The present invention relates to methods and devices for performing minimally invasive surgical procedures.
Many surgical procedures involve inserting various instruments through the working channel of a surgical access device. The instruments are used to view, engage, and/or treat tissue within a body cavity or other surgical site to achieve a diagnostic or therapeutic effect. In laparoscopic abdominal procedures for example, the abdominal cavity is generally insufflated with CO2 gas to a pressure of around 15 mm Hg. The abdominal wall is pierced and a plurality of tubular cannulas, each defining a working channel, are inserted at various points into the abdominal cavity. A laparoscopic telescope connected to an operating room monitor can be used to visualize the operative field and can be placed through one of the cannulas. Other laparoscopic instruments such as graspers, dissectors, scissors, retractors, etc. can be placed through the other cannula(s) to facilitate various manipulations by the surgeon. In this type of procedure, because of the positioning of the cannulas, it can be relatively easy to “triangulate” the tips of two separate instruments, e.g., bring the tips together at a single point within the abdominal cavity. For example, a first instrument could be passed through a cannula in the left side of the patient's abdomen and operated with the surgeon's left hand while a second instrument could be passed through another cannula in the right side of the patient's abdomen and operated with the surgeon's right hand. The surgeon can then easily bring the tips of the two instruments together at an internal point, e.g. in the center of the patient's abdomen. A laparoscope viewing instrument can also be passed through a third cannula, positioned for example in the center of the patient's abdomen, such that the tips of the two instruments can be easily visualized from above.
In other surgical procedures, however, visualization and triangulation is not as straightforward. For example, in Single Incision Laparoscopic Surgery (SILS) or Single Site Laparoscopic Surgery (SSLS), a single laparoscopic entry point is formed, e.g., through the navel. An access device having one or more working channels, and typically a plurality of working channels, is then installed in the entry point and all instruments required for performing the surgery are inserted through this same access device. In such procedures, the elongate shafts of the various instruments end up being generally parallel to one another while inserted through the access device. This can make it very difficult to triangulate the tips of two instruments within the abdominal cavity, especially if the instruments do not have distal articulation capabilities. In addition, since the viewing scope is inserted generally along the same axis as the various other instruments, it can be difficult or impossible to see the tips of the instruments. Furthermore, the handles of the various instruments often end up being positioned in close proximity to one another and create a so-called “chopstick” effect, which describes interference between the surgeon's hands, between the surgeon's hands and the instruments, and between the instruments. Interference between the handles and/or the positioning of the handles can limit maneuverability and/or lead to discomfort for the surgeon. These problems can unduly lengthen the duration of the surgery, potentially increasing the risk of patient complications. Also, in cases where it is impossible to achieve adequate triangulation and/or visualization, a second or even third entry point must be formed, increasing trauma to the patient and creating additional scars.
Even in multiple-incision procedures or where triangulation and visualization is possible (e.g., where one or more of the devices includes a distal articulation capability), triangulation, visualization, comfort, and maneuverability can still be sub-optimal.
Accordingly, there is a need for methods and devices which allow laparoscopic procedures to be performed with an enhanced ability to triangulate and visualize surgical instruments and with improved surgeon comfort and instrument maneuverability.
The present invention generally provides methods and devices for performing minimally invasive surgical procedures. In one embodiment, an articulating laparoscopic access device is provided that includes an elongate shaft, first and second linkages, and a linkage bar. The first and second linkages and the linkage bar each have proximal and distal ends. The proximal end of the first linkage is pivotally coupled to the distal end of the elongate shaft at a first pivot point. The proximal end of the linkage bar is pivotally coupled to the distal end of the first linkage by a second pivot point, and the distal end of the linkage bar is pivotally coupled to the proximal end of the second linkage by a third pivot point. A first range of motion of the linkage bar about the third pivot point is less than a second range of motion of the linkage bar about the second pivot point. The distal end of the first linkage, the proximal end of the second linkage, and the linkage bar are movable between a first position longitudinally aligned with a longitudinal axis of the elongate shaft and a second position displaced from the longitudinal axis of the elongate shaft.
The device can include an actuator. The distal end of the second linkage can be pivotally coupled to the actuator at a fourth pivot point. The actuator can be movable longitudinally relative to the elongate shaft to longitudinally move the distal end of the second linkage.
The linkages and the linkage bar can have a variety of configurations and be coupled together in a variety of ways. For example, the proximal end of the linkage bar can be seated within a first groove formed in the distal end of the first linkage, and the distal end of the linkage bar can be seated within a second groove formed in the proximal end of the second linkage. The first groove can define the first range of motion, and the second groove can define the second range of motion. For another example, the elongate shaft, the first linkage, and the second linkage can have an inner lumen extending longitudinally therethrough for receiving a tool.
An end effector can be coupled to the distal end of the second linkage. The end effector can have a variety of configurations, but in one embodiment, it can include opposed jaws. The device can include an actuator configured to move the opposed jaws between a closed position and an open position. The actuator can extend through the elongate shaft, the first linkage, and the second linkage and be coupled to a proximal end of the opposed jaws.
In another aspect, a laparoscopic system is provided that includes an articulation device and a tool. The articulation device has an elongate shaft, a first linkage coupled to the elongate shaft at a first joint, and a second linkage coupled to the first linkage at a second joint. The second joint is movable radially outward relative to an axis extending longitudinally along the elongate shaft, and a distal end of the second linkage is constrained to longitudinal movement along the axis. The tool has a flexible elongate shaft with an end effector on a distal end thereof. The flexible elongate shaft is disposable through a lumen extending through the elongate shaft, the first linkage, and the second linkage such that the end effector extends from the distal end of the second linkage. The flexible elongate shaft is bendable to conform to a shape of the lumen as the second joint is moved radially outward.
The system can include an actuator extending along the elongate shaft and having a distal end coupled to the distal end of the second linkage. The actuator can be longitudinally movable relative to the axis to move the distal end of the second linkage along the axis. The distal end of the actuator can be coupled to the distal end of the second linkage at a pivot point such that the second linkage is configured to pivot about the pivot point relative to the actuator. In some embodiments, the actuator is rigid. The system can optionally include a lock configured to lock the actuator in a fixed position relative to the shaft and the first and second linkages.
The first and second joints can be configured in any number of ways. For example, the first joint can include a pivot point formed between a distal end of the elongate shaft and a proximal end of the first linkage, and/or the second joint can include a linkage bar having a proximal end pivotally coupled to a distal end of the first linkage at a first pivot point and a distal end pivotally coupled to a proximal end of the second linkage at a second pivot point. For another example, the end effector can be angularly oriented relative to the axis when the second joint is disposed radially outward from the axis.
In yet another aspect, a method for laparoscopic surgery is provided that includes inserting a first tool through a first port formed in a housing disposed within tissue to position a distal end of the first tool within a body cavity, inserting a second tool through a second port formed in the housing to position a distal end of the second tool within the body cavity, inserting a flexible elongate shaft through a lumen of one of the first and second tools, actuating the first tool to cause a distal portion of the first tool disposed within the body cavity to form a compound angle, and actuating the second tool to cause a distal portion of the second tool disposed within the body cavity to form a compound angle. The flexible elongate shaft bends to conform to a shape of the lumen with the distal portion of the one of the first and second tools. When proximal portions of each of the first and second tools are substantially parallel, actuating the first and second tools causes end effectors at the distal ends of the first and second tools to be oriented toward one another without causing the distal portions of the first and second tools to intersect. In some embodiments, actuating the first tool can include longitudinally moving a first actuator extending along a first elongate shaft of the first tool, and actuating the second tool can include longitudinally moving a second actuator extending along a second elongate shaft. The method can optionally include engaging a lock of at least one of the first and second tools to maintain the compound angle of the one of the first and second tools in a fixed position.
