The field of the invention is a method to eliminate a substituent of an aryl substrate that is in an ortho position to a tertiary amide or ester ortho-directing group, and in some embodiments to form a C—C bond between aryl substrates and aryl and/or aliphatic substituents whereby the substituents bond at an ortho position relative to an ester or tertiary amide ortho-directing group. The field of the invention includes compounds that have been made by such methods.
Transition metal-catalyzed cross coupling reactions are arguably the most important C—C bond formation tools in organic synthesis in last 40 years (Corbet, J. P. et al., Chem. Rev. 2006, 106, 2651-2710; de Meijere, A.; Diederich, F.; (Eds) Metal-Catalyzed Cross-Coupling Reactions (2nd Edition); Wiley: Weinheim, 2004; and Beller, M.; Bolm, C.; (Eds) Transition Metals for Organic Synthesis; Wiley: Weinheim, 2004). Of these, aryl-alkene and aryl-aryl sp2-sp2 cross couplings, such as the Mizoroki-Heck, Suzuki-Miyaura, Negishi, Migita-Stille and Kumada-Corriu cross couplings discovered in the 1970s, have been well-explored and broadly used for constructing C—C bonds. Most of these reactions involve cleavage of carbon-halogen and carbon-pseudohalogen bonds with transition metals (mostly Pd and Ni) and coupling with organometallic reagent species C—B, C—Zn, C—Sn and C—Mg in the Suzuki-Miyaura, Negishi, Migita-Stille and Kumada-Corriu cross couplings respectively. These couplings, in which both of aryl halides and organometallic reagents are required and which are called traditional cross couplings, generate stoichiometric amounts of halogen ions and metal species as undesired by-products which, except for boron, are ecologically harmful. Since the seminal work of Murai (Mural, S.; (Ed.). Topics in Organometallic Chemistry 1999, 3, Springer: New York.), chemists have tried to develop cross coupling reactions which originate from direct activation of unreactive bonds, especially C—H, C—O, C—N bonds which are among the most abundant bonds in organic molecules. Such reactions would be powerful synthetic strategies for C—C bond formation and could establish convenient, economical and green alternatives to traditional cross coupling processes.
In 2003, Mural, Chatani, Kakiuchi and co-workers reported a new type of C—H bond arylation in the Ru-catalyzed coupling of ketones with organoboronates to give biaryls in good yields (Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2003, 125, 1698-1699). The catalyst (RuH2(CO)(PPh3)3) and solvent (toluene) are employed in this process. Both ortho C—H bonds are activated in an acetophenone substrate to give 2,6-diaryl products. Notably, a bulky t-butyl ketone (phenyl pivaloyl ketone) was used to avoid having two ortho C—H bond activation potentials involved in the reaction and therefore only one C—H activation proceeded. Electron donating groups and electron withdrawing groups including Me, CF3, F, NMe2 and OMe in both of starting materials were tolerated. However, at least 2:1 ratio of ketone:organoboronate was required for high yield coupling due to the existence of a reduction reaction, a feature which decreases the utility of the reaction for expensive and precious ketone substrates.
To overcome the above deficiency, aliphatic ketones such as pinacolone and acetone, which are more reactive than aryl ketones, were introduced as solvent to act as hydride scavenger from Ru—H generated by Ru insertion into the ortho-C—H bond of aromatic ketones. After this improvement, using an almost 1:1 ratio of aromatic ketone and organoboronate partners, the coupling reaction proceeded in good to excellent yields (Kakiuchi, F.; Matsuura, Y.; Kan, S.; Chatani, N. J. Am. Chem. Soc. 2005, 127, 5936-5945).
Reductive aryl C—O bond cleavage in derivatives such as C—OTf, C—OAc, C—OPiv, C—OCONEt2, C—OCO2Bu-t and C—OSO2NMe2, are significant recent reactions in the organic chemist's tool box (de Meijere, A.; Diederich, F.; (Eds) Metal-Catalyzed Cross-Coupling Reactions (2nd Edition); Wiley: Weinheim, 2004; Guan, B. T. et al., J. Am. Chem. Soc. 2008, 130, 14468-14470; Li, B. J. et al., J. Angew. Chem. Int. Ed. 2008, 47, 10124-10127; Quasdorf, K. W. et al., J. Am. Chem. Soc. 2008, 130, 14422-14423; Quasdorf, K. W. et al., J. Am. Chem. Soc. 2009, 131, 17748-17749; and Antoft-Finch, A. et al., J. Am. Chem. Soc. 2009, 131, 17750-17752). Of these, reductive C—OTf bond cleavage has received broad application. Furthermore, these C—O functional groups serve as complementary cross coupling partners to aryl halides, allowing consideration of alternative phenol-derived processes to a halide, can directly undergo Suzuki cross coupling with organoboron partners. However, some drawbacks of these methodologies remain: i) all functional groups are characterized by at least modest or strong electron-withdrawing groups (EWGs), e.g., Tf, Ac, Piv, CONEt2, CO2Bu-t and SO2NMe2, for assisting oxidative addition by transition metal catalysts; ii) require expensive pre-preparation such as synthesis of aryl triflates from phenols with triflic anhydride. Considering the broad and commercial availability of aryl ethers, a discovery of a transition metal process for C—OMe bond cleavage would provide a convenient and powerful method for cross coupling.
In 2004, Kakiuchi-Chatani-Murai's group discovered a new type of C—O bond cleavage of aryl ethers by Ru-catalysis under chelation assistance (Kakiuchi, F. et al. J. Am. Chem. Soc. 2004, 126, 2706-2707). The new reaction involves Ru-catalyzed ketone-directed C—OMe bond activation and Suzuki-type C—C cross coupling with organoboronates. The scope for organoboroneopentylates was examined and a variety of functional groups in the arylboronates (Me, vinyl, OMe, F and CF3) were found to be compatible. Both of C—H and C—O activation/coupling reactions occurred simultaneously when 2-methoxy acetophenone was employed. In order to avoid undesired C—H activation, a bulky t-butyl ketone was used for blocking the C—H activation by steric effects.
Aryl C—N bonds have high bond dissociation enthalpies. Among the abundant bonds in organic molecules, the aromatic C—N bond is an unreactive or difficult-to-cleave bond for organic synthesis manipulation. As part of research in chelation-assisted reactions of aryl ketones with organoborates, Kakiuchi and co-workers discovered the Ru-catalyzed C—N bond activation/Suzuki-type cross coupling reaction (Ueno, S.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 6098-6099). The reaction is carried out under conditions similar to those used for the directed C—OMe bond activation/cross coupling reactions (Ueno, S.; Mizushima, E.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2006, 128, 16516-16517). The ketone directing group and RuH2(CO)(PPh3)3 catalysis play a key role in the necessary C—NR2 activation, in which the coordination of Ru(O) to the ketone carbonyl assists Ru(O) insertion into the C—NR2 bond analogous to the C—OMe insertion process. Similarly, the bulky t-butyl is used to avoid the undesired C—H activation as in the C—OMe activation case.
Directed ortho metalation (DoM) reactions have become an important synthetic tool for aromatic ring C—H functionalization in organic synthesis and is widely used in research and in industry (Snieckus, V. Chem. Rev. 1990, 90, 879-933; Hartung, C. G. et al., Modern Arene Chemistry 2002, 330-367. Wiley: Weinheim; and Snieckus, V., et al., Handbook of C—H Transformations 2005, 1, 106-118, 262-264. Wiley: Weinheim). Furthermore, a combined DoM-cross coupling strategy (see Scheme 1,
However, requisitions such as harsh conditions (e.g., low temperature and strong base, usually −78° C. and BuLi) have limited the applications of DoM chemistry. The necessity of stoichiometric or excess amounts of base is still a drawback in these reactions.
To the best of our knowledge, only two examples of tertiary amide mediated catalytic C—H bond functionalization have been reported: the first case involves the Ru3(CO)12-catalyzed silylation of a C—H bond of furan 2-carboxamide 1 (see below) (Kakiuchi, F. et al., Chem. Lett. 2000, 750-751). This reaction was carried out to test the amide-directed C—H activation/olefin coupling reaction which did proceed to give 2 but in very low yield, the major product being the 3-TMS derivative 3, a mechanistically interesting result. The second example is the Pd(OAc)2-catalyzed C—H activation/arylation of the thiophene amide 4 which leads to products 5 and 6 whose formation evidently occurs by non-ortho and ortho-directing group activation reactions (see below) (Okazawa, T. et al., J. Am. Chem. Soc. 2002, 124, 5286-5287). In addition, it has been reported that a tertiary benzamide was examined for an amide-directed C—H activation/arylation under Pd(OAc)2/PPh3/Cs2CO3 catalysis condition but that this reaction failed to give coupled product (Kametani, Y. et al., Tetrahedron Lett. 2000, 41, 2655-2658).
Amide-directed C—O and C—N bond functionalizations are not previously known. The discovery of an amide-directed catalytic arylation reaction will fill a need: a catalytic base-free DoM-cross coupling process at non-cryogenic temperatures.
In a first aspect the invention provides a method of forming a carbon-carbon (C1—C2) bond between an aryl ring carbon (C1) and an addition moiety carbon (C2), comprising combining in an inert atmosphere to form a reaction mixture: (i) an aryl substrate comprising a substituent which is an ester or amide ortho-directing group in an ortho position to a departing substituent, wherein for amide directing groups, the departing substituent is bonded to an aryl ring carbon (C1) through a hydrogen, oxygen, or nitrogen atom, and wherein for ester directing groups, the departing substituent is bonded to an aryl ring carbon (C1) through an oxygen or nitrogen atom; (ii) a boronate comprising a boron bonded to an addition moiety through a carbon (C2); and (iii) a catalytic amount of a ruthenium or rhodium complex; allowing reaction to proceed under suitable conditions of temperature and pressure for an appropriate reaction time to produce a product that is a modified form of the aryl substrate, wherein the modification is that the addition moiety has replaced the departing substituent and is bonded through its carbon (C2) to the ring carbon (C1), and is ortho to the ester or amide ortho-directing group.
In embodiments of this aspect the aryl substrate is heteroaryl. In certain embodiments heteroaryl is furanyl, pyridyl, pyrimidinyl, indolyl, or thiophenenyl. In certain embodiments aryl comprises fused aryl rings. In certain embodiments fused aryl rings are naphthylene, anthracene, or phenanthrene. In embodiments of this aspect the boronate is
wherein addition group “R” is an aryl, aliphatic, aliphatic-aryl, or aryl-aliphatic moiety. In certain embodiments, the boronate is
In another embodiment of this aspect the suitable conditions of temperature comprises heating to a temperature range from about 80° C. to about 250° C. In some embodiments, the said suitable conditions of temperature comprises heating to about 120° C. In some embodiments, when the ortho-directing group is ester and the aryl substrate comprises fused aryl rings, the departing substituent is bonded to the aryl ring carbon (C1) through an oxygen atom. In some embodiments, when the ortho-directing group is ester and the aryl substrate is a phenyl ring, the departing substituent is bonded to an aryl ring carbon (C1) through a nitrogen atom.
In a second aspect the invention provides a method of removing a NR2 or OR substituent from an aromatic substrate, comprising combining in an inert atmosphere to form a reaction mixture: (i) an aromatic substrate that comprises a ring carbon substituted by NR2 or OR, wherein said NR2 or OR is located ortho to an ortho-directing group; (ii) a reductant; and (iii) a catalytic amount of a ruthenium or rhodium complex; allowing reaction to proceed under suitable conditions of temperature and pressure for an appropriate reaction time to produce a product that is a modified form of the aromatic substrate, wherein the modification is that the NR2 or OR substituent has been replaced by H; wherein R is aliphatic, aryl, aliphatic-aryl or aryl-aliphatic.
In embodiments of this aspect the reaction mixture is neat. In certain embodiments of this aspect the reaction mixture comprises solvent. In embodiments of this aspect the reductant is Et3SiH or DIBAL-H. In certain embodiments of this aspect the reaction is hydrodemethoxylation of a biaryl amide and the reductant is Et3SiH. In embodiments of this aspect, the reaction is hydrodemethoxylation of a naphthamide and the reductant is Et3SiH. In certain embodiments of this aspect the reaction is hydrodemethoxylation of a benzamide and the reductant is DIBAL-H. In some embodiments of this aspect, the ruthenium or rhodium complex comprises RuH2(CO)(PPh3)3, Ru3(CO)12, Ru(CO)2(PPh3)3, Cp*Rh(C2H3SiMe3)2, or RuHCl(CO)(PPh3)3. In certain embodiments, the ruthenium complex comprises RuH2(CO)(PPh3)3. In embodiments of this aspect, the ortho-directing group is an amide moiety. In certain embodiments of this aspect, amide moiety is C(O)NEt2, or C(O)NMe2. In some embodiments of this aspect, combining in an inert atmosphere comprises mixing in a N2 or argon atmosphere, or mixing in a tube under N2 or argon and then sealing the tube. An embodiment of this aspect further comprises filtering through silica gel to separate any solids, reducing the volume of filtrate under vacuum, and purifying.
In a third aspect the invention provides a compound which is:
In a fourth aspect the invention provides a compound which is:
In a fifth aspect the invention provides a compound which is:
In a sixth aspect the invention provides a compound which is:
In a seventh aspect the invention provides a compound which is:
In an eighth aspect the invention provides a compound which is:
In a ninth aspect the invention provides a compound which is:
In a tenth aspect the invention provides a compound which is:
In an eleventh aspect the invention provides a method of making a compound of Table 2, comprising combining in an appropriate solvent and under an inert atmosphere to form a reaction mixture: an aryl substrate bearing a tertiary amide ortho-directing group ortho to a hydrogen; a boronate comprising a boron bonded through a carbon atom to an addition moiety; and a catalytic amount of a ruthenium or rhodium complex; allowing reaction to proceed under suitable conditions of temperature and pressure for an appropriate reaction time to produce a product that is a modified form of the aryl substrate, wherein the modification is that the addition moiety has replaced the hydrogen.
In embodiments of this aspect the amide is CONEt2. In certain embodiments of this aspect the appropriate solvent is toluene. In some embodiments of this aspect, the ruthenium or rhodium complex comprises RuH2(CO)(PPh3)3, Ru3(CO)12, Ru(CO)2(PPh3)3, Cp*Rh(C2H3SiMe3)2, or RuHCl(CO)(PPh3)3. In certain embodiments, the ruthenium complex comprises RuH2(CO)(PPh3)3. In certain embodiments of this aspect, the suitable conditions of temperature comprises heating to 120° C. In certain embodiments of this aspect, the addition moiety is aliphatic, aryl, or a combination thereof. In some embodiments of this aspect, the appropriate reaction time is about 24 h to 44 h. In certain embodiments of this aspect, the boronate is added in excess relative to the substrate.
In a twelfth aspect the invention provides a method of making a compound of Table 3, comprising combining in an appropriate solvent and under an inert atmosphere to form a reaction mixture: an aryl substrate bearing an amide directing group ortho to an NR2 moiety, a boronate comprising a boron bonded through a carbon atom to an addition moiety; and a catalytic amount of a ruthenium or rhodium complex; allowing reaction to proceed under suitable conditions of temperature and pressure for an appropriate reaction time to produce a product that is a modified form of the aryl substrate, wherein the modification is that the addition moiety has replaced the NR2 moiety.
In certain embodiments of this aspect, the amide is CONEt2. In some embodiments of this aspect, the appropriate solvent is toluene. In certain embodiments of this aspect, the ruthenium or rhodium complex comprises RuH2(CO)(PPh3)3, Ru3(CO)12, Ru(CO)2(PPh3)3, Cp*Rh(C2H3SiMe3)2, or RuHCl(CO)(PPh3)3. In certain embodiments, the ruthenium complex comprises RuH2(CO)(PPh3)3. In some embodiments of this aspect, the suitable conditions of temperature comprises heating to 125° C. In some embodiments of this aspect, the addition moiety is aliphatic, aryl, or a combination thereof. In embodiments of this aspect, the appropriate reaction time is about 1 h to 20 h. In some embodiments of this aspect, the boronate is added in excess relative to the substrate.
In a thirteenth aspect, the invention provides a method of making a compound of Table 5, comprising combining in an appropriate solvent and under an inert atmosphere to form a reaction mixture: an aryl substrate bearing an amide directing group ortho to an alkoxy moiety, a boronate comprising a boron bonded through a carbon atom to an addition moiety; and a catalytic amount of a ruthenium or rhodium complex; allowing reaction to proceed under suitable conditions of temperature and pressure for an appropriate reaction time to produce a product that is a modified form of the aryl substrate, wherein the modification is that the addition moiety has replaced the alkoxy moiety.
In some embodiments of this aspect, the amide is CONEt2. In some embodiments of this aspect, the appropriate solvent is toluene. In some embodiments of this aspect, the ruthenium or rhodium complex comprises RuH2(CO)(PPh3)3, Ru3(CO)12, Ru(CO)2(PPh3)3, Cp*Rh(C2H3SiMe3)2, or RuHCl(CO)(PPh3)3. In certain embodiments, the ruthenium complex comprises RuH2(CO)(PPh3)3. In some embodiments of this aspect, the suitable conditions of temperature comprises heating to 125° C. In certain embodiments of this aspect, the addition moiety is aliphatic, aryl, or a combination thereof. In some embodiments of this aspect, the appropriate reaction time is about 20 h. In some embodiments of this aspect, the boronate is added in excess relative to the substrate.
In a fourteenth aspect the invention provides a method of making a compound of Table 6, comprising combining in an appropriate solvent and under an inert atmosphere to form a reaction mixture: an aryl substrate bearing an amide directing group ortho to an alkoxy moiety and at least one other substitutent, a boronate comprising a boron bonded through a carbon atom to an addition moiety; and a catalytic amount of a ruthenium or rhodium complex; allowing reaction to proceed under suitable conditions of temperature and pressure for an appropriate reaction time to produce a product that is a modified form of the aryl substrate, wherein the modification is that the addition moiety has replaced the alkoxy moiety.
In certain embodiments of this aspect, the amide is CONEt2. In certain embodiments of this aspect, the appropriate solvent is toluene. the ruthenium or rhodium complex comprises RuH2(CO)(PPh3)3, Ru3(CO)12, Ru(CO)2(PPh3)3, Cp*Rh(C2H3SiMe3)2, or RuHCl(CO)(PPh3)3. In certain embodiments, the ruthenium complex comprises RuH2(CO)(PPh3)3. In certain embodiments of this aspect, the suitable conditions of temperature comprises heating to 125° C. In some embodiments of this aspect, the addition moiety is an aryl moiety with a substituent para to the boron. In certain embodiments of this aspect, the addition moiety is aliphatic, aryl, or a combination thereof. In embodiments of this aspect, the appropriate reaction time is about 20 h. In certain embodiments of this aspect, the boronate is added in excess relative to the substrate.
In a fifteenth aspect the invention provides a method of forming an aryl ring that is at least di-substituted, comprising (a) combining in an inert atmosphere to form a reaction mixture: (i) an aryl substrate that has a substituent that is an amide ortho-directing group in an ortho position to a departing substituent, wherein the departing substituent is bonded to a ring carbon of the aryl substrate through a hydrogen, oxygen, or nitrogen atom, (ii) a boronate comprising a boron bonded to an addition moiety through a carbon; and (iii) a catalytic amount of a ruthenium or rhodium complex; (b) allowing reaction to proceed under suitable conditions of temperature and pressure for an appropriate reaction time to produce a cross coupling product that is a modified form of the aryl substrate, wherein the modification is that the addition moiety has replaced the departing substituent and is bonded through its carbon to the aryl ring carbon, and is ortho to the directing group; (d) combining to form a mixture (iv) Cp2ZrCl2, (v) a reducing agent LiAlH(OBu-t)3, LiBH(s-Bu)3, or a combination thereof, and (vi) the cross coupling product of step (b) wherein (iv) and (v) react to produce an intermediate product, which intermediate product then reacts with the cross coupling product to form a reduction product that is a reduced form of the cross coupling product.
In certain embodiments of this aspect, the cross coupling product is an amide-substituted aryl compound. In certain embodiments of this aspect, the reduction product is an aldehyde-substituted aryl compound.
In a sixteenth aspect the invention provides a compound made by the method of the fifteenth aspect. In embodiments of the sixteenth aspect, the cross coupling product is a compound of the third to ninth aspects. In certain embodiments of this aspect, the reduction product is an aryl compound bearing an aldehyde moiety in place of the cross coupling product's amide moiety. In an embodiment of the sixteenth aspect, the compound is:
In a seventeenth aspect the invention provides a compound comprising an aryl ring substituted by an amide and an aliphatic, aryl, aliphatic-aryl, or aryl-aliphatic substituent in an ortho position relative to the amide.
In a eighteenth aspect the invention provides a compound comprising an aryl ring substituted by an ester and an aliphatic, aryl, aliphatic-aryl, or aryl-aliphatic substituent in an ortho position relative to the ester.
In a nineteenth aspect the invention provides a compound made by the method of the fifteenth aspect comprising an aryl ring substituted by an amide and a H-substituent in the ortho position.
In embodiments of the seventeenth to nineteenth aspects, the invention provides a compound comprising further substituents.
In an twentieth aspect, the invention provides a compound which is:
Other objects and advantages of the present invention will become apparent from the disclosure herein.
For a better understanding of the invention and to show more clearly how it may be carried into effect, reference will now be made by way of example to the accompanying drawings, which illustrate aspects and features according to embodiments of the present invention, and in which:
As used herein, the term “cross coupling” refers to a type of chemical reaction where two hydrocarbon fragments are coupled together with aid of a metal containing catalyst.
As used herein, the term “DG” or “directing group” refers to a substituent on an aryl ring that directs an incoming electrophile to a specific relative position (e.g., ortho, meta, para).
As used herein, the term “hydrodemethoxylation” refers to a process wherein a methoxy (MeO) substituent on an aryl ring is replaced by a H.
As used herein, the term “activating group” refers to a functional group when an aryl ring, to which it is attached, more readily participates in electrophilic substitution reactions. Activating groups are generally ortho/para directing for electrophilic aromatic substitution.
As used herein, the term “aliphatic” refers to hydrocarbon moieties that are straight chain, branched or cyclic, may be alkyl, alkenyl or alkynyl, and may be substituted or unsubstituted.
As used herein, the terms “short chain aliphatic” or “lower aliphatic” refer to C1 to C4 aliphatic; the terms “long chain aliphatic” or “higher aliphatic” refer to C5 to C25 aliphatic.
As used herein, “heteroatom” refers to non-hydrogen and non-carbon atoms, such as, for example, O, S, and N.
As used herein, “Boc” refers to tert-butoxycarbonyl. As used herein, “Cbz” refers to benzyloxycarbonyl. As used herein, “TMS” refers to trimethylsilyl. As used herein, “Tf” refers to trifluoromethanesulfonyl.
As used herein, the term “aryl” means aromatic, including heteroaromatic.
As used herein, the term “amide” means a moiety including a nitrogen where at least one of the groups bound to the nitrogen is an acyl (i.e., —C(═O)—) group.
As used herein, the term “reduction” or “reduce” refers to a reaction that converts a functional group from a higher oxidation level to a lower oxidation level. Typically, a reduction reaction either adds hydrogen or removes an electronegative element (e.g., oxygen, nitrogen, or halogen) from a molecule.
As used herein, the term “benzamide” refers to a compound with a phenyl aryl group that has a —C(═O)NRbRc group bound to one of its ring atoms, where Rb and/or Rc may be hydrogen, substituted or unsubstituted lower aliphatic, and substituted or unsubstituted higher aliphatic.
As used herein, the term “Georg method” refers to a method of using pre-prepared Schwartz Reagent as a reducing agent that specifically targets certain functional groups, as described in White, J. M., Tunoori, A. R., Georg, G. I., J. Am. Chem. Soc. 2000, 122, 11995-11996.
As used herein, the term “tertiary amide” means a moiety including a nitrogen that is bonded to a carbonyl group where the nitrogen is also bonded to non-hydrogen moieties, i.e., RaC(═O)NRdRe where Rd and/or Re are typically aliphatic, but are not hydrogen. This should not be confused with a lesser-known use of the term “tertiary amide”; specifically, where there are three acyl groups on an amide nitrogen, i.e., [RaC(═O)]3N (this latter use is discussed in IUPAC Compendium of Chemical Terminology, 2nd ed. (1997) by Alan D. McNaught and Andrew Wilkinson, Royal Society of Chemistry, Cambridge, UK).
As used herein, the term “LiAlH(OBu-t)3” means lithium tri-(tert-butoxy)aluminum hydride, and the term “LiBH(s-Bu)3” means lithium tri-(sec-butyl)borohydride.
As used herein, the term “DIBAL-H” means diisobutylaluminum hydride.
As used herein, the term “Schwartz Reagent” means bis(cyclopentadienyl)-zirconium(IV) chloride hydride, which is also referred to herein as Cp2Zr(H)Cl.
As used herein, Schwartz Reagent Precursor means bis(cyclopentadienyl)-zirconium(IV) dichloride (Cp2ZrCl2).
As used herein, the term “in situ” has its ordinary chemical meaning of presence of a molecule in a reaction where it is generated therein instead of separately added.
As used herein, the term “substrate” means a compound that is desired to be converted to a product compound.
As used herein, the term “suitable conditions of temperature and pressure” means applying sufficient heat and/or pressure for a reaction to proceed. As one of skill in the art will know, under atmospheric pressure more heat may be required for a reaction to proceed than under higher presssure conditions.
