The present invention relates to compounds, materials for organic electroluminescence devices, organic electroluminescence devices, and electronic devices comprising the organic electroluminescence devices.
An organic electroluminescence device (“organic EL device”) is generally composed of an anode, a cathode, and an organic layer sandwiched between the anode and the cathode. When a voltage is applied between the electrodes, electrons are injected from the cathode and holes are injected from the anode into a light emitting region. The injected electrons recombine with the injected holes in the light emitting region to form excited states. When the excited states return to the ground state, the energy is released as light. Therefore, it is important for obtaining an organic EL device with a high efficiency to develop a compound that transports electrons or holes into the light emitting region efficiently and facilitates the recombination of electrons and holes.
Patent Literatures 1 and 2 describe compounds for use as materials for organic electroluminescence device.
Various compounds for organic EL devices have been reported. However, compounds that further improve the performance of organic EL devices have been still demanded.
The present invention has been made to solve the above problem and an object of the invention is to provide compounds further improving the performance of organic EL devices, organic EL devices having their performance further improved, and electronic devices comprising such organic EL devices.
The inventors have extensively studied organic EL devices comprising the compounds described in Patent Literatures 1 to 7. As a result thereof, the inventors have found that the organic EL devices comprising the compounds represented by formula (1) show higher efficiencies.
In an aspect, the present invention provides a compound represented by formula (1).
wherein:
R1 to R10 are each independently a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms;
at least one set of adjacent two selected from R1 to R10 may be bonded to each other to form a substituted or unsubstituted ring structure or may be not bonded to each other thereby failing to form a substituted or unsubstituted ring structure;
R11 to R14 are each independently a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms;
at least one set of adjacent two selected from R11 to R14 may be bonded to each other to form a substituted or unsubstituted ring structure or may be not bonded to each other thereby failing to form a substituted or unsubstituted ring structure;
Ar is a substituted or unsubstituted non-fused aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted fused aryl group having 10 to 16 ring carbon atoms;
L is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms which is composed of only a six-membered ring or six-membered rings;
Ar and L are not crosslinked; and
when an optional substituent is present, the optional substituent referred to by “substituted or unsubstituted” is independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms.
In another aspect, the present invention provides a material for organic EL device comprising the compound represented by formula (1).
In another aspect, the present invention provides an organic electroluminescence device comprising an anode, a cathode, and an organic layer disposed between the anode and the cathode, wherein
the organic layer comprises a light emitting layer and
at least one layer of the organic layer comprises the compound represented by formula (1).
In another aspect, the present invention provides an electronic device comprising the organic electroluminescence device.
The organic EL device comprising the compound represented by formula (1) exhibits a high device performance.
In the description herein, the hydrogen atom encompasses isotopes thereof having different numbers of neutrons, i.e., a light hydrogen atom (protium), a heavy hydrogen atom (deuterium), and tritium.
In the description herein, the bonding site where the symbol, such as “R”, or “D” representing a deuterium atom is not shown is assumed to have a hydrogen atom, i.e., a protium atom, a deuterium atom, or a tritium atom, bonded thereto.
In the description herein, the number of ring carbon atoms shows the number of carbon atoms among the atoms constituting the ring itself of a compound having a structure including atoms bonded to form a ring (such as a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, and a heterocyclic compound). In the case where the ring is substituted by a substituent, the carbon atom contained in the substituent is not included in the number of ring carbon atoms. The same definition is applied to the “number of ring carbon atoms” described hereinafter unless otherwise indicated. For example, a benzene ring has 6 ring carbon atoms, a naphthalene ring has 10 ring carbon atoms, a pyridine ring has 5 ring carbon atoms, and a furan ring has 4 ring carbon atoms. For example, 9,9-diphenylfluorenyl group has 13 ring carbon atoms, and 9,9′-spirobifluorenyl group has 25 ring carbon atoms.
In the case where a benzene ring has, for example, an alkyl group substituted thereon as a substituent, the number of carbon atoms of the alkyl group is not included in the number of ring carbon atoms of the benzene ring. Accordingly a benzene ring having an alkyl group substituted thereon has 6 ring carbon atoms. In the case where a naphthalene ring has, for example, an alkyl group substituted thereon as a substituent, the number of carbon atoms of the alkyl group is not included in the number of ring carbon atoms of the naphthalene ring. Accordingly a naphthalene ring having an alkyl group substituted thereon has 10 ring carbon atoms.
In the description herein, the number of ring atoms shows the number of atoms constituting the ring itself of a compound having a structure including atoms bonded to form a ring (such as a monocyclic ring, a condensed ring, and a set of rings) (such as a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, and a heterocyclic compound). The atom that does not constitute the ring (such as a hydrogen atom terminating the bond of the atom constituting the ring) and, in the case where the ring is substituted by a substituent, the atom contained in the substituent are not included in the number of ring atoms. The same definition is applied to the “number of ring atoms” described hereinafter unless otherwise indicated. For example, a pyridine ring has 6 ring atoms, a quinazoline ring has 10 ring atoms, and a furan ring has 5 ring atoms. For example, the number of hydrogen atoms bonded to a pyridine ring or atoms constituting a substituent is not included in the number of ring atoms of the pyridine ring. Accordingly a pyridine ring having a hydrogen atom or a substituent bonded thereto has 6 ring atoms. For example, the number of hydrogen atoms bonded to carbon atoms of a quinazoline ring or atoms constituting a substituent is not included in the number of ring atoms of the quinazoline ring. Accordingly a quinazoline ring having a hydrogen atom or a substituent bonded thereto has 10 ring atoms.
In the description herein, the expression “having XX to YY carbon atoms” in the expression “substituted or unsubstituted ZZ group having XX to YY carbon atoms” means the number of carbon atoms of the unsubstituted ZZ group, and, in the case where the ZZ group is substituted, the number of carbon atoms of the substituent is not included. Herein, “YY” is larger than “XX”, “XX” represents an integer of 1 or more, and “YY” represents an integer of 2 or more.
In the description herein, the expression “having XX to YY atoms” in the expression “substituted or unsubstituted ZZ group having XX to YY atoms” means the number of atoms of the unsubstituted ZZ group, and, in the case where the ZZ group is substituted, the number of atoms of the substituent is not included. Herein, “YY” is larger than “XX”, “XX” represents an integer of 1 or more, and “YY” represents an integer of 2 or more.
In the description herein, an unsubstituted ZZ group means the case where the “substituted or unsubstituted ZZ group” is an “unsubstituted ZZ group”, and a substituted ZZ group means the case where the “substituted or unsubstituted ZZ group” is a “substituted ZZ group”.
In the description herein, the expression “unsubstituted” in the expression “substituted or unsubstituted ZZ group” means that hydrogen atoms in the ZZ group are not substituted by a substituent. The hydrogen atoms in the “unsubstituted ZZ group” each are a protium atom, a deuterium atom, or a tritium atom.
In the description herein, the expression “substituted” in the expression “substituted or unsubstituted ZZ group” means that one or more hydrogen atom in the ZZ group is substituted by a substituent. The expression “substituted” in the expression “BB group substituted by an AA group” similarly means that one or more hydrogen atom in the BB group is substituted by the AA group.
The substituents described in the description herein will be explained.
In the description herein, the number of ring carbon atoms of the “unsubstituted aryl group” is 6 to 50, preferably 6 to 30, and more preferably 6 to 18, unless otherwise indicated in the description.
In the description herein, the number of ring atoms of the “unsubstituted heterocyclic group” is 5 to 50, preferably 5 to 30, and more preferably 5 to 18, unless otherwise indicated in the description.
In the description herein, the number of carbon atoms of the “unsubstituted alkyl group” is 1 to 50, preferably 1 to 20, and more preferably 1 to 6, unless otherwise indicated in the description.
In the description herein, the number of carbon atoms of the “unsubstituted alkenyl group” is 2 to 50, preferably 2 to 20, and more preferably 2 to 6, unless otherwise indicated in the description.
In the description herein, the number of carbon atoms of the “unsubstituted alkynyl group” is 2 to 50, preferably 2 to 20, and more preferably 2 to 6, unless otherwise indicated in the description.
In the description herein, the number of ring carbon atoms of the “unsubstituted cycloalkyl group” is 3 to 50, preferably 3 to 20, and more preferably 3 to 6, unless otherwise indicated in the description.
In the description herein, the number of ring carbon atoms of the “unsubstituted arylene group” is 6 to 50, preferably 6 to 30, and more preferably 6 to 18, unless otherwise indicated in the description.
In the description herein, the number of ring atoms of the “unsubstituted divalent heterocyclic group” is 5 to 50, preferably 5 to 30, and more preferably 5 to 18, unless otherwise indicated in the description.
In the description herein, the number of carbon atoms of the “unsubstituted alkylene group” is 1 to 50, preferably 1 to 20, and more preferably 1 to 6, unless otherwise indicated in the description.
In the description herein, specific examples (set of specific examples G1) of the “substituted or unsubstituted aryl group” include the unsubstituted aryl groups (set of specific examples G1A) and the substituted aryl groups (set of specific examples G1B) shown below. (Herein, the unsubstituted aryl group means the case where the “substituted or unsubstituted aryl group” is an “unsubstituted aryl group”, and the substituted aryl group means the case where the “substituted or unsubstituted aryl group” is a “substituted aryl group”.) In the description herein, the simple expression “aryl group” encompasses both the “unsubstituted aryl group” and the “substituted aryl group”.
The “substituted aryl group” means a group formed by substituting one or more hydrogen atom of the “unsubstituted aryl group” by a substituent. Examples of the “substituted aryl group” include groups formed by one or more hydrogen atom of each of the “unsubstituted aryl groups” in the set of specific examples G1A by a substituent, and the examples of the substituted aryl groups in the set of specific examples G1B. The examples of the “unsubstituted aryl group” and the examples of the “substituted aryl group” enumerated herein are mere examples, and the “substituted aryl group” in the description herein encompasses groups formed by substituting a hydrogen atom bonded to the carbon atom of the aryl group itself of each of the “substituted aryl groups” in the set of specific examples G1B by a substituent, and groups formed by substituting a hydrogen atom of the substituent of each of the “substituted aryl groups” in the set of specific examples G1B by a substituent.
a phenyl group,
a p-biphenyl group,
a m-biphenyl group,
an o-biphenyl group,
a p-terphenyl-4-yl group,
a p-terphenyl-3-yl group,
a p-terphenyl-2-yl group,
a m-terphenyl-4-yl group,
a m-terphenyl-3-yl group,
a m-terphenyl-2-yl group,
an o-terphenyl-4-yl group,
an o-terphenyl-3-yl group,
an o-terphenyl-2-yl group,
a 1-naphthyl group,
a 2-naphthyl group,
an anthryl group,
a benzanthryl group,
a phenanthryl group,
a benzophenanthryl group,
a phenarenyl group,
a pyrenyl group,
a chrysenyl group,
a benzochrysenyl group,
a triphenylenyl group,
a benzotriphenylenyl group,
a tetracenyl group,
a pentacenyl group,
a fluorenyl group,
a 9,9′-spirobifluorenyl group,
a benzofluorenyl group,
a dibenzofluorenyl group,
a fluoranthenyl group,
a benzofluoranthenyl group,
a perylenyl group, and
monovalent aryl groups derived by removing one hydrogen atom from each of the ring structures represented by the following general formulae (TEMP-1) to (TEMP-15):
an o-tolyl group,
a m-tolyl group,
a p-tolyl group,
a p-xylyl group,
a m-xylyl group,
an o-xylyl group,
a p-isopropylphenyl group,
a m-isopropylphenyl group,
an o-isopropylphenyl group,
a p-t-butylyl group,
a m-t-butylyl group,
a o-t-butylphenyl group,
a 3,4,5-trimethylphenyl group,
a 9,9-dimethylfluorenyl group,
a 9,9-diphenylfluorenyl group,
a 9,9-bis(4-methylphenyl)fluorenyl group,
a 9,9-bis(4-isopropylphenyl)fluorenyl group,
a 9,9-bis(4-t-butylphenyl)fluorenyl group,
a cyanophenyl group,
a triphenylsilylphenyl group,
a trimethylsilylphenyl group,
a phenylnaphthyl group,
a naphthylphenyl group, and
groups formed by substituting one or more hydrogen atom of each of monovalent aryl groups derived from the ring structures represented by the general formulae (TEMP-1) to (TEMP-15) by a substituent.
In the description herein, the “heterocyclic group” means a cyclic group containing at least one hetero atom in the ring atoms. Specific examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, a phosphorus atom, and a boron atom.
In the description herein, the “heterocyclic group” is a monocyclic group or a condensed ring group.
In the description herein, the “heterocyclic group” is an aromatic heterocyclic group or a non-aromatic heterocyclic group.
In the description herein, specific examples (set of specific examples G2) of the “substituted or unsubstituted heterocyclic group” include the unsubstituted heterocyclic groups (set of specific examples G2A) and the substituted heterocyclic groups (set of specific examples G2B) shown below. (Herein, the unsubstituted heterocyclic group means the case where the “substituted or unsubstituted heterocyclic group” is an “unsubstituted heterocyclic group”, and the substituted heterocyclic group means the case where the “substituted or unsubstituted heterocyclic group” is a “substituted heterocyclic group”.) In the description herein, the simple expression “heterocyclic group” encompasses both the “unsubstituted heterocyclic group” and the “substituted heterocyclic group”.