The end effector can have a variety of configurations. In some embodiments, the method can include actuating the first tool to move opposed jaws of the end effector of the first tool between a closed position and an open position, wherein the formed compound angle of the first tool remains fixed during actuation of the first tool.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
Various exemplary devices and methods are provided for performing minimally invasive surgical procedures. In general, the devices and methods allow a shaft of a surgical instrument to form a compound angle, thereby facilitating optimal positioning of a working distal end of the instrument relative to a surgical site. In an exemplary embodiment, a laparoscopic device includes an elongate shaft having a distal portion configured to be movable between a first configuration in which the distal portion of the shaft is substantially straight or linear and a second configuration in which the distal portion of the shaft is bent at a compound angle. In an exemplary embodiment, the shaft's distal portion can include two articulation joints to facilitate formation of the compound angle. The shaft's distal portion can be configured to be articulated in a wide range of compound angles. The shaft's distal portion can also be configured to be locked in a fixed articulated position, thereby allowing the device to be easily held in a desired bent position. The device can thus be inserted into a patient's body with the shaft in the first configuration, and it can be subsequently manipulated to move the shaft from the first configuration to the second configuration to allow the device's working distal end, e.g., an end effector, to be optimally angled within the body relative to a surgical site and/or any other surgical instruments at the surgical site. The shaft can also be configured to move from the second configuration to the first configuration to ease removal of the device from the patient. Such a configuration can be particularly advantageous where two or more instruments are inserted into a patient's body cavity through the same entry port in tissue because it can allow for triangulation. In particular, distal tips of the instruments can be brought together at a single point within the body cavity, even though the instruments' shafts extend generally parallel to one another.
A person skilled in the art will appreciate that while the methods and devices are described in connection with laparoscopic procedures in which one or more surgical instruments are inserted into a patient's body through an artificial opening, e.g., an incision, the methods and devices disclosed herein can be used in numerous surgical procedures and with numerous surgical instruments. By way of non-limiting example, the methods and devices can be used in open surgical procedures.
A person skilled in the art will also appreciate that the devices disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The devices can be inserted directly into a patient's body or can be inserted through an access device having a working channel through which a shaft of a surgical instrument can be advanced. A person skilled in the art will further appreciate that an access device can be configured to allow insertion of a single surgical instrument therethrough, such as with a straight cannula, or to allow simultaneous insertion of multiple instruments therethrough, such as with a surgical access device having multiple sealing ports each defining a working channel. Devices disclosed herein can alternatively or additionally be introduced into a body through an auxiliary passageway along the outside of a scoping device or other surgical instrument, as will be appreciated by a person skilled in the art. Exemplary embodiments of a surgical instrument that provides such an auxiliary passageway are described in more detail in U.S. Pat. No. 7,615,005 issued Nov. 10, 2009 entitled “Medical Apparatus For Use With An Endoscope,” which is hereby incorporated by reference in its entirety.
In an exemplary embodiment, shown in
The shaft assembly 20 can have a variety of sizes, shapes, and configurations. The shaft assembly 20 can be rigid, flexible, or a combination thereof. Portions of the shaft assembly 20 can be less flexible or more rigid than a remainder of the shaft assembly 20 to facilitate insertion through tissue and/or operation of the end effector 22. As in the illustrated embodiment, the distal portion 36a of the shaft 36 can be flexible, and a remainder of the tool 19, as well as the shaft assembly 20, can be rigid. Having a rigid shaft assembly 20 and a shaft 36 rigid along a substantial longitudinal length thereof can help facilitate translation of forces in articulating and actuating the device 10 as discussed further below.
As mentioned above, the shaft assembly 20 can be tubular, and it can have an inner lumen 34 extending therethrough, as shown in
The shaft assembly 20 can have any longitudinal length, although in an exemplary embodiment it is long enough to allow the handle 12 and the control knob 28 to be manipulated outside a patient's body when the device 10 is partially inserted into the body with the end effector 22 disposed within a body cavity, e.g., have a longitudinal length of about 33 cm. In this way, the shaft assembly 20 and the end effector 22 can be easily manipulated when the device 10 is in use during a surgical procedure. The shaft assembly 20 can have any diameter D, e.g., less than or equal to about 10 mm, and more particularly less than or equal to about 5 mm, to allow for insertion of the shaft assembly 20 through an access device, such as during a laparoscopic surgical procedure. The end effector 22 coupled to the shaft's distal end can have a diameter equal to or less than the shaft's diameter D, at least when the jaws 16a, 16b are in a closed position, to further facilitate insertion of the device's distal portion into a patient's body.
In an exemplary embodiment, the shaft assembly 20 can be substantially cylindrical to help the shaft assembly 20 pass smoothly into a body. The shaft assembly 20 can have any constant or varying shape along its longitudinal length, and the shaft's diameter D can be uniform or non-uniform along its longitudinal length. In an exemplary embodiment, as shown in
Generally, the shaft assembly 20 can include an articulation assembly 18 surrounding at least the distal portion 36a of the shaft 36 when the shaft 36 is received within the shaft assembly 20. The articulation assembly 18 can be movable relative to the shaft 36 to articulate the distal portion of the shaft assembly 20 and the distal portion 36a of the shaft 36 received therein and generally aligned with the articulation assembly 18. Generally, the articulation assembly 18 can be configured to be movable between a linear or straight configuration, generally referred to as a “straight configuration,” in which the articulation assembly 18 extends substantially parallel to a longitudinal axis 20A of the shaft assembly 20, as illustrated in
The articulation assembly 18 can have a variety of sizes, shapes, and configurations. Generally, it can include a plurality of sections, segments, or linkages, generally referred to as “linkages,” along the shaft's longitudinal length to facilitate articulation of the shaft assembly 20. As shown in the embodiment illustrated in
As shown in
The proximal shaft 24 and the linkages 26, 30 can have a variety of sizes, shapes, and configurations. For example, the proximal shaft 24 and the linkages 26, 30 can each be in the form of a relatively rigid tubular section, e.g., made from a generally non-bendable material such as a hard polymer or titanium, with the inner lumen 34 extending therethrough. As shown in
As shown in
The articulation assembly 18 can be configured to facilitate smooth and controlled articulation of the shaft assembly 20 relative to the handle 12 with the first articulation joint 42 being located between the proximal shaft 24 and the first linkage 26 to allow the proximal shaft 24 and the first linkage 26 to be angled relative to one another, and with the second articulation joint 44 being located between the first and second linkages 26, 30 to allow the first and second linkages 26, 30 to be angled relative to one another offset from the shaft's longitudinal axis 20A. The proximal shaft 24 and the linkages 26, 30 can thus be configured to articulate to form a compound angle. The proximal shaft 24 can be configured to be in a fixed position along the shaft's longitudinal axis 20A when the articulation assembly 18 is in the straight configuration, as shown in
With the articulation assembly 18 in the articulated configuration, a compound angle is formed, with the respective axes 20A, 26A, 30A of the proximal shaft 24 and the linkages 26, 30 intersecting one another. The axes 20A, 26A, 30A can, however, all lie within a common plane.
The proximal shaft 24 and the linkages 26, 30 can be coupled together in a variety of ways. As illustrated in the embodiment of
The proximal shaft 24, the linkages 26, 30, and the linkage bars 32a, 32b can be pivotally coupled together in any way at their associated ones of the pivot points 38, 40, 46, as will be appreciated by a person skilled in the art. As in the illustrated embodiment shown in
The first and second linkages 26, 30 can respectively includes grooves formed therein at the second and third pivot points 40, 46 that can be configured to seat the linkage bars 32a, 32b. By seating the linkage bars 32a, 32b, the grooves can be configured to help reduce the diameter of the device's distal portion including the linkage bars 32a, 32, which can help ease insertion and removal of the device's distal portion to and from a patient's body. However, as in the illustrated embodiment, the linkage bars 32a, 32b can be configured to not be seated flush or sub-flush within the grooves but instead can extend laterally/radially outward from outer surfaces of the first and second linkages 26, 30 such that the shaft's diameter D is larger at the second articulation joint 44 than elsewhere along the shaft's longitudinal length. In one embodiment, the grooves can be configured to define ranges of motion about the second and third pivot points 40, 46.
