Compound curve cable chain

Information

  • Patent Grant
  • 11571171
  • Patent Number
    11,571,171
  • Date Filed
    Tuesday, September 1, 2020
    3 years ago
  • Date Issued
    Tuesday, February 7, 2023
    a year ago
Abstract
Embodiments generally relate to routing a bundle of loose cables with a cable chain during a medical procedure. The cable chain comprises split tubing and a plurality of links extending discretely along a length of the split tubing. Each link comprises a housing including an outer surface and an inner surface. The outer surface comprises a magnet and the inner surface forms a recess in the link. The split tubing is disposed within the recesses of the links.
Description
BACKGROUND

Healthcare practices have shown a tremendous value of three-dimensional imaging such as computed tomography (CT) imaging. These imaging systems generally contain a fixed bore into which a patient enters from the head or foot. Other areas of care, including the operating room, intensive care departments and emergency departments, rely on two-dimensional imaging (fluoroscopy, ultrasound, 2-D mobile X-ray) as the primary means of diagnosis and therapeutic guidance. While mobile solutions for patient-centric 3-D imaging do exist, they are often limited by their freedom of movement to effectively position the system without moving the patient. Their limited freedom of movement has hindered an acceptance and use of mobile three-dimensional imaging systems.


Therefore, there is a need for mobile three-dimensional imaging systems for use in operating rooms, which can access the patients from any direction or height and produce high quality, three-dimensional images.


SUMMARY

In an exemplary embodiment, the present disclosure provides a cable chain comprising split tubing and a plurality of links extending discretely along a length of the split tubing. Each link comprises a housing including an outer surface and an inner surface. The outer surface comprises a magnet and the inner surface forms a recess in the link. The split tubing is disposed within the recesses of the links.


In another exemplary embodiment, the present disclosure provides a system comprising a cable chain that may include split tubing and a plurality of links extending discretely along a length of the split tubing. Each link may include a housing comprising an outer surface and an inner surface. The outer surface may comprise a magnet and the inner surface may form a recess in each of the links. The split tubing is disposed within the recesses of the links. A bundle of cables may be disposed within the split tubing. The system may also include a gantry. The cable chain may be movably disposed within the gantry.


In another exemplary embodiment, the present disclosure provides a system comprising first and second cable chains. Each cable chain may comprise split tubing and a plurality of links extending discretely along a length of the split tubing. Each link may comprise a housing including an outer surface and an inner surface. The outer surface may comprise a magnet and the inner surface may form a recess in the link. The split tubing is disposed within the recesses of the links. The system may also include a gantry comprising first and second sidewalls. The first cable chain is movably disposed along the first sidewall, and the second cable chain is movably disposed along the second sidewall.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory in nature and are intended to provide an understanding of the present disclosure without limiting the scope of the present disclosure. In that regard, additional aspects, features, and advantages of the present disclosure will be apparent to one skilled in the art from the following detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

These drawings illustrate certain aspects of some of the embodiments of the present disclosure and should not be used to limit or define the disclosure.



FIG. 1 is a perspective rear view of an imaging system, in accordance with some embodiments of the present disclosure;



FIG. 2 is a schematic diagram of an imaging controller system, in accordance with some embodiments of the present disclosure.



FIG. 3 is a perspective front view of the imaging system, in accordance with some embodiments of the present disclosure;



FIG. 4 is a perspective view of the imaging system in which the gantry has been rotated about the X-axis by 90°, in accordance with some embodiments of the present disclosure;



FIGS. 5-7 illustrate perspective views of the gantry with a cabling arrangement, in accordance with some embodiments of the present disclosure;



FIG. 8 illustrates a motor assembly for telescopically controlling the C-arms of the gantry, in accordance with some embodiments of the present disclosure;



FIGS. 9A-9G illustrate perspective views of a 360° rotation of the gantry in 60° increments, in accordance with some embodiments of the present disclosure;



FIG. 10 illustrates a perspective view of a cable chain, in accordance with embodiments of the present disclosure;



FIG. 11 illustrates a perspective view of the tubing and a link of the cable chain in accordance with embodiments of the present disclosure;



FIGS. 12A and 12B illustrate perspective views of the tubing assembled around the cable bundle, in accordance with some embodiments of the present disclosure;



FIG. 13 illustrates a cross-sectional front view depicting the cable chain, in accordance with some embodiments of the present disclosure;



FIG. 14 illustrates a cross-sectional front view depicting a nested geometry of multiple cable chains movably disposed along a gantry; and



FIG. 15 illustrates a perspective view of the cable chain movably disposed against the gantry, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the implementations illustrated in the drawings and specific language will be used to describe them. It will nevertheless be understood that no limitation of the scope of the disclosure may be intended. Any alterations and further modifications to the described devices, instruments, methods, and any further application of the principles of the present disclosure are fully contemplated as would normally occur to one skilled in the art to which the disclosure relates. In particular, it may be fully contemplated that the features, components, and/or steps described with reference to one or more implementations may be combined with the features, components, and/or steps described with reference to other implementations of the present disclosure. For simplicity, in some instances the same reference numbers are used throughout the drawings to refer to the same or like parts.


Embodiments generally relate to a cable chain used to manage dynamic cable bundles routed through geographic information system (GIS) telescoping C-gantries (“gantries”). The cables may be routed internally through the gantries to facilitate 360° scanning of a patient. Routing cables externally may risk entangling the patient or a patient table during a 360° scan. Therefore, an internal cable management system is desired. More particularly, the cable chain may trace a compound curve rather than a planar bend (i.e., a path of the cable chain is curved when viewed from two planes). Further, the cable chain may operate in any orientation relative to gravity and may utilize a magnetic preload for attachment to the gantry. Additionally, the cable chain may have a low cross-sectional profile and may be able to turn along a tight bend radius to allow operation of the cable chain within a limited volume inside the gantry. The cable chain may ensure that the cable bundle follows a prescribed path and may also protect the cables through a full range of motion along the gantry. Absent a cable management system, the cable bundle may be prone to damage, sag under its own weight, intermittently causing interference issues, and/or jamming. These issues may be exacerbated depending on a tilt orientation of the gantry relative to gravity.



FIG. 1 is a schematic diagram showing an imaging system 10, such as a computerized tomographic (CT) x-ray scanner, in accordance with embodiments of the present disclosure. The imaging system 10 may include a movable station 60 and a gantry 56. The movable station may include a vertical shaft 59 and a gantry mount 58 which may be rotatably attached to the vertical shaft. The movable station 60 may include two front omni-directional wheels 62 and two rear omnidirectional wheels 64, which together may provide movement of the movable station 60 in any direction in an X-Y plane. The omni-directional wheels 62,64 may be obtained, for example, from Active Robots Limited of Somerset, U.K. A pair of handles 13 mounted to the housing of the movable station 60 may allow a user to manually maneuver the station 60. A motor 66 attached to the vertical shaft 59 may rotate the gantry mount 58 360° about the X-axis, and a motor 67 may move the gantry mount 58 vertically along the z-axis under the control of the control module 51. The gantry 56 may include a first C-arm 70 slidably coupled to the gantry mount 58 and a second C-arm 72 which may be slidably coupled to the first C-arm. In the embodiment shown, the first and second C-arms 70,72 are outer and inner C-arms, respectively. In the embodiment shown, the outer and inner C-arms 70,72 are circular in shape and rotate circumferentially about a central axis so as to allow imaging of a patient who is lying in bed 16 without the need to transfer the patient.