The “substituted heterocyclic group” means a group formed by substituting one or more hydrogen atom of the “unsubstituted heterocyclic group” by a substituent. Specific examples of the “substituted heterocyclic group” include groups formed by substituting a hydrogen atom of each of the “unsubstituted heterocyclic groups” in the set of specific examples G2A by a substituent, and the examples of the substituted heterocyclic groups in the set of specific examples G2B. The examples of the “unsubstituted heterocyclic group” and the examples of the “substituted heterocyclic group” enumerated herein are mere examples, and the “substituted heterocyclic group” in the description herein encompasses groups formed by substituting a hydrogen atom bonded to the ring atom of the heterocyclic group itself of each of the “substituted heterocyclic groups” in the set of specific examples G2B by a substituent, and groups formed by substituting a hydrogen atom of the substituent of each of the “substituted heterocyclic groups” in the set of specific examples G2B by a substituent.
The set of specific examples G2A includes, for example, the unsubstituted heterocyclic group containing a nitrogen atom (set of specific examples G2A1), the unsubstituted heterocyclic group containing an oxygen atom (set of specific examples G2A2), the unsubstituted heterocyclic group containing a sulfur atom (set of specific examples G2A3), and monovalent heterocyclic groups derived by removing one hydrogen atom from each of the ring structures represented by the following general formulae (TEMP-16) to (TEMP-33) (set of specific examples G2A4).
The set of specific examples G2B includes, for example, the substituted heterocyclic groups containing a nitrogen atom (set of specific examples G2B1), the substituted heterocyclic groups containing an oxygen atom (set of specific examples G2B2), the substituted heterocyclic groups containing a sulfur atom (set of specific examples G2B3), and groups formed by substituting one or more hydrogen atom of each of monovalent heterocyclic groups derived from the ring structures represented by the following general formulae (TEMP-16) to (TEMP-33) by a substituent (set of specific examples G2B4).
a pyrrolyl group,
an imidazolyl group,
a pyrazolyl group,
a triazolyl group,
a tetrazolyl group,
an oxazolyl group,
an isoxazolyl group,
an oxadiazolyl group,
a thiazolyl group,
an isothiazolyl group,
a thiadiazolyl group,
a pyridyl group,
a pyridazinyl group,
a pyrimidinyl group,
a pyrazinyl group,
a triazinyl group,
an indolyl group,
an isoindolyl group,
an indolizinyl group,
a quinolizinyl group,
a quinolyl group,
an isoquinolyl group,
a cinnolinyl group,
a phthalazinyl group,
a quinazolinyl group,
a quinoxalinyl group,
a benzimidazolyl group,
an indazolyl group,
a phenanthrolinyl group,
a phenanthridinyl group,
an acridinyl group,
a phenazinyl group,
a carbazolyl group,
a benzocarbazolyl group,
a morpholino group,
a phenoxazinyl group,
a phenothiazinyl group,
an azacarbazolyl group, and
a diazacarbazolyl group.
Unsubstituted Heterocyclic Group containing Oxygen Atom (Set of Specific Examples G2A2):
a furyl group,
an oxazolyl group,
an isoxazolyl group,
an oxadiazolyl group,
a xanthenyl group,
a benzofuranyl group,
an isobenzofuranyl group,
a dibenzofuranyl group,
a naphthobenzofuranyl group,
a benzoxazolyl group,
a benzisoxazolyl group,
a phenoxazinyl group,
a morpholino group,
a dinaphthofuranyl group,
an azadibenzofuranyl group,
a diazadibenzofuranyl group,
an azanaphthobenzofuranyl group, and
a diazanaphthobenzofuranyl group.
a thienyl group,
a thiazolyl group,
an isothiazolyl group,
a thiadiazolyl group,
a benzothiophenyl group (benzothienyl group),
an isobenzothiophenyl group (isobenzothienyl group),
a dibenzothiophenyl group (dibenzothienyl group),
a naphthobenzothiophenyl group (naphthobenzothienyl group),
a benzothiazolyl group,
a benzisothiazolyl group,
a phenothiazinyl group,
a dinaphthothiophenyl group (dinaphthothienyl group),
an azadibenzothiophenyl group (azadibenzothienyl group),
a diazadibenzothiophenyl group (diazadibenzothienyl group),
an azanaphthobenzothiophenyl group (azanaphthobenzothienyl group), and
a diazanaphthobenzothiophenyl group (diazanaphthobenzothienyl group).
Monovalent Heterocyclic Group Derived by Removing One Hydrogen Atom from Ring Structures Represented by General Formulae (TEMP-16) to (TEMP-33) (Set of Specific Examples G2A4)
In the general formulae (TEMP-16) to (TEMP-33), XA and YA each independently represent an oxygen atom, a sulfur atom, NH, or CH2, provided that at least one of XA and YA represents an oxygen atom, a sulfur atom, or NH.
In the general formulae (TEMP-16) to (TEMP-33), in the case where at least one of XA and YA represents NH or CH2, the monovalent heterocyclic groups derived from the ring structures represented by the general formulae (TEMP-16) to (TEMP-33) include monovalent groups formed by removing one hydrogen atom from the NH or CH2.
Substituted Heterocyclic Group containing Nitrogen Atom (Set of Specific Examples G2B31):
a (9-phenyl)carbazolyl group,
a (9-biphenylyl)carbazolyl group,
a (9-phenyl)phenylcarbazolyl group,
a (9-naphthyl)carbazolyl group,
a diphenylcarbazol-9-yl group,
a phenylcarbazol-9-yl group,
a methylbenzimidazolyl group,
an ethylbenzimidazolyl group,
a phenyltriazinyl group,
a biphenyltriazinyl group,
a diphenyltriazinyl group,
a phenylquinazolinyl group, and
a biphenylquinazolinyl group.
Substituted Heterocyclic Group containing Oxygen Atom (Set of Specific Examples G2B2):
a phenyldibenzofuranyl group,
a methyldibenzofuranyl group,
a t-butyldibenzofuranyl group, and
a monovalent residual group of spiro[9H-xanthene-9,9′-[9H]fluorene].
Substituted Heterocyclic Group containing Sulfur Atom (Set of Specific Examples G2B3):
a phenyldibenzothiophenyl group,
a methyldibenzothiophenyl group,
a t-butyldibenzothiophenyl group, and
a monovalent residual group of spiro[9H-thioxanthene-9,9′-[9H]fluorene].
Group Formed by Substituting One or More Hydrogen Atom of Monovalent Heterocyclic Group Derived from Ring Structures Represented by General Formulae (TEMP-16) to (TEMP-33) by Substituent (Set of Specific Examples G2B4)
The “one or more hydrogen atom of the monovalent heterocyclic group” means one or more hydrogen atom selected from the hydrogen atom bonded to the ring carbon atom of the monovalent heterocyclic group, the hydrogen atom bonded to the nitrogen atom in the case where at least one of XA and YA represents NH, and the hydrogen atom of the methylene group in the case where one of XA and YA represents CH2.
Substituted or Unsubstituted Alkyl Group
In the description herein, specific examples (set of specific examples G3) of the “substituted or unsubstituted alkyl group” include the unsubstituted alkyl groups (set of specific examples G3A) and the substituted alkyl groups (set of specific examples G3B) shown below. (Herein, the unsubstituted alkyl group means the case where the “substituted or unsubstituted alkyl group” is an “unsubstituted alkyl group”, and the substituted alkyl group means the case where the “substituted or unsubstituted alkyl group” is a “substituted alkyl group”.) In the description herein, the simple expression “alkyl group” encompasses both the “unsubstituted alkyl group” and the “substituted alkyl group”.
The “substituted alkyl group” means a group formed by substituting one or more hydrogen atom of the “unsubstituted alkyl group” by a substituent. Specific examples of the “substituted alkyl group” include groups formed by substituting one or more hydrogen atom of each of the “unsubstituted alkyl groups” (set of specific examples G3A) by a substituent, and the examples of the substituted alkyl groups (set of specific examples G3B). In the description herein, the alkyl group in the “unsubstituted alkyl group” means a chain-like alkyl group. Accordingly the “unsubstituted alkyl group” encompasses an “unsubstituted linear alkyl group” and an “unsubstituted branched alkyl group”. The examples of the “unsubstituted alkyl group” and the examples of the “substituted alkyl group” enumerated herein are mere examples, and the “substituted alkyl group” in the description herein encompasses groups formed by substituting a hydrogen atom of the alkyl group itself of each of the “substituted alkyl groups” in the set of specific examples G3B by a substituent, and groups formed by substituting a hydrogen atom of the substituent of each of the “substituted alkyl groups” in the set of specific examples G3B by a substituent.
a methyl group,
an ethyl group,
a n-propyl group,
an isopropyl group,
a n-butyl group,
an isobutyl group,
a s-butyl group, and
a t-butyl group.
a heptafluoropropyl group (including isomers),
a pentafluoroethyl group,
a 2,2,2-trifluoroethyl group, and
a trifluoromethyl group.
In the description herein, specific examples (set of specific examples G4) of the “substituted or unsubstituted alkenyl group” include the unsubstituted alkenyl groups (set of specific examples G4A) and the substituted alkenyl groups (set of specific examples G4B) shown below. (Herein, the unsubstituted alkenyl group means the case where the “substituted or unsubstituted alkenyl group” is an “unsubstituted alkenyl group”, and the substituted alkenyl group means the case where the “substituted or unsubstituted alkenyl group” is a “substituted alkenyl group”.) In the description herein, the simple expression “alkenyl group” encompasses both the “unsubstituted alkenyl group” and the “substituted alkenyl group”.
The “substituted alkenyl group” means a group formed by substituting one or more hydrogen atom of the “unsubstituted alkenyl group” by a substituent. Specific examples of the “substituted alkenyl group” include the “unsubstituted alkenyl groups” (set of specific examples G4A) that each have a substituent, and the examples of the substituted alkenyl groups (set of specific examples G4B). The examples of the “unsubstituted alkenyl group” and the examples of the “substituted alkenyl group” enumerated herein are mere examples, and the “substituted alkenyl group” in the description herein encompasses groups formed by substituting a hydrogen atom of the alkenyl group itself of each of the “substituted alkenyl groups” in the set of specific examples G4B by a substituent, and groups formed by substituting a hydrogen atom of the substituent of each of the “substituted alkenyl groups” in the set of specific examples G4B by a substituent.
a vinyl group,
an allyl group,
a 1-butenyl group,
a 2-butenyl group, and
a 3-butenyl group.
a 1,3-butanedienyl group,
a 1-methylvinyl group,
a 1-methylallyl group,
a 1,1-dimethylallyl group,
a 2-methylallyl group, and
a 1,2-dimethylallyl group.
In the description herein, specific examples (set of specific examples G5) of the “substituted or unsubstituted alkynyl group” include the unsubstituted alkynyl group (set of specific examples G5A) shown below. (Herein, the unsubstituted alkynyl group means the case where the “substituted or unsubstituted alkynyl group” is an “unsubstituted alkynyl group”.) In the description herein, the simple expression “alkynyl group” encompasses both the “unsubstituted alkynyl group” and the “substituted alkynyl group”.
The “substituted alkynyl group” means a group formed by substituting one or more hydrogen atom of the “unsubstituted alkynyl group” by a substituent. Specific examples of the “substituted alkenyl group” include groups formed by substituting one or more hydrogen atom of the “unsubstituted alkynyl group” (set of specific examples G5A) by a substituent.
an ethynyl group.
In the description herein, specific examples (set of specific examples G6) of the “substituted or unsubstituted cycloalkyl group” include the unsubstituted cycloalkyl groups (set of specific examples G6A) and the substituted cycloalkyl group (set of specific examples G6B) shown below. (Herein, the unsubstituted cycloalkyl group means the case where the “substituted or unsubstituted cycloalkyl group” is an “unsubstituted cycloalkyl group”, and the substituted cycloalkyl group means the case where the “substituted or unsubstituted cycloalkyl group” is a “substituted cycloalkyl group”.) In the description herein, the simple expression “cycloalkyl group” encompasses both the “unsubstituted cycloalkyl group” and the “substituted cycloalkyl group”.
The “substituted cycloalkyl group” means a group formed by substituting one or more hydrogen atom of the “unsubstituted cycloalkyl group” by a substituent. Specific examples of the “substituted cycloalkyl group” include groups formed by substituting one or more hydrogen atom of each of the “unsubstituted cycloalkyl groups” (set of specific examples G6A) by a substituent, and the example of the substituted cycloalkyl group (set of specific examples G6B). The examples of the “unsubstituted cycloalkyl group” and the examples of the “substituted cycloalkyl group” enumerated herein are mere examples, and the “substituted cycloalkyl group” in the description herein encompasses groups formed by substituting one or more hydrogen atom bonded to the carbon atoms of the cycloalkyl group itself of the “substituted cycloalkyl group” in the set of specific examples G6B by a substituent, and groups formed by substituting a hydrogen atom of the substituent of the “substituted cycloalkyl group” in the set of specific examples G6B by a substituent.
a cyclopropyl group,
a cyclobutyl group,
a cyclopentyl group,
a cyclohexyl group,
a 1-adamantyl group,
a 2-adamantyl group,
a 1-norbornyl group, and
a 2-norbornyl group.
a 4-methylcyclohexyl group.
Group Represented by —Si(R901)(R902)(R903)
In the description herein, specific examples (set of specific examples G7) of the group represented by —Si(R901)(R902)(R903) include:
—Si(G1)(G1)(G1),
—Si(G1)(G2)(G2),
—Si(G1)(G1)(G2),
—Si(G2)(G2)(G2),
—Si(G3)(G3)(G3), and
—Si(G6)(G6)(G6).