First and second grooves 62a, 64a seating the first linkage bar 32a, shown in
Although the end effector 22 can be pivotally coupled to the second linkage's distal end such that it can pivot or articulate relative to the second linkage 30, in the illustrated embodiment, a proximal end of the end effector 22 is non-pivotally coupled to a distal end of the second linkage 30, e.g., welded, snapped, or press fit thereon, which can allow the end effector 22 to articulate with the second linkage 30 relative to the first linkage 26, the proximal shaft 24, and the handle 12. The end effector 22 can additionally or alternatively be configured to be movable relative to the second linkage 30, such as by being rotatable relative thereto and/or by opening and closing the jaws 16a, 16b, as discussed further below.
Although the end effector 22 is removably and replaceably coupled to the second linkage 30 in the device 10 of
In one exemplary embodiment, illustrated in
Referring again to the embodiment of
As shown in
The actuator 66 can extend longitudinally parallel to the longitudinal axis 20A when the articulation assembly 18 is not articulated, but a longitudinal axis 66A of the actuator 66 can be offset from and be parallel to the shaft's longitudinal axis 20A, as shown in
As mentioned above, the actuator 66 can be movable relative to the proximal shaft 24. As in the illustrated embodiment, the actuator 66 can be movable longitudinally in proximal and distal directions parallel to the shaft's longitudinal axis 20A to articulate the articulation assembly 18. In response to selective movement of the control knob 28, the actuator 66 can be configured to move longitudinally relative to the shaft's longitudinal axis 20A, e.g., along the actuator's longitudinal axis 66A parallel to the shaft's longitudinal axis 20A. More particularly, when the articulation assembly 18 is in the straight configuration, or when it is not maximally articulated in the articulated configuration, longitudinal movement of the control knob 28 along the shaft's longitudinal axis 20A in a proximal direction can move the proximal shaft 24 longitudinally in a proximal direction over the shaft 36, and it can move the actuator 66 longitudinally in a proximal direction, thereby pulling the distal end of the second linkage 30 proximally to pivot the second linkage 30 relative to the actuator 66 at the fourth pivot point 68. Although the actuator 66 and the second linkage 30 can be pivotally coupled together at the fourth pivot point 38, the distal end of the second linkage 30 can be constrained to longitudinal movement along the longitudinal axis 66A of the actuator 66, and thus parallel to the shaft's longitudinal axis 20A, as the actuator 66 moves proximally and distally, as shown in
The articulation assembly 18 can be similarly straightened using the actuator 66. When the articulation assembly 18 is in the articulated configuration, longitudinal movement of the control knob 28 along the shaft's longitudinal axis 20A in a distal direction can distally, longitudinally move the proximal shaft 24 over the shaft 36 and distally, longitudinally move the actuator 66, thereby pivoting the second linkage 30 relative to the actuator 66 at the fourth pivot point 68. The pivotal movement of the second linkage 30 about the fourth pivot point 68 can translate motion to the first and second articulation joints 42, 44 to decrease the compound angle, if not move the articulation assembly 18 from the articulated configuration to the straight configuration.
With the actuator 66 coupled to the distal end of the second linkage 30, the articulation assembly 18 can be bent in a distal-to-proximal direction whether it is being increased or decreased in amount of articulation. In other words, longitudinal movement of the actuator 66 can cause the second linkage 30 to pivot about the third pivot point 46 prior to the first linkage 26 pivoting about the second pivot point 40, and it can cause the first linkage 26 to pivot about the second pivot point 40 prior to the first linkage 26 pivoting about the first pivot point 38.
The articulation actuator can optionally include a second actuator (not shown) configured to further facilitate articulation at the first articulation joint 42. The second actuator can have a distal end coupled to the proximal end of the first linkage 26, e.g., at a coupling point 94 shown in
The articulation actuator can be freely longitudinally movable to allow the articulation assembly 18 to articulate any amount at any angles A1, A2. However, the control knob 28 can be configured to be manually held in a fixed position to hold the articulation assembly 18 at a desired compound angle. The device 10 can include a lock configured to mechanically hold the articulation assembly 18 in a fixed position when it is in the articulated configuration, which can ease manipulation of the device 10 when the articulation assembly 18 is articulated. As in the illustrated embodiment, the device 10 can include a lock configured to lock the articulation assembly 18 in a fixed position when it is at a maximum amount of articulation. The lock can have a variety of configurations, as will be appreciated by a person skilled in the art.
In the illustrated embodiment, as shown in
In addition to being longitudinally movable relative to the handle 12, the control knob 28 can be configured to rotate relative thereto to rotate the shaft assembly 20 about the longitudinal axis 20A. If the end effector 22 is attached to the shaft's distal end, as opposed to being attached to an independent tool inserted through the device such as in the embodiment illustrated in
The control knob 28 can include at least one gripping feature 80, shown in
As mentioned above, the device 10 includes a handle 12 having controls configured to operate the end effector 22, e.g., to actuate and/or rotate the end effector 22. As in the embodiment illustrated in
The activator member in the handle 12 can vary, but as in the illustrated embodiment, it can include a ratchet 86 driven by a thumb trigger 84. The ratchet 86 can be configured to longitudinally translate the translator element 88 parallel to the longitudinal axis 20A in response to manual pressure on the trigger 84. As the trigger 84 is pivoted relative to a pistol handle grip 82, the trigger 84 ratchets the translator element 88 proximally or distally through the shaft 36, the proximal shaft 24, and the two linkages 26, 30 to move the jaws 16a, 16b, whether the articulation assembly 18 is articulated or not.
As mentioned above, and as will be appreciated by a person skilled in the art, the handle 12 can include any rotating mechanism configured to rotate the end effector 22 before and/or after the articulation assembly 18 is articulated, such as a knob 90 as shown, a lever, a wired or wireless electronic control, etc. The knob 90 can include at least one gripping feature, e.g., raised ridges 92, configured to facilitate manipulation of the knob 90. The knob 90 can be coupled to the translator element 88 and be configured to rotate the translator element 88 a full 360° clockwise and/or counterclockwise to correspondingly rotate the end effector 22 about the second linkage's longitudinal axis 30A, which as mentioned above is the same as the shaft's longitudinal axis 20A when the articulation assembly 18 is in the straight configuration. The knobs 28, 90 can thus allow for separate, relative rotation between the shaft assembly 20 and the end effector 22. By extending through the shaft assembly 20 whether it is articulated or not, the translator element 88 can allow the end effector 22 to be rotated about the shaft's longitudinal axis 20A relative to the shaft assembly 20 with the articulation assembly 18 in either the straight or articulated configuration.
