2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole (4.5 g), 3-pyridylboronic acid (1.0 g), bis(dibenzylideneacetone)palladium(0) (0.32 g), tricyclohexylphosphine (0.4 g), and tripotassium phosphate (4.7 g) were added into reaction vessel. The mixture was refluxed for overnight while stirring. After cooling, an organic layer was collected by liquid separation, and ethyl acetate were added to the aqueous layer for extraction. The collected organic layer was concentrated, and then the resulting crude product was purified by column chromatography (support: silica gel, eluent: dichloromethane/ethyl acetate), and the crystallization with a dichloromethane/methanol mixed solvent whereby a white powder of 4,6-bis(4-naphthalene-1-yl-phenyl)-2-(4-pyridine-3-yl-phenyl)-benzoxazole (Compound 1-1; 1.8 g; yield: 38%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 32 hydrogen signals, as follows.
δ(ppm)=8.98 (1H), 8.68 (1H), 8.52 (2H), 8.34 (2H), 8.12 (1H), 8.07-7.89 (10H), 7.82 (2H), 7.76 (2H), 7.69 (2H), 7.64 (9H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-4,6-di(naphthalene-1-yl)-benzoxazole, and 3-pyridylboronic acid was replaced with 4-(pyridine-3-yl)-phenylboronic acid, whereby a white powder of 2-{4′-(pyridine-3-yl)-1,1′-biphenyl-4-yl}-4,6-di(naphthalene-1-yl)-benzoxazole (Compound 1-2; 2.1 g; yield: 34%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 28 hydrogen signals, as follows.
δ(ppm)=8.94 (1H), 8.64 (1H), 8.35 (2H), 8.13 (1H), 8.05-7.91 (6H), 7.85 (1H), 7.82-7.76 (5H), 7.72 (2H), 7.68 (2H), 7.64-7.38 (7H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(3-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 4,6-bis(4-naphthalene-1-yl-phenyl)-2-(3-pyridine-3-yl-phenyl)-benzoxazole (Compound 1-3; 3.6 g; yield: 48%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 32 hydrogen signals, as follows.
δ(ppm)=9.01 (1H), 8.69 (1H), 8.60 (1H), 8.43 (1H), 8.32 (2H), 8.11 (1H), 8.07-8.01 (3H), 7.98-7.88 (7H), 7.83-7.67 (6H), 7.62-7.42 (9H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-4,6-di(naphthalene-1-yl)-benzoxazole, and 3-pyridylboronic acid was replaced with 3-(pyridine-3-yl)-phenylboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 2-{3′-(pyridine-3-yl)-1,1′-biphenyl-4-yl}-4,6-di(naphthalene-1-yl)-benzoxazole (Compound 1-4; 4.4 g; yield: 71%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 28 hydrogen signals, as follows.
δ(ppm)=8.94 (1H), 8.65 (1H), 8.36 (2H), 8.21 (1H), 8.05-7.92 (6H), 7.85 (2H), 7.83-7.76 (3H), 7.75-7.74 (12H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(3-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole, and 3-pyridylboronic acid was replaced with 4-pyridylboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 2-(3-pyridine-4-yl-phenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole (Compound 1-5; 3.0 g; yield: 40%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 32 hydrogen signals, as follows.
δ(ppm)=8.76 (2H), 8.66 (1H), 8.47 (1H), 8.32 (2H), 8.11 (1H), 8.07-8.02 (2H), 7.99-7.89 (7H), 7.85 (1H), 7.78-7.48 (15H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-4,6-di(phenanthrene-9-yl)-benzoxazole, and 3-pyridylboronic acid was replaced with 4-(pyridine-3-yl)phenylboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 2-{4′-(pyridine-3-yl)-1,1′-biphenyl-4-yl}-4,6-di(phenanthrene-9-yl)-benzoxazole (Compound 1-6; 2.1 g; yield: 17%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 32 hydrogen signals, as follows.
δ(ppm)=8.93 (1H), 8.87-8.63 (4H), 8.62 (1H), 8.33 (2H), 8.18 (1H), 8.08-7.88 (7H), 7.80-7.55 (15H), 7.40 (1H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(3-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole, and 3-pyridylboronic acid was replaced with 3-(pyridine-3-yl)phenylboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 2-{3′-(pyridine-3-yl)-1,1′-biphenyl-3-yl}-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole (Compound 1-7; 2.0 g; yield: 27%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 36 hydrogen signals, as follows.