An imaging signal transmitter 74 such as an X-ray beam transmitter may be mounted to one side of the second C-arm 72 while an imaging sensor 74 such as an X-ray detector array is mounted to the other side of the second C-arm and faces the transmitter. In operation, the X-ray transmitter 74 transmits an X-ray beam which is received by the X-ray detector 76 after passing through a relevant portion of a patient (not shown). In one embodiment, the system 10 may be a multi-modality x-ray imaging system designed with surgery in mind. The three imaging modalities include fluoroscopy, 2D Radiography, and Cone-beam CT. Fluoroscopy is a medical imaging technique that shows a continuous X-ray image on a monitor, much like an X-ray movie. 2D Radiography is an imaging technique that uses X-rays to view the internal structure of a non-uniformly composed and opaque object such as the human body. CBCT (cone beam 3D imaging or cone beam computer tomography) also referred to as C-arm CT, is a medical imaging technique consisting of X-ray computed tomography where the X-rays are divergent, forming a cone. The movable station 60 may include an imaging controller system 40 which serves a dual function of (1) controlling the movement of the omni-directional wheels 62,64, gantry mount 58 and the gantry 56 to position the imaging signal transmitter 74 in relation to the patient, and (2) controlling imaging functions for imaging the patient once the gantry 56 has been properly positioned.



FIG. 2 illustrates the imaging controller system 40 connected to a communication link 52, in accordance with embodiments of the present disclosure. The imaging controller system 40 may be connected to the communication link 52 through an I/O interface 42 such as a USB (universal serial bus) interface, which receives information from and sends information over the communication link 52. The imaging controller system 40 includes memory storage 44 such as RAM (random access memory), processor (CPU) 46, program storage 48 such as ROM or EEPROM, and data storage 50 such as a hard disk, all commonly connected to each other through a bus 53. The program storage 48 stores, among others, imaging control module 54 and motion control module 51, each containing software to be executed by the processor 46. The motion control module 51 executed by the processor 46 controls the wheels 62,64 of the movable station 60 and various motors in the gantry mount 58 and gantry 56 to position the station 60 near the patient and position the gantry in an appropriate position for imaging a relevant part of the patient. The imaging control module 54 executed by the processor 46 controls the imaging signal transmitter 74 and detector array 76 to image the patient body. In one embodiment, the imaging control module images different planar layers of the body and stores them in the memory 44. In addition, the imaging control module 54 can process the stack of images stored in the memory 44 and generate a three-dimensional image. Alternatively, the stored images can be transmitted to a host system (not shown) for image processing.


The motion control module 51 and imaging control module 54 may include a user interface module that interacts with the user through the display devices 11a and 11b and input devices such as keyboard and buttons 12 and joystick 14. Strain gauges 13 mounted to the handles 15 may be coupled to the I/O device 42 and conveniently provide movement of the movable station 12 in any direction (X, Y, Wag) while the user is holding the handles 15 by hand as will be discussed in more detail below. The user interface module assists the user in positioning the gantry 56. Any of the software program modules in the program storage 48 and data from the data storage 50 can be transferred to the memory 44 as needed and is executed by the CPU 46. The display device 11a is attached to the housing of the movable station 60 near the gantry mount 58 and display device 11b is coupled to the movable station through three rotatable display arms 16, 18 and 20. First display arm 16 is rotatably attached to the movable station 60, second display arm 18 is rotatably attached to the first arm 16 and third display arm 20 is rotatably attached to the second display arm. The display devices 11a,11b can have touch screens to also serve as input devices through the use of user interface modules in the modules 51 and 54 to provide maximum flexibility for the user.


Navigation markers 68 placed on the gantry mount 58 may be connected to the imaging controller system 40 through the link 52. Under the control of the motion control module 51, the markers 68 allow automatic or semi-automatic positioning of the gantry 56 in relation to the patient bed or OR (operating room) table via a navigation system (not shown). The markers 68 may be optical, electromagnetic or the like. Information can be provided by the navigation system to command the gantry 56 or system 10 to precise locations. One example may be that a surgeon holding a navigated probe at a desired orientation that tells the imaging system 10 to acquire a Fluoro or Radiographic image along that specified trajectory. Advantageously, this may remove the need for scout shots thus reducing x-ray exposure to the patient and OR staff. The navigation markers 68 on the gantry 56 may also allow for automatic registration of 2D or 3D images acquired by the system 10. The markers 68 may also allow for precise repositioning of the system 10 in the event the patient has moved.


In the embodiment shown, the system 10 may provide a large range of motion in all 6-degrees of freedom (“DOF”). Under the control of the motion control module 51, there are two main modes of motion: positioning of the movable station 60 and positioning of the gantry 56. The movable station 60 positioning is accomplished via the four omni-directional wheels 62,64. These wheels 62,64 allow the movable station 60 to be positioned in all three DOF about the horizontal plane (X,Y,Wag). “Wag” is a system 10 rotation about the vertical axis (Zaxis), “X” is a system forward and backward positioning along the X-axis, and “Y” is system 10 lateral motion along the Y-axis. Under the control of the control module 51, the system 10 can be positioned in any combination of X, Y, and Wag (Wag about any arbitrary Z-axis due to use of omnidirectional wheels 62,64) with unlimited range of motion. In particular, the omni-directional wheels 62,64 allow for positioning in tight spaces, narrow corridors, or for precisely traversing up and down the length of an OR table or patient bed.


The gantry 56 positioning may be accomplished about (Z, Tilt, Rotor). “Z” is gantry 56 vertical positioning, “Tilt” is rotation about the horizontal axis parallel to the X-axis as described above, and “Rotor” is rotation about the horizontal axis parallel to the Y-axis as described above. Together with the movable station 60 positioning and gantry 56 positioning, the system 10 provides a range of motion in all 6 DOF (X, Y, Wag, Z, Tilt and Rotor) to place the movable station 60 and the imaging transmitter 74 and sensor 76 precisely where they are needed. Advantageously, 3-D imaging can be performed regardless of whether the patient is standing up, sitting up or lying in bed and without having to move the patient. Precise positions of the system 10 can be stored in the storage memory 50 and recalled at any time by the motion control module 51. This is not limited to gantry 56 positioning but also includes system 10 positioning due to the omni-directional wheels 62,64.



FIG. 3 is a perspective front view of the imaging system of FIG. 1, in accordance with embodiments of the present disclosure. Each of the gantry mount 58, outer C-arm 70 and inner C-arm 72 respectively has a pair of side frames 86, 88,90 that face each other. A plurality of uniformly spaced rollers 84 are mounted on the inner sides of the side frames 86 of the gantry mount 58. The outer C-arm 70 has a pair of guide rails 78 on the outer sides of the side frames 88. The rollers 84 are coupled to the guide rails 78. As shown, the rollers 84 and the guide rails 78 are designed to allow the outer C-arm 78 to telescopically slide along the gantry mount 58 so as to allow at least 180 degree rotation of the C-arm about its central axis relative to the gantry mount. A plurality of uniformly spaced rollers 80 are mounted on the inner sides of the side frames 88 of the outer C-arm 70. The inner C-arm 72 has a pair of guide rails 82 on the outer sides of the side frames 90. The rollers 80 are coupled to the guide rails 82. As shown, the rollers 80 and the guide rails 82 are designed to allow the inner C-arm 72 to telescopically slide along the outer C-arm 70 so as to allow at least 180 degree rotation of the C-arm about its central axis relative to the outer C-arm. Thus, the present invention as disclosed herein advantageously allows the gantry 56 to rotate about its central axis a full 360 degrees to provide the maximum flexibility in positioning the imaging system 10 with minimum disturbance of the patient. In another aspect of the present invention, a unique cabling arrangement is provided to make the imaging system 10 more compact and visually more appealing.



FIG. 4 is a perspective view of the imaging system 10, in accordance with embodiments of the present disclosure. As illustrated, the gantry 56 has been rotated about the X-axis by 90°. Also illustrated are the movable station 60 and the gantry mount 58 for the gantry 56. The movable station 60 may include two front omni-directional wheels 62 and two rear omnidirectional wheels 64, which together may provide movement of the movable station 60 in any direction in an X-Y plane.