In use, as shown in an exemplary embodiment in
The multiple port access device 102 can include multiple instrument openings each configured to receive an instrument inserted therethrough. Each opening can have an associated sealing port that can be configured to provide at least one instrument seal that forms a seal around an instrument disposed therethrough, but otherwise does not form a seal when no instrument is disposed therethrough, at least one channel seal or zero-closure seal that seals a working channel created by the sealing port when no instrument is disposed therethrough, or a combination instrument seal and channel seal that is effective to both form a seal around an instrument disposed therethrough and to form a seal in the working channel when no instrument is disposed therethrough. Exemplary embodiments of multiple port access devices are described in more detail in U.S. patent application Ser. No. 12/399,482 filed Mar. 6, 2009 entitled “Methods And Devices For Providing Access Into A Body Cavity,” U.S. patent application Ser. No. 12/399,473 filed Mar. 6, 2009 entitled “Methods And Devices For Providing Access Into A Body Cavity,” U.S. patent application Ser. No. 12/512,542 filed Jul. 30, 2009 entitled “Methods And Devices For Providing Access Into A Body Cavity,” U.S. patent application Ser. No. 12/512,568 filed Jul. 30, 2009 entitled “Methods And Devices For Providing Access Into A Body Cavity,” U.S. patent application Ser. No. 12/399,633 filed Mar. 6, 2009 entitled “Methods And Devices For Providing Access Into A Body Cavity,” U.S. patent application Ser. No. 12/399,625 filed Mar. 6, 2009 entitled “Methods And Devices For Providing Access Into A Body Cavity,” U.S. patent application Ser. No. 12/399,547 filed Mar. 6, 2009 entitled “Surgical Access Devices And Methods Providing Seal Movement In Predefined Paths,” U.S. patent application Ser. No. 12/399,656 filed Mar. 6, 2009 entitled “Surgical Access Devices And Methods Providing Seal Movement In Predefined Movement Regions,” and U.S. patent application Ser. No. 12/766,086 filed Apr. 23, 2010 entitled “Methods And Devices For Accessing A Body Cavity,” which are hereby incorporated by reference in their entireties.
The devices 10″ can be simultaneously or sequentially inserted through the multiple port access device 102 with the articulation assemblies 18″ in straight configurations to position distal portions of the devices' proximal shafts 24″ within the body cavity 108. The proximal shafts 24″ inserted through the multiple port access device 102 can each extend generally parallel to one another, e.g., have parallel longitudinal axes. If one or both of the end effectors 22″ are not already coupled to the devices 10″, e.g., if the end effector is located at a distal end of a separate tool not yet inserted through the articulation assembly, the tool can be inserted therethrough to position the end effector(s) 22″ distal to the articulation assembly or assemblies 18″. Such separate tools having end effectors at distal ends thereof can be inserted after the articulation assemblies 18″ have been articulated, but it can be easier and faster to articulate the tools with the articulation assemblies 18″ rather than navigate the tools through previously-articulated articulation assemblies 18″. After the distal portions of the proximal shafts 24″ and the end effector 22″ have been positioned within the body cavity 108, control knobs (not shown) of the devices 10″ can be manipulated, simultaneously or sequentially, to move the articulation assemblies 18″ from straight configurations to articulated configurations and to allow the end effectors 22″ to be brought together in a non-interfering, cooperative, facing relationship and to be within a viewing range 110 of the scoping device 104, as illustrated in
The devices 10″ can also be easily removed from the patient's body by moving the articulation assemblies 18″ from articulated configurations to straight configurations. The multiple port access device 102 can be configured to allow further adjustment of instruments inserted therethrough, such as by allowing collective rotation of the instruments around a central axis of the multiple port access device 102.
A proximal housing portion of the multiple port access device 102 can be configured to be removable from a distal retractor portion of the multiple port access device 102. Thus, at any point before, during, or after a surgical procedure, the proximal housing portion can in full or part be released from the distal retractor portion, and the distal retractor portion can be removed from the tissue 106. With the proximal housing portion of the multiple port access device 102 disengaged from the distal retractor portion and with the distal retractor portion still positioned in the tissue opening 100, a working channel of the distal retractor portion can provide access to the body cavity 108 underlying the tissue 106. One or more of the devices 10″ and/or other surgical instruments can be advanced through the working channel, such as a waste removal bag configured to hold waste material, e.g., dissected tissue, excess fluid, etc., from the body cavity 108. The bag can be introduced into the body cavity 108 through the distal retractor portion's working channel or other access port. A person skilled in the art will appreciate that one or more surgical instruments can be advanced through the distal retractor portion's working channel before and/or after the proximal housing portion has been attached to the distal retractor portion. A surgical drape can optionally be placed over the distal retractor portion and the tissue opening 100 during removal of the distal retractor portion to help reduce dispersion of bodily fluid outside the surgical space.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination, e.g., an end effector, a proximal housing portion of a surgical access device, an end effector, etc. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
Preferably, the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.
One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
