This disclosure features chemical entities (e.g., a compound or a pharmaceutically acceptable salt, and/or hydrate, and/or cocrystal, and/or drug combination of the compound) that inhibit (e.g., antagonize) Stimulator of Interferon Genes (STING). Said chemical entities are useful, e.g., for treating a condition, disease or disorder in which increased (e.g., excessive) STING activation (e.g., STING signaling) contributes to the pathology and/or symptoms and/or progression of the condition, disease or disorder (e.g., cancer) in a subject (e.g., a human). This disclosure also features compositions containing the same as well as methods of using and making the same.
STING, also known as transmembrane protein 173 (TMEM173) and MPYS/MITA/ERIS, is a protein that in humans is encoded by the TMEM173 gene. STING has been shown to play a role in innate immunity. STING induces type I interferon production when cells are infected with intracellular pathogens, such as viruses, mycobacteria and intracellular parasites. Type I interferon, mediated by STING, protects infected cells and nearby cells from local infection in an autocrine and paracrine manner.
The STING pathway is pivotal in mediating the recognition of cytosolic DNA. In this context, STING, a transmembrane protein localized to the endoplasmic reticulum (ER), acts as a second messenger receptor for 2′, 3′ cyclic GMP-AMP (hereafter cGAMP), which is produced by cGAS after dsDNA binding. In addition, STING can also function as a primary pattern recognition receptor for bacterial cyclic dinucleotides (CDNs) and small molecule agonists. The recognition of endogenous or prokaryotic CDNs proceeds through the carboxy-terminal domain of STING, which faces into the cytosol and creates a V-shaped binding pocket formed by a STING homodimer. Ligand-induced activation of STING triggers its re-localization to the Golgi, a process essential to promote the interaction of STING with TBK1. This protein complex, in turn, signals through the transcription factors IRF-3 to induce type I interferons (IFNs) and other co-regulated antiviral factors. In addition, STING was shown to trigger NF-κB and MAP kinase activation. Following the initiation of signal transduction, STING is rapidly degraded, a step considered important in terminating the inflammatory response.
Excessive activation of STING is associated with a subset of monogenic autoinflammatory conditions, the so-called type I interferonopathies. Examples of these diseases include a clinical syndrome referred to as STING-associated vasculopathy with onset in infancy (SAVI), which is caused by gain-of-function mutations in TMEM173 (the gene name of STING). Moreover, STING is implicated in the pathogenesis of Aicardi-Goutieres Syndrome (AGS) and genetic forms of lupus. As opposed to SAVI, it is the dysregulation of nucleic acid metabolism that underlies continuous innate immune activation in AGS. Apart from these genetic disorders, emerging evidence points to a more general pathogenic role for STING in a range of inflammation-associated disorders such as systemic lupus erythematosus, rheumatoid arthritis and cancer. Thus, small molecule-based pharmacological interventions into the STING signaling pathway hold significant potential for the treatment of a wide spectrum of diseases
This disclosure features chemical entities (e.g., a compound or a pharmaceutically acceptable salt, and/or hydrate, and/or cocrystal, and/or drug combination of the compound) that inhibit (e.g., antagonize) Stimulator of Interferon Genes (STING). Said chemical entities are useful, e.g., for treating a condition, disease or disorder in which increased (e.g., excessive) STING activation (e.g., STING signaling) contributes to the pathology and/or symptoms and/or progression of the condition, disease or disorder (e.g., cancer) in a subject (e.g., a human). This disclosure also features compositions containing the same as well as methods of using and making the same.
An “antagonist” of STING includes compounds that, at the protein level, directly bind or modify STING such that an activity of STING is decreased, e.g., by inhibition, blocking or dampening agonist-mediated responses, altered distribution, or otherwise. STING antagonists include chemical entities, which interfere or inhibit STING signaling.
In one aspect, compounds of Formula (I), or a pharmaceutically acceptable salt thereof, are featured:
In one aspect, pharmaceutical compositions are featured that include a chemical entity described herein (e.g., a compound described generically or specifically herein or a pharmaceutically acceptable salt thereof or compositions containing the same) and one or more pharmaceutically acceptable excipients.
In one aspect, methods for inhibiting (e.g., antagonizing) STING activity are featured that include contacting STING with a chemical entity described herein (e.g., a compound described generically or specifically herein or a pharmaceutically acceptable salt thereof or compositions containing the same). Methods include in vitro methods, e.g., contacting a sample that includes one or more cells comprising STING (e.g., innate immune cells, e.g., mast cells, macrophages, dendritic cells (DCs), and natural killer cells) with the chemical entity. Methods can also include in vivo methods; e.g., administering the chemical entity to a subject (e.g., a human) having a disease in which increased (e.g., excessive) STING signaling contributes to the pathology and/or symptoms and/or progression of the disease.
In one aspect, methods of treating a condition, disease or disorder ameliorated by antagonizing STING are featured, e.g., treating a condition, disease or disorder in which increased (e.g., excessive) STING activation (e.g., STING signaling) contributes to the pathology and/or symptoms and/or progression of the condition, disease or disorder (e.g., cancer) in a subject (e.g., a human). The methods include administering to a subject in need of such treatment an effective amount of a chemical entity described herein (e.g., a compound described generically or specifically herein or a pharmaceutically acceptable salt thereof or compositions containing the same).
In another aspect, methods of treating cancer are featured that include administering to a subject in need of such treatment an effective amount of a chemical entity described herein (e.g., a compound described generically or specifically herein or a pharmaceutically acceptable salt thereof or compositions containing the same).
In a further aspect, methods of treating other STING-associated conditions are featured, e.g., type I interferonopathies (e.g., STING-associated vasculopathy with onset in infancy (SAVI)), Aicardi-Goutieres Syndrome (AGS), genetic forms of lupus, and inflammation-associated disorders such as systemic lupus erythematosus, and rheumatoid arthritis. The methods include administering to a subject in need of such treatment an effective amount of a chemical entity described herein (e.g., a compound described generically or specifically herein or a pharmaceutically acceptable salt thereof or compositions containing the same).
In another aspect, methods of suppressing STING-dependent type I interferon production in a subject in need thereof are featured that include administering to the subject an effective amount of a chemical entity described herein (e.g., a compound described generically or specifically herein or a pharmaceutically acceptable salt thereof or compositions containing the same).
In a further aspect, methods of treating a disease in which increased (e.g., excessive) STING activation (e.g., STING signaling) contributes to the pathology and/or symptoms and/or progression of the disease are featured. The methods include administering to a subject in need of such treatment an effective amount of a chemical entity described herein (e.g., a compound described generically or specifically herein or a pharmaceutically acceptable salt thereof or compositions containing the same).
In another aspect, methods of treatment are featured that include administering an effective amount of a chemical entity described herein (e.g., a compound described generically or specifically herein or a pharmaceutically acceptable salt thereof or compositions containing the same) to a subject; wherein the subject has (or is predisposed to have) a disease in which increased (e.g., excessive) STING activation (e.g., STING signaling) contributes to the pathology and/or symptoms and/or progression of the disease.
In a further aspect, methods of treatment that include administering to a subject a chemical entity described herein (e.g., a compound described generically or specifically herein or a pharmaceutically acceptable salt thereof or compositions containing the same), wherein the chemical entity is administered in an amount effective to treat a disease in which increased (e.g., excessive) STING activation (e.g., STING signaling) contributes to the pathology and/or symptoms and/or progression of the disease, thereby treating the disease.
In another aspect, is a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein, for use in the treatment of a disease, condition or disorder modulated by STING inhibition.
In another aspect, is a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for use in the treatment of a condition, disease or disorder associated with increased (e.g., excessive) STING activation.
In another aspect, is a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for use in the treatment of cancer.
In another aspect, is a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for use in the treatment of cancer selected from the group consisting of melanoma, cervical cancer, breast cancer, ovarian cancer, prostate cancer, testicular cancer, urothelial carcinoma, bladder cancer, non-small cell lung cancer, small cell lung cancer, sarcoma, colorectal adenocarcinoma, gastrointestinal stromal tumors, gastroesophageal carcinoma, colorectal cancer, pancreatic cancer, kidney cancer, hepatocellular cancer, malignant mesothelioma, leukemia, lymphoma, myelodysplasia syndrome, multiple myeloma, transitional cell carcinoma, neuroblastoma, plasma cell neoplasms, Wilm's tumor, or hepatocellular carcinoma.
In another aspect, is a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for use in the treatment of type I interferonopathies.
In another aspect, is a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for use in the treatment of type I interferonopathies selected from STING-associated vasculopathy with onset in infancy (SAVI)), Aicardi-Goutieres Syndrome (AGS), genetic forms of lupus, and inflammation-associated disorders such as systemic lupus erythematosus, and rheumatoid arthritis.
In another aspect, is the use of a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for use in the manufacture of a medicament for the treatment of a condition, disease or disorder associated with increased (e.g., excessive) STING activation.
In another aspect, is the use of a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for use in the manufacture of a medicament for the treatment of cancer.
In another aspect, is the use of a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for use in the manufacture of a medicament for the treatment of cancer selected from the group consisting of melanoma, cervical cancer, breast cancer, ovarian cancer, prostate cancer, testicular cancer, urothelial carcinoma, bladder cancer, non-small cell lung cancer, small cell lung cancer, sarcoma, colorectal adenocarcinoma, gastrointestinal stromal tumors, gastroesophageal carcinoma, colorectal cancer, pancreatic cancer, kidney cancer, hepatocellular cancer, malignant mesothelioma, leukemia, lymphoma, myelodysplasia syndrome, multiple myeloma, transitional cell carcinoma, neuroblastoma, plasma cell neoplasms, Wilm's tumor, or hepatocellular carcinoma.
In another aspect, is the use of a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for use in the manufacture of a medicament for the treatment of type I interferonopathies.
In another aspect, is the use of a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for use in the manufacture of a medicament for the treatment of type I interferonopathies selected from STING-associated vasculopathy with onset in infancy (SAVI)), Aicardi-Goutieres Syndrome (AGS), genetic forms of lupus, and inflammation-associated disorders such as systemic lupus erythematosus, and rheumatoid arthritis.
In another aspect, is the use of a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein, for the treatment of a disease, condition or disorder modulated by STING inhibition.
In another aspect, is the use of a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for the treatment of a condition, disease or disorder associated with increased (e.g., excessive) STING activation.
In another aspect, is the use of a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for the treatment of cancer.
In another aspect, is the use of a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for the treatment of cancer selected from the group consisting of melanoma, cervical cancer, breast cancer, ovarian cancer, prostate cancer, testicular cancer, urothelial carcinoma, bladder cancer, non-small cell lung cancer, small cell lung cancer, sarcoma, colorectal adenocarcinoma, gastrointestinal stromal tumors, gastroesophageal carcinoma, colorectal cancer, pancreatic cancer, kidney cancer, hepatocellular cancer, malignant mesothelioma, leukemia, lymphoma, myelodysplasia syndrome, multiple myeloma, transitional cell carcinoma, neuroblastoma, plasma cell neoplasms, Wilm's tumor, or hepatocellular carcinoma.
In another aspect, is the use of a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for the treatment of type I interferonopathies.
In another aspect, is the use of a compound, or a pharmaceutically acceptable salt or tautomer thereof, described herein for the treatment of type I interferonopathies selected from STING-associated vasculopathy with onset in infancy (SAVI)), Aicardi-Goutieres Syndrome (AGS), genetic forms of lupus, and inflammation-associated disorders such as systemic lupus erythematosus, and rheumatoid arthritis.
Embodiments can include one or more of the following features.
The chemical entity can be administered in combination with one or more additional therapeutic agents and/or regimens. For examples, methods can further include administering one or more (e.g., two, three, four, five, six, or more) additional agents.
The chemical entity can be administered in combination with one or more additional therapeutic agents and/or regimens that are useful for treating other STING-associated conditions, e.g., type I interferonopathies (e.g., STING-associated vasculopathy with onset in infancy (SAVI)), Aicardi-Goutieres Syndrome (AGS), genetic forms of lupus, and inflammation-associated disorders such as systemic lupus erythematosus, and rheumatoid arthritis.
The chemical entity can be administered in combination with one or more additional cancer therapies (e.g., surgery, radiotherapy, chemotherapy, toxin therapy, immunotherapy, cryotherapy or gene therapy, or a combination thereof, e.g., chemotherapy that includes administering one or more (e.g., two, three, four, five, six, or more) additional chemotherapeutic agents. Non-limiting examples of additional chemotherapeutic agents is selected from an alkylating agent (e.g., cisplatin, carboplatin, mechlorethamine, cyclophosphamide, chlorambucil, ifosfamide and/or oxaliplatin); an anti-metabolite (e.g., azathioprine and/or mercaptopurine); a terpenoid (e.g., a vinca alkaloid and/or a taxane; e.g., Vincristine, Vinblastine, Vinorelbine and/or Vindesine Taxol, Pacllitaxel and/or Docetaxel); a topoisomerase (e.g., a type I topoisomerase and/or a type 2 topoisomerase; e.g., camptothecins, such as irinotecan and/or topotecan; amsacrine, etoposide, etoposide phosphate and/or teniposide); a cytotoxic antibiotic (e.g., actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubicin, epirubicin, bleomycin, plicamycin and/or mitomycin); a hormone (e.g., a lutenizing hormone releasing hormone agonist; e.g., leuprolidine, goserelin, triptorelin, histrelin, bicalutamide, flutamide and/or nilutamide); an antibody (e.g., Abciximab, Adalimumab, Alemtuzumab, Atlizumab, Basiliximab, Belimumab, Bevacizumab, Bretuximab vedotin, Canakinumab, Cetuximab, Ceertolizumab pegol, Daclizumab, Denosumab, Eculizumab, Efalizumab, Gemtuzumab, Golimumab, Golimumab, Ibritumomab tiuxetan, Infliximab, Ipilimumab, Muromonab-CD3, Natalizumab, Ofatumumab, Omalizumab, Palivizumab, Panitumuab, Ranibizumab, Rituximab, Tocilizumab, Tositumomab and/or Trastuzumab); an anti-angiogenic agent; a cytokine; a thrombotic agent; a growth inhibitory agent; an anti-helminthic agent; and an immune checkpoint inhibitor that targets an immune checkpoint receptor selected from the group consisting of CTLA-4, PD-1, PD-L1, PD-1-PD-L1, PD-1-PD-L2, interleukin-2 (IL-2), indoleamine 2,3-dioxygenase (IDO), IL-10, transforming growth factor-β (TGFβ), T cell immunoglobulin and mucin 3 (TIM3 or HAVCR2), Galectin 9-TIM3, Phosphatidylserine-TIM3, lymphocyte activation gene 3 protein (LAG3), MHC class II-LAG3, 4-1BB-4-1BB ligand, OX40-OX40 ligand, GITR, GITR ligand-GITR, CD27, CD70-CD27, TNFRSF25, TNFRSF25-TL1A, CD40L, CD40-CD40 ligand, HVEM-LIGHT-LTA, HVEM, HVEM-BTLA, HVEM-CD160, HVEM-LIGHT, HVEM-BTLA-CD160, CD80, CD80-PDL-1, PDL2-CD80, CD244, CD48-CD244, CD244, ICOS, ICOS-ICOS ligand, B7-H3, B7-H4, VISTA, TMIGD2, HHLA2-TMIGD2, Butyrophilins, including BTNL2, Siglec family, TIGIT and PVR family members, KIRs, ILTs and LIRs, NKG2D and NKG2A, MICA and MICB, CD244, CD28, CD86-CD28, CD86-CTLA, CD80-CD28, CD39, CD73 Adenosine-CD39-CD73, CXCR4-CXCL12, Phosphatidylserine, TIM3, Phosphatidylserine-TIM3, SIRPA-CD47, VEGF, Neuropilin, CD160, CD30, and CD155 (e.g., CTLA-4 or PD1 or PD-L1).
The subject can have cancer; e.g., the subject has undergone and/or is undergoing and/or will undergo one or more cancer therapies.
Non-limiting examples of cancer include melanoma, cervical cancer, breast cancer, ovarian cancer, prostate cancer, testicular cancer, urothelial carcinoma, bladder cancer, non-small cell lung cancer, small cell lung cancer, sarcoma, colorectal adenocarcinoma, gastrointestinal stromal tumors, gastroesophageal carcinoma, colorectal cancer, pancreatic cancer, kidney cancer, hepatocellular cancer, malignant mesothelioma, leukemia, lymphoma, myelodysplasia syndrome, multiple myeloma, transitional cell carcinoma, neuroblastoma, plasma cell neoplasms, Wilm's tumor, or hepatocellular carcinoma. In certain embodiments, the cancer can be a refractory cancer.
The chemical entity can be administered intratumorally.
The methods can further include identifying the subject.
Other embodiments include those described in the Detailed Description and/or in the claims.
To facilitate understanding of the disclosure set forth herein, a number of additional terms are defined below. Generally, the nomenclature used herein and the laboratory procedures in organic chemistry, medicinal chemistry, and pharmacology described herein are those well-known and commonly employed in the art. Unless defined otherwise, all technical and scientific terms used herein generally have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Each of the patents, applications, published applications, and other publications that are mentioned throughout the specification and the attached appendices are incorporated herein by reference in their entireties.
As used herein, the term “STING” is meant to include, without limitation, nucleic acids, polynucleotides, oligonucleotides, sense and antisense polynucleotide strands, complementary sequences, peptides, polypeptides, proteins, homologous and/or orthologous STING molecules, isoforms, precursors, mutants, variants, derivatives, splice variants, alleles, different species, and active fragments thereof.
The term “acceptable” with respect to a formulation, composition or ingredient, as used herein, means having no persistent detrimental effect on the general health of the subject being treated.
“API” refers to an active pharmaceutical ingredient.
The terms “effective amount” or “therapeutically effective amount,” as used herein, refer to a sufficient amount of a chemical entity being administered which will relieve to some extent one or more of the symptoms of the disease or condition being treated. The result includes reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system. For example, an “effective amount” for therapeutic uses is the amount of the composition comprising a compound as disclosed herein required to provide a clinically significant decrease in disease symptoms. An appropriate “effective” amount in any individual case is determined using any suitable technique, such as a dose escalation study.
The term “excipient” or “pharmaceutically acceptable excipient” means a pharmaceutically-acceptable material, composition, or vehicle, such as a liquid or solid filler, diluent, carrier, solvent, or encapsulating material. In one embodiment, each component is “pharmaceutically acceptable” in the sense of being compatible with the other ingredients of a pharmaceutical formulation, and suitable for use in contact with the tissue or organ of humans and animals without excessive toxicity, irritation, allergic response, immunogenicity, or other problems or complications, commensurate with a reasonable benefit/risk ratio. See, e.g., Remington: The Science and Practice of Pharmacy, 21st ed.; Lippincott Williams & Wilkins: Philadelphia, P A, 2005; Handbook of Pharmaceutical Excipients, 6th ed.; Rowe et al., Eds.; The Pharmaceutical Press and the American Pharmaceutical Association: 2009; Handbook of Pharmaceutical Additives, 3rd ed.; Ash and Ash Eds.; Gower Publishing Company: 2007; Pharmaceutical Preformulation and Formulation, 2nd ed.; Gibson Ed.; CRC Press LLC: Boca Raton, F L, 2009.
The term “pharmaceutically acceptable salt” refers to a formulation of a compound that does not cause significant irritation to an organism to which it is administered and does not abrogate the biological activity and properties of the compound. In certain instances, pharmaceutically acceptable salts are obtained by reacting a compound described herein, with acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. In some instances, pharmaceutically acceptable salts are obtained by reacting a compound having acidic group described herein with a base to form a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl-D-glucamine, tris(hydroxymethyl)methylamine, and salts with amino acids such as arginine, lysine, and the like, or by other methods previously determined. The pharmacologically acceptable salt s not specifically limited as far as it can be used in medicaments. Examples of a salt that the compounds described hereinfrom with a base include the following: salts thereof with inorganic bases such as sodium, potassium, magnesium, calcium, and aluminum; salts thereof with organic bases such as methylamine, ethylamine and ethanolamine; salts thereof with basic amino acids such as lysine and ornithine; and ammonium salt. The salts may be acid addition salts, which are specifically exemplified by acid addition salts with the following: mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, and phosphoric acid:organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, tartaric acid, citric acid, methanesulfonic acid, and ethanesulfonic acid; acidic amino acids such as aspartic acid and glutamic acid.
The term “pharmaceutical composition” refers to a mixture of a compound described herein with other chemical components (referred to collectively herein as “excipients”), such as carriers, stabilizers, diluents, dispersing agents, suspending agents, and/or thickening agents. The pharmaceutical composition facilitates administration of the compound to an organism. Multiple techniques of administering a compound exist in the art including, but not limited to: rectal, oral, intravenous, aerosol, parenteral, ophthalmic, pulmonary, and topical administration.
The term “subject” refers to an animal, including, but not limited to, a primate (e.g., human), monkey, cow, pig, sheep, goat, horse, dog, cat, rabbit, rat, or mouse. The terms “subject” and “patient” are used interchangeably herein in reference, for example, to a mammalian subject, such as a human.
The terms “treat,” “treating,” and “treatment,” in the context of treating a disease or disorder, are meant to include alleviating or abrogating a disorder, disease, or condition, or one or more of the symptoms associated with the disorder, disease, or condition; or to slowing the progression, spread or worsening of a disease, disorder or condition or of one or more symptoms thereof. The “treatment of cancer”, refers to one or more of the following effects: (1) inhibition, to some extent, of tumor growth, including, (i) slowing down and (ii) complete growth arrest; (2) reduction in the number of tumor cells; (3) maintaining tumor size; (4) reduction in tumor size; (5) inhibition, including (i) reduction, (ii) slowing down or (iii) complete prevention, of tumor cell infiltration into peripheral organs; (6) inhibition, including (i) reduction, (ii) slowing down or (iii) complete prevention, of metastasis; (7) enhancement of anti-tumor immune response, which may result in (i) maintaining tumor size, (ii) reducing tumor size, (iii) slowing the growth of a tumor, (iv) reducing, slowing or preventing invasion and/or (8) relief, to some extent, of the severity or number of one or more symptoms associated with the disorder.
The term “halo” refers to fluoro (F), chloro (Cl), bromo (Br), or iodo (I).
The term “alkyl” refers to a saturated acyclic hydrocarbon radical that may be a straight chain or branched chain, containing the indicated number of carbon atoms. For example, C1-10 indicates that the group may have from 1 to 10 (inclusive) carbon atoms in it. Alkyl groups can either be unsubstituted or substituted with one or more substituents. Non-limiting examples include methyl, ethyl, iso-propyl, tert-butyl, n-hexyl. The term “saturated” as used in this context means only single bonds present between constituent carbon atoms and other available valences occupied by hydrogen and/or other substituents as defined herein.
The term “haloalkyl” refers to an alkyl, in which one or more hydrogen atoms is/are replaced with an independently selected halo.
The term “alkoxy” refers to an —O-alkyl radical (e.g., —OCH3).
The term “alkylene” refers to a divalent alkyl (e.g., —CH2—).
The term “alkenyl” refers to an acyclic hydrocarbon chain that may be a straight chain or branched chain having one or more carbon-carbon double bonds. The alkenyl moiety contains the indicated number of carbon atoms. For example, C2-6 indicates that the group may have from 2 to 6 (inclusive) carbon atoms in it. Alkenyl groups can either be unsubstituted or substituted with one or more substituents.
The term “alkynyl” refers to an acyclic hydrocarbon chain that may be a straight chain or branched chain having one or more carbon-carbon triple bonds. The alkynyl moiety contains the indicated number of carbon atoms. For example, C2-6 indicates that the group may have from 2 to 6 (inclusive) carbon atoms in it. Alkynyl groups can either be unsubstituted or substituted with one or more substituents.
The term “aryl” refers to a 6-20 carbon mono-, bi-, tri- or polycyclic group wherein at least one ring in the system is aromatic (e.g., 6-carbon monocyclic, 10-carbon bicyclic, or 14-carbon tricyclic aromatic ring system); and wherein 0, 1, 2, 3, or 4 atoms of each ring may be substituted by a substituent. Examples of aryl groups include phenyl, naphthyl, tetrahydronaphthyl, dihydro-1H-indenyl and the like.
The term “cycloalkyl” as used herein refers to cyclic saturated hydrocarbon groups having, e.g., 3 to 20 ring carbons, preferably 3 to 16 ring carbons, and more preferably 3 to 12 ring carbons or 3-10 ring carbons or 3-6 ring carbons, wherein the cycloalkyl group may be optionally substituted. Examples of cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Cycloalkyl may include multiple fused and/or bridged rings. Non-limiting examples of fused/bridged cycloalkyl includes: bicyclo[1.1.0]butanyl, bicyclo[2.1.0]pentanyl, bicyclo[1.1.1]pentanyl, bicyclo[3.1.0]hexanyl, bicyclo[2.1.1]hexanyl, bicyclo[3.2.0]heptanyl, bicyclo[4.1.0]heptanyl, bicyclo[2.2.1]heptanyl, bicyclo[3.1.1]heptanyl, bicyclo[4.2.0]octanyl, bicyclo[3.2.1]octanyl, bicyclo[2.2.2]octanyl, and the like. Cycloalkyl also includes spirocyclic rings (e.g., spirocyclic bicycle wherein two rings are connected through just one atom). Non-limiting examples of spirocyclic cycloalkyls include spiro[2.2]pentanyl, spiro[2.5]octanyl, spiro[3.5]nonanyl, spiro[3.5]nonanyl, spiro[3.5]nonanyl, spiro[4.4]nonanyl, spiro[2.6]nonanyl, spiro[4.5]decanyl, spiro[3.6]decanyl, spiro[5.5]undecanyl, and the like. The term “saturated” as used in this context means only single bonds present between constituent carbon atoms.