FIGS. 5-7 illustrate a cable carrier/harness 92, in accordance with embodiments of the present disclosure. The cable carrier/harness 92 may contain electrical cables to carry signals between the imaging controller system 40 and various motors, X-ray transmitter 74, imaging sensor 76 and various electronic circuits in the gantry 56. A first cable router 94 is mounted to the outer surface of the outer C-arm 70 and a second cable router 96 is mounted to the outer surface of the inner C-arm 72. Each cable router 94,96 has a through-hole 95,97 through which the cable carrier 92 passes. The cable carrier 92 extends from the gantry mount 56 over the outer surface of the first C-arm 70, through the through-hole 95 of the first cable router 94 and over an outer surface of the second C-arm 72. The cable carrier 92 overlying the first C-arm 70 extends in a first circumferential direction (clock-wise as shown) 98 and enters the first cable router 94 in a second circumferential direction (counter clock-wise as shown) 99 opposite to the first circumferential direction to create a 180 degree service loop over the outer surface of the first C-arm. From there, the cable carrier 92 extends in the first circumferential direction 98 and enters the second cable router in the second circumferential direction 99 to create another service loop over the outer surface of the second C-arm 72. The particular locations of the first and second cable routers 94,96 combined with the service loops allow slack in the cable carrier 92 to provide the gantry 56 with full 360 degrees rotation without tangling or causing stress in the cable carrier. In the embodiment shown, the routers are mounted near the midpoint of the C-arms.



FIG. 8 illustrates one embodiment of a motor assembly 100 that could be used to telescopically rotate the outer C-arm 70 relative to the gantry mount 58 and inner C-arm 72 relative to the outer C-arm. Each motor assembly 100 includes a servo motor 102 with encoder feedback, gear box 104 to change the turning ratio, drive pulley 106, idler pulleys 108 and belt 110 threaded between the drive pulley and the idler pulleys. One motor assembly 100 is mounted to the gantry mount to move the outer C-arm 70 relative to the gantry mount and another motor assembly is mounted to the outer C-arm 70 near the center of the arm to move the inner C-arm 70 relative to the outer C-arm.



FIGS. 9A-9G illustrate 360° rotation of the gantry 56 in the counterclockwise direction in 60° increments with FIG. 9A representing a 0° position of the imaging sensor 76 and transmitter 74. FIG. 9B represents a 60° turn/position of the gantry 56. FIGS. 9C-9F illustrate further movement of the gantry 56. For each 60° turn of the gantry 56, the motor assemblies 100, under the control of the motion control module 51, turn the inner C-arm 72 by 30° counter-clock wise and also turn the outer C-arm 70 by 30° counter-clock wise for a combined 60° turn. FIG. 9G represents a full 360° turn of the gantry 56. As can be seen, the outer C-arm 70 and inner C-arm 72 have each moved 180° from the original 0° position of FIG. 9A.



FIG. 10 illustrates a perspective view of a GIS cable chain 200 (“chain 200”) in accordance with some embodiments of the present disclosure. The chain 200 may include corrugated tubing 202 (“tubing 202”) and carrier links 204 (“links 204”) that may be coaxially aligned and positioned discretely along a length of the tubing 202. The tubing 202 may be made of a flexible material such as plastic or rubber. The tubing 202 may contain or encompass an unbound or loose cable bundle (not shown). The links 204 may fit over or encompass at least a portion of the tubing 202. The links 204 may extend longitudinally along the tubing 202 and directly abut one another in an end-to-end configuration, however, the links 204 are not rigidly hinged together, to allow the chain 200 to leverage flexibility of the tubing 202 and achieve a desirable or minimum bend radii. The chain 200 may include a first end clamp 206 that may be fixed to a stationary gantry mount (e.g., the gantry mount 58 shown on FIG. 1). The chain 200 may also include a second end clamp 207 opposite to the first end clamp 206. The second end clamp 207 may be attached to a moving gantry rolling interface or sidewall(s) 214 of the gantry 56 (also shown on FIG. 1 for example). The chain 200 may slide or otherwise move along the sidewalls 214 of the gantry 56. Compound curves 210 and 212 represent different configurations or prescribed travel paths of the chain 200, for example.



FIG. 11 illustrates a perspective view of the tubing 202 and a link 204 in accordance with some embodiments of the present disclosure. As illustrated, an outer surface of the tubing 202 may include ribs or corrugations 217 that extend along a circumference of the tubing 202, in some examples. The tubing 202 may encompass a cable bundle 216. In some embodiments, the tubing 202 may be split. For example, a slit or gap 218 may extend longitudinally along a wall of the tubing 202 (e.g., split tubing) to allow disposal of the cable bundle 216 within the tubing 202, for example. That is, the gap 218 is in fluid communication with an interior of the tubing 202. In some examples, a wire tie 208 may secure the tubing 202 against the bundle 216, by tightening the wire tie 208, for example. The wire tie 208 may be disposed between two corrugations 217, for example. Each link 204 may each include a housing 205. The housing 205 may include an inner surface or recess 220 that partially encompasses the tubing 202. The recess 220 may be bound by a contoured or curved inner surface 221 to contact and receive the tubing 202. The contours or curves of the tubing 202 and the recess 220 of the link 204 may complement each other to ensure a snug fit of the tubing 202 against the recess 220 of the link 204.


In some embodiments, a permanent magnet 222 may be embedded into an exterior slot 224 of the housing 205 of each link 204 such that the magnet 222 is flush with an outer or exterior surface 226 of the link 204 to protect the magnet 222 from damage. Each link 204 may be magnetically attracted to ferrous material in the sidewall 214 (e.g., shown on FIG. 10) which may ensure that the chain 200 (shown on FIG. 10, for example) is preloaded into the sidewall 214. The magnet 222 also assists in constraining a chain orientation of the chain 200 (e.g., shown on FIG. 10) when each link 204 rolls from one sidewall 214 (e.g., shown on FIG. 10) to another sidewall 214 of the gantry 56 (e.g., shown on FIG. 1). In some embodiments, each magnet 222 may be sized to support a weight of the chain 200 against gravity when the chain 200 or a portion thereof, is in a horizontal orientation.


Each link 204 may be constrained rotationally around the tubing 202 with a tab 228 that protrudes from the recess 220 of each link 204. For example, the tab 228 may extend into the gap 218 (e.g., split portion) of the tubing 202 to prevent rotation of the tubing 202 relative to the tab 228. The tab 228 and the sidewall 214 (e.g., shown on FIG. 10) may ensure that the tubing 202 resists undesired torsional motion or twisting. The tab 228 may also serve as an attachment point for the tubing 202, in some examples.



FIG. 12A illustrates a perspective view of the tubing 202 assembled around the cable bundle 216 and the link 204 assembled around the tubing 202, in accordance with some embodiments of the present disclosure. The wire tie 208 may extend around or along a circumference of the tubing 202. The tubing 202 may be disposed within the recess 220 of the link 204. The link 204 may include extended portions 223 that may partially form the recess 220 and partially wrap around the tubing 202 to assist in securing the tubing 202.



FIG. 12B illustrates a perspective view of the tab 228 protruding from the recess 220 of the link 204, in accordance with some embodiments of the present disclosure. The tab 228 is secured within the gap 218. The gap 218 may be positioned between edges 230 of the tubing 202. The edges 230 may extend along the length of the tubing 202 and squeeze the tab 228 to secure the tubing 202 to the link 204, in some examples. The wire tie 208 may be tightened to compress or squeeze the edges 230 against the tab 228 to secure the tubing to the link 204.



