Compound useful for the treatment of neuropathic pain

Information

  • Patent Grant
  • 7220775
  • Patent Number
    7,220,775
  • Date Filed
    Thursday, August 7, 2003
    21 years ago
  • Date Issued
    Tuesday, May 22, 2007
    17 years ago
Abstract
This invention is directed to pyrimidine and indolone derivatives which are selective antagonists for the GAL3 receptor and are useful for the treatment of neuropathic pain and other abnormalities. This invention also provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of a compound of the invention effective to treat the subject's abnormality. This invention also provides a method of treating an abnormality in a subject which comprises administering to the subject a composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a GAL3 receptor antagonist.
Description

Throughout this application, various publications are referenced in parentheses by author and year. Full citations for these references may be found at the end of the specification immediately preceding the claims. The disclosures of these publications in their entireties are hereby incorporated by reference into this application to describe more fully the art to which this invention pertains.


BACKGROUND OF THE INVENTION

Discovery of GAL3 Receptor Subtype and its Role


The investigations leading to the present invention arose from the discovery that mRNA for the GAL3 receptor is localized to areas of the rat brain associated with analgesia (see PCT International Publication No. WO 98/15570, published Apr. 16, 1998), thus supporting the expression of GAL3 in those regions. Protein for the GAL3 receptor is also shown to localize to areas of the rat brain associated with analgesia (see Table 12 and discussion herein).


This discovery led to the hypothesis that the GAL3 receptor may be modulating nociceptive information. Galanin is known to be released from the terminals of sensory neurons as well as spinal interneurons and appears to play a role in the regulation of pain threshold (Wiesenfeld-Hallin et al. 1992). In light of these reports, in vivo behavioral experiments were carried out to evaluate the analgesic properties of a selective GAL3 receptor antagonist. An animal model of neuropathic pain was employed to evaluate the use of selective GAL3 receptor antagonists to treat neuropathic pain. The Chronic Constriction Nerve Injury Model of Neuropathic Pain is a behavioral test that is used to assess the potential analgesic effects of compounds (Bennett an Xie, 1988). This model monitors the development of allodynia and hyperalgesia and is considered by experts in the field to reflect the potential of analgesic agents to treat neuropathic pain (Fisher et al., 1998; Fisher et al., 2002). This model is widely used as it is reliable across laboratories, and is sensitive to the effects of some of the major classes of analgesic drugs.


In an embodiment of the present invention the synthesis of novel pyrimidines which bind selectively to the cloned human GAL3 receptor, compared to other cloned human G-protein coupled receptors, as measured in in vitro assays, is disclosed. In a further embodiment of the present invention the synthesis of indolones which bind selectively to the cloned human GAL3 receptor, compared to other cloned human G-protein coupled receptors, as measured in in vitro assays, is disclosed. The in vitro receptor assays described hereinafter were performed using various cultured cell lines, each transfected with and expressing only a single galanin-type receptor.


From the binding information described hereinafter, it has unexpectedly been discovered that compounds which are specific for the human GAL3 receptor with a binding affinity greater than ten-fold higher than the binding affinity with which the compounds bind to a human GAL1 receptor are effective in animal models of pain which are predictive of efficacy in humans. Thus, we demonstrate that the GAL3 receptor antagonists, which may be classified as neutral antagonists, inverse agonists or allosteric modulators, provide a novel method to treat neuropathic pain.


SUMMARY OF THE INVENTION

The present invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the




embedded image



compound has the structure:

  • wherein W is H, —F, —Cl, —Br, —I, CN, methyl, ethyl, propyl, methoxy or ethoxy;




embedded image


  • wherein X is; NR11R12;

  • wherein R11 is H, straight chained or branched C1-C7 alkyl, (CH2)q—O—(CH2)m—CH3, aryl, or aryl (C1-C6)alkyl;

  • wherein R12 is straight chained or branched C1-C7 alkyl, (CH2)q—O—(CH2)m—CH3, or —(CH2)m-Z;

  • wherein R13 is a bicyclic alkyl ring system, adamantyl, noradamantyl, C3-C10 cycloalkyl, heteroaryl, aryl, aryl(C1-C6)alkyl, Q1 or Q2;

  • wherein aryl may be substituted with one or more C1-C10 straight chained or branched alkyl, aryl, heteroaryl, or N(R19)-Z;

  • wherein Q1 is





embedded image


  • wherein Q2 is





embedded image


  • wherein each J is independently O, S, C(R22)2 or NR4;

  • wherein R4 is H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl or aryl;





embedded image


  • wherein Y is NR14R15;





embedded image


  • wherein R14 is H, straight chained or branched C1-C6 alkyl, (CH2)q—O—(CH2)m—CH3, C3-C6 cycloalkyl, or (C(R19)2)m-Z;

  • wherein R15 is straight chained or branched C3-C6 alkyl, (CH2)q—O—(CH2)m—CH3, C3-C6 cycloalkyl, (C(R19)2)mN(R16)2 or (C(R19)2)m-Z;

  • wherein R16 is straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7, cycloalkenyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

  • wherein each R17 is independently H; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, —COOR21, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)—O—(CH)m—CH3;

  • wherein R18 is straight chained or branched C1-C6 alkyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

  • wherein each R19 is independently H, or straight chained or branched C1-C6 alkyl;

  • wherein each R20 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, or —COR21; aryl or heteroaryl; or two R20 groups present on adjacent carbon atoms can join together to form a methylenedioxy group;

  • wherein each R21 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl, or aryl(C1-C6) alkyl;

  • wherein each R22 is independently H, F, Cl or C1-C4 straight chained or branched alkyl;

  • wherein each m is an integer from 0 to 4 inclusive;

  • wherein each n is an integer from 1 to 4 inclusive;

  • wherein p is an integer from 0 to 2 inclusive;

  • wherein q is an integer from 2 to 4 inclusive;

  • wherein t is 1 or 2;

  • wherein U is O, —NR16, S, C(R17)2, or —NSO2R16;

  • wherein Z is C3-C10 cycloalkyl, C4-C7 cyclic ether, C4-C7 cyclic thioether, aryl, or heteroaryl; or


    a pharmaceutically acceptable salt thereof.



The present invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the compound has the structure:




embedded image


  • wherein W is H, —F, —Cl, —Br, —I, CN, methyl, ethyl, propyl, methoxy or ethoxy;

  • wherein X is NR11R12;





embedded image


  • wherein R11 is H, straight chained or branched C1-C7 alkyl, (CH2)q—O(CH2)m—CH3, aryl or aryl(C1-C6)alkyl;

  • wherein R12 is straight chained or branched C1-C7 alkyl, (CH2)q—O—(CH2)m—CH3, or —(CH2)m-Z;

  • wherein R13 is a bicyclic alkyl ring system, aryl or aryl (C1-C6) alkyl;

  • wherein Y is NR14R15;





embedded image


  • wherein R14 is H, straight chained or branched C1-C6 alkyl, (CH2)q—O—(CH2)m—CH3, C3-C6 cycloalkyl, or (C(R19)2)m-Z;

  • wherein R15 is straight chained or branched C3-C6 alkyl, (CH2)q—O—(CH2)m—CH3, C3-C6 cycloalkyl, or (C(R19)2)m-Z;

  • wherein U is O, —NR16, S, C(R17)2, or —NSO2R16;

  • wherein Z is C3-C10 cycloalkyl, aryl, or heteroaryl;

  • wherein R16 is straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)q—O—(CH2)mCH3;

  • wherein each R17 is independently H; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, —COOR21, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)n—O—(CH2)m—CH3;

  • wherein R18 is straight chained or branched C1-C6 alkyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

  • wherein each R19 is independently H, or straight chained or branched C1-C6 alkyl;

  • wherein each R20 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR21, —OCOR21, —COR21, —NCOR21, —N(R2)2, —CON(R21)2, or —COOR21; aryl or heteroaryl; or two R20 groups present on adjacent carbon atoms can join together to form a methylenedioxy group;

  • wherein each R21 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6) alkyl;

  • wherein each m is an integer from 0 to 4 inclusive;

  • wherein each n is an integer from 1 to 4 inclusive;

  • wherein p is an integer from 0 to 2 inclusive;

  • wherein q is an integer from 2 to 4 inclusive;

  • wherein t is 1 or 2; or


    a pharmaceutically acceptable salt thereof.



The present invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the compound has the structure:




embedded image


  • wherein W is H, —F, —Cl, —Br, —I, CN, methyl, ethyl, propyl, methoxy or ethoxy;

  • wherein X is N(CH3)2 or





embedded image


  • wherein R13 is an aryl, adamantyl, noradamantyl, C3-C10 cycloalkyl, heteroaryl, Q1 or Q2;

  • wherein aryl may be substituted with one or more C1-C10 straight chained or branched alkyl, aryl, heteroaryl, or N(R19)-Z;

  • wherein Q1 is





embedded image


  • wherein Q2 is





embedded image


  • wherein each J is independently O, S, C(R22)2 or NR4;

  • wherein R4 is —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl or aryl;

  • wherein Y is NR14R15;





embedded image


  • wherein R14 is H, straight chained or branched C1-C6 alkyl, (CH2)q—O—(CH2)m—CH3, C3-C6 cycloalkyl, or (C(R19)2)m-Z;

  • wherein R15 is straight chained or branched C3-C6 alkyl, (CH2)q—O—(CH2)m—CH3, C3-C6 cycloalkyl, or (C(R19)2)m-Z;

  • wherein U is O, —NR16, S, C(R17)2, or —NSO2R16;

  • wherein Z is C3-C10 cycloalkyl, aryl, or heteroaryl;

  • wherein R16 is straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

  • wherein each R17 is independently H; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, —COOR21, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)n—O—(CH2)m—CH3;

  • wherein R18 is straight chained or branched C1-C6 alkyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

  • wherein each R19 is independently H, or straight chained or branched C1-C6 alkyl;

  • wherein each R20 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, or —COOR21; aryl or heteroaryl; or two R20 groups present on adjacent carbon atoms can join together to form a methylenedioxy group;

  • wherein each R21 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6) alkyl;

  • wherein each R22 is independently H, F, Cl or C1-C4 straight chained or branched alkyl;

  • wherein each m is an integer from 0 to 4 inclusive;

  • wherein each n is an integer from 1 to 4 inclusive;

  • wherein p is an integer from 0 to 2 inclusive;

  • wherein q is an integer from 2 to 4 inclusive;

  • wherein t is 1 or 2; or


    a pharmaceutically acceptable salt thereof.



The present invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the compound has the structure:




embedded image


  • wherein W is H, —F, —CN, —Br, —I, CO, methyl, ethyl, propyl, methoxy or ethoxy;

  • wherein X is N(CH3)2 or





embedded image


  • wherein R13 is a bicyclic alkyl ring system, aryl or aryl (C1-C6) alkyl;

  • wherein Y is NR14R15;

  • wherein R14 is H, straight chained or branched C1-C6 alkyl, (CH2)q—O—(CH2)m—CH3, C3-C6 cycloalkyl, or (C(R19)2)m-Z;

  • wherein R15 is (C(R19)2)m—N(R16)2;

  • wherein Z is C3-C10 cycloalkyl, aryl, or heteroaryl;

  • wherein R16 is straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

  • wherein each R17 is independently H; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, —COOR21, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)n—O—(CH2)m—CH3;

  • wherein each R19 is independently H, or straight chained or branched C1-C6 alkyl;

  • wherein each R21 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6)alkyl;

  • wherein each m is an integer from 0 to 4 inclusive;

  • wherein each n is an integer from 1 to 4 inclusive;



The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the compound has the structure:




embedded image




    • wherein each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR4, —SR4, —OCOR4, —COR4, —NCOR4, —N(R4)2, —CON(R4)2, or —COOR4; aryl or heteroaryl; or any two of Y1, Y2, Y3 and Y4 present on adjacent carbon atoms can constitute a methylenedioxy group;

    • wherein each R4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6) alkyl;

    • wherein A is A′, Q3, Q4, Q5, straight chained or branched C1-C7 alkyl, aryl, heteroaryl, aryl(C1-C6) alkyl, heteroaryl (C1-C6) alkyl, aryl substituted with an aryl or heteroaryl, heteroaryl substituted with an aryl or heteroaryl; or (CHR17)—(CHR17)n-Z;

    • wherein A′ is







embedded image




    • wherein Q3 is







embedded image




    • wherein Q4 is







embedded image




    • wherein Q5 is







embedded image




    • wherein R1 and R2 are each independently H, straight chained or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, or —CN;

    • wherein R3 is H, straight chained or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, —CN, —OR6 aryl or heteroaryl;

    • wherein R5 is straight chained or branched C1-C7 alkyl, —N(R4)2, —OR6 or aryl;

    • wherein R6 is straight chained or branched C1-C7 alkyl or aryl;

    • wherein each R17 is independently H; straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)n—O—(CH2)m—CH3;

    • wherein each R20 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, or —COOR21; aryl or heteroaryl; or two R20 groups present on adjacent carbon atoms can join together to form a methylenedioxy group;

    • wherein each R21 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6)alkyl;

    • wherein each m is an integer from 0 to 4 inclusive;

    • wherein each n is an integer from 1 to 4 inclusive;

    • wherein each p is an integer from 0 to 2 inclusive;

    • wherein U is O, —NR16, S, C(R17)2, or —NSO2R16;

    • wherein Z is C3-C10 cycloalkyl, C4-C7 cyclic ether, C4-C7 cyclic thioether, aryl, or heteroaryl;

    • wherein R16 is straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

    • wherein q is an integer from 2 to 4 inclusive;

    • wherein B is aryl, heteroaryl, aryl substituted with an aryl or heteroaryl, heteroaryl substituted with an aryl or heteroaryl, tricyclic heteroaryl or Q6; provided however, if B is aryl or heteroaryl the carbon atom or carbon atoms ortho to the nitrogen atom of the imine bond may only be substituted with one or more of the following —F, —Cl, —Br, —I, —CN, methyl, ethyl or methoxy;

    • wherein a tricyclic heteroaryl is a fused three member aromatic system in which one or more of the rings is heteroaryl; carbazole; or acridine;

    • wherein Q6 is







embedded image




    • wherein each R22 is independently H, F, Cl, or straight chained or branched C1-C4 alkyl;

    • or a pharmaceutically acceptable salt thereof.





The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount or compound effective to treat the subject's abnormality wherein the compound has the structure:




embedded image




    • wherein each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR4, —SR4, —OCOR4, —COR4, —NCOR4, —N(R4)2, —CON(R4)2, or —COOR4; aryl or heteroaryl; or any two of Y1, Y2, Y3 and Y4 present on adjacent carbon atoms can constitute a methylenedioxy group;

    • wherein each R4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6)alkyl;

    • wherein A is A′, straight chained or branched C1-C7 alkyl, aryl, heteroaryl, aryl(C1-C6)alkyl or heteroaryl (C1-C6) alkyl;

    • wherein A′ is







embedded image




    • wherein R1 and R2 are each independently H, straight chaired or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, or —CN;

    • wherein R3 is H, straight chained or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, —CN, —OR6 aryl or heteroaryl;

    • wherein R5 is straight chained or branched C1-C7 alkyl, —N(R4)2, —OR6 or aryl;

    • wherein R6 is straight chained or branched C1-C7 alkyl or aryl;

    • wherein B is aryl, or heteroaryl; provided however, if B is aryl or heteroaryl the carbon atom or carbon atoms ortho to the nitrogen atom of the imine bond may only be substituted with one or more of the following —F, —Cl, —Br, —I, —CN, methyl, ethyl or methoxy;

    • wherein n is an integer from 1 to 4 inclusive;

    • or a pharmaceutically acceptable salt thereof.





The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the




embedded image



compound has the structure:

    • wherein each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR4, —SR4, —OCOR4, —COR4, —NCOR4, —N(R4)2, —CON(R4)2, or —COOR4; aryl or heteroaryl; or any two of Y1, Y2, Y3 and Y4 present on adjacent carbon atoms can constitute a methylenedioxy group;
    • wherein each R4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6)alkyl;
    • wherein A is A′, straight chained or branched C1-C7 alkyl, aryl, heteroaryl, aryl(C1-C6)alkyl or heteroaryl (C1-C6) alkyl;
    • wherein A′ is




embedded image




    • wherein B is aryl substituted with an aryl or heteroaryl, heteroaryl substituted with an aryl or heteroaryl, tricyclic heteroaryl or Q6;

    • wherein a tricyclic heteroaryl is a fused three ring aromatic system in which one or more of the rings is heteroaryl; carbazole; or acridine;

    • wherein Q6 is







embedded image




    • wherein n is an integer from 1 to 4 inclusive;

    • wherein each R22 is independently H, F, Cl, or straight chained or branched C1-C4 alkyl;

    • or a pharmaceutically acceptable salt thereof.





The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the




embedded image



compound has the structure:

    • wherein each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR4, —SR4, —OCOR4, —COR4, —NCOR4, —N(R4)2, —CON(R4)2, or —COOR4; aryl or heteroaryl; or any two of Y1, Y2, Y3 and Y4 present on adjacent carbon atoms can constitute a methylenedioxy group;
    • wherein each R4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6)alkyl;
    • wherein A is Q3, Q4, Q5, aryl substituted with an aryl or heteroaryl, heteroaryl substituted with an aryl or heteroaryl, or (CHR17)—(CHR17)n-Z;
    • wherein Q3 is




embedded image




    • wherein Q4 is







embedded image




    • wherein Q5 is







embedded image




    • wherein each R17 is independently H; straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)n—O—(CH2)m—CH3;

    • wherein each R20 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR21, —COOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, or —COOR21; aryl or heteroaryl; or two R20 groups present on adjacent carbon atoms can join together to form a methylenedioxy group;

    • wherein each R21 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl or aryl;

    • wherein each R22 is independently H, F, Cl, or straight chained or branched C1-C4 alkyl;

    • wherein q is an integer from 2 to 4 inclusive;

    • wherein each m is an integer from 0 to 4 inclusive;

    • wherein each n is an integer from 1 to 4 inclusive;

    • wherein each p is an integer from 0 to 2 inclusive;

    • wherein U is O, —NR16, S, C(R17)2, or —NSO2R16;

    • wherein Z is C3-C10 cycloalkyl, C4-C7 cyclic ether, C4-C7 cyclic thioether, aryl, or heteroaryl;

    • wherein R16 is straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained of branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

    • wherein B is aryl, or heteroaryl; provided however, if B is aryl or heteroaryl the carbon atom or carbon atoms ortho to the nitrogen atom of the imine bond may only be substituted with one or more of the following —F, —Cl, —Br, —I, —CN, methyl, ethyl or methoxy;


      or a pharmaceutically acceptable salt thereof.



  • wherein q is an integer from 2 to 4 inclusive; or


    a pharmaceutically acceptable salt thereof.



The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the compound has the structure:




embedded image


  • wherein each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR4, —OCOR4, —COR4, —NCOR4, —N(R4)2, —CON(R4)2, or —COOR4; aryl or heteroaryl; or any two of Y1, Y2, Y3 and Y4 present on adjacent carbon atoms can constitute a methylenedioxy group;

  • wherein each R4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6)alkyl;

  • wherein A is A′, straight chained or branched C1-C7 alkyl, aryl, heteroaryl, aryl(C1-C6)alkyl or heteroaryl (C1-C6) alkyl;

  • wherein A′ is





embedded image


  • wherein R1 and R2 are each independently H, straight chained or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, or —CN;

  • wherein R3 is H, straight chained or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, —CN, —OR6, aryl or heteroaryl;

  • wherein R5 is straight chained or branched C1-C7 alkyl, —N(R4)2, —OR4 or aryl;

  • wherein R6 is straight chained or branched C1-C7 alkyl or aryl;

  • wherein B is C3-C7 cycloalkyl, C5-C7 cycloalkenyl, adamantyl, aryl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolizinyl, indol-4-yl, indol-5-yl, indol-6-yl, indol-7-yl, isoindolyl, benzo[b]furan-4-yl, benzo[b]furan-5-yl, benzo[b]furan-6-yl, benzo[b]furan-7-yl, benzo[b]thiophen-4-yl, benzo[b]thiophen-5-yl, benzo[b]thiophen-6-yl, benzo[b]thiophen-7-yl, indazolyl, benzimidazolyl, benzo[b]thiazolyl, purinyl, imidazo[2,1-b]thiazolyl, quinolinyl, isoquinolinyl, quinazolinyl, 2,1,3-benzothiazolyl, furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, benzoxazolyl, benzisoxazolyl, cinnolinyl, quinoxalinyl, 1,8-naphthridinyl, pteridinyl, or phthalimidyl; provided however, if B is aryl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolizinyl, indol-4-yl, indol-5-yl, indol-6-yl, indol-7-yl, isoindolyl, benzo[b]furan-4-yl, benzo[b]furan-5-yl, benzo[b]furan-6-yl, benzo[b]furan-7-yl, benzo[b]thiophen-4-yl, benzo[b]thiophen-5-yl, benzo[b]thiophen-6-yl, benzo[b]thiophen-7-yl, indazolyl, benzimidazolyl, benzo[b]thiazolyl, purinyl, imidazo[2,1-b]thiazolyl, quinolinyl, isoquinolinyl, quinazolinyl, 2,1,3-benzothiazolyl, furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, benzoxazolyl, benzisoxazolyl, cinnolinyl, quinoxalinyl, 1,8-napthyridinyl, pteridinyl, or phthalimidyl the carbon atom or carbon atoms ortho to the nitrogen atom of the imine bond may only be substituted with one or more of the following —F, —Cl, —Br, —I, —CN, methyl,

  • ethyl or methoxy;

  • wherein n is an integer from 1 to 4 inclusive.






BRIEF DESCRIPTION OF THE FIGURES


FIG. 1: Western Blot Results


In order to establish the specificity of the anti-GAL3 antiserum, membranes prepared from COS-7 cells transiently transfected with the rat recombinant GAL3 (Borowsky et al., 1999) (Lane 2) or mock-transfected (vector only) (Lane 3) were applied to an SDS-PAGE gel and blotted using the GAL3 receptor polyclonal antibody. Lane 1 corresponds to molecular weight marker. The anti-GAL3 antiserum labeled proteins in membranes only from rat GAL3-transfected cells (Lane 2); a predominant band was evident with an apparent molecular weight of approximately 56 kDa, (somewhat higher than the amino acid-derived value of 40.4 kDa). The apparently high molecular weight observed for rat GAL3 very likely reflects post-translational processing such as glycosylation; note that rat GAL3 contains multiple N-terminal glycosylation sites (Smith et al., 1998). Relative to the predominant band, additional species of higher molecular weight as well as lower molecular weight were labeled by the GAL3 antiserum. These are interpreted as protein aggregates of C-terminal fragments, as they are absent in mock-transfected cells.



FIG. 2: Effects of Example 92 on the Withdrawal Thresholds to Von Frey Monofilament Challenges of the (i) Contralateral and (ii) Nerve-injured Paw of Neuropathic Rats. Data plotted represents the group mean withdrawal threshold (grams) to Von Frey filament challenges on the days prior to and following a chronic constriction nerve injury. The animals were dosed with test substance (Example 92), reference sustance (morphine) or vehicle (100% DMSO) on day 12 PO. *P≦0.05, **P≦0.01, ***P≦0.001 compared to vehicle control group (ANOVA and Dunnett's tests or Unpaired t-test). *P≦0.05 compared to the vehicle group (Kruskal-Wallis and Dunn's test or Mann-Whitney U-test).



FIG. 3: Effects of Example 92 on the Withdrawal Thresholds to Von Frey Monofilament Challenges of the (i) Contralateral and (ii) Nerve-injured Paw of Neuropathic Rats. Data are expressed as mean±SEM; n=10 rats per group. *P≦0.05, **P≦0.01, ***P≦0.001 compared to vehicle control group (ANOVA and Dunnett's tests or Unpaired t-test).



FIG. 4: Effects of Example 92 on the Withdrawal Latency to a Thermal Plantar Stimulus of the (i) Contralateral and (ii) Nerve-injured Paw of Neuropathic Rats. Data plotted represents the group mean withdrawal latency (seconds) to a thermal plantar stimulus on the days prior to and following a chronic constriction nerve injury. The animals were dosed with test substance (Example 92), reference sustance (morphine) or vehicle (100% DMSO) on day 12 PO. *P≦0.05, ***P≦0.001 compared to vehicle control group (Unpaired t-test). **P≦0.01 compared to the vehicle group (Mann-Whitney U-test).



FIG. 5: Effects of Example 92 on the Withdrawal Latency to a Thermal Plantar Stimulus of the (i) Contralateral and (ii) Nerve-injured Paw of Neuropathic Rats. Data are expressed as mean±SEM; n=10 rats per group. *P≦0.05, ***P≦0.001 compared to the vehicle control group (Unpaired t-test). **P≦0.01 compared to the vehicle control group (Mann-Whitney U-test).





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the




embedded image



compound has the structure:

  • wherein W is H, —F, —Cl, —Br, —I, CN, methyl, ethyl, propyl, methoxy or ethoxy;




embedded image


  • wherein X is; NR11R12;

  • wherein R11 is H, straight chained or branched C1-C7 alkyl, (CH2)q—O—(CH)m—CH3, aryl, or aryl (C1-C6) alkyl;

  • wherein R12 is straight chained or branched C1-C7 alkyl, (CH2)q—O—(CH2)m—CH3, or —(CH2)m-Z;

  • wherein R13 is a bicyclic alkyl ring system, adamantyl, noradamantyl, C3-C10 cycloalkyl, heteroaryl, aryl, aryl(C1-C6)alkyl, Q1 or Q2;

  • wherein aryl may be substituted with one or more C1-C10 straight chained or branched alkyl, aryl, heteroaryl, or N(R19)-Z;

  • wherein Q1 is





embedded image


  • wherein Q2 is





embedded image


  • wherein each J is independently O, S, C(R22)2 or NR4;

  • wherein R4 is H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl or aryl;





embedded image


  • wherein Y is NR14R15;





embedded image


  • wherein R14 is H, straight chained or branched C1-C6 alkyl, (CH2)q—O—(CH2)m—CH3, C3-C6 cycloalkyl, or (C(R19)2)m-Z;

  • wherein R15 is straight chained or branched C3-C6 alkyl, (CH2)q—O—(CH2)mCH3, C3-C6 cycloalkyl, (C(R19)2)mN(R16)2 or (C(R19)2)m-Z;

  • wherein R16 is straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

  • wherein each R17 is independently H; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, —COOR21, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)n—O—(CH2)m—CH3;

  • wherein R18 is straight chained or branched C1-C6 alkyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

  • wherein each R19 is independently H, or straight chained or branched C1-C6 alkyl;

  • wherein each R20 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, or —COOR21; aryl or heteroaryl; or two R20 groups present on adjacent carbon atoms can join together to form a methylenedioxy group;

  • wherein each R21 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl, or aryl(C1-C6) alkyl;

  • wherein each R22 is independently H, F, Cl or C1-C4 straight chained or branched alkyl;

  • wherein each m is an integer from 0 to 4 inclusive;

  • wherein each n is an integer from 1 to 4 inclusive;

  • wherein p is an integer from 0 to 2 inclusive;

  • wherein q is an integer from 2 to 4 inclusive;

  • wherein t is 1 or 2;

  • wherein U is O, —NR16, S, C(R17)2, or —NSO2R16;

  • wherein Z is C3-C10 cycloalkyl, C4-C7 cyclic ether, C4-C7 cyclic thioether, aryl, or heteroaryl; or


    a pharmaceutically acceptable salt thereof.



The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the compound has the structure:




embedded image


  • wherein W is H, —F, —Cl, —Br, —I, CN, methyl, ethyl, propyl, methoxy or ethoxy;

  • wherein X is NR11R12;





embedded image


  • wherein R11 is H, straight chained or branched C1-C7 alkyl, (CH2)q—O—(CH2)m—CH3, aryl or aryl(C1-C6)alkyl;

  • wherein R12 is straight chained or branched C1-C7 alkyl, (CH2)q—O—(CH2)m—CH3, or —(CH2)m-Z;

  • wherein R13 is a bicyclic alkyl ring system, aryl or aryl (C1-C6) alkyl;

  • wherein Y is NR14R15;





embedded image


  • wherein R14 is H, straight chained or branched C1-C6 alkyl, (CH2)q—O—(CH2)m—CH3, C3-C6 cycloalkyl, or (C(R19)2)m-Z;

  • wherein R15 is straight chained or branched C3-C6 alkyl, (CH2)q—O—(CH2)m—CH3, C3-C6 cycloalkyl, or (C(R19)2)m-Z;

  • wherein U is O, —NR16, S, C(R17)2, or —NSO2R16;

  • wherein Z is C3-C10 cycloalkyl, aryl, or heteroaryl;

  • wherein R16 is straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7, polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

  • wherein each R17 is independently H; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, —COOR21, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)n—O—(CH2)m—CH3;

  • wherein R18 is straight chained or branched C1-C6 alkyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

  • wherein each R19 is independently H, or straight chained or branched C1-C6 alkyl;

  • wherein each R20 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl or C2-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —O21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, or —COOR21; aryl or heteroaryl; or two R20 groups present on adjacent carbon atoms can join together to form a methylenedioxy group;

  • wherein each R21 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6) alkyl;

  • wherein each m is an integer from 0 to 4 inclusive;

  • wherein each n is an integer from 1 to 4 inclusive;

  • wherein p is an integer from 0 to 2 inclusive;

  • wherein q is an integer from 2 to 4 inclusive;

  • wherein t is 1 or 2; or


    a pharmaceutically acceptable salt thereof.



The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the compound has the structure:




embedded image


  • wherein W is H, —F, —Cl, —Br, —I, CN, methyl, ethyl, propyl, methoxy or ethoxy;

  • wherein X is N(CH3)2 or





embedded image


  • wherein R13 is an aryl, adamantyl, noradamantyl, C3-C10 cycloalkyl, heteroaryl, Q1 or Q2;

  • wherein aryl may be substituted with one or more C1-C10 straight chained or branched alkyl, aryl, heteroaryl, or N(R19)-Z;

  • wherein Q1 is





embedded image


  • wherein Q2 is





embedded image


  • wherein each J is independently O, S, C(R22)2 or NR4;

  • wherein R4 is —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl or aryl;

  • wherein Y is NR14R15;





embedded image


  • wherein R14 is H, straight chained or branched C1-C6 alkyl, (CH2)q—O—(CH2)m—CH3, C3-C6 cycloalkyl, or (C(R19)2)m-Z;

  • wherein R15 is straight chained or branched C3-C6 alkyl, (CH2)q—O—(CH2)m—CH3, C3-C6 cycloalkyl, or (C(R19)2)m-Z;

  • wherein U is O, —NR16, S, C(R17)2, or —NSO2R16;

  • wherein Z is C3-C10 cycloalkyl, aryl, or heteroaryl;

  • wherein R16 is straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

  • wherein each R17 is independently H; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, —COOR21, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)n—O—(CH2)m—CH3;

  • wherein R18 is straight chained or branched C1-C6 alkyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

  • wherein each R19 is independently H, or straight chained or branched C1-C6 alkyl;

  • wherein each R20 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, or —COOR21; aryl or heteroaryl; or two R20 groups present on adjacent carbon atoms can join together to form a methylenedioxy group;

  • wherein each R21 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6) alkyl;

  • wherein each R22 is independently H, F, Cl or C1-C4 straight chained or branched alkyl;

  • wherein each m is an integer from 0 to 4 inclusive;

  • wherein each n is an integer from 1 to 4 inclusive;

  • wherein p is an integer from 0 to 2 inclusive;

  • wherein q is an integer from 2 to 4 inclusive;

  • wherein t is 1 or 2; or


    a pharmaceutically acceptable salt thereof.



The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the compound has the structure:




embedded image


  • wherein W is H, —F, —Cl, —Br, —I, CN, methyl, ethyl, propyl, methoxy or ethoxy;

  • wherein X is N(CH3)2 or





embedded image


  • wherein R13 is a bicyclic alkyl ring system, aryl or aryl (C1-C6) alkyl;

  • wherein Y is NR14R15;

  • wherein R14 is H, straight chained or branched C1-C6 alkyl, (CH2)q—O—(CH2)m—CH3, C3-C6 cycloalkyl, or (C(R19)2)m-Z;

  • wherein R15 is (C(R19)2)m—N(R16)2;

  • wherein Z is C3-C10 cycloalkyl, aryl, or heteroaryl;

  • wherein R16 is straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

  • wherein each R17 is independently H, —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, —COOR21, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)n—O—(CH2)m—CH3;

  • wherein each R19 is independently H, or straight chained or branched C1-C6 alkyl;

  • wherein each R21 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6) alkyl;

  • wherein each m is an integer from 0 to 4 inclusive;

  • wherein each n is an integer from 1 to 4 inclusive;

  • wherein q is an integer from 2 to 4 inclusive; or


    a pharmaceutically acceptable salt thereof.



As used in the present invention, the term “bicyclic alkyl ring systems” includes, but is not limited to, bicyclo[2.2.1]heptane, bicyclo[3.1.1]heptane and bicyclo[2.2.2]octane. In addition, the bicyclic alkyl ring systems may be substituted with one or more of the following: —F, —NO2, —CN, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C3-C7 cycloalkyl, C5-C7 cycloalkenyl, —N(R21)2, —OR21, —COR21, —CO2R21, —CON(R21)2 or (CH2)n—O—(CH2)m—CH3.


As used in the present invention, the term “cycloalkyl” includes, C3-C7 cycloalkyl moieties which may be substituted with one or more of the following: —F, —NO2, —CN, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R4)2, —OR4, —COR4, —NCOR4, —CO2R4, —CON(R4)2 or (CH2)n—O—(CH2)m—CH3.


As used in the present invention, the term “cyclohexyl” includes, cyclohexyl groups which may be substituted with one or more of the following: —F, —NO2, —CN, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R4)2, —OR4, —COR4, —NCOR4, —CO2R4, —CON(R4)2 or (CH2)n—O—(CH2)m—CH3.


As used in the present invention, the term “cycloalkenyl” includes, C5-C7 cycloalkenyl moieties which may be substituted with one or more of the following: —F, —Cl, —Br, —I, —NO2, —CN, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R4)2, —OR4, —COR4, —NCOR4, —CO2R4, —CON(R4)2 or (CH2)n—O—(CH2)m—CH3.


In the present invention, the term “heteroaryl” is used to include five and six membered unsaturated rings that may contain one or more oxygen, sulfur, or nitrogen atoms. Examples of heteroaryl groups include, but are not limited to, furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, and triazinyl.


In addition the term “heteroaryl” is used to include fused bicyclic ring systems that may contain one or more heteroatoms such as oxygen, sulfur and nitrogen. Examples of such heteroaryl groups include, but are not limited to, indolizinyl, indolyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzimidazolyl, purinyl, benzoxazolyl, benzisoxazolyl, benzo[b]thiazolyl, imidazo[2,1-b]thiazolyl, cinnolinyl, quinazolinyl, quinoxalinyl, 1,8-naphthyridinyl, pteridinyl, quinolinyl, isoquinolinyl, phthalimidyl and 2,1,3-benzothiazolyl.


The term “heteroaryl” also includes those chemical moieties recited above which may be substituted with one or more of the following: —F, —Cl, —Br, —I, —NO2, —CN, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R4)2, —OR4, —COR4, —NCOR4, —CO2R4, —CON(R4)2 or (CH2)n—O—(CH2)m—CH3.


The term “heteroaryl” further includes the N-oxides of those chemical moieties recited above which include at least one nitrogen atom.


In the present invention the term “aryl” is phenyl or naphthyl. The term “aryl” also includes phenyl and naphthyl which may be substituted with one or more of the following: —F, —Cl, —Br, —I, —NO2, —CN, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R4)2, —OR4, —SR4, —OCOR4, —COR4, —NCOR4, —CO2R4, —CON(R4)2 or (CH2)n—O—(CH2)m—CH3.


In one embodiment of any of the methods described herein, the compound is enantiomerically and diasteriomerically pure. In one embodiment, the compound is enantiomerically or diasteriomerically pure.


In one embodiment of any of the methods described herein, the compound can be administered orally.


In one embodiment, X is:




embedded image


In one embodiment, X is NR11R12 and R11 is H or straight chained or branched C1-C7 alkyl.


In one embodiment, the compound has the structure:




embedded image


In one embodiment, R13 is a bicyclic alkyl ring system, cyclohexyl or aryl.


In one embodiment, R14 is H, straight chained or branched C1-C6 alkyl or (CH2)q—O—(CH2)m—CH3.


In one embodiment, the compound is selected from the




embedded image



group consisting of:




embedded image


embedded image


In one embodiment, Y is




embedded image


In one embodiment, U is NR16.


In one embodiment, R16 is (CH2)m-Z.


In one embodiment, Z is aryl or heteroaryl.


In one embodiment, the compound is selected from the group consisting of:




embedded image


embedded image


In one embodiment, the compound is selected from the group consisting of:




embedded image


In one embodiment, Y is




embedded image


In one embodiment, U is NR16.




embedded image


In one embodiment, the compound is


In one embodiment, the compound is




embedded image


In one embodiment, the compound is selected from the group consisting of:




embedded image


embedded image


In one embodiment, the compound is selected from the group consisting of:




embedded image


embedded image


In one embodiment, X is N(CH3)2.


In one embodiment, Y is




embedded image


In one embodiment, R13 is an aryl substituted with a C1-C10 straight chained alkyl.


In one embodiment, the compound is selected from a group consisting of:




embedded image


The invention provides a pharmaceutical composition comprising a therapeutically effective amount of any of the compounds described herein and a pharmaceutically acceptable carrier.


The invention provides a pharmaceutical composition made by combining a therapeutically effective amount of any of the compounds described herein and a pharmaceutically acceptable carrier.


The invention provides a process for making a pharmaceutical composition comprising combining a therapeutically effective amount of any of the compounds described herein and a pharmaceutically acceptable carrier.


The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of any of the compounds described herein effective to treat the subject's abnormality.


In separate embodiments, the abnormality is a regulation of a steroid or pituitary hormone disorder, an epinephrine release disorder, a gastrointestinal disorder, a cardiovascular disorder, an electrolyte balance disorder, hypertension, diabetes, a respiratory disorder, asthma, a reproductive function disorder, an immune disorder, an endocrine disorder, a musculoskeletal disorder, a neuroendocrine disorder, a cognitive disorder, a memory disorder such as Alzheimer's disease, a learning disorder, a sleep disorder, a sensory modulation and transmission disorder, a motor coordination disorder, Huntington's disease, a sensory integration disorder, a motor integration disorder, a dopaminergic function disorder such as Parkinson's disease, a sensory transmission disorder, an olfaction disorder, a sympathetic innervation disorder, a stress-related disorder, a fluid-balance disorder, a seizure disorder, pain, inflammatory pain, chronic pain, psychotic behavior such as schizophrenia, morphine tolerance, drug addition particularly opiate addiction, migraine, an appetite disorder, such as obesity, or an eating/body weight disorders, such as bulimia or bulimia nervosa.


In preferred embodiments, the abnormality is Alzheimer's disease, obesity, diabetes, or pain, particularly neuropathic pain.


The invention provides a method of treating a subject suffering from pain which comprises administering to the subject an amount of any of the compounds described herein effective to treat the subject's pain.


The invention provides a method of treating a subject suffering from neuropathic pain which comprises administering to the subject an amount of any of the compounds described herein effective to treat the subject's neuropathic pain.


The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the compound has the structure:




embedded image




    • wherein each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR4, —SR4, —OCOR4, —COR4, —NCOR4, —N(R4)2, —CON(R4)2, or —COOR4; aryl or heteroaryl; or any two of Y1, Y2, Y3 and Y4 present on adjacent carbon atoms can constitute a methylenedioxy group;

    • wherein each R4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6)alkyl;

    • wherein A is A′, Q3, Q4, Q5, straight chained or branched C1-C7 alkyl, aryl, heteroaryl, aryl(C1-C6)alkyl, heteroaryl(C1-C6)alkyl, aryl substituted with an aryl or heteroaryl, heteroaryl substituted with an aryl or heteroaryl; or (CHR17)—(CHR17)n-Z;

    • wherein A′ is







embedded image




    • wherein Q3 is







embedded image




    • wherein Q4 is







embedded image




    • wherein Q5 is







embedded image




    • wherein R1 and R2 are each independently H, straight chained or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, or —CN;

    • wherein R3 is H, straight chained or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, —CN, —OR6 aryl or heteroaryl;

    • wherein R5 is straight chained or branched C1-C7 alkyl, —N(R4)2, —OR6 or aryl;

    • wherein R6 is straight chained or branched C1-C7 alkyl or aryl;

    • wherein each R17 is independently H; straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)n—O—(CH2)m—CH3;

    • wherein each R20 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, or —COOR21; aryl or heteroaryl; or two R20 groups present on adjacent carbon atoms can join together to form a methylenedioxy group;

    • wherein each R21 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl, straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6)alkyl;

    • wherein each m is an integer from 0 to 4 inclusive;

    • wherein each n is an integer from 1 to 4 inclusive;

    • wherein each p is an integer from 0 to 2 inclusive;

    • wherein U is O, —NR16, S, C(R17)2, or —NSO2R16;

    • wherein Z is C3-C10 cycloalkyl, C4-C7 cyclic ether, C4-C7 cyclic thioether, aryl, or heteroaryl;

    • wherein R16 is straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

    • wherein q is an integer from 2 to 4 inclusive;

    • wherein B is aryl, heteroaryl, aryl substituted with an aryl or heteroaryl, heteroaryl substituted with an aryl or heteroaryl, tricyclic heteroaryl or Q6; provided however, if B is aryl or heteroaryl the carbon atom or carbon atoms ortho to the nitrogen atom of the imine bond may only be substituted with one or more of the following —F, —Cl, —Br, —I, —CN, methyl, ethyl or methoxy;

    • wherein a tricyclic heteroaryl is a fused three member aromatic system in which one or more of the rings is heteroaryl; carbazole; or acridine;

    • wherein Q6 is







embedded image




    • wherein each R22 is independently H, F, Cl, or straight chained or branched C1-C4 alkyl;

    • or a pharmaceutically acceptable salt thereof.





The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the compound has the structure:




embedded image




    • wherein each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C3-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR4, —SR4, —OCOR4, —COR4, —NCOR4, —N(R4)2, —CON(R4)2, or —COOR4; aryl or heteroaryl; or any two of Y1, Y2, Y3 and Y4 present on adjacent carbon atoms can constitute a methylenedioxy group;

    • wherein each R4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl (C1-C6) alkyl;

    • wherein A is A′, straight chained or branched C1-C7 alkyl, aryl, heteroaryl, aryl(C1-C6)alkyl or heteroaryl(C1-C6)alkyl;







embedded image




    • wherein A′ is







embedded image




    • wherein R1 and R2 are each independently H, straight chained or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, or —CN;

    • wherein R3 is H, straight chained or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, —CN, —OR6 aryl or heteroaryl;

    • wherein R5 is straight chained or branched C1-C7 alkyl, —N(R4)2, —OR6 or aryl;

    • wherein R6 is straight chained or branched C1-C7 alkyl or aryl;

    • wherein B is aryl, or heteroaryl; provided however, if B is aryl or heteroaryl the carbon atom or carbon atoms ortho to the nitrogen atom of the imine bond may only be substituted with one or more of the following —F, —Cl, —Br, —I, —CN, methyl, ethyl or methoxy;

    • wherein n is an integer from 1 to 4 inclusive;

    • or a pharmaceutically acceptable salt thereof.





The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the




embedded image



compound has the structure:

    • wherein each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR4, —SR4, —OCOR4, —COR4, —NCOR4, —N(R4)2, —CON(R4)2, or —COOR4; aryl or heteroaryl; or any two of Y1, Y2, Y3 and Y4 present on adjacent carbon atoms can constitute a methylenedioxy group;
    • wherein each R4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl (C1-C6) alkyl;
    • wherein A is A′, straight chained or branched C1-C7 alkyl, aryl, heteroaryl, aryl (C1-C6) alkyl or heteroaryl (C1-C6) alkyl;
    • wherein A′ is




embedded image




    • wherein B is aryl substituted with an aryl or heteroaryl, heteroaryl substituted with an aryl or heteroaryl, tricyclic heteroaryl or Q6;

    • wherein a tricyclic heteroaryl is a fused three ring aromatic system in which one or more of the rings is heteroaryl; carbazole; or acridine;

    • wherein Q6 is







embedded image




    • wherein n is an integer from 1 to 4 inclusive;

    • wherein each R22 is independently H, F, Cl, or straight chained or branched C1-C4 alkyl;

    • or a pharmaceutically acceptable salt thereof.