δ(ppm)=8.98 (1H), 8.68-8.61 (2H), 8.42 (1H), 8.32 (2H), 8.15-7.40 (30H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-4,6-di(phenanthrene-9-yl)-benzoxazole, and 3-pyridylboronic acid was replaced with 3-(pyridine-3-yl)phenylboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 2-{3′-(pyridine-3-yl)-1,1′-biphenyl-4-yl}-4,6-di(phenanthrene-9-yl)-benzoxazole (Compound 1-8; 4.0 g; yield: 33%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 32 hydrogen signals, as follows.
δ(ppm)=8.93 (1H), 8.87-8.73 (4H), 8.65 (1H), 8.36 (2H), 8.18 (1H), 8.08-7.83 (8H), 7.79-7.54 (14H), 7.42 (1H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 6-(biphenyl-3-yl)-2-(4-chlorophenyl)-4-(9-phenyl-[9H]-carbazol-3-yl)-benzoxazole, and 3-pyridylboronic acid was replaced with phenylboronic acid, whereby a white powder of 6-(biphenyl-3-yl)-2-(biphenyl-4-yl)-4-(9-phenyl-[9H]-carbazol-3-yl)-benzoxazole (Compound 1-73; 3.0 g; yield: 44%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 32 hydrogen signals, as follows.
δ(ppm)=8.90 (1H), 8.45 (2H), 8.30 (1H), 8.26 (1H), 7.94 (1H), 7.91 (1H), 7.85 (2H), 7.80 (3H), 7.74-7.32 (20H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-6-(9,9′-spirobi[9H]fluorene-2-yl)-benzoxazole, and 3-pyridylboronic acid was replaced with 3-(pyridine-3-yl)-phenylboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 2-{3′-(pyridine-3-yl)-biphenyl-4-yl}-6-(9,9′-spirobi[9H]fluorene-2-yl)-benzoxazole (Compound 1-91; 10.5 g; yield: 58%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 30 hydrogen signals, as follows.
δ(ppm)=8.94 (1H), 8.66 (1H), 8.33 (2H), 8.01-7.77 (8H), 7.77-7.57 (6H), 7.52-7.37 (5H), 7.15 (3H), 7.03 (1H), 6.82 (2H), 6.78 (1H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 4,6-bis(biphenyl-3-yl)-2-(4-chlorophenyl)-benzoxazole, and 3-pyridylboronic acid was replaced with 3-biphenylboronic acid, whereby a white powder of 4,6-bis(biphenyl-3-yl)-2-([1,1′:3′,1″]terphenyl-4-yl)-benzoxazole (Compound 1-96; 8.3 g; yield: 68.0%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 33 hydrogen signals, as follows.
δ(ppm)=8.44 (2H), 8.35 (1H), 8.14 (1H), 8.00-7.82 (6H), 7.80-7.47 (20H), 7.46-7.37 (3H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-4,6-di(dibenzofuran-4-yl)-benzoxazole, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a yellow powder of 4,6-di(dibenzofuran-4-yl)-2-(4-pyridine-3-yl-phenyl)-benzoxazole (Compound 1-100; 7.3 g; yield: 61%) was obtained.
The structure of the obtained yellow powder was identified by NMR.
1H-NMR (CDCl3) detected 24 hydrogen signals, as follows.
δ(ppm)=8.96 (1H), 8.67 (1H), 8.59 (1H), 8.47 (2H), 8.37 (1H), 8.32 (1H), 8.06 (4H), 7.99 (1H), 7.84 (1H), 7.78 (2H), 7.69 (1H), 7.62 (1H), 7.61 (1H), 7.58-7.36 (6H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 6-chloro-2-phenyl-4-(9,9′-spirobi[9H]fluorene-2-yl)-benzoxazole, and 3-pyridylboronic acid was replaced with phenylboronic acid, whereby a white powder of 2,6-diphenyl-4-(9,9′-spirobi[9H]fluorene-2-yl)-benzoxazole (Compound 1-106; 4.5 g; yield: 41%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 27 hydrogen signals, as follows.
δ(ppm)=8.15-7.98 (6H), 7.97-7.85 (4H), 7.60-7.36 (9H), 7.17 (4H), 6.90-6.80 (4H) Example 14
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(3,5-dichlorophenyl)-4,6-diphenyl-benzoxazole, and 3-pyridylboronic acid was replaced with carbazol, whereby a white powder of 2-{3,5-di([9H]-carbazol-9-yl)-phenyl}-4,6-diphenyl-benzoxazole (Compound 1-107; 4.8 g; yield: 30%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 31 hydrogen signals, as follows.