Methods are described herein for eliminating a substituent of an aryl substrate that is in an ortho prosition to an amide or ester directing group. Methods are also provided to form a C—C bond (i.e., cross coupling) between aryl substrates and aryl and/or aliphatic substituents whereby the substituents bond at an ortho position relative to an ester or amide directing group. Further methods are provided to convert aryl amides to aryl aldehydes. Many compounds have been prepared using such methods. Syntheses and characterization data for these compounds is also provided herein.
In contrast to most cross coupling reactions, these processes allow minimization of potentially damaging waste products. Starting materials are commercially available or easily prepared from inexpensive chemicals and the large number of new products of the reaction that have been prepared can be easily transformed to useful building blocks for organic syntheses by chemists working in pharmaceutical and material science areas. Furthermore, these methods exhibit potential for application in multi-step commercial synthesis.
Ruthenium and rhodium complexes as described herein include RuH2(CO)(PPh3)3, Ru3(CO)12, Ru(CO)2(PPh3)3, Cp*Rh(C2H3SiMe3)2, and RuHCl(CO)(PPh3)3, where Cp* is pentamethylcyclopentadiene.
For simplicity, the methods described herein are described according to the type of bond that is activated (e.g., C—H, C—O, C—N).
A catalytic amide-directed C—H activation/C—C bond forming process for aryl-amide including heteroaryl-amide was tested. Arylation of O-heteroaryl amides, N-heteroaryl amides and S-heteroaryl amides was obtained in good to excellent yields as shown in Table 2. In contrast, ketone-directed C—H activation/arylation of furan systems has not been reported. A variety of arylboronates having electron donating substituents such as Me, CH2Ot-Bu, NMe2 and OMe were employed and high yields were obtained. Similarly, arylboronates having electron withdrawing substituents such as F and CF3, underwent arylation in good yields.
Notably, amide reduction was not observed under the cross coupling conditions used. This suggests that in contrast to the ketone-directed C—H activation/arylation reaction in which pinacolone solvent or 2 equivalents of a ketone substrate were required to act as hydride scavengers for Ru—H species to maintain the catalytic cycle, the Ru—H cannot effect reduction of the amide group. Thus, necessity for using pinacolone (or acetone) as solvent is eliminated and alternative solvents (e.g., toluene) may be used.
Catalytic C—N activation/C—C bond formation is an exciting area of chemistry. To date, the Ru-catalyzed ketone-directed C—N activation/C—C bond forming reaction was reported by Kakiuchi and co-workers as a part of the study of chelation-assisted reactions of aromatic ketones with organoboronates. A catalytic amide-directed C—N activation/C—C bond forming process was tested under RuH2(CO)(PPh3)3/toluene conditions. Treatment of 2-Me2N—N,N-diethylbenzamide with phenyl boroneopentylate led in 1 h to the formation the diphenyl amide in almost quantitative yield with no observation of the alternative C—H activation/arylation product (see Scheme 2a,
Following successful demonstration of the amide-directed C—N activation/coupling reaction for 2-Me2N—N,N-diethyl benzamide, the generality of the reaction was tested with a variety of aryl boroneopentylates and results are shown in Table 3, Cross Coupling Reactions of 2-Me2N—N,N-diethyl Benzamide with Aryl Boroneopentylates.
To demonstrate the methods described herein in a example synthesis, a methodology and convenient sequence was developed wherein a substituted triaryl compound was produced in excellent overall yield. As shown in Scheme 4,
Amide-directed catalytic C—O activation/cross coupling reactions carried out under simple RuH2(CO)(PPh3)3/solvent conditions were investigated (see Scheme 2b,
This method has several advantages over the Kakiuchi ketone-directed C—O activation/coupling reaction: i) it is not compromised by a C—H activation cross coupling reaction; and ii) compared to the intractable t-butyl ketone products, the resulting amides are potentially useful in further amide-related chemistry. The corresponding C—O activated coupling reaction is a significant advance of the Ru-catalyzed ketone-directed C—O activation/coupling reaction developed by Murai, Kakiuchi, and co-workers.
As an application of the above methodology, a Ru-catalyzed C—O and normal Suzuki cross coupling sequence was developed for the synthesis of teraryls (see Scheme 3,
Based on the results described above, a general and efficient amide-directed C—O activation/cross coupling methodology for the synthesis of biaryl and heterobiaryl amides has been developed. This methodology has high practical value in that, compared to the preparation of starting materials for the Kakiuchi ketone-directed coupling reaction, the substituted ortho-anisamides are readily available from simple and inexpensive commodity chemicals. Four common methods (A-D) of preparation are shown in
In summary, we have demonstrated the first catalytic amide-directed C—O activation/C—C cross coupling reaction. The reaction is efficient, highly regiospecific and has considerable practical potential. The catalytic reaction may be viewed as complementing or superceding the DoM-cross coupling strategy (Anctil, E. J. G. et al., Metal-Catalyzed Cross-Coupling Reactions (2nd Ed) 2004, 2, 761-813, Wiley: Weinheim; Anctil, E. J. G. et al., J. Organomet. Chem. 2002, 653, 150-160; Green, L. et al., J. Heterocycl. Chem. 1999, 36, 1453-1468.) with advantage of non-cryogenic temperatures and non-requirement of base.
As demonstrated above, ortho-anisamides are highly reactive partners for Ru-catalyzed amide-directed C—O activation/C—C cross coupling reaction with aryl boroneopentylates (see Tables 8 and 9). Further studies explored whether similar success could be found for naphthamides. Several ortho-MeO naphthamides were studied and initial results are presented in Table 7. Yields of cross coupling products varied as a function of methoxy naphthamide isomers. Thus 2-MeO-1-naphthamide and 1-MeO-2-naphthamide underwent C—O activation/cross coupling reactions to afford the biaryl products in excellent yields while the 3-MeO-2-naphthamide gave product in much lower yield. As also observed for the C—O cross coupling reactions of benzamides (Tables 5 and 6), no C—H activation/coupling products were formed. To note again, in contrast to the Kakiuchi ketone-directed C—O activation/cross coupling reaction, the corresponding naphthamide coupling reaction is for ortho C—O activation and is inert to the ortho C—H bond activation process.
These initial results motivated an investigation of the generality of the reaction with a variety of organoboronates and results are shown in Table 8. These results establish a general, efficient, and potentially useful route for the preparation of 1-arylated naphthalenes. As indicated by the observed high yields in all reactions, no peri-hindrance effect inhibits the C—O activated coupling (Kumar, D. et al. Synthesis 2008, 1249-1256; Lakshmi, A. et al., J. Phys. Chem. 1978, 82, 1091-1095).
Generality of the reaction of 2-MeO-1-naphthamides was then investigated with a variety of organoboronates. Considering a possible steric conflict between the peri-hydrogen and an amide group, 2-MeO-N,N-dimethyl-1-naphthamide was employed to minimize problems of peri steric hindrance in coupling with ortho-substituted aryl boroneopentylates. Results are shown in Table 9. Based on these results, this method may provide a useful route for making 2-arylated naphthalenes.
Having completed a study concerning scope of aryl boroneopentylates in the cross coupling reaction, we investigated the scope of naphthamide coupling partners and results are presented in Table 10. Entries 1 and 2 demonstrate that selective ortho to amide C—O bond activation/cross coupling occurs to give the ortho-phenylated products in quantitative yields, which reinforces the significance of amide directing and chelation assistance in the reaction. Interestingly, entry 3 shows that, in the presence of C-1 and C-3 C—O bonds, C-1 C—O activation/cross coupling selectivity is observed. This result confirms the higher C-1 compared to the C-3 C—O activation reactivity, which was also observed in studies of other isomeric methoxy naphthamides (see Table 7).
Analogous to the previous study, combined C—O and standard Suzuki cross coupling tactics (Scheme 3) were investigated, a similar high yield process was developed which involved bromination, Suzuki coupling and the C—O activation/coupling for the construction of teraryls incorporating a functionalized central naphthalene ring (Scheme 5,
In summary, an efficient and highly regioselective Ru-catalyzed naphthamide coupling methodology has been established that constitutes a first catalytic amide-directed C—O activation of naphthamides/C—C bond cross coupling reaction. It complements and may supercede the DoM Suzuki cross coupling strategy since it has the advantages of non-cryogenic and base-free conditions. In addition, it provides naphthamides which are difficult to prepare by the traditional DoM-Suzuki cross coupling sequence (see Table 8).
The first Ru-catalyzed ester-directed C—H activation/arylation was reported by Kakiuchi and co-workers (Kitazawa, K. et al. J. Organomet. Chem. 2010, 695, 1163-1167). The disadvantage of this method is that the formation of a mixture of mono- and di-arylated products cannot be avoided even when the required isopropyl ester is used as the directing group.
An ester-directed C—O activation/arylation reaction has not been reported to date. Several experiments were formulated to test whether ester may have the appropriate directing features for C—O activation/C—C bond formating reaction, results are shown in Table 11. Commercially available ortho-anisic ester led to only trace amounts of C—O activation/cross coupling product (Table 11, entry 1). However, of the three regioisomeric naphthoates, 2-MeO-1-naphthoate showed excellent reactivity for a C—O activation/phenylation reaction while the isomeric 1-methoxy ester was modestly reactive and the 3-methoxy ester was unreactive (Table 11, entries 2-4). Accordingly, these studies constitute the first examples of ester-directed C—O activation/cross coupling reaction.
The recognition that the 2-MeO-1-naphthoate ester has an excellent reactivity and selectivity for a C—O activation/phenylation reaction stimulated a study concerning the generalization of the reaction for a variety of aryl boroneopentylates and the results are shown in Table 12.
In summary, a highly efficient and regioselective Ru-catalyzed naphthoate ester-directed C—O activation/cross coupling methodology has been discovered and generalized. Together with the benzoate results, it constitutes a new reaction which extends the Murai, Kakiuchi chemistry from ketone- to ester-directed reactions.
This method is the first catalytic ester-directed C—O activation/C—C bond formation reaction. It proceeds with high efficiency and regioselectivity and may be viewed as a complement and perhaps a replacement of the DoM-Suzuki cross coupling strategy with advantages of non-cryogenic temperatures and base-free conditions. This reaction has the potential to become a most highly efficient and practical cross coupling route for preparation of 2-aryl and heteroaryl naphthoate acids and esters from easily available 1-naphthoate ester derivatives.
The current popular method for reductive removal of a phenol or alkoxy substituent from an aromatic substrate is via conversion to a C—OTf derivative and catalytic hydrodetriflation (Cacchi, S. et al., Tetrahedron Lett. 1986, 27, 5541-5544; Peterson, G. A. et al., Tetrahedron Lett. 1987, 28, 1381-1384; Saa, J. M. et al., J. Org. Chem. 1990, 55, 991-995; Behenna, D. C. et al., Angew. Chem. Int. Ed. 2007, 46, 4077-4080; and Hupp, C. D. et al., Tetrahedron Lett. 2010, 51, 2359-2361). The requirement of preparation of the triflate using expensive triflic anhydride or PhNTf2 represents a major limitation of this procedure. An available direct hydrodemethoxylation of aromatic C—OMe derivatives via a catalytic C—O cleavage would constitute a useful contribution to organic synthesis.
Based on the above studies of amide-directed C—O activation/cross coupling reactions, it was considered that a hydrodemethoxylation reaction of aromatic OMe derivatives may be achieved via a C—O activation/reduction by a hydride source. An absolute requirement for the success of the process was that the chosen hydride reagent not reduce the amide group.
Initially, several reductants were tested for the hydrodemethoxylation reaction of 1-MeO-N,N-diethyl-2-naphthamide using RuH2(CO)(PPh3)3 catalysis and the results are tabulated in Table 13. Using Et3SiH afforded the hydrodemethoxylation product in almost quantitative yield (Table 13, entry 1) while DIBAL-H was somewhat less effective but still a suitable reagent to give product in 72% yield (Table 13, entry 2). However, only trace amounts of the expected product was observed (GC-MS analysis) using LiAlH(OBu-t)3 (Table 13, entry 3) and a hydrogenation reaction led to complete recovery of starting material (Table 13, entry 4).
Having established an effective hydride reagent, Et3SiH, generalization of the discovered method was pursued and the results are shown in Table 14. Clearly, based on these results, Et3SiH is an efficient reductant for the hydrodemethoxylation of 2-naphthamides and the biaryl amide (entry 3) but not benzamide derivatives.
The successful albeit lower yielding hydrodemethoxylation established using DIBAL-H (Table 13) prompted further examination of this reagent for several aromatic amides and the results are listed in Table 15. It is found that DIBAL-H is also a useful reductant with a major difference to Et3SiH in its ability to hydrodemethoxylate not only methoxy naphthamides but also the corresponding benzamides.
To demonstrate application of the above hydrodemethoxylation methodology, the synthesis of aryl naphthamides was carried out (see Scheme 6 in
In summary, the above studies show that the Ru-catalyzed amide-directed hydrodemethoxylation is a general method of significant potential in organic synthesis. A hydrodemethoxylation of simple aryl methyl ethers under Ni(COD)2/PCy3 catalytic conditions was recently reported (Alvarez-Bercedo, P.; Martin, R. J. Am. Chem. Soc. 2010, 132, 17352-17353).
In general, aspects of the invention provide a method that is performed under simple RuH2(CO)(PPh3)3/toluene conditions with considerable advantage in high regioselectivity, yields, operational simplicity, low cost, and convenience for scale-up and handling in industrial settings. In contrast to most cross coupling reactions, neither base, additive nor organohalide are required in this process which allows minimization of waste. Starting materials are commercially available or easily prepared from inexpensive chemicals. Biaryl products can be easily transformed to useful building blocks for organic synthesis. Furthermore, the method may save steps for the preparation of some compounds which require multi-step synthesis such as the preparation of 2-aryl-1-naphthoate esters. Other advantages are described in detail as follows:
Subsequent to the Ru-catalyzed amide-directed C—O activation/arylation reaction, a rich chemistry of obtained 2-amide biaryls is presented in Scheme 7 of
The following working examples provide descriptions of syntheses that were carried out. In most cases, a representative synthetic procedure and characterization data for the representative compound are provided, followed by a table of compounds that were prepared using that procedure. For convenience, instead of sequentially numbering the tables herein, table numbers have been matched to the Example number in which they appear. Characterization data for certain compounds prepared during these studies are presented in Appendix 1.
Many of the chemicals discussed below were purchased from Aldrich Chemical Company, Oakville, Ontario, Canada, which is indicated merely by the term “Aldrich”. RuH2(CO)(PPh3)3 and Cp2ZrCl2 were purchased from Strem Chemicals, Inc. of Newburyport, Mass., USA. LiAlH(Ot-Bu)3 was purchased from Aldrich. Silica gel 60, 230-400 mesh, was obtained from EMD Chemicals, Inc. of Darmstadt, Germany. 1H NMR and 13C NMR spectra were acquired on a Varian 300 MHz and a Bruker 400 MHz spectrometers. GC-MS analyses were performed on an Agilent 6890 GC coupled with an Agilent 5973 inert MS under electron ionization conditions. High resolution MS analyses were obtained on a GCT Mass Spectrometer (available from Waters, Micromass, Manchester, England) and a QSTAR XL hybrid mass spectrometer (Applied Biosystems/MDS Sciex, Foster City, Calif., USA). IR spectra were recorded on a BOMEM FT-IR Varian 1000 FT-IR spectrometers.
This synthesis is provided as a representative example for compounds of Table 2. A mixture of N,N-diethylfuran-3-carboxamide (50 mg, 0.30 mmol), 2-phenyl-5,5-dimethyl-1,3,2-dioxaborinane (86 mg, 0.45 mmol) and RuH2(CO)(PPh3)3 (11 mg, 4 mol %) in toluene (0.5 mL) was heated at 125-135° C. (oil bath temperature) in a sealed vial for 44 h. The reaction progress was monitored by GC-MS analysis. The reaction mixture was cooled to RT and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). N,N-Diethyl-2-phenylfuran-3-carboxamide (66 mg, 90% yield) was obtained as a light yellow oil. IR (KBr) νmax 2974, 2935, 1631, 1491, 1430, 1295, 1216, 1061, 775, 758, 692 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm: 7.66 (d, J=7.3 Hz, 2H), 7.46 (d, J=1.8 Hz, 1H), 7.37 (t, J=7.5 Hz, 2H), 7.32-7.25 (m, 1H), 6.49 (d, J=1.8 Hz, 1H), 3.58 (q, J=7.1 Hz, 2H), 3.20 (q, J=7.1 Hz, 2H), 1.26 (t, J=7.1 Hz, 3H), 0.95 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm: 166.21, 149.26, 141.62, 130.00, 128.59 (2C), 128.03, 125.06 (2C), 116.90, 111.59, 43.03, 39.17, 14.05, 12.53. MS EI m/z (rel. int.) 243 (M+, 25), 214 (10), 171 (100), 115 (10); HRMS m/z (EI, M+) calcd for C15H17NO2, 243.1259. found 243.1261.
This synthetic procedure is provided as a representative example for compounds shown in Table 3. A mixture of N,N-diethyl-2-(dimethylamino)benzamide (66 mg, 0.30 mmol), 2((4-trifluoromethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (81 mg, 0.32 mmol), RuH2(CO)(PPh3)3 (11 mg, 4 mol %) in toluene (0.4 mL) was heated at 125-135° C. (oil bath temperature) in a sealed vial for 1 h. The reaction progress was monitored by GC-MS analysis. The reaction mixture was cooled to RT and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). N,N-Diethyl-2-((4-trifluoromethyl)phenyl)benzamide (95 mg, 99% yield) was obtained as a light yellow solid. mp 81-82° C. (EtOAc/hexanes); IR (KBr) νmax, 2977, 1628, 1430, 1326, 1290, 1165, 1125, 1109, 1069, 767 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm: 7.68-7.57 (m, 4H), 7.51-7.33 (m, 4H), 3.83-3.62 (m, 1H), 3.13-2.83 (m, 2H) 2.77-2.58 (m, 1H), 0.88 (t, J=7.1 Hz, 3H), 0.78 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm: 169.99, 143.39, 136.88, 136.41, 129.70 (q, 2JC-F=32.7 Hz), 129.36, 129.20 (2C), 129.08, 128.32, 126.96, 125.17 (q, =3.7 Hz, 2C), 124.13 (q, 1JC-F=271.9 Hz), 42.29, 38.37, 13.42, 11.85. MS EI m/z (rel. int.) 321 (M+, 31), 320 (52), 249 (100), 201 (33), 152 (18); HRMS m/z (EI, M+) calcd for C18H18F3NO, 321.1340. found 321.1334.
To determine whether varying the nature of the R in an alkoxy departing group, several alkoxy-substituted benzamides were studied using a particular set of reaction conditions. Results are shown in Table 4.
aYields of isolated products.
bStarting amide recovery: 85% (entry 2) and 72% (entry 3).
This synthetic procedure is provided as a representative example of compounds shown in Table 5. A mixture of N,N-diethyl-2-methoxybenzamide (62 mg, 0.30 mmol), 2-(4-methoxyphenyl)-5,5-dimethyl-1,3,2-dioxaborinane (99 mg, 0.45 mmol), RuH2(CO)(PPh3)3 (11 mg, 4 mol %) in toluene (0.4 mL) was heated at 125-135° C. (oil bath temperature) in a sealed vial for 20 h. The reaction progress was monitored by GC-MS analysis. The reaction mixture was cooled to RT and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). N,N-Diethyl-2-(4-methoxyphenyl)benzamide (83 mg, 98% yield) was obtained as light yellow solid. mp 46-47° C. (EtOAc/hexanes); IR (KBr) Vmax 2973, 2935, 1626, 1518, 1485, 1458, 1428, 1289, 1244, 1180, 1035, 836, 764 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm: 7.46-7.29 (m, 6H), 6.90 (d, J=8.8 Hz, 2H), 3.81 (s, 3H), 3.78-3.66 (m, 1H), 3.10-2.86 (m, 2H), 2.71-2.59 (m, 1H), 0.93 (t, J=7.1 Hz, 3H), 0.73 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm: 170.68, 159.16, 137.90, 136.20, 132.31, 129.94 (2C), 129.23, 128.82, 127.05, 126.94, 113.66 (2C), 55.25, 42.19, 38.33, 13.36, 12.08; MS EI m/z (rel. int.) 283 (M+, 36), 282 (30), 211 (100), 168 (19); HRMS m/z (EI, kr) calcd for C18H21NO2, 283.1572. found 283.1572.
aThe catalyst loading: 10 mol %.
This synthetic procedure is provided as a representative example for compounds shown in Table 6. A mixture of N,N-diethyl-2,4-dimethoxybenzamide (71 mg, 0.3 mmol), 2-phenyl-5,5-dimethyl-1,3,2-dioxaborinane (87 mg, 0.45 mmol), RuH2(CO)(PPh3)3 (11 mg, 4 mol %) in toluene (0.8 mL) was heated at 125-135° C. (oil bath temperature) in a sealed vial for 20 h. The reaction progress was monitored by GC-MS analysis. The reaction mixture was cooled to RT and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). N,N-Diethyl-2-phenyl-4-methoxybenzamide (76 mg, 89% yield) was obtained as a light yellow solid. mp 64-65° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 2935, 1625, 1468, 1428, 1290, 1271, 1036, 772, 702 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm: 7.47 (d, J=6.6 Hz, 2H), 7.40-7.27 (m, 4H), 6.96-6.85 (m, 2H), 3.84 (s, 3H), 3.79-3.63 (m, 1H), 3.16-2.78 (m, 2H), 2.73-2.48 (m, 1H), 0.86 (t, J=7.1 Hz, 3H), 0.72 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm: 170.52, 159.70, 139.97, 139.76, 129.02, 128.70 (2C), 128.44, 128.24 (2C), 127.59, 114.62, 112.97, 55.33, 42.23, 38.29, 13.35, 11.90. MS EI m/z (rel. int.) 283 (M+, 11), 282 (16), 211 (100); HRMS m/z (EI, M+) calm′ for C18H21NO2, 283.1572. found 283.1574.
aDi- C—O activations were found: 22% (R = Me); 23% (R = Et).
As shown in Table 7, data is provided regarding C—O activation/cross coupling investigations of isomeric naphthamides.
aYields of isolated products
Studies were conducted to determine the scope of Cross Coupling for 1-MeO-2-naphthamide with a variety of aryl boronates.
For entries 1 and 2 of Table 8, where R=Me or Et, the procedure outlined below was used and the starting material amide had the appropriate R group to provide the desired product.
This synthetic procedure is provided as a representative example for compounds shown in Table 8. A mixture of N,N-diethyl-1-methoxy-2-naphthamide (52 mg, 0.2 mmol), 2-(4-methylphenyl)-5,5-dimethyl-1,3,2-dioxaborinane (61 mg, 0.3 mmol), RuH2(CO)(PPh3)3 (7 mg, 4 mol %) in toluene (0.6 mL) was heated at 125-135° C. (oil bath temperature) in a sealed vial for 20 h. The reaction progress was monitored by GC-MS analysis. The reaction mixture was cooled to RT and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). N,N-Diethyl-1-(4-methylphenyl)-2-naphthamide (63 mg, 99% yield) was obtained as a light yellow solid. mp 181-183° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2932, 1629, 1477, 1427, 1285, 1102, 817 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm: 7.91 (d, J=8.2 Hz, 2H), 7.74 (d, J=8.3 Hz, 1H), 7.53 (t, J=7.2 Hz, 1H), 7.49-7.37 (m, 3H), 7.33-7.18 (m, 3H), 3.95-3.71 (m, 1H), 3.25-3.06 (m, 1H), 2.98-2.82 (m, 1H), 2.81-2.65 (m, 1H), 2.44 (s, 3H), 0.91 (t, J=7.0 Hz, 3H), 0.74 (t, J=7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm: 170.34, 137.28, 135.59, 134.24, 134.11, 133.40, 132.10, 131.03, 129.55, 129.22, 127.98 (3C), 126.55, 126.43, 126.14, 123.40, 42.26, 37.78, 21.24, 13.72, 11.71. MS EI m/z (rel. int.) 317 (M+, 38), 316 (31), 246 (20), 245 (100), 215 (14), 202 (36); HRMS m/z (EI, M+) calcd for C22H23NO, 317.1780. found 317.1786.
This synthetic procedure is provided as a representative example of compounds shown in Table 9. A mixture of N,N-dimethyl-2-methoxy-1-naphthamide (46 mg, 0.2 mmol), 2-(2-fluorophenyl)-5,5-dimethyl-1,3,2-dioxaborinane (62 mg, 0.3 mmol), RuH2(CO)(PPh3)3 (7 mg, 4 mol %) in toluene (0.6 mL) was heated at 125-135° C. (oil bath temperature) in a sealed vial for 20 h. The reaction progress was monitored by GC-MS analysis. The reaction mixture was cooled to RT and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). 2-(2-Fluorophenyl)-N,N-dimethyl-1-naphthamide (58 mg, 99% yield) was obtained as a light yellow solid. mp 105-106° C. (EtOAc/hexanes); IR (KBr) νmax 2927, 1637, 1496, 1450, 1400, 1261, 1206, 1195, 806, 760 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm: 7.93-7.87 (m, 2H), 7.87-7.80 (m, 1H), 7.60-7.46 (m, 4H), 7.41-7.31 (m, 1H), 7.24-7.12 (m, 2H), 2.96 (s, 3H), 2.57 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.50, 159.57 (d, 1JC-F=246.3 Hz), 133.74, 132.87, 131.92 (d, 4JC-F=3.0 Hz), 130.01, 129.88, 129.70 (d, 3JC-F=8.1 Hz), 128.20, 128.08, 127.97 (d, 4JC-F=2.3 Hz), 127.36 (d, 2JC-F=14.9 Hz), 127.15, 126.61, 125.45, 124.00 (d, 3JC-F=3.6 Hz), 115.49 (d, 2JC-F=22.1 Hz), 37.76, 34.39. MS EI m/z (rel. int.) 293 (M+, 28), 249 (96), 221 (38), 220 (100), 219 (20), 218 (22); HRMS m/z (EI, M+) calcd for C19H16FNO, 293.1216. found 293.1230.
aThe catalyst loading: 10 mol %.