The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the




embedded image



compound has the structure:

    • wherein each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR4, —SR4, —OCOR4, —COR4, —NCOR4, —N(R4)2, —CON(R4)2, or —COOR4; aryl or heteroaryl; or any two of Y1, Y2, Y3 and Y4 present on adjacent carbon atoms can constitute a methylenedioxy group;
    • wherein each R4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6)alkyl;
    • wherein A is Q3, Q4, Q5, aryl substituted with an aryl or heteroaryl, heteroaryl substituted with an aryl or heteroaryl, or (CHR17)—(CHR17)n-Z;
    • wherein Q3 is




embedded image




    • wherein Q4 is







embedded image




    • wherein Q5 is







embedded image




    • wherein each R17 is independently H; straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)n-Z, or (CH2)n—O—(CH2)m—CH3;

    • wherein each R20 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR21, —OCOR21, —COR21, —NCOR21, —N(R21)2, —CON(R21)2, or —COOR21; aryl or heteroaryl; or two R20 groups present on adjacent carbon atoms can join together to form a methylenedioxy group;

    • wherein each R21 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl or aryl;

    • wherein each R22 is independently H, F, Cl, or straight chained or branched C1-C4 alkyl;

    • wherein q is an integer from 2 to 4 inclusive;

    • wherein each m is an integer from 0 to 4 inclusive;

    • wherein each n is an integer from 1 to 4 inclusive;

    • wherein each p is an integer from 0 to 2 inclusive;

    • wherein U is O, —NR16, S, C(R17)2, or —NSO2R16;

    • wherein Z is C3-C10 cycloalkyl, C4-C7 cyclic ether, C4-C7 cyclic thioether, aryl, or heteroaryl;

    • wherein R16 is straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C5-C7 cycloalkenyl, —(CH2)m-Z, or (CH2)q—O—(CH2)m—CH3;

    • wherein B is aryl, or heteroaryl; provided however, if B is aryl or heteroaryl the carbon atom or carbon atoms ortho to the nitrogen atom of the imine bond may only be substituted with one or more of the following —F, —Cl, —Br, —I, —CN, methyl, ethyl or methoxy;

    • or a pharmaceutically acceptable salt thereof.





As used in the present invention, the term “cycloalkyl” includes C3-C7 cycloalkyl moieties which may be substituted with one or more of the following: —F, —NO2, —CN, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R4)2, —OR4, —COR4, —NCOR4, —CO2R4, —CON(R4)2 or (CH2)n—O—(CH2)m—CH3.


As used in the present invention, the term “cycloalkenyl” includes C5-C7 cycloalkenyl moieties which may be substituted with one or more of the following: —F, —Cl, —Br, —I, —NO2, —CN, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R4)2, —OR4, —COR4, —NCOR4, —CO2R4, —CON(R4)2 or (CH2)n—O—(CH2)m—CH3.


In the present invention, the term “heteroaryl” is used to include five and six membered unsaturated rings that may contain one or more oxygen, sulfur, or nitrogen atoms. Examples of heteroaryl groups include, but are not limited to, furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, and triazinyl.


In addition the term “heteroaryl” is used to include fused bicyclic ring systems that may contain one or more heteroatoms such as oxygen, sulfur and nitrogen. Examples of such heteroaryl groups include, but are not limited to, indolizinyl, indolyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzimidazolyl, purinyl, benzoxazolyl, benzisoxazolyl, benzo[b]thiazolyl, imidazo[2,1-b]thiazolyl, cinnolinyl, quinazolinyl, quinoxalinyl, 1,8-naphthyridinyl, pteridinyl, quinolinyl, isoquinolinyl, phthalimidyl and 2,1,3-benzothiazolyl.


The term “heteroaryl” also includes those chemical moieties recited above which may be substituted with one or more of the following: —F, —Cl, —Br, —I, —NO2, —CN, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R4)2, —OR4, —COR4, —NCOR4, —CO2R4, —CON(R4)2 or (CH2)n—O—(CH2)m—CH3.


The term “heteroaryl” further includes the N-oxides of those chemical moieties recited above which include at least one nitrogen atom.


In the present invention the term “aryl” is phenyl or naphthyl. The term “aryl” also includes phenyl and naphthyl which may be substituted with one or more of the following: —F, —Cl, —Br, —I, —NO2, —CN, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R4)2, —OR4, —SR4, —OCOR4, —COR4, —NCOR4, —CO2R4, —CON(R4)2 or (CH2)n—O—(CH2)m—CH3.


The present invention also provides a method of treating a subject suffering from an abnormality which compromises administering to the subject an amount of compound effective to treat the subject's abnormality where in the compound has the structure:




embedded image




    • wherein each R24 is independently one or more of the following: H, F, Cl, Br, I, CF3, OCH3 or N2;

    • wherein R25 is methyl, ethyl, alkyl, phenyl and the phenyl is optionally substituted with a F, Cl, Br, CF3, NO2.





In one embodiment of any of the methods described herein, the compound is enantiomerically and diastereomerically pure. In one embodiment of any of the methods described herein, the compound is enantiomerically or diastereomerically pure.


In one embodiment of any of the methods described herein, the compound is a pure Z imine isomer or a pure Z alkene isomer. In one embodiment, the compound is a pure E imine isomer or a pure E alkene isomer.


In one embodiment, the compound has the structure:




embedded image




    • wherein each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, —CF3, —F, —Cl, —Br, —I, —OR4, —N(R4)2, or —CON(R4)2;

    • wherein each R4 is independently —H; straight chained or branched C1-C7 alkyl, —CF3, or phenyl;

    • wherein A is A′, straight chained or branched C1-C7 alkyl, aryl, heteroaryl, aryl(C1-C6)alkyl or heteroaryl (C1-C6) alkyl; and

    • wherein A′ is







embedded image


In one embodiment, B is heteroaryl. In another embodiment, B is aryl.


In one embodiment, B is phenyl and the phenyl is optionally substituted with one or more of the following: —F, —Cl, —Br, —CF3, straight chained or branched C1-C7 alkyl, —N(R4)2, —OR4, —COR4, —NCOR4, —CO2R4, or —CON(R4)2.


In one embodiment, A is aryl. In another embodiment, A is heteroaryl.


In some embodiments, the compound is selected from the group consisting of:




embedded image


In certain embodiments, the compound is selected from the group consisting of:




embedded image


embedded image


In one embodiment, A is A′ and A′ is




embedded image


In other embodiments, the compound is:




embedded image


In still other embodiments, B is Q6.


In one embodiment, A is aryl.


In another embodiment, the compound has the structure:




embedded image


In other embodiments, the compound is:




embedded image


In another embodiment, B is aryl.


In certain embodiments, A is (CHR17)—(CHR17)n-Z.


In one embodiment, the compound is:




embedded image


The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the compound has the structure:




embedded image


  • wherein each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR4, —OCOR4, —COR4, —NCOR4, —N(R4)2, —CON(R4)2, or —COOR4; aryl or heteroaryl; or any two of Y1, Y2, Y3 and Y4 present on adjacent carbon atoms can constitute a methylenedioxy group;

  • wherein each R4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7, alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6)alkyl;

  • wherein A is A′, straight chained or branched C1-C7 alkyl, aryl, heteroaryl, aryl(C1-C6)alkyl or heteroaryl(C1-C6)alkyl;

  • wherein A′ is





embedded image


  • wherein R1 and R2 are each independently H, straight chained or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, or —CN;

  • wherein R3 is H, straight chained or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, —CN, —OR6, aryl or heteroaryl;

  • wherein R5 is straight chained or branched C1-C7 alkyl, —N(R4)2, —OR4 or aryl;

  • wherein R6 is straight chained or branched C1-C7 alkyl or aryl;

  • wherein B is C3-C7 cycloalkyl, C5-C7 cycloalkenyl, adamantyl, aryl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolizinyl, indol-4-yl, indol-5-yl, indol-6-yl, indol-7-yl, isoindolyl, benzo[b]furan-4-yl, benzo[b]furan-5-yl, benzo[b]furan-6-yl, benzo[b]furan-7-yl, benzo[b]thiophen-4-yl, benzo[b]thiophen-5-yl, benzo[b]thiophen-6-yl, benzo[b]thiophen-7-yl, indazolyl, benzimidazolyl, benzo[b]thiazolyl, purinyl, imidazo[2,1-b]thiazolyl, quinolinyl, isoquinolinyl, quinazolinyl, 2,1,3-benzothiazolyl, furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, benzoxazolyl, benzisoxazolyl, cinnolinyl, quinoxalinyl, 1,8-naphthridinyl, pteridinyl, or phthalimidyl; provided however, if B is aryl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolizinyl, indol-4-yl, indol-5-yl, indol-6-yl, indol-7-yl, isoindolyl, benzo[b]furan-4-yl, benzo[b]furan-5-yl, benzo[b]furan-6-yl, benzo[b]furan-7-yl, benzo[b]thiophen-4-yl, benzo[b]thiophen-5-yl, benzo[b]thiophen-6-yl, benzo[b]thiophen-7-yl, indazolyl, benzimidazolyl, benzo[b]thiazolyl, purinyl, imidazo[2,1-b]thiazolyl, quinolinyl, isoquinolinyl, quinazolinyl, 2,1,3-benzothiazolyl, furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, benzoxazolyl, benzisoxazolyl, cinnolinyl, quinoxalinyl, 1,8-napthyridinyl, pteridinyl, or phthalimidyl the carbon atom or carbon atoms ortho to the nitrogen atom of the imine bond may only be substituted with one or more of the following —F, —Cl, —Br, —I, —CN, methyl, ethyl or methoxy;

  • wherein n is an integer from 1 to 4 inclusive.



In one embodiment of the invention, A is aryl, heteroaryl, heteroaryl(C1-C6)alkyl or (CH2)n—CC—R4; wherein the aryl is substituted with —OH;


In one embodiment of the invention, A is aryl, heteroaryl, or heteroaryl(C1-C6)alkyl; and

  • wherein aryl is substituted with —F, —Cl, —Br, —I, —NO2, —CN, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R4)2, —OR4, —SR4, OCOR9, —COR4, —NCOR4, —CO2R4, —CON(R4)2 or —(CH2)nO(CH2)mCH3.


In another embodiment of the invention, each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, —CF3, —F, —Cl, —Br, —I, —OR4, —N(R4)2, or —CON(R4)2;

  • wherein each R4 is independently —H; straight chained or branched C1-C7 alkyl, —CF3, or phenyl;
  • wherein A is A′, straight chained or branched C1-C7 alkyl, aryl, heteroaryl, aryl(C1-C6)alkyl or heteroaryl (C1-C6) alkyl; and
  • wherein A′ is




embedded image


In another embodiment of the invention, B is C3-C7 cycloalkyl or adamantyl.


In still another embodiment of the invention, B is pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolizinyl, indol-4-yl, indol-5-yl, indol-6-yl, indol-7-yl, isoindolyl, benzo[b]furan-4-yl, benzo[b]furan-5-yl, benzo[b]furan-6-yl, benzo[b]furan-7-yl, benzo[b]thiophen-4-yl, benzo[b]thiophen-5-yl, benzo[b]thiophen-6-yl, benzo[b]thiophen-7-yl, indazolyl, benzimidazolyl, benzo[b]thiazolyl, purinyl, imidazo[2,1-b]thiazolyl, quinolinyl, isoquinolinyl; quinazolinyl, 2,1,3-benzothiazolyl, furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, benzoxazolyl, benzisoxazolyl, cinnolinyl, quinoxalinyl, 1,8-napthyridinyl, pteridinyl, or phthalimidyl.


In another embodiment of the invention, B is aryl.


In still another embodiment of the invention, B is phenyl and the phenyl is optionally substituted with one or more of the following: —F, —Cl, —Br, —CF3, straight chained or branched C1-C7 alkyl, —N(R4)2, —OR4, —COR4, —NCOR4, —CO2R4, or —CON(R4)2.


In some embodiments of the invention, A is aryl.


In other embodiments, the compound is selected from the group consisting of:




embedded image


embedded image


In still other embodiments, A is A′ and A′ is




embedded image


In one embodiment, the compound is:




embedded image


The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of compound effective to treat the subject's abnormality wherein the compound has the structure:




embedded image


  • wherein each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl or C5-C7 cycloalkenyl; —F, —Cl, —Br, or —I; —NO2; —N3; —CN; —OR4, —SR4, —OCOR4, —COR4, —NCOR4, —N(R4)2, —CON(R4)2, or —COOR4; aryl or heteroaryl; or any two of Y1, Y2, Y3 and Y4 present on adjacent carbon atoms can constitute a methylenedioxy group;

  • wherein each R4 is independently —H; straight chained or branched C1-C7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C2-C7 alkenyl or alkynyl; C3-C7 cycloalkyl, C5-C7 cycloalkenyl, aryl or aryl(C1-C6) alkyl;

  • wherein A is A′, straight chained or branched C1-C7 alkyl, aryl, heteroaryl, aryl(C1-C6)alkyl or heteroaryl (C1-C6) alkyl;

  • wherein A′ is





embedded image


  • wherein R1 and R2 are each independently H, straight chained or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, or —CN;

  • wherein R3 is H, straight chained or branched C1-C7 alkyl, —F, —Cl, —Br, —I, —NO2, —CN, —OR6, aryl or heteroaryl;

  • wherein R5 is straight chained or branched C1-C7 alkyl, —N(R4)2, —OR4 or aryl;

  • wherein R6 is straight chained or branched C1-C7 alkyl or aryl;

  • wherein B is aryl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolizinyl, indol-4-yl, indol-5-yl, indol-6-yl, indol-7-yl, isoindolyl, benzo[b]furan-4-yl, benzo[b]furan-5-yl, benzo[b]furan-6-yl, benzo[b]furan-7-yl, benzo[b]thiophen-4-yl, benzo[b]thiophen-5-yl, benzo[b]thiophen-6-yl, benzo[b]thiophen-7-yl, indazolyl, benzimidazolyl, benzo[b]thiazolyl, purinyl, imidazo[2,1-b]thiazolyl, quinolinyl, isoquinolinyl, quinazolinyl, 2,1,3-benzothiazolyl, furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, benzoxazolyl, benzisoxazolyl, cinnolinyl, quinoxalinyl, 1,8-napthyridinyl, pteridinyl, or phthalimidyl; provided however, that the carbon atom or carbon atoms ortho to the nitrogen atom of the imine bond may only be substituted with one or more of the following —F, —Cl, —Br, —I, —CN, methyl, ethyl or methoxy;

  • wherein n is an integer from 1 to 4 inclusive;


    or a pharmaceutically acceptable salt thereof.



In one embodiment, the compound is A is aryl, heteroaryl, heteroaryl(C1-C6) alkyl or —(CH2)n—CC—R4; wherein the aryl is substituted with —OH;


In another embodiment, A is aryl, heteroaryl, or heteroaryl(C1-C6)alkyl; and

  • wherein aryl is substituted with —F, —Cl, —Br, —I, —NO2, —CN, straight chained or branched C1-C7 alkyl, straight chained or branched C1-C7 monofluoroalkyl, straight chained or branched C1-C7 polyfluoroalkyl, straight chained or branched C2-C7 alkenyl, straight chained or branched C2-C7 alkynyl, C3-C7 cycloalkyl, C3-C7 monofluorocycloalkyl, C3-C7 polyfluorocycloalkyl, C5-C7 cycloalkenyl, —N(R4)2, —OR4, —SR4, —OCOR4, —COR4, —NCOR4, —CO2R4, —CON(R4)2 or —(CH2)nO(CH2)mCH3.


In one embodiment, the compound is an enantiomerically and diastereomerically pure compound.


In one embodiment, the compound is an enantiomerically or diastereomerically pure compound.


In some embodiments, the compound is a pure Z imine isomer or a pure Z alkene isomer of the compound.


In some embodiments, the compound is a pure E imine isomer or a pure E alkene isomer of the compound.


In other embodiments, A is A′, straight chained or branched C1-C7 alkyl, aryl, heteroaryl, aryl(C1-C6)alkyl or heteroaryl (C1-C6) alkyl; and

  • A′ is




embedded image


In some embodiments, each of Y1, Y2, Y3, and Y4 is independently —H; straight chained or branched C1-C7 alkyl, —CF3, —F, —Cl, —Br, —I, —OR4, —N(R4)2, or —CON(R4)2.


In other embodiments, A is aryl or aryl(C1-C6)alkyl.


In still other embodiments, the compound is selected from the group consisting of:




embedded image


The invention provides a pharmaceutical composition comprising a therapeutically effective amount of any of the compounds described herein and a pharmaceutically acceptable carrier.


The invention provides a pharmaceutical composition made by combining a therapeutically effective amount of any of the compounds described herein and a pharmaceutically acceptable carrier.


The invention provides a process for making a pharmaceutical composition comprising combining a therapeutically effective amount of any of the compounds described herein and a pharmaceutically acceptable carrier.


The invention provides a method of treating a subject suffering from an abnormality which comprises administering to the subject an amount of any of the compounds described herein effective to treat the subject's abnormality.


In separate embodiments, the abnormality is a regulation of a steroid or pituitary hormone disorder, an epinephrine release disorder, a gastrointestinal disorder, a cardiovascular disorder, an electrolyte balance disorder, hypertension, diabetes, a respiratory disorder, asthma, a reproductive function disorder, an immune disorder, an endocrine disorder, a musculoskeletal disorder, a neuroendocrine disorder, a cognitive disorder, a memory disorder such as Alzheimer's disease, a learning disorder, a sleep disorder, a sensory modulation and transmission disorder, a motor coordination disorder, Huntington's disease, a sensory integration disorder, a motor integration disorder, a dopaminergic function disorder such as Parkinson's disease, a sensory transmission disorder, an olfaction disorder, a sympathetic innervation disorder, a stress-related disorder, a fluid-balance disorder, a seizure disorder, pain, inflammatory pain, chronic pain, psychotic behavior such as schizophrenia, morphine tolerance, drug addition particularly opiate addiction, migraine, an appetite disorder, such as obesity, or an eating/body weight disorders, such as bulimia or bulimia nervosa.


In preferred embodiments, the abnormality is Alzheimer's disease, obesity, diabetes, or pain, particularly neuropathic pain.


The invention provides a method of treating a subject suffering from pain which comprises administering to the subject an amount of any of the compounds described herein effective to treat the subject's pain.


The invention provides a method of treating a subject suffering from neuropathic pain which comprises administering to the subject an amount of any of the compounds described herein effective to treat the subject's neuropathic pain.


The invention provides for each pure stereoisomer of any of the compounds described herein. Such stereoisomers may include enantiomers, diastereomers, or E or Z alkene or imine isomers. The invention also provides for stereoisomeric mixtures, including racemic mixtures, diastereomeric mixtures, or E/Z isomeric mixtures. Stereoisomers can be synthesized in pure form (Nógrádi, M.; Stereoselective Synthesis, (1987) VCH Editor Ebel, H. and Asymmetric Synthesis, Volumes 3-5, (1983) Academic Press, Editor Morrison, J.) or they can be resolved by a variety of methods such as crystallization and chromatographic techniques (Jaques, J.; Collet, A.; Wilen, S.; Enantiomer, Racemates, and Resolutions, 1981, John Wiley and Sons and Asymmetric Synthesis, Vol. 2, 1983, Academic Press, Editor Morrison, J).


In addition the compounds of the present invention may be present as enantiomers, diasteriomers, isomers or two or more of the compounds may be present to form a racemic or diastereomeric mixture.


The compounds of the present invention are preferably 80% pure, more preferably 90% pure, and most preferably 95% pure.


Included in this invention are pharmaceutically acceptable salts and complexes of all of the compounds described herein. The acids and bases from which these salts are prepared include but are not limited to the acids and bases listed herein. The acids include, but are not limited to, the following inorganic acids: hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid and boric acid. The acids include, but are not limited to, the following organic acids: acetic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, maleic acid, citric acid, methanesulfonic acid, benzoic acid, glycolic acid, lactic acid and mandelic acid. The bases include, but are not limited to ammonia, methylamine, ethylamine, propylamine, dimethylamine, diethylamine, trimethylamine, triethylamine, ethylenediamine, hydroxyethylamine, morpholine, piperazine and guanidine. This invention further provides for the hydrates and polymorphs of all of the compounds described herein.


The present invention includes within its scope prodrugs of the compounds of the invention. In general, such prodrugs will be functional derivatives of the compounds of the invention which are readily convertible in vivo into the required compound. Thus, in the present invention, the term “administering” shall encompass the treatment of the various conditions described with the compound specifically disclosed or with a compound which may not be specifically disclosed, but which converts to the specified compound in vivo after administration to the patient. Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in Design of Prodrugs, ed. H. Bundgaard, Elsevier, 1985.


The present invention further includes metabolites of the compounds of the present invention. Metabolites include active species produced upon introduction of compounds of this invention into the biological milieu.


Throughout the invention, the term “binding affinity” describes the concentration of a compound required to occupy one-half of the binding sites in a receptor population, as detectable by radioligand binding. Binding affinity concentration can be represented as Ki, inhibition constant, or KD, dissociation constant.


The term “selectivity of binding affinity” refers to the ability of a chemical compound to discriminate one receptor from another. For example, a compound showing selectivity for receptor A versus receptor B will bind receptor A at lower concentrations than those required to bind receptor B.


Therefore, the statements of the form “binds to the GAL3 receptor with a binding affinity at least ten-fold higher than” a named receptor, indicates that the binding affinity at the GAL3 receptor is at least ten-fold greater than that for a named receptor, and binding affinity measurements (i.e. Ki or KD) for the compound are at least ten-fold lower in numerical value.


The present invention provides a method of treating an abnormality in a subject which comprises administering to the subject a composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a GAL3 receptor antagonist, wherein:

  • the GAL3 receptor antagonist binds to the human GAL3 receptor with a binding affinity at least ten-fold higher than the binding affinity with which it binds to the human GAL1 receptor.


In some embodiments of this invention, the GAL3 receptor antagonist binds to the human GAL3 receptor with a binding affinity at least 30-fold higher than the binding affinity with which it binds to the human GAL1 receptor.


In further embodiments of the invention, the GAL3 receptor antagonist binds to the human GAL3 receptor with a binding affinity at least 50-fold higher than the binding affinity with which it binds to the human GAL1 receptor.


In other embodiments of the invention, the GAL3 receptor antagonist binds to the human GAL3 receptor with a binding affinity at least 100-fold higher than the binding affinity with which it binds to the human GALL receptor.


In still other embodiments of the invention, the GAL3 receptor antagonist binds to the human GAL3 receptor with a binding affinity at least 200-fold higher than the binding affinity with which it binds to the human GAL1 receptor.


For the purposes of this invention the term “pharmaceutically acceptable carrier” has been defined herein.


The term “antagonist” refers to a compound which binds to, and decreases the activity of, a receptor in the presence of an agonist. In the case of a G-protein coupled receptor, activation may be measured using an appropriate second messenger system which is coupled to the receptor in a cell or tissue in which the receptor is expressed. Some specific but by no means limiting examples of well-known second messenger systems are adenylate cyclase, intracellular calcium mobilization, ion channel activation, guanylate cyclase, inositol phospholipid hydrolysis, and MAP kinase activation. Conversely, the term “agonist” refers to a compound which binds to, and increases the activity of, a receptor as compared with the activity of the receptor in the absence of any agonist. Methods to perform second messenger assays are described in PCT International Publication No. 97/46250 and in PCT International Publication No. 98/15570, the contents of which are hereby incorporated by reference.


In the case that a receptor has activity in the absence of an agonist (constitutive receptor activity) the antagonist may act as an inverse agonist or an allosteric modulator, as opposed to a neutral antagonist, and suppress receptor signaling independent of the agonist (Lutz and Kenakin, 1999). The categories of “antagonist compounds” are therefore seen to include 1) neutral antagonists (which block agonist actions but do not affect constitutive activity); 2) inverse agonists (which block agonist actions as well as constitutive activity by stabilizing an inactive receptor conformation); 3) and allosteric modulators (which block agonist actions to a limited extent and which may also block constitutive activity through allosteric regulation). The probability that an antagonist is neutral and therefore of “zero efficacy” is relatively low, given that this would require identical affinities for different tertiary conformations of the receptor. Thus, Kenakin proposed in 1996 that, “with the development of sensitive test systems for the detection of inverse agonism will come a reclassification of many drugs. It might be observed that numerous previously classified neutral antagonists may be inverse agonists” (Kenakin, 1996). Indeed, there is now evidence from studies with known pharmacological agents to support the existence of inverse agonists for numerous receptors, including histamine, 5HT1A, 5HT2C, cannabinoid, dopamine, calcitonin and human formyl peptide receptors, among others (de Ligt, et al, 2000; Herrick-Davis, et al, 2000; Bakker, et al, 2000). In the case of the 5HT2C receptor, clinically effective a typical antipsychotics drugs such as sertindole, clozapine, olanzapine, ziprasidone, risperidone, zotepine, tiospirone, fluperlapine and tenilapine displayed potent inverse activity whereas typical antipsychotic drugs such as chlorpromazine, thioridazine, spiperone and thiothixene were classified as neutral antagonists (Herrick-Davis et al, 2000). In the case of the histamine H1 receptor, the therapeutically used anti-allergics cetirizine, loratadine and epinastine were found to be inverse agonists. These findings further extend the idea that many compounds previously thought of as neutral antagonists will be reclassified as inverse agonists when tested in a constitutively active receptor system (de Ligt et al, 2000).


The subject invention provides GAL3 antagonists which selectively bind to the GAL3 receptor. A GAL3 antagonist useful in the treatment of pain is one which selectively binds to the GAL3 receptor, and displays analgesic activity in an animal model which is predictive of the efficacy of analgesics to treat pain in humans. Animal models used to test potential analgesic agents are well known in the art.


In order to test compounds for selective binding to the human GAL3 receptor the cloned cDNAs encoding both the human and rat GAL1 and GAL2 receptors have been used. The cloning and assay methods for the human and rat GAL1 receptors may be found in PCT International Publication No. WO 95/22608, the contents of which are hereby incorporated by reference. The cloning and assay methods for the human and rat GAL2 receptors may be found in PCT International Publication No. WO 97/26853, the contents of which are hereby incorporated by reference.


The present invention provides for a method of determining the binding affinity of a GAL3 antagonist, wherein the GAL3 antagonist is dissolved in a “suitable solvent”. A “suitable solvent” means one which permits the measurement of binding affinity of the GAL3 antagonist to the human GAL3 receptor at concentrations less than 1 μM, preferably less than 100 nM. Examples of solvents include, but are not limited to, DMSO, ethanol, N,N-dimethylacetamide, or water. For indolones, the preferred solvent is 3% DMSO (final concentration in the assay). For pyrimidines, the preferred solvent is 1% ethanol/0.09% polypuronic acid F-127 (final concentration in the assay). For any other type of compounds, the preferred solvent is the solvent which permits the measurement of binding affinity of a GAL3 antagonist at the lowest concentration. Once a suitable solvent is ascertained for the binding assay of the human GAL3 receptor, the same solvent is used in assays to determine the binding affinity for instance, at the GAL1 receptor.


In certain embodiments, the aforementioned GAL3 receptor antagonist additionally binds to the human GAL3 receptor with a binding affinity at least ten-fold higher than the binding affinity with which it binds to the human GAL2 receptor.


In other embodiments, the GAL3 receptor antagonist additionally binds to the human GAL3 receptor with a binding affinity at least 30-fold higher than the binding affinity with which it binds to the human GAL2 receptor.


In still other embodiments, the GAL3 receptor antagonist additionally binds to the human GAL3 receptor with a binding affinity at least 50-fold higher than the binding affinity with which it binds to the human GAL2 receptor.


In some embodiments, the GAL3 receptor antagonist additionally binds to the human GAL3 receptor with a binding affinity at least 100-fold higher than the binding affinity with which it binds to the human GAL2 receptor.


In further embodiments, the GAL3 receptor antagonist additionally binds to the human GAL3 receptor with a binding affinity at least 200-fold higher than the binding affinity with which it binds to the human GAL2 receptor.


In other embodiments, the receptor antagonist also binds to the human GAL3 receptor with a binding affinity at least ten-fold higher than the binding affinity with which it binds to each of the human 5HT1B, human 5HT1D, human. 5HT1E, human 5HT1F, human 5HT2A, rat 5HT2C, human 5HT6 and human 5HT7 receptors.


In still another embodiment, the receptor antagonist also binds to the human GAL3 receptor with a binding affinity at least ten-fold higher than the binding affinity with which it binds to the human histamine H1 receptor.


In still another embodiment, the receptor antagonist also binds to the human GAL3 receptor with a binding affinity at least ten-fold higher than the binding affinity with which it binds to the human dopamine D1, D2, D3, D4 and D5 receptors.


In a further embodiment, the receptor antagonist also binds to the human GAL3 receptor with a binding affinity at least ten-fold higher than the binding affinity with which it binds to the human α1A adrenoceptor, the human α1B adrenoceptor and the human α1D adrenoceptor.


In another embodiment, the receptor antagonist also binds to the human GAL3 receptor with a binding affinity at least ten-fold higher than the binding affinity with which it binds to the human α2A adrenoceptor, the human α2B adrenoceptor and the human α2C adrenoceptor.


The binding properties of compounds at different receptors were determined using cultured cell lines that selectively express the receptor of interest. Cell lines were prepared by transfecting the cloned cDNA or cloned genomic DNA or constructs containing both genomic DNA and cDNA encoding the receptors as further described in the Experimental Details herein below. Furthermore, the binding interactions of compounds at different transporters were determined using tissue preparations and specific assays as further described in the Experimental Details herein below.


In connection with this invention, a number of cloned receptors discussed herein, as stably transfected cell lines, have been made pursuant to, and in satisfaction of, the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure, and are made with the American Type Culture Collection, 10801 University Blvd., Manassas, Va. 20110-2209. Specifically, these deposits have been accorded ATCC Accession Numbers as follows:












ATCC Deposits:












ATCC





Accession
Date of


Designation
Receptor
No.
Deposit






human GAL1
CRL-1650



(CHO)
human GAL2
CRL 12379
Jul. 22, 1997


hGalR2-264


L-hGalR3-
human GAL3
CRL-12373
Jul. 01, 1997


228


5HT1A-3
human 5-HT1A
CRL 11889
May 11, 1995


Ltk-11
human 5-HT1B
CRL 10422
Apr.17, 1990



(formerly human 5-HT1D2)


Ltk-8-30-84
human 5-HT1D
CRL 10421
Apr. 17, 1990



(formerly human 5-HT1D1)


5HT1E-7
human 5-HT1E
CRL 10913
Nov. 06, 1991


L-5-HT1F
human 5-HT1F
CRL 10957
Dec. 27, 1991


L-NGC-
human 5-HT2A
CRL 10287
Oct. 31, 1989


5HT2
(formerly human 5-HT2)


pSr-1c
rat 5-HT2C
67636



(formerly rat 5HT1C)


pBluescript-
human 5-HT4
75392
Dec. 22, 1992


hS10


L-5HT-4B
human 5-HT7
CRL 11166
Oct. 20, 1992



(formerly human 5-HT4B)


L-α1C
human α1A
CRL11140
Sep. 25, 1992



(formerly human α1C)


L-α1B
human α1B
CRL11139
Sep. 25, 1992


L-α1A
human α1D
CRL11138
Sep. 25, 1992



(formerly hum α1A)


L-α2A
human α2A
CRL11180
Nov. 06, 1992


L-NGC-α2B
human α2B
CRL10275
Oct. 25, 1989


L-α2C
human α2C
CRL11181
Nov. 06, 1992


pDopD1-
human D5
40839
Jul. 10, 1990


GL-30
(formerly hum D1β)


pCEXV-H1
human H1
75346
Nov. 06, 1992





The “5-HT1C”, “5-HT1D1”, “5-HT1D2”, “5-HT4B”, and “5-HT2” receptors were renamed the “5-HT2C”, “5-HT1D”, “5-HT1B”, “5-HT7”, and “5-HT2A” receptors, respectively, by the Serotonin Receptor Nomenclature Committee of the IUPHAR.


The “human α1C”, “human α1A”, and “human D” were renamed the “human α1A”, “human α1D”, and “human D5” respectively.






The following receptor sequences have been deposited with the GenBank DNA database, which is managed by the National Center for Biotechnology (Bethesda, Md.).












GENBANK DEPOSITS











DESIGNATION
RECEPTOR
GENBANK No.







human mRNA for
human D1
X58987



D-1 receptor
(formerly human




D)



human dopamine
human D2
M29066



D2 receptor



(DRD2) mRNA



complete cds



Rat mRNA for
rat D3
X53944



dopamine D3



receptor




Homo sapiens

human D4
L12397



dopamine D4



receptor (DRD4)



gene (D4.4)



sequence







*The “human D” receptor was renamed the “human D1” receptor.






This invention further provides a Pharmaceutical composition comprising a therapeutically effective amount of the compound of the invention and a pharmaceutically acceptable carrier. In one embodiment, the amount of the compound is an amount from about 0.01 mg to about 800 mg. In another embodiment, the amount of the compound is an amount from about 0.01 mg to about 500 mg. In another embodiment, the amount of the compound is an amount from about 0.01 mg to about 250 mg. In another embodiment, the amount of the compound is an amount from about 0.1 mg to about 60 mg. In another embodiment, the amount of the compound is an amount from about 1 mg to about 20 mg. In a further embodiment, the carrier is a liquid and the composition is a solution. In another embodiment, the carrier is a solid and the composition is a powder or tablet. In a further embodiment, the carrier is a gel and the composition is a capsule or suppository.


This invention provides a pharmaceutical composition made by combining a therapeutically effective amount of the compound of this invention and a pharmaceutically acceptable carrier.


This invention provides a process for making a pharmaceutical composition comprising combining a therapeutically effective amount of the compound of this invention and a pharmaceutically acceptable carrier.


In the subject invention a “therapeutically effective amount” is any amount of a compound which, when administered to a subject suffering from a disease against which the compounds are effective, causes reduction, remission, or regression of the disease. In the subject application, a “subject” is a vertebrate, a mammal, or a human.


The present invention provides for the use of any of the chemical compounds disclosed herein for the preparation of a pharmaceutical composition for treating an abnormality. The invention also provides for the use of a chemical compound for the preparation of a pharmaceutical composition for treating an abnormality, wherein the abnormality is alleviated by decreasing the activity of a human GAL3 receptor. In one embodiment, the abnormality is pain. In another embodiment, the abnormality is neuropathic pain. In still another embodiment, the abnormality is Alzheimer's disease. In still another embodiment, the abnormality is obesity. In still another embodiment, the abnormality is diabetes.


In the present invention the term “pharmaceutically acceptable carrier” is any pharmaceutical carrier known to those of ordinary skill in the art as useful in formulating pharmaceutical compositions. On Dec. 24, 1997 the Food and Drug Administration of the United States Department of Health and Human Services published a guidance entitled “Q3C Impurities: Residual Solvent”. The guidance recommends acceptable amounts of residual solvents in pharmaceuticals for the safety of the patient, and recommends the use of less toxic solvents in the manufacture of drug substances and dosage forms.


In an embodiment of the present invention, the pharmaceutical carrier may be a liquid and the pharmaceutical composition would be in the form of a solution. In another embodiment, the pharmaceutically acceptable carrier is a solid and the composition is in the form of a powder or tablet. In a further embodiment, the pharmaceutical carrier is a gel and the composition is in the form of a suppository or cream. In a further embodiment the compound may be formulated as a part of a pharmaceutically acceptable transdermal patch. In yet a further embodiment, the compound may be delivered to the subject by means of a spray or inhalant.


A solid carrier can include one or more substances which may also act as endogenous carriers (e.g. nutrient or micronutrient carriers), flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders or tablet-disintegrating agents; it can also be an encapsulating material. In powders, the carrier is a finely divided solid which is in admixture with the finely divided active ingredient. In tablets, the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain up to 99% of the active ingredient. Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.


Liquid carriers are used in preparing solutions, suspensions, emulsions, syrups, elixirs and pressurized compositions. The active ingredient can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fats. The liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmoregulators. Suitable examples of liquid carriers for oral and parenteral administration include water (partially containing additives as above, e.g. cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols, e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil). For parenteral administration, the carrier can also be an oily ester such as ethyl oleate or isopropyl myristate. Sterile liquid carriers are useful in sterile liquid form compositions for parenteral administration. The liquid carrier for pressurized compositions can be halogenated hydrocarbon or other pharmaceutically acceptable propellent.


Liquid pharmaceutical compositions which are sterile solutions or suspensions can be utilized by for example, intramuscular, intrathecal, epidural, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. The compounds may be prepared as a sterile solid composition which may be dissolved or suspended at the time of administration using sterile water, saline, or other appropriate sterile injectable medium. Carriers are intended to include necessary and inert binders, suspending agents, lubricants, flavorants, sweeteners, preservatives, dyes, and coatings.


The compound can be administered orally in the form of a sterile solution or suspension containing other solutes or suspending agents (for example, enough saline or glucose to make the solution isotonic), bile salts, acacia, gelatin, sorbitan monoleate, polysorbate 80 (oleate esters of sorbitol and its anhydrides copolymerized with ethylene oxide) and the like.


The compound can also be administered orally either in liquid or solid composition form. Compositions suitable for oral administration include solid forms, such as pills, capsules, granules, tablets, and powders, and liquid forms, such as solutions, syrups, elixirs, and suspensions. Forms useful for parenteral administration include sterile solutions, emulsions, and suspensions.


Optimal dosages to be administered may be determined by those skilled in the art, and will vary with the particular compound in use, the strength of the preparation, the mode of administration, and the advancement of the disease condition. Additional factors depending on the particular subject being treated will result in a need to adjust dosages, including subject age, weight, gender, diet, and time of administration.


This invention will be better understood from the Experimental Details which follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the invention as described more fully in the claims which follow thereafter.


EXPERIMENTAL DETAILS

I. Synthesis of Chemical Compounds


The following examples are for the purpose of illustrating methods useful for making compounds of this invention.


General Methods: All reactions were performed under an Argon atmosphere and the reagents, neat or in appropriate solvents, were transferred to the reaction vessel via syringe and cannula techniques. Anhydrous solvents were purchased from the Aldrich Chemical Company and used as received. The examples described in the patent were named using the ACD/Name Program (version 4.01, Advanced Chemistry Development Inc., Toronto, Ontario, M5H2L3, Canada). The 1H NMR and 13C NMR spectra were recorded at either 300 MHz (GEQE Plus) or 400 MHz (Bruker Avance) in CDCl3 as solvent and tetramethylsilane as the internal standard unless otherwise noted. Chemical shifts (δ) are expressed in ppm, coupling constants (J) are expressed in Hz, and splitting patterns are described as follows: s=singlet; d=doublet; t=triplet; q=quartet; quintet; sextet; septet; br=broad; m=mutiplet; dd=doublet of doublets; dt=doublet of triplets. Elemental analyses were performed by Robertson Microlit Laboratories, Inc. Unless otherwise, mass spectra were obtained using electrospray ionization (ESI, Micromass Platform II) and MH+ is reported. Thin-layer Chromatography (TLC) was carried out on glass plates pre-coated with silica gel 60 F254 (0.25 mm, EM Separations Tech.). Preparative TLC was carried out on glass sheets pre-coated with silica gel GF (2 mm, Analtech). Flash column chromatography was performed on Merck silica gel 60 (230-400 mesh). Melting points (mp) were determined in open capillary tubes on a Mel-Temp apparatus and are uncorrected.


The following additional abbreviations are used: HOAc, acetic acid; DIPEA, diisopropylethylamine; DMF, N,N-dimethylformamide; EtOAc, ethyl acetate; MeCH, methanol; TEA, triethylamine; THF, tetrahydrofuran; All solvent ratios are volume/volume unless stated otherwise.


A. General Procedures for Preparing Pyrimidines


The compounds of this invention were prepared by sucessively displacing the three chlorine atoms of a 2,4,6-trichloropyrimidine with amines. It was found that some amines (i.e. anilines) selectively displace the 2-position chlorine of 2,4,6-trichloropyrimidine, whereas other amines (e.g. piperidine) selectively displace the 4- or 6-position chlorine first (note that the 4- and 6-positions are chemically equivalent). Some amines react non-selectively at both the 2- and 4-positions of 2,4,6-trichloropyrimidine. It was also found that if the pyrimidine is substituted at the 4- or 6-position with an amine (mono- or di-substituted, or unsubstituted), then the next amine (mono- or di-substituted) undergoes substitution at the 2-position of the pyrimidine. Thus, several different Procedures were used to obtain the compounds described by this invention. The following Procedures are representative of the methods that are useful for making compounds of this invention.


Procedure A:


4,6-DICHLORO-N-PHENYL-2-PYRIMIDINAMINE

A solution of 2,4,6-trichloropyrimidine (5.5 g, 30 mmol) in tetrahydrofuran (15 mL) was added dropwise to a solution of aniline (2.8 mL, 1 equivalent) in tetrahydrofuran (25 mL). N,N-diisopropylethylamine (5.2 mL) was added and the solution was stirred at room temperature overnight. The solvent was removed and the crude material was purified by flash chromatography on silica gel. The column was eluted with 3% ethyl acetate in hexane, followed by 15% ethyl acetate in hexane. The eluent was removed, giving 4,6-dichloro-N-phenyl-2-pyrimidinamine (1.11 g, 4.6 mmol, 15%, Rf=0.4 in 3% ethyl acetate in hexane).


Procedure B:


4,6-DICHLORO-N-(3,4-DICHLOROPHENYL)-2-PYRIMIDINAMINE

A solution of 2,4,6-trichloropyrimidine (5.00 g), 3,4-dichloroaniline (4.45 g, 1 equivalent) in 1,4-dioxane (20 mL) and N,N-diisopropylethylamine (10 mL) was heated at reflux with stirring for 3 hours. The solvent was removed and the crude material was purified by flash chromatography on silica gel. The column was eluted with a gradient of cyclohexane to ethyl acetate/cyclohexane (1:9). The eluent was removed, giving 4,6-dichloro-N-(3,4-dichlorophenyl)-2-pyrimidinamine (1.83 g, 58%, Rf=0.39 in ethyl acetate/cyclohexane, 2:3).


Procedure C:


6-CHLORO-N4,N4-DIMETHYL-N2-PHENYL-2,4-PYRIMIDINEDIAMINE

Dimethylamine in tetrahydrofuran (2M, 15 mL) was added to a solution of 4,6-dichloro-N-phenyl-2-pyrimidinamine (0.715 g, 2.97 mmol) in tetrahydrofuran (30 mL) and N,N-diisopropylethylamine (0.52 mL). The resulting mixture was stirred at room temperature overnight. The solvent was removed and the crude material was purified by flash chromatography on silica gel, eluting with ethyl acetate/hexane (1:9). The eluent was removed, giving 6-chloro-N4,N4-dimethyl-N2-phenyl-2,4-pyrimidinediamine (0.592 g, 2.39 mmol, 80%, Rf=0.3).


Procedure D:


2,4-DICHLORO-6-(1-PIPERIDINYL)PYRIMIDINE

A mixture of 2,4,6-trichloropyrimidine (5.0 g, 27 mmol) and piperidine (2.3 g, 27 mmol) in tetrahydrofuran (50 mL) and N,N-diisopropylethylamine (3.5 g, 27 mmol) was stirred at room temperature for 24 hours. The solvent was removed and the crude material was purified by flash chromatography on silica gel. The column was eluted with a gradient of hexane to yield ethyl acetate/hexane (1:4). The eluent was removed, giving 2,4-dichloro-6-(1-piperidinyl)pyrimidine (3.67 g, 15.8 mmol, 59%, Rf=0.58 in ethyl acetate/hexane, 1:4).


