COMPOUNDS AND METHODS FOR INHIBITING MITOTIC PROGRESSION

Information

  • Patent Application
  • 20220041605
  • Publication Number
    20220041605
  • Date Filed
    May 24, 2021
    3 years ago
  • Date Published
    February 10, 2022
    2 years ago
Abstract
This invention relates to compounds and methods for the treatment of cancer. In particular, the invention provides compounds that inhibit Aurora kinase, pharmaceutical compositions comprising the compounds, and methods of using the compounds for the treatment of cancer.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

This invention relates to compounds and methods for the treatment of cancer. In particular, the invention provides compounds that inhibit Aurora kinase enzymes, pharmaceutical compositions comprising the compounds, and methods of using the compounds for the treatment of cancer.


Background of the Invention

According to the American Cancer Society, an estimated 1.4 million Americans were newly-diagnosed with cancer in 2004 and about 560,000 victims died from the disease. While medical advance have improved cancer survival rates, there is a continuing need for new and more effective treatment.


Cancer is characterized by uncontrolled cell reproduction. Mitosis is a stage in the cell cycle during which a series of complex events ensure the fidelity of chromosome separation into two daughter cells. Several current cancer therapies, including the taxanes and vinca alkaloids, act to inhibit the mitotic machinery. Mitotic progression is largely regulated by proteolysis and by phosphorylation events that are mediated by mitotic kinases. Aurora kinase family members (e.g., Aurora A, Aurora B, Aurora C) regulate mitotic progression through modulation of centrosome separation, spindle dynamics, spindle assembly checkpoint, chromosome alignment, and cytokinesis (Dutertre et al., Oncogene, 21: 6175 (2002); Berdnik et al., Curr. Biol., 12: 640 (2002)). Overexpression and/or amplification of Aurora kinases have been linked to oncogenesis in several tumor types including those of colon and breast (Warner et al., Mol. Cancer Ther., 2: 589 (2003); Bischoff et al., EMBO, 17: 3062 (1998); Sen et al., Cancer Res., 94: 1320 (2002)). Moreover, Aurora kinase inhibition in tumor cells results in mitotic arrest and apoptosis, suggesting that these kinases are important targets for cancer therapy (Ditchfield, J. Cell Biol., 161: 267 (2003); Harrington et al., Nature Med., 1 (2004)). Given the central role of mitosis in the progression of virtually all malignancies, inhibitors of the Aurora kinases are expected to have application across a broad range of human tumors. There is thus a need for new Aurora kinase inhibitors.







DESCRIPTION OF THE INVENTION

This invention provides compounds that inhibit Aurora kinase. These compounds are useful for inhibiting Aurora kinase in vitro or in vivo, and are especially useful for the treatment of cell proliferative disorders, including cancer. The Aurora kinase inhibitors of the invention have the formula (A):




embedded image


or a pharmaceutically acceptable salt thereof, wherein Ring A, Ring C, and each of the variables Ra, Re, Rf1, Rf2, Rx, Ry, and G have the values described below.

    • Rf1 is hydrogen, or Rf1 and Rf2 together form a bond.
    • Rf2 is hydrogen, or Rf2 forms a bond with either Rf1 or Rx.
    • Each of Rx and Ry independently is hydrogen, fluoro, or an optionally substituted C1-6 aliphatic; or Rx and Ry, taken together with the carbon atom to which they are attached, form an optionally substituted 3- to 6-membered cycloaliphatic ring; or Rx and Rf2 together form a bond.
    • G is hydrogen, an optionally substituted aliphatic, or Ring B when Rf1 is hydrogen; and G is hydrogen, —OR5, —N(R4)2, —SR5, an optionally substituted aliphatic, or Ring B when Rf1 and Rf2 together form a bond.
    • Ring A is a substituted or unsubstituted 5- or 6-membered aryl, heteroaryl, cycloaliphatic, or heterocyclyl ring.
    • Ring B is a substituted or unsubstituted aryl, heteroaryl, cycloaliphatic, or heterocyclyl ring.
    • Ring C is a substituted or unsubstituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.
    • Ra is hydrogen, —C(O)R1, —CO2R1, —SO2R1, or a C1-3 aliphatic having 0-2 substituents independently selected from R3 or R7.
    • Re is hydrogen, —OR5, —N(R4)2, —SR5, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —N(R4)SO2R6, —N(R4)SO2N(R4)2, or a C1-3 aliphatic optionally substituted with R3 or R7.
    • R1 is C1-6 aliphatic or an optionally substituted aryl, heteroaryl, or heterocyclyl group.
    • Each R3 independently is selected from the group consisting of -halo, —OH, —O(C1-3 alkyl), —CN, —N(R4)2, —C(O)(C1-3 alkyl), —CO2H, —CO2(C1-3 alkyl), —C(O)NH2, and —C(O)NH(C1-3 alkyl).
    • Each R4 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group; or two R4 on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 5- to 6-membered heteroaryl or 4- to 8-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S.
    • Each R5 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group.
    • Each R6 independently is an optionally substituted aliphatic or aryl group.
    • Each R7 independently is an optionally substituted aryl, heterocyclyl, or heteroaryl group.


The invention further provides pharmaceutical compositions comprising a compound of formula (A), as well as uses of the claimed compounds for inhibiting Aurora kinase activity and for treating Aurora kinase-mediated disorders.


Compounds of this invention include those described generally above, and are further illustrated by the classes, subclasses, and species disclosed herein. Terms used herein shall be accorded the following defined meanings, unless otherwise indicated.


As used herein, the term “Aurora kinase” refers to any one of a family of related serine/threonine kinases involved in mitotic progression. A variety of cellular proteins that play a role in cell division are substrates for phosphorylation by Aurora kinase enzymes, including, without limitation, histone H3, p 53, CENP-A, myosin II regulatory light chain, protein phosphatase-1, TPX-2, INCENP, survivin, topoisomerase II alpha, vimentin, MBD-3, MgcRacGAP, desmin, Ajuba, XIEg5 (in Xenopus), Ndc10p (in budding yeast), and D-TACC (in Drosophila). Aurora kinase enzymes also are themselves substrates for autophosphorylation, e.g., at Thr288. Unless otherwise indicated by context, the term “Aurora kinase” is meant to refer to any Aurora kinase protein from any species, including, without limitation, Aurora A, Aurora B, and Aurora C, preferably Aurora A or B. Preferably, the Aurora kinase is a human Aurora kinase.


The term “Aurora kinase inhibitor” or “inhibitor of Aurora kinase” is used to signify a compound having a structure as defined herein, which is capable of interacting with an Aurora kinase and inhibiting its enzymatic activity. Inhibiting Aurora kinase enzymatic activity means reducing the ability of an Aurora kinase to phosphorylate a substrate peptide or protein. In various embodiments, such reduction of Aurora kinase activity is at least about 50%, at least about 75%, at least about 90%, at least about 95%, or at least about 99%. In various embodiments, the concentration of Aurora kinase inhibitor required to reduce an Aurora kinase enzymatic activity is less than about 1 μM, less than about 500 nM, less than about 100 nM, or less than about 50 nM.


In some embodiments, such inhibition is selective, i.e., the Aurora kinase inhibitor reduces the ability of an Aurora kinase to phosphorylate a substrate peptide or protein at a concentration that is lower than the concentration of the inhibitor that is required to produce another, unrelated biological effect, e.g., reduction of the enzymatic activity of a different kinase. In some embodiments, the Aurora kinase inhibitor also reduces the enzymatic activity of another kinase, preferably one that is implicated in cancer.


The term “about” is used herein to mean approximately, in the region of, roughly, or around. When the term “about” is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term “about” is used herein to modify a numerical value above and below the stated value by a variance of 10%.


As used herein, the term “comprises” means “includes, but is not limited to.”


The term “aliphatic”, as used herein, means straight-chain, branched or cyclic C1-12 hydrocarbons which are completely saturated or which contain one or more units of unsaturation, but which are not aromatic. For example, suitable aliphatic groups include substituted or unsubstituted linear, branched or cyclic alkyl, alkenyl, or alkynyl groups and hybrids thereof, such as (cycloalkyl)alkyl, (cycloalkenyl)alkyl or (cycloalkyl)alkenyl. In various embodiments, the aliphatic group has 1 to 12, 1 to 8, 1 to 6, 1 to 4, or 1 to 3 carbons.


The terms “alkyl”, “alkenyl”, and “alkynyl”, used alone or as part of a larger moiety, refer to a straight and branched chain aliphatic group having from 1 to 12 carbon atoms. For purposes of the present invention, the term “alkyl” will be used when the carbon atom attaching the aliphatic group to the rest of the molecule is a saturated carbon atom. However, an alkyl group may include unsaturation at other carbon atoms. Thus, alkyl groups include, without limitation, methyl, ethyl, propyl, allyl, propargyl, butyl, pentyl, and hexyl.


For purposes of the present invention, the term “alkenyl” will be used when the carbon atom attaching the aliphatic group to the rest of the molecule forms part of a carbon-carbon double bond. Alkenyl groups include, without limitation, vinyl, 1-propenyl, 1-butenyl, 1-pentenyl, and 1-hexenyl.


For purposes of the present invention, the term “alkynyl” will be used when the carbon atom attaching the aliphatic group to the rest of the molecule forms part of a carbon-carbon triple bond. Alkynyl groups include, without limitation, ethynyl, 1-propynyl, 1-butynyl, 1-pentynyl, and 1-hexynyl.


The terms “cycloaliphatic”, “carbocycle”, “carbocyclyl”, “carbocyclo”, or “carbocyclic”, used alone or as part of a larger moiety, refer to a saturated or partially unsaturated cyclic aliphatic ring system having from 3 to about 14 members, wherein the aliphatic ring system is optionally substituted. Cycloaliphatic groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cycloheptenyl, cyclooctyl, cyclooctenyl, and cyclooctadienyl. In some embodiments, the cycloalkyl has 3 to 6 carbons. The terms “cycloaliphatic”, “carbocycle”, “carbocyclyl”, “carbocyclo”, or “carbocyclic” also include aliphatic rings that are fused to one or more aromatic or nonaromatic rings, such as decahydronaphthyl or tetrahydronaphthyl, where the radical or point of attachment is on the aliphatic ring.


The terms “haloaliphatic”, “haloalkyl”, “haloalkenyl” and “haloalkoxy” refer to an aliphatic, alkyl, alkenyl or alkoxy group, as the case may be, substituted with one or more halogen atoms. As used herein, the term “halogen” or “halo” means F, Cl, Br, or I.


The terms “aryl” and “ar-”, used alone or as part of a larger moiety, e.g., “aralkyl”, “aralkoxy”, or “aryloxyalkyl”, refer to a C6 to C1-4 aromatic moiety comprising one to three aromatic rings, which are optionally substituted. Preferably, the aryl group is a C6-10 aryl group. Aryl groups include, without limitation, phenyl, naphthyl, and anthracenyl. The term “aryl”, as used herein, also includes groups in which an aromatic ring is fused to one or more heteroaryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the aromatic ring. Nonlimiting examples of such fused ring systems include indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, fluorenyl, indanyl, phenanthridinyl, tetrahydronaphthyl, indolinyl, phenoxazinyl, benzodioxanyl, and benzodioxolyl. An aryl group may be mono-, bi-, tri-, or polycyclic, preferably mono-, bi-, or tricyclic, more preferably mono- or bicyclic. The term “aryl” may be used interchangeably with the terms “aryl group”, “aryl ring”, and “aromatic ring”.


An “aralkyl” or “arylalkyl” group comprises an aryl group covalently attached to an alkyl group, either of which independently is optionally substituted. Preferably, the aralkyl group is C6-10 aryl(C1-6)alkyl, including, without limitation, benzyl, phenethyl, and naphthylmethyl.


The terms “heteroaryl” and “heteroar-”, used alone or as part of a larger moiety, e.g., heteroaralkyl, or “heteroaralkoxy”, refer to aromatic groups having 5 to 14 ring atoms, preferably 5, 6, 9, or 10 ring atoms; having 6,10, or 14 n electrons shared in a cyclic array; and having, in addition to one or more carbon atoms, from one to four heteroatoms. The term “heteroatom” refers to nitrogen, oxygen, or sulfur, and includes any oxidized form of nitrogen or sulfur, and any quaternized form of a basic nitrogen. Heteroaryl groups include, without limitation, thienyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, purinyl, naphthyridinyl, and pteridinyl. The terms “heteroaryl” and “heteroar-”, as used herein, also include groups in which a heteroaromatic ring is fused to one or more aryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the heteroaromatic ring. Nonlimiting examples include indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, 4H-quinolizinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, and pyrido[2,3-b]-1,4-oxazin-3(4H)-one. A heteroaryl group may be mono-, bi-, tri-, or polycyclic, preferably mono-, bi-, or tricyclic, more preferably mono- or bicyclic. The term “heteroaryl” may be used interchangeably with the terms “heteroaryl ring”, “heteroaryl group”, or “heteroaromatic”, any of which terms include rings that are optionally substituted. The term “heteroaralkyl” refers to an alkyl group substituted by a heteroaryl, wherein the alkyl and heteroaryl portions independently are optionally substituted.


As used herein, the terms “heterocycle”, “heterocyclyl”, “heterocyclic radical”, and “heterocyclic ring” are used interchangeably and refer to a stable 3- to 7-membered monocyclic, or to a fused 7- to 10-membered or bridged 6- to 10-membered bicyclic heterocyclic moiety that is either saturated or partially unsaturated, and having, in addition to carbon atoms, one or more, preferably one to four, heteroatoms, as defined above. When used in reference to a ring atom of a heterocycle, the term “nitrogen” includes a substituted nitrogen. As an example, in a saturated or partially unsaturated ring having 0-3 heteroatoms selected from oxygen, sulfur or nitrogen, the nitrogen may be N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl) or +NR (as in N-substituted pyrrolidinyl).


A heterocyclic ring can be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure, and any of the ring atoms can be optionally substituted. Examples of such saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothienyl, pyrrolidinyl, pyrrolidonyl, piperidinyl, pyrrolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thiazepinyl, morpholinyl, and quinuclidinyl. The terms “heterocycle”, “heterocyclyl”, “heterocyclyl ring”, “heterocyclic group”, “heterocyclic moiety”, and “heterocyclic radical”, are used interchangeably herein, and also include groups in which a heterocyclyl ring is fused to one or more aryl, heteroaryl, or cycloaliphatic rings, such as indolinyl, 3H-indolyl, chromanyl, phenanthridinyl, or tetrahydroquinolinyl, where the radical or point of attachment is on the heterocyclyl ring. A heterocyclyl group may be mono-, bi-, tri-, or polycyclic, preferably mono-, bi-, or tricyclic, more preferably mono- or bicyclic. The term “heterocyclylalkyl” refers to an alkyl group substituted by a heterocyclyl, wherein the alkyl and heterocyclyl portions independently are optionally substituted.


As used herein, the term “partially unsaturated” refers to a ring moiety that includes at least one double or triple bond between ring atoms. The term “partially unsaturated” is intended to encompass rings having multiple sites of unsaturation, but is not intended to include aryl or heteroaryl moieties, as herein defined.


The term “linker group” or “linker” means an organic moiety that connects two parts of a compound. Linkers typically comprise an atom such as oxygen or sulfur, a unit such as —NH—, —CH2—, —C(O)—, —C(O)NH—, or a chain of atoms, such as an alkylene chain. The molecular mass of a linker is typically in the range of about 14 to 200, preferably in the range of 14 to 96 with a length of up to about six atoms. In some embodiments, the linker is a C1-6 alkylene chain.


The term “alkylene” refers to a bivalent alkyl group. An “alkylene chain” is a polymethylene group, i.e., —(CH2)n—, wherein n is a positive integer, preferably from 1 to 6, from 1 to 4, from 1 to 3, from 1 to 2, or from 2 to 3. A substituted alkylene chain is a polymethylene group in which one or more methylene hydrogen atoms is replaced with a substituent. Suitable substituents include those described below for a substituted aliphatic group. An alkylene chain also may be substituted at one or more positions with an aliphatic group or a substituted aliphatic group.


An alkylene chain also can be optionally interrupted by a functional group. An alkylene chain is “interrupted” by a functional group when an internal methylene unit is replaced with the functional group. Examples of suitable “interrupting functional groups” include —C(R*)═C(R{circumflex over ( )})—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —S(O)2N(R+)—, —N(R*)—, —N(R+)CO—, —N(R+)C(O)N(R+)—, —N(R+)CO2—, —C(O)N(R+)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R+)—, —C(NR+)═N, —C(OR*)═N—, —N(R+)—N(R+)—, or —N(R+)S(O)2—. Each R+, independently, is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group, or two R+ on the same nitrogen atom, taken together with the nitrogen atom, form a 5-8 membered aromatic or non-aromatic ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S. Each R* independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group. Each R{circumflex over ( )} independently is hydrogen —CO2R*, —C(O)N(R+)2, or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group.


Examples of C3-6 alkylene chains that have been “interrupted” with —O— include —CH2OCH2—, —CH2O(CH2)2—, —CH2O(CH2)3—, —CH2O(CH2)4—, —(CH2)2OCH2—, —(CH2)2O(CH2)2—, —(CH2)2O(CH2)3—, —(CH2)3O(CH2)—, —(CH2)3O(CH2)2—, and —(CH2)4O(CH2)—. Other examples of alkylene chains that are “interrupted” with functional groups include —CH2GCH2-, —CH2G(CH2)2—, —CH2G(CH2)3—, —CH2G(CH2)4—, —(CH2)2GCH2-, —(CH2)2G(CH2)2—, —(CH2)2G(CH2)3—, —(CH2)3G(CH2)—, —(CH2)3G(CH2)2—, and —(CH2)4G(CH2)—, wherein G is one of the “interrupting” functional groups listed above.


The term “substituted”, as used herein, means that one or more hydrogens of the designated moiety are replaced, provided that the substitution results in a stable or chemically feasible compound. A stable compound or chemically feasible compound is one in which the chemical structure is not substantially altered when kept at a temperature from about −80° C. to about +40° C., in the absence of moisture or other chemically reactive conditions, for at least a week, or a compound which maintains its integrity long enough to be useful for therapeutic or prophylactic administration to a patient. The phrase “one or more substituents”, as used herein, refers to a number of substituents that equals from one to the maximum number of substituents possible based on the number of available bonding sites, provided that the above conditions of stability and chemical feasibility are met.


An aryl (including the aryl moiety in aralkyl, aralkoxy, aryloxyalkyl and the like) or heteroaryl (including the heteroaryl moiety in heteroaralkyl and heteroaralkoxy and the like) group may contain one or more substituents. Examples of suitable substituents on the unsaturated carbon atom of an aryl or heteroaryl group include -halo, —NO2, —CN, —R*, —C(R*)═C(R*)(R{circumflex over ( )}), —C≡C—R{circumflex over ( )}, —OR*, —SR, —S(O)R, —SO2R0, —SO3R*, —SO2N(R+)2, —N(R+)2, —NR+C(O)R*, —NR+C(O)N(R+)2, —NR+CO2R, —O—CO2R*, —OC(O)N(R+)2, —O—C(O)R*, —CO2R*, —C(O)—C(O)R*, —C(O)R*, —C(O)N(R+)2, —C(O)N(R+)C(═NR+)—N(R+)2, —N(R+)C(═NR+)—N(R+)—C(O)R*, —C(═NR+)—N(R+)2, —C(═NR+)—OR*, —N(R+)—N(R+)2, —N(R+)C(═NR+)—N(R+)2, —NR+SO2R, —NR+SO2N(R+)2, —P(O)(R*)2, —P(O)(OR*)2, —O—P(O)—OR*, and —P(O)(NR+)—N(R+)2, or two adjacent substituents, taken together with their intervening atoms, form a 5-6 membered unsaturated or partially unsaturated ring having 0-3 ring atoms selected from the group consisting of N, O, and S. In such substituents, Ris an optionally substituted aliphatic or aryl group, and R+, R*, and R{circumflex over ( )} are as defined above.


An aliphatic group or a non-aromatic heterocyclic ring may be substituted with one or more substituents. Examples of suitable substituents on the saturated carbon of an aliphatic group or of a non-aromatic heterocyclic ring include, without limitation, those listed above for the unsaturated carbon of an aryl or heteroaryl group and the following: ═O, ═S, ═C(R*)2, ═N—NHR*, ═N—N(R*)2, ═N—OR*, ═N—NHC(O)R*, ═N—NHCO2R, ═N—NHSO2R, or ═N—R*, where each R* and Ris as defined above.


Suitable substituents on the nitrogen atom of a non-aromatic heterocyclic ring include —R*, —N(R*)2, —C(O)R*, —CO2R*, —C(O)—C(O)R* —C(O)CH2C(O)R*, —SO2R*, —SO2N(R*)2, —C(═S)N(R*)2, —C(═NH)—N(R*)2, and —NR*SO2R*; wherein each R* is as defined above.


It will be apparent to one skilled in the art that certain compounds of this invention may exist in tautomeric forms, all such tautomeric forms of the compounds being within the scope of the invention. Unless otherwise stated, structures depicted herein are also meant to include all stereochemical forms of the structure; i.e., the R and S configurations for each asymmetric center. Therefore, single stereochemical isomers as well as enantiomeric and diastereomeric mixtures of the present compounds are within the scope of the invention. By way of example, the compounds of formula (A) wherein Rf1 is hydrogen can have R or S configuration at the carbon atom bearing Ring B. Both the R and the S stereochemical isomers, as well as all mixtures thereof, are included within the scope of the invention.


Unless otherwise stated, structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structure except for the replacement of a hydrogen atom by a deuterium or tritium, or the replacement of a carbon atom by a 13C- or 14C-enriched carbon are within the scope of the invention.


Unless otherwise stated, structures depicted herein are also meant to include solvated and hydrated forms of the depicted compounds. Also included within the scope of the invention are pharmaceutically acceptable salts of compounds of formula (A), as well as solvated and hydrated forms of such salts.


Some embodiments of the invention relate to compounds of formula (A) where Re is hydrogen, —OR5, —N(R4)2, —SR5, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —N(R4)SO2R6, —N(R4)SO2N(R4)2, or a C1-3 aliphatic optionally substituted with R3 or R7. In some embodiments, Re is hydrogen or a C1-3 aliphatic optionally substituted with one R3 or R7. In certain embodiments, Re is hydrogen.


In some embodiments, Rx and Ry are each independently selected from hydrogen, fluoro, or a C1-6 aliphatic optionally substituted with one or two R3. In some other embodiments, Rx and Ry, taken together with the carbon atom to which they are attached, form an optionally substituted 3- to 6-membered cycloaliphatic ring. In some other embodiments, Rx and Rf2 together form a bond. In some embodiments, Rx and Ry are each hydrogen. In certain embodiments, Rx, Ry, and Re are each hydrogen.


Some embodiments of the invention relate to compounds of formula (A) where Rf1 is hydrogen, Rf2 is hydrogen or Rf2 and Rx together form a bond, and G is hydrogen, an optionally substituted aliphatic, or Ring B.


Some other embodiments relate to compounds of formula (A), where Rf1 and Rf2 together form a bond, and G is hydrogen, —SR5, —OR5, —N(R4)2, or an optionally substituted aliphatic. In such embodiments, G preferably is hydrogen, —OR5, —N(R4)2, or an optionally substituted aliphatic. More preferably, G is —H, —OH, —NH2, —O(C1-3 alkyl), —NH(C1-3 alkyl), —N(C1-3 alkyl)2, C1-3 alkyl, C1-3 fluoroalkyl, —O-L1-R7, —N(C1-3 alkyl)-L1-R7, or -L1-R7, where L1 is a covalent bond or C1-3 alkylene.


Other embodiments of the invention relate to a subgenus of the compounds of formula (A) characterized by formula (A-1):




embedded image


or a pharmaceutically acceptable salt thereof, where the variables Re, Rx, and Ry are as defined above for formula (A). Values and preferred values for Rings A, B, and C in formulae (A) and (A-1) are described below.


Ring A is a substituted or unsubstituted 5- or 6-membered aryl, heteroaryl, cycloaliphatic, or heterocyclyl ring. Examples of Ring A include furano, dihydrofurano, thieno, dihydrothieno, cyclopenteno, cyclohexeno, 2H-pyrrolo, pyrrolo, pyrrolino, pyrrolidino, oxazolo, thiazolo, imidazolo, imidazolino, imidazolidino, pyrazolo, pyrazolino, pyrazolidino, isoxazolo, isothiazolo, oxadiazolo, triazolo, thiadiazolo, 2H-pyrano, 4H-pyrano, benzo, pyridino, piperidino, dioxano, morpholino, dithiano, thiomorpholino, pyridazino, pyrimidino, pyrazino, piperazino, and triazino, any of which groups may be substituted or unsubstituted. Preferred values for Ring A include, without limitation, substituted or unsubstituted rings selected from the group consisting of furano, thieno, pyrrolo, oxazolo, thiazolo, imidazolo, pyrazolo, isoxazolo, isothiazolo, triazolo, benzo, pyridino, pyridazino, pyrimidino, and pyrazino.


Ring A may be substituted or unsubstituted. In some embodiments, each substitutable saturated ring carbon atom in Ring A is unsubstituted or is substituted with ═O, ═S, ═C(R5)2, ═N—N(R4)2, ═N—OR5, ═N—NHC(O)R5, ═N—NHCO2R6, ═N—NHSO2R6, ═N—R5 or —Rb, where Rb, R4, R5, and R6 are as defined below. Each substitutable unsaturated ring carbon atom in Ring A is unsubstituted or substituted with —Rb. Each substitutable ring nitrogen atom in Ring A is unsubstituted or is substituted with —R9b, and one ring nitrogen atom in Ring A optionally is oxidized. Each R9b independently is —C(O)R5, —C(O)N(R4)2, —CO2R6, —SO2R6, —SO2N(R4)2, or a C1-4 aliphatic optionally substituted with R3 or R7.


Each independently is R2b, an optionally substituted aliphatic, or an optionally substituted aryl, heterocyclyl, or heteroaryl group; or two adjacent Rb, taken together with the intervening ring atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S.


Each R26 independently is -halo, —NO2, —CN, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —OC—R5, —OC—R10, —OR5, —SR6, —S(O)R6, —SO2R6, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —N(R4)—N(R4)2, N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2.


Each R3 independently is selected from the group consisting of -halo, —OH, —O(C1-3 alkyl), —CN, —N(R4)2, —C(O)(C1-3 alkyl), —CO2H, —CO2(C1-3 alkyl), —C(O)NH2, and —C(O)NH(C1-3 alkyl).


Each R4 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group; or two R4 on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 5- to 6-membered heteroaryl or 4- to 8-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S.


Each R5 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;


Each R6 independently is an optionally substituted aliphatic or aryl group;


Each R7 independently is an optionally substituted aryl, heterocyclyl, or heteroaryl group;


Each R10 independently is —CO2R5 or —C(O)N(R4)2.


In some embodiments, each R6 independently is selected from the group consisting of C1-6 aliphatic, C1-6 fluoroaliphatic, —R2b, —R7b, -T1-R2b, and —H—R7b; or two adjacent R6, taken together with the intervening ring atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S. The variable R2b is as described above, and T1 and R7b are described below.