Using the procedures outlined in Examples 8 and 9, investigations were conducted to probe regioselectivity preferences for cross coupling reactions of substituted naphthamides. Results are shown in Table 10.
Using the procedures outlined in Example 12, investigations were conducted to probe reactivity of cross coupling reactions of aryl moieties with ester directing groups. Results are shown in Table 11.
aYields of isolated products.
bYield determined by GC-MS analysis.
A mixture of methyl 2-methoxy-1-naphthoate (43 mg, 0.2 mmol), 2-(4-(trifluoromethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (77 mg, 0.3 mmol), RuH2(CO)(PPh3)3 (7 mg, 4 mol %) in toluene (0.4 mL) was heated at 125-135° C. (oil bath temperature) in a sealed vial for 20 h. The reaction progress was monitored by GC-MS analysis. The reaction mixture was cooled to RT and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). Methyl 2-(4-(trifluoromethyl)phenyl)-1-naphthoate (57 mg, 86% yield) was obtained as a colorless solid. mp 74-76° C. (EtOAc/hexanes); IR (KBr) νmax 1728, 1325, 1237, 1167, 1125, 1114, 1085, 1064, 1022, 820 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm: 8.04-7.95 (m, 2H), 7.92 (dd, J=7.5, 1.4 Hz, 1H), 7.71 (d, J=8.1 Hz, 2H), 7.65-7.54 (m, 4H), 7.49 (d, J=8.5 Hz, 1H), 3.72 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm: 169.55, 144.57, 144.56, 136.52, 132.60, 130.25, 129.89, 129.76 (q, 2JC-F=32.52 Hz), 128.90, 128.18, 127.75, 126.84, 126.79, 125.35 (q, 3JC-F=3.74 Hz, 2C), 125.17, 124.17 (q, JC-F=272.07 Hz), 52.28. MS EI m/z (rel. int.) 330 (M+, 62), 299 (100), 251 (29), 202 (65), 69 (65); HRMS m/z (EI, M+) calcd for C19H13F3O2, 330.0868. found 330.0848.
Studies were conducted to probe efficacy of several reductants using a model reaction of cross coupling of 1-MeO-2-naphthamide. Results are shown in Table 13. Notably, Si—H and Al—H reductants were effective. In contrast, LiAlH(OBu-t)3 and hydrogen were not effective in this particular reaction.
aYield determined by GC-MS analysis
b60 psi. Recovery of staring material (98%).
This synthetic procedure is provided as a representative example of compounds shown in Table 14. A mixture of N,N-diethyl-1,4-dimethoxy-2-naphthamide (58 mg, 0.2 mmol), Et3SiH (36 mg, 0.3 mmol), RuH2(CO)(PPh3)3 (7 mg, 4 mol %) in toluene (0.6 mL) was heated at 125-135° C. (oil bath temperature) in a sealed vial for 20 h. The reaction progress was monitored by GC-MS analysis. The reaction mixture was cooled to RT and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). N,N-Diethyl-4-methoxy-2-naphthamide (49 mg, 93% yield) was obtained as a light yellow oil. IR (KBr) νmax, 2971, 2935, 1627, 1597, 1577, 1478, 1459, 1422, 1397, 1372, 1293, 1266, 1235, 1111, 1095, 818, 779 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm: 8.25 (dd, J=6.9, 2.3 Hz, 1H), 7.79 (dd, J=6.8, 2.1 Hz, 1H), 7.59-7.46 (m, 2H), 7.41 (s, 1H), 6.81 (s, 1H), 4.02 (s, 3H), 3.70-3.15 (m, 4H), 1.41-1.08 (m, 6H); 13C NMR (101 MHz, CDCl3) δ ppm: 171.34, 155.65, 134.57, 133.64, 127.80, 127.00, 125.96, 125.60, 121.91, 117.66, 102.16, 55.60, 43.03, 39.00, 14.10, 12.82. MS EI m/z (rel. int.) 257 (Kr, 85), 242 (40), 186 (32), 185 (100), 158 (32), 157 (47), 114 (22); HRMS m/z (EI, Kr) calcd for C16H19NO2, 257.1416. found 257.1424.
aYields of isolated products.
bYield determined by GC-MS analysis
cThe catalyst loading: 10 mol %
This synthetic procedure is provided as a representative example of compounds shown in Table 15. A mixture of N,N-diethyl-1-methoxy-2-naphthamide (52 mg, 0.20 mmol), DIBAL-H (0.22 mL, 0.22 mmol, 1 M in THF), RuH2(CO)(PPh3)3 (7 mg, 4 mol %) in toluene (0.6 mL) was heated at 125-135° C. (oil bath temperature) in a sealed vial for 20 h. The reaction progress was monitored by GC-MS analysis. The reaction mixture was cooled to RT and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). N,N-Diethyl-2-naphthamide (38 mg, 83% yield) was obtained as a light yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.93-7.79 (m, 4H), 7.57-7.49 (m, 2H), 7.47 (dd, J=8.4, 1.3 Hz, 1H), 3.74-3.47 (m, 2H), 3.43-3.16 (m, 2H), 1.42-1.21 (m, 3H), 1.20-0.99 (m, 3H); 13C NMR (101 MHz, CDCl3) δ ppm: 171.21, 134.57, 133.31, 132.72, 128.23, 128.18, 127.71, 126.68, 126.51, 125.67, 123.87, 43.32, 39.23, 14.20, 12.93. The physical and spectral data were consistent with those previously reported (Salvio, R.; Moisan, L.; Ajami, D.; Rebek, J. Eur. J. Org. Chem. 2007, 2722-2728).
aYields of isolated products.
bThe catalyst loading: 10 mol %
c1.5 Equiv. of reductant is used
To a mixture of N,N-diethyl-2-(dimethylamino)benzamide (221 mg, 1.00 mmol) and NH4OAc (8 mg, 0.10 mmol) in MeCN (5 mL) at RT was added NBS (189 mg, 1.05 mmol) quickly. The reaction was stirred at RT for 2 min and monitored by TLC analysis until the completion. After removal of the solvent, water and EtOAc were added to the residue, the layers were separated and the water layer was extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO4) and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). 5-Bromo-2-(dimethylamino)-N,N-diethylbenzamide (268 mg, 90% yield) was obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) δ ppm 7.33 (dd, J=8.7, 2.3 Hz, 1H), 7.26 (d, J=2.3 Hz, 1H), 6.76 (d, J=8.7 Hz, 1H), 3.83-3.62 (m, 1H), 3.43-3.26 (m, 1H), 3.25-2.98 (m, 2H), 2.77 (s, 6H), 1.22 (t, J=7.1 Hz, 3H), 1.03 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.67, 148.27, 132.18, 131.08, 118.62, 112.74, 43.31 (2C), 42.75, 38.89, 13.69, 12.50 (1C not observed). The physical and spectral data were consistent with those previously reported (Stanetty, P.; Krumpak, B.; Rodler, I. K. J. Chem. Res., Synop. 1995, 342-343).
To a mixture of N,N-diethyl-1-methoxy-2-naphthamide (515 mg, 2.0 mmol) and NH4OAc (15 mg, 0.2 mmol) in MeCN (10 mL) at RT was added NBS (378 mg, 2.1 mmol) quickly. The reaction was stirred at RT for 10 min and monitored by TLC analysis until the completion. After removal of the solvent, water and EtOAc were added to the residue, the layers were separated and the water layer was extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO4) and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). 4-Bromo-N,N-diethyl-1-methoxy-2-naphthamide (650 mg, 97% yield) was obtained as a yellow oil. IR (KBr) νmax 2973, 2935, 1634, 1592, 1476, 1454, 1429, 1361, 1324, 1278, 1255, 1220, 1132, 1083, 763 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.20 (d, J=9.1 Hz, 1H), 8.18 (d, J=9.1 Hz, 1H), 7.68-7.51 (m, 3H), 4.00 (s, 3H), 3.86-3.69 (m, 1H), 3.53-3.35 (m, 1H), 3.32-3.08 (m, 2H), 1.30 (t, J=7.1 Hz, 3H), 1.05 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 167.49, 151.45, 132.97, 128.95, 128.19, 128.15, 127.41, 127.11, 126.25, 122.87, 117.54, 62.77, 43.15, 39.18, 14.02, 12.74. MS EI m/z (rel. int.) 337 ([M+2]+, 14), 335 (M+, 17), 265 (89), 263 (87), 250 (24), 248 (25), 194 (26), 192 (30), 156 (23), 155 (24), 128 (30), 127 (23), 126 (65), 113 (62), 72 (31), 58 (34), 57 (100), 56 (100); HRMS m/z (ESI, [M+1]+) calcd for C16H19Br NO2, 336.0599. found 336.0590.
A mixture of 5-bromo-2-(dimethylamino)-N,N-diethylbenzamide (180 mg, 0.6 mmol), phenylboronic acid (110 mg, 0.9 mmol), a degassed 2 M aqueous solution of Na2CO3 (0.9 mL, 1.8 mmol) and Pd(PPh3)4 (14 mg, 2 mol %) and toluene (1 mL) was heated at 120-130° C. (oil bath temperature) in a sealed vial for 15 h. The reaction progress was monitored by GC-MS analysis. The reaction mixture was cooled to RT and extracted with EtOAc. Then, the combined organic extract was washed with brine, dried (MgSO4) and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). 2-(Dimethylamino)-5-phenyl-N,N-diethylbenzamide (157 mg, 89% yield) was obtained as a light yellow oil. IR (KBr) νmax 2973, 2936, 1625, 1515, 1486, 1458, 1432, 1378, 1320, 1263, 1137, 1081, 763, 699 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.56 (d, J=7.3 Hz, 2H), 7.51 (dd, J=8.4, 2.0 Hz, 1H), 7.43 (d, J=2.0 Hz, 1H), 7.40 (t, J=7.6 Hz, 2H), 7.28 (t, J=7.4 Hz, 1H), 6.96 (d, J=8.4 Hz, 1H), 3.90-3.71 (m, 1H), 3.42-3.31 (m, 1H), 3.30-3.19 (m, 1H), 3.18-3.06 (m, 1H), 2.85 (s, 6H), 1.26 (t, J=7.1 Hz, 3H), 1.03 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) 6 ppm 171.25, 148.50, 140.22, 133.06, 129.52, 128.65 (2C), 127.89, 127.05, 126.64, 126.46 (2C), 117.15, 43.38 (2C), 42.75, 38.81, 13.75, 12.55. MS EI m/z (rel. int.) 296 (M+, 38), 224 (100), 223 (50), 196 (25), 181 (47), 180 (36), 167 (38), 153 (42), 152 (75), 72 (41), 58 (48), 57 (38), 56 (66); HRMS m/z (ESI, [M+1]+) calcd for C19H25N2O, 297.1966. found 297.1979.
A mixture of 4-bromo-N,N-diethyl-1-methoxy-2-naphthamide (135 mg, 0.4 mmol), 4-methoxyphenylboronic acid (91 mg, 0.6 mmol), a degassed 2 M aqueous solution of Na2CO3 (0.6 mL, 1.2 mmol) and Pd(PPh3)4 (9 mg, 2 mol %) and toluene (0.6 mL) was heated at 120-130° C. (oil bath temperature) in a sealed vial for 15 h. The reaction progress was monitored by GC-MS analysis. The reaction mixture was cooled to RT and extracted with EtOAc. Then, the combined organic extract was washed with brine, dried (MgSO4) and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). N,N-Diethyl-1-methoxy-4-(4-methoxyphenyl)-2-naphthamide (143 mg, 99% yield) was obtained as a light yellow solid. mp 129-130° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 2935, 1632, 1610, 1515, 1476, 1458, 1430, 1370, 1272, 1248, 1222, 1177, 1062, 1033, 839, 773 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.23 (d, J=8.3 Hz, 1H), 7.91 (d, J=8.3 Hz, 1H), 7.55 (t, J=7.5 Hz, 1H), 7.47 (t, J=7.6 Hz, 1H), 7.40 (d, J=8.6 Hz, 2H), 7.25 (s, 1H), 7.02 (d, J=8.6 Hz, 2H), 4.05 (s, 3H), 3.88 (s, 3H), 3.85-3.73 (m, 1H), 3.57-3.39 (m, 1H), 3.37-3.11 (m, 2H), 1.31 (t, J=7.1 Hz, 3H), 1.07 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 168.95, 158.97, 150.88, 136.34, 133.18, 132.22, 131.10 (2C), 128.02, 126.73, 126.41, 126.13, 125.42, 125.35, 122.61, 113.71 (2C), 62.74, 55.32, 43.17, 39.09, 14.11, 12.83. MS EI m/z (rel. int.) 363 (M+, 36), 291 (100), 205 (24), 189 (47), 177 (27), 176 (33), 56 (33); HRMS m/z (EI, M+) calcd for C23H25NO3, 363.1834. found 363.1834.
Following use of the amide directing group to modify an aryl ring, it is possible to convert the amide to an aldehyde. Advantages of such a conversion include the versatility of aldehydes. Aldehydes can be converted to a variety of other functional groups. Details of this process are described in U.S. Patent Application Publication No. 2010-0145060 (U.S. Pat. No. 8,168,833).
Briefly, methods are provided for performing selective reductions of substrates without the necessity of pre-preparing Schwartz Reagent. This one-step method mixes three compounds. However, two of the mixed compounds do not react with the third, instead they selectively react with each other. Their reaction leads to formation of an intermediate reaction product that is only briefly present in the mixture. The reason for the briefness of its presence is that it is selectively reactive toward the third compound in the mixture. Upon reaction of the intermediate reaction product with this third compound, a desired end product is formed. Thus three compounds, A, B and D, are all provided in a mixture. A and B react to form an intermediate product, which then reacts with substrate D. A desired product is formed from the reaction of the intermediate product and D. The product is a reduced form of D and is known herein as E. To assist with completeness and speed of reaction, a solvent is also present to solubilize the mixture. A is Schwartz Reagent Precursor, Cp2ZrCl2, which is significantly less expensive to purchase than Schwartz Reagent. B is a reducing agent that is selective for A. In certain embodiments of the invention, B is LiAlH(OBu-O3, LiBH(s-Bu)3, or a combination thereof. These reducing agents are inert to many functional groups and are selective for others. A-selective reductants did not undergo substantially any side reactions with D when D was tertiary amide, tertiary benzamide, aryl O-carbamate, or heteroaryl N-carabamate. Nor did the reductants undergo reactions with any intermediates formed during these reactions. As noted above, D is substrate. Examples of D include tertiary amides, tertiary benzamides, aryl O-carbamates, N-carbamates, and aryl N-carbamates including heteroaryl N-carbamates. As noted above, E is the reaction product of the reduction of substrate, D. Examples of E include aldehydes, benzaldehydes, aromatic alcohols (commonly referred to as phenols), and N-heteroaromatic compounds.
Accordingly, substituted benzamides that have been provided by activating and C—C cross coupling methods described herein can have their amide moiety converted to aldehydes, benzaldehydes, aromatic alcohols (commonly referred to as phenols), and N-heteroaromatic compounds.
This synthetic procedure is provided an a representative example of a conversion that may be effective for substantially all of the benzamides described herein. To a solution of N,N-diethyl-1-(3-methoxyphenyl)-2-naphthamide (17 mg, 0.05 mmol) and Cp2ZrCl2 (21 mg, 0.07 mmol) in THF (0.5 mL) at RT was rapidly added a 1 M THF solution of LiAlH(Ot-Bu)3 (0.07 mL, 0.07 mmol). The resulting solution was stirred at RT for 2 min and the reaction was monitored by TLC analysis. The reaction mixture was immediately quenched by H2O. A solution of 0.5 N HCl was added to adjust the pH<7 and the whole was extracted with EtOAc or ether. The combined organic extract was washed with brine, dried (MgSO4) and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). 1-(3-Methoxyphenyl)-2-naphthaldehyde (12 mg, 90% yield) was obtained (see Table 17) as a light yellow oil. IR (KBr)νmax 2850, 1692, 1678, 1597, 1577, 1487, 1462, 1429, 1286, 1256, 1224, 1046, 821, 781, 764, 749 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 9.92 (s, 1H), 8.06 (d, J=8.6 Hz, 1H), 7.94 (d, J=8.6 Hz, 1H), 7.93 (d, J=7.8 Hz, 1H), 7.70 (d, J=8.5 Hz, 1H), 7.62 (t, J=7.5 Hz, 1H), 7.51-7.40 (m, 2H), 7.07 (dd, J=8.0, 2.1 Hz, 1H), 7.00 (d, J=7.4 Hz, 1H), 6.96 (s, 1H), 3.85 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 192.69, 159.36, 146.33, 136.55, 136.05, 132.34, 131.09, 129.30, 128.75, 128.33, 128.17, 127.70, 126.86, 123.54, 122.03, 116.59, 113.94, 55.33. MS EI m/z (rel. int.) 262 (M+, 100), 261 (36), 233 (28), 231 (44), 203 (42), 202 (31), 201 (28), 189 (45), 149 (43); HRMS m/z (EI, M+) calcd for C18H14O2, 262.0994. found 262.0994.
This synthetic procedure is provided an a representative example of a conversion that may be effective for substantially all of the benzamides described herein. To a solution of N,N-diethyl-1-(naphthalen-2-yl)-2-naphthamide (18 mg, 0.05 mmol) and Cp2ZrCl2 (21 mg, 0.07 mmol) in THF (0.5 mL) at RT was rapidly added a 1 M THF solution of LiAlH(Ot-Bu)3 (0.07 mL, 0.07 mmol). The resulting solution was stirred at RT for 2 min and the reaction was monitored by TLC analysis. The reaction mixture was immediately quenched by H2O. A solution of 0.5 N HCl was added to adjust the pH<7 and the whole was extracted with EtOAc or ether. The combined organic extract was washed with brine, dried (MgSO4) and concentrated in vacuo. The residue was subjected to flash SiO2 column chromatography (eluent: EtOAc/hexanes). 1-(Naphthalen-2-yl)-2-naphthaldehyde (13 mg, 89% yield) was obtained (see Table 17) as a light yellow viscous oil. IR (KBr) νmax 3058, 2849, 1689, 1678, 1228, 821, 765, 747 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 9.92 (s, 1H), 8.11 (d, J=8.6 Hz, 1H), 8.05-7.93 (m, 4H), 7.92-7.82 (m, 2H), 7.68 (d, J=8.5 Hz, 1H), 7.65-7.57 (m, 3H), 7.54 (dd, J=8.3, 1.2 Hz, 1H), 7.44 (t, J=7.5 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ ppm 192.63, 146.41, 136.09, 132.92, 132.81, 132.65, 132.57, 131.48, 130.42, 128.77, 128.61, 128.45, 128.26, 128.06, 127.89 (2C), 127.79, 126.94, 126.91, 126.76, 122.18. MS EI m/z (rel. int.) 282 (M+, 100), 281 (54), 253 (42), 252 (56), 149 (21), 126 (37); HRMS m/z (EI, M+) calcd for C21H14O, 282.1045. found 282.1049.
It will be understood by those skilled in the art that this description is made with reference to certain preferred embodiments and that it is possible to make other embodiments employing the principles of the invention which fall within its spirit and scope as defined by the claims.
Light yellow oil. IR (KBr) 2977, 1636, 1513, 1223, 1103, 798 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 8.62 (dd, J=4.7, 1.5 Hz, 1H), 7.72 (dd, J=7.8, 1.5 Hz, 1H), 7.52-7.44 (m, 2H), 7.38 (dd, J=7.8, 4.8 Hz, 1H), 7.15-7.01 (m, 2H), 3.42 (q, J=7.1 Hz, 2H), 2.89 (q, J=7.1 Hz, 2H), 1.01 (t, J=7.1 Hz, 3H), 0.87 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 168.07, 162.84 (d, 1JC-F=248.3 Hz), 153.73, 148.34, 137.24, 133.28, 133.21 (d, =3.4 Hz), 130.63 (d, 3JC-F=8.1 Hz, 2C), 123.61, 115.57 (d, 2JC-F=21.5 Hz, 2C), 42.46, 38.72, 13.50, 12.21. MS EI m/z (rel. int.) 272 (M+, 7), 173 (13), 172 (23), 72 (100); HRMS m/z (EI, M+) calcd for C16H17FN2O, 272.1325. found 272.1319.
Yellow oil. IR (KBr) νmax 2978, 2936, 1638, 1513, 1382, 1227, 1161, 1111, 848 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 8.67 (d, J=2.4 Hz, 1H), 8.54 (d, J=2.4 Hz, 1H), 7.88-7.77 (m, 2H), 7.14 (t, J=8.6 Hz, 2H), 3.50 (q, J=7.1 Hz, 2H), 2.92 (q, J=7.1 Hz, 2H), 1.14 (t, J=7.1 Hz, 3H), 0.88 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 167.08, 163.82 (d, 1JC-F=250.4 Hz), 149.82, 148.89, 144.09, 142.06, 132.54 (d, 4JC-F=3.3 Hz), 130.82 (d, 3JC-F=8.5 Hz, 2C), 115.71 (d, 2JC-F=21.7 Hz, 2C), 42.66, 39.15, 13.42, 12.14. MS EI m/z (rel. int.) 273 (M+, 6), 173 (18), 72 (100); HRMS m/z (EI, M+) calcd for C15H16FN3O, 273.1277. found 273.1277.
Light yellow solid. mp 224-226° C. (EtOAc/hexanes); IR (KBr) νmax 3143, 2976, 2930, 1594, 1574, 1543, 1495, 1457, 1420, 1320, 1274, 1235, 1124, 1048, 743, 696 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 9.11 (s, 1H), 7.61-7.49 (m, 3H), 7.30-7.24 (m, 4H), 7.18-7.05 (m, 2H), 3.81-3.43 (m, 2H), 3.24-3.02 (m, 2H), 1.25 (t, J=6.3 Hz, 3H), 0.77 (t, J=6.4 Hz, 1H); 13C NMR (101 MHz, CDCl3) 6 ppm 167.82, 135.79, 134.70, 131.62, 128.75 (2C), 128.08, 127.47, 126.90 (2C), 122.72, 120.55, 119.33, 111.17, 109.74, 43.13, 38.99, 14.03, 12.74. MS EI m/z (rel. int.) 292 (M+, 25), 221 (61), 220 (100); HRMS m/z (EI, M+) calcd for C19H20N2O, 292.1576. found 292.1582.
Light yellow solid. mp 62-63° C. (EtOAc/hexanes); IR (KBr) νmax 2975, 2935, 1626, 1505, 1435, 1286, 1234, 1099, 839 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.56-7.44 (m, 2H), 7.29 (d, J=5.2 Hz, 1H), 7.10-6.98 (m, 3H), 3.48 (q, J=7.1 Hz, 2H), 2.99 (q, J=7.1 Hz, 2H), 1.12 (t, J=7.1 Hz, 3H), 0.79 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 167.36, 162.63 (d, 1JC-F=248.5 Hz), 138.84, 133.53, 129.70 (d, 3JC-F=8.1 Hz, 2C), 129.44 (d, =3.3 Hz), 127.68, 125.18, 115.76 (d, 2JC-F=21.7 Hz, 2C), 42.75, 39.01, 13.78, 12.3. MS EI m/z (rel. int.) 277 (M+, 24), 244 (12), 205 (100), 133 (25); HRMS m/z (EI, M+) calcd for C15H16FNOS, 277.0937. found 277.0934.
Light yellow oil. IR (KBr) νmax 2977, 1634, 1516, 1433, 1223, 1158, 856, 839 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.54-7.46 (m, 2H), 7.44 (d, J=1.8 Hz, 1H), 7.10-7.01 (m, 2H), 6.60 (d, J=1.8 Hz, 1H), 3.59-3.40 (m, 2H), 3.25-3.12 (m, 2H), 1.23-1.16 (m, 3H), 1.11-0.98 (m, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 162.28 (d, =247.1 Hz), 161.79, 142.80, 142.26, 129.49 (d, 3JC-F=8.0 Hz, 2C), 128.04 (d, 4JC-F=3.4 Hz), 125.47, 115.48 (d, 2JC-F=21.5 Hz, 2C), 111.43, 43.01, 39.83, 14.25, 12.54. MS EI m/z (rel. int.) 261 (M+, 27), 190 (30), 189 (100), 162 (14), 133 (17); HRMS m/z (EI, M+) calcd for C15H16FNO2, 261.1165. found 261.1166.
