This application relates to coated paperboard and, more particularly, to the addition of filler to poly(butylene succinate) and/or poly(butylene succinate-co-adipate) coatings on paperboard substrates.
In the field of packaging it is often desired to provide a packaging structure with a polymeric coating. Such polymeric coatings may impart durability, moisture resistance and other useful properties, such as heat-sealability. Recently there is increasing interest in using biopolymers for the polymer coating in such packaging structure. Examples of biopolymers include poly(butylene succinate) and poly(butylene succinate-co-adipate). However, both poly(butylene succinate) and poly(butylene succinate-co-adipate) present challenges in the extrusion coating process stability and downstream converting particularly heat-sealability.
Accordingly, those skilled in the art continue with research and development efforts in the field of paperboard manufacturing.
Disclosed are paperboard structures and associated methods for manufacturing paperboard structures.
In one example, the disclosed paperboard structure includes a paperboard substrate that includes a first major side and a second major side opposed from the first major side. The paperboard structure also includes a coating layer on the first major side, wherein the coating layer includes a polymer and filler, and wherein the polymer includes at least one of poly(butylene succinate) and poly(butylene succinate-co-adipate).
In one example, the disclosed method for manufacturing a paperboard structure includes preparing a coating composition that includes a polymer and filler, wherein the polymer includes at least one of poly(butylene succinate) and poly(butylene succinate-co-adipate). The method further includes applying the coating composition to the paperboard substrate to form the coating layer on the paperboard substrate.
Other examples of the disclosed paperboard structures and methods will become apparent from the following detailed description, the accompanying drawings, and the appended claims.
The following detailed description refers to the accompanying drawings, which illustrate specific examples described by the disclosure. Other examples having different structures and operations do not depart from the scope of the present disclosure. Like reference numerals may refer to the same feature, element, or component in the different drawings.
Illustrative, non-exhaustive examples, which may be, but are not necessarily, claimed, of the subject matter according the present disclosure are provided below. Reference herein to “example” means that one or more feature, structure, element, component, characteristic and/or operational step described in connection with the example is included in at least one embodiment and/or implementation of the subject matter according to the present disclosure. Thus, the phrase “an example” and similar language throughout the present disclosure may, but do not necessarily, refer to the same example. Further, the subject matter characterizing any one example may, but does not necessarily, include the subject matter characterizing any other example.
Referring to
Although coating layer 20 is generally shown and described as being on the first major side 12 of the paperboard substrate 10, it is generally contemplated that a coating layer 20 may also be on the second major side 14 of the paperboard substrate 10 either as an alternative to coating layer 20 on the first major side 12 of the paperboard substrate 10, or in addition to it.
The paperboard substrate 10 of the paperboard structure 100 may be (or may include) any cellulosic material that is capable of being coated, such as with the disclosed coating layer 20. The paperboard substrate 10 may be a single-ply or a multi-ply substrate, as well as bleached or unbleached. Examples of appropriate paperboard substrates include corrugating medium, linerboard, solid bleached sulfate (SBS), folding box board (FBB), and coated unbleached kraft (CUK).
Additional components, such as binders, pigments, and the like, may be added to the paperboard substrate 10 without departing from the scope of the present disclosure. Furthermore, the paperboard substrate 10 may be substantially free of plastic pigments for increasing bulk, such as hollow plastic pigments or expandable microspheres, or other chemical bulking agents. Still furthermore, the paperboard substrate 10 may be substantially free of ground wood particles.
The paperboard substrate 10 may have an uncoated basis weight of at least about 40 pounds per 3000 square feet. In one example, the paperboard substrate 10 may have an uncoated basis weight of at least 40 lb/3000 ft2. In another example, the paperboard substrate 10 may have an uncoated basis weight ranging from about 85 lb/3000 ft2 to about 350 lb/3000 ft2. In another example, the paperboard substrate 10 may have an uncoated basis weight ranging from about 85 lb/3000 ft2 to about 250 lb/3000 ft2. In yet another expression the paperboard substrate 10 may have an uncoated basis weight ranging from about 100 lb/3000 ft2 to about 250 lb/3000 ft2.
Furthermore, the paperboard substrate 10 may have a caliper (thickness) ranging, for example, from about 8 points to about 32 points (0.008 inch to 0.032 inch). In one example, the caliper range is from about 10 points to about 24 points. In another example, the caliper range is from about 12 points to about 18 points.