The present application is a continuation of U.S. application Ser. No. 14/032,747, filed Sep. 20, 2013, and entitled “Compound Angle Laparoscopic Methods and Devices,” which is a continuation of U.S. application Ser. No. 12/775,724, filed May 7, 2010 (now U.S. Pat. No. 8,562,592) and entitled “Compound Angle Laparoscopic Methods and Devices,” which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2765930 | Geer et al. | Oct 1956 | A |
3402710 | Paleschuck | Sep 1968 | A |
3503396 | Pierie et al. | Mar 1970 | A |
3654965 | Gramain | Apr 1972 | A |
4041931 | Elliott et al. | Aug 1977 | A |
4048987 | Hurson | Sep 1977 | A |
4112932 | Chiulli | Sep 1978 | A |
4120302 | Ziegler | Oct 1978 | A |
4203430 | Takahashi | May 1980 | A |
4306545 | Ivan et al. | Dec 1981 | A |
4373532 | Hill et al. | Feb 1983 | A |
2129391 | Frederick | Sep 1983 | A |
4402683 | Kopman | Sep 1983 | A |
4417888 | Cosentino et al. | Nov 1983 | A |
4559947 | Renger et al. | Dec 1985 | A |
4608977 | Brown | Sep 1986 | A |
4669473 | Richards et al. | Jun 1987 | A |
4821719 | Fogarty | Apr 1989 | A |
4831070 | McInally et al. | May 1989 | A |
4880015 | Nierman | Nov 1989 | A |
5020514 | Heckele | Jun 1991 | A |
5027800 | Rowland | Jul 1991 | A |
5058603 | Doi et al. | Oct 1991 | A |
5141498 | Christian | Aug 1992 | A |
5183471 | Wilk | Feb 1993 | A |
5197955 | Stephens et al. | Mar 1993 | A |
5201742 | Hasson | Apr 1993 | A |
5207213 | Auhll et al. | May 1993 | A |
5209737 | Ritchart et al. | May 1993 | A |
5209741 | Spaeth | May 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5269772 | Wilk | Dec 1993 | A |
5275614 | Haber et al. | Jan 1994 | A |
5284128 | Hart | Feb 1994 | A |
5308336 | Hart et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5329923 | Lundquist | Jul 1994 | A |
5330437 | Durman | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5342396 | Cook | Aug 1994 | A |
5345927 | Bonutti | Sep 1994 | A |
5350391 | Iacovelli | Sep 1994 | A |
5360428 | Hutchinson, Jr. | Nov 1994 | A |
5362294 | Seitzinger | Nov 1994 | A |
5366478 | Brinkerhoff et al. | Nov 1994 | A |
5368597 | Pagedas | Nov 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5381943 | Allen et al. | Jan 1995 | A |
5383888 | Zvenyatsky et al. | Jan 1995 | A |
5385553 | Hart et al. | Jan 1995 | A |
5385560 | Wulf | Jan 1995 | A |
5391154 | Young | Feb 1995 | A |
5398617 | Deandrea | Mar 1995 | A |
5403342 | Tovey et al. | Apr 1995 | A |
5417203 | Tovey et al. | May 1995 | A |
5419339 | Palmer | May 1995 | A |
5441483 | Avitall | Aug 1995 | A |
5443452 | Hart et al. | Aug 1995 | A |
5443484 | Kirsch et al. | Aug 1995 | A |
5445648 | Cook | Aug 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5480410 | Cuschieri et al. | Jan 1996 | A |
5489256 | Adair | Feb 1996 | A |
5489290 | Furnish | Feb 1996 | A |
5501653 | Chin | Mar 1996 | A |
5514157 | Nicholas et al. | May 1996 | A |
5520609 | Moll et al. | May 1996 | A |
5520678 | Heckele et al. | May 1996 | A |
5545123 | Ortiz et al. | Aug 1996 | A |
5545179 | Williamson, IV | Aug 1996 | A |
5547458 | Ortiz et al. | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5569205 | Hart et al. | Oct 1996 | A |
5569254 | Carlson et al. | Oct 1996 | A |
5571090 | Sherts | Nov 1996 | A |
5571129 | Porter | Nov 1996 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5578048 | Pasqualucci et al. | Nov 1996 | A |
5582577 | Lund et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5584850 | Hart et al. | Dec 1996 | A |
5586977 | Dorsey, III | Dec 1996 | A |
5591182 | Johnson | Jan 1997 | A |
5595193 | Walus et al. | Jan 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5609601 | Kolesa et al. | Mar 1997 | A |
5618291 | Thompson et al. | Apr 1997 | A |
5618294 | Aust et al. | Apr 1997 | A |
5624381 | Kieturakis | Apr 1997 | A |
5626608 | Cuny et al. | May 1997 | A |
5630831 | Lahr | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5632734 | Galel et al. | May 1997 | A |
5634882 | Gagner | Jun 1997 | A |
5634883 | Chin et al. | Jun 1997 | A |
5634911 | Hermann et al. | Jun 1997 | A |
5634937 | Mollenauer et al. | Jun 1997 | A |
5636645 | Ou | Jun 1997 | A |
5640977 | Leahy et al. | Jun 1997 | A |
5643283 | Younker | Jul 1997 | A |
5643301 | Mollenauer | Jul 1997 | A |
5647372 | Tovey et al. | Jul 1997 | A |
5653705 | de la Torre et al. | Aug 1997 | A |
5665093 | Atkins et al. | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5672168 | de la Torre et al. | Sep 1997 | A |
5676146 | Scarborough | Oct 1997 | A |
5676657 | Yoon | Oct 1997 | A |
5681324 | Kammerer et al. | Oct 1997 | A |
5695448 | Kimura et al. | Dec 1997 | A |
5700275 | Bell et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5713919 | Lahr | Feb 1998 | A |
5716327 | Warner et al. | Feb 1998 | A |
5716407 | Knapp et al. | Feb 1998 | A |
5728121 | Bimbo et al. | Mar 1998 | A |
5735289 | Pfeffer et al. | Apr 1998 | A |
5743456 | Jones et al. | Apr 1998 | A |
5743851 | Moll et al. | Apr 1998 | A |
5766205 | Zvenyatsky et al. | Jun 1998 | A |
5772654 | Leyva | Jun 1998 | A |
5782812 | Hart et al. | Jul 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5797959 | Castro et al. | Aug 1998 | A |
5803919 | Hart et al. | Sep 1998 | A |
5813409 | Leahy et al. | Sep 1998 | A |
5814058 | Carlson et al. | Sep 1998 | A |
5816257 | Chin | Oct 1998 | A |
5827319 | Carlson et al. | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5833692 | Cesarini et al. | Nov 1998 | A |
5836960 | Kolesa et al. | Nov 1998 | A |
5840078 | Yerys | Nov 1998 | A |
5853395 | Crook et al. | Dec 1998 | A |
5865807 | Blake, III | Feb 1999 | A |
5872859 | Gur et al. | Feb 1999 | A |
5876447 | Arnett | Mar 1999 | A |
5891013 | Thompson | Apr 1999 | A |
5893878 | Pierce | Apr 1999 | A |
5906577 | Beane et al. | May 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5941890 | Voegele et al. | Aug 1999 | A |
5947922 | MacLeod | Sep 1999 | A |
5957913 | de la Torre et al. | Sep 1999 | A |
5971995 | Rousseau | Oct 1999 | A |
5977431 | Knapp et al. | Nov 1999 | A |
5990382 | Fox | Nov 1999 | A |
6007561 | Bourque et al. | Dec 1999 | A |
6024708 | Bales et al. | Feb 2000 | A |
6024736 | de la Torre et al. | Feb 2000 | A |
6027522 | Palmer | Feb 2000 | A |
6033428 | Sardella | Mar 2000 | A |
RE36702 | Green et al. | May 2000 | E |
6074419 | Healy et al. | Jun 2000 | A |
6077287 | Taylor et al. | Jun 2000 | A |
6077288 | Shimomura et al. | Jun 2000 | A |
6086603 | Termin et al. | Jul 2000 | A |
6093141 | Mosseri et al. | Jul 2000 | A |