The term “cycloalkenyl” as used herein means partially unsaturated cyclic hydrocarbon groups having 3 to 20 ring carbons, preferably 3 to 16 ring carbons, and more preferably 3 to 12 ring carbons or 3-10 ring carbons or 3-6 ring carbons, wherein the cycloalkenyl group may be optionally substituted. Examples of cycloalkenyl groups include, without limitation, cyclopentenyl, cyclohexenyl, cycloheptenyl, and cyclooctenyl. As partially unsaturated cyclic hydrocarbon groups, cycloalkenyl groups may have any degree of unsaturation provided that one or more double bonds is present in the ring, none of the rings in the ring system are aromatic, and the cycloalkenyl group is not fully saturated overall. Cycloalkenyl may include multiple fused and/or bridged and/or spirocyclic rings.
The term “heteroaryl”, as used herein, means a mono-, bi-, tri- or polycyclic group having 5 to 20 ring atoms, alternatively 5, 6, 9, 10, or 14 ring atoms; and having 6, 10, or 14 pi electrons shared in a cyclic array; wherein at least one ring in the system is aromatic, and at least one ring in the system contains one or more heteroatoms independently selected from the group consisting of N, O, and S (but does not have to be a ring which contains a heteroatom, e.g. tetrahydroisoquinolinyl, e.g., tetrahydroquinolinyl). Heteroaryl groups can either be unsubstituted or substituted with one or more substituents. Examples of heteroaryl include thienyl, pyridinyl, furyl, oxazolyl, oxadiazolyl, pyrrolyl, imidazolyl, triazolyl, thiodiazolyl, pyrazolyl, isoxazolyl, thiadiazolyl, pyranyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, thiazolyl benzothienyl, benzoxadiazolyl, benzofuranyl, benzimidazolyl, benzotriazolyl, cinnolinyl, indazolyl, indolyl, isoquinolinyl, isothiazolyl, naphthyridinyl, purinyl, thienopyridinyl, pyrido[2,3-d]pyrimidinyl, pyrrolo[2,3-b]pyridinyl, quinazolinyl, quinolinyl, thieno[2,3-c]pyridinyl, pyrazolo[3,4-b]pyridinyl, pyrazolo[3,4-c]pyridinyl, pyrazolo[4,3-c]pyridinyl, pyrazolo[4,3-b]pyridinyl, tetrazolyl, chromanyl, 2,3-dihydrobenzo[b][1,4]dioxinyl, benzo[d][1,3]dioxolyl, benzo[d]thiazolyl, 2,3-dihydrobenzofuranyl, tetrahydroquinolinyl, 2,3-dihydrobenzo[b][1,4]oxathiinyl, indolyl, isoindolinyl, and others. In some embodiments, the heteroaryl is selected from thienyl, pyridinyl, furyl, pyrazolyl, imidazolyl, isoindolinyl, pyranyl, pyrazinyl, and pyrimidinyl.
The term “heterocyclyl” refers to a mon-, bi-, tri-, or polycyclic saturated ring system with 3-16 ring atoms (e.g., 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system) having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic or polycyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent. Examples of heterocyclyl groups include piperazinyl, pyrrolidinyl, dioxanyl, morpholinyl, tetrahydrofuranyl, and the like. Heterocyclyl may include multiple fused and bridged rings. Non-limiting examples of fused/bridged heteorocyclyl includes: 2-azabicyclo[1.1.0]butanyl, 2-azabicyclo[2.1.0]pentanyl, 2-azabicyclo[1.1.1]pentanyl, 3-azabicyclo[3.1.0]hexanyl, 5-azabicyclo[2.1.1]hexanyl, 3-azabicyclo[3.2.0]heptanyl, octahydrocyclopenta[c]pyrrolyl, 3-azabicyclo[4.1.0]heptanyl, 7-azabicyclo[2.2.1]heptanyl, 6-azabicyclo[3.1.1]heptanyl, 7-azabicyclo[4.2.0]octanyl, 2-azabicyclo[2.2.2]octanyl, 3-azabicyclo[3.2.1]octanyl, 2-oxabicyclo[1.1.0]butanyl, 2-oxabicyclo[2.1.0]pentanyl, 2-oxabicyclo[1.1.1]pentanyl, 3-oxabicyclo[3.1.0]hexanyl, 5-oxabicyclo[2.1.1]hexanyl, 3-oxabicyclo[3.2.0]heptanyl, 3-oxabicyclo[4.1.0]heptanyl, 7-oxabicyclo[2.2.1]heptanyl, 6-oxabicyclo[3.1.1]heptanyl, 7-oxabicyclo[4.2.0]octanyl, 2-oxabicyclo[2.2.2]octanyl, 3-oxabicyclo[3.2.1]octanyl, and the like. Heterocyclyl also includes spirocyclic rings (e.g., spirocyclic bicycle wherein two rings are connected through just one atom). Non-limiting examples of spirocyclic heterocyclyls include 2-azaspiro[2.2]pentanyl, 4-azaspiro[2.5]octanyl, 1-azaspiro[3.5]nonanyl, 2-azaspiro[3.5]nonanyl, 7-azaspiro[3.5]nonanyl, 2-azaspiro[4.4]nonanyl, 6-azaspiro[2.6]nonanyl, 1,7-diazaspiro[4.5]decanyl, 7-azaspiro[4.5]decanyl 2,5-diazaspiro[3.6]decanyl, 3-azaspiro[5.5]undecanyl, 2-oxaspiro[2.2]pentanyl, 4-oxaspiro[2.5]octanyl, 1-oxaspiro[3.5]nonanyl, 2-oxaspiro[3.5]nonanyl, 7-oxaspiro[3.5]nonanyl, 2-oxaspiro[4.4]nonanyl, 6-oxaspiro[2.6]nonanyl, 1,7-dioxaspiro[4.5]decanyl, 2,5-dioxaspiro[3.6]decanyl, 1-oxaspiro[5.5]undecanyl, 3-oxaspiro[5.5]undecanyl, 3-oxa-9-azaspiro[5.5]undecanyl and the like. The term “saturated” as used in this context means only single bonds present between constituent ring atoms and other available valences occupied by hydrogen and/or other substituents as defined herein.
The term “heterocycloalkenyl” as used herein means partially unsaturated cyclic ring system with 3-16 ring atoms (e.g., 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system) having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic or polycyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent. Examples of heterocycloalkenyl groups include, without limitation, tetrahydropyridyl, dihydropyrazinyl, dihydropyridyl, dihydropyrrolyl, dihydrofuranyl, dihydrothiophenyl. As partially unsaturated cyclic groups, heterocycloalkenyl groups may have any degree of unsaturation provided that one or more double bonds is present in the ring, none of the rings in the ring system are aromatic, and the heterocycloalkenyl group is not fully saturated overall. Heterocycloalkenyl may include multiple fused and/or bridged and/or spirocyclic rings.
As used herein, when a ring is described as being “aromatic”, it means said ring has a continuous, delocalized π-electron system. Typically, the number of out of plane 71-electrons corresponds to the Hückel rule (4n+2). Examples of such rings include: benzene, pyridine, pyrimidine, pyrazine, pyridazine, pyridone, pyrrole, pyrazole, oxazole, thioazole, isoxazole, isothiazole, and the like.
As used herein, when a ring is described as being “partially unsaturated”, it means said ring has one or more additional degrees of unsaturation (in addition to the degree of unsaturation attributed to the ring itself, e.g., one or more double or triple bonds between constituent ring atoms), provided that the ring is not aromatic. Examples of such rings include: cyclopentene, cyclohexene, cycloheptene, dihydropyridine, tetrahydropyridine, dihydropyrrole, dihydrofuran, dihydrothiophene, and the like.
For the avoidance of doubt, and unless otherwise specified, for rings and cyclic groups (e.g., aryl, heteroaryl, heterocyclyl, heterocycloalkenyl, cycloalkenyl, cycloalkyl, and the like described herein) containing a sufficient number of ring atoms to form bicyclic or higher order ring systems (e.g., tricyclic, polycyclic ring systems), it is understood that such rings and cyclic groups encompass those having fused rings, including those in which the points of fusion are located (i) on adjacent ring atoms (e.g., [x.x.0] ring systems, in which 0 represents a zero atom bridge
(ii) a single ring atom (spiro-fused ring systems)
or (iii) a contiguous array of ring atoms (bridged ring systems having all bridge lengths >0)
In addition, atoms making up the compounds of the present embodiments are intended to include all isotopic forms of such atoms. Isotopes, as used herein, include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include tritium and deuterium, and isotopes of carbon include 13C and 14C.
In addition, the compounds generically or specifically disclosed herein are intended to include all tautomeric forms. Thus, by way of example, a compound containing the moiety:
encompasses the tautomeric form containing the moiety:
Similarly, a pyridinyl or pyrimidinyl moiety that is described to be optionally substituted with hydroxyl encompasses pyridone or pyrimidone tautomeric forms.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features and advantages of the invention will be apparent from the description and drawings, and from the claims.
This disclosure features chemical entities (e.g., a compound or a pharmaceutically acceptable salt, and/or hydrate, and/or cocrystal, and/or drug combination of the compound) that inhibit (e.g., antagonize) Stimulator of Interferon Genes (STING). Said chemical entities are useful, e.g., for treating a condition, disease or disorder in which increased (e.g., excessive) STING activation (e.g., STING signaling) contributes to the pathology and/or symptoms and/or progression of the condition, disease or disorder (e.g., cancer) in a subject (e.g., a human). This disclosure also features compositions containing the same as well as methods of using and making the same.
Formula I Compounds
In one aspect, this disclosure features compounds of Formula (I):
then X1 cannot be N—(C3-10 cycloalkyl);
In one aspect, this disclosure features compounds of Formula (I):
In some embodiments, it is provided that: when Y1, Y2, and Y3 are each CH; X1 is NH; X2 is CH; and X3 is CR1f, then Ring A is other than:
In some embodiments, it is provided that: when Y2 and Y3 are each N; Y1 is CH; and Ring A is
then X1 cannot be N—(C3-10 cycloalkyl).
In some embodiments, it is provided that: when Y1 and Y2 are CH; and Ring A is
then X2 cannot be CR2, wherein said R2 is —NH-(2-pyrimidinyl); and
In some embodiments, it is provided that the compound is other than:
In some embodiments, the compound is other than a chemical entity disclosed in PCT/US2020/037403, filed on Jun. 12, 2020, which is incorporated herein by reference in its entirety. In some embodiments, the compound is other than a compound delineated in Table C1 of PCT/US2020/037403, filed on Jun. 12, 2020, which is incorporated herein by reference in its entirety.
In certain of these embodiments, the compound is other than:
Variable Ring A
In some embodiments, Ring A is
wherein A4 is C or N; and A3 and A5 are each independently selected from the group consisting of: CR4, N, N(R5), O, and S.
In some embodiments, Ring A is
wherein A4 is C or N; and A3 and A5 are each independently selected from the group consisting of: CR4, N, N(R5), O, and S.
Variables A1, A2, A3, A4, and A5
In some embodiments, A4 is C.
In some embodiments, A1 and A2 are each C.
In some embodiments, one of A1 and A2 is C; and the other of A1 and A2 is N.
In some embodiments, A3 and A5 are independently selected from the group consisting of: N, N(R5), O, and S. In certain of these embodiments, one of A3 and A5 is N; and the other of A3 and A5 is selected from the group consisting of: N(R5), O, and S. In certain of the foregoing embodiments, one of A3 and A5 is N; and the other of A3 and A5 is N(R5).
In some embodiments, one of A3 and A5 is C(R4); and the other of A3 and A5 is N.
In certain embodiments, Ring A is
In certain embodiments, Ring A is
Variable Ring B
In some embodiments, Ring B is an aromatic ring having 5-10 ring atoms, wherein 0-2 ring atoms are heteroatoms (in addition to A1 and A2 when one or both of A1 and A2 is N) each independently selected from the group consisting of: N, NH, N(Rd), O, and S(O)0-2, wherein Ring B is optionally substituted with 1-4 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
In certain of these embodiments, Ring B is an aromatic ring having 6 ring atoms, wherein 0-2 ring atoms are ring nitrogen atoms (in addition to A1 and A2 when one or both of A1 and A2 is N), wherein Ring B is optionally substituted with 1-4 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc. In certain embodiments, Ring B is
wherein each is independently a single bond or a double bond, provided that Ring B is aromatic; m1 is 0, 1, 2, or 3 (e.g., 1 or 2); and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
As non-limiting examples of the foregoing embodiments, Ring B can be
wherein each is independently a single bond or a double bond, provided that Ring B is aromatic; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
In certain embodiments, Ring B is
wherein each is independently a single bond or a double bond, provided that Ring B is aromatic; m1 is 0, 1, or 2 (e.g., 1 or 2); and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc
As non-limiting examples of the foregoing embodiments, Ring B is
In certain embodiments, Ring B is an aromatic ring having 5 ring atoms, wherein 0-2 ring atoms are heteroatoms (in addition to A1 and A2 when one or both of A1 and A2 is N) each independently selected from the group consisting of: N, NH, N(Rd), O, and S, wherein Ring B is optionally substituted with 1-2 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc
As non-limiting examples of the foregoing embodiments, Ring B can be
wherein each is independently a single bond or a double bond, provided that Ring B is aromatic; m1 is 0, 1, or 2 (e.g., 1 or 2); and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
In some embodiments, Ring B is a partially unsaturated ring having 5-10 ring atoms, wherein 0-2 ring atoms are heteroatoms (in addition to A1 and A2 when one or both of A1 and A2 is N) each independently selected from the group consisting of: N, NH, N(Rd), O, and S(O)0-2, wherein Ring B is optionally substituted with 1-4 Rr.
In certain of these embodiments, Ring B is a partially unsaturated bicyclic ring having 8-10 ring atoms, wherein 0-2 ring atoms are heteroatoms (in addition to A1 and A2 when one or both of A1 and A2 is N) each independently selected from the group consisting of: N, NH, N(Rd), O, and S(O)0-2, wherein Ring B is optionally substituted with 1-4 Rr.
In certain of the foregoing embodiments, Ring B is a partially unsaturated spirobicyclic ring having 8-10 ring atoms, wherein 0-2 (e.g., 1), ring atoms are heteroatoms (in addition to A1 and A2 when one or both of A1 and A2 is N) each independently selected from the group consisting of: N, NH, N(Rd), O, and S(O)0-2, wherein Ring B is optionally substituted with 1-4 Rr.
As non-limiting examples of the foregoing embodiments, Ring B can be selected from the group consisting of:
wherein each is independently a single bond or a double bond.
Non-Limiting Combinations of A1, A2, A3, A4, A5, and Ring B
In certain embodiments, Ring A is
wherein Ring B is an aromatic ring having 6 ring atoms, wherein 0-2 ring atoms are ring nitrogen atoms, wherein Ring B is optionally substituted with 1-4 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
In certain of these embodiments, Ring A is
wherein m1 is 0, 1, 2, or 3; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
In certain embodiments, Ring A is
wherein m1 is 0, 1, 2, or 3; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
In certain embodiments, Ring A
wherein Ring B is an aromatic ring having 5 ring atoms, wherein 1-2 ring atoms are heteroatoms each independently selected from the group consisting of: N, NH, N(Rd), O, and S, wherein Ring B is optionally substituted with 1-2 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
In certain of these embodiments, Ring A is
wherein m1 is 0, 1, or 2; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
In certain embodiments, Ring A is
wherein Ring B is a partially unsaturated spirobicyclic ring having 8-10 ring atoms, wherein 0-2 (e.g., 1), ring atoms are heteroatoms each independently selected from the group consisting of: N, NH, N(Rd), O, and S(O)0-2, wherein Ring B is optionally substituted with 1-4 Rr.
As non-limiting examples of the foregoing embodiments, Ring A can be
In certain embodiments, Ring A is
wherein Ring B is an aromatic ring having 6 ring atoms, wherein 0-2 ring atoms (in addition to the ring nitrogen atom present) are ring nitrogen atoms, wherein Ring B is optionally substituted with 1-4 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
In certain of these embodiments, Ring A is
wherein m1 is 0, 1, 2, or 3; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
In certain embodiments, Ring A is
wherein Ring B is a partially unsaturated spirobicyclic ring having 8-10 ring atoms, wherein 0-2 (e.g., 1), ring atoms (in addition to the ring nitrogen atom present) are heteroatoms each independently selected from the group consisting of: N, NH, N(Rd), O, and S(O)0-2, wherein Ring B is optionally substituted with 1-4 Rr.
As non-limiting examples of the foregoing embodiments, Ring A can be
In certain embodiments, Ring A is
wherein Ring B is an aromatic ring having 6 ring atoms, wherein 0-2 ring atoms (in addition to the ring nitrogen atom present) are ring nitrogen atoms, wherein Ring B is optionally substituted with 1-4 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
In certain of these embodiments, Ring A is
wherein m1 is 0, 1, 2, or 3; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
Variable R5
In certain embodiments, R5 is H.
In certain embodiments, R5 is Rd. In certain of these embodiments, R5 is C1-6 alkyl optionally substituted with 1-3 independently selected Ra. In certain of the foregoing embodiments, R5 is C1-6 alkyl (e.g., C1-3 alkyl (e.g., methyl or ethyl)). In certain embodiments, R5 is C1-6 alkyl substituted with 1-3 substituents each independently selected from the group consisting of C1-4 alkoxy and halo. For example, R5 can be C2-6 alkyl substituted with C1-4 alkoxy.
In certain embodiments, R5 is -(Lb)b-Rb or Rb. In certain of these embodiments, R5 is —(C1-3 alkylene)-Rb. In certain of these embodiments, R5 is —(C1-3 alkylene)-(C6-10 aryl), wherein the C6-10 aryl is optionally substituted with 1-2 Re. As non-limiting examples of the foregoing embodiments, R5 can be —CH2Ph or —CH2CH2Ph.
Variable Rr
In certain embodiments, each occurrence of Rr is an independently selected —Rc.
In certain embodiments, one occurrence of Rr is selected from the group consisting of: halo; cyano; C1-10 alkyl which is optionally substituted with 1-6 independently selected Ra; C1-4 alkoxy; C1.4 haloalkoxy; —S(O)1-2(C1-4 alkyl); —NReRf; —S(O)1-2NR′R″; —C1-4 thioalkoxy; —C(═O)(C1-10 alkyl); —C(═O)O(C1-4 alkyl); and —C(═O)NR′R″.
In certain embodiments, one occurrence of Rr is selected from the group consisting of: halo (e.g., —F, —Cl, or —Br); C1-6 alkyl (e.g., methyl or ethyl); C1-6 alkyl substituted with 1-6 independently selected halo (e.g., —CF3, —CH2CF3, —CHF2, and —CF2H); C1-4 alkoxy (e.g., —OMe); and C1-4 haloalkoxy.
In certain embodiments, one occurrence of Rr is selected from the group consisting of: halo (e.g., —F, —Cl, or —Br); C1-6 alkyl (e.g., methyl or ethyl); and C1-6 alkyl substituted with 1-6 independently selected halo (e.g., —CF3, —CH2CF3, —CHF2, and —CF2H).
In certain embodiments, Rr is unsubstituted C1-6 alkyl, e.g., iso-pentyl.
In other embodiments, Rr is C1-10 alkyl substituted with 1-2 Ra, e.g., in which Ra is —OH, e.g., 4-hydroxy-4-methylbut-1-yl.
In certain embodiments, one occurrence of Rr is -(Lb)b-Rb or Rb.
In certain embodiments, one occurrence of Rr is Rb.
For example, one occurrence of Rr can be C3-10 cycloalkyl or C3-10 cycloalkenyl, each of which is optionally substituted with 1-4 Rc. For example, Rr can be C3-10 cycloalkyl, e.g., C3-6 cycloalkyl (e.g., cyclobutyl or cyclohexyl), each of which is optionally substituted with 1-4 (e.g., 1-2, e.g., 1) Rc. In certain of these embodiments (e.g., when Rr is optionally substituted cyclohexyl), each occurrence of Rc is independently selected from the group consisting of:
As a another example, one occurrence of Rr can be heteroaryl of 5-10 (e.g., 5-6, e.g., 5) ring atoms, wherein 1-3 ring atoms are heteroatoms, each independently selected from the group consisting of N, N(H), N(Rd), O, and S(O)0-2, and wherein the heteroaryl is optionally substituted with 1-4 Rc. In certain embodiments, Rr is heteroaryl of 5-6 ring atoms. In other embodiments, Rr is heteroaryl of 5 ring atoms (e.g., pyrazolyl). In still other embodiments, Rr is heteroaryl of 6 ring atoms. (e.g., pyridyl).
In certain of these embodiments (e.g., when Rr is optionally substituted pyrazolyl or pyridyl, e.g., pyrazolyl), Rc is unsubstituted C1-6 alkyl (e.g., CH3 or iso-propyl). In other embodiments, Rc is C1-6 alkyl substituted with 1-2 (e.g., 1) independently selected Ra. By way of example, Ra in the foregoing embodiments can include:
In other embodiments (e.g., when Rr is optionally substituted pyrazolyl), Rc is:
As a further example, one occurrence of Rr can be heterocyclyl of 3-10 (e.g., 4-7, 3-6) ring atoms, wherein 1-3 ring atoms are heteroatoms, each independently selected from the group consisting of N, N(H), N(Rd), O, and S(O)0-2, and wherein the heterocyclyl is optionally substituted with 1-4 Rc. In certain embodiments, Rr is heterocyclyl of 4-7 ring atoms.
In certain of these embodiments, one occurrence of Rr is tetrahydropyranyl, e.g., optionally substituted with 1-6 (e.g., 1-4) C1-6 alkyl (e.g., tetrahydropyranyl (e.g., 3-yl or 4-yl), 2,2,6,6-tetramethyl-tetrahydropyran-4-yl, or tetrahydrofuryl (e.g., 2-yl or 3-yl)).
In other embodiments, one occurrence of Rr is heterocyclyl of 4-7 ring atoms, wherein 1-3 ring atoms are heteroatoms, each independently selected from the group consisting of N, N(H), N(Rd), optionally substituted with 1-4 Rc (e.g., pyrrolidinyl or piperidinyl) In certain of these embodiments, Rc is:
In certain of the foregoing embodiments, Rc is attached to the ring nitrogen atom.
In still another example, one occurrence of Rr can be C6-10 aryl, e.g., phenyl, optionally substituted with 1-4 Rc. In certain of these embodiments, Rc is C1-6 alkyl optionally substituted with —OH; C1-4 alkoxy (e.g., —OMe); or optionally substituted C3-6 cycloalkyl (e.g., cyclopropyl, e.g., 1-cyano-cyclopropane-1-yl).
In certain embodiments, each remaining R′ when present is an independently selected halo, such as —C1.
Variable R3
In some embodiments, R3 is H.
Variables Y1, Y2, and Y3
In some embodiments, Y2 is CR1b. In certain embodiments, Y2 is CH.
In some embodiments, Y3 is CR1c. In certain embodiments, Y3 is CH.
In certain embodiments, Y2 is CR1b; and Y3 is CR1c. In certain of these embodiments, Y2 is CH; and Y3 is CH.
In some embodiments, Y1 is CR1a.
In certain of these embodiments, R1a is selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
In certain of the foregoing embodiments, R1a is Rc.
In certain embodiments, R1a is selected from the group consisting of: halo; C1-4 alkoxy; C1-4 haloalkoxy; C(═O)NR′R″; —C(═O)O(C1-4 alkyl); and C1-6 alkyl which is optionally substituted with 1-6 independently selected Ra, such as —CH2C(═O)NR′R″.
In certain embodiments, R1a is halo. For example, R1a can be —Cl.
In certain embodiments, R1a is halo. For example, R1a can be —F.
In certain embodiments, R1a is C1-4 alkoxy or C1-4 haloalkoxy. For example, Ria can be C1-4 alkoxy.
In certain embodiments, R1a is C(═O)NR′R″.
In certain embodiments, R1a is —C(═O)O(C1-4 alkyl).
In certain embodiments, R1a is C1-6 alkyl which is optionally substituted with 1-6 independently selected Ra. For example, R1a can be CH2C(═O)NR′R″.
In certain embodiments, R1a is -(Lb)b-Rb or Rb.
In certain of these embodiments, R1a is Rb.
In certain of the foregoing embodiments, R1a is C6-10 aryl optionally substituted with 1-4 Rc, such as phenyl optionally substituted with 1-2 Re.