Procedure E:


4-CHLORO-6-(1-PIPERIDINYL)-2-{4-[3-(TRIFLUOROMETHYL)-2-PYRIDINYL]-1-PIPERAZINYL}PYRIMIDINE

A mixture of 2,4-dichloro-6-(1-piperidinyl)pyrimidine (100 mg, 0.43 mmol) and 1-[3-(trifluoromethyl)pyrid-2-yl]piperazine (119 mg, 0.52 mmol) in chlorobenzene (1 mL) was heated at 140° C. in a sealed tube for 24 hours. The solvent was removed and the crude material was purified by preparative TLC, eluting with hexane/ethyl acetate (9:1). 4-chloro-6-(1-piperidinyl)-2-{4-[3-(trifluoromethyl)-2-pyridinyl]-1-piperazinyl}pyrimidine was obtained as a solid (79 mg, 0.19 mmol, 44%).


Procedure E:


N-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2-{4-[3-(TRIFLUOROMETHYL)-2-PYRIDINYL]-1-PIPERZINYL}-4-PYRIMIDINAMINE

A mixture of 4-chloro-6-(1-piperidinyl)-2-{4-[3-(trifluoromethyl)-2-pyridinyl]-1-piperazinyl}pyrimidine (75.0 mg, 0.176 mmol), p-toluidine (23.1 mg, 0.216 mmol), 1,1′-(bisdiphenylphosphino)-1,1′-binaphthol (8.4 mg), tris(dibenzylidene acetone)dipalladium(0) (8.2 mg), and sodium tert-butoxide (86.4 mg) in dry toluene (1 mL) was heated at 90° C. in a sealed tube for 90 minutes. The solvent was removed and the crude material was purified by preparative TLC, eluting with hexane/ethyl acetate (4:1). N-(4-Methylphenyl)-6-(1-piperidinyl)-2-{4-[3-(trifluoromethyl)-2-pyridinyl]-1-piperazinyl}-4-pyrimidinamine was obtained, from the band at Rf=0.4, as a solid (59.5 mg, 0.119 mmol, 68%).


Procedure G:


N2-ETHYL-N2-[2-(1H-3-INDOLYL)ETHYL]-N4-(4-METHYLPHENYL)-6-PIPERIDINO-2,4-PYRIMIDINEDIAMINE

A mixture of N-[4-chloro-6-(1-piperidinyl)-2-pyrimidinyl]-N-ethyl-N-[2-(1H-indol-3-yl)ethyl]amine (33.4 mg, 0.087 mmol) and p-toluidine (47 mg, 0.43 mmol) was heated neat under argon at 160° C. in a sealed tube for 12 hours. The crude material was purified by preparative TLC, eluting with hexane/ethyl acetate (4:1). N2-Ethyl-N2-[2-(1H-3-indolyl) ethyl]-N4-(4-methylphenyl)-6-piperidino-2,4-pyrimidinediamine was obtained, from a band at Rf=0.37, as a solid (15 mg, 0.033 mmol, 38%).


Procedure H:


2,6-DICHLORO-N,N-DIMETHYL-4-PYRIMIDINAMINE

Sodium hydride (0.13 g, 0.79 mmol) was added to a solution of 2,6-dichloro-4-pyrimidinamine (0.40 g, 0.95 mmol) in dry tetrahydrofuran (5 mL) and stirred for 10 minutes, at which point gas evolution had ceased. Methyl iodide (0.06 mL, 0.95 mmol) was added and the resulting solution was stirred for 3 hours at room temperature. The solution was quenched with aqueous ammonium chloride/ammonium carbonate. The solution was extracted with ethyl acetate and the extracts were dried over sodium sulfate. The solvent was removed and the resulting crude product was purified by flash chromatography over silica gel, eluting with hexane/ethyl acetate (2:1). The desired product (Rf=0.55) was obtained as a white powder (70 mg, 0.36 mmol, 46%).


Procedure I:


N-ETHYL-2-(1H-INDOL-3-YL)ETHANAMINE

Step 1. Acetic anhydride (1.02 g) was added dropwise to a stirring solution of tryptamine (1.60 g) in tetrahydrofuran (5 mL) at 0° C. and then brought to room temperature. After 2 hours, the solvent was removed and the residue was taken up into ethyl acetate. The solution was filtered through a plug of silica gel and the solvent removed, giving N-[2-(1H-indol-3-yl)ethylacetyltryptamineacetamide (1.65 g, 100%).


Step 2. Lithium aluminum hydride in tetrahydrofuran (1M, 30 mL) was added dropwise to a stirring solution of N-[2-(1H-indol-3-yl)ethylacetyltryptamineacetamide (2.02 g) in tetrahydrofuran (10 mL) at 0° C. The solution was then heated at reflux overnight. The solution was cooled to 0° C. and water was very carefully added dropwise. The white solid was filtered and rinsed with ether/methanol (9:1, 2×25 mL). The solvent was removed from the filtrate, giving N-ethyl-2-(1H-indol-3-yl)ethanamine as a viscous pale yellow oil (1.75 g, 93%).


Procedure J:


4-CHLORO-N-[2-(1H-INDOL-3-YL)-1-METHYLETHYL]-6-(1-PIPERIDINYL)-2-PYRIMIDINAMINE

A mixture of 2,4-dichloro-6-(1-piperidinyl)pyrimidine (80 mg, 0.34 mmol), α-methyltryptamine (59 mg, 0.34 mmol), and potassium carbonate (47 mg, 0.34 mmol) in chlorobenzene (1 mL) was heated at 150° C. in a sealed tube for 16 hours. The solvent was removed and the crude material was purified by preparative TLC, eluting with cyclohexane/ethyl acetate (4:1). 4-Chloro-N-[2-(1H-indol-3-yl)-1-methylethyl]-6-(1-piperidinyl)-2-pyrimidinamine (Rf=0.19) was obtained as a solid (64.5 mg, 51%). 1H NMR (300 MHz, CDCl3) δ 8.29 (br s, 1H), 7.68 (br d, 1H, J=7.5), 7.32 (d, 1H, J=7.8), 7.16 (t, 1H, J=7.8), 7.12 (t, 1H, J=7.8), 6.95 (d, 1H, J=2.1), 5.87 (s, 1H), 4.89 (br d, 1H, J=8.1), 4.36 (sextet, 1H, J=6.6), 3.58-3.50 (m, 4H), 3.07 (dd, 1H, J=14.4, 5.1), 2.83 (dd, 1H, J=14.1, 7.2), 1.70-1.55 (m, 6H), 1.16 (d, 3H, J=6.6).


Procedure K:


N-(4-METHYLPHENYL)-2-(1-PIPERAZINYL)-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

A solution of 2-(4-benzyl-1-piperazinyl)-N-(4-methylphenyl)-6-(1-piperidinyl)-4-pyrimidinamine (0.40 g, 0.90 mmol) and ammonium formate (0.28 g, 4.5 mmol) in methanol over 10% palladium/charcoal was stirred at 70° C. for 3 hours. The solution was cooled and passed through celite. The solvent was removed, giving the desired product as a solid (0.21 g, 0.60 mmol, 66%).


Procedure L:


N-(4-METHYLPHENYL)-2-[4-(3-METHYL-2-PYRIDINYL)-1-PIPERAZINYL]-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

A mixture of N-(4-methylphenyl)-2-(1-piperazinyl)-6-(1-piperidinyl)-4-pyrimidinamine (100 mg, 0.284 mmol), 2-bromo-3-methylpyridine (54 mg, 0.312 mmol), 1,1′-(bisdiphenylphosphino)-1,1′-binaphthol (13 mg), tris(dibenzylidene acetone)dipalladium(0) (13 mg), and sodium tert-butoxide (136 mg) in dry toluene (4 mL) was heated at 90° C. in a sealed tube for 2 hours. The reaction was quenched with water and the solution was extracted three times with ethyl acetate. The solvent was dried and removed. The crude material was purified by preparative TLC, eluting with hexane/ethyl acetate (2:1). N-(4-methylphenyl)-2-[4-(3-methyl-2-pyridinyl)-1-piperazinyl]-6-(1-piperidinyl)-4-pyrimidinamine was obtained, from the band at Rf=0.46, as a solid (17.1 mg, 0.0385 mmol, 14%).


Procedure M:


4,6-DICHLORO-2-{4-[3-(TRIFLUOROMETHYL)-2-PYRIDINYL]-1-PIPERZINYL}PYRIMIDINE and 2,4-DICHLORO-6-{4-[3-(TRIFLUOROMETHYL)-2-PYRIDINYL]-1-PIPERAZINYL}PYRIMIDINE


A solution of 4-[3-(trifluoromethyl)-2-pyridinyl]-1-piperazine (127 mg, 0.66 mmol), 2,4,6-trichloropyrimidine (100 mg, 0.55 mmol) and N,N-diisopropylethylamine (95 μL) in tetrahydrofuran (1 mL) was stirred at 0° C. for 15 minutes. At this time, the starting material could no longer be detected by TLC. The solvent was removed and the crude material was purified by preparative TLC, eluting with ethyl acetate/hexane (1:4). Two bands were removed giving 4,6-dichloro-2-{4-[3-(trifluoromethyl)-2-pyridinyl]-1-piperazinyl}pyrimidine (41.7 mg, 0.110 mmol, 17%, Rf=0.41), and 2,4-dichloro-6-{4-[3-(trifluoromethyl)-2-pyridinyl]-1-piperazinyl}pyrimidine (162 mg, 0.429 mmol, 65%, Rf=0.10).


Procedure N:


4-{4-[4-CHLORO-6-(DIMETHYLAMINO)-2PYRIMIDINYL]-1-PIPERAZINYL}PHENOL

DIPEA (4.535 g, 0.0260 mol) was added to a stirred solution of 4-N,N-dimethylamino-2,6-dichloropyrimidine (2.00 g, 0.0104 mol) and 4-(1-piperazinyl)phenol (2.23 g, 0.0125 mol) in THF (50 mL) at room temperature under argon. The resulting mixture was refluxed for 48 h, cooled to room temperature, quenched with water (100 mL), concentrated under reduced pressure and the crude product was redissolved in EtOAc. The organic layer was separated and washed with water (2×100 mL), brine (2×100 mL) and purified by column chromatography on silica using EtOAc/Hexane (1:9), giving the desired product (2.77 g, 80%).


Procedure O:


A solution of p-toludine (0.2 g, 1.87 mmol) in THF (2 mL) was added to a stirred suspension of NaH (0.11 g, 2.79 mmol) in anhydrous THF (2 mL) at room temperature. The resulting mixture was heated at 40° C. for 15 minutes under argon and cooled to room temperature. 6-Chloropyrimidine (0.34 g, 1.03 mmol) in THF (25 mL) was added to the above mixture and the resulting mixture was heated at refluxed for 15 h. The reaction mixture was then cooled to room temperature and quenched with saturated. NH4Cl (2 drops). The crude product was concentrated under reduced pressure and redissolved in EtOAc. The organic layer was separated and washed with aqueous citric acid (2×100 mL), water (2×100 mL) and brine (2×100 mL). The crude product was purified by column chromatography on silica using EtOAc/hexanes (1:4), giving the desired product (0.23 g, 55%).


Procedure P:


2-{4-BENZYL-1-PIPERAZINYL)-N4-(3,4-DICHLOROPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Potassium tert-butoxide (1.6 mmol, 1 M in 2-methyl 2-propanol) was added to a solution of N-[2-(4-benzyl-1-piperazinyl)-6-chloro-4-pyrimidinyl]-N,N-dimethylamine (0.331 g, 0.997 mmol) and 3,4 dichloroaniline (0.178 g, 1.10 mmol) in dioxane (2 mL). Subsequently, tris(dibenzylidineacetone)dipalladium (40 mg, 0.04 mmol) and 2,2′-Bis(diphenylphosphino)-1,1′binapthyl (44 mg, 0.070 mmol) were added and the mixture was stirred for 7 h at 110° C. The resulting mixture was cooled to room temperature and concentrated under reduced pressure. The residue was treated with saturated NaHCO3 (50 mL) and extracted with CH2Cl2 (3×50 mL). The organic layer was washed with brine (2×100 mL), dried over Na2SO4, concentrated in vacuo, and purified by preparative TLC using hexane/EtOAc to give the desired product (300 mg, 65%).


Procedure Q:


N-[2-(4-BENZYL-1-PIPERAZINYL)-6-CHLORO-4-PYRIMIDINYL]-N,N—

DIPEA (5.00 g, 40.0 mmol) was added dropwise to a solution of the N-(2,6-dichloro-4-pyrimidinyl)-N,N-dimethylamine (5.70 g, 29.6 mmol) and benzyl piperazine (6.00 g, 34.0 mmol) in m-xylene (15 mL) The mixture was stirred overnight at 130° C., cooled to room temperature, treated with saturated NaHCO3 (50 mL) and then extracted with CH2Cl2 (3×50 mL). The organic layer was washed with brine (2×100 mL), dried over Na2SO4, and concentrated in vacuo. The crude product was purified by chromatography on silica using EtOAc/hexane (1:3), giving the desired product (6.8 g, 20 mmol, 67%).


Procedure R:


N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-N2-(2-PHENYLETHYL)-2,4,6-PYRIMIDINETRIAMINE

A mixture of N-[4-(dimethylamino)-6-(4-toluidino)-2-pyrimidinyl]-2-phenylacetamide (60 mg, 0.166 mmol), and LAH (1 mL, 1M in THF) in THF (10 mL) was refluxed for 3 h.


The crude product-was concentrated in vacuo and treated with saturated NaHCO3 (50 mL) and extracted with CH2Cl2 (3×50 mL). The organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by preparative TLC using hexane/EtOAc (1:3), giving the desired product (30 mg, 52%).


Procedure S:


N-[4-(DIMETHYLAMINO)-6-(4-TOLUIDINO)-2-PYRIMIDINYL]-2-PHENYLACETAMIDE

A mixture of N4,N4-dimethyl-N6-(4-methylphenyl)-2,4,6-pyrimidinetriamine (122 mg, 0.50 mmol), phenylacetyl chloride (84 mg, 0.55 mmol), and triethylamine (100 mg, 1.00 mmol) in CH2Cl2 was stirred at room temperature for 16 h. The crude product was concentrated in vacuo and treated with saturated NaHCO3 (50 mL) and extracted with CH2Cl2 (3×50 mL). The organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by preparative TLC using hexane/EtOAc (1:3), giving the desired product (60 mg, 33%).


Procedure T:


A mixture of N4-(3-methoxyphenyl)-N6,N6-dimethyl-2-[4-(2-thienylcarbonyl)-1-piperazinyl]-4,6-pyrimidinediamine (28 mg, 0.06 mmol) and LAH (300 uL 1M, 0.3 mmol) in THF (10 mL) was refluxed for 16 h. The crude product was concentrated in vacuo and treated with saturated NaHCO3 (50 mL) and extracted with EtOAc (3×50 mL). The organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by preparative TLC using hexane/EtOAc (1:3), giving the desired product (20 mg, 39%).


Procedure U:


2-[4-(3-METHOXYBENZYL)-1-PIPERAZINYL]-N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

A solution of N4-(3-methoxyphenyl)-N6,N6-dimethyl-2-(1-piperazinyl)-4,6-pyrimidinediamine (36 mg, 0.1 mmol), DIPEA (52 mg, 0.4 mmol), and 1-(chloromethyl)-3-methoxybenzene (20 mg, 0.13 mmol) in 5 mL of dioxane was stirred at 100° C. for 16 h. The crude product was concentrated in vacuo and treated with saturated NaHCO3 (50 mL) and extracted with CH2Cl2 (3×50 mL). The organic layer was washed with brine (2×100 mL), dried over Na2SO4, and concentrated in vacuo. The crude product was purified by chromatography on silica using hexane/EtOAc (1:3), giving the desired product (32 mg, 70%).


Procedure V:


6-CHLORO-N4-(4-METHYLPHENYL)-2,4-PYRIMIDINEDIAMINE

A mixture of 4,6-dichloro-2-pyrimidinamine (1.64 g, 0.01 mol), p-toluidine (1.07 g, 0.01 mol) in dioxane (2 mL) was heated in a sealed tube for 30 minutes at 140° C. The, crude product was treated with NaOH (50 ml, 2M) and extracted with CH2Cl2 (3×50 mL). The organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by chromatography on silica using hexane/EtOAc (1:3), giving the desired product (2 g, 78%).


Procedure W:


N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-2-[4-(2-THIENYLCARBONYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

A mixture of 2-thiophenecarboxylic acid (15 mg, 0.12 mmol), DIPEA (129 mg, 1.00 mmol) and O-(7-azabenzotriazol-1-yl)N,N,N′,N′-tetramethyluronium hexafluorophosphate (44 mg, 0.12 mmol) in DMF (5 mL) was stirred at room temperature for 30 minutes. N4-(3-methoxyphenyl)-N6,N6-dimethyl-2-(1-piperazinyl)-4,6-pyrimidinediamine (36 mg, 0.10 mmol) was added to the above mixture and stirred at room temperature for 16 h. The crude product was treated with saturated NaHCO3 (50 mL) and extracted with EtOAC (3×50 mL). The organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by chromatography on silica using hexane/EtOAc (1:3), giving the desired product (25 mg, 57%).


Procedure X:


2-(4-BENZYL-1-PIPERAZINYL)-N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

A mixture of N4-(3-methoxyphenyl)-N6,N6-dimethyl-2-(1-piperazinyl)-4,6-pyrimidinediamine (36 mg, 0.10 mmol) and benzaldehyde (11 mg, 0.1 mmol) in a solution of methanol (5 mL) and acetic acid (0.5 mL) was stirred at room temperature for 1 h. Sodium cyanoborohydride (7 mg, 0.1 mmol) was added to the above solution and stirred at room temperature for 16 h. The crude product was treated with saturated NaHCO3 (50 mL) and extracted with EtOAC (3×50 mL). The organic layer was washed with brine (2×50 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by chromatography on silica using hexane/EtOAc (1:3), giving the desired product (8 mg, 40%).


Procedure Y:


2-[4-(4-BROMOPHENYL)-1-PIPERAZINYL]-N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

A mixture of N4-(3-methoxyphenyl)-N6,N6-dimethyl-2-(1-piperazinyl)-4,6-pyrimidinediamine (36 mg, 0.1 mmol), 1-bromo-4-fluorobenzene (20 mg, 0.13 mmol) was heated at 100° C. for 1 h. The crude product was dissolved in CH2Cl2 (0.5 mL) and purified by preparative TLC using 5% methanol in EtOAc, giving the desired product (20 mg, 40%).


Procedure Z:


2-[4-(2-METHOXYBENZYL)-1-PIPERAZINYL]-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-4,6-PYRIMIDINEDIAMINE

A mixture of N4,N4-dimethyl-N6-(4-methylphenyl)-2-(1-piperazinyl)-4,6-pyrimidinediamine (30 mg, 0.086 mmol), 1-(chloromethyl)-2-methoxybenzene (17 mg, 0.1 mmol) and triethylamine (200 mg, 2 mmol) in 1 DMF (1 mL) heated by microwave at 200° C. for 12 minutes. The crude product was treated with saturated NaHCO3 (50 mL) and extracted with EtOAC (3×50 mL). The organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by chromatography on silica using hexane/EtOAc (1:3), giving the desired product (10 mg, 27%).


Procedure AA:


N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-2-[4-(2-THIENYLCARBONYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE


A solution of N4-(3-methoxyphenyl)-N6,N6-dimethyl-2-(1-piperazinyl)-4,6-pyrimidinediamine (33 mg, 0.1 mmol), 2-thiophenecarbonyl chloride (20 mg, 0.14 mmol), and triethylamine (40 mg, 0.4 mmol) in CH2Cl2 (5 mL) was stirred at room temperature for 16 h. The crude product was concentrated in vacuo and treated with saturated NaHCO3 (50 mL) and extracted with CH2Cl2 (3×50 mL). The organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by chromatography on silica using hexane/EtOAc (1:3), giving the desired product as a pale red oil (35 mg, 80%).


Procedure BB:


N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2,4,6-PYRIMIDINETRIAMINE

A mixture of 6-chloro-N4-(4-methylphenyl)-2,4-pyrimidinediamine (1.5 g, 6.4 mmol) and N,N-dimethylamine hydrochloride (0.56 g, 7 mmol) and triethylamine (1.4 g, 14 mmol) in DMF (2 mL), was heated at 170° C. for 16 h. The product was filtered out and the organic layer was treated with saturated NaHCO3 (50 mL) and extracted with EtOAC (3×50 mL). The organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by chromatography on silica using hexane/EtOAc (1:3), giving the desired product (0.6 g, 40%).


Procedure CC:


N-(4-METHYLPHENYL)-2-[4-(1-OXIDO-2-PYRIDINYL)-1-PIPERAZINYL]-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

A solution of 3-cholorperbenzoic acid (450 mg, 2.6 mmol), and 30% H2O2 (0.1 mL) in CH2Cl2 (2 mL) was added to a solution of N-(4-methylphenyl)-6-(1-piperidinyl)-2-[4-(2-pyridinyl)-1-piperazinyl]-4-pyrimidinamine (150 mg, 0.300 mmol) in CH2Cl2 at 0° C. The resulting mixture was gradually warmed to room temperature and stirred for 24 h, crude product was treated with saturated NaHCO3 (50 mL) and extracted with EtOAC (3×50 mL). Combined organic layers were washed with brine (2×50 mL), dried over Na2SO4, filtered, concentrated in vacuo, and purified by chromatography on silica using hexane/EtOAc (1:3) to give the desired product.


Piperazines that were not commercially available were synthesized according to the method previously described (Ennis and Ghazal, 1992).


The following are examples to illustrate the compounds of this invention. Procedures A-BB as described above, were used and any modifications are noted in parentheses.


Example 1
N2-CYCLOHEXYL-N2-METHYL-N4-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, G (for substitution with cyclohexylamine), and G. 1H NMR (300 MHz, CDCl3) δ 7.22 (d, 2H, J=7.8), 7.12 (d, 2H, J=7.8), 5.29 (s, 1H), 4.43 (br s, 1H), 3.55-3.44 (m, 5H), 3.01 (s, 3H), 2.33 (s, 3H), 2.00-1.05 (m, 16H).


Example 2
N2-CYCLOHEXYL-N2-(2-METHOXYETHYL)-N4-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, J (130° C.), and F (2 hours). 1H NMR (300 MHz, CDCl3) δ 7.25 (d, 2H, J=8.1), 7.10 (d, 2H, J=8.1), 6.17 (br s, 1H), 5.31 (s, 1H), 4.58-4.43 (m, 1H), 3.61-3.57 (m, 4H), 3.52-3.48 (1,4H), 3.39 (s, 3H), 2.31 (s, 3H), 1.83-1.75 (m, 4H), 1.70-1.50 (m, 7H), 1.43-1.37 (m, 4H), 1.19-1.05 (m, 1H); ESI-MS m/z 424 (MH+).


Example 3
N4-(4-METHYLPHENYL)-N2-PHENYL-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures A, B (for substitution with aniline), and E (100° C., for substitution with piperidine). 1H NMR (300 MHz, CDCl3) δ 7.58 (d, 2H, J=8.7), 7.26 (t, 2H, J=7.8), 7.19 (d, 2H, J=8.7), 7.15 (d, 2H, J=7.8), 6.95 (t, 1H, J=7.8), 6.82 (br s, 1H), 6.48 (br s, 1H), 5.49 (s, 1H), 3.56-3.46 (m, 4H), 2.34 (s, 3H), 1.67-1.52 (m, 6H); ESI-MS m/z 360 (MH+).


Example 4
N2,N4-DI(4-METHYLPHENYL)-6-PIPERIDINO-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D and G (100° C., 12 hours, for substitution of D-toludine at C2 and C4 of the pyrimidine). 1H NMR (300 MHz, CDCl) δ 7.47 (d, 2H, J=8.3), 7.20 (d, 2H, J=7.8), 7.15 (d, 2H, J=8.3), 7.10 (d, 2H, J=8.3), 6.79 (br s, 1H), 6.46 (br s, 1H), 5.52 (s, 1H), 3.51 (t, 4H, J=4.6), 2.36 (s, 3H), 2.31 (s, 3H), 1.69-1.53 (m, 6H); ESI-MS m/z 374 (MH+).


Example 5
N2-(4-CHLOROPHENYL)-N4-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, G (for substitution with 4-chloroaniline), and G (3.5 hours). 1H NMR (300 MHz, CDCl3) δ 8.79 (br s, 1H), 7.72 (br s, 1H), 7.54 (d, 2H, J=8.3), 7.28-7.17 (m, 6H), 5.36 (s, 1H), 3.61-3.46 (m, 4H), 2.36 (s, 3H); 1.76-1.53 (m, 6H); ESI-MS m/z 393 (MH+ with 35Cl), 395(MH+ with 37Cl).


Example 6
N2-METHYL-N4-(4-METHYLPHENYL)-N2-PHENYL-6-(1-PIPERIDINyl)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, G (140° C., 90 minutes, for substitution with aniline), and G (3.5 hours). 1H NMR (300 MHz, CDCl3) δ 7.42-7.33 (m, 4H), 7.18-7.14 (overlapping t at 7.16 & d at 7.15, 3H), 7.07 (d, 2H, 7=7.8), 6.25 (br s, 1H), 5.41 (s, 1H), 3.54 (s, 3H), 3.50-3.42 (m, 4H), 2.33 (s, 3H), 1.68-1.50 (m, 6H); ESI-MS m/z 374 (MH+).


Example 7
N2-METHYL-N2,N4-DI(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, G (180° C., 10 hours, for substitution with N-methyl-p-toluidine), and G (140° C.). 1H NMR (300 MHz, CDCl3) δ 7.27-7.04 (m, 8H), 6.19 (br s, 1H), 5.38 (s, 1H), 3.52 (s, 3H), 3.48-3.41 (m, 4H), 2.38 (s, 3H), 2.31 (s, 3H), 1.67-1.49 (m, 6H); ESI-MS m/z 388 (MH+).


Example 8
N2-[2-(5-METHYL-1H-3-INDOLYL)ETHYL]-N4-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, J, and G (160° C., 12 hours). 1H NMR (300 MHz, CDCl3) δ 8.05 (br s, 1H), 7.43 (s, 1H), 7.23 (d, 1H, J=8.4), 7.15 (d, 2H, J=8.4), 7.10 (d, 2H, J=8.4), 7.00 (d, 1H, J=8.4), 6.98 (s, 1H), 6.43 (br s, 1H), 5.37 (s, 1H), 4.86 (br t, 1H, J=7.1), 3.70 (q, 2H, L=7.1), 3.52-3.43 (m, 4H), 3.02 (t, 2H, J=7.1), 2.46 (s, 3H), 2.32 (s, 3H), 1.67-1.49 (m, 6H); ESI-MS m/z 441 (MH+).


Example 9
N2-[2-(5-METHOXY-1H-3-INDOLYL)ETHYL]-N4-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 36 hours), and G. 1H NMR (300 MHz, CDCl3) δ 8.00 (br s, 1H), 7.15 (d, 2H, J=8.4), 7.12 (d, 2H, J=8.4), 7.08-7.04 (m, 3H), 6.85 (dd, 1H, J=8.8, 2.6), 6.48 (br s, 1H), 5.36 (s, 1H), 4.96 (br s, 1H), 3.85 (s, 3), 3.72-3.67 (m, 2H), 3.55-3.45 (m, 4H), 3.02 (t, 2H, J=6.9), 2.32 (s, 3H), 1.68-1.49 (m, 6H); ESI-MS m/z 457 (MH+).


Example 10
N2-[2-(1H-3-INDOLYL)ETHYL]-N4-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (100° C.), and G (150° C.). 1H NMR (300 MHz, CDCl3) δ 8.34 (br s, 1H), 7.63 (d, 1H, J=7.8), 7.31 (d, 1H, J=7.8), 7.23-7.09 (m, 6H), 6.94 (s, 1H), 6.60 (br s, 1H), 5.36 (s, 1H), 4.95 (t, 1H, J=6.3), 3.68 (dt, 2H, J=6.3, 6.9), 3.48-3.44 (m, 4H), 3.01 (t, 2H, J=6.9), 2.31 (s, 3H), 1.65-1.48 (m, 6H); ESI-MS m/z 427 (MH+).


Example 11
N2-[2-(1H-3-INDOLYL)ETHYL]-N2-METHYL-N4-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 4 hours), and F (12 hours). 1H NMR (300 MHz, CDCl3) δ 8.02 (br s, 1H), 7.71 (d, 1H, J=7.8), 7.36 (d, 1H, J=7.8), 7.22 (d, 2H, J=7.8), 7.20 (t, 1H, J=7.8), 7.17-7.09 (m, 3H), 7.03 (s, 1H), 6.40 (br s, 1H), 5.35 (s, 1H), 3.91 (t, 2H, J=7.8), 3.56-3.46 (m, 4H), 3.16 (s, 3H), 3.09 (t, 2H, J=7.8), 2.33 (S, 3H), 1.70-1.52 (m, 6H); ESI-MS m/z 441 (MH+).


Example 12
N2-[2-(1H-INDOL-3-YL)ETHYL]-N2-METHYL-N4-PHENETHYL-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 12 hours), and G. 1H NMR (300 MHz, CDCl3) δ 8.00 (br s, 1H), 7.71 (d, 1H, J=7.8), 7.34 (t, 2H, J=7.8), 7.24-7.15 (m, 5H), 7.08 (t, 1H, J=7.8), 6.98 (s, 1H), 4.95 (s, 1H), 4.39 (br s, 1H), 3.88 (t, 2H, J=7.8), 3.57-3.48 (m, 6H), 3.12 (s, 3H), 3.05 (t, 2H, J=7.8), 2.89 (t, 2H, J=7.8), 1.68-1.53 (m, 6H); ESI-MS m/z 455 (MH+).


Example 13
N2-[2-(1H-INDOL-3-YL)ETHYL]-N2-METHYL-N4-(2-NAPHTHYL)-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 12 hours, for substitution with N-methyltryptamine), and E (160° C., 12 hours). 1H NMR (300 MHz, CDCl3) δ 7.95 (br s, 1H), 7.92 (s, 1H), 7.78-7.75 (m, 3H), 7.72 (d, 1H, J=8.1), 7.46-7.41 (m, 2H), 7.37 (d, 2H, J=8.4), 7.20 (t, 1H, J=7.8), 7.11 (t, 1H, J=7.8), 7.01 (s, 1H), 6.42 (br s, 1H), 5.45 (s, 1H), 3.95 (t, 2H, J=7.8), 3.56-3.49 (m, 4H), 3.19 (s, 3H), 3.11 (t, 2H, J=7.8), 1.62-1.59 (m, 6H); ESI-MS m/z 477 (MH+).


Example 14
N4-(3-FLUOROPHENYL)-N2-[2-(1H-INDOL-3-YL)ETHYL]-N2-METHYL-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 12 hours, for substitution with N-methyltryptamine), and G. 1H NMR (300 MHz, CDCl3) δ 7.97 (br s, 1H), 7.71 (d, 1H, J=7.8), 7.41 (dt, 1H, J=9.5, 1.0), 7.34 (d, 1H, J=7.8), 7.22-7.06 (m, 4H), 7.02-7.00 (s at 7.02 & d at 7.01 overlapping, 2H), 7.01 (s, 1H), 6.33 (br s, 1H), 5.34 (s, 1H), 3.90 (t, 2H, J=7.8), 3.58-3.50 (m, 4H),3.16 (s, 3H), 3.08 (t, 2H, J=7.8), 1.70-1.54 (m, 6H); ESI-MS m/z 445 (MH+).


Example 15
N4-(3,4-DIFLUOROPHENYL)-N2-[2-(1H-INDOL-3-YL)ETHYL]-N2-METHYL-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 12 hours, for substitution with N-methyltryptamine), and G. 1H NMR (300 MHz, CDCl3) δ 7.99 (br s, 1H), 7.68 (d, 1H, J=7.8), 7.51 (ddd, 1H, J=9.5, 7.8, 2.3), 7.35 (d, 1H, J=7.8), 7.19 (t, 1H, J=7.8), 7.11 (t, 1H, J=7.8), 7.07-6.90 (m, 3H), 7.01 (s, 1H), 6.22 (br s, 1H), 5.23 (s, 1H), 3.89 (t, 2H, J=7.8), 3.57-3.49 (m, 4H), 3.15 (s, 3H), 3.07 (t, 2H, J=7.8), 1.68-1.53 (m, 6H); ESI-MS m/z 463 (MH+).


Example 16
N4-(3-CHLORO-4-METHYLPHENYL)-N2-[2-(1H-INDOL-3-YL)ETHYL]-N2-METHYL-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 12 hours, for substitution with N-methyltryptamine), and G. 1H NMR (300 MHz, CDCl3) δ 7.96 (br s, 1H), 7.69 (d, 1H, J=7.5), 7.51 (s, 1H), 7.36 (d, 1H, J=7.8), 7.19 (t, 1H, J=7.8), 7.14-7.06 (m, 3H), 7.01 (s, 1H), 6.18 (br s, 1H), 5.29 (s, 1H), 3.89 (t, 2H, J=7.8), 3.53-3.48 (m, 4H), 3.13 (s, 3H), 3.07 (t, 2H, J=7.8), 2.31 (s, 3H), 1.70-1.55 (m, 6H); ESI-MS m/z 475 (MH+).


Example 17
N2-[2-(1H-INDOL-3-YL)ETHYL]-N4-(3-METHOXYPHENYL)-N2-METHYL-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 12 hours, for substitution with N-methyltryptamine), and G. 1H NMR (300 MHz, CDCl3) δ 8.02 (br s, 1H), 7.71 (d, 1H, J=7.8), 7.34 (d, 1H, J=8.3), 7.25-7.04 (m, 4H), 7.01 (s, 1H), 6.89 (d, 1H, J=7.8), 6.57 (dd, 1H, J=8.3, 2.4), 6.30 (br s, 1H), 5.42 (s, 1H), 3.91 (t, 2H, J=7.7), 3.76 (s, 3H), 3.57-3.49 (m, 4H), 3.16 (s, 3H), 3.08 (t, 2H, J=7.7), 1.70-1.53 (m, 6H); ESI-MS m/z 457 (MH+).


Example 18
N2-ETHYL-N2-[2-(1H-INDOL-3-YL)ETHYL]-N4-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 12 hours, for substitution with N-ethyltryptamine), and G. 1H NMR (300 MHz, CDCl3) δ 7.97 (br s, 1H), 7.71 (d, 1H, J=7.8), 7.35 (d, 1H, J=7.8), 7.25-7.16 (overlapping d at 7.23 & t at 7.22, 3H), 7.14 (t, 1H, J=7.8), 7.08 (d, 2H, J=7.8), 7.02 (s, 1H), 6.19 (br s, 1H), 5.34 (s, 1H), 3.82 (t, 2H, J=7.9), 3.61 (q, 2H, J=7.1), 3.55-3.45 (m, 4H), 3.08 (t, 2H, J=7.9), 2.30 (s, 6H), 1.68-1.50 (m, 6H), 1.18 (t, 3H, J=7.1); ESI-MS m/z 455 (MH+).


Example 19
N2-[2-(1H-INDOL-3-YL)ETHYL]-N2-(2-METHOXYETHYL)-N4-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 12 hours, for substitution with N-methoxyethyltryptamine), and G. 1H NMR (300 MHz, CDCl3 δ 7.96 (br s, 1H), 7.72 (d, 1H, J=7.5), 7.35 (d, 1H, J=7.8), 7.27-7.07 (m, 6H), 7.02 (s, 1H), 6.19 (br s, 1H), 5.35 (s, 1H), 3.88 (dd, 2H, J=9.9, 5.4), 3.74 (t, 2H, J=6.0), 3.60 (dd, 2H, J=10.5, 4.8), 3.57-3.46 (m, 4H), 3.34 (s, 3H), 3.12-3.07 (m, 2H), 2.32 (s, 6H), 1.70-1.58 (m, 6H); ESI-MS m/z 485 (MH+).


Example 20
N2-[2-(1H-3-INDOLYL)-1-METHYLETHYL]-N4-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, J, and G. 1H NMR (300 MHz, CDCl3) δ 8.10 (br s, 1H), 7.70 (d, 1H, J=7,8), 7.36 (d, 1H, J=8.1), 7.19-6.98 (m, 7H), 6.60 (br s, 1H), 5.35 (s, 1H), 4.89 (br s, 1H), 4.44-4.36 (m, 1H), 3.55-3.45 (m, 4H), 3.14 (dd 1H, J=14.1, 5.1), 2.84 (dd, 1H, J=14.1, 7.5), 2.33 (s, 3H), 1.62-1.50 (m, 6H), 1.18 (d, 3H, J=6.6); ESI-MS m/z 441 (MH+).


Example 21
N2-[2-(1H-INDOL-3-YL)-1-METHYLETHYL]-N2-METHYL-N4-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 12 hours, for substitution with N,α-dimethyltryptamine), and G. 1H NMR (300 MHz, CDCl3) δ 7.92 (br s, 1H), 7.73 (d, 1H, J=7.8), 7.34 (d, 1H, J=7.8), 7.19-7.09 (m, 6H), 7.03 (s, 1H), 6.17 (br s, 1H), 5.34 (s, 1H), 3.51-3.44 (m, 5H), 3.11-3.05 (m, 1H), 3.02 (s, 2H), 2.90 (dd, 1H, J=14.7, 7.5), 2.32 (s, 3H), 1.65-1.49 (m, 6H), 1.18 (d, 3H, J=6.6); ESI-MS m/z 455 (MH+).


Example 22
N2-METHYL-N4-(4-METHYLPHENYL)-N2-PHENETHYL-6-(1-PIPERIDINYL)-2,4-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 12 hours, for substitution at C2 of the pyrimidine), and G. ESI-MS m/z 402 (MH+).


Example 23
2-(4-BENZYL-1-PIPERAZINYL)-N-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

Prepared by Procedures D, I (140° C., overnight, for substitution with N-benzylpiperazine), and F (2 hours). 1H NMR (300 Mz, CDCl3) δ 7.38-7.26 (m, 5H), 7.18 (d, 1H, J=7.8), 7.12 (d, 1H, J=7.8), 6.18 (br s, 1H), 5.34 (s, 1H), 3.93-3.87 (m, 4H), 3.77 (t, 4H, J=5.0), 3.55 (s, 2H), 3.48-3.42 (m, 4H), 2.49 (t, 4H, J=5.0), 2.31 (s, 3H), 1.66-1.49 (m, 6H); ESI-MS m/z 443 (MH+).


Example 24
N-(4-METHYLPHENYL)-2-(4-PHENYL-1-PIPERIDINYL)-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

Prepared by Procedures D, E (16 hours, for substitution with 4-phenylpiperidine), and F (1 hour). 1H NMR (300 MHz, CDCl3) δ 7.34-7.24 (m, 5H), 7.19 (d, 2H, J=7.8), 7.12 (d, 2H, J=7.8), 6.22 (br s, 1H), 5.36 (s, 1H), 4.89 (d with fine splitting, 2H, J=13.0), 3.52-3.42 (m, 4H), 2.86 (dt, 2H, J=1.0, 13.0), 2.73 (tt, 1H, J=11.6, 1.5), 2.32 (s, 3H), 1.89 (d with fine splitting, 2H, 3=12.0), 1.74 (ddd, 2H, J=13.0, 12.0, 1.5), 1.67-1.52 (m, 6H); ESI-MS m/z 428 (MH+).


Example 25
N-(4-METHYLPHENYL)-2-(4-PHENYLPIPERAZINYL)-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

Prepared by Procedures D, G (180° C., 2.5 hours, for substitution with N-phenylpiperazine), and G (140° C., overnight). 1H NMR (300 MHz, CDCl3) δ 7.28 (t, 2H, J=7.8), 7.19 (d, 2H, J=7.8), 7.13 (d, 2H, J=7.8), 6.99 (d, 2H, J=7.8), 6.89 (t, 1H, J=7.8), 6.23 (br s, 1H), 5.38 (s, 1H), 3.91 (t, 2H, J=4.6), 3.54-3.44 (m, 4H), 3.23 (t, 2H, J=4.6), 2.34 (s, 3H), 1.71-1.51 (m, 6H); ESI-MS m/z 429 (MH+).


Example 26
2-[4-(2-ETHYLPHENYL)-1-PIPERAZINYL]-N-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

Prepared by Procedures D, E (120° C.), and F. 1H NMR (300 MHz, CDCl3) δ 7.28 (d, 1H, J=7.8), 7.24-7.08 (m, 7H), 6.37 (br s, 1H), 5.41 (s, 1H), 3.98-3.90 (m, 4H), 3.53-3.47 (m, 4H), 2.99-2.92 (m, 4H), 2.80 (q, 2H, J=8.3), 2.35 (s, 3H), 1.69-1.54 (m, 6H), 1.31 (t, 3H, J=8.3); ESI-MS m/z 457 (MH+).


Example 27
2-[4-(2,6-DIMETHYLPHENYL)-1-PIPERAZINTYL]-N-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

Prepared by Procedures D, E (120° C.), and F. 1H NMR (300 MHz, CDCl3) δ 7.22 (d, 2H, J=7.8), 7.15 (d, 2H, J=7.8), 7.05-7.95 (m, 3H), 6.30 (br s, 1H), 5.39 (s, 1H), 3.88 (t, 4H, J=4.6), 3.53-3.47 (m, 4H), 3.15 (t, 4H, J=4.6), 2.37 (s, 6H), 2.34 (s, 3H), 1.68-1.53 (m, 6H); ESI-MS m/z 457 (MH+).


Example 28
N-{2-[4-(2,4-DIMETHOXYPHENYL)PIPERAZINYL]-6-(1-PIPERIDINYL)-4-PYRIMIDINYL}-N-(4-METHYLPHENYL)AMINE

Prepared by Procedures D, E (150° C., 16 hours), and F (5 hours). 1H NMR (300 MHz, CDCl3) δ 7.18 (d, 2H, J=8.1), 7.12 (d, 2H, J=8.1), 6.88 (d, 1H, J=9.0), 6.50 (d, 1H, J=2.4), 6.43 (dd, 1H, J=8.7, 2.4), 6.23 (br s, 1H), 5.36 (s, 1H), 3.94 (t, 4H, J=7.5), 3.87 (s, 3H), 3.79 (s, 3H), 3.52-3.44 (m, 4H), 3.03 (t, 4H, J=7.5), 2.33 (s, 3H), 1.65-1.52 (m, 6H); ESI-MS m/z 488 (MH+).


Example 29
N-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2-{4-[3-(TRIFLUOROMETHYL)PHENYL]-1-PIPERAZINYL}-4-PYRIMIDINAMINE

Prepared by Procedures D, E (120° C., 16 hours), and F. 1H NMR (300 MHz, CDCl3) δ 7.36 (t, 1H, J=7.8), 7.20-7.09 (m, 7H), 6.25 (br s, 1H), 5.37 (s, 1H), 4.93 (t, 4H, J=4.6), 3.52-3.45 (m, 4H), 3.26 (t, 4H, J=4.6), 2.34 (s, 3H), 1.66-1.52 (m, 6H); ESI-MS m/z 497 (MH+).


Example 30
N-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2-[4-(2-PYRIDYL)-1-PIPERAZINYL]-4-PYRIMIDINAMINE

Prepared by Procedures D, G (120° C., 12 hours, for substitution with N-pyrid-2-ylpiperazine), and G (140° C.). 1H NMR (300 MHz, CDCl3) δ 8.22 (dd, 1H, J=4.4, 1.5), 7.50 (dd, 1H, J=7.8, 1.5), 7.20 (d, 2H, J=8.1), 7.13 (, 2H, J=8.1), 6.69 (d, 1H, J=7.8), 6.63 (t, 1H, J=7.8), 6.26 (br s, 1H), 5.38 (s, 1H), 3.89 (t, 4H, J=4.3), 3.62 (t, 4H, J=4.8), 3.55-3.45 (m, 4H), 2.23 (s, 3H), 1.70-1.52 (m, 6H); ESI-MS m/z 430 (MH+).


Example 31
N-(4-METHYLPHENYL)-2-[4-(3-METHYL-2-PYRIDINYL)-1-PIPERAZINYL]-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

Prepared from 2-(4-benzyl-1-piperazinyl)-N-(4-methylphenyl)-6-(1-piperidinyl)-4-pyrimidinamine by Procedures K and L. 1H NMR (300 MHz, CDCl3) δ 8.19 (dd, 1H, J=4.4, 2.2), 7.42 (dd, 1H, J=7.8, 2.2), 7.19 (d, 2H, J=8.1), 7.12 (d, 2H, J=8.1), 6.85 (dd, 1H, J=7.8, 4.4), 6.20 (br s, 1H), 5.38 (s, 1H), 3.93-3.87 (m, 4H), 3.53-3.48 (m, 4H), 3.24-3.18 (m, 4H), 2.33 (s, 3H), 1.67-1.53 (m, 6H); ESI-MS m/z 444 (MH+).