FIG. 13 illustrates a cross-sectional front view depicting the chain 200, in accordance with some embodiments of the present disclosure. As illustrated, the link 204 only partially encompasses or covers the tubing 202. This may cause the chain 200 to have a low-profile and allows greater flexibility for the chain 200 to turn within the gantry 56 (e.g., shown on FIG. 1). The tubing 202 may be secured within the recess 220 of the link 204. For example, the tubing 202 may be secured to the link 204 via a tightened wire tie 208 that compresses edges 230 of the tubing 202 against the tab 228. In some embodiments, the magnet 222 may be adjacent to the tab 228. Additionally, the cable bundle 216 may be disposed within the tubing 202. In some embodiments, the tubing 202 may be disposed between the extended portions 223 of the link 204.



FIG. 14 illustrates a cross-sectional front view depicting a nested geometry of multiple chains 200 movably disposed within or against the gantry 56, in accordance with some embodiments of the present disclosure. A first chain 200 may be disposed at a first sidewall 214 of the gantry 56 and a second chain 200 may be disposed at a second sidewall 214 of the gantry 56. The chains 200 may be separated by a void 215 that may extend longitudinally along the gantry 56. In some embodiments, a surface 217 may extend between and adjacent to the sidewalls 214. The surface 217 may continuously extend along a length of the gantry 56 and in between the chains 200, as illustrated. The links 204 may be movably disposed against the sidewalls 214 such that the magnets 122 are adjacent to and/or in contact with ferrous material 231 disposed within the sidewalls 214. In some embodiments, the links 204 may be attached to the sidewalls 214 via the magnets 222 and ferrous material 231. Each of the sidewalls 214 may also include a flange 132 to mate with a step 234 of each housing 205 of the links 204 to assist in retaining the chains 200 against the sidewalls 214, as illustrated. The links 204 may move along the length of the sidewalls 214 and therefore along a length of the gantry 56. The tubing 202 may be attached to the links 204 via compression of the tabs 228 with the edges 230 of the tubing 202, as previously noted. Accordingly, each of the chains 200 is configured to move independently along the length of the gantry 56, in some examples.



FIG. 15 illustrates the chain 200 movably disposed within the gantry 56, in accordance with embodiments of the present disclosure. As illustrated, the chain 200 may be in a horizontal position and the weight of the chain 200 is unsupported by the gantry 56, however, discrete magnetic forces indicated by directional arrows 236, support the weight of the chain 200 against the force of gravity. The directional arrows 236 indicate a direction that the chain 200 is pulled due to a magnetic attraction between the magnets 222 of the links 204 and the ferrous material 231 disposed within the sidewalls 214. For example, the tubing 202 is attached to the links 204 to form the chain 200 that is movably attached the sidewalls 214 of the gantry 56. The magnets 222 secure the chain 200 to the sidewalls 214 and in some embodiments, the chain 200 is pulled against the sidewalls 214 due to the magnetic forces. Additionally, the second end clamp 207 may be movably attached to the sidewalls 214 of the gantry 56, as previously noted.


As described herein, some benefits of the various embodiments include: (1) a chain with a low profile and improved flexibility; (2) a path of the chain follows a compound curve; (3) the chain functions independent of orientation due to a magnetic preload; and (4) the split tubing allows for installation around a cable bundle rather than threading the cable bundle through a completely enclosed tube, and also allows cable bundles to be pre-terminated with connectors rather than terminated after assembly.

Claims
  • 1. A cable chain comprising: split tubing; anda plurality of links extending discretely along a length of the split tubing, each link comprising a housing including an outer surface and an inner surface, the outer surface comprising a magnet and the inner surface forming a recess in the link;wherein the split tubing is disposed within the recesses of the links.
  • 2. The cable chain of claim 1, wherein a split of the split tubing faces inner surfaces of the links.
  • 3. The cable chain of claim 2, wherein a tab protrudes from the inner surfaces of the links.
  • 4. The cable chain of claim 3, wherein the tab protrudes into a gap of the split portion of the split tubing.
  • 5. The cable chain of claim 4, wherein the tubing is flexible.
  • 6. The cable chain of claim 5, wherein the tubing is corrugated.
  • 7. The cable chain of claim 6, wherein a wire tie is disposed around the tubing.
  • 8. A system comprising: a cable chain comprising: split tubing; anda plurality of links extending discretely along a length of the split tubing, each link comprising a housing including an outer surface and an inner surface, the outer surface comprising a magnet and the inner surface forming a recess in the link;wherein the split tubing is disposed within the recesses of the links;a bundle of cables disposed within the split tubing; anda gantry, wherein the cable chain is movably disposed within the gantry.
  • 9. The system of claim 8, wherein the gantry comprises sidewalls.
  • 10. The system of claim 9, wherein the sidewalls comprise ferrous material.
  • 11. The system of claim 10, wherein the magnets are adjacent to the ferrous material of the sidewalls.
  • 12. The system of claim 11, wherein a split of the split tubing faces inner surfaces of the links.
  • 13. The system of claim 12, wherein a tab protrudes from the inner surfaces of the links.
  • 14. The system of claim 13, wherein the tab protrudes into a gap of the split portion of the split tubing.
  • 15. A system comprising: first and second cable chains, each cable chain comprising: split tubing; anda plurality of links extending discretely along a length of the split tubing, each link comprising a housing including an outer surface and an inner surface, the outer surface comprising a magnet and the inner surface forming a recess in the link;wherein the split tubing is disposed within the recesses of the links;a gantry comprising first and second sidewalls, wherein the first cable chain is movably disposed along the first sidewall, wherein the second cable chain is movably disposed along the second sidewall.
  • 16. The system of claim 15, further comprising a bundle of cable disposed within the split tubing.
  • 17. The system of claim 16, wherein the sidewalls comprise ferrous material.
  • 18. The system of claim 17, wherein the magnets are flush with the outer surface of the link.
  • 19. The system of claim 18, wherein the magnets are adjacent to the ferrous material.
  • 20. The system of claim 19, wherein a split of the split tubing faces inner surfaces of the links.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a non-provisional application which claims priority to provisional Patent Application Ser. No. 62/904,863 filed on Sep. 24, 2019, which is incorporated in its entirety herein.

