A better understanding of the exemplary embodiments of the present invention (including alternatives and/or variations thereof) may be obtained with reference to the detailed description of the exemplary embodiments of the present invention along with the following drawings, in which:
The drawings are not necessarily to scale and are sometimes illustrated by phantom lines, diagrammatic representations and fragmentary views. In certain instances, details that are not necessary for an understanding of the embodiments or that render other details difficult to perceive may have been omitted.
The following is a listing of the elements designated to each reference numerals used in the drawings:
The system 100 compounds (that is, blends and/or mixes) the materials 108, 110 to generate different layers of the united layers 106, so that each layer, preferably, has a specific composition of ingredients or materials at different ratios. It would be within the scope of this embodiment if one layer of the united layers 106 had the same or substantially similar composition as another layer of the united layers 106 (if it was so required). The extruder 102 (i) inputs the primary material 108 and the auxiliary material 110 (via a primary hopper 118 and a auxiliary hopper 120, respectively), and then (ii) compounds the united layers 106; this is in sharp contrast to the known system 1 of
The components 101 (or parts, such as the compounding extruder 102 and the conduit 112) of the system 100 may be sold separately from the system 100. The components 101 of the system 100 includes, amongst other things, (i) a hot runner 199, (ii) a machine nozzle 132 (which is an example of the conduit 112), (iii) a transfer channel 126 (which is another example of the conduit 112), (iv) a distribution valve 128, and/or (v) a shooting pot 116 (which is yet another example of the conduit 112), all of which may be sold separately from the system 100 and/or may be included in the system 100. The hot runner 199 (may be used if required) is mounted to a stationary platen 134 and a stationary mold portion 138. The mold 114 is then mounted to the hot runner 199 instead of being mounted to the stationary platen 134. Alternatively, if required, the hot runner may be mounted to the movable platen 136 and the movable mold portion 140 while the stationary mold portion 138 is mounted to the stationary platen 134.
Once the united layers 106 are compounded and then placed in a layered form (one layer after another layer), the system 100 pushes or transfers the united layers 106 (via the transfer channel 126 and then through the distribution valve 128) to the shooting pot 116. The transfer channel 126, the distribution valve 128 and the shooting pot 116 are examples of the conduit 112.
Control of the compounding operation of the extruder 102 may be achieved by at least three approaches (control is not limited to these specific approaches). A first-compounding approach includes changing (or modulating) rotational speed of the compounding structure 104 (hereafter, referred to as the “screw 104” for sake of convenient referral) of the extruder 102. A second-compounding approach includes changing or modulating a feed rate of the materials 108, 110 through the hoppers 118, 120, and the feed rate is, preferably, governed by gravimetrical feeders (not depicted, but known to those skilled in the art) so that different ratios of materials 108, 110 may be inputted into the extruder 102. A third-compounding approach includes a combination of the first- and the second-compounding approach. The extruder 102, in use (amongst other things): (i) compounds the materials 108, 110, (ii) layers the compounded materials (one layer after another layer in a united fashion or serial manner) to form the united layers 106, (iii) transfers the united layers 106 (either one layer at a time or several layers at a time) into the shooting pot 116. The technical effect of this arrangement is, from amongst other technical effects: if it was desired to process (for example) polypropylene and glass fiber (as the materials 108, 110), a high number of layers may be compounded, in which each layer has differing ratios of glass fiber to polypropylene that may range, for example, from about 0 to about 70% ratio of glass to polypropylene (70% is considered to be an upper limit for pragmatic purposes but a higher ratio may also be achieved if so desired). By using hoppers 118, 120 and materials 108, 110, it may be possible to manufacture or produce the united layers 106, in which each layer of the united layers 106 has (potentially) a plurality of different ratios of the materials 108, 110 that are compounded on the fly (or in situ) by the extruder 102. By using this approach, it may be possible to reduce inventory of a large variety of prepared (pre-made) materials in sharp contrast to the arrangement depicted in
The shooting pot 116 is used to inject or push the united layers 106 into the mold 114 so that the mold article 190 may be formed. The molded article 190 includes a variation of solidified united layers 107 (each layer of the united layers 107 being a ratio of materials or ingredients). The technical effect of this arrangement is, for example, improved manufacturing of automotive parts. An automotive part will likely be exposed to different stresses or different loads. If higher loads or higher stresses are experienced by certain areas of the molded article 190, it is desirable to have a higher content of glass in those higher-stress areas so that the molded article 190 is as strong as possible in those higher-stress areas so that the molded article 190 may be better able to withstand the extra stresses. For areas of the molded article 190 that will experience lower stresses and lower stressor forces, it is desirable to have a lower amount of glass reinforcement placed in those lower-stress areas in order to optimize design of the molded article 190 so that the molded article 190 is made somewhat more economical, lighter and/or achieve desired design criteria or optimization. The exemplary embodiments allow flexibility in manufacturing the molded article 190 that is not likely achieved with the known system 1 of