    • T1 is a C1-6 alkylene chain optionally substituted with R3 or R3b, wherein T1 or a portion thereof optionally forms part of a 3- to 7-membered ring.
    • Each R3 independently is selected from the group consisting of -halo, —OH, —O(C1-3 alkyl), —CN, —N(R4)2, —C(O)(C1-3 alkyl), —CO2H, —CO2(C1-3 alkyl), —C(O)NH2, and —C(O)NH(C1-3 alkyl).
    • Each R3b independently is a C1-3 aliphatic optionally substituted with R3 or R7, or two substituents R3b on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring.
    • Each R7b independently is an optionally substituted aryl, heteroaryl, or heterocyclyl group.


In some embodiments, Ring A is substituted with 0-3, 0-2, or 0-1 substituents Rb, wherein the substituents Rb may be the same or different. In some embodiments, each Rb independently is selected from the group consisting of C1-3 aliphatic, R2b, R7b, -T1-R2b, and -T1-R7b, where T1 is a C1-3 alkylene chain optionally substituted with fluoro. In some embodiments, two adjacent Rb, taken together with the intervening ring carbon atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S. In some embodiments, each Rb independently is selected from the group consisting of C1-3 aliphatic, R2b, and -T1-R2b, where T1 is a C1-3 alkylene chain, optionally substituted with fluoro. In some such embodiments, each R2b independently is selected from the group consisting of -halo, —NO2, —C(R5)═C(R5)2, —C≡C—R5, —OR5, and —N(R4)2.


In some embodiments, Ring A is substituted by 0-2 substituents Rb. In some such embodiments, each Rb independently is C1-3 aliphatic or R2b, and each R2b independently is selected from the group consisting of -halo, —NO2, —C(R5)═C(R5)2, —OC—R5, —OR5, and —N(R4)2. In some embodiments, each Rb independently is selected from the group consisting of -halo, C1-3 aliphatic, C1-3 fluoroaliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic. In certain preferred embodiments, Ring A is substituted with 0,1, or 2 substituents, preferably 0 or 1 substituents, independently selected from the group consisting of chloro, fluoro, bromo, methyl, trifluoromethyl, and methoxy.


Certain examples of Ring A moieties are shown in Table 1. For ease of viewing, the optional substituents Rb on ring carbon atoms and R9b on ring nitrogen atoms are not shown.









TABLE 1





Examples of Ring A Moieties




















embedded image


A-1









embedded image


A-2









embedded image


A-3









embedded image


A-4









embedded image


A-5









embedded image


A-6









embedded image


A-7









embedded image


A-8









embedded image


A-9









embedded image


A-10









embedded image


A-11









embedded image


A-12









embedded image


A-13









embedded image


A-14









embedded image


A-15









embedded image


A-16









embedded image


A-17









embedded image


A-18









embedded image


A-19









embedded image


A-20









embedded image


A-21









embedded image


A-22









embedded image


A-23









embedded image


A-24









embedded image


A-25









embedded image


A-26









embedded image


A-27









embedded image


A-28









embedded image


A-29









embedded image


A-30









embedded image


A-31









embedded image


A-32









embedded image


A-33









embedded image


A-34









embedded image


A-35









embedded image


A-36









embedded image


A-37









embedded image


A-38









embedded image


A-39









embedded image


A-40









embedded image


A-41









embedded image


A-42









embedded image


A-43









embedded image


A-44









embedded image


A-45









embedded image


A-46









embedded image


A-47










In some embodiments, two adjacent Rb on one of the above Ring A moieties, taken together with the intervening ring atoms, form an optionally substituted fused 4- to 8-membered aromatic or nonaromatic fused ring, so that Ring A is a bicyclic moiety. Certain examples of such bicyclic moieties are shown in Table 2, any of which moieties optionally is substituted on any substitutable ring carbon atom and any substitutable ring nitrogen atom.









TABLE 2





Examples of Bicyclic Ring A Moieties




















embedded image


A-48









embedded image


A-49









embedded image


A-50









embedded image


A-51









embedded image


A-52









embedded image


A-53









embedded image


A-54









embedded image


A-55









embedded image


A-56









embedded image


A-57









embedded image


A-58









embedded image


A-59









embedded image


A-60









embedded image


A-61









embedded image


A-62









embedded image


A-63









embedded image


A-64










In some embodiments, the invention relates to a compound of formula (B):




embedded image


or a pharmaceutically acceptable salt thereof, wherein Ring A is substituted with 0-3 Rb. Rings B and C, and the variables Re, Rx, and Ry are as defined above for formula (A).


In certain such embodiments, Ring A has the formula A-i:




embedded image


wherein each of Rb2 and Rb3 independently is hydrogen or Rb. In some embodiments, each of Rb2 and Rb3 independently is selected from the group consisting of hydrogen, -halo, C1-3 aliphatic, C1-3 fluoroaliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic. In certain embodiments, each of Rb2 and Rb3 independently is selected from the group consisting of hydrogen, chloro, fluoro, bromo, methyl, trifluoromethyl, and methoxy. In some other embodiments, Rb2 and Rb3, taken together with the intervening ring carbon atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S.


In the compounds of formulae (A), (A-1), and (B) above, Ring B is a mono-, bi-, or tricyclic ring system. In some embodiments, the point of attachment for Ring B to the rest of the formula is on an aryl or heteroaryl ring of the Ring B moiety. In other embodiments, the point of attachment is on an heterocyclyl or cycloaliphatic ring. Preferably, Ring B is mono- or bicyclic.


Each substitutable saturated ring carbon atom in Ring B is unsubstituted or is substituted with ═O, ═S, ═C(R5)2, ═N—N(R4)2, ═N—OR5, ═N—NHC(O)R5, ═N—NHCO2R6, ═N—NHSO2R6, ═N—R5 or —Rc. Each substitutable unsaturated ring carbon atom in Ring B is unsubstituted or substituted with —Rc. Each substitutable ring nitrogen atom in Ring B is unsubstituted or is substituted with —R9c, and one ring nitrogen atom in Ring B optionally is oxidized. Each R9c independently is —C(O)R5, —C(O)N(R4)2, —CO2R6, —SO2R6, —SO2N(R4)2, or a C1-4 aliphatic optionally substituted with R3 or R7. Ring B may be unsubstituted or may be substituted on any one or more of its component rings, wherein the substituents may be the same or different. In some embodiments, Ring B is substituted with 0-2 independently selected Rc and 0-3 independently selected R2c or C1-6 aliphatic groups. The variables R3, R4, R5, R6, and R7 are as defined above for Ring A, and Rc and R2c are defined below.


Each Rc independently is R2c, an optionally substituted C1-6 aliphatic, or an optionally substituted aryl, heteroaryl, or heterocyclyl group.


Each R2c independently is -halo, —NO2, —CN, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —C≡C—R5, —C≡C—R10, —OR5, —SR6, —S(O)R6, —SO2R6, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —N(R4)—N(R4)2, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2.


In some embodiments, each Rc independently is selected from the group consisting of C1-6 aliphatic, R2c, R7c, -T4-R2c, and -T1-R7c, where R2c is as described above and T1 and R7c are described below.

    • T1 is a C1-6 alkylene chain optionally substituted with R3 or R3b, wherein T1 or a portion thereof optionally forms part of a 3- to 7-membered ring.
    • Each R3 independently is selected from the group consisting of -halo, —OH, —O(C1-3 alkyl), —CN, —N(R4)2, —C(O)(C1-3 alkyl), —CO2H, —CO2(C1-3 alkyl), —C(O)NH2, and —C(O)NH(C1-3 alkyl).
    • Each R3b independently is a C1-3 aliphatic optionally substituted with R3 or R7, or two substituents R3b on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring.
    • Each R7c independently is an optionally substituted aryl, heterocyclyl, or heteroaryl group.


In some embodiments, each Rc independently is selected from the group consisting of C1-3 aliphatic, R2c, R7c, -T4-R2c, and -T1-R7c, where T1 is a C1-3 alkylene chain optionally substituted with fluoro. In some embodiments, each Rc independently is selected from the group consisting of C1-3 aliphatic, R2c, and -T1-R2c, where T1 is a C1-3 alkylene chain optionally substituted with fluoro. In some such embodiments, each R2c independently is selected from the group consisting of -halo, —NO2, —C(R5)═C(R5)2, —OC—R5, —OR5, and —N(R4)2.


In some embodiments, Ring B is a substituted or unsubstituted mono- or bicyclic aryl or heteroaryl ring selected from the group consisting of furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, phenyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolizinyl, indolyl, isoindolyl, indazolyl, benzo[b]furanyl, benzo[b]thienyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, purinyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, naphthyridinyl, and pteridinyl.


In some embodiments, Ring B is a monocyclic 5- or 6-membered aryl or heteroaryl ring, substituted with 0-2 independently selected Rc and 0-2 independently selected R2c or C1-6 aliphatic groups. In certain such embodiments, Ring B is a substituted or unsubstituted phenyl or pyridyl ring.


In some embodiments, Ring B is substituted with 0-2 substituents Rc. In some such embodiments, each Rc independently is C1-3 aliphatic or R2c, and each R2c independently is selected from the group consisting of -halo, —NO2, —C(R5)═C(R5)2, —OC—R5, —OR5, and —N(R4)2. In some embodiments, each Rc independently is selected from the group consisting of -halo, C1-3 aliphatic, C1-3 haloaliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic. In certain preferred embodiments, Ring B is substituted with 0,1, or 2 substituents, independently selected from the group consisting of chloro, fluoro, bromo, methyl, trifluoromethyl, and methoxy.


In some embodiments, Ring B has the formula B-i:




embedded image


wherein each of Rc1 and Rc5 independently is hydrogen or Rc. In some embodiments, each of Rc1 and Rc5 independently is selected from the group consisting of hydrogen, -halo, C1-3 aliphatic, C1-3 fluoroaliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic. In certain embodiments, each of Rc1 and Rc5 independently is selected from the group consisting of hydrogen, chloro, fluoro, bromo, methyl, trifluoromethyl, and methoxy.


In the compounds of formulae (A), (A-1), and (B) above, Ring C is a substituted or unsubstituted mono-, bi-, or tricyclic ring system. In some embodiments, the point of attachment for Ring C to the rest of the formula is on an aryl or heteroaryl ring of the Ring C moiety. In other embodiments, the point of attachment is on a heterocyclyl or cycloaliphatic ring. Preferably, Ring C is mono-, or bicyclic.


Each substitutable saturated ring carbon atom in Ring C is unsubstituted or is substituted with ═O, ═S, ═C(R5)2, ═N—N(R4)2, ═N—OR5, ═N—NHC(O)R5, ═N—NHCO2R6, ═N—NHSO2R6, ═N—R5 or —Rd. Each substitutable unsaturated ring carbon atom in Ring C is unsubstituted or substituted with —Rd. Each substitutable ring nitrogen atom in Ring C is unsubstituted or is substituted with —R9d, and one ring nitrogen atom in Ring C optionally is oxidized. Each R9d independently is —C(O)R5, —C(O)N(R4)2, —CO2R6, —SO2R6, —SO2N(R4)2, or a C1-4 aliphatic optionally substituted with R3 or R7. Ring C may be unsubstituted or may be substituted on any one or more of its component rings, wherein the substituents may be the same or different. In some embodiments, Ring C is substituted with 0-2 independently selected Rd and 0-3 independently selected R2d or C1-6 aliphatic groups. The variables R3, R4, R5, R6, and R7 are as described above for Rings A and B. The variables Rd and R2d are described below.


Each Rd independently is R2d, an optionally substituted aliphatic, or an optionally substituted aryl, heteroaryl, or heterocyclyl group.


Each R2d independently is -halo, —NO2, —CN, —C(R5)═C(R5)2, —C(R5)═C(R5)2(R10), —C≡C—R5, —C≡C—R10, —OR5, —SR6, —S(O)R6, —SO2R6, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —N(R4)—N(R4)2, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2. Additionally, R2d can be —SO3R5, —C(O)N(R4)C(═NR4)—N(R4)2 or —N(R4)C(═NR4)—N(R4)—C(O)R5.


In some embodiments, each Rd independently is selected from the group consisting of C1-6 aliphatic, R2d, R7d, -T2-R2d, -T2-R7d, —V-T3-R2d, and —V-T3-R7d, wherein R2d is as described above, and T2, T3, V, and R7d are described below.

    • T2 is a C1-6 alkylene chain optionally substituted with R3 or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —N(R4)—N(R4)—, —N(R4)SO2—, or —SO2N(R4)—, and wherein T2 or a portion thereof optionally forms part of a 3-7 membered ring.
    • T3 is a C1-6 alkylene chain optionally substituted with R3 or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —N(R4)—N(R4)—, —N(R4)SO2—, or —SO2N(R4)—, and wherein T3 or a portion thereof optionally forms part of a 3-7 membered ring.
    • V is —C(R5)═C(R5)—, —OC—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —C(NR4)═N—, —C(OR5)═N—, —N(R4)—N(R4)—, —N(R4)SO2—, —N(R4)SO2N(R4)—, —P(O)(R5)—, —P(O)(OR5)—O—, —P(O)—O—, or —P(O)(NR5)—N(R5)—.
    • Each R3b independently is a C1-3 aliphatic optionally substituted with R3 or R7, or two substituents R3b on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring.
    • Each R7d independently is an optionally substituted aryl, heterocyclyl, or heteroaryl group.


In some embodiments, each R2d independently is selected from the group consisting of -halo, —OR5, —N(R4)2, —N(R4)C(O)—, —CO2R5, —C(O)N(R4)2, and —SO2N(R4)2. In some other embodiments, each R2d independently is -halo, —OR5, —N(R4)2, —N(R4)C(O)—, —CO2R5, —C(O)N(R4)2, and —SO2N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2 or —N(R4)C(═NR4)—N(R4)—C(O)R5.


In some embodiments, T2 is a C1-6 alkylene chain, which optionally is substituted with one or two substituents R3b independently selected from the group consisting of -halo, —C1-3 aliphatic, —OH, and —O(C1-3 aliphatic), or two substituents R3b on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring. In some embodiments, T2 optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —C(O)—, —C(O)N(R4)—, —N(R4)C(O)— or —N(R4)—.


In some embodiments, V is —C(R5)═C(R5)—, —C≡C—, —O—, —N(R4)—, —C(O)—, —N(R4)C(O)—, or —C(O)N(R4)—. In some embodiments, T3 is a C1-4 alkylene chain, which optionally is substituted with one or two R3b independently selected from the group consisting of -halo, —C1-3 aliphatic, —OH, and —O(C1-3 aliphatic), or two substituents R3b on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring. In some embodiments, T3 is a C1-4 alkylene chain, which optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —C(O)—, —C(O)N(R4)—, —N(R4)C(O)— or —N(R4)—.


In some embodiments, each Rd independently is selected from the group consisting of C1-3 aliphatic, R2d, R7d, -T2-R2d, -T2-R7d, —V-T3-R2d, and —V-T3-R7d, where R2d is selected from the group consisting of -halo, —OR5, —N(R4)2, —N(R4)C(O)—, —CO2R5, —C(O)N(R4)2, and —SO2N(R4)2. Additionally, R2d can be —SO3R5, —C(O)N(R4)C(═NR4)—N(R4)2 or —N(R4)C(═NR4)—N(R4)—C(O)R5.


In some embodiments, Ring C is substituted with at least one R7d selected from the group consisting of:




embedded image


any of which groups optionally is substituted on any substitutable ring carbon or ring nitrogen atom.


In some embodiments, Ring C is substituted with at least one -T2-R2d or -T2-R7d, where:


T2 is a C1-6 alkylene chain, wherein T2 optionally is substituted with one or two substituents R3b independently selected from the group consisting of -halo, —C1-3 aliphatic, —OH, and —O(C1-3 aliphatic), or two substituents R3b on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring, and wherein T2 optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —C(O)—, —NR4C(O)R5, —N(R4)C(O)— or —N(R4)—; and


R2d is selected from the group consisting of -halo, —OR5, —N(R4)2, —N(R4)C(O)—, —CO2R5, —C(O)N(R4)2, —SO2N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, and —N(R4)C(═NR4)—N(R4)—C(O)R5.


In certain such embodiments, Ring C is substituted with one -T2-R2d or -T2-R7d, and optionally one other substituent selected from the group consisting of hydrogen, -halo, C1-3 aliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic. In some embodiments, T2 is a C1-6 alkylene chain, which optionally is interrupted by —C(O)N(R4)— or —N(R4)C(O)—.


In some embodiments, Ring C is substituted with at least one —V-T3-R2d or —V-T3-R7d, where:


V is —N(R4)—, —O—, —C(O)N(R4)—, —C(O)—, or —OC—;


T3 is a C1-4 alkylene chain, which is optionally substituted by one or two substituents R3b independently selected from the group consisting of -halo, —C1-3 aliphatic, —OH, and —O(C1-3 aliphatic), or two substituents R3b on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring; and


R2d is selected from the group consisting of -halo, —OR5, —N(R4)2, —NR4C(O)R5, —CO2R5, —C(O)N(R4)2, and —SO2N(R4)2.


In certain such embodiments, Ring C is substituted with one —V-T3-R2d or —V-T3-R7d, and optionally one other substituent selected from the group consisting of hydrogen, -halo, C1-3 aliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic.


In some embodiments, Ring C is substituted with —V-T3-R2d, where V is —C(O)N(R4)—, T3 is a C2-4 alkylene chain, and R2d is —N(R4)2. Each R4 independently is hydrogen or C1-3 aliphatic, or —N(R4)2 is an optionally substituted 5- to 6-membered heteroaryl or 4- to 8-membered heterocyclyl ring having, in addition to the nitrogen, 0-2 ring heteroatoms selected from N, O, and S. In certain such embodiments, —N(R4)2 is an optionally substituted heterocyclyl selected from the group consisting of piperidinyl, piperazinyl, and morpholinyl. In certain other such embodiments, —N(R4)2 is an optionally substituted heterocyclyl selected from pyrrolidinyl and azetidinyl.


In other embodiments, Ring C is substituted with —V-T3-R7d, where V is —C(O)N(R4)—, T3 is a C2-4 alkylene chain, and R7d is an optionally substituted 4- to 8-membered heterocyclyl or an optionally substituted 5- to 6-membered heteroaryl. In certain such embodiments, R7d is selected from the group consisting of pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyrrolyl, oxazolyl, imidazolyl, and pyrazolyl. In certain other such embodiments, R7d is a 6- to 8-membered bicyclic heterocyclyl.


In some embodiments, Ring C is substituted with one or two substituents independently selected from the group consisting of C1-3 aliphatic, -halo, —OR5, —CO2R5, —C(O)N(R4)2, and —SO2N(R4)2. Additional selections possible for Ring C substituents in these embodiments include —C(═NR4)N(R4)2, —NR4C(O)R5, —C(O)N(R4)C(═NR4)—N(R4)2 and —N(R4)C(═NR4)—N(R4)—C(O)R5. In some embodiments, Ring C is substituted with at least one substituent selected from the group consisting of —CO2R5, —C(O)N(R4)2, —C(═NR4)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, —N(R4)C(═NR4)—N(R4)—C(O)R5, and —NR4C(O)R5. In certain embodiments, Ring C is substituted with at least one —CO2R5, where R5 is hydrogen or C1-6 aliphatic.


In some embodiments, Ring C is substituted with at least one —C(O)—N(R4)2, —C(═NR4)N(R4)2, or —NR4C(O)R5, where —N(R4)2 is an optionally substituted 4- to 8-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S, and R5 is an optionally substituted 4- to 8-membered nitrogen-containing heterocyclyl ring. In some such embodiments, —N(R4)2 is an optionally substituted heterocyclyl selected from the group consisting of piperidinyl, piperazinyl, morpholinyl, pyrrolidinyl, and azetidinyl. In some other such embodiments, —N(R4)2 is a bridged or spiro bicyclic heterocyclyl.


In certain embodiments, Ring C is substituted with at least one substituent having the formula D-i:




embedded image




    • wherein:

    • Ring D optionally is substituted on one or two ring carbon atoms;

    • X is O or NH;

    • W1 is hydrogen, —C(O)R5, —C(O)N(R4)2, —CO2R6, —SO2R6, —SO2N(R4)2, or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group.





In some embodiments, Ring D in formula D-i is substituted with one or two substituents selected from the group consisting of C1-3 aliphatic, —CO2R5, —C(O)N(R4)2, and -T5-Rm, where T5 is a C1-3 alkylene chain and Rm is —OR5, —N(R4)2, —CO2R5, or —C(O)N(R4)2. In some such embodiments, Ring D in formula D-1 is substituted with one or two substituents selected from the group consisting of C1-3 aliphatic, —CO2H, —CO2(C1-3 alkyl), —C(O)N(C1-3 alkyl)2, —C(O)NH(C1-3 alkyl), —C(O)NH2, —(C1-3 alkyl)-OH, —(C1-3 alkylene)-O(C1-3 alkyl), —(C1-3 alkylene)-NH2, —(C1-3 alkylene)-NH(C1-3 alkyl), —(C1-3 alkylene)-N(C1-3 alkyl)2, —(C1-3 alkylene)-CO2H, —(C1-3 alkylene)-CO2(C1-3 alkyl), —(C1-3 alkylene)-C(O)NH2, —(C1-3 alkylene)-C(O)NH(C1-3 alkyl), and —(C1-3 alkylene)-C(O)N(C1-3 alkyl)2.


In certain other embodiments, Ring C is substituted with at least one substituent having one of the formulae D-ii to D-v below:




embedded image




    • wherein:

    • Ring D optionally is substituted on one or two substitutable ring carbon atoms;

    • X is O or NH;

    • W2 is Rn or -T6-Rn;

    • T6 is a C1-3 alkylene chain optionally substituted with R3 or R3b; and

    • Rn is —N(R4)2 or —C(O)N(R4)2; and

    • Rz is hydrogen, —CO2R5, C(O)N(R4)2; —C(O)R5, or a C1-3 aliphatic optionally substituted with R3 or R7; or Rz and W2, taken together with the carbon atom to which they are attached, form a 4- to 7-membered cycloaliphatic or heterocyclyl ring.





In some embodiments, Ring D in formulae D-ii to D-v is substituted with one or two substituents selected from the group consisting of C1-3 aliphatic, —CO2R5, —C(O)N(R4)2, —OR5, —N(R4)2, and -T5-Rm, where T5 is a C1-3 alkylene chain and Rm is —OR5, —N(R4)2, —CO2R5, or —C(O)N(R4)2.


In certain embodiments, at least one substituent on Ring C is selected from the group consisting of:




embedded image


embedded image


where X is O or NH.


In certain other embodiments, at least one substituent on Ring C is selected from the group consisting of:




embedded image


where X is O or NH, and each R4z independently is hydrogen or —CH3.


In certain other embodiments, at least one substituent on Ring C is selected from the group consisting of:




embedded image


embedded image


where X is O or NH, and each R4z independently is hydrogen or —CH3.


In some embodiments, Ring C is substituted with at least one —C(O)N(R4)2 or —C(═NH)N(R4)2, where one R4 is hydrogen or C1-3 alkyl, and the other R4 is an optionally substituted heterocyclyl or heterocyclylalkyl. In some such embodiments, Ring C is substituted with at least one substituent selected from the group consisting of:




embedded image


where X is O or NH.


In some other such embodiments, Ring C is substituted with at least one substituent selected from the group consisting of:




embedded image


where X is O or NH, and each R4z independently is H or CH3.


In some embodiments, Ring C is a bicyclic aryl group, which is substituted with 0-2 independently selected Rd and 0-3 independently selected R2d or C1-6 aliphatic groups. In some such embodiments, Ring C is a phenyl ring fused to a 5- or 6-membered carbocyclic, heteroaryl, or heterocyclyl ring, wherein each ring independently is substituted or unsubstituted. In certain such embodiments, Ring C is an optionally substituted benzodioxanyl or benzodioxolyl ring. In certain other such embodiments, Ring C is an optionally substituted benzimidazolyl, benzthiazolyl, benzoxazolyl, or phthalimidyl ring, wherein Ring C is attached to the rest of formula (A), (A-1), or (B) at the benzo ring of the bicyclic Ring C moiety.


In some other embodiments, Ring C is a monocyclic 5- or 6-membered aryl or heteroaryl ring, which is substituted with 0-2 independently selected substituents Rd and 0-2 independently selected R2d or C1-6 aliphatic groups. In some such embodiments, Ring C is an optionally substituted heteroaryl ring selected from the group consisting of pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, imidazolyl, pyrazolyl, and oxazolyl. In some other embodiments, Ring C is a substituted or unsubstituted phenyl ring. In some embodiments, Ring C is a monocyclic 5- or 6-membered aryl or heteroaryl ring, which is substituted with 0, 1, or 2 substituents Rd, as defined above.


In yet other embodiments, Ring C is a monocyclic 5- or 6-membered heterocyclyl or cycloaliphatic ring, which is substituted with 0-2 independently selected substituents Rd and 0-2 independently selected R2d or C1-6 aliphatic groups.


Some embodiments of the invention relate to a subgenus of formula (A) defined by formula (I):




embedded image


or a pharmaceutically acceptable salt thereof, wherein Ring A, Ring B, Ring C, and each of the variables Ra, Rb, Re, Rf1, and Rf2 have the values described below.

    • Ring A is substituted with 0-3 Rb.
    • Ring B is a substituted or unsubstituted aryl or heteroaryl ring.
    • Ring C is a substituted or unsubstituted aryl or heteroaryl ring. Additionally, Ring C can be a heterocyclyl, or cycloaliphatic ring.
    • Ra is hydrogen, —C(O)R1, —CO2R1, —SO2R1, or a C1-3 aliphatic having 0-2 substituents independently selected from R3 or R7.
      • R1 is an optionally substituted C1-6 aliphatic or an optionally substituted aryl, heteroaryl, or heterocyclyl group.
    • Each independently is R2b, an optionally substituted aliphatic, or an optionally substituted aryl, heteroaryl, or heterocyclyl group. In some embodiments each R6 independently is selected from the group consisting of C1-6 aliphatic, R2b, R7b, -T1-R2b, and -T1-R7b. In some embodiments, two adjacent R6, taken together with the intervening carbon atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S.
      • T1 is a C1-6 alkylene chain optionally substituted with R3 or R3b, wherein T1 or a portion thereof optionally forms part of a 3- to 7-membered ring.
      • Each R2b independently is -halo, —NO2, —CN, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —C≡C—R5, —OC—R10, —OR5, —SR6, —S(O)R6, —SO2R6, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —N(R4)—N(R4)2, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2.
      • Each R3b independently is a C1-3 aliphatic optionally substituted with R3 or R7, or two substituents R3b on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring.
      • Each R7b independently is an optionally substituted aryl, heterocyclyl, or heteroaryl group.
    • Re is hydrogen or a C1-3 aliphatic optionally substituted with R3 or R7.
    • Rf1 and Rf2 each are hydrogen, or Rf1 and Rf2 together form a bond.
    • Each R3 independently is selected from the group consisting of -halo, —OH, —O(C1-3 alkyl), —CN, —N(R4)2, —C(O)(C1-3 alkyl), —CO2H, —CO2(C1-3 alkyl), —C(O)NH2, and —C(O)NH(C1-3 alkyl).
    • Each R4 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group; or two R4 on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 4- to 8-membered or 5- to 8-membered heteroaryl or heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S.
    • Each R5 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group.
    • Each R6 independently is an optionally substituted aliphatic or aryl group.
    • Each R7 independently is an optionally substituted aryl, heterocyclyl, or heteroaryl group.
    • Each R10 independently is —CO2R5 or —C(O)N(R4)2.