6110154 | Shimomura et al. | Aug 2000 | A |
6110182 | Mowlai-Ashtiani | Aug 2000 | A |
6120513 | Bailey et al. | Sep 2000 | A |
6123689 | To et al. | Sep 2000 | A |
6126671 | Richards et al. | Oct 2000 | A |
6132385 | Vain | Oct 2000 | A |
6149642 | Gerhart et al. | Nov 2000 | A |
6156045 | Ulbrich et al. | Dec 2000 | A |
6156184 | Antonucci et al. | Dec 2000 | A |
6159200 | Verdura et al. | Dec 2000 | A |
6162196 | Hart et al. | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6165184 | Verdura et al. | Dec 2000 | A |
6171282 | Ragsdale | Jan 2001 | B1 |
6197034 | Gvozdic et al. | Mar 2001 | B1 |
6217555 | Hart et al. | Apr 2001 | B1 |
6220248 | Voegele et al. | Apr 2001 | B1 |
6228055 | Foerster et al. | May 2001 | B1 |
6245011 | Dudda et al. | Jun 2001 | B1 |
6245052 | Orth et al. | Jun 2001 | B1 |
6248062 | Adler et al. | Jun 2001 | B1 |
6258069 | Carpentier et al. | Jul 2001 | B1 |
6258102 | Pagedas | Jul 2001 | B1 |
6261302 | Voegele et al. | Jul 2001 | B1 |
6264599 | Slater et al. | Jul 2001 | B1 |
6290705 | Chan et al. | Sep 2001 | B1 |
6293966 | Frantzen | Sep 2001 | B1 |
6315770 | de la Torre et al. | Nov 2001 | B1 |
6319246 | de la Torre et al. | Nov 2001 | B1 |
6347940 | Gordils Wallis et al. | Feb 2002 | B1 |
6348034 | Thompson | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6400979 | Stoianovici et al. | Jun 2002 | B1 |
6402687 | Ouchi | Jun 2002 | B1 |
6425903 | Voegele | Jul 2002 | B1 |
6443960 | Brabrand et al. | Sep 2002 | B1 |
6447443 | Keogh et al. | Sep 2002 | B1 |
6447489 | Peterson | Sep 2002 | B1 |
6454783 | Piskun | Sep 2002 | B1 |
6456184 | Vu et al. | Sep 2002 | B1 |
6458077 | Boebel et al. | Oct 2002 | B1 |
6471714 | Kim | Oct 2002 | B1 |
6485467 | Crook et al. | Nov 2002 | B1 |
6494211 | Boyd et al. | Dec 2002 | B1 |
6551270 | Bimbo et al. | Apr 2003 | B1 |
6551282 | Exline et al. | Apr 2003 | B1 |
6578577 | Bonadio et al. | Jun 2003 | B2 |
6579304 | Hart et al. | Jun 2003 | B1 |
6589167 | Shimomura et al. | Jul 2003 | B1 |
6605063 | Bousquet | Aug 2003 | B2 |
6613068 | Ouchi | Sep 2003 | B2 |
6623426 | Bonadio et al. | Sep 2003 | B2 |
6634883 | Ranalli | Oct 2003 | B2 |
RE38335 | Aust et al. | Nov 2003 | E |
6663641 | Kovac et al. | Dec 2003 | B1 |
6665554 | Charles et al. | Dec 2003 | B1 |
6666854 | Lange | Dec 2003 | B1 |
6669674 | Macoviak et al. | Dec 2003 | B1 |
6673092 | Bacher | Jan 2004 | B1 |
6689122 | Yamamoto | Feb 2004 | B2 |
6706033 | Martinez et al. | Mar 2004 | B1 |
6706050 | Giannadakis | Mar 2004 | B1 |
6725083 | Burbank et al. | Apr 2004 | B1 |
6764473 | Morton | Jul 2004 | B2 |
6766186 | Hoyns et al. | Jul 2004 | B1 |
6807965 | Hickle | Oct 2004 | B1 |
6810880 | Jennings, Jr. et al. | Nov 2004 | B1 |
6818007 | Dampney et al. | Nov 2004 | B1 |
6821247 | Vierra et al. | Nov 2004 | B2 |
6846287 | Bonadio et al. | Jan 2005 | B2 |
6872433 | Seward et al. | Mar 2005 | B2 |
6908430 | Caldwell et al. | Jun 2005 | B2 |
6913613 | Schwarz et al. | Jul 2005 | B2 |
6936061 | Sasaki | Aug 2005 | B2 |
6939296 | Ewers et al. | Sep 2005 | B2 |
6945932 | Caldwell et al. | Sep 2005 | B1 |
6966876 | Irion et al. | Nov 2005 | B2 |
6972026 | Caldwell et al. | Dec 2005 | B1 |
6994712 | Fisher et al. | Feb 2006 | B1 |
7008377 | Beane et al. | Mar 2006 | B2 |
7014628 | Bousquet | Mar 2006 | B2 |
7021173 | Stoianovici et al. | Apr 2006 | B2 |
7047063 | Burbank et al. | May 2006 | B2 |
7052454 | Taylor | May 2006 | B2 |
7083576 | Zarins et al. | Aug 2006 | B2 |
7083626 | Hart et al. | Aug 2006 | B2 |
7087071 | Nicholas et al. | Aug 2006 | B2 |
7118528 | Piskun | Oct 2006 | B1 |
7147650 | Lee | Dec 2006 | B2 |
7163510 | Kahle et al. | Jan 2007 | B2 |
7201734 | Hickle | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7214185 | Rosney et al. | May 2007 | B1 |
7247154 | Hickle | Jul 2007 | B2 |
7311661 | Heinrich | Dec 2007 | B2 |
7331661 | Silverbrook et al. | Feb 2008 | B2 |
7331750 | Merz et al. | Feb 2008 | B2 |
7338473 | Campbell et al. | Mar 2008 | B2 |
7344547 | Piskun | Mar 2008 | B2 |
7347862 | Layer | Mar 2008 | B2 |
7416533 | Gellman et al. | Aug 2008 | B2 |
7615005 | Stefanchik et al. | Nov 2009 | B2 |
7691095 | Bednarek et al. | Apr 2010 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7985239 | Suzuki | Jul 2011 | B2 |
7988699 | Martz et al. | Aug 2011 | B2 |
8083667 | Cooper et al. | Dec 2011 | B2 |
8182418 | Durant et al. | May 2012 | B2 |
8562592 | Conlon et al. | Oct 2013 | B2 |
8758232 | Graham et al. | Jun 2014 | B2 |
8821388 | Naito et al. | Sep 2014 | B2 |
9226760 | Shelton, IV | Jan 2016 | B2 |
9333001 | Stokes et al. | May 2016 | B2 |
9468426 | Conlon et al. | Oct 2016 | B2 |
9474540 | Stokes et al. | Oct 2016 | B2 |
20010034528 | Foerster et al. | Oct 2001 | A1 |
20010053510 | Ranalli | Dec 2001 | A1 |
20020007112 | Rupp et al. | Jan 2002 | A1 |
20020026201 | Foerster et al. | Feb 2002 | A1 |
20020103434 | Swanbom | Aug 2002 | A1 |
20020156432 | Racenet et al. | Oct 2002 | A1 |
20020156497 | Nagase et al. | Oct 2002 | A1 |
20020173805 | Matsuno et al. | Nov 2002 | A1 |
20020193815 | Foerster et al. | Dec 2002 | A1 |
20030028179 | Piskun | Feb 2003 | A1 |
20030028207 | Lang et al. | Feb 2003 | A1 |
20030073882 | Smid et al. | Apr 2003 | A1 |
20030100814 | Kindlein | May 2003 | A1 |
20030109898 | Schwarz et al. | Jun 2003 | A1 |
20030113540 | Anderson et al. | Jun 2003 | A1 |
20030114838 | O'Neill et al. | Jun 2003 | A1 |
20030120285 | Kortenbach | Jun 2003 | A1 |
20030135204 | Lee et al. | Jul 2003 | A1 |
20030139756 | Brustad | Jul 2003 | A1 |
20030206860 | Bleyer et al. | Nov 2003 | A1 |
20030208207 | Layer | Nov 2003 | A1 |
20030225420 | Wardle | Dec 2003 | A1 |
20030229338 | Irion et al. | Dec 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040015185 | Ewers et al. | Jan 2004 | A1 |
20040023161 | Yamaguchi et al. | Feb 2004 | A1 |
20040024304 | Foerster et al. | Feb 2004 | A1 |
20040068291 | Suzuki | Apr 2004 | A1 |
20040106942 | Taylor et al. | Jun 2004 | A1 |
20040106986 | Andersson et al. | Jun 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138528 | Richter et al. | Jul 2004 | A1 |
20040147933 | McGovern | Jul 2004 | A1 |
20040167545 | Sadler et al. | Aug 2004 | A1 |
20040193146 | Lee et al. | Sep 2004 | A1 |
20040193212 | Taniguchi et al. | Sep 2004 | A1 |
20040215063 | Bonadio et al. | Oct 2004 | A1 |