Different methods or approaches are used for determining which layers 144, 146 of the united layers 106 will arrive or be placed at which specific parts or areas within the mold cavity 142 of the mold 114. A first-layer placement approach (also known as fill analysis) includes using a best engineering estimate (which will be a close placement but will not likely be an exact placement of each layer of the united layers 106 in the mold cavity 142) that includes modeling flow of the molding material 192 in the mold cavity 142; this approach would likely also include trial and error testing. A second-layer placement approach (also called sequential valve gating) for achieving a desired distribution of the layers of the united layers 106 in the mold 114 includes using sequential valve gating, which is associated with using the hot runner 199, where valve gates are opened and closed at different locations (or time of cycle of the system 100) that lead into the mold cavity 142 in order to direct the layers of the united layers 106 into different locations of the mold 114. A third-placement approach includes combining the above two approaches (sequential valve gating with fill analysis). To use sequential valve gating, the hot runner 199 is used to position the layers in to the mold 114. However, with the first-layer placement approach, it would not be necessary have to use the hot runner 199 (but there would be less control which may not represent an issue for some applications). So if precise control was required, the hot runner 199 may be used so that improved placement of the layers of the united layers 106 may be achieved in the mold 114.
Preferably, the system 100 further includes, amongst other things, tangible subsystems, components, sub-assemblies, etc, that are known to persons skilled in the art. These items are not depicted and not described in detail since they are known. These other things may include (for example): (i) tie bars (not depicted) that operatively couple the platens 134, 136 together, and/or (ii) a clamping mechanism (not depicted) coupled to the tie bars and used to generate a clamping force that is transmitted to the platens 134, 136 via the tie bars (so that the mold 114 may be forced to remain together while a molding material is being injected in to the mold 114). These other things may include: (iii) a mold break force actuator (not depicted) coupled to the tie bars and used to generate a mold break force that is transmitted to the platens 134, 136 via the tie bars (so as top break apart the mold 114 once the molded article 190 has been molded in the mold 114), and/or (iv) a platen stroking actuator (not depicted) coupled to the movable platen 136 and is used to move the movable platen 136 away from the stationary platen 134 so that the molded article 190 may be removed from the mold 114, and (vi) hydraulic and/or electrical control equipment, etc.
The instructions 406 may be delivered to the controller 400 via several approaches: one such approach for delivering the instructions 406 is to use an article of manufacture 408 to deliver the instructions 406 to the controller 400. The article of manufacture 408 includes a controller-usable medium 404 (such as a hard disk, floppy disk, compact disk, optical disk, flash memory, etc) that is enclosed in a housing unit, etc. The controller-usable medium 404 embodies the instructions 406. The article of manufacture 408 is interfacable with the controller 400 (such as via a floppy disk drive reader, etc). Another approach for delivering the instructions 406 is to use a network-transmittable signal 410 (either used separately or in used conjunction with the article of manufacture 408). The network-transmittable signal 410 includes a carrier signal 412 modulatable to carry the instructions 406. The network-transmittable signal 410 is transmitted via a network (not depicted, such as the Internet, etc) and the network is interfacable with the controller 400 by using a modem, etc. The controller 400 includes, amongst other things, interface modules 452, 454, 456, 457, 458, 459 (all known to persons skilled in the art) that are used to interface the controller 400. For example, the interface modules 452, 454 are used to interface the controller 400 to operative sections of the systems 100, 200, 300 such as to thermal sensors, extruder heaters, extruder actuators, etc. The interface module 456 (such as a modem, etc) is used to interface the controller 400 to the network-transmittable signal 410. The interface module 457 (such as a controller-usable medium reader, such as a floppy disk, etc) is used to interface the controller 400 to the article of manufacture 408. Preferably, a display 464 (such as a flat panel display screen, etc) is used as a human-machine interface; the display 464 is interfaced to the controller 400 via an interface module 458. A keyboard and/or mouse 466 (that is, operator control equipment) are interfaced to the controller 400 via an interface module 459. The interface modules 452, 454, 456, 457, 458, 459 are connected to a bus 462 (known to those skilled in the art). The controller 400 also includes a CPU (Central Processing Unit) 460 that is used to execute the instructions 406. The bus 462 is used to interface the interface modules 452 to 457, the CPU 460 and the controller-usable medium 404. The controller-usable medium 404 also includes an operating system (not depicted, but usually maintained in the medium 404) such as the Linux operating system, etc, that is used to coordinate automated processing functions related to maintaining the controller 400 in operational condition. A database (not depicted, but usually maintained in the medium 404) is coupled to the bus 462 so that the CPU 460 may keep data records pertaining to the operational parameters of the systems 100, 200, 300.