In certain embodiments, R1a is selected from the group consisting of: heterocyclyl or heterocycloalkenyl of 3-10 ring atoms, wherein 1-3 ring atoms are heteroatoms, each independently selected from the group consisting of N, N(H), N(Rd), O, and S(O)0-2, and wherein the heterocyclyl or heterocycloalkenyl is optionally substituted with 1-4 Re; and heteroaryl of 5-10 ring atoms, wherein 1-3 ring atoms are heteroatoms, each independently selected from the group consisting of N, N(H), N(Rd), O, and S(O)0-2, and wherein the heteroaryl is optionally substituted with 1-4 Re.
In certain embodiments (when R1a is -(Lb)b-Rb), R1a is —ORb, —C(O)ORb, or C(O)NHRb.
Variables X1, X2, and X3
In some embodiments, X1 is NR2. In certain embodiments, X1 is NH.
In some embodiments, X2 is CR1e. In certain embodiments, X2 is CH.
In certain embodiments, X1 is NR2; and X2 is CR1e. In certain of these embodiments, X1 is NH; and X2 is CH.
In some embodiments, X3 is CR1f.
In certain embodiments, Rf is H.
In certain embodiments, R1f is selected from the group consisting of: -Lb-Rb, Rb, and Rc.
In certain of these embodiments, R1f is Re. As non-limiting examples of the foregoing embodiments, R1f is halo (e.g., —F, —Cl, or —Br). In certain embodiments, R1f is —F.
In certain embodiments, R1f is cyano.
In certain embodiments, R1f is NReRf. In certain of these embodiments, R1f is NHC(═O)R′″ or NHC(═O)OR′″. In certain embodiments, R1f is NHC(═O)NR′R″ or NHC(═O)C(═O)R′″.
Non-Limiting Combinations of Y1, Y2, Y3, X1, X2, and X3
[AA1] In certain embodiments, the
moiety is
wherein R1a is selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
[AA2] In certain embodiments, the
moiety is
wherein R1a is selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc; and R1f is an independently selected Rc.
In certain embodiments of [AA1] or [AA2], R2 is H; and R1e is H.
In certain embodiments of [AA1] or [AA2], R1a is Rc In certain embodiments of [AA1] or [AA2], R1a is selected from the group consisting of: halo; C1-4 alkoxy; C1-4 haloalkoxy; C(═O)NR′R″; —C(═O)O(C1-4 alkyl); and C1-6 alkyl which is optionally substituted with 1-6 independently selected Ra, such as —CH2C(═O)NR′R″.
In certain embodiments of [AA1] or [AA2], R1a is halo (e.g., —Cl).
In certain embodiments of [AA1] or [AA2], R1a is selected from the group consisting of: Rb, —O—Rb, —C(═O)ORb, and —C(═O)NHRb.
In certain embodiments of [AA2], R″ is halo (e.g., —F, —Cl, or —Br). In certain of these embodiments, Rf is F. In certain of these embodiments, Re is H. In certain of these embodiments, R1a is H. In certain of these embodiments, Re is H, and R1a is H.
In certain embodiments of [AA2], R1f is halo (e.g., —F). In certain of these embodiments, Re is H. In certain of these embodiments, R1a is H. In certain of these embodiments, R1a is H. In certain of these embodiments, Re is H, and R1a is H.
In certain embodiments of [AA2], R1f is cyano.
In certain embodiments of [AA2], R1f is NR′Rf. As non-limiting examples of the foregoing embodiments, R1 can be NHC(═O)R′″, NHC(═O)OR′″, NHC(═O)NR′R″, or NHC(═O)C(═O)R′″.
Non-Limiting Combinations
In certain embodiments, the compound is a compound of Formula (I-a):
In certain embodiments of Formula (I-a), R2 and R1e are H.
In certain embodiments of Formula (I-a), R3 is H.
In certain embodiments of Formula (I-a), Ring B is an aromatic ring having 6 ring atoms, wherein 0-2 ring atoms are ring nitrogen atoms, wherein Ring B is optionally substituted with 1-4 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
In certain embodiments of Formula (I-a),
is
wherein m1 is 0, 1, 2, or 3, such as 1 or 2; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc. In certain of these embodiments, m1 is 1 or 2.
In certain embodiments of Formula (I-a),
is
wherein m1 is 0, 1, or 2, such as 1 or 2; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc. In certain of these embodiments, m1 is 1 or 2.
In certain embodiments of Formula (I-a), R5 is H.
In certain embodiments of Formula (I-a), R5 is C1-6 alkyl optionally substituted with 1-3 Ra. In certain of the foregoing embodiments, R5 is C1-6 alkyl (e.g., C1-3 alkyl (e.g., methyl or ethyl)). In certain embodiments of Formula (I-a), R5 is C1-6 alkyl substituted with 1-3 substituents each independently selected from the group consisting of C1-4 alkoxy and halo. For example, R5 can be C2-6 alkyl substituted with C1-4 alkoxy.
In certain embodiments of Formula (I-a), R5 is —(C1-3 alkylene)-Rb.
In certain embodiments of Formula (I-a), one occurrence of Rr is Re
In certain embodiments of Formula (I-a), one occurrence of Rr is selected from the group consisting of: halo (e.g., —F, —Cl, or —Br); C1-6 alkyl (e.g., methyl or ethyl); and C1-6 alkyl substituted with 1-6 independently selected halo (e.g., —CF3, —CH2CF3, —CHF2, and —CF2H).
In certain embodiments of Formula (I-a), one occurrence of Rr is Rb or -(Lb)b-RbFor example, one occurrence of Rr can be —Rb.
In certain embodiments of Formula (I-a), one occurrence of Rr is C3-6 cycloalkyl optionally substituted with 1-2 Rc.
In certain embodiments of Formula (I-a), R1a is selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc; and R″ is independently H or Rc In certain embodiments of Formula (I-a), R″ is H.
In certain embodiments of Formula (I-a), R1f is Rc.
In certain embodiments of Formula (I-a), R1f is halo (e.g., —F, —Cl, or —Br).
In certain embodiments of Formula (I-a), R1f is halo (e.g., —F).
In certain embodiments of Formula (I-a), R1f is cyano.
In certain of these embodiments, R1a is H. In certain of these embodiments, R1e is H. In certain of these embodiments, R1e is H, and R1a is H.
In certain embodiments of Formula (I-a), R1f is NReRf. For example, R1f can be NHC(═O)R′″, NHC(═O)OR′″, NHC(═O)NR′R″, or NHC(═O)C(═O)R′″.
In certain embodiments of Formula (I-a), R1a is Rc.
In certain embodiments of Formula (I-a), R1a is selected from the group consisting of: halo; C1-4 alkoxy; C1-4 haloalkoxy; C(═O)NR′R″; —C(═O)O(C1-4 alkyl); and C1-6 alkyl which is optionally substituted with 1-6 independently selected Ra. For example, R1a can be —CH2C(═O)NR′R″.
In certain embodiments of Formula (I-a), R1a is halo. For example, R1a can be —Cl.
In certain embodiments of Formula (I-a), R1a is selected from the group consisting of: Rb, —O—Rb, —C(═O)ORb, and —C(═O)NHRb.
In some embodiments, the compound is selected from the group consisting of the compounds delineated in Table C1 or a pharmaceutically acceptable salt thereof.
Pharmaceutical Compositions and Administration
General
In some embodiments, a chemical entity (e.g., a compound that inhibits (e.g., antagonizes) STING, or a pharmaceutically acceptable salt, and/or hydrate, and/or cocrystal, and/or drug combination thereof) is administered as a pharmaceutical composition that includes the chemical entity and one or more pharmaceutically acceptable excipients, and optionally one or more additional therapeutic agents as described herein.
In some embodiments, the chemical entities can be administered in combination with one or more conventional pharmaceutical excipients. Pharmaceutically acceptable excipients include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems (SEDDS) such as d-α-tocopherol polyethylene glycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens, poloxamers or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, tris, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium-chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethyl cellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, and wool fat. Cyclodextrins such as α-, β, and γ-cyclodextrin, or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2- and 3-hydroxypropyl-β-cyclodextrins, or other solubilized derivatives can also be used to enhance delivery of compounds described herein. Dosage forms or compositions containing a chemical entity as described herein in the range of 0.005% to 100% with the balance made up from non-toxic excipient may be prepared. The contemplated compositions may contain 0.001%-100% of a chemical entity provided herein, in one embodiment 0.1-95%, in another embodiment 75-85%, in a further embodiment 20-80%.
Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington: The Science and Practice of Pharmacy, 22nd Edition (Pharmaceutical Press, London, U K. 2012).
Routes of Administration and Composition Components
In some embodiments, the chemical entities described herein or a pharmaceutical composition thereof can be administered to subject in need thereof by any accepted route of administration. Acceptable routes of administration include, but are not limited to, buccal, cutaneous, endocervical, endosinusial, endotracheal, enteral, epidural, interstitial, intra-abdominal, intra-arterial, intrabronchial, intrabursal, intracerebral, intracisternal, intracoronary, intradermal, intraductal, intraduodenal, intradural, intraepidermal, intraesophageal, intragastric, intragingival, intraileal, intralymphatic, intramedullary, intrameningeal, intramuscular, intraovarian, intraperitoneal, intraprostatic, intrapulmonary, intrasinal, intraspinal, intrasynovial, intratesticular, intrathecal, intratubular, intratumoral, intrauterine, intravascular, intravenous, nasal, nasogastric, oral, parenteral, percutaneous, peridural, rectal, respiratory (inhalation), subcutaneous, sublingual, submucosal, topical, transdermal, transmucosal, transtracheal, ureteral, urethral and vaginal. In certain embodiments, a preferred route of administration is parenteral (e.g., intratumoral).
Compositions can be formulated for parenteral administration, e.g., formulated for injection via the intravenous, intramuscular, sub-cutaneous, or even intraperitoneal routes. Typically, such compositions can be prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for use to prepare solutions or suspensions upon the addition of a liquid prior to injection can also be prepared; and the preparations can also be emulsified. The preparation of such formulations will be known to those of skill in the art in light of the present disclosure.
The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil, or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form must be sterile and must be fluid to the extent that it may be easily injected. It also should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
The carrier also can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion, and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques, which yield a powder of the active ingredient, plus any additional desired ingredient from a previously sterile-filtered solution thereof.
Intratumoral injections are discussed, e.g., in Lammers, et al., “Effect of Intratumoral Injection on the Biodistribution and the Therapeutic Potential of HPMA Copolymer-Based Drug Delivery Systems” Neoplasia. 2006, 10, 788-795.
Pharmacologically acceptable excipients usable in the rectal composition as a gel, cream, enema, or rectal suppository, include, without limitation, any one or more of cocoa butter glycerides, synthetic polymers such as polyvinylpyrrolidone, PEG (like PEG ointments), glycerine, glycerinated gelatin, hydrogenated vegetable oils, poloxamers, mixtures of polyethylene glycols of various molecular weights and fatty acid esters of polyethylene glycol Vaseline, anhydrous lanolin, shark liver oil, sodium saccharinate, menthol, sweet almond oil, sorbitol, sodium benzoate, anoxid SBN, vanilla essential oil, aerosol, parabens in phenoxyethanol, sodium methyl p-oxybenzoate, sodium propyl p-oxybenzoate, diethylamine, carbomers, carbopol, methyloxybenzoate, macrogol cetostearyl ether, cocoyl caprylocaprate, isopropyl alcohol, propylene glycol, liquid paraffin, xanthan gum, carboxy-metabisulfite, sodium edetate, sodium benzoate, potassium metabisulfite, grapefruit seed extract, methyl sulfonyl methane (MSM), lactic acid, glycine, vitamins, such as vitamin A and E and potassium acetate.
In certain embodiments, suppositories can be prepared by mixing the chemical entities described herein with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum and release the active compound. In other embodiments, compositions for rectal administration are in the form of an enema.
In other embodiments, the compounds described herein or a pharmaceutical composition thereof are suitable for local delivery to the digestive or GI tract by way of oral administration (e.g., solid or liquid dosage forms).
Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the chemical entity is mixed with one or more pharmaceutically acceptable excipients, such as sodium citrate or dicalcium phosphate and/or: a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
In one embodiment, the compositions will take the form of a unit dosage form such as a pill or tablet and thus the composition may contain, along with a chemical entity provided herein, a diluent such as lactose, sucrose, dicalcium phosphate, or the like; a lubricant such as magnesium stearate or the like; and a binder such as starch, gum acacia, polyvinylpyrrolidine, gelatin, cellulose, cellulose derivatives or the like. In another solid dosage form, a powder, marume, solution or suspension (e.g., in propylene carbonate, vegetable oils, PEG's, poloxamer 124 or triglycerides) is encapsulated in a capsule (gelatin or cellulose base capsule). Unit dosage forms in which one or more chemical entities provided herein or additional active agents are physically separated are also contemplated; e.g., capsules with granules (or tablets in a capsule) of each drug; two-layer tablets; two-compartment gel caps, etc. Enteric coated or delayed release oral dosage forms are also contemplated.
Other physiologically acceptable compounds include wetting agents, emulsifying agents, dispersing agents or preservatives that are particularly useful for preventing the growth or action of microorganisms. Various preservatives are well known and include, for example, phenol and ascorbic acid.
In certain embodiments the excipients are sterile and generally free of undesirable matter. These compositions can be sterilized by conventional, well-known sterilization techniques. For various oral dosage form excipients such as tablets and capsules sterility is not required. The USP/NF standard is usually sufficient.
In certain embodiments, solid oral dosage forms can further include one or more components that chemically and/or structurally predispose the composition for delivery of the chemical entity to the stomach or the lower GI; e.g., the ascending colon and/or transverse colon and/or distal colon and/or small bowel. Exemplary formulation techniques are described in, e.g., Filipski, K. J., et al., Current Topics in Medicinal Chemistry, 2013, 13, 776-802, which is incorporated herein by reference in its entirety.
Examples include upper-GI targeting techniques, e.g., Accordion Pill (Intec Pharma), floating capsules, and materials capable of adhering to mucosal walls.
Other examples include lower-GI targeting techniques. For targeting various regions in the intestinal tract, several enteric/pH-responsive coatings and excipients are available. These materials are typically polymers that are designed to dissolve or erode at specific pH ranges, selected based upon the GI region of desired drug release. These materials also function to protect acid labile drugs from gastric fluid or limit exposure in cases where the active ingredient may be irritating to the upper GI (e.g., hydroxypropyl methylcellulose phthalate series, Coateric (polyvinyl acetate phthalate), cellulose acetate phthalate, hydroxypropyl methylcellulose acetate succinate, Eudragit series (methacrylic acid-methyl methacrylate copolymers), and Marcoat). Other techniques include dosage forms that respond to local flora in the GI tract, Pressure-controlled colon delivery capsule, and Pulsincap.
Ocular compositions can include, without limitation, one or more of any of the following: viscogens (e.g., Carboxymethylcellulose, Glycerin, Polyvinylpyrrolidone, Polyethylene glycol); Stabilizers (e.g., Pluronic (triblock copolymers), Cyclodextrins); Preservatives (e.g., Benzalkonium chloride, ETDA, SofZia (boric acid, propylene glycol, sorbitol, and zinc chloride; Alcon Laboratories, Inc.), Purite (stabilized oxychloro complex; Allergan, Inc.)).
Topical compositions can include ointments and creams. Ointments are semisolid preparations that are typically based on petrolatum or other petroleum derivatives. Creams containing the selected active agent are typically viscous liquid or semisolid emulsions, often either oil-in-water or water-in-oil. Cream bases are typically water-washable, and contain an oil phase, an emulsifier and an aqueous phase. The oil phase, also sometimes called the “internal” phase, is generally comprised of petrolatum and a fatty alcohol such as cetyl or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant. The emulsifier in a cream formulation is generally a nonionic, anionic, cationic or amphoteric surfactant. As with other carriers or vehicles, an ointment base should be inert, stable, nonirritating and non-sensitizing.
In any of the foregoing embodiments, pharmaceutical compositions described herein can include one or more one or more of the following: lipids, interbilayer crosslinked multilamellar vesicles, biodegradeable poly(D,L-lactic-co-glycolic acid) [PLGA]-based or poly anhydride-based nanoparticles or microparticles, and nanoporous particle-supported lipid bilayers.
Dosages
The dosages may be varied depending on the requirement of the patient, the severity of the condition being treating and the particular compound being employed. Determination of the proper dosage for a particular situation can be determined by one skilled in the medical arts. The total daily dosage may be divided and administered in portions throughout the day or by means providing continuous delivery.
In some embodiments, the compounds described herein are administered at a dosage of from about 0.001 mg/Kg to about 500 mg/Kg (e.g., from about 0.01 mg/Kg to about 100 mg/Kg; from about 0.01 mg/Kg to about 10 mg/Kg; from about 0.01 mg/Kg to about 1 mg/Kg; from from about 0.01 mg/Kg to about 0.1 mg/Kg; from about 0.1 mg/Kg to about 100 mg/Kg; from about 0.1 mg/Kg to about 10 mg/Kg).
Regimens
The foregoing dosages can be administered on a daily basis (e.g., as a single dose or as two or more divided doses) or non-daily basis (e.g., every other day, every two days, every three days, once weekly, twice weeks, once every two weeks, once a month).
In some embodiments, the period of administration of a compound described herein is for 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 7 weeks, 8 weeks, 9 weeks, 10 weeks, 11 weeks, 12 weeks, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 12 months, or more. In a further embodiment, a period of during which administration is stopped is for 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 7 weeks, 8 weeks, 9 weeks, 10 weeks, 11 weeks, 12 weeks, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 12 months, or more. In an embodiment, a therapeutic compound is administered to an individual for a period of time followed by a separate period of time. In another embodiment, a therapeutic compound is administered for a first period and a second period following the first period, with administration stopped during the second period, followed by a third period where administration of the therapeutic compound is started and then a fourth period following the third period where administration is stopped. In an aspect of this embodiment, the period of administration of a therapeutic compound followed by a period where administration is stopped is repeated for a determined or undetermined period of time. In a further embodiment, a period of administration is for 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 7 weeks, 8 weeks, 9 weeks, 10 weeks, 11 weeks, 12 weeks, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 12 months, or more. In a further embodiment, a period of during which administration is stopped is for 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 7 weeks, 8 weeks, 9 weeks, 10 weeks, 11 weeks, 12 weeks, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 12 months, or more.
Methods of Treatment
In some embodiments, methods for treating a subject having condition, disease or disorder in which increased (e.g., excessive)STING activity (e.g., , e.g., STING signaling) contributes to the pathology and/or symptoms and/or progression of the condition, disease or disorder (e.g., immune disorders, cancer) are provided.
Indications
In some embodiments, the condition, disease or disorder is cancer. Non-limiting examples of cancer include melanoma, carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include breast cancer, colon cancer, rectal cancer, colorectal cancer, kidney or renal cancer, clear cell cancer lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the lung, squamous cell cancer (e.g. epithelial squamous cell cancer), cervical cancer, ovarian cancer, prostate cancer, prostatic neoplasms, liver cancer, bladder cancer, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, gastrointestinal stromal tumor, pancreatic cancer, head and neck cancer, glioblastoma, retinoblastoma, astrocytoma, thecomas, arrhenoblastomas, hepatoma, hematologic malignancies including non-Hodgkins lymphoma (NHL), multiple myeloma, myelodysplasia disorders, myeloproliferative disorders, chronic myelogenous leukemia, and acute hematologic malignancies, endometrial or uterine carcinoma, endometriosis, endometrial stromal sarcoma, fibrosarcomas, choriocarcinoma, salivary gland carcinoma, vulval cancer, thyroid cancer, esophageal carcinomas, hepatic carcinoma, anal carcinoma, penile carcinoma, nasopharyngeal carcinoma, laryngeal carcinomas, Kaposi's sarcoma, mast cell sarcoma, ovarian sarcoma, uterine sarcoma, melanoma, malignant mesothelioma, skin carcinomas, Schwannoma, oligodendroglioma, neuroblastomas, neuroectodermal tumor, rhabdomyosarcoma, osteogenic sarcoma, leiomyosarcomas, Ewing Sarcoma, peripheral primitive neuroectodermal tumor, urinary tract carcinomas, thyroid carcinomas, Wilm's tumor, as well as abnormal vascular proliferation associated with phakomatoses, edema (such as that associated with brain tumors), and Meigs' syndrome. In some cases, the cancer is melanoma.
In some embodiments, the condition, disease or disorder is a neurological disorder, which includes disorders that involve the central nervous system (brain, brainstem and cerebellum), the peripheral nervous system (including cranial nerves), and the autonomic nervous system (parts of which are located in both central and peripheral nervous system). Non-limiting examples of neurological disorders include acquired epileptiform aphasia; acute disseminated encephalomyelitis; adrenoleukodystrophy; age-related macular degeneration; agenesis of the corpus callosum; agnosia; Aicardi syndrome; Alexander disease; Alpers' disease; alternating hemiplegia; Alzheimer's disease; Vascular dementia; amyotrophic lateral sclerosis; anencephaly; Angelman syndrome; angiomatosis; anoxia; aphasia; apraxia; arachnoid cysts; arachnoiditis; Anronl-Chiari malformation; arteriovenous malformation; Asperger syndrome; ataxia telegiectasia; attention deficit hyperactivity disorder; autism; autonomic dysfunction; back pain; Batten disease; Behcet's disease; Bell's palsy; benign essential blepharospasm; benign focal; amyotrophy; benign intracranial hypertension; Binswanger's disease; blepharospasm; Bloch Sulzberger syndrome; brachial plexus injury; brain abscess; brain injury; brain tumors (including glioblastoma multiforme); spinal tumor; Brown-Sequard syndrome; Canavan disease; carpal tunnel syndrome; causalgia; central pain syndrome; central pontine myelinolysis; cephalic disorder; cerebral aneurysm; cerebral arteriosclerosis; cerebral atrophy; cerebral gigantism; cerebral palsy; Charcot-Marie-Tooth disease; chemotherapy-induced neuropathy and neuropathic pain; Chiari malformation; chorea; chronic inflammatory demyelinating polyneuropathy; chronic pain; chronic regional pain syndrome; Coffin Lowry syndrome; coma, including persistent vegetative state; congenital facial diplegia; corticobasal degeneration; cranial arteritis; craniosynostosis; Creutzfeldt-Jakob disease; cumulative trauma disorders; Cushing's syndrome; cytomegalic inclusion body disease; cytomegalovirus infection; dancing eyes-dancing feet syndrome; Dandy-Walker syndrome; Dawson disease; De Morsier's syndrome; Dejerine-Klumke palsy; dementia; dermatomyositis; diabetic neuropathy; diffuse sclerosis; dysautonomia; dysgraphia; dyslexia; dystonias; early infantile epileptic encephalopathy; empty sella syndrome; encephalitis; encephaloceles; encephalotrigeminal angiomatosis; epilepsy; Erb's palsy; essential tremor; Fabry's disease; Fahr's syndrome; fainting; familial spastic paralysis; febrile seizures; Fisher syndrome; Friedreich's ataxia; fronto-temporal dementia and other “tauopathies”; Gaucher's disease; Gerstmann's syndrome; giant cell arteritis; giant cell inclusion disease; globoid cell leukodystrophy; Guillain-Barre syndrome; HTLV-1-associated myelopathy; Hallervorden-Spatz disease; head injury; headache; hemifacial spasm; hereditary spastic paraplegia; heredopathia atactica polyneuritiformis; herpes zoster oticus; herpes zoster; Hirayama syndrome; HIV-associated dementia and neuropathy (also neurological manifestations of AIDS); holoprosencephaly; Huntington's disease and other polyglutamine repeat diseases; hydranencephaly; hydrocephalus; hypercortisolism; hypoxia; immune-mediated encephalomyelitis; inclusion body myositis; incontinentia pigmenti; infantile phytanic acid storage disease; infantile refsum disease; infantile spasms; inflammatory myopathy; intracranial cyst; intracranial hypertension; Joubert syndrome; Kearns-Sayre syndrome; Kennedy disease Kinsbourne syndrome; Klippel Feil syndrome; Krabbe disease; Kugelberg-Welander disease; kuru; Lafora disease; Lambert-Eaton myasthenic syndrome; Landau-Kleffner syndrome; lateral medullary (Wallenberg) syndrome; learning disabilities; Leigh's disease; Lennox-Gustaut syndrome; Lesch-Nyhan syndrome; leukodystrophy; Lewy body dementia; Lissencephaly; locked-in syndrome; Lou Gehrig's disease (i.e., motor neuron disease or amyotrophic lateral sclerosis); lumbar disc disease; Lyme disease-neurological sequelae; Machado-Joseph disease; macrencephaly; megalencephaly; Melkersson-Rosenthal syndrome; Menieres disease; meningitis; Menkes disease; metachromatic leukodystrophy; microcephaly; migraine; Miller Fisher syndrome; mini-strokes; mitochondrial myopathies; Mobius syndrome; monomelic amyotrophy; motor neuron disease; Moyamoya disease; mucopolysaccharidoses; milti-infarct dementia; multifocal motor neuropathy; multiple sclerosis and other demyelinating disorders; multiple system atrophy with postural hypotension; p muscular dystrophy; myasthenia gravis; myelinoclastic diffuse sclerosis; myoclonic encephalopathy of infants; myoclonus; myopathy; myotonia congenital; narcolepsy; neurofibromatosis; neuroleptic malignant syndrome; neurological manifestations of AIDS; neurological sequelae of lupus; neuromyotonia; neuronal ceroid lipofuscinosis; neuronal migration disorders; Niemann-Pick disease; O'Sullivan-McLeod syndrome; occipital neuralgia; occult spinal dysraphism sequence; Ohtahara syndrome; olivopontocerebellar atrophy; opsoclonus myoclonus; optic neuritis; orthostatic hypotension; overuse syndrome; paresthesia; Parkinson's disease; paramyotonia congenital; paraneoplastic diseases; paroxysmal attacks; Parry Romberg syndrome; Pelizaeus-Merzbacher disease; periodic paralyses; peripheral neuropathy; painful neuropathy and neuropathic pain; persistent vegetative state; pervasive developmental disorders; photic sneeze reflex; phytanic acid storage disease; Pick's disease; pinched nerve; pituitary tumors; polymyositis; porencephaly; post-polio syndrome; postherpetic neuralgia; postinfectious encephalomyelitis; postural hypotension; Prader-Willi syndrome; primary lateral sclerosis; prion diseases; progressive hemifacial atrophy; progressive multifocal leukoencephalopathy; progressive sclerosing poliodystrophy; progressive supranuclear palsy; pseudotumor cerebri; Ramsay-Hunt syndrome (types I and II); Rasmussen's encephalitis; reflex sympathetic dystrophy syndrome; Refsum disease; repetitive motion disorders; repetitive stress injuries; restless legs syndrome; retrovirus-associated myelopathy; Rett syndrome; Reye's syndrome; Saint Vitus dance; Sandhoff disease; Schilder's disease; schizencephaly; septo-optic dysplasia; shaken baby syndrome; shingles; Shy-Drager syndrome; Sjögren's syndrome; sleep apnea; Soto's syndrome; spasticity; spina bifida; spinal cord injury; spinal cord tumors; spinal muscular atrophy; Stiff-Person syndrome; stroke; Sturge-Weber syndrome; subacute sclerosing panencephalitis; subcortical arteriosclerotic encephalopathy; Sydenham chorea; syncope; syringomyelia; tardive dyskinesia; Tay-Sachs disease; temporal arteritis; tethered spinal cord syndrome; Thomsen disease; thoracic outlet syndrome; Tic Douloureux; Todd's paralysis; Tourette syndrome; transient ischemic attack; transmissible spongiform encephalopathies; transverse myelitis; traumatic brain injury; tremor; trigeminal neuralgia; tropical spastic paraparesis; tuberous sclerosis; vascular dementia (multi-infarct dementia); vasculitis including temporal arteritis; Von Hippel-Lindau disease; Wallenberg's syndrome; Werdnig-Hoffman disease; West syndrome; whiplash; Williams syndrome; Wildon's disease; amyotrophe lateral sclerosis and Zellweger syndrome.