US Referenced Citations (689)
Number Name Date Kind
1068626 Buck Jul 1913 A
4150293 Franke Apr 1979 A
4737038 Dostoomian Apr 1988 A
4757710 Haynes Jul 1988 A
5246010 Gazzara et al. Sep 1993 A
5354314 Hardy et al. Oct 1994 A
5397323 Taylor et al. Mar 1995 A
5598453 Baba et al. Jan 1997 A
5772594 Barrick Jun 1998 A
5791908 Gillio Aug 1998 A
5820559 Ng et al. Oct 1998 A
5825982 Wright et al. Oct 1998 A
5887121 Funda et al. Mar 1999 A
5911449 Daniele et al. Jun 1999 A
5951475 Gueziec et al. Sep 1999 A
5987960 Messner et al. Nov 1999 A
6012216 Esteves et al. Jan 2000 A
6031888 Ivan et al. Feb 2000 A
6033415 Mittelstadt et al. Mar 2000 A
6080181 Jensen et al. Jun 2000 A
6106511 Jensen Aug 2000 A
6122541 Cosman et al. Sep 2000 A
6144875 Schweikard et al. Nov 2000 A
6157853 Blume et al. Dec 2000 A
6167145 Foley et al. Dec 2000 A
6167292 Badano et al. Dec 2000 A
6201984 Funda et al. Mar 2001 B1
6203196 Meyer et al. Mar 2001 B1
6205411 DiGioia, III et al. Mar 2001 B1
6212419 Blume et al. Apr 2001 B1
6231565 Tovey et al. May 2001 B1
6236875 Bucholz et al. May 2001 B1
6246900 Cosman et al. Jun 2001 B1
6301495 Gueziec et al. Oct 2001 B1
6306126 Montezuma Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6314311 Williams et al. Nov 2001 B1
6320929 Von Der Haar Nov 2001 B1
6322567 Mittelstadt et al. Nov 2001 B1
6325808 Bernard et al. Dec 2001 B1
6340363 Bolger et al. Jan 2002 B1
6377011 Ben-Ur Apr 2002 B1
6379302 Kessman et al. Apr 2002 B1
6402762 Hunter et al. Jun 2002 B2
6424885 Niemeyer et al. Jul 2002 B1
6447503 Wynne et al. Sep 2002 B1
6451027 Cooper et al. Sep 2002 B1
6477400 Barrick Nov 2002 B1
6484049 Seeley et al. Nov 2002 B1
6487267 Wolter Nov 2002 B1
6490467 Bucholz et al. Dec 2002 B1
6490475 Seeley et al. Dec 2002 B1
6499488 Hunter et al. Dec 2002 B1
6501981 Schweikard et al. Dec 2002 B1
6507751 Blume et al. Jan 2003 B2
6535756 Simon et al. Mar 2003 B1
6560354 Maurer, Jr. et al. May 2003 B1
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6614453 Suri et al. Sep 2003 B1
6614871 Kobiki et al. Sep 2003 B1
6619840 Rasche et al. Sep 2003 B2
6636757 Jascob et al. Oct 2003 B1
6645196 Nixon et al. Nov 2003 B1
6666579 Jensen Dec 2003 B2
6669635 Kessman et al. Dec 2003 B2
6701173 Nowinski et al. Mar 2004 B2
6757068 Foxlin Jun 2004 B2
6782287 Grzeszczuk et al. Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6804581 Wang et al. Oct 2004 B2
6823207 Jensen et al. Nov 2004 B1
6827351 Graziani et al. Dec 2004 B2
6837892 Shoham Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6856826 Seeley et al. Feb 2005 B2
6856827 Seeley et al. Feb 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6892090 Verard et al. May 2005 B2
6920347 Simon et al. Jul 2005 B2
6922632 Foxlin Jul 2005 B2
6968224 Kessman et al. Nov 2005 B2
6978166 Foley et al. Dec 2005 B2
6988009 Grimm et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6996487 Jutras et al. Feb 2006 B2
6999852 Green Feb 2006 B2
7007699 Martinelli et al. Mar 2006 B2
7016457 Senzig et al. Mar 2006 B1
7043961 Pandey et al. May 2006 B2
7062006 Pelc et al. Jun 2006 B1
7063705 Young et al. Jun 2006 B2
7072707 Galloway, Jr. et al. Jul 2006 B2
7083615 Peterson et al. Aug 2006 B2
7097640 Wang et al. Aug 2006 B2
7099428 Clinthorne et al. Aug 2006 B2
7108421 Gregerson et al. Sep 2006 B2
7130676 Barrick Oct 2006 B2
7139418 Abovitz et al. Nov 2006 B2
7139601 Bucholz et al. Nov 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7164968 Treat et al. Jan 2007 B2
7167738 Schweikard et al. Jan 2007 B2
7169141 Brock et al. Jan 2007 B2
7172627 Fiere et al. Feb 2007 B2
7194120 Wicker et al. Mar 2007 B2
7197107 Arai et al. Mar 2007 B2
7231014 Levy Jun 2007 B2
7231063 Naimark et al. Jun 2007 B2
7239940 Wang et al. Jul 2007 B2
7248914 Hastings et al. Jul 2007 B2
7301648 Foxlin Nov 2007 B2
7302288 Schellenberg Nov 2007 B1
7313430 Urquhart et al. Dec 2007 B2
7318805 Schweikard et al. Jan 2008 B2
7318827 Leitner et al. Jan 2008 B2
7319897 Leitner et al. Jan 2008 B2
7324623 Heuscher et al. Jan 2008 B2
7327865 Fu et al. Feb 2008 B2
7331967 Lee et al. Feb 2008 B2
7333642 Green Feb 2008 B2
7339341 Oleynikov et al. Mar 2008 B2
7366562 Dukesherer et al. Apr 2008 B2
7379790 Toth et al. May 2008 B2
7386365 Nixon Jun 2008 B2
7422592 Morley et al. Sep 2008 B2
7435216 Kwon et al. Oct 2008 B2
7440793 Chauhan et al. Oct 2008 B2
7460637 Clinthorne et al. Dec 2008 B2
7466303 Yi et al. Dec 2008 B2
7493153 Ahmed et al. Feb 2009 B2
7505617 Fu et al. Mar 2009 B2
7533892 Schena et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7555331 Viswanathan Jun 2009 B2
7567834 Clayton et al. Jul 2009 B2
7594912 Cooper et al. Sep 2009 B2
7606613 Simon et al. Oct 2009 B2
7607440 Coste-Maniere et al. Oct 2009 B2
7623902 Pacheco Nov 2009 B2
7630752 Viswanathan Dec 2009 B2
7630753 Simon et al. Dec 2009 B2
7643862 Schoenefeld Jan 2010 B2
7660623 Hunter et al. Feb 2010 B2
7661881 Gregerson et al. Feb 2010 B2
7683331 Chang Mar 2010 B2
7683332 Chang Mar 2010 B2
7689320 Prisco et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7702379 Avinash et al. Apr 2010 B2
7702477 Tuemmler et al. Apr 2010 B2
7711083 Heigl et al. May 2010 B2
7711406 Kuhn et al. May 2010 B2
7720523 Omernick et al. May 2010 B2
7725253 Foxlin May 2010 B2
7726171 Langlotz et al. Jun 2010 B2
7742801 Neubauer et al. Jun 2010 B2
7751865 Jascob et al. Jul 2010 B2
7760849 Zhang Jul 2010 B2
7762825 Burbank et al. Jul 2010 B2
7763015 Cooper et al. Jul 2010 B2
7787699 Mahesh et al. Aug 2010 B2
7796728 Bergfjord Sep 2010 B2
7813838 Sommer Oct 2010 B2
7818044 Dukesherer et al. Oct 2010 B2
7819859 Prisco et al. Oct 2010 B2
7824401 Manzo et al. Nov 2010 B2
7831294 Viswanathan Nov 2010 B2
7834484 Sartor Nov 2010 B2
7835557 Kendrick et al. Nov 2010 B2
7835778 Foley et al. Nov 2010 B2
7835784 Mire et al. Nov 2010 B2
7840253 Tremblay et al. Nov 2010 B2
7840256 Lakin et al. Nov 2010 B2
7843158 Prisco Nov 2010 B2
7844320 Shahidi Nov 2010 B2
7853305 Simon et al. Dec 2010 B2
7853313 Thompson Dec 2010 B2
7865269 Prisco et al. Jan 2011 B2