δ(ppm)=8.67 (2H), 8.21 (4H), 8.10 (2H), 8.01 (1H), 7.85 (1H), 7.79 (1H), 7.73 (2H), 7.63 (4H), 7.57-7.46 (8H), 7.46-7.33 (6H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(3-chlorophenyl)-4-(4-naphthalene-1-yl-phenyl)-6-(9-phenyl-[9H]-carbazol-3-yl)-benzoxazole, whereby a white powder of 4-(4-naphthalene-1-yl-phenyl)-6-(9-phenyl-[9H]-carbazol-3-yl)-2-(3-pyridine-3-yl-phenyl)-benzoxazole (Compound 1-108; 2.6 g; yield: 47%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 33 hydrogen signals, as follows.
δ(ppm)=9.01 (1H), 8.69 (1H), 8.61 (1H), 8.53 (1H), 8.44 (1H), 8.35 (2H), 8.28 (1H), 8.14 (1H), 8.06 (1H), 8.05 (1H), 7.97 (1H), 7.96 (1H), 7.93 (1H), 7.86-7.42 (18H), 7.37 (1H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 6-chloro-2-phenyl-4-(5-phenyl-[5H]-pyrido[4,3-b]indole-8-yl)-benzoxazole, and 3-pyridylboronic acid was replaced with 9-phenyl-[9H]-carbazol-3-yl-boronic acid, whereby a yellow powder of 2-phenyl-6-(9-phenyl-[9H]-carbazol-3-yl)-4-(5-phenyl-[5H]-pyrido[4,3-b]indole-8-yl)-benzoxazole (Compound 1-110; 2.9 g; yield: 50%) was obtained.
The structure of the obtained yellow powder was identified by NMR.
1H-NMR (CDCl3) detected 30 hydrogen signals, as follows.
δ(ppm)=9.56 (1H), 9.04 (1H), 8.59 (1H), 8.53 (1H), 8.48 (1H), 8.45 (1H), 8.36 (1H), 8.26 (2H), 8.05 (1H), 7.93 (2H), 7.88-7.43 (16H), 7.36 (2H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-6-(4-naphthalene-1-yl-phenyl)-4-(4-pyridine-3-yl-phenyl)-benzoxazole, and 3-pyridylboronic acid was replaced with phenylboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 6-(4-naphthalene-1-yl-phenyl)-2-(biphenyl-4-yl)-4-(4-pyridine-3-yl-phenyl)-benzoxazole (Compound 1-112; 4.8 g; yield: 56%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 30 hydrogen signals, as follows.
δ(ppm)=9.00 (1H), 8.66 (1H), 8.45 (2H), 8.33 (2H), 8.07-7.78 (12H), 7.70 (4H), 7.63-7.40 (8H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-6-(4-naphthalene-1-yl-phenyl)-4-(4-pyridine-3-yl-phenyl)-benzoxazole, and 3-pyridylboronic acid was replaced with 1-naphthaleneboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 2,6-bis(4-naphthalene-1-yl-phenyl)-4-(4-pyridine-3-yl-phenyl)-benzoxazole (Compound 1-113; 6.1 g; yield: 66%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 32 hydrogen signals, as follows.
δ(ppm)=9.01 (1H), 8.66 (1H), 8.51 (2H), 8.35 (2H), 8.09-7.80 (13H), 7.73 (2H), 7.69 (2H), 7.64-7.40 (9H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-6-(phenanthrene-9-yl)-4-(4-pyridine-3-yl-phenyl)-benzoxazole, and 3-pyridylboronic acid was replaced with phenylboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 2-(biphenyl-4-yl)-6-(phenanthrene-9-yl)-4-(4-pyridine-3-yl-phenyl)-benzoxazole (Compound 1-118; 4.3 g; yield: 67%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 28 hydrogen signals, as follows.
δ(ppm)=8.98 (1H), 8.86 (1H), 8.80 (1H), 8.64 (1H), 8.46 (2H), 8.32 (2H), 8.07 (1H), 7.98 (2H), 7.88-7.57 (13H), 7.52 (2H), 7.44 (2H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-6-(phenanthrene-9-yl)-4-(3-pyridine-3-yl-phenyl)-benzoxazole, and 3-pyridylboronic acid was replaced with phenylboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 2-(biphenyl-4-yl)-6-(phenanthrene-9-yl)-4-(3-pyridine-3-yl-phenyl)-benzoxazole (Compound 1-119; 3.0 g; yield: 35%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 28 hydrogen signals, as follows.
δ(ppm)=9.02 (1H), 8.85 (1H), 8.79 (1H), 8.64 (1H), 8.45 (2H), 8.43 (1H), 8.19 (1H), 8.07 (1H), 8.02 (1H), 7.97 (1H), 7.89-7.78 (5H), 7.78-7.39 (12H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-6-(phenanthrene-9-yl)-4-(4-pyridine-3-yl-phenyl)-benzoxazole, and 3-pyridylboronic acid was replaced with 4-biphenylboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 6-(phenanthrene-9-yl)-4-(4-pyridine-3-yl-phenyl)-2-([1,1′:4′,1″]terphenyl-4-yl)-benzoxazole (Compound 1-120; 2.8 g; yield: 36%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 32 hydrogen signals, as follows.