In some embodiments, the compound of formula (I) is characterized by at least one, two, or three of the following features (a)-(f):

    • (a) Ra is hydrogen or C1-3 alkyl;
    • (b) Rf1 and Rf2 together form a bond;
    • (c) Ring A is substituted with 0-2 Rb, where each Rb independently is selected from the group consisting of C1-3 aliphatic, R2b, R7b, -T1-R2b, and -T1-R7b, where T1 is a C1-3 alkylene chain;
    • (d) Ring B is a monocyclic 5- or 6-membered aryl or heteroaryl ring, which is substituted with 0-2 Rc, where each Rc independently is selected from the group consisting of C1-3 aliphatic, R2c, R7c, -T1-R2c, and -T1-R7c, where T1 is a C1-3 alkylene chain;
    • (e) Ring C is a mono- or bicyclic aryl or heteroaryl ring, which is substituted with 0-2 independently selected Rd and 0-2 independently selected R2d or C1-6 aliphatic groups; and
    • (f) Re is hydrogen.


In some embodiments, the compound of formula (I) is characterized by all six of the features (a)-(f) above.


Some embodiments of the invention relate to a subgenus of formula (A) defined by formula (B) or (II):




embedded image


wherein each of Re, Rx, Ry, and Rings A, B, and C have the values and preferred values described above for formulae (B) and (1). In some such embodiments, Ring B is a mono- or bicyclic aryl or heteroaryl ring, which is substituted with 0-2 independently selected Rc and 0-2 independently selected R2c or C1-6 aliphatic groups, and Ring C as a mono- or bicyclic aryl, heteroaryl, heterocyclyl or cycloaliphatic ring, which is substituted with 0-2 independently selected Rd and 0-2 independently selected R2d or C1-6 aliphatic groups.


In some embodiments, the compound of formula (II) is defined by formula (IIa):




embedded image


wherein Ring A is substituted with 0-2 independently selected Rb, and Ring B is substituted with 0-2 independently selected Rc. In some embodiments, the compound of formula (IIa) is characterized by at least one of the following features (a)-(c):


(a) each Rb independently is selected from the group consisting of C1-3 aliphatic, R2b, R7b, -T1-R2b, and -T1-R7b, where T1 is a C1-3 alkylene chain optionally substituted with fluoro, and each R2b independently is selected from the group consisting of -halo, —NO2, —C(R5)═C(R5)2, —C≡C—R5, —OR5, and —N(R4)2;


(b) each Rc independently is selected from the group consisting of C1-3 aliphatic, R2c, R7c, -T1-R2c, and -T1-R7c, where T1 is a C1-3 alkylene chain optionally substituted with fluoro, and each R2c independently is selected from the group consisting of -halo, —NO2, —C(R5)═C(R5)2, —C≡C—R5, —OR5, and —N(R4)2; and


(c) Re is hydrogen.


Some embodiments of the invention relate to a subgenus of the compounds of formula (IIa) defined by formula (III):




embedded image


wherein each of Rb, Rc, Re, and Ring C have the values or preferred values described above for any preceding formula.


Some embodiment of the invention relate to a subgenus of the compounds of formula (IIa) defined by formula (Ilia):




embedded image


wherein: each of Rb2 and Rb3 independently is hydrogen or Rb; each of Rc1 and Rc5 independently is hydrogen or Rc; and each of Ring C, Rb, Rc, and Re have the values and preferred values described above for any preceding formula.


In some embodiments, each Rb in formula (III) or (Ilia) is selected from the group consisting of C1-3 aliphatic, C1-3 fluoroaliphatic, and R2b; and each Rc is selected from the group consisting of C1-3 aliphatic, C1-3 fluoroaliphatic, and R2c. In certain such embodiments, each of R2b and R2c independently is selected from the group consisting of -halo, —NO2, —C(R5)═C(R5)2, —OC—R5, —OR5, and —N(R4)2.


In some embodiments, the invention relates to a compound of formula (Ilia), wherein Re is hydrogen; each of Rb2 and Rb3 independently is selected from the group consisting of hydrogen, -halo, C1-3 aliphatic, C1-3 fluoroaliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic; and each of Rc1 and Rc5 independently is selected from the group consisting of hydrogen, -halo, C1-3 aliphatic, C1-3 fluoroaliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic. In some embodiments, each of Rb3 and Rc1 independently is selected from the group consisting of -halo, C1-3aliphatic, C1-3 fluoroaliphatic, and —OR5, where R5 hydrogen or C1-3 aliphatic. In certain such embodiments, Rb2 is hydrogen, Rc5 is selected from the group consisting of hydrogen, -halo, C1-3aliphatic, C1-3 fluoroaliphatic, and —OR5, and each of Rb3 and Rc1 independently is selected from the group consisting of -halo, C1-3aliphatic, C1-3 fluoroaliphatic, and —OR5, where R5 hydrogen or C1-3 aliphatic. In certain embodiments, Rb2 is hydrogen, Rc2 is hydrogen, chloro, fluoro, bromo, methyl, trifluoromethyl, or methoxy, and each of Rb3 and Rc1 independently is chloro, fluoro, bromo, methyl, trifluoromethyl, or methoxy.


Some embodiments of the invention relate to a subgenus of the compounds of formula (A) defined by formula (IV):




embedded image


wherein:

    • Ring A is substituted with 0-2 Rb;
    • Ring B is a mono- or bicyclic aryl or heteroaryl ring, which optionally is substituted with 0-2 independently selected Rc and 0-3 independently selected R2c or C1-6 aliphatic groups;
    • Re is hydrogen or a C1-3 aliphatic optionally substituted with R3 or R7;
    • Rg is selected from the group consisting of hydrogen, C1-6 aliphatic, and R2d; and
    • each of Rh and Rk independently is hydrogen or Rd.


In some such embodiments, the invention relates to a compound of formula (IV), wherein:

    • each R4 in Rd or R2d is hydrogen, C1-3 alkyl, or a 5- or 6-membered aryl or heteroaryl ring; or two R4 on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 5- to 6-membered heteroaryl or 4- to 8-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S; and
    • each R5 in Rd or R2d is hydrogen, C1-3 alkyl, or a 5- or 6-membered aryl or heteroaryl ring.


In some such embodiments, two R4 on the same nitrogen atom in Rd or R2d, taken together with the nitrogen atom, form an optionally substituted piperidinyl, piperazinyl, or morpholinyl ring.


In some embodiments, the invention relates to a compound of formula (IV) wherein:

    • Ring A is substituted with 0-2 Rb, where each Rb independently is selected from the group consisting of C1-3 aliphatic, R2b, R7b, -T1-R2b, and -T1-R7b, where T1 is a C1-3 alkylene chain;
    • Ring B is a monocyclic 5- or 6-membered aryl or heteroaryl ring, which is substituted with 0-2 independently selected Rc, where each Rc independently is selected from the group consisting of C1-3 aliphatic, R2c, R7c, -T1-R2c, and -T1-R7c, where T1 is a C1-3 alkylene chain; and
    • Re is hydrogen.


In some such embodiments, each Rb independently is selected from the group consisting of C1-3 aliphatic, R2b, and -T1-R2b, and each Rc independently is selected from the group consisting of C1-3 aliphatic, R2c, and -T1-R2c. In some embodiments, each R2b independently is selected from the group consisting of -halo, —NO2, —C(R5)═C(R5)2, —OC—R5, —OR5, and —N(R4)2, and each R2c independently is selected from the group consisting of -halo, —NO2, —C(R5)═C(R5)2, —OC—R5, —OR5, and —N(R4)2.


In some embodiments, the invention is directed to the compound of formula (IV), wherein one of Rh and Rk is R7d. In some such embodiments, Rg is hydrogen, and R7d is tetrazolyl.


In some embodiments, the invention relates to a compound of formula (IV), wherein Rg is hydrogen, one of Rh and Rk has the formula -T2-R2d or -T2-R7d, and the other of Rh and Rk is selected from the group consisting of hydrogen, -halo, C1-3 aliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic. In some embodiments, T2 is a C1-6 alkylene chain, which optionally is interrupted by —C(O)N(R4)— or —N(R4)C(O)—.


In some embodiments, the invention is directed to a compound of formula (IV) wherein Rg is hydrogen, one of Rh and Rk has the formula —V-T3-R2d, and the other of Rh and Rk is selected from the group consisting of hydrogen, -halo, C1-3 aliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic. In some such embodiments, V is —C(O)N(R4)—, T3 is a C2-4 alkylene chain, and R2d is —N(R4)2, where each R4 independently is hydrogen or C1-3 aliphatic, or —N(R4)2 is an optionally substituted 5- to 6-membered heteroaryl or 4- to 8-membered heterocyclyl ring having, in addition to the nitrogen, 0-2 ring heteroatoms selected from N, O, and S. In certain such embodiments, —N(R4)2 is an optionally substituted heterocyclyl selected from the group consisting of piperidinyl, piperazinyl, and morpholinyl. In certain other such embodiments, —N(R4)2 is an optionally substituted heterocyclyl selected from pyrrolidinyl and azetidinyl.


In some other embodiments, the invention relates to a compound of formula (IV), wherein Rk is hydrogen, one of Rh and Rk has the formula —V-T3-R7d, and the other of Rh and Rk is selected from the group consisting of hydrogen, -halo, C1-3 aliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic. In certain such embodiments, V is —C(O)N(R4)—, T3 is a C2-4 alkylene chain, and R7d is an optionally substituted 4- to 8-membered heterocyclyl or an optionally substituted 5- to 6-membered heteroaryl. In certain such embodiments, R7d is an optionally substituted heteroaryl selected from the group consisting of pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyrrolyl, oxazolyl, imidazolyl, and pyrazolyl. In certain other such embodiments, R7d is a 6- to 8-membered bridged bicyclic heterocyclyl.


In some embodiments, the invention is directed to a compound of formula (IV) wherein Rg is hydrogen, and at least one of Rh and Rk is selected from the group consisting of —CO2R5, —C(O)N(R4)2, —C(═NR4)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, —N(R4)C(═NR4)—N(R4)—C(O)R5, or —NR4C(O)R5. In some such embodiments, at least one of Rh and Rk is —CO2R5, where R5 is hydrogen or C1-6 aliphatic. In some embodiments, each of Rg and Rk is hydrogen, and Rh is —CO2R5.


In some embodiments, Rg is hydrogen, and one of Rh and Rk is —C(O)—N(R4)2 or —C(═NR4)N(R4)2, where —N(R4)2 is an optionally substituted heterocyclyl selected from the group consisting of piperidinyl, piperazinyl, morpholinyl, pyrrolidinyl, and azetidinyl. In some such embodiments, one of Rh and Rk has one of the formulae D-i to D-v, as defined above. In certain such embodiments, one of Rh or Rk has one of the formulae D-1 to D-51, or has the formula embodied at the relevant position of any of the compounds depicted in Table 3 below.


Some embodiment of the invention relate to a subgenus of the compounds of formula (A) defined by formula (C):




embedded image


wherein:

    • Ring A is a substituted or unsubstituted 5- or 6-membered aryl, heteroaryl, cycloaliphatic, or heterocyclyl ring;
    • Ring B is substituted with 0-2 independently selected Rc and 0-3 independently selected R2c or C1-6 aliphatic groups;
    • Ring C is substituted 0-2 independently selected Rd and 0-3 independently selected R2d or C1-6 aliphatic groups; and
    • each of Re, Rx, and Ry has the values and preferred values described above.


In some embodiments, the invention relates to a subgenus of formula (C) defined by formula (V):




embedded image


wherein:

    • Re is hydrogen or a C1-3 aliphatic optionally substituted with R3 or R7;
    • Ring A is substituted with 0-3 Rb;
    • Ring B is substituted with 0-2 independently selected Rc and 0-2 independently selected R2c or C1-6 aliphatic groups; and
    • Ring C is substituted or unsubstituted.


In some embodiments, the compound of formula (V) is defined by formula (Va):




embedded image




    • wherein:

    • Re is hydrogen;

    • each of Rb2 and Rb3 independently is selected from the group consisting of hydrogen, -halo, C1-3 aliphatic, C1-3 fluoroaliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic;

    • each of Rc1 and Rc5 independently is selected from the group consisting of hydrogen, -halo, C1-3 aliphatic, C1-3 fluoroaliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic;

    • Rg is selected from the group consisting of hydrogen, C1-6 aliphatic, and R2d; and

    • each of Rh and Rk independently is hydrogen or Rd.





In some embodiments, the invention relates to a compound of formula (Va) wherein at least one of Rh and Rk has the formula —V-T3-R2d or —V-T3-R7d, where:

    • V is —C(O)N(R4)—;
    • T3 is a C2-4 alkylene chain;
    • R2d is —N(R4)2, where R4 is hydrogen or C1-3 aliphatic, or two R4 on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 4- to 8-membered heterocyclyl or an optionally substituted 5- to 6-membered heteroaryl ring having, in addition to the nitrogen, 0-2 ring heteroatoms selected from N, O, and S; and
    • R7d is an optionally substituted 4- to 8-membered heterocyclyl or an optionally substituted 5- to 6-membered heteroaryl.


In some other embodiments, the invention relates to a compound of formula (Va), wherein Rg is hydrogen, and at least one of Rh and Rk is selected from the group consisting of —CO2R5, —C(O)N(R4)2, —C(═NR4)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, —N(R4)C(═NR4)—N(R4)—C(O)R5, or —NR4C(O)R5.


In a particular embodiment, the invention relates to a compound of formula (Va), wherein:

    • Re, Rb2, Rg, and Rk are each hydrogen;
    • Rb3 and Rc1 are each independently selected from the group consisting of -halo, C1-3 aliphatic, C1-3 fluoroaliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic;
    • Rc5 is selected from the group consisting of hydrogen, -halo, C1-3 aliphatic, C1-3 fluoroaliphatic, and —OR5, where R5 is hydrogen or C1-3 aliphatic; and
    • Rh is —CO2H, —C(O)N(R4)2, —C(═NR4)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, or —N(R4)C(═NR4)—N(R4)—C(O)R5, where R5 is an optionally substituted 4- to 8-membered nitrogen-containing heterocyclyl ring, and —N(R4)2 is an optionally substituted 4- to 8-membered heterocyclyl ring having in addition to the nitrogen atom 0-2 heteroatoms selected from N, O, and S.


Compounds embodying any combination of the preferred values for the variables described herein are considered to be within the scope of the present invention.


Table 3 shows specific examples of compounds of formula (V).









TABLE 3





Aurora Kinase Inhibitors


















embedded image


I-1







embedded image


I-2







embedded image


I-3







embedded image


I-4







embedded image


I-5







embedded image


I-6







embedded image


I-7







embedded image


I-8







embedded image


I-9







embedded image


I-10







embedded image


I-11







embedded image


I-12







embedded image


I-13







embedded image


I-14







embedded image


I-15







embedded image


I-16







embedded image


I-17







embedded image


I-18







embedded image


I-19







embedded image


I-20







embedded image


I-21







embedded image


I-22







embedded image


I-23







embedded image


I-24







embedded image


I-25







embedded image


I-26







embedded image


I-27







embedded image


I-28







embedded image


I-29







embedded image


I-30







embedded image


I-31







embedded image


I-32







embedded image


I-33







embedded image


I-34







embedded image


I-35







embedded image


I-36







embedded image


I-37







embedded image


I-38







embedded image


I-39







embedded image


I-40







embedded image


I-41







embedded image


I-42







embedded image


I-43







embedded image


I-44







embedded image


I-45







embedded image


I-46







embedded image


I-47







embedded image


I-48







embedded image


I-49







embedded image


I-50







embedded image


I-51







embedded image


I-52







embedded image


I-53







embedded image


I-54







embedded image


I-55







embedded image


I-56







embedded image


I-57







embedded image


I-58







embedded image


I-59







embedded image


I-60







embedded image


I-61







embedded image


I-62







embedded image


I-63







embedded image


I-64







embedded image


I-65







embedded image


I-66







embedded image


I-67







embedded image


I-68







embedded image


I-69







embedded image


I-70







embedded image


I-71







embedded image


I-72







embedded image


I-73







embedded image


I-74







embedded image


I-75







embedded image


I-76







embedded image


I-77







embedded image


I-78







embedded image


I-79







embedded image


I-80







embedded image


I-81







embedded image


I-82







embedded image


I-83







embedded image


I-84







embedded image


I-85







embedded image


I-86







embedded image


I-87







embedded image


I-88







embedded image


I-89







embedded image


I-90







embedded image


I-91







embedded image


I-92







embedded image


I-93







embedded image


I-94







embedded image


I-95







embedded image


I-96







embedded image


I-97







embedded image


I-98







embedded image


I-99







embedded image


I-100







embedded image


I-101







embedded image


I-102







embedded image


I-103







embedded image


I-104







embedded image


I-105







embedded image


I-106







embedded image


I-107







embedded image


I-108







embedded image


I-109







embedded image


I-110







embedded image


I-111







embedded image


I-112







embedded image


I-113







embedded image


I-114







embedded image


I-115







embedded image


I-116







embedded image


I-117







embedded image


I-118







embedded image


I-119







embedded image


I-120







embedded image


I-121







embedded image


I-122







embedded image


I-123







embedded image


I-124







embedded image


I-125







embedded image


I-126







embedded image


I-127







embedded image


I-128







embedded image


I-129







embedded image


I-130







embedded image


I-131







embedded image


I-132







embedded image


I-133







embedded image


I-134







embedded image


I-135







embedded image


I-136







embedded image


I-137







embedded image


I-138







embedded image


I-139







embedded image


I-140







embedded image


I-141







embedded image


I-142







embedded image


I-143







embedded image


I-144







embedded image


I-145







embedded image


I-146







embedded image


I-147







embedded image


I-148







embedded image


I-149







embedded image


I-150







embedded image


I-151







embedded image


I-152







embedded image


I-153







embedded image


I-154







embedded image


I-155







embedded image


I-156







embedded image


I-157







embedded image


I-158







embedded image


I-159







embedded image


I-160







embedded image


I-161







embedded image


I-162







embedded image


I-163







embedded image


I-164







embedded image


I-165







embedded image


I-166







embedded image


I-167







embedded image


I-168







embedded image


I-169







embedded image


I-170







embedded image


I-171







embedded image


I-172







embedded image


I-173







embedded image


I-174







embedded image


I-175







embedded image


I-176







embedded image


I-177







embedded image


I-178







embedded image


I-179







embedded image


I-180







embedded image


I-181







embedded image


I-182







embedded image


I-183







embedded image


I-184







embedded image


I-185







embedded image


I-186







embedded image


I-187







embedded image


I-188







embedded image


I-189







embedded image


I-190







embedded image


I-191







embedded image


I-192







embedded image


I-193







embedded image


I-194







embedded image


I-195







embedded image


I-196







embedded image


I-197







embedded image


I-198







embedded image


I-199







embedded image


I-200







embedded image


I-201







embedded image


I-202







embedded image


I-203







embedded image


I-204







embedded image


I-205







embedded image


I-206







embedded image


I-207







embedded image


I-208







embedded image


I-209







embedded image


I-210







embedded image


I-211







embedded image


I-212







embedded image


I-213







embedded image


I-214







embedded image


I-215







embedded image


I-216







embedded image


I-217







embedded image


I-218







embedded image


I-219







embedded image


I-220







embedded image


I-221







embedded image


I-222







embedded image


I-223







embedded image


I-224







embedded image


I-225







embedded image


I-226







embedded image


I-227







embedded image


I-228







embedded image


I-229







embedded image


I-230







embedded image


I-231







embedded image


I-232







embedded image


I-233







embedded image


I-234







embedded image


I-235







embedded image


I-236







embedded image


I-237







embedded image


I-238







embedded image


I-239







embedded image


I-240







embedded image


I-241







embedded image


I-242







embedded image


I-243







embedded image


I-244







embedded image


I-245







embedded image


I-246







embedded image


I-247







embedded image


I-248







embedded image


I-249







embedded image


I-250







embedded image


I-251







embedded image


I-252







embedded image


I-253







embedded image


I-254







embedded image


I-255







embedded image


I-256







embedded image


I-257







embedded image


I-258







embedded image


I-259







embedded image


I-260







embedded image


I-261







embedded image


I-262







embedded image


I-263







embedded image


I-264







embedded image


I-265







embedded image


I-266







embedded image


I-267







embedded image


I-268







embedded image


I-269







embedded image


I-270







embedded image


I-271







embedded image


I-272







embedded image


I-273







embedded image


I-274







embedded image


I-275







embedded image


I-276







embedded image


I-277







embedded image


I-278







embedded image


I-279







embedded image


I-280







embedded image


I-281







embedded image


I-282







embedded image


I-283







embedded image


I-284







embedded image


I-285







embedded image


I-286







embedded image


I-287







embedded image


I-288







embedded image


I-289







embedded image


I-290







embedded image


I-291







embedded image


I-292







embedded image


I-293







embedded image


I-294







embedded image


I-295







embedded image


I-296







embedded image


I-297







embedded image


I-298







embedded image


I-299







embedded image


I-300







embedded image


I-301







embedded image


I-302







embedded image


I-303







embedded image


I-304







embedded image


I-305







embedded image


I-306







embedded image


I-307







embedded image


I-308







embedded image


I-309







embedded image


I-310







embedded image


I-311







embedded image


I-312







embedded image


I-313







embedded image


I-314







embedded image


I-315







embedded image


I-316







embedded image


I-317







embedded image


I-318







embedded image


I-319







embedded image


I-320







embedded image


I-321







embedded image


I-322







embedded image


I-323







embedded image


I-324







embedded image


I-325







embedded image


I-326







embedded image


I-327







embedded image


I-328







embedded image


I-329







embedded image


I-330







embedded image


I-331







embedded image


I-332







embedded image


I-333







embedded image


I-334







embedded image


I-335







embedded image


I-336







embedded image


I-337







embedded image


I-338







embedded image


I-339







embedded image


I-340







embedded image


I-341







embedded image


I-342







embedded image


I-343







embedded image


I-344







embedded image


I-345







embedded image


I-346







embedded image


I-347







embedded image


I-348







embedded image


I-349







embedded image


I-350







embedded image


I-351







embedded image


I-352







embedded image


I-353







embedded image


I-354







embedded image


I-355







embedded image


I-356







embedded image


I-357







embedded image


I-358







embedded image


I-359







embedded image


I-360







embedded image


I-361







embedded image


I-362







embedded image


I-363







embedded image


I-364







embedded image


I-365







embedded image


I-366







embedded image


I-367







embedded image


I-368







embedded image


I-369







embedded image


I-370







embedded image


I-371







embedded image


I-372







embedded image


I-373







embedded image


I-374







embedded image


I-375







embedded image


I-376







embedded image


I-377







embedded image


I-378







embedded image


I-379







embedded image


I-380







embedded image


I-381







embedded image


I-382







embedded image


I-383







embedded image


I-384







embedded image


I-385







embedded image


I-386







embedded image


I-387







embedded image


I-388







embedded image


I-389







embedded image


I-390







embedded image


I-391







embedded image


I-392







embedded image


I-393







embedded image


I-394







embedded image


I-395







embedded image


I-396







embedded image


I-397







embedded image


I-398







embedded image


I-399







embedded image


I-400







embedded image


I-401







embedded image


I-402







embedded image


I-403







embedded image


I-404







embedded image


I-405







embedded image


I-406







embedded image


I-407







embedded image


I-408







embedded image


I-409







embedded image


I-410







embedded image


I-411







embedded image


I-412







embedded image


I-413







embedded image


I-414







embedded image


I-415







embedded image


I-416







embedded image


I-417







embedded image


I-418







embedded image


I-419







embedded image


I-420







embedded image


I-421







embedded image


I-422







embedded image


I-423







embedded image


I-424







embedded image


I-425







embedded image


I-426







embedded image


I-427







embedded image


I-428







embedded image


I-429







embedded image


I-430







embedded image


I-431







embedded image


I-432







embedded image


I-433







embedded image


I-434







embedded image


I-435







embedded image


I-436







embedded image


I-437







embedded image


I-438







embedded image


I-439







embedded image


I-440







embedded image


I-441







embedded image


I-442







embedded image


I-443







embedded image


I-444







embedded image


I-445







embedded image


I-446







embedded image


I-447







embedded image


I-448







embedded image


I-449







embedded image


I-450







embedded image


I-451







embedded image


I-452







embedded image


I-453







embedded image


I-454







embedded image


I-455







embedded image


I-456







embedded image


I-457







embedded image


I-458







embedded image


I-459







embedded image


I-460







embedded image


I-461







embedded image


I-462







embedded image


I-463







embedded image


I-464







embedded image


I-465







embedded image


I-466







embedded image


I-467







embedded image


I-468







embedded image


I-469







embedded image


I-470







embedded image


I-471







embedded image


I-472







embedded image


I-473







embedded image


I-474







embedded image


I-475







embedded image


I-476







embedded image


I-477







embedded image


I-478







embedded image


I-479







embedded image


I-480







embedded image


I-481







embedded image


I-482







embedded image


I-483







embedded image


I-484







embedded image


I-485







embedded image


I-486







embedded image


I-487







embedded image


I-488







embedded image


I-489







embedded image


I-490







embedded image


I-491







embedded image


I-492







embedded image


I-493







embedded image


I-494







embedded image


I-495







embedded image


I-496







embedded image


I-497







embedded image


I-498







embedded image


I-499







embedded image


I-500







embedded image


I-501







embedded image


I-502







embedded image


I-503







embedded image


I-504







embedded image


I-505







embedded image


I-506







embedded image


I-507







embedded image


I-508







embedded image


I-509







embedded image


I-510







embedded image


I-511







embedded image


I-512







embedded image


I-513







embedded image


I-514







embedded image


I-515







embedded image


I-516







embedded image


I-517







embedded image


I-518







embedded image


I-519







embedded image


I-520







embedded image


I-521







embedded image


I-522







embedded image


I-523







embedded image


I-524







embedded image


I-525







embedded image


I-526







embedded image


I-527







embedded image


I-528







embedded image


I-529







embedded image


I-530







embedded image


I-531







embedded image


I-532







embedded image


I-533







embedded image


I-534







embedded image


I-535









The compounds in Table 3 above also may be identified by the following chemical names:

  • I-1: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(2-methylamino-ethyl)-benzamide
  • I-2: N-(2-Amino-ethyl)-4-[9-chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-N-methyl-benzamide
  • I-3: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-methyl-N-(2-methylamino-ethyl)-benzamide
  • I-4: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(2-dimethylamino-ethyl)-benzamide
  • I-5: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(2-dimethylamino-ethyl)-N-methyl-benzamide
  • I-6: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(3-dimethylamino-propyl)-benzamide
  • I-7: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(3-dimethylamino-propyl)-N-methyl-benzamide
  • I-8: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-piperazin-1-yl-methanone
  • I-9: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-methyl-piperazin-1-yl)-methanone
  • I-10: {4-[9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-methyl-piperazin-1-yl)-methanone
  • I-11: [4-(9-Chloro-7-o-tolyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino)-phenyl]-(4-methyl-piperazin-1-yl)-methanone
  • I-12: {4-[9-Chloro-7-(2-methoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-methyl-piperazin-1-yl)-methanone
  • I-13: {4-[9-Chloro-7-(4-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-methyl-piperazin-1-yl)-methanone
  • I-14: {4-[7-(2-Fluoro-phenyl)-9-methyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-methyl-piperazin-1-yl)-methanone
  • I-15: 2-{3-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-1-(4-methyl-piperazin-1-yl)-ethanone
  • I-16: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-piperidin-4-yl-benzamide
  • I-17: (4-Amino-piperidin-1-yl)-{4-[9-chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-methanone
  • I-18: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-dimethylamino-piperidin-1-yl)-methanone
  • I-19: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-[3-(4-methyl-piperazin-1-yl)-propyl]-benzamide
  • I-20: 4-[9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-[3-(4-methyl-piperazin-1-yl)-propyl]-benzamide
  • I-21: 4-(9-Chloro-7-o-tolyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino)-N-[3-(4-methyl-piperazin-1-yl)-propyl]-benzamide
  • I-22: 4-[9-Chloro-7-(2-methoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-[3-(4-methyl-piperazin-1-yl)-propyl]-benzamide
  • I-23: 4-[9-Chloro-7-(4-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-[3-(4-methyl-piperazin-1-yl)-propyl]-benzamide
  • I-24: 4-[7-(2-Fluoro-phenyl)-9-methyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-[3-(4-methyl-piperazin-1-yl)-propyl]-benzamide
  • I-25: 2-{3-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-N-[3-(4-methyl-piperazin-1-yl)-propyl]-acetamide
  • I-26: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-morpholin-4-yl-methanone
  • I-27: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N,N-bis-(2-hydroxy-ethyl)-benzamide
  • I-28: {4-[9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-morpholin-4-yl-methanone
  • I-29: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(2-morpholin-4-yl-ethyl)-benzamide
  • I-30: 4-[9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(2-morpholin-4-yl-ethyl)-benzamide
  • I-31: 4-(9-Chloro-7-o-tolyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino)-N-(2-morpholin-4-yl-ethyl)-benzamide
  • I-32: 4-[9-Chloro-7-(2-methoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(3-morpholin-4-yl-propyl)-benzamide
  • I-33: 4-[9-Chloro-7-(4-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(2-morpholin-4-yl-ethyl)-benzamide
  • I-34: 4-[9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-2-hydroxy-N-(2-morpholin-4-yl-ethyl)-benzamide
  • I-35: [9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-pyridin-2-yl-amine
  • I-36: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3,5-dichloro-phenyl)-amine
  • I-37: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(4-methoxy-phenyl)-amine
  • I-38: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(4-ethoxy-phenyl)-amine
  • I-39: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3-methoxy-phenyl)-amine
  • I-40: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(2-methoxy-phenyl)-amine
  • I-41: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(4-chloro-phenyl)-amine
  • I-42: [9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(4-chloro-phenyl)-amine
  • I-43: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3-chloro-phenyl)-amine
  • I-44: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(2-chloro-phenyl)-amine
  • I-45: 4-[9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenol
  • I-46: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(4-morpholin-4-yl-phenyl)-amine
  • I-47: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-[4-(4-methyl-piperazin-1-yl)-phenyl]-amine
  • I-48: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(4-pyridin-4-ylmethyl-phenyl)-amine
  • I-49: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzonitrile
  • I-50: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(4-nitro-phenyl)-amine
  • I-51: 4-[7-(2-Fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-52: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-53: 4-[9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-54: 4-(9-Chloro-7-o-tolyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino)-benzoic acid
  • I-55: 4-[9-Chloro-7-(2-methoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-56: 4-[9-Chloro-7-(4-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-57: 4-[9-Fluoro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-58: 4-[7-(2-Fluoro-phenyl)-9-methyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-59: 4-[10-Fluoro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-60: 4-[10-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-61: 4-[10-Bromo-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-62: 4-[7-(2-Fluoro-phenyl)-10-methoxy-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-63: 4-[9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzamide
  • I-64: 3-[9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzamide
  • I-65: {3-[9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-acetic acid
  • I-66: 2-{3-[9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-acetamide
  • I-67: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzenesulfonic acid
  • I-68: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzenesulfonamide
  • I-69: 4-[9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(5-methyl-isoxazol-3-yl)-benzenesulfonamide
  • I-70: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(4-trifluoromethanesulfonyl-phenyl)-amine
  • I-71: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3,4-dimethoxy-phenyl)-amine
  • I-72: [9-Chloro-7-(2-fluoro-phenyl)-6,7-dihydro-5H-benzo[c]pyrimido-[4,5-e]azepin-2-yl]-(3,4-dimethoxy-phenyl)-amine
  • I-73: [9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3,4-dimethoxy-phenyl)-amine
  • I-74: (9-Chloro-7-o-tolyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl)-(3,4-dimethoxy-phenyl)-amine
  • I-75: (3,4-Dimethoxy-phenyl)-[7-(2-fluoro-phenyl)-9-methyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-amine
  • I-76: (3,4-Dimethoxy-phenyl)-[7-(2-fluoro-phenyl)-9-isopropyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-amine
  • I-77: (3,4-Dimethoxy-phenyl)-[10-fluoro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-amine
  • I-78: [10-Bromo-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3,4-dimethoxy-phenyl)-amine
  • I-79: (3,4-Dimethoxy-phenyl)-[7-(2-fluoro-phenyl)-10-trifluoromethyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-amine
  • I-80: (3,4-Dimethoxy-phenyl)-[7-(2-fluoro-phenyl)-10-methyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-amine
  • I-81: (3,4-Dimethoxy-phenyl)-[7-(2-fluoro-phenyl)-10-methoxy-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-amine
  • I-82: (3,4-Dimethoxy-phenyl)-[7-(2-fluoro-phenyl)-11-methyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-amine
  • I-83: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-amine
  • I-84: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(4-fluoro-3-methoxy-phenyl)-amine
  • I-85: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-2-hydroxy-benzoic acid
  • I-86: 4-[9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-2-hydroxy-benzoic acid
  • I-87: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3,4-dichloro-phenyl)-amine
  • I-88: [9-Chloro-7-(2-chloro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3,5-dimethoxy-phenyl)-amine
  • I-89: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3,5-dimethyl-phenyl)-amine
  • I-90: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-phenyl-amine
  • I-91: 4-[9-Chloro-7-(2,5-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-92: 4-[9-Chloro-7-(2,3-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-93: (3-Dimethylamino-pyrrolidin-1-yl)-{4-[7-(2-fluoro-phenyl)-9-methoxy-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-methanone
  • I-94: 4-[9-Chloro-7-(2,5-dimethoxy-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-95: 4-[7-(2-Fluoro-phenyl)-9-methoxy-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N,N-bis-(2-hydroxy-ethyl)-benzamide
  • I-96: 4-[9-Chloro-7-(2,4-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-97: 4-[9-Chloro-7-(2,4-difluoro-phenyl)-7H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-98: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3-dimethylamino-azetidin-1-yl)-methanone
  • I-99: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-methyl-N-(1-methyl-pyrrolidin-3-yl)-benzamide
  • I-100: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3-dimethylamino-pyrrolidin-1-yl)-methanone
  • I-101: 4-[9-Chloro-7-(2,4-dimethoxy-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-102: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3-methylamino-pyrrolidin-1-yl)-methanone
  • I-103: (3-Amino-pyrrolidin-1-yl)-{4-[9-chloro-7-(2-fluoro-phenyl)-5H- benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-methanone
  • I-104: 4-[9-Chloro-7-(2,3-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-: ylamino]-benzoic acid methyl ester
  • I-105: 4-[9-Chloro-7-(2,5-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid methyl ester
  • I-106 {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-phosphonic acid
  • I-107: N-{4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-methanesulfonamide
  • I-108: N-{4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-N-methyl-acetamide
  • I-109: 2-{4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoylamino}-succinic acid
  • I-110: [9-Chloro-7-(2-fluoro-phenyl)-4-methyl-5H-benzo[c]pyrimido-[4,5-e]azepin-2-yl]-(3,4-dimethoxy-phenyl)-amine
  • I-111: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3,5-dimethyl-piperazin-1-yl)-methanone
  • I-112: 1-{4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoyl}-pyrrolidine-2-carboxylic acid
  • I-113: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3-methyl-piperazin-1-yl)-methanone
  • I-114: [9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-[4-(2H-tetrazol-5-yl)-phenyl]-amine
  • I-115: N-{4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-acetamide
  • I-116: 5-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-2-fluoro-benzoic acid
  • I-117: N-(3-Amino-propyl)-4-[9-chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-methyl-benzamide
  • I-118: 2-{4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoylamino}-propionic acid
  • I-119: 5-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-pyridine-2-carboxylic acid
  • I-120: 2-{4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-N-(2-morpholin-4-yl-ethyl)-acetamide
  • I-121: 5-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-2-methoxy-benzoic acid
  • I-122: 5-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-2-methyl-benzoic acid
  • I-123: 6-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-nicotinic acid
  • I-124: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(2-morpholin-4-yl-ethyl)-benzenesulfonamide
  • I-125: 2-Chloro-5-[9-chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-126: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-acetic acid
  • I-127: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-2-trifluoromethyl-benzoic acid
  • I-128: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-methyl-N-(1-methyl-piperidin-4-yl)-benzamide
  • I-129: N-(3-Amino-propyl)-4-[9-chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzamide
  • I-130: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(3-methylamino-propyl)-benzamide
  • I-131: N-(2-Amino-2-methyl-propyl)-4-[9-chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzamide
  • I-132: 2-(3,4-Dimethoxy-phenylamino)-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepine-10-carboxylic acid
  • I-133: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-2-methyl-benzoic acid
  • I-134: 2-Chloro-4-[9-chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-135: 4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-135: ylamino]-benzoic acid
  • I-136: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-2-fluoro-benzoic acid
  • I-137: 4-[7-(2-Fluoro-phenyl)-9-methoxy-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-138: (3,4-Dimethoxy-phenyl)-[7-(2-fluoro-phenyl)-9-methoxy-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-amine
  • I-139:[9,10-Dichloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3,4-dimethoxy-phenyl)-amine
  • I-140: 4-[9,10-Dichloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-141: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-2-methoxy-benzoic acid
  • I-142: N-(2-Amino-ethyl)-4-[9-chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzamide
  • I-143: 4-(9-Chloro-7-phenyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino)-benzoic acid
  • I-144: [7-(2-Bromo-phenyl)-9-chloro-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3,4-dimethoxy-phenyl)-amine
  • I-145: 2-{4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-1-(4-methyl-piperazin-1-yl)-ethanone
  • I-146: 3-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-147: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-[2-(1H-imidazol-4-yl)-ethyl]-benzamide
  • I-148: 4-[7-(2-Fluoro-phenyl)-9-methyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(2-morpholin-4-yl-ethyl)-benzamide
  • I-149: {3-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-acetic acid
  • I-150: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(2-pyridin-4-yl-ethyl)-benzamide
  • I-151: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(2-pyridin-3-yl-ethyl)-benzamide
  • I-152:(9-Chloro-7-phenyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl)-(3,4-dimethoxy-phenyl)-amine
  • I-153: 4-[7-(2-Fluoro-phenyl)-10-methyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-154: (3,4-Dimethoxy-phenyl)-[7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-yl]-amine
  • I-155: 4-[9-Chloro-7-(4-methoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-156: 4-[9-Chloro-7-(3-methoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-157: 4-[9-Chloro-7-(3-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-[3-(4-methyl-piperazin-1-yl)-propyl]-benzamide
  • I-158: 4-[9-Chloro-7-(3-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2- ylamino]-N-(2-morpholin-4-yl-ethyl)-benzamide
  • I-159: {4-[9-Chloro-7-(3-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-methyl-piperazin-1-yl)-methanone
  • I-160: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-methyl-N-(2-pyridin-2-yl-ethyl)-benzamide
  • I-161: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(2-pyridin-2-yl-ethyl)-benzamide
  • I-162: 4-[9-Chloro-7-(3-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-163: {3-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-methyl-piperazin-1-yl)-methanone
  • I-164: 9-Chloro-7-(2-fluorophenyl)-N-{4-[(4-pyridin-2-ylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-165: 9-Chloro-7-(2-fluorophenyl)-N-(4-{[4-(2-morpholin-4-yl-2-oxoethyl)piperazin-1-yl]carbonyl}phenyl)-5H-pyrimido-[5,4-d][2]benzazepin-2-amine
  • I-166: 9-Chloro-7-(2-fluorophenyl-N-(4-{[4-(2-furoyl)piperazin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-167: Benzyl-4-(4-{[9-chloro-7-(2-fluorophenyl)-5H-pyrimido-[5,4-d][2]benzazepin-2-yl]amino}benzoyl)piperazine-1-carboxylate
  • I-168: Ethyl-4-(4-{[9-chloro-7-(2-fluorophenyl)-5H-pyrimido-[5,4-d][2]benzazepin-2-yl]amino}benzoyl)piperazine-1-carboxylate
  • I-169: 2-[4-(4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)piperazin-1-yl]benzoic acid
  • I-170: 2-[4-(4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)piperazin-1-yl]-N-isopropylacetamide
  • I-171: 9-Chloro-7-(2-fluorophenyl)-N-(4-{[4-(2-pyrrolidin-1-ylethyl)piperazin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-172: N-[2-(aminocarbonyl)phenyl]-4-{[9-chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzamide
  • I-173: 9-Chloro-7-(2-fluorophenyl)-N-{4-[(4-pyrimidin-2-ylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-174: 4-{[9-Chloro-7-(2-chloro-6-fluorophenyl)-5H-pyrimido-[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-175: 9-Chloro-7-(2,6-difluorophenyl)-N-{4-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-176: 9-Chloro-7-(2,6-difluorophenyl)-N-(4-{[3-(dimethylamino)pyrrolidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-177: 9-Chloro-N-{4-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-178: 9-Chloro-N-(4-{[3-(dimethylamino)pyrrolidin-1-yl]carbonyl}phenyl)-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-179: 9-Chloro-N-(4-{[3-(dimethylamino)azetidin-1-yl]carbonyl}phenyl)-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-180: 9-Chloro-7-(2,6-difluorophenyl)-N-(4-{[3-(dimethylamino)azetidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-181: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-[4-(3-piperidin-1-yl-propyl)-piperazin-1-yl]-methanone
  • I-182: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-[4-(2-piperidin-1-yl-ethyl)-piperazin-1-yl]-methanone
  • I-183: {4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-dimethylamino-piperidin-1-yl)-methanone
  • I-184: {4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-methyl-piperazin-1-yl)-methanone
  • I-185: 4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-(3-dimethylamino-propyl)-N-methyl-benzamide
  • I-186: {4-[9-Chloro-7-(2-fluoro-6-methoxy-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-phenyl}-(4-dimethylamino-piperidin-1-yl)-methanone
  • I-187: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-[4-(2-dipropylamino-ethyl)-piperazin-1-yl]-methanone
  • I-188: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-[4-(3-pyrrolidin-1-yl-propyl)-piperazin-1-yl]-methanone
  • I-189: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-[4-(2-morpholin-4-yl-ethyl)-piperazin-1-yl]-methanone
  • I-190: 4-[9-Chloro-7-(2-fluoro-6-methoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-191: {4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3(S)-methyl-piperazin-1-yl)-methanone
  • I-192: (3-Amino-azetidin-1-yl)-{4-[9-chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-methanone
  • I-193: {4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3-dimethylaminomethyl-azetidin-1-yl)-methanone
  • I-194: {4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3(R)-methyl-piperazin-1-yl)-methanone
  • I-195: {4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-piperazin-1-yl-methanone
  • I-196: (3-Amino-pyrrolidin-1-yl)-{4-[9-chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-methanone
  • I-197: {4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3-methylamino-pyrrolidin-1-yl)-methanone
  • I-198: 4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-methyl-N-(3-methylamino-propyl)-benzamide
  • I-199: {4-[9-Chloro-7-(2-fluoro-6-methoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3-methylamino-pyrrolidin-1-yl)-methanone
  • I-200: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-cyclohexanecarboxylic acid
  • I-201: 9-chloro-N-(4-{[4-(2-ethoxyphenyl)piperazin-1-yl]carbonyl}phenyl)-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-202: N-[amino(imino)methyl]-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzamide
  • I-203: 3-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-204: 9-chloro-7-(2,6-difluorophenyl)-N-(3-{[3-(dimethylamino)azetidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-205: 9-chloro-7-(2,6-difluorophenyl)-N-(3-{[4-(dimethylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-206: 9-chloro-7-(2,6-difluorophenyl)-N-(3-{[3-(dimethylamino)pyrrolidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-207: N-[2-(aminomethyl)-1,3-benzoxazol-5-yl]-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-208: 9-chloro-N-[4-({4-[3-(diethylamino)propyl]piperazin-1-yl}carbonyl)phenyl]-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-209: 9-chloro-N-[4-({4-[2-(diethylamino)ethyl]piperazin-1-yl}carbonyl)phenyl]-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-210: 9-chloro-N-[4-({4-[3-(dimethylamino)propyl]piperazin-1-yl}carbonyl)phenyl]-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-211: 9-chloro-7-(2-fluorophenyl)-N-[4-({4-[(1-methylpiperidin-3-yl)methyl]piperazin-1-yl}carbonyl)phenyl]-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-212: 9-chloro-7-(2,6-difluorophenyl)-N-(4-nitrophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-213: 9-chloro-N-(3-chloro-4-{[4-(2-pyrrolidin-1-ylethyl)piperazin-1-yl]carbonyl}phenyl)-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-214: 9-chloro-N-{3-chloro-4-[(3-methylpiperazin-1-yl)carbonyl]phenyl}-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-215: 9-chloro-N-(3-chloro-4-{[3-(dimethylamino)pyrrolidin-1-yl]carbonyl}phenyl)-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-216: 9-chloro-N-{3-chloro-4-[(3-methylpiperazin-1-yl)carbonyl]phenyl}-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-217: N-[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]benzene-1,4-diamine
  • I-218: methyl 2-chloro-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoate
  • I-219: 1-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)piperazine-2-carboxylic acid
  • I-220: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-221: N-{4-[(3-aminopiperidin-1-yl)carbonyl]phenyl}-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-222: 9-chloro-7-(2,6-difluorophenyl)-N-{3-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-223: 4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[[4-(dimethylamino)piperidin-1-yl](imino)methyl]benzamide
  • I-224: 4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[imino(piperazin-1-yl)methyl]benzamide
  • I-225: 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[3-(dimethylamino)propyl]-N-methylbenzamide
  • I-226: 3-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[3-(dimethylamino)propyl]-N-methylbenzamide
  • I-227: 9-chloro-N-(3-{[3-(dimethylamino)azetidin-1-yl]carbonyl}phenyl)-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-228: 9-chloro-N-{3-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-229: 9-chloro-N-(3-{[4-(dimethylamino)piperidin-1-yl]carbonyl}phenyl)-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-230: N-(4-{[3-(aminomethyl)azetidin-1-yl]carbonyl}phenyl)-9-chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-231: 9-chloro-N-(3-{[3-(dimethylamino)pyrrolidin-1-yl]carbonyl}phenyl)-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-232: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-{4-[(3-methylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-233: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-{4-[(4-methylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-234: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[3-(methylamino)azetidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-235: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-(4-{[3-(methylamino)azetidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-236: 4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzonitrile
  • I-237: 4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[[3-(dimethylamino)pyrrolidin-1-yl](imino)methyl]benzamide
  • I-238: 4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[(3,5-dimethylpiperazin-1-yl)(imino)methyl]benzamide
  • I-239: N-{4-[(4-aminopiperidin-1-yl)carbonyl]phenyl}-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-240: N-{4-[(3-aminopyrrolidin-1-yl)carbonyl]phenyl}-9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-241: N-{4-[(4-aminopiperidin-1-yl)carbonyl]phenyl}-9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-242: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-(4-{[4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-243: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-[4-(piperazin-1-ylcarbonyl)phenyl]-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-244: 9-chloro-7-(2,6-difluorophenyl)-N-{4-[[4-(dimethylamino)piperidin-1-yl](imino)methyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-245: N-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)guanidine
  • I-246: 4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methyl-N-[2-(methylamino)ethyl]benzamide
  • I-247: 4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[2-(dimethylamino)ethyl]-N-methylbenzamide
  • I-248: methyl 4-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)piperazine-2-carboxylate
  • I-249: 2-[(4-carboxyphenyl)amino]-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepine-9-carboxylic acid
  • I-250: 9-chloro-7-(2,6-difluorophenyl)-N-{4-[[3-(dimethylamino)pyrrolidin-1-yl](imino)methyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-251: 9-chloro-7-(2,6-difluorophenyl)-N-{4-[(3,5-dimethylpiperazin-1-yl)(imino)methyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-252: N-(2-aminoethyl)-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methylbenzamide
  • I-253: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[3-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-254: 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methyl-N-[2-(methylamino)ethyl]benzamide
  • I-255: 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[2-(dimethylamino)ethyl]-N-methylbenzamide
  • I-256: 7-(2-fluorophenyl)-2-[(3-methoxyphenyl)amino]-5H-pyrimido[5,4-d][2]benzazepine-9-carboxylic acid
  • I-257: N-(3-aminopropyl)-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methylbenzamide
  • I-258: 2-chloro-5-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-259: 4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[[3-(dimethylamino)azetidin-1-yl](imino)methyl]benzamide
  • I-260: N-(2-amino-2-methylpropyl)-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzamide
  • I-261: 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methyl-N-[3-(methylamino)propyl]benzamide
  • I-262: N-{4-[(3-aminopiperidin-1-yl)carbonyl]phenyl}-9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-263: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-(4-{[3-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-264: N-(3-aminopropyl)-4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methylbenzamide
  • I-265: N-(2-aminoethyl)-4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methylbenzamide
  • I-266: 4-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)piperazine-2-carboxylic acid
  • I-267: 9-chloro-7-(2,6-difluorophenyl)-N-{4-[[3-(dimethylamino)azetidin-1-yl](imino)methyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-268: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{imino[3-(methylamino)pyrrolidin-1-yl]methyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-269: 9-chloro-N-(4-chloro-3-{[4-(dimethylamino)piperidin-1-yl]carbonyl}phenyl)-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-270: 9-chloro-7-(2,6-difluorophenyl)-N-[4-(5,5-dimethyl-4,5-dihydro-1H-imidazol-2-yl)phenyl]-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-271: N-[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]-N′-pyrimidin-2-ylbenzene-1,4-diamine
  • I-272: 4-{[9-(3-aminoprop-1-yn-1-yl)-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-273: 9-bromo-7-(2,6-difluorophenyl)-N-(3-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-274: 4-{[9-bromo-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-275: 7-(2,6-difluorophenyl)-N-(3-methoxyphenyl)-9-(3-pyrrolidin-1-ylprop-1-yn-1-yl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-276: 9-(3-aminoprop-1-yn-1-yl)-7-(2,6-difluorophenyl)-N-(3-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-277: 4-({9-chloro-7-[2-(trifluoromethyl)phenyl]-5H-pyrimido[5,4-d][2]benzazepin-2-yl}amino)benzoic acid
  • I-278: N-{4-[(3-aminoazetidin-1-yl)carbonyl]phenyl}-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-279: 4-[(9-chloro-7-pyridin-2-yl-5H-pyrimido[5,4-d][2]benzazepin-2-yl)amino]benzoic acid
  • I-280: N-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)-4-methylpiperazine-1-carboxamide
  • I-281: 9-chloro-N-(4-chloro-3-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-282: 9-chloro-N-(4-chloro-3-{[4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-283: 2-chloro-5-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methyl-N-[2-(methylamino)ethyl]benzamide
  • I-284: N-{4-[(3-aminopyrrolidin-1-yl)(imino)methyl]phenyl}-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-285: 2-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)-1,4,5,6-tetrahydropyrimidin-5-ol
  • I-286: N-{4-[(3-aminoazetidin-1-yl)carbonyl]phenyl}-9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-287: N-{4-[(4-aminopiperidin-1-yl)carbonyl]phenyl}-9-chloro-7-[2-(trifluoromethyl)phenyl]-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-288: 9-chloro-N-(4-{[4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-7-[2-(trifluoromethyl)phenyl]-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-289: N-{4-[(3-aminopyrrolidin-1-yl)carbonyl]phenyl}-9-chloro-7-[2-(trifluoromethyl)phenyl]-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-290: 9-chloro-N-(4-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)-7-[2-(trifluoromethyl)phenyl]-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-291: 9-chloro-N-(4-chloro-3-{[3-(methylamino)azetidin-1-yl]carbonyl}phenyl)-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-292: N-{3-[(4-aminopiperidin-1-yl)carbonyl]-4-chlorophenyl}-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-293: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[3-(dimethylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-294: methyl 4-amino-1-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)piperidine-4-carboxylate
  • I-295: 4-amino-1-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)piperidine-4-carboxylic acid
  • I-296: N-{4-[(3-aminoazetidin-1-yl)carbonyl]phenyl}-9-chloro-7-[2-(trifluoromethyl)phenyl]-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-297: 9-chloro-N-(4-{[3-(methylamino)azetidin-1-yl]carbonyl}phenyl)-7-[2-(trifluoromethyl)phenyl]-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-298: N-{4-[(4-aminopiperidin-1-yl)carbonyl]phenyl}-9-chloro-7-pyridin-2-yl-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-299: N-{4-[(3-aminopyrrolidin-1-yl)carbonyl]phenyl}-9-chloro-7-pyridin-2-yl-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-300: ethyl 2-amino-4-[(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)amino]butanoate
  • I-301: 4-{[9-chloro-7-(3-fluoropyridin-2-yl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-302: 9-{[3-(dimethylamino)azetidin-1-yl]carbonyl}-7-(2-fluorophenyl)-N-(3-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-303: 7-(2-fluorophenyl)-2-[(3-methoxyphenyl)amino]-N-methyl-N-[3-(methylamino)propyl]-5H-pyrimido[5,4-d][2]benzazepine-9-carboxamide
  • I-304: N-{4-[(4-aminopiperidin-1-yl)carbonyl]phenyl}-9-chloro-7-(3-fluoropyridin-2-yl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-305: N-{4-[(3-aminopyrrolidin-1-yl)carbonyl]phenyl}-9-chloro-7-(3-fluoropyridin-2-yl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-306: 2-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)-4,5-dihydro-1H-imidazole-5-carboxylic acid
  • I-307: N-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)-2-(dimethylamino)acetamide
  • I-308: 2-amino-N-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)-2-methylpropanamide
  • I-309: ethyl (2R)-4-amino-2-[(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)amino]butanoate
  • I-310: 4-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)-N-methylpiperazine-2-carboxamide
  • I-311: 7-(2-fluorophenyl)-2-[(3-methoxyphenyl)amino]-N-(3-morpholin-4-ylpropyl)-5H-pyrimido[5,4-d][2]benzazepine-9-carboxamide
  • I-312: 9-[(3,5-dimethylpiperazin-1-yl)carbonyl]-7-(2-fluorophenyl)-N-(3-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-313: 9-chloro-N-(3-chloro-4-{[4-(dimethylamino)piperidin-1-yl]carbonyl}phenyl)-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-314: ethyl 2-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)-4,5-dihydro-1H-imidazole-5-carboxylate
  • I-315: 9-chloro-N-(4-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)-7-pyridin-2-yl-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-316: 9-chloro-N-(4-{[4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-7-pyridin-2-yl-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-317: 4-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)piperazine-2-carboxamide
  • I-318: N-{4-[(3-aminopyrrolidin-1-yl)carbonyl]-3-chlorophenyl}-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-319: N-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)piperidine-4-carboxamide
  • I-320: 4-{[9-chloro-7-(2-fluoro-6-{methyl[2-(methylamino)ethyl]amino}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-321: 9-chloro-7-(2,4-difluorophenyl)-N-{4-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-322: 9-chloro-7-(2,4-dimethoxyphenyl)-N-{4-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-323: 9-chloro-7-(2-chloro-6-fluorophenyl)-N-{4-[(3-methylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-324: 9-chloro-7-(2-chloro-6-fluorophenyl)-N-{4-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-325: 9-chloro-7-(2-chloro-6-fluorophenyl)-N-(4-{[4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-326: 9-chloro-7-(2-chloro-6-fluorophenyl)-N-(4-{[3-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-327: 9-chloro-7-(2-chloro-6-fluorophenyl)-N-(4-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-328: 9-chloro-N-(3,4-dimethoxyphenyl)-7-{2-[(dimethylamino)methyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-329: 9-chloro-7-(2-methoxyphenyl)-N-{4-[(3-methylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-330: 9-chloro-N-{4-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}-7-(2-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-331: 9-chloro-7-(2-methoxyphenyl)-N-(4-{[4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-332: 9-chloro-7-(2-methoxyphenyl)-N-(4-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-333: 9-chloro-7-(2-methoxyphenyl)-N-(4-{[3-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-334: 4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methylbenzamide
  • I-335: 4-{[9-chloro-7-(2-fluoro-6-{methyl[3-(methylamino)propyl]amino}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-336: 4-{[9-chloro-7-(2-fluoro-6-{methyl[3-(methylamino)propyl]amino}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methylbenzamide
  • I-337: 1-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)ethanone
  • I-338: N-[3-(3-aminoprop-1-yn-1-yl)phenyl]-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-339: 4-[(9-chloro-7-{2-fluoro-6-[(2-hydroxyethyl)amino]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-yl)amino]-N-methylbenzamide
  • I-340: 4-[(7-{2-[(2-aminoethyl)amino]-6-fluorophenyl}-9-chloro-5H-pyrimido[5,4-d][2]benzazepin-2-yl)amino]-N-methylbenzamide
  • I-341: 4-amino-1-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)-N-methylpiperidine-4-carboxamide
  • I-342: 4-[(9-chloro-7-{2-[4-(dimethylamino)piperidin-1-yl]-6-fluorophenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-yl)amino]-N-methylbenzamide
  • I-343: 9-chloro-7-(2,6-difluorophenyl)-N-{3-[3-(dimethylamino)prop-1-yn-1-yl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-344: 9-chloro-7-(2,6-difluorophenyl)-N-(3-iodophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-345: 4-{[9-chloro-7-(2-{[2-(dimethylamino)ethyl]amino}-6-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methylbenzamide
  • I-346: 4-[(9-chloro-7-{2-[[2-(dimethylamino)ethyl](methyl)amino]-6-fluorophenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-yl)amino]-N-methylbenzamide
  • I-347: 4-{[9-chloro-7-(2-fluoro-6-{methyl[2-(methylamino)ethyl]amino}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methylbenzamide
  • I-348: 4-({7-[2-(4-aminopiperidin-1-yl)-6-fluorophenyl]-9-chloro-5H-pyrimido[5,4-d][2]benzazepin-2-yl}amino)-N-methylbenzamide
  • I-349: 7-(2-fluorophenyl)-2-[(3-methoxyphenyl)amino]-N-methyl-N-[2-(methylamino)ethyl]-5H-pyrimido[5,4-d][2]benzazepine-9-carboxamide
  • I-350: 4-amino-1-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)piperidine-4-carboxamide
  • I-351: 9-chloro-7-(2-chloro-6-fluorophenyl)-N-(4-{[3-(methylamino)azetidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-352: 9-chloro-7-(2,6-difluorophenyl)-N-(4-methyl-1,3-thiazol-2-yl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-353: 7-(2,6-difluorophenyl)-2-[(3-methoxyphenyl)amino]-5H-pyrimido[5,4-d][2]benzazepine-9-carboxylic acid
  • I-354: 4-({9-chloro-7-[2-fluoro-6-(methylamino)phenyl]-5H-pyrimido[5,4-d][2]benzazepin-2-yl}amino)-N-methylbenzamide
  • I-355: 2-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methyl-1,3-thiazole-4-carboxamide
  • I-356: N-1H-benzimidazol-2-yl-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-357: 7-(2,6-difluorophenyl)-2-[(4-methyl-1,3-thiazol-2-yl)amino]-5H-pyrimido[5,4-d][2]benzazepine-9-carboxylic acid
  • I-358: 3-amino-1-(3-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)propan-1-one
  • I-359: 1-(3-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)-3-(dimethylamino)propan-1-one
  • I-360: 2-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-1,3-thiazole-4-carboxylic acid
  • I-361: ethyl 2-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-1,3-thiazole-4-carboxylate
  • I-362: 9-chloro-7-(2,6-difluorophenyl)-N-{4-[(3,5-dimethylpiperazin-1-yl)carbonyl]-1,3-thiazol-2-yl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-363: ethyl 2-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-1,3-oxazole-5-carboxylate
  • I-364: 2-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-1,3-oxazole-5-carboxylic acid
  • I-365: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[(3R)-3-methylpiperazin-1-yl]carbonyl}-1,3-thiazol-2-yl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-366: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[(2R)-2-methylpiperazin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-367: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}-1,3-thiazol-2-yl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-368: 2-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-1,3-oxazole-4-carboxylic acid
  • I-369: 9-chloro-7-(2,6-difluorophenyl)-N-{5-[(3,5-dimethylpiperazin-1-yl)carbonyl]-1,3-oxazol-2-yl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-370: 9-chloro-7-(2,6-difluorophenyl)-N-(5-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}-1,3-oxazol-2-yl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-371: 4-{[9-chloro-7-(2,6-difluorophenyl)-5-methyl-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-372: 9-chloro-7-(2,6-difluorophenyl)-N-{3-[3-(dimethylamino)propyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-373: N-[3-(3-aminopropyl)phenyl]-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-374: 9-chloro-7-(2,6-difluorophenyl)-N-{4-[(3,5-dimethylpiperazin-1-yl)carbonyl]-1,3-oxazol-2-yl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-375: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}-1,3-oxazol-2-yl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-376: 7-(2,6-difluorophenyl)-2-({4-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}amino)-N-methyl-5H-pyrimido[5,4-d][2]benzazepine-9-carboxamide
  • I-377: 2-{[4-(aminocarbonyl)phenyl]amino}-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepine-9-carboxylic acid
  • I-378: 1-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4d][2]benzazepin-2-yl]amino}benzoyl)-N-methyl-4-(methylamino)piperidine-4-carboxamide
  • I-379: N-{4-[(3-amino-3-methylpyrrolidin-1-yl)carbonyl]phenyl}-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-380: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[3-methyl-3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-381: 1-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)-4-(methylamino)piperidine-4-carboxamide
  • I-382: 9-chloro-7-(2,6-difluorophenyl)-N-{4-[(3,3,5-trimethylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-383: N-1-azabicyclo[2.2.2]oct-3-yl-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methylbenzamide
  • I-384: N-1-azabicyclo[2.2.2]oct-3-yl-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzamide
  • I-385: 4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-hydroxybenzamide
  • I-386: N-{4-[(aminooxy)carbonyl]phenyl}-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-387: 4-{[9-chloro-7-(2,6-difluorophenyl)-7H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-388: 4-{[9-chloro-7-(2,3-difluorophenyl)-7H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-389: 3-amino-1-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)-N-methylpyrrolidine-3-carboxamide
  • I-390: 3-amino-1-(2-chloro-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)pyrrolidine-3-carboxamide
  • I-391: 9-chloro-7-(2,6-difluorophenyl)-N-{4-[(3,3-dimethylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-392: 4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)benzamide
  • I-393: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[3-(dimethylamino)-3-methylpyrrolidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-394: 9-chloro-7-(2,6-difluorophenyl)-N-(3-methyl-1H-pyrazol-5-yl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-395: 2-chloro-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-396: 4-amino-1-(2-chloro-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)-N-methylpiperidine-4-carboxamide
  • I-397: 4-amino-1-(2-chloro-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)-N,N-dimethylpiperidine-4-carboxamide
  • I-398: 4-[(9-methoxy-7-oxo-6,7-dihydro-5H-pyrimido[5,4-d][2]benzazepin-2-yl)amino]benzoic acid
  • I-399: 2-({4-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}amino)-9-methoxy-5,6-dihydro-7H-pyrimido[5,4-d][2]benzazepin-7-one
  • I-400: 9-methoxy-2-[(4-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,6-dihydro-7H-pyrimido[5,4-d][2]benzazepin-7-one
  • I-401: 4-[(8-methyl-7-oxo-5,6,7,8-tetrahydropyrimido[5,4-c]pyrrolo[3,2-e]azepin-2-yl)amino]benzoic acid
  • I-402: 2-({4-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}amino)-8-methyl-5,8-dihydropyrimido[5,4-c]pyrrolo[3,2-e]azepin-7(6H)-one
  • I-403: 2-[(3-methoxyphenyl)amino]-8-methyl-5,8-dihydropyrimido[5,4-c]pyrrolo[3,2-e]azepin-7(6H)-one
  • I-404: 9-chloro-2-[(3,4-dimethoxyphenyl)amino]-5,6-dihydro-7H-pyrimido[5,4-d][2]benzazepin-7-one
  • I-405: 4-{[4-amino-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-406: 9-chloro-N-(3-chloro-4-{[4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-407: 9-chloro-N-(3-chloro-4-{[4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-408: 4-{[9-chloro-7-(2-fluoro-6-hydroxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-409: 9-chloro-N-[4-(1,7-diazaspiro[4.4]non-7-ylcarbonyl)phenyl]-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-410: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[2-(methylamino)-7-azabicyclo[2.2.1]hept-7-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-411: 1-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)-N-methyl-3-(methylamino)pyrrolidine-3-carboxamide
  • I-412: 1-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)-3-(methylamino)pyrrolidine-3-carboxamide
  • I-413: 1-(2-chloro-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)-N-methyl-3-(methylamino)piperidine-3-carboxamide
  • I-414: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[3-methyl-3-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-415: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-(4-{[3-methyl-3-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-416: {2-Chloro-4-[9-chloro-7-(2-fluoro-6-methoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3-methyl-3-methylamino-piperidin-1-yl)-methanone
  • I-417: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[4-methyl-4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-418: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[4-(dimethylamino)-4-methylpiperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-419: N-{4-[(4-amino-4-methylpiperidin-1-yl)carbonyl]phenyl}-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-420: 9-chloro-N-(3-chloro-4-{[4-methyl-4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-421: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-(4-{[4-methyl-4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-422: 2-Chloro-4-[9-chloro-7-(2-fluoro-6-methoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-methyl-4-methylamino-piperidin-1-yl)-methanone
  • I-423: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-(3-fluoro-4-{[4-methyl-4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-424: 9-chloro-N-{3-chloro-4-[(3,3,5,5-tetramethylpiperazin-1-yl)carbonyl]phenyl}-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-425: N-1-azabicyclo[2.2.2]oct-3-yl-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-fluoro-N-methylbenzamide
  • I-426: N-1-azabicyclo[2.2.2]oct-3-yl-4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methylbenzamide
  • I-427: N-8-azabicyclo[3.2.1]oct-3-yl-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methylbenzamide
  • I-428: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[3-(methylamino)-8-azabicyclo[3.2.1]oct-8-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-429: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-(4-{[3-(methylamino)-8-azabicyclo[3.2.1]oct-8-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-430: 4-{[7-(2,6-difluorophenyl)-9-methyl-5H-pyrimido[5,4-c]thieno[2,3-e]azepin-2-yl]amino}benzoic acid
  • I-431: 7-(2,6-difluorophenyl)-N-{4-[(3,3,5,5-tetramethylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-c]thieno[2,3-e]azepin-2-amine
  • I-432: N-{4-[(3-amino-3-methylpyrrolidin-1-yl)carbonyl]phenyl}-7-(2,6-difluorophenyl)-10-methyl-5,10-dihydropyrimido[5,4-c]pyrrolo[2,3-e]azepin-2-amine
  • I-433: 7-(2,6-difluorophenyl)-9-methyl-N-(4-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)-5H-furo[2,3-c]pyrimido[4,5-e]azepin-2-amine
  • I-434: 4-(2,6-difluorophenyl)-2-methyl-N-(4-{[3-methyl-3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)-6H-pyrimido[5,4-c][1,3]thiazolo[4,5-e]azepin-9-amine
  • I-435: N-{4-[(3-amino-3-methylpyrrolidin-1-yl)carbonyl]phenyl}-7-(2-fluoro-6-methoxyphenyl)-5,9-dihydropyrimido[5,4-c]pyrrolo[3,4-e]azepin-2-amine
  • I-436: 4-{[4-(2,6-difluorophenyl)-1-methyl-1,6-dihydropyrazolo[4,3-c]pyrimido[4,5-e]azepin-9-yl]amino}benzoic acid
  • I-437: 1-{4-[4-(2,6-Difluoro-phenyl)-2-methyl-6H-3-thia-5,8,10-triaza-benzo[e]azulen-9-ylamino]-benzoyl}-4-dimethylamino-piperidine-4-carboxylic acid methylamide
  • I-438: 4-(4-{[7-(2,6-difluorophenyl)-5H-furo[3,2-c]pyrimido[4,5-e]azepin-2-yl]amino}benzoyl)-N-methylpiperazine-2-carboxamide
  • I-439: 4-(4-{[4-(2,6-difluorophenyl)-6H-isoxazolo[4,5-c]pyrimido[4,5-e]azepin-9-yl]amino}benzoyl)-N-methylpiperazine-2-carboxamide
  • I-440: 4-(2,6-difluorophenyl)-9-[(4-{[3-methyl-3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)amino]-3,6-dihydroimidazo[4,5-c]pyrimido[4,5-e]azepin-2(1H)-one
  • I-441: 2-amino-N-(3-{[7-(2,6-difluorophenyl)-8,10-dimethyl-5H-pyrimido[5,4-c]thieno[3,4-e]azepin-2-yl]amino}phenyl)-N,2-dimethylpropanamide
  • I-442: 9-chloro-7-(2,6-difluorophenyl)-N-{3-[(2,2,6,6-tetramethylpiperidin-4-yl)oxy]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-443: 4-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)-N-methyl-1-(methylamino)cyclohexanecarboxamide
  • I-444: 7-(3-{[7-(2-fluoro-6-methoxyphenyl)-9-methoxy-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)-1,7-diazaspiro[4.4]nonan-6-one
  • I-445: 9-chloro-N-[4-(3,8-diazabicyclo[3.2.1]oct-3-ylcarbonyl)phenyl]-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-446: 1-(3-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)-3,5,5-trimethylpiperazin-2-one
  • I-447: 9-chloro-N-[4-(2,6-dimethylpiperidin-4-yl)phenyl]-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-448: N-[4-(1-amino-1-methylethyl)phenyl]-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-449: N-[4-(2,5-diazaspiro[3.4]oct-2-ylcarbonyl)phenyl]-7-(2,6-difluorophenyl)-10-methyl-5H-isothiazolo[5,4-c]pyrimido[4,5-e]azepin-2-amine
  • I-450: 4-(2,6-difluorophenyl)-1-methyl-9-[(4-{[4-methyl-4-(methylamino)piperidin-1-yl]carbonyl}phenyl)amino]-1,6-dihydro-2H-pyrimido[5,4-c][1,3]thiazolo[4,5-e]azepin-2-one
  • I-451: 4-(2,6-difluorophenyl)-N-[4-(1H-imidazol-2-yl)phenyl]-1-methyl-1,6-dihydroimidazo[4,5-c]pyrimido[4,5-e]azepin-9-amine
  • I-452: 4-{[7-(2,6-difluorophenyl)-5H-[1]benzofuro[2,3-c]pyrimido[4,5-e]azepin-2-yl]amino}benzoic acid
  • I-453: 7-(2-fluorophenyl)-N-{4-[(3,3,5,5-tetramethylpiperazin-1-yl)carbonyl]phenyl}-8,9,10,11-tetrahydro-5H-pyrido[4′,3′:4,5]thieno[3,2-c]pyrimido[4,5-e]azepin-2-amine
  • I-454: 9-bromo-7-(2-fluorophenyl)-N-(4-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)-5,8-dihydropyrimido[5,4-c]pyrrolo[3,2-e]azepin-2-amine
  • I-455: 7-(2-fluorophenyl)-N-(3-methyl-1H-indazol-6-yl)-5,12-dihydropyrimido[4′,5′:5,6]azepino[4,3-b]indol-2-amine
  • I-456: 1-(4-{[7-(2,6-difluorophenyl)-9,10-dimethyl-5,8-dihydropyrimido[5,4-c]pyrrolo[3,2-e]azepin-2-yl]amino}benzoyl)-3-(methylamino)pyrrolidine-3-carboxamide
  • I-457: {3-[9-Chloro-7-(2-fluoro-6-methoxy-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-phenyl}-(4-methyl-piperazin-1-yl)-methanone
  • I-458: [9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(2-methylaminomethyl-benzothiazol-6-yl)-amine
  • I-459: 4-[9-Chloro-7-(2-isopropoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-460: 4-[9-Chloro-7-(2-fluoro-6-isopropoxy-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-461: 4-[9-Chloro-7-(2-ethoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-462: 4-[9-Chloro-7-(2-ethoxy-6-fluoro-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-463: 4-[9-Chloro-7-(2-fluoro-6-methyl-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-464: 4-[9-Chloro-7-(2-trifluoromethoxy-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-465: 4-[9-Chloro-7-(2-fluoro-6-trifluoromethoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-466: 4-[9-Chloro-7-(3-fluoro-2-trifluoromethoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-467: 4-[9-Chloro-7-(2,3-dimethoxy-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-468: 4-[9-Chloro-7-(2-isobutyl-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-469: 4-(7-Benzofuran-2-yl-9-chloro-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino)-benzoic acid
  • I-470: 4-[9-Chloro-7-(1-methyl-1H-pyrrol-2-yl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-471: 4-[9-Chloro-7-(1-methyl-1H-imidazol-2-yl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-472: 4-(9-Chloro-7-thiophen-2-yl-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino)-benzoic acid
  • I-473: 4-[9-Chloro-7-(2H-pyrazol-3-yl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-474: 4-[9-Chloro-7-(2-ethynyl-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-475: 4-[7-(2-Aminomethyl-phenyl)-9-chloro-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-476: 4-[9-Chloro-7-(5-fluoro-2-methoxy-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-477: 4-[9-Chloro-7-(3-methoxy-pyridin-2-yl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-478: 4-[8-Fluoro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-479: 4-[8-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-480: 4-[11-Fluoro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-481: 4-[11-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-482: 6-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-pyridazine-3-carboxylic acid
  • I-483: 2-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-1H-imidazole-4-carboxylic acid
  • I-484: 4-[9-Chloro-7-(2-fluoro-phenyl)-4-methyl-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-485: 4-[4-Aminomethyl-9-chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido-[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-486: 4-(9-Aminomethyl-7-phenyl-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino)-benzoic acid
  • I-487: 9-Chloro-7-(2-fluorophenyl)-N-{4-[(2-methylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-488: 4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[{3-[(dimethylamino)methyl]azetidin-1-yl}(imino)methyl]benzamide
  • I-489: 4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[imino(piperazin-1-yl)methyl]benzamide
  • I-490: 4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[imino(3-methylpiperazin-1-yl)methyl]benzamide
  • I-491: 4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[[3-(dimethylamino)pyrrolidin-1-yl](imino)methyl]benzamide
  • I-492: 4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[imino(4-methylpiperazin-1-yl)methyl]benzamide
  • I-493: 4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[(3,5-dimethylpiperazin-1-yl)(imino)methyl]benzamide
  • I-494: 1-[[(4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)amino](imino)methyl]pyrrolidine-3-carboxamide
  • I-495: 1-[[(4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)amino](imino)methyl]piperidine-3-carboxamide
  • I-496: 4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[{4-[(cyclopropylcarbonyl)amino]piperidin-1-yl}(imino)methyl]benzamide
  • I-497: 4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[(dimethylamino)(imino)methyl]benzamide
  • I-498: N-[[(4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)amino](imino)methyl]cyclopropanecarboxamide
  • I-499: N-[[(4-{[9-Chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)amino](imino)methyl]-3-(dimethylamino)cyclopentanecarboxamide
  • I-500: 4-({9-Chloro-7-[2-fluoro-6-(trifluoromethyl)phenyl]-5H-pyrimido-[5,4-d][2]benzazepin-2-yl}amino)benzoic acid
  • I-501: 4-{[9-Chloro-7-(2,6-dichlorophenyl)-5H>-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-502: 4-{[9-Chloro-7-(2-fluoro-6-methylphenyl)-5H-pyrimido-[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-503: 4-{[7-(2-Bromo-6-chlorophenyl)-9-chloro-5H-pyrimido-[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-504: 9-Chloro-7-(2,6-difluorophenyl)-N-{4-[(3,5-dimethylpiperazin-1-yl)carbonyl]-3-fluorophenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-505: 4-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[(3,5-dimethylpiperazin-1-yl)(imino)methyl]-N-methylbenzamide
  • I-506: 4-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[[3-(dimethylamino)azetidin-1-yl](imino)methyl]-N-methylbenzamide
  • I-507: 3-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[(3,5-dimethylpiperazin-1-yl)(imino)methyl]benzamide
  • I-508: 3-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[[3-(dimethylamino)pyrrolidin-1-yl](imino)methyl]benzamide
  • I-509: 9-Chloro-7-(2,6-difluorophenyl)-N-{3-[(3,5-dimethylpiperazin-1-yl)carbonyl]-4-fluorophenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-510: N-[[(4-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido-[5,4-d][2]benzazepin-2-yl]amino}phenyl)amino](imino)methyl]-3-(dimethylamino)cyclopentanecarboxamide
  • I-511: N-[[(4-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido-[5,4-d][2]benzazepin-2-yl]amino}-2-fluorophenyl)amino](imino)methyl]-3-(dimethylamino)cyclopentanecarboxamide
  • I-512: N-[[(5-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido-[5,4-d][2]benzazepin-2-yl]amino}-2-fluorophenyl)amino](imino)methyl]-3-(dimethylamino)cyclopentanecarboxamide
  • I-513: N-(4-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)-3,5-dimethylpiperazine-1-carboximidamide
  • I-514: 4-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[[3-(dimethylamino)pyrrolidin-1-yl](imino)methyl]-N-methylbenzamide
  • I-515: N-(3-{[9-Chloro-7-(2,6-difluorophenyl)-5<i>H</i>-pyrimido-[5,4-d][2]benzazepin-2-yl]amino}phenyl)-3,5-dimethylpiperazine-1-carboximidamide
  • I-516: N-(3-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)-N,3,5-trimethylpiperazine-1-carboximidamide
  • I-517: 3-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-[[3-(dimethylamino)azetidin-1-yl](imino)methyl]benzamide
  • I-518: N-(5-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-fluorophenyl)-N,3,5-trimethylpiperazine-1-carboximidamide
  • I-519: N-[[(3-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido-[5,4-d][2]benzazepin-2-yl]amino}phenyl)amino](imino)methyl]-3-(dimethylamino)cyclopentanecarboxamide
  • I-520: 9-Chloro-7-(2,6-difluorophenyl)-N-{3-[(3,5-dimethylpiperazin-1-yl)(imino)methyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-521: N-(4-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}phenyl)-N,3,5-trimethylpiperazine-1-carboximidamide
  • I-522: N-(4-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-fluorophenyl)-3,5-dimethylpiperazine-1-carboximidamide
  • I-523: 9-Chloro-7-(2,6-difluorophenyl)-N-{4-[(3,5-dimethylpiperazin-1-yl)(imino)methyl]-3-fluorophenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-524: 5-{[9-Chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-(2,6-dimethylpiperidin-4-yl)-1H-isoindole-1,3(2H)-dione
  • I-525: N-[2-(Aminomethyl)-1H-benzimidazol-6-yl]-9-chloro-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-526: 9-Chloro-7-(2-fluorophenyl)-N-{2-[(methylamino)methyl]-1H-benzimidazol-6-yl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-527: 9-Chloro-N-{2-[(dimethylamino)methyl]-1H-benzimidazol-6-yl}-7-(2-fluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-528: 9-Chloro-7-(2-fluorophenyl)-N-{2-[(methylamino)methyl]-1,3-benzothiazol-6-yl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-529: 9-Chloro-7-(2,6-difluorophenyl)-N-{2-[(methylamino)methyl]-1H-benzimidazol-6-yl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-530: 9-Chloro-7-(2,6-difluorophenyl)-N-{2-[(methylamino)methyl]-1,3-benzoxazol-6-yl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-531: 9-Chloro-7-(2-fluorophenyl)-N-{2-[(methylamino)methyl]-1,3-benzoxazol-6-yl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-532: 9-Chloro-7-(2,6-difluorophenyl)-N-{3-[(3,5-dimethylpiperazin-1-yl)(imino)methyl]-4-fluorophenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-533: 9-Chloro-7-(2,6-difluorophenyl)-N-{2-[(methylamino)methyl]-1,3-benzothiazol-6-yl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-534: {3-[9-Chloro-7-(2,6-difluorophenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-methyl-piperazin-1-yl)-methanone
  • I-535: 3-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-methyl-N-(4-methyl-pentyl)-benzamide