The instructions 406 implement a method usable by the controller 400 of
Operation 482 includes starting of the instructions 406; control is then transferred to operation 484. Operation 484 includes directing the controller 400 to control the compounding molding system 100, 200, 300 to compound the united layers 106, 206, 306, each of the united layers 106, 206, 306 that were compounded includes differing compositions of the primary material 108, 208, 308 and the auxiliary material 110, 210, 310. Control is then passed to operation 486.
Operation 486 includes directing the controller 400 to determine whether to stop or to temporarily suspend operation 480. If the determination is to stop, control is then transferred to operation 488 (and operation 480 is stopped or is suspended). If the determination is to continue, control is then transferred to operation 484.
Preferably, additional instructions of the instructions 406 include, amongst other things (that is, not limited to): (i) placing the united layers 106, 206, 306 that were compounded in the conduit 112, 212, 312 that is operatively coupled to the mold 114, 214, 314, (ii) pushing the united layers 106, 206, 306 that were compounded from the conduit 112, 212, 312, into the mold 114, 214, 314, (iii) placing the united layers (106; 206; 306) that were compounded in a conduit (112; 212; 312) operatively coupled to a mold (114; 214; 314), (iv) pushing the united layers (106; 206; 306) that were compounded from the conduit (112; 212; 312) into the mold (114; 214; 314), (v) compounding united layers (106; 206; 306) by at least one of (a) modulating rotational speed of a compounding structure (104; 204; 304) of the extruder (102; 202; 302), and (b) modulating a feed rate of the primary material (108; 208; 308) and the auxiliary material (110; 210; 310) to the extruder (102; 202; 302), (vi) placing the united layers (106; 206; 306) within specific portions of the mold cavity 142 of a mold 114, and/or (vii) placing the united layers (106; 206; 306) adjacent to each other in an abutting relationship, one layer after another layer, so as to form a lamination of layers.
According to a variant, the controller 400 controls all aspects of the systems 100, 200, 300 and 500 in accordance with a centralized processing architecture. According to another variant, the controller 400 includes a set of processors or sub-controllers (not depicted) in accordance with a distributed processing architecture, in which the sub-controllers are operatively coupled to selected system components, such as (but not limited to): (i) the hot runners 199, 299 and/or 399, the shooting pots 116 and/or 516, and/or (ii) the extruders 102, 202, 302 and/or 502, etc. In the case of the distributed processing architecture, the sub-controller of the hot runner 199 receives (i) data or information pertaining to layering thicknesses associated with the united layers 106 from the sub-controller of the extruder 102, and (ii) information pertaining to position associated with the plunger of the shooting pot 116, and then the sub-controller of the hot runner 199 uses this information to determine sequential valve gating approach for actuating the valves that are then actuated to fill in the mold 114 with the united layers 106. In the case of the centralized processing architecture, the controller 400 (i) data or information (that is detected by sensors associated with the extruder 102, etc) pertaining to layering thicknesses associated with the united layers 106, and (ii) information (that is detected by sensors associated with the shooting pot 116, etc) pertaining to position associated with the plunger of the shooting pot 116, and then the controller 400 uses this information to determine sequential valve gating approach for actuating the valves that are used to fill in the mold 114 with the united layers 106.
The description of the exemplary embodiments provides examples of the present invention, and these examples do not limit the scope of the present invention. It is understood that the scope of the present invention is limited by the claims. The exemplary embodiments described above may be adapted for specific conditions and/or functions, and may be further extended to a variety of other applications that are within the scope of the present invention. Having thus described the exemplary embodiments, it will be apparent that modifications and enhancements are possible without departing from the concepts as described. It is to be understood that the exemplary embodiments illustrate the aspects of the invention. Reference herein to details of the illustrated embodiments is not intended to limit the scope of the claims. The claims themselves recite those features regarded as essential to the present invention. Preferable embodiments of the present invention are subject of the dependent claims. Therefore, what is to be protected by way of letters patent are limited only by the scope of the following claims: