGQGLEWMGWMDPNNDDADY





AQRFQGRVTMTRDTSTSTVY





MELSSLRSEDTAVYYCASLA





AAGPYYYYGMDVWGQGTLVT





VSSAKTTAPSVYPLAPVCGD





TTGSSVTLGCLVKGYFPEPV





TLTWNSGSLSSGVHTFPAVL





QSDLYTLSSSVTVTSSTWPS





QSITCNVAHPASSTKVDKKI





EPRGPTIKPCPPCKCPAPNA





AGGPSVFIFPPKIKDVLMIS





LSPIVTCVVVDVSEDDPDVQ





ISWFVNNVEVHTAQTQTHRE





DYNSTLRVVSALPIQHQDWM





SGKEFKCKVNNKDLGAPIER





TISKPKGSVRAPQVYVLPPP





EKEMTKKQVSLTCLVKDFMP





EDIYVEWTNNGKTELNYKNT





EPVLKSDGSYFMYSKLTVEK





KNWVERNSYSCSVVHEGLHN





HHTTKSFSRTPGK








SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 272
ITCQASQDISNYLNWYQQKP





GKAPKLLIYGASILEAGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQSYSAPITFGQ





GTRLEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







AF4588
SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 273
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMK





EDSILAVRKYFQRITLYLKE





KKYSPCAWEVVRAEIMRSFSL





STNLQESLRSKEGGGGSGGG





GSGGGGSGGGGSQVQLVQSG





AEVKKPGSSVKVSCKASGYT





FTSYDINWVRQAPGQGLEWL





GGTVPLFGISHYAQKFQGRV





TITADESTSTAYMEISSLRS





EDTAVYYCVSSVGAGAYYYQ





GLDVWGQGTLVTVSSAKTTA





PSVYPLAPVCGDTTGSSVTL





GCLVKGYFPEPVTLTWNSGS





LSSGVHTFPAVLQSDLYTLS





SSVTVTSSTWPSQSITCNVA





HPASSTKVDKKIEPRGPTIK





PCPPCKCPAPNAAGGPSVFI





FPPKIKDVLMISLSPIVTCV





VVDVSEDDPDVQISWFVNNV





EVHTAQTQTHREDYNSTLRV





VSALPIQHQDWMSGKEFKCK





VNNKDLGAPIERTISKPKGS





VRAPQVYVLPPPEEEMTKKQ





VTLTCMVTDFMPEDIYVEWT





NNGKTELNYKNTEPVLDSDG





SYFMYSDLRVEKKNWVERNS





YSCSVVHEGLHNHHTTESFS





RTPGK








SEQ ID
QVQLVQSGAEVKKPGSSVKV




NO: 274
SCKASGYTFTSYDINWVRQA





PGQGLEWLGGTVPLFGISHY





AQKFQGRVTITADESTSTAY





MELSSLRSEDTAVYYCVSSV





GAGAYYYQGLDVWGQGTLVT





VSSAKTTAPSVYPLAPVCGD





TTGSSVTLGCLVKGYFPEPV





TLTWNSGSLSSGVHTFPAVL





QSDLYTLSSSVTVTSSTWPS





QSITCNVAHPASSTKVDKKI





EPRGPTIKPCPPCKCPAPNA





AGGPSVFIFPPKIKDVLMIS





LSPIVTCVVVDVSEDDPDVQ





ISWFVNNVEVHTAQTQTHRE





DYNSTLRVVSALPIQHQDWM





SGKEFKCKVNNKDLGAPIER





TISKPKGSVRAPQVYVLPPP





EKEMTKKQVSLTCLVKDFMP





EDIYVEWTNNGKTELNYKNT





EPVLKSDGSYFMYSKLTVEK





KNWVERNSYSCSVVHEGLHN





HHTTKSFSRTPGK








SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 275
ITCRASQSISSYLNWYQQKP





GKAPKLLIYAASSLQSGVPS





RFSGSGSGTDFTLTISSLLP





EDFATYYCQQSYIPPYSFGQ





GTKLEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFINNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC







AF4305
SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 294
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAEIMRSFSLSTNLQES





LRSKEGGGGSGGGGSGGGGS





GGGGSQVQLVQSGAEVKKPG





SSVKVSCKASGYTFTAYDIN





WVRQAPGQGLEWVGIINPGS





GSPMYAQKFQGRVTITADES





TSTAYMELSSLRSEDTAVYY





CVSSVGAGAYYYQGLDVWGQ





GTLVTVSSAKTTAPSVYPLA





PVCGDTTGSSVTLGCLVKGY





FPEPVTLTWNSGSLSSGVHT





FPAVLQSDLYTLSSSVTVTS





STWPSQSITCNVAHPASSTK





VDKKIEPRGPTIKPCPPCKC





PAPNAAGGPSVFIFPPKIKD





VLMISLSPIVTCVVVDVSED





DPDVQISWFVNNVEVHTAQT





QTHREDYNSTLRVVSALPIQ





HQDWMSGKEFKCKVNNKDLG





APIERTISKPKGSVRAPQVY





VLPPPEEEMTKKQVTLTCMV





TDFMPEDIYVEWTNNGKTEL





NYKNTEPVLDSDGSYFMYSD





LRVEKKNWVERNSYSCSVVH





EGLHNHHTTESFSRTPGK








SEQ ID
QVQLVQSGAEVKKPGSSVKV




NO: 295
SCKASGYTFTAYDINWVRQA





PGQGLEWVGIINPGSGSPMY





AQKFQGRVTITADESTSTAY





MELSSLRSEDTAVYYCVSSV





GAGAYYYQGLDVWGQGTLVT





VSSAKTTAPSVYPLAPVCGD





TTGSSVTLGCLVKGYFPEPV





TLTWNSGSLSSGVHTFPAVL





QSDLYTLSSSVTVTSSTWPS





QSITCNVAHPASSTKVDKKI





EPRGPTIKPCPPCKCPAPNA





AGGPSVFIFPPKIKDVLMIS





LSPIVTCVVVDVSEDDPDVQ





ISWFVNNVEVHTAQTQTHRE





DYNSTLRVVSALPIQHQDWM





SGKEFKCKVNNKDLGAPIER





TISKPKGSVRAPQVYVLPPP





EKEMTKKQVSLTCLVKDFMP





EDIYVEWTNNGKTELNYKNT





EPVLKSDGSYFMYSKLTVEK





KNWVERNSYSCSVVHEGLHN





HHTTKSFSRTPGGGGSGGGS





HHHHHH








SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 296
ITCQASQDIANYLNWYQQKP





GKAPKLLIYSASNLQSGVPS





RFSGSGSGTDFTLTISSLQP





EDFATYYCQQSYSTQWTFGQ





GTKVEIKRADAA





PTVSIFPPSSEQLTSGGASW





CFLNNFYPKDINVKWKIDGS





ERQNGVLNSWTDQDSKDSTY





SMSSTLTLTKDEYERHNSYT





CEATHKTSTSPIVKSFNRNE





C







AF4306
SEQ ID
DIQMTQSPSSLSASVGDRVT




NO: 64
ITCRASQDVNTAVAWYQQKP





GKAPKLLIYSASFLYSGVPS





RFSGSRSGTDFTLTISSLQP





EDFATYYCQQHVTTPPTFGQ





GTKVEIKRADAAPTVSIFPP





SSEQLTSGGASVVCFLNNFY





PKDINVKWKIDGSERQNGVL





NSWTDQDSKDSTYSMSSTLT





LTKDEYERHNSYTCEATHKT





STSPIVKSFNRNEC








SEQ ID
EVQLVESGGGLVQPGGSLRL




NO: 192
SCAASGFNIKDTYIHWVRQA





PGKGLEWVARIYPTNGYTRY





ADSVKGRFTISADTSKNTAY





LQMNSLRAEDTAVYYCSRWG





GDGFYAMDYWGQGTLVTVSS





AKTTAPSVYPLAPVCGDTTG





SSVTLGCLVKGYFPEPVTLT





WNSGSLSSGVHTFPAVLQSD





LYTLSSSVTVTSSTWPSQSI





TCNVAHPASSTKVDKKIEPR





GPTIKPCPPCKCPAPNAAGG





PSVFIFPPKIKDVLMISLSP





IVTCVVYDVSEDDPDVQISW





FVNNVEVHTAQTQTHREDYN





STLRVVSALPIQHQDWMSGK





EFKCKVNNKDLGAPIERTIS





KPKGSVRAPQVYVLPPPEKE





MTKKQVSLTCLVKDFMPEDI





YVEWTNNGKTELNYKNTEPV





LKSDGSYFMYSKLTVEKKNW





VERNSYSCSVVHEGLHNHHT





TKSFSRTPGGGGSGGGSHHH





HHH








SEQ ID
CDLPQTHSLGSRRTLMLLAQ




NO: 297
MRRISLFSCLKDRHDFGFPQ





EEFGNQFQKAETIPVLHEMI





QQIFNLFSTKDSSAAWDETL





LDKFYTELYQQLNDLEACVI





QGVGVTETPLMKEDSILAVR





KYFQRITLYLKEKKYSPCAW





EVVRAEIMRSFSLSTNLQES





LRSKEGGGGSGGGGSGGGGS





GGGGSEVQLVESGGGLVQPG





GSLRLSCAASGFNIKDTYIH





WVRQAPGKGLEWVARIYPTN





GYTRYADSVKGRFTISADTS





KNTAYLQMNSLRAEDTAVYY





CSRWGGDGFYAMDYWGQGTL





VTVSSAKTTAPSVYPLAPVC





GDTTGSSVTLGCLVKGYFPE





PVTLTWNSGSLSSGVHTFPA





VLQSDLYTLSSSVTVTSSTW





PSQSITCNVAHPASSTKVDK





KIEPRGPTIKPCPPCKCPAP





NAAGGPSVFIFPPKIKDVLM





ISLSPIVTCVVVDVSEDDPD





VQISWFVNNVEVHTAQTQTH





REDYNSTLRVVSALPIQHQD





WMSGKEFKCKVNNKDLGAPI





ERTISKPKGSVRAPQVYVLP





PPEEEMTKKQVTLTCMVTDF





MPEDIYVEWTNNGKTELNYK





NTEPVLDSDGSYFMYSDLRV





EKKNWVERNSYSCSVVHEGL





HNHHTTESFSRTPGK









Claims
  • 1. A pharmaceutical composition comprising a complex and a pharmaceutically acceptable excipient, wherein the complex comprises: a) a therapeutic domain; andb) a sensor domain,wherein:the therapeutic domain is linked to the sensor domain by a linker,the sensor domain is configured to bind the therapeutic domain and a marker; andwhen the sensor domain binds to the marker, the sensor domain is configured not to bind the therapeutic domain and the therapeutic domain is configured to bind to its receptor.
  • 2. The pharmaceutical composition of claim 1, wherein when the sensor domain binds to the marker, the therapeutic domain is blocked from binding the sensor domain and the therapeutic domain is able to bind to its receptor.