Example 32
N-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2-{4-[4-(TRIFLUOROMETHYL)-2-PYRIDINYL]-1-PIPERAZINYL}-4-PYRIMIDINAMINE

Prepared by Procedures D, E (16 hours), and F. ESI-MS m/z 498 (MH+).


Example 33
N-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2-{4-[6-(TRIFLUOROMETHYL)-2-PYRIDINYL]-1-PIPERAZINYL}-4-PYRIMIDINAMINE

Prepared by Procedures D, E (16 hours), and F. 1H NMR (300 MHz, CDCl3) δ 7.56 (d, 1H, J=8.1), 7.19 (d, 2H, J=8.4), 7.14 (d, 2H, J=8.4), 6.94 (d, 1H, J=7.2), 6.80 (d, 1H, J=8.7), 6.23 (br s, 1H), 5.37 (s, 1H), 3.90-3.87 (m, 4H), 3.69-3.66 m, 4H), 3.50-4.46 (m, 4H), 2.34 (s, 3H), 1.67-1.53 (m, 6H); ESI-MS m/z 498 (MH+).


Example 34
N-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2-{4-[3-(TRIFLUOROMETHYL)-2-PYRIDINYL]-1-PIPERAZINYL}-4-PYRIMIDINAMINE

Prepared by Procedures D, E (16 hours), and F. 1H NMR (300 MHz, CDCl3) δ 8.43 (dd, 1H, J=4.4, 2.2), 7.87 (dd, 1H, J=7.8, 2.2), 7.19 (d, 2H, J=8.1), 7.13 (d, 2H, J=8.1), 6.99 (dd, 1H, J=7.8-4.4), 6.23 (br s, 1H), 5.37 (s, 1H), 3.89 (t, 4H, J=4.8), 3.53-3.48 (m, 4H), 3.36 (t, 4H, J=4.8), 2.33 (s, 3H), 1.67-1.53 (m, 6H); ESI-MS m/z 498 (MH+).


Example 35
N-CYCLOHEXYL-6-(1-PIPERIDINYL)-2-{4-[3-(TRIFLUOROMETHYL)-2-PYRIDINYL]-1-PIPERAZINYL}-4-PYRIMIDINAMINE

Prepared by Procedures M, E (120° C., for addition of piperidine), and F (3 hours). 1H NMR (300 MHz, CDCl3) δ 8.43 (d, 1H, J=5.6), 7.84 (d, 1H, J=7.4), 6.95 (dd, 1H, J=7.4, 5.6), 4.95 (s, 1H), 4.34 (br s, 1H), 3.84 (t, 4H, J=5.1), 3.55-3.38 (m, 5H), 3.34 (t, 4H, J=5.1), 2.02 (dd, 2H, J=12.0, 1.4), 1.79-1.71 (m, 2H), 1.69-1.52 (m, 6H), 1.44-1.10 (m, 6H); ESI-MS m/z 490 (MH+).


Example 36
N-BICYCLO[2.2.1]HEPT-2-YL-6-(1-PIPERIDINYL)-2-{4-[3-(TRIFLUOROMETHYL)-2-PYRIDINYL]-1-PIPERAZINYL}-4-PYRIMIDINAMINE

Prepared by Procedures M, E (120° C., for addition of piperidine), and F (3 hours). 1H NMR (300 MHz, CDCl3) δ 8.42 (d, 1H, J=5.6), 7.86 (d, 1H, J=7.4), 6.95 (dd, 1H, J=7.4, 5.6), 4.95 (s, 1H), 4.37 (br s, 1H), 3.84 (t, 4H, J=5.1), 3.57-3.47 (m, 4H), 3.40-3.31 (m, 5H), 2.25 (br s, 2H), 1.78 (ddd, 2H, J=13.0, 4.6, 1.4), 1.67-1.42 (m, 9H), 1.25-1.12 (m, 4H); ESI-MS m/z 502 (MH+).


Example 37
N-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2-[4-(2-PYRIMIDINYL)-1-PIPERAZINYL]-4-PYRIMIDINAMINE

Prepared by Procedures D, G (120° C., 12 hours, for substitution with N-pyrimid-2-ylpiperazine), and G (150° C. 24 hours). 1H NMR (300 MHz, CDCl3) δ 8.33 (d, 2H, J=4.9), 7.19 (d, 2H, J=0.8), 7.13 (d, 2H, J=7.8), 6.50 (t, 1H, J=7.8), 6.23 (br s, 1H), 5.37 (s, 1H), 3.97-3.82 (m, 8H), 3.56-3.44 (m, 4H), 2.34 (s, 3H), 1.70-1.53 (m, 6H); ESI-MS m/z 431 (MH+).


Example 38
N-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2-(1-PYRROLIDINYL)-4-PYRIMIDINAMINE

Prepared by Procedures D, G (120° C., 3 hours, for substitution with pyrrolidine), and G (140° C., 12 hours). 1H NMR (300 MHz, CDCl3) δ 7.20 (d, 2H, J=7.8), 7.11 (d, 2H, J=7.8), 6.39 (br s, 1H), 5.34 (s, 1H), 3.56 (t, 4H, J=5.6), 3.53-3.44 (m, 4H), 2.33 (s, 3H), 1.91 (quintet, 4H, J=5.6), 1.67-1.50 (m, 6H); ESI-MS m/z 338 (MH+).


Example 39
N-[2-(2,3-DIHYDRO-1H-INDOL-1-YL)-6-(1-PIPERIDINYL)-4-PYRIMIDINYL]-N-(4-METHYLPHENYL)AMINE

Prepared by Procedures D, E (16 hours), and F. 1H NMR (300 MHz, CDCl3) δ 8.31 (d, 1H, J=7.8), 7.28-7.15 (m, 6H), 6.86 (t, 1H, J=7.8), 6.31 (br s, 1H), 5.49 (s, 1H), 4.22 (t, 4H, J=8.3), 3.59-3.53 (m, 4H), 3.13 (t, 4H, J=8.3), 2.35 (s, 3H), 1.70-1.55 (m, 6H); ESI-MS m/z 386 (MH+).


Example 40
N-(4-METHYLPHENYL)-N-[6-(1-PIPERIDINYL)-2-(1,2,3,4-TETRAHYDRO-1-QUINOLINYL)-4-PYRIMIDINYL]AMINE

Prepared by Procedures D, G (180° C., 3 hours, for substitution with 1,2,3,4-tetrahydroquinoline), and G (140° C., 12 hours). 1H NMR (300 MHz, CDCl3) δ 7.87 (d, 1H, J=7.8), 7.19 (d, 2H, J=7.8), 7.15-7.07 (m, 4H), 6.93 (t, 1H, J=7.8), 6.33 (br s, 1H), 5.49 (s, 1H), 4.04 (t, 2H, J=6.0), 3.54-3.44 (m, 4H), 2.79 (t, 2H, J=6.0), 2.34 (s, 3H), 1.98 (pentet, 2H, J=6.0), 1.69-1.52 (m, 6H); ESI-MS m/z 400 (MH+).


Example 41
N-(4-METHYLPHENYL)-N-[6-(1-PIPERIDINYL)-2-(1,2,3,4-TETRAHYDRO-2-ISOQUINOLINYL)-4-PYRIMIDINYL]AMINE

Prepared by Procedures D, G (180° C., 3 hours, for substitution with 1,2,3,4-tetrahydroisoquinoline), and G (140° C., 12 hours). 1H NMR (300 MHz, CDCl3) δ 7.56 (d, 1H, J=7.8), 7.26-7.06 (m, 7H), 6.37 (br s, 1H), 5.35 (s, 1H), 4.89 (s, 2H), 4.00 (t, 2H, J=6.0), 3.58-3.44 (m, 4H), 2.91 (t, 2H, J=6.0), 2.32 (s, 3H), 1.68-1.47 (m, 6H); ESI-MS m/z 400 (MH+).


Example 42
N-[2-(6,7-DIMETHOXY-3,4-DIHYDRO-2(1H)-ISOQUINOLINYL)-6-(1-PIPERIDINYL)-4-PYRIMIDINYL]-N-(4-METHYLPHENYL)AMINE

Prepared by Procedures D, E (160° C., 12 hours), and F (5 hours). 1H NMR (300 MHz, CDCl3) δ 7.19 (d, 2H, J=7.8), 7.13 (d, 2H, J=7.8), 6.70 (s, 1H), 6.64 (s, 1H), 6.25 (br s, 1H), 5.36 (s, 1H), 4.82 (s, 2H), 4.01 (t, 2H, J=5.9), 3.89 (s, 3H), 3.87 (s, 3H), 3.58-3.44 (m, 4H), 2.84 (t, 2H, J=5.9), 2.33 (s, 3H), 1.68-1.52 (m, 6H); ESI-MS m/z 460 (MH+).


Example 43
N-[2-(2,3-DIHYDRO-1H-BENZO[DE]ISOQUINOLIN-2-YL)-6-(1-PIPERIDINYL)-4-PYRIMIDINYL]-N-(4-METHYLPHENYL)AMINE

Prepared by Procedures D, E (160° C., 12 hours), and G. ESI-MS m/z 436 (MH+).


Example 44
4-PHENYL-1-[4-(1-PIPERIDINYL)-6-(4-TOLUIDINO)-2-PYRIMIDINYL]-4-PIPERIDINOL

Prepared by Procedures D, E (23 hours), and F. 1H NMR (300 MHz, CDCl3) δ 7.51 (d, 2H, J=7.5), 7.36 (t, 2H, J=7.8), 7.26 (t, 1H+CHCl3, J=7.8), 7.19 (d, 2H, J=8.4), 7.12 (d, 2H, J=8.4), 6.20 (br s, 1H), 5.36 (s, 1H), 4.67 (br d, 2H, J=13.5), 3.50-3.45 (m, 4H), 4.67 (br t, 2H, J=13.1), 2.33 (s, 3H), 2.10 (dt, 2H, J=4.2, 12.6), 1.78 (br d, 2H, J=13.5), 1.65-1.53 (m, 6H); ESI-MS m/z 444 (MH+).


Example 45
N2,N2-BIS(2-METHOXYETHYL)-N4-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-2,4 PYRIMIDINEDIAMINE

Prepared by Procedures D, G [140° C., 2 hours, for substitution with bis(methoxyethyl)amine], and G (140° C., 1.5 hours). 1H NMR (300 MHz, CDCl3) δ 7.20 (d, 2H, J=7.8), 7.10 (d, 2H, J=7.8), 6.20 (br s, 1H), 5.33 (s, 1H), 3.77 (t, 4H, J=6.2), 3.59 (t, 4H, J=6.3), 3.47-3.40 (m, 4H), 3.36 (s, 6H), 1.64-1.49 (m, 6H); ESI-MS m/z 400 (MH+).


Example 46
N-(4-METHYLPHENYL)-2-(3-PHENYL-4-MORPHOLINYL)-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

Prepared by Procedures D, E (16 hours), and F (1 hour). 1H NMR (300 MHz, CDCl3) δ 7.51 (d, 2H, J=7.8), 7.31 (t, 2H, J=7.8), 7.23 (t, 1H, J=7.8), 7.15 (d, 2H, J=7.8), 7.10 (d, 2H, J=7.8), 6.22 (br s, 1H), 5.84 (d, 1H, J=1.0), 5.36 (s, 1H), 4.51-4.42 (m, 2H), 3.94 (m, 2H), 3.66 (dt, 1H, J=1.0, 11.5), 3.49-3.43 (m, 4H), 3.24 (dt, 1H, J=1.5, 11.5), 2.32 (s, 3H), 1.64-1.47 (m, 6H); ESI-MS m/z 430 (MH+).


Example 47
N-(4-METHYLPHENYL)-2-(2-PHENYL-4-MORPHOLINYL)-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

Prepared by Procedures D, E (14 hours), and F (100° C., 2 hours). 1H NMR (300 MHz, CDCl3) 1H NMR (300 MHz, CDCl3) δ 7.46 (d, 2H, J=7.8), 7.38 (t, 2H, J=7.8), 7.34 (t, 1H, J=7.8), 7.18 (d, 2H, J=8.7), 7.13 (d, 2H, J=8.4), 6.19 (br s, 1H), 5.38 (s, 1H), 4.70 (br d, 1H, J=12.6), 4.58-4.51 (m, 1H), 4.11 (dd, 1H, J=10.2, 2.4), 3.80 (dt, 1H, J=2.7, 11.7), 3.50-3.43 (m, 4H), 3.10 (dt, 1H, J=2.1, 12.8), 2.89 (dd, 1H, J=13.2, 10.2), 2.33 (s, 3H), 1.66-1.50 (m, 6H); ESI-MS m/z 430 (MH+).


Example 48
N-(4-METHYLPHENYL)-2-[(2S,3R)-3-METHYL-2-PHENYLMORPHOLINYL]-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

Prepared by Procedures D, E (120° C.), and F (1 hour). 1H NMR (300 MHz, CDCl3) δ 7.42 (d, 2H, J=7.8), 7.39 (t, 2H, J=7.8), 7.27 (t, 1H, J=7.8), 7.20 (d, 2H, J=7.8), 7.14 (d, 2H, J=7.8), 6.25 (br s, 1H), 5.39 (s, 1H), 4.99-4.90 (m, 1H), 4.77 (d, 1H, J=1.5), 4.39 (dd, 1H, J=13.0, 1.5), 4.15 (dd, 1H, J=8.3, 1.5), 3.80 (dt, 1H, J=3.7, 11.6), 3.53-3.45 (m, 4H), 3.26 (dt, 1H, J=3.7, 13.0), 2.33 (s, 3H), 1.68-1.52 (m, 6H), 0.90 (d, 3H, J=8.3); ESI-MS m/z 444 (MH+).


Example 49
2-[(2R,3R)-3-(METHOXYMETHYL)-2-PHENYLMORPHOLINYL]-N-(4-METHYLPHENYL)-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

Prepared by Procedures D, E, and F (3 hours). 1H NMR (300 MHz, CDCl3) δ 7.56 (d, 2H, J=7.8), 7.31 (t, 2H, J=7.8), 7.27-7:20 (m, 3H), 7.13 (d, 2H, J=7.8), 6.31 (br s, 1H), 5.84 (d, 1H, J=1.0), 5.35 (dd, 1H, J=9.3, 2.7), 5.11 (s, 1H), 4.28 (d with splitting, 1H, J=13.0), 4.01 (t, 1H, J=9.0), 3.58-3.46 (m, 6H), 3.40 (s, 3H), 3.27-3.15 (m, 1H), 2.31 (s, 3H), 1.69-1.50 (m, 6H); ESI-MS m/z 473 (MH+).


Example 50
N4,N4-DIMETHYL-N2,N6-DIPHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (140° C., overnight). 1H NMR (300 MHz, CDCl3) δ 7.68 (d, 2H, J=7.8), 7.38-7.27 (m, 6H), 7.11-7.04 (m, 1H), 6.95 (t, 1H, J=7.8), 6.75 (br s, 1H), 6.38 (br s, 1H), 5.45 (s, 1H), 3.06 (s, 6H); ESI-MS m/z 306 (MH+).


Example 51
N4,N4-DIMETHYL-N6-(2-METHYLPHENYL)-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (140° C., overnight). 1H NMR (300 MHz, CDCl3) δ 7.63 (d, 2H, J=7.5), 7.43 (d, 1H, J=7.5), 7.31-7.24 (m, 3H), 7.21 (d, 1H, J=7.8), 7.11 (t, 1H, J=7.4), 6.96 (t, 1H, J=7.7), 6.73 (br s, 1H), 6.12 (br s, 1H), 5.16 (s, 1H), 3.01 (s, 6H), 2.29 (s, 3H); ESI-MS m/z 320 (MH+).


Example 52
N4,N4-DIMETHYL-N6-(3-METHYLPHENYL)-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (140° C., overnight). 1H NMR (300 MHz; CDCl3) δ 7.63 (d, 2H, J=7.8), 7.29 (t, 2H, J=7.8), 7.21 (d, 1H, J=8.1), 7.16-7.11 (m, 2H), 6.97 (d, 1H, J=8.1), 6.91 (d, 1H, J=7.5), 6.78 (br s, 1H), 6.38 (br s, 1H), 5.44 (s, 1H), 3.05 (s, 6H), 2.35 (s, 3H); ESI-MS m/z 320 (MH+).


Example 53
N4,N4-DIMETHYL-N6-(3-METHYLPHENYL)-N2-(4-METHYLPHENYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (overnight). 1H NMR (300 MHz, CDCl3) δ 7.50 (d, 2H, J=7.8), 7.25-7.08 (m, 5H), 6.90 (d, 1H, J=7.5), 6.86 (br s, 1H), 6.54 (br s, 1H), 5.44 (s, 1H), 3.05 (s, 6H), 2.34 (s, 3H), 2.31 (s, 3H); ESI-MS m/z 334 (MH+).


Example 54
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (140° C., overnight). 1H NMR (300 MHz, CDCl3) δ 7.63 (d, 2H, J=7.8), 7.28 (t, 2H, J=7.5), 7.21 (d, 2H, J=7.8), 7.15 (d, 2H, J=8.1), 6.96 (t, 1H, J=7.5), 6.71 (br s, 1H), 6.29 (br s, 1H), 5.39 (s, 1H), 3.04 (s, 6H), 2.34 (s, 3H); ESI-MS m/z 320 (MH+).


Example 55
N2-(3,4-DICHLOROPHENYL)-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures B, C, and G (180° C., 3 hours). 1H NMR (300 MHz, CDCl3) δ 8.04 (d, 1H, J=2.1), 7.27 (d, 1H, J=7.8), 7.24 (dd, 1H, J=7.8, 2.1), 7.19 (d, 2H, J=8.7), 7.15 (d, 2H, J=8.7), 7.01 (br s, 1H), 6.59 (br s, 1H), 5.39 (s, 1H), 3.04 (s, 6H), 2.35 (s, 3H); ESI-MS m/z 388 (MH+ with 35Cl, 35Cl), 390 (MH+ with 35Cl, 37Cl), 392 (MH+ with 37Cl).


Example 56
N4,N4-DIMETHYL-N2,N6-BIS (4-METHYLPHENYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures B, C, and G (180° C., 3 hours). 1H NMR (300 MHz, CDCl3) δ 7.49 (d, 2H, J=8.7), 7.19 (d, 2H, J=8.4), 7.14 (d, 2H, J=8.4.), 7.08 (d, 2H, J=8.4), 6.73 (br s, 1H), 6.39 (br s, 1H), 5.37 (s, 1H), 3.02 (s, 6H); ESI-MS m/z 334 (MH+).


Example 57
N4-(3-FLUOROPHENYL)-N6,N6-DIMETHYL-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (140° C., overnight). 1H NMR (300 MHz, CDCl3) δ 7.62 (d, 2H, J=7.8), 7.34-7.23 (m, 5H), 7.01 (t, 1H, J=7.4), 6.77 (br s, 1H), 6.38 (br s, 1H), 5.43 (s, 1H), 3.07 (s, 6H); ESI-MS m/z 324 (MH+).


Example 58
N2-(4-CHLOROPHENYL)-N6,N6-DIMETHYL-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (150° C., overnight). 1H NMR (300 MHz, CDCl3) δ 7.60 (d, 2H, J=7.5), 7.32-7.26 (m, 6H), 6.96 (t, 1H, J=7.5), 6.77 (br s, 1H), 6.34 (br s, 1H), 5.34 (s, 1H), 3.04 (s, 6H); ESI-MS m/z 340 (MH+ with 37Cl), 342 (MH+ with 37Cl).


Example 59
N4-(4-BROMOPHENYL)-N6,N6-DIMETHYL-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (150° C., overnight). 1H NMR (300 MHz, CDCl3) δ 7.59 (d, 2H, J=8.5), 7.42 (d, 2H, J=8.5), 7.31-7.22 (m, 4H), 6.98 (t, 1H, J=7.2), 6.92 (br s, 1H), 6.48 (br s, 1H), 5.35 (s, 1H). 3.05 (s, 6H); ESI-MS m/z 384 (MH+ with 79Br), 386 (MH+ with 81Br).


Example 60
N4-(3,4-DICHLOROPHENYL)-N6,N6-DIMETHYL-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (0.5 mL diisopropylethylamine added, 150° C., overnight). 1H NMR (300 MHz, CDCl3) δ 7.61 (d with s at the center, 3H, J=7.8), 7.34 (d, 2H, J=7.8), 7.29 (d, 1H, J=8.7), 7.17 (dd, 1H, J=8.7, 2.6), 6.98 (t, 1H, J=7.8), 6.80 (br s, 1H), 6.33 (br s, 1H), 5.33 (s, 1H), 3.07 (s, 6H); ESI-MS m/z 373 (MH+).


Example 61
N4-(4-CHLORO-3-METHYLPHENYL)-N6,N6-DIMETHYL-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (150° C., 1 hour). 1H NMR (300 MHz, CDCl3) δ 7.61 (dd, 2H, J=7.4, 0.9), 7.30-7.25 (m, 3H), 7:19 (d, 1H, J=2.4), 7.12 (dd, 1H, J=8.5, 2.4), 6.97 (t, 1H, J=7.4), 6.88 (br s, 1H), 6.44 (br s, 1H), 5.35 (s, 1H), 3.05 (s, 6H), 2.35 (s, 3H); ESI-MS m/z 454 (MH+ with 35Cl), 456 (MH+ with 37Cl).


Example 62
N4-(3-CHLORO-4-METHYLPHENYL)-N6,N6-DIMETHYL-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and F (100° C., 3 hours). 1H NMR (300 MHz, CDCl3) δ 7.63 (d, 2H, J=7.8), 7.41 (d, 1H, J=1.8), 7.30 (t, 2H, J=7.8), 7.18 (d, 1H, J=7.8), 7.09 (dd, 1H, J=7.8, 1.8), 6.98 (t, 1H, J=7.8), 6.67 (br s, 2H), 5.35 (s, 1H), 3.07 (s, 6H), 2.37 (s, 3H); ESI-MS m/z 454 (MH+ with 35Cl), 456 (MH+ with 37Cl).


Example 63
N4-(4-tert-BUTYLPHENYL)-N6,N6-DIMETHYL-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (150° C., 5 hours). 1H NMR (300 MHz, CDCl3) δ 7.62 (d, 2H, J=7.5), 7.36 (d, 2H, J=8.7), 7.29 (d, 2H, J=7.5), 7.25 (t, 2H, J=8.7), 6.95 (t, 1H, J=7.4), 6.69 (br s, 1H), 6.30 (br s, 1H), 5.44 (s, 1H), 3.05 (s, 6H), 1.33 (s, 9H); ESI-MS m/z 362 (MH+).


Example 64
N4,N4-DIMETHYL-N6-(4-PHENOXYPHENYL)-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (150° C., 2 hours). 1H NMR (300 MHz, CDCl3) δ 7.61 (d, 2H, J=7.8), 7.35 (t, 2H, J=7.8), 7.31-7.24 (m, 3H), 7.12 (t, 2H, J=7.8), 7.08-7.04 (m, 3H), 6.98 (t, 1H, J=8.1), 6.74 (br s, 1H), 6.71 (dd, 1H, J=7.8, 2.0), 6.43 (br s, 1H), 5.41 (s, 1H), 3.03 (s, 6H); ESI-MS m/z 398 (MH+).


Example 65
N4,N4-DIMETHYL-N6-(2-NAPHTHYL)-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (150° C., 2 hours). 1H NMR (300 MHz, CDCl3) δ 7.81 (s, 1H), 7.80 (d, 1H, J=7.5), 7.75 (d, 2H, J=7.8), 7.65 (d, 2H, J=7.5), 7.49-7.37 (m, 3H), 7.29 (t, 2H, J=7.5), 6.98 (t, 1H, J=8.1), 6.85 (br s, 1H), 6.59 (br s, 1H), 5.51 (s, 1H), 3.06 (s, 6H); ESI-MS m/z 356 (MH+).


Example 66
N4-CYCLOHEXYL-N6,N6-DIMETHYL-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (140° C., 2 days). 1H NMR (300 MHz, CDCl3) δ 7.62 (d, 2H, J=8.1), 7.26 (t, 2H, J=8.1), 6.92 (t, 1H, J=8.1), 6.64 (br s, 1H), 4.96 (s, 1H), 4.39 (br d, 1H, J=8.1), 3.53-3.44 (m, 1H), 3.05 (s, 6H), 2.09-1.99 (m, 2H), 1.80-1.55 (m, 4H), 1.44-1.11 (m, 4H); ESI-MS m/z 312 (MH+).


Example 67
N4,N4-DIMETHYL-N6-(4-METHYLCYCLOHEXYL)-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (150° C., overnight). ESI-MS m/z 326 (MH+).


Example 68
N4-(4-tert-BUTYLCYCLOHEXYL)-N6,N6-DIMETHYL-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (150° C., overnight). 1H NMR (300 MHz, CDCl3) δ 7.62 (d, 2H, J=8.4), 7.26 (t, 2H, J=7.7), 6.92 (t, 1H, J=7.1), 6.61 (br s, 1H), 4.96 (s, 1H), 4.32 (br d, 1H J=8.4), 3.46-3.37 (m, 1H), 3.06 (s, 6H), 1.88-1.80 ((m, 2H), 1.29-1.20 (m, 1H), 1.19-0,97 (m, 4H), 0.87 (s, 9H); ESI-MS m/z 368 (MH+).


Example 69
N4-BICYCLO[2.2.1]HEPT-2-YL-N6,N6-DIMETHYL-N2-PHENYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (140° C.). 1H NMR (300 MHz, CDCl3) δ 7.62 (d, 2H, J=7.8), 7.26 (t, 2H, J=8.0), 6.92 (t, 1H, J=7.2), 6.62 (br s, 1H), 4.94 (s, 1H), 4.42 (br d, 1H, J=5.4), 3.45-3.37 (m, 1H), 3.06 (S, 6H), 2.33-2.27 (m, 1H), 1.82 (dd, 1H, J=12.3, 6.0), 1.56-1.42 (m, 2H), 1.30-1.14 (m, 5H), 0.91-0.85 (m, 1H); ESI-MS m/z 324 (MH+).


Example 70
N4,N4-DIMETHYL-N2-PHENYL-N6-(1,7,7-TRIMETHYLBICYCLO[2.2.1]HEPT-2-YL)-2,4,6-PYRIMIDINETRIAMINE

Prepared b Procedures A, C, and G (overnight). 1H NMR (300 MHz, CDCl3) δ 7.62 (d, 2H, J=7.8), 7.26 (t, 2H, J=7.8), 6.93 (t, 1H, J=7.7), 6.87 (br s, 1H), 4.95 (s, 1H), 4.80 (br d, 1H, J=6.9), 3.94-3.84 (m, 1H), 3.06 (s, 6H), 2.45-2.34 (m, 1H), 1.82-1.62 (m, 3H), 1.46-1.32 (m, 1H), 1.29-1.16 (m, 2H), 0.99 (s, 3H), 0.90 (s, 3H), 0.89 (s, 3H); ESI-MS m/z 366 (MH+).


Example 71
N4,N4-DIMETHYL-N2-PHENYL-N6-[(2R,3S)-3,6,6-TRIMETHYLBICYCLO[3.1.1]HEPT-2-YL]-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, C, and G (5 hours). 1H NMR (300 MHz, CDCl3) δ 7.64 (d, 2H, J=8.1), 7.26 (t, 2H, J=8.1), 6.92 (t, 1H, J=7.4), 6.72 (br s, 1H), 4.99 (s, 1H), 4.47 (br d, 1H, J=8.4), 4.05-3.91 (m, 1H), 3.06 (s, 6H), 2.72-2.62 (m, 1H), 2.46-2.36 (m, 1H), 2.00-1.45 (m, 5H), 1.25 (s, 3H), 1.16 (d, 3H, J=7.8), 1.10 (s, 3H); ESI-MS m/z 366 (MH+).


Example 72
N2,N4,N4-TRIMETHYL-N2,N6-BIS(4-METHYLPHENYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures D, E (150° C., 16 hours), and F (5 hours). 1H NMR (300 MHz, CDCl3) δ 7.26 (d, 2H, J=8.1), 7.15 (br d, 4H, J=8), 7.04 (d, 2H, J=8.1), 6.19 (br s, 1H), 5.29 (s, 1H), 3.50 (s, 3H), 2.94 (s, 6H), 2.36 (s, 3H), 2.29 (s, 3H); ESI-MS m/z 348 (MH+).


Example 73
N2-CYCLOHEXYL-N2,N4,N4-TRIMETHYL-N6-(4-METHYLPHENYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures D, E (150° C., 12 hours), and F (5 hours). 1H NMR (300 MHz, CDCl3) δ 7.25 (d, 2H, J=8.4), 7.10 (d, 2H, J=8.1), 6.26 (br s, 1H), 5.22 (s, 1H), 4.66-4.52 (m, 1H), 3.01 (s, 3H), 2.99 (s, 6H), 2.32 (s, 3H), 1.87-1.64 (m, 5H), 1.52-1.35 (m, 4H), 1.22-1.06 (m, 1H); ESI-MS m/z 340 (MH+).


Example 74
N2-CYCLOHEXYL-N2-(2-METHOXYETHYL)-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures H, J (overnight), and F (2 hours). 1H NMR (300 MHz, CDCl3) δ 7.28 (d, 2H, J=8.1), 7.11 (d, 2H, J=8.1), 6.19 (br s, 1H), 5.22 (s, 1H), 4.60-4.50 (m, 1H), 3.64-3.55 (m, 4H), 3.39 (s, 3H), 2.99 (s, 6H), 2.31 (s, 3H), 1.83-1.75 (m, 4H), 1.73-1.63 (m, 1H), 1.52-1.38 (m, 4H), 1.19-1.05 (m, 1H); ESI-MS m/z 384 (MH+).


Example 75
2-(2,3-DIHYDRO-1H-INDOL-1-YL)-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures H, E (150° C., 16 hours), and F (2 hours). 1H NMR (300 MHz, CDCl3) δ 8.37 (d, 1H, J=7.8), 7.26 (d, 2H, J=7.8), 7.20-7.11 (m, 4H), 6.86 (t, 1H, J=7.8), 6.31 (br s, 1H), 5.39 (s, 1H), 4.24 (t, 4H, J=8.3), 3.13 (t, 4H, J=8.3), 3.07 (s, 6H), 2.35 (s, 3H); ESI-MS m/z 346 (MH+).


Example 76
N2-[2-(1H-3-INDOLYL)ETHYL]-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures H, J, and G. 1H NMR (300 MHz, CDCl3) δ 8.19 (br s, 1H), 7.65 (d 1H, J=7.8), 7.36 (d, 1H, J=7.8), 7.21-7.09 (m, 6H), 7.04 (s, 1H), 6.52 (br s, 1H), 5.28 (s, H), 4.95 (br d, 1H, J=7.2), 3.72 (q, 2H, J=7.2), 3.06 (t, 2H, J=7.8), 2.99(s, 6H), 2.32 (s, 3H); ESI-MS m/z 387 (MH+).


Example 77
N2-[2-(1H-INDOL-3-YL)ETHYL]-N2,N4,N4-TRIMETHYL-N6-(4-METHYLPHENYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures H, J, and G or F. 1H NMR (300 MHz, CDCl3) δ 8.14 (br s, 1H), 7.70 (d 1H, J=7.8), 7.32 (d, 1H, J=7.8), 7.22 (d, 2H, J=7.8), 7.17 (t, 1H, J=7.2), 7.12 (t, 1H, J=7.2), 7.08 (d, 2H, J=7.8), 6.98 (s, 1H), 6.36 (br s, 1H), 5.25 (s, 1H), 3.90 (t, 2H, J=7.8), 3.14 (s, 3H), 3.07 (t, 2H, J=7.8), 2.99(s, 6H), 2.30 (s, 3H); ESI-MS m/z 401 (MH+).


Example 78
N4-(3,4-DICHLOROPHENYL)-N2-[2-(1H-3-INDOLYL)ETHYL]-N2,N6,N6-TRIMETHYL-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures H, J, and G. 1H NMR (300 MHz, CDCl3) δ 8.00 (br s, 1H), 7.75 (s, 1H), 7.68 (d 1H, J=7.8), 7.35 (d, 1H, J=7.8), 7.24-7.15 (m, 3H), 7.10 (t, 1H, J=7.2), 7.00 (s, 1H), 6.23 (br s, 1H), 5.15 (s, 1H), 3.90 (t, 2H, J=7.8); 3.14 (s, 3H), 3.08 (t, 2H, J=7.8), 3.03 (s, 6H); ESI-MS m/z 455 (MH+ with 35Cl), 457 (MH+ with 37Cl).


Example 79
N2-[2-(1H-INDOL-3-YL)ETHYL]-N2,N4,N4-TRIMETHYL-(2-NAPHTHYL)-6-(1-PIPERIDINYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures D, E (160° C., 28 hours), and G. 1H NMR (300 MHz, CDCl3) δ 8.18 (br s, 1H), 7.92 (s, 1H), 7.90-7.03 (m, 10H), 6.95 (s, 1H), 6.84 (br s, 1H), 5.34 (s, 1H), 3.90 (t, 2H, J=7.8), 3.17 (s, 3H), 3.07 (t; 2H, J=7.8), 2.96 (s, 6H); ESI-MS m/z 437 (MH+).


Example 80
1-[4-(DIMETHYLAMINO)-6-(4-TOLUIDINO)-2-PYRIMIDINYL]-4-PHENYL-4-PIPERIDINOL

Prepared by Procedures H, E (150° C., 10 hours), and F (3 hours). 1H NMR (300 MHz, CDCl3) δ 7.43 (d, 2H, J=7.8), 7.35 (t, 2H, J=7.8), 7.27-7.21 (m, 3H), 7.14 (d, 2H, J=7.8), 6.24 (br s, 1H), 6.18 (br s, 1H), 5.28 (s, 1H), 4.43-4.37 (m, 2H), 4.03 (t, 2H, J=5.6), 3.06-2.97 (m with s at 3.03, 8H), 2.66-2.58 (m, 2H), 2.34 (s, 3H).


Example 81
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2-(4-PHENYL-1-PIPERIDINYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures H, E (150° C., 16 hours), and F (4 hours). 1H NMR (300 MHz, CDCl3) δ 7.34-7.18 (m, 7H), 7.13 (d, 2H, J=7.8), 6.25 (br s, 1H), 5.28 (s, 1H), 4.94 (d with fine splitting, 2H, J=13.0), 3.01 (s, 6H), 2.87 (dt, 2H, J=1.0, 13.0), 2.74 (tt, 1H, J=11.6, 1.5), 2.32 (s, 3H), 1.90 (d with fine splitting, 2H, J=12.0), 1.72 (ddd, 2H, J=13.0, 12.0, 1.5); ESI-MS m/z 388 (MH+).


Example 82
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2-(3-PHENYL-4-MORPHOLINYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures H, E (150° C., 20 hours), and F (3 hours). 1H NMR (300 MHz, CDCl3) δ 7.51 (d, 2H, J=7.8), 7.32 (t, 2H, J=7.8), 7.23 (t, 1H, J=7.8), 7.17 (d, 2H, J=7.8), 7.09 (d, 2H, J=7.8), 6.25 (br s, 1H), 5.88 (d, 1H, J=1.0), 5.27 (s, 1H), 4.49 (t, 2H, J=13.2), 3.94 (m, 2H), 3.66 (dt, 1H, J=1.0, 11.5), 3.24 (dt, 1H, J=1.5, 11.5), 2.97 (s, 6H), 2.32 (s, 3H); ESI-MS m/z 390 (MH+).


Example 83
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2-(2-PHENYL-4-MORPHOLINYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures H, E (150° C., 20 hours), and F (3 hours). 1H NMR (300 MHz, CDCl3) δ 7.47 (d, 2H, J=7.8), 7.38 (t, 2H, J=7.8), 7.33 (t, 1H, J=7.8), 7.19 (d, 2H, J=7.8), 7.11 (d, 2H, J=7.8), 6.22 (br s, 1H), 5.29 (s, 1H), 4.74 (dd, 1H, J=13.2, 1.0), 4.59-4.51 (m, 2H), 4.16-4.08 (m, 1H), 3.80 (dt, 1H, J=1.0, 11.9), 3.11 (dt, 1H, J=1.5, 12.4), 2.98 (s, 6H), 2.90 (dd, 1H, J=10.6, 11.9), 2.33 (s, 3H); ESI-MS m/z 390 (MH+).


Example 84
N4,N4-DIMETHYL-N-(4-METHYLPHENYL)-2-{4-[(4-METHYLPHENYL)SULFONYL]-1-PIPERAZINYL}-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures H, E (150° C., overnight), and F (3 hours). 1H NMR (300 MHz, CDCl3) δ 7.65 (d, 2H, J=8.3), 7.31 (d, 2H, J=8.3), 7.15 (d, 2H, J=8.4), 7.11 (d, 2H, J=7.2), 6.20 (br s, 1H), 5.22 (s, 1H), 3.87 (t, 4H, J=4.2), 3.02 (t, 4H, J=4.2), 2.95 (s, 6H), 2.43 (s, 3H), 2.33 (s, 3H); ESI-MS m/z 467 (MH+).


Example 85
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2-[4-(2-METHYLPHENYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 12 hours), and F (12 hours). 1H NMR (300 MHz, CDCl3) δ 7.23-7.10 (m, 6H), 7.02.-6.96 (m, 2H), 6.28 (br s, 1H), 5.28 (s, 1H), 3.95-3.86 (m, 4H), 2.99 (s, 6H), 2.96-2.92 (m, 4H), 2.36 (s, 3H), 2.32 (s, 3H); ESI-MS m/z 403 (MH+).


Example 86
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2-[4-(3-METHYLPHENYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 12 hours), and F (12 hours). 1H NMR (300 MHz, CDCl3) δ 7.19 (d, 2H, J=7.8), 7.17 (t, 1H, J=7.8), 7.11 (d, 2H, J=7.8), 6.91 (s, 1H), 6.89 (d, 1H, J=7.8), 6.69 (d, 1H, J=7.8), 6.33 (br s, 1H), 5.29 (s, 1H), 3.93 (t, 4H, J=5.1), 3.22 (t, 4H, J=5.1), 3.01 (s, 6H), 2.33 (s, 6H); ESI-MS m/z 403 (MH+).


Example 87
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2-[4-(4-METHYLPHENYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures D, E (160° C., 36 hours), and F (8 hours). 1H NMR (300 MHz, CDCl3) δ 7.19 (d, 2H, J=9.0), 7.16 (d, 2H, J=8.7), 7.10 (d, 2H, J=9.0), 6.90 (d, 2H, J=8.4), 6.24 (br s, 1H), 5.27 (s, 1H), 3.93 (t, 4H, J=4.8), 3.18 (t, 4H, J=5.1), 3.00 (s, 6H), 2.33 (s, 3H), 2.28 (s, 3H); ESI-MS m/z 403 (MH+);


Example 88
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2-{4-[3-(TRIFLUOROMETHYL)-2-PYRIDINYL]-1-PIPERAZINYL}-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures H, E (16 hours), and F. 1H NMR (300 MHz, CDCl3) δ 8.57 (dd, 1H, J=4.4, 2.2), 7.87 (dd, 1H, J=7.8, 2.2), 7.20 (d, 2H, J=8.1), 7.13 (d, 2H, J=8.1), 6.98 (dd, 1H, J=7.8, 4.4), 6.24 (br s, 1H), 5.28 (s, 1H), 3.90 (t, 4H, J=4.8), 3.36 (t, 4H, J=4.8), 3.00 (s, 6H), 2.32 (s, 3H); ESI-MS m/z 458 (MH+).


Example 89
N-(4-METHYLPHENYL)-2-(1-PIPERIDINYL)-6-{4-[3-(TRIFLUOROMETHYL)-2-PYRIDINYL]-1-PIPERAZINYL}-4-PYRIMIDINAMINE

Prepared by Procedures M, E (120° C., for addition of piperidine), and F. 1H NMR (300 MHz, CDCl3) δ 8.43 (dd, 1H, J=4.4, 2.2), 7.87 (dd, 1H, J=7.8, 2.2), 7.19 (d, 2H, J=8.1), 7.12 (d, 2H, J=8.1), 6.99 (dd, 1H, J=7.8, 4.4), 6.28 (br s, 1H), 5.35 (s, 1H), 3.77-3.72 (m, 4H), 3.62 (t, 4H, J=4.8), 3.33 (t, 4H, J=4.8), 2.33 (s, 3H), 1.69-1.52 (m, 6H); ESI-MS m/z 498 (MH+).


Example 90
6-[2-(METHOXYMETHYL)-1-PIPERIDINYL]-N-(4-METHYLPHENYL)-2-{4-[3-(TRIFLUOROMETHYL)-2-PYRIDINYL]-1-PIPERAZINYL}-4-PYRIMIDINAMINE

Prepared by Procedures D, J (90° C., overnight), and F (2 hours). 1H NMR (300 MHz, CDCl3) δ 8.44 (dd, 1H, J=4.4, 2.2), 7.88 (dd, 1H, J=7.8, 2.2), 7.20 (d, 2H, J=8.1), 7.12 (d, 2H, J=8.1), 6.99 (dd, 1H, J=7.8, 4.4), 6.23 (br s, 1H), 5.38 (s, 1H), 4.68-4.54 (m, 1H), 4.15-4.03 (m, 1H), 3.90 (t, 4H, J=4.8), 3.57 (t, 1H, J=9.7), 3.44-3.35 (m, 5H), 3.34 (s, 3H), 2.81 (t, 1H, J=12.0); 2.33 (s, 3H), 1.93-1.86 (m, 1H), 1.72-1.41 (m, 3H), 1.29-1.25 (m, 1H), 0.91-0.86 (m, 1H); ESI-MS m/z 542 (MH+).


Example 115
N-4-[3-(BENZYLOXY)PHENYL]-N-6-,N-6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, stirred 3.5 h at −78° C., warmed to 0° C. and stirred 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.23-8.19 (m, 1H), 7.52 (dt, 1H, J=1.9, 7.2), 7.43-7.20 (m, 7H), 6.96 (s, 1H), 6.88 (d, 1H, J=8.0), 6.80 (d, 1H, J=8.1), 6.69-6.63 (m, 2H), 5.34 (s, 1H), 5.03 (s, 2H), 4.03-3.97 (m, 4H), 3.66 (t, 4H, J=5.2), 3.02 (s, 6H); ESI-MS m/z 482 (MH+).


Example 116
4-{4-[4-(DIMETHYLAMINO)-6-(4-TOLUIDINO)-2-PYRIMIDINYL]-1-PIPERAZINYL}PHENOL

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, stirred 3.5 h at −78° C., warmed to 0° C. and stirred 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 10.04 (s, 1H), 7.19-7.14 (m, 4H), 6.85-6.79 (m, 4H), 5.31 (s, 1H), 5.22 (s, 1H), 3.96 (t, 4H, J=5.1), 3.05 (t, 4H, J=5.0), 3.03 (s, 6H), 2.34 (s, 3H); FIAMS m/z 405 (MH+).


Example 117
N4-[4-(BENZYLOXY)PHENYL]-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, stirred 3.5 h at −78° C., warmed to 0° C. and stirred 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.21 (dd, 1H, J=1.9, 5.6), 7.55-7.27 (m, 7H), 7.24-7.16 (m, 2H), 7.04-6.91 (m, 2H), 6.69-6.64 (m, 2H), 5.06 (s, 2H), 5.05 (s, 1H), 4.08-3.97 (m, 4H), 3.69 (t, 4H, J=5.1), 3.03 (s, 6H); ESI-MS m/z 482 (MH+).


Example 118
N4-(1,3-BENZODIOXOL-5-YL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, stirred 3.5 h at −78° C., warmed to 0° C. and stirred 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.24-8.18 (m, 1H), 7.48 (dt, 1H, J=1.9, 8.1), 6.92 (d, 1H, J=1.9), 6.75 (d, 1H, J=8.2), 6.74-6.54 (m, 3H), 6.41 (br s, 1H), 5.95 (s, 2H), 5.16 (s, 1H), 3.89 (t, 4H, J=5.1), 3.60 (t, 4H, J=5.3), 2.99 (s, 6H); ESI-MS m/z 420 (MH+).


