An exemplary process for making an compound of the present application was carried out as follows:
Step 1: A 1-liter 4-neck flask equipped with nitrogen sub-surface was charged with 236.8 g of trimethylolpropane triacrylate (TMPTA), 300 g methanol, and 0.8 g of laural mercaptan. To this solution 192.8 g of bis(2-ethylhexylamine) was added dropwise over 4 hr period and then allowed to stir at room temperature for 3 hrs. The temperature was then raised to 65° C. to distill methanol and finally vacuum stripped and filtered over Celite. A total of approximately 424 g of product was isolated. % N=2.74%
Step 2: A 500 mL flask was charged with 149 g of process oil, 64 g of 2,6-di-tert butylphenol and 1 g of potassium hydroxide. The mixture was heated to about 120° C. and then mild vacuum was applied to remove about 1.3 ml of distillate. Vacuum was removed and the mixture was then heated to 140° C. 161 g of the product isolated from step 1 was then added dropwise over a 2-3 hr period. After the addition was complete, the reaction was held at 140° C. for 3 hrs and 8 g of talc was added and stirred for 30 min. The mixture was then filtered over Celite. A total of approximately 235 g of product was obtained. % N=1.27; TBN=47.2
Step 3: 127.3 g of the product obtained from step 2 and 240 ml of butanol were chared to a 500 ml flask and equipped with nitrogen sub-surface and condenser. The mixture was heasted to about 80° C. and 9.2 g of N-phenylphenylenediamine (NPPDA) was added all at once. The temperature was raised to 120° C. and held for approximately 10 hrs. Butanol was removed under vacuum. The product thus obtained was diluted with 34.7 g of process oil, allowed to cool to room temperature overnght and then filtered over Celite. % N=1.43; TBN=47. The resulting product was tested as an antioxidant as described in Example 3 below.
Another exemplary process for making a compound of the present application was carried out as follows.
A 500 ml flask was charged with 74 g of TMPTA and 240 g of butanol. The flask was equipped with nitrogen sub-surface and reflux condenser and heated to about 80° C. 46 g of NPPDA was added in portions over 30 min and the mixture was then heated to reflux for 8 hrs. 51.5 g of 2,6-di-tert butylphenol and 0.7 g potassium hydroxide were added and the mixture was again held at reflux for 7 hrs. The reflux condenser was replaced with a distillation apparatus and the mixture was heated to 145° C., during which almost 200 ml butanol was removed. The mixture was cooled to 65° C. and 60.3 g of bis(2-ethylhexyl)amine was added dropwise over a 2 hr period. The mixture was held at 65° C. for 3 hrs and then vacuum stripped. 7 g of talc was added and stirred for 30 minutes, followed by filteration through paper to remove solids. The filtered product had 4.22% N and had a TBN of 131.
The TEOST MHT-4 is a standard lubricant industry test for the evaluation of the oxidation and carbonaceous deposit-forming characteristics of engine oils. The test is designed to simulate high temperature deposit formation in the piston ring belt area of modern engines. The test utilizes a patented instrument (U.S. Pat. No. 5,401,661 and U.S. Pat. No. 5,287,731; the disclosure of each patent is hereby incorporated by reference in its entirety) with the MHT-4 protocol being a relatively new modification to the test. Details of the test operation and specific MHT-4 conditions have been published by Selby and Florkowski (Selby et al.) in a paper entitled, “The Development of the TEOST Protocol MHT as a Bench Test of Engine Oil Piston Deposit Tendency” presented at the 12th International Colloquium Technische Akademie Esslingen, Jan. 11-13, 2000. Wilfried J. Bartz editor. The Selby et al. paper is hereby incorporated by reference in its entirety.
Oil Blends A, B, and C were evaluated using the TEOST MHT-4 with the results shown in the attached Table 1. Blend A was the baseline to which 0.5 and 1 wt % of the compound of Example 1 were combined to make blends B and C, respectively.
As shown in Table I above, blends B and C showed lower deposits (in mg) than blend A. These results demonstrate improved antioxidant performance from the compound of Example 1, as compared with blend A, which did not contain a compound of the present application.
For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by the present disclosure. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” include plural referents unless expressly and unequivocally limited to one referent. Thus, for example, reference to “an acid” includes two or more different acids. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
While particular embodiments have been described alternatives, modifications, variations, improvements, and substantial equivalents that are or can be presently unforseen can arise to applicants or others skilled in the art. Accordingly, the appended claims as filed and as they can be amended are intended to embrace all such alternatives, modifications variations, improvements, and substantial equivalents.