In one embodiment, the invention relates to a compound selected from the group consisting of:

  • I-52: 4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-135: 4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-174: 4-{[9-Chloro-7-(2-chloro-6-fluorophenyl)-5H-pyrimido-[5,4-d][2]benzazepin-2-yl]amino}benzoic acid
  • I-175: 9-Chloro-7-(2,6-difluorophenyl)-N-{4-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-177: 9-Chloro-N-{4-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-179: 9-Chloro-N-(4-{[3-(dimethylamino)azetidin-1-yl]carbonyl}phenyl)-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-183: {4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-dimethylamino-piperidin-1-yl)-methanone
  • I-190: 4-[9-Chloro-7-(2-fluoro-6-methoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid
  • I-191: {4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3(S)-methyl-piperazin-1-yl)-methanone
  • I-196: (3-Amino-pyrrolidin-1-yl)-{4-[9-chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-methanone
  • I-197: {4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3-methylamino-pyrrolidin-1-yl)-methanone
  • I-199: {4-[9-Chloro-7-(2-fluoro-6-methoxy-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(3-methylamino-pyrrolidin-1-yl)-methanone
  • I-220: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-232: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-{4-[(3-methylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-234: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[3-(methylamino)azetidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-235: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-(4-{[3-(methylamino)azetidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-240: N-{4-[(3-aminopyrrolidin-1-yl)carbonyl]phenyl}-9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-241: N-{4-[(4-aminopiperidin-1-yl)carbonyl]phenyl}-9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-242: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-(4-{[4-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-263: 9-chloro-7-(2-fluoro-6-methoxyphenyl)-N-(4-{[3-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-286: N-{4-[(3-aminoazetidin-1-yl)carbonyl]phenyl}-9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-293: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[3-(dimethylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-310: 4-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)-N-methylpiperazine-2-carboxamide
  • I-318: N-{4-[(3-aminopyrrolidin-1-yl)carbonyl]-3-chlorophenyl}-9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-326: 9-chloro-7-(2-chloro-6-fluorophenyl)-N-(4-{[3-(methylamino)piperidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-341: 4-amino-1-(4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)-N-methylpiperidine-4-carboxamide
  • I-383: N-1-azabicyclo[2.2.2]oct-3-yl-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-N-methylbenzamide
  • I-380: 9-chloro-7-(2,6-difluorophenyl)-N-(4-{[3-methyl-3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-amine
  • I-396: 4-amino-1-(2-chloro-4-{[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}benzoyl)-N-methylpiperidine-4-carboxamide


The compounds of the present invention can be prepared by methods known to one of ordinary skill in the art and/or by reference to the synthetic routes set forth in Schemes 1, 2, and 3 below. One of ordinary skill in the art will recognize that variations in reaction conditions, including variations in solvent, reagents, catalysts, and reaction temperature, may be possible for each of the reactions described below. Alternate synthetic routes also are possible.