Light yellow oil. IR (KBr) νmax 2974, 2935, 1631, 1491, 1430, 1295, 1216, 1061, 775, 758, 692 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.66 (d, J=7.3 Hz, 2H), 7.46 (d, J=1.8 Hz, 1H), 7.37 (t, J=7.5 Hz, 2H), 7.32-7.25 (m, 1H), 6.49 (d, J=1.8 Hz, 1H), 3.58 (q, J=7.1 Hz, 2H), 3.20 (q, J=7.1 Hz, 2H), 1.26 (t, J=7.1 Hz, 3H), 0.95 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 166.21, 149.26, 141.62, 130.00, 128.59 (2C), 128.03, 125.06 (2C), 116.90, 111.59, 43.03, 39.17, 14.05, 12.53. MS EI m/z (rel. int.) 243 (M+, 25), 214 (10), 171 (100), 115 (10); HRMS m/z (EI, M+) calcd for C15H17NO2, 243.1259. found 243.1261.
Light yellow oil. IR (KBr) νmax 2973, 1934, 1630, 1496, 1429, 1294, 1069, 821 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.54 (d, J=8.2 Hz, 2H), 7.42 (d, J=1.8 Hz, 1H), 7.17 (d, J=8.0 Hz, 2H), 6.47 (d, J=1.8 Hz, 1H), 3.57 (q, J=7.1 Hz, 2H), 3.19 (q, J=7.1 Hz, 2H), 2.34 (s, 3H), 1.25 (t, J=7.1 Hz, 3H), 0.94 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 166.32, 149.49, 141.26, 137.97, 129.28 (2C), 127.29, 125.01 (2C), 116.16, 111.51, 43.00, 39.13, 21.23, 14.06, 12.52. MS EI m/z (rel. int.) 257 (M+, 35), 228 (10), 185 (100); HRMS m/z (EI, M+) calcd for C16H19NO2, 257.1416. found 257.1417.
Light yellow oil. IR (KBr) νmax 2974, 1633, 1482, 1459, 1431, 1363, 1194, 1064, 794 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.62 (s, 1H), 7.54 (d, J=7.2 Hz, 1H), 7.44 (d, J=1.7 Hz, 1H), 7.37-7.27 (m, 2H), 6.48 (d, J=1.7 Hz, 1H), 4.44 (s, 2H), 3.57 (q, J=7.1 Hz, 2H), 3.18 (q, J=7.1 Hz, 2H), 1.29 (s, 9H), 1.25 (t, J=7.1 Hz, 3H), 0.94 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 166.22, 149.26, 141.56, 140.37, 129.93, 128.63, 127.20, 124.05, 123.91, 116.81, 111.62, 73.49, 63.96, 43.05, 39.17, 27.65 (3C), 14.09, 12.59. MS EI m/z (rel. int.) 329 (M+, 100), 257 (26), 201 (64), 199 (27), 185 (65), 184 (45), 183 (77), 92 (24), 57 (24); HRMS m/z (EI, M+) calcd for C20H27NO3, 329.1991. found 329.1988.
Light yellow solid. mp 45-48° C. (EtOAc/hexanes); IR (KBr) νmax 2977, 2937, 1634, 1621, 1497, 1432, 1326, 1294, 1167, 1125, 1067, 846 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.78 (d, J=8.1 Hz, 2H), 7.61 (d, J=8.3 Hz, 2H), 7.50 (d, J=1.8 Hz, 1H), 6.51 (d, J=1.8 Hz, 1H), 3.58 (q, J=7.1 Hz, 2H), 3.22 (q, J=7.1 Hz, 2H), 1.27 (t, J=7.1 Hz, 3H), 0.98 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 165.69, 147.83, 142.55, 133.13, 129.63 (q, 2JC-F=32.6 Hz), 125.63 (q, 3JC-F=3.8 Hz, 2C), 125.05 (2C), 123.98 (q, 1JC-F=272.0 Hz), 118.84, 111.78, 43.11, 39.32, 14.16, 12.59. MS EI m/z (rel. int.) 311 (M+, 22), 282 (15), 239 (100); HRMS m/z (EI, M+) calcd for C16H16F3NO2, 311.1133. found 311.1131.
Light yellow oil. mp 73-74° C. (EtOAc/hexanes); IR (KBr) νmax 1625, 1618, 1528, 1500, 1429, 1362, 1199, 1065, 820 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.53 (d, J=8.9 Hz, 2H), 7.36 (d, J=1.8 Hz, 1H), 6.69 (d, J=8.9 Hz, 2H), 6.44 (d, J=1.8 Hz, 1H), 3.56 (q, J=7.1 Hz, 2H), 3.20 (q, J=7.1 Hz, 2H), 2.97 (s, 6H), 1.25 (t, J=7.0 Hz, 3H), 0.95 (t, J=7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 166.75, 150.39, 150.05, 140.27, 126.31 (2C), 118.45, 113.91, 111.95, 111.48 (2C), 42.98, 40.23 (2C), 39.11, 14.09, 12.61. MS EI m/z (rel. int.) 286 (M+, 80), 214 (100), 158 (23), 106 (18); HRMS m/z (EI, M+) calcd for C17H22N2O2, 286.1681. found 286.1680.
Light yellow oil. IR (KBr) νmax 2974, 2936, 1630, 1578, 1492, 1460, 1433, 1293, 1271, 1220, 1043, 786 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.45 (d, J=1.8 Hz, 1H), 7.32-7.17 (m, 3H), 6.89-6.78 (m, 1H), 6.49 (d, J=1.8 Hz, 1H), 3.82 (s, 3H), 3.57 (q, J=7.1 Hz, 2H), 3.21 (q, J=7.1 Hz, 2H), 1.26 (t, J=7.1 Hz, 3H), 0.96 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 166.18, 159.78, 149.09, 141.60, 131.22, 129.66, 117.60, 117.13, 114.21, 111.61, 110.18, 55.23, 43.08, 39.25, 14.08, 12.63. MS EI m/z (rel. int.) 273 (M+, 38), 202 (58), 201 (100), 174 (14); HRMS m/z (EI, M+) calcd for C16H19NO3, 273.1365. found 273.1362.
Light yellow oil. IR (KBr) νmax 2973, 2935, 1629, 1599, 1520, 1497, 1460, 1431, 1296, 1254, 1180, 1068, 1033, 835 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.59 (d, J=8.9 Hz, 2H), 7.39 (d, J=1.8 Hz, 1H), 6.89 (d, J=8.9 Hz, 2H), 6.45 (d, J=1.8 Hz, 1H), 3.81 (s, 3H), 3.56 (q, J=7.0 Hz, 2H), 3.19 (q, J=7.0 Hz, 2H), 1.24 (t, J=7.1 Hz, 3H), 0.94 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 166.41, 159.47, 149.53, 140.95, 126.64 (2C), 122.98, 115.38, 114.03 (2C), 111.48, 55.22, 43.02, 39.16, 14.08, 12.58. MS EI m/z (rel. int.) 273 (M+, 38), 201 (100); HRMS m/z (EI, M+) calcd for C16H19NO3, 273.1365. found 273.1360.
Light yellow oil. IR (KBr) νmax 2975, 2936, 1632, 1598, 1494, 1457, 1430, 1294, 1220, 1064, 758 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.65 (td, J=7.6, 1.6 Hz, 1H), 7.51 (d, J=1.8 Hz, 1H), 7.34-7.27 (m, 1H), 7.17 (td, J=7.6, 1.0 Hz, 1H), 7.13-7.04 (m, 1H), 6.53 (d, J=1.8 Hz, 1H), 3.51 (q, J=7.1 Hz, 2H), 3.26 (q, J=7.1 Hz, 2H), 1.20 (t, J=7.1 Hz, 3H), 1.00 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) 6 ppm 165.63, 158.82 (d, 1JC-F=251.5 Hz), 145.48 (d, 4JC-F=1.9 Hz), 142.23, 130.04 (d, 3JC-F=8.3 Hz), 128.94 (d, 4JC-F=2.8 Hz), 124.23 (d, 3JC-F=3.5 Hz), 119.81 (d, 3JC-F=2.1 Hz), 118.18 (d, 2JC-F=13.5 Hz), 116.10 (d, 2JC-F=21.8 Hz), 111.47, 42.84, 38.91, 13.86, 12.42. MS EI m/z (rel. int.) 261 (M+, 30), 232 (15), 190 (15), 189 (100); HRMS m/z (EI, M+) calcd for C15H16FNO2, 261.1165. found 261.1167.
Light yellow oil. IR (KBr) νmax 2975, 2936, 1630, 1601, 1518, 1496, 1460, 1431, 1295, 1234, 1159, 1068, 839,755 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.70-7.58 (m, 2H), 7.43 (d, J=1.8 Hz, 1H), 7.11-6.98 (m, 2H), 6.47 (d, J=1.8 Hz, 1H), 3.56 (q, J=7.0 Hz, 2H), 3.20 (q, J=7.0 Hz, 2H), 1.24 (t, J=7.0 Hz, 3H), 0.95 (t, J=7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 166.07, 162.45 (d, 1JC-F=248.3 Hz), 148.63, 141.56, 127.04 (d, 3JC-F=8.1 Hz, 2C), 126.36 (d, 4JC-F=3.3 Hz), 116.65, 115.68 (d, 2JC-F=21.8 Hz, 2C), 111.53, 43.06, 39.23, 14.11, 12.59. MS EI m/z (rel. int.) 261 (M+, 27), 232 (11), 189 (100), 133 (10); HRMS m/z (EI, M+) calcd for C15H16FNO2, 261.1165. found 261.1160.
Light yellow oil. IR (KBr) νmax 2973, 2935, 1631, 1478, 1458, 1433, 1062, 788 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.48 (d, J=1.8 Hz, 1H), 7.21 (d, J=7.6 Hz, 1H), 7.17 (d, J=7.3 Hz, 1H), 7.09 (t, J=7.5 Hz, 1H), 6.57 (d, J=1.8 Hz, 1H), 3.42 (q, J=7.0 Hz, 2H), 3.10 (q, J=7.0 Hz, 2H), 2.31 (s, 3H), 2.22 (s, 3H), 1.08 (t, J=6.9 Hz, 3H), 0.76 (t, J=6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 165.72, 151.58, 141.68, 137.40, 135.57, 130.72, 129.87, 127.96, 125.42, 118.74, 111.23, 42.90, 38.91, 20.46, 16.76, 13.61, 12.49. MS EI m/z (rel. int.) 271 (M+, 4), 199 (100), 198 (50), 171 (22), 143 (14), 128 (23), 72 (16); HRMS m/z (EI, M+) calcd for C17H21NO2, 271.1572. found 271.1567.
Light yellow oil. IR (KBr) νmax 2976, 2937, 1626, 1583, 1506, 1481, 1432, 1321, 1290, 1216, 1121, 1083, 983, 866, 823 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.47 (d, J=1.8 Hz, 1H), 7.24-7.14 (m, 2H), 6.72 (tt, J=8.7, 2.3 Hz, 1H), 6.50 (d, J=1.8 Hz, 1H), 3.59 (q, J=7.1 Hz, 2H), 3.22 (q, J=7.1 Hz, 2H), 1.28 (t, J=7.1 Hz, 3H), 1.00 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 165.43, 163.22 (dd, 1,3JC-F=247.8, 13.0 Hz, 2C), 147.01 (t, 4JC-F=3.6 Hz), 142.44, 132.63 (t, 3JC-F=10.6 Hz), 118.89, 111.76, 107.68 (dd, 2,4JC-F=27.7, 8.0 Hz, 2C), 103.23 (t, 2JC-F=25.5 Hz), 43.10, 39.35, 14.16, 12.48. MS EI m/z (rel. int.) 279 (M+, 24), 250 (10), 207 (100), 151 (12); HRMS m/z (EI, M+) calcd for C15H15F2NO2, 279.1071. found 279.1064.
Pale solid. mp 92-93° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 1627, 1478, 1430, 1294, 832, 744 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.14 (s, 1H), 7.91-7.73 (m, 4H), 7.51 (d, J=1.6 Hz, 1H), 7.50-7.39 (m, 2H), 6.55 (d, J=1.6 Hz, 1H), 3.62 (q, J=7.0 Hz, 2H), 3.21 (q, J=7.0 Hz, 2H), 1.32 (t, J=7.0 Hz, 3H), 0.94 (t, J=7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 166.26, 149.24, 141.88, 133.27, 132.84, 128.35, 128.27, 127.65, 127.42, 126.46, 126.33, 124.09, 122.86, 117.35, 111.81, 43.09, 39.28, 14.09, 12.62. MS EI m/z (rel. int.) 293 (M+, 35), 222 (64), 221 (100), 165 (28); HRMS m/z (EI, M+) calcd for C19H19NO2, 293.1416. found 293.1417.
Light yellow oil. IR (KBr) νmax 2975, 1629, 1487, 1462, 1430, 1293, 1068, 1008, 740 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.42 (d, J=1.7 Hz, 1H), 7.39 (d, J=1.7 Hz, 1H), 6.64 (d, J=3.4 Hz, 1H), 6.48 (d, J=1.8 Hz, 1H), 6.44 (dd, J=3.3, 1.8 Hz, 1H), 3.64-3.50 (m, 2H), 3.35-3.16 (m, 2H), 1.26 (t, J=6.4 Hz, 3H), 1.01 (t, J=6.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 164.98, 145.07, 142.57, 142.51, 141.54, 116.35, 111.47, 111.11, 107.54, 43.02, 39.17, 14.08, 12.68. MS EI m/z (rel. int.) 233 (M+, 28), 161 (100), 105 (20); HRMS m/z (ESI, [M+1]+) calcd for C13H16NO3, 234.1130. found 234.1126.
Light yellow oil. IR (KBr) νmax 2974, 1627, 1492, 1435, 1291, 1067, 790 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.59 (dd, J=2.9, 1.2 Hz, 1H), 7.38 (d, J=1.8 Hz, 1H), 7.37 (dd, J=5.9, 1.2 Hz, 1H), 7.31 (dd, J=5.1, 3.0 Hz, 1H), 6.45 (d, J=1.8 Hz, 1H), 3.64-3.44 (m, 2H), 3.35-3.17 (m, 2H), 1.26 (t, J=6.9 Hz, 3H), 1.00 (t, J=6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 165.95, 147.27, 140.83, 131.15, 126.00, 125.11, 121.35, 115.86, 111.01, 43.11, 39.29, 14.20, 12.77. MS EI m/z (rel. int.) 249 (M+, 33), 178 (42), 177 (100), 121 (33); HRMS m/z (EI, M+) calcd for C13H15NO2S, 249.0824. found 249.0814.
Light yellow oil. IR (KBr) νmax 2974, 1630, 1493, 1455, 1430, 1254, 1076, 750 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.58 (d, J=7.2 Hz, 1H), 7.50 (d, J=1.7 Hz, 1H), 7.45 (d, J=7.9 Hz, 1H), 7.33-7.18 (m, 2H), 7.02 (s, 1H), 6.56 (d, J=1.7 Hz, 1H), 3.70-3.56 (m, 2H), 3.37-3.21 (m, 2H), 1.36 (t, J=6.9 Hz, 3H), 1.03 (t, J=6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 164.71, 154.68, 146.58, 142.75, 141.97, 128.31, 124.81, 123.25, 121.28, 118.81, 111.48, 111.19, 103.41, 43.12, 39.26, 14.12, 12.70. MS EI m/z (rel. int.) 283 (M+, 27), 212 (30), 211 (100), 155 (72), 126 (20), 57 (29), 56 (29); HRMS m/z (EI, M+) calcd for C17H17NO3, 283.1208. found 283.1221.
Light yellow solid. mp 64-66° C. (EtOAc/hexanes); IR (KBr) νmax 2974, 1699, 1628, 1608, 1493, 1432, 1309, 1294, 1214, 1172, 1070, 832 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 10.00 (s, 1H), 7.89 (d, J=8.6 Hz, 2H), 7.84 (d, J=8.5 Hz, 2H), 7.54 (d, J=1.8 Hz, 1H), 6.54 (d, J=1.8 Hz, 1H), 3.61 (q, J=7.1 Hz, 2H), 3.23 (q, J=7.1 Hz, 2H), 1.29 (t, J=7.1 Hz, 3H), 0.99 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 191.49, 165.67, 147.88, 143.01, 135.32, 135.25, 130.16 (2C), 125.18 (2C), 119.74, 112.03, 43.14, 39.36, 14.19, 12.60. MS EI m/z (rel. int.) 271 (M+, 2), 199 (20), 171 (26), 115 (100), 56 (32); HRMS m/z (EI, M+) calcd for C16H17NO3, 271.1208. found 271.1215.
Light yellow solid (with 63% recovery of N,N-diethylfuran-3-carboxamide). mp 64-66° C. (EtOAc/hexanes); IR (KBr) νmax 2975, 1630, 1489, 1431, 1295, 1094, 1068, 832 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.61 (d, J=8.6 Hz, 2H), 7.45 (d, J=1.8 Hz, 1H), 7.34 (d, J=8.6 Hz, 2H), 6.49 (d, J=1.8 Hz, 1H), 3.57 (q, J=7.0 Hz, 2H), 3.20 (q, J=7.0 Hz, 2H), 1.25 (t, J=7.1 Hz, 3H), 0.97 (t, J=7, 1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 165.97, 148.35, 141.88, 133.89, 128.89 (2C), 128.49, 126.33 (2C), 117.38, 111.66, 43.09, 39.27, 14.17, 12.61. MS EI m/z (rel. int.) 277 (M+, 28), 248 (19), 207 (30), 205 (100), 170 (15), 149 (14); HRMS m/z (EI, M+) calcd for C15H16ClNO2, 277.0870. found 277.0869.
Light yellow oil, IR (KBr) νmax 2973, 2934, 1623, 1496, 1477, 1459, 1433, 1380, 1297, 1215, 1138, 1055, 752, 735, 698 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.27 (t, J=7.4 Hz, 2H), 7.20 (d, J=1.9 Hz, 1H), 7.17 (t, J=7.4 Hz, 1H), 7.13 (d, J=7.2 Hz, 2H), 6.36 (d, J=1.9 Hz, 1H), 3.55-3.27 (m, 4H), 2.48 (dt, J=8.8, 5.3 Hz, 1H), 2.42 (dt, J=9.0, 5.3 Hz, 1H), 1.61 (ddd, J=8.9, 5.6, 5.0 Hz, 1H), 1.40 (ddd, J=9.0, 6.0, 5.0 Hz, 1H), 1.22-1.04 (m, 6H); 13C NMR (101 MHz, CDCl3) δ ppm 165.74, 154.72, 141.24, 139.49, 128.38 (2C), 125.97 (3C), 116.12, 110.18, 43.05 (br), 39.19 (br), 25.18, 20.25, 16.44, 14.12 (br), 13.05 (br). MS EI m/z (rel. int.) 283 (M+, 6), 192 (44), 153 (64), 152 (60), 128 (37), 115 (48), 104 (100), 103 (32), 91 (71), 78 (55), 77 (66), 56 (45), 51 (49); HRMS m/z (EI, M+) calcd for C18H21NO2, 283.1572. found 283.1566.
Light yellow oil. IR (KBr) νmax 2973, 2933, 1630, 1470, 1459, 1431, 1363, 1290, 1195, 1090, 1071, 757 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.46-7.39 (m, 3H), 7.38-7.31 (m, 5H), 4.46 (s, 2H), 3.81-3.65 (m, 1H), 3.07-2.90 (m, 2H), 2.74-2.58 (m, 1H), 1.28 (s, 9H), 0.90 (t, J=7.1 Hz, 3H), 0.74 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.50, 140.00, 139.64, 138.43, 136.29, 129.46, 128.82, 128.24, 127.69, 127.58, 127.39, 126.93, 126.47, 73.41, 63.94, 42.33, 38.38, 27.64 (3C), 13.39, 11.99. MS EI m/z (rel. int.) 339 (M+, 15), 209 (24), 194 (45), 193 (100), 181 (48), 152 (30), 72 (39); HRMS m/z (EI, M+) calcd for C22H29NO2, 339.2198. found 339.2205.
Light yellow solid. mp 81-82° C. (EtOAc/hexanes); IR (KBr) νmax 2977, 1628, 1430, 1326, 1290, 1165, 1125, 1109, 1069, 767 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.68-7.57 (m, 4H), 7.51-7.33 (m, 4H), 3.83-3.62 (m, 1H), 3.13-2.83 (m, 2H) 2.77-2.58 (m, 1H), 0.88 (t, J=7.1 Hz, 3H), 0.78 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.99, 143.39, 136.88, 136.41, 129.70 (q, 2JC-F=32.7 Hz), 129.36, 129.20 (2C), 129.08, 128.32, 126.96, 125.17 (q, 3JC-F=3.7 Hz, 2C), 124.13 (q, 1JC-F=271.9 Hz), 42.29, 38.37, 13.42, 11.85. MS EI m/z (rel. int.) 321 (M+, 31), 320 (52), 249 (100), 201 (33), 152 (18); HRMS m/z (EI, M4) calcd for C18H18F3NO, 321.1340. found 321.1334.
Light yellow oil. IR (KBr) νmax 2973, 2933, 2875, 2830, 1625, 1613, 1527, 1484, 1443, 1429, 1356, 1288, 1223, 783 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.42-7.26 (m, 6H), 6.72 (d, J=8.8 Hz, 2H), 3.81-3.64 (m, 1H), 3.15-3.02 (m, 1H), 3.00-2.87 (m, 711), 2.72-2.59 (m, 1H), 0.98 (t, J=7.1 Hz, 3H), 0.73 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 171.05, 149.98, 138.45, 135.97, 129.49 (2C), 128.99, 128.74, 127.92, 127.05, 126.38, 112.21 (2C), 42.18, 40.46 (2C), 38.38, 13.33, 12.18. MS EI m/z (rel. int.) 296 (M+, 100), 295 (24), 224 (88); HRMS m/z (EI, M+) calcd for C19H24N2O, 296.1889. found 296.1885.
Light yellow oil. IR (KBr) νmax 2972, 2935, 1627, 1602, 1581, 1464, 1429, 1318, 1291, 1221, 1094, 1053, 783, 761, 700 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.46-7.32 (m, 4H), 7.27 (t, J=8.1 Hz, 1H), 7.10-6.99 (m, 2H), 6.87 (dd, J=8.2, 2.4 Hz, 1H), 3.81 (s, 3H), 3.78-3.68 (m, 1H), 3.09-2.89 (m, 2H), 2.74-2.59 (m, 1H), 0.90 (t, J=7.1 Hz, 3H), 0.75 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.45, 159.35, 141.16, 138.23, 136.35, 129.26, 129.24, 128.82, 127.56, 126.91, 121.21, 114.11, 113.44, 55.22, 42.24, 38.26, 13.38, 11.92. MS EI m/z (rel. int.) 283 (M+, 46), 282 (45), 211 (100), 168 (18), 72 (17); HRMS m/z (EI, M+) calcd for C18H21NO2, 283.1572. found 283.1574.
Light yellow oil. mp 46-47° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2935, 1626, 1518, 1485, 1458, 1428, 1289, 1244, 1180, 1035, 836, 764 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.46-7.29 (m, 6H), 6.90 (d, J=8.8 Hz, 2H), 3.81 (s, 3H), 3.78-3.66 (m, 1H), 3.10-2.86 (m, 2H), 2.71-2.59 (m, 1H), 0.93 (t, J=7.1 Hz, 3H), 0.73 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.68, 159.16, 137.90, 136.20, 132.31, 129.94 (2C), 129.23, 128.82, 127.05, 126.94, 113.66 (2C), 55.25, 42.19, 38.33, 13.36, 12.08; MS EI m/z (rel. int.) 283 (M+, 36), 282 (30), 211 (100), 168 (19); FIRMS m/z (EI, M+) calcd for C18H21NO2, 283.1572. found 283.1572.
Light yellow on. IR (KBr) νmax 2974, 2935, 1632, 1482, 1456, 1426, 1290, 1221, 1090, 757 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.49-7.35 (m, 5H), 7.34-7.27 (m, 1H), 7.18-7.04 (m, 2H), 4.01-3.53 (m, 1H), 3.30-2.56 (m, 3H), 0.86 (t, J=7.1 Hz, 3H), 0.80 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.85, 159.44 (d, 1JC-F=246.0 Hz), 137.19, 132.31, 132.09 (d, 4JC-F=3.0 Hz), 130.63 (d, 4JC-F=2.1 Hz), 129.43 (d, 3JC-F=8.1 Hz), 128.34, 128.02, 127.09 (d, =15.0 Hz), 126.58, 123.85 (d, 3JC-F=3.6 Hz), 115.34 (d, 2JC-F=22.3 Hz), 42.14, 38.04, 13.50, 11.80. MS EI m/z (rel. int.) 271 (M+, 42), 270 (58), 199 (100), 170 (25); HRMS m/z (EI, M+) calcd for C17H18FNO, 271.1372. found 271.1368.
Light yellow solid. mp 57-59° C. (EtOAc/hexanes); IR (KBr) νmax 2975, 2935, 1627, 1515, 1485, 1470, 1458, 1428, 1290, 1223, 1161, 1097, 840, 763 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.50-7.30 (m, 6H), 7.05 (t, J=8.6 Hz, 2H), 3.83-3.63 (m, 1H), 3.12-2.84 (m, 2H), 2.75-2.57 (m, 1H), 0.91 (t, J=7.1 Hz, 3H), 0.75 (t, J=7.1 Hz, 31-1); 13C NMR (101 MHz, CDCl3) δ ppm 170.31, 162.43 (d, F=247.0 Hz), 137.19, 136.32, 135.83 (d, 4JC-F=3.3 Hz), 130.49 (d, 3JC-F=8.0 Hz, 2C), 129.33, 128.91, 127.61, 126.87, 115.14 (d, 2JC-F=21.4 Hz, 2C), 42.22, 38.32, 13.39, 12.00. MS EI m/z (rel. int.) 271 (M+, 24), 270 (50), 199 (100), 171 (18), 170 (28); FIRMS m/z (EI, M+) calcd for C17H18FNO, 271.1372. found 271.1382.