Herein,
G1 represents the “substituted or unsubstituted aryl group” described in the set of specific examples G1,
G2 represents the “substituted or unsubstituted heterocyclic group” described in the set of specific examples G2,
G3 represents the “substituted or unsubstituted alkyl group” described in the set of specific examples G3, and
G6 represents the “substituted or unsubstituted cycloalkyl group” described in the set of specific examples G6.
Plural groups represented by G1 in —Si(G1)(G1)(G1) are the same as or different from each other.
Plural groups represented by G2 in —Si(G1)(G2)(G2) are the same as or different from each other.
Plural groups represented by G1 in —Si(G1)(G1)(G2) are the same as or different from each other.
Plural groups represented by G2 in —Si(G2)(G2)(G2) are the same as or different from each other.
Plural groups represented by G3 in —Si(G3)(G3)(G3) are the same as or different from each other.
Plural groups represented by G6 in —Si(G6)(G6)(G6) are the same as or different from each other.
In the description herein, specific examples (set of specific examples G8) of the group represented by —O—(R904) include:
—O(G1),
—O(G2),
—O(G3), and
—O(G6).
Herein,
G1 represents the “substituted or unsubstituted aryl group” described in the set of specific examples G1,
G2 represents the “substituted or unsubstituted heterocyclic group” described in the set of specific examples G2,
G3 represents the “substituted or unsubstituted alkyl group” described in the set of specific examples G3, and
G6 represents the “substituted or unsubstituted cycloalkyl group” described in the set of specific examples G6.
In the description herein, specific examples (set of specific examples G9) of the group represented by —S—(R905) include:
—S(G1),
—S(G2),
—S(G3), and
—S(G6).
Herein,
G1 represents the “substituted or unsubstituted aryl group” described in the set of specific examples G1,
G2 represents the “substituted or unsubstituted heterocyclic group” described in the set of specific examples G2,
G3 represents the “substituted or unsubstituted alkyl group” described in the set of specific examples G3, and
G6 represents the “substituted or unsubstituted cycloalkyl group” described in the set of specific examples G6.
Group Represented by —N(R906)(R907)
In the description herein, specific examples (set of specific examples G10) of the group represented by —N(R906)(R907) include:
—N(G1)(G1),
—N(G2)(G2),
—N(G1)(G2),
—N(G3)(G3), and
—N(G6)(G6).
G1 represents the “substituted or unsubstituted aryl group” described in the set of specific examples G1,
G2 represents the “substituted or unsubstituted heterocyclic group” described in the set of specific examples G2,
G3 represents the “substituted or unsubstituted alkyl group” described in the set of specific examples G3, and
G6 represents the “substituted or unsubstituted cycloalkyl group” described in the set of specific examples G6.
Plural groups represented by G1 in —N(G1)(G1) are the same as or different from each other.
Plural groups represented by G2 in —N(G2)(G2) are the same as or different from each other.
Plural groups represented by G3 in —N(G3)(G3) are the same as or different from each other.
Plural groups represented by G6 in —N(G6)(G6) are the same as or different from each other.
In the description herein, specific examples (set of specific examples G11) of the “halogen atom” include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
In the description herein, the “substituted or unsubstituted fluoroalkyl group” means a group formed by substituting at least one hydrogen atom bonded to the carbon atom constituting the alkyl group in the “substituted or unsubstituted alkyl group” by a fluorine atom, and encompasses a group formed by substituting all the hydrogen atoms bonded to the carbon atoms constituting the alkyl group in the “substituted or unsubstituted alkyl group” by fluorine atoms (i.e., a perfluoroalkyl group). The number of carbon atoms of the “unsubstituted fluoroalkyl group” is 1 to 50, preferably 1 to 30, and more preferably 1 to 18, unless otherwise indicated in the description. The “substituted fluoroalkyl group” means a group formed by substituting one or more hydrogen atom of the “fluoroalkyl group” by a substituent. In the description herein, the “substituted fluoroalkyl group” encompasses a group formed by substituting one or more hydrogen atom bonded to the carbon atom of the alkyl chain in the “substituted fluoroalkyl group” by a substituent, and a group formed by substituting one or more hydrogen atom of the substituent in the “substituted fluoroalkyl group” by a substituent. Specific examples of the “unsubstituted fluoroalkyl group” include examples of groups formed by substituting one or more hydrogen atom in each of the “alkyl group” (set of specific examples G3) by a fluorine atom.
In the description herein, the “substituted or unsubstituted haloalkyl group” means a group formed by substituting at least one hydrogen atom bonded to the carbon atom constituting the alkyl group in the “substituted or unsubstituted alkyl group” by a halogen atom, and encompasses a group formed by substituting all the hydrogen atoms bonded to the carbon atoms constituting the alkyl group in the “substituted or unsubstituted alkyl group” by halogen atoms. The number of carbon atoms of the “unsubstituted haloalkyl group” is 1 to 50, preferably 1 to 30, and more preferably 1 to 18, unless otherwise indicated in the description. The “substituted haloalkyl group” means a group formed by substituting one or more hydrogen atom of the “haloalkyl group” by a substituent. In the description herein, the “substituted haloalkyl group” encompasses a group formed by substituting one or more hydrogen atom bonded to the carbon atom of the alkyl chain in the “substituted haloalkyl group” by a substituent, and a group formed by substituting one or more hydrogen atom of the substituent in the “substituted haloalkyl group” by a substituent. Specific examples of the “unsubstituted haloalkyl group” include examples of groups formed by substituting one or more hydrogen atom in each of the “alkyl group” (set of specific examples G3) by a halogen atom. A haloalkyl group may be referred to as a halogenated alkyl group in some cases.
In the description herein, specific examples of the “substituted or unsubstituted alkoxy group” include a group represented by —O(G3), wherein G3 represents the “substituted or unsubstituted alkyl group” described in the set of specific examples G3. The number of carbon atoms of the “unsubstituted alkoxy group” is 1 to 50, preferably 1 to 30, and more preferably 1 to 18, unless otherwise indicated in the description.
In the description herein, specific examples of the “substituted or unsubstituted alkylthio group” include a group represented by —S(G3), wherein G3 represents the “substituted or unsubstituted alkyl group” described in the set of specific examples G3. The number of carbon atoms of the “unsubstituted alkylthio group” is 1 to 50, preferably 1 to 30, and more preferably 1 to 18, unless otherwise indicated in the description.
In the description herein, specific examples of the “substituted or unsubstituted aryloxy group” include a group represented by —O(G1), wherein G1 represents the “substituted or unsubstituted aryl group” described in the set of specific examples G1. The number of ring carbon atoms of the “unsubstituted aryloxy group” is 6 to 50, preferably 6 to 30, and more preferably 6 to 18, unless otherwise indicated in the description.
In the description herein, specific examples of the “substituted or unsubstituted arylthio group” include a group represented by —S(G1), wherein G1 represents the “substituted or unsubstituted aryl group” described in the set of specific examples G1. The number of ring carbon atoms of the “unsubstituted arylthio group” is 6 to 50, preferably 6 to 30, and more preferably 6 to 18, unless otherwise indicated in the description.
In the description herein, specific examples of the “trialkylsilyl group” include a group represented by —Si(G3)(G3)(G3), wherein G3 represents the “substituted or unsubstituted alkyl group” described in the set of specific examples G3. Plural groups represented by G3 in —Si(G3)(G3)(G3) are the same as or different from each other. The number of carbon atoms of each of alkyl groups of the “substituted or unsubstituted trialkylsilyl group” is 1 to 50, preferably 1 to 20, and more preferably 1 to 6, unless otherwise indicated in the description.
In the description herein, specific examples of the “substituted or unsubstituted aralkyl group” include a group represented by -(G3)-(G1), wherein G3 represents the “substituted or unsubstituted alkyl group” described in the set of specific examples G3, and G1 represents the “substituted or unsubstituted aryl group” described in the set of specific examples G1. Accordingly, the “aralkyl group” is a group formed by substituting a hydrogen atom of an “alkyl group” by an “aryl group” as a substituent, and is one embodiment of the “substituted alkyl group”. The “unsubstituted aralkyl group” is an “unsubstituted alkyl group” that is substituted by an “unsubstituted aryl group”, and the number of carbon atoms of the “unsubstituted aralkyl group” is 7 to 50, preferably 7 to 30, and more preferably 7 to 18, unless otherwise indicated in the description.
Specific examples of the “substituted or unsubstituted aralkyl group” include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylisopropyl group, a 2-phenylisopropyl group, a phenyl-t-butyl group, an a-naphthylmethyl group, a 1-a-naphthylethyl group, a 2-a-naphthylethyl group, a 1-a-naphthylisopropyl group, a 2-a-naphthylisopropyl group, a β-naphthylmethyl group, a 1-β-naphthylethyl group, a 2-βnaphthylethyl group, a 1-β-naphthylisopropyl group, and a 2-β-naphthylisopropyl group.
In the description herein, the substituted or unsubstituted aryl group is preferably a phenyl group, a p-biphenyl group, a m-biphenyl group, an o-biphenyl group, a p-terphenyl-4-yl group, a p-terphenyl-3-yl group, a p-terphenyl-2-yl group, a m-terphenyl-4-yl group, a m-terphenyl-3-yl group, a m-terphenyl-2-yl group, an o-terphenyl-4-yl group, an o-terphenyl-3-yl group, an o-terphenyl-2-yl group, a 1-naphthyl group, a 2-naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, a triphenylenyl group, a fluorenyl group, a 9,9′-spirobifluorenyl group, a 9,9-dimethylfluorenyl group, a 9,9-diphenylfluorenyl group, and the like, unless otherwise indicated in the description.
In the description herein, the substituted or unsubstituted heterocyclic group is preferably a pyridyl group, a pyrimidinyl group, a triazinyl group, a quinolyl group, an isoquinolyl group, a quinazolinyl group, a benzimidazolyl group, a phenanthrolinyl group, a carbazolyl group (e.g., a 1-carbazolyl, group, a 2-carbazolyl, group, a 3-carbazolyl, group, a 4-carbazolyl, group, or a 9-carbazolyl, group), a benzocarbazolyl group, an azacarbazolyl group, a diazacarbazolyl group, a dibenzofuranyl group, a naphthobenzofuranly group, an azadibenzofuranyl group, a diazadibenzofuranyl group, a dibenzothiophenyl group, a naphthobenzothiophenyl group, an azadibenzothiophenyl group, a diazadibenzothiophenyl group, a (9-phenyl)carbazolyl group (e.g., a (9-phenyl)carbazol-1-yl group, a (9-phenyl)carbazol-2-yl group, a (9-phenyl)carbazol-3-yl group, or a (9-phenyl)carbazol-4-yl group), a (9-biphenylyl)carbazolyl group, a (9-phenyl)phenylcarbazolyl group, a diphenylcarbazol-9-yl group, a phenylcarbazol-9-yl group, a phenyltriazinyl group, a biphenylyltriazinyl group, a diphenyltriazinyl group, a phenyldibenzofuranyl group, a phenyldibenzothiophenyl group, and the like, unless otherwise indicated in the description.
In the description herein, the carbazolyl group is specifically any one of the following groups unless otherwise indicated in the description.
In the description herein, the (9-phenyl)carbazolyl group is specifically any one of the following groups unless otherwise indicated in the description.
In the general formulae (TEMP-Cz1) to (TEMP-Cz9), represents a bonding site.
In the description herein, the dibenzofuranyl group and the dibenzothiophenyl group are specifically any one of the following groups unless otherwise indicated in the description.
In the general formulae (TEMP-34) to (TEMP-41), * represents a bonding site.
In the description herein, the substituted or unsubstituted alkyl group is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a t-butyl group, or the like unless otherwise indicated in the description.
In the description herein, the “substituted or unsubstituted arylene group” is a divalent group derived by removing one hydrogen atom on the aryl ring from the “substituted or unsubstituted aryl group” described above unless otherwise indicated in the description. Specific examples (set of specific examples G12) of the “substituted or unsubstituted arylene group” include divalent groups derived by removing one hydrogen atom on the aryl ring from the “substituted or unsubstituted aryl groups” described in the set of specific examples G1.
In the description herein, the “substituted or unsubstituted divalent heterocyclic group” is a divalent group derived by removing one hydrogen atom on the heterocyclic ring from the “substituted or unsubstituted heterocyclic group” described above unless otherwise indicated in the description. Specific examples (set of specific examples G13) of the “substituted or unsubstituted divalent heterocyclic group” include divalent groups derived by removing one hydrogen atom on the heterocyclic ring from the “substituted or unsubstituted heterocyclic groups” described in the set of specific examples G2.
In the description herein, the “substituted or unsubstituted alkylene group” is a divalent group derived by removing one hydrogen atom on the alkyl chain from the “substituted or unsubstituted alkyl group” described above unless otherwise indicated in the description. Specific examples (set of specific examples G14) of the “substituted or unsubstituted alkylene group” include divalent groups derived by removing one hydrogen atom on the alkyl chain from the “substituted or unsubstituted alkyl groups” described in the set of specific examples G3.
In the description herein, the substituted or unsubstituted arylene group is preferably any one of the groups represented by the following general formulae (TEMP-42) to (TEMP-68) unless otherwise indicated in the description.
In the general formulae (TEMP-42) to (TEMP-52), Q1 to Q10 each independently represent a hydrogen atom or a substituent.