In some embodiments, the condition, disease or disorder is STING-associated conditions, e.g., type I interferonopathies (e.g., STING-associated vasculopathy with onset in infancy (SAVI)), Aicardi-Goutieres Syndrome (AGS), genetic forms of lupus, and inflammation-associated disorders such as systemic lupus erythematosus, and rheumatoid arthritis. In certain embodiments, the condition, disease or disorder is an autoimmune disease (e.g., a cytosolic DNA-triggered autoinflammatory disease). Non-limiting examples include rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases (IBDs) comprising Crohn disease (CD) and ulcerative colitis (UC), which are chronic inflammatory conditions with polygenic susceptibility. In certain embodiments, the condition is an inflammatory bowel disease. In certain embodiments, the condition is Crohn's disease, autoimmune colitis, iatrogenic autoimmune colitis, ulcerative colitis, colitis induced by one or more chemotherapeutic agents, colitis induced by treatment with adoptive cell therapy, colitis associated by one or more alloimmune diseases (such as graft-vs-host disease, e.g., acute graft vs. host disease and chronic graft vs. host disease), radiation enteritis, collagenous colitis, lymphocytic colitis, microscopic colitis, and radiation enteritis. In certain of these embodiments, the condition is alloimmune disease (such as graft-vs-host disease, e.g., acute graft vs. host disease and chronic graft vs. host disease), celiac disease, irritable bowel syndrome, rheumatoid arthritis, lupus, scleroderma, psoriasis, cutaneous T-cell lymphoma, uveitis, and mucositis (e.g., oral mucositis, esophageal mucositis or intestinal mucositis).
In some embodiments, modulation of the immune system by STING provides for the treatment of diseases, including diseases caused by foreign agents. Exemplary infections by foreign agents which may be treated and/or prevented by the method of the present invention include an infection by a bacterium (e.g., a Gram-positive or Gram-negative bacterium), an infection by a fungus, an infection by a parasite, and an infection by a virus. In one embodiment of the present invention, the infection is a bacterial infection (e.g., infection by E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella spp., Staphylococcus aureus, Streptococcus spp., or vancomycin-resistant enterococcus), or sepsis. In another embodiment, the infection is a fungal infection (e.g. infection by a mould, a yeast, or a higher fungus). In still another embodiment, the infection is a parasitic infection (e.g., infection by a single-celled or multicellular parasite, including Giardia duodenalis, Cryptosporidium parvum, Cyclospora cayetanensis, and Toxoplasma gondiz). In yet another embodiment, the infection is a viral infection (e.g., infection by a virus associated with AIDS, avian flu, chickenpox, cold sores, common cold, gastroenteritis, glandular fever, influenza, measles, mumps, pharyngitis, pneumonia, rubella, SARS, and lower or upper respiratory tract infection (e.g., respiratory syncytial virus)).
In some embodiments, the condition, disease or disorder is hepatits B (see, e.g., WO 2015/061294).
In some embodiments, the condition, disease or disorder is selected from cardiovascular diseases (including e.g., myocardial infarction).
In some embodiments, the condition, disease or disorder is age-related macular degeneration.
In some embodiments, the condition, disease or disorder is mucositis, also known as stomatitits, which can occur as a result of chemotherapy or radiation therapy, either alone or in combination as well as damage caused by exposure to radiation outside of the context of radiation therapy.
In some embodiments, the condition, disease or disorder is uveitis, which is inflammation of the uvea (e.g., anterior uveitis, e.g., iridocyclitis or iritis; intermediate uveitis (also known as pars planitis); posterior uveitis; or chorioretinitis, e.g., pan-uveitis).
In some embodiments, the condition, disease or disorder is selected from the group consisting of a cancer, a neurological disorder, an autoimmune disease, hepatitis B, uvetitis, a cardiovascular disease, age-related macular degeneration, and mucositis.
Still other examples can include those indications discussed herein and below in contemplated combination therapy regimens.
Combination Therapy
This disclosure contemplates both monotherapy regimens as well as combination therapy regimens.
In some embodiments, the methods described herein can further include administering one or more additional therapies (e.g., one or more additional therapeutic agents and/or one or more therapeutic regimens) in combination with administration of the compounds described herein.
In certain embodiments, the methods described herein can further include administering one or more additional cancer therapies.
The one or more additional cancer therapies can include, without limitation, surgery, radiotherapy, chemotherapy, toxin therapy, immunotherapy, cryotherapy, cancer vaccines (e.g., HIPV vaccine, hepatitis B vaccine, Oncophage, Provenge) and gene therapy, as well as combinations thereof. Immunotherapy, including, without limitation, adoptive cell therapy, the derivation of stem cells and/or dendritic cells, blood transfusions, lavages, and/or other treatments, including, without limitation, freezing a tumor.
In some embodiments, the one or more additional cancer therapies is chemotherapy, which can include administering one or more additional chemotherapeutic agents.
In certain embodiments, the additional chemotherapeutic agent is an immunomodulatory moiety, e.g., an immune checkpoint inhibitor. In certain of these embodiments, the immune checkpoint inhibitor targets an immune checkpoint receptor selected from the group consisting of CTLA-4, PD-1, PD-L1, PD-1-PD-L1, PD-1-PD-L2, interleukin-2 (IL-2), indoleamine 2,3-dioxygenase (IDO), IL-10, transforming growth factor-β (TGFβ), T cell immunoglobulin and mucin 3 (TIM3 or HAVCR2), Galectin 9-TIM3, Phosphatidylserine-TIM3, lymphocyte activation gene 3 protein (LAG3), MHC class II-LAG3, 4-1BB-4-1BB ligand, OX40-OX40 ligand, GITR, GITR ligand-GITR, CD27, CD70-CD27, TNFRSF25, TNFRSF25-TL1A, CD40L, CD40-CD40 ligand, HVEM-LIGHT-LTA, HVEM, HVEM-BTLA, HVEM-CD160, HVEM-LIGHT, HVEM-BTLA-CD160, CD80, CD80-PDL-1, PDL2-CD80, CD244, CD48-CD244, CD244, ICOS, ICOS-ICOS ligand, B7-H3, B7-H4, VISTA, TMIGD2, HHLA2-TMIGD2, Butyrophilins, including BTNL2, Siglec family, TIGIT and PVR family members, KIRs, ILTs and LIRs, NKG2D and NKG2A, MICA and MICB, CD244, CD28, CD86-CD28, CD86-CTLA, CD80-CD28, CD39, CD73 Adenosine-CD39-CD73, CXCR4-CXCL12, Phosphatidylserine, TIM3, Phosphatidylserine-TIM3, SIRPA-CD47, VEGF, Neuropilin, CD160, CD30, and CD155; e.g., CTLA-4 or PD1 or PD-L1). See, e.g., Postow, M. J. Clin. Oncol. 2015, 33, 1.
In certain of these embodiments, the immune checkpoint inhibitor is selected from the group consisting of: Urelumab, PF-05082566, MEDI6469, TRX518, Varlilumab, CP-870893, Pembrolizumab (PD1), Nivolumab (PD1), Atezolizumab (formerly MPDL3280A) (PDL1), MEDI4736 (PD-L1), Avelumab (PD-L1), PDR001 (PD1), BMS-986016, MGA271, Lirilumab, IPH2201, Emactuzumab, INCB024360, Galunisertib, Ulocuplumab, BKT140, Bavituximab, CC-90002, Bevacizumab, and MNRP1685A, and MGA271.
In certain embodiments, the additional chemotherapeutic agent is an alkylating agent. Alkylating agents are so named because of their ability to alkylate many nucleophilic functional groups under conditions present in cells, including, but not limited to cancer cells. In a further embodiment, an alkylating agent includes, but is not limited to, Cisplatin, carboplatin, mechlorethamine, cyclophosphamide, chlorambucil, ifosfamide and/or oxaliplatin. In an embodiment, alkylating agents can function by impairing cell function by forming covalent bonds with the amino, carboxyl, sulfhydryl, and phosphate groups in biologically important molecules or they can work by modifying a cell's DNA. In a further embodiment an alkylating agent is a synthetic, semisynthetic or derivative.
In certain embodiments, the additional chemotherapeutic agent is an anti-metabolite. Anti-metabolites masquerade as purines or pyrimidines, the building-blocks of DNA and in general, prevent these substances from becoming incorporated in to DNA during the “S” phase (of the cell cycle), stopping normal development and division. Anti-metabolites can also affect RNA synthesis. In an embodiment, an antimetabolite includes, but is not limited to azathioprine and/or mercaptopurine. In a further embodiment an anti-metabolite is a synthetic, semisynthetic or derivative.
In certain embodiments, the additional chemotherapeutic agent is a plant alkaloid and/or terpenoid. These alkaloids are derived from plants and block cell division by, in general, preventing microtubule function. In an embodiment, a plant alkaloid and/or terpenoid is a vinca alkaloid, a podophyllotoxin and/or a taxane. Vinca alkaloids, in general, bind to specific sites on tubulin, inhibiting the assembly of tubulin into microtubules, generally during the M phase of the cell cycle. In an embodiment, a vinca alkaloid is derived, without limitation, from the Madagascar periwinkle, Catharanthus roseus (formerly known as Vinca rosea). In an embodiment, a vinca alkaloid includes, without limitation, Vincristine, Vinblastine, Vinorelbine and/or Vindesine. In an embodiment, a taxane includes, but is not limited, to Taxol, Paclitaxel and/or Docetaxel. In a further embodiment a plant alkaloid or terpernoid is a synthetic, semisynthetic or derivative. In a further embodiment, a podophyllotoxin is, without limitation, an etoposide and/or teniposide. In an embodiment, a taxane is, without limitation, docetaxel and/or ortataxel. [021] In an embodiment, a cancer therapeutic is a topoisomerase. Topoisomerases are essential enzymes that maintain the topology of DNA. Inhibition of type I or type II topoisomerases interferes with both transcription and replication of DNA by upsetting proper DNA supercoiling. In a further embodiment, a topoisomerase is, without limitation, a type I topoisomerase inhibitor or a type II topoisomerase inhibitor. In an embodiment a type I topoisomerase inhibitor is, without limitation, a camptothecin. In another embodiment, a camptothecin is, without limitation, exatecan, irinotecan, lurtotecan, topotecan, BNP 1350, CKD 602, DB 67 (AR67) and/or ST 1481. In an embodiment, a type II topoisomerase inhibitor is, without limitation, epipodophyllotoxin. In a further embodiment an epipodophyllotoxin is, without limitation, an amsacrine, etoposid, etoposide phosphate and/or teniposide. In a further embodiment a topoisomerase is a synthetic, semisynthetic or derivative, including those found in nature such as, without limitation, epipodophyllotoxins, substances naturally occurring in the root of American Mayapple (Podophyllum peltatum).
In certain embodiments, the additional chemotherapeutic agent is a stilbenoid. In a further embodiment, a stilbenoid includes, but is not limited to, Resveratrol, Piceatannol, Pinosylvin, Pterostilbene, Alpha-Viniferin, Ampelopsin A, Ampelopsin E, Diptoindonesin C, Diptoindonesin F, Epsilon-Vinferin, Flexuosol A, Gnetin H, Hemsleyanol D, Hopeaphenol, Trans-Diptoindonesin B, Astringin, Piceid and Diptoindonesin A. In a further embodiment a stilbenoid is a synthetic, semisynthetic or derivative.
In certain embodiments, the additional chemotherapeutic agent is a cytotoxic antibiotic. In an embodiment, a cytotoxic antibiotic is, without limitation, an actinomycin, an anthracenedione, an anthracycline, thalidomide, dichloroacetic acid, nicotinic acid, 2-deoxyglucose and/or chlofazimine. In an embodiment, an actinomycin is, without limitation, actinomycin D, bacitracin, colistin (polymyxin E) and/or polymyxin B. In another embodiment, an antracenedione is, without limitation, mitoxantrone and/or pixantrone. In a further embodiment, an anthracycline is, without limitation, bleomycin, doxorubicin (Adriamycin), daunorubicin (daunomycin), epirubicin, idarubicin, mitomycin, plicamycin and/or valrubicin. In a further embodiment a cytotoxic antibiotic is a synthetic, semisynthetic or derivative.
In certain embodiments, the additional chemotherapeutic agent is selected from endostatin, angiogenin, angiostatin, chemokines, angioarrestin, angiostatin (plasminogen fragment), basement-membrane collagen-derived anti-angiogenic factors (tumstatin, canstatin, or arrestin), anti-angiogenic antithrombin III, signal transduction inhibitors, cartilage-derived inhibitor (CDI), CD59 complement fragment, fibronectin fragment, gro-beta, heparinases, heparin hexasaccharide fragment, human chorionic gonadotropin (hCG), interferon alpha/beta/gamma, interferon inducible protein (IP-10), interleukin-12, kringle 5 (plasminogen fragment), metalloproteinase inhibitors (TIMPs), 2-methoxyestradiol, placental ribonuclease inhibitor, plasminogen activator inhibitor, platelet factor-4 (PF4), prolactin 16 kD fragment, proliferin-related protein (PRP), various retinoids, tetrahydrocortisol-S, thrombospondin-1 (TSP-1), transforming growth factor-beta (TGF-3), vasculostatin, vasostatin (calreticulin fragment) and the like.
In certain embodiments, the additional chemotherapeutic agent is selected from abiraterone acetate, altretamine, anhydrovinblastine, auristatin, bexarotene, bicalutamide, BMS 184476, 2,3,4,5,6-pentafluoro-N-(3-fluoro-4-methoxyphenyl)benzene sulfonamide, bleomycin, N,N-dimethyl-L-valyl-L-valyl-N-methyl-L-valyl-L-proly-1-Lproline-t-butylamide, cachectin, cemadotin, chlorambucil, cyclophosphamide, 3′,4′-didehydro-4′-deoxy-8′-norvin-caleukoblastine, docetaxol, doxetaxel, cyclophosphamide, carboplatin, carmustine, cisplatin, cryptophycin, cyclophosphamide, cytarabine, dacarbazine (DTIC), dactinomycin, daunorubicin, decitabine dolastatin, doxorubicin (adriamycin), etoposide, 5-fluorouracil, finasteride, flutamide, hydroxyurea and hydroxyureataxanes, ifosfamide, liarozole, lonidamine, lomustine (CCNU), MDV3100, mechlorethamine (nitrogen mustard), melphalan, mivobulin isethionate, rhizoxin, sertenef, streptozocin, mitomycin, methotrexate, taxanes, nilutamide, onapristone, paclitaxel, prednimustine, procarbazine, RPR109881, stramustine phosphate, tamoxifen, tasonermin, taxol, tretinoin, vinblastine, vincristine, vindesine sulfate, and vinflunine.
In certain embodiments, the additional chemotherapeutic agent is platinum, cisplatin, carboplatin, oxaliplatin, mechlorethamine, cyclophosphamide, chlorambucil, azathioprine, mercaptopurine, vincristine, vinblastine, vinorelbine, vindesine, etoposide and teniposide, paclitaxel, docetaxel, irinotecan, topotecan, amsacrine, etoposide, etoposide phosphate, teniposide, 5-fluorouracil, leucovorin, methotrexate, gemcitabine, taxane, leucovorin, mitomycin C, tegafur-uracil, idarubicin, fludarabine, mitoxantrone, ifosfamide and doxorubicin. Additional agents include inhibitors of mTOR (mammalian target of rapamycin), including but not limited to rapamycin, everolimus, temsirolimus and deforolimus.
In still other embodiments, the additional chemotherapeutic agent can be selected from those delineated in U.S. Pat. No. 7,927,613, which is incorporated herein by reference in its entirety.
In some embodiments, the additional therapeutic agent and/or regimen are those that can be used for treating other STING-associated conditions, e.g., type I interferonopathies (e.g., STING-associated vasculopathy with onset in infancy (SAVI)), Aicardi-Goutieres Syndrome (AGS), genetic forms of lupus, and inflammation-associated disorders such as systemic lupus erythematosus, and rheumatoid arthritis and the like.
Non-limiting examples of additional therapeutic agents and/or regimens for treating rheumatoid arthritis include non-steroidal anti-inflammatory drugs (NSAIDs; e.g., ibuprofen and naproxen), corticosteroids (e.g, prednisone), disease-modifying antirheumatic drugs (DMARDs; e.g., methotrexate (Trexall®, Otrexup®, Rasuvo®, Rheumatrex®), leflunomide (Arava®), hydroxychloroquine (Plaquenil), PF-06650833, iguratimod, tofacitinib (Xeljanz®), ABBV-599, evobrutinib, and sulfasalazine (Azulfidine®)), and biologics (e.g., abatacept (Orencia®), adalimumab (Humira®), anakinra (Kineret®), certolizumab (Cimzia®), etanercept (Enbrel®), golimumab (Simponi®), infliximab (Remicade®), rituximab (Rituxan®), tocilizumab (Actemra®), vobarilizumab, sarilumab (Kevzara®), secukinumab, ABP 501, CHS-0214, ABC-3373, and tocilizumab (ACTEMRA®)).
Non-limiting examples of additional therapeutic agents and/or regimens for treating lupus include steroids, topical immunomodulators (e.g., tacrolimus ointment (Protopic®) and pimecrolimus cream (Elidel®)), thalidomide (Thalomid®), non-steroidal anti-inflammatory drugs (NSAIDs; e.g., ibuprofen and naproxen), antimalarial drugs (e.g., Hydroxychloroquine (Plaquenil)), corticosteroids (e.g, prednisone) and immunomodulators (e.g., evobrutinib, iberdomide, voclosporin, cenerimod, azathioprine (Imuran®), cyclophosphamide (Cytoxan®, Neosar®, Endoxan®), and cyclosporine (Neoral, Sandimmune®, Gengraf®), and mycophenolate mofetil) baricitinb, iguratimod, filogotinib, GS-9876, rapamycin, and PF-06650833), and biologics (e.g., belimumab (Benlysta®), anifrolumab, prezalumab, MEDIO700, obinutuzumab, vobarilizumab, lulizumab, atacicept, PF-06823859, and lupizor, rituximab, BT063, BI655064, B1II1B059, aldesleukin (Proleukin®), dapirolizumab, edratide, IFN—α-kinoid, OMS721, RC18, RSLV-132, theralizumab, XmAb5871, and ustekinumab (Stelara®)). For example, non-limiting treatments for systemic lupus erythematosus include non-steroidal anti-inflammatory drugs (NSAIDs; e.g., ibuprofen and naproxen), antimalarial drugs (e.g., Hydroxychloroquine (Plaquenil)), corticosteroids (e.g, prednisone) and immunomodulators (e.g., iberdomide, voclosporin, azathioprine (Imuran®), cyclophosphamide (Cytoxan®, Neosar®, Endoxan®), and cyclosporine (Neoral, Sandimmune®, Gengraf®), and mycophenolate mofetil, baricitinb, filogotinib, and PF-06650833), and biologics (e.g., belimumab (Benlysta®), anifrolumab, prezalumab, MEDI0700, vobarilizumab, lulizumab, atacicept, PF-06823859, lupizor, rituximab, BT063, BI655064, BIIB059, aldesleukin (Proleukin®), dapirolizumab, edratide, IFN-α-kinoid, RC18, RSLV-132, theralizumab, XmAb5871, and ustekinumab (Stelara®)). As another example, non-limiting examples of treatments for cutaneous lupus include steroids, immunomodulators (e.g., tacrolimus ointment (Protopic®) and pimecrolimus cream (Elidel®)), GS-9876, filogotinib, and thalidomide (Thalomid®). Agents and regimens for treating drug-induced and/or neonatal lupus can also be administered.
Non-limiting examples of additional therapeutic agents and/or regimens for treating STING-associated vasculopathy with onset in infancy (SAVI) include JAK inhibitors (e.g., tofacitinib, ruxolitinib, filgotinib, and baricitinib).
Non-limiting examples of additional therapeutic agents and/or regimens for treating Aicardi-Goutières Syndrome (AGS) include physiotherapy, treatment for respiratory complications, anticonvulsant therapies for seizures, tube-feeding, nucleoside reverse transcriptase inhibitors (e.g., emtricitabine (e.g., Emtriva®), tenofovir (e.g., Viread®), emtricitabine/tenofovir (e.g., Truvada®), zidovudine, lamivudine, and abacavir), and JAK inhibitors (e.g., tofacitinib, ruxolitinib, filgotinib, and baricitinib).
Non-limiting examples of additional therapeutic agents and/or regimens for treating IBDs include 6-mercaptopurine, AbGn-168H, ABX464, ABT-494, adalimumab, AJM300, alicaforsen, AMG139, anrukinzumab, apremilast, ATR-107 (PF0530900), autologous CD34-selected peripheral blood stem cells transplant, azathioprine, bertilimumab, BI 655066, BMS-936557, certolizumab pegol (Cimzia®), cobitolimod, corticosteroids (e.g., prednisone, Methylprednisolone, prednisone), CP-690,550, CT-P13, cyclosporine, DIMS0150, E6007, E6011, etrasimod, etrolizumab, fecal microbial transplantation, figlotinib, fingolimod, firategrast (SB-683699) (formerly T-0047), GED0301, GLPG0634, GLPG0974, guselkumab, golimumab, GSK1399686, HMPL-004 (Andrographis paniculata extract), IMU-838, infliximab, Interleukin 2 (IL-2), Janus kinase (JAK) inhibitors, laquinimod, masitinib (AB1010), matrix metalloproteinase 9 (MMP 9) inhibitors (e.g., GS-5745), MEDI2070, mesalamine, methotrexate, mirikizumab (LY3074828), natalizumab, NNC 0142-0000-0002, NNC0114-0006, ozanimod, peficitinib (JNJ-54781532), PF-00547659, PF-04236921, PF-06687234, QAX576, RHB-104, rifaximin, risankizumab, RPC1063, SB012, SHP647, sulfasalazine, TD-1473, thalidomide, tildrakizumab (MK 3222), TJ301, TNF-Kinoid®, tofacitinib, tralokinumab, TRK-170, upadacitinib, ustekinumab, UTTR1147A, V565, vatelizumab, VB-201, vedolizumab, and vidofludimus.
Non-limiting examples of additional therapeutic agents and/or regimens for treating irritable bowel syndrome include alosetron, bile acid sequesterants (e.g., cholestyramine, colestipol, colesevelam), chloride channel activators (e.g., lubiprostone), coated peppermint oil capsules, desipramine, dicyclomine, ebastine, eluxadoline, farnesoid X receptor agonist (e.g., obeticholic acid), fecal microbiota transplantation, fluoxetine, gabapentin, guanylate cyclase-C agonists (e.g., linaclotide, plecanatide), ibodutant, imipramine, JCM-16021, loperamide, lubiprostone, nortriptyline, ondansetron, opioids, paroxetine, pinaverium, polyethylene glycol, pregabalin, probiotics, ramosetron, rifaximin, and tanpanor.