Scheme 1 depicts a general synthetic route for preparation of compounds of formula (I) wherein each of rings A and B is an optionally substituted phenyl ring. One of ordinary skill in the art will appreciate that certain compounds of formula (I) wherein one or both of rings A and B is other than phenyl can be prepared by a route analogous to that outlined in Scheme 1, by appropriate selection of the ketone starting material in Method G.


Methods for the synthesis of dimethylaminomethylene-benzo[c]azepin-5-ones of the formula v (see Scheme 1) have been described in U.S. Pat. Nos. 3,947,585, 4,022,801 and 4,028,381. Methods for the conversion of compounds of formula v to pyrimido[5,4-d][2]benzazepines lacking a Ring C substituent also are known and have been described, e.g., in U.S. Pat. Nos. 4,318,854 and 4,547,581. Compounds of the present invention (formula Ha), which include Ring C, can be prepared by the reaction of compounds of formula v with aryl or heteroaryl guanidines, as illustrated in Scheme 1.




embedded image


Methods for the synthesis of amino-substituted diaryl ketones of formula (i) are known, and exemplary synthetic procedures are described in the Examples. Conversion of (i) to the iodo-substituted diaryl ketone of formula (ii) can be accomplished by diazotization of the amine and iodide displacement, as exemplified in Method G. Compound (iii) can be prepared from (ii) by cross-coupling of the aryl iodide with a protected propargyl amine, according to Method I. In Scheme 1, an iodo-substituted diaryl ketone is coupled with N-Boc-propargylamine, but those of ordinary skill in the art will recognize that other halogen-substituted diaryl ketones and other protected propargylamines may be used. Additionally, a variety of catalysts, bases, solvents and temperatures may be employed for the cross-coupling reaction. For compounds wherein Ring B is other than phenyl, the preparation of (iii) may alternatively be accomplished by Method J, in which the Weinreb amide of a 2-iodobenzoic acid is coupled with N-Boc-propargylamine, followed by a lithiated Ring B.


Stepwise conversion of (iii) to (iv) can be effected by sequential treatment with mercury (II) sulfate, HCl/dioxane, and N,N-diisopropylethylamine, according to Method K. Alternatively, (iii) can be converted to (iv) by sequential treatment with aqueous HCl/dioxane and sodium carbonate, according to Method L. Those of ordinary skill in the art will recognize that aryl alkynes can be hydrated with a variety of other strong acids, such as trifluoroacetic acid and sulfuric acid. Additionally, a variety of basic conditions can promote the azepine imine bond formation.


Treatment of (iv) with N,N-dimethylformamide dimethyl acetal in various solvents and at various temperatures affords (v). Example 11 illustrates the conversion of (iv) to (v) in toluene at 80° C. The conversion of (v) to the pyrimido compound (IIa) is accomplished by treatment with an aryl or heteroaryl guanidine. The reaction may be performed by submitting a reaction mixture containing (v), an aryl or heteroaryl guanidine, and N,N-diisopropylethylamine in DMF to microwave irradiation, according to Method Q. Alternatively, the latter reaction may be performed in the presence of potassium carbonate in refluxing ethanol, according to Method R.


In some embodiments, preparation of (IIa) may alternatively be accomplished by Method S, in which (v) is first treated with guanidine hydrochloride to form a 5H-benzo[c]pyrimido[4,5-e]azepin-2-yl amine. Conversion of the amine to the corresponding iodide, followed by cross-coupling with a heteroaryl amine then affords compound (IIa), in which Ring C is heteroaryl.




embedded image


Scheme 2 depicts a general synthetic route for preparation of compounds of formula (A-1) wherein Ring A is an optionally substituted 5- or 6-membered aryl, heteroaryl, or heterocyclyl ring, Ring B is an optionally substituted aryl, heterocyclyl, cycloaliphatic, or heteroaryl ring, and Ring C is a substituted or unsubstituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.


Methods for the synthesis of heterocyclic-substituted β-ketonitriles of formula (vi) are known and described in the literature e.g., Katritzky et id, JOC (2003), 68(12), 4932-4934 and Bergman et al, Synthesis (2004), 16, 2760-2765. Treatment of compounds (vi) with N,N-dimethylformamide dimethyl acetal in various solvents and at various temperatures affords intermediate enaminone (vii). Methods for the synthesis of intermediate enaminones of formula (vii) have been further described in PCT Int. Appl. WO 00/78731.


The preparation of cyanopyrimidine (viii) may be accomplished by treatment of enaminone (vii) with a mono-substituted guanidine, as shown in Step 2. The reaction may be performed by refluxing a reaction mixture containing (vii) and a guanidine in ethanol in the presence of potassium carbonate. Methods for the synthesis of intermediate pyrimidines of formula (viii) have been further described in PCT Int. Appl. WO 00/78731.


As shown in Step 3, compound (viii) may be reduced to amine (ix) by hydrogenation in the presence of a metal catalyst, for example Raney nickel, as described by Price et al, J. Am. Chem. Soc. 68:766-9 (1946). Alternatively, the reduction may be carried out with a reducing agent such as LiAlH4 as described by Thurkauf et al, Bioorg. & Med. Chem. Letters 13(17):2921-2924, (2003).


Conversion of amine (ix) to amide (x) can be accomplished by reaction of (ix) with an acid chloride in the presence of a base, or alternatively, with a carboxylic acid in the presence of a coupling reagent. Amide (x) may then be converted to the desired compound of formula (A-1) by heating with a cyclodehydration reagent such as polyphosphoric acid, phosphorus pentoxide/methanesulfonic acid, phosphorus oxychloride, or phosphorus oxychloride/tin(IV) chloride.




embedded image


Scheme 3 depicts another general synthetic route for preparation of compounds of formula (A-1) wherein Ring A is an optionally substituted 5- or 6-membered aryl, heteroaryl, or heterocyclyl ring, Ring B is an optionally substituted aryl, heterocyclyl, cycloaliphatic, or heteroaryl ring, and Ring C is a substituted or unsubstituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.


Methods for the synthesis of heterocyclic-substituted carboxylic acids of formula (xii) are well-known and are widely described in the literature. Condensation of compound (xii) with a β-alanine ester affords amide (xiii). Methods for the synthesis of intermediate amides of formula (xiii) have been further described in the literature, e.g., Portevin et al, Tetrahedron Letters, 44(52):9263-9265 (2003) and El-Naggar et al, J. Indian Chem. Soc., 59(6):783-6 (1982).


The preparation of acid (xiv) may be accomplished by treatment of ester (xiii) with a dilute aqueous solution of an alkali-metal hydroxide, e.g., sodium or lithium hydroxide. Examples of this transformation have been described by Portevin et al, Tetrahedron Letters, 44(52):9263-9265 (2003)


Compound (xiv) may be cyclized to azepinedione (xv) by treatment with a cyclodehydration reagent, for example polyphosphoric acid (PPA), as described by Annoura et al, Tetrahedron Letters 36(3):413-16 (1995).


The preparation of enaminones (xvi) may be accomplished by treatment of compounds (xv) with N,N-dimethylformamide dimethyl acetal. The reaction may be performed in various solvents and at various temperatures.


The preparation of pyrimidinoazepinone (xvii) may be accomplished by treatment of enaminone (xvi) with a mono-substituted guanidine. The reaction may be performed by refluxing a reaction mixture containing (xvi) and a guanidine in an alcoholic solvent in the presence of potassium carbonate.


Conversion of pyrimidinoazepinone (xvii) to imidoyl chloride (xviii) may be accomplished by reaction of (xvii) with a chlorinating reagent, typically POCl3 or SOCl2. Compound (xviii) may then be cross-coupled with an organoboronic acid using palladium catalysis to yield azepine (xi), following the method of Nadin et al, J. Org. Chem., 68(7), 2844-2852 (2003).


The compounds of this invention are inhibitors of Aurora kinase. The compounds can be assayed in vitro or in vivo for their ability to bind to and/or inhibit an Aurora kinase. In vitro assays include assays to determine inhibition of the ability of an Aurora kinase to phosphorylate a substrate protein or peptide. Alternate in vitro assays quantitate the ability of the compound to bind to an Aurora kinase. Inhibitor binding may be measured by radiolabelling the inhibitor prior to binding, isolating the inhibitor/Aurora kinase complex and determining the amount of radiolabel bound. Alternatively, inhibitor binding may be determined by running a competition experiment in which new inhibitors are incubated with Aurora kinase bound to a known radioligand. The compounds also can be assayed for their ability to affect cellular or physiological functions mediated by Aurora kinase activity. Assays for each of these activities are described in the Examples and/or are known in the art.


In another aspect, therefore, the invention provides a method for inhibiting Aurora kinase activity in a cell, comprising contacting a cell in which inhibition of Aurora kinase is desired with an Aurora kinase inhibitor of formula (I). In some embodiments, the Aurora kinase inhibitor interacts with and reduces the activity of all enzymes of the Aurora kinase family in the cell. In some other embodiments, the Aurora kinase inhibitor interacts with and reduces the activity of fewer than all Aurora kinase enzymes in the cell. In certain preferred embodiments, the Aurora kinase inhibitor selectively inhibits one Aurora kinase enzyme in the cell.


Preferably, the method according to this aspect of the invention causes an inhibition of cell proliferation of the contacted cells. The phrase “inhibiting cell proliferation” is used to denote an ability of an inhibitor of Aurora kinase to inhibit cell number or cell growth in contacted cells as compared to cells not contacted with the inhibitor. An assessment of cell proliferation can be made by counting cells using a cell counter or by an assay of cell viability, e.g., an MTT, XTT, or WST assay. Where the cells are in a solid growth (e.g., a solid tumor or organ), such an assessment of cell proliferation can be made by measuring the growth, e.g., with calipers, and comparing the size of the growth of contacted cells with non-contacted cells.


Preferably, the growth of cells contacted with the inhibitor is retarded by at least about 50% as compared to growth of non-contacted cells. In various embodiments, cell proliferation of contacted cells is inhibited by at least about 75%, at least about 90%, or at least about 95% as compared to non-contacted cells. In some embodiments, the phrase “inhibiting cell proliferation” includes a reduction in the number of contacted cells, as compare to non-contacted cells. Thus, an inhibitor of Aurora kinase that inhibits cell proliferation in a contacted cell may induce the contacted cell to undergo growth retardation, to undergo growth arrest, to undergo programmed cell death (i.e., apoptosis), or to undergo necrotic cell death.


In another aspect, the invention provides a pharmaceutical composition comprising a compound of formula (I) as defined above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.


If pharmaceutically acceptable salts of the compounds of the invention are utilized in these compositions, the salts preferably are derived from inorganic or organic acids and bases. For reviews of suitable salts, see, e.g., Berge et al, J. Pharm. Sci. 66:1-19 (1977) and Remington: The Science and Practice of Pharmacy, 20th Ed., ed. A. Gennaro, Lippincott Williams & Wilkins, 2000.


Nonlimiting examples of suitable acid addition salts include the following: acetate, adipate, alginate, aspartate, benzoate, benzene sulfonate, bisulfate, butyrate, citrate, camphorate, camphor sulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, lucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, 3-phenyl-propionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate and undecanoate.


Suitable base addition salts include, without limitation, ammonium salts, alkali metal salts, such as sodium and potassium salts, alkaline earth metal salts, such as calcium and magnesium salts, salts with organic bases, such as dicyclohexylamine, N-methyl-D-glucamine, f-butylamine, ethylene diamine, ethanolamine, and choline, and salts with amino acids such as arginine, lysine, and so forth. For example, compounds of formula (V), wherein Ring C is substituted with —CO2H may be formulated as the corresponding sodium salts.


Also, basic nitrogen-containing groups may be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates, such as dimethyl, diethyl, dibutyl and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides, such as benzyl and phenethyl bromides and others. Water or oil-soluble or dispersible products are thereby obtained.


The term “pharmaceutically acceptable carrier” is used herein to refer to a material that is compatible with a recipient subject, preferably a mammal, more preferably a human, and is suitable for delivering an active agent to the target site without terminating the activity of the agent. The toxicity or adverse effects, if any, associated with the carrier preferably are commensurate with a reasonable risk/benefit ratio for the intended use of the active agent.


The pharmaceutical compositions of the invention can be manufactured by methods well known in the art such as conventional granulating, mixing, dissolving, encapsulating, lyophilizing, or emulsifying processes, among others. Compositions may be produced in various forms, including granules, precipitates, or particulates, powders, including freeze dried, rotary dried or spray dried powders, amorphous powders, tablets, capsules, syrup, suppositories, injections, emulsions, elixirs, suspensions or solutions. Formulations may optionally contain stabilizers, pH modifiers, surfactants, bioavailability modifiers and combinations of these.


Pharmaceutical formulations may be prepared as liquid suspensions or solutions using a liquid, such as, but not limited to, an oil, water, an alcohol, and combinations of these. Pharmaceutically suitable surfactants, suspending agents, or emulsifying agents, may be added for oral or parenteral administration. Suspensions may include oils, such as but not limited to, peanut oil, sesame oil, cottonseed oil, corn oil and olive oil. Suspension preparation may also contain esters of fatty acids such as ethyl oleate, isopropyl myristate, fatty acid glycerides and acetylated fatty acid glycerides. Suspension formulations may include alcohols, such as, but not limited to, ethanol, isopropyl alcohol, hexadecyl alcohol, glycerol and propylene glycol. Ethers, such as but not limited to, poly (ethyleneglycol), petroleum hydrocarbons such as mineral oil and petrolatum; and water may also be used in suspension formulations.


Pharmaceutically acceptable carriers that may be used in these compositions include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.


According to a preferred embodiment, the compositions of this invention are formulated for pharmaceutical administration to a mammal, preferably a human being. Such pharmaceutical compositions of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term “parenteral” as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intravenously, or subcutaneously. The formulations of the invention may be designed to be short-acting, fast-releasing, or long-acting. Still further, compounds can be administered in a local rather than systemic means, such as administration (e.g., by injection) at a tumor site.


Sterile injectable forms of the compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation. Compounds may be formulated for parenteral administration by injection such as by bolus injection or continuous infusion. A unit dosage form for injection may be in ampoules or in multi-dose containers.


The pharmaceutical compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers that are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.


Alternatively, the pharmaceutical compositions of this invention may be administered in the form of suppositories for rectal administration. These may be prepared by mixing the agent with a suitable non-irritating excipient which is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols.


The pharmaceutical compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.


Topical application for the lower intestinal tract may be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches may also be used. For topical applications, the pharmaceutical compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical compositions may be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.


For ophthalmic use, the pharmaceutical compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with our without a preservative such as benzylalkonium chloride. Alternatively, for ophthalmic uses, the pharmaceutical compositions may be formulated in an ointment such as petrolatum.


The pharmaceutical compositions of this invention may also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.


The pharmaceutical compositions of this invention are particularly useful in therapeutic applications relating to an Aurora kinase-mediated disorder. As used herein, the term “Aurora kinase-mediated disorder” includes any disorder, disease or condition which is caused or characterized by an increase in Aurora kinase expression or activity, or which requires Aurora kinase activity. The term “Aurora kinase-mediated disorder” also includes any disorder, disease or condition in which inhibition of Aurora kinase activity is beneficial. Aurora kinase-mediated disorders include proliferative disorders. Non-limiting examples of proliferative disorders include chronic inflammatory proliferative disorders, e.g., psoriasis and rheumatoid arthritis; proliferative ocular disorders, e.g., diabetic retinopathy; benign proliferative disorders, e.g., hemangiomas; and cancer.


Preferably, the composition is formulated for administration to a patient having or at risk of developing or experiencing a recurrence of an Aurora kinase-mediated disorder. The term “patient”, as used herein, means an animal, preferably a mammal, more preferably a human. Preferred pharmaceutical compositions of the invention are those formulated for oral, intravenous, or subcutaneous administration. However, any of the above dosage forms containing a therapeutically effective amount of a compound of the invention are well within the bounds of routine experimentation and therefore, well within the scope of the instant invention. In some embodiments, the pharmaceutical composition of the invention may further comprise another therapeutic agent. Preferably, such other therapeutic agent is one normally administered to patients with the disease or condition being treated.


By “therapeutically effective amount” is meant an amount sufficient to cause a detectable decrease in Aurora kinase activity or the severity of an Aurora kinase-mediated disorder. The amount of Aurora kinase inhibitor needed will depend on the effectiveness of the inhibitor for the given cell type and the length of time required to treat the disorder. It should also be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, and diet of the patient, time of administration, rate of excretion, drug combinations, the judgment of the treating physician, and the severity of the particular disease being treated. The amount of additional therapeutic agent present in a composition of this invention typically will be no more than the amount that would normally be administered in a composition comprising that therapeutic agent as the only active agent. Preferably, the amount of additional therapeutic agent will range from about 50% to about 100% of the amount normally present in a composition comprising that agent as the only therapeutically active agent.


In another aspect, the invention provides a method for treating a patient having or at risk of developing or experiencing a recurrence of an Aurora kinase-mediated disorder. The method comprises the step of administering to the patient a compound or pharmaceutical composition according to the invention. The compounds and pharmaceutical compositions of the invention can be used to achieve a beneficial therapeutic or prophylactic effect, for example, in a patient with a proliferative disorder, as discussed above. The compounds and pharmaceutical compositions of the invention are particularly useful for the treatment of cancer.


As used herein, the term “cancer” refers to a cellular disorder characterized by uncontrolled or disregulated cell proliferation, decreased cellular differentiation, inappropriate ability to invade surrounding tissue, and/or ability to establish new growth at ectopic sites. The term “cancer” includes, but is not limited to, solid tumors and bloodborne tumors. The term “cancer” encompasses diseases of skin, tissues, organs, bone, cartilage, blood, and vessels. The term “cancer” further encompasses primary and metastatic cancers.


Non-limiting examples of solid tumors that can be treated by the methods of the invention include pancreatic cancer; bladder cancer; colorectal cancer; breast cancer, including metastatic breast cancer; prostate cancer, including androgen-dependent and androgen-independent prostate cancer; renal cancer, including, e.g., metastatic renal cell carcinoma; hepatocellular cancer; lung cancer, including, e.g., non-small cell lung cancer (NSCLC), bronchioloalveolar carcinoma (BAC), and adenocarcinoma of the lung; ovarian cancer, including, e.g., progressive epithelial or primary peritoneal cancer; cervical cancer; gastric cancer; esophageal cancer; head and neck cancer, including, e.g., squamous cell carcinoma of the head and neck; melanoma; neuroendocrine cancer, including metastatic neuroendocrine tumors; brain tumors, including, e.g., glioma, anaplastic oligodendroglioma, adult glioblastoma multiforme, and adult anaplastic astrocytoma; bone cancer; and soft tissue sarcoma.


In some other embodiments, the cancer is a hematologic malignancy. Non-limiting examples of hematologic malignancy include acute myeloid leukemia (AML); chronic myelogenous leukemia (CML), including accelerated CML and CML blast phase (CML-BP); acute lymphoblastic leukemia (ALL); chronic lymphocytic leukemia (CLL); Hodgkin's disease (HD); non-Hodgkin's lymphoma (NHL), including follicular lymphoma and mantle cell lymphoma; B-cell lymphoma; T-cell lymphoma; multiple myeloma (MM); Waldenstrom's macroglobulinemia; myelodysplastic syndromes (MDS), including refractory anemia (RA), refractory anemia with ringed siderblasts (RARS), (refractory anemia with excess blasts (RAEB), and RAEB in transformation (RAEB-T); and myeloproliferative syndromes.


In some embodiments, the compound or composition of the invention is used to treat a cancer in which the activity of an Aurora kinase is amplified. In some embodiments, the compound or composition of the invention is used to treat a patient having or at risk of developing or experiencing a recurrence in a cancer selected from the group consisting of colorectal cancer, ovarian cancer, breast cancer, gastric cancer, prostate cancer, and pancreatic cancer. In certain embodiments, the cancer is selected from the group consisting of breast cancer, colorectal cancer, and pancreatic cancer.


In some embodiments, the Aurora kinase inhibitor of the invention is administered in conjunction with another therapeutic agent. The other therapeutic agent may also inhibit Aurora kinase or may operate by a different mechanism. In some embodiments, the other therapeutic agent is one that is normally administered to patients with the disease or condition being treated. The Aurora kinase inhibitor of the invention may be administered with the other therapeutic agent in a single dosage form or as a separate dosage form. When administered as a separate dosage form, the other therapeutic agent may be administered prior to, at the same time as, or following administration of the Aurora kinase inhibitor of the invention.


In some embodiments, the Aurora kinase inhibitor of the invention is administered in conjunction with a therapeutic agent selected from the group consisting of cytotoxic agents, radiotherapy, and immunotherapy. Non-limiting examples of cytotoxic agents suitable for use in combination with the Aurora kinase inhibitors of the invention include: antimetabolites, including, e.g., capecitibine, gemcitabine, 5-fluorouracil or 5-fluorouracil/leucovorin, fludarabine, cytarabine, mercaptopurine, thioguanine, pentostatin, and methotrexate; topoisomerase inhibitors, including, e.g., etoposide, teniposide, camptothecin, topotecan, irinotecan, doxorubicin, and daunorubicin; vinca alkaloids, including, e.g., vincristine and vinblastin; taxanes, including, e.g., paclitaxel and docetaxel; platinum agents, including, e.g., cisplatin, carboplatin, and oxaliplatin; antibiotics, including, e.g., actinomycin D, bleomycin, mitomycin C, adriamycin, daunorubicin, idarubicin, doxorubicin and pegylated liposomal doxorubicin; alkylating agents such as melphalan, chlorambucil, busulfan, thiotepa, ifosfamide, carmustine, lomustine, semustine, streptozocin, decarbazine, and cyclophosphamide; thalidomide and related analogs, including, e.g., CC-5013 and CC-4047; protein tyrosine kinase inhibitors, including, e.g., imatinib mesylate and gefitinib; antibodies, including, e.g., trastuzumab, rituximab, cetuximab, and bevacizumab; mitoxantrone; dexamethasone; prednisone; and temozolomide.


In order that this invention be more fully understood, the following preparative and testing examples are set forth. These examples illustrate how to make or test specific compounds, and are not to be construed as limiting the scope of the invention in any way.


EXAMPLES
Definitions



  • AcOH acetic acid

  • ATP adenosine triphosphate

  • BSA bovine serum albumin

  • Boc tert-butoxycarbonyl

  • DMF N,N-dimethylformamide

  • DTT dithiothreitol

  • EDTA ethylenediaminetetraacetic acid

  • EtOAc ethyl acetate

  • Et2O diethyl ether

  • MeOH methanol

  • MTT methylthiazoletetrazolium

  • XTT 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt

  • WST (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate sodium salt

  • PKA cAMP-dependent protein kinase

  • PPA polyphosphoric acid

  • TBTU O-Benzolriazol-1-yl-N,N,N′,N′-tetramethyluronium

  • tetrafluoroborate

  • THF tetrahydrofuran

  • h hours

  • min minutes

  • m/z mass to charge

  • MS mass spectrum

  • HRMS high resolution mass spectrum



Example 1: Method A for the Synthesis of Compounds of Formula (i) (See Scheme 1)



embedded image


(2-Amino-4-methoxy-phenyl)-(2-fluoro-phenyl)-methanone (1h)

3-Anisidine (1.0 g, 8.0 mmol) was added dropwise to a stirred solution of BCl3 (1M in CH2Cl2, 8.8 mL, 8.8 mmol) in anhydrous CH2Cl2 (20 mL) at 0° C. AlCl3 (1.15 g, 8.8 mmol) was added in one portion followed by 2-fluorobenzonitrile (1.6 mL, 16.0 mmol). The mixture was refluxed for 16 h and then cooled to 0° C. HCl (2N, 30 mL) was added and the mixture was heated to 80° C. and stirred vigorously for 30 min. Upon cooling to room temperature, the mixture was extracted with CH2Cl2 (3×50 mL). The combined organic portions were washed with brine, dried over MgSO4, filtered and evaporated in vacuo. The resulting brown oil was purified by column chromatography (silica gel, Hexanes:EtOAc, 4:1) to provide 1h (1.1 g, 56%), MS m/z=246 (M+H).


(2-Amino-3-methyl-phenyl)-(2-fluoro-phenyl)-methanone (1b)

In a manner similar to that described above for compound 1h, o-tolylamine and 2-fluorobenzonitrile were converted to 1b (20% yield) MS m/z=230 (M+H).


(2-Amino-4-fluoro-phenyl)-(2-fluoro-phenyl)-methanone (1c)

In a manner similar to that described above for compound 1h, 3-fluoro-phenylamine and 2-fluorobenzonitrile were converted to 1c (25% yield) MS m/z=234 (M+H).


(2-Amino-4-bromo-phenyl)-(2-fluoro-phenyl)-methanone (1e)

In a manner similar to that described above for compound 1h, 3-bromo-phenylamine and 2-fluorobenzonitrile were converted to 1e (15% yield) MS m/z=294/296 (M+H).


(2-Amino-4-methyl-phenyl)-(2-fluoro-phenyl)-methanone (1g)

In a manner similar to that described above for compound 1h, m-tolylamine and 2-fluorobenzonitrile were converted to 1g (44% yield) MS m/z=230 (M+H).


(2-Amino-4,5-dichloro-phenyl)-(2-fluoro-phenyl)-methanone (1ad)

In a manner similar to that described above for compound 1h, 3,4-dichloroaniline and 2-fluorobenzonitrile were converted to 1ad (17% yield) MS m/z=284 (M+H).


(2-Amino-5-isopropyl-phenyl)-(2-fluoro-phenyl)-methanone (1ag)

In a manner similar to that described above for compound 1h, 4-isopropylaniline and 2-fluorobenzonitrile were converted to 1ag (22% yield) MS m/z=258 (M+H).


Example 2: Method B for the Synthesis of Compounds of Formula (i)



embedded image


(2-Amino-5-methyl-phenyl)-(2-fluoro-phenyl)-methanone (1af)

2-Iodofluorobenzene (2.0 mL, 17 mmol) was dissolved in anhydrous THF (20 mL) under an argon atmosphere and cooled to −20° C. A solution of isopropyl magnesium chloride (8.5 mL, 17.0 mmol) was slowly added, and the solution was stirred for 20 min. 2-Nitro-5-methylbenzaldehyde (2.7 g, 16.5 mmol) in THF (20 mL) was then added, and the mixture was stirred for 20 min at −20° C. and then quenched with saturated aqueous NH4Cl. The mixture was partitioned between EtOAc (100 mL) and H2O (100 mL). The organic portion was collected, dried over MgSO4, filtered and evaporated in vacuo. This material was dissolved in anhydrous CH2Cl2 (80 mL). Silica gel (20.3 g) and pyridinium chlorochromate (5.4 g, 25 mmol) were then added and the suspension was stirred at room temperature for 3 h. The mixture was then filtered through silica gel. The filtrate was concentrated in vacuo and the resulting residue was purified by column chromatography (silica gel, hexanes:EtOAc, 3:2) to provide the 2-nitro-benzophenone (3.7 g, 14 mmol). The benzophenone was dissolved in glacial acetic acid (50 mL), MeOH (50 mL) and deionized H2O (10 mL). Iron powder (<10 micron, 1.0 g) was added with vigorous stirring and the suspension heated to 60° C. After 20 min, additional iron powder (2.0 g) was added and the mixture was stirred at 60° C. for 3 h. After cooling, silica gel (12.5 g) was added and the volatile components were removed in vacuo. The resulting powder was suspended in EtOAc (100 mL) and carefully treated with 1N NaOH until basic to litmus. The suspension was filtered and the organic portion was separated, washed with brine, dried over MgSO4, filtered and evaporated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexanes:EtOAc, 1:3) to provide 1af (3.1 g, 94%) MS m/z=230 (M+H).