Light yellow oil. IR (KBr) νmax 2976, 2935, 1625, 1592, 1433, 1414, 1338, 1292, 1120, 1093, 988, 864, 763 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.49-7.32 (m, 4H), 7.07-6.96 (m, 2H), 6.78 (tt, J=8.9, 2.3 Hz, 1H), 3.98-3.66 (m, 1H), 3.16-2.86 (m, 2H), 2.84-2.65 (m, 1H), 0.97 (t, J=7.1 Hz, 314), 0.83 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.78, 162.70 (dd, =248.7, 12.9 Hz, 2C), 142.93 (t, 3JC-F=9.6 Hz), 136.29, 135.99 (t, 4JC-F=2.3 Hz), 129.14, 129.11, 128.50, 127.00, 111.82 (dd, 2,4JC-F=25.8 Hz, 7.17 Hz, 2C), 102.85 (t, 2JC-F=25.2 Hz), 42.39, 38.44, 13.49, 11.82. MS EI m/z (rel. int.) 289 (M+, 27), 288 (50), 217 (100), 189 (18), 188 (28); HRMS m/z (EI, M+) calcd for C17H17F2NO, 289.1278. found 289.1278.
Light yellow solid. mp 52-53° C. (EtOAc/hexanes); IR (KBr) Vmax 2974, 2933, 1625, 1474, 1458, 1424, 1290, 1089, 774, 761 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.96 (s, 1H), 7.90-7.79 (m, 3H), 7.63 (dd, J=8.5, 1.8 Hz, 1H), 7.55-7.45 (m, 4H), 7.44-7.39 (m, 2H), 3.82-3.58 (m, 1H), 3.09-2.84 (m, 2H), 2.71-2.52 (m, 1H), 0.80 (t, J=7.1 Hz, 3H), 0.71 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.57, 138.19, 137.21, 136.52, 133.15, 132.54, 129.70, 128.98, 128.21, 127.92, 127.74, 127.60, 127.54, 127.16, 126.96, 126.19, 126.07, 42.36, 38.47, 13.41, 12.00. MS EI m/z (rel. int.) 303 (M+, 30), 232 (48), 231 (100), 203 (21), 202 (54), 72 (21); HRMS m/z (EI, M+) calcd for C21H21NO, 303.1623. found 303.1624.
Yellow oil. IR (KBr) νmax 2974, 2935, 1631, 1460, 1428, 1381, 1292, 1272, 1222, 1094, 1011, 761 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.71 (dd, J=7.9, 0.6 Hz, 1H), 7.44 (dd, J=1.7, 0.6 Hz, 1H), 7.38 (td, J=7.9, 1.6 Hz, 1H), 7.29 (td, J=7.4, 1.2 Hz, 114), 7.24 (dd, J=7.5, 1.1 Hz, 1H), 6.64 (dd, J=3.4, 0.6 Hz, 114), 6.42 (dd, J=3.4, 1.8 Hz, 1H), 3.75 (q, J=7.0 Hz, 1H), 3.38 (q, J=7.0 Hz, 1H), 3.12-2.91 (m, 2H), 1.24 (t, J=7.1 Hz, 3H), 0.86 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) 6 ppm 170.61, 151.61, 142.25, 133.85, 128.62, 127.47, 127.09, 126.81, 126.09, 111.64, 108.16, 42.59, 38.72, 13.34, 12.28. MS EI m/z (rel. int.) 243 (M+, 78), 171 (100), 143 (28), 115 (45); HRMS m/z (EI, M+) calcd for C15H17NO2, 243.1259. found 243.1253.
Yellow oil. IR (KBr) νmax 2973, 2933, 1625, 1459, 1428, 1291, 1089, 860, 801, 774, 754 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.51-7.29 (m, 6H), 7.27 (dd, J=5.0, 1.3 Hz, 1H), 3.81-3.66 (m, 1H), 3.22-3.08 (m, 1H), 3.02-2.87 (m, 1H), 2.82-2.68 (m, 1H), 1.04 (t, J=7.1 Hz, 3H), 0.75 (t, J=7.1 Hz, 1H); 13C NMR (101 MHz, CDCl3) 6 ppm 170.68, 140.11, 136.08, 132.84, 128.86, 128.75, 128.19, 127.39, 126.80, 125.44, 123.17, 42.34, 38.48, 13.29, 12.18. MS EI m/z (rel. int.) 259 (M+, 29), 258 (15), 188 (36), 187 (100), 160 (19), 115 (48); HRMS m/z (EI, M+) calcd for C15H17NOS, 259.1031. found 259.1035.
Light yellow oil. IR (KBr) νmax 2974, 1632, 1491, 1472, 1455, 1427, 1290, 1258, 1088, 751 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.92 (dd, J=7.8, 0.7 Hz, 1H), 7.56 (d, J=7.5 Hz, 1H), 7.51-7.43 (m, 2H), 7.40 (td, J=7.5, 1.2 Hz, 1H), 7.35-7.18 (m, 3H), 7.05 (s, 1H), 3.88-3.73 (m, 1H), 3.46-3.32 (m, 1H), 3.15-2.92 (m, 2H), 1.28 (t, J=7.1 Hz, 3H), 0.88 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.44, 154.69, 153.51, 135.02, 129.01, 128.77, 128.58, 127.18, 126.98, 126.85, 124.52, 122.89, 121.19, 111.10, 104.76, 42.74, 38.87, 13.49, 12.41. MS EI m/z (rel. int.) 293 (M+, 66), 222 (47), 221 (100), 193 (17), 165 (36); HRMS m/z (EI, M+) calcd for C19H19NO2, 293.1416. found 293.1416.
Light yellow oil. IR (KBr) νmax 2973, 1628, 1598, 1495, 1485, 1469, 1458, 1449, 1428, 1381; 1285, 1075, 963, 762, 692 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.70 (d, J=7.8 Hz, 1H), 7.46 (d, J=7.3 Hz, 2H), 7.40-7.18 (m, 6H), 7.13 (d, J=16.7 Hz, 1H), 7.09 (d, J=17.7 Hz, 1H), 4.05-3.68 (m, 1H), 3.56-3.22 (m, 1H), 3.10 (q, J=7.0 Hz, 2H), 1.30 (t, J=7.1 Hz, 3H), 1.00 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.35, 137.01, 136.35, 133.63, 130.82, 128.75, 128.65 (2C), 127.84, 127.53, 126.56 (2C), 126.18, 125.25, 125.02, 42.82, 38.89, 13.87, 12.96. MS EI m/z (rel. int.) 279 (M+, 22), 208 (27), 207 (49), 179 (40), 178 (100), 177 (21), 176 (25), 152 (21), 77 (20), 57 (31), 56 (40); HRMS m/z (EI, M+) calcd for C19H21NO, 279.1623. found 279.1639.
Yellow solid. mp 52-53° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2933, 1631, 1602, 1494, 1472, 1459, 1428, 1291, 1072, 755, 698 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.39-6.87 (in, 9H), 3.90-3.64 (m, 1H), 3.40-2.68 (m, 3H), 2.37-1.29 (m, 4H), 1.14-0.78 (m, 6H) (atropisomers involved); 13C NMR (101 MHz, CDCl3) δ ppm 170.62, 142.11, 141.94, 137.89, 137.71, 128.75, 128.31, 128.24, 128.11, 126.16, 126.00, 125.75, 125.73, 125.54, 125.43, 125.18, 124.94, 123.04, 42.53, 42.45, 38.43, 28.83, 26.08, 25.15, 24.31, 17.25, 17.12, 13.90, 13.64, 12.45, 12.28 (atropisomers involved). MS EI m/z (rel. int.) 293 (M+, 2), 189 (100), 160 (29), 132 (13), 91 (14); HRMS m/z (EI, M+) calcd for C20H23NO, 293.1780. found 293.1780.
Light yellow oil. IR (KBr) νmax 2973, 2936, 1625, 1515, 1486, 1458, 1432, 1378, 1320, 1263, 1137, 1081, 763, 699 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.56 (d, J=7.3 Hz, 2H), 7.51 (dd, J=8.4, 2.0 Hz, 1H), 7.43 (d, J=2.0 Hz, 1H), 7.40 (t, J=7.6 Hz, 2H), 7.28 (t, J=7.4 Hz, 1H), 6.96 (d, J=8.4 Hz, 1H), 3.90-3.71 (m, 1H), 3.42-3.31 (m, 1H), 3.30-3.19 (m, 1H), 3.18-3.06 (m, 1H), 2.85 (s, 6H), 1.26 (t, J=7.1 Hz, 3H), 1.03 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 171.25, 148.50, 140.22, 133.06, 129.52, 128.65 (2C), 127.89, 127.05, 126.64, 126.46 (2C), 117.15, 43.38 (2C), 42.75, 38.81, 13.75, 12.55. MS EI m/z (rel. int.) 296 (M+, 38), 224 (100), 223 (50), 196 (25), 181 (47), 180 (36), 167 (38), 153 (42), 152 (75), 72 (41), 58 (48), 57 (38), 56 (66); FIRMS m/z (ESI, [M+1]+) calcd for C19H25N2O, 297.1966. found 297.1979.
Pale solid. mp 139-141° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 2934, 1626, 1522, 1473, 1459, 1433, 1295, 1272, 1256, 1244, 1180, 1036, 829, 767, 700 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.70-7.61 (m, 3H), 7.59 (d, J=1.3 Hz, 1H), 7.51-7.40 (m, 5H), 7.36 (t, J=7.2 Hz, 1H), 6.93 (d, J=8.5 Hz, 2H), 3.83 (s, 3H), 3.79-3.67 (m, 1H), 3.17-2.91 (m, 2H), 2.78-2.62 (m, 1H), 0.98 (t, J=7.1 Hz, 3H), 0.75 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.66, 159.26, 139.99, 139.90, 136.85, 136.60, 131.92, 129.95 (2C), 129.74, 128.81 (2C), 127.52, 127.48, 126.96 (2C), 125.61, 113.76 (2C), 55.28, 42.32, 38.45, 13.46, 12.14. MS EI m/z (rel. int.) 359 (M+, 50), 358 (36), 288 (30), 287 (100), 216 (28), 215 (79), 77 (32), 72 (39), 57 (30), 56 (51); HRMS m/z (ESI, [M+1]+) calcd for C24H26NO2, 360.1963. found 360.1979.
Light yellow oil. IR (KBr) νmax 2973, 2932, 1633, 1478, 1456, 1441, 1426, 1330, 1315, 1291, 1122, 796, 773, 749, 703 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.45-7.23 (m, 6H), 7.22-7.13 (m, 213), 3.86-3.67 (m, 1H), 3.20-3.02 (m, 1H), 2.82-2.61 (m, 213), 2.15 (s, 3H), 0.91 (t, J=7.1 Hz, 3H), 0.59 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.22, 138.39, 137.78, 137.43, 136.37, 130.25, 128.60 (br), 128.37 (br), 127.46, 127.33 (br, 2C), 127.14, 123.17, 42.17, 37.57, 20.50, 13.57, 11.52. MS EI m/z (rel. int.) 267 (M+, 25), 266 (51), 195 (95), 166 (32), 165 (100), 152 (61), 56 (34); HRMS m/z (ESI, [M+1]+) calcd for C18H22NO, 268.1701. found 268.1692.
Light yellow solid. mp 113-114° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 2934, 1627, 1520, 1474, 1461, 1437, 1293, 1247, 1180, 1091, 1038, 821 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.40 (d, J=8.8 Hz, 2H), 7.29-7.19 (m, 2H), 7.15 (s, 1H), 6.89 (d, J=8.8 Hz, 2H), 3.82 (s, 3H), 3.78-3.65 (m, 1H), 3.12-2.88 (m, 2H), 2.75-2.58 (m, 1H), 2.38 (s, 3H), 0.95 (t, J=7.1 Hz, 3H), 0.73 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.88, 158.99, 136.88, 136.04, 135.03, 132.32, 129.88 (2C), 129.61, 129.13, 127.51, 113.63 (2C), 55.25, 42.20, 38.28, 20.94, 13.37, 12.12. MS EI m/z (rel. int.) 297 (M+, 32), 296 (29), 225 (100), 182 (20), 165 (16), 153 (24), 152 (17); HRMS m/z (ESI, [M+1]+) calcd for C19H24NO2, 298.1807. found 298.1823.
Light yellow solid. mp 89-92° C. (EtOAc/hexanes); IR (KBr) νmax 2965, 1629, 1610, 1522, 1489, 1474, 1461, 1434, 1294, 1261, 1248, 1180, 1138, 828 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.45-7.36 (m, 3H), 7.34 (d, J=2.0 Hz, 1H), 7.29 (d, J=8.1 Hz, 1H), 6.89 (d, J=8.7 Hz, 2H), 3.81 (s, 3H), 3.80-3.69 (m, 1H), 3.08-2.87 (m, 2H), 2.75-2.57 (m, 1H), 1.34 (s, 9H), 0.95 (t, J=7.1 Hz, 3H), 0.74 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 171.22, 159.01, 150.00, 135.74, 135.01, 132.29, 129.89 (2C), 128.91, 125.90, 123.86, 113.64 (2C), 55.24, 42.22, 38.40, 34.53, 31.22, 13.38, 12.14. MS EI m/z (rel. int.) 339 (M+, 32), 267 (67), 211 (39), 165 (26), 72 (43), 57 (100); HRMS m/z (EI, M+) calcd for C22H29NO2, 339.2198. found 339.2179.
Light yellow solid. mp 128-130° C. (EtOAc/hexanes); IR (KBr) νmax 2974, 2933, 1627, 1473, 1458, 1433, 1272, 1093, 758, 701 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.74-7.63 (m, 3H), 7.62 (d, J=1.5 Hz, 1H), 7.54 (d, J=6.8 Hz, 2H), 7.51-7.43 (m, 3H), 7.43-7.30 (m, 4H), 3.87-3.70 (m, 1H), 3.13-2.90 (m, 2H), 2.79-2.61 (m, 1H), 0.93 (t, J=7.1 Hz, 3H), 0.74 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.42, 140.37, 139.94, 139.38, 137.22, 136.77, 129.88, 128.83 (2C), 128.81 (2C), 128.32 (2C), 127.61, 127.57, 127.52, 127.01 (2C), 125.60, 42.27, 38.34, 13.42, 11.96. MS EI m/z (rel. int.) 329 (M+, 37), 328 (40), 257 (100), 228 (25); HRMS m/z (EI, M+) calcd for C23H23NO, 329.1780. found 329.1783.
Light yellow oil. IR (KBr) νmax 2935, 1639, 1593, 1583, 1570, 1500, 1466, 1429, 1394, 1309, 1270, 1256, 1123, 1098, 1059, 1019, 761, 702 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.50-7.42 (m, 2H), 7.41-7.28 (m, 4H), 6.99 (dd, J=7.7, 0.6 Hz, 1H), 6.93 (d, J=8.3 Hz, 1H), 3.87 (s, 3H), 2.86 (s, 3H), 2.53 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 168.59, 155.79, 140.21, 139.74, 129.62, 128.52 (2C), 128.17 (2C), 127.48, 125.06, 122.01, 109.84, 55.89, 37.63, 34.26. MS EI m/z (rel. int.) 255 (M+, 8), 211 (100), 168 (29), 152 (29), 139 (44), 72 (16); HRMS m/z (EI, M+) calcd for C16H17NO2, 255.1259. found 255.1257.
Pale solid. mp 79-80° C. (EtOAc/hexanes); IR (KBr) νmax 2975, 2935, 1632, 1583, 1569, 1465, 1423, 1283, 1265, 761, 701 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.48 (d, J=6.7 Hz, 2H), 7.41-7.27 (m, 4H), 6.97 (d, J=7.7 Hz, 1H), 6.92 (d, J=8.3 Hz, 1H), 3.85 (s, 3H), 3.84-3.73 (m, 1H), 3.05-2.87 (m, 2H), 2.77-2.63 (m, 1H), 0.84-0.72 (m, 6H); 13C NMR (101 MHz, CDCl3) δ ppm 167.59, 155.75, 140.03, 139.61, 129.31, 128.92 (2C), 128.01 (2C), 127.38, 125.56, 121.96, 109.78, 55.69, 42.14, 37.88, 13.26, 11.85. MS EI m/z (rel. int.) 283 (M+, 8), 211 (100), 206 (18); HRMS m/z (EI, M+) calcd for C18H21NO2, 283.1572. found 283.1570.
Light yellow solid. mp 83-84° C. (EtOAc/hexanes); IR (KBr) νmax 2936, 1635, 1579, 1502, 1466, 1455, 1433, 1395, 1257, 1053, 701 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.45-7.28 (m, 6H), 6.99 (dd, J=8.4, 2.3 Hz, 2H), 3.76 (s, 3H), 2.73 (s, 3H), 2.47 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.63, 156.32, 138.19, 135.29, 129.98 (2C), 129.02, 127.64 (2C), 127.45, 127.34, 119.02, 111.55, 55.81, 38.05, 34.23. MS EI m/z (rel. int.) 255 (M+, 48), 211 (100), 196 (24); HRMS m/z (EI, M+) calcd for C16H17NO2, 255.1259. found 255.1267.
Light yellow solid. mp 79-80° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 2934, 1629, 1459, 1426, 1297, 1255, 1059, 801, 744, 700 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.44-7.27 (m, 6H), 6.97 (t, J=7.9 Hz, 2H), 3.80-3.67 (m, 4H), 3.13-2.99 (m, 1H), 2.86-2.72 (m, 1H), 2.71-2.56 (m, 1H), 0.84 (t, J=7.1 Hz, 3H), 0.66 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.70, 156.36, 138.62, 135.22, 130.16 (2C), 128.92, 127.64 (2C), 127.24, 127.20, 118.51, 111.22, 55.78, 42.04, 37.74, 13.50, 11.64. MS EI m/z (rel. int.) 283 (M+, 64), 282 (69), 212 (13), 211 (100), 196 (35), 168 (15); HRMS m/z (EI, M+) calcd for C18H21NO2, 283.1572. found 283.1563.
Light yellow solid. mp 64-65° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 2935, 1625, 1468, 1428, 1290, 1271, 1036, 772, 702 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.47 (d, J=6.6 Hz, 2H), 7.40-7.27 (m, 4H), 6.96-6.85 (m, 2H), 3.84 (s, 3H), 3.79-3.63 (m, 1H), 3.16-2.78 (m, 2H), 2.73-2.48 (m, 1H), 0.86 (t, J=7.1 Hz, 3H), 0.72 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.52, 159.70, 139.97, 139.76, 129.02, 128.70 (2C), 128.44, 128.24 (2C), 127.59, 114.62, 112.97, 55.33, 42.23, 38.29, 13.35, 11.90. MS EI m/z (rel. int.) 283 (M+, 11), 282 (16), 211 (100); HRMS m/z (EI, M+) calcd for C18H21NO2, 283.1572. found 283.1574.
Light yellow solid. mp 55-56° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 2935, 1628, 1608, 1478, 1433, 1315, 1291, 1269, 1230, 1086, 1047, 830, 773, 704 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.47-7.40 (m, 2H), 7.37-7.27 (m, 4H), 6.97 (dd, J=8.5, 2.7 Hz, 1H), 6.89 (d, J=2.6 Hz, 1H), 3.84 (s, 3H), 3.80-3.69 (m, 1H), 3.06-2.89 (m, 2H), 2.71-2.56 (m, 1H), 0.89 (t, J=7.1 Hz, 3H), 0.73 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.21, 158.96, 139.47, 137.27, 130.88, 130.65, 128.77 (2C), 128.20 (2C), 127.05, 115.04, 111.93, 55.42, 42.17, 38.25, 13.35, 11.88; MS EI m/z (rel. int.) 283 (M+, 41), 282 (38), 211 (100), 168 (17); HRMS m/z (EI, M+) calcd for C18H21NO2, 283.1572. found 283.1564.
Light yellow solid. mp 63-64° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 2934, 1626, 1468, 1430, 1314, 1289, 1220, 1184, 1154, 1095, 1079, 996, 702 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.47 (dd, J=8.0, 1.4 Hz, 2H), 7.39-7.27 (m, 4H), 7.08-7.02 (m, 2H), 5.21 (s, 2H), 3.85-3.63 (m, 1H), 3.49 (s, 3H), 3.15-2.84 (m, 2H), 2.74-2.49 (m, 1H), 0.88 (t, J=7.1 Hz, 3H), 0.72 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.45, 157.44, 139.98, 139.60, 130.10, 128.72 (2C), 128.41, 128.25 (2C), 127.61, 116.96, 115.18, 94.40, 56.07, 42.25, 38.32, 13.36, 11.90. MS EI m/z (rel. int.) 313 (M+, 24), 312 (50), 241 (100), 211 (65), 168 (28), 139 (33); FIRMS m/z (ESI, [M+1]+) calcd for C19H24NO3, 314.1756. found 314.1760.
Colorless solid. mp 101-102° C. (EtOAc/hexanes); IR (KBr) νmax 2936, 1633, 1596, 1479, 1450, 1394, 1296, 1273, 1258, 1122, 1021, 767, 701 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.43 (d, J=6.8 Hz, 2H), 7.39-7.28 (m, 3H), 7.11 (d, J=8.4 Hz, 1H), 6.95 (d, J=8.4 Hz, 1H), 3.90 (s, 3H), 3.45 (s, 3H), 2.71 (s, 3H), 2.40 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.65, 153.43, 146.17, 135.14, 133.25, 130.16, 129.77 (2C), 127.69 (2C), 127.46, 122.79, 111.72, 60.47, 55.91, 38.11, 34.34. MS EI m/z (rel. int.) 285 (M+, 39), 241 (100), 226 (47); HRMS m/z (EI, M+) calcd for C17H19NO3, 285.1365. found 285.1360.
Light yellow oil. IR (KBr) νmax 2957, 2932, 1626, 1521, 1464, 1424, 1288, 1247, 1150, 839, 809, 789, 753 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.54-7.43 (m, 3H), 7.20 (d, J=3.2 Hz, 1H), 7.15 (d, J=8.6 Hz, 1H), 6.91 (d, J=8.7 Hz, 2H), 6.57 (d, J=2.7 Hz, 1H), 3.83 (s, 3H), 3.78-3.66 (m, 1H), 3.33-3.17 (m, 1H), 3.05-2.93 (m, 1H), 2.78-2.66 (m, 1H), 1.03 (t, J=7.1 Hz, 3H), 0.94 (s, 9H), 0.65 (t, J=7.1 Hz, 3H), 0.64 (s, 3H), 0.58 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.17, 158.56, 140.26, 133.58, 131.94, 130.29 (2C), 129.36, 129.30, 127.41, 122.98, 114.10, 113.53 (2C), 104.05, 55.27, 42.35, 38.19, 26.23 (3C), 19.43, 13.65, 12.37, −3.96, −4.02. MS EI m/z (rel. int.) 436 (M+, 38), 364 (100), 321 (16), 258 (17), 73 (31), 57 (16); HRMS m/z (ESI, [M+1]+) calcd for C26H37N2O2Si, 437.2624. found 437.2626.
Pale solid. mp 121-122° C. (EtOAc/hexanes); IR (KBr) νmax 2980, 1638, 1395, 1287, 748, 699 cm−1; NMR (400 MHz, CDCl3) δ ppm 7.56-7.28 (m, 9H), 7.27-7.18 (m, 2H), 7.15 (t, J=6.7 Hz, 1H), 7.01 (d, J=6.5 Hz, 2H), 3.05 (m, 2H), 1.65 (s, 3H), 1.61 (s, 3H), 0.86 (t, J=6.6 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.99, 148.43, 140.16, 138.02, 137.94, 129.63, 129.36, 128.38, 128.36, 128.05, 127.41, 127.15, 127.09, 125.69, 124.32, 61.74, 41.30, 29.55, 26.91, 16.61. MS EI m/z (rel. int.) 343 (M+, 7), 238 (25), 224 (75), 181 (100), 153 (17), 152 (25), 119 (20); HRMS m/z (EI, M+) calcd for C24H25NO, 343.1936. found 343.1935.
Light yellow solid. mp 85-87° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2935, 1633, 1485, 1475, 1461, 1436, 1275, 1251, 1087, 1020, 763, 699 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.60-7.49 (m, 3H), 7.48-7.36 (m, 3H), 7.31 (t, J=7.3 Hz, 1H), 6.97 (d, J=8.6 Hz, 1H), 3.85 (s, 3H), 3.66-3.52 (m, 2H), 3.25-3.11 (m, 2H), 1.26 (t, J=7.1 Hz, 3H), 1.05 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 168.53, 154.67, 140.11, 133.82, 128.70 (2C), 128.34, 127.25, 126.87, 126.66 (2C), 126.07, 111.27, 55.65, 42.79, 38.81, 13.98, 12.88. MS EI m/z (rel. int.) 283 (M+, 24), 282 (23), 211 (100); HRMS m/z (EI, M+) calcd for C18H21NO2, 283.1572. found 283.1575.