Example 119
N4-(2,3-DIHYDRO-1,4-BENZODIOXIN-6-YL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, stirred 3.5 h at −78° C., warmed to 0° C. and stirred 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.24-8.18 (m, 1H), 7.49 (dt, 1H, J=2.1, 7.1), 6.89 (d, 1H, J=2.2), 6.81, (d, 1H, J=8.6), 6.76 (d, 1H, J=2.4), 6.68 (d, 1H, J=8.5), 6.62 (dd, 1H, J=4.6, 7.0), 6.18 (br s, 1H), 5.21 (s, 1H), 4.33-4.15 (m, 4H), 3.89 (t, 4H, J=5.1), 3.61 (t, 4H, J=5.1), 3.00 (s, 6H); ESI-MS m/z 434 (MH+).


Example 120
N1-(4-ISOQUINOLINYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl, Et3N, Me2NHHCl, stirred 3.5 h at −78° C., warmed to 0° C. and stirred 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.93 (d, 1H, J=1.5), 8.31 (d, 1H, J=2.6), 8.27-8.19 (m, 1H), 8.01 (d, 1H, J=8.2), 7.70 (d, 1H, J=7.8), 7.59-7.52 (m, 1H), 7.51-7.45 (m, 2H), 6.78 (br s, 1H), 6.68 (d, 1H, J=8.6), 6.63 (dd, 1H, J=5.0, 7.1), 5.29 (s, 1H), 3.94 (t, 4H, J=5.0), 3.63 (t, 4H, J=5.3), 3.01 (s, 6H); ESI-MS m/z 427 (MH+).


Example 121
N4-(4-CYCLOHEXYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, stirred 3.5 h at −78° C., warmed to 0° C. and stirred 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.25-8.19 (m, 1H), 7.49 (dt, 1H, J=2.0, 6.9), 7.22 (d, 2H, J=6.4), 7.16 (d, 2H, J=8.2), 6.68 (d, 1H, J=8.6), 6.66-6.60 (m, 1H), 6.21 (br s, 1H), 5.30 (s, 1H), 3.99-3.91 (m, 4H), 3.63 (t, 4H, J=5.2), 3.02 (s, 6H), 2.53-2.42 (m, 1H), 1.92-1.79 (m, 4H), 1.48-1.32 (m, 4H), 1.31-1.19 (m, 2H); ESI-MS m/z 458 (MH+).


Example 122
N4,N4-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-N6-(5,6,7,8-TETRAHYDRO-1-NAPHTHALENYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, stirred 3.5 h at −78° C., warmed to 0° C. and stirred 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.20 (dd, 1H, J=1.3, 4.9), 7.50 (dt, 1H, J=2.2, 6.8), 7.17 (d, 1H, J=7.5), 7.09 (t, 1H, J=7.6), 6.94 (d, 1H, J=7.7), 6.73-6.62 (m, 2H), 5.06 (s, 1H), 4.08-3.93 (m, 4H), 3.66 (t, 4H, J=5.3), 3.00 (s, 6H), 2.79 (t, 2H, J=6.0), 2.72 (t, 2H, J=5.9), 1.88-1.67 (m, 4H), NH (1H, unobserved); ESI-MS m/z 430 (MH+).


Example 123
N4-(2,3-DIHYDRO-1H-INDEN-5-YL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, stirred 3.5 h at −78° C., warmed to 0° C. and stirred 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.20 (d, 1H, J=4.8), 7.51 (dt, 1H, J=1.8, 6.9), 7.19 (d, 1H, J=7.6), 7.14 (s, 1H), 7.04 (dd, 1H, J=1.7, 7.7), 6.73-6.61 (m, 2H), 5.23 (s, 1H), 4.09-3.94 (m, 4H), 3.68 (t, 4H, J=5.9), 3.04 (s, 6H), 2.89 (t, 4H, J=7.8), 2.16-2.01 (m, 2H), NH (1H, unobserved); ESI-MS m/z 416 (MH+).


Example 124
N4-(3,4-DICHLOROPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, stirred 3.5 h at −78° C., warmed to 0° C. and stirred 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.31-8.20 (m, 1H), 7.79-7.69 (m, 1H), 7.61-7.44 (m, 1H), 7.42-7.28 (m, 1H), 7.25-7.11 (m, 1H), 6.79-6.61 (m, 2H), 6.42 (br s, 1H), 5.22 (s, 1H), 3.98-3.82 (m, 4H), 3.65-3.56 (m, 4H), 3.02 (s, 6H); ESI-MS m/z 444 (MH+ with 35Cl, 35Cl), 446 (MH+ with 35Cl, 37Cl), 448 (MH+ with 37Cl, 37Cl).


Example 125
N4,N4-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-N6-[3-(TRIFLUOROMETHYL)PHENYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, stirred 3.5 h at −78° C., warmed to 0° C. and stirred 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.59 (br s, 1H), 8.24-8.18 (m, 1H), 7.86 (s, 1H), 7.78-7.22 (m, 4H), 6.65 (t, 2H, J=5.0), 5.29 (s, 1H), 3.96 (t, 4H, J=5.5), 3.64 (t, 4H, J=5.2), 3.03 (s, 6H); ESI-MS m/z 444 (MH+).


Example 126
2-(4-BENZYL-1-PIPERAZINYL)-N4-[3-(DIMETHYLAMINO)PHENYL]-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (toluene, 95° C., 16 h), Q (dioxane, 120° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.52-7.37 (m, 7H), 7.25 (t, 1H, J=2.0), 7.14 (dd, 1H, J=1.5, 8.2), 7.05 (dd, 1H, J=2.5, 8.2), 4.36 (s, 2H), 3.98 (br s, 4H), 3.36 (s, 4H), 3.11 (s, 6H), 3.05 (s, 6H), 2.60 (s, 1H); ESI-MS m/z 432 (MH+).


Example 127
2-(4-BENZYL-1-PIPERAZINYL)-N4,N4-DIMETHYL-N6-(2-METHYL-1,3-BENZOTHIAZOL-5-YL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (130° C., 13 h), Q, and A. 1H NMR (400 MHz, CDCl3) δ 8.12 (s, 1H), 7.87 (d, 1H, J=8.8), 7.52-7.38 (m, 6H), 5.58 (s, 1H), 4.58 (s, 1H), 4.30 (s, 2H), 3.79-3.42 (m, 4H), 3.22-2.91 (m, 4H), 3;09 (s, 6H), 2.98 (s, 3H); ESI-MS m/z 460 (MH+).


Example 128
2-(4-BENZYL-1-PIPERAZINYL)-N4-CYCLOHEPTYL-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (140° C., toluene, 6 h), Q, and A. 1H NMR (400 MHz, CDCl3) δ 7.20-7.09 (m, 5H), 4.78 (s, 1H), 4.18 (br s, 1H), 3.74 (t, 4H, J=5.2), 3.52 (s, 2H), 2.99 (s, 6H), 2.46 (t, 4H, J=5.1), 2.03-1.92 (m, 2H), 1.87-1.68 (m, 11H); ESI-MS m/z 409 (MH+).


Example 129
4-{[2-(4-BENZYL-1-PIPERAZINYL)-6-(DIMETHYLAMINO)-4-PYRIMIDINYL]AMINO}-2-CHLOROBENZONITRILE

Prepared by Procedures P (toluene, 95° C., 16 h), Q (dioxane, 120° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.88 (d, 1H, J=3.1), 7.48 (d, 1H, J=8.5), 7.42-7.22 (m, 6H), 6.45 (s, 1H), 5.20 (s, 1H), 3.79 (t, 4H, J=5.2), 3.55 (s, 2H), 3.02 (s, 6H), 2.51 (t, 4H, J=5.0); ESI-MS m/z 448 (MH+ with 35Cl), 450 (MH+ with 37Cl).


Example 130
2-(4-BENZYL-1-PIPERAZINYL)-N4,N4-DIMETHYL-N6-(1,3,3-TRIMETHYLBICYCLO[2.2.1]HEPT-2-YL)-4,6-PYRIMIDINEDIAMINE

Prepared by procedures P (toluene, 95° C., 16 h), Q (dioxane, 120° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.38-7.21 (m, 6H), 4.87 (s, 1H), 3.79-3.69 (m, 4H), 3.53 (s, 2H), 3.46 (s, 1H), 2.98 (s, 6H), 2.46 (t, 4H, J=5.1), 1.71 (S, 1H), 1.69-1.62 (m, 2H), 1.48-1.35 (m, 2H), 1.20 (d, 1H, J=10.2), 1.19-1.02 (m, 1H), 1.14 (s, 3H, 1.07 (s, 3H), 0.79 (s, 3H); ESI-MS m/z 449 (MH+).


Example 131
2-{4-[3-(BENZYLOXY)PHENYL]-1-PIPERAZINYL}-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 M4 Hz, CDCl3) δ 7.44 (d, 2H, J=7.1), 7.36 (t, 2H, J=7.0), 7.29 (d, 1H, J=7.1), 7.22-7.04 (m, 5H), 6.58-6.52 (m, 2H), 6.48 (d, 1H, J=7.2), 5.29 (s, 1H), 5.21 (s, 1H), 5.03 (s, 2H), 3.89-3.80 (m, 4H), 3.28-3.15 (m, 4H), 3.00 (s, 6H), 2.30 (s, 3H); ESI-MS m/z 495 (MH+).


Example 132
N4,N4-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-N6-(3-QUINOLINYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.93 (d, 1H, J=2.6), 8.31 (d, 1H, J=2.5), 8.26-8.18 (m, 1H), 8.02 (d, 1H, J=8.2), 7.71 (d, 1H, J=7.7), 7.57 (dt, 1H, J=1.5, 5.3), 7.53-7.46 (m, 2H), 6.68 (d, 1H, J=8.6), 6.64 (dd, 1H, J=4.9, 7.1), 5.30 (d, 2H, J=3.7), 3.94 (t, 4H, J=4.9), 3.64 (t, 4H, J=5.4), 3.03 (s, 6H); ESI-MS m/z 427 (MH+).


Example 133
N4-[4-BROMO-3-(TRIFLUOROMETHYL)PHENYL]-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.23-8.19 (m, 1H), 8.17 (d, 1H, J=2.3), 7.57 (d, 1H, J=8.7), 7.53-7.47 (m, 1H), 7.39 (d, 1H, J=5.2), 6.69 (d, 1H, J=8.7), 6.64 (t, 1H, J=5.0), 6.27 (s, 1H), 5.19 (s, 1H), 3.94-3.87 (m, 4H), 3.65-3.59 (m, 4H), 3.04 (s, 6H); ESI-MS m/z 522 (MH+ with 79Br), 524 (MH+ with 81Br).


Example 134
N4-{3-CHLORO-4-[(TRIFLUOROMETHYL)SULFANYL]PHENYL}-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.23-8.19 (m, 1H), 7.91 (d, 1H, J=2.3), 7.61 (d, 1H, J=8.5), 7.50 (dt, 1H, J=2.1, 8.5), 7.30-7.20 (m, 1H), 6.70 (d, 1H, J=9.1), 6.64 (dd, 1H, J=4.7, 7.1), 6.35 (br s, 1H), 5.26 (s, 1H), 3.92 (t, 4H, J=5.6), 3.64 (t, 4H, J=5.0), 3.06 (s, 6H); ESI-MS m/z 510 (MH+ with 35Cl), 512 (MH+ with 37Cl).


Example 135
N4-(3-ETHOXYPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.28-8.19 (m, 1H), 7.50 (dt, 1H, J=2.1, 6.9), 7.19 (t, 1H, J=8.1), 6.96 (t, 1H, J=2.1), 6.85 (d, 1H, J=8.2), 6.68 (d, 1H, J=8.6), 6.63-6.56 (m, 1H), 6.35 (br s, 1H), 5.36 (s, 1H), 4.09-3.98 (m, 2H), 3.91 (t, 4H, J=5.3), 3.61 (t, 4H, J=5.1), 3.02 (s, 6H), 1.39 (t, 3H, J=5.7); ESI-MS m/z 420 (MH+).


Example 136
N4-[2-CHLORO-4-(TRIFLUOROMETHYL)PHENYL]-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.23-8.15 (m, 1H), 8.15 (d, 1H, J=2.1), 7.50 (dt, 1H, J=2.0, 8.8), 7.42-7.33 (m, 2H), 6.69 (d, 1H, J=8.6), 6.64 (dd, 1H, J=4.8, 6.3), 6.28 (s, 1H), 5.18 (s, 1H), 3.91 (t, 4H, J=5.0), 3.62 (t, 4H, J=5.1), 3.04 (s, 6H); ESI-MS m/z 478 (MH+ with 35Cl), 480 (MH+ with 37Cl).


Example 137
N-4-(2-ADAMANTYL)-2-(4-BENZYL-1-PIPERAZINYL)-N6-N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (toluene, 90° C.), Q, and A. 1H NMR (400 MHz, CDCl3) δ 7.39-7.21 (m, 5H), 4.83 (s, 1H), 4.72 (br s, 1H), 3.74 (m, 3H), 3.52 (s, 2H), 2.98 (s, 6H), 2.46 (t, 4H, J=5.3), 2.05-1.53 (m, 13H); ESI-MS m/z: 433 (MH+).


Example 138
N-4-(1-NORADAMANTYL)-2-(4-BENZYL-1-PIPERAZINYL)-N-6-N-6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (toluene, 90° C.), Q, and A. 1H NMR (400 MHz, CDCl3) δ 7.38-7.20 (m, 5H), 4.97 (s, 1H), 4.67 (br s, 1H), 3.74 (s, 4H), 3.52 (s, 2H), 2.99 (s, 6H), 2.46 (t, 4H, J=5.2), 2.32-1.51 (m, 15H); ESI-MS m/z: 447 (MH+).


Example 139
2-(4-BENZYL-1-PIPERAZINYL)-N4,N4-DIMETHYL-N6-[(1S,2R,3R,5S)-2,6,6-TRIMETHYLBICYCLO[3.1.1]HEPT-3-YL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (toluene, 150° C., 4 h), Q (neat, 130° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.38-7.21 (m, 5H), 4.86 (s, 1H), 4.35 (br s, 1H), 3.75 (t, 4H, J=4.6), 3.53 (s, 2H), 2.99 (s, 6H), 2.66-2.56 (m, 1H), 2.47 (t, 4H, J=4.5), 2.41-2.33 (m, 1H), 1.98-1.92 (m, 1H), 1.83 (t, 1H, J=5.8), 1.68-1.60 (m, 2H), 1.23 (s, 3H), 1.14 (d, 3H, J=7.3), 1.05 (s, 3H), 0.92 (d, 2H); ESI-MS m/z: 449 (MH+).


Example 140
2-[4-(5-BROMO-2-PYRIDINYL)-1-PIPERAZINYL]-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-4,6-PYRIMIDINEDIAMINE

Prepared using Procedure Y (DMF). 1H NMR (400 MHz, CDCl3) δ 8.21 (d, 1H, J=2.6), 7.53 (dd, 1H, J=2.6, 8.8), 7.19 (d, 2H, J=8.5), 7.12 (d, 2H, J=8.5), 6.21 (s, 1H), 5.28 (s, 1H), 3.88 (t, 4H, J=5.0), 3.58 (t, 4H, J=5.2), 3.00 (s, 6H), 2.33 (s, 3H); ESI-MS m/z: 468 (MH+ with 79Br), 470 (MH+ with 81Br).


Example 141
6-{4-[4-(DIMETHYLAMINO)-6-(4-TOLUDINO)-2-PYRIMIDINYL]-1-PIPERAZINYL}NICOTINAMIDE

Prepared by Procedure Y (DMF). 1H NMR (400 MHz, CDCl3) δ 8.13 (s, 1H), 7.30-7.25 (m, 4H), 7.17 (d, 2H, J=8.5), 7.13 (d, 2H, J=8.6), 6.18 (br s, 1H), 5.28 (s, 1H), 3.82 (t, 2H, J=5.1), 3.79 (t, 2H, J=5.3), 3.60 (t, 2H, J=5.1), 3.41 (t, 2H, J=5.3), 2.99 (s, 6H), 2.33 (s, 3H); ESI-MS m/z: 433 (MH+).


Example 142
2-[4-(3-METHOXYBENZYL)-1-PIPERAZINYL]-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedure Z (DIEA). 1H NMR (400 MHz, CDCl3) δ 7.22 (d, 1H, J=6.8), 7.17 (d, 2H, J=8.3), 7.10 (d, 2H, J=8.2), 6.93 (d, 1H, J=2.3), 6.92 (d, 1H, J=2.4), 6.80 (dd, 1H, J=2.0, 7.6), 6.18 (br s, 1H), 5.25 (s, 1H), 3.82 (s, 3H), 3.78 (t, 4H, J=5.1), 3.52 (s, 2H), 2.97 (s, 6H), 2.49 (t, 4H, J=5.1), 2.31 (s, 3H); ESI-MS m/z: 433 (MH+).


Example 143
2-[4-(5-BROMO-2-PYRIDINYL)-1-PIPERAZINYL]-N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedure Y. 1H NMR (400 MHz, CDCl3) δ 8.21 (d, 1H, J=2.4), 7.53 (dd, 1H, J=2.5, 9.2), 7.20 (t, 1H, J=8.1), 7.00 (t, 1H, J=2.0), 6.85 (dd, 1H, J=2.0, 8.0), 6.62-6.54 (m, 2H), 6.29 (s, 1H), 5.36 (s, 1H), 3.89 (t, 4H, J=5.1), 3.80 (s, 3H), 3.58 (t, 4H, J=4.9), 3.02 (s, 6H); ESI-MS m/z: 484 (MH+ with 79Br), 486 (MH+ with 81Br).


Example 144
N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYLMETHYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedure X. 1H NMR (400 MHz, CDCl3) δ 8.61-8.54 (m, 1H), 7.66 (dt, 1H, J=1.8, 7.8), 7.45 (d, 1H, J=7.8), 7.23-7.14 (m, 2H), 7.00 (t, 1H, J=2.5), 6.87-6.78 (m, 1H), 6.61-6.54 (m, 1H), 6.26 (br s, 1H), 5.33 (s, 1H), 3.82 (t, 4H, J=5.0), 3.78 (s, 3H), 3.70 (s, 2H), 2.99 (s, 6H), 2.56 (t, 4H, J=5.0); ESI-MS m/z: 420 (MH+).


Example 145
2-[4-(CYCLOHEXYLMETHYL)-1-PIPERAZINYL]-N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedure T. 1H NMR (400 MHz, CDCl3) δ 7.21 (t, 1H, J=8.2), 7.00-6.95 (m, 1H), 6.85 (d, 1H, J=8.2), 6.59 (d, 1H, J=7.7), 6.32 (s, 1H), 5.36 (s, 1H), 3.82-3.71 (m, 4H), 3.79 (s, 3H), 3.69-3.62 (m, 2H), 3.58-3.50 (m, 2H), 3.01 (s, 6H), 2.54-2.45 (m, 1H), 1.87-1.48 (m, 8H), 1.45-1.29 (m, 4H); ESI-MS m/z: 425 (MH+).


Example 146
N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-2-[4-(3-THIENYLMETHYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures T (reduction 4 h) and W. 1H NMR (400 MHz, CDCl3) δ 7.27 (dd, 1H, J=3.2, 5.1), 7.19 (t, 1H, J=8.0), 7.16-7.11 (m, 1H), 7.08 (dd, 1H, J=1.3, 4.9), 7.00 (t, 1H, J=2.3), 6.82 (dd, 1H, J=2.0, 8.3), 6.57 (dd, 1H, J=2.5, 8.2), 6.25 (s, 1H), 5.33 (s, 1H), 3.79 (t, 4H, J=5.5), 3.78 (s, 3H), 3.57 (s, 2H), 2.99 (s, 6H), 2.48 (t, 4H, J=5.2); ESI-MS m/z: 425 (MH+).


Example 147
N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-2-[4-(4-PYRIDINYLMETHYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedure T (acylation with DIPEA). 1H NMR (400 MHz, CDCl3) δ 8.55 (dd, 2H, J=1.5, 5.8), 7.31 (d, 2H, J=6.0), 7.19 (t, 1H, J=8.3), 6.99 (t, 1H, J=2.1), 6.83 (dd, 1H, J=1.5, 7.8), 6.58 (dd, 1H, J=2.0, 7.8), 6.28 (br s, 1H), 5.34 (s, 1H), 3.80 (t, 4H, J=5.2), 3.78 (s, 3H), 3.54 (s, 2H), 3.00 (s, 6H), 2.49 (t, 4H, J=5.3; ESI-MS m/z: 420 (MH+).


Example 148
2-[4-(3-METHOXYBENZYL)-1-PIPERAZINYL]-N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedure S. 1H NMR (400 MHz, CDCl3) δ 7.22 (d, 1H, J=7.9), 7.17 (t, 1H, J=8.2), 6.99 (t, 1H, J=2.1), 6.95-6.84 (m, 2H), 6.86-6.78 (m, 2H), 6.59-6.55 (m, 1H), 6.29 (br s, 1H), 5.32 (s, 1H), 3.82 (s, 3H), 3.79 (t, 4H, J=5.1), 3.77 (s, 3H), 3.52 (s, 2H), 2.99 (s, 6H), 2.49 (t, 4H, J=5.1); ESI-MS m/z: 449 (MH+).


Example 149
N2-[2-(3-METHOXYPHENYL)ETHYL]-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedure F (dioxane, potassium tert-butoxide, 120° C., 16 h), Q (toluene, TEA, 120° C.), A (CH2Cl2, Δ, TEA). 1H NMR (400 MHz, CDCl3) δ 7.22 (t, 1H, J=7.9), 7.18 (d, 2H, J=8.4), 7.12 (d, 2H, J=8.3), 6.84 (d, 1H, J=7.6), 6.82-6.74 (m, 2H), 6.28 (br s, 1H), 5.28 (s, 1H), 4.77 (s, 1H), 3.80 (s, 3H), 3.63 (q, 2H, J=6.7), 2.99 (s, 6H), 2.89 (t, 2H, J=7.4), 2.32 (s, 3H); ESI-MS m/z: 378 (MH+).


Example 150
N2-[2-(2-METHOXYPHENYL)ETHYL]-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures F (dioxane, potassium tert-butoxide, 140° C., 16 h), Q (toluene), and A (CH2Cl2, Δ, TEA). 1H NMR (400 MHz, CDCl3) δ 7.23-7.12 (m, 4H), 7.12 (d, 2H, J=8.1), 6.89 (d, 1H, J=7.8), 6.86 (d, 1H, J=7.6), 6.61 (d, 1H, J=8.0), 6.50 (br s, 1H), 5.25 (s, 1H), 3.84 (s, 3H), 3.60 (q, 2H, J=7.1), 3.00 (s, 6H), 2.93 (t, 2H, J=7.6), 2.33 (s, 3H); ESI-MS m/z: 378 (MH+).


Example 151
2-(4-BENZYL-1-PIPERAZINYL)-N4-(3,4-DICHLOROPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (toluene, 140° C., 6 h), Q (dioxane, 120° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.65 (d, 1H, J=2.5), 7.35-7.30 (m, 4H), 7.29-7.22 (m, 2H), 7.13 (dd, 1H, J=1.5, 8.5), 6.19 (br s, 1H), 5.21 (s, 1H), 3.78 (t, 4H, J=5.0), 3.55 (s, 2H), 3.00 (s, 6H), 2.49 (t, 4H, J=5.0); ESI-MS m/z: 457 (MH+ with 35Cl, 35Cl), 459 (MH+ with 35Cl, 37Cl), 461 (MH+ with 37 Cl, 37Cl).


Example 152
N4-[4-(BENZYLOXY)CYCLOHEXYL]-2-(4-BENZYL-1-PIPERAZINYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (16 h), Q, and A. 1H NMR (400 MHz, CDCl3) δ 7.42-7.18 (m, 10H), 4.94 (s, 1H), 4.61 (d, 1H, J=11.8), 4.51 (d, 1H, J=11.8), 4.39 (br s, 1H), 3.75 (t, 4H, J=5.0), 3.53 (s, 2H), 3.31 (dt, 1H, J=5.3, 8.3), 2.95 (s, 6H), 2.46 (t, 4H, J=5.0), 2.19-2.11 (m, 1H), 2.07-1.98 (m, 1H), 1.79-1.56 (m, 3H), 1.53-1.41 (m, 1H), 1.40-1.21 (m, 3H); ESI-MS m/z: 501 (MH+).


Example 153
2-(4-BENZYL-1-PIPERAZINYL)-N4,N4-DIMETHYL-N6-[(1R,2R,4R)-1,7,7-TRIMETHYLBICYCLO[2.2.1]HEPT-2-YL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (90° C., 16 h), Q, and A. 1H NMR (400 MHz, CDCl3) δ 7.44-7.22 (m, 6H), 4.81 (s, 1H), 4.36 (d, 1H, J=7.0), 3.74 (s, 4H), 3.53 (s, 2H), 2.98 (s, 6H), 2.46 (t, 4H, J=5.1), 1.84 (dd, 1H, J=8.9, 12.9), 1.78-1.52 (m, 4H), 1.29-1.11 (m, 2H), 0.97 (s, 3H), 0.89 (s, 3H), 0.83 (s, 3H); ESI-MS m/z: 449 (MH+).


Example 154
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2-[4-(TETRAHYDRO-2-FURANYLMETHYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A, P (16 h), and Q (dioxane, 120° C.). 1H NMR (400 MHz, CDCl3) δ 7.17 (d, 2H, J=8.4), 7.11 (d, 2H, J=8.0), 6.22 (br s, 1H), 5.29 (s, 1H), 4.12-4.03 (m, 1H), 3.91 (q, 1H, J=6.7), 3.80 (t, 4H, J=5.1), 3.76 (q, 1H, J=7.5), 2.98 (s, 6H), 2.57 (t, 4H, J=5.0), 2.56-2.40 (m, 2H), 2.32 (s, 3H), 2.05-1.96 (m, 1H), 1.94-1.80 (m, 2H), 1.57-1.45 (m, 1H); ESI-MS m/z: 397 (MH+).


Example 155
3-{[2-(4-BENZYL-1-PIPERAZINYL)-6-(DIMETHYLAMINO)-4-PYRIMIDINYL]AMINO}PHENOL

Prepared By Procedures P (Toluene, 120° C., 40 H), Q (dioxane, 120° C.), AND A. 1H NMR (400 MHz, CDCl3) δ 7.38-7.29 (m, 4H), 7.28-7.26 (m, 1H), 7.13 (t, 1H, J=8.0), 6.84 (t, 1H, J=2.8), 6.80 (ddd, 1H, J=0.7, 2.0, 7.9), 6.48 (ddd, 1H, J=0.7, 2.1, 8.0), 6.32 (br s, 1H), 5.32 (s, 1H), 3.79 (t, 4H, J=5.0), 3.55 (s, 2H), 3.49 (s, 1H), 2.99 (s, 6H), 2.50 (t, 4H, J=5.0); ESI-MS m/z: 405 (MH+).


Example 156
2-(4-BENZYL-1-PIPERAZINYL)-N4-(4-FLUOROPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (toluene, sodium tert-butoxide, 120° C., 16 h), Q (dioxane, 120° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.37-7.30 (m, 4H), 7.29-7.21 (m, 3H), 6.99 (t, 2H, J=8.6), 6.14 (br s, 1H), 5.13 (s, 1H), 3.77 (t, 4H, J=4.9), 3.54 (s, 2H), 2.97 (s, 6H), 2.48 (t, 4H, J=4.9); ESI-MS m/z: 407 (MH+).


Example 157
2-(4-BENZYL-1-PIPERAZINYL)-N4,N4-DIMETHYL-N6-(4-METHYLCYCLOHEXYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (sodium tert-butoxide, toluene, 120° C., 16 h), Q (dioxane, 120° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.35-7.10 (m, 6H), 4.82 (d, 1H, J=4.9), 3.81-3.61 (m, 5H), 3.53 (s, 2H), 2.99 (s, 6H), 2.46 (t, 4H, J=4.5), 1.79-1.46 (m, 7H), 1.29-0.98 (m, 2H), 0.90 (d, 3H, J=6.6); ESI-MS m/z: 409 (MH+).


Example 158
2-(4-BENZYL-1-PIPERAZINYL)-N4-[4-(DIMETHYLAMINO)PHENYL]-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (sodium tert-butoxide, toluene, 120° C., 16 h), Q (neat, 130° C.) and A. 1H NMR (400 MHz, CDCl3) δ 7.39-7.22 (m, 5H), 7.14 (d, 2H, J=8.4), 6.71 (d, 2H, J=8.8), 6.04 (br s, 1H), 5.08 (s, 1H), 3.85-3.74 (m, 4H), 3.54 (s, 2H), 2.94 (s, 6H), 2.93 (s, 6H), 2.48 (t, 4H, J=5.1); ESI-MS m/z: 432 (MH+).


Example 159
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2-[4-(2-PHENYLETHYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedure S (toluene, 120° C.). 1H NMR (400 MHz, CDCl3) δ 7.34-7.20 (m, 5H), 7.18 (d, 2H, J=8.5), 7.12 (d, 2H, J=8.5), 6.21 (br s, 1H), 5.26 (s, 1H), 3.88-3.79 (m, 4H), 2.99 (s, 6H), 2.90-2.83 (m, 2H), 2.68-2.63 (m, 2H), 2.60 (t, 4H, J=4.4), 2.32 (s, 3H); ESI-MS m/z: 417 (MH+).


Example 160
2-(4-BENZYL-1-PIPERAZINYL)-N4-(3-CHLOROPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (toluene, sodium tert-butoxide, 120° C., 40 h), Q (dioxane, 120° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.48 (t, 1H, J=1.9), 7.38-7.23 (m, 5H), 7.20-7.11 (m, 2H), 6.95 (ddd, 1H, J=1.2, 1.9, 7.6), 6.28 (br s, 1H), 5.24 (s, 1H), 3.79 (t, 4H, J=5.0), 3.54 (s, 2H), 3.00 (s, 6H), 2.49 (t, 4H, J=5.0); ESI-MS m/z: 423 (MH+ with 35Cl), 425 (MH+ with 37Cl).


Example 161
N2,N4,N4-TRIMETHYL-N6-(4-METHYLPHENYL)-N2-[2-(2-PYRIDINYL)ETHYL]-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures F (dioxane, potassium tert-butoxide, 140° C., 16 h), Q, and A (CH2Cl2, Δ, TEA). 1H NMR (400 MHz, CDCl3) δ 8.54 (ddd, 1H, J=1.2, 2.1, 5.3), 7.57 (dt, 1H, J=1.7, 7.6), 7.23 (d, 2H, J=8.6), 7.18 (d, 1H, J=7.7), 7.14-7.09 (m, 1H), 7.10 (d, 2H, J=7.7), 6.29 (br s, 1H), 5.24 (s, 1H), 3.93. (dd, 2H, J=5.9, 7.8), 3.11 (dd, 2H, J=6.0, 7.7), 3.08 (s, 3H), 3.00 (s, 6H), 2.32 (s, 3H); ESI-MS m/z: 363 (MH+).


Example 162
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-N2-(3-PHENYLPROPYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared using Procedures R, S, and V. 1H NMR (400 MHz, CDCl3) δ 7.25 (d, 2H, J=7.7), 7.22-7.14 (m, 5H), 7.11 (d, 2H, J=8.1), 6.41 (br s, 1H), 5.27 (s, 1H), 4.76 (t, 1H, J=5.7), 3.41 (dd, 2H, J=7.0, 12.9), 2.96 (s, 6H), 2.70 (t, 2H, J=7.7), 2.31 (s, 3H), 1.91 (t, 2H, J=7.5); ESI-MS m/z: 362 (MH+).


Example 163
2-(4-CYCLOHEXYL-1-PIPERAZINYL)-N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared using Procedures P (16 h), Q (dioxane, 120° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.11 (t, 1H, J=8.3), 6.92 (t, 1H, J=2.4), 6.78-6.73 (m, 1H), 6.53-6.48 (m, 1H), 6.39 (br s, 1H), 5.27 (s, 1H), 3.72 (t, 4H, J=5.0), 3.71 (s, 3H), 2.92 (s, 6H), 2.55 (t, 4H, J=5.1), 2.28-2.18 (m, 1H), 1.87-1.79 (m, 2H), 1.77-1.68 (m, 2H), 1.56 (d, 1H, J=12.4), 1.24-1.08 (m, 4H), 1.08-0.97 (m, 1H); ESI-MS m/z: 411 (MH+).


Example 164
2-(4-BENZYL-1-PIPERAZINYL)-N4-(3-FLUOROPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (140° C., 4 h), Q (neat, 130° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.37-7.31 (m, 5H), 7.28-7.17 (m, 2H), 6.98. (ddd, 1H, J=0.7, 2.0, 8.1), 6.67 (ddt, 1H, J=0.9, 2.0, 8.3), 6.30 (br s, 1H), 5.27 (s, 1H), 3.79 (t, 4H, J=5.1), 3.55 (s, 2H), 3.00 (s, 6H), 2.50 (t, 4H, J=5.0); ESI-MS m/z: 407 (MH+).


Example 165
N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-2-[4-(2-THIENYLMETHYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedure T. 1H NMR (400 MHz, CDCl3) δ 7.24 (dd, 1H, J=1.2, 5.2), 7.19 (t, 1H, J=8.1), 6.99 (t, 1H, J=2.0), 6.96-6.91 (m, 2H), 6.83 (ddd, 1H, J=0.8, 1.7, 7.9), 6.57 (dd, 1H, J=2.0, 8.2), 6.25 (br s, 1H), 5.33 (s, 1H), 3.81 (t, 4H, J=5.2), 3.78 (s, 3H), 3.76 (s, 2H), 2.99 (s, 6H), 2.53 (t, 4H, J=5.1); ESI-MS m/z: 425 (MH+).


Example 166
2-[4-(2-METHOXYBENZYL)-1-PIPERAZINYL]-N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedure T (reduction 3 h). 1H NMR (400 MHz, CDCl3) δ 7.40 (dd, 1H, J=1.6, 7.6), 7.23 (dd, 1H, J=1.2, 7.6), 7.19 (t, 1H, J=8.3), 7.01 (t, 1H, J=1.9), 6.95 (dt, 1H, J=1.0, 7.3), 6.87 (dd, 1H, J=1.1, 8.3), 6.82 (ddd, 1H, J=1.0, 2.0, 8.2), 6.57 (ddd, 1H, J=0.7, 2.5, 8.2), 6.26 (br s, 1H), 5.32 (s, 1H), 3.82 (s, 3H), 3.81 (t, 4H, J=5.1), 3.78 (s, 3H), 3.62 (s, 2H), 2.99 (s, 6H), 2.55 (t, 4H, J=5.0); ESI-MS m/z: 449 (MH+).


Example 167
2-(4-BENZYL-1-PIPERAZINYL)-N4,N4-DIMETHYL-N6-[(1R,2S)-1,7,7-TRIMETHYLBICYCLO[2.2.1]HEPT-2-YL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (toluene, 120° C., 16 h), Q (neat, 130° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.37-7.22 (m, 5H), 4.82 (s, 1H), 4.51 (br s, 1H), 3.74 (m, 4H), 3.53 (s, 2H), 2.97 (s, 6H), 2.47 (t, 4H, J=4.7), 2.39-2.30 (m, 1H), 1.76-1.68 (m, 4H), 1.66 (t, 1H, J=4.7), 1.41-1.31 (m. 2H), 0.96 (s, 3H), 0.88 (s, 3H), 0.86 (s, 3H); ESI-MS m/z: 449 (MH+).


Example 168
N4-(2-ADAMANTYL)-2-(4-BENZYL-1-PIPERAZINYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (90° C., toluene), Q, and A. 1H NMR (400 MHz, CDCl3) δ 7.39-7.21 (m, 5H), 4.83 (s, 1H), 4.72 (br s, 1H), 3.74 (m, 5H), 3.52 (s, 2H), 2.98 (s, 6H), 2.46 (t, 4H, J=5.3), 2.05-1.53 (m, 14H); ESI-MS m/z: 447 (MH+).


Example 169
2-(4-BENZYL-1-PIPERAZINYL)-N4-(4-TERT-BUTYLCYCLOHEXYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (toluene, 16 h), Q (neat, 130° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.36-7.22 (m, 5H), 4.82 (s, 1H), 3.74 (t, 4H, J=4.7), 3.53 (s, 2H), 3.33 (s, 1H), 2.98 (s, 6H), 2.46 (t, 4H, J=4.7), 1.15-0.91 (m, 9H), 0.86 (s, 9H); ESI-MS m/z: 451 (MH+).


Example 170
2-(4-BENZYL-1-PIPERAZINYL)-N4-CYCLOOCTYL-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (16 h), Q, and A. 1H NMR (400 MHz, CDCl3) δ 7.39-7.21 (m, 5H), 4.79 (s, 1H), 4.34 (s, 1H), 3.74 (t, 4H, J=4.7), 3.53 (s, 2H), 2.99 (s, 6H), 2.40 (t, 4H, J=4.6), 1.93-1.49 (m, 15H); ESI-MS m/z: 423 (MH+).


Example 171
2-(4-BENZYL-1-PIPERAZINYL)-N4-(4-CHLOROPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (140° C., Q (neat, 130° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.38-7.22 (m, 9H), 6.31 (br s, 1H), 5.21 (s, 1H), 3.78 (t, 4H, J=5.1 Hz), 3.55 (s, 2H), 2.99 (s, 6H), 2.49 (t, 4H, J=5.1); ESI-MS m/z: 423 (MH+ with 35Cl), 425 (MH+ with 37Cl).


Example 172
2-(4-BENZYL-1-PIPERAZINYL)-N4-(3-CHLORO-4-METHYLPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (toluene, 120° C., 16 h), Q (neat, 130° C.), and A. 1H NMR (400 MHz, CDCl3) δ 7.43-(d, 1H, J=2.1), 7.38-7.09 (m, 5H), 7.07 (d, 1H, J=2.1), 7.05 (d, 1H, J=2.6), 6.02 (s, 1H), 5.21 (s, 1H), 3.78 (t, 4H, J=5.6), 3.54 (s, 2H), 2.99 (s, 6H), 2.49 (t, 4H, J=5.0), 2.31 (s, 3H); ESI-MS m/z: 437 (MH+ with 35Cl), 439 (MH+ with 37Cl).


Example 173
2-(4-BENZYL-1-PIPERAZINYL)-N4,N4-DIMETHYL-N6-(1,2,3,4-TETRAHYDRO-2-NAPHTHALENYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (16 h), Q, and A. 1H NMR (400 MHz, CDCl3) δ 7.41-7.04 (m, 9H), 4.99 (s, 1H), 4.91 (s, 1H), 3.74 (m, 4H), 3.53 (s, 2H), 3.47 (m, 1H), 2.99 (s, 6H), 2.90-2.69 (m, 2H), 2.49 (m, 4H), 2.09-1.71 (m, 4H); ESI-MS m/z: 443 (MH+).


Example 174
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2-[4-(2-THIENYLMETHYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedure X (NaBH(OAc)3, CH2Cl2, molecular sieves). 1H NMR (400 MHz, CDCl3) δ 7.17 (d, 2H, J=8.3), 7.15-7.09 (m, 2H), 7.03-6.94 (m, 3H), 5.22 (br s, 1H), 4.85 (s, 1H), 3.86-3.79 (m, 4H), 3.77 (s, 2H), 2.98 (s, 6H), 2.62-2.53 (m, 4H), 2.32 (s, 3H); ESI-MS m/z: 409 (MH+).


Example 175
2-[4-(2-METHOXYBENZYL)-1-PIPERAZINYL]-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedure Z. 1H NMR (400 MHz, CDCl3) δ 7.40 (dd, 1H, J=1.6, 7.5), 7.23 (dt, 1H, J=1.4, 7.6), 7.17 (d, 2H, J=8.4), 7.10 (d, 2H, J=8.3), 6.94 (t, 1H, J=7.5), 6.87 (d, 1H, J=7.6), 6.17 (br s, 1H), 5.24 (s, 1H), 3.82 (s, 3H), 3.79 (t, 4H, J=5.0), 3.62 (s, 2H), 2.97 (s, 6H), 2.55 (t, 4H, J=5.0), 2.31 (s, 3H); ESI-MS m/z: 433 (MH+).


Example 176
N2-(2-ANILINOETHYL)-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, Q (toluene, 100° C.), and F (potassium tert-butoxide, 110° C., 16 h). 1H NMR (400 MHz, CDCl3) δ 7.19-7.10 (m, 6H), 6.67 (dt, 1H, J=0.8, 7.3), 6.59 (dd, 2H, J=0.8, 8.4), 6.31 (br s, 1H), 5.28 (s, 1H), 4.99 (s, 1H), 3.66 (q, 2H, J=6.0), 3.49 (s, 1H), 3.37 (t, 2H, J=6.0), 3.00 (s, 6H), 2.33 (s, 3H); ESI-MS m/z: 363 (MH+).


Example 177
N4-(3-METHOXYPHENYL)-N2,N6,N6-TRIMETHYL-N2-[2-(2-PYRIDINYL)ETHYL]-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures F (dioxane, 140° C., 15 h), A (CH2Cl2, Δ, TEA), and Q (toluene, TEA, A, 40 h). 1H NMR (400 MHz, CDCl3) δ 8.55 (d, 1H, J=4.7), 7.58 (t, 1H, J=7.4), 7.25-7.16 (m, 2H), 7.15-7.06 (m, 2H), 6.89 (d, 1H, J=8.1), 6.57 (d, 1H, J=6.7), 6.30 (br s, 1H), 5.31 (s, 1H), 3.95 (t, 2H, J=6.4), 3.78 (s, 3H), 3.18-3.06 (m, 5H), 3.02 (s, 6H); ESI-MS m/z: 379 (MH+).


Example 178
N4-(4-CYCLOHEXYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRAZINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, −78° C. for 3.5 h, warmed from −78° C. to 0° C. and stirred for 3h), N, and O. 1H NMR (400 MHz, CDCl3) δ 9.90 (br s, 1H), 8.19-8.16 (m, 1H), 8.09-8.06 (m, 1H), 7.89-7.85 (m, 1H), 7.20-7.18 (m, 4H), 5.28 (s, 1H), 3.99 (t, 4H, J=5.3), 3.73 (t, 4H, J=5.3), 3.04 (s, 6H), 2.53-2.44 (m, 1H), 1.91-1.71 (m, 4H), 1.46-1.71 (m, 6H); ESI-MS m/z: 459 (MH+).


Example 179
N4-[3-(BENZYLOXY)PHENYL]-N6,N6-DIMETHYL-2-[4-(2-PYRAZINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, −78° C. for 3.5 h, warmed from −78° C. to 0° C. and stirred for 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 9.82 (br s, 1H), 8.17-8.15 (m, 1H), 8.09-8.06 (m. 1H), 7.89 (d, 1H, J=2.8), 7.45-7.29 (m, 9H), 5.32 (s, 1H), 5.05 (s, 2H), 4.03 (t, 4H, J=5.6), 3.74 (t, 4H, J=5.0), 3.05 (s, 6H); ESI-MS m/z: 483 (MH+).


Example 180
N4-(2,3-DIHYDRO-1H-INDEN-5-YL)-N6,N6-DIMETHYL-2-[4-(2-PYRAZINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, −78° C. for 3.5 h, warmed from −78° C. to 0° C. and stirred for 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 10.01 (br s, 1H), 8.16 (s, 1H), 8.10-8.97 (m, 1H), 7.91-7.87 (m, 1H), 7.19 (d, 1H, J=6.3), 7.1-3 (s, 1H), 7.04 (d, 1H, J=7.6), 5.23 (s, 1H), 4.03 (t, 4H, J=5.2), 3.74 (t, 4H, J=5.1), 3.05 (s, 6H), 2.89 (t, 2H, J=6.9), 2.14-2.04 (m, 4H); ESI-MS m/z: 417 (MH+).