  • 3. The pharmaceutical composition of claim 1, wherein when the therapeutic domain binds to the sensor domain, the activity of the therapeutic domain is reduced.
  • 4. The pharmaceutical composition of claim 1, wherein an affinity of the sensor domain for the therapeutic domain comprises a condition dependence.
  • 5. The pharmaceutical composition of claim 4, wherein the condition dependence is selected from the group consisting of pH, temperature, salinity, and osmolarity.
  • 6. The pharmaceutical composition of claim 1, wherein an affinity of the sensor domain for the marker is at least 2 times greater than an affinity of the sensor domain for the therapeutic domain.
  • 7. The pharmaceutical composition of claim 1, wherein an affinity of the sensor domain for the marker is at least 100 times greater than an affinity of the sensor domain for the therapeutic domain.
  • 8. The pharmaceutical composition of claim 1, wherein the sensor domain comprises an antibody, a fragment thereof, or a derivative thereof.
  • 9. The pharmaceutical composition of claim 8, wherein the antibody or the antibody fragment comprises an IgG, a single domain antibody fragment, a nanobody, an scFab, or a single chain variable fragment (scFv).
  • 10. The pharmaceutical composition of claim 8, wherein the antibody or the antibody fragment comprises an anti-PD-1 antibody or a fragment thereof, wherein the anti-PD-1 antibody is configured to bind to PD-1.
  • 11. The pharmaceutical composition of claim 1, wherein the therapeutic domain comprises a cytokine, a chemokine, an antibody, an antibody fragment, a peptide agonist, a peptide antagonist, an enzyme, a soluble receptor, a growth factor, a protein toxin, a soluble ligand, a small molecule, or any combination thereof.
  • 12. The pharmaceutical composition of claim 11, wherein the therapeutic domain comprises a IL-2 receptor agonist selected from the group consisting of IL-2, IL-15, and variants or fusions thereof.
  • 13. The pharmaceutical composition of claim 12, wherein the therapeutic domain comprises IL-2 or its variant or fusion thereof.
  • 14. The pharmaceutical composition of claim 1, wherein the complex comprises two heavy chains and two light chains.
  • 15. The pharmaceutical composition of claim 1, wherein the complex comprises an Fc domain.
  • 16. The pharmaceutical composition of claim 1, wherein the complex comprises a serum circulation half-life of at least 12 hours.
  • 17. The pharmaceutical composition of claim 1, wherein the complex comprises a serum circulation half-life of at least 48 hours.
  • 18. The pharmaceutical composition of claim 1, wherein the marker is expressed by an immune cell.
  • 19. The pharmaceutical composition of claim 1, wherein the marker is expressed by a T cell.
  • 20. The pharmaceutical composition of claim 19, wherein the marker is PD-1.
  • 21. The pharmaceutical composition of claim 19, wherein when the sensor domain binds to the marker, the therapeutic domain is configured to induce T cell activation.
  • 22. The pharmaceutical composition of claim 21, wherein the T cell activation is measured by STAT5 phosphorylation.
  • 23. The pharmaceutical composition of claim 1, wherein the complex has at least 80% sequence identity to any one of SEQ ID NO: 51-SEQ ID NO: 54; SEQ ID NO: 77-SEQ ID NO: 79; SEQ ID NO: 174; and SEQ ID NO: 175.
  • 24. The pharmaceutical composition of claim 1, wherein the complex has at least 95% sequence identity to any one of SEQ ID NO: 51-SEQ ID NO: 54; SEQ ID NO: 77-SEQ ID NO: 79; SEQ ID NO: 174; and SEQ ID NO: 175.
CROSS-REFERENCE

This application is a continuation of International Application Serial No. PCT/US2021/32313, filed May 13, 2021, which claims the benefit of U.S. Provisional Patent Application No. 63/024,422, filed May 13, 2020, each of which is entirely incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
63024422 May 2020 US
Continuations (1)
Number Date Country
Parent PCT/US2021/032313 May 2021 US
Child 17504385 US