(2-Amino-4-trifluoromethyl-phenyl)-(2-fluoro-phenyl)-methanone (1f)

In a manner similar to that described above for compound 1af, 2-nitro-4-trifluoromethyl-benzaldehyde was converted to 1f (46% yield) MS m/z=230 (M+H).


(2-Amino-5-fluoro-phenyl)-(2-fluoro-phenyl)-methanone (1j)

In a manner similar to that described above for compound 1af, 5-Fluoro-2-nitro-benzaldehyde was converted to 1j (60% yield) MS m/z=234 (M+H).


(2-Amino-5-methoxy-phenyl)-(2-fluoro-phenyl)-methanone (1ah)

In a manner similar to that described above for compound 1af, 5-methoxy-2-nitro-benzaldehyde was converted to 1ah (62% yield) MS m/z=246 (M+H).


Example 3: Method C for the Synthesis of Compounds of the Formula (i)



embedded image


(2-Amino-5-chloro-phenyl)-(2-methyl-phenyl)-methanone (1m)

Benzoyl chloride (5.3 mL, 45 mmol) was added dropwise to a suspension of Na2CO3 (3.8 g, 36 mmol) and 2-amino-5-chloro-benzoic acid (3.1 g, 18 mmol) in THF (60 mL). The mixture was allowed to stir for 16 h and then H2O (200 mL) was added. The resulting precipitate was collected by filtration, washed with MeOH/H2O (1/1,100 mL) and then dried in vacuo to provide 6-chloro-2-phenyl-benzo[d][1,3]oxazin-4-one (4.3 g, 92%). To a suspension of the benzoxazinone (5.0 g, 19 mmol) in CH2Cl2 (100 mL) at −78° C. was added o-tolylmagnesium chloride (2 M in THF, 48 mmol) dropwise. The mixture was allowed to warm to −30° C. and stir for 1 h. 1N HCl (100 mL) was then added. The organic phase was collected and the aqueous phase was washed with CH2Cl2 (2×50 mL). The combined organic portions were washed with 0.1 N NaOH (2×50 mL), dried over MgSO4, filtered and concentrated in vacuo to provide N-[4-chloro-2-(2-methyl-benzoyl)-phenyl]-benzamide (6.3 g, 93%). The acylated amino-benzophenone (3.5 g, 10 mmol) was dissolved in MeOH (50 mL) containing KOH (3 M, 30 mmol) and was refluxed for 16 h. The solution was then cooled to room temperature and diluted with H2O (50 mL) and EtOAc (100 mL). The organic phase was collected, washed with H2O (3×50 mL), dried over MgSO4, filtered and evaporated to dryness in vacuo to provide 1m (2.4 g, 98%) MS m/z=246 (M+H).


(2-Amino-5-chloro-phenyl)-(2-methoxy-phenyl)-methanone (In)

In a manner similar to that described above for compound 1m, 6-chloro-2-phenyl-benzo[d][1,3]oxazin-4-one was converted to 1n (84% yield) MS m/z=262 (M+H).


(2-Amino-5-chloro-phenyl)-(2-dimethylaminomethyl-phenyl)-methanone (1q)

To a solution of N-[4-chloro-2-(2-methyl-benzoyl)-phenyl]-benzamide (5.1 g, 14.6 mmol) and N-bromosuccinimide (2.85 g, 16 mmol) in CCl4 (150 mL) was added 2,2′-azobisisobutrylnitrile (0.2 g, 1.5 mmol). The solution was refluxed for 4 h. The solution was then cooled to room temperature, diluted with CH2Cl2 (150 mL) and washed with H2O (3×50 mL). The organic portion was dried over Na2SO4 and evaporated to dryness in vacuo to provide N-[2-(2-bromomethyl-benzoyl)-4-chloro-phenyl]-benzamide (4.6 g, 74%). A solution of the benzamide (2.3 g, 5.4 mmol) in CH2Cl2 (50 mL) was saturated with dimethylamine, stirred for 16 h and evaporated to dryness in vacuo. The resulting residue was dissolved in MeOH (50 mL) and KOH (0.9 g, 16 mmol) in H2O (5 mL) was added. The solution was refluxed for 24 h. The solution was concentrated in vacuo and then diluted with EtOAc (150 mL) and H2O (50 mL). The organic portion was washed with H2O (3×50 mL), dried over Na2SO4 and purified by column chromatography (silica gel, 18:80:2 MeOH:CH2C1-2:NHOH) to provide 1q (0.9 g, 53% yield) MS m/z=289 (M+H).


(2-Amino-5-chloro-phenyl)-(3-fluoro-phenyl)-methanone (1r)

In a manner similar to that described above for compound 1m, 6-chloro-2-phenyl-benzo[d][1,3]oxazin-4-one was converted to 1r (36% yield) MS m/z=250 (M+H).


(2-Amino-5-chloro-phenyl)-(3-methoxy-phenyl)-methanone (1s)

In a manner similar to that described above for compound 1m, 6-chloro-2-phenyl-benzo[d][1,3]oxazin-4-one was converted to 1s (64% yield) MS m/z=262 (M+H).


(2-Amino-5-chloro-phenyl)-(2,4-dimethoxy-phenyl)-methanone (1x)

In a manner similar to that described above for compound 1m, 6-chloro-2-phenyl-benzo[d][1,3]oxazin-4-one was converted to 1×(63% yield) MS m/z=292 (M+H).


(2-Amino-5-chloro-phenyl)-(2,5-dimethoxy-phenyl)-methanone (1z)

In a manner similar to that described above for compound 1m, 6-chloro-2-phenyl-benzo[d][1,3]oxazin-4-one was converted to 1z (62% yield) MS m/z=292 (M+H).


Example 4: Method D for the Synthesis of Compounds of the Formula (i)



embedded image


(2-Amino-5-chloro-phenyl)-(2-fluoro-6-methoxy-phenyl)-methanone (1ac)

To a solution of 1-fluoro-3-methoxy-benzene (19.6 g, 155 mmol) in THF (180 mL), at −78° C., was added dropwise 2.5 M n-butyllithium in hexanes (62 mL, 155 mmol). The solution was stirred at −78° C. for 3 h and then added to a suspension of 6-chloro-2-phenyl-benzo[d][1,3]oxazin-4-one (38.8 g, 150 mmol) in THF (280 mL) at −20° C. The mixture was allowed to gradually warm until the solution became homogenous. 1N HCl (150 mL) followed by EtOAc (250 mL) were then added and the solution allowed to warm to room temperature. The organic portion was collected and washed with H2O (250 mL), saturated NaHCO3 (2×250 mL) and H2O (250 mL). The organic portion was then dried over Na2SO4 and evaporated to dryness, in vacuo, to provide the N-[4-Chloro-2-(2-fluoro-6-methoxy-benzoyl)-phenyl]-benzamide as an orange solid (42.7 g). To a solution of N-[4-Chloro-2-(2-fluoro-6-methoxy-benzoyl)-phenyl]-benzamide (42.7 g, 110 mmol) in MeOH (540 mL) was added KOH (56.4 g, 1 mole) in H2O (100 mL). The solution was allowed to reflux for 16 h. The solution was then allowed to cool to room temperature and the resulting precipitate removed by filtration. The filtrate was concentrated in vacuo, diluted with EtOAc (250 mL) and washed with H2O (3×100 mL). The organic portion was then dried over Na2SO4, concentrated in vacuo and then purified by column chromatography (silica gel, 0 to 15% EtOAc/hexanes) to provide 1ac (19.6 g, 47%) MS m/z=280 (M+H).


Example 5: Method E for the Synthesis of Compounds of the Formula (i)



embedded image


(2-Amino-5-chloro-phenyl)-(4-fluoro-phenyl)-methanone (1t)

To p-fluorobenzoyl chloride (49.7 g, 314 mmol), heated to 120° C., was added p-chloroaniline (17.8 g, 139 mmol) over 10 min. The mixture was then heated to 180° C. and ZnCl2 (23.8 g, 174 mmol) was added over 10 min. The resulting mixture was heated at 205° C. for 2 h. After cooling to 120° C., 3N HCl (125 mL) was added cautiously and the mixture was maintained at 120° C. for 1 h. The hot aqueous portion was then decanted and the remaining residue was washed with hot 3N HCl (2×125 mL). The residue was poured onto ice and extracted with CH2Cl2 (3×100 mL). The combined organic portions were washed with 3N HCl (2×50 mL), 5N NaOH (2×50 mL) and H2O (3×50 mL) and were then dried over MgSO4, filtered and concentrated in vacuo to provide 15 g (29%) of the N-[4-chloro-2-(4-fluoro-benzoyl)-phenyl]-4-fluoro-benzamide as a dark yellow powder. To a flask containing the acylated amino-benzophenone (6.7 g, 18 mmol) was added 1:1 cone. HCl:AcOH (700 mL) and the resulting mixture was heated to 105° C. and stirred for 16 h. The mixture was cooled to room temperature and concentrated in vacuo. The residue was poured onto ice and extracted with CH2Cl2 (3×100 mL). The combined organic portions were washed with 5N NaOH (2×50 mL) and H2O (3×50 mL) and then dried over MgSO4, filtered and evaporated in vacuo. The resulting residue was purified by column chromatography (silica gel, 5 to 25% EtOAc/hexanes) and recrystallized from hexanes to provide 1t (3.4 g, 76%) MS m/z=250 (M+H).


(2-Amino-5-chloro-phenyl)-(4-methoxy-phenyl)-methanone (1u)

To a solution of N-[4-chloro-2-(4-fluoro-benzoyl)-phenyl]-4-fluoro-benzamide (6.0 g, 16 mmol), prepared as described above for compound 1s, in MeOH (400 mL) was added 5N NaOH (50 mL) and the resulting solution was allowed to reflux for 16 h. The solution was cooled to room temperature and concentrated in vacuo. The aqueous portion was extracted with CH2Cl2 (2×100 mL). The combined organic portions were washed with H2O (3×50 mL), dried over MgSO4, filtered and evaporated in vacuo. The resulting residue was purified by column chromatography (silica gel, 5 to 25% EtOAc/hexanes) and recrystallized from MeOH to provide 1u (3.5 g, 83%) as a light yellow powder MS m/z=262 (M+H).


(2-Amino-5-methyl-phenyl)-(2,6-difluoro-phenyl)-methanone (1aj)

In a manner similar to that described above for compound 1t, p-toluidine and 2,6-difluorobenzoyl chloride were converted to 1aj (16% yield) MS m/z=248 (M+H).


Example 6: Method F for the Synthesis of Compounds of Formula (i)



embedded image


(2-Amino-5-chloro-phenyl)-(2,6-difluoro-phenyl)-methanone (1 aa)

4-Chloro-N-Boc-aniline (3.4 g, 15 mmol) was dissolved in dry inhibitor-free THF (40 mL) under argon and cooled to −78° C. t-BuLi (1.7 M in pentane, 20 mL, 34 mmol) was cooled in a dry ice/acetone bath and added to the Boc-aniline solution, via a cannula, over 20 min. The yellow solution was stirred at −78° C. for 30 min, warmed to −30° C. for an additional 2.5 h, and then cooled to −78° C. 2,6-Difluorobenzoyl chloride (2.8 g, 16 mmol) was dissolved in dry THF (30 mL) and cooled to −78° C. under argon. The o-lithiated aniline was added, via a cannula, to the acid chloride solution over 30 min. The solution was stirred for an additional 20 min before quenching with 1N HCl (50 mL). The solution was diluted with EtOAc and the organic portion was separated, dried over MgSO4 and concentrated to dryness in vacuo. The resulting orange oil was purified by column chromatography (silica gel, Hexanes:EtOAc 4:1) to provide the Boc protected amino-benzophenone (3.3 g, 60%). The N-Boc-aminobenzophenone was dissolved in dry CH2Cl2 (50 mL) and trifluoroacetic acid (50 mL) was added. After stirring for 1 h, the solution was evaporated to dryness in vacuo. The resulting residue was dissolved in EtOAc (100 mL) and water (100 mL) containing NaHCO3. The organic portion was washed with a saturated aqueous NaHCO3 solution, dried over MgSO4, and concentrated to dryness in vacuo to provide, quantitatively, 1aa MS m/z=268 (M+H).


(2-Amino-5-chloro-phenyl)-(2,3-difluoro-phenyl)-methanone (1v)

In a manner similar to that described above for compound 1aa, 4-Chloro-N-Boc-aniline and 2,3-difluoro-benzoyl chloride were converted to 1v (14% yield) MS m/z=268 (M+H).


(2-Amino-5-chloro-phenyl)-(2,4-difluoro-phenyl)-methanone (1w)

In a manner similar to that described above for compound 1aa, 4-Chloro-N-Boc-aniline and 2,4-difluoro-benzoyl chloride were converted to 1w (20% yield) MS m/z=268 (M+H).


(2-Amino-5-chloro-phenyl)-(2,5-difluoro-phenyl)-methanone (1y)

In a manner similar to that described above for compound 1aa, 4-Chloro-N-Boc-aniline and 2,4-difluoro-benzoyl chloride were converted to 1y (10% yield) MS m/z=268 (M+H).


(2-Amino-5-chloro-phenyl)-(2-chloro-6-fluoro-phenyl)-methanone (1ab)

In a manner similar to that described above for compound 1aa, 4-Chloro-N-Boc-aniline and 2-chloro-6-fluoro-benzoyl chloride were converted to 1ab (42% yield) MS m/z=284 (M+H).


(2-amino-5-chlorophenyl)-(2-(trifluoromethyl)phenyl)methanone (1o)

In a manner similar to that described above for compound 1aa, 4-Chloro-N-Boc-aniline and 2-(trifluoromethyl)benzoyl chloride were converted to 1o (% yield) MS m/z=(M+H).


Example 7: Method G and Method H for the Synthesis of Compounds of Formula ii (See Scheme 1)



embedded image


(5-Chloro-2-iodo-phenyl)-(2,6-difluoro-phenyl)-methanone (2aa)

Method G: (2-Amino-5-chloro-phenyl)-(2,6-difluoro-phenyl)-methanone (1aa) (2.6 g, 9.7 mmol) was dissolved in acetic acid (10 mL) and concentrated HCl (4 mL) and the solution was cooled to 0° C. A solution of NaNO2 (0.7 g, 10.7 mmol) in H2O (6 mL) was added dropwise so as to maintain a temperature of between 0-5° C. Following this addition, the reaction mixture was stirred at 0° C. for 30 min. Cold EtOAc (20 mL) was added dropwise and the solution was stirred for 20 min. Iodine (1.5 g, 5.8 mmol) and potassium iodide (1.9 g, 11.6 mmol) in H2O (10 mL) were added dropwise and the mixture was warmed to room temperature and stirred for 1 h. The reaction mixture was diluted with EtOAc (200 mL) and washed with saturated aqueous sodium thiosulfate (4×100 mL). The combined aqueous portions were extracted with EtOAc (3×50 mL). The combined organic portions were then washed with a saturated aqueous NaHCO3 solution (3×50 mL), H2O (2×50 mL), dried over Na2SO4, filtered and evaporated in vacuo to afford 2aa (3.3 g, 90%) as a light yellow solid. 4-(2-Fluoro-benzoyl)-3-iodo-benzoic acid methyl ester (2i)


Method H: To a solution of 2g (1 g, 3 mmol) in t-butanol (25 mL) and H2O (25 mL) was added KMnO4 (3.8 g, 24 mmol). The solution was refluxed for 18 h. THF (50 mL) was added and the solution was refluxed for 30 min, cooled to room temperature and filtered. The filtrate was concentrated in vacuo, diluted with MeOH (20 mL) and acidified with concentrated HCl. The solution was diluted with H2O (10 mL) and the resulting precipitate was collected to provide 4-(2-fluoro-benzoyl)-3-iodo-benzoic acid (1 g, 92%) as a white solid. The 4-(2-fluoro-benzoyl)-3-iodo-benzoic acid (0.5 g, 1.4 mmol) in MeOH (6 mL) containing concentrated HCl (100 μL) was submitted to microwave irradiation (300 W) for 30 min at 140° C. The resulting precipitate was collected to provide 2i (0.4 g, 79%) as a white solid MS m/z=385 (M+H).


2-(5-Chloro-2-iodo-benzoyl)-benzoic acid methyl ester (2p)

In a manner similar to that described above for compound 2i, 2m was converted to 2p (81% yield) MS m/z=401 (M+H).


3-(2-Fluorobenzoyl)-4-iodobenzoic acid methyl ester (2ai)

In a manner similar to that described above for compound 2i, 2af was converted to 2ai (60% yield) MS m/z=385 (M+H).


3-(2,6-Difluorobenzoyl)-4-iodobenzoic acid methyl ester (2ak)

In a manner similar to that described above for compound 2i, 2aj was converted to 2ak (58% yield) MS m/z=403 (M+H).


The illustrative compounds of the formula 2, set forth in Table 4 below, were prepared in a similar manner to that illustrated by Method G or Method H, as described above for compounds 2aa and 2i.









TABLE 4







Illustrative Examples of Compounds of Formulae 1-5









1-5
Substituent
Mass Spectra (M + H)




















Rb1
Rb2
Rb3
Rc1
Rc2
Rc3
Rc4
Rc5
2
3
4
5





a
H
H
H
H
H
H
H
H
309
336
236
291


b
Me
H
H
F
H
H
H
H
341
368
268
323


c
H
F
H
F
H
H
H
H
345
372
272
327


d
H
Cl
H
F
H
H
H
H
361
388
288
343


e
H
Br
H
F
H
H
H
H
405/407
432/434
332/334
387/389


f
H
CF3
H
F
H
H
H
H
395
422
322
377


g
H
Me
H
F
H
H
H
H
341
368
268
323


h
H
OMe
H
F
H
H
H
H
357
384
284
339


i
H
CO2Me
H
F
H
H
H
H
385
412
312
367


j
H
H
F
F
H
H
H
H
345
372
272
327


k
H
H
Cl
F
H
H
H
H
361
388
288
343


1
H
H
Cl
Cl
H
H
H
H
377
404
304
359


m
H
H
Cl
Me
H
H
H
H
357
384
284
339


n
H
H
Cl
OMe
H
H
H
H
373
400
300
355


o
H
H
Cl
CF3
H
H
H
H
411
438
338
393


p
H
H
Cl
CO2Me
H
H
H
H
401
428
328
383


q
H
H
Cl
CH2N(Me)2
H
H
H
H
400
427
327
382


r
H
H
Cl
H
F
H
H
H
361
388
288
343


s
H
H
Cl
H
OMe
H
H
H
373
400
300
355


t
H
H
Cl
H
H
F
H
H
361
388
288
343


u
H
H
Cl
H
H
OMe
H
H
373
400
300
355


v
H
H
Cl
F
F
H
H
H

406
306
361


w
H
H
Cl
F
H
F
H
H

406
306
361


x
H
H
Cl
OMe
H
OMe
H
H
403
430
330
385


y
H
H
Cl
F
H
H
F
H

406
306
361


z
H
H
Cl
OMe
H
H
OMe
H
403
430
330
385


aa
H
H
Cl
F
H
H
H
F

406
306
361


ab
H
H
Cl
F
H
H
H
Cl

422
322
377


ac
H
H
Cl
F
H
H
H
OMe

418
318
373


ad
H
Cl
Cl
F
H
H
H
H
395
422
322
377


ae
H
H
H
F
H
H
H
H

354
254
309


af
H
H
Me
F
H
H
H
H
341
368
268
323


ag
H
H
iPr
F
H
H
H
H
369





ah
H
H
OMe
F
H
H
H
H
357
384
284
339


ai
H
H
CO2Me
F
H
H
H
H
385
412
312
367


aj
H
H
CH3
F
H
H
H
F
359





ak
H
H
CO2Me
F
H
H
H
F
403
430
330
385


al
H
H
Cl

H
H
H
H

371
271
326





(pyridyl)











am
H
H
Cl

H
H
H
F

389
289
344





(pyridyl)









Example 8: Method I for the Synthesis of Compounds of Formula iii (See Scheme 1)



embedded image


{3-[4-Chloro-2-(2,6-difluoro-benzoyl)-phenyl]-prop-2-ynyl}-carbamic acid tert-butyl ester (3aa)

(5-Chloro-2-iodo-phenyl)-(2,6-difluoro-phenyl)-methanone (2aa) (5.5 g, 14.5 mmol), prop-2-ynyl-carbamic acid tert-butyl ester (2.5 g, 16 mmol), PdCl2(PPh3)2 (0.6 g, 0.9 mmol) and Cu(I)I (0.2 g, 0.9 mmol) were suspended in anhydrous CH2Cl2 (50 mL) and the mixture was sparged with nitrogen for 30 min. Diethylamine (8 mL) was added and the solution was stirred at room temperature for 16 h. The solution was concentrated in vacuo and the resulting residue purified by column chromatography (silica gel, 0 to 15% EtOAc/hexanes) to afford 3aa (3.6 g, 61%) as a white solid, MS m/z=406 (M+H).


The illustrative compounds of the formula 3, set forth in Table 4, were prepared in a similar manner to that illustrated by Method I, as described above for compounds 3aa.


Example 9: Method J for the Synthesis of Compounds of Formula iii (See Scheme 1)



embedded image


tert-Butyl 3-(4-chloro-2-picolinoylphenyl)prop-2-ynylcarbamate (3al)


5-Chloro-2-iodobenzoic acid (2.8 g, 10 mmol) was taken up in dry methylene chloride (80 mL) and DMF (50 μL, cat.) followed by thionyl chloride (2.4 g, 20 mmol) were added. The mixture was stirred at reflux for 12 h, cooled to room temperature and evaporated in vacuo. The residue was azeotroped with toluene (2×10 mL) and used without further purification. The 5-chloro-2-iodobenzoyl chloride (10 mmol) was taken up in dry methylene chloride (50 mL) and N,O-dimethylhydroxylamine hydrochloride (1.1 g, 11 mmol) was added. The mixture was cooled to 0° C., and pyridine (2.4 g, 30 mmol) was added. The mixture was allowed to warm to room temperature, stir for 12 h, and was then quenched with saturated brine (20 mL). The organic phase was separated and the water phase was extracted with methylene chloride (2×10 mL). The combined organic extracts were dried with anhydrous MgSO4, filtered and evaporated in vacuo. The residue was purified using flash chromatography on silica gel (50 g) using methylene chloride as eluent to provide 5-chloro-2-iodo-N-methoxy-N-methylbenzamide (3.1 g, 95%) MS m/z=326 (M+H).


The Weinreb amide (3.1 g, 9.5 mmol) and prop-2-ynyl-carbamic acid tert-butyl ester (2.9 g, 19 mmol) were coupled according to method H to provide 3-(4-chloro-2-(methoxy(methyl)carbamoyl)phenyl)prop-2-ynylcarbamic acid tert-butyl ester (2.7 g, 80%), MS m/z=353 (M+H). To this product, dissolved in dry THF (40 mL) and cooled to −78° C., was added lithiated pyridine, prepared from 2-bromopyridine (4.2 g, 26.6 mmol) and n-butyllithium (14.3 mL of 1.6 M solution in hexanes, 22.8 mmol) in dry THF (40 mL) under argon atmosphere at −78° C. The resulting mixture was gradually warmed to −40° C. over 1 h and then quenched with brine (20 mL). After warming to room temperature, the mixture was extracted with ethyl acetate (3×20 mL). The organic extracts were dried with MgSO4, filtered and evaporated. The residue was purified using flash chromatography on silica gel (100 g) using methylene chloride to 10% ethyl acetate in methylene chloride as eluent to give 3al (2.14 g, 76%): MS m/z=371 (M+H).


tert-Butyl 3-(4-chloro-2-(3-fluoropicolinoyl)phenyl)prop-2-ynylcarbamate (3am)

In a manner similar to that described above for compound 3al, 3-(4-chloro-2-(methoxy(methyl)carbamoyl)phenyl)prop-2-ynylcarbamic acid tert-butyl ester and 2-bromo-3-fluoropyridine were converted to 3am (45% yield): MS m/z=389 (M+H).


The illustrative compounds of the formula 3, set forth in Table 4, were prepared in a similar manner to that illustrated by Method J, as described above for compounds 3al and 3am.


Example 10: Method K and Method L for the Synthesis of Compounds of Formula iv (See Scheme 1)



embedded image


8-Chloro-1-(2-fluoro-phenyl)-3,4-dihydro-benzo[c]azepin-5-one (4k)

Method K: A solution of {3-[4-chloro-2-(2-fluoro-benzoyl)-phenyl]-prop-2-ynyl}-carbamic acid tert-butyl ester (9.2 g, 23 mmol) in CH2Cl2 (100 mL) containing formic acid (9.18 mL) was cooled to 0° C. Mercury(II) sulphate (2.1 g, 7.1 mmol) was added and the reaction stirred for 2 h at 0° C. The mixture was diluted with H2O (20 mL) and NH4OH (20 mL). The organic phase was collected and the aqueous phase was extracted with EtOAc (3×100 mL). The combined organic portions were washed with H2O, dried over MgSO4, filtered and the solvents evaporated in vacuo to afford [3-[4-chloro-2-(2-fluorobenzoyl)-phenyl]-3-oxopropyl]-carbamic acid tert-butyl ester 8.9 g (95%) as a brown solid. This material (8.9 g, 22 mmol) was dissolved in HCl (4N in dioxane, 185 mL) and stirred at room temperature for 30 min. The solution was then evaporated in vacuo. The residue was dissolved in CH2Cl2 (250 mL) and diisopropylethylamine amine (18 mL) was added. The solution was stirred at room temperature for 2 h. The solution was evaporated in vacuo and the residue purified by column chromatography (silica gel, 10 to 50% EtOAc/hexanes) to provide 4k (2.9 g, 46%) as a brown solid MS m/z=288 (M+H).


8-Chloro-1-(2,6-difluoro-phenyl)-3,4-dihydro-benzo[c]azepin-5-one (4aa)

Method L: A solution of {3-[4-chloro-2-(2,6-difluoro-benzoyl)-phenyl]-prop-2-ynyl}-carbamic acid tert-butyl ester (5.6 g, 15 mmol) was dissolved in dioxane (200 mL). 5N HCl (aq) (200 mL) was added and the solution was stirred at room temperature for 14 h and then at 60° C. for 2 h. The solution was diluted with CH2Cl2 (200 mL) and Na2CO3 was added until the solution pH was basic to litmus. The mixture was allowed to stir for 2 h. The organic portion was separated and the aqueous portion was extracted with CH2Cl2 (2×100 mL). The combined organic portions were washed with H2O (3×50 mL), dried over Na2SO4, filtered and evaporated in vacuo to provide 4aa (4.2 g, 100%) MS m/z=306 (M+H).


The illustrative compounds of formula 4, set forth in Table 4, were prepared in a similar manner to that illustrated by Method K and Method L, as described above for compounds 4k and 4aa.