Example 181
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2-[4-(2-PYRAZINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, −78° C. for 3.5 h, warmed from −78° C. to 0° C. and stirred for 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 10.01 (s, 1H), 8.17 (s, 1H), 8.12-8.09 (m, 1H), 7.90 (d, 1H, J=2.6), 7.18 (d, 2H, J=8.6), 7.16 (d, 2H, J=8.1), 5.19 (s, 1H), 4.18-4.02 (m, 4H), 3.77 (t, 4H, J=5.1), 3.20 (br s, 3H), 2.99 (br s, 3H), 2.35 (s, 3H); ESI-MS m/z: 391 (MH+).


Example 183
N4-(3,4-DIMETHYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRAZINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, Et3N, Me2NHHCl, −78° C. for 3.5 h, warmed from −78° C. to 0° C. and stirred for 3 h), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.75 (br s, 1H), 8.16 (d, 1H, J=1.3), 8.08 (dd, 1H, J=1.5, 2.8), 7.88 (d, 1H, J=2.5), 7.10 (d, 1H, J=7.8), 7.08-7.00 (m, 2H), 5.26 (s, 1H), 4.00 (t, 4H, J=5.1), 3.72 (t, 4H, J=5.0), 3.03 (s, 6H), 2.24 (s, 6H); ESI-MS m/z: 405 (MH+).


Example 184
1-[2-(4-BENZYL-1-PIPERAZINYL)-6-(4-TOLUIDINO)-4-PYRIMIDINYL]-4-PIPERIDINONE

Prepared by Procedures a (Ch2cl2, −78° C., 4H), N (24H), and O. 1H NMR (400 MHz, CDCl3) δ 7.38-7.30 (m, 5H), 7.19-7.10 (m, 4H), 6.24 (s, 1H), 5.40 (s, 1H), 3.84-3.75 (m, 8H), 3.56 (s, 2H), 2.54-2.43 (m, 8H), 2.32 (s, 3H); ESI-MS m/z: 457 (MH+).


Example 185
N4,N4-dimethyl-N6-(2-propylphenyl)-2-[4-(2-pyridinyl)-1-piperazinyl]-4,6-pyrimidinediamine:

Prepared by Procedures A (Ch2cl2, Tea, 3-4 H at −78° C., then 3-4 H at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.22-8.18 (m, 1H), 7.56-7.40 (m, 2H), 7.25-7.07 (m, 3H), 6.75-6.60 (m, 2H), 6.04 (s, 1H), 5.04 (s, 1H), 3.91 (m, 4H), 3.62 (m, 4H), 2.96 (s, 6H), 2.60 (t, 2H, J=7.5), 1.62 (m, 2H), 0.96 (t, 3H, J=8.8); ESI-MS M/Z: 418 (MH+).


Example 186
N4-(2-BENZYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2CL2, TEA, 3-4 H at −78° C., then 3-4 H at 0° C.), N, AND O. 1H NMR (400 MHZ, CDCL3) δ 8.20-8.18 (M, 1H), 7.54-7.45 (M, 1H), 7.34-7.04 (M, 9H), 6.73-6.59 (M, 2H), 5.99 (BR S, 1H), 5.01 (S, 1H), 3.99 (S, 2H), 3.93-3.83 (M, 4H), 3.66-3.57 (M, 4H), 2.96 (S, 6H); ESI-MS M/Z: 466 (MH+).


Example 187
N4-(4-HEXYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 460 (MH+).


Example 188
N4-(4-BENZYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.22-8.18 (m, 1H), 7.52-7.45 (m, 1H), 7.32-7.09 (m, 9H), 6.78 (d, 1H, J=9.2), 6.65-6.59 (m, 1H), 6.24 (br s, 1H), 5.29 (s, 1H), 3.96 (s, 2H), 3.91-3.83 (m, 4H), 3.63-3.55 (m, 4H), 3.00 (s, 6H); ESI-MS m/z: 466 (MH+).


Example 189
N4-(4-HEPTYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.25-8.18 (m, 1H), 7.57-7.44 (m, 1H), 7.38-7.08 (m, 4H), 6.75-6.57 (m, 2H), 6.26 (br s, 1H), 5.29 (s, 1H), 3.95-3.85 (m, 4H), 3.71-3.56 (m, 4H), 3.00 (s, 6H), 2.57 (t, 2H, J=5.2), 1.84-1.51 (m, 4H), 1.40-1.16 (m, 6H), 0.93-0.82 (m, 3H); ESI-MS m/z: 474 (MH+).


Example 190
N4-(3,4-DIMETHYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.25-8.19 (m, 1H), 7.55-7.44 (m, 1H), 7.31-7.23 (m, 1H), 7.14-7.02 (m, 2H), 6.73-6.59 (m, 2H), 6.18 (br s, 1H), 5.29 (s, 1H), 3.95-3.85 (m, 4H), 3.67-3.55 (m, 4H), 3.00 (s, 6H), 2.24 (s, 3H), 2.23 (s, 3H); ESI-MS m/z: 404 (MH+).


Example 191
N4-(3-ISOPROPYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.25-8.19 (m, 1H), 7.54-7.45 (m, 1H), 7.31-7.21 (m, 2H), 7.13-7.08 (m, 1H), 6.95-6.88 (m, 1H), 6.74-6.60 (m, 2H), 6.29 (br s, 1H), 5.37-5.34 (m, 1H), 3.96-3.87 (m, 4H), 3.68-3.57 (m, 4H), 3.30 (s, 6H), 2.95-2.85 (m, 1H), 1.36-1.19 (m, 6H); ESI-MS m/z: 418 (MH+).


Example 192
N4,N4-DIMETHYL-N6-(4-OCTYLPHENYL)-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.22 (s, 1H), 7.55-7.44 (m, 1H), 7.37-7.07 (m, 4H), 6.76-6.59 (m, 2H), 6.28 (br s, 1H), 5.29 (s, 1H), 3.96-3.86 (m, 4H), 3.69-3.56 (m, 4H), 3.00 (s, 6H), 2.57 (t, 2H, J=5.1), 1.74-1.51 (m, 4H), 1.41-1.08 (m, 8H), 0.93-0.82 (m, 3H); ESI-MS m/z: 488 (MH+).


Example 193
N4-(3-IODOPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.29-8.18 (m, 1H), 8.01-7.93 (m, 1H), 7.56-7.45 (m, 1H), 7.39-7.29 (m, 1H), 7.11-6.95 (m, 2H), 6.78-6.56), (m, 2H), 6.42-6.25 (m, 1H), 5.34 (s, 1H), 3.95-3.85 (m, 4H), 3.65-3.56 (m, 4H), 3.00 (s, 6H); ESI-MS m/z: 502 (MH+).


Example 194
N4-(4-CHLOROPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.) N, and O. 1H NMR (400 MHz, CDCl3) δ 8.28 (s, 1H), 7.53-7.42 (m, 1H), 7.35-7.24 (m, 2H), 7.11-6.95 (m, 2H), 6.76-6.57 (m, 2H), 6.21 (s, 1H), 5.29 (s, 1H), 3.97-3.86 (m, 4H), 3.67-3.57 (m, 4H), 3.00 (s, 6H); ESI-MS m/z: 410 (MH+).


Example 195
N5-(2-CHLOROPHENYL)-N4,N4-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,5-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.50-8.10 (m, 2H), 7.55-7.12 (m, 4H), 7.05-6.90 (m, 2H), 6.61 (s, 1H), 5.31 (s, 1H), 3.95-3.85 (m, 4H), 3.65-3.54 (m, 4H), 3.00 (s, 6H); ESI-MS m/z: 410 (MH+).


Example 196
N4-(3,4-DIFLUOROPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H N4R (400 MHz, CDCl3) δ 8.31 (,s, 1H), 7.59-6.95 (m, 4H), 6.68-6.54 (m, 2H), 6.29 (s, 1H), 5.27 (s, 1H), 3.94-3.82 (m, 4H), 3.63-3.51 (m, 4H), 3.01 (s, 6H); ESI-MS m/z: 412 (MH+).


Example 197
N4-[3-METHOXY-5-(TRIFLUOROMETHYL)PHENYL]-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.26-8.18 (m, 1H), 7.58-7.11 (m, 3H), 6.77-6.38 (m, 3H), 6.34 (s, 1H), 5.25 (s, 1H), 3.96-3.88 (m, 4H), 3.85 (s, 3H), 3.69-3.55 (m, 4H), 3.00 (s, 6H); ESI-MS m/z: 474 (MH+).


Example 198
N4,N4-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-N6-(2,3,4-TRIFLUOROPHENYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.26-8.18 (m, 1H), 7.58-7.11 (m, 3H), 6.77-6.38 (m, 2H), 6.34 (s, 1H), 5.25 (s, 1H), 3.96-3.88 (m, 4H), 3.85 (s, 3H), 3.69-3.55 (m, 4H), 3.00 (s, 6H); ESI-MS m/z: 430 (MH+).


Example 199
N4-(4-BROMO-2-FLUOROPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.27-8.17 (m, 1H), 7.61-7.01 (m, 4H), 6.75-6.57 (m, 2H), 6.34 (br s, 1H), 5.23 (s, 1H), 3.95-3.85 (m, 4H), 3.68-3.59 (m, 4H), 3.00 (s, 6H); ESI-MS m/z: 472 (MH+).


Example 200
N4-(4-FLUORO-3-METHYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.27-8.17 (m, 1H), 7.56-7.47 (m, 1H), 7.21-6.89 (m, 3H), 6.75-6.58 (m, 2H), 6.24 (br s, 1H), 5.18 (s, 1H), 3.95-3.84 (m, 4H), 3.69-3.55 (m, 4H), 3.00 (s, 6H), 2.25 (s, 3H); ESI-MS m/z: 408 (MH+).


Example 201
N4-(2,5-DIMETHOXYPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.27-8.16 (m, 1H). 7.96-7.86 (m, 1H), 7.56-7.43 (m, 1H), 6.93-6.42 (m, 5H), 5.31 (s, 1H), 4.01-3.90 (m, 4H), 3.84 (s, 3H), 3.79 (s, 3H), 3.70-3.54 (m, 4H), 3.04(s, 6H); ESI-MS m/z: 436 (MH+).


Example 202
N4-(3,5-DIMETHOXYPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.26-8.17 (m, 1H), 7.55-7.44 (, 1H), 6.73-6.58 (m, 2H), 6.59-6.53(m, 2H), 6.23 (br s, 1H), 5.37 (s, 1H), 3.98-3.88 (m, 4H), 3.77 (s, 6H), 3.62-3.58 (m, 4H), 3.01 (s, 6H); ESI-MS m/z: 436 (MH+).


Example 203
N4-[3-(BENZYLOXY)PHENYL]-2-[4-(3-BROMOPHENYL)-1-PIPERAZINYL]-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N (TEA), and O. 1H NMR (400 MHz, CDCl3) δ 7.55-6.26 (m, 14H), 5.29 (s, 1H), 5.06 (s, 2H), 3.97-3.82 (m, 4H), 3.21-3.14 (m, 4H), 3.01 (s, 6H); ESI-MS m/z: 560 (MH+).


Example 204
N4-(2-BROMO-4-METHYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.26-8.16 (m, 1H), 7.81 (d, 1H, J=8.8), 7.52-7.44 (m, 1H), 7.38 (d, 1H, J=8.5), 7.08 (d, 1H, J=8.5), 6.72 (m, 2H), 6.47 (br s, 1H), 5.24 (s, 1H), 3.90 (t, 4H, J=6.3), 3.61 (t, 4H, J=6.4), 3.01 (s, 6H), 2.28 (s, 3H); ESI-MS m/z: 468 (MH+).


Example 205
N4-(2,4-DICHLOROPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.) N, and O. 1H NMR (400 MHz, CDCl3) δ 8.25-8.17 (m, 1H), 8.21 (d, 1H, J=9.2), 7.49 (t, 1H, J=9.0), 7.38-7.16 (m, 2H), 6.71-6.59 (m, 2H), 6.57 (br s, 1H), 5.25 (s, 1H), 3.93-3.85 (m, 4H), 3.65-3.55 (m, 4H), 3.03 (s, 6H); ESI-MS m/z: 444 (MH+).


Example 206
N4-(3-FLUOROPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. 1H NMR (400 MHz, CDCl3) δ 8.25-6.39 (m, 9H), 5.30 (s, 1H), 3.97-3.85 (m, 4H), 3.74-3.58 (m, 4H), 3.01 (s, 6H); ESI-MS m/z: 394 (MH+).


Example 207
N4,N4-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-N6[3-(TRIFLUOROMETHOXY)PHENYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 460 (MH+).


Example 208
N4-(2,5-DICHLOROPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 445 (MH+).


Example 209
N4,N4-DIMETHYL-N6-(4-PROPYLPHENYL)-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 418 (MH+).


Example 210
N4,N4-DIMETHYL-N6-(4-PENTYLPHENYL)-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 446 (MH+).


Example 211
N4-(4-SEC-BUTYLPHENYL)-N6,N6-DIMETHYL-2-[4 (2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 432 (MH+).


Example 212
N4-(2-TERT-BUTYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 432 (MH+).


Example 213
N4-(2,5-DIMETHYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 404 (MH+).


Example 214
N4-(3,5-DIMETHYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 434 (MH+).


Example 215
N4-(2,3-DIMETHYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 404 (MH+).


Example 216
N4-(3-BENZYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 466 (MH+).


Example 217
N4-(4-BROMO-2-CHLOROPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 489 (MH+).


Example 218
N4-(2,3-DICHLOROPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 445 (MH+).


Example 219
N4,N4-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-N6-(2,4,5-TRIFLUOROPHENYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 430 (MH+).


Example 220
N4-(5-CHLORO-2-METHOXYPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 440 (MH+).


Example 221
N4,N4-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-N6-(3,4,5-TRIFLUOROPHENYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 430 (MH+).


Example 222
N4-(2-CHLORO-5-FLUOROPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 428 (MH+).


Example 223
N4-(2-CHLORO-4-METHYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL-1,-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 424 (MH+).


Example 224
N4-(3-CHLOROPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A (CH2Cl2, TEA, 3-4 h at −78° C., then 3-4 h at 0° C.), N, and O. ESI-MS m/z: 410 (MH+).


Example 225
2-(4-BENZYL-1-PIPERAZINYL)-N4-[3-METHOXY-5-(TRIFLUOROMETHYL)PHENYL]-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures O (toluene, 75° C.), Q (toluene, 120° C.), and A. ESI-MS m/z: 487 (MH+).


Example 226
2-(4-BENZYL-1-PIPERAZINYL)-N4-[2-METHOXY-5-(TRIFLUOROMETHYL)PHENYL]-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures O, Q (dioxane, 120° C.), and A. ESI-MS m/z: 487 (MH+).


Example 227
2-(4-BENZYL-1-PIPERAZINYL)-N4-(2,5-DIMETHOXYPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures O, Q (dioxane, 120° C.), and A. ESI-MS m/z: 449 (MH+).


Example 228
N4-[3-(BENZYLOXY)PHENYL]-2-(4-BENZYL-1-PIPERAZINYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures O, Q (toluene, 120° C.), and A. ESI-MS m/z: 495 (MH+).


Example 229
2-(4-BENZYL-1-PIPERAZINYL)-N4,N4-DIMETHYL-N6-[4-(TRIFLUOROMETHYL)PHENYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (toluene, 105° C.), Q (toluene, 120° C.), and A. ESI-MS m/z: 457 (MH+).


Example 230
2-(4-BENZYL-1-PIPERAZINYL)-N4,N4-DIMETHYL-N6-(2,3,4-TRICHLOROPHENYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures O (60° C.), Q (toluene, 120° C.), and A. ESI-MS m/z: 492 (MH+).


Example 231
2-[4-(2-FURYLMETHYL)-1-PIPERAZINYL]-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures R (16 h), P (sodium tert-butoxide, toluene, 120° C.), N (TEA, toluene reflux), and A. ESI-MS m/z: 393 (MH+).


Example 232
N2-[2-(4-METHOXYPHENYL)ETHYL]-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures V, R, and S (DIEA, DMAP). ESI-MS m/z: 378 (MH+).


Example 233
N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-2-[4-(TETRAHYDRO-2-FURANYLMETHYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A, P (16 h), and Q (dioxane, 120° C.). ESI-MS m/z: 413 (MH+).


Example 235
2-[4-(4-METHOXYBENZYL)-1-PIPERAZINYL]-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedure Z. ESI-MS m/z: 433 (MH+).


Example 237
N4,N4-DIMETHYL-1-(4-METHYLPHENYL)-N2-[2-(2-THIENYL)ETHYL]-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures R, S, and V. ESI-MS m/z: 354 (MH+).


Example 238
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-2-[4-(3-THIENYLMETHYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures AA, T (2 h), and W. ESI-MS m/z: 409 (MH+).


Example 239
2-(4-BENZYL-1-PIPERAZINYL)-N4-[4-CHLORO-2-(TRIFLUOROMETHYL)PHENYL]-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures O (100° C., 40 h), Q (toluene, 120° C.), and A. ESI-MS m/z: 491 (MH+).


Example 240
N4-(3-BROMO-4-METHYLPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures O (80° C.), Q (toluene, 120° C.), and A. ESI-MS m/z: 469 (MH+).


Example 241
2-{4-[4-(DIMETHYLAMINO)-6-(4-TOLUIDINO)-2-PYRIMIDINYL]-1-PIPERAZINYL}NICOTINONITRILE

Prepared by Procedures O, Q (toluene, 120° C.), and A. ESI-MS m/z: 415 (MH+).


Example 242
N4,N4-DIMETHYL-N6-[4-METHYL-3-(2-PYRIDINYLAMINO)PHENYL]-2-(4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (toluene), Q (toluene, 120° C.), and A. ESI-MS m/z: 482 (MH+).


Example 243
N4-(3-BROMOPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures O (85° C.), Q (toluene, 120° C.), and A. ESI-MS m/z: 455 (MH+).


Example 244
2-(4-BENZYL-1-PIPERAZINYL)-N4-[2-CHLORO-4-(TRIFLUOROMETHYL)PHENYL]-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures P (16 h, toluene), Q (toluene, 120° C.), and A. ESI-MS m/z: 491 (MH+).


Example 245
N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-2-[4-(2-PYRIDINYL)-1-PIPERAZINYL]-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A, N, and P. ESI-MS m/z: 406 (MH+).


Example 246
N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-2-{4-[2-(TRIFLUOROMETHYL)PHENYL]-1-PIPERAZINYL}-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A, N, and P. ESI-MS m/z: 473 (MH+).


Example 247
N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-N2-(2-PHENYLETHYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, N, and P. ESI-MS m/z: 364 (MH+).


Example 248
N2,N4,N4-TRIMETHYL-N6-(4-METHYLPHENYL)-N2-(2-PHENYLETHYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, N, and P. ESI-MS m/z: 362 (MH+).


Example 249
N-(4-METHYLPHENYL)-2-(4-[1-OXIDO-3-(TRIFLUOROMETHYL)-2-PYRIDINYL]-1-PIPERAZINYL}-6-(1-PIPERIDINYL)-4-PYRIMIDINAMINE

Prepared by Procedure CC. ESI-MS m/z: 514 (MH+).


Example 250
N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-N2-(2-PHENYLETHYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures R and S. ESI-MS m/z: 348 (MH+).


Example 251
N4-(3-METHOXYPHENYL)-N2,N6,N6-TRIMETHYL-N2-(2-PHENYLETHYL)-2,4,6-PYRIMIDINETRIAMINE

Prepared by Procedures A, N, and P. ESI-MS m/z: 378 (MH+).


Example 252
2-(4-BENZYL-1-PIPERAZINYL)-N4-(3-METHOXYPHENYL)-N6,N6-DIMETHYL-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A, N, and P. ESI-MS m/z: 419 (MH+).


Example 253
2-(4-BENZYL-1-PIPERAZINYL)-N4,N4-DIMETHYL-N6-(4-METHYLPHENYL)-4,6-PYRIMIDINEDIAMINE

Prepared by Procedures A, N, and P. ESI-MS m/z: 403 (MH+).


Examples 1-90 and 115-253 as described above are merely illustrative of the methods used to synthesize pyrimidine derivatives. Further derivatives may be obtained utilizing methods shown in Schemes 1-5b. The substituents in Schemes 1-5b are described in the Detailed Description.


It may be necessary to incorporate protection and deprotection strategies for substituents such as amino, amido, carboxylic acid, and hydroxyl groups in the synthetic methods described above to form pyrimidine derivatives. Methods for protection and deprotection of such groups are well-known in the art, and may be found, for example in Green, T. W. and Wuts, P. G. M. (1991) Protection Groups in Organic Synthesis, 2nd Edition John Wiley & Sons, New York.




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image



Radioligand Binding of Pyrimidines at Cloned Galanin Receptors


The binding properties of the pyrimidines of the present invention were evaluated at the cloned human galanin receptors, GAL1, GAL2, and GAL3, using protocols described herein.


Radioligand Binding Assay Results


The pyrimidines described in Examples 1-90 and 115-253 were assayed using cloned human galanin receptors. The compounds were found to be selective for the GAL3 receptor. The binding affinities of the compounds of Examples 1-90 and 115-253 are illustrated in Tables 1-3a.









TABLE 1









embedded image















substitution
Ki (nM)












Example
R1
R2
GalR1
GalR2
GalR3















1


embedded image




embedded image


668
188
35





2


embedded image




embedded image


2818
562
26





3


embedded image




embedded image


>5000
>5000
163





4


embedded image




embedded image


>5000
>5000
627





5


embedded image




embedded image


>5000
>5000
345





6


embedded image




embedded image


>5000
2157
248





7


embedded image




embedded image


1107
775
177





8


embedded image




embedded image


>5000
795
264





9


embedded image




embedded image


>5000
2110
568





10


embedded image




embedded image


>5000
865
100





11


embedded image




embedded image


>5000
681
91





12


embedded image




embedded image


>5000
1995
322





13


embedded image




embedded image


2065
1413
81





14


embedded image




embedded image


>5000
1336
54





15


embedded image




embedded image


2427
624
73





16


embedded image




embedded image


>5000
>5000
33





17


embedded image




embedded image


>5000
2089
87





18


embedded image




embedded image


3589
543
40





19


embedded image




embedded image


>5000
1771
79





20


embedded image




embedded image


>5000
>5000
164





21


embedded image




embedded image


4786
1096
49





22


embedded image




embedded image


442
176
28





23


embedded image




embedded image


>5000
>5000
60





24


embedded image




embedded image


>5000
3961
210





25


embedded image




embedded image


>5000
1497
548





26


embedded image




embedded image


>5000
4049
85





27


embedded image




embedded image


2692
272
63





28


embedded image




embedded image


>5000
>5000
270





29


embedded image




embedded image


716
359
46





30


embedded image




embedded image


>5000
2613
197





31


embedded image




embedded image


>5000
3402
174





32


embedded image




embedded image


>5000
1860
145





33


embedded image




embedded image


>5000
>5000
181





34


embedded image




embedded image


912
168
23





35


embedded image




embedded image




111





36


embedded image




embedded image


442
90
93





37


embedded image




embedded image


>5000
903
343





38


embedded image




embedded image


2901
516
320





39


embedded image




embedded image


>5000
>5000
128





40


embedded image




embedded image


>5000
2623
164





41


embedded image




embedded image


2131
840
151





42


embedded image




embedded image


>5000
1137
275





43


embedded image




embedded image


>5000
>5000
107





44


embedded image




embedded image


>5000
1023
133





45


embedded image




embedded image


>5000
>5000
505





46


embedded image




embedded image


>5000
>5000
577





47


embedded image




embedded image


>5000
3012
115





48


embedded image




embedded image


>5000
4233
120





49


embedded image




embedded image


>5000
3273
211
















TABLE 2









embedded image















substitution
Ki (nM)












Example
R1
R2
GalR1
GalR2
GalR3















50


embedded image




embedded image


>5000
>5000
699





51


embedded image




embedded image


>5000
>5000
987





52


embedded image




embedded image


>5000
>5000
570





53


embedded image




embedded image


>5000
>5000
980





54


embedded image




embedded image


>5000
>5000
132





55


embedded image




embedded image


>5000
>5000
48





56


embedded image




embedded image


>5000
>5000
794





57


embedded image




embedded image


>5000
>5000
360





58


embedded image




embedded image


>5000
>5000
783





59


embedded image




embedded image


>5000
>5000
566





60


embedded image




embedded image


>5000
>5000
86





61


embedded image




embedded image


>5000
>5000
753





62


embedded image




embedded image


>5000
>5000
736





63


embedded image




embedded image


>5000
>5000
731





64


embedded image




embedded image


>5000
>5000
572





65


embedded image




embedded image


>5000
>5000
329





66


embedded image




embedded image


>5000
>5000
699





67


embedded image




embedded image


>5000
>5000
752





68


embedded image




embedded image


>5000
2155
164





69


embedded image




embedded image


>5000
>5000
417





70


embedded image




embedded image


>5000
944
476





71


embedded image




embedded image


>5000
944
72





72


embedded image




embedded image


>5000
2083
132





73


embedded image




embedded image


>5000
1550
124





74


embedded image




embedded image


2291
468
47





75


embedded image




embedded image


1462
2458
144





76


embedded image




embedded image


3802
1657
392





77


embedded image




embedded image


3802
709
79





78


embedded image




embedded image


4942
1862
41





79


embedded image




embedded image


3802
1656
190





80


embedded image




embedded image


>5000
2478
615





81


embedded image




embedded image


>5000
4789
160





82


embedded image




embedded image


>5000
>5000
232





83


embedded image




embedded image


>5000
>5000
160





84


embedded image




embedded image


>5000
>5000
261





85


embedded image




embedded image


>5000
4228
72





86


embedded image




embedded image


>5000
>5000
227





87


embedded image




embedded image


>5000
4617
157





88


embedded image




embedded image


2188
355
39





Key: Ph = Phenyl













TABLE 3









embedded image















substitution
Ki (nM)














Example
X
R1
R2
R3
GalR1
GalR2
GalR3

















89
H


embedded image




embedded image




embedded image


1122
1274
105





90
H


embedded image




embedded image




embedded image


>5000
2460
105


















TABLE 3a







Ki (nM)


Example
Structure
Gal3

















115


embedded image


13





116


embedded image


479





117


embedded image


61





118


embedded image


508





119


embedded image


540





120


embedded image


664





121


embedded image


21





122


embedded image


65





123


embedded image


61





124


embedded image


36





125


embedded image


75





126


embedded image


99





127


embedded image


255





128


embedded image


249





129


embedded image


405





130


embedded image


100





131


embedded image


20





132


embedded image


618





133


embedded image


60





134


embedded image


25





135


embedded image


100





136


embedded image


25





137


embedded image


124





138


embedded image


52





139


embedded image


47





140


embedded image


169





141


embedded image


509





142


embedded image


28





143


embedded image


144





144


embedded image


529





145


embedded image


155





146


embedded image


72





147


embedded image


640





148


embedded image


276





149


embedded image


138*





150


embedded image


180





151


embedded image


11





152


embedded image


172





153


embedded image


55





154


embedded image


441





155


embedded image


316





156


embedded image


61





157


embedded image


273





158


embedded image


941





159


embedded image


180





160


embedded image


26





161


embedded image


114





162


embedded image


42





163


embedded image


500





164


embedded image


60





165


embedded image


139*





166


embedded image


263





167


embedded image


50





168


embedded image


50





169


embedded image


77





170


embedded image


91





171


embedded image


25





172


embedded image


20





173


embedded image


117





174


embedded image


325*





175


embedded image


56





176


embedded image


608





177


embedded image


142





178


embedded image


26





179


embedded image


15





180


embedded image


151





181


embedded image


750





183


embedded image


66





184


embedded image


163





185


embedded image


365





186


embedded image


69





187


embedded image


19





188


embedded image


27





189


embedded image


26





190


embedded image


153





191


embedded image


75





192


embedded image


18





193


embedded image


244





194


embedded image


248





195


embedded image


388





196


embedded image


443





197


embedded image


666





198


embedded image


560





199


embedded image


199





200


embedded image


311





201


embedded image


566





202


embedded image


740





203


embedded image


52





204


embedded image


269





205


embedded image


193





206


embedded image


454





207


embedded image


58





208


embedded image


120





209


embedded image


205





210


embedded image


58





211


embedded image


58





212


embedded image


231





213


embedded image


165





214


embedded image


676





215


embedded image


450





216


embedded image


50





217


embedded image


190





218


embedded image


616





219


embedded image


558





220


embedded image


708





221


embedded image


213





222


embedded image


847





223


embedded image


559





224


embedded image


218





225


embedded image


66





226


embedded image


72





227


embedded image


600





228


embedded image


32





229


embedded image


37





230


embedded image


52





231


embedded image


136





232


embedded image


155*





233


embedded image


869





235


embedded image


114*





237


embedded image


404*





238


embedded image


331*





239


embedded image


59





240


embedded image


77





241


embedded image


261





242


embedded image


166





243


embedded image


46





244


embedded image


55





245


embedded image


537





246


embedded image


270





247


embedded image


195





248


embedded image


33





249


embedded image


386





250


embedded image


119





251


embedded image


54





252


embedded image


88





253


embedded image


49





*The binding assay normally used for the indolone compounds was used to test this compound.







B. General Procedure for Preparing Indolones


General Procedure for Synthesis of Iminoisatins. The appropriately substituted isatin (10 mg-10 g) was placed in a flask and the appropriate aniline (1.0-1.1 equivalents) was added and the mixture was stirred to homogeneity. The mixture was then heated to 110° C. for 2-7 hours and then cooled. Solids were crystallized from hot methanol and filtered, giving the desired products (usually as an inseparable interconverting mixture of E/Z isomers).


Procedure A:


1-(3-THIENYL)-1H-INDOLE-2,3-DIONE

Triethylamine (56.9 mL, 0.408 mol), was added to a mixture of 1H-indole-2,3-dione (15.0 g, 0.102 mol), copper (II) acetate (46.0 g, 0.255 mol), and 3-thienylboronic acid (19.6 g, 0.153 mol) in CH2Cl2 (500 mL). The reaction mixture was stirred overnight, filtered through Celite, rinsed with EtOAc/hexane (1:1, 300 mL), and concentrated in vacuo. The crude product was purified by column chromatography on silica using Hexane/EtOAc (1:1), giving the desired product (1.1 g, 50%).


Procedure B:


(3E)-3-[(4-METHYLPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

A solution of 1-(3-Thienyl)-1H-indole-2,3-dione (20 mg, 0.087 mmol) in 1% HOAc/MeOH (8 mL) was added to a solution of p-toluidine (19 mg, 0.18 mmol) in 1% HOAc/MeOH (8 mL). The reaction mixture was stirred for 12 h at room temperature, heated at 50° C. for 1 h, and concentrated in vacuo. The residue was purified by preparative TLC or silica using EtOAc/hexanes (3:7, 0.1% TEA) giving the desired product (14 mg, 50%).


Procedure C:


(3Z)-1-PHENYL-3-{[4-(3-THIENYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

A mixture of (3Z)-3-[(4-bromophenyl)imino]-1-phenyl-1,3-dihydro-2H-indol-2-one (50.0 mg, 0.133 mmol), thiophene-3-boronic acid (26.0 mg, 0.199 mmol), tetrakis(triphenylphosphine)palladium(0) (31.0 mg, 0.0268 mmol in THF (5 mL), and aqueous Na2CO3 (2M, 100 μL) was heated at 67° C. for 24 h. The crude product was concentrated in vacuo and the residue was extracted with CH2Cl2 (3×1 ml), and concentrated. The crude product was purified by preparative TLC using 10% methanol in CHCl3, giving the desired product (18 mg, 35%).


Procedure D:


(3Z)-5-BROMO-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

A mixture of 5-bromo-1H-indole-2,3-dione (1.0 g, 0.442 mmol) and 3-trifluoromethylaniline (0.993 g, 6.2 mmol) in a solution of 1% acetic acid in methanol was stirred at 50° C. for 12 h. The crude product was concentrated in vacuo, giving the desired crude product (640 mg, 40%).


Procedure E:


(3Z)-5-BROMO-1-PHENYL-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

A mixture of (3z)-5-bromo-3-{[3-(trifluoromethyl)phenyl]imino}-1,3-dihydro-2h-indol-2-one (100 mg, 0.272 mmol), copper (II) acetate (54 mg, 0.33 mmol), triethylamine (82.8 mg, 0.817 mmol), and benzene boronic acid (40 mg, 0.325 mmol) in 5 mL of CH2Cl2 was stirred at room temperature for 12 h. The crude mixture was concentrated in vacuo and purified by preparative TLC using EtOAc:hexane (3:7, 1% triethylamine), giving the desired product (22 mg, 20%).


Procedure F:


(3Z)-1,5-DIPHENYL-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

A mixture of (3z)-5-bromo-1-phenyl-3-{[3-(trifluoromethyl)phenyl]imino}-1,3-dihydro-2H-indol-2-one (22 mg, 0.05 mmol), tetrakis(triphenylphosphine)palladium(0) (12.0 mg, 0.01 mmol), benzene boronic acid (10 mg, 0.08 mmol) in THF (5 mL), and aqueous Na2CO3 (2M, 10C μL) was heated at 67° C. for 24 h. The crude product was concentrated in vacuo and the residue was extracted with CH2Cl2 (3×1 ml), concentrated, and purified by preparative TLC using 10% methanol in CHCl3, giving the desired product (4 mg, 18%).


Procedure G:


ETHYL 5-[(2,3-DIOXO-2,3-DIHYDRO-1H-INDOL-1-YL)METHYL]-2-FUROATE

A mixture of ethyl 5-(chloromethyl)-2-furoate (148 mg, 1.01 mmol) in dioxane (15 ml) was added to a mixture of NaH (48 mg, 1.20 mmol) in dioxane (10 mL) under argon at 0° C. The mixture was stirred for 1 h at room temperature, refluxed under argon for 16 h, cooled to room temperature, and then concentrated in vacuo. The residue was purified by preparative TLC using EtOAc/hexane (3:7), giving the desired product (56 mg, 19%).


Procedure H:


ETHYL 5-[((3Z)-2-OXO-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-2,3-DIHYDRO-1H-INDOL-1-YL)METHYL]-2-FUROATE

A mixture of ethyl 5-[(2,3-dioxo-2,3-dihydro-1H-indol-1-yl)methyl]-2-furoate (60 mg, 0.200 mmol) and 3-trifluoromethylaniline (32 mg, 0.200 mmol) was heated at 140° C. for 2 h. The residue was dissolved in CHCl3 (1 mL) and purified by preparative TLC using EtOAc/hexane (6:4), giving the desired product (20 mg, 23%).


Procedure I:


6-METHOXY-1-PHENYL-1H-INDOLE-2,3-DIONE

A solution of N-(3-methoxyphenyl)-N-phenylamine (1.14 g, 5.72 in ether (3 mL) was added to a solution of oxylyl chloride (728 g, 5.75 mmol) and heated at reflux for 1 h. The resulting mixture was cooled to room temperature, concentrated to dryness, and redissolved in nitrobenzene (35 mL). The solution was added to a solution of AlCl3 in nitrobenzene (0.762 g, 5.72 mmol), and the resulting mixture was heated at 70° C. for 16 h. The crude product was concentrated in vacuo and purified by column chromatography using EtOAc/hexane (1:1), giving the desired product 60, mg, 50%).


Procedure J:


(3Z)-1-(4-BROMOPHENYL)-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

A solution of (3Z)-3-{[3-(trifluoromethyl)phenyl]imino}-1,3-dihydro-2H-indol-2-one (100 mg, 0.344 mmol), copper (II) acetate (93 mg, 0.516 mmol), triethylamine (105 mg, 1.03 mmol), and 4-bromobenzene boronic acid (104 mg, 0.516 mmol) in 5 mL of CH2Cl2 was stirred at room temperature for 12 h. The crude mixture was concentrated in vacuo and purified by preparative TLC using EtOAc:hexane (3:7, 1% triethylamine), giving the desired product (65 mg, 42%).


Procedure K:


A solution of (3Z)-1-(4-bromophenyl)-3-{[3-(trifluoromethyl)phenyl]imino}-1,3-dihydro-2H-indol-2-one (30 mg, 0.068), tetrakis(triphenylphosphine)palladium(0) (16.0 mg, 0.014 mmol), benzene boronic acid (13 mg, 0.101 mmol) in THF (5 mL), and aqueous Na2CO3 (0.45 M, 300 μL) was heated at 67° C. for 40 h. The crude product was concentrated in vacuo and the residue was extracted with CH2Cl2 (3×1 ml), concentrated, and purified by preparative TLC using 10% methanol in CHCl3, giving the desired product (5 mg, 16%).


The compounds of Examples 92-107, inclusive, were purchased from Bionet Research Ltd., 3 Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, UK. These compounds can also be synthesized using the procedure described above.


Example 91
3-[(2-METHOXYPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 92
1-PHENYL-3-[[3-(TRIFLUOROMETHYL)PHENYL]IMINO]-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 93
3-[(3-METHYLPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 94
3-[(3-CHLOROPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 95
1-PHENYL-3-[[4-(TRIFLUOROMETHYL)PHENYL]IMINO]-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 96
3-[(4-METHYLPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 97
3-[(4-CHLOROPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 98
3-[(4-BROMOPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 99
3-[(4-FLUOROPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 100
3-[(4-PHENOXYPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 101
3-[(4-ETHOXYPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 102
3-[(4-METHOXYPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 103
3-[(3,5-DICHLOROPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 104
3-[(3,5-DIMETHYLPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 105
1-ALLYL-3-[(3,4-DICHLOROPHENYL)IMINO]-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 106
1-ALLYL-3-[(3,5-DICHLOROPHENYL)IMINO]-1,3-DIHYDRO-2H-INDOL-2-ONE
Example 107
3-[(4-BROMOPHENYL)IMINO]-1-ISOPROPYL-1,3-DIHYDRO-2H-INDOL-2-ONE

The methods that follow demonstrate procedures useful for synthesizing compounds of this invention (illustrated in Schemes 6 and 7). Substituted isatins useful for synthesizing compounds of this invention can alternatively be obtained using the procedures described in the following references:

  • Garden, S. J.; Da Silva, L. E.; Pinto, A. C.; Synthetic Communications, 1998, 28, 1679-1689.
  • Coppola, G. M.; Journal of Heterocyclic Chemistry, 1987, 24, 1249.
  • Hess, B. A. Jr; Corbino, S., Journal of Heterocyclic Chemistry, 1971, 8, 161.
  • Bryant, W. M. III; Huhn, G. F.; Jensen, J. H.; Pierce, M. E.; Stammbach, C.; Synthetic Communications, 1993, 23, 1617-1625.


Example 108
1-[(5-CHLORO-2-THIENYL)METHYL]-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

A mixture of 1-[(5-chloro-2-thienyl)methyl]-2H-indole-2,3-dione (25 mg, 0.09 mmol) (prepared as described below) and 3-trifluoromethylaniline (11.3 μL, 0.09 mmol) was heated neat at 140° C. for 2 h. The crude material was purified by preparative TLC using a mixture of 3:7 ethyl acetate in hexane as the eluent, giving the desired product (23 mg 0.05 mmol, 61%). 1H NMR (400 MHz): δ (major isomer) 7.57 (t, J=7.7, 1H), 7.53 (t, J=7.8, 1H), 7.33 (t, J=7.8, 1H), 7.28 (s, 1H), 7.19 (d, J=7.6, 2H), 6.24-6.72 (m, 4H), 6.56 (d, J=7.7, 1H), 5.02 (s, 2H); ESI-MS m/z found 421 (MH+).


1-[(5-CHLORO-2-THIENYL)METHYL]-2H-INDOLE-2,3-DIONE

A solution of isatin (125 mg, 0.85 mmol) in anhydrous dioxane (10 mL) was added dropwise to a solution of sodium hydride (60% dispersion in mineral oil, 24 mg, 0.62 mmol) in anhydrous dioxane (10 mL) at 0° C. under argon. The mixture was allowed to stir for 5 minutes and then 2-chloro-5-(chloromethyl)thiophene (0.12 mL, 1.02 mmol) in dioxane (10 mL) was added dropwise to the resulting mixture. The reaction mixture was heated at reflux under argon for 16 h and concentrated in vacuo. The crude material was purified preparative TLC using 1:24 methanol in chloroform as the eluent, giving the desired product as a yellow solid (53 mg, 0.19 mmol, 22%). 1H NMR (400 MHz): δ 7.62 (d, J=7.4, 1H), 7.56 (t, J=7.8, 1H), 7.14 (t, J=7.7, 1H), 6.94 (d, J=8.0, 1H), 6.90 (d, J=3.2, 1H), 6.78 (d, J=3.7, 1H), 4.90 (s, 2H).


Example 109
1-(3-THIENYL)-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

A mixture of 1-(3-thienyl)-2H-indole-2,3-dione (25 mg, 0.11 mmol) (prepared as described below) and 3-trifluoromethylaniline (14 μL, 0.11 mmol) was heated neat at 140° C. for 2 h. The crude material was purified by preparative TLC using a mixture of 3:7 ethyl acetate and hexane as the eluent, giving the desired product as a yellow solid (7.3 mg, 0.02 mmol, 22%). 1H NMR (400 MHz) δ 7.62-7.19 (m, 9H), 6.94 (d, J=8.0, 1H), 6.76 (t, J=7.6, 1H); ESI-MS m/z found 373 (MH+).


1-(3-THIENYL)-2H-INDOLE-2,3-DIONE

Copper(II) acetate monohydrate (4.25 g, 23.4 mmol) was heated at reflux in acetic anhydride (30 mL) for 2 h. The mixture was filtered and washed with anhydrous ether (500 mL). The solid was dried in vacuo at 55° C. for 16 h. Dichloromethane (1 mL) was added to a mixture of copper(II) acetate (62 mg, 0.34 mmol), isatin (50 mg, 0.34 mmol), and thiophene-3-boronic acid (87 mg, 0.68 mmol), followed by triethylamine (0.10 mL, 0.68 mmol) under argon. The resulting solution was stirred for 16 h at room temperature. The reaction mixture was then recharged with 0.10 mmol copper(II) acetate, 0.10 mmol of 3-thiophene boronic acid, and 1 drop of triethylamine, and the mixture was heated at 50° C. for 6 h. The crude material was purified by preparative TLC using 3:97 methanol in chloroform as the eluent, giving the desired product as a yellow solid (25 mg, 0.11 mmol, 33%). 1H NMR (400 kHz): δ 7.70 (d, J=7.5, 1H), 7.58 (t, J=7.8, 1H), 7.50 (d, J=5.1, 1H), 7.48 (s, 1H), 7.24 (d, J=5.1, 1H), 7.18 (t, J=7.51, 1H), 7.05 (d, J=8.0, 1H).


Example 110
2-METHYL-5-[(2-OXO-1-PHENYL-1,2-DIHYDRO-3H-INDOL-3-YLIDENE)AMINO]-2H-ISOINDOLE-1,3(2H)-DIONE

A mixture of 1-phenylisatin (50 mg, 0.22 mmol) and 4-amino-N-methylpthalimide (40 mg, 0.22 mmol) was heated neat at 215° C. for 2 h. The crude material was purified by preparative TLC using a mixture of 3:7 ethyl acetate and hexane as the eluent, giving the desired product as a yellow solid (8 mg, 0.02 mmol, 10%). 1H NMR (400 MHz): δ 7.88 (d, J=7.8, 1H), 7.83-7.80 (m, 1H), 7.51 (t, J=7.5, 1H), 7.47-7.18 (m, 6H), 7.02 (t, J=8.0, 1H), 6.91-6.79 (m, 2H), 6.58 (d, J=7.5, 1H), 3.22 (s, 3H); ESI-MS m/z found 382 (MH+).


Example 111
1-[(5-CHLORO-1-BENZOTHIEN-3-YL)METHYL]-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

A mixture of 1-[(5-chloro-1-benzothien-3-yl)methyl]-2H-indole-2,3-dione (50 ma, 0.15 mmol) (prepared as described below) and 3-trifluoromethylaniline (0.020 mL, 0.15 mmol) was heated neat at 140° C. for 2 h. The crude material was purified by preparative TLC using a mixture of 1:3 ethyl acetate and hexane as the eluent giving the desired product as a yellow solid (13 mg, 0.030 mmol, 18%). 1H NMR (400 MHz): δ 7.98 (d, J=2.0, 1H), 7.80 (d, J=8.6, 1H), 7.58 (t, J=7.7, 1H), 7.52 (d, J=8.1, 1H), 7.43 (s, 1H), 7.38 (dd, J=8.6, 1.9, 1H), 7.31 (overlapping singlet and dt, J=1.2, 7.8, 2H), 7.24 (d, J=7.8, 1H), 6.87 (d, J=7.9, 1H), 6.77 (t, J=7.7, 1H), 6.59 (d, J=7.7, 1H), 5.20 (s, 2H). ESI-MS m/z found 471 (MH+ with 35Cl), 473 (MH+ with 37Cl).