In the general formulae (TEMP-42) to (TEMP-52), * represents a bonding site.
In the general formulae (TEMP-53) to (TEMP-62), Q1 to Q10 each independently represent a hydrogen atom or a substituent.
The formulae Q9 and Q10 may be bonded to each other to form a ring via a single bond.
In the general formulae (TEMP-53) to (TEMP-62), * represents a bonding site.
In the general formulae (TEMP-63) to (TEMP-68), Q1 to Q8 each independently represent a hydrogen atom or a substituent.
In the general formulae (TEMP-63) to (TEMP-68), * represents a bonding site.
In the description herein, the substituted or unsubstituted divalent heterocyclic group is preferably the groups represented by the following general formulae (TEMP-69) to (TEMP-102) unless otherwise indicated in the description.
In the general formulae (TEMP-69) to (TEMP-82), Q1 to Q9 each independently represent a hydrogen atom or a substituent.
In the general formulae (TEMP-83) to (TEMP-102), Q1 to Q8 each independently represent a hydrogen atom or a substituent.
The above are the explanation of the “substituents in the description herein”.
Case forming Ring by Bonding
In the description herein, the case where “one or more combinations of combinations each including adjacent two or more each are bonded to each other to form a substituted or unsubstituted monocyclic ring, or each are bonded to each other to form a substituted or unsubstituted condensed ring, or each are not bonded to each other” means a case where “one or more combinations of combinations each including adjacent two or more each are bonded to each other to form a substituted or unsubstituted monocyclic ring”, a case where “one or more combinations of combinations each including adjacent two or more each are bonded to each other to form a substituted or unsubstituted condensed ring”, and a case where “one or more combinations of combinations each including adjacent two or more each are not bonded to each other”.
In the description herein, the case where “one or more combinations of combinations each including adjacent two or more each are bonded to each other to form a substituted or unsubstituted monocyclic ring” and the case where “one or more combinations of combinations each including adjacent two or more each are bonded to each other to form a substituted or unsubstituted condensed ring” (which may be hereinafter collectively referred to as a “case forming a ring by bonding”) will be explained below. The cases will be explained for the anthracene compound represented by the following general formula (TEMP-103) having an anthracene core skeleton as an example.
For example, in the case where “one or more combinations of combinations each including adjacent two or more each are bonded to each other to form a ring” among R921 to R930, the combinations each including adjacent two as one combination include a combination of R921 and R922, a combination of R922 and R923, a combination of R923 and R924, a combination of R924 and R930, a combination of R930 and R925, a combination of R925 and R926, a combination of R926 and R927, a combination of R927 and R928, a combination of R928 and R929, and a combination of R929 and R921.
The “one or more combinations” mean that two or more combinations each including adjacent two or more may form rings simultaneously. For example, in the case where R921 and R922 are bonded to each other to form a ring QA, and simultaneously R925 and R926 are bonded to each other to form a ring QB, the anthracene compound represented by the general formula (TEMP-103) is represented by the following general formula (TEMP-104).
The case where the “combination including adjacent two or more forms rings” encompasses not only the case where adjacent two included in the combination are bonded as in the aforementioned example, but also the case where adjacent three or more included in the combination are bonded. For example, this case means that R921 and R922 are bonded to each other to form a ring QA, R922 and R923 are bonded to each other to form a ring QC, and adjacent three (R921, R922, and R923) included in the combination are bonded to each other to form rings, which are condensed to the anthracene core skeleton, and in this case, the anthracene compound represented by the general formula (TEMP-103) is represented by the following general formula (TEMP-105). In the following general formula (TEMP-105), the ring QA and the ring QC share R922.
The formed “monocyclic ring” or “condensed ring” may be a saturated ring or an unsaturated ring in terms of structure of the formed ring itself. In the case where the “one combination including adjacent two” forms a “monocyclic ring” or a “condensed ring”, the “monocyclic ring” or the “condensed ring” may form a saturated ring or an unsaturated ring. For example, the ring QA and the ring QB formed in the general formula (TEMP-104) each are a “monocyclic ring” or a “condensed ring”. The ring QA and the ring QC formed in the general formula (TEMP-105) each are a “condensed ring”. The ring QA and the ring QC in the general formula (TEMP-105) form a condensed ring through condensation of the ring QA and the ring QC. In the case where the ring QA in the general formula (TMEP-104) is a benzene ring, the ring QA is a monocyclic ring. In the case where the ring QA in the general formula (TMEP-104) is a naphthalene ring, the ring QA is a condensed ring.
The “unsaturated ring” means an aromatic hydrocarbon ring or an aromatic heterocyclic ring. The “saturated ring” means an aliphatic hydrocarbon ring or a non-aromatic heterocyclic ring.
Specific examples of the aromatic hydrocarbon ring include the structures formed by terminating the groups exemplified as the specific examples in the set of specific examples G1 with a hydrogen atom.
Specific examples of the aromatic heterocyclic ring include the structures formed by terminating the aromatic heterocyclic groups exemplified as the specific examples in the set of specific examples G2 with a hydrogen atom.
Specific examples of the aliphatic hydrocarbon ring include the structures formed by terminating the groups exemplified as the specific examples in the set of specific examples G6 with a hydrogen atom.
The expression “to form a ring” means that the ring is formed only with the plural atoms of the core structure or with the plural atoms of the core structure and one or more arbitrary element. For example, the ring QA formed by bonding R921 and R922 each other shown in the general formula (TEMP-104) means a ring formed with the carbon atom of the anthracene skeleton bonded to R921, the carbon atom of the anthracene skeleton bonded to R922, and one or more arbitrary element. As a specific example, in the case where the ring QA is formed with R921 and R922, and in the case where a monocyclic unsaturated ring is formed with the carbon atom of the anthracene skeleton bonded to R921, the carbon atom of the anthracene skeleton bonded to R922, and four carbon atoms, the ring formed with R921 and R922 is a benzene ring.
Herein, the “arbitrary element” is preferably at least one kind of an element selected from the group consisting of a carbon element, a nitrogen element, an oxygen element, and a sulfur element, unless otherwise indicated in the description. For the arbitrary element (for example, for a carbon element or a nitrogen element), a bond that does not form a ring may be terminated with a hydrogen atom or the like, and may be substituted by an “arbitrary substituent” described later. In the case where an arbitrary element other than a carbon element is contained, the formed ring is a heterocyclic ring.
The number of the “one or more arbitrary element” constituting the monocyclic ring or the condensed ring is preferably 2 or more and 15 or less, more preferably 3 or more and 12 or less, and further preferably 3 or more and 5 or less, unless otherwise indicated in the description.
What is preferred between the “monocyclic ring” and the “condensed ring” is the “monocyclic ring” unless otherwise indicated in the description.
What is preferred between the “saturated ring” and the “unsaturated ring” is the “unsaturated ring” unless otherwise indicated in the description.
The “monocyclic ring” is preferably a benzene ring unless otherwise indicated in the description.
The “unsaturated ring” is preferably a benzene ring unless otherwise indicated in the description.
In the case where the “one or more combinations of combinations each including adjacent two or more” each are “bonded to each other to form a substituted or unsubstituted monocyclic ring”, or each are “bonded to each other to form a substituted or unsubstituted condensed ring”, it is preferred that the one or more combinations of combinations each including adjacent two or more each are bonded to each other to form a substituted or unsubstituted “unsaturated ring” containing the plural atoms of the core skeleton and 1 or more and 15 or less at least one kind of an element selected from the group consisting of a carbon element, a nitrogen element, an oxygen element, and a sulfur element, unless otherwise indicated in the description.
In the case where the “monocyclic ring” or the “condensed ring” has a substituent, the substituent is, for example, an “arbitrary substituent” described later. In the case where the “monocyclic ring” or the “condensed ring” has a substituent, specific examples of the substituent include the substituents explained in the section “Substituents in Description” described above.
In the case where the “saturated ring” or the “unsaturated ring” has a substituent, the substituent is, for example, an “arbitrary substituent” described later. In the case where the “monocyclic ring” or the “condensed ring” has a substituent, specific examples of the substituent include the substituents explained in the section “Substituents in Description” described above.
The above are the explanation of the case where “one or more combinations of combinations each including adjacent two or more” each are “bonded to each other to form a substituted or unsubstituted monocyclic ring”, and the case where “one or more combinations of combinations each including adjacent two or more” each are “bonded to each other to form a substituted or unsubstituted condensed ring” (i.e., the “case forming a ring by bonding”).
In one embodiment in the description herein, the substituent for the case of “substituted or unsubstituted” (which may be hereinafter referred to as an “arbitrary substituent”) is, for example, a group selected from the group consisting of
an unsubstituted alkyl group having 1 to 50 carbon atoms,
an unsubstituted alkenyl group having 2 to 50 carbon atoms,
an unsubstituted alkynyl group having 2 to 50 carbon atoms,
an unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms,
—Si(R901)(R902)(R903),
—O—(R904),
—S—(R905),
—N(R906)(R907),
a halogen atom, a cyano group, a nitro group,
an unsubstituted aryl group having 6 to 50 ring carbon atoms, and
an unsubstituted heterocyclic group having 5 to 50 ring atoms,
wherein R901 to R907 each independently represent
a hydrogen atom,
a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms
a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms,
a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or
a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
In the case where two or more groups each represented by R901 exist, the two or more groups each represented by R901 are the same as or different from each other,
in the case where two or more groups each represented by R902 exist, the two or more groups each represented by R902 are the same as or different from each other,
in the case where two or more groups each represented by R903 exist, the two or more groups each represented by R903 are the same as or different from each other,
in the case where two or more groups each represented by R904 exist, the two or more groups each represented by R904 are the same as or different from each other,
in the case where two or more groups each represented by R905 exist, the two or more groups each represented by R905 are the same as or different from each other,
in the case where two or more groups each represented by R906 exist, the two or more groups each represented by R906 are the same as or different from each other, and
in the case where two or more groups each represented by R907 exist, the two or more groups each represented by R907 are the same as or different from each other.
In one embodiment, the substituent for the case of “substituted or unsubstituted” may be a group selected from the group consisting of
an alkyl group having 1 to 50 carbon atoms,
an aryl group having 6 to 50 ring carbon atoms, and
a heterocyclic group having 5 to 50 ring atoms.
In one embodiment, the substituent for the case of “substituted or unsubstituted” may be a group selected from the group consisting of
an alkyl group having 1 to 18 carbon atoms,
an aryl group having 6 to 18 ring carbon atoms, and
a heterocyclic group having 5 to 18 ring atoms.
The specific examples of the groups for the arbitrary substituent described above are the specific examples of the substituent described in the section “Substituents in Description” described above.
In the description herein, the arbitrary adjacent substituents may form a “saturated ring” or an “unsaturated ring”, preferably form a substituted or unsubstituted saturated 5-membered ring, a substituted or unsubstituted saturated 6-membered ring, a substituted or unsubstituted unsaturated 5-membered ring, or a substituted or unsubstituted unsaturated 6-membered ring, and more preferably form a benzene ring, unless otherwise indicated.
In the description herein, the arbitrary substituent may further have a substituent unless otherwise indicated in the description. The definition of the substituent that the arbitrary substituent further has may be the same as the arbitrary substituent.
In the description herein, a numerical range shown by “AA to BB” means a range including the numerical value AA as the former of “AA to BB” as the lower limit value and the numerical value BB as the latter of “AA to BB” as the upper limit value.
The compound of the invention will be explained below.
The compound of the invention is represented by formula (1). The compound represented by formula (1) or the formula mentioned below may be simply called “inventive compound.”
The symbols in formula (1) and each of formulae mentioned below will be explained below, wherein the same symbol has the same meaning.
R1 to R10 are each independently a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, preferably a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, and more preferably a hydrogen atom.
R1 to R10 may be all hydrogen atoms.
The details of the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms represented by R1 to R10 are as described above in “Substituents in Description.”
The unsubstituted aryl group is preferably a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, an anthryl group, a phenanthryl group, a phenalenyl group, a pyrenyl group, a chrysenyl group, a triphenylenyl group, a tetracenyl group, a pentacenyl group, a fluorenyl group, a fluoranthenyl group, or a perylenyl group, more preferably a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, or a phenanthryl group, still more preferably a phenyl group, a biphenylyl group or a naphthyl group, and particularly preferably a phenyl group.
The substituted aryl group is preferably a 9,9-dimethylfluorenyl group, a 9,9-diphenylfluorenyl group, or a 9,9′-spirobifluorenyl group.
The details of the substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms represented by R1 to R10 are as described above in “Substituents in Description.”
The unsubstituted heterocyclic group is preferably a pyridyl group, a pyrimidinyl group, a triazinyl group, a quinolyl group, an isoquinolyl group, a quinazolinyl group, a benzimidazolyl group, a phenanthrolinyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzofuranyl group, a naphthobenzofuranyl group, a dibenzothiophenyl group, or a naphthobenzothiophenyl group, more preferably a pyridyl group, a pyrimidinyl group, a carbazolyl group, a dibenzofuranyl group, a naphthobenzofuranyl group, or a dibenzothiophenyl group, and still more preferably a pyridyl group, a carbazolyl group, a dibenzofuranyl group, a naphthobenzofuranyl group, or a dibenzothiophenyl group.
The substituted heterocyclic group is preferably a 9-phenylcarbazolyl group, a diphenylcarbazole-9-yl group or a phenylcarbazole-9-yl group.