Colorless solid. mp 58-60° C. (EtOAc/hexanes); IR (KBr) νmax 2971, 2936, 1633, 1609, 1494, 1474, 1462, 1438, 1276, 1244, 1181, 1087, 1051, 1021, 822 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.54-7.41 (in, 3H), 7.38 (d, J=2.2 Hz, 1H), 7.01-6.85 (m, 3H), 3.85 (s, 3H), 3.84 (s, 3H), 3.64-3.50 (m, 2H), 3.24-3.11 (m, 2H), 1.26 (t, J=7.1 Hz, 3H), 1.05 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 168.62, 158.82, 154.21, 133.54, 132.74, 127.88, 127.69 (2C), 127.19, 125.66, 114.15 (2C), 111.27, 55.65, 55.29, 42.79, 38.79, 13.98, 12.88. MS EI m/z (rel. int.) 313 (M+, 32), 312 (25), 241 (100), 183 (15), 139 (26); HRMS m/z (ESI, [M+1]+) calcd for C19H24NO3, 314.1756. found 314.1746.
Light yellow solid. mp 117-118° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 2933, 1627, 1521, 1473, 1460, 1439, 1317, 1290, 1272, 1245, 1181, 1093, 826, 773, 702 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.63 (dd, J=8.0, 1.9 Hz, 1H), 7.61-7.48 (m, 5H), 7.45 (d, J=8.0 Hz, 1H), 7.42-7.29 (m, 3H), 6.99 (d, J=8.7 Hz, 2H), 3.85 (s, 3H), 3.81-3.69 (m, 1H), 3.11-2.89 (m, 2H), 2.76-2.58 (m, 1H), 0.92 (t, J=7.1 Hz, 3H), 0.74 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.54, 159.38, 139.97, 139.45, 136.67, 136.56, 132.40, 129.82, 128.78 (2C), 128.29 (2C), 128.02 (2C), 127.47, 127.05, 125.08, 114.27 (2C), 55.31, 42.26, 38.32, 13.39, 11.94. MS EI m/z (rel. int.) 359 (M+, 54), 358 (47), 287 (100), 216 (29), 215 (71), 72 (28), 56 (37); HRMS m/z (ESI, [M+1]+) calcd for C24H26NO2, 360.1963. found 360.1955.
Light yellow oil. IR (KBr) νmax 2974, 1625, 1480, 1429, 1285, 818, 749, 731 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.96-7.81 (m, 3H), 7.62 (d, J=7.0 Hz, 2H), 7.57-7.46 (m, 3H), 7.42 (t, J=7.2 Hz, 2H), 7.37 (t, J=7.2 Hz, 1H), 3.90-3.71 (m, 1H), 3.29-3.11 (m, 1H), 3.02-2.86 (m, 1H), 2.75-2.57 (m, 1H), 0.98 (t, J=7.1 Hz, 3H), 0.62 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) 6 ppm 169.23, 140.05, 135.29, 132.82, 132.57, 130.11, 129.26 (2C), 128.62, 128.19 (2C), 127.91, 127.46, 127.32, 126.99, 126.19, 125.56, 42.36, 38.22, 13.54, 12.07. MS EI m/z (rel. int.) 303 (M+, 27), 232 (12), 231 (100), 203 (13), 202 (32); HRMS m/z (EI, M+) calcd for C21H21NO, 303.1623. found 303.1624.
Light yellow solid. mp 121-122° C. (EtOAc/hexanes); IR (KBr) νmax 2974, 2933, 1629, 1478, 1428, 1380, 1286, 1103, 818, 763, 705 cm−1; NMR (400 MHz, CDCl3) δ ppm 7.91 (d, J=8.3 Hz, 1H), 7.90 (d, J=7.6 Hz, 1H), 7.69 (d, J=8.4 Hz, 1H), 7.60-7.29 (m, 8H), 3.90-3.75 (m, 1H), 3.26-3.03 (m, 1H), 2.91-2.61 (m, 2H), 0.89 (t, J=7.1 Hz, 3H), 0.68 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.20, 137.13, 135.47, 134.22, 133.38, 131.96, 131.20, 129.69, 128.61, 128.20, 128.02, 127.62, 127.28, 126.54, 126.47, 126.21, 123.35, 42.25, 37.76, 13.71, 11.70. MS EI m/z (rel. int.) 303 (M+, 28), 302 (26), 232 (15), 231 (100), 203 (12), 202 (38); HRMS m/z (EI, M+) calcd for C21H21NO, 303.1623. found 303.1635.
Light yellow oil. IR (KBr) νmax 2974, 2932, 1626, 1478, 1442, 1423, 1286, 1086, 893, 775, 751, 700 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.93-7.84 (m, 4H), 7.58 (dd, J=8.2, 1.5 Hz, 2H), 7.55-7.49 (m, 2H), 7.45-7.34 (m, 3H), 3.89-3.75 (m, 1H), 3.10-2.91 (m, 2H), 2.73-2.58 (m, 1H), 0.90 (t, J=7.1 Hz, 3H), 0.75 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.38, 139.79, 136.48, 135.02, 133.27, 132.16, 129.09 (2C), 128.44, 128.29 (2C), 127.85 (2C), 127.53, 126.88, 126.52, 126.37, 42.27, 38.32, 13.34, 11.93. MS EI m/z (rel. int.) 303 (M+, 44), 302 (38), 232 (14), 231 (100), 203 (20), 202 (41); HRMS m/z (EI, M+) calcd for C21H21NO, 303.1623. found 303.1624.
Light yellow solid. mp 86-87° C. (EtOAc/hexanes); IR (KBr) νmax 3065, 2927, 1635, 1502, 1493, 1443, 1396, 1264, 1095, 822, 763, 702 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.90 (d, J=8.3 Hz, 1H), 7.89 (d, J=7.9 Hz, 1H), 7.73 (d, J=8.5 Hz, 1H), 7.62-7.48 (m, 2H), 7.48-7.29 (m, 6H), 2.79 (s, 3H), 2.57 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 171.08, 137.26, 135.84, 133.82, 133.59, 131.84, 130.78, 129.82, 128.67, 128.32, 128.06, 127.74, 127.40, 126.61, 126.51, 126.33, 123.63, 38.32, 34.24. MS EI m/z (rel. int.) 275 (M+, 32), 232 (18), 231 (100), 203 (18), 202 (80), 201 (22), 200 (21), 72 (19); HRMS m/z (EI, M+) calcd for C19H17NO, 275.1310. found 275.1310.
Light yellow solid. mp 94-07° C. (EtOAc/hexanes); IR (KBr) νmax 3055, 2926, 1637, 1503, 1445, 1397, 1379, 1111, 1082, 822, 759, 730 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.91 (d, J=8.4 Hz, 1H), 7.90 (d, J=8.1 Hz, 1H), 7.53-7.48 (in, 1H), 7.47-7.01 (m, 711), 2.83 (s, 3H), 2.81-2.60 (m, 3H), 2.04 (s, 3H) (atropisomers involved); 13C NMR (101 MHz, CDCl3) δ ppm 170.79, 136.93 (brs), 135.79 (brs), 133.83 (brs), 133.15, 132.04 (brs), 129.97 (brs), 128.79 (brs), 128.07, 128.03, 127.99, 127.15 (brs), 126.68, 126.41, 126.32, 125.07 (brs), 123.46 (brs), 38.58 (brs), 34.29, 20.13 (atropisomers involved). MS EI m/z (rel. int.) 289 (M+, 14), 246 (20), 245 (100), 244 (46), 216 (25), 215 (94), 213 (25), 202 (56), 189 (19), 72 (32); HRMS m/z (EI, M+) calcd for C20H19NO, 289.1467. found 289.1455.
Pale solid. mp 150-152° C. (EtOAc/hexanes); IR (KBr) νmax 2974, 2933, 1631, 1489, 1477, 1457, 1428, 1379, 1285, 1115, 1098, 818, 758, 729 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.99-7.79 (m, 2H), 7.58-6.93 (m, 8H), 3.94-3.57 (m, 1H), 3.46-2.63 (m, 31), 2.18-1.82 (m, 3H), 1.17-0.80 (m, 3H), 0.67 (t, J=7.0 Hz, 3H) (atropisomers involved); 13C NMR (101 MHz, CDCl3) δ ppm 170.02, 138.74, 137.05, 136.08, 135.53, 134.00, 133.13, 132.19, 131.98, 130.01, 129.50, 128.72, 128.03, 127.90, 126.63, 126.48, 126.21, 125.71, 124.71, 123.57, 122.94, 42.55, 42.10, 37.65, 20.22, 20.07, 13.87, 11.70 (atropisomers involved). MS EI m/z (rel. int.) 317 (M+, 31), 316 (24), 245 (100), 244 (31), 215 (27), 202 (26); HRMS m/z (EI, M+) calcd for C22H23NO, 317.1780. found 317.1790.
Light yellow solid. mp 181-183° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2932, 1629, 1477, 1427, 1285, 1102, 817 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.91 (d, J=8.2 Hz, 2H), 7.74 (d, J=8.3 Hz, 1H), 7.53 (t, J=7.2 Hz, 1H), 7.49-7.37 (m, 3H), 7.33-7.18 (m, 3H), 3.95-3.71 (m, 1H), 3.25-3.06 (m, 1H), 2.98-2.82 (m, 1H), 2.81-2.65 (m, 1H), 2.44 (s, 3H), 0.91 (t, J=7.0 Hz, 3H), 0.74 (t, J=7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.34, 137.28, 135.59, 134.24, 134.11, 133.40, 132.10, 131.03, 129.55, 129.22, 127.98 (3C), 126.55, 126.43, 126.14, 123.40, 42.26, 37.78, 21.24, 13.72, 11.71. MS EI m/z (rel. int.) 317 (M+, 38), 316 (31), 246 (20), 245 (100), 215 (14), 202 (36); HRMS m/z (EI, calcd for C22H23NO, 317.1780. found 317.1786.
Light yellow solid. mp 1172-119° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2933, 1631, 1477, 1428, 1378, 1363, 1285, 1195, 1103, 1070, 819, 756 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.96-7.84 (m, 2H), 7.71 (t, J=7.9 Hz, 1H), 7.56-7.15 (m, 7H), 4.59-4.40 (m, 2H), 3.88-3.69 (m, 1H), 3.26-3.07 (m, 1H), 2.94-2.60 (m, 2H), 1.28 (d, 9H), 0.89 (m, 3H), 0.70 (t, J=7.0 Hz, 3H) (atropisomers involved); 13C NMR (101 MHz, CDCl3) δ ppm 170.24, 140.32, 139.25, 137.01, 136.80, 135.72, 135.54, 134.19, 134.05, 133.39, 133.32, 132.04, 131.93, 130.06, 129.83, 128.51, 128.41, 128.38, 128.13, 128.07, 127.93, 127.37, 126.68, 126.60, 126.46, 126.43, 126.18, 123.44, 123.21, 73.35, 63.96, 63.90, 42.42, 42.38, 37.96, 37.76, 27.64, 13.73, 13.71, 11.76, 11.71 (atropisomers involved). MS EI m/z (rel. int.) 389 (M+, 25), 315 (14), 244 (31), 243 (100); HRMS m/z (EI, M+) calcd for C26H31NO2, 389.2355. found 389.2368.
Pale solid mp 111-112° C. (EtOAc/hexanes); IR (KBr) νmax 2977, 2935, 1630, 1478, 1430, 1326, 1166, 1126, 1106, 1067, 818 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.95 (d, J=8.5 Hz, 1H), 7.92 (d, J=8.4 Hz, 1H), 7.79-7.64 (m, 3H), 7.59 (d, J=8.3 Hz, 1H), 7.54 (d, J=7.3 Hz, 1H), 7.50-7.39 (m, 3H), 3.91-3.69 (m, 1H), 3.21-3.02 (m, 1H), 2.93-2.63 (m, 2H), 0.92 (t, J=7.0 Hz, 3H), 0.67 (t, J=7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.72, 141.09, 134.37, 133.95, 133.33, 131.77 (brs), 131.56, 130.03 (brs), 129.96 (q, 2JC-F=32.5 Hz), 128.88, 128.23, 126.99, 126.49, 125.95, 125.56 (brs), 124.27 (brs), 124.15 (q, 1JC-F=272.2 Hz), 123.17, 42.33, 37.86, 13.75, 11.55. MS EI m/z (rel. int.) 371 (M+, 61), 370 (71), 300 (21), 299 (100), 251 (21), 202 (47); HRMS m/z (EI, M+) calcd for C22H20F3NO, 371.1497. found 371.1513.
Pale solid. mp 140-141° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 2932, 1627, 1612, 1523, 1477, 1428, 1380, 1349, 1282, 817 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.92-7.77 (m, 3H), 7.49 (t, J=7.3 Hz, 1H), 7.46-7.35 (m, 3H), 7.20 (d, J=8.1 Hz, 1H), 6.80 (t, J=9.5 Hz, 2H), 3.92-3.71 (m, 1H), 3.21-3.06 (m, 1H), 2.99 (s, 6H), 2.94-2.84 (m, 1H), 2.77-2.64 (m, 1H), 0.86 (t, J=6.9 Hz, 3H), 0.78 (t, J=6.9 Hz, 31-1); 13C NMR (101 MHz, CDCl3) δ ppm 170.76, 150.05, 135.93, 134.28, 133.52, 132.41, 131.83, 130.54, 127.93, 127.50, 126.79, 126.22, 126.02, 125.03, 123.60, 112.53, 111.44, 42.20, 40.61, 37.84, 13.71, 12.03. MS EI m/z (rel. int.) 346 (M+, 84), 275 (18), 274 (100), 202 (14); HRMS m/z (EI, M+) calcd for C23H26N2O, 346.2045. found 346.2049.
Colorless solid. mp 91-93° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 2934, 1629, 1578, 1478, 1463, 1429, 1378, 1285, 1251, 1047, 819 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.98-7.81 (m, 2H), 7.75 (t, J=7.1 Hz, 1H), 7.51 (t, J=7.3 Hz, 1H), 7.47-7.28 (m, 3H), 7.19-7.08 (m, 1H), 7.01-6.83 (m, 2H), 3.93-3.73 (m, 4H), 3.25-3.05 (m, 1H), 2.91-2.63 (m, 2H), 0.96-0.82 (m, 3H), 0.73 (t, J=6.9 Hz, 3H) (atropisomers involved); 13C NMR (101 MHz, CDCl3) δ ppm 170.22, 170.16, 159.55, 158.68, 138.41, 135.41, 135.24, 134.11, 133.36, 131.82, 129.62, 128.30, 128.23, 127.99, 126.55, 126.52, 126.48, 126.22, 123.80, 123.37, 123.30, 122.12, 115.75, 115.67, 114.30, 112.76, 55.28, 42.41, 42.37, 37.89, 37.79, 13.76, 11.72 (atropisomers involved). MS EI m/z (rel. int.) 333 (M+, 39), 332 (39), 262 (26), 261 (100), 246 (18), 218 (22), 189 (23); HRMS m/z (EI, M+) calcd for C22H23NO2, 333.1729. found 333.1726.
Pale solid. mp 114-116° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 2933, 1628, 1514, 1477, 1429, 1380, 1286, 1246, 1178, 1102, 1034, 819, 757 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.88 (d, J=7.9 Hz, 2H), 7.72 (d, J=8.1 Hz, 1H), 7.57-7.35 (m, 4H), 7.25 (d, J=7.8 Hz, 1H), 6.98 (t, J=8.4 Hz, 2H), 3.86 (s, 3H), 3.84-3.73 (m, 1H), 3.21-3.03 (m, 1H), 2.95-2.80 (m, 1H), 2.78-2.65 (m, 1H), 0.88 (t, J=6.5 Hz, 3H), 0.75 (t, J=6.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.39, 159.15, 135.20, 134.39, 133.42, 132.35, 132.23, 130.82, 129.38, 128.01, 127.96, 126.48, 126.46, 126.14, 123.40, 113.41, 113.39, 55.31, 42.24, 37.82, 13.73, 11.92. MS EI m/z (rel. int.) 333 (M+, 32), 332 (27), 262 (23), 261 (100), 218 (23), 189 (25); HRMS m/z (EI, M+) calcd for C22H23NO2, 333.1729. found 333.1721.
Pale solid. mp 137-140° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2934, 1630, 1492, 1478, 1449, 1429, 1286, 1233, 1094, 819, 758, 731 cm−; NMR (400 MHz, CDCl3) δ ppm 8.01-7.83 (m, 2H), 7.59-7.36 (m, 6H), 7.32-7.09 (m, 2H), 3.94-3.72 (m, 1H), 3.37-3.10 (m, 1H), 3.04-2.68 (m, 2H), 1.08-0.80 (m, 3H), 0.68 (t, J=6.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) 6 ppm 169.77, 159.98 (d, 1JC-F=245.8 Hz), 135.15, 133.54, 132.95, 131.81, 129.96 (d, 3JC-F=8.0 Hz), 129.73, 128.99, 128.14, 126.89, 126.40, 126.00, 124.52 (d, 2JC-F=17.4 Hz), 124.27, 123.23, 114.89 (d, 2JC-F=21.9 Hz), 41.95, 37.77, 13.77, 11.74. MS EI m/z (rel. int.) 321 (M+, 31), 320 (34), 249 (100), 221 (14), 220 (35); HRMS m/z (EI, M+) calcd for C21H20FNO, 321.1529. found 321.1528.
Pale solid. mp 103-104° C. (EtOAc/hexanes); IR (KBr) νmax 2975, 2934, 1628, 1512, 1478, 1429, 1381, 1287, 1222, 1159, 1103, 819, 756, 728 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.98-7.83 (m, 2H), 7.64 (d, J=8.3 Hz, 1H), 7.60-7.49 (m, 2H), 7.48-7.40 (m, 2H), 7.36-7.27 (m, 1H), 7.22-7.07 (m, 2H), 3.90-3.71 (m, 1H), 3.20-3.03 (m, 1H), 2.94-2.64 (m, 2H), 0.91 (t, J=7.1 Hz, 3H), 0.75 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.06, 162.43 (d, 1JC-F=246.9 Hz), 134.47, 134.35, 133.37, 133.05 (d, 3JC-F=8.2 Hz), 133.04 (d, 4JC-F=3.6 Hz) 132.01, 131.25 (d, 3JC-F=7.9 Hz), 128.42, 128.13, 126.73, 126.31, 126.17, 123.25, 115.50 (d, 2JC-F=21.2 Hz), 114.42 (d, 2JC-F=21.6 Hz), 42.30, 37.88, 13.75, 11.84. MS EI m/z (rel. int.) 321 (M+, 38), 320 (36), 249 (100), 220 (36); HRMS m/z (EI, M+) calcd for C21H20FNO, 321.1529. found 321.1533.
Light yellow oil. IR (KBr) νmax 2975, 1624, 1588, 1481, 1432, 1386, 1285, 1119, 987, 819, 755 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.94 (d, J=8.5 Hz, 1H), 7.91 (d, J=8.3 Hz, 1H), 7.65 (d, J=8.3 Hz, 1H), 7.54 (t, J=7.1 Hz, 1H), 7.51-7.41 (m, 2H), 7.13 (m, 1H), 6.92-6.83 (m, 2H), 3.96-3.80 (m, 1H), 3.25-3.03 (m, 1H), 2.97-2.74 (m, 2H), 0.96 (t, J=7.0 Hz, 3H), 0.83 (t, J=7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.56, 162.94 (d, 1JC-F=246.2 Hz), 162.13 (d, 1JC-F=248.6 Hz), 140.49 (t, 3JC-F=9.6 Hz, 1C), 134.25, 133.31, 133.02, 131.36, 129.04, 128.24, 127.10, 126.55, 125.80, 123.11, 114.60 (d, 2HC-F=22.7 Hz, 1C), 112.62 (d, 2JC-F=22.7 Hz, 1C), 103.17 (t, 2JC-F=25.1 Hz), 42.49, 38.00, 13.80, 11.75. MS EI m/z (rel. int.) 339 (M+, 32), 338 (30), 267 (100), 238 (31); HRMS m/z (EI, M+) calcd for C21H19F2NO, 339.1435. found 339.1420.
Pale solid. mp 159-161° C. (EtOAc/hexanes); IR (KBr) νmax 2974, 1625, 1480, 1429, 1285, 1119, 1099, 921, 909, 819, 749, 731 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.12-7.86 (m, 5H), 7.85-7.36 (m, 8H), 3.82-3.64 (m, 1H), 3.38-3.06 (m, 1H), 2.90-2.55 (m, 2H), 0.99-0.78 (m, 3H), 0.64-0.32 (m, 3H) (atropisomers involved); 13C NMR (101 MHz, CDCl3) δ ppm 170.21, 135.54, 135.19, 135.06, 134.56, 134.52, 134.35, 133.44, 132.77, 132.61, 132.56, 132.19, 131.98, 130.30, 129.19, 128.51, 128.48, 128.39, 128.24, 128.08, 127.95, 127.87, 127.71, 127.42, 126.91, 126.63, 126.58, 126.27, 126.22, 126.13, 126.09, 123.59, 123.31, 42.46, 42.38, 37.90, 37.80, 13.77, 11.71, 11.50 (atropisomers involved). MS EI m/z (rel. int.) 353 (M+, 28), 282 (46), 281 (100), 252 (41), 126 (14); HRMS m/z (EI, M+) calcd for C25H23NO, 353.1780. found 353.1776.
Light yellow oil. IR (KBr) νmax 2974, 2934, 1629, 1479, 1429, 1287, 820, 739 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 8.08-7.98 (m, 1H), 7.91 (d, J=8.4 Hz, 1H), 7.89-7.81 (m, 1H), 7.60 (brs, 1H), 7.57-7.47 (m, 2H), 7.42 (d, J=8.4 Hz, 1H), 6.70 (d, J=3.0 Hz, 1H), 6.55 (brs, 1H), 3.90-3.71 (m, 1H), 3.21-3.00 (m, 2H), 2.97-2.78 (m, 1H), 1.08 (t, J=7.0 Hz, 3H), 0.84 (t, J=7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.26, 149.91, 142.61, 135.39, 133.34, 131.74, 129.45, 128.12, 127.08, 126.48, 126.23, 124.90, 123.58, 111.91, 111.20, 42.44, 38.40, 13.45, 12.30. MS EI m/z (rel. int.) 293 (M+, 31), 220 (98), 193 (59), 164 (78), 138 (15), 100 (19); HRMS m/z (EI, M+) calcd for C19H19NO2, 293.1416. found 293.1429.
Light yellow solid. mp 71-73° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2932, 1626, 1478, 1429, 1285, 1101, 818, 755, 653 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.92 (d, J=8.4 Hz, 2H), 7.85 (d, J=8.3 Hz, 1H), 7.61-7.36 (m, 5H), 7.26 (brs, 1H), 3.97-3.78 (m, 1H), 3.19-3.03 (m, 1H), 3.02-2.87 (m, 1H), 2.85-2.69 (m, 1H), 0.96-0.80 (m, 6H); 13C NMR (101 MHz, CDCl3) δ ppm 170.37, 136.99, 134.74, 133.32, 132.18, 130.58, 129.78 (brs), 128.34, 128.07, 126.68, 126.30, 126.29, 125.35 (brs), 124.88, 123.39, 42.29, 38.04, 13.70, 12.02; MS EI m/z (rel. int.) 309 (M+, 17), 238 (37), 237 (100), 208 (64), 165 (32), 57 (35), 56 (40); HRMS m/z (ESI, [M+1]+) calcd for C19H20NOS, 310.1265. found 310.1248.
Pale solid. mp 114-116° C. (EtOAc/hexanes); IR (KBr) νmax 3056, 2925, 1628, 1496, 1448, 1396, 1256, 1108, 1059, 975, 820, 751, 732, 697 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.26-8.17 (m, 1H), 7.92-7.85 (m, 1H), 7.84 (d, J=8.4 Hz, 1H), 7.61 (d, J=16.4 Hz, 1H), 7.58-7.50 (m, 4H), 7.41 (d, J=8.4 Hz, 1H), 7.40 (t, J=8.1 Hz, 2H), 7.32 (t, J=7.3 Hz, 1H), 7.02 (d, J=16.4 Hz, 1H), 3.07 (s, 3H), 2.78 (s, 3H); 13C NMR (101 MHz, CDCl3) 6 ppm 171.69, 137.20, 136.01, 133.50, 132.94, 131.61, 131.42, 128.74 (2C), 128.44, 128.19, 128.10, 126.73, 126.63 (2C), 126.47, 125.23, 124.09, 123.33, 38.16, 34.75. MS EI m/z (rel. int.) 301 (M+, 55), 257 (65), 256 (65), 229 (39), 228 (100), 227 (36), 226 (49), 105 (36), 77 (71), 72 (65); HRMS m/z (EI, M+) calcd for C21H19NO, 301.1467. found 301.1452.
Pale solid. mp 86-89° C. (EtOAc/hexanes); IR (KBr) νmax 2974, 2361, 2341, 1624, 1479, 1449, 1427, 1379, 1286, 1115, 975, 816, 750, 695 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.25-8.15 (m, 1H), 7.92-7.85 (m, 1H), 7.83 (d, J=8.4 Hz, 1H), 7.64-7.46 (m, 5H), 7.44-7.34 (m, 3H), 7.30 (t, J=7.3 Hz, 1H), 7.05 (d, J=16.4 Hz, 1H), 4.00-3.79 (m, 1H), 3.30-3.10 (m, 2H), 3.09-2.95 (m, 1H), 1.10 (t, J=7.1 Hz, 3H), 0.98 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.85, 137.06, 136.15, 133.44, 133.35, 131.49, 131.28, 128.67 (2C), 128.41, 128.03, 128.00, 126.68, 126.59 (2C), 126.35, 125.26, 124.00, 123.36, 42.61, 38.73, 13.86, 12.64. MS EI m/z (rel. int.) 329 (M+, 40), 258 (27), 257 (53), 256 (39), 229 (62), 228 (100), 227 (51), 226 (59), 105 (40), 78 (31), 77 (43), 57 (47), 56 (70); HRMS m/z (EI, M+) calcd for C23H23NO, 329.1780. found 329.1770.