1-[(5-CHLORO-1-BENZOTHIEN-3-YL)METHYL]-2H-INDOLE-2,3-dione

A solution of isatin (125 mg, 0.85 mmol) in anhydrous dioxane (10 mL) was added dropwise to a solution of sodium hydride (60% dispersion in mineral oil, 25 mg, 0.62 mmol) in anhydrous dioxane (10 mL) at 0° C. under argon. The mixture was allowed to stir for 5 minutes and then a solution of 3-(bromomethyl)-5-chlorobenzo[b]thiophene (267 mg, 1.02 mmol) in dioxane (10 mL) was added dropwise to the reaction mixture. The reaction mixture was heated at reflux under argon for 16 h and concentrated in vacuo. The crude material was purified by preparative TLC using 1:24 methanol in chloroform as the eluent, giving the desired product as a yellow solid (125 mg, 0.38 mmol, 45%). 1H NMR (400 MHz): δ 7.89 (s, 1H), 7.79 (d, J=8.5, 1H), 7.65 (d, J=7.5, 1H), 7.54 (t, J=8.0, 1H), 7.42 (s, 1H), 7.38 (d, J=8.5, 1H), 7.14 (t, J=7.5, 1H), 6.88 (d, J=7.8, 1H), 5.13 (s, 2H).


Example 112
3-(1H-INDOL-5-YLIMINO)-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

1-phenylisatin (51.8 mg, 0.23 mmol) and 5-aminoindole (31 mg, 0.23 mmol) were mixed and heated at 140° C. for 2 h. The resulting crude product was purified by preparative TLC using ethyl acetate/hexane (6:4) as the eluent, giving the desired product as a yellow solid (10.8 mg, 14%). 1H NMR (400 MHz): δ 8.28 (s, 1H), 7.57 (t, J=7.7, 2H), 7.49-7.40 (m, 6H), 7.29-7.23 (m, 1H), 7.03 (dd, J=8.5, 1.7, 1H), 6.98 (d, J=7.6, 1H), 6.83 (d, J=8.0, 1H), 6.74, J=7.6, 1H), 6.59 (s, 1H); ESI-MS m/z found 338 (MH+).


Example 113
3-[(6-CHLORO-3-PYRIDINYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

1-phenylisatin. (23.0 mg, 0.10 mmol) and 5-amino-2-chloropyridine (12.8 mg, 0.10 mmol) were mixed and heated at 140° C. for 7 h. The resulting crude product was purified by preparative TLC using hexane/ethyl acetate (8:2) as the eluent, giving the desired product as a yellow solid (19.7 mg, 59%). 1H NMR (400 MHz) δ 8.15 (d, J=8, 1H), 7.6-7.2 (m, 9H), 6.85-6.75 (m, 2H); ESI-MS m/z found 334 (MH+).


Example 114
3-[(2-METHYL-1,3-BENZOTHIAZOL-5-YL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

5-amino-2-methylbenzothiazole (52.2 mg, 0.31 mmol) was mixed with 1-phenylisatin (69.7 mg, 0.31 mmol) and heated at 140° C. for 3 h. The resulting crude product was purified by preparative TLC using ethyl acetate/hexane (6:4) as the eluent to give the desired product as a yellow solid (36.9 ma, 32.3%). 1H NMR Data: δ 7.9-6.7 (m, 12H), 2.9 (s, 3H). ESI-MS m/z found 370 (MH+).


Example 254
(3Z)-3-[(3,4-DICHLOROPHENYL)IMINO]-1-(2-PYRIDINYLMETHYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures H and K (for substitution of 2-picolyl chloride). 1H NMR (400 MHz, CDCl3) δ 8.51-8.46 (m, 1H), 7.87-7.78 (m, 1H), 7.64 (d, 1H, J=7.1), 7.53-7.31 (m, 5H), 7.28 (d, 1H, J=4.1), 7.12 (d, 1H, J=8.1), 6.58-6.53 (m, 1H), 5.51 (s, 2H); ESI-MS m/z 381 (MH+).


Example 255
(3Z)-3-[(3,4-DICHLOROPHENYL)IMINO]-1-[(3,5-DIMETHYL-4-ISOXAZOLYL)METHYL]-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B (microwave heating). 1H NMR (400 MHz, CDCl3) δ 7,63 (d, 1H, J=9.1), 7.46 (dt, 1H, J=8.1, 2.0), 7.28 (d, 1H, J=2.1), 7.02 (d, 1H, J=2.0), 6.88 (dt, 1H, J=8.0, 2.1), 6.74-6.72 (m, 1H), 6.72-6.70 (m, 1H), 5.53 (s, 2H), 2.50 (s, 3H), 2.24 (s, 3H); ESI-MS m/z 399 (MH+).


Example 256
(3Z)-3-[(3,4-DICHLOROPHENYL)IMINO-1-[3-(TRIFLUOROMETHYL)PHENYL]-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B. 1H NMR (400 MHz, CDCl3) δ 7.90-7.87 (m, 1H), 7.83-7.79 (m, 1H), 7.67 (d, 1H, J=8), 7.46-7.40 (m, 1H), 7.33 (d, 1H, J=2), 7.08-7.05 (m, 1H), 6.96-6.80 (m, 5H); ESI-MS m/z 435 (MH+).


Example 257
(3Z)-1-(3,5-DICHLOROPHENYL)-3-[(3,4-DICHLOROPHENYL)IMINO]-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B. 1H NMR (400 MHz, CDCl3) δ 7.93 (d, 1H, J=8.1), 7.79 (d, 1H, J=6.0), 7.72-7.68 (m, 1H), 7.59-7.45 (m, 1H), 7.46 (d, 1H, J=8.1), 7.32 (dt, 1H, J=8.0, 2.1), 7.23 (d, 1H, J=2.5), 6.97 (dd, 1H, J=8.0, 2.1), 6.92-6.87 (m, 1H), 6.85-6.81 (m, 1H); ESI-MS m/z 435 (MH+).


Example 258
(3Z)-3-[(3,4-DICHLOROPHENYL)IMINO]-6-METHOXY-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures K, L, and B. 1H NMR (400 MHz, CDCl3) δ 7.69-7.54 (m, 1H), 7.53-7.38 (m, 3H), 7.29 (d, 1H, J=2.0), 7.17 (d, 1H, J=8.1), 7.12 (d, 1H, J=8.0), 6.84 (d, 1H, J=2.5), 6.78 (d, 1H, J=8), 6.6 (dd, 2H, J=8.0, 2.0), 6.55 (dd, 2H, J=8.1, 2.5); ESI-MS m/z (398 MH+).


Example 259
(3Z)-3-[(4-CHLORO-3-METHYLPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (80° C.). 1H NMR (400 MHz, CDCl3) δ 7.69-7.62 (m, 2H), 7.49 (s, 1H), 7.47 (s, 1H), 7.41 (dt, 1H, J=7.1, 1.6), 7.3 (dd, 1H, J=5.0, 1.6), 7.05-6.97 (m, 1H, 6.93-6.86 (m, 1H), 6.77 (m, 1H), 6.56 (m, 1H), 2.53 (s, 3H); ESI-MS m/z 353 (MH+).


Example 260
(3Z)-3-(2-NAPHTHYLIMINO)-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (80° C.). 1H NMR (400 MHz, CDCl3) δ 8.15 (d, 1H, J=9.1), 8.06-7.99 (m, 1H), 7.89-7.80 (m, 1H), 7.78-7.71 (m, 1H), 7.71-7.47 (m, 4H), 7.41-7.35 (m, 1H), 7.33 (d, 1H, J=5.2), 7.28 (d, 1H, J=6.8.1), 7.00 (d, 1H, J=8.0), 6.76 (t, 1H, J=7.8), 6.67 (d, 1H, J=7.9); ESI-MS m/z 355 (MH+).


Example 261
(3Z)-3-[(4-CHLOROPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (80° C.). 1H NMR (400 MHz, CDCl3) δ 7.69-7.56 (m, 2H), 7.54-7.48 (m, 1H), 7.41 (dt, 1H, J=8, 2), 7.32-7.28 (m, 1H), 7.11-6.99 (m, 3H), 6.89 (dt, 1H, J=8), 6.77-6.73 (m, 1H), 6.66-6.33 (m, 1H); ESI-MS m/z 339 (MH+).


Example 262
(3Z)-3-[(4-IODOPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (1% HOAc, in MeOH). 1H NMR (400 MHz, CDCl3) δ 7.79-7.74 (m, 2H), 7.53-7.48 (m, 2H), 7.35 (dt, 1H, J=8.0, 1.2), 7.29-7.24 (m, 1H), 6.98 (d, 1H, J=8.0), 6.89-6.75 (m, 4H.); ESI-MS m/z 431 (MH+).


Example 263
(3Z)-3-[(4-METHYLPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (1% HOAc in MeOH). 1H NMR (400 MHz, CDCl3) δ 7.52-7.44 (m, 2H), 7.35-7.22 (m, 4H), 6.99-6.93 (m, 3H), 6.87-6.78 (m, 2H), 2.42 (s, 3H); ESI-MS m/z 319 (MH+).


Example 264
(3Z)-3-((3,5-DIFLUOROPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (1% HOAc in MeOH). 1H NMR (400 MHz, CDCl3) δ 7.54-7.16 (m, 4H), 6.99 (dt, 1H, J=8.2, 0.8), 6.89 (dt, 1H, J=7.7, 1.1), 6.76 (d, 1H, J=7.5), 6.71 (tt, 1H, J=9.3, 2.3), 6.64-6.57 (m, 2H); ESI-MS m/z 341 (MH+).


Example 265
(3Z)-3-([1,1′-BIPHENYL]-4-YLIMINO)-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (1% HOAc in MeOH). 1H NMR (400 MHz, CDCl3) δ 7.73-7.12 (m, 13H), 6.99 (d, 1H, J=8.0), 6.89 (d, 1H, J=8.0), 6.82 (dt, 1H, J=7.6, 1.0); ESI-MS m/z 381 (MH+).


Example 266
ETHYL 3-{[(3Z)-2-OXO-1-(3-THIENYL)-1,2-DIHYDRO-3H-INDOL-3-YLIDENE]AMINO}BENZOATE

Prepared by Procedures A and B (1% HOAc in MeOH). 1H NMR (400 MHz, CDCl3) δ 7.96 (d, 1H, J=7.4), 7.75-7.17 (m, 6H), 6.98 (d, 1H, J=8.0), 6.87-6.78 (m, 2H), 6.63 (d, 1H, J=7.8), 4.45-4.32 (m, 2H), 1.43-1.33 (m, H); ESI-MS m/z 377 (MH+).


Example 267
(3Z)-3-[(6-CHLORO-3-PYRIDINYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (1% HOAc in MeOH). 1H NMR (400 MHz, CDCl3) δ 8.21-6.81 (m, 10H); ESI-MS m/z 340.13 (MH+).


Example 268
3Z)-3-[(4-PHENOXYPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (1% HOAc in MeOH). 1H NMR (400 MHz, CDCl3) δ 7.85-6.70 (m, 16H); ESI-MS m/z 397 (MH+).


Example 269
(3Z)-3-[(4-BROMOPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and H. 1H NMR (400 MHz, CDCl3) δ 7.82-6.55 (m, 11H); ESI-MS m/z 383 (MH+).


Example 270
(3Z)-3-[(3-CHLOROPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and H. 1H NMR (400 MHz, CDCl3) δ 7.55-6.50 (m, 11H); ESI-MS m/z 339 (MH+).


Example 271
(3Z)-3-[(3-METHYLPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (1% HOAc in MeOH). 1H N (400 MHz, CDCl3) δ 7.67-6.78 (m, 11H), 2.39 (s, 3H); ESI-MS m/z 319 (MH+).


Example 272
(3Z)-3-[(3,4-DICHLOROPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared, by Procedures A and B (1% HOAc in MeOH). 1H NMR (400 MHz, CDCl3) δ 7.82-6.80 (m, 10H); ESI-MS m/z 373 (MH+).


Example 273
(3Z)-1-(2-PYRIDINYLMETHYL)-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B. ESI-MS m/z 382 (MH+).


Example 274
(3Z)-3-[(3,5-DICHLOROPHENYL)IMINO]-1-(2-PYRIDINYLMETHYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B. ESI-MS m/z 382 (MH+).


Example 275
(3Z)-1-[(3,5-DIMETHYL-4-ISOXAZOLYL)METHYL]-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B. ESI-MS m/z 400 (MH+).


Example 276
(3Z)-3-[(3,4-DIFLUOROPHENYL)IMINO]-1-(3-PYRIDINYLMETHYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B. ESI-MS m/z 350 (MH+).


Example 277
(3Z)-1-(3-PYRIDINYLMETHYL)-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B. ESI-MS m/z 382 ((MH+).


Example 278
(3Z)-3-[(3,4-DIFLUOROPHENYL)IMINO]-1-(2-PYRIDINYLMETHYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B. ESI-MS m/z 350 (MH+).


Example 279
(3Z)-3-[(3,5-DICHLOROPHENYL)IMINO]-1-(3-PYRIDINYLMETHYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B. ESI-MS m/z 384 (MH+).


Example 280
(3Z)-3-[(3,5-DICHLOROPHENYL)IMINO]-1-[(3,5-DIMETHYL-4-ISOXAZOLYL)METHYL]-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B. ESI-MS m/z 402 (MH+).


Example 281
(3Z)-3-[(9-ETHYL-9H-CARBAZOL-3-YL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure H. 1H NMR (400 MHz, CDCl3) δ 8.28-6.66 (m, 16H), 4.47-4.35 (m, 2H), 1.55-1.44 (m, 3H); ESI-MS m/z 416 (MH+).


Example 282
(3Z)-1-PHENYL-3-(5-QUINOLINYLIMINO)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure H. 1H NMR (400 MHz, CDCl3) δ 9.38-9.32 (m, 1H), 8.55-8.50 (m, 1H), 8.01-6.62 (m, 12H), 6.43-6.35 (m, 1H); ESI-MS m/z 350 (MH+).


Example 283
(3Z)-3-[(4-IODOPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B (0.1% HOAc, 80° C., 92 h, 4 eq RNH2, 3 Å molecular sieves). ESI-MS m/z 425 (MH+).


Example 285
(3Z)-3-[(3,4-DIFLUOROPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B (0.1% HOAc, 80° C., 92 h, 4 eq RNH2, 3 Å molecular sieves). ESI-MS m/z 335 (MH+).


Example 286
(3Z)-3-[(2-CHLORO-4-METHYLPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B (0.1% HOAc, 80° C., 92 h, 4 eq RNH2, 3 Å molecular sieves). ESI-MS m/z 347 (MH+ with 35Cl), 349 (MH+ with 37Cl).


Example 287
(3Z)-3-[(2,4-DIMETHOXYPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B (0.1% HOAc, 80° C., 92 h, 4 eq RNH2, 3 Å molecular sieves). ESI-MS m/z 359 (MH+).


Example 288
3-{[(3Z)-2-OXO-1-PHENYL-1,2-DIHYDRO-3H-INDOL-3-YLIDENE]AMINO}BENZONITRILE

Prepared by Procedure B (0.1% HOAc, 80° C., 92 h, 4 eq RNH2, 3 Å molecular sieves). ESI-MS m/z 324 (MH+).


Example 289
(3Z)-3-{[2-METHYL-5-(TRIFLUOROMETHYL)PHENYL]IMINO}-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B (0.1% HOAc, 80° C., 92 h, 4 eq RNH2, 3 Å molecular sieves). ESI-MS m/z 381 (MH+).


Example 290
(3Z)-3-[(4-CHLORO-3-METHYLPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (80° C.). ESI-MS m/z 353 (MH+).


Example 291
(3Z)-3-(6-QUINOLINYLIMINO)-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (80° C.). ESI-MS m/z 356 (MH+).


Example 292
(3Z)-3-[(4-CHLOROPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (80° C.). ESI-MS m/z 339 (MH+).


Example 295
(3Z)-3-[(3-ISOPROPYLPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (80° C.). ESI-MS m/z 347 (MH+).


Example 296
(3Z)-3-[(4-CYCLOHEXYLPHENYL)IMINO]-1-(3-THIENYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures A and B (80° C.). ESI-MS m/z 387 (MH+).


Example 297
(4-{[(3Z)-2-OXO-1-PHENYL-1,2-DIHYDRO-3H-INDOL-3-YLIDENE]AMINO}PHENYL)ACETONITRILE

Prepared by Procedure B (0.1% HOAc, 80° C., 92 h, 4 eq RNH2, 3 Å molecular sieves). ESI-MS m/z 339 (MH+).


Example 298
(3Z)-3-[(2,2-DIFLUORO-1,3-BENZODIOXOL-5-YL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B (0.1% HOAc, 80° C., 92 h, 4 eq RNH2, 3 Å molecular sieves). ESI-MS m/z 379 (MH+).


Example 299
(3Z)-3-(1,3-BENZOTHIAZOL-6-YLIMINO)-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure H. ESI-MS m/z 356(MH+).


Example 300
(3Z)-1-TETRAHYDRO-2H-PYRAN-4-YL-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures G and H. ESI-MS m/z 375 (MH+).


Example 301
(3Z)-3-(1H-INDAZOL-6-YLIMINO)-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure H. ESI-MS m/z 339 (MH+).


Example 302
(3Z)-3-[(3-CHLOROPHENYL)IMINO]-6-METHOXY-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures I and H. ESI-MS m/z 363 (MH+).


Example 303
(3Z)-6-METHOXY-1-PHENYL-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures I and H. ESI-MS m/z 397 (MH+).


Example 304
(3Z)-1-PHENYL-3-{[4-(3-THIENYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures H and C. ESI-MS m/z 381 (MH+).


Example 305
(3Z)-1-PHENYL-3-{[3′-(TRIFLUOROMETHYL)[1,1′-BIPHENYL]-4-YL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures H and C. ESI-MS m/z 443 (MH+).


Example 306
(3Z)-1-PHENYL-3-{[4-(3-PYRIDINYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures H and C. ESI-MS m/z 376 (MH+).


Example 307
(3Z)-3-[(3-BROMOPHENYL)IMINO]-1-PHENYL-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedure B. ESI-MS m/z 378 (MH+).


Example 308
(3Z)-1,5-DIPHENYL-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures D, E, and F. ESI-MS m/z 443 (MH+).


Example 309
(3Z)-1-[1,1′-BIPHENYL]-4-YL-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures H (6 eq of aniline), J, and K. ESI-MS m/z 443 (MH+).


Example 310
(3Z)-1-(4-HYDROXYPHENYL)-3-{[3-(TRIFLUOROMETHYL)PHENYL]IMINO}-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures H (6 eq of aniline) and E. ESI-MS m/z 383 (MH+).


Example 311
(3Z)-3-[(3,4-DICHLOROPHENYL)IMINO]-1-(3-PYRIDINYLMETHYL)-1,3-DIHYDRO-2H-INDOL-2-ONE

Prepared by Procedures H (75° C., 2 h), K (3-picolyl chloride), and B. ESI-MS m/z 383 (MH+).


Examples 91-114 and 254-311 as described above are merely illustrative of the methods used to synthesize indolone derivatives. Further derivatives may be obtained utilizing methods shown in Schemes 6a, 7a and 8-10. The substituents in Schemes 6a, 7a and 8-10 are described in the Detailed Description.


It may be necessary to incorporate protection and deprotection strategies for substituents such as amino, amido, carboxylic acid, and hydroxyl groups in the synthetic methods described above to form indolone derivatives. Methods for protection and deprotection of such groups are well-known in the art, and may be found, for example in Green, T. W. and Wuts, P. G. M. (1991) Protection Groups in Organic Synthesis, 2nd Edition John Wiley & Sons, New York.




embedded image




embedded image




embedded image




embedded image



Radioligand Binding of Indolones at Cloned Galanin Receptors


The binding properties of the indolones of the present invention were evaluated at the cloned human galanin receptors, GAL1, GAL2, and GAL3, using protocols described herein.


Radioligand Binding Assay Results


The indolones described in Examples 91-114 and 254-311 were assayed using cloned human galanin receptors. The compounds were found to be selective for the GAL3receptor


The binding affinities of the compounds of Examples 91-114 and 254-311 are illustrated in Tables 4 and 4a.











TABLE 4









Ki (nM)











GalR
GalR
















Example
R1
R2
R3
R4
R5
1
2
GalR3


















91
Ph
OMe
H
H
H
*
*
527


92
Ph
H
CF3
H
H
*
*


93
Ph
H
Me
H
H
*
*
171


94
Ph
H
Cl
H
H
*
*
49


95
Ph
H
H
CF3
H
*
*
29


96
Ph
H
H
Me
H
*
*
111


97
Ph
H
H
Cl
H
*
*
51


98
Ph
H
H
Br
H
*
*
38


99
Ph
H
H
F
H
*
*
229


100
Ph
H
H
OPh
H
*
*


101
Ph
H
H
OEt
H
*
*
305


102
Ph
H
H
OMe
H
*
*
429


103
Ph
H
Cl
H
Cl
*
*
68


104
Ph
H
Me
H
Me
*
*
143


105
allyl
H
Cl
Cl
H
*
*
97


106
allyl
H
Cl
H
Cl
*
*
62


107
isopropyl
H
H
Br
H
*
*
126





Key:


* = >10000


OMe = Methoxy


Ph = Phenyl


OPh = Phenoxy


Me = Methyl


OEt = Ethoxy















TABLE 4a





Example
Structure
Ki (nM) Gal3

















108


embedded image


84





109


embedded image


103





110


embedded image


138





111


embedded image


1178





112


embedded image


2324





113


embedded image


136





114


embedded image


569





254


embedded image


64





255


embedded image


49





256


embedded image


18





257


embedded image


33





258


embedded image


67





259


embedded image


55





260


embedded image


60





261


embedded image


34





262


embedded image


46





263


embedded image


136





264


embedded image


27





265


embedded image


80





266


embedded image


236





267


embedded image


234





268


embedded image


57





269


embedded image


46





270


embedded image


42





271


embedded image


114





272


embedded image


26





273


embedded image


202





274


embedded image


174





275


embedded image


595





276


embedded image


192





277


embedded image


198





278


embedded image


340





279


embedded image


81





280


embedded image


521





281


embedded image


150





282


embedded image


333





283


embedded image


33





285


embedded image


26





286


embedded image


38





287


embedded image


260





288


embedded image


39





289


embedded image


59





290


embedded image


55





291


embedded image


271





292


embedded image


34





295


embedded image


242





296


embedded image


82





297


embedded image


226





298


embedded image


22





299


embedded image


377





300


embedded image


742





301


embedded image


875





302


embedded image


150





303


embedded image


214





304


embedded image


728





305


embedded image


638





306


embedded image


160





307


embedded image


41





308


embedded image


98





309


embedded image


224





310


embedded image


126





311


embedded image


32










Oral Compositions


As a specific embodiment of an oral composition of a compound of this invention, 100 mg of one of the compounds described herein is formulated with sufficient finely divided lactose to provide a total amount of 580 to 590 mg to fill a size 0 hard gel capsule.


Binding Properties of Compounds at Cloned Receptors


A. Materials and Methods


The binding properties of the compounds of the present invention were evaluated at one or more cloned receptors or native, tissue-derived transporters, using protocols described below.


Cell Culture


COS-7 cells were grown on 150 mm plates in D-MEM with supplements (Dulbecco's Modified Eagle Medium with 10% bovine calf serum, 4 mM glutamine, 100 units/ml penicillin, 100 μg/ml streptomycin) at 37° C. with 5% CO2. Stock plates of COS-7 cells were trypsinized and split 1:6 every 3-4 days. Human embryonic kidney 293 cells were grown on 150 mm plates in D-MEM with supplements (minimal essential medium) with Hanks' salts and supplements (Dulbecco's Modified Eagle Medium with 10% bovine calf serum, 4 mM glutamine, 100 units/ml penicillin, 100 μg/ml streptomycin) at 37° C. with 5% CO2. Stock plates of 293 cells were trypsinized and split 1:6 every 3-4 days. Mouse fibroblast LM(tk−) cells were grown on 150 mm plates in D-MEM with supplements (Dulbecco's Modified Eagle Medium with 10% bovine calf serum, 4 mM glutamine, 100 units/mL penicillin, 100 μg/mL streptomycin) at 37° C. with 5% CO2. Stock plates of LM(tk−) cells were trypsinized and split 1:10 every 3-4 days. Chinese Hamster Ovary (CHO) cells were grown on 150 mm plates in HAM's F12 medium with (HAM's F-12 with 10% bovine calf serum, 4 mM glutamine, 100 units/mL penicillin, 100 μg/mL streptomycin) at 37° C. with 5% CO2. Stock plates of CHO cells were trypsinized and split 1:8 every 3-4 days.


LM(tk−) cells were stably transfected with the human GAL1 or GAL3 receptor. CHO cells were stably transfected with the human GAL2 receptor.


Stable Transfection


cDNAs for the human and rat GAL1, and human and rat GAL3 receptors were transfected with a G-418 resistant gene into the mouse fibroblast LM(tk−) cell line by a calcium phosphate transfection method (Cullen, 1987). Stably transfected cells were selected with G-418. Human and rat GAL2 receptors were similarly transfected into CHO cells.


Membrane Harvest


Membranes were harvested from stably transfected LM(tk−) cells. Adherent cells were washed twice in ice-cold phosphate buffered saline (138 mM NaCl, 8.1 mM Na2HPO4, 2.5 nM KCl, 1.2 mM KH2PO4, 0.9 mM CaCl2, 0.5 mM MgCl2, pH 7.4) and lysed by sonication in ice-cold sonication buffer (20 mM Tris-HCl, 5 mM EDTA, pH 7.7). Large particles and debris were cleared by low speed centrifugation (200×g, 5 min, 4° C.). Membranes were collected from the supernatant fraction by centrifugation (32,000×g, 18 min, 4° C.), washed with ice-cold hypotonic buffer, and collected again by centrifugation (32,000×g, 18 min, 4° C.). The final membrane pellet was resuspended by sonication into a small volume of ice-cold binding buffer (˜1 ml for every 5 plates: 10 mM NaCl, 20 my HEPES, 0.22 mM KH2PO4, 1.26 mM Cal2, 0.81 mM MgSO4, pH 7.4). Protein concentration was measured by the Bradford method (Bradford, 1976) using Pio-Rad Reagent, with bovine serum albumin as a standard. Membranes were held on ice for up to one hour and used fresh, or flash frozen and stored in liquid nitrogen. Membranes were prepared similarly from CHO cells.


The evidence presented in this invention suggests that GPCR-targeted molecules that bind to and antagonize the GAL3 receptor may be used for the treatment of pain, specifically neuropathic pain, and other disorders. The design of such compounds may be optimized by determining their binding affinity at the recombinant GAL3, GAL1, and other known GPCR and transporter targets.


Additionally, the GAL3 antagonist(s) optimally may not bind at the following receptors due to possible side effects: human GAL2; human H1 histamine; human α1A adrenergic, human α1B adrenergic, human α1D adrenergic, human α2A adrenergic, human α2B adrenergic, and human α2C adrenergic; human dopamine D1, D2, D3, D4, and D5; and the human 5HT1B, human 5HT1D, human 5HT1E, human 5HT1F, human 5HT2A, rat 5HT2C, human 5HT6, and human 5HT7 receptors.


Radioligand Binding Assays and Enzymatic Assays


The methods to obtain the cDNA of the receptors, express said receptors in heterologous systems, and carry out assays to determine binding affinity are described as follows.


Galanin Receptors: Binding assays were performed according to the following published methods: human GAL3 (PCT International Publication No. WO 98/15570), human GALL (PCT International Publication No. WO 95/2260), human GAL2 (PCT International Publication No. WO 97/26853).


Human 5HT1B, 5HT1D, 5HT1E, 5HT1F, and 5HT7 Receptors: The cell lysates of LM(tk−) clonal cell line stably transfected with the genes encoding each of these 5HT receptor-subtypes were prepared as described above. Cell membranes were suspended in 50 mM Tris-HCl buffer (pH 7.4 at 37° C.) containing 10 mM MgCl2, 0.2 mM EDTA, 10 M pargyline, and 0.1% ascorbate. The affinities of compounds were determined in equilibrium competition binding assays by incubation for 30 minutes at 37° C. in the presence of 5 nM [3H]-serotonin. Nonspecific binding was determined in the presence of 10 μM serotonin. The bound radioligand was separated by filtration through GF/B filters using a cell harvester.


Human 5HT2A Receptor: The coding sequence of the human 5HT2A receptor was obtained from a human brain cortex cDNA library, and cloned into the cloning site of pCEXV-3 eukaryotic expression vector. This construct was transfected into COS-7 cells by the DEAE-dextran method (Cullen, 1987). Cells were harvested after 72 hours and lysed by sonication in 5 mM Tris-HCl, 5 mM EDTA, pH 7.5. The cell lysates were subjected to centrifugation at 1000 rpm for 5 minutes at 4° C., and the supernatant was subjected to centrifugation at 30,000×g for. 20 minutes at 4° C. The pellet was suspended in 50 mM Tris-HCl buffer (pH 7.7 at room temperature) containing 10 mM MgSO4, 0.5 mM EDTA, and 0.1% ascorbate. The affinity of compounds at 5HT2A receptors were determined in equilibrium competition binding assays using [3H]ketanserin (1 nM). Nonspecific binding was defined by the addition of 10 μM mianserin. The bound radioligand was separated by filtration through GF/B filters using a cell harvester.


5-HT1A Receptor: The cDNA corresponding to the 5-HT1A receptor open reading frames and variable non-coding 5′- and 3′-regions, was cloned into the eukaryotic expression vector pCEXV-3. These constructs were transfected transiently into COS-7 cells by the DEAE-dextran method (Cullen, 1987), and harvested after 72 hours. Radioligand binding assays were performed as described above for the 5-HT2A receptor, except that 3H-8-OH-DPAT was used as the radioligand and nonspecific binding was determined by the addition of 10 μM mianserin.


Other 5-HT Receptors: Other serotonin receptor binding assays were performed according to published methods: rat 5HT2C receptor (Julius et al., 1988); and 5-HT6 (Monsma, et al., 1993). The binding assays using the 5-HT4 receptor were performed according to the procedures described in U.S. Pat. No. 5,766,879, the disclosure of which is hereby incorporated by reference in its entirety into this application.


Other receptors: Cell membranes expressing human dopamine D1, D2, D4 and rat D3 receptors were purchased through BioSignal, Inc. (Montreal, Canada). Binding assays using the histamine H, receptor; dopamine receptors; and α1A, α1B, and α2 adrenergic receptors may be carried out according to the procedures described in U.S. Pat. No. 5,780,485, the disclosure of which is hereby incorporated by reference in its entirety into this application. Binding assays using the dopamine D5 receptor may be carried out according to the procedures described in U.S. Pat. No. 5,882,855, the disclosure of which is hereby incorporated by reference in its entirety into this application. Binding assays for the human α1D adrenergic receptor may be carried out according to the procedures described in U.S. Pat. No. 6,156,518, the disclosure of which is hereby incorporated by reference in its entirety into this application.


The methods to determine binding affinity at native transporters are described in the following publications: 5HT transporter and NE transporter (Owens et al., 1997), and DA transporter (Javitch et al, 1984).


Materials


Cell culture media and supplements were from Specialty Media (Lavallette, N.J.). Cell culture plates (150 mm and 96-well microtiter) were from Corning (Corning, N.Y.). Polypropylene 96-well microtiter plates were from Co-star (Cambridge, Mass.). Bovine serum albumin (ultra-fat free, A-7511) was from Sigma (St. Louis, Mo.). All radioligands were from New England Nuclear (Boston, Mass.). Commercially available peptides and peptide analogs were either from Bachem Calif. (Torrance, Calif.) or Peninsula (Belmont, Calif.). All other materials were reagent grade.


Data Analysis


Binding data were analyzed using nonlinear regression and statistical techniques available in the GraphPAD Prism package (San, Diego, Calif.). Enzymatic assay data were derived from a standard curve of reference compound data.


The selectivity ratios for compounds of the claimed invention were calculated from the binding data presented in Tables 1-4, Table 7 and Table 9 of the subject application. More specifically, these ratios were calculated by dividing (a) the binding affinity (Ki value) of said compound to a particular receptor or transporter by (b) the binding affinity (Ki value) of said compound to the human GAL3 receptor. The data presented in Table 8 and Table 10, hereinafter, were calculated using the above described method.


For example, the GAL3/GAL1 selectivity ratio of 10-fold recited in claim 110 of the subject application is characteristic of Example 34. This binding ratio was calculated by dividing (a) the Ki value of 912 for the binding of Example 34 to the GALL receptor (see Table 1) by (b) the Ki value of 23 for the binding of Example 34. to the human GAL3 receptor, thus obtaining the result of 39. Therefore the GAL3/GAL1 binding ratio for Example 34 was determined to be greater than 10-fold.


B. Results


The compounds described in the claimed invention were assayed using a panel of cloned receptors and native transporters. The preferred compounds were found to be selective GAL3 antagonists. The binding affinities and selectivity ratios of several compounds are illustrated in Tables 7-10.









TABLE 7







Antagonist binding affinity (Ki) at the human GAL3 receptor vs. serotonin receptors and several transporters.

































r5HT
rNE
rDA



hGAL3
h5HT1A
h5HT1B
h5HT1D
h5HT1E
h5HT1F
h5HT2A
r5HT2c
h5HT4
h5HT6
h5HT7
Uptk
Uptk
Uptk



Ki
Ki
Ki
Ki
Ki
Ki
Ki
Ki
Ki
Ki
Ki
Ki
Ki
Ki


Example
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
























11
91
4682
101
102
9174
1780
6708
802
1308
800
1012
1595
*
5430


15
73
5098
487
1272
11038
4192
11270
572
2301
1457
2527
1737
*
24500


17
87
3477
407
1032
33523
10271
7157
562
2606
711
1797
719
18325
27200


22
28
9714
1981
1852
13230
5773
20689
1717
2457
2264
2672
8483
13085
7480


34
23
*
1059
2976
28282
4803
*
2076
20762
38921
4439
37462
*
3900


49
211
29187
8447
16872
23886
8894
*
6687
13230
13
12268
40666
37585
2010


60
86
33666
5461
9198
1180
2124
26118
1781
1180
47536
3235
25274
46108
14500


77
79
5472
365
716
5888
3237
2242
456
1324
503
1547
821
28083
2790


92
38
*
11323
32139
18934
5290
*
ND
72
*
ND
45111
33879
17800


94
49
*
3349
10764
25227
5683
*
4099
4120
3647
8018
12961
4876
2200


95
29
28288
5226
16018
27211
4446
*
3471
3031
21507
11638
*
6101
12000


97
51
*
5057
14235
22692
4157
*
1950
2550
29131
11283
36308
4412
8440


98
38
24576
2419
9118
16240
3359
*
2260
1210
14018
8464
36329
5496
7430





* = >50000


ND = Not determined













TABLE 8







Antagonist selectivity ratios determined for the human GAL3 receptor vs. serotonin receptors and several transporters.

































r5HT
rNE
rDA


Example
hGAL3
h5HT1A
h5HT1B
h5HT1D
h5HT1E
h5HT1F
h5HT2A
r5HT2c
h5HT4
h5HT6
h5HT7
Uptk
Uptk
Uptk
























11
1
>30
1
1
>100
20
>30
9
14
9
11
18
>100
>30


15
1
>30
7
17
>100
>30
>100
8
>30
20
>30
24
>100
>100


17
1
>30
5
12
>100
>100
>30
6
30
8
21
8
>100
>100


22
1
>100
>30
>30
>100
>100
>100
>30
>30
>30
>30
>100
>100
>100


34
1
>100
>30
>100
>100
>100
>100
>30
>100
>100
>100
>100
>100
>100


49
1
>100
>30
>30
>100
>30
>100
>30
>30
0
>30
>100
>100
10


60
1
>100
>30
>100
14
25
>100
21
14
>100
>30
>100
>100
>100


77
1
>30
5
9
>30
>30
28
6
17
6
20
10
>100
>30


92
1
>100
>100
>100
>100
>100
>100
ND
2
>100
ND
>100
>100
>100


94
1
>100
>30
>100
>100
>100
>100
>30
>30
>30
>100
>100
>30
>130


95
1
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100


97
1
>100
>30
>100
>100
>30
>100
>30
>30
>100
>100
>100
>30
>100


98
1
>100
>30
>100
>100
>30
>100
>30
>30
>100
>100
>100
>100
>100





ND = Not determined













TABLE 9







Antagonist binding affinity (Ki) at the human GAL3 receptor vs. alpha-adrenergic, dopamine, and histamine receptors.





















hGAL3
1A
1B
1D
2A
2B
2C
hD1
hD2
rD3
hD4
hD5
hH1



Ki
Ki
Ki
Ki
Ki
Ki
Ki
Ki
Ki
Ki
Ki
Ki
Ki


Example
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)























11
91
926
1436
264
1819
10235
3004
79
782
2139
4828
64
ND


15
73
3392
853
480
14413
24515
8202
344
2184
8809
13151
78
ND


17
87
996
1167
221
3523
38732
10269
516
1808
2477
22227
89
ND


22
28
1278
1582
368
906
5757
2737
128
1501
5664
11621
63
ND


34
23
3756
15004
1240
3679
15488
8832
290
2500
9922
18716
111
ND


49
211
6646
18852
678
4731
25374
9244
3781
5940
13964
45824
328
ND


60
86
13604
40615
4231
10838
*
7200
600
26815
15295
48756
538
39909


77
79
834
452
217
315
7783
634
60
910
2716
504
122
ND


92
38
ND
*
17175
21943
*
*
*
41369
48180
41369
29290
39909


94
49
12715
31135
4027
12718
45378
47863
2145
6249
423
*
727
ND


95
29
13137
32494
3468
30072
*
48552
4394
9716
466
*
2590
ND


97
51
16921
45845
6454
13569
*
*
25115
*
9716
*
10069
ND


98
38
14500
31693
1891
23236
*
*
2524
3788
592
*
1199
ND





* = >50000


ND = Not determined













TABLE 10







Antagonist selectivity ratios determined for the human GAL3 receptor vs. alpha-adrenergic,


dopamine, and histamine receptors.




















Example
hGAL3
1A
1B
1D
2A
2B
2C
hD1
hD2
rD3
hD4
hD5
hH1























11
1
10
16
3
20
>100
>30
0.9
9
24
>30
0.7
ND


15
1
46
12
7
>100
>100
>100
5
30
>100
>30
1
ND


17
1
11
13
3
>30
>100
>100
6
21
28
>100
1
ND


22
1
>30
>30
13
>30
>100
>100
5
>30
>100
>100
2
ND


34
1
>100
>100
>30
>100
>100
>100
13
>100
>100
>100
5
ND


49
1
>30
>30
3
22
>100
>30
18
28
>30
>100
2
ND


60
1
>100
>100
>30
>100
>100
>30
7
>100
>100
>100
6
>100


77
1
11
6
3
4
>30
8
0.8
11
>30
6
2
ND


92
1
ND
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100


94
1
>100
>100
>30
>100
>100
>100
>30
>100
9
>100
15
ND


95
1
>100
>100
>100
>100
>100
>100
>100
>100
16
>100
>30
ND


97
1
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
ND


98
1
>100
>100
>30
>100
>100
>100
>30
>100
16
>100
>30
ND





ND = Not determined







GAL3 Receptor Localization


A. Materials and Methods


Preparation of the anti-GAL3 Antiserum


BioSource International, Hopkinton, Mass. performed the immunization and maintenance of rabbits. Following a pre-immune bleed, one peptide for each GAL receptor was injected into a pair of New Zealand white rabbits. The peptide sequences was chosen based on sequence specificity and immunogenicity. The rabbit anti-GAL3 antiserum were raised against C-terminal epitopes corresponding to amino acids 357-370 (Genbank accession number AF073798). The peptides were conjugated to the carrier KLH (keyhole limpet hemocyanin) by a cross linker and subcutaneously injected into the rabbits. The generation of the anti-GAL3 antiserum required OVA followed by a third series of injections with the GAL3 peptide conjugated to tetanus toxoid (TTOX). All injections were done using the Freund's Adjuvant System. Once immunoreactivity was established (see below) the antiserum was affinity purified by passing it over an agarose based column thiol coupled to its antigenic peptide. The column was washed and the antiserum was eluted using a low pH glycine buffer. The purified material was dialyzed, the optical density is taken at 280 λ and the purified antiserum was frozen.


Characterization of the Anti-GAL3 Antiserum Recombinant GAL1, GAL2, and GAL3 Receptor Transfected Cells


To determine the ability of the GAL3 antiserum to recognize only the GAL3 receptor protein in vitro, COS-7 cells were grown on poly-L-lysine-coated plastic chamber slides (Nalge Nunc International, Naperville, Ill.) and transfected with recombinant rat GAL receptors (Genbank accession numbers U30290, AF010318, AF073798, respectively) or expression vector only (for mock-transfected cells) as previously described by Borowsky et al. (1999). Receptor expression was confirmed by radioligand binding. Briefly, a subset of slides was washed three times in binding buffer (50 mM Tris, pH 7.5, 5 mM MgCl2, 1 mM EDTA, 0.1% bovine serum albumin, and 0.1% bacitracin) and incubated in 500 μl binding buffer containing porcine 125I-galanin (625,000 dpm) plus or minus 10 μM porcine galanin. After incubation at room temperature for 1 hour, the binding buffer was aspirated and slides were rinsed three times in ice cold 50 mM Tris, pH 7.5. Cells were solubilized in 1 ml of 0.1 N NaOH and 0.05% sodium deoxycholate for 30 minutes then transferred to test tubes for gamma counting of 125I. To evaluate antibody activity another subset of slides were washed with phosphate buffered saline (PBS) (Sigma, St. Louis, Mo.) to remove the medium and fixed with 4% paraformaldehyde (PFA) (Sigma, St. Louis, Mo.) then permeabilized using 0.2% Triton X-100/PBS and incubated in 3% normal goat serum for 30 minutes to minimize nonspecific binding of the primary antibody. Cells were incubated overnight at 4° C. with the anti-GAL3 antiserum (1:1000 dilution). The cells were rinsed three times with PBS, incubated for 30 minutes at 25° C. with goat anti-rabbit IgG (1:200 dilution) (Santa Cruz Biotechnology, Santa Cruz, Calif.), rinsed and processed using the peroxidase-antiperoxidase (PAP) reaction of. Sternberger et al. (1982). Control experiments for antibody specificity were (1) incubation of the cells in primary antiserum that had been preabsorbed with the respective antigenic peptide (20 μg/ml), (2) incubation without the primary antiserum, or (3) incubation with the primary antiserum replaced by normal goat serum.


Western Blotting


Membranes were prepared from COS-7 cells transiently transfected with the rat recombinant receptors GAL1, GAL2, and GAL3 as previously described (Borowsky et al., 1999). Transfected cells were lysed by sonication in ice-cold sonication buffer (20 mM Tris-HCl, pH 7.7, 5 mM EDTA). Cell lysates were subjected to centrifugation at 4° C. for 10 minutes at 200 g. The supernatant was then fractionated by centrifugation at 4° C. for 18 minutes at 32,000 g. The resulting membrane pellet was suspended into 50 mM Tris, pH 7.5, 5 mM MgCl2, 1 mM EDTA. Protein samples (1-10 μg) were solubilized in 2× Laemmli buffer (Bio-Rad, Hercules, Calif.) and fractionated by SDS-PAGE in 10% polyacrylamide gels. Proteins were transferred to polyvinylidine difluoride membranes for immunoblot analysis in ice-cold 25 mM Tris, pH 8, 192 mM glycine, 20% methanol as previously described by Harlow and Lane (1999). Blots were incubated for 1 hour at, 25° C. in blocking buffer composed of 5% non-fat dried milk in TTBS (0.1% Tween-20, 500 mM NaCl, 20 mM Tris, pH 7.5) then for 16 hours at 25° C. with the receptor-specific polyclonal antibody (1:1000 dilution in blocking buffer)(0.25 mg/ml for GAL2 or 1.5 mg/ml for GAL3). Immunoreactive bands were detected with the Phototope-HRP Detection Kit for Western Blotting (New England BioLab, Beverly, Mass.) according to the protocol. Briefly, the blots were incubated with horseradish peroxidase-conjugated goat anti-rabbit IgG then developed with a mixture of LumiGLO plus hydrogen peroxide and recorded by chemiluminescence on Kodak Biomax-ML film (Kodak, Rochester, N.Y.).