δ(ppm)=8.98 (1H), 8.86 (1H), 8.80 (1H), 8.64 (1H), 8.48 (2H), 8.33 (2H), 8.08 (1H), 7.98 (2H), 7.90-7.57 (17H), 7.51 (2H), 7.41 (2H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-6-(phenanthrene-9-yl)-4-(4-pyridine-3-yl-phenyl)-benzoxazole, and 3-pyridylboronic acid was replaced with 2-naphthaleneboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 2-(4-naphthalene-2-yl-phenyl)-6-(phenanthrene-9-yl)-4-(4-pyridine-3-yl-phenyl)-benzoxazole (Compound 1-122; 3.0 g; yield: 43%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 30 hydrogen signals, as follows.
δ(ppm)=8.98 (1H), 8.86 (1H), 8.80 (1H), 8.65 (1H), 8.51 (2H), 8.33 (2H), 8.17 (1H), 8.08 (1H), 8.03-7.90 (7H), 7.89-7.51 (12H), 7.42 (1H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 6-chloro-2-phenyl-4-(4-pyridine-3-yl-phenyl)-benzoxazole, and 3-pyridylboronic acid was replaced with 2-triphenyleneboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a white powder of 2-phenyl-4-(4-pyridine-3-yl-phenyl)-6-(triphenylene-2-yl)-benzoxazole (Compound 1-125; 5.9 g; yield: 28%) was obtained.
The structure of the obtained white powder was identified by NMR.
1H-NMR (CDCl3) detected 26 hydrogen signals, as follows.
δ(ppm)=8.99 (2H), 8.85-8.63 (6H), 8.35 (2H), 8.33 (2H), 8.08-7.97 (4H), 7.83 (2H), 7.72 (4H), 7.59 (3H), 7.44 (1H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-6-(phenanthrene-9-yl)-4-(4-pyridine-3-yl-phenyl)-benzoxazole, and 3-pyridylboronic acid was replaced with 3-(pyridine-3-yl)phenylboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a yellow powder of 6-(phenanthrene-9-yl)-2-{3′-(pyridine-3-yl)-biphenyl-4-yl}-4-(4-pyridine-3-yl-phenyl)-benzoxazole (Compound 1-131; 3.4 g; yield: 43%) was obtained.
The structure of the obtained yellow powder was identified by NMR.
1H-NMR (CDCl3) detected 31 hydrogen signals, as follows.
δ(ppm)=9.04 (1H), 8.67 (1H), 8.47 (2H), 8.15 (4H), 8.08-7.72 (15H), 7.72-7.42 (8H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzothiazole, whereby a yellow powder of 4,6-bis(4-naphthalene-1-yl-phenyl)-2-(4-pyridine-3-yl-phenyl)-benzothiazole (Compound 2-1; 3.5 g; yield: 21%) was obtained.
The structure of the obtained yellow powder was identified by NMR.
1H-NMR (CDCl3) detected 32 hydrogen signals, as follows.
δ(ppm)=8.98 (1H), 8.68 (1H), 8.52 (2H), 8.40-8.25 (3H), 8.12 (1H), 8.07-7.69 (15H), 7.64 (9H).
The reaction was carried out under the same conditions as those of Example 1, except that 2-(4-chlorophenyl)-4,6-bis(4-naphthalene-1-yl-phenyl)-benzoxazole was replaced with 2-(4-chlorophenyl)-6-(phenanthrene-9-yl)-4-(4-pyridine-3-yl-phenyl)-benzothiazole, and 3-pyridylboronic acid was replaced with phenylboronic acid, and bis(dibenzylideneacetone)palladium(0) was replaced with tris(dibenzylideneacetone)palladium(0), whereby a yellow powder of 2-(biphenyl-4-yl)-6-(phenanthrene-9-yl)-4-(4-pyridine-3-yl-phenyl)-benzothiazole (Compound 2-63; 2.0 g; yield: 24%) was obtained.
The structure of the obtained yellow powder was identified by NMR.
1H-NMR (CDCl3) detected 28 hydrogen signals, as follows.
δ(ppm)=8.98 (1H), 8.86 (1H), 8.80 (1H), 8.64 (1H), 8.46 (2H), 8.32 (2H), 8.12-7.93 (4H), 7.88-7.57 (12H), 7.52 (2H), 7.44 (2H).
Number | Date | Country | Kind |
---|---|---|---|
2016-134799 | Jul 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/024779 | 7/6/2017 | WO | 00 |