Non-limiting examples of additional therapeutic agents and/or regimens for treating scleroderma include non-steroidal anti-inflammatory drugs (NSAIDs; e.g., ibuprofen and naproxen), corticosteroids (e.g, prednisone), immunomodulators (e.g., azathioprine, methotrexate (Trexall®, Otrexup®, Rasuvo®, Rheumatrex®), cyclophosphamide (Cytoxan®, Neosar®, Endoxan®), and cyclosporine (Neoral®, Sandimmune®, Gengraf®), antithymocyte globulin, mycophenolate mofetil, intravenous immunoglobulin, rituximab, sirolimus, and alefacept), calcium channel blockers (e.g., nifedipine), alpha blockers, serotonin receptor antagonists, angiotensin II receptor inhibitors, statins, local nitrates, iloprost, phosphodiesterase 5 inhibitors (e.g., sildenafil), bosentan, tetracycline antibiotics, endothelin receptor antagonists, prostanoids, and tyrosine kinase inhibitors (e.g., imatinib, nilotinib and dasatinib).
Non-limiting examples of additional therapeutic agents and/or regimens for treating Crohn's Disease (CD) include adalimumab, autologous CD34-selected peripheral blood stem cells transplant, 6-mercaptopurine, azathioprine, certolizumab pegol (Cimzia®), corticosteroids (e.g., prednisone), etrolizumab, E6011, fecal microbial transplantation, figlotinib, guselkumab, infliximab, IL-2, JAK inhibitors, matrix metalloproteinase 9 (MMP 9) inhibitors (e.g., GS-5745), MEDI2070, mesalamine, methotrexate, natalizumab, ozanimod, RHB-104, rifaximin, risankizumab, SHP647, sulfasalazine, thalidomide, upadacitinib, V565, and vedolizumab.
Non-limiting examples of additional therapeutic agents and/or regimens for treating UC include AbGn-168H, ABT-494, ABX464, apremilast, PF-00547659, PF-06687234, 6-mercaptopurine, adalimumab, azathioprine, bertilimumab, brazikumab (MEDI2070), cobitolimod, certolizumab pegol (Cimzia®), CP-690,550, corticosteroids (e.g., multimax budesonide, Methylprednisolone), cyclosporine, E6007, etrasimod, etrolizumab, fecal microbial transplantation, figlotinib, guselkumab, golimumab, IL-2, IMU-838, infliximab, matrix metalloproteinase 9 (MMP9) inhibitors (e.g., GS-5745), mesalamine, mesalamine, mirikizumab (LY3074828), RPC1063, risankizumab (BI 6555066), SHP647, sulfasalazine, TD-1473, TJ301, tildrakizumab (MK 3222), tofacitinib, tofacitinib, ustekinumab, UTTR1147A, and vedolizumab.
Non-limiting examples of additional therapeutic agents and/or regimens for treating autoimmune colitis include corticosteroids (e.g., budesonide, prednisone, prednisolone, Beclometasone dipropionate), diphenoxylate/atropine, infliximab, loperamide, mesalamine, TIP60 inhibitors (see, e.g., U.S. Patent Application Publication No. 2012/0202848), and vedolizumab.
Non-limiting examples of additional therapeutic agents and/or regimens for treating iatrogenic autoimmune colitis include corticosteroids (e.g., budesonide, prednisone, prednisolone, Beclometasone dipropionate), diphenoxylate/atropine, infliximab, loperamide, TIP60 inhibitors (see, e.g., U.S. Patent Application Publication No. 2012/0202848), and vedolizumab.
Non-limiting examples of additional therapeutic agents and/or regimens for treating colitis induced by one or more chemotherapeutics agents include corticosteroids (e.g., budesonide, prednisone, prednisolone, beclometasone dipropionate), diphenoxylate/atropine, infliximab, loperamide, mesalamine, TIP60 inhibitors (see, e.g., U.S. Patent Application Publication No. 2012/0202848), and vedolizumab.
Non-limiting examples of additional therapeutic agents and/or regimens for treating colitis induced by treatment with adoptive cell therapy include corticosteroids (e.g., budesonide, prednisone, prednisolone, beclometasone dipropionate), diphenoxylate/atropine, infliximab, loperamide, TIP60 inhibitors (see, e.g., U.S. Patent Application Publication No. 2012/0202848), and vedolizumab.
Non-limiting examples of additional therapeutic agents and/or regimens for treating colitis associated with one or more alloimmune diseases include corticosteroids (e.g., budesonide, prednisone, prednisolone, beclometasone dipropionate), sulfasalazine, and eicopentaenoic acid.
Non-limiting examples of additional therapeutic agents and/or regimens for treating radaiation enteritis include teduglutide, amifostine, angiotensin-converting enzyme (ACE) inhibitors (e.g., benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril, and trandolapril), probiotics, selenium supplementation, statins (e.g., atorvastatin, fluvastatin, lovastatin, pravastatin, rosuvastatin, simvastatin, and pitavastatin), sucralfate, and vitamin E.
Non-limiting examples of additional therapeutic agents and/or regimens for treating collagenous colitis include 6-mercaptopurine, azathaioprine, bismuth subsalicate, Boswellia serrata extract, cholestyramine, colestipol, corticosteroids (e.g., budesonide, prednisone, prednisolone, beclometasone dipropionate), loperamide, mesalamine, methotrexate, probiotics, and sulfasalazine.
Non-limiting examples of additional therapeutic agents and/or regimens for treating lyphocytic colitis include 6-mercaptopurine, azathioprine, bismuth subsalicylate, cholestyramine, colestipol, corticosteroids (e.g., budesonide, prednisone, prednisolone, beclometasone dipropionate), loperamide, mesalamine, methotrexate, and sulfasalazine.
Non-limiting examples of additional therapeutic agents and/or regimens for treating microscopic colitis include 6-mercaptopurine, azathioprine, bismuth subsalicylate, Boswellia serrata extract, cholestyramine, colestipol, corticosteroids (e.g., budesonide, prednisone, prednisolone, beclometasone dipropionate), fecal microbial transplantation, loperamide, mesalamine, methotrexate, probiotics, and sulfasalazine.
Non-limiting examples of additional therapeutic agents and/or regimens for treating alloimmune disease include intrauterine platelet transfusions, intravenous immunoglobin, maternal steroids, abatacept, alemtuzumab, alphal-antitrypsin, AMG592, antithymocyte globulin, barcitinib, basiliximab, bortezomib, brentuximab, cannabidiol, corticosteroids (e.g., methylprednisone, prednisone), cyclosporine, dacilzumab, defribrotide, denileukin diftitox, glasdegib, ibrutinib, IL-2, infliximab, itacitinib, LBH589, maraviroc, mycophenolate mofetil, natalizumab, neihulizumab, pentostatin, pevonedistat, photobiomodulation, photopheresis, ruxolitinib, sirolimus, sonidegib, tacrolimus, tocilizumab, and vismodegib.
Non-limiting examples of additional therapeutic agents and/or regimens for treating multiple sclerosis (MS) include alemtuzumab (Lemtrada®), ALKS 8700, amiloride, ATX-MS-1467, azathioprine, baclofen (Lioresal®), beta interferons (e.g., IFN-β-1a, IFN-β-1b), cladribine, corticosteroids (e.g., methylprednisolone), daclizumab, dimethyl fumarate (Tecfidera®), fingolimod (Gilenya®), fluoxetine, glatiramer acetate (Copaxone®), hydroxychloroquine, ibudilast, idebenone, laquinimod, lipoic acid, losartan, masitinib, MD1003 (biotin), mitoxantrone, montelukast, natalizumab (Tysabri®), NeuroVax™, ocrelizumab, ofatumumab, pioglitazone, and RPC1063.
Non-limiting examples of additional therapeutic agents and/or regimens for treating graft-vs-host disease include abatacept, alemtuzumab, alphal-antitrypsin, AMG592, antithymocyte globulin, barcitinib, basiliximab, bortezomib, brentuximab, cannabidiol, corticosteroids (e.g., methylprednisone, prednisone), cyclosporine, dacilzumab, defribrotide, denileukin diftitox, glasdegib, ibrutinib, IL-2, imatinib, infliximab, itacitinib, LBH589, maraviroc, mycophenolate mofetil, natalizumab, neihulizumab, pentostatin, pevonedistat, photobiomodulation, photopheresis, ruxolitinib, sirolimus, sonidegib, tacrolimus, tocilizumab, and vismodegib.
Non-limiting examples of additional therapeutic agents and/or regimens for treating acute graft-vs-host disease include alemtuzumab, alpha-1 antitrypsin, antithymocyte globulin, basiliximab, brentuximab, corticosteroids (e.g., methylprednisone, prednisone), cyclosporine, dacilzumab, defribrotide, denileukin diftitox, ibrutinib, infliximab, itacitinib, LBH589, mycophenolate mofetil, natalizumab, neihulizumab, pentostatin, photopheresis, ruxolitinib, sirolimus, tacrolimus, and tocilizumab.
Non-limiting examples of additional therapeutic agents and/or regimens for treating chronic graft vs. host disease include abatacept, alemtuzumab, AMG592, antithymocyte globulin, basiliximab, bortezomib, corticosteroids (e.g., methylprednisone, prednisone), cyclosporine, dacilzumab, denileukin diftitox, glasdegib, ibrutinib, IL-2, imatinib, infliximab, mycophenolate mofetil, pentostatin, photobiomodulation, photopheresis, ruxolitinib, sirolimus, sonidegib, tacrolimus, tocilizumab, and vismodegib.
Non-limiting examples of additional therapeutic agents and/or regimens for treating celiac disease include AMG 714, AMY01, Aspergillus niger prolyl endoprotease, BL-7010, CALY-002, GBR 830, Hu-Mik-Beta-1, IMGX003, KumaMax, Larazotide Acetate, Nexvan2®, pancrelipase, TIMP-GLIA, vedolizumab, and ZED1227.
Non-limiting examples of additional therapeutic agents and/or regimens for treating psoriasis include topical corticosteroids, topical crisaborole/AN2728, topical SNA-120, topical SAN021, topical tapinarof, topical tocafinib, topical IDP-118, topical M518101, topical calcipotriene and betamethasone dipropionate (e.g., MC2-01 cream and Taclonex®), topical P-3073, topical LEO 90100 (Enstilar®), topical betamethasone dipropriate (Sernivo®), halobetasol propionate (Ultravate®), vitamin D analogues (e.g., calcipotriene (Dovonex®) and calcitriol (Vectical®)), anthralin (e.g., Dritho-Scalp® and Dritho-Crème®), topical retinoids (e.g., tazarotene (e.g., Tazorac® and Avage®)), calcineurin inhibitors (e.g., tacrolimus (Prograf®) and pimecrolimus (Elidel®)), salicylic acid, coal tar, moisturizers, phototherapy (e.g., exposure to sunlight, UVB phototherapy, narrow band UVB phototherapy, Goeckerman therapy, psoralen plus ultraviolet A (PUVA) therapy, and excimer laser), retinoids (e.g., acitretin (Soriatane®)), methotrexate (Trexall®, Otrexup®, Rasuvo®, Rheumatrex®), Apo805K1, baricitinib, FP187, KD025, prurisol, VTP-43742, XP23829, ZPL-389, CF101 (piclidenoson), LAS41008, VPD-737 (serlopitant), upadacitinib (ABT-494), aprmilast, tofacitibin, cyclosporine (Neoral®, Sandimmune®, Gengraf®), biologics (e.g., etanercept (Enbrel®), entanercept-szzs (Elrezi®), infliximab (Remicade®), adalimumab (Humira®), adalimumab-adbm (Cyltezo®), ustekinumab (Stelara®), golimumab (Simponi®), apremilast (Otezla®), secukinumab (Cosentyx®), certolixumab pegol, secukinumab, tildrakizumab-asmn, infliximab-dyyb, abatacept, ixekizumab (Taltz®), ABP 710, BCD-057, BI695501, bimekizumab (UCB4940), CHS-1420, GP2017, guselkumab (CNTO 1959), HD203, M923, MSB11022, Mirikizumab (LY3074828), PF-06410293, PF-06438179, risankizumab (BI655066), SB2, SB4, SB5, siliq (brodalumab), namilumab (MT203, tildrakizumab (MK-3222), and ixekizumab (Taltz®)), thioguanine, and hydroxyurea (e.g., Droxia® and Hydrea®).
Non-limiting examples of additional therapeutic agents and/or regimens for treating cutaneous T-cell lymphoma include phototherapy (e.g., exposure to sunlight, UVB phototherapy, narrow band UVB phototherapy, Goeckerman therapy, psoralen plus ultraviolet A (PUVA) therapy, and excimer laser), extracorporeal photopheresis, radiation therapy (e.g., spot radiation and total skin body electron beam therapy), stem cell transplant, corticosteroids, imiquimod, bexarotene gel, topical bis-chloroethyl-nitrourea, mechlorethamine gel, vorinostat (Zolinza®), romidepsin (Istodax®), pralatrexate (Folotyn®) biologics (e.g., alemtuzumab (Campath®), brentuximab vedotin (SGN-35), mogamulizumab, and IPH4102).
Non-limiting examples of additional therapeutic agents and/or regimens for treating uveitis include corticosteroids (e.g., intravitreal triamcinolone acetonide injectable suspensions), antibiotics, antivirals (e.g., acyclovir), dexamethasone, immunomodulators (e.g., tacrolimus, leflunomide, cyclophosphamide (Cytoxan®, Neosar®, Endoxan®), and cyclosporine (Neoral®, Sandimmune®, Gengraf®), chlorambucil, azathioprine, methotrexate, and mycophenolate mofetil), biologics (e.g., infliximab (Remicade®), adalimumab (Humira®), etanercept (Enbrel®), golimumab (Simponi®), certolizumab (Cimzia®), rituximab (Rituxan®), abatacept (Orencia®), basiliximab (Simulect®), anakinra (Kineret®), canakinumab (Ilaris®), gevokixumab (XOMA052), tocilizumab (Actemra®), alemtuzumab (Campath®), efalizumab (Raptiva®), LFG316, sirolimus (Santen®), abatacept, sarilumab (Kevzara®), and daclizumab (Zenapax®)), cytotoxic drugs, surgical implant (e.g., fluocinolone insert), and vitrectomy.
on-limiting examples of additional therapeutic agents and/or regimens for treating mucositis include AG013, SGX942 (dusquetide), amifostine (Ethyol®), cryotherapy, cepacol lonzenges, capsaicin lozenges, mucoadhesives (e.g., MuGard®) oral diphenhydramine (e.g., Benadry® elixir), oral bioadherents (e.g., polyvinylpyrrolidone-sodium hyaluronate gel (Gelclair®)), oral lubricants (e.g., Oral Balance®), caphosol, Chamomilla recutita mouthwash, edible grape plant exosome, antiseptic mouthwash (e.g., chlorhexidine gluconate (e.g., Peridex® or Periogard®), topical pain relievers (e.g., lidocaine, benzocaine, dyclonine hydrochloride, xylocaine (e.g., viscous xylocaine 2%), and Ulcerease® (0.6% phenol)), corticosteroids (e.g., prednisone), pain killers (e.g., ibuprofen, naproxen, acetaminophen, and opioids), GC4419, palifermin (keratinocyte growth factor; Kepivance®), ATL-104, clonidine lauriad, IZN—6N4, SGX942, rebamipide, nepidermin, soluble β-1,3/1,6 glucan, P276, LP-0004-09, CR-3294, ALD-518, IZN—6N4, quercetin, granules comprising Vaccinium myrtillus extract, Macleaya cordata alkaloids and Echinacea angustifolia extract (e.g., SAMITAL®), and gastrointestinal cocktail (an acid reducer such aluminum hydroxide and magnesium hydroxide (e.g., Maalox), an antifungal (e.g., nystatin), and an analgesic (e.g., hurricane liquid)). For example, non-limiting examples of treatments for oral mucositis include AG013, amifostine (Ethyol®), cryotherapy, cepacol lonzenges, mucoadhesives (e.g., MuGard®) oral diphenhydramine (e.g., Benadry® elixir), oral bioadherents (e.g., polyvinylpyrrolidone-sodium hyaluronate gel (Gelclair®)), oral lubricants (e.g., Oral Balance®), caphosol, Chamomilla recutita mouthwash, edible grape plant exosome, antiseptic mouthwash (e.g., chlorhexidine gluconate (e.g., Peridex® or Periogard®), topical pain relievers (e.g., lidocaine, benzocaine, dyclonine hydrochloride, xylocaine (e.g., viscous xylocaine 2%), and Ulcerease® (0.6% phenol)), corticosteroids (e.g., prednisone), pain killers (e.g., ibuprofen, naproxen, acetaminophen, and opioids), GC4419, palifermin (keratinocyte growth factor; Kepivance®), ATL-104, clonidine lauriad, IZN-6N4, SGX942, rebamipide, nepidermin, soluble β-1,3/1,6 glucan, P276, LP-0004-09, CR-3294, ALD-518, IZN-6N4, quercetin, and gastrointestinal cocktail (an acid reducer such aluminum hydroxide and magnesium hydroxide (e.g., Maalox), an antifungal (e.g., nystatin), and an analgesic (e.g., hurricane liquid)). As another example, non-limiting examples of treatments for esophageal mucositis include xylocaine (e.g., gel viscous Xylocaine 2%). As another example, treatments for intestinal mucositis, treatments to modify intestinal mucositis, and treatments for intestinal mucositis signs and symptoms include gastrointestinal cocktail (an acid reducer such aluminum hydroxide and magnesium hydroxide (e.g., Maalox), an antifungal (e.g., nystatin), and an analgesic (e.g., hurricane liquid)).
In certain embodiments, the second therapeutic agent or regimen is administered to the subject prior to contacting with or administering the chemical entity (e.g., about one hour prior, or about 6 hours prior, or about 12 hours prior, or about 24 hours prior, or about 48 hours prior, or about 1 week prior, or about 1 month prior).
In other embodiments, the second therapeutic agent or regimen is administered to the subject at about the same time as contacting with or administering the chemical entity.
By way of example, the second therapeutic agent or regimen and the chemical entity are provided to the subject simultaneously in the same dosage form. As another example, the second therapeutic agent or regimen and the chemical entity are provided to the subject concurrently in separate dosage forms.
In still other embodiments, the second therapeutic agent or regimen is administered to the subject after contacting with or administering the chemical entity (e.g., about one hour after, or about 6 hours after, or about 12 hours after, or about 24 hours after, or about 48 hours after, or about 1 week after, or about 1 month after).
Patient Selection
In some embodiments, the methods described herein further include the step of identifying a subject (e.g., a patient) in need of such treatment (e.g., by way of biopsy, endoscopy, or other conventional method known in the art). In certain embodiments, the STING protein can serve as a biomarker for certain types of cancer, e.g., colon cancer and prostate cancer. In other embodiments, identifying a subject can include assaying the patient's tumor microenvironment for the absence of T-cells and/or presence of exhausted T-cells, e.g., patients having one or more cold tumors. Such patients can include those that are resistant to treatment with checkpoint inhibitors. In certain embodiments, such patients can be treated with a chemical entity herein, e.g., to recruit T-cells into the tumor, and in some cases, further treated with one or more checkpoint inhibitors, e.g., once the T-cells become exhausted.
In some embodiments, the chemical entities, methods, and compositions described herein can be administered to certain treatment-resistant patient populations (e.g., patients resistant to checkpoint inhibitors; e.g., patients having one or more cold tumors, e.g., tumors lacking T-cells or exhausted T-cells).
Compound Preparation
As can be appreciated by the skilled artisan, methods of synthesizing the compounds of the formulae herein will be evident to those of ordinary skill in the art. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T. W. Greene and RGM. Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995), and subsequent editions thereof The starting materials used in preparing the compounds of the invention are known, made by known methods, or are commercially available. The skilled artisan will also recognize that conditions and reagents described herein that can be interchanged with alternative art-recognized equivalents. For example, in many reactions, triethylamine can be interchanged with other bases, such as non-nucleophilic bases (e.g. diisopropylamine, 1,8-diazabicycloundec-7-ene, 2,6-di-tert-butylpyridine, or tetrabutylphosphazene).
The skilled artisan will recognize a variety of analytical methods that can be used to characterize the compounds described herein, including, for example, 1H NMR, heteronuclear NMR, mass spectrometry, liquid chromatography, and infrared spectroscopy. The foregoing list is a subset of characterization methods available to a skilled artisan and is not intended to be limiting.
To further illustrate the foregoing, the following non-limiting, exemplary synthetic schemes are included. Variations of these examples within the scope of the claims are within the purview of one skilled in the art and are considered to fall within the scope of the invention as described, and claimed herein. The reader will recognize that the skilled artisan, provided with the present disclosure, and skill in the art is able to prepare and use the invention without exhaustive examples.
The following abbreviations have the indicated meanings:
The progress of reactions was often monitored by TLC or LC-MS. The identity of the products was often confirmed by LC-MS. The LC-MS was recorded using one of the following methods.
LCMS Method A: Kinetex C18, 4.6×30 mm, 2.6 um, 100 A, Mobile Phase: A 0.1% Formic Acid in water B: ACN. Method-T/% B-0/5, 0.5/95, 2.4/95, 2.5/5, 3.5/5 Flow rate: 1.5 mL/min, Instrument SHIMADZU 2020 LCMS
LCMS Method B: Kinetex C18, 4.6×30 mm, 2.6 um, 100 A, Mobile Phase: A 0.1% Formic Acid in water B: ACN. Method-T/% B-0/5, 0.5/95, 2.4/95, 2.5/5, 3.5/5 Flow rate: 1.5 mL/min, Instrument: Agilent 6120 Quadrupole LCMS
Prep HPLC method 1: ATLANTIS T3 OBD (250*19) mm, Sum, Mobile Phase A: 0.1% Ammonium acetate in water, Mobile Phase B: Acetonitrile (100%), Gradient: T/% B: 0/40, 10/70, Flow rate: 15 mL/min, INSTRUMENT: ADTL/EQ/AR-057
Prep HPLC Method 2: X-BRIDGE PREP OBD C18 (250*19) mm, Sum, Mobile Phase A: 0.1% Ammonium acetate in water, Mobile Phase B: Acetonitrile (100%), Gradient: T/% B: 0/30, 7/70, Flow rate: 15 mL/min, INSTRUMENT: ADTL/EQ/AR-057
Prep HPLC Method 3: X-BRIDGE PREP OBD C18 (250*19) mm, Sum, Mobile Phase A: 0.1% TFA in Water, Mobile Phase B: Acetonitrile (100%), Gradient: T/% B: 0/30, 10/65, Flow rate: 15 mL/min, INSTRUMENT: ADTL/EQ/AR-054
Prep HPLC Method 4: COLUMN: Luna Omega C-18 (150×21.2×5 m), Dilution: ACN: WATER (50:50)%+THF, Mobile Phase A: 10 MM Ammonium acetate in water, Mobile Phase B: Acetonitrile (100%), Gradient: T/% B: 0/40, 10/75. Flow rate: 15 mL/min, INSTRUMENT: APSL/EQ/AD-004
Prep HPLC Method 5: COLUMN: Luna Omega C-18 (150×21.2×5 m), Dilution: ACN: WATER (50:50)%+THF, Mobile Phase A: 0.1% TFA in water, Mobile Phase B: Acetonitrile (100%), Gradient: T/% B: 0/40, 10/75. FLOW: 15 mL/min, INSTRUMENT: APSL/EQ/AD-004
NMR was recorded on JEOL NMR 400 MHz, Model: ECZ 400 S/L1 and Agilent NMR 400 MHz, Model: Vnmr 1
Microwave synthesis Reactor: Mono wave 400, Anton parr
LCMS analysis condition
Instrument: Agilent LCMS system equipped with DAD and ELSD detector
Ion mode: Positive
Column: Waters X-Bridge C18, 50*2.1 mm*5 m or equivalent
Mobile Phase: A: H2O (0.04% TFA); B: CH3CN (0.02% TFA)
Gradient: 4.5 min gradient method, actual method would depend on clogP of compound.
Flow Rate: 0.6 mL/min or 0.8 mL/min
Instrument: Agilent LCMS system equipped with DAD and ELSD detector
Ion mode: Positive
Column: Waters X-Bridge ShieldRP18, 50*2.1 mm*5 m or equivalent
Mobile Phase:A: H2O (0.05% NH3·H2O) or 10 mM ammonia bicarbonate; B: CH3CN
Gradient: 4.5 min gradient method; actual method would depend on the clogP of the
compound.