The details of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms represented by R1 to R10 are as described above in “Substituents in Description.”
The unsubstituted alkyl group is preferably a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a s-butyl group, a t-butyl group, or a n-pentyl group, more preferably a methyl group, an ethyl group, an isopropyl group, or a t-butyl group, and still more preferably a methyl group or a t-butyl group.
The details of the substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms represented by R1 to R10 are as described above in “Substituents in Description.”
The unsubstituted cycloalkyl group is preferably a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, or a norbornyl group.
At least one set of adjacent two selected from R1 to R10, i.e., at least one set of adjacent two selected from R1 and R2, R2 and R3, R3 and R4, R4 and R5, R6 and R7, R7 and R8, R8 and R9, and R9 and R10, may be bonded to each other to form a substituted or unsubstituted ring structure or may be not bonded to each other thereby failing to form a substituted or unsubstituted ring structure.
The substituted or unsubstituted ring structure is selected, for example, from a substituted or unsubstituted aromatic hydrocarbon ring, a substituted or unsubstituted aliphatic hydrocarbon ring, a substituted or unsubstituted aromatic heterocyclic ring, and a substituted or unsubstituted aliphatic heterocyclic ring.
The aromatic hydrocarbon ring is, for example, a benzene ring, a biphenylene ring, a naphthalene ring, an anthracene ring, a benzanthracene ring, a phenanthrene ring, a benzophenanthrene ring, a phenalene ring, a pyrene ring, a chrysene ring, a 1,1-dimethylindene ring, or a triphenylene ring, preferably a benzene ring or a naphthalene ring, and more preferably a benzene ring.
The aliphatic hydrocarbon ring is, for example, a cyclopentene ring, a cyclopentadiene ring, a cyclohexene ring, a cyclohexadiene ring, or an aliphatic hydrocarbon ring that is obtained by partially hydrogenating the above aromatic hydrocarbon ring.
The aromatic heterocyclic ring is, for example, a pyrrole ring, a furan ring, a thiophene ring, a pyridine ring, an imidazole ring, a pyrazole ring, an indole ring, an isoindole ring, a benzofuran ring, an isobenzofuran ring a benzothiophene ring, a benzimidazole ring, an indazole ring, a dibenzofuran ring, a naphthobenzofuran ring, a dibenzothiophene ring, a naphthobenzothiophene ring, a carbazole ring, or a benzocarbazole ring.
The aliphatic heterocyclic ring is, for example, an aliphatic heterocyclic ring that is obtained by partially hydrogenating the above aromatic heterocyclic ring.
In a preferred embodiment of the invention, one set of adjacent two selected from R1 and R2, R2 and R3, R7 and R8, and R8 and R9 are bonded to each other to form a benzene ring.
In an embodiment of the invention, the diphenyltriazinyl structure of the inventive compound which is represented by the following formula:
is represented by formula (4) or (5):
In formula (4), R2 to R4 and R7 to R9 are as defined in formula (1),
provided that at least one selected from R2 to R4 and R7 to R9 is a fluorine atom, a cyano group, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms.
The details of these groups are as described above with respect to R1 to R10.
At least one set of adjacent two selected from R2 and R3, R3 and R4, R7 and R8, and R8 and R9 may be bonded to each other to form a substituted or unsubstituted ring structure or may be not bonded to each other thereby failing to form a substituted or unsubstituted ring structure.
The details of the substituted or unsubstituted ring structure are as described above.
In formula (5), R3 and R8 are as defined in formula (1),
provided that at least one selected from R3 and R8 is a fluorine atom, a cyano group, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms.
The details of these groups are as described above with respect to R1 to R10.
Thus, the inventive compound represented by formula (1) includes a compound represented by formula (6) or (7):
In each of the formulae representing the inventive compound,
R11 to R14 are each independently a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, preferably a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, and more preferably a hydrogen atom.
The details of the above groups are as described above with respect to R1 to R10.
R11 to R14 may be all hydrogen atoms.
At least one set of adjacent two selected from R11 to R14, i.e., at least one set of adjacent two selected from R11 and R12, R12 and R13, and R13 and R14, may be bonded to each other to form a substituted or unsubstituted ring structure or may be not bonded to each other thereby failing to form a substituted or unsubstituted ring structure.
The details of the substituted or unsubstituted ring structure are as described above.
In each of the formulae representing the inventive compound, Ar is a substituted or unsubstituted non-fused aryl group having 6 to 50, preferably 6 to 30, and more preferably 6 to 18 ring carbon atoms or a substituted or unsubstituted fused aryl group having 10 to 16 ring carbon atoms.
The unsubstituted non-fused aryl group is preferably a phenyl group, a biphenyl group or a terphenyl group, and more preferably a phenyl group or a biphenyl group.
The biphenyl group is selected from an o-biphenyl group, a m-biphenyl group, and a p-biphenyl group.
The terphenyl group is preferably selected from the following groups:
The unsubstituted fused aryl group is a naphthyl group, an anthryl group, a phenanthryl group, or a fluoranthenyl group.
The naphthyl group is a 1-naphthyl group or a 2-naphthyl group.
The anthryl group is preferably a 9-anthryl group.
The phenanthryl group is preferably a 2-phenanthryl group or a 9-phenanthryl group.
The fluoranthenyl group is preferably a 3-fluoranthenyl group.
The substituted fused aryl group is preferably a 9,9-dimethylfluorenyl group, a 9,9-diphenylfluorenyl group, a 9,9′-spirobifluorenyl group, or a phenylnaphthyl group.
The 9,9-dimethyl fluorenyl group is preferably a 9,9-dimethyl fluorene-1-yl group, a 9,9-dimethyl fluorene-2-yl group, a 9,9-dimethyl fluorene-3-yl group, or a 9,9-dimethyl fluorene-4-yl group, more preferably a 9,9-dimethyl fluorene-2-yl group or a 9,9-dimethyl fluorene-4-yl group, and still more preferably a 9,9-dimethyl fluorene-2-yl group.
The 9,9-diphenyl fluorenyl group is preferably a 9,9-diphenyl fluorene-1-yl group, a 9,9-diphenyl fluorene-2-yl group, a 9,9-diphenyl fluorene-3-yl group, or a 9,9-diphenyl fluorene-4-yl group, more preferably a 9,9-diphenyl fluorene-2-yl group or a 9,9-diphenyl fluorene-4-yl group, and still more preferably a 9,9-diphenyl fluorene-2-yl group.
The 9,9′-spirobifluorenyl group is preferably a 9,9′-spirobifluorene-1-yl group, a 9,9′-spirobifluorene-2-yl group, a 9,9′-spirobifluorene-3-yl group, or a 9,9′-spirobifluorene-4-yl group, more preferably a 9,9′-spirobifluorene-2-yl group or a 9,9′-spirobifluorene-4-yl group, and still more preferably a 9,9′-spirobifluorene-2-yl group.
The phenylnaphthyl group is preferably a 4-phenylnaphthalene-1-yl group or a 6-phenylnaphthalene-2-yl group.
In the formulae that represent the inventive compound, L is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms which is composed of only a six-membered ring or six-membered rings.
The substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms which is composed of only a six-membered ring or six-membered rings represented by L is selected from the arylene groups each composed of only a six-membered ring or six-membered rings which are described above in “Substituents in Description.”
The unsubstituted arylene group that is composed of only a six-membered ring or six-membered rings is preferably a phenylene group, a biphenylylene group, a terphenylylene group, a naphthylene group, an anthrylene group, a phenanthrylene group, a pyrenylene group, a chrysenylene group, or a triphenylenylene group.
L is more preferably a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, or a substituted or unsubstituted anthrylene group, and still more preferably a substituted or unsubstituted naphthylene group or a substituted or unsubstituted anthrylene group.
Therefore, the inventive compound includes the compound represented by formula (2) or (3):
In formula (2), R1 to R10, R11 to R14, and Ar are as defined in formula (1).
R21 to R28 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms,
provided that one selected from R21 to R28 is a single bond bonded to *a and one selected from R21 to R28 each being not the single bond bonded to *a is a single bond bonded to *b.
The details of the above groups are as described above with respect to R1 to R10.
Adjacent two selected from R21 to R28 each being neither the bond bonded to *a nor the bond bonded to *b are preferably not bonded to each other thereby failing to form a ring structure.
R21 to R28 each being neither the bond bonded to *a nor the bond bonded to *b may be all hydrogen atoms.
In formula (3), R1 to R10, R11 to R14, and Ar are as defined in formula (1).
R31 to R40 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms,
provided that one selected from R31 to R40 is a single bond bonded to *c and one selected from R31 to R40 each being not the single bond bonded to *c is a single bond bonded to *d.
The details of the above groups are as described above with respect to R1 to R10.
Adjacent two selected from R31 to R40 each being neither the bond bonded to *c nor the bond bonded to *d are preferably not bonded to each other thereby failing to form a ring structure.
R31 to R40 each being neither the bond bonded to *c nor the bond bonded to *d may be all hydrogen atoms.
The inventive compound represented by formula (2) preferably includes the compound represented by formula (2a):
The inventive compound represented by formula (3) preferably includes the compound represented by formula (3a):
As noted above, the “hydrogen atom” referred to herein includes a light hydrogen atom, a heavy hydrogen atom, and tritium. Therefore, the inventive compound may include a naturally occurring heavy hydrogen atom.
In addition, a heavy hydrogen atom may be intentionally introduced into the inventive compound by using a compound wherein a part or whole of the hydrogen atoms is/are a heavy hydrogen atom or heavy hydrogen atoms (hereinafter referred to as “deuterated compound”) as the raw material. Thus, in an embodiment of the invention, the inventive compound comprises at least one heavy hydrogen atom. Hereinafter, the inventive compound comprising at least one heavy hydrogen atom may be referred to as “deuterated analogue.” Therefore, the inventive compound may be a compound represented by any of formula (1) and preferred formulae thereof, wherein at least one of the hydrogen atoms included in the compound is a heavy hydrogen atom. The hydrogen atom at any position of the inventive compound may be a heavy hydrogen atom.
The deuteration rate of the deuterated analogue (ratio of the number of heavy hydrogen atoms to the total number of hydrogen atoms in the inventive compound) depends on the deuteration rate of the raw material to be used. Since it is generally difficult to make the deuteration rate of the raw materials to 100%, the deuteration rate of the deuterated analogue is less than 100%.
The inventive compound may be a mixture of a deuterated compound and a non-deuterated compound or a mixture of two or more compounds having different deuteration rates. The deuteration rate of such a mixture (ratio of the number of heavy hydrogen atoms to the total number of hydrogen atoms in the inventive compounds included in the mixture) is 1% or more, preferably 3% or more, more preferably 5% or more, and more preferably 10% or more, and less than 100%.
In the deuterated analogue, at least one hydrogen atom selected from the hydrogen atoms represented by R1 to R10 may be a heavy hydrogen atom. The deuteration rate (ratio of the number of heavy hydrogen atoms to the total number of hydrogen atoms represented by R1 to R10) may be 1% or more, preferably 3% or more, more preferably 5% or more, and still more preferably 10% or more, and less than 100%.
In the deuterated analogue, at least one hydrogen atom selected from the hydrogen atoms represented by R11 to R15 may be a heavy hydrogen atom. The deuteration rate (ratio of the number of heavy hydrogen atoms to the total number of hydrogen atoms represented by R11 to R15) may be 1% or more, preferably 3% or more, more preferably 5% or more, and still more preferably 10% or more, and less than 100%.
In the deuterated analogue, at least one hydrogen atom selected from the hydrogen atoms included in the arylene group for L may be a heavy hydrogen atom. The deuteration rate (ratio of the number of heavy hydrogen atoms to the total number of hydrogen atoms in the arylene group) may be 1% or more, preferably 3% or more, more preferably 5% or more, and still more preferably 10% or more, and less than 100%.
In the deuterated analogue, at least one hydrogen atom selected from the hydrogen atoms included in the aryl group for Ar may be a heavy hydrogen atom. The deuteration rate (ratio of the number of heavy hydrogen atoms to the total number of hydrogen atoms in the aryl group) may be 1% or more, preferably 3% or more, more preferably 5% or more, and still more preferably 10% or more, and less than 100%.
When each of the groups mentioned above has a substituent, the optional substituent referred to by “substituted or unsubstituted” is independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms.
The details of the above groups are as described above with respect to R1 to R10.
One of ordinary skill in the art could easily produce the inventive compound by referring to the Synthesis Examples mentioned below and known synthesis methods.
Examples of the inventive compound are shown below, although not limited thereto.
The material for organic electroluminescence devices comprises the inventive compound. The content of the inventive compound in the material for organic electroluminescence devices is, for example, 1% by mass or more (inclusive of 100%), preferably 10% by mass or more (inclusive of 100%), more preferably 50% by mass or more (inclusive of 100%), still more preferably 80% by mass or more (inclusive of 100%), and particularly preferably 90% by mass or more (inclusive of 100%). The material for organic electroluminescence devices is useful to produce an organic EL device.
The organic electroluminescence device of the invention comprises an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer comprises a light emitting layer and at least one layer of the organic layer comprises the inventive compound.