One specific, non-limiting example of a suitable paperboard substrate 10 is a 13-point SBS cupstock manufactured by WestRock Company of Atlanta, Georgia Another specific, non-limiting example of a suitable paperboard substrate 10 is a 12.4-point SBS cupstock manufactured by WestRock Company. Yet another specific example of a suitable paperboard substrate 10 is an 18-point SBS cupstock manufactured by WestRock Company.
Still referring to
At this point, those skilled in the art will appreciate that an additional coating layer may also be applied to the second major side 14 of the paperboard substrate 10 (not shown). The additional coating layer may be applied, for example, using the same extrusion method employed to apply coating layer 20. Similarly, the coat weight of the additional coating layer may also vary without departing from the scope of the present disclosure.
The coating layer 20 may be applied, among other reasons, to impart heat-sealability to the paperboard structure 100. More specifically, the coating layer 20 may enable the formation of coating layer-to-paperboard substrate heat seals when the coating layer 20 is exposed to heat and/or pressure. Those skilled in the art will appreciate that good heat salability may be desirable, for example, in applications that involve forming the paperboard structure 100 into complex shapes, such as during the manufacture of paperboard cups.
The coating layer 20 includes a polymer and filler, wherein the polymer includes at least one of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA). PBS is a biodegradable, semi-crystalline polyester biopolymer (as determined by ASTM D6868-11) and PBSA is a copolymer of PBS. Those skilled in the art will appreciate that PBS and PBSA may be preferred over other polymeric materials because PBS and PBSA are both biodegradable and compostable as per ASTM D6400 and EN 13432 standards. More specifically, both PBS and PBSA are capable of breaking down into carbon dioxide, water, and minerals without affecting the quality of the compost. Table 1 provides examples of suitable PBS and PBSA available from PTT MCC Biochem of Bangkok, Thailand. Additionally, it is also contemplated that the PBS and/or PBSA employed in any given example of the disclosed paperboard structure and associated method for making may be derived from at least one of petroleum-based and bio-based sources.
PBS and PBSA may be available in a variety of different grades (based on molecular weight). As such, the melt flow rate (e.g., the ability of a material's melt to flow under pressure), which is an indirect measure of molecular weight, may vary between different grades of PBS or PBSA. A suitable polymer (which includes at least one of PBS and PBSA) may be selected based on a desired melt flow rate. Alternatively, two or more grades of PBS and/or PBSA may be blended such that the desired melt flow rate is achieved in the resulting polymer. In an example, the polymer may have a melt flow rate of about 1 gram per 10 minutes to about 100 grams per 10 minutes. In an example, the polymer has a melt flow rate of at least about 3 grams per 10 minutes. In an example, the polymer has a melt flow rate of at least about 10 grams per 10 minutes. In an example, the polymer has a melt flow rate of at least about 20 grams per 10 minutes.
The coating layer 20 includes polymer and filler. The relative concentrations of polymer and filler, however, may be varied as needed with consideration given to the processability of the resulting coating composition and the heat-sealability of the resulting coating layer 20. In one example, the coating layer 20 may include at least 1 percent by weight filler. In another example, the coating layer 20 may include at least 5 percent by weight filler. In yet another example, the coating layer 20 may include at least 10 percent by weight filler.
Fillers may be added to the polymer as a way of tailoring the coating layer 20 to a specific application. The filler may include any suitable material capable of being added to a polymer and being formed into a coating layer 20 on a paperboard substrate 10, including organic fillers, inorganic fillers, and blends of one or more of the two. Examples of suitable organic fillers may include cellulose, natural fiber, wood flour, and the like. Examples of suitable inorganic fillers may include talc, calcium carbonate, mica, diatomaceous earth, silica, clay (e.g., kaolin clay), wollastonite, pumice, zeolite, ceramic spheres, and the like. Those skilled in the art will appreciate that other organic and/or inorganic fillers may be employed without departing from the scope of the present disclosure.