Flow Rate: 0.6 mL/min or 0.8 mL/min
Prep. HPLC condition
Mobile phase:
A: NH4OH/H2O=0.05% v/v; B: ACN
A: FA/H2O=0.225% v/v; B: ACN
Xtimate C18 150*25 mm*5 μm
Flow rate: 25 mL/min or 30 mL/min
Monitor wavelength: 220&254 nm
Gradient: actual method would depend on clog P of compound
To a stirred solution of 1-chloro-2-methyl-3, 5-dinitrobenzene (3 g, 13.85 mmol, 1 equiv.) in DMF (30.0 mL), was added 1, 1-dimethoxy-N, N-dimethylmethanamine (4.9 g, 41.55 mmol, 3 equiv.) at RT. The resulting solution was stirred at 90° C. for 16 h under N2 atmosphere, then cooled to 0° C., followed by addition of cold water (100 mL) and stirred for 1 h. The solid was filtered, washed with pentane and dried under vacuum to give (E)-2-(2-chloro-4, 6-dinitrophenyl)-N, N-dimethylethen-1-amine (2.3 g, 8.46 mmol, 61% yield) as a brick red solid. 1HNMR data (400 MHz, DMSO-d6): δ 8.48 (d, J=2.8 Hz, 1H), 8.29 (d, J=2.4 Hz, 1H), 7.41 (d, J=13.2 Hz, 1H), 5.18 (d, J=13.2 Hz, 1H), 2.99 (s, 6H).
To a stirred solution of (E)-2-(2-chloro-4, 6-dinitrophenyl)-N, N-dimethylethen-1-amine (1 g, 3.68 mmol, 1 equiv) in AcOH (10 mL), was added Fe (0.61 g, 11.04 mmol, 3 equiv.) was added RT. The resulting reaction mixture was stirred for 30 min at 110° C. under N2 atmosphere, then reaction mixture was quenched with ice water and diluted with EtOAc (100 mL). The organic layer was separated and washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum to give crude product. The crude product was purified by combi-flash by eluting with EtOAc/petroleum ether (0-60%) to obtained 4-chloro-1H-indol-6-amine (0.12 g, 0.72 mmol, 20% yield) as a brown liquid. LC-MS Method A: [M+H]+=166.95. 1HNMR data (400 MHz, CD3OD): δ 6.93 (d, J=3.2 Hz, 1H), 6.59 (s, 1H), 6.50 (d, J=2 Hz, 1H), 6.23-6.25 (m, 1H),
To a stirred solution of 6-bromo-4-fluoro-1H-indole (400 mg, 1.86 mmol, 1 equiv.) was dissolved in DCM (10.0 mL), DMAP (23 mg, 0.187 mmol, 0.1 equiv.) (BoC)2O (0.612 g, 2.803 mmol, 1.5 equiv.) were added at RT. The resulting reaction mixture was stirred for 16 h at RT. After completion of the reaction (monitored by TLC), and diluted with DCM (100 mL) and water (20 mL). The organic layer was separated and washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by combi-flash eluting with 0-30% EtOAc/hexane to give tert-butyl 6-bromo-4-fluoro-1H-indole-1-carboxylate (450 g, 1.43 mmol, 77% yield) as a brown liquid. 1HNMR data (400 MHz, DMSO-d6): δ 8.08 (brs, 1H), 7.73 (d, J=3.6 Hz, 1H), 7.38 (d, J=9.2 Hz, 1H), 6.80 (d, J=3.2 Hz, 1H), 1.62 (s, 9H).
To a stirred solution of diphenylmethanimine (0.52 g, 2.86 mmol, 2 equiv.) in 1,4-Dioxane (10 mL) sealed tube, were added Cs2CO3 (0.56 g, 1.71 mmol, 1.2 equiv.) and xantphos (0.083 g, 0.14 mmol, 0.1 equiv) at 0° C. stirred for 15 min at the same. To the above solution, was added Pd2 (dba) 3 (0.066 g, 0.07 mmol, 0.05 equiv.) and tert-butyl 6-bromo-4-fluoro-1H-indole-1-carboxylate (0.45 g, 1.43 mmol, 1 equiv.) 0° C. The resulting reaction mixture was purged with N2 gas, gradually warmed to 100° C. and maintained at 100° C. for 16 h. After completion of the reaction (monitored by TLC), the crude product was extracted with EtOAc (2×20 mL). The combined organic layer washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by combi-flash eluting with 0-70% EtOAc/hexane to give tert-butyl 6-((diphenylmethylene)amino)-4-fluoro-1H-indole-1-carboxylate (0.4 g, 0.965 mmol, 80% yield) as a yellow gummy liquid. LC-MS Method A: [M+H]+=415.05.
To a stirred solution of tert-butyl 6-((diphenylmethylene)amino)-4-fluoro-1H-indole-1-carboxylate (200 mg, 0.48 mmol, 1.0 equiv.) in THE (2 mL) was added 4M HCl in 1,4-dioxane (2 mL) at 0° C. Then reaction mixture was stirred at RT for 16 h. After completion of reaction (monitored by TLC), solvent was removed by vacuum and dried to give 4-fluoro-1H-indol-6-amine hydrochloride (90 mg, 0.48 mmol, 99% yield) as an off-white solid. HNMR data (400 MHz, DMSO-d6): δ 11.67 (brs, 1H), 10.06-9.92 (m, 2H), 7.47-7.46 (m, 1H), 7.31 (brs, 1H), 6.79 (d, J=10.8 Hz, 1H), 6.52 (brs, 1H).
To a stirred solution of 4-chloro-2-methoxy-6-nitroaniline (1.5 g, 7.4 mmol, 1 equiv.) in EtOH (16 mL), water (4 mL) were added NH4Cl (3.76 g, 70.4 mmol, 10 equiv.) and Fe (2.06 g, 37.0 mmol, 5 equiv.) at. The resulting mixture was stirred at 80° C. for 3 h.
After completion of the reaction (monitored by TLC) was cooled to RT, diluted with EtOAc (100 mL), and filtered through a pad of celite. The filtrate were transferred to a separatory funnel and washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum to give 5-chloro-3-methoxybenzene-1, 2-diamine (1.1 g, 6.37 mmol, 86% yield) as a brown solid. LC-MS Method A: [M+H]+=172.95.
To a stirred solution of 5-chloro-3-methoxybenzene-1, 2-diamine (0.5 g, 2.89 mmol, 1 equiv.) in DCM (10.0 mL) was added triphosgene (1.03 g, 3.47 mmol, 1.2 equiv.) portion wise at 0° C. The resulting reaction mixture was stirred at RT for 16 h. After completion of reaction (monitored by TLC) solvent was removed by vacuum and ice-water was added to the mixture to precipitate out solid. The solid was filtered and washed with pentane, dried under vacuum to give 6-chloro-4-methoxy-1, 3-dihydro-2H-benzo[d]imidazol-2-one (0.45 g, 2.26 mmol, 78%) as a brown solid. LC-MS Method A: [M+H]+=198.95.
To a stirred solution of 6-chloro-4-methoxy-1, 3-dihydro-2H-benzo[d]imidazol-2-one (0.2 g, 1 mmol, 1 equiv.) in POCl3 (6 mL) was heated for 16 h at 130° C. in a sealed tube. After completion of reaction (monitored by TLC), solvent was removed under vacuum and diluted with EtOAc (60 mL), 2M Na2CO3 solution (20 mL). The organic layer was separated and washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum to give 2,6-dichloro-4-methoxy-1H-benzo[d]imidazole (180 mg, 0.83 mmol, 85% yield) as a brown solid. LC-MS Method A: [M+H]+=216.85
To a stirred solution of 3-fluoro-4-nitrophenol (2.5 g, 15.91 mmol, 1 equiv) was dissolved in dichloromethane (50 mL), were added Et3N (6.43 g, 63.65 mmol, 4 equiv) and triflic anhydride (8.9 g, 5.3 mmol, 2 equiv) at 0° C. The resulting mixture was stirred for 16 hr at RT. After completion of reaction (monitored by TLC), diluted with DCM (200 mL) and water. The organic layer was separated and washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by combi-flash eluting with 0-30% EtOAc/hexane to give 3-fluoro-4-nitrophenyl trifluoromethanesulfonate (2.0 g, 6.91 mmol, 43% yield) as a brown oil. LC-MS Method A: [M−3H]+=285.80
To a stirred solution of 3-fluoro-4-nitrophenyl trifluoromethanesulfonate (1 g, 3.45 mmol, 1 equiv.) in toluene (15 mL), were added cyclobutylboronic acid (0.415 g, 4.15 mmol, 1.2 equiv.), Cs2CO3 (1.69 g, 5.17 mmol, 1.5 equiv.) and H2O (3 mL), then reaction mixture was degassed for 10 min was added pd(dppf)Cl2·CH2Cl2 complex (0.282 mg, 0.345 mmol, 0.1 equiv.) at RT and continued stirring for 16 h at 90° C. under N2 atmosphere.
After completion of reaction (monitored by TLC), diluted with EtOAc (300 mL), and water (50 mL), The organic layer was separated and washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by combi-flash eluting with 0-50% EtOAc/hexane to give 4-cyclobutyl-2-fluoro-1-nitrobenzene (450 mg, 2.3 mmol, 67% yield) as a brown oil. LC-MS Method A: [M+H]+=195.05 Step 3: Synthesis of N-benzyl-5-cyclobutyl-2-nitroaniline To a stirred solution of 4-cyclobutyl-2-fluoro-1-nitrobenzene (850 mg, 4.35 mmol, 1 equiv.) In DMF (5 mL), were added phenylmethanamine (514 mg, 4.79 mmol, 1.1 equiv.) and K2CO3 (1.2 g, 8.7 mmol, 2 equiv.) at RT and stirred for 16 hr at RT. After completion of reaction (monitored by TLC), diluted with EtOAc (200 mL), and water (50 mL), The organic layer was separated and washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by combi-flash eluting with 0-60% EtOAc/hexane to give N-benzyl-5-cyclobutyl-2-nitroaniline (1.1 g, 3.89 mmol, 90% yield) as a yellow solid. LC-MS Method A: [M+H]+=283.05 Step 4: Synthesis of 4-cyclobutylbenzene-1, 2-diamine (Intermediate 4) To a stirred solution of N-benzyl-5-cyclobutyl-2-nitroaniline (1.1 g, 3.89 mmol, 1 equiv.) in MeOH (20 mL), was added Pd/C (400 mg). The resulting reaction mixture was stirred for 16 hr at RT under H2 atmosphere (50 Psi). After completion of reaction (monitored by TLC) was filtered through celite and filtrate was concentrated under reduced pressure and dried under vacuum to give 4-cyclobutylbenzene-1, 2-diamine (600 mg, 3.7 mmol, 95% yield) as a brown gummy solid. LC-MS Method B: [M+H]+=163.1 The following intermediates were prepared using the same method described for Intermediate 3.
To a stirred solution of 2, 5, 6-trichloro-1H-benzo[d]imidazole (0.2 g, 0.9 mmol, 1 equiv.) in DMF (4.0 mL) was added NaH (0.033 g, 1.35 mmol, 1.5 equiv.) at 0° C. and stirred for 15 min at 0°, then 1-bromo-2-methoxyethane (0.14 g, 0.99 mmol, 1.1 equiv.) was added at 0° C. The resulting reaction mixture was allowed to warm to RT and stirred at RT for 16 h. After completion of reaction (monitored by TLC), quenched with sat. NH4Cl diluted with EtOAc (100 mL), and water (30 mL), The organic layer was separated and washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by combi-flash eluting with 0-70% EtOAc/hexane to gave 2, 5, 6-trichloro-1-(2-methoxyethyl)-1H-benzo[d]imidazole (50 mg, 0.18 mmol, 20% yield.) as an off white solid. LC-MS Method A: [M+H]+=280.8
To a stirred solution of 1-chloro-2-nitro-4-(trifluoromethyl)benzene (0.5 g, 2.21, mmol, 1 equiv.) in EtOH (10.0 mL) were added, KOH (1.12 g, 19.89 mmol, 9 equiv.) dissolved in water (5 mL) and methylamine hydrochloride (0.45 g, 6.63 mmol, 3 equiv.) portion wise at 0° C. The resulting reaction mixture was stirred at 60° C. for 12 h. After completion of reaction (monitored by TLC), solution was cooled to RT, diluted with EtOAc (100 mL), and water (30 mL), The organic layer was separated and washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by combi-flash eluting with 0-50% EtOAc/hexane to give N-methyl-2-nitro-4-(trifluoromethyl) aniline (0.2 g, 0.91 mmol, 41% yield) as a brown liquid. 1HNMR data (400 MHz, CDCl3): δ 7.13-7.10 (m, 1H), 6.94-6.92 (m, 1H), 6.63 (d, J=8.4 Hz, 1H), 2.90 (s, 3H).
To a stirred solution N-ethyl-2-nitro-4-(trifluoromethyl) aniline (1.2 g, 5.45 mmol, 1 equiv.) in EtOH (20 mL), water (5 mL) were added NH4Cl (2.91 g, 54.5 mmol, 10 equiv.) and Fe (1.52 g, 27.25 mmol, 5 equiv.) at RT. The resulting mixture was stirred at 80° C. for 3 h. After completion of the reaction (monitored by TLC), it was cooled to RT, diluted with EtOAc (100 mL), and filtered through a pad of celite. The filtrate were transferred to a separatory funnel and washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum to give, N1-methyl-4-(trifluoromethyl)benzene-1,2-diamine (1.0 g, 5.25 mmol, 96% yield) as brown liquid. LC-MS Method A: [M+H]+=191.1
To a stirred solution of 1-chloro-2-nitro-4-(trifluoromethyl)benzene (4 g, 17.69, mmol, 1 equiv.) in DMF (28 mL) were added TEA (5.36 mL, 53.07 mmol, 3 equiv.) and ethylamine hydrochloride (1.74 g, 21.23 mmol, 1.2 equiv.) portion wise at 0° C. The resulting reaction mixture was stirred at 100° C. for 2 h. After completion of reaction (monitored by TLC) was diluted with EtOAc (500 mL), and water (50 mL), The organic layer was separated and washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by combi-flash eluting with 0-60% EtOAc/hexane to give N-ethyl-2-nitro-4-(trifluoromethyl) aniline (3.0 g, 12.81 mmol, 72% yield) as a yellow solid. LC-MS Method A: [M+H]+=235.1
The following intermediates were prepared using the method described for Intermediate 10.
To a stirred solution of methyl 1H-indole-6-carboxylate (1, 1 g, 5.7 mmol, 1 equiv.) was dissolved in DMF (10 mL) were added KOH (0.479 g, 8.55 mmol, 1.5 equiv.), and (2-(chloromethoxy) ethyl)trimethylsilane (1.14 g, 6.85 mmol, 1.2 equiv.) at 0° C., then resulting reaction mixture was stirred for 1 h at 0° C. After completion of reaction (monitored by TLC), it was diluted with EtOAc and water. The organic layer was separated and washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by combi-flash eluting with 0-30% EtOAc/hexane to give methyl 1-((2-(trimethylsilyl) ethoxy) methyl)-1H-indole-6-carboxylate (1 g, 3.27 mmol, 58.8% yield.) as a colour less oil. LC-MS Method B: [M+H]+=305.9
To a stirred solution of methyl 1-((2-(trimethylsilyl) ethoxy) methyl)-1H-indole-6-carboxylate (0.5 g, 1.63 mmol, 1 equiv.) in MeOH: THF: H2O (10 mL) was added LiOH·H2O (0.137 g, 3.27 mmol, 2 equiv.) at 0° C. and stirred at RT for 16 h. The solvent was removed, acidified with 1N HCL (3 mL) and diluted with EtOAc. The organic layer was washed with water, brine and dried under vacuum to give 1-((2-(trimethylsilyl)ethoxy) methyl)-1H-indole-6-carboxylic acid (0.35 g, 1.2 mmol, 74% yield) as a gummy solid. LC-MS Method B: [M+H]+=291.1
To a stirred solution of 1-((2-(trimethylsilyl)ethoxy)methyl)-1H-indole-6-carboxylic acid (0.25 g, 0.85 mmol, 1 equiv.) in benzene (20 mL) were added DPPA (2.36 g, 8.57 mmol, 10 equiv.) and Et3N (0.865 g, 8.57 mmol, 10 equiv.) at 0° C., The resulting reaction mixture was stirred at 80° C. for 16 h. The solvent was removed under vacuum and the residue was dissolved in THE (15 mL). To this solution was added aq. 4 N LiOH·H2O (0.72 g, 17 mmol, 20 equiv.), and vigorously stirred for 2 h at RT. The reaction mixture was diluted with water and EtOAc. The organic layer was separated and washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by combi-flash eluting with 0-60% EtOAc/hexane to give 1-((2-(trimethylsilyl) ethoxy) methyl)-1H-indol-6-amine (0.12 g, 0.45 mmol, 53% yield). LC-MS Method A: [M+H]+=263.05
4-chloro-1H-indol-6-amine (Intermediate 1) (40 mg, 0.226 mmol, 1.0 equiv.) and 2-chloro-5-(trifluoromethyl)-1H-benzo[d]imidazole (50 mg, 0.226 mmol, 1 equiv.) were dissolved in 1-butanol (2.0 mL), was added KH2PO4 (46 mg, 0.339 mmol, 1.5 equiv.) at RT. The resulting reaction mixture was stirred for 1.5 h at 150° C. under N2 atmosphere in microwave. The reaction mixture was cooled and diluted with aq NaHCO3 (5 mL) and extracted with EtOAc, The organic layer was washed with water (10 mL) and brine (5 mL) dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue was purified by combi-flash, eluting with EtOAc/petroleum ether (1:2) to give the crude product, which was further purified by Prep-HPLC method A. Example 1 as a pale brown solid. LCMS: [M+H]+=350.90. HNMR (400 MHz, DMSO-d6): δ 11.36 (s, 1H), 11.22 (s, 1H), 9.74 (s, 1H), 8.07 (d, J=18.0 Hz, 1H), 7.36-7.32 (m, 5H), 6.383 (d, J=2.0 Hz, 1H).
The analogs in the following table were prepared using the method described for Example 1.
1HNMR data
Tert-butyl 6-((5-bromo-1H-benzo[d]imidazol-2-yl)amino)-4-chloro-1H-indole-1-carboxylate (92.0 mg, 0.2 mmol, 1.0 equiv.) and (6-(pyrrolidin-1-yl)pyridin-3-yl)boronic acid (57.6 mg, 0.3 mmol, 1.5 equiv.) were dissolved in Dioxane (3 mL). Then Pd(dppf)Cl2·DCM (8.2 mg, 0.01 mmol, 0.05 equiv.) and aqueous K3PO4(300 μl, 2M, 3.0 equiv.) were added under an atmosphere of nitrogen. The reaction mixture was heated at 100° C. for 16 hours. The reaction mixture was concentrated by Speedvac and purified by prep HPLC to give N-(4-chloro-1H-indol-6-yl)-5-(6-(pyrrolidin-1-yl)pyridin-3-yl)-1H-benzo[d]imidazol-2-amine (12.34 mg, 0.03 mg). MS-ESI, 429.1 [M+H+].
1H NMR (400 MHz, DMSO-d6) δ ppm 11.30 (br s, 1H), 10.95 (br s, 1H), 9.44 (br s, 1H), 8.47-8.31 (m, 1H), 8.13 (br s, 1H), 7.79 (br d, 1H), 7.55-7.26 (m, 4H), 7.21 (br d, 1H), 6.52 (d, 1H), 6.37 (t, 1H), 3.5-3.4 (m, 5H), 2.02-1.90 (m, 4H).
The analogs in the following table were prepared using the procedure described for Example 25.
tert-butyl 6-((5-bromo-1H-benzo[d]imidazol-2-yl)amino)-4-chloro-1H-indole-1-carboxylate (138.0 mg, 0.3 mmol, 1.0 equiv.) and 2-(cyclohex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (124.8 mg, 0.6 mmol, 2.0 equiv.) were dissolved in Dioxane (3 mL). Then Pd(dppf)Cl2·DCM (12.2 mg, 0.015 mmol, 0.05 equiv.) and aqueous K3PO4(450 μl, 2M, 3.0 equiv.) were added under an atmosphere of nitrogen. The reaction mixture was heated at 100° C. for 16 hours. Then 10 mL of H2O was added and extracted with EtOAc. The combined organic layers were washed with 10 mL H2O, dried over anhydrous Na2SO4, filtered and concentrated under by Speedvac to get a crude N-(4-chloro-1H-indol-6-yl)-5-(cyclohex-1-en-1-yl)-1H-benzo[d]imidazol-2-amine which was used in next step without further purification.
N-(4-chloro-1H-indol-6-yl)-5-(cyclohex-1-en-1-yl)-1H-benzo[d]imidazol-2-amine (72.4 mg, 0.2 mmol, 1.0 equiv.) was dissolved in MeOH (2 mL). Then 10% Pd/C (60 mg), HCl (1 M, 200 μl) and TES (300 μl) were added. The mixture was stirred at 50° C. for 16 hours. The mixture was filtered to remove Pd—C and concentrated under reduced pressure to remove MeOH. Then H2O (5 mL) was added and extracted with EtOAc, dried over anhydrous Na2SO4, filtered, concentrated under reduced pressure by Speedvac and purified by prep HPLC to give N-(4-chloro-1H-indol-6-yl)-5-cyclohexyl-1H-benzo[d]imidazol-2-amine. MS-ESI, 365.2 [M+H+].
1H NMR (400 MHz, DMSO-d6) δ ppm 11.26 (br s, 1H), 10.88 (br s, 1H), 9.37 (br s, 1H), 8.10 (br s, 1H), 7.45-7.01 (m, 4H), 6.85 (br d, 1H), 6.36 (t, 1H), 2.54 (s, 1H), 1.88-1.68 (m, 5H), 1.51-1.20 (m, 5H).
The analogs in the following table were prepared using the procedure described for Example 48.
6-nitro-1H-indole-3-carboxylic acid (30.0 g, 145.2 mmol, 1.0 equiv.), Selectfluor (103.2 g, 290.4 mmol, 2.0 equiv.) were added in DCE (700 mL) and H2O (350 mL). The resulting mixture was stirred for 10 minutes at room temperature, then K2CO3 (80.4 g, 544.2 mmol, 4.0 equiv.) was added in portions. The resulting mixture was stirred for 2 hours at room temperature. The resulting mixture was filtered and the filter cake was washed with DCM. The combined filtrate was further extracted with DCM, washed with brine, dried over anhydrous Na2SO4 and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel, eluting with ethyl acetate/petroleum ether (1:9) to give 3-fluoro-6-nitro-1H-indole (16.4 g) as a yellow solid. LCMS Method: [M−H]−=179.
3-fluoro-6-nitro-1H-indole (20.0 g, 110.8 mmol, 1.0 equiv.) was dissolved in ethyl acetate (800 mL), then Pd/C (4.0 g, wet) was added under an atmosphere of nitrogen. The reaction mixture was spurged with nitrogen, placed under an atmosphere of hydrogen gas (balloon), then stirred for 2 hours at ambient temperature. The solids were removed by filtration and then to the filtrate was added HCl (4N) in ethyl acetate (400 mL). The resulting mixture was stirred for 5 hours at room temperature. The precipitated solids were collected by filtration and washed with EtOAc, dried in oven. This resulted in 3-fluoro-1H-indol-6-amine hydrochloride (15.0 g) as an off-white solid. LCMS Method: [M+H]+=151. 1H NMR (400 MHz, DMSO-d6) δ 11.24 (s, 1H), 10.35 (s, 3H), 7.63 (d, J=8.4 Hz, 1H), 7.50 (d, J=2.0 Hz, 1H), 7.44 (t, J=2.8 Hz, 1H), 7.06 (dd, J=8.4, 1.8 Hz, 1H).
3-fluoro-1H-indol-6-amine hydrochloride (10.0 g, 53.6 mmol, 1.0 equiv.) and TEA (10.9 g, 107.1 mmol, 2.0 equiv.) were dissolved in THE (150 mL) and cooled to 0° C., then thiophosgene (7.4 g, 64.2 mmol, 1.2 equiv.) was added at 0° C. The reaction mixture was stirred for 1 hour at room temperature and then quenched by the addition of MeOH. The resulting mixture was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel, eluting with ethyl acetate/petroleum ether (1:9) to give 3-fluoro-6-isothiocyanato-1H-indole (5.0 g) as a brown yellow solid. This was used as is for next step.
4,5-dichlorobenzene-1,2-diamine (303.9 mg, 1.7 mmol, 1.1 equiv.) and 3-fluoro-6-isothiocyanato-1H-indole (300.0 mg, 1.5 mmol, 1.0 equiv.) were dissolved in ACN (5 mL), then BOP (828.3 mg, 1.8 mmol, 1.2 equiv.) and DBU (475.2 mg, 3.1 mmol, 2.0 equiv.) were added. The reaction mixture was stirred overnight at 70° C., then cooled to room temperature and quenched by the addition of water. The resulting solution was extracted with ethyl acetate, washed with brine, dried over anhydrous Na2SO4 and concentrated under vacuum. The residue was purified by reverse flash chromatography with the following conditions: column, C18; mobile phase, MeCN in Water (10 mM NH4HCO3), 0% to 100% gradient in 20 min; detector, UV 254 nm. The crude product (180 mg) was further purified by Prep-HPLC with the following conditions: Column: XBridge Prep OBD C18 Column, 30*150 mm, 5 μm; Mobile Phase A: Water (10 mM NH4HCO3), Mobile Phase B: ACN; Flow rate: 60 mL/min; Gradient: 42% B to 56% B in 8 min; Wave Length: 254 nm; RT1: 7.18 min. This gave 5,6-dichloro-N-(3-fluoro-1H-indol-6-yl)-1H-1,3-benzodiazol-2-amine (79.2 mg) as a brown solid. LCMS Method: [M−H]−=333. 1H NMR (400 MHz, DMSO-d6) δ 11.04 (s, 1H), 10.74 (d, J=2.4 Hz, 1H), 9.62 (s, 1H), 8.11 (d, J=2.4 Hz, 1H), 7.50 (s, 1H), 7.50-7.43 (m, 2H), 7.18 (t, J=2.1 Hz, 1H), 7.13-7.11 (m, 1H).