D631966 Perloff et al. Feb 2011 S
7879045 Gielen et al. Feb 2011 B2
7881767 Strommer et al. Feb 2011 B2
7881770 Melkent et al. Feb 2011 B2
7886743 Cooper et al. Feb 2011 B2
RE42194 Foley et al. Mar 2011 E
RE42226 Foley et al. Mar 2011 E
7900524 Calloway et al. Mar 2011 B2
7907166 Lamprecht et al. Mar 2011 B2
7909122 Schena et al. Mar 2011 B2
7925653 Saptharishi Apr 2011 B2
7930065 Larkin et al. Apr 2011 B2
7935130 Willliams May 2011 B2
7940999 Liao et al. May 2011 B2
7945012 Ye et al. May 2011 B2
7945021 Shapiro et al. May 2011 B2
7953470 Vetter et al. May 2011 B2
7954397 Choi et al. Jun 2011 B2
7971341 Dukesherer et al. Jul 2011 B2
7974674 Hauck et al. Jul 2011 B2
7974677 Mire et al. Jul 2011 B2
7974681 Wallace et al. Jul 2011 B2
7979157 Anvari Jul 2011 B2
7983733 Viswanathan Jul 2011 B2
7988215 Seibold Aug 2011 B2
7996110 Lipow et al. Aug 2011 B2
8004121 Sartor Aug 2011 B2
8004229 Nowlin et al. Aug 2011 B2
8010177 Csavoy et al. Aug 2011 B2
8019045 Kato Sep 2011 B2
8021310 Sanborn et al. Sep 2011 B2
8035685 Jensen Oct 2011 B2
8046054 Kim et al. Oct 2011 B2
8046057 Clarke Oct 2011 B2
8052688 Wolf, II Nov 2011 B2
8054184 Cline et al. Nov 2011 B2
8054752 Druke et al. Nov 2011 B2
8057397 Li et al. Nov 2011 B2
8057407 Martinelli et al. Nov 2011 B2
8062288 Cooper et al. Nov 2011 B2
8062375 Glerum et al. Nov 2011 B2
8066524 Burbank et al. Nov 2011 B2
8073335 Labonville et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8086299 Adler et al. Dec 2011 B2
8092370 Roberts et al. Jan 2012 B2
8098914 Liao et al. Jan 2012 B2
8100950 St. Clair et al. Jan 2012 B2
8105320 Manzo Jan 2012 B2
8108025 Csavoy et al. Jan 2012 B2
8109877 Moctezuma de la Barrera et al. Feb 2012 B2
8112292 Simon Feb 2012 B2
8116430 Shapiro et al. Feb 2012 B1
8120301 Goldberg et al. Feb 2012 B2
8121249 Wang et al. Feb 2012 B2
8123675 Funda et al. Feb 2012 B2
8133229 Bonutti Mar 2012 B1
8142420 Schena Mar 2012 B2
8147494 Leitner et al. Apr 2012 B2
8150494 Simon et al. Apr 2012 B2
8150497 Gielen et al. Apr 2012 B2
8150498 Gielen et al. Apr 2012 B2
8165658 Waynik et al. Apr 2012 B2
8170313 Kendrick et al. May 2012 B2
8179073 Farritor et al. May 2012 B2
8182476 Julian et al. May 2012 B2
8184880 Zhao et al. May 2012 B2
8202278 Orban, III et al. Jun 2012 B2
8208708 Homan et al. Jun 2012 B2
8208988 Jensen Jun 2012 B2
8219177 Smith et al. Jul 2012 B2
8219178 Smith et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8224024 Foxlin et al. Jul 2012 B2
8224484 Swarup et al. Jul 2012 B2
8225798 Baldwin et al. Jul 2012 B2
8228368 Zhao et al. Jul 2012 B2
8231610 Jo et al. Jul 2012 B2
8263933 Hartmann et al. Jul 2012 B2
8239001 Verard et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8248413 Gattani et al. Aug 2012 B2
8256319 Cooper et al. Sep 2012 B2
8271069 Jascob et al. Sep 2012 B2
8271130 Hourtash Sep 2012 B2
8281670 Larkin et al. Oct 2012 B2
8282653 Nelson et al. Oct 2012 B2
8301226 Csavoy et al. Oct 2012 B2
8311611 Csavoy et al. Nov 2012 B2
8320991 Jascob et al. Nov 2012 B2
8332012 Kienzle, III Dec 2012 B2
8333755 Cooper et al. Dec 2012 B2
8335552 Stiles Dec 2012 B2
8335557 Maschke Dec 2012 B2
8348931 Cooper et al. Jan 2013 B2
8353963 Glerum Jan 2013 B2
8358818 Miga et al. Jan 2013 B2
8359730 Burg et al. Jan 2013 B2
8374673 Adcox et al. Feb 2013 B2
8374723 Zhao et al. Feb 2013 B2
8379791 Forthmann et al. Feb 2013 B2
8386019 Camus et al. Feb 2013 B2
8392022 Ortmaier et al. Mar 2013 B2
8394099 Patwardhan Mar 2013 B2
8395342 Prisco Mar 2013 B2
8398634 Manzo et al. Mar 2013 B2
8400094 Schena Mar 2013 B2
8414957 Enzerink et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8450694 Baviera et al. May 2013 B2
8452447 Nixon May 2013 B2
RE44305 Foley et al. Jun 2013 E
8462911 Vesel et al. Jun 2013 B2
8465476 Rogers et al. Jun 2013 B2
8465771 Wan et al. Jun 2013 B2
8467851 Mire et al. Jun 2013 B2
8467852 Csavoy et al. Jun 2013 B2
8469947 Devengenzo et al. Jun 2013 B2
RE44392 Hynes Jul 2013 E
8483434 Buehner et al. Jul 2013 B2
8483800 Jensen et al. Jul 2013 B2
8486532 Enzerink et al. Jul 2013 B2
8489235 Moll et al. Jul 2013 B2
8500722 Cooper Aug 2013 B2
8500728 Newton et al. Aug 2013 B2
8504201 Moll et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8506556 Schena Aug 2013 B2
8508173 Goldberg et al. Aug 2013 B2
8512318 Tovey et al. Aug 2013 B2
8515576 Lipow et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8556807 Scott et al. Aug 2013 B2
8526688 Groszmann et al. Sep 2013 B2
8526700 Issacs Sep 2013 B2
8527094 Kumar et al. Sep 2013 B2
8528440 Morley et al. Sep 2013 B2
8532741 Heruth et al. Sep 2013 B2
8541970 Nowlin et al. Sep 2013 B2
8548563 Simon et al. Oct 2013 B2
8549732 Burg et al. Oct 2013 B2
8551114 Ramos de la Pena Oct 2013 B2
8551116 Julian et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8560118 Green et al. Oct 2013 B2
8561473 Blumenkranz Oct 2013 B2
8562594 Cooper et al. Oct 2013 B2
8571638 Shoham Oct 2013 B2
8571710 Coste-Maniere et al. Oct 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574303 Sharkey et al. Nov 2013 B2
8585420 Burbank et al. Nov 2013 B2
8594841 Zhao et al. Nov 2013 B2
8597198 Sanborn et al. Dec 2013 B2
8600478 Verard et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8611985 Lavallee et al. Dec 2013 B2
8613230 Blumenkranz et al. Dec 2013 B2
8621939 Blumenkranz et al. Jan 2014 B2
8624537 Nowlin et al. Jan 2014 B2
8630389 Kato Jan 2014 B2
8634897 Simon et al. Jan 2014 B2
8634957 Toth et al. Jan 2014 B2
8638056 Goldberg et al. Jan 2014 B2
8638057 Goldberg et al. Jan 2014 B2
8639000 Zhao et al. Jan 2014 B2
8641726 Bonutti Feb 2014 B2
8644907 Hartmann et al. Feb 2014 B2
8657809 Schoepp Feb 2014 B2
8660635 Simon et al. Feb 2014 B2
8666544 Moll et al. Mar 2014 B2
8675939 Moctezuma de la Barrera Mar 2014 B2
8678647 Gregerson et al. Mar 2014 B2
8679125 Smith et al. Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8682413 Lloyd Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685098 Glerum et al. Apr 2014 B2
8693730 Umasuthan et al. Apr 2014 B2
8694075 Groszmann et al. Apr 2014 B2