Examples of the organic layer which comprises the inventive compound include a hole transporting region formed between an anode and a light emitting layer, such as a hole transporting layer, a hole injecting layer, an electron blocking layer, and an exciton blocking layer, a light emitting layer, a space layer, and an electron transporting region formed between a cathode and a light emitting layer, such as an electron transporting layer, an electron injecting layer, and a hole blocking layer, although not limited thereto. The inventive compound is used to produce a fluorescent or phosphorescent EL device preferably as a material for an electron transporting region or a light emitting layer, more preferably as a material for an electron transporting region, still more preferably as a material for an electron injecting layer, an electron transporting layer, a hole blocking layer or an exciton blocking layer, and particularly preferably an electron injection layer or an electron transporting layer.
The organic EL device of the invention may be any of a fluorescent or phosphorescent single color emitting device, a white-emitting device of fluorescent-phosphorescent hybrid type, a simple-type emitting device having a single emission unit, and a tandem emitting device having two or more emission units. The “emission unit” referred to herein is the smallest unit for emitting light by the recombination of injected holes and injected electrons, which comprises an organic layer, wherein at least one layer is a light emitting layer.
Representative device structures of the simple-type organic EL device are shown below:
The emission unit may be a multi-layered structure comprising two or more layers selected from a phosphorescent light emitting layer and a fluorescent light emitting layer. A space layer may be disposed between the light emitting layers to prevent the diffusion of excitons generated in the phosphorescent light emitting layer into the fluorescent light emitting layer. Representative layered structures of the simple-type emission unit are shown below, wherein the layers in parentheses are optional:
(a) (Hole injecting layer/)Hole transporting layer/Fluorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(b) (Hole injecting layer/)Hole transporting layer/Phosphorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(c) (Hole injecting layer/)Hole transporting layer/First fluorescent emitting layer/Second fluorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(d) (Hole injecting layer/)Hole transporting layer/First phosphorescent emitting layer/Second phosphorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(e) (Hole injecting layer/)Hole transporting layer/Phosphorescent emitting layer/Space layer/Fluorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(f) (Hole injecting layer/)Hole transporting layer/First phosphorescent emitting layer/Second phosphorescent emitting layer/Space layer/Fluorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(g) (Hole injecting layer/)Hole transporting layer/First phosphorescent emitting layer/Space layer/Second phosphorescent emitting layer/Space layer/Fluorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(h) (Hole injecting layer/)Hole transporting layer/Phosphorescent emitting layer/Space layer/First fluorescent emitting layer/Second fluorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(i) (Hole injecting layer/)Hole transporting layer/Electron blocking layer/Fluorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(j) (Hole injecting layer/)Hole transporting layer/Electron blocking layer/Phosphorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(k) (Hole injecting layer/)Hole transporting layer/Exciton blocking layer/Fluorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(l) (Hole injecting layer/)Hole transporting layer/Exciton blocking layer/Phosphorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(m) (Hole injecting layer/)First hole transporting layer/Second hole transporting layer/Fluorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(n) (Hole injecting layer/)First hole transporting layer/Second hole transporting layer/Phosphorescent emitting layer/Electron transporting layer(/Electron injecting layer);
(o) (Hole injecting layer/)First hole transporting layer/Second hole transporting layer/Fluorescent emitting layer/First electron transporting layer/Second electron transporting layer(/Electron injecting layer);
(p) (Hole injecting layer/)First hole transporting layer/Second hole transporting layer/Phosphorescent emitting layer/First electron transporting layer/Second electron transporting layer(/Electron injecting layer);
(q) (Hole injecting layer/)Hole transporting layer/Fluorescent emitting layer/Hole blocking layer/Electron transporting layer(/Electron injecting layer/Electron injecting layer);
(r) (Hole injecting layer/)Hole transporting layer/Phosphorescent emitting layer/Hole blocking layer/Electron transporting layer(/Electron injecting layer);
(s) (Hole injecting layer/)Hole transporting layer/Fluorescent emitting layer/Exciton blocking layer/Electron transporting layer(/Electron injecting layer);
(t) (Hole injecting layer/)Hole transporting layer/Phosphorescent emitting layer/Exciton blocking layer/Electron transporting layer(/Electron injecting layer);
(u) (Hole injecting layer/)Hole transporting layer/Electron blocking layer/Phosphorescent emitting layer/Hole blocking layer/Electron transporting layer(/Electron injecting layer); and
(v) (Hole injecting layer/)Hole transporting layer/Electron blocking layer/Fluorescent emitting layer/Hole blocking layer/Electron transporting layer(/Electron injecting layer).
The emission colors of phosphorescent emitting layers or fluorescent emitting layers may be different. For example, the emission unit (f) may be (Hole injecting layer)/Hole transporting layer/First phosphorescent emitting layer (red emission)/Second phosphorescent emitting layer (green emission)/Space layer/Fluorescent emitting layer (blue emission)/Electron transporting layer.
An electron blocking layer may be disposed between each light emitting layer and the hole transporting layer or between each light emitting layer and the space layer, if necessary. Also, a hole blocking layer may be disposed between each light emitting layer and the electron transporting layer, if necessary. With such an electron blocking layer or a hole blocking layer, electrons and holes are confined in the light emitting layer to increase the charge recombination in the light emitting layer, thereby improving the emission efficiency.
Representative device structure of the tandem-type organic EL device is shown below:
The layered structure of the first emission unit and the second emission unit may be selected from those described above with respect to the emission unit.
Generally, the intermediate layer is also called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron withdrawing layer, a connecting layer, or an intermediate insulating layer. The intermediate layer supplies electrons to the first emission unit and holes to the second emission unit and may be formed by known materials.
In the present invention, a host is referred to as a fluorescent host when combinedly used with a fluorescent dopant (fluorescent emitting material) and as a phosphorescent host when combinedly used with a phosphorescent dopant (phosphorescent emitting material). Therefore, the fluorescent host and the phosphorescent host are not distinguished from each other merely by the difference in their molecular structures. Namely in the present invention, the term “phosphorescent host” means a material for constituting a phosphorescent emitting layer containing a phosphorescent dopant and does not mean a material that cannot be used as a material for a fluorescent emitting layer. The same applies to the fluorescent host.
The substrate is a support for the emitting device and made of, for example, glass, quartz, and plastics. The substrate may be a flexible substrate, for example, a plastic substrate made of polycarbonate, polyarylate, polyether sulfone, polypropylene, polyester, polyvinyl fluoride, or polyvinyl chloride. An inorganic deposition film is also usable.
The anode is formed on the substrate preferably from a metal, an alloy an electrically conductive compound, and a mixture thereof, each having a large work function, for example, 4.0 eV or more. Examples of the material for the anode include indium oxide-tin oxide (ITO: indium tin oxide), indium oxide-tin oxide doped with silicon or silicon oxide, indium oxide-zinc oxide, indium oxide doped with tungsten oxide and zinc oxide, and graphene. In addition, gold (Au), platinum (Pt), nickel (Ni), tungsten (W), chromium (Cr), molybdenum (Mo, iron (Fe), cobalt (Co), copper (Cu), palladium (Pd), titanium (Ti), and a nitride of the above metal (for example, titanium nitride) are also usable.
These anode materials are made into a film generally by a sputtering method. For example, a film of indium oxide-zinc oxide is formed by sputtering an indium oxide target doped with 1 to 10 wt % of zinc oxide, and a film of indium oxide doped with tungsten oxide and zinc oxide is formed by sputtering an indium oxide target doped with 0.5 to 5 wt % of tungsten oxide and 0.1 to 1 wt % of zinc oxide. In addition, a vacuum vapor deposition method, a coating method, an inkjet method, and a spin coating method are usable.
A hole injecting layer to be optionally formed in contact with the anode is formed from a material which is capable of easily injecting holes independently of the work function of the anode. Therefore, the anode can be formed by a material generally known as an electrode material, for example, a metal, an alloy an electroconductive compound, a mixture thereof, and a group 1 element and a group 2 element of the periodic table.
A material having a small work function belonging to a group 1 or a group 2 of the periodic table, for example, an alkali metal, such as lithium (Li) and cesium (Cs), an alkaline earth metal, such as magnesium (Mg), calcium (Ca), and strontium (Sr), and an alloy thereof, such as MgAg and AlLi, are also usable as an anode material. In addition, a rare earth metal, such as europium and ytterbium, and an alloy thereof are also usable. The alkali metal, the alkaline earth metal, and the alloy thereof is made into the anode by a vacuum vapor deposition or a sputtering method. When a silver paste is used, a coating method and an inkjet method are usable.
The hole injecting layer comprises a material having a high hole injecting ability (hole injecting material) and formed between an anode and a light emitting layer or between an anode and a hole transporting layer, if present.
Examples of the hole injecting material include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, tungsten oxide, and manganese oxide.
The following low molecular aromatic amine compound is also usable as the hole injecting layer material: 4,4′,4″-tris(N,N-diphenylamino)triphenylamine (TDATA), 4,4′,4″-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine (MTDATA), 4,4′-bis[N-(4-diphenylaminophenyl)-N-phenylamino]biphenyl (DPAB), 4,4′-bis(N-{4-[N′-(3-methylphenyl)-N′-phenylamino]phenyl}-N-phenylamino)biphenyl (DNTPD), 1,3,5-tris[N-(4-diphenylaminophenyl)-N-phenylamino]benzene (DPA3B), 3-[N-(9-phenylcarbazole-3-yl)-N-phenylamino]-9-phenylcarbazole (PCzPCA1), 3,6-bis[N-(9-phenylcarbazole-3-yl)-N-phenylamino]-9-phenylcarbazole (PCzPCA2), and 3-[N-(1-naphthyl)-N-(9-phenylcarbazole-3-yl)amino]-9-phenylcarbazole (PCzPCN1).
A macromolecular compound, such as an oligomer, a dendrimer, a polymer, is also usable as the hole injecting layer material. Examples thereof include poly(N-vinylcarbazole) (PVK), poly(4-vinyltriphenylamine) (PVTPA), poly[N-(4-{N′-[4-(4-diphenylamino)phenyl]phenyl-N′-phenylamino}phenyl)methacrylamide] (PTPDMA), and poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)benzidine] (Poly-TPD). A macromolecular compound doped with an acid, such as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS) and polyaniline/poly(styrenesulfonic acid) (PAni/PSS), is also usable.
In addition, an acceptor material, such as a hexaazatriphenylene (HAT) compound represented by formula (K), is preferably used:
wherein:
R21 to R26 are each independently a cyano group, —CONH2, a carboxyl group, or —COOR27 wherein R27 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 ring carbon atoms, or
adjacent two selected from R21 and R22, R23 and R24, and R25 and R26 may be bonded to each other to form a group represented by —CO—O—CO—.
Examples of R27 include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a t-butyl group, a cyclopentyl group, and a cyclohexyl group.
The hole transporting layer comprises a material having a high hole transporting ability (hole transporting material) and formed between an anode and a light emitting layer or between a hole injecting layer, if present, and a light emitting layer.
The hole transporting layer may be a single layer or a multi-layer of two or more layers. For example, the hole transporting layer may be a two-layered structure comprising a first hole transporting layer (anode side) and a second hole transporting layer (cathode side). In an embodiment of the invention, a hole transporting layer of a single-layered structure is preferably in contact with a light emitting layer and a hole transporting layer in a multi-layered structure which is closest to a cathode, for example, the second hole transporting layer in the two-layered structure mentioned above, is preferably in contact with a light emitting layer. In another embodiment of the invention, an electron blocking layer may be disposed between the light emitting layer and the hole transporting layer of the single-layered structure or between the light emitting layer and the hole transporting layer in the multi-layered structure which is closest to the light emitting layer.
Examples of the hole transporting layer material includes an aromatic amine compound, a carbazole derivative, and an anthracene derivative.
Examples of the aromatic amine compound include 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N′-bis(3-methylphenyl)-N,N′-diphenyl-[1,1′-biphenyl]-4,4′-diamine (TPD), 4-phenyl-4′-(9-phenylfluorene-9-yl)triphenylamine (BAFLP), 4,4′-bis[N-(9,9-dimethylfluorene-2-yl)-N-phenylamino]biphenyl (DFLDPBi), 4,4′,4″-tris(N,N-diphenylamino)triphenylamine (TDATA), 4,4′,4″-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine (MTDATA), and 4,4′-bis[N-(spiro-9,9′-bifluorene-2-yl)-N-phenylamino]biphenyl (BSPB). The above compounds have a hole mobility of 10−6 cm2/Vs or more.
Examples of the carbazole derivative include 4,4′-di(9-carbazolyl)biphenyl (CBP), 9-[4-(9-carbazolyl)phenyl]-10-phenylanthracene (CzPA), and 9-phenyl-3-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole (PCzPA).
Examples of the anthracene derivative include 2-t-butyl-9,10-di(2-naphthyl)anthracene (t-BuDNA), 9,10-di(2-naphthyl)anthracene (DNA), and 9,10-diphenylanthracene (DPAnth).
In addition, a macromolecular compound, such as poly(N-vinylcarbazole) (PVK) and poly(4-vinyltriphenylamine) (PVTPA) are usable.
Compounds other than those mentioned above are also usable, if their hole transporting ability is higher than their electron transporting ability.
The light emitting layer comprises a highly light-emitting material (dopant material) and may be formed from a various kind of materials. For example, a fluorescent emitting material and a phosphorescent emitting material are usable as the dopant material. The fluorescent emitting material is a compound capable of emitting light from a singlet excited state, and the phosphorescent emitting material is a compound capable of emitting light from a triplet excited state.