4-(trifluoromethyl)benzene-1,2-diamine (100.8 mg, 0.5 mmol, 1.1 equiv.) and 3-fluoro-6-isothiocyanato-1H-indole (100 mg, 0.5 mmol, 1.0 equiv.) were dissolved in ACN (5.0 mL), then BOP (345.1 mg, 0.7 mmol, 1.5 equiv.) and DBU (158.4 mg, 1.0 mmol, 2.0 equiv.) were added. The reaction mixture was stirred overnight at 70° C., then cooled to room temperature and quenched by the addition of water. The resulting solution was extracted with ethyl acetate, washed with brine, dried over anhydrous Na2SO4 and concentrated under vacuum. The residue was purified by reverse flash chromatography with the following conditions: column, C18; mobile phase, MeCN in Water (0.1% FA), 0% to 50% gradient in 20 min; detector, UV 254 nm. The crude product was further purified by Prep-HPLC with the following conditions: Column: XBridge Prep OBD C18 Column, 30*150 mm, 5 m; Mobile Phase A: Water (10 mM NH4HCO3), Mobile Phase B: ACN; Flow rate: 60 mL/min; Gradient: 36% B to 57% B in 8 min; Wave Length: 220 nm; RT1: 7.65 min. This gave N-(3-fluoro-1H-indol-6-yl)-5-(trifluoromethyl)-1H-1,3-benzodiazol-2-amine (26.0 mg) as a brown solid. LCMS Method: [M+H]+=335. 1H NMR (400 MHz, DMSO-d6) δ 11.13 (s, 1H), 10.73 (s, 1H), 9.70-9.65 (m, 1H), 8.20-8.16 (m, 1H), 7.59 (s, 1H), 7.48-7.42 (m, 2H), 7.32 (t, J=8.8 Hz, 1H), 7.18-7.12 (m, 2H).
3-fluoro-1H-indol-6-amine hydrochloride (300.0 mg, 1.6 mmol, 1.0 equiv.) and 5-bromo-2-chloro-1H-1,3-benzodiazole (223.3 mg, 0.9 mmol, 0.6 equiv.) were dissolved in DMF (10 mL), then CH3SO3H (154.5 mg, 1.6 mmol, 1.0 equiv.) was added. The reaction mixture was stirred for 6 hours at 80° C., then cooled to room temperature and quenched b y the addition of water. The resulting solution was extracted with ethyl acetate, dried over anhydrous Na2SO4 and concentrated under vacuum. The residue was purified by reverse f lash chromatography with the following conditions: column, C18; mobile phase, MeCN i n Water (10 mM NH4HCO3), 0% to 100% gradient in 15 min; detector, UV 254 nm. This resulted in 5-bromo-N-(3-fluoro-1H-indol-6-yl)-1H-1,3-benzodiazol-2-amine (150 mg) as a brown solid. LCMS Method: [M+H]+=345.
5-bromo-N-(3-fluoro-1H-indol-6-yl)-3H-1,3-benzodiazol-2-amine (100 mg, 0.3 mmol, 1 equiv.) and 1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyrazole (72.3 mg, 0.3 mmol, 1.2 equiv.) were dissolved in 1,4-dioxane (5 mL) and H2O (0.5 mL), then Cs2CO3 (188.7 mg, 0.5 mmol, 2.0 equiv.) and Pd(dppf)Cl2 (21.2 mg, 0.1 mmol, 0.1 equiv.) were added under an atmosphere of nitrogen. The reaction mixture was heated to 80° C. for 5 hours, then cooled to room temperature and quenched by the addition of water. The resulting solution was extracted with ethyl acetate, washed with brine, dried over anhydrous Na2SO4 and concentrated under vacuum. The residue was purified by reverse flash chromatography with the following conditions: column, C18; mobile phase, MeCN in Water (10 mM NH4HCO3), 10% to 40% gradient in 15 min; detector, UV 254 nm. The residue was further purified by Pre-HPLC with the following conditions: Column: XBridge Prep OBD C18 Column, 30*150 mm, 5 m; Mobile Phase A: Water (10 mM NH4HCO3), Mobile Phase B: ACN; Flow rate: 60 mL/min; Gradient: 25% B to 45% B in 7 min; Wave Length: 220 nm; RT1: 7.47 min. This resulted in N-(3-fluoro-1H-indol-6-yl)-5-(1-methylpyrazol-3-yl)-3H-1,3-benzodiazol-2-amine (34 mg) as a brown solid. LCMS Method: [M+H]+=347. 1H NMR (400 MHz, DMSO-d6) δ 10.85 (brs, 1H), 10.69 (s, 1H), 9.40 (s, 1H), 8.22 (s, 1H), 7.71-7.69 (m, 2H), 7.48-7.42 (m, 2H), 7.30 (brs, 1H), 7.16-7.11 (m, 2H), 6.62-6.60 (m, 1H), 3.88 (s, 3H).
STING pathway activation by the compounds described herein was measured using THP1-Dual™ cells (KO-IFNAR2).
THP1-Dual™ KO-IFNAR2 Cells (obtained from invivogen) were maintained in RPMI, 10% FCS, 5 ml P/S, 2 mM L-glut, 10 mM Hepes, and 1 mM sodium pyruvate. Compounds were spotted in empty 384 well tissue culture plates (Greiner 781182) by Echo for a final concentration of 0.0017-100 μM. Cells were plated into the TC plates at 40 μL per well, 2×10E6 cells/mL. For activation with STING ligand, 2′3′cGAMP (MW 718.38, obtained from Invivogen), was prepared in Optimem media.
The following solutions were prepared for each 1×384 plate:
2 mL of solution A and 2 ml Solution B was mixed and incubated for 20 min at room temperature (RT). 20 μL of transfection solution (A+B) was added on top of the plated cells, with a final 2′3′cGAMP concentration of 15 μM. The plates were then centrifuged immediately at 340 g for 1 minute, after which they were incubated at 37° C., 5% CO2, >98% humidity for 24 h. Luciferase reporter activity was then measured. EC50 values were calculated by using standard methods known in the art.
Luciferase reporter assay: 10 μL of supernatant from the assay was transferred to white 384-plate with flat bottom and squared wells. One pouch of QUANTI-Luc™ Plus was dissolved in 25 mL of water. 100 μL of QLC Stabilizer per 25 mL of QUANTI-Luc™ Plus solution was added. 50 μL of QUANTI-Luc™ Plus/QLC solution per well was then added. Luminescence was measured on a Platereader (e.g., Spectramax I3X (Molecular Devices GF3637001)).
Luciferase reporter activity was then measured. EC50 values were calculated by using standard methods known in the art.
Table BA shows the activity of compounds in STING reporter assay: <0.008 μM=“++++++”; >0.008 and <0.04 μM=“+++++”; >0.04 and <0.2 μM=“++++”; 0.2 and 5<1 μM=“+++”; >1 and <5 μM=“++”; >5 and <100 μM=“+”
The compounds, compositions, methods, and other subject matter described herein are futther described in the following numbered clauses:
1. A compound of Formula (I):
Ring A is other than:
then X1 cannot be N—(C3-10 cycloalkyl);
then X2 cannot be CR2, wherein said R2 is —NH-(2-pyrimidinyl); and
2. The compound of clause 1, wherein Ring A is
wherein A4 is C or N; and A3 and A5 are each independently selected from the group consisting of: CR4, N, N(R5), O, and S.
3. The compound of clause 1, wherein Ring A is
wherein A4 is C or N; and A3 and A5 are each independently selected from the group consisting of: CR4, N, N(R5), O, and S.
4. The compound of any one of clauses 1-3, wherein A4 is C.
5. The compound of any one of clauses 1-4, wherein A1 and A2 are each C.
6. The compound of any one of clauses 1-4, wherein one of A1 and A2 is C; and the other of A1 and A2 is N.
7. The compound of any one of clauses 1-6, wherein A3 and A5 are independently selected from the group consisting of: N, N(R5), O, and S.
8. The compound of any one of clauses 1-7, wherein one of A3 and A5 is N; and the other of A3 and A5 is selected from the group consisting of: N(R5), O, and S.
9. The compound of any one of clauses 1-8, wherein one of A3 and A5 is N; and the other of A3 and A5 is N(R5).
10. The compound of any one of clauses 1-6, wherein one of A3 and A5 is C(R4); and the other of A3 and A5 is N.
11. The compound of clauses 1 or 2, wherein Ring A is
12. The compound of clauses 1 or 2, wherein Ring A is
13. The compound of clauses 1 or 3, wherein Ring A is
14. The compound of any one of clauses 1-13, wherein Ring B is an aromatic ring having 5-10 ring atoms, wherein 0-2 ring atoms are heteroatoms (in addition to A1 and A2 when one or both of A1 and A2 is N) each independently selected from the group consisting of: N, NH, N(Rd), O, and S(O)0-2, wherein Ring B is optionally substituted with 1-4 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc
15. The compound of any one of clauses 1-14, wherein Ring B is an aromatic ring having 6 ring atoms, wherein 0-2 ring atoms are ring nitrogen atoms (in addition to A1 and A2 when one or both of A1 and A2 is N), wherein Ring B is optionally substituted with 1-4 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
16. The compound of any one of clauses 1-15, wherein Ring B is
wherein each is independently a single bond or a double bond, provided that Ring B is aromatic; m1 is 0, 1, 2, or 3, such as 1 or 2; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
17. The compound of any one of clauses 1-16, wherein Ring B is
wherein each is independently a single bond or a double bond, provided that Ring B is aromatic; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
18. The compound of any one of clauses 1-15, wherein Ring B is
wherein each is independently a single bond or a double bond, provided that Ring B is aromatic; m1 is 0, 1, or 2, such as 1 or 2; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc, such as wherein Ring B is
19. The compound of any one of clauses 1-14, wherein Ring B is an aromatic ring having 5 ring atoms, wherein 0-2 ring atoms are heteroatoms (in addition to A1 and A2 when one or both of A1 and A2 is N) each independently selected from the group consisting of: N, NH, N(Rd), O, and S, wherein Ring B is optionally substituted with 1-2 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
20. The compound of any one of clauses 1-14 or 19, wherein Ring B is
wherein each is independently a single bond or a double bond, provided that Ring B is aromatic; m1 is 0, 1, or 2, such as 1 or 2; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
21. The compound of any one of clauses 1-13, wherein Ring B is a partially unsaturated ring having 5-10 ring atoms, wherein 0-2 ring atoms are heteroatoms (in addition to A1 and A2 when one or both of A1 and A2 is N) each independently selected from the group consisting of: N, NH, N(Rd), O, and S(O)0-2, wherein Ring B is optionally substituted with 1-4 Rr.
22. The compound of any one of clauses 1-13 or 21, wherein Ring B is a partially unsaturated bicyclic ring having 8-10 ring atoms, wherein 0-2 ring atoms are heteroatoms (in addition to A1 and A2 when one or both of A1 and A2 is N) each independently selected from the group consisting of: N, NH, N(Rd), O, and S(O)0-2, wherein Ring B is optionally substituted with 1-4 Rr.
23. The compound of any one of clauses 1-13 or 21-22, wherein Ring B is a partially unsaturated spirobicyclic ring having 8-10 ring atoms, wherein 0-2, such as 1, ring atoms are heteroatoms (in addition to A1 and A2 when one or both of A1 and A2 is N) each independently selected from the group consisting of: N, NH, N(Rd), O, and S(O)0-2, wherein Ring B is optionally substituted with 1-4 Rr.
24. The compound of any one of clauses 1-13 or 21-23, wherein Ring B is selected from the group consisting of:
wherein each is independently a single bond or a double bond.
25. The compound of clauses 1 or 2, wherein Ring A is
wherein Ring B is an aromatic ring having 6 ring atoms, wherein 0-2 ring atoms are ring nitrogen atoms, wherein Ring B is optionally substituted with 1-4 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc
26. The compound of any one of clauses 1-2 or 25, wherein Ring A is
wherein m1 is 0, 1, 2, or 3; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
27. The compound of any one of clauses 1-2 or 25, wherein Ring A is
wherein m1 is 0, 1, 2, or 3; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
28. The compound of clauses 1 or 2, wherein Ring A is
wherein Ring B is an aromatic ring having 5 ring atoms, wherein 1-2 ring atoms are heteroatoms each independently selected from the group consisting of: N, NH, N(Rd), O, and S, wherein Ring B is optionally substituted with 1-2 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc, such as:
wherein m1 is 0, 1, or 2; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
29. The compound of clauses 1 or 2, wherein Ring A is
wherein Ring B is a partially unsaturated spirobicyclic ring having 8-10 ring atoms, wherein 0-2, such as 1, ring atoms are heteroatoms each independently selected from the group consisting of: N, NH, N(Rd), O, and S(O)0-2, wherein Ring B is optionally substituted with 1-4 Rr, such as:
30. The compound of clauses 1 or 2, wherein Ring A is
wherein Ring B is an aromatic ring having 6 ring atoms, wherein 0-2 ring atoms (in addition to the ring nitrogen atom present) are ring nitrogen atoms, wherein Ring B is optionally substituted with 1-4 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc
31. The compound of any one of clauses 1-2 or 30, wherein Ring A is
wherein m1 is 0, 1, 2, or 3; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc
32. The compound of clauses 1 or 2, wherein Ring A is
wherein Ring B is a partially unsaturated spirobicyclic ring having 8-10 ring atoms, wherein 0-2, such as 1, ring atoms (in addition to the ring nitrogen atom present) are heteroatoms each independently selected from the group consisting of: N, NH, N(Rd), O, and S(O)0-2, wherein Ring B is optionally substituted with 1-4 Rr, such as:
33. The compound of clauses 1 or 3, wherein Ring A is
wherein Ring B is an aromatic ring having 6 ring atoms, wherein 0-2 ring atoms (in addition to the ring nitrogen atom present) are ring nitrogen atoms, wherein Ring B is optionally substituted with 1-4 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc
34. The compound of any one of clauses 1, 3, or 33, wherein Ring A is
wherein m1 is 0, 1, 2, or 3; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
35. The compound of any one of clauses 1-34, wherein R5 is H.
36. The compound of any one of clauses 1-34, wherein R5 is Rd.
37. The compound of any one of clauses 1-34 or 36, wherein R5 is C1-6 alkyl optionally substituted with 1-3 independently selected Ra.
38. The compound of any one of clauses 1-34 or 36-37, wherein R5 is C1-6 alkyl, such as C1-3 alkyl, such as methyl or ethyl.
39. The compound of any one of clauses 1-34 or 36-37, wherein R5 is C1-6 alkyl substituted with 1-3 substituents each independently selected from the group consisting of C1-4 alkoxy and halo, such as wherein R5 is C2-6 alkyl substituted with C1-4 alkoxy.
40. The compound of any one of clauses 1-34, wherein R5 is -(Lb)b-Rb or Rb.
41. The compound of any one of clauses 1-34 or 40, wherein R5 is —(C1-3 alkylene)-Rb.
42. The compound of any one of clauses 1-34 or 40-41, wherein R5 is —(C1-3 alkylene)-(C6-10 aryl), wherein the C6-10 aryl is optionally substituted with 1-2 Rc, such as wherein R5 is —CH2Ph or —CH2CH2Ph.
43. The compound of any one of clauses 1-42, wherein one occurrence of Rr is —Re.
44. The compound of any one of clauses 1-43, wherein one occurrence of Rr is selected from the group consisting of: halo; cyano; C1-10 alkyl which is optionally substituted with 1-6 independently selected Ra; C1-4 alkoxy; C1-4 haloalkoxy; —S(O)1-2(C1-4 alkyl); —NReRf; —S(O)1-2NR′R′″; —C1-4 thioalkoxy; —C(═O)(C1-10 alkyl); —C(═O)O(C1-4 alkyl); and —C(═O)NR′R″.
45. The compound of any one of clauses 1-44, wherein one occurrence of Rr is selected from the group consisting of: halo, such as —F, —Cl, or —Br; C1-6 alkyl, such as methyl or ethyl; C1-6 alkyl substituted with 1-6 independently selected halo, such as —CF3, —CH2CF3, —CHF2, and —CF2H; C1-4 alkoxy, such as —OMe; and C1-4 haloalkoxy.
46. The compound of any one of clauses 1-45, wherein one occurrence of Rr is selected from the group consisting of: halo, such as —F, —Cl, or —Br; C1-6 alkyl, such as methyl or ethyl; and C1-6 alkyl substituted with 1-6 independently selected halo, such as —CF3, —CH2CF3, —CHF2, and —CF2H.
47. The compound of any one of clauses 1-42, wherein one occurrence of Rr is -(Lb)b-Rb or Rb.
48. The compound of any one of clauses 14-42 or 47, wherein one occurrence of Rr is Rb, such as wherein one occurrence of Rr is C3-10 cycloalkyl or C3-10 cycloalkenyl, each of which is optionally substituted with 1-4 Rc, such as C3-6 cycloalkyl, such as cyclobutyl.
49. The compound of any one of clauses 43-48, wherein each remaining R′ when present is an independently selected halo, such as —Cl.
50. The compound of any one of clauses 1-49, wherein R3 is H.
51. The compound of any one of clauses 1-50, wherein Y2 is CR1b.
52. The compound of any one of clauses 1-51, wherein Y2 is CH.
53. The compound of any one of clauses 1-52, wherein Y3 is CR1c.
54. The compound of any one of clauses 1-53, wherein Y3 is CH.
55. The compound of any one of clauses 1-50, wherein Y2 is CR1b; and Y3 is CR1c.
56. The compound of any one of clauses 1-50 or 55, wherein Y2 is CH; and Y3 is CH.
57. The compound of any one of clauses 1-56, wherein Y is CRa.
58. The compound of any one of clauses 1-57, wherein R1a is selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc
59. The compound of any one of clauses 1-58, wherein R1a is Rc.
60. The compound of any one of clauses 1-59, wherein R1a is selected from the group consisting of: halo; C1-4 alkoxy; C1-4 haloalkoxy; C(═O)NR′R″; —C(═O)O(C1-4 alkyl); and C1-6 alkyl which is optionally substituted with 1-6 independently selected Ra, such as —CH2C(═O)NR′R″.
61. The compound of any one of clauses 1-60, wherein R1a is halo.
62. The compound of any one of clauses 1-61, wherein R1a is —Cl.
63. The compound of any one of clauses 1-60, wherein R1a is C1-4 alkoxy or C1-4 haloalkoxy.
64. The compound of any one of clauses 1-60 or 63, wherein R1a is C1-4 alkoxy.
65. The compound of any one of clauses 1-60, wherein R1a is C(═O)NR′R″.
66. The compound of any one of clauses 1-60, wherein R1a is —C(═O)O(C1-4 alkyl).
67. The compound of any one of clauses 1-60, wherein R1a is C1-6 alkyl which is optionally substituted with 1-6 independently selected Ra
68. The compound of any one of clauses 1-60 or 67, wherein R1a is CH2C(═O)NR′R″.
69. The compound of any one of clauses 1-58, wherein R1a is -(Lb)b-Rb or Rb, such as wherein R1a is Rb, —ORb, —C(O)ORb, or C(O)NHRb.
70. The compound of any one of clauses 1-58 or 69, wherein R1a is Rb.
71. The compound of any one of clauses 1-58 or 69-70 wherein R1a is C6-10 aryl optionally substituted with 1-4 Rc, such as phenyl optionally substituted with 1-2 Rc.
72. The compound of any one of clauses 1-58 or 69-70, wherein R1a is selected from the group consisting of:
73. The compound of any one of clauses 1-57, wherein R1a is H.
74. The compound of any one of clauses 1-73, wherein X1 is NR2.
75. The compound of any one of clauses 1-74, wherein X1 is NH.
76. The compound of any one of clauses 1-75, wherein X2 is CR1e.
77. The compound of any one of clauses 1-76, wherein X2 is CH.
78. The compound of any one of clauses 1-73, wherein X1 is NR2; and X2 is CR1e.
79. The compound of any one of clauses 1-73 or 78, wherein X1 is NH; and X2 is CH.
80. The compound of any one of clauses 1-79, wherein X3 is CRIf.
81. The compound of any one of clauses 1-80, wherein Rf is H.
82. The compound of any one of clauses 1-80, wherein R1 is selected from the group consisting of: -Lb-Rb, Rb, and Re
83. The compound of any one of clauses 1-80 or 82, wherein R1 is Re
84. The compound of any one of clauses 1-80 or 82-83, wherein R1f is halo, such as —F, —Cl, or —Br.
85. The compound of any one of clauses 1-80 or 82-83, wherein Rf is cyano.
86. The compound of any one of clauses 1-80 or 82-83, wherein R1f is NReRf.
87. The compound of any one of clauses 1-80, 82-83, or 86, wherein R1f is NHC(═O)R′″ or NHC(═O)OR′″.
88. The compound of any one of clauses 1-80, 82-83, or 86, wherein R1f is NHC(═O)NR′R″ or NHC(═O)C(═O)R′″.
89. The compound of any one of clauses 1-50, wherein the
moiety is
wherein R1a is selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
90. The compound of any one of clauses 1-50, wherein the
moiety is
wherein R1a is selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc; and R1f is an independently selected Rc.
91. The compound of clauses 89 or 90, wherein R2 is H; and R1e is H.
92. The compound of any one of clauses 89-91, wherein R1a is Rc.
93. The compound of any one of clauses 89-92, wherein R1a is selected from the group consisting of: halo; C1-4 alkoxy; C1-4 haloalkoxy; C(═O)NR′R″; —C(═O)O(C1-4 alkyl); and C1-6 alkyl which is optionally substituted with 1-6 independently selected Ra, such as —CH2C(═O)NR′R″.
94. The compound of any one of clauses 89-93, wherein R1a is halo, such as —Cl.
95. The compound of any one of clauses 89-91, wherein R1a is selected from the group consisting of: Rb, —O—Rb, —C(═O)ORb, and —C(═O)NHRb.
96. The compound of any one of clauses 90-95, wherein R1f is halo, such as —F, —Cl, or —Br.
97. The compound of any one of clauses 90-95, wherein R1f is cyano.
98. The compound of any one of clauses 90-95, wherein R1f is NReRf, such as wherein R1 is NHC(═O)R′″, NHC(═O)OR′″, NHC(═O)NR′R″, NHC(═O)C(═O)R′″.
99. The compound of clause 1, wherein the compound is a compound of Formula (I-a):
100. The compound of clause 99, wherein R2 and R1e are H.
101. The compound of clauses 99 or 100, wherein R3 is H.
102. The compound of any one of clauses 99-101, wherein Ring B is an aromatic ring having 6 ring atoms, wherein 0-2 ring atoms are ring nitrogen atoms, wherein Ring B is optionally substituted with 1-4 Rr, wherein each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
103. The compound of any one of clauses 99-102, wherein
is
wherein m1 is 0, 1, 2, or 3, such as 1 or 2; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
104. The compound of any one of clauses 99-102, wherein
is
wherein m1 is 0, 1, or 2, such as 1 or 2; and each Rr is independently selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc.
105. The compound of clauses 103 or 104, wherein m1 is 1 or 2.
106. The compound of any one of clauses 99-105, wherein R5 is H.
107. The compound of any one of clauses 99-105, wherein R5 is C1-6 alkyl optionally substituted with 1-3 Ra; or wherein R5 is —(C1-3 alkylene)-Rb.
108. The compound of any one of clauses 102-107, wherein one occurrence of Rr is Rc.
109. The compound of any one of clauses 102-108, wherein one occurrence of Rr is selected from the group consisting of: halo, such as —F, —Cl, or —Br; C1-6 alkyl, such as methyl or ethyl; and C1-6 alkyl substituted with 1-6 independently selected halo, such as —CF3, —CH2CF3, —CHF2, and —CF2H.
110. The compound of any one of clauses 102-107, wherein one occurrence of Rr is Rb or -(Lb)b-Rb, such as -Rb.
111. The compound of any one of clauses 102-107 or 110, wherein one occurrence of R′ is C3-6 cycloalkyl optionally substituted with 1-2 Rc.
112. The compound of any one of clauses 99-111, wherein R1a is selected from the group consisting of: -(Lb)b-Rb, Rb, and Rc; and R1f is independently H or Re.
113. The compound of clause 112, wherein R″ is H.
114. The compound of clause 112, wherein R″ is Rc.
115. The compound of clauses 99-112 or 114, wherein R1f is halo, such as —F, —Cl, or —Br.
116. The compound of any one of clauses 99-112 or 114, wherein R1f is cyano.
117. The compound of any one of clauses 99-112 or 114, wherein R1 is NReRf, such as wherein R1f is NHC(═O)R′″, NHC(═O)OR′″, NHC(═O)NR′R″, NHC(═O)C(═O)R′″.