Immunohistochemistry


Male Sprague-Dawley rats, (200-250 g; Charles Rivers, Rochester, N.Y.) were anesthetized by intraperitoneal injection of ketamine 20 mg/kg (RBI, Natick, Mass.) and xylazine 0.2 mg/kg (Bayer, Shawnee Mission, Kans.) then transcardially perfused with 200 ml PBS, pH 7.4 followed by 200 ml 4% PFA in PBS. The brains and spinal cords were removed, blocked, and postfixed in the same fixative for 4 hours at 4° C. then cryoprotected in 30% sucrose in PBS at 4° C. for 48 hours before freezing on dry ice. Coronal brain sections and transverse spinal cord sections were cut at 30 μm using a freezing microtome. Tissue sections were immediately immersed in PBS and stored at 4° C. until use. Sections were processed free-floating according to the protocol outlined in NEN Life, Science Products TSA (Tyramide Signal Amplification) Indirect Kit. Briefly, tissue sections were permeabilized in 0.2% Triton X-100 (Sigma, St. Louis, Mo.)/PBS, incubated in 1% hydrogen peroxide (Sigma, St. Louis, Mo.)/PBS to remove endogenous peroxidase activity then blocked in TNB Buffer (0.1 M Tris-HCl, pH 7.5, 0.15 M NaCl, and 0.5% Blocking Reagent. Sections were incubated for 24 hours at 4° C. in either the anti-GAL2 or anti-GAL3 antiserum (1:100). Following incubation with the primary antiserum, the tissue sections were washed in TNT Buffer (0.1 M Tris-HCl, pH 7.4, 0.15 M NaCl, 0.05% Tween 20) followed by incubation at 25° C. for 30 minutes with horseradish peroxidase (HRP)-conjugated goat anti-rabbit immunoglobulin (1:200) (Sternberger Monoclonals Inc., Lutherville, Md.). Tissue sections were rinsed in TNT Buffer and incubated in a solution containing biotinylated tyramide to amplify the signal then rinsed in TNT buffer and incubated with HRP-conjugated to streptavidin at 25° C. for 30 minutes. An immunoperoxidase reaction was done by incubating the section in 3,3′-diaminobenzidine (DAB) (0.05%) in 00.1 mM Tris, pH 7.4 and adding hydrogen peroxide to 0.006% immediately before use. The reaction was stopped in water and the sections mounted on microscopic slide with mounting medium (40% ethanol: gelatin) and counterstained with Cresyl violet then coverslipped for light microscopy.


Optimal GAL3 antibody concentrations (1:200) for rat brain sections were determined in preliminary titration experiments. Experimental controls in the tissue sections included (1) incubation in normal rabbit serum or (2) omission of the primary antiserum.


Analysis


COS-7 cells and tissue sections were examined using a Zeiss Axioscope. A total of 6 male rats were examined with the anti-GAL3 antiserum. The identification of GAL3-LI in the transfected cells and brain regions was based on the presence of immunoreactivity appearing as a brownish precipitate in individual cells and their projections or in the neuropil of the tissue by light microscopy. The descriptions of neuroanatomic boundaries are based on the atlas of Paxinos and Watson (1998).


B. Results


Characterization of the GAL3 Antiserum Recombinant GAL1, GAL2, and GAL3 Receptor Transfected Cells


The ability of the anti-GAL3 antiserum to recognize only the GAL3 receptor protein in vitro was established by performing immunocytochemistry on COS-7 cells transiently transfected with the recombinant receptor proteins for the rat GAL1, GAL2, and GAL3, or mock-transfected with vector only. Specific porcine 125I-galanin binding was detected for all transfectants except mock-transfected cells. An immune response was detected only in the COS-7 cells incubated with the antiserum generated for the particular recombinant receptor. Specifically, no immune reaction was observed with the anti-GAL3 antiserum (1:1000) in GAL1 or GAL2 transfected cells. Furthermore, no visible immune reaction was detected in the mock-transfected cells. Incubation of the cells in primary antiserum that had been preabsorbed with the antigenic peptide (2.0 μg/ml) or without the primary antiserum or with the primary replaced by normal goat serum did not result in an immune response.


Taken together, these data demonstrate that the anti-GAL3 antiserum recognizes the receptor against which it was generated and does not show cross reactivity with other known GAL receptors.


Western Blots


To determine the specificity of the anti-GAL3 antiserum, COS-7 cells were transiently transfected either with recombinant rat GAL2 or GAL3 receptors or with expression vector only; membranes were then isolated for evaluation by immunoblotting (see FIG. 1). The anti-GAL3 antiserum labeled proteins in membranes only from rat GAL3-transfected cells; a predominant band was evident with an apparent molecular weight of approximately 56 kDa (FIG. 1), somewhat higher than the amino acid-derived value of 40.4 kDa. (For comparison, apparent molecular weights determined by SDS-PAGE are 56 kDa (Servin et al., 1987) or 54 kDa (Chen et al., 1992) for native GAL receptors purified from rat brain and 54 kDa (Amiranoff et al., 1989) for native GAL receptors purified from Rin m 5F cells. These values are all higher than the amino acid-derived value any known GAL receptor subtype, including the value of 38.9 kDa for rat GAL1 (Parker et al., 1995). The apparently high molecular weight observed for rat GAL3 very likely reflects post-translational processing such as glycosylation; note that rat GAL3 contains multiple N-terminal glycosylation sites (Smith et al., 1998). Relative to the predominant band, additional species of higher molecular weight as well as lower molecular weight were labeled by the corresponding antiserum (FIG. 1). These are presumably receptor-related species composed of protein aggregates of C-terminal fragments, as they are absent in mock-transfected cells.


Immunohistochemical Distribution of GAL3-LI in the CNS


GAL3-like immunoreactivity (GAL3-LI) was observed in many regions of the brain, specifically, the neocortex, septum, hippocampus, amygdala, hypothalamus, brainstem, cerebellum, and spinal cord. Throughout the brain and spinal cord GAL3-LI was found to be associated with neuronal profiles however, there was neuropil staining observed in several brain regions. GAL3-LI was high in the septum, basal forebrain, and spinal cord dorsal horn. Lower GAL3-staining was observed in the neocortex, thalamus, hypothalamus, hippocampus, and ventral horn of the spinal cord. Several regions of the CNS almost exclusively expressed (GAL3-LI, specifically the caudate-putamen, accumbens nucleus, dorsal raphe and regions of the central gray. There was no observable staining of the fiber tracts.


The specificity of the anti-GAL3 antiserum was determined in tissue sections by (1) omission of the primary antiserum or (2) incubation with normal rabbit serum. No specific staining was observed in either condition. Preabsorption of the GAL3 primary antiserum with the antigenic peptide (10 μg/ml) decreased but did not completely block staining in the tissue sections as in the transfected cells. This was most likely related to the different localization approaches. In the transiently transfected COS-7 cells the expression of GAL3 receptor protein was relatively high therefore, indirect immunocytochemistry with no amplification was used. In contrast, GAL3 receptor protein expression is presumed to be relatively lower in the tissue sections and for that reason the TSA (amplification) technique was employed. It is possible that because of the amplification (1000-fold) in the TSA technique even small amounts of unabsorbed antiserum may result in a signal.


Olfactory System


The main olfactory bulb contained a weak GAL3-LI in scattered cells of the glomerular and internal granule layers; the mitral cells did not contain GAL3-LI. In the anterior olfactory nucleus weak GAL3-LI was detected in random cell bodies and fibers. GAL3-LI was not detected above background in the superficial plexiform layer of the piriform cortex, but weak staining was observed in the neuropil of layer 2 and in the cell bodies of layer 3. Weakly stained cells were observed in the islands of Calleja, and tenia tecta; many cells in the olfactory tubercle were moderately stained.


Regions of the Telencephalon


Cerebral Cortex


GAL3-LI was widespread in the cerebral cortex and the distribution pattern extended rostrocaudally. Moderately stained GAL3-positive fibers were detected in layers II and III. Numerous pyramidal-shaped somata in layers II through V contained moderate GAL3-LI, and in some instances staining could be seen extending into the cell's dendritic arborizations. In layer VI, GAL3-LI was present only in the cytoplasm of scattered small cells. A weak to moderate GAL3-LI was seen in numerous cell bodies in the anterior cingulate and retrosplenial cortices. The entorhinal cortex contained GAL3-positive cell bodies and a finely stained neuropil.


Septal Region


An extensive and densely stained fiber network was seen throughout the entire lateral, intermediate and medial septal nuclei. The dorsal division of the lateral septum contained scarce moderately GAL3-positive somata.


Basal Ganglia and Basal Forebrain


GAL3-LI was detected in the receiving regions of the basal ganglia; thus GAL3 may mediate the internal organization of the basal ganglia. Many moderately labeled medium-sized round cells were evenly distributed throughout the caudate-putamen in addition to a weakly immunoreactive neuropil. Moderately positive cells were visible along themedial border of the globus pallidus. Numerous moderately GAL3-positive cell bodies and fibers were present in the shell and core of the accumbens nucleus. The cell bodies of the subthalamic nucleus, a relay nucleus in the basal ganglia, contained weak GAL3-LI.


Moderately GAL3-positive cells were present in several nuclei of the basal forebrain: the horizontal limb of the diagonal band, the basal nucleus of Meynert, and the substantia innominata.


Hippocampal Region


A large number of granule cells in the dorsal dentate gyrus and pyramidal-shaped cells in the polymorphic dentate gyrus displayed a weak to moderate GAL3-LI. Clusters of very fine light to moderately GAL3-immunoreactive fiber networks were evident in the molecular layer of the dentate gyrus. Light to moderate GAL3-LI was observed in the perikarya of the pyramidal-shaped cells in Ammon's horn and as a fine neuropil in the stratum oriens and stratum radiatum of fields CA1, CA2, and CA3. Labeled cells and fibers were observed in the rostral subiculum. Caudally, moderate to weak GAL3-LI was seen in the granule cells of the ventral dentate gyrus with weaker labeling in random cell bodies throughout the dorsal subiculum and the ventral CA1 field.


Amygdala and Extended Amygdala


In general, GAL3-LI was weak throughout the amygdala. Scattered cell bodies and fibers exhibited weak staining in several nuclei: the lateral, medial, posteroventral, posterodorsal medial, and posteromedial cortical nuclei. GAL3-positive cells were present in the anterior cortical amygdaloid nuclei, amygdalopiriform transition and amygdalohippocampal areas. Very fine GAL3-positive fibers with scattered moderately labeled cells were detected in the central amygdaloid nucleus. The divisions of the bed nucleus of the stria terminalis displayed a weak cellular GAL3-LI; moderately stained fibers were present in the nucleus of the lateral olfactory tract.


Regions of the Diencephalon


Hypothalamus and Preoptic Area


GAL3-LI was fairly extensive in the hypothalamus. Moderate GAL3-LI could be seen in the large cell bodies extending into the dendrites in the magnocellular preoptic nucleus. Relatively high GAL3 staining was observed in cells and neuropil of the suprachiasmatic and arcuate nuclei and as a dense fiber network in the median eminence. Moderately stained GAL3-positive fibers could be seen in the optic chiasm near the ventral border of the superchiasmatic nucleus. Moderate labeling was detected in cells and neuropil in several nuclei: the lateroanterior, lateral and anterior hypothalamus, supraoptic, dorsomedial, paraventricular parvocellular, periformical, ventromedial, and medial mammillary nuclei, and in cell bodies and fibers of the ventromedial nucleus.


Thalamus and Epithalamus


GAL3-LI was generally weak throughout the thalamus. The highest GAL3-LI in the thalamus was detected in the cell bodies and neuropil of the geniculate nuclei and the anteromedial thalamic nucleus. The reticular, paraventricular, central, mediodorsal, anterodorsal, anteromedial, anteroventral, lateral posterior, anterior pretectal, and posterior thalamic nuclei, the zona incerta and the nucleus of the fields of Forel contained light to moderately stained cells. The ventroposterior lateral and ventroposterior medial nuclei contained GAL3-positive cells and fibers. Weak labeling was detected in the cell bodies in the medial habenular nucleus with scarce positive cells in the lateral habenular nucleus.


Midborain/Mesencephalon


The neuropil and scattered cells in the zonal layer of the superior colliculus were moderately labeled. Light to moderately stained GAL3-positive cell bodies were observed in the superficial, intermediate gray and deep gray layers with a random positive cell in the optic nerve layer. Moderately labeled cell bodies were present in several midbrain regions: the dorsal and lateral ventral divisions of the central gray, the external cortex of the inferior colliculus, oculomotor, and rhabdoid nuclei and tegmental area. Labeled cells were detected within the dorsal raphe and projections from these cells were seen converging toward the midline of the raphe in the midbrain tegmentum, moderate GAL3-LI was present in the perikarya and dendrites of the large neurons of the red nucleus and retrorubral field. Small-sized pyramidal shaped weakly stained cell bodies were seen throughout the substantia nigra, reticular part with weaker labeling of the neuropil; moderately dense labeling of neuronal perlkarya was detected in the compact part. The pontine nucleus displayed a light to moderate GAL3-positive neuropil.


GAL3-LI was extensive throughout the brain stem. Moderate GAL3-LI was detected in the neuropil and cell bodies of several nuclei: the medial vestibular, prepositus hypoglossal, dorsal cochlear, and facial nuclei. Very weak GAL3-LI was observed in the gracile nucleus and no immunoreactivity was detected in the cuneate and hypoglossal nuclei. Moderate to light labeling was evident in large cell bodies and dendrites in the spinal vestibular and the dorsal motor nucleus vagus; weaker labeling was seen in the gigantocellular reticular, gigantocellular reticular, alpha, and lateral paragigantocellular nuclei. Numerous moderately labeled small round cells and neuropil was detected in the nucleus of the solitary tract; the parvicellular reticular nucleus contained moderately labeled small cells. Intense staining was observed in fibers in the area postrema and in cell bodies in the locus coeruleus. Light to moderate GAL3-LI was observed in scattered somata throughout the layers of the caudal spinal trigeminal nucleus, and labeled fibers were also seen in the superficial layer. Moderately heavy GAL3-LI was present in neuronal perikarya and dendrites in the trapezoid nucleus and in fibers in the subnuclei A, B, and K of the inferior olive. The pontine reticular nucleus contained low to moderate labeling of large-sized neurons.


Cerebellum


In the cerebellar cortex, moderate GAL3-LI appeared to be present in fibers that passed from the granule cell layer through the Purkinje cell layer. The molecular layer contained a weak to moderately stained very fine fiber network. Weak staining was visible in the neuronal perikarya of the deep cerebellar nuclei.


Spinal cord


GAL3-positive cells were detected throughout the dorsal and ventral horns of the spinal cord. In the superficial laminae of the dorsal horn small moderately immunoreactive cells and neuropil were observed. Moderately stained cell bodies were scattered throughout laminae III, IV and the laminae of the ventral horn, while labeled cells and neuropil were seen around the central canal in lamina X. GAL3-positive axons were observed in the ventral funiculus converging toward the ventral root. All levels of the spinal cord exhibited a comparable laminar distribution.


The distribution of rat GAL3 protein in the CNS using receptor subtype selective polyclonal antibodies and tyramide sianal amplification (TSA) immunocytochemistry is illustrated in Table 12. These were qualitative evaluations for the rat GAL3 receptor protein distribution based on the relative intensity of the chromogen (3,3′-diaminobenzidine) observed in individual cells at the microscopic level.


A total of 4 rat brains were analyzed for this study. As shown in Table 12, the strength of the signal obtained in various regions of the rat brain was graded as weak (+) or moderate (++) or intense (+++).


















Potential





Therapeutic


REGION
cells
fibers
Application







Olfactory System


Modulation





of





olfactory





sensation


Internal granule cell
+



layer


Mitral cells




Glomerular cell layer
+



Anterior olfactory
+
+


nucleus


Olfactory tubercle
+


Islands of Calleja
+


Piriform cortex
+
+


Tenia tecta
+


Telencephalon


Sensory





integration


Frontal
++

Anxiety/





Depression


Cingulate
++

Anxiety/





Depression


Parietal
++

Processing





visual





stimuli


Insular
++


Occipital
++


Temporal
++

Processing





auditory





stimuli


Retrosplenial cortex
++


Entorhinal cortex
++
++








Basal Ganglia and basal forebrain
The control



of



movement.



Parkinson's



disease,



Huntington's



disease



and



hemibalismus










Accumbens nucleus
++

Treatment





of the





positive





symptoms of





schizophrenia





Treatment





of drug





addiction.





This region





is





particularly





sensitive





to





psychoactive





drugs.





Anxiety/depression


Caudate-putamen
++
+
Sensory/





motor





integration


Globus pallidus
++



Entopeduncular nucleus




Substantia nigra,
++
+


reticulata


Horizontal limb of the
++


diagonal band


Vertical limb of the
++


diagonal band


Subthalamic nucleus
+



Substantia innominata
++


Basal nucleus of Meynert
++


Septal Region


Relief of





fear,





initiation





of





motivated





behavior,





ex. food





intake


Lateral septal nucleus,
+
++


dorsal


Lateral septal nucleus,
+
++


ventral


Intermediate septal

++


nucleus


Medial septal nucleus

++


Hippocampus


Memory





consolidation





and





retention,





Alzheimer's





disease,





cognitive





disorders


Dentate gyrus, granule
+



cell layer


Dentate gyrus, molecular

+


layer


Polymorphic dentate gyrus
+


Ammon's horn:


CA1
++
+


CA2
++
+


CA3
++
+


subiculum
+
+








Amygdala and extended Amygdala
Treatment



of anxiety,



panic



attack, and



depression.



Treatment



of



disorders



of



integrated



behaviors



such as



defense,



ingestion,



reproduction,



and



learning.










Basolateral nucleus

+



Lateral nucleus
+
+


Central nucleus
++
++
Fear and





anxiety


Medial nucleus
+
+


Lateral olfactory tract
++



Bed nucleus of the stria
+
+


terminalis


Posteromedial cortical
+
+


amygdaloid nucleus


Amygdalohippocampal area
+



Amygdalopiriform
+



transition


Nucleus Lateral olfactory

++


tract


Anterior cortical
+



amygdaloid nucleus







Diencephalon










Hypothalamus


Treatment





of appetite





disorders,





ex.





obesity.





Treatment





of





endocrine





disorders.


Medial preoptic area
+
+


Median preoptic nucleus


Magnocellular preoptic
++



nucleus


Anterior hypothalamic
++
++


area


Lateroanterior
++
++
Sympathetic


hypothalamic nucleus


activating





region,





regulation





of





autonomic





function


Dorsomedial nucleus
++
++


Ventromedial nucleus
+++
++


Arcuate nucleus
++
+++
Regulation





of food





intake


Paraventricular
++
++
Regulation





of food





intake


Perifornical area
++
++


Lateral hypothalamus
++
++
General





arousal and





sensory





sensitization





associate





with





motivated





behavior





(hunger and





thirst).





Analgesia


Median eminence

+++


Supraoptic nucleus
++
++


Suprachiasmatic nucleus
+++
++
Treatment





of sleep





disorders


Medial mammillary nucleus
++
++


Thalamus and epithalamus


Analgesia/





Modulation





of sensory





information


Anterodorsal nucleus
+

Limbic





system.





Modulation





of motor





information





to the





cerebral





cortex/eye





movement


Anteromedial nucleus
++
++
Limbic





system


Anteroventral nucleus
+

Motor


Anterior pretectal
++



nucleus


Dorsal geniculate nucleus
++
++
Vision


Medial geniculate nucleus
++
++
Hearing


Centromedial nucleus
+

Modulation





of motor





and





behavioral





responses





to pain


Mediodorsal nucleus
+



Reuniens nucleus
+



Paraventricular nucleus
+

Modulation





of motor





and





behavioral





responses





to pain


Reticular nucleus
+

Alertness/sedation


Perifornical nucleus
+
+


Ventroposterior nucleus
+
+
Somatic





sensation


Ventrolateral nucleus
+
+


Nucleus of the Field of
+



Forel


Zona incerta
+



Medial habenular nucleus
+



Lateral habenular n
+



Parafascicular nucleus


Motor and





behavioral





responses





to pain.





Analgesia







Midbrain/Mesencephalon










Superior colliculus
++
++
Modulation





of visual





stimuli


Inferior colliculus
++



Central gray
++

Analgesia


Rhabdoid nucleus
++



Dorsal raphe
++

Depression/





Analgesia


Oculomotor nucleus (3)
++



Dorsal n lateral
++
++


lemniscus


Ventral n lateral
++



lemniscus


Red nucleus
++

Motor





coordination


Retrorubral field
++



Ventral tegmental area
++

Depression


Substantia nigra, pars
++
+
Control of


reticulata


movement


Substantia nigra, pars
++
+
Control of


compacta


movement


Prerubral field


Interpeduncular nucleus,
++



caudal s


Interpeduncular nucleus,

+


rostral


Trapezoid nucleus
++



Pontine nuclei
+








Brainstem/Pons/Medulla










Dorsal cochlear nucleus
++
++



Prepositus hypoglossal
++



nucleus


Medial vestibular
++
++
Maintenance





of balance





and





equilibrium


Spinal vestibular
+



Parvicellular reticular n
++



Gigantocellular reticular
+

Analgesia


nucleus


Gigantocellular reticular
+

Analgesia


n, alpha


Lateral
+

Analgesia


paragigantocellular n


Reticular tegmental n
+
+


pons


Locus coeruleus
+++

Modulation





of





noradrenergic





transmission.





Treatment





of





depression


Dorsal motor n vagus (10)
++



Area postrema

+++


Nucleus of the solitary
++
++
Modulation


tract


of general





visceral





sensation





and taste.


Spinal trigeminal
+
+


nucleus, caudal


Hypoglossal nucleus (12)




Gracile nucleus
+



Cuneate nucleus




Facial
++
++


Cerebellum


Motor





coordination


Granule cells layer
+
+


Molecular layer

++


Purkinje cells




Deep cerebellar nuclei
+



Spinal cord


Dorsal horn, superficial
++
++
Analgesia


layer


Lamina X
++
+


Ventral horn
++

Spinal





reflex










Discussion


The GAL3 antiserum was characterized using recombinant GAL receptors in transiently transfected COS-7 cells and Western blot analysis and the specificity of the GAL3 antiserum to recognize only the cognate receptor in vitro was established. The anatomical distribution of the GAL3 receptor protein in the rat CNS was determined using a modified immunohistochemical technique to enhance sensitivity and delectability via tyramide signal amplification (Toda et al. 1999).


The results indicate that the expression GAL3-LI was primarily found in neuronal profiles with neuropil labeling detectable in several areas. In general, the distribution of GAL3-LI is in good agreement with the reported distribution for galanin-LI, galanin binding sites, and GAL3 mRNA in the rat brain (for recent review, Branchek et al., 2000). Overall, GAL3-LI was found to be extensively distributed throughout the brain: the neocortex, septum, hippocampus, amygdala, hypothalamus, brain stem, cerebellum and spinal cord. Paralleling the distribution of galanin banding sites, GAL3-LI was observed in ventral regions of the brain, specifically the horizontal diagonal bard, substantia innominata, olfactory tubercle, and ventral hippocampus. However, there was discordance between 125I-galanin binding and the GAL3 receptor protein distribution particularly in the neocortex, dorsal hippocampus, and cerebellum (Skofitsch and Jacobowitz, 1986), regions where binding sites have not been identified by receptor autoradiography.


The present results showed several interesting observations in the distribution of GAL3-LI relating to potential therapeutic applications for the GAL3 receptor.


Galanin has been reported to be involved in the regulation of cholinergic neuotransmission in the hippocampus and in the basal forebrain via modulation of acetylcholine release. Therefore, the development of a galanin receptor antagonist to block the inhibition of firing of cholinergic neurons may have a potential therapeutic application in the treatment of some of the learning and memory deficits of Alzheimer's disease (AD) (for review, Mufson et al. 1998). GAL3-LI was identified in several cholinergic regions of the rat brain: the horizontal diagonal band, basal nucleus of Meynert, substantia innominata, bed nucleus of the stria terminalis, and the hippocampus. The GAL3 protein has been localized to other regions of the brain, the entorhinal cortex and locus coeruleus, that exhibit increased galanin receptor binding and galanin expression in AD providing further evidence for the potential involvement of GAL3 in AD.


Substantial evidence suggests that galanin is involved in the regulation of energy and nutrient balance. Injections of galanin into the hypothalamus have been shown to increase food intake. Concordant with the localization of GAL3 mRNA in the hypothalamus, GAL3-LI was detected in several hypothalamic nuclei involved in the regulation of feeding: the paraventricular, arcuate, dorsomedial, ventromedial and medial preoptic areas. This localization suggests that the GAL3 receptor may be a potential therapeutic target in the regulation of food intake and body weight and thus be useful in the treatment of eating disorders.


GAL3 may be a potential therapeutic target in the development of analgesic drugs. The presence of the receptor in the target regions of nociceptive primary afferent fibers, the superficial layers of the spinal trigeminal nucleus and dorsal horn of the spinal cord, suggests that GAL3 could potentially modulate nociceptive information from the periphery. GAL3 is in a position to potentially mediate the influence of excitatory glutamatergic nociceptive primary afferents from the dorsal root ganglia in the superficial layers of the spinal cord.


In Vivo Model


Chronic Constriction Nerve Injury Model of Neuropathic Pain


The aim of this study was to assess the potential analgesic effects of Example 92 following intraperitoneal administration at the doses of 3, 10 and 30 mg/kg, respectively, in an animal model of neuropathic pain. A peripheral mononeuropathy was induced in the right hind limb of rats following a chronic constriction nerve injury (Bennett and Xie, 1988), and the development of mechanical allodynia and thermal hyperalgesia was monitored using established behavioral tests (Attal, N., et al., 1990; Hargreaves, K., et al., 1988).


Method


Animals


Male Sprague-Dawley rats within the weight range of 200-225 g, and approximate age 7-9 weeks, were allowed to acclimate for a minimum of 6 days prior to the start of the behavioral testing.


All rats underwent a chronic constriction nerve injury, and of these, those that successfully developed allodynia and hyperalgesia were allocated to treatment groups.


Treatment Groups and Dosing of Test Substance


There were 5 separate treatment groups (with a minimum of 10 rats per group). The treatment groups were as follows:

  • Group C received Morphine at 10 mg/kg (n=10)
  • Group D received Vehicle for Example 92* at 1 ml/kg (n=10) (* 100% DMSO)
  • Group E received Example 92 at 30 mg/kg (n=10)
  • Group F received Example 92 at 3 mg/kg (n=10)
  • Group G received Example 92 at 10 mg/kg (n=10)


The dose volume for all treatments was 1 ml/kg. Each rat received a single i.p. dose of the test substance, reference substance or vehicle on Day 12 PO. Test substance and vehicle dosing solutions were encoded (C-G) so that the observers were unaware of the identity of the treatment groups.


Behavioral Testing


The behavioral tests (Von Frey filament and Thermal Plantar Tests—see below) were performed on all rats on 3 separate days prior to surge Id, to establish baseline values. The pre-surgery baseline values were calculated as the mean of the last 2 days testing (the data from the first day of testing were not included as this was classed as part of the acclimating period). The sequence of tests was always mechanical allodynia (Von Frey Test) followed by thermal hyperalgesia (Thermal Plantar Test), with a minimum 5 min period allowed between the 2 tests.


Mechanical Allodynia:


Each animal was placed in a wire mesh cage and a series of Von Frey filaments (ranging from filament handle number 3.61 to 6.10) applied to the plantar surface of the hind paw, from below. The filaments were applied in ascending order (starting with the weakest force) and the withdrawal threshold for both the ipsilateral and contralateral hind paws was evaluated. Each filament was indented on the plantar surface of the foot to the point where it just started to bend, and this was repeated approximately 8-10 times per filament at a frequency of approximately 1 Hz. The withdrawal threshold was defined as the lowest force of two or more consecutive Von Frey filaments to elicit a reflex withdrawal response.


Thermal Hyperalgesia:


Each rat was placed in a clear plastic chamber with a glass floor and allowed a short period to acclimatize to the new environment (approximately 5 min.). The animals were then challenged with a radiant Infrared (IR) heat source, directed at the plantar surface of the hind paw from below, and the withdrawal latency of both the ipsilateral and contralateral hind paws was evaluated. The infrared intensity was set at IR50 and the maximum length of exposure to the IR source was 18 s. Non-responding animals were allocated a withdrawal latency of 18 s.


Surgical Procedure


The animals were surgically prepared over 5 days. Each rat was anaesthetized with sodium pentobarbitone (60 mg/ml; 0.6 ml/kg dose, intraperitonealy; batch number 00230; expiry date 22 May 3) and then supplemented as necessary with isoflurane (1-3% in oxygen). The surface around the incision site was shaved and then sterilized with surgical spirit. Under aseptic conditions the right sciatic nerve was exposed by blunt dissection at mid-thigh level and approximately 1 cm of nerve was freed of adhering connective tissue. Four chromic cat gut (4.0) ligatures, spaced at approximately 1 mm inzervals, were then tied so as to barely constrict the nerve (as viewed under 40× magnification) to induce a peripheral mononeuropathy in the right hind limb. The overlying muscle and skin were then closed in layers using suture material, and the anesthesia discontinued. On recovery from anesthesia, the rats were re-housed with their cage mates on soft padded bedding overnight (to reduce the risk of infection) and subsequently on sawdust bedding following full recovery. The animals were allowed 4 full days to recover before the behavioral testing was recommenced.


Testing Paradigm


Following surgery, the behavioral testing was resumed on Day 5 PO (post-operative), and then repeated on days 7, 9, and 11, to monitor the development of allodynia and hyperalgesia. Only those animals that developed both mechanical allodynia and thermal hyperalgesia in their nerve-injured hind paw were used in the main study. The animals were deemed to have developed mechanical allodynia if their nerve-injured hind paw exhibited a withdrawal response of ≦5 g of force (which corresponds to monofilament number 4.56 or less) on Day 11/12 PO, when challenged with the Von Frey filaments. Similarly, they were deemed to have developed thermal hyperalgesia if their nerve-injured hind paw exhibited a withdrawal latency (sec) which showed a ≧30% difference from the mean right paw, pre-surgery value, for the Thermal Plantar Test on Day 11/12 PO.


On Day 12 PO, a single i.p. dose of test substance, reference substance (morphine) or vehicle was administered to each rat. On Day 12, all the animals were then tested with the Von Frey filaments at approximately 30 and 90 min post dose (PD) and with the Plantar Device at approximately 40 and 100 min PD, with a minimum 5 minute period allowed between the 2 tests, to investigate treatment effect.


Statistical Analysis


The Von Frey data were logarithmically transformed [log10 of (force in grams×10000)] prior to analysis. Statistical comparisons were made between treatment groups using parametric (e.g. one-way analysis of variance, Dunnett's t-test, Student's t-test) or non-parametric (e.g. Kruskal-Wallis statistic, Dunn's test, Mann-Whitney U-test) statistical procedures. The choice of parametric or non-parametric test was based on whether the groups to be compared satisfied the homogeneity of variance criterion (evaluated by the Levene Mean test or F-test). Statistical significance was assumed when P≦0.05.


Results


The majority of the animals which underwent a chronic constriction injury of the right sciatic nerve successfully developed both neuropathic pain states. These animals exhibited a marked increase in sensitivity to both the behavioral tests in the days post-injury, indicative of the development of a peripheral mononeuropathy. This change in sensitivity was evident from as early as day 5 PO, reaching a maximum from approximately day 10 PO onwards.


Mean Von Frey pre-surgery baseline responses for those animals included in the study were 57.65±0.98 g (left paw) and 59.45±1.36 g (right paw). Eighty-nine percent of the animals which underwent a chronic constriction nerve injury successfully developed mechanical allodynia by Day 11/12 PO.


Mean plantar pre-surgery baseline responses for those animals included in the study were 13.1±0.2 s (left paw) and 12.6±0.2 s (right paw). The mean plantar responses prior to dosing were 12.0+0.2 s (left paw) and 5.6±0.1 s (right paw). Eighty-seven percent of the animals which underwent a chronic constriction nerve injury successfully developed thermal hyperalgesia by Day 11/12 PO.


Effects of Example 92 on Behavioral Test Responses


Mechanical Allodynia:


Intraperitoneal administration of Example 92 significantly increased the withdrawal threshold of the nerve-injured hind paw to Von Fey filament challenges at the highest dose tested (30 mg.kg,). Thee changes were significantly different from vehicle (100% DMSO) control group values at the 30 min PD time point only. Administration of 30 mg/kg Example 92, resulted in a significant increase in the withdrawal threshold of the nerve-injured paw to 25.98±8.25 g compared to the vehicle group value of 4.82±2.77 g (P≦0.05), at 30 min. PD. At 90 min. PD the withdrawal threshold was still slightly raised (11.73±6.43 g compared to 2.43±1.48 g in the vehicle treated group), however this was not found to be significant. Administration of Example 92 at 3 or 10 mg/kg (i.p.) had no significant effect on the withdrawal threshold of the nerve-injured paw at any of the time points tested. No significant changes were observed in the responses of the uninjured (contralateral) left paw at any of the doses or at any of the time points tested, compared with vehicle control group values. (These results are summarized in FIGS. 2 and 3.)


Intraperitoneal administration of % he reference substance, morphine (10 mg/kg), significantly increased the withdrawal threshold of the nerve-injured hind paw to Von Frey filament challenges. (See FIGS. 2 and 3.)


Thermal Hyperalgesia:


Intraperitoneal administration of Example 92 at 3, 10 and 30 mg/kg had no significant effect on the withdrawal latency of the nerve hind paw, to the thermal plantar device at either time points tested (approximately 40 and 100 min. PD). No significant changes were observed in the responses of the uninjured (contralateral) left paw following Example 92 administration at any of the doses or time points tested, compared with vehicle control group values. (These results are summarized in FIGS. 4 and 5.)


Intraperitoneal administration of morphine (10 mg/kg) significantly increased the withdrawal latency of the nerve-injured hind paw to the Thermal Plantar Device at both time points tested (approximately 40 and 100 min. PD). (See FIGS. 4 and 5.)


Discussion


The chronic constriction injury model of Bennett and Xie (1988) is one of the more commonly used animal models of neuropathic pain. Within one week the animals showed altered spontaneous behaviors which are consistent with the presence of neuropathic pain in addition, the affected limb is demostrably hyperalgesic (i.e. displays an increased sensitivity to noxious stimuli), as well as allodynic (i.e. displays a reduced threshold to non-painful stimuli) (Attal et al., 1990). This study provides behavioral evidence that an experimental peripheral mononeuropathy produced by sciatic nerve ligation, produces significant pain-related behavioral changes in the rat, consistent with the development of mechanical allodynia and thermal hyperalgesia (Gautron, M., et al, 1990). These abnormal pain states were evident from as early as day 5 PO, showing maximal changes from approximately day 9 PO onwards. A similar proportion of animals developed mechanical allodynia (89%) compared to thermal hyperalgesia (87%), with 79% successfully developing both pain states in their nerve-injured paw.


From the behavioral data obtained in the present study, it is apparent that i.p. administration of Example 92 at a dose of 30 mg/kg significantly attenuates specific pain-related behaviors in neuropathic rats, namely mechanical allodynia. These results are consistent with analgesic properties.


The withdrawal threshold of the nerve-injured paw to Von Frey filament challenges was significantly increased at approximately 30 min. PD following administration of Example 92 at a dose of 30 mg/kg i.p. Unlike morphine (10 mg/kg i.p.) which also elicited significant contralateral effects in the Von Frey test at 30 and 90 min post-dose, Example 92 showed no significant contralateral effects, at any of the doses tested.


Intraperitoneal administration of the reference substance, morphine, resulted in a significant increase in the withdrawal threshold (Von Frey challenge) of the nerve-injured paw for up to 90 min PD at 10 mg/kg. In addition, significant contralateral effects were observed at both the 30 and 90 min. time points, indicative of the central effects of morphine. Morphine also caused a significant increase in the withdrawal latency to a noxious heat stimulus (thermal plantar test) for up to 100 min PD in both the nerve-injured and contralateral hind paws. These results are consistent with morphine's known pharmacological properties as an opioid analgesic.


These results therefore provide behavioral evidence of a specific analgesic role for Example 92 in neuropathic rats. The analgesic properties were selective, attenuating mechanical allodynia in the nerve-injured paw only (unlike the effects of the reference substance, morphine (10 mg/kg), which also produced significant contralateral effects in the mechanical allodynia test).


REFERENCES



  • Amiranoff, B., et al., (1989) Galanin receptor in the rat pancreatic beta cell line Rin m 5F. Molecular characterization by chemical cross-linking. J. Biol. Chem., 264(34): 20714-20717.

  • Attal, N., et al. (1990) Further evidence for “pain-related” behaviours in a model of unilateral peripheral mononeuropathy. Pain 41: 235-251.


  • Asymmetric Synthesis (1983) Vol: 2-5, Academic Press, Editor Morrison, J.

  • Bakker, R. A., et al., (2000) Constitutive activity of the histamine H1 receptor reveals inverse agonism of histamine H1 receptor antagonists. Eur. J. Pharmacol., 387: R5-R7.

  • Bennett, G. J. & Xie, Y-K. (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33: 87-107.

  • Borowsky, B., et al., (1999) Cloning and characterization of the human galanin GALR2 receptor. Peptides, 19: 1771-1781.

  • Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of the protein-dye binding. Anal. Biochem., 72: 248-254.

  • Branchek, T. A., et al., (2000) Galanin receptor subtypes. Trends in Pharm. Sci., 21: 109-116.

  • Bryant, W. M. III, et al., (1993) Synthetic Communications, 23: 1617-1625.

  • Chen, Y., et al., (1992) Solubilization and molecular characterization of active galarnin receptors from rat brain. Biochemistry, 31(8): 2415-2422.

  • Coppola, G. M. (1987) Journal of Heterocyclic Chemistry, 24: 1249.

  • Cullen, B. (1987) Use of eukaryotic expression technology in the functional analysis of cloned genes. Methods Enzymol., 152: 685-704.

  • deLigt, R. A., et al., (2000) inverse agonism at G protein-coupled receptors: (patho)physiological relevance and implications for drug discovery. Br. J. Pharmacol., 130(1): 1-12.

  • Ennis, M. D. and Ghazal, N. B., (1992) The synthesis of (+) and (−)-flesinoxan: Application of enzymatic resolution methodology. Tetrahedron Lett., 33: 6287-6290.

  • Fisher, K. et al., (1998) Intrathecal administration of the mGluR compound, (S)-4CPG, attenuates hyperalgesia and allodynia associated with sciatic nerve constriction injury in rats. Pain 77(1): 59-66.

  • Fisher, K., Lefebvre, C., and Couderre, T. J., (2002) Antinociceptive effects following intrathecal pretreatment with selective metabotropic glutamate receptor compounds in a rat model of neuropathic pain. Pharmacol Biochem Behav 73(2): 411-418.

  • Garden, S. J., et al., (1998). Synthetic Communications, 28: 1679-1689.

  • Gautron, M., et al. (1990) Alterations in myelinated fibres in the sciatic nerve of rats after constriction: possible relationships between the presence of abnormal small myelinated fibres and pain-related behaviour. Neurosci Letters 111: 28-33.

  • Green, T. W. and Wuts, P. G. M. (1991) Protection groups in Organic Synthesis, second Edition John Wiley & Sons, Near York.

  • Guy, A. P. and Gardner, C. R. (1985) Pharmacological characterisation of a modified social interaction model of anxiety. Neuropsychobiology, 13: 194-200.

  • Hargreaves, K., et al. (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32: 77-88.

  • Harlow, E. and Lane, D. (1999) Immunoblotting. In: Barker, P. editor. Using Antibodies: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press. p 267-309.

  • Herrick-Davis, K., et al., (2000) Inverse agonist activity of a typical antipsychotic drugs at human 5-Hydroxytryptamine2C receptors. J. Pharmacol. Exp. Ther., 295(1): 226-32.

  • Hess, B. A. Jr. and Corbino, S. (1971) Journal of Heterocyclic Chemistry, 8: 161.

  • Jansson, A., et al., (1989) Centrally administered galanin reduces dopamine utilization in the median eminence and increases dopamine utilization in the medial neostriatum of the male rat. Acta Physiol. Scand., 135: 199-200.

  • Javitch, J. A., et al, (1984) 3H-Mazindol binding associated with neuronal dopamine and norepinephrine uptake sites. Molecular Pharmacology, 26: 35-44.

  • Jaques, J., et al., (1981) Enantiomer, Racemates and Resolutions. John Wiley & Sons.

  • Julius, D., et al., (1988) Molecular characterization of a functional cDNA encoding the serotonin lc receptor. Science, 241: 558-564.

  • Kenakin, T. (1996) The classification of seven transmembrane receptors in recombinant expression systems. Pharmacol. Rev., 48(3): 413-63.

  • Lutz, M. and Kenakin, T. (1999) Quantitative Molecular Pharmacology and Informatics in Drug Discovery, John Wiley & Sons, LTD, West Sussex, England. p. 153.

  • Monsma, F. J. Jr., et al., (1993) Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol. Pharmacol., 43: 320-327.

  • Nógrádi, M. (1987) Stereoselective Synthesis, VCH, Editor Ebel, H.

  • Owens, M. J. (1997) Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J. Pharm. Exp. Ther., 283: 1305-1322.

  • Parker, E. M., et al., (1995) Cloning and characterization of the rat GALR1 galanin receptor from Rin14B insulinoma cells. Mol. Brain Res., 34: 179-189.

  • Paxinos, G. and Watson, C. (1986) The Rat Brain in Stereotaxic Coordinates. San Diego: Academic Press, Inc.

  • Servin, A. L., et al., (1987) Identification and molecular characterization of galanin receptor sites in rat brain. Biochem. Biophys. Res. Commun., 144(1): 298-306.

  • Smith, K. E., et al., (1998) Cloned human and rat galanin GALR3 receptors Pharmacology and activation of G-protein inwardly rectifying K+ channels. J. Biol. Chem., 273(36): 23321-223326.

  • Sternberger, L. A. (1982) Neurotypy: regional individuality in rat brain detected by immunocytochemistry with monoclonal antibodies. Proc. Natl. Acad. Sci. USA, 79: 1326-1330.

  • Toda, Y., et al., (1999) Application of tyramide signal amplification system to immunohistochemistry: a potent method to localize antigens that are not detectable by ordinary method. Pathol. Int., 49(5): 479-483.

  • Wiesenfeld-Halin, Z., et al., (1992) Proc. Natl. Acad. Sci. USA., 89: 3334-3337.


Claims
  • 1. A method of treating a subject suffering from neuropathic pain, which comprises administering to the subject an amount of a compound effective to treat the subject's neuropathic pain, wherein the compound has the structure:
Parent Case Info

This application claims priority of U.S. Provisional Application No. 60/402,035, filed Aug. 7, 2002, the contents of which are hereby incorporated by reference.

US Referenced Citations (3)
Number Name Date Kind
5576296 Bartfai et al. Nov 1996 A
6511827 Howard et al. Jan 2003 B1
7081470 Konkel et al. Jul 2006 B2
Foreign Referenced Citations (7)
Number Date Country
514361 Nov 1992 EP
667340 Aug 1995 EP
WO9212997 Aug 1992 WO
WO9815570 Apr 1998 WO
WO9931130 Jun 1999 WO
WO0002865 Jan 2000 WO
WO0260392 Aug 2002 WO
Related Publications (1)
Number Date Country
20040092570 A1 May 2004 US
Provisional Applications (1)
Number Date Country
60402035 Aug 2002 US