Examples of blue fluorescent emitting material usable in the light emitting layer include a pyrene derivative, a styrylamine derivative, a chrysene derivative, a fluoranthene derivative, a fluorene derivative, a diamine derivative, and a triarylamine derivative, such as N,N′-bis[4-(9H-carbazole-9-yl)phenyl]-N,N′-diphenylstilbene-4,4′-diamine (YGA2S), 4-(9H-carbazole-9-yl)-4′-(10-phenyl-9-anthryl)triphenylamine (YGAPA), and 4-(10-phenyl-9-anthryl)-4′-(9-phenyl-9H-carbazole-3-yl)triphenylamine (PCBAPA).
Examples of green fluorescent emitting material usable in the light emitting layer include an aromatic amine derivative, such as N-(9,10-diphenyl-2-anthryl)-N,9-diphenyl-9H-carbazole-3-amine (2PCAPA), N-[9,10-bis(1,1′-biphenyl-2-yl)-2-anthryl]-N,9-diphenyl-9H-carbazole-3-amine (2PCABPhA), N-(9,10-diphenyl-2-anthryl)-N,N′,N′-triphenyl-1,4-phenylenediamine (2DPAPA), N-[9,10-bis(1,1′-biphenyl-2-yl)-2-anthryl]-N,N′,N′-triphenyl-1,4-phenylenediamine (2DPABPhA), N-[9,10-bis(1,1′-biphenyl-2-yl)]-N-[4-(9H-carbazole-9-yl)phenyl]-N-phenylanthracene-2-amine (2YGABPhA), and N,N,9-triphenylanthracene-9-amine (DPhAPhA).
Examples of red fluorescent emitting material usable in the light emitting layer include a tetracene derivative and a diamine derivative, such as N,N,N′,N′-tetrakis(4-methylphenyl)tetracene-5,11-diamine (p-mPhTD) and 7,14-diphenyl-N,N,N′,N′-tetrakis(4-methylphenyl)acenaphtho[1,2-a]fluoranthene-3,10-diamine (p-mPhAFD).
Examples of blue phosphorescent emitting material usable in the light emitting layer include a metal complex, such as an iridium complex, an osmium complex, and a platinum complex. Examples thereof include bis[2-(4′,6′-difluorophenyl)pyridinato-N,C2′]iridium(III) tetrakis(1-pyrazolyl)borato (FIr6), bis[2-(4′,6′-difluorophenyl)pyridinato-N,C2′]iridium(III) picolinato (FIrpic), bis[2-(3′,5′-bistrifluoromethylphenyl)pyridinato-N,C2′]iridium(III) picolinato (Ir(CF3ppy)2(pic)), and bis[2-(4′,6′-difluorophenyl)pyridinato-N,C2′]iridium(III) acetylacetonato (FIracac).
Examples of green phosphorescent emitting material usable in the light emitting layer include an iridium complex, such as tris(2-phenylpyridinato-N,C2′)iridium(III) (Ir(ppy)3), bis(2-phenylpyridinato-N,C2′)iridium(III) acetylacetonato (Ir(ppy)2(acac)), bis(1,2-diphenyl-1H-benzimidazolato)iridium(III) acetylacetonato (Ir(pbi)2(acac)), and bis(benzo[h]quinolinato)iridium(III) acetylacetonato (Ir(bzq)2(acac)).
Examples of red phosphorescent emitting material usable in the light emitting layer include a metal complex, such as an iridium complex, a platinum complex, a terbium complex, and a europium complex. Examples thereof include an organometallic complex, such as bis[2-(2′-benzo[4,5-Q]thienyl)pyridinato-N,C3′]iridium(III) acetylacetonato (Ir(btp)2(acac)), bis(1-phenylisoquinolinato-N,C2′)iridium(III) acetylacetonato (Ir(piq)2(acac)), (acetylacetonato)bis[2,3-bis(4-fluorophenyl)quinoxalinato]iridium(III) (Ir(Fdpq)2(acac)), and 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin platinum(II) (PtOEP).
A rare earth metal complex, such as tris(acetylacetonato) (monophenanthroline)terbium(III) (Tb(acac)3(Phen)), tris(1,3-diphenyl-1,3-propanedionato)(monophenanthroline)europium(III) (Eu(DBM)3(Phen)), and tris[1-(2-thenoyl)-3,3,3-trifluoroacetonato](monophenanthroline)europium(III) (Eu(TTA)3(Phen)), emits light from the rare earth metal ion (electron transition between different multiple states), and therefore, usable as a phosphorescent emitting material.
The light emitting layer may be a layer wherein the above dopant material is dispersed in another material (host material). The host material preferably has a lowest unoccupied molecular orbital level (LUMO level) higher than that of the dopant material and a highest occupied molecular orbital level (HOMO level) lower than that of the dopant material.
The host material other the compound (1) may include, for example,
(1) a metal complex, such as an aluminum complex, a beryllium complex, and a zinc complex;
(2) a heterocyclic compound, such as an oxadiazole derivative, a benzimidazole derivative, and a phenanthroline derivative;
(3) a fused aromatic compound, such as a carbazole derivative, an anthracene derivative, a phenanthrene derivative, a pyrene derivative, and a chrysene derivative; and
(4) an aromatic amine compound, such as a triarylamine derivative and a fused aromatic polycyclic amine derivative.
Examples thereof include:
a metal complex, such as tris(8-quinolinolato)aluminum(III) (Alq), tris(4-methyl-8-quinolinolato)aluminum(III) (Almq3), bis(10-hydroxybenzo[h]quinolinato)beryllium(II) (BeBq2), bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum(III) (BAlq), bis(8-quinolinolato)zinc(II) (Znq), bis[2-(2-benzoxazolyl)phenolato]zinc(II) (ZnPBO), and bis[2-(2-benzothiazolyl)phenolato]zinc(II) (ZnBTZ);
a heterocyclic compound, such as 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 1,3-bis[5-(p-tert-butylphenyl)-1,3,4-oxadiazole-2-yl]benzene (OXD-7), 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ), 2,2′,2″-(1,3,5-benzenetriyl)tris(1-phenyl-1H-benzimidazole) (TPBI), bathophenanthroline (BPhen), and bathocuproin (BCP);
a fused aromatic compound, such as 9-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole (CzPA), 3,6-diphenyl-9-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole (DPCzPA), 9,10-bis(3,5-diphenylphenyl)anthracene (DPPA), 9,10-di(2-naphthyl)anthracene (DNA), 2-tert-butyl-9,10-di(2-naphthyl)anthracene (t-BuDNA), 9,9′-bianthryl (BANT), 9,9′-(stilbene-3,3′-diyl)diphenanthrene (DPNS), 9,9′-(stilbene-4,4′-diyl)diphenanthrene (DPNS2), 3,3′,3″-(benzene-1,3,5-triyl)tripyrene (TPB3), 9,10-diphenylanthracene (DPAnth), and 6,12-dimethoxy-5,11-diphenylchrysene; and
an aromatic amine compound, such as N,N-diphenyl-9-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole-3-amine (CzA1PA), 4-(10-phenyl-9-anthryl)triphenylamine (DPhPA), N,9-diphenyl-N-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole-3-amine (PCAPA), N,9-diphenyl-N-{4-[4-(10-phenyl-9-anthryl)phenyl]phenyl}-9H-carbazole-3-amine (PCAPBA), N-(9,10-diphenyl-2-anthryl)-N,9-diphenyl-9H-carbazole-3-amine (2PCAPA), 4,4′-bis[N-(1-anthryl)N-phenylamino]biphenyl (NPB or a-NPD), N,N′-bis(3-methylphenyl)-N,N′-diphenyl-[1,1′-biphenyl]-4,4′-diamine (TPD), 44′-bis[N-(9,9-dimethylfluorene-2-yl)-N-phenylamino]biphenyl (DFLDPBi), and 4,4′-bis[N-(spiro-9,9′-bifluorene-2-yl)-N-phenylamino]biphenyl (BSPB).
The host material may be used alone or in combination of two or more.
In particular, as a host material for a blue fluorescent device, the following anthracene compound is preferably used.
The electron transporting layer comprises a material having a high electron transporting ability (electron transporting material) and formed between a light emitting layer and a cathode or between a light emitting layer and an electron injecting layer, if present.
The electron transporting layer may be a single layer or a multi-layer of two or more layers. For example, the electron transporting layer may be a two-layered structure comprising a first electron transporting layer (anode side) and a second electron transporting layer (cathode side). In an embodiment of the invention, an electron transporting layer of a single-layered structure is preferably in contact with a light emitting layer and an electron transporting layer in a multi-layered structure which is closest to an anode, for example, the first electron transporting layer in the two-layered structure mentioned above, is preferably in contact with a light emitting layer. In another embodiment of the invention, a hole blocking layer mentioned below may be disposed between the light emitting layer and the electron transporting layer of the single-layered structure or between the light emitting layer and the electron transporting layer in the multi-layered structure which is closest to the light emitting layer.
The inventive compound is used as a material for the electron injecting region, preferably a material for an electron injecting layer, an electron transporting layer, a hole blocking layer, or an exciton blocking layer, more preferably a material for an electron injecting layer or an electron transporting layer, and still more preferably as a material for an electron transporting layer.
In the two-layered electron transporting layer, the inventive compound may be included in one of the first electron transporting layer and the second electron transporting layer or may be included in both. In an embodiment of the invention, the inventive compound is preferably included in only the first electron transporting layer. In another embodiment of the invention, the inventive compound is preferably included in only the second electron transporting layer. In still another embodiment of the invention, the inventive compound is preferably included in both the first and second electron transporting layers.
In an embodiment of the invention, the inventive compound to be contained in an organic EL device includes at least one heavy hydrogen atom. A mixture of the inventive compound wherein all the hydrogen atoms are light hydrogen atoms (hereinafter referred to as “light hydrogen analogue”) and the inventive compound wherein at least one hydrogen atom is a heavy hydrogen atom (deuterated analogue) are also usable. The light hydrogen analogue may include a heavy hydrogen atom in the natural abundance ratio or less.
In an embodiment of the invention, the inventive compound to be used in the electron injecting layer, the electron transporting layer (inclusive of a first electron transporting layer, a second electron transporting layer, etc.), the hole blocking layer, or the exciton blocking layer is preferably the light hydrogen analogue in view of production costs.
Therefore, the present invention includes an organic EL device wherein at least one layer selected from the electron injecting layer, the electron transporting layer, the hole blocking layer, and the exciton blocking layer comprises the inventive compound that is composed of substantially only the light hydrogen analogue. The term “composed of substantially only the light hydrogen analogue” means that the content of the light hydrogen analogue in the total amount of the inventive compound is 90 mol % or more, preferably 95 mol % or more, and still more preferably 99 mol % of more, each inclusive of 100%.
The electron transporting layer material other than the inventive compound may include
(1) a metal complex, such as an aluminum complex, a beryllium complex, and a zinc complex;
(2) a heteroaromatic compound, such as an imidazole derivative, a benzimidazole derivative, an azine derivative, a carbazole derivative, and a phenanthroline derivative; and
(3) a macromolecular compound.
Examples of the metal complex include tris(8-quinolinolato)aluminum (III) (Alq), tris(4-methyl-8-quinolinolato)aluminum (Almqs), bis(10-hydroxybenzo[h]quinolinato)beryllium (BeBq2), bis(2-methyl-8-quinolinato)(4-phenylphenolato)aluminum (III) (BAlq), bis(8-quinolinato)zinc(II) (Znq), bis[2-(2-benzoxazolyl)phenolato]zinc(II) (ZnPBO), and bis[2-(2-benzothiazolyl)phenolato]zinc(II) (ZnBTZ).
Examples of the heteroaromatic compound include 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 1,3-bis[5-(p-tert-butylphenyl)-1,3,4-oxadiazole-2-yl]benzene (OXD-7), 3-(4-tert-butylphenyl)-4-phenyl-5-(4-biphenylyl)-1,2,4-triazole (TAZ), 3-(4-tert-butylphenyl)-4-(4-ethylphenyl)-5-(4-biphenylyl)-1,2,4-triazole (p-EtTAZ), bathophenanthroline (BPhen), bathocuproine (BCP), and 4,4′-bis(5-methylbenzoxazole-2-yl)stilbene (BzOs).
Examples of the macromolecular compound include poly[(9,9-dihexylfluorene-2,7-diyl)-co-(pyridine-3,5-diyl)] (PF-Py), and poly[(9,9-dioctylfluorene-2,7-diyl)-co-(2,2′-bipyridine-6,6′-diyl)] (PF-BPy).
The above compounds have an electron mobility of 10−6 cm2/Vs or more. Materials other than those mentioned above are also usable in the electron transporting layer if their electron transporting ability is higher than their hole transporting ability.
The electron injecting layer is a layer comprising a material having a high electron injecting ability for example, an alkali metal, such as lithium (Li), cesium (Cs), an alkaline earth metal, such as magnesium (Mg), calcium (Ca), and strontium (Sr), a rare earth metal, such as europium (Eu) and ytterbium (Yb), and a compound of these metals, such as an alkali metal oxide, an alkali metal halide, an alkali metal-containing organic complex, an alkaline earth metal oxide, an alkaline earth metal halide, an alkaline earth metal-containing organic complex, a rare earth metal oxide, a rare earth metal halide, and a rare metal-containing organic complex. These compounds may be used in combination of two or more.
In addition, an electron transporting material which is doped with an alkali metal, an alkaline earth metal or a compound thereof, for example, Alq doped with magnesium (Mg), is also usable. By using such a material, electrons are efficiently injected from the cathode.