Light yellow solid. mp 133-134° C. (EtOAc/hexanes); IR (KBr) νmax 1634, 1495, 1398, 765, 704 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.97-7.83 (m, 3H), 7.59 (d, J=7.1 Hz, 2H), 7.57-7.48 (m, 3H), 7.44 (t, J=7.3 Hz, 2H), 7.37 (t, J=7.2 Hz, 1H), 2.98 (s, 3H), 2.43 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.14, 140.14, 135.70, 132.60, 132.35, 129.91, 128.93, 128.86 (2C), 128.32 (2C), 127.95, 127.56, 127.28, 127.17, 126.29, 125.50, 37.68, 34.43. MS EI m/z (rel. int.) 275 (M+, 22), 231 (100), 203 (13), 202 (31); HRMS m/z (EI, calcd for C19H17NO, 275.1310. found 275.1309.
Light yellow solid. mp 108-109° C. (EtOAc/hexanes); IR (KBr) νmax 2926, 1637, 1508, 1494, 1448, 1400, 1264, 1193, 1124, 830, 762, 729 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.08-6.93 (m, 1011), 3.02-2.84 (m, 3H), 2.82-2.46 (m, 3H), 2.35-2.12 (in, 3H) (atropisomers involved); 13C NMR (101 MHz, CDCl3) δ ppm 169.73, 169.60, 140.06, 138.77, 137.39, 136.40, 135.19, 134.81, 133.39, 133.29, 132.50, 132.39, 130.73, 130.20, 129.42, 128.20, 128.15, 128.00, 127.80, 127.69, 127.19, 127.05, 126.30, 126.21, 125.66, 125.56, 125.01, 124.69, 38.27, 37.72, 34.36, 34.12, 20.35, 20.25 (atropisomers involved). MS EI m/z (rel. int.) 289 (M+, 5), 245 (91), 244 (64), 216 (34), 215 (100), 202 (65), 72 (35); HRMS m/z (EI, M+) calcd for C20H19NO, 289.1467. found 289.1463.
Light yellow solid. mp 145-146 (EtOAc/hexanes); IR (KBr) 2923, 1634, 1506, 1448, 1399, 1264, 1194, 1124, 812, 748, 730 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.90 (d, J=8.6 Hz, 1H), 7.88-7.83 (m, 2H), 7.58-7.44 (m, 5H), 7.24 (d, J=7.9 Hz, 1H), 3.00 (s, 3H), 2.44 (s, 3H), 2.41 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.32, 137.32, 137.26, 135.75, 132.52, 132.18, 129.99, 129.09 (2C), 128.87, 128.74 (2C), 127.95, 127.42, 127.11, 126.16, 125.47, 37.71, 34.49, 21.18. MS EI m/z (rd. int.) 289 (M+, 28), 245 (100), 215 (49), 202 (91); HRMS m/z (EI, M+) calcd for C20H19NO, 289.1467. found 289.1465.
Light yellow solid. mp 184-186° C. (EtOAc/hexanes); IR (KBr) νmax 2931, 1635, 1619, 1507, 1402, 1325, 1166, 1125, 1082, 1062, 1019, 820, 754, 733 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.94 (d, J=8.5 Hz, 1H), 7.92-7.82 (m, 2H), 7.75-7.65 (m, 4H), 7.61-7.52 (m, 2H), 7.50 (d, J=8.5 Hz, 1H), 3.00 (s, 3H), 2.46 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.74, 143.83, 134.15, 132.91, 132.89, 129.77, 129.72 (q, 2JC-F=32.49 Hz), 129.27 (2C), 129.22, 128.08, 127.54, 126.83, 126.82, 125.52, 125.29 (q, 3JC-F=3.69 Hz, 2C), 121.46 (q, 1JC-F=272.03 Hz), 37.73, 34.49. MS EI m/z (rel. int.) 343 (M+, 31), 299 (100), 251 (37), 202 (67), 69 (42); HRMS m/z (EI, M+) calcd for C20H16F3NO, 343.1184. found 343.1172.
Light yellow solid. mp 156-157° C. (EtOAc/hexanes); IR (KBr) νmax 2923, 2890, 1633, 1610, 1527, 1506, 1445, 1398, 1360, 1199, 1125, 815, 752 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.92-7.80 (m, 3H), 7.57-7.42 (m, 5H), 6.79 (d, J=8.8 Hz, 2H), 3.03 (s, 3H), 3.01 (s, 6H), 2.43 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.74, 149.83, 135.97, 132.15, 131.37, 130.18, 129.65 (2C), 128.75, 127.97, 127.85, 127.45, 126.91, 125.71, 125.31, 112.18 (2C), 40.37, 37.67, 34.51. MS EI m/z (rel. int.) 318 (M+, 68), 274 (100), 230 (25), 203 (28), 202 (87), 201 (22), 200 (20), 189 (23); HRMS m/z (EI, M+) calcd for C21H22N2O, 318.1732. found 318.1737.
Light yellow oil. IR (KBr) νmax 2933, 1633, 1611, 1596, 1581, 1509, 1490, 1465, 1399, 1290, 1261, 1222, 1046, 784, 702 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.91 (d, J=8.5 Hz, 1H), 7.89-7.83 (m, 2H), 7.58-7.47 (m, 3H), 7.34 (t, J=8.1 Hz, 1H), 7.19-7.13 (m, 2H), 6.96-6.89 (m, 1H), 3.85 (s, 3H), 3.00 (s, 3H), 2.46 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.17, 159.43, 141.57, 135.60, 132.66, 132.36, 129.90, 129.34, 128.91, 127.96, 127.21, 127.18, 126.32, 125.49, 121.27, 114.05, 113.66, 55.31, 37.76, 34.50. MS EI m/z (rel. int.) 305 (M+, 28), 261 (100), 218 (27), 202 (32), 189 (71), 72 (17); HRMS m/z M+) calcd for C20H19NO2, 305.1416. found 305.1429.
Light yellow solid. mp 194-195° C. (EtOAc/hexanes); IR (KBr) νmax 2932, 1633, 1610, 1517, 1462, 1399, 1291, 1251, 1181, 1125, 1031, 821, 749, 730 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.89 (d, J=8.8 Hz, 1H), 7.87-7.82 (m, 2H), 7.55-7.46 (m, 5H), 6.97 (d, J=8.8 Hz, 2H), 3.86 (s, 3H), 3.00 (s, 3H), 2.43 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.39, 159.16, 135.39, 132.59, 132.42, 132.04, 130.07 (2C), 130.02, 128.87, 127.94, 127.36, 127.12, 126.09, 125.41, 113.81 (2C), 55.25, 37.68, 34.48. MS EI m/z (rel. int.) 305 (M+, 36), 262 (31), 261 (100), 218 (23), 202 (25), 190 (28), 189 (87), 72 (29); HRMS m/z (EI, M+) calcd for C20H19NO2, 305.1416. found 305.1429.
Light yellow solid. mp 105-106° C. (EtOAc/hexanes); IR (KBr) νmax 2927, 1637, 1496, 1450, 1400, 1261, 1206, 1195, 806, 760 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.93-7.87 (m, 2H), 7.87-7.80 (m, 1H), 7.60-7.46 (m, 4H), 7.41-7.31 (m, 1H), 7.24-7.12 (m, 2H), 2.96 (s, 3H), 2.57 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.50, 159.57 (d, 1JC-F=246.3 Hz), 133.74, 132.87, 131.92 (d, 4JC-F=3.0 Hz), 130.01, 129.88, 129.70 (d, 3JC-F=8.1 Hz), 128.20, 128.08, 127.97 (d, 4HC-F=2.3 Hz), 127.36 (d, 2JC-F=14.9 Hz), 127.15, 126.61, 125.45, 124.00 (d, 3JC-F=3.6 Hz), 115.49 (d, 2JC-F=22.1 Hz), 37.76, 34.39. MS EI m/z (rel. int.) 293 (M+, 28), 249 (96), 221 (38), 220 (100), 219 (20), 218 (22); HRMS m/z (EI, M+) calcd for C19H16FNO, 293.1216. found 293.1230.
Light yellow solid. mp 103-104° C. (EtOAc/hexanes); IR (KBr) 3058, 2928, 1633, 1605, 1509, 1400, 1225, 1161, 823, 749, 731 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.91 (d, J=83 Hz, 1H), 7.89-7.82 (m, 2H), 7.60-7.50 (m, 4H), 7.48 (d, J=8.5 Hz, 1H), 7.18-7.08 (m, 2H), 3.00 (s, 3H), 2.44 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.06, 162.43 (d, 1JC-F=247.2 Hz), 136.19 (d, 4JC-F=3.3 Hz), 134.61, 132.61, 132.48, 130.60 (d, 3JC-F=8.1 Hz, 2C), 129.86, 129.02, 128.00, 127.33, 127.13, 126.43, 125.44, 115.42, 115.32 (d, 2JC-F=21.4 Hz, 2C), 37.68, 34.46. MS EI m/z (rel. int.) 293 (M+, 22), 249 (79), 221 (35), 220 (100), 219 (19), 218 (24); HRMS m/z (EI, M+) calcd for C19H16FNO, 293.1216. found 293.1216.
Light yellow solid. mp 168-169° C. (EtOAc/hexanes); IR (KBr) νmax 3055, 2938, 1631, 1504, 1400, 1265, 1194, 1125, 909, 819, 744, 731 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.07 (d, J=0.8 Hz, 1H), 7.96 (d, J=8.5 Hz, 1H), 7.94-7.85 (m, 5H), 7.75 (dd, J=8.5, 1.7 Hz, 1H), 7.64 (d, J=8.5 Hz, 1H), 7.61-7.49 (m, 4H), 2.94 (s, 3H), 2.43 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.21, 137.66, 135.58, 133.29, 132.67, 132.66, 132.59, 130.03, 129.01, 128.32, 128.00, 127.96 (2C), 127.60, 127.54, 127.24, 126.94, 126.39, 126.25, 126.24, 125.56, 37.74, 34.49. MS EI m/z (rel. int.) 325 (M+, 34), 282 (28), 281 (100), 253 (28), 252 (77), 250 (32), 72 (20); HRMS m/z (EI, M+) calcd for C23H19NO, 325.1467. found 325.1468.
Light yellow oil. IR (KBr) νmax 2926, 1630, 1508, 1399, 1263, 1194, 1125, 1017, 800, 784, 748, 641 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.88 (d, J=8.5 Hz, 1H), 7.87-7.77 (m, 2H), 7.58 (d, J=8.5 Hz, 1H), 7.56-7.46 (m, 3H), 7.41-7.34 (m, 2H), 3.08 (s, 3H), 2.47 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.50, 140.35, 132.54, 131.84, 130.30, 129.95, 128.87, 128.04, 127.97, 127.22, 126.72, 126.25, 125.65, 125.36, 123.45, 37.70, 34.59. MS EI m/z (rel. int.) 281 (M+, 35), 238 (29), 237 (100), 209 (30), 208 (90), 165 (53), 164 (31), 163 (40); HRMS m/z (EI, M+) calcd for C17H15NOS, 281.0874. found 281.0871.
Light yellow oil. IR (KBr) νmax 3057, 2928, 1633, 1510, 1496, 1449, 1399, 1263, 1190, 1123, 1023, 959, 909, 814, 742, 701 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.87-7.79 (m, 3H), 7.71 (dd, J=75, 1.4 Hz, 1H), 7.57-7.44 (m, 4H), 7.38 (t, J=7.5 Hz, 2H), 7.30 (t, J=7.3 Hz, 1H), 7.27 (d, J=16.4 Hz, 1H), 7.21 (d, J=16.2 Hz, 1H), 3.33 (s, 3H), 2.74 (s, 3H); 13C NMR (101 MHz, CDCl3)*δ ppm 170.22, 137.01, 132.95, 132.76, 131.54, 130.81, 129.75, 128.77, 128.68 (2C), 128.08, 128.03, 127.28, 126.76 (2C), 126.29, 125.13, 124.99, 12257, 38.02, 34.62. MS EI m/z (rel. int.) 301 (M+, 43), 257 (81), 256 (59), 229 (70), 228 (100), 227(1), 226 (78), 202 (35), 105 (70), 77(67), 72 (33), 51(38); HRMS m/z (EI, M+) calcd for C21H19NO, 301.1467. found 301.1478.
Pale solid. mp 106-107° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2935, 1629, 1595, 1456, 1423, 1294, 1263, 1224, 1189, 1059, 762, 736, 700 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.76 (t, J=9.0 Hz, 2H), 7.60-7.43 (m, 3H), 7.42-7.30 (m, 4H), 7.23 (s, 1H), 3.87 (s, 3H), 3.86-3.77 (m, 1H), 3.16-2.90 (m, 2H), 2.78-259 (m, 1H), 0.74 (t, J=7.1 Hz, 6H); 13C NMR (101 MHz, CDCl3) ppm 168.33, 154.71, 135.69, 135.26, 134.23, 130.34, 128.49, 127.62 (2C), 127.44, 126.71 (3C), 125.50, 125.31, 124.50, 106.02, 55.70, 42.27, 37.70, 13.72, 11.76. MS EI m/z (rel. int.) 333 (M+, 50), 332 (21), 262 (26), 261 (100), 246 (34), 189 (19); HRMS m/z (EI, M+) calcd for C22H23NO2, 333.1729. found 333.1732.
Colorless oil. IR (KBr) νmax 2971, 2934, 1630, 1593, 1477, 1459, 1431, 1375, 1344, 1272, 1104, 772, 702 cm−1; 1H NMR (400 MHz, CDCl3) ppm 8.33 (d, J=8.3 Hz, 1H), 7.65 (d, J=8.3 Hz, 1H), 758-7.47 (m, 2H), 7.47-7.28 (m, 5H), 6.81 (s, 1H), 4.05 (s, 3H), 3.91-3.78 (m, 1H), 3.27-3.11 (m, 1H), 2.87-2.62 (m, 2H), 0.90 (t, J=7.1 Hz, 3H), 0.67 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) 6 ppm 170.30, 155.19, 137.20, 134.03, 132.93, 13148, 130.14, 128.58, 127.73, 127.32, 127.21, 126.97, 126.18, 125.51, 125.48, 121.90, 101.50, 55.64, 42.20, 37.69, 13.78, 11.65. MS EI m/z (rel. int.) 3333 (M+, 51), 318 (38), 262 (23), 261 (100), 246 (26), 189 (19); HRMS m/z (EI, M+) calcd for C22H23NO2, 333.1729. found 333.1720.
Light yellow oil. IR (KBr) νmax 2976, 2535, 1633, 1597, 1478, 1461, 1419, 1295, 1233, 1161, 1087, 754, 702 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.78 (d, J=8.1 Hz, 1H), 756 (d, J=7.5 Hz, 1H), 7.50 (d, J=8.5 Hz, 1H), 7.47-7.42 (m, 2H), 7.41-7.35 (m, 2H), 7.30-7.22 (m, 2H), 7.21 (s, 1H), 3.97 (s, 3H), 3.93-3.80 (m, 1H), 3.24-3.10 (m, 1H), 2.86-2.70 (m, 2H), 0.93 (t, J=7.1 Hz, 3H), 0.60 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) 6 ppm 167.09, 153.35, 137.51, 136.71, 134.40, 131.10, 129.37, 128.46, 127.86, 127.59 (2C), 127.13, 126.78, 126.64, 126.50, 124.04, 105.39, 55.46, 42.20, 37.37, 13.27, 11.56. MS EI m/z (rel. int.) 333 (M+, 22), 302 (15), 262 (18), 261 (100), 256 (14), 189 (12); HRMS m/z (EI, M+) calcd for C22H23NO2, 333.1729. found 333.1718.
Yellow oil. IR (KBr) νmax 2973, 2935, 1634, 1592, 1476, 1454, 1429, 1361, 1324, 1278, 1255, 1220, 1132, 1083, 763 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.20 (d, J=9.1 Hz, 1H), 8.18 (d, J=9.1 Hz, 1H), 7.68-7.51 (m, 3H), 4.00 (s, 3H), 3.86-3.69 (m, 1H), 3.53-3.35 (m, 1H), 3.32-3.08 (m, 2H), 1.30 (t, J=7.1 Hz, 3H), 1.05 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) 6 ppm 167.49, 151.45, 132.97, 128.95, 128.19, 128.15, 127.41, 127.11, 126.25, 122.87, 117.54, 62.77, 43.15, 39.18, 14.02, 12.74. MS EI m/z (rel. int.) 337 ([M+2]+, 14), 335 (M+, 17), 265 (89), 263 (87), 250 (24), 248 (25), 194 (26), 192 (30), 156 (23), 155 (24), 128 (30), 127 (23), 126 (65), 113 (62), 72 (31), 58 (34), 57 (100), 56 (100); HRMS m/z (ESI, [M+1]4) calcd for C16H19Br NO2, 336.0599. found 336.0590.
Pale solid. mp 109-110° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2935, 1629, 1586, 1498, 1473, 1459, 1435, 1334, 1282, 1264, 1251, 1075, 887 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 7.94 (s, 1H), 7.75 (d, J=9.1 Hz, 1H), 7.55-7.47 (m, 2H), 7.28 (d, J=9.1 Hz, 1H), 3.93 (s, 3H), 3.86-3.72 (m, 1H), 3.70-3.53 (m, 1H), 3.18-2.98 (m, 2H), 1.35 (t, J=7.1 Hz, 3H), 0.95 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) 6 ppm 167.23, 152.65, 130.52, 129.90, 129.78, 129.48, 129.16, 125.59, 120.69, 117.62, 113.95, 56.32, 42.79, 38.90, 13.99, 13.00. MS EI m/z (rel. int.) 337 ([M+2]+, 22), 335 (M+, 25), 265 (96), 263 (100), 126 (52), 113 (40), 57 (62), 56 (68); HRMS m/z (EI, M+) calcd for C16H18BrNO2, 335.0521. found 335.0525.
Pale solid. mp 124-125° C. (EtOAc/hexanes); IR (KBr) νmax 2936, 1636, 1586, 1499, 1411, 1391, 1352, 1333, 1274, 1253, 1186, 1176, 1133, 1073, 1019, 903, 818 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.94 (s, 1H), 7.76 (d, J=9.1 Hz, 1H), 7.56-7.45 (m, 2H), 7.29 (d, J=9.1 Hz, 1H), 3.94 (s, 3H), 3.24 (s, 3H), 2.78 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 168.09, 152.81, 130.64, 129.94, 129.81, 129.42, 129.28, 125.67, 120.18, 117.69, 113.90, 56.44, 37.75, 34.61. MS EI m/z (rel. int.) 309 ([M+2]+, 22), 307 (M+, 28), 265 (100), 263 (100), 222 (17), 220 (15), 194 (19), 192 (15), 126 (65), 114 (24), 113 (52), 72 (51); HRMS m/z (EI, M+) calcd for C14H14BrNO2, 307.0208. found 307.0202.
Colorless solid. mp 102-103° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2935, 1631, 1476, 1457, 1429, 1369, 1271, 1221, 1082, 777, 755, 703 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.26 (d, J=8.4 Hz, 1H), 7.90 (d, J=8.4 Hz, 1H), 7.56 (t, J=7.5 Hz, 1H), 7.52-7.37 (m, 6H), 7.29 (s, 1H), 4.07 (s, 3H), 3.89-3.70 (m, 1H), 3.57-3.41 (m, 1H), 3.40-3.15 (m, 2H), 1.32 (t, J=7.1 Hz, 3H), 1.08 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 168.86, 151.11, 139.84, 136.61, 132.94, 130.02 (2C), 128.22 (2C), 127.97, 127.30, 126.81, 126.33, 126.16, 125.49, 125.25, 122.61, 62.70, 43.16, 39.09, 14.08, 12.80. MS EI m/z (rel. int.) 333 (M+, 28), 261 (100), 202 (32), 190 (27), 189 (71), 57 (32); HRMS m/z (EI, M+) calcd for C22H23NO2, 333.1729. found 333.1737.
Light yellow solid. mp 129-130° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 2935, 1632, 1610, 1515, 1476, 1458, 1430, 1370, 1272, 1248, 1222, 1177, 1062, 1033, 839, 773 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.23 (d, J=8.3 Hz, 1H), 7.91 (d, J=8.3 Hz, 1H), 7.55 (t, J=7.5 Hz, 1H), 7.47 (t, J=7.6 Hz, 1H), 7.40 (d, J=8.6 Hz, 2H), 7.25 (s, 1H), 7.02 (d, J=8.6 Hz, 2H), 4.05 (s, 3H), 3.88 (s, 3H), 3.85-3.73 (m, 1H), 3.57-3.39 (m, 1H), 3.37-3.11 (m, 2H), 1.31 (t, J=7.1 Hz, 3H), 1.07 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 168.95, 158.97, 150.88, 136.34, 133.18, 132.22, 131.10 (2C), 128.02, 126.73, 126.41, 126.13, 125.42, 125.35, 122.61, 113.71 (2C), 62.74, 55.32, 43.17, 39.09, 14.11, 12.83. MS EI m/z (rel. int.) 363 (M+, 36), 291 (100), 205 (24), 189 (47), 177 (27), 176 (33), 56 (33); HRMS m/z (EI, M+) calcd for C23H25NO3, 363.1834. found 363.1834.
Light yellow solid. mp 187-188° C. (EtOAc/hexanes); IR (KBr) νmax 1621, 1503, 1455, 1394, 1284, 1258, 1190, 1136, 1071, 1043, 1029, 841, 817, 705 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.93 (s, 1H), 7.89 (d, J=9.0 Hz, 1H), 7.71 (d, J=8.8 Hz, 1H), 7.67 (d, J=8.8 Hz, 1H), 7.62 (d, J=8.5 Hz, 2H), 7.28 (d, J=9.0 Hz, 1H), 7.01 (d, J=8.5 Hz, 2H), 3.96 (s, 3H), 3.86 (s, 3H), 3.28 (s, 3H), 2.83 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 168.66, 159.12, 152.45, 136.36, 133.27, 130.44, 129.60, 129.14, 128.16 (2C), 126.94, 125.02, 124.34, 119.88, 114.27 (2C), 113.28, 56.46, 55.32, 37.82, 34.58. MS EI m/z (rel. int.) 335 (M+, 41), 291 (100), 233 (22), 189 (24), 176 (23); HRMS m/z (ESI, [M+1]+) calcd for C21H22NO3, 336.1599. found 336.1588.
Light yellow solid. mp 118-120° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2936, 1630, 1519, 1499, 1461, 1439, 1285, 1255, 1177, 1075, 1033, 820 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.93 (s, 1H), 7.88 (d, J=9.0 Hz, 1H), 7.76-7.66 (m, 2H), 7.63 (d, J=8.7 Hz, 2H), 7.28 (d, J=9.0 Hz, 1H), 7.01 (d, J=8.7 Hz, 2H), 3.95 (s, 3H), 3.92-3.80 (m, 1H), 3.87 (s, 3H), 3.67-3.55 (m, 1H), 3.21-3.06 (m, 2H), 1.38 (t, J=7.1 Hz, 3H), 0.99 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 167.80, 159.12, 152.32, 136.30, 133.33, 130.18, 129.83, 129.13, 128.17 (2C), 126.86, 125.00, 124.30, 120.43, 114.28 (2C), 113.33, 56.36, 55.35, 42.83, 38.83, 14.04, 13.08. MS EI m/z (rel. int.) 363 (M+, 39), 291 (100), 276 (15), 233 (24), 189 (25); HRMS m/z (EI, M+) calcd for C23H25NO3, 363.1834. found 363.1830.
Light yellow solid. mp 111-113° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2932, 1631, 1475, 1460, 1430, 1380, 1272, 1106, 772, 754, 733, 702 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.96 (dd, J=7.4, 1.7 Hz, 1H), 7.76 (dd, J=7.1, 1.9 Hz, 1H), 7.61 (d, J=7.3 Hz, 1H), 738-7.32 (m, 12H), 3.88-3.70 (m, 1H), 3.31-3.12 (m, 1H), 2.94-2.68 (m, 2H), 0.91 (t, J=7.1 Hz, 3H), 0.71 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.07, 140.47, 140.07, 137.23, 134.97, 133.82, 132.40, 131.69, 131.28, 130.04 (2C), 129.81, 128.65, 128.31 (2C), 127.66, 127.49, 127.35, 126.85, 126.34, 126.27, 126.18, 124.20, 42.39, 37.86, 13.80, 11.76. MS EI m/z (rel. int.) 379 (M+, 32), 378 (22), 308 (33), 307 (100), 278 (35), 277 (43), 276 (59), 202 (30), 77 (50), 57 (46), 56 (65); HRMS m/z (ESI, [M+1]+) calcd for C27H26NO, 380.2014. found 380.1997.