8696458 Foxlin et al. Apr 2014 B2
8700123 Okamura et al. Apr 2014 B2
8706086 Glerum Apr 2014 B2
8706185 Foley et al. Apr 2014 B2
8706301 Zhao et al. Apr 2014 B2
8717430 Simon et al. May 2014 B2
8727618 Maschke et al. May 2014 B2
8734432 Tuma et al. May 2014 B2
8738115 Amberg et al. May 2014 B2
8738181 Greer et al. May 2014 B2
8740882 Jun et al. Jun 2014 B2
8746252 McGrogan et al. Jun 2014 B2
8749189 Nowlin et al. Jun 2014 B2
8749190 Nowlin et al. Jun 2014 B2
8761930 Nixon Jun 2014 B2
8764448 Yang et al. Jul 2014 B2
8771170 Mesallum et al. Jul 2014 B2
8781186 Clements et al. Jul 2014 B2
8781630 Banks et al. Jul 2014 B2
8784385 Boyden et al. Jul 2014 B2
8786241 Nowlin et al. Jul 2014 B2
8787520 Baba Jul 2014 B2
8792704 Isaacs Jul 2014 B2
8798231 Notohara et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8812077 Dempsey Aug 2014 B2
8814793 Brabrand Aug 2014 B2
8816628 Nowlin et al. Aug 2014 B2
8818105 Myronenko et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821511 von Jako et al. Sep 2014 B2
8823308 Nowlin et al. Sep 2014 B2
8827996 Scott et al. Sep 2014 B2
8828024 Farritor et al. Sep 2014 B2
8830224 Zhao et al. Sep 2014 B2
8834489 Cooper et al. Sep 2014 B2
8834490 Bonutti Sep 2014 B2
8838270 Druke et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8855822 Bartol et al. Oct 2014 B2
8858598 Seifert et al. Oct 2014 B2
8860753 Bhandarkar et al. Oct 2014 B2
8864751 Prisco et al. Oct 2014 B2
8864798 Weiman et al. Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8867703 Shapiro et al. Oct 2014 B2
8870880 Himmelberger et al. Oct 2014 B2
8876866 Zappacosta et al. Nov 2014 B2
8880223 Raj et al. Nov 2014 B2
8882803 Iott et al. Nov 2014 B2
8883210 Truncale et al. Nov 2014 B1
8888821 Rezach et al. Nov 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8894652 Seifert et al. Nov 2014 B2
8894688 Suh Nov 2014 B2
8894691 Iott et al. Nov 2014 B2
8906069 Hansell et al. Dec 2014 B2
8964934 Ein-Gal Feb 2015 B2
8992580 Bar et al. Mar 2015 B2
8996169 Lightcap et al. Mar 2015 B2
9001963 Sowards-Emmerd et al. Apr 2015 B2
9002076 Khadem et al. Apr 2015 B2
9005113 Scott et al. Apr 2015 B2
9044190 Rubner et al. Jun 2015 B2
9107683 Hourtash et al. Aug 2015 B2
9125556 Zehavi et al. Sep 2015 B2
9131986 Greer et al. Sep 2015 B2
9215968 Schostek et al. Dec 2015 B2
9271633 Scott et al. Mar 2016 B2
9308050 Kostrzewski et al. Apr 2016 B2
9380984 Li et al. Jul 2016 B2
9393039 Lechner et al. Jul 2016 B2
9398886 Gregerson et al. Jul 2016 B2
9398890 Dong et al. Jul 2016 B2
9414859 Ballard et al. Aug 2016 B2
9420975 Gutfleisch et al. Aug 2016 B2
9492235 Hourtash et al. Nov 2016 B2
9565997 Scott et al. Feb 2017 B2
9592096 Maillet et al. Mar 2017 B2
9750465 Engel et al. Sep 2017 B2
9757203 Hourtash et al. Sep 2017 B2
9795354 Menegaz et al. Oct 2017 B2
9814535 Bar et al. Nov 2017 B2
9820783 Donner et al. Nov 2017 B2
9833265 Donner et al. Nov 2017 B2
9848922 Tohmeh et al. Dec 2017 B2
9925011 Gombert et al. Mar 2018 B2
9931025 Graetzel et al. Apr 2018 B1
9962069 Scott et al. May 2018 B2
10034717 Miller et al. Jul 2018 B2
20010036302 Miller Nov 2001 A1
20020035321 Bucholz et al. Mar 2002 A1
20040068172 Nowinski et al. Apr 2004 A1
20040076259 Jensen et al. Apr 2004 A1
20050096502 Khalili May 2005 A1
20050143651 Verard et al. Jun 2005 A1
20050171558 Abovitz et al. Aug 2005 A1
20060100610 Wallace et al. May 2006 A1
20060173329 Marquart et al. Aug 2006 A1
20060184396 Dennis et al. Aug 2006 A1
20060241416 Marquart et al. Oct 2006 A1
20060291612 Nishide et al. Dec 2006 A1
20070015987 Benlloch Baviera et al. Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070038059 Sheffer et al. Feb 2007 A1
20070069137 Campbell Mar 2007 A1
20070073133 Schoenefeld Mar 2007 A1
20070156121 Millman et al. Jul 2007 A1
20070156157 Nahum et al. Jul 2007 A1
20070167712 Keglovich et al. Jul 2007 A1
20070233238 Huynh et al. Oct 2007 A1
20080004523 Jensen Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080033283 Dellaca et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080108912 Node-Langlois May 2008 A1
20080108991 von Jako May 2008 A1
20080109012 Falco et al. May 2008 A1
20080144906 Allred et al. Jun 2008 A1
20080161680 von Jako et al. Jul 2008 A1
20080161682 Kendrick et al. Jul 2008 A1
20080177203 von Jako Jul 2008 A1
20080214922 Hartmann et al. Sep 2008 A1
20080228068 Viswanathan et al. Sep 2008 A1
20080228196 Wang et al. Sep 2008 A1
20080235052 Node-Langlois et al. Sep 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080287771 Anderson Nov 2008 A1
20080287781 Revie et al. Nov 2008 A1
20080300477 Lloyd et al. Dec 2008 A1
20080300478 Zuhars et al. Dec 2008 A1
20080302950 Park et al. Dec 2008 A1
20080306490 Lakin et al. Dec 2008 A1
20080319311 Hamadeh Dec 2008 A1
20090012509 Csavoy et al. Jan 2009 A1
20090030428 Omori et al. Jan 2009 A1
20090080737 Battle et al. Mar 2009 A1
20090185655 Koken et al. Jul 2009 A1
20090198121 Hoheisel Aug 2009 A1
20090216113 Meier et al. Aug 2009 A1
20090228019 Gross et al. Sep 2009 A1
20090259123 Navab et al. Oct 2009 A1
20090259230 Khadem et al. Oct 2009 A1
20090264899 Appenrodt et al. Oct 2009 A1
20090281417 Hartmann et al. Nov 2009 A1
20100022874 Wang et al. Jan 2010 A1
20100039506 Sarvestani et al. Feb 2010 A1
20100125286 Wang et al. May 2010 A1
20100130986 Mailloux et al. May 2010 A1
20100228117 Hartmann Sep 2010 A1
20100228265 Prisco Sep 2010 A1
20100249571 Jensen et al. Sep 2010 A1
20100274120 Heuscher Oct 2010 A1
20100280363 Skarda et al. Nov 2010 A1
20100331858 Simaan et al. Dec 2010 A1
20110022229 Jang et al. Jan 2011 A1
20110077504 Fischer et al. Mar 2011 A1
20110098553 Robbins et al. Apr 2011 A1
20110137152 Li Jun 2011 A1
20110213384 Jeong Sep 2011 A1
20110224684 Larkin et al. Sep 2011 A1
20110224685 Larkin et al. Sep 2011 A1
20110224686 Larkin et al. Sep 2011 A1
20110224687 Larkin et al. Sep 2011 A1
20110224688 Larkin et al. Sep 2011 A1
20110224689 Larkin et al. Sep 2011 A1
20110224825 Larkin et al. Sep 2011 A1
20110230967 O'Halloran et al. Sep 2011 A1
20110238080 Ranjit et al. Sep 2011 A1