20040225323 | Nagase et al. | Nov 2004 | A1 |
20040230160 | Blanco | Nov 2004 | A1 |
20040230161 | Zeiner | Nov 2004 | A1 |
20040243108 | Suzuki | Dec 2004 | A1 |
20040254426 | Wenchell | Dec 2004 | A1 |
20040260198 | Rothberg et al. | Dec 2004 | A1 |
20040260337 | Freed | Dec 2004 | A1 |
20050020884 | Hart et al. | Jan 2005 | A1 |
20050033312 | Suzuki | Feb 2005 | A1 |
20050033342 | Hart et al. | Feb 2005 | A1 |
20050033357 | Braun | Feb 2005 | A1 |
20050049580 | Brock et al. | Mar 2005 | A1 |
20050085842 | Eversull et al. | Apr 2005 | A1 |
20050090809 | Cooper et al. | Apr 2005 | A1 |
20050107809 | Litscher et al. | May 2005 | A1 |
20050124912 | Griego et al. | Jun 2005 | A1 |
20050137609 | Guiraudon | Jun 2005 | A1 |
20050148823 | Vaugh et al. | Jul 2005 | A1 |
20050155611 | Vaugh et al. | Jul 2005 | A1 |
20050192483 | Bonadio et al. | Sep 2005 | A1 |
20050209608 | O'Heeron | Sep 2005 | A1 |
20050222582 | Wenchell | Oct 2005 | A1 |
20050228224 | Okada et al. | Oct 2005 | A1 |
20050267419 | Smith | Dec 2005 | A1 |
20050273084 | Hinman et al. | Dec 2005 | A1 |
20050273132 | Shluzas et al. | Dec 2005 | A1 |
20050277946 | Greenhalgh | Dec 2005 | A1 |
20060016853 | Racenet | Jan 2006 | A1 |
20060020241 | Piskun et al. | Jan 2006 | A1 |
20060020281 | Smith | Jan 2006 | A1 |
20060020287 | Lee et al. | Jan 2006 | A1 |
20060042636 | Nalagatla et al. | Mar 2006 | A1 |
20060071432 | Staudner | Apr 2006 | A1 |
20060094933 | Goldfarb et al. | May 2006 | A1 |
20060149137 | Pingleton et al. | Jul 2006 | A1 |
20060206145 | Griego et al. | Sep 2006 | A1 |
20060212062 | Farascioni | Sep 2006 | A1 |
20060224129 | Beasley et al. | Oct 2006 | A1 |
20060224164 | Hart et al. | Oct 2006 | A1 |
20060229501 | Jensen et al. | Oct 2006 | A1 |
20060229641 | Gupta et al. | Oct 2006 | A1 |
20060229665 | Wales et al. | Oct 2006 | A1 |
20060241651 | Wilk | Oct 2006 | A1 |
20060241671 | Greenhalgh | Oct 2006 | A1 |
20060247499 | Butler et al. | Nov 2006 | A1 |
20060247500 | Voegele et al. | Nov 2006 | A1 |
20060247516 | Hess et al. | Nov 2006 | A1 |
20060247586 | Voegele et al. | Nov 2006 | A1 |
20060247673 | Voegele et al. | Nov 2006 | A1 |
20060247678 | Weisenburgh et al. | Nov 2006 | A1 |
20060258899 | Gill et al. | Nov 2006 | A1 |
20060259071 | Nicholas et al. | Nov 2006 | A1 |
20060259073 | Miyamoto et al. | Nov 2006 | A1 |
20060264706 | Piskun | Nov 2006 | A1 |
20060270911 | Voegele et al. | Nov 2006 | A1 |
20070027468 | Wales et al. | Feb 2007 | A1 |
20070049966 | Bonadio et al. | Mar 2007 | A1 |
20070060939 | Lancial et al. | Mar 2007 | A1 |
20070085232 | Brustad et al. | Apr 2007 | A1 |
20070088202 | Albrecht et al. | Apr 2007 | A1 |
20070088277 | McGinley et al. | Apr 2007 | A1 |
20070106317 | Shelton et al. | May 2007 | A1 |
20070118021 | Pokorney | May 2007 | A1 |
20070151566 | Kahle et al. | Jul 2007 | A1 |
20070156119 | Wallace et al. | Jul 2007 | A1 |
20070162072 | Nicholas et al. | Jul 2007 | A1 |
20070179525 | Frecker et al. | Aug 2007 | A1 |
20070185453 | Michael et al. | Aug 2007 | A1 |
20070208312 | Norton et al. | Sep 2007 | A1 |
20070244358 | Lee | Oct 2007 | A1 |
20070250113 | Hegeman et al. | Oct 2007 | A1 |
20070255219 | Vaugh et al. | Nov 2007 | A1 |
20070260114 | Miyamoto et al. | Nov 2007 | A1 |
20080027476 | Piskun | Jan 2008 | A1 |
20080039892 | Mitsuishi et al. | Feb 2008 | A1 |
20080045803 | Williams | Feb 2008 | A1 |
20080051631 | Dejima et al. | Feb 2008 | A1 |
20080051739 | McFarlane | Feb 2008 | A1 |
20080064921 | Larkin et al. | Mar 2008 | A1 |
20080065021 | Jenkins et al. | Mar 2008 | A1 |
20080065107 | Larkin et al. | Mar 2008 | A1 |
20080105730 | Racenet et al. | May 2008 | A1 |
20080119821 | Agnihotri et al. | May 2008 | A1 |
20080147113 | Nobis et al. | Jun 2008 | A1 |
20080154299 | Livneh | Jun 2008 | A1 |
20080177134 | Miyamoto et al. | Jul 2008 | A1 |
20080183044 | Colleran et al. | Jul 2008 | A1 |
20080188891 | Frank et al. | Aug 2008 | A1 |
20080255420 | Lee et al. | Oct 2008 | A1 |
20080255519 | Piskun et al. | Oct 2008 | A1 |
20080255608 | Hinman et al. | Oct 2008 | A1 |
20080262492 | Lee | Oct 2008 | A1 |
20080269727 | Lee | Oct 2008 | A1 |
20080294154 | Ibrahim et al. | Nov 2008 | A1 |
20080294191 | Lee | Nov 2008 | A1 |
20090005799 | Franer et al. | Jan 2009 | A1 |
20090062618 | Drew et al. | Mar 2009 | A1 |
20090084826 | Shah et al. | Apr 2009 | A1 |
20090088792 | Hoell, Jr. et al. | Apr 2009 | A1 |
20090112230 | Jinno | Apr 2009 | A1 |
20090171147 | Lee et al. | Jul 2009 | A1 |
20090206129 | Doll et al. | Aug 2009 | A1 |
20090306658 | Nobis et al. | Dec 2009 | A1 |
20090326325 | Naito et al. | Dec 2009 | A1 |
20100057121 | Piskun et al. | Mar 2010 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081880 | Widenhouse et al. | Apr 2010 | A1 |
20100081881 | Murray et al. | Apr 2010 | A1 |
20100081882 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100081995 | Widenhouse et al. | Apr 2010 | A1 |
20100094289 | Taylor et al. | Apr 2010 | A1 |
20100130817 | Conlon | May 2010 | A1 |
20100179540 | Marczyk et al. | Jul 2010 | A1 |
20100228090 | Weisenburgh, II et al. | Sep 2010 | A1 |
20100228091 | Widenhouse et al. | Sep 2010 | A1 |
20100228092 | Ortiz et al. | Sep 2010 | A1 |
20100228094 | Ortiz et al. | Sep 2010 | A1 |
20100228096 | Weisenburgh, II et al. | Sep 2010 | A1 |
20100228198 | Widenhouse et al. | Sep 2010 | A1 |
20100261975 | Huey et al. | Oct 2010 | A1 |
20100312060 | Widenhouse et al. | Dec 2010 | A1 |
20100312061 | Hess et al. | Dec 2010 | A1 |
20100312064 | Weisenburgh, II et al. | Dec 2010 | A1 |
20100312065 | Shelton, IV et al. | Dec 2010 | A1 |
20100331857 | Doyle et al. | Dec 2010 | A1 |
20110027269 | Marrotta et al. | Feb 2011 | A1 |
20110028793 | Martin et al. | Feb 2011 | A1 |
20110028794 | Widenhouse et al. | Feb 2011 | A1 |
20110087236 | Stokes et al. | Apr 2011 | A1 |
20110087269 | Stokes et al. | Apr 2011 | A1 |
20110230875 | Walberg et al. | Sep 2011 | A1 |
20110275901 | Shelton, IV | Nov 2011 | A1 |
20110276057 | Conlon et al. | Nov 2011 | A1 |
20110276083 | Shelton, IV et al. | Nov 2011 | A1 |
20110276084 | Shelton, IV | Nov 2011 | A1 |
20120024099 | Main | Feb 2012 | A1 |
20120078243 | Worrell et al. | Mar 2012 | A1 |
20140039518 | Conlon et al. | Feb 2014 | A1 |
20150119918 | Blase et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