118. The compound of any one of clauses 99-117, wherein R1a is Rc.
119. The compound of any one of clauses 99-118, wherein R1a is selected from the group consisting of: halo; C1-4 alkoxy; C1-4 haloalkoxy; C(═O)NR′R″; —C(═O)O(C1-4 alkyl); and C1-6 alkyl which is optionally substituted with 1-6 independently selected Ra, such as —CH2C(═O)NR′R″.
120. The compound of any one of clauses 99-119, wherein R1a is halo, such as —Cl.
121. The compound of any one of clauses 99-117, wherein R1a is selected from the group consisting of: —O—Rb, —C(═O)ORb, and —C(═O)NHRb.
122. The compound of any one of clauses 99-117, wherein R1a is Rb.
123. The compound of clause 1, wherein the compound is selected from the group consisting of the compounds delineated in Table C1, or a pharmaceutically acceptable salt thereof. 124. The compound of clause 1, wherein the compound is selected from the group consisting of:
125. A pharmaceutical composition comprising a compound of clauses 1-124 and one or more pharmaceutically acceptable excipients.
126. A method for inhibiting STING activity, the method comprising contacting STING with a compound or a pharmaceutically acceptable salt thereof as defined in any one of clauses 1-124; or a pharmaceutical composition as defined in clause 125.
127. The method of clause 126, wherein the inhibiting comprises antagonizing STING.
128. The method of clauses 126 or 127, which is carried out in vitro.
129. The method of clause 128, wherein the method comprises contacting a sample comprising one or more cells comprising STING with the compound.
130. The method of clause 128 or 129, wherein the one or more cells are one or more cancer cells.
131. The method of clause 129 or 130, wherein the sample further comprises one or more cancer cells, wherein the cancer is selected from the group consisting of melanoma, cervical cancer, breast cancer, ovarian cancer, prostate cancer, testicular cancer, urothelial carcinoma, bladder cancer, non-small cell lung cancer, small cell lung cancer, sarcoma, colorectal adenocarcinoma, gastrointestinal stromal tumors, gastroesophageal carcinoma, colorectal cancer, pancreatic cancer, kidney cancer, hepatocellular cancer, malignant mesothelioma, leukemia, lymphoma, myelodysplasia syndrome, multiple myeloma, transitional cell carcinoma, neuroblastoma, plasma cell neoplasms, Wilm's tumor, or hepatocellular carcinoma.
132. The method of clause 126 or 127, which is carried out in vivo.
133. The method of clause 132, wherein the method comprises administering the compound to a subject having a disease in which increased (e.g., excessive) STING signaling contributes to the pathology and/or symptoms and/or progression of the disease.
134. The method of clause 133, wherein the subject is a human.
135. The method of clause 134, wherein the disease is cancer.
136. The method of clause 135, wherein the cancer is selected from the group consisting of melanoma, cervical cancer, breast cancer, ovarian cancer, prostate cancer, testicular cancer, urothelial carcinoma, bladder cancer, non-small cell lung cancer, small cell lung cancer, sarcoma, colorectal adenocarcinoma, gastrointestinal stromal tumors, gastroesophageal carcinoma, colorectal cancer, pancreatic cancer, kidney cancer, hepatocellular cancer, malignant mesothelioma, leukemia, lymphoma, myelodysplasia syndrome, multiple myeloma, transitional cell carcinoma, neuroblastoma, plasma cell neoplasms, Wilm's tumor, or hepatocellular carcinoma.
137. The method of clause 135 or 136, wherein the cancer is a refractory cancer.
138. The method of clause 133, wherein the compound is administered in combination with one or more additional cancer therapies.
139. The method of clause 138, wherein the one or more additional cancer therapies comprises surgery, radiotherapy, chemotherapy, toxin therapy, immunotherapy, cryotherapy or gene therapy, or a combination thereof.
140. The method of clause 139, wherein chemotherapy comprises administering one or more additional chemotherapeutic agents.
141. The method of clause 140, wherein the one or more additional chemotherapeutic agents is selected from an alkylating agent (e.g., cisplatin, carboplatin, mechlorethamine, cyclophosphamide, chlorambucil, ifosfamide and/or oxaliplatin); an anti-metabolite (e.g., azathioprine and/or mercaptopurine); a terpenoid (e.g., a vinca alkaloid and/or a taxane; e.g., Vincristine, Vinblastine, Vinorelbine and/or Vindesine Taxol, Pacllitaxel and/or Docetaxel); a topoisomerase (e.g., a type I topoisomerase and/or a type 2 topoisomerase; e.g., camptothecins, such as irinotecan and/or topotecan; amsacrine, etoposide, etoposide phosphate and/or teniposide); a cytotoxic antibiotic (e.g., actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubicin, epirubicin, bleomycin, plicamycin and/or mitomycin); a hormone (e.g., a lutenizing hormone releasing hormone agonist; e.g., leuprolidine, goserelin, triptorelin, histrelin, bicalutamide, flutamide and/or nilutamide); an antibody (e.g., Abciximab, Adalimumab, Alemtuzumab, Atlizumab, Basiliximab, Belimumab, Bevacizumab, Bretuximab vedotin, Canakinumab, Cetuximab, Ceertolizumab pegol, Daclizumab, Denosumab, Eculizumab, Efalizumab, Gemtuzumab, Golimumab, Golimumab, Ibritumomab tiuxetan, Infliximab, Ipilimumab, Muromonab-CD3, Natalizumab, Ofatumumab, Omalizumab, Palivizumab, Panitumuab, Ranibizumab, Rituximab, Tocilizumab, Tositumomab and/or Trastuzumab); an anti-angiogenic agent; a cytokine; a thrombotic agent; a growth inhibitory agent; an anti-helminthic agent; and an immune checkpoint inhibitor that targets an immune checkpoint receptor selected from the group consisting of CTLA-4, PD-1, PD-L1, PD-1-PD-L1, PD-1-PD-L2, interleukin-2 (IL-2), indoleamine 2,3-dioxygenase (IDO), IL-10, transforming growth factor-β (TGFβ), T cell immunoglobulin and mucin 3 (TIM3 or HAVCR2), Galectin 9-TIM3, Phosphatidylserine-TIM3, lymphocyte activation gene 3 protein (LAG3), MHC class II-LAG3, 4-1BB-4-1BB ligand, OX40-OX40 ligand, GITR, GITR ligand-GITR, CD27, CD70-CD27, TNFRSF25, TNFRSF25-TL1A, CD40L, CD40-CD40 ligand, HVEM-LIGHT-LTA, HVEM, HVEM-BTLA, HVEM-CD160, HVEM LIGHT, HVEM-BTLA-CD160, CD80, CD80-PDL-1, PDL2-CD80, CD244, CD48 CD244, CD244, ICOS, ICOS-ICOS ligand, B7-H3, B7-H4, VISTA, TMIGD2, HHLA2-TMIGD2, Butyrophilins, including BTNL2, Siglec family, TIGIT and PVR family members, KIRs, ILTs and LIRs, NKG2D and NKG2A, MICA and MICB, CD244, CD28, CD86-CD28, CD86-CTLA, CD80-CD28, CD39, CD73 Adenosine-CD39-CD73, CXCR4-CXCL12, Phosphatidylserine, TIM3, Phosphatidylserine-TIM3, SIRPA-CD47, VEGF, Neuropilin, CD160, CD30, and CD155 (e.g., CTLA-4 or PD1 or PD-L1).
142. The method of any one of clauses 133-141, wherein the compound is administered intratumorally.
143. A method of treating cancer, comprising administering to a subject in need of such treatment an effective amount of a compound as defined in any one of clauses 1-124, or a pharmaceutical composition as defined in clause 125.
144. The method of clause 143, wherein the cancer is selected from the group consisting of melanoma, cervical cancer, breast cancer, ovarian cancer, prostate cancer, testicular cancer, urothelial carcinoma, bladder cancer, non-small cell lung cancer, small cell lung cancer, sarcoma, colorectal adenocarcinoma, gastrointestinal stromal tumors, gastroesophageal carcinoma, colorectal cancer, pancreatic cancer, kidney cancer, hepatocellular cancer, malignant mesothelioma, leukemia, lymphoma, myelodysplasia syndrome, multiple myeloma, transitional cell carcinoma, neuroblastoma, plasma cell neoplasms, Wilm's tumor, or hepatocellular carcinoma.
145. The method of clauses 143 or 144, wherein the cancer is a refractory cancer.
146. The method of clause 143, wherein the compound is administered in combination with one or more additional cancer therapies.
147. The method of clause 146, wherein the one or more additional cancer therapies comprises surgery, radiotherapy, chemotherapy, toxin therapy, immunotherapy, cryotherapy or gene therapy, or a combination thereof.
148. The method of clause 147, wherein chemotherapy comprises administering one or more additional chemotherapeutic agents.
149. The method of clause 147, wherein the one or more additional chemotherapeutic agents is selected from an alkylating agent (e.g., cisplatin, carboplatin, mechlorethamine, cyclophosphamide, chlorambucil, ifosfamide and/or oxaliplatin); an anti-metabolite (e.g., azathioprine and/or mercaptopurine); a terpenoid (e.g., a vinca alkaloid and/or a taxane; e.g., Vincristine, Vinblastine, Vinorelbine and/or Vindesine Taxol, Pacllitaxel and/or Docetaxel); a topoisomerase (e.g., a type I topoisomerase and/or a type 2 topoisomerase; e.g., camptothecins, such as irinotecan and/or topotecan; amsacrine, etoposide, etoposide phosphate and/or teniposide); a cytotoxic antibiotic (e.g., actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubicin, epirubicin, bleomycin, plicamycin and/or mitomycin); a hormone (e.g., a lutenizing hormone releasing hormone agonist; e.g., leuprolidine, goserelin, triptorelin, histrelin, bicalutamide, flutamide and/or nilutamide); an antibody (e.g., Abciximab, Adalimumab, Alemtuzumab, Atlizumab, Basiliximab, Belimumab, Bevacizumab, Bretuximab vedotin, Canakinumab, Cetuximab, Ceertolizumab pegol, Daclizumab, Denosumab, Eculizumab, Efalizumab, Gemtuzumab, Golimumab, Golimumab, Ibritumomab tiuxetan, Infliximab, Ipilimumab, Muromonab-CD3, Natalizumab, Ofatumumab, Omalizumab, Palivizumab, Panitumuab, Ranibizumab, Rituximab, Tocilizumab, Tositumomab and/or Trastuzumab); an anti-angiogenic agent; a cytokine; a thrombotic agent; a growth inhibitory agent; an anti-helminthic agent; and an immune checkpoint inhibitor that targets an immune checkpoint receptor selected from the group consisting of CTLA-4, PD-1, PD-L1, PD-1-PD-L1, PD-1-PD-L2, interleukin-2 (IL-2), indoleamine 2,3-dioxygenase (IDO), IL-10, transforming growth factor-β (TGFβ), T cell immunoglobulin and mucin 3 (TIM3 or HAVCR2), Galectin 9-TIM3, Phosphatidylserine-TIM3, lymphocyte activation gene 3 protein (LAG3), MHC class II-LAG3, 4-1BB-4-1BB ligand, OX40-OX40 ligand, GITR, GITR ligand-GITR, CD27, CD70-CD27, TNFRSF25, TNFRSF25-TL1A, CD40L, CD40-CD40 ligand, HVEM-LIGHT-LTA, HVEM, HVEM-BTLA, HVEM-CD160, HVEM LIGHT, HVEM-BTLA-CD160, CD80, CD80-PDL-1, PDL2-CD80, CD244, CD48 CD244, CD244, ICOS, ICOS-ICOS ligand, B7-H3, B7-H4, VISTA, TMIGD2, HHLA2-TMIGD2, Butyrophilins, including BTNL2, Siglec family, TIGIT and PVR family members, KIRs, ILTs and LIRs, NKG2D and NKG2A, MICA and MICB, CD244, CD28, CD86-CD28, CD86-CTLA, CD80-CD28, CD39, CD73 Adenosine-CD39-CD73, CXCR4-CXCL12, Phosphatidylserine, TIM3, Phosphatidylserine-TIM3, SIRPA-CD47, VEGF, Neuropilin, CD160, CD30, and CD155 (e.g., CTLA-4 or PD1 or PD-L1).
150. The method of any one of clauses 143-149, wherein the compound is administered intratumorally.
151. A method of inducing an immune response in a subject in need thereof, the method comprising administering to the subject an effective amount of a compound as defined in any one of clauses 1-124, or a pharmaceutical composition as defined in clause 125.
152. The method of clause 151, wherein the subject has cancer.
153. The method of clause 152, wherein the subject has undergone and/or is undergoing and/or will undergo one or more cancer therapies.
154. The method of clause 152, wherein the cancer selected from the group consisting of melanoma, cervical cancer, breast cancer, ovarian cancer, prostate cancer, testicular cancer, urothelial carcinoma, bladder cancer, non-small cell lung cancer, small cell lung cancer, sarcoma, colorectal adenocarcinoma, gastrointestinal stromal tumors, gastroesophageal carcinoma, colorectal cancer, pancreatic cancer, kidney cancer, hepatocellular cancer, malignant mesothelioma, leukemia, lymphoma, myelodysplasia syndrome, multiple myeloma, transitional cell carcinoma, neuroblastoma, plasma cell neoplasms, Wilm's tumor, or hepatocellular carcinoma.
155. The method of clause any one of clauses 152-154, wherein the cancer is a refractory cancer.
156. The method of clause 151, wherein the immune response is an innate immune response.
157. The method of clause 156, wherein the at least one or more cancer therapies comprises surgery, radiotherapy, chemotherapy, toxin therapy, immunotherapy, cryotherapy or gene therapy, or a combination thereof.
158. The method of clause 157, wherein chemotherapy comprises administering one or more additional chemotherapeutic agents.
159. The method of clause 158, wherein the one or more additional chemotherapeutic agents is selected from alkylating agent (e.g., cisplatin, carboplatin, mechlorethamine, cyclophosphamide, chlorambucil, ifosfamide and/or oxaliplatin); an anti-metabolite (e.g., azathioprine and/or mercaptopurine); a terpenoid (e.g., a vinca alkaloid and/or a taxane; e.g., Vincristine, Vinblastine, Vinorelbine and/or Vindesine Taxol, Pacllitaxel and/or Docetaxel); a topoisomerase (e.g., a type I topoisomerase and/or a type 2 topoisomerase; e.g., camptothecins, such as irinotecan and/or topotecan; amsacrine, etoposide, etoposide phosphate and/or teniposide); a cytotoxic antibiotic (e.g., actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubicin, epirubicin, bleomycin, plicamycin and/or mitomycin); a hormone (e.g., a lutenizing hormone releasing hormone agonist; e.g., leuprolidine, goserelin, triptorelin, histrelin, bicalutamide, flutamide and/or nilutamide); an antibody (e.g., Abciximab, Adalimumab, Alemtuzumab, Atlizumab, Basiliximab, Belimumab, Bevacizumab, Bretuximab vedotin, Canakinumab, Cetuximab, Ceertolizumab pegol, Daclizumab, Denosumab, Eculizumab, Efalizumab, Gemtuzumab, Golimumab, Golimumab, Ibritumomab tiuxetan, Infliximab, Ipilimumab, Muromonab-CD3, Natalizumab, Ofatumumab, Omalizumab, Palivizumab, Panitumuab, Ranibizumab, Rituximab, Tocilizumab, Tositumomab and/or Trastuzumab); an anti-angiogenic agent; a cytokine; a thrombotic agent; a growth inhibitory agent; an anti-helminthic agent; and an immune checkpoint inhibitor that targets an immune checkpoint receptor selected from the group consisting of CTLA-4, PD-1, PD-L1, PD-1-PD-L1, PD-1-PD-L2, interleukin-2 (IL-2), indoleamine 2,3-dioxygenase (IDO), IL-10, transforming growth factor-β (TGFβ), T cell immunoglobulin and mucin 3 (TIM3 or HAVCR2), Galectin 9-TIM3, Phosphatidylserine-TIM3, lymphocyte activation gene 3 protein (LAG3), MHC class II-LAG3, 4-1BB-4-1BB ligand, OX40-OX40 ligand, GITR, GITR ligand-GITR, CD27, CD70-CD27, TNFRSF25, TNFRSF25-TL1A, CD40L, CD40-CD40 ligand, HVEM-LIGHT-LTA, HVEM, HVEM-BTLA, HVEM-CD160, HVEM LIGHT, HVEM-BTLA-CD160, CD80, CD80-PDL-1, PDL2-CD80, CD244, CD48 CD244, CD244, ICOS, ICOS-ICOS ligand, B7-H3, B7-H4, VISTA, TMIGD2, HHLA2-TMIGD2, Butyrophilins, including BTNL2, Siglec family, TIGIT and PVR family members, KIRs, ILTs and LIRs, NKG2D and NKG2A, MICA and MICB, CD244, CD28, CD86-CD28, CD86-CTLA, CD80-CD28, CD39, CD73 Adenosine-CD39-CD73, CXCR4-CXCL12, Phosphatidylserine, TIM3, Phosphatidylserine-TIM3, SIRPA-CD47, VEGF, Neuropilin, CD160, CD30, and CD155 (e.g., CTLA-4 or PD1 or PD-L1).
160. A method of treatment of a disease in which increased (e.g., excessive) STING signaling contributes to the pathology and/or symptoms and/or progression of the disease, comprising administering to a subject in need of such treatment an effective amount of a compound as defined in any one of clauses 1-124, or a pharmaceutical composition as defined in clause 125.
161. A method of treatment comprising administering to a subject having a disease in which increased (e.g., excessive) STING signaling contributes to the pathology and/or symptoms and/or progression of the disease an effective amount of a compound as defined in any one of clauses 1-124, or a pharmaceutical composition as defined in clause 125.
162. A method of treatment comprising administering to a subject a compound as defined in any one of clauses 1-124, or a pharmaceutical composition as defined in clause 125, wherein the compound or composition is administered in an amount effective to treat a disease in which increased (e.g., excessive) STING signaling contributes to the pathology and/or symptoms and/or progression of the disease, thereby treating the disease.
163. The method of any one of clauses 160-162, wherein the disease is cancer.
164. The method of clause 163, wherein the cancer is selected from the group consisting of melanoma, cervical cancer, breast cancer, ovarian cancer, prostate cancer, testicular cancer, urothelial carcinoma, bladder cancer, non-small cell lung cancer, small cell lung cancer, sarcoma, colorectal adenocarcinoma, gastrointestinal stromal tumors, gastroesophageal carcinoma, colorectal cancer, pancreatic cancer, kidney cancer, hepatocellular cancer, malignant mesothelioma, leukemia, lymphoma, myelodysplasia syndrome, multiple myeloma, transitional cell carcinoma, neuroblastoma, plasma cell neoplasms, Wilm's tumor, or hepatocellular carcinoma.
165. The method of clause 163 or 164, wherein the cancer is a refractory cancer.
166. The method of any one of clauses 163-165, wherein the compound is administered in combination with one or more additional cancer therapies.
167. The method of clause 166, wherein the one or more additional cancer therapies comprises surgery, radiotherapy, chemotherapy, toxin therapy, immunotherapy, cryotherapy or gene therapy, or a combination thereof.
168. The method of clause 167, wherein chemotherapy comprises administering one or more additional chemotherapeutic agents.
169. The method of clause 168, wherein the one or more additional chemotherapeutic agents is selected from an alkylating agent (e.g., cisplatin, carboplatin, mechlorethamine, cyclophosphamide, chlorambucil, ifosfamide and/or oxaliplatin); an anti-metabolite (e.g., azathioprine and/or mercaptopurine); a terpenoid (e.g., a vinca alkaloid and/or a taxane; e.g., Vincristine, Vinblastine, Vinorelbine and/or Vindesine Taxol, Pacllitaxel and/or Docetaxel); a topoisomerase (e.g., a type I topoisomerase and/or a type 2 topoisomerase; e.g., camptothecins, such as irinotecan and/or topotecan; amsacrine, etoposide, etoposide phosphate and/or teniposide); a cytotoxic antibiotic (e.g., actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubicin, epirubicin, bleomycin, plicamycin and/or mitomycin); a hormone (e.g., a lutenizing hormone releasing hormone agonist; e.g., leuprolidine, goserelin, triptorelin, histrelin, bicalutamide, flutamide and/or nilutamide); an antibody (e.g., Abciximab, Adalimumab, Alemtuzumab, Atlizumab, Basiliximab, Belimumab, Bevacizumab, Bretuximab vedotin, Canakinumab, Cetuximab, Ceertolizumab pegol, Daclizumab, Denosumab, Eculizumab, Efalizumab, Gemtuzumab, Golimumab, Golimumab, Ibritumomab tiuxetan, Infliximab, Ipilimumab, Muromonab-CD3, Natalizumab, Ofatumumab, Omalizumab, Palivizumab, Panitumuab, Ranibizumab, Rituximab, Tocilizumab, Tositumomab and/or Trastuzumab); an anti-angiogenic agent; a cytokine; a thrombotic agent; a growth inhibitory agent; an anti-helminthic agent; and an immune checkpoint inhibitor that targets an immune checkpoint receptor selected from the group consisting of CTLA-4, PD-1, PD-L1, PD-1-PD-L1, PD-1-PD-L2, interleukin-2 (IL-2), indoleamine 2,3-dioxygenase (IDO), IL-10, transforming growth factor-β (TGFβ), T cell immunoglobulin and mucin 3 (TIM3 or HAVCR2), Galectin 9-TIM3, Phosphatidylserine-TIM3, lymphocyte activation gene 3 protein (LAG3), MHC class II-LAG3, 4-1BB-4-1BB ligand, OX40-OX40 ligand, GITR, GITR ligand-GITR, CD27, CD70-CD27, TNFRSF25, TNFRSF25-TL1A, CD40L, CD40-CD40 ligand, HVEM-LIGHT-LTA, HVEM, HVEM-BTLA, HVEM-CD160, HVEM LIGHT, HVEM-BTLA-CD160, CD80, CD80-PDL-1, PDL2-CD80, CD244, CD48-CD244, CD244, ICOS, ICOS-ICOS ligand, B7-H3, B7-H4, VISTA, TMIGD2, HHLA2-TMIGD2, Butyrophilins, including BTNL2, Siglec family, TIGIT and PVR family members, KIRs, ILTs and LIRs, NKG2D and NKG2A, MICA and MICB, CD244, CD28, CD86-CD28, CD86-CTLA, CD80-CD28, CD39, CD73 Adenosine-CD39-CD73, CXCR4-CXCL12, Phosphatidylserine, TIM3, Phosphatidylserine-TIM3, SIRPA-CD47, VEGF, Neuropilin, CD160, CD30, and CD155 (e.g., CTLA-4 or PD1 or PD-L1).
170. The method of any one of clauses 160-169, wherein the compound is administered intratumorally.
171. A method of treatment of a disease, disorder, or condition associated with STING, comprising administering to a subject in need of such treatment an effective amount of a compound as defined in any one of clauses 1-124, or a pharmaceutical composition as defined in clause 125.
172. The method of clause 171, wherein the disease, disorder, or condition is selected from type I interferonopathies, Aicardi-Goutières Syndrome (AGS), genetic forms of lupus, inflammation-associated disorders, and rheumatoid arthritis.
173. The method of clause 172, wherein the disease, disorder, or condition is a type I interferonopathy (e.g., STING-associated vasculopathy with onset in infancy (SAVI)).
174. The method of clause 173, wherein the type I interferonopathy is STING-associated vasculopathy with onset in infancy (SAVI)).
175. The method of clause 172, wherein the disease, disorder, or condition is Aicardi-Goutières Syndrome (AGS).
176. The method of clause 172, wherein the disease, disorder, or condition is a genetic form of lupus.
177. The method of clause 172, wherein the disease, disorder, or condition is inflammation-associated disorder.
178. The method of clause 177, wherein the inflammation-associated disorder is systemic lupus erythematosus.
179. A combination comprising a compounds defined in any one of clauses 1-124 or a pharmaceutically acceptable salt or tautomer thereof, and one or more therapeutically active agents.
180. A compound defined in any one of clauses 1-124 or a pharmaceutically acceptable salt or tautomer thereof, or a pharmaceutical composition defined in clause 125, for use as a medicament.
181. A compound defined in any one of clauses 1-124 or a pharmaceutically acceptable salt or tautomer thereof, or a pharmaceutical composition defined in clause 125, for use in the treatment of a disease, condition or disorder modulated by STING inhibition.
182. A compound defined in any one of clauses 1-124 or a pharmaceutically acceptable salt or tautomer thereof, or the pharmaceutical composition defined in clause 125, for use in the treatment of a disease mentioned in any one of clauses 126-178 (e.g., in any one of clauses 131, 135-137, 144-145, 152, 154, 155, 160-165, or 171-178).
183. Use of a compound defined in any one of clauses 1-124 or a pharmaceutically acceptable salt or tautomer thereof, or a pharmaceutical composition defined in clause 125, in the manufacture of a medicament for the treatment of a disease mentioned in in any one of clauses 126-178 (e.g., in any one of clauses 131, 135-137, 144-145, 152, 154, 155, 160-165, or 171-178).
This application claims the benefit of U.S. Provisional Application Ser. No. 63/126,286, filed on Dec. 16, 2020 which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/063827 | 12/16/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63126286 | Dec 2020 | US |