20110276058 Choi et al. Nov 2011 A1
20110282189 Graumann Nov 2011 A1
20110286573 Schretter et al. Nov 2011 A1
20110295062 Gratacos Solsona et al. Dec 2011 A1
20110295370 Suh et al. Dec 2011 A1
20110306986 Lee et al. Dec 2011 A1
20120035507 George et al. Feb 2012 A1
20120046668 Gantes Feb 2012 A1
20120051498 Koishi Mar 2012 A1
20120053597 Anvari et al. Mar 2012 A1
20120059248 Holsing et al. Mar 2012 A1
20120071753 Hunter et al. Mar 2012 A1
20120108954 Schulhauser et al. May 2012 A1
20120136372 Amat Girbau et al. May 2012 A1
20120143084 Shoham Jun 2012 A1
20120184839 Woerlein Jul 2012 A1
20120197182 Millman et al. Aug 2012 A1
20120226145 Chang et al. Sep 2012 A1
20120235909 Birkenbach et al. Sep 2012 A1
20120245596 Meenink Sep 2012 A1
20120253332 Moll Oct 2012 A1
20120253360 White et al. Oct 2012 A1
20120256092 Zingerman Oct 2012 A1
20120294498 Popovic Nov 2012 A1
20120296203 Hartmann et al. Nov 2012 A1
20130006267 Odermatt et al. Jan 2013 A1
20130016889 Myronenko et al. Jan 2013 A1
20130030571 Ruiz Morales et al. Jan 2013 A1
20130035583 Park et al. Feb 2013 A1
20130060146 Yang et al. Mar 2013 A1
20130060337 Petersheim et al. Mar 2013 A1
20130094742 Feilkas Apr 2013 A1
20130096574 Kang et al. Apr 2013 A1
20130113791 Isaacs et al. May 2013 A1
20130116706 Lee et al. May 2013 A1
20130131695 Scarfogliero et al. May 2013 A1
20130144307 Jeong et al. Jun 2013 A1
20130158542 Manzo et al. Jun 2013 A1
20130165937 Patwardhan Jun 2013 A1
20130178867 Farritor et al. Jul 2013 A1
20130178868 Roh Jul 2013 A1
20130178870 Schena Jul 2013 A1
20130204271 Brisson et al. Aug 2013 A1
20130211419 Jensen Aug 2013 A1
20130211420 Jensen Aug 2013 A1
20130218142 Tuma et al. Aug 2013 A1
20130223702 Holsing et al. Aug 2013 A1
20130225942 Holsing et al. Aug 2013 A1
20130225943 Holsing et al. Aug 2013 A1
20130231556 Holsing et al. Sep 2013 A1
20130237995 Lee et al. Sep 2013 A1
20130245375 DiMaio et al. Sep 2013 A1
20130261640 Kim et al. Oct 2013 A1
20130272488 Bailey et al. Oct 2013 A1
20130272489 Dickman et al. Oct 2013 A1
20130274761 Devengenzo et al. Oct 2013 A1
20130281821 Liu et al. Oct 2013 A1
20130296884 Taylor et al. Nov 2013 A1
20130303887 Holsing et al. Nov 2013 A1
20130307955 Deitz et al. Nov 2013 A1
20130317521 Choi et al. Nov 2013 A1
20130325033 Schena et al. Dec 2013 A1
20130325035 Hauck et al. Dec 2013 A1
20130331686 Freysinger et al. Dec 2013 A1
20130331858 Devengenzo et al. Dec 2013 A1
20130331861 Yoon Dec 2013 A1
20130342578 Isaacs Dec 2013 A1
20130345717 Markvicka et al. Dec 2013 A1
20130345757 Stad Dec 2013 A1
20140001235 Shelton, IV Jan 2014 A1
20140012131 Heruth et al. Jan 2014 A1
20140031664 Kang et al. Jan 2014 A1
20140046128 Lee et al. Feb 2014 A1
20140046132 Hoeg et al. Feb 2014 A1
20140046340 Wilson et al. Feb 2014 A1
20140049629 Siewerdsen et al. Feb 2014 A1
20140058406 Tsekos Feb 2014 A1
20140073914 Lavallee et al. Mar 2014 A1
20140080086 Chen Mar 2014 A1
20140081128 Verard et al. Mar 2014 A1
20140088612 Bartol et al. Mar 2014 A1
20140094694 Moctezuma de la Barrera Apr 2014 A1
20140094851 Gordon Apr 2014 A1
20140096369 Matsumoto et al. Apr 2014 A1
20140100587 Farritor et al. Apr 2014 A1
20140121676 Kostrzewski et al. May 2014 A1
20140128882 Kwak et al. May 2014 A1
20140135796 Simon et al. May 2014 A1
20140142591 Alvarez et al. May 2014 A1
20140142592 Moon et al. May 2014 A1
20140148692 Hartmann et al. May 2014 A1
20140163581 Devengenzo et al. Jun 2014 A1
20140171781 Stiles Jun 2014 A1
20140171900 Stiles Jun 2014 A1
20140171965 Loh et al. Jun 2014 A1
20140180308 von Grunberg Jun 2014 A1
20140180309 Seeber et al. Jun 2014 A1
20140187915 Yaroshenko et al. Jul 2014 A1
20140188132 Kang Jul 2014 A1
20140194699 Roh et al. Jul 2014 A1
20140130810 Azizian et al. Aug 2014 A1
20140221819 Sarment Aug 2014 A1
20140222023 Kim et al. Aug 2014 A1
20140228631 Kwak et al. Aug 2014 A1
20140234804 Huang et al. Aug 2014 A1
20140257328 Kim et al. Sep 2014 A1
20140257329 Jang et al. Sep 2014 A1
20140257330 Choi et al. Sep 2014 A1
20140275760 Lee et al. Sep 2014 A1
20140275985 Walker et al. Sep 2014 A1
20140276931 Parihar et al. Sep 2014 A1
20140276940 Seo Sep 2014 A1
20140276944 Farritor et al. Sep 2014 A1
20140288413 Hwang et al. Sep 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303434 Farritor et al. Oct 2014 A1
20140303643 Ha et al. Oct 2014 A1
20140305995 Shelton, IV et al. Oct 2014 A1
20140309659 Roh et al. Oct 2014 A1
20140316436 Bar et al. Oct 2014 A1
20140323803 Hoffman et al. Oct 2014 A1
20140324070 Min et al. Oct 2014 A1
20140330288 Date et al. Nov 2014 A1
20140364720 Darrow et al. Dec 2014 A1
20140371577 Maillet et al. Dec 2014 A1
20150039034 Frankel et al. Feb 2015 A1
20150085970 Bouhnik et al. Mar 2015 A1
20150146847 Liu May 2015 A1
20150150524 Yorkston et al. Jun 2015 A1
20150196261 Funk Jul 2015 A1
20150213633 Chang et al. Jul 2015 A1
20150335480 Alvarez et al. Nov 2015 A1
20150342647 Frankel et al. Dec 2015 A1
20160005194 Schretter et al. Jan 2016 A1
20160166329 Langan et al. Jun 2016 A1
20160235480 Scholl et al. Aug 2016 A1
20160249990 Glozman et al. Sep 2016 A1
20160302871 Gregerson et al. Oct 2016 A1
20160320322 Suzuki Nov 2016 A1
20160331335 Gregerson et al. Nov 2016 A1
20170135770 Scholl et al. May 2017 A1
20170143284 Sehnert et al. May 2017 A1
20170143426 Isaacs et al. May 2017 A1
20170156816 Ibrahim Jun 2017 A1
20170202629 Maillet et al. Jul 2017 A1
20170212723 Atarot et al. Jul 2017 A1
20170215825 Johnson et al. Aug 2017 A1
20170215826 Johnson et al. Aug 2017 A1
20170215827 Johnson et al. Aug 2017 A1
20170231710 Scholl et al. Aug 2017 A1
20170258426 Risher-Kelly et al. Sep 2017 A1
20170273748 Hourtash et al. Sep 2017 A1
20170296277 Hourtash et al. Oct 2017 A1
20170360493 Zucher et al. Dec 2017 A1
20180228351 Scott et al. Aug 2018 A1
Non-Patent Literature Citations (1)
Entry
US 8,231,638 B2, 07/2012, Swarup et al. (withdrawn)
Related Publications (1)
Number Date Country
20210085264 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
62904863 Sep 2019 US