A composite material comprising an organic compound and an electron donor is also usable in the electron injecting layer. Such a composite material is excellent in the electron injecting ability and the electron transporting ability because the organic compound receives electrons from the electron donor. The organic compound is preferably a compound excellent in transporting the received electrons. Examples thereof include the materials for the electron transporting layer mentioned above, such as the metal complex and the aromatic heterocyclic compound. Any compound capable of giving its electron to the organic compound is usable as the electron donor. Preferred examples thereof are an alkali metal, an alkaline earth metal, and a rare earth metal, such as lithium, cesium, magnesium, calcium, erbium, and ytterbium; an alkali metal oxide and an alkaline earth metal oxide, such as, lithium oxide, calcium oxide, and barium oxide; a Lewis base, such as magnesium oxide; and an organic compound, such as tetrathiafulvalene (TTF).
The cathode is formed preferably from a metal, an alloy an electrically conductive compound, or a mixture thereof, each having a small work function, for example, a work function of 3.8 eV or less. Examples of the material for the cathode include an element belonging to a group 1 or group 2 of the periodic table, i.e., an alkali metal, such as lithium (Li) and cesium (Cs), an alkaline earth metal, such as magnesium (Mg), calcium (Ca), and strontium (Sr), an alloy containing these metals (for example, MgAg and AlLi), a rare earth metal, such as europium (Eu) and ytterbium (Yb), and an alloy containing a rare earth metal.
The alkali metal, the alkaline earth metal, and the alloy thereof is made into the cathode by a vacuum vapor deposition or a sputtering method. A coating method and an inkjet method are usable when a silver paste is used.
When the electron injecting layer is formed, the material for the cathode is selected irrespective of whether the work function is large or small and various electroconductive materials, such as Al, Ag, ITO, graphene, and indium oxide-tin oxide doped with silicon or silicon oxide, are usable. These electroconductive materials are made into films by a sputtering method, an inkjet method, and a spin coating method.
Since electric field is applied to the ultra-thin films of organic EL devices, the pixel defects due to leak and short circuit tends to occur. To prevent the defects, an insulating thin film layer may be interposed between the pair of electrodes.
Examples of the material for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide. These materials may be used in combination or may be used in each layer of stacked layers.
For example, in an organic EL device having a fluorescent emitting layer and a phosphorescent emitting layer, a space layer is disposed between the fluorescent emitting layer and the phosphorescent emitting layer to prevent the diffusion of excitons generated in the phosphorescent emitting layer to the fluorescent emitting layer or to control the carrier (charge) balance. The space layer may be disposed between two or more phosphorescent emitting layers.
Since the space layer is disposed between the light emitting layers, a material combining the electron transporting ability and the hole transporting ability is preferably used for forming the space layer. To prevent the diffusion of triplet energy in the adjacent phosphorescent emitting layer, the triplet energy of the material for the space layer is preferably 2.6 eV or more. The materials described with respect to the hole transporting layer are usable as the material for the space layer.
A blocking layer, such as an electron blocking layer, a hole blocking layer, and an exciton blocking layer, may be provided in the portion adjacent to the light emitting layer. The electron blocking layer is a layer which prevents the diffusion of electrons from the light emitting layer to the hole transporting layer. The hole blocking layer is a layer which prevents the diffusion of holes from the light emitting layer to the electron transporting layer. The exciton blocking layer prevents the diffusion of excitons generated in the light emitting layer to adjacent layers and has a function of confining the excitons in the light emitting layer.
Each layer of the organic EL device is formed by a known method, such as a vapor deposition method and a coating method. For example, each layer is formed by a known vapor deposition method, such as a vacuum vapor deposition method and a molecular beam evaporation method (MBE method), and a known coating method using a solution of a compound for forming a layer, such as a dipping method, a spin coating method, a casting method, a bar coating method, and a roll coating method.
The thickness of each layer is not particularly limited and preferably 5 nm to 10 μm, more preferably 10 nm to 0.2 μm, because an excessively small thickness may cause defects such as pin holes and an excessively large thickness may require a high driving voltage.
The organic EL device can be used in an electronic device, for example, as display parts, such as organic EL panel module, display devices of television sets, mobile phones, personal computer, etc., and light emitting sources of lighting equipment and vehicle lighting equipment.
The present invention will be described below in more details with reference to the examples. However, it should be noted that the scope of the invention is not limited thereto.
The comparative compound Ref-2 is the compound 6-9 disclosed in Patent Literature 1.
Each organic EL device was produced in the following manner and evaluated for EL device performance.
A 25 mm×75 mm×1.1 mm glass substrate having ITO transparent electrode (anode) (product of Geomatec Company) was ultrasonically cleaned in isopropyl alcohol for 5 min and then UV/ozone cleaned for 30 min. The thickness of ITO transparent electrode was 130 nm.
The cleaned glass substrate having a transparent electrode was mounted to a substrate holder of a vacuum vapor deposition apparatus. First, the compound HT-1 and the compound HI-1 were vapor co-deposited on the surface having the transparent electrode so as to cover the transparent electrode to form a hole injecting layer with a thickness of 10 nm. The ratio of the compound HT-1 and the compound HI-1 was 97:3 by mass.
On the hole injecting layer, the compound HT-1 was vapor-deposited to form a hole transporting layer with a thickness of 80 nm.
On the hole transporting layer, the compound EBL-1 was vapor-deposited to form an electron blocking layer with a thickness of 5 nm.
Then, on the electron blocking layer, the compound BH-1 (host material) and the compound BD-1 (dopant material) were vapor co-deposited to form a light emitting layer with a thickness of 25 nm. The ratio of the compound BH-1 and the compound BD-1 was 96:4 by mass.
Then, on the light emitting layer, the compound HBL-1 was vapor-deposited to form a hole blocking layer with a thickness of 5 nm.
On the hole blocking layer, the compound Inv-1 and Liq were vapor co-deposited to form an electron transporting layer with a thickness of 20 nm. The ratio of the compound Inv-1 and Liq was 50:50 by mass.
On the electron transporting layer, LiF was vapor-deposited to form an electron injecting electrode with a thickness of 1 nm.
Finally, metallic Al was vapor-deposited on the electron injecting electrode to form a metallic cathode with a thickness of 80 nm.
The layered structure of the organic EL device of Example 1 is shown below, wherein the numerals in parenthesis is the thickness (nm) and the ratios are based on mass.
The organic EL device thus produced was operated by a constant direct current at room temperature at a current density of 10 mA/cm2 to measure the luminance by a luminance meter (spectroradiometer CS-1000 manufactured by Minolta). The external quantum efficiency (%) was determined by the measured results.
The organic EL device thus produced was operated by a constant direct current at a current density of 50 mA/cm2, and the time taken until the luminance was reduced to 95% of the initial luminance was measured to obtain a 95% lifetime (LT95). The results are shown in Table 1.
Each organic EL device was produced in the same manner as in Example 1 except for changing the compound Inv-1 to each compound described in Table 1 and measured for the external quantum efficiency (EQE) and the 95% lifetime (LT95) in the same manner as in Example 1. The results are shown in Table 1.
A 25 mm×75 mm×1.1 mm glass substrate having ITO transparent electrode (anode) (product of Geomatec Company) was ultrasonically cleaned in isopropyl alcohol for 5 min and then UV/ozone cleaned for 30 min. The thickness of ITO transparent electrode was 130 nm.
The cleaned glass substrate having a transparent electrode was mounted to a substrate holder of a vacuum vapor deposition apparatus. First, the compound HT-2 and the compound HI-1 were vapor co-deposited on the surface having the transparent electrode so as to cover the transparent electrode to form a hole injecting layer with a thickness of 10 nm. The ratio of the compound HT-2 and the compound HI-1 was 97:3 by mass.
On the hole injecting layer, the compound HT-2 was vapor-deposited to form a hole transporting layer with a thickness of 80 nm.
On the hole transporting layer, the compound EBL-2 was vapor-deposited to form an electron blocking layer with a thickness of 5 nm.
Then, on the electron blocking layer, the compound BH-2 (host material) and the compound BD-1 (dopant material) were vapor co-deposited to form a light emitting layer with a thickness of 25 nm. The ratio of the compound BH-2 and the compound BD-1 was 96:4 by mass.
Then, on the light emitting layer, the compound HBL-1 was vapor-deposited to form a hole blocking layer with a thickness of 5 nm.
On the hole blocking layer, the compound Inv-1 and Liq were vapor co-deposited to form an electron transporting layer with a thickness of 20 nm. The ratio of the compound Inv-1 and Liq was 50:50 by mass.
On the electron transporting layer, LiF was vapor-deposited to form an electron injecting electrode with a thickness of 1 nm.
Finally, metallic Al was vapor-deposited on the electron injecting electrode to form a metallic cathode with a thickness of 80 nm.
The layered structure of the organic EL device of Example 11 is shown below, wherein the numeral in parenthesis is the thickness (nm) and the ratios are based on mass.
Each organic EL device was produced in the same manner as in Example 11 except for changing the compound Inv-1 to each compound described in Table 1.
Each organic EL device was measured for the external quantum efficiency (EQE) and the 95% lifetime (LT95) in the same manner as in Example 1. The results are shown in Table 2.
As seen from the results of Tables 1 and 2, as compared with the comparative compound Ref-1 and the comparative compound Ref-2, the inventive compounds Inv-1 to Inv-10 provide organic EL devices with high efficiency and long lifetime.
Into a solution of the intermediate A (3.9 g) and the intermediate B (4.9 g) in a mixed solvent of toluene (45 mL) and 1,2-dimethoxyethane (45 mL), argon gas was blown for 5 min. After adding Pd(Amphos)2Cl2 (0.25 g) and an aqueous solution of sodium carbonate (2 M, 12 mL), the solution was heated at 75° C. for 6 h in argon atmosphere under stirring. The solvent was evaporated off from the reaction solution, and the obtained solid was purified by silica gel column chromatography and then recrystallization from toluene to obtain the compound Inv-1 (1.7 g, 27% yield).
The identification was based on a result of mass spectrometric analysis (m/e=687).
The compound Inv-2 was obtained in the same manner as in Synthesis Example 1 except for using the intermediate C (4.7 g) in place of the intermediate B (5.0 g, 84% yield).
The identification was based on a result of mass spectrometric analysis (m/e=661).
The compound Inv-3 was obtained in the same manner as in Synthesis Example 1 except for using 4.0 g of the intermediate A and using the intermediate D (5.6 g) in place of the intermediate B (4.5 g, 65% yield).
The identification was based on a result of mass spectrometric analysis (m/e=687).
Into a solution of the intermediate A (7.0 g) and the intermediate E (4.4 g) in 1,4-dioxane (105 mL), argon gas was blown for 5 min. After adding Pd(PPh3)4 (0.9 g) and an aqueous solution of tripotassium phosphate (2 M, 20 mL), the solution was refluxed for 7 h in argon atmosphere under stirring. The solvent was evaporated off from the reaction solution, and the obtained solid was purified by silica gel column chromatography and then suspension-washed in acetone to obtain the compound Inv-4 (5.5 g, 55% yield).
The identification was based on a result of mass spectrometric analysis (m/e=561).
Into a solution of the intermediate A (6.0 g) and the intermediate F (4.1 g) in 1,2-dimethoxyethane (145 mL), argon gas was blown for 5 min. After adding Pd(Amphos)2Cl2 (0.19 g) and an aqueous solution of sodium carbonate (2 M, 20 mL), the solution was heated at 75° C. for 7 h in argon atmosphere under stirring. The solvent was evaporated off from the reaction solution, and the obtained solid was purified by silica gel column chromatography and then recrystallization from toluene to obtain the compound Inv-5 (4.0 g, 52% yield).
The identification was based on a result of mass spectrometric analysis (m/e=561).
The compound Inv-6 was obtained in the same manner as in Synthesis Example 5 except for using the intermediate G (4.0 g) in place of the intermediate F (4.1 g, 75% yield).
The identification was based on a result of mass spectrometric analysis (m/e=611).
Into a solution of the intermediate H that was synthesized by the method described in KR 2015-131998 (2.9 g) and the intermediate I (4.1 g) in 1,2-dimethoxyethane (100 mL), argon gas was blown for 5 min. After adding Pd(Amphos)2Cl2 (0.12 g) and an aqueous solution of sodium carbonate (2 M, 12 mL), the solution was heated at 75° C. for 7 h in argon atmosphere under stirring. The solvent was evaporated off from the reaction solution, and the obtained solid was purified by silica gel column chromatography and then recrystallization from toluene to obtain the compound Inv-7 (4.0 g, 80% yield).
The identification was based on a result of mass spectrometric analysis (m/e=587).
The compound Inv-8 was obtained in the same manner as in Synthesis Example 7 except for using the intermediate J (5.4 g) in place of the intermediate I (4.6 g, 79% yield).
The identification was based on a result of mass spectrometric analysis (m/e=687).
The compound Inv-9 was obtained in the same manner as in Synthesis Example 7 except for using the intermediate K (2.8 g) in place of the intermediate H and using the intermediate J (4.5 g) in place of the intermediate I (3.4 g, 55% yield).
The identification was based on a result of mass spectrometric analysis (m/e=621).
The compound Inv-10 was obtained in the same manner as in Synthesis Example 5 except for using the intermediate K (5.0 g) in place of the intermediate F (6.1 g, 72% yield).
The identification was based on a result of mass spectrometric analysis (m/e=616).
Number | Date | Country | Kind |
---|---|---|---|
2019-236909 | Dec 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/045566 | 12/8/2020 | WO |