A filler may be selected based on certain physical characteristics (e.g., specific gravity, aspect ratio, median particle size, etc.), and with consideration given to any processing limitations related to the processing of the paperboard structure 100. For example, a filler with a relatively small median particle size may be better suited than a filler with a relatively large median particle size for applications that involve extruding the coating layer 20 through a particularly narrow extruder output slot. In an example, the filler may have a median particle size of at most 6 micrometers. In an example, the filler may have a median particle size of at most 3 micrometers. In an example, the filler may have a median particle size of at most 1 micrometer. Those skilled in the art will appreciate that in one or more examples, the coating layer 20 may include multiple types of filler without departing from the scope of the present disclosure.
In one or more applications, talc may be particularly well suited as a filler due to the improvements to processability the addition of talc may provide. Those skilled in the art will appreciate that PBS and PBSA are typically difficult to extrude due PBS and PBSA having high viscosities even at elevated processing temperatures. Further, those skilled in the art will also appreciate that incorporating mineral fillers into molten polymers usually increases or “thickens” the base polymer viscosity. Surprisingly, talc, such as FortiTalc® AG609 LC available from Barretts Minerals of Helena, Montana, has been found to have the opposite effect when added to PBS and/or PBSA. Without being bound by any particular theory, it is believed that incorporating talc into PBS and/or PBSA may, in fact, have a thinning or “lubrication” effect in facilitating easier flow of polymer molecules (thereby improving extrudability). However, it is also believed that while coating layers 20 that contain a relatively large percentage of talc (by weight) may exhibit superior extrudability, an excess of talc in the coating layer 20 may compromise heat-sealing performance. If used, the ratio of polymer to talc in the coating layer 20 is yet another processing factor that may be varied as needed.
Referring to
In addition to polymer and filler, those skilled in the art will appreciate that at least one of the coating layer(s) 20 and the top layer(s) 30 may also include one or more additives, such as pigments, stabilizers and the like, without departing from the scope of the present disclosure.
Referring to
Those skilled in the art will appreciate that the preparing step (block 210) may further include various other processing steps without departing from the scope of the present disclosure. These other processing steps may include, for example, blending a quantity of PBS and a quantity of PBSA, blending two different grades of PBS, heating the polymer, forming the coating composition into pellets, etc.
In one or more examples, the preparing (block 210) may be performed with consideration given to the rheological properties of the resulting coating composition. For example, it may be desirable to predefine rheological limits as a way of ensuring that the coating composition will be suitable for the subsequent steps of a manufacturing process (such as extrusion). In one example, the coating composition may include a shear viscosity of at least: 670 Pa·s at a shear rate of 0.01 s−1, 240 Pa·s at a shear rate of 10 s−1, 180 Pa·s at a shear rate of 100 s−1, and 100 Pa·s at a shear rate of 600 s−1. In another example, the coating composition may include a shear viscosity of about: 1,410 Pa·s at a shear rate of 0.01 s−1, 520 Pa·s at a shear rate of 10 s−1, 260 Pa·s at a shear rate of 100 s−1, and 125 Pa·s at a shear rate of 600 s−1. In yet another example, the coating composition may include a shear viscosity of at most: 670 Pa·s at a shear rate of 0.01 s−1, 240 Pa·s at a shear rate of 10 s−1, 180 Pa·s at a shear rate of 100 s−1, and 100 Pa·s at a shear rate of 600 s−1. Those skilled in the art will appreciate that the rheology of a coating composition may be determined, at least in part, by the melt flow rate of the polymer and the concentration of filler. Thus, in preparing the coating composition (block 210), these factors may be varied as needed such that the coating composition is in accordance with the predefined rheological limits.
After the coating composition has been prepared (block 210), the method 200 may then proceed to the step of applying the coating composition to a paperboard substrate 10 to form a coating layer 20 on the paperboard substrate 10 (block 230). Block 230 may be performed by any suitable method for applying a coating composition to a paperboard substrate 10. For example, block 230 may be performed by extruding the coating composition onto the paperboard substrate 10 (block 240) using the assembly shown in
Referring to
Referring to
A processing defect that sometimes occurs and causes waste material is “edge weave,” where the edges 26 of the curtain 24 waver sideways. This wavering of the curtain 24 is exhibited by wavy edges 26 on the coated paperboard substrate 18 on the paperboard substrate 10. With non-uniform coverage at the edges 26, more of the sides of the paperboard substrate 10 need to be trimmed as waste. In
Table 2 shows the coating compositions and coat weights for four different Samples of the disclosed paperboard structure 100.