4300307 | Jul 1994 | DE |
4324254 | Jan 1995 | DE |
9419138 | Mar 1995 | DE |
19520717 | Dec 1996 | DE |
202007003093 | Jul 2007 | DE |
0568383 | Nov 1993 | EP |
0621009 | Oct 1994 | EP |
0646358 | Apr 1995 | EP |
0776231 | Jun 1997 | EP |
0950376 | Oct 1999 | EP |
0966924 | Dec 1999 | EP |
0996925 | May 2000 | EP |
1219251 | Jul 2002 | EP |
1219252 | Jul 2002 | EP |
1219253 | Jul 2002 | EP |
1350476 | Oct 2003 | EP |
1621139 | Feb 2006 | EP |
1731105 | Dec 2006 | EP |
2710270 | Mar 1995 | FR |
2000033089 | Feb 2000 | JP |
2006320750 | Nov 2006 | JP |
WO-9426175 | Nov 1994 | WO |
WO-9608208 | Mar 1996 | WO |
WO-96008897 | Mar 1996 | WO |
WO-9712557 | Apr 1997 | WO |
WO-9729709 | Aug 1997 | WO |
WO-9735521 | Oct 1997 | WO |
WO-9810712 | Mar 1998 | WO |
WO-9903536 | Jan 1999 | WO |
WO-0030592 | Jun 2000 | WO |
WO-0032253 | Jun 2000 | WO |
WO-0217810 | Mar 2002 | WO |
WO-0239890 | May 2002 | WO |
WO-0239918 | May 2002 | WO |
WO-02058543 | Aug 2002 | WO |
WO-02094133 | Nov 2002 | WO |
WO-03005890 | Jan 2003 | WO |
WO-03067341 | Aug 2003 | WO |
WO-03077730 | Sep 2003 | WO |
WO-03091839 | Nov 2003 | WO |
WO-2005087112 | Sep 2005 | WO |
WO-2005094432 | Oct 2005 | WO |
WO-2006110733 | Oct 2006 | WO |
WO-2007119232 | Oct 2007 | WO |
WO-2008012787 | Jan 2008 | WO |
WO-2008024502 | Feb 2008 | WO |
WO-2009073577 | Jun 2009 | WO |
WO-2010030114 | Mar 2010 | WO |
Entry |
---|
“1 Lap Disc Hand Access Device—Ref. Ld111,” by Ethicon Endo-Surgery, Inc. (date unknown but no later than May 15, 2007, date of citation in U.S. Appl. No. 11/398,985; 1 page). |
“Adult Cardiac Surgical Instruments,” from the website of Genesee BioMedical, Inc. (date of first publication unknown; downloaded May 3, 2007; 4 pages). |
“Applied GelPort Advanced Access Device,” by Applied Medical Resources Corporation (Nov. 2002). |
“Applied GelPort System” by Applied Medical Resources Corporation (2004). |
“Bard® Bi-Directional and Kelly-Wick Tunnelers—Instructions for Use,” by Bard Peripheral Vascular (Apr. 2006). |
“Hand Instruments,” from the website of Olympus Surgical America (date of first publication unknown; downloaded May 3, 2007; 4 pages). |
“intrack XT—Low Profile Atraumatic Clamps,” by Novare Surgical Systems, Inc. (2002). |
“Pen Competitors,” (date of first publication unknown but no later than May 15, 2007, date of citation in U.S. Appl. No. 11/398,985; 1 page). |
Advanced Surgical Concepts (ASC), 510(k) TriPort Laparoscopic Access Device, Dec. 26, 2007, 8 pages. |
Ashida, R. et al., “Indocyanine Green is an Ideal Dye for Endoscopic Ultrasound-Guided Fine-Needle Tattooing of Pancreatic Tumors” Endoscopy, 38, pp. 190-192 (2006). |
Desai, M. et al., “Laprascopic and Robtoic Urology: Scarless single port transumbilical nephrectomy and pyeloplasty: first clinical report,” Journal Compilation, 2008 BJU International, 101, 83-88. |
http://www.innomedic.de/en/products/innomotion_overview.php (Innomedic Products), accessed Oct. 24, 2006. |
http://www.intuitivesurgical.com/products/index.aspx (Intuitive Surgical Products), accessed Oct. 24, 2006. |
http://www.lap-laser.com/e/laser_m/prod/med.html (LAP Laser Application), accessed Oct. 24, 2006. |
Ideas for Surgery.com, “Surgeon performs single-port laparoscopic surgery,” dated Dec. 1, 2007. |
International Preliminary Report on Patentability for Application No. PCT/US2011/035525, dated Nov. 13, 2012. (7 pages). |
International Preliminary Report on Patentability for Application No. PCT/US2011/035526, dated Nov. 13, 2012. (7 pages). |
International Search Report and Written Opinion for Application No. PCT/US2011/035525, dated Aug. 19, 2011. (12 pages). |
International Search Report and Written Opinion for Application No. PCT/US2011/035526, dated Aug. 19, 2011. (12 pages). |
International Search Report for PCT/US2011/035511 dated Oct. 10, 2011. |
Lee, D.I. et al., “Novel Approach to Minimizing Trocar Sites during Challenging Hand-Assisted Laparoscopic Surgery Utilizing the Gelport: Trans-Gel Instrument Insertion and Utilization,” Journal of Endourology, vol. 17, No. 2, pp. 69-71 (Mar. 2003). |
Maurin, et al., “A new robotic system for CT-guided percutaneous procedures with haptic feedback,” LSIIT (UMR CNRS-ULP 7005), Louis Pasteur University, Bd. S. Brant, BP 10413, Strasbourg Illkirch 67412, France. |
Maurin, et al., “A Parallel 5 DOF Positioner for Semi-Spherical Workspaces”, Proceedings of DETC'04, ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Sep. 28-Oct. 2, 2004, Salt Lake City Utah USA. |
Maurin, et al., “A Parallel Robotic System with Force Sensors for Percutaneous Procedures Under CT-Guidance”, LSIIT (UMR CNRS-ULP 7005), Strasbourg I University Bd. S. Brant, BP 10413, 67412 Illkirch cedex, France. |
Stoianovici, et al., “A Novel Mechanical Transmission Applied to Percutaneous Renal Access”, DSC-vol. 61, Proceedings of the ASME Dynamic Systems and Control Division 1997. |
Twentieth Edition—Illustrations of Surgical Instruments, by the Kny-Scheerer Company, New York, USA, pp. 1003, 1026, 1028-1029, 1133, 2034, 2068-2069, 2097-2099, 2132, 2137, 2144, 2155-2156, 2162, 2167-2171, 2173, 2175, 2244, 2255, 2281-2282, 2327, 2333, 2338-2348, 2352, 2355, 2359, 2371, 3017, 3039-3073, 3132, 3165, 3168-3169, 3208-3209, 3219 (Jul. 1915). |
URobitics, Brady Urological Institute, Johns Hopkins Medical Institutions, “Z-Stage PAKY”, date of publication unknown but no later than Oct. 26, 2006 (date of citation in U.S. Appl. No. 11/307,231). |
URobotics, Brady Urological Institute, Johns Hopkins Medical Institutions, “PAKY Needle Driver,” date of publication unknown but no later than Oct. 26, 2006 (date of citation in U.S. Appl. No. 11/307,231). |
URobotics, Brady Urological Institute, Johns Hopkins Medical Institutions, “The RCM Robot”, date of publication unknown but no later than Oct. 26, 2006 (date of citation in U.S. Appl. No. 11/307,231). |
Webpage of Novare Surgical, Inc. featuring clamps (date of first publication unknown; downloaded Feb. 23, 2004; 1 page). |
Written Opinion issued in International Application No. PCT/US2011/035526 dated Aug. 19, 2011. |
Number | Date | Country | |
---|---|---|---|
20170000507 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14032747 | Sep 2013 | US |
Child | 15267750 | US | |
Parent | 12775724 | May 2010 | US |
Child | 14032747 | US |