Light yellow solid. mp 126-128° C. (EtOAc/hexanes); IR (KBr) νmax 2972, 1631, 1610, 1515, 1505, 1475, 1460, 1433, 1380, 1290, 1272, 1247, 1178, 1107, 1033, 838, 771, 733, 702 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.99 (d, J=7.4 Hz, 1H), 7.75 (dd, J=7.6, 1.3 Hz, 1H), 7.60 (d, J=7.3 Hz, 1H), 7.55-7.30 (m, 9H), 7.06 (d, J=8.5 Hz, 2H), 3.91 (s, 3H), 3.85-3.71 (m, 1H), 3.33-3.11 (m, 1H), 2.94-2.67 (m, 2H), 0.91 (t, J=7.0 Hz, 3H), 0.70 (t, J=7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.14, 159.11, 140.15, 137.29, 134.64, 133.84, 132.44, 132.41, 131.89, 131.29, 131.12 (2C), 129.83, 128.64, 127.61, 127.33, 126.83, 126.27, 126.22, 126.16, 124.16, 113.78 (2C), 55.33, 42.37, 37.83, 13.79, 11.75. MS/MS ESI m/z (rel. int.) 410 ([M+1]+, 100), 337 (77), 100 (49), 72 (19); HRMS m/z (ESI, [M+1]+) calcd for C28H28NO2, 410.2120. found 410.2109.
Light yellow solid, mp 171-173° C. (EtOAc/hexanes); IR (KBr) νmax 2931, 1632, 1609, 1519, 1463, 1445, 1401, 1285, 1247, 1182, 1028, 826, 789, 761, 730, 700 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.03 (s, 1H), 7.95 (d, J=8.8 Hz, 1H), 7.93 (d, J=9.0 Hz, 1H), 7.78 (d, J=8.7 Hz, 1H), 7.67 (d, J=8.6 Hz, 2H), 7.60 (d, J=7.1 Hz, 2H), 7.54 (d, J=8.4 Hz, 1H), 7.45 (t, J=7.3 Hz, 2H), 7.38 (t, J=7.3 Hz, 1H), 7.04 (d, J=8.6 Hz, 2H), 3.88 (s, 3H), 3.00 (s, 3H), 2.45 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.17, 159.38, 140.18, 138.59, 135.47, 133.10, 133.02, 132.23, 129.08, 128.86 (2C), 128.82, 128.36 (4C), 127.69, 127.57, 126.68, 126.05, 124.95, 114.35 (2C), 55.36, 37.72, 34.48. MS EI m/z (rel. int.) 381 (M+, 60), 338 (28), 337 (100), 319 (25), 276 (25), 265 (37), 263 (43), 239 (24), 169 (21), 132 (24), 77 (32), 72 (27); HRMS m/z (ESI, [M+1]+) calcd for C26H24NO2, 382.1807. found 382.1822.
Light yellow solid. mp 147-148° C. (EtOAc/hexanes); IR (KBr) νmax 2973, 2933, 1625, 1519, 1494, 1460, 1440, 1284, 1269, 1248, 1181, 1034, 836, 825, 789, 760, 702 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.02 (s, 1H), 7.94 (d, J=7.4 Hz, 1H), 7.92 (d, J=7.8 Hz, 1H), 7.77 (d, J=8.7 Hz, 1H), 7.68 (d, J=8.4 Hz, 2H), 7.63 (d, J=7.1 Hz, 2H), 7.53 (d, J=8.5 Hz, 1H), 7.42 (t, J=7.0 Hz, 2H), 7.36 (t, J=7.0 Hz, 1H), 7.03 (d, J=8.4 Hz, 2H), 3.88 (s, 1H), 3.86-3.75 (m, 1H), 3.33-3.12 (m, 1H), 3.04-2.87 (m, 1H), 2.75-2.59 (m, 1H), 1.00 (t, J=7.0 Hz, 3H), 0.65 (t, J=7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.29, 159.36, 140.11, 138.46, 135.07, 133.11, 133.00, 132.70, 129.28 (2C), 129.04, 128.79, 128.33 (2C), 128.24 (2C), 127.75, 127.48, 126.52, 126.11, 124.91, 114.33 (2C), 55.36, 42.43, 38.30, 13.62, 12.12. MS EI m/z (rel. int.) 409 (M+, 46), 338 (32), 337 (100), 265 (41), 263 (38), 239 (41), 202 (45), 77 (40), 72 (47), 56 (42); HRMS m/z (EI, M+) calcd for C28H27NO2, 409.2042. found 409.2018.
Light yellow oil. IR (KBr) νmax 2949, 1727, 1492, 1435, 1279, 1256, 1234, 1137, 1031, 1018, 827, 760, 728 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.97 (d, J=7.8 Hz, 1H), 7.94 (d, J=8.5 Hz, 1H), 7.92 (dd, J=7.4, 1.5 Hz, 1H), 7.62-7.51 (m, 2H), 7.37 (d, J=8.4 Hz, 1H), 7.32-7.26 (m, 2H), 7.25-7.17 (m, 2H), 3.59 (s, 3H), 2.17 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.41, 140.19, 138.30, 136.02, 132.26, 130.54, 129.88, 129.83, 129.42, 129.12, 128.13, 127.75, 127.46, 127.32, 126.26, 125.24, 125.11, 51.85, 20.16. MS EI m/z (rel. int.) 276 (M+, 40), 245 (71), 244 (24), 217 (28), 216 (51), 215 (100), 213 (24), 202 (41), 189 (19); HRMS m/z (EI, M+) calcd for C19H16O2, 276.1150. found 276.1150.
Colorless solid. mp 109-111° C. (EtOAc/hexanes); IR (KBr) νmax 2948, 1725, 1504, 1435, 1286, 1234, 1148, 1137, 1032, 813, 749 cm1; 1H NMR (400 MHz, CDCl3) δ ppm 7.94 (d, J=8.4 Hz, 2H), 7.88 (d, J=7.8 Hz, 1H), 7.59-7.46 (m, 3H), 7.38 (d, J=7.9 Hz, 2H), 7.24 (d, J=7.8 Hz, 2H), 3.73 (s, 3H), 2.41 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.17, 137.93, 137.89, 137.34, 132.17, 129.98, 129.85, 129.76, 129.17 (2C), 128.34 (2C), 128.08, 127.50, 127.35, 126.18, 124.98, 52.17, 21.19. MS EI m/z (rel. int.) 276 (M+, 75), 245 (100), 244 (29), 215 (50), 202 (81); HRMS m/z (EI, M+) calcd for C19H16O2, 276.1150. found 276.1165.
Light yellow oil. IR (KBr) ν1, 2973, 1724, 1435, 1363, 1235, 1193, 1138, 1072, 1032, 790, 749 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.97 (d, J=8.5 Hz, 1H), 7.96 (d, J=8.4 Hz, 1H), 7.90 (dd, J=7.8, 1, 0 Hz, 1H), 7.61-7.50 (m, 3H), 7.49 (s, 1H), 7.45-7.33 (m, 3H), 4.51 (s, 2H), 3.72 (s, 3H), 1.32 (s, 9H); 13C NMR (101 MHz, CDCl3) δ ppm 170.05, 140.73, 140.25, 138.04, 132.27, 129.98, 129.87, 128.38, 128.09, 127.56, 127.47, 127.38, 127.27, 126.62, 126.25, 125.05, 73.51, 63.99, 52.24, 27.69 (3C) (1C not observed). MS EI m/z (rel. int.) 348 (M+, 28), 275 (23), 245 (36), 231 (54), 215 (44), 203 (30), 202 (100), 201 (29), 200 (33), 189 (25), 57 (50); HRMS m/z (EI, M+) calcd for C16H12O3, 348.1725. found 348.1730.
Colorless solid. mp 74-76° C. (EtOAc/hexanes); IR (KBr) νmax 1728, 1325, 1237, 1167, 1125, 1114, 1085, 1064, 1022, 820 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.04-7.95 (m, 2H), 7.92 (dd, J=7.5, 1.4 Hz, 1H), 7.71 (d, J=8.1 Hz, 2H), 7.65-7.54 (m, 4H), 7.49 (d, J=8.5 Hz, 1H), 3.72 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.55, 144.57, 144.56, 136.52, 132.60, 130.25, 129.89, 129.76 (q, 2JC-F=32.52 Hz), 128.90, 128.18, 127.75, 126.84, 126.79, 125.35 (q, 3JC-F=3.74 Hz, 2C), 125.17, 124.17 (q, =272.07 Hz), 52.28. MS EI m/z (rel. int.) 330 (M+, 62), 299 (100), 251 (29), 202 (65), 69 (65); HRMS m/z (EI, M+) calcd for C19H13F3O2, 330.0868. found 330.0848.
Colorless viscous oil. IR (KBr) νmax 1723, 1608, 1595, 1582, 1466, 1435, 1293, 1236, 1138, 1047, 1032, 787 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.96 (d, J=8.1 Hz, 2H), 7.90 (d, J=7.9 Hz, 1H), 7.63-7.48 (m, 3H), 7.36 (t, J=7.7 Hz, 1H), 7.08 (d, J=7.6 Hz, 1H), 7.05 (s, 1H), 6.94 (d, J=8.2 Hz, 1H), 3.85 (s, 3H), 3.74 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.00, 159.55, 142.22, 137.82, 132.32, 129.89 (3C), 129.43, 128.09, 127.43, 127.26, 126.33, 125.02, 120.95, 113.86, 113.45, 55.25, 52.23. MS EI m/z (rel. int.) 292 (M+, 75), 261 (94), 260 (29), 218 (28), 202 (34), 190 (25), 189 (100), 188 (25); HRMS m/z (EI, M+) calcd for C19H16O3, 292.1099. found 292.1092.
Light yellow solid. mp 115-116° C. (EtOAc/hexanes); IR (KBr) νmax 1724, 1610, 1518, 1504, 1463, 1435, 1292, 1242, 1180, 1137, 1032, 821, 750 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.94 (d, J=8.3 Hz, 2H), 7.89 (d, J=7.9 Hz, 1H), 7.61-7.47 (m, 3H), 7.43 (d, J=8.5 Hz, 2H), 6.99 (d, J=8.5 Hz, 2H), 3.87 (s, 3H), 3.75 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.24, 159.19, 137.54, 133.20, 132.06, 129.99, 129.82, 129.63 (3C), 128.07, 127.51, 127.36, 126.11, 124.90, 113.91 (2C), 55.27, 52.20. MS EI m/z (rel. int.) 292 (M+, 55), 261 (93), 260 (28), 218 (21), 202 (19), 190 (31), 189 (100); HRMS m/z (EI, M+) calcd for C19H16O3, 292.1099. found 292.1089.
Light yellow oil. IR (KBr) νmax 1725, 1497, 1464, 1450, 1435, 1276, 1236, 1213, 1139, 1034, 1018, 827, 809, 759 cm−; 1H NMR (400 MHz, CDCl3) δ ppm 8.06 (d, J=7.9 Hz, 1H), 7.97 (d, J=8.5 Hz, 1H), 7.91 (dd, J=7.4, 1.73 Hz, 1H), 7.64-7.53 (m, 2H), 7.51 (dd, J=8.5, 1.34 Hz, 1H), 7.43-7.32 (m, 2H), 7.24-7.12 (m, 2H), 3.70 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.17, 159.56 (d, JC-F=247.0 Hz, 1C), 132.67, 132.56, 131.05 (d, JC-F=3.1 Hz, 1C), 130.71, 130.04, 129.87, 129.63 (d, JC-F=8.0 Hz, 1C), 128.36 (d, JC-F=15.7 Hz, 1C), 128.14, 127.75 (d, JC-F=1.4 Hz, 1C), 127.44, 126.61, 125.31, 123.96 (d, J=3.7 Hz, 1C), 115.64 (d, JC-F=22.1 Hz, 1C), 52.07. MS EI m/z (rel. int.) 280 (M+, 69), 249 (99), 221 (37), 220 (100); HRMS m/z (EI, M+) calcd for C18H13F O2, 280.0900. found 280.0907.
Light yellow solid. mp 113-114° C. (EtOAc/hexanes); IR (KBr) νmax 1726, 1606, 1514, 1505, 1435, 1266, 1235, 1161, 1138, 1032, 1020, 852, 844, 821, 809, 749 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.02-7.93 (m, 2H), 7.90 (d, J=7.7 Hz, 1H), 7.63-752 (m, 2H), 7.48 (d, J=8.6 Hz, 1H), 7.47-7.41 (m, 2H), 7.14 (t, J=8.7 Hz, 2H), 3.73 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.88, 162.44 (d, JC-F=247.1 Hz, 1C), 136.87, 136.84, 132.28, 130.17 (d, JC-F=8.1 Hz, 1C), 130.03, 129.98, 129.89, 128.12, 127.55, 127.22, 126.43, 125.01, 115.38 (d, JC-F=21.5 Hz, 1C), 52.21. MS EI m/z (rel. int.) 280 (M+, 62), 249 (100), 221 (36), 220 (93); HRMS m/z (EI, M+) calcd for C18H13F O2, 280.0900. found 280.0887.
Pale solid. mp 139-140° C. (EtOAc/hexanes); IR (KBr) νmax 3056, 1724, 1504, 1434, 1238, 1137, 1032, 820, 744 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.03 (d, J=7.5 Hz, 1H), 8.01 (d, J=8.3 Hz, 1H), 7.98 (d, J=1.2 Hz, 1H), 7.96-7.87 (m, 4H), 7.68-7.49 (m, 6H), 3.67 (s, 3H); 13C NMR (101 MHz, CDCl3) 6 ppm 170.03, 138.31, 137.93, 133.32, 132.58, 132.33, 130.15, 130.04, 129.99, 128.18, 128.14, 128.08, 127.68, 127.59, 127.50 (2C), 126.60, 126.38 (2C), 126.23, 125.08, 52.21. MS EI m/z (rel. int.) 312 (M+, 78), 282 (20), 281 (94), 280 (24), 253 (36), 252 (100), 250 (53), 126 (37), 125 (20); FIRMS m/z (EI, M+) calcd for C22H16O2, 312.1150. found 312.1156.
Light yellow oil. IR (KBr) νmax 2951, 1769, 1726, 1605, 1509, 1435, 1238, 1152, 1139, 1033, 1019, 829, 752, 749 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.91 (d, J=8.5 Hz, 1H), 7.86 (d, J=7.6 Hz, 1H), 7.81 (d, J=8.2 Hz, 1H), 7.67 (s, 1H), 7.59-7.46 (m, 4H), 6.64 (d, J=0.8 Hz, 1H), 3.93 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.35, 143.34, 140.11, 132.19, 129.93, 129.84, 129.42, 128.08, 127.91, 127.42, 126.54, 126.26, 124.90, 124.79, 110.56, 52.50. MS EI m/z (rel. int.) 252 (M+, 93), 224 (51), 221 (25), 181 (25), 165 (100), 164 (61), 163 (69), 153 (48), 152 (41), 139 (40), 87 (28), 63 (36), 50 (35); HRMS m/z (EI, M+) calcd for C16H12O3, 252.0786. found 252.0786.
Light yellow oil. IR (KBr) νmax 1725, 1435, 1280, 1236, 1137, 1031, 798, 780, 747 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.93 (d, J=8.5 Hz, 1H), 7.91-7.84 (m, 2H), 7.61-7.49 (m, 3H), 7.45-7.38 (m, 2H), 7.28 (dd, J=4.6, 1.7 Hz, 1H), 3.83 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.29, 140.94, 132.26, 132.16, 129.91, 129.82, 129.69, 128.10, 127.98, 127.46, 126.99, 126.31, 125.92, 124.92, 123.01, 52.41. MS EI m/z (rel. int.) 268 (M+, 43), 237 (56), 209 (24), 208 (83), 165 (66), 164 (47), 163 (100), 162 (25), 152 (25), 151 (31), 150 (30), 139 (36), 126 (22), 87 (23), 86 (21), 75 (22), 74 (23), 63 (27); HRMS m/z (EI, M+) calcd for C16H12O2S, 268.0558. found 268.0561.
Light yellow solid. mp 111-112° C. (EtOAc/hexanes); IR (KBr) νmax 1731, 1449, 1434, 1278, 1257, 1238, 1176, 1138, 1079, 1032, 809, 750 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.96 (d, J=8.7 Hz, 1H), 7.93-7.83 (m, 3H), 7.63 (d, J=7.5 Hz, 1H), 7.61-7.49 (m, 3H), 7.33 (td, J=7.7, 1.30 Hz, 1H), 7.27 (td, J=7.4, 0.9 Hz, 1H), 7.10 (s, 1H), 4.05 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.01, 155.16, 154.19, 132.92, 129.98, 129.90, 128.79, 128.62, 128.13, 127.70, 126.97, 125.20, 125.15, 124.88, 124.11, 123.15, 121.29, 111.17, 104.85, 52.74. MS EI m/z (rel. int.) 302 (M+, 92), 271 (44), 231 (31), 215 (75), 214 (28), 213 (100), 202 (34), 189 (29), 187 (33), 163 (26), 126 (47), 63 (30); HRMS m/z (EI, M+) calcd for C20H14O3, 302.0943. found 302.0930.
Light yellow solid. mp 68-71° C. (EtOAc/hexanes); IR (KBr) νmax 3058, 2950, 1726, 1509, 1448, 1435, 1283, 1251, 1229, 1215, 1160, 1136, 1035, 957, 8133, 741, 692 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.90 (d, J=8.7 Hz, 1H), 7.86-7.79 (m, 3H), 7.58-7.47 (m, 4H), 7.40 (t, J=7.5 Hz, 2H), 7.33 (d, J=16.0 Hz, 1H), 7.31 (t, J=7.3 Hz, 1H), 7.24 (d, J=16.3 Hz, 1H), 4.11 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 169.89, 136.98, 132.54, 132.51, 132.02, 130.12, 129.97, 129.83, 128.73 (2C), 128.14, 128.09, 127.37, 126.79 (2C), 126.28, 125.47, 125.07, 122.66, 52.46. MS EI m/z (rel. int.) 288 (M+, 58), 257 (25), 256 (38), 229 (80), 228 (100), 227 (48), 226 (79), 202 (29), 126 (25); HRMS m/z (EI, M+) calcd for C20H16O2, 288.1150. found 288.1153.
Light yellow oil. IR (KBr) νmax 1725, 1603, 1510, 1498, 1435, 1273, 1231, 1136, 1035, 817, 751, 698 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.86 (d, J=8.6 Hz, 1H), 7.83 (d, J=9.2 Hz, 1H), 7.80 (d, J=9.0 Hz, 1H), 7.52 (t, J=7.6 Hz, 1H), 7.46 (t, J=7.5 Hz, 1H), 7.31 (t, J=7.5 Hz, 2H), 7.27 (d, J=8.5 Hz, 1H), 7.23-7.15 (m, 3H), 3.74 (s, 3H), 2.48 (dt, J=8.9, 5.6 Hz, 1H), 2.22 (dt, J=9.0, 5.4 Hz, 1H), 1.58 (dt, J=8.9, 5.7 Hz, 1H), 1.46 (dt, J=8.9, 5.7 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ ppm 170.00, 142.17, 136.94, 131.83, 131.46, 130.01, 129.83, 128.38 (2C), 128.02, 127.22, 125.89, 125.82 (2C), 125.75, 124.41, 123.77, 52.18, 26.67, 26.26, 16.78. MS EI m/z (rel. int.) 302 (M+, 2), 196 (28), 183 (89) (25), 165 (50), 152 (41), 139 (58), 127 (48), 126 (44), 115 (70), 104 (100), 103 (39), 91 (93), 89 (37), 78 (82), 77 (73), 63 (34), 51 (36); HRMS m/z (EI, M+) calcd for C21H18O2, 302.1307. found 302.1315.
Light yellow oil. IR (KBr) νmax 2971, 2935, 1627, 1597, 1577, 1478, 1459, 1422, 1397, 1372, 1293, 1266, 1235, 1111, 1095, 818, 779 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.25 (dd, J=6.9, 2.3 Hz, 1H), 7.79 (dd, J=6.8, 2.1 Hz, 1H), 7.59-7.46 (m, 2H), 7.41 (s, 1H), 6.81 (s, 1H), 4.02 (s, 3H), 3.70-3.15 (m, 4H), 1.41-1.08 (m, 6H); 13C NMR (101 MHz, CDCl3) 6 ppm 171.34, 155.65, 134.57, 133.64, 127.80, 127.00, 125.96, 125.60, 121.91, 117.66, 102.16, 55.60, 43.03, 39.00, 14.10, 12.82. MS EI m/z (rel. int.) 257 (M+, 85), 242 (40), 186 (32), 185 (100), 158 (32), 157 (47), 114 (22); HRMS m/z (EI, M+) calcd for C16H19NO2, 257.1416. found 257.1424.
Light yellow solid. mp 123-124° C. (EtOAc/hexanes); IR (KBr) νmax 2974, 2934, 1631, 1476, 1462, 1428, 1381, 1271, 1096, 787, 755, 702 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.92 (t, J=7.0 Hz, 2H), 7.88 (s, 1H), 7.57-7.40 (m, 8H), 3.76-3.51 (m, 2H), 3.47-3.22 (m, 2H), 1.41-1.23 (m, 3H), 1.21-1.05 (m, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 171.09, 140.74, 139.98, 134.18, 133.25, 131.64, 129.95 (2C), 128.63, 128.29 (2C), 127.49, 126.84, 126.42, 125.98, 125.23, 124.80, 43.39, 39.33, 14.30, 12.97. MS EI m/z (rel. int.) 303 (M+, 38), 302 (31), 232 (19), 231 (79), 203 (53), 202 (100), 201 (21), 200 (21); HRMS m/z (ESI, [M+1]+) calcd for C21H22NO, 304.1701. found 304.1688.
Light yellow solid. mp 147-149° C. (EtOAc/hexanes); IR (KBr) νmax, 1430, 1295, 1216, 2974, 2935, 1631, 1515, 1500, 1476, 1462, 1430, 1382, 1287, 1271, 1247, 1178, 1096, 1033, 836, 754 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 7.93 (d, J=8.6 Hz, 1H), 7.91 (d, J=8.3 Hz, 1H), 7.84 (s, 1H), 7.52 (t, J=7.3 Hz, 1H), 7.46 (t, J=7.5 Hz, 1H), 7.43 (d, J=8.5 Hz, 2H), 7.40 (s, 1H), 7.03 (d, J=8.5 Hz, 2H), 3.89 (s, 3H), 3.70-3.49 (m, 2H), 3.44-3.26 (m, 2H), 1.38-1.21 (m, 3H), 1.20-1.04 (m, 3H); 13C NMR (101 MHz, CDCl3) 6 ppm 171.17, 159.10, 140.41, 134.20, 133.29, 132.33, 131.85, 131.04 (2C), 128.63, 126.74, 126.35, 126.02, 124.90, 124.76, 113.75 (2C), 55.34, 43.40, 39.26, 14.34, 12.93. MS EI m/z (rel. int.) 333 (M+, 52), 332 (39), 262 (28), 261 (100), 218 (24), 202 (35), 190 (41), 189 (72); HRMS m/z (ESI, [M+1]+) calcd for C22H24NO2, 334.1807. found 334.1797.
Light yellow solid. mp 113-116° C. (EtOAc/hexanes); IR (KBr) νmax 2932, 1635, 1504, 1461, 1395, 1288, 1249, 1179, 1124, 1026, 825, 802, 753 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.00 (d, J=1.5 Hz, 1H), 7.89 (d, J=8.2 Hz, 1H), 7.84 (d, J=8.7 Hz, 1H), 7.75 (dd, J=8.7, 1.8 Hz, 4H), 7.65 (d, J=8.8 Hz, 2H), 7.49 (dd, J=8.1, 7.1 Hz, 1H), 7.39 (dd, J=7.0, 1.0 Hz, 4H), 7.02 (d, J=8.8 Hz, 2H), 3.87 (s, 3H), 3.27 (s, 3H), 2.84 (s, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.83, 159.38, 138.60, 134.56, 133.82, 133.07, 129.11, 128.38 (2C), 128.33, 126.45, 125.56, 125.36 (2C), 123.59, 114.34 (2C), 55.35, 38.88, 34.86. MS EI m/z (rel. int.) 305 (M+, 68), 262 (19), 261 (100), 233 (40), 218 (18), 190 (35), 189 (57); HRMS m/z (ESI, [M+1]+) calcd for C20H20NO2, 306.1494. found 306.1481.
Light yellow oil. IR (KBr) νmax 2974, 2934, 1630, 1519, 1501, 1460, 1439, 1426, 1289, 1248, 1181, 1031, 825, 799, 755 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 8.00 (d, J=1.6 Hz, 1H), 7.92-7.82 (m, 2H), 7.75 (dd, J=8.6, 1.8 Hz, 1H), 7.66 (d, J=8.7 Hz, 2H), 7.51-7.44 (m, 1H), 7.38 (dd, J=6.9, 0.89 Hz, 1H), 7.02 (d, J=8.7 Hz, 2H), 4.01-3.75 (m, 1H), 3.87 (s, 3H) 3.65-3.43 (m, 1H), 3.23-3.01 (m, 2H), 1.39 (t, J=7.1 Hz, 3H), 1.02 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ ppm 170.20, 159.35, 138.57, 135.01, 133.81, 133.10, 128.81, 128.44, 128.35 (2C), 126.35, 125.49, 125.29, 125.24, 122.88, 114.32 (2C), 55.34, 43.09, 38.98, 14.29, 13.08. MS EI m/z (rel. int.) 333 (M+, 68), 332 (45), 262 (23), 261 (100), 233 (40), 218 (24), 190 (38), 189 (56); HRMS m/z (ESI, [M+1]+) calcd for C22H24NO2, 334.1087. found 334.1797.
This application claims the benefit of the filing date of U.S. Provisional Patent Application No. 61/490,966 filed on May 27, 2011, the contents of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61490966 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13479942 | May 2012 | US |
Child | 14541297 | US |