All four Samples contain FZ71PM PBS. Notably, Samples 1 and 2 contain no talc whereas Samples 3 and 4 contain 10% by weight talc. To manufacture these Samples, pellets of the various coating compositions (shown in Table 2) were prepared and then fed into a screw extruder having the configuration shown in Table 3.
Once molten, the coating composition was then extruded via a curtain coating arrangement onto 18-point SBS paperboard substrate. The curtain coating arrangement was configured to have a slot size of 30 in×0.025 in, an airgap of 4.5 in, and die deckles at 22 in. The screw of the extruder was set at 80 rpm for all four samples. The line speeds (e.g., V1) were varied to achieve coat weights of 20 lb/3000 ft2 and 25 lb/3000 ft2. Additional processing conditions related to the extrusion of the coating compositions of Table 2 are summarized in Table 4.
To evaluate the effect that the addition of talc has on the rheology of the coating composition, extrudates of the Sample 1-4 coating compositions were collected at the extruder die exit and measured on a parallel-plate type rheometer, Model No. AR2000ex available from TA Instruments of New Castle, Delaware, at 185° C. Referring to
After being manufactured, Samples 1-4 were evaluated for edge weave and heat-sealability. The results are graphically illustrated in
Referring to
From the data shown in
Referring to
Table 5 provides the coating compositions used to form five different Extrudate Samples (ES).
Extrudate Samples 1-3 contain FZ91PM, Extrudate Samples 3-5 contain FZ71PM, and Extrudate Samples 3 and 5 contain talc. These Extrudate Samples were prepared by feeding the coating compositions of Table 5 into a screw extruder having the configuration shown in Table 6.
Screw speeds were run at 80 rpm, the line speed was kept at 140 feet per minute and the air gap was maintained at 4.5 inches. The coating compositions of Table 5 were melted in the screw extruder and then extruded. Additional processing conditions related to the extrusion of the coating compositions of Table 5 are summarized in Table 7.
Extrudate Samples 1-5 were collected at the extruder die exit and measured on a parallel-plate type rheometer, Model No. AR2000ex available from TA Instruments of New Castle, Delaware, at 185° C. The shear viscosities of Extrudate Samples 1-5 over a range of shear rates are summarized in Table 8.
Referring to
Although various aspects of the disclosed paperboard structures and associated methods have been shown and described, modifications may occur to those skilled in the art upon reading the specification. The present application includes such modifications and is limited only by the scope of the claims.
This application claims priority from U.S. Ser. No. 62/880,229 filed on Jul. 30, 2019, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/036975 | 6/10/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/021319 | 2/4/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6010784 | Peterson | Jan 2000 | A |
9744556 | Skupin | Aug 2017 | B2 |
10414105 | Räsänen | Sep 2019 | B2 |
11618054 | Mongrain | Apr 2023 | B2 |
11660848 | Knauf | May 2023 | B2 |
11821142 | Boswell | Nov 2023 | B2 |
20020065345 | Narita | May 2002 | A1 |
20170008227 | Räsänen | Jan 2017 | A1 |
20190009970 | Yang | Jan 2019 | A1 |
20190291134 | Mongrain | Sep 2019 | A1 |
20220275585 | Yang | Sep 2022 | A1 |
20220290003 | Terwillegar | Sep 2022 | A1 |
20220347992 | Knauf | Nov 2022 | A1 |
20230374734 | Bhardwaj | Nov 2023 | A1 |
Number | Date | Country |
---|---|---|
2331602 | Nov 2017 | EP |
WO-9853141 | Nov 1998 | WO |
WO-2009064052 | May 2009 | WO |
WO-2010034712 | Apr 2010 | WO |
WO-2013007872 | Jan 2013 | WO |
WO-2014064335 | May 2014 | WO |
WO-2014064340 | May 2014 | WO |
WO-2015110980 | Jul 2015 | WO |
WO-2017091391 | Jun 2017 | WO |
WO-2017091392 | Jun 2017 | WO |
WO-2022192486 | Sep 2022 | WO |
Entry |
---|
Corresponding Brazilian Office Action dated Feb. 6, 2024, 55 pages. |
Number | Date | Country | |
---|---|---|---|
20220275585 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
62880229 | Jul 2019 | US |