Example 11: Method M for the Synthesis of Compounds of the Formula v (See Scheme 1)



embedded image


8-Chloro-4-dimethylaminomethylene-1-(2,6-difluoro-phenyl)-3,4-dihydro-benzo[c]azepin-5-one (5aa)

8-Chloro-1-(2,6-difluoro-phenyl)-3,4-dihydro-benzo[c]azepin-5-one (4aa) (4.2 g, 15 mmol) was dissolved in toluene (100 mL) and N,N-dimethylformamide dimethyl acetal (19 mL) and heated at 80° C. for 2 h. The solution was evaporated in vacuo and the resulting residue was purified by column chromatography (silica gel, 0 to 75% EtOAc/hexanes) to afford 5aa (2.6 g, 78%) as a pale brown solid MS m/z=361 (M+H).


The illustrative compounds of formula 5, set forth in Table 4, were prepared in a similar manner to that illustrated by Method M, as described above for 5aa.


Example 12: Preparation of Aryl or Heteroaryl Guanidines by Methods N, O or P



embedded image


N-(3,4-Dimethoxy-phenyl)-guanidine

Method N: To a vigorously stirred solution of 3,4-dimethoxyaniline (15.3 g, 0.1 mol) in EtOH (60 mL) at 0° C. was added nitric acid (69%, 9.0 mL, 0.1 mol) dropwise. A solution of cyanamide (4.6 g, 0.1 mol) in H2O (8.5 mL) was added and the solution was heated at reflux for 3 h. The mixture was then diluted with EtOH (50 mL), chilled to 4° C. and the resulting golden needles were collected and dried in vacuo to provide N-(3,4-dimethoxy-phenyl)-guanidine as the nitric acid salt (14.7 g, 57%) MS m/z=196 (M+H).


N-Pyridin-3-yl-guanidine

Method O: To a mixture of 3-aminopyridine (1.0 g, 10.6 mmol), 1,3-bis(tert-butoxycarbonyl)-2-methyl-2-thiopseudourea (4.0 g, 13.8 mmol) and Et3N (15 mL) in CH2Cl2 (100 mL) was added mercuric chloride (4.0 g, 14.8 mmol). The resulting mixture was stirred under a nitrogen atmosphere at room temperature for 16 h, during which time a dense white precipitate formed. The mixture was filtered through Celite®, and washed with Et2O. The combined filtrates were evaporated to dryness in vacuo and the resulting white solid purified by column chromatography (silica gel, 15% EtOAc/hexanes) to yield the bis-Boc protected guanidine (3.1 g, 88%). To a solution of this material (3.1 g, 9.3 mmol) in MeOH (2 mL) was added HCl (4N in dioxane, 60 mmol). The resulting solution was refluxed for 16 h, cooled to room temperature and triturated with Et2O to provide the N-pyridin-3-yl-guanidine as the hydrochloride salt (1.2 g, 74%) MS m/z=173 (M+H).


t-Butyl guanidinobenzoate, HCl salt

Method P: To a solution of t-butyl 4-aminobenzoate (2.0 g, 10.3 mmol) in CH2Cl2 (20 mL) was added 1,3-bis(benzyloxycarbonyl)-2-methyl-2-thiopseudourea (5.6 g, 15.5 mmol), Et3N (5.0 mL, 36 mmol), and mercuric chloride (3.37 g, 12.4 mmol). The reaction mixture was stirred overnight at room temperature. The reaction mixture was filtered through Celite®, and the filtrates were concentrated in vacuo and purified by column chromatography (1:1 CH2Cl2/hexanes to 100% CH2Cl2, and then 10% EtOAc/CH2Cl2) to provide tert-butyl 4-(2,3-bis(benzyloxycarbonyl)guanidino)benzoate (3.9 g, 75%). To a pressure bottle was charged 20% palladium hydroxide on carbon (2 g) followed by a solution of t-butyl 4-(2,3bis(benzyloxycarbonyl)guanidine)benzoate (3.9 g, 7.7 mmol) in EtOAc (80 mL). The mixture was stirred under hydrogen at 50 psi at room temperature overnight. The solution was filtered through Celite® and the filtrate evaporated in vacuo to provide t-butyl guanidinobenzoate (1.8 g, 100%). To the guanidine (855 mg, 3.6 mmol) in EtOAc (50 mL) was add 2M HCl in Et2O (1.9 mL, 3.8 mM). The solution was concentrated and the precipitate was collected by filtration, washed with Et2O and dried in vacuo to yield (840 mg, 85%) of the HCl salt.


Example 13: Method Q, Method R and Method S for the Synthesis of Compounds of Formula (I)



embedded image


4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid (I-52)

Method Q: A solution of 8-chloro-4-dimethylaminomethylene-1-(2-fluoro-phenyl)-3,4-dihydro-benzo[c]azepin-5-one (5k) (0.22 g, 0.64 mmol), 4-guanidino-benzoic acid hydrochloride (0.15 g, 0.70 mmol) and diisopropylethylamine (i-Pr2EtN) (0.23 mL, 1.32 mmol) in DMF (2.5 mL) was submitted to microwave irradiation (300 W) for 300 sec at 250° C. The mixture was cooled and then poured into H2O (100 mL). While stirring, 1N HCl was added dropwise to pH=3 followed by EtOAc (50 mL). The resulting precipitate was collected by filtration and dried under vacuum to yield I-52 as a tan solid (0.13 g, 47%).


4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid (I-135)

Method R: 8-Chloro-4-dimethylaminomethylene-1-(2,6-difluoro-phenyl)-3,4-dihydro-benzo[c]azepin-5-one (5aa) (2.6 g, 7.1 mmol), 4-guanidino-benzoic acid hydrochloride (1.7 g, 7.8 mmol) and K2CO3.1.5H2O (2.6 g, 15.6 mmol) in EtOH (50 mL) were refluxed for 14 h. The mixture was cooled and then poured into H2O (400 mL). While stirring, 1N HCl was added dropwise to pH=3. EtOAc (400 mL) was then added and the organic portion was washed with H2O (2×100 mL), dried over Na2SO4 and concentrated to dryness in vacuo. The residue was suspended in CH2Cl2 and filtered. The solids were dissolved in EtOAc, filtered through silica gel, concentrated to dryness in vacuo and dried under vacuum to yield I-135 as a white solid (1.4 g, 42%).


4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid (I-135) (1.5 g, 2.95 mol) was added to a solution of ethanol (8.86 mL) and water (1.2 mL), and the mixture was heated to 50° C. An aqueous NaOH solution (0.02458 g/mL) was added to a target solution pH of 11.6. Additional water was added to a total of 4.26 mL/g of free acid. The resultant slurry was heated to 70° C. and rapidly filtered, maintaining a solution temperature of 65-70° C. Warm ethanol (9.15 mL, 7.21 g) was added, and the solution cooled to 65° C. Seed crystals of the sodium salt of I-135 (7.1 mg, 0.014 mol) were added as a slurry in 10% (wt) solution of 75:25 ethanol: water. The mixture was maintained at 65° C. for one hour, and then was cooled to 35° C. at a rate of 12° C./hour. At 35° C., a second addition of ethanol (4.72 g, 5.98 mL) was performed. The mixture was cooled to 0° C. at a rate of 12° C./hour, and then held at 0° C. for one hour. The resultant thick slurry was filtered, and the wet filter cake was rinsed with cold ethanol (5.52 g, 7 mL) to afford a 72% yield of the sodium salt of I-135, as a hydrate.


2-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-oxazole-5-carboxylic acid (I-364)

Method S: 8-Chloro-4-dimethylaminomethylene-1-(2,6-difluorophenyl)-3,4-dihydrobenzo[c]azepin-5-one (5aa) (3.6 g, 10 mmol), guanidine hydrochloride (1.06 g, 11 mmol), potassium carbonate (4.6 g, 33 mmol), and ethanol (100 mL) were combined in a 100-mL round-bottomed flask and stirred at reflux for 3 hours. The reaction mixture was poured into 500 mL water with stirring. The mixture was extracted with ethyl acetate (4×200 mL). The organic extracts were combined, washed with saline, dried (Na2SO4), filtered, and evaporated to leave a brown solid. The solid was stirred with diethyl ether, filtered, washed with ether, then dried in vacuo to provide 9-chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl amine (3.16 g, 89%) as a light brown solid MS m/z=357 (M+H). The amine (2.0 g, 5.6 mmol), diiodomethane (7.7 g, 28.6 mmol), copper (I) iodide (1.1 g, 5.6 mmol), dry tetrahydrofuran (40 mL), and isoamyl nitrite (2.0 g, 16.8 mmol) were combined in a round-bottomed flask and stirred at reflux for 1 hour. The dark purple solution was cooled to room temperature and then transferred to a separatory funnel containing 1N HCl (250 mL) and ethyl acetate (150 mL). The organic layer was separated and the aqueous layer was extracted with ethyl acetate (100 mL). The organic extracts were combined, washed with ammonium hydroxide (3%), saturated ammonium chloride, and saturated saline, and then dried (Na2SO4), filtered, and concentrated to leave a dark oil. Purification by column chromatography (silica gel, CH2Cl2 to 10% ethyl acetate in CH2Cl2) afforded 9-Chloro-7-(2,6-difluoro-phenyl)-2-iodo-5H-benzo[c]pyrimido[4,5-e]azepine as a pale yellow solid (1.3 g, 50%) MS m/z=468 (M+H).


A mixture of 9-Chloro-7-(2,6-difluoro-phenyl)-2-iodo-5H-benzo[c]pyrimido[4,5-e]azepine (200 mg, 0.43 mmol), ethyl 2-aminooxazole-5-carboxylate (81.2 mg, 0.52 mmol), tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) (935 mg, 0.034 mmol), Xantphos (30 mg, 0.052 mmol), powdered K3PO4 (183 mg, 0.86 mmol), and degassed toluene were submitted to microwave irradiation (300 W) for 20 minutes at 145° C. The mixture was cooled to room temperature and then evaporated to leave a brown solid which was purified by column chromatography (silica gel, CH2Cl2 to 50% diethyl ether in CH2Cl2) to yield 2-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-oxazole-5-carboxylic acid ethyl ester as a yellow powder (103 mg, 48%) MS m/z=496 (M+H). 2-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-oxazole-5-carboxylic acid ethyl ester (91 mg, 0.18 mmol), methanol (1 mL), tetrahydrofuran (3 mL), and 1N LiOH (3.7 mL, 3.7 mmol) were stirred at room temperature for 3 hours. Water (50 mL) was added with stirring, and the resulting clear yellow solution was acidified by slowly adding 1N HCl. A yellow precipitate formed. Diethyl ether (10 mL) was added and the precipitate was collected by filtration, washed with water, diethyl ether and then dried in vacuo to yield I-364 as a yellow powder (78 mg, 93% yield) MS m/z=468 (M+H).


Example 14: Method T for the Synthesis of Compounds of Formula (I)



embedded image


{4-[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-(4-methyl-piperazin-1-yl)-methanone (I-9)

1-Methyl-piperazine (0.03 mL, 0.3 mmole) was added to a solution of I-52 (0.1 g, 0.2 mmole), TBTU (0.08 g, 0.2 mmole) and Et3N (0.06 mL, 0.4 mmole) in DMF (5 mL). The solution was allowed to stir for 30 min and then diluted with 0.1 N NaOH (50 mL) and EtOAc (50 mL). The organic portion was separated, dried over Na2SO4 and concentrated in vacuo. The resulting residue was purified by column chromatography (Silica Gel, CH2C1-2:MeOH:NH4OH, 94:5:1) to yield I-9 (0.07 g, 47%).


Example 15: Method U for the Synthesis of Compounds of Formula (I)



embedded image


4-[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-N-[(3-dimethylamino-pyrrolidin-1-yl)-imino-methyl]-benzamide (I-237)

A mixture of I-135 (4.8 g, 10 mmol) and DMF (100 mL) was stirred and fluoro-N,N,N′,N′-tetramethylformamidinium hexafluorophosphate (2.9 g, 11 mmol) was added in one portion, followed by diisopropylethylamine (3.9 g, 30 mmol). The mixture was stirred at room temperature for 10 minutes. 2-Methyl-2-thiopseudourea sulfate (3.2 g, 11 mmol) was then added as a solid and the reaction mixture was stirred at room temperature overnight. The reaction was quenched into saline (500 mL) and the off-white precipitate was collected by filtration, washed with water, and dried in vacuo to yield 1-{4-[9-chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoyl}-2-methyl-isothiourea as a pale yellow solid (5.81 g, 100%) MS m/z=549 (M+H).


A solution of the benzoyl-methylisothiourea (250 mg, 0.5 mmol), 3-dimethylaminopyrrolidine (58 mg, 0.5 mmol), triethylamine (50 mg, 0.5 mmol), and toluene (10 mL) was stirred at reflux for 8 hours. The volatiles were then removed in vacuo and the brown residue was purified by column chromatography (silica gel, 1% 7N NH3 in MeOH/CH2Cl2 to 5% NH3 in MeOH/CH2Cl2) to yield I-237 as a yellow solid (154 mg, 54%) MS m/z=615 (M+H).


Example 16: Method V for the Synthesis of Compounds of Formula (I)



embedded image


[9-Chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-{4-[(3,5-dimethyl-piperazin-1-yl)-imino-methyl]-phenyl}-amine (I-251)

Anhydrous HCl gas was added to a stirred suspension of I-236 (1.9 g, 4.4 mmol) in absolute ethanol (75 mL) at 0° C. until a homogeneous solution resulted. The solution was allowed to warm to room temperature and sit for three days. Diethyl ether (100 mL) was added and the resulting precipitate collected by filtration, washed with diethyl ether, and dried in vacuo to yield 4-[9-chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzimidic acid ethyl ester HCl salt as a bright yellow powder (2.4 g, 94%) MS m/z=504 (M+H).


A mixture of the ethyl benzimidate (100 mg, 0.17 mmol), 2,6-dimethylpiperazine (200 mg, 8.8 mmol), and absolute ethanol (1 mL) was submitted to microwave irradiation (300 W) for 7.5 minutes at 120° C. The reaction solution was cooled to room temperature and slowly poured into a stirring saline solution (10 mL). The resulting precipitate was collected and purified by column chromatography (silica gel, 0.25% NH4OH/2% MeOH/97.75% CH2C1-2 to 2.5% NH4OH/20% MeOH/77.5% CH2Cl2) to yield I-251 as a pale yellow solid (30 mg, 30%).


Example 17: Method W for the Synthesis of Compounds of Formula (I)



embedded image


4-Methyl-piperazine-1-carboxylic acid {4-[9-chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-phenyl}-amide (I-280)

A mixture of [9-chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(4-nitro-phenyl)-amine (I-212,500 mg, 1.05 mmol), stannous chloride dihydrate (1.42 g, 6.3 mmol) and ethyl acetate (15 mL) was refluxed for 28 hours, then cooled to room temperature and allowed to sit overnight. The mustard-yellow reaction mixture was poured onto ˜50 g cracked ice with stirring, and sat. NaHCO3 solution was added to adjust the pH to 8. The mixture was extracted with ethyl acetate (3×100 mL). The extracts were combined, dried (Na2SO4), filtered and evaporated in vacuo to provide N-[9-chloro-7-(2,6-difluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-benzene-1,4-diamine as an orange/yellow solid (500 mg, 100%) MS m/z=448 (M+H). A solution of this product (50 mg, 0.1 mmol), 4-methylpiperazine-1-carbonylchloride (89 mg, 0.6 mmol), diisopropylethylamine (142 mg, 1.1 mmol), in dioxane (0.5 mL) was submitted to microwave irradiation (300 W) for 60 minutes at 160° C. The reaction solution was cooled to room temperature and slowly poured into a stirring saline solution (10 mL). The resulting precipitate was collected by filtration, washed with water and purified by RP-HPLC (C18, 0 to 100% CH3CN in 0.1% aqueous HCO2H) to yield I-280 as a pale yellow solid (6 mg, 10%) MS m/z=574 (M+H).


Example 18: Method X for the Synthesis of Compounds of Formula (I)



embedded image


4-[(7-{2-[(2-aminoethyl)amino]-6-fluorophenyl}-9-chloro-5H-pyrimido[5,4-d][2]benzazepin-2-yl)amino]-N-methylbenzamide (I-340)

A solution of I-334 (49 mg, 0.1 mmol) in ethylene diamine (200 μL) was submitted to microwave irradiation (300 W) for 20 minutes at 140° C. The reaction solution was cooled to room temperature and slowly poured into a stirring saline solution (10 mL). The resulting precipitate was collected by filtration, washed with water and purified by column chromatography (silica gel, 1% NH4OH/2% MeOH/97% CH2Cl2 to 2.5% NH4OH/20% MeOH/77.5% CH2Cl2) to yield I-340 as a pale yellow solid (46 mg, 87%) MS m/z=530 (M+H).


Certain exemplary compounds of the invention were prepared by methods Q through X, employing procedures analogous to those described above for I-52, I-135, I-236, I-237, I-280, and I-340. HRMS data were collected on a Sciex Qstar® time of flight mass spectrometer coupled to an Agilent HPLC. Experimentally determined (M+H)+ for certain exemplary compounds are presented in Table 5, and were within 10 ppm error of calculated (M+H)+.


Example 19: Method Y for the Synthesis of Compounds of the Formula (I)



embedded image


[9-Chloro-7-(2-fluoro-phenyl)-6,7-dihydro-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3,4-dimethoxy-phenyl)-amine (I-72)

[9-Chloro-7-(2-fluoro-phenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3,4-dimethoxy-phenyl)-amine (I-71, 49 mg, 0.10 mmol) was dissolved in dichloromethane (1.8 mL). Acetic acid (0.43 mL) was added and the solution was stored and cooled to 0° C. Zinc dust (20 mg, 0.31 mmol) was then added and the mixture was stirred at 0° C. for 1 hour and then allowed to warm to room temperature and stir for 4 hours. Additional zinc dust (10 mg, 0.15 mmol) and acetic acid (0.22 mL) was added and the mixture was stirred at room temperature for 20 hours. The reaction mixture was diluted with dichloromethane. The organic layer was separated and washed with 1N NaOH, brine and then dried over magnesium sulfate, filtered and concentrated in vacuo. The yellow powder was purified by column chromatography (silica gel, ethyl acetate) to afford [9-Chloro-7-(2-fluoro-phenyl)-6,7-dihydro-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl]-(3,4-dimethoxy-phenyl)-amine (I-72) as an orange solid (32 mg, 65%): MS m/z=477.


Example 20: Method Z for the Synthesis of Compounds of the Formula (I)



embedded image


4-[9-Chloro-7-(2,6-difluoro-phenyl)-7H-benzo[c]pyrimido[4,5-e]azepin-2-ylamino]-benzoic acid (I-387). To a solution of I-135 (1.0 g, 2.1 mmol) in THF (20 mL) was added potassium tert-butoxide (1M in THF, 21 mmol). The solution was allowed to stir for 1 hr and then the pH was adjusted to 3 with 1N HCl. The solution was then diluted with water (100 mL) and extracted with EtOAc (3×50 mL). The organic portion was dried (Na2SO4), concentrated in vacuo and the resulting brown oil purified by RP-HPLC (08, 0 to 100% CH3CN in water containing 0.1% formic acid) to provide, after lyophilization, I-387 (0.3 g, 30%).









TABLE 5







High Resolution Mass Spectra of


Exemplary Compounds of Formula (A)










Compound
HRMS














I-1:
515.1739



I-2:
515.1775



I-3:
529.1881



I-4:
529.1889



I-5:
543.2054



I-6:
543.2066



I-7:
557.2233



I-8:
527.1769



I-9:
541.1910



I-10:
557.1613



I-11:
537.2175



I-12:
553.2114



I-13:
541.1881



I-14:
521.2463



I-15:
555.2072



I-16:
541.1897



I-17:
541.1908



I-18:
569.2207



I-19:
598.2473



I-20:
614.2190



I-21:
594.2742



I-22:
610.2708



I-23:
598.2503



I-24:
578.3039



I-25:
612.2655



I-26:
528.1619



I-27:
546.1722



I-28:
544.1313



I-29:
571.2018



I-30:
587.1709



I-31:
567.2256



I-32:
597.2367



I-33:
571.2046



I-34:
603.1674



I-35:
432.0783



I-36:
483.0332



I-37:
445.1213



I-38:
459.1367



I-39:
445.1213



I-40:
445.1215



I-41:
449.0731



I-42:
465.0443



I-43:
449.0728



I-44:
449.0727



I-45:
447.0789



I-46:
500.1630



I-47:
513.1947



I-48:
506.1558



I-49:
440.1073



I-50:
460.0966



I-51:
425.1431



I-52:
459.1014



I-53:
475.0752



I-54:
455.1261



I-55:
471.1210



I-56:
459.1027



I-57:
443.1332



I-58:
439.1550



I-59:
443.1286



I-60:
459.1016



I-61:
503.0516



I-62:
455.1496



I-63:
474.0871



I-64:
474.0879



I-65:
489.0889



I-66:
488.1034



I-67:
495.0690



I-68:
494.0832



I-69:
591.0810



I-70:
547.0605



I-71:
475.1339



I-72:
477.1491



I-73:
491.1031



I-74:
471.1579



I-75:
455.1873



I-76:
483.2202



I-77:
459.1602



I-78:
519.0851



I-79:
509.1604



I-80:
455.1873



I-81:
471.1830



I-82:
455.1872



I-83:
473.1168



I-84:
463.1152



I-85:
475.1000



I-86:
491.0677



I-87:
483.0331



I-88:
491.1035



I-89:
443.1442



I-90:
477.093



I-91:
477.0928



I-92:
551.2557



I-93:
501.1302



I-94:
542.2212



I-95:
477.0929



I-96:
477.0931



I-97:
541.1928



I-98:
555.2058



I-99:
555.208



I-100:
501.134



I-101:
541.1905



I-102:
527.1755



I-103:
491.1094



I-104:
477.1084



I-105:
495.0789



I-106:
508.105



I-107:
486.1508



I-108:
574.1296



I-109:
489.1484



I-110:
555.2063



I-111:
556.1545



I-112:
541.1925



I-113:
483.1249



I-114:
472.1352



I-115:
477.0961



I-116:
529.1913



I-117:
530.1387



I-118:
585.217



I-119:
489.1156



I-120:
473.1179



I-121:
460.0964



I-122:
607.1699



I-123:
493.0631



I-124:
473.1161



I-128:
569.221



I-129:
515.1759



I-130:
529.1927



I-131:
529.1929



I-132:
485.1637



I-134:
493.0633



I-135:
477.0955



I-136:
477.0929



I-137:
455.1529



I-138:
471.1842



I-139:
509.0987



I-140:
493.0648



I-141:
489.1129



I-142:
501.1594



I-143:
441.1137



I-144:
535.0517



I-145:
554.2076



I-146:
459.1021



I-147:
552.1697



I-148:
551.2548



I-150:
563.1742



I-151:
563.175



I-152:
457.1424



I-153:
439.1575



I-154:
441.1735



I-155:
471.1229



I-156:
471.1243



I-157:
598.2497



I-158:
571.2015



I-159:
541.1905



I-160:
577.1898



I-161:
563.1744



I-162:
459.1019



I-163:
541.1911



I-164:
604.2055



I-165:
654.2409



I-166:
621.1838



I-167:
661.2162



I-168:
599.2003



I-169:
647.1998



I-170:
626.2448



I-171:
624.2685



I-172:
577.1576



I-173:
605.2002



I-174:
493.0656



I-175:
573.1983



I-176:
573.1986



I-177:
585.2192



I-178:
585.2203



I-179:
571.2037



I-180:
559.1851



I-181:
652.2994



I-182:
638.2822



I-183:
587.2117



I-184:
559.1845



I-185:
575.2131



I-186:
599.2348



I-187:
654.3136



I-188:
638.2832



I-189:
640.2628



I-190:
489.1142



I-191:
559.1845



I-192:
513.1625



I-193:
555.2103



I-194:
559.1843



I-195:
545.1683



I-196:
545.1693



I-197:
559.1814



I-198:
561.2004



I-199:
571.2047



I-200:
465.1514



I-201:
647.2340



I-202:
518.1331



I-203:
477.0943



I-204:
559.1814



I-205:
587.2156



I-206:
573.2001



I-207:
503.1197



I-208:
640.2953



I-209:
626.2832



I-210:
612.2649



I-211:
638.2782



I-212:
478.0905



I-213:
658.2264



I-214:
575.1556



I-215:
607.1598



I-216:
593.1427



I-217:
448.1154



I-218:
525.0715



I-219:
589.1588



I-220:
573.1994



I-221:
559.1807



I-222:
573.1989



I-223:
629.2331



I-224:
587.1893



I-225:
587.2358



I-226:
587.2364



I-227:
571.2031



I-228:
585.2198



I-229:
599.2352



I-230:
527.1765



I-231:
585.2195



I-232:
571.2033



I-233:
571.2028



I-234:
545.1676



I-235:
557.1849



I-236:
458.0994



I-237:
615.2217



I-238:
615.2214



I-239:
559.1851



I-240:
557.1880



I-241:
571.2035



I-242:
585.2169



I-243:
557.1893



I-244:
586.2295



I-245:
490.1365



I-246:
547.1831



I-247:
561.2004



I-248:
603.1714



I-249:
469.1317



I-250:
572.2137



I-251:
572.2140



I-252:
533.1689



I-253:
573.1966



I-254:
559.2009



I-255:
573.2187



I-256:
455.1499



I-257:
547.1803



I-258:
511.0542



I-259:
601.2042



I-260:
547.1813



I-261:
573.2173



I-262:
571.2009



I-263:
585.2164



I-264:
559.2041



I-265:
545.1858



I-266:
589.1555



I-267:
558.1969



I-268:
558.1982



I-269:
621.1760



I-270:
529.1733



I-271:
526.1345



I-272:
496.1588



I-273:
507.0622



I-274:
521.0448



I-275:
536.2267



I-276:
482.1776



I-277:
509.0967



I-278:
531.1524



I-279:
442.1091



I-280:
574.1943



I-281:
593.1419



I-282:
607.1584



I-283:
581.1453



I-284:
544.1826



I-285:
531.1529



I-286:
543.1704



I-287:
591.1867



I-288:
605.2016



I-289:
577.1710



I-290:
591.1900



I-291:
579.1263



I-292:
593.1439



I-293:
587.2139



I-294:
617.1853



I-295:
603.1746



I-296:
563.1593



I-297:
577.1714



I-298:
524.1949



I-299:
510.1813



I-300:
605.1879



I-301:
460.0978



I-302:
537.2438



I-303:
539.2562



I-304:
542.1863



I-305:
528.1737



I-306:
545.1308



I-307:
533.1642



I-308:
533.1680



I-309:
605.1894



I-310:
602.1863



I-311:
581.2652



I-312:
551.2576



I-313:
621.1731



I-314:
573.1610



I-315:
524.1979



I-316:
538.2110



I-317:
588.1727



I-318:
579.1300



I-319:
559.1850



I-320:
545.1876



I-321:
573.1971



I-322:
597.2403



I-323:
575.1523



I-324:
589.1704



I-325:
589.1678



I-326:
589.1680



I-327:
575.1517



I-328:
514.1995



I-329:
553.2092



I-330:
567.2287



I-331:
567.2301



I-332:
553.2124



I-333:
567.2288



I-334:
490.1270



I-335:
559.2007



I-336:
572.2352



I-337:
475.1144



I-338:
486.1287



I-339:
531.1727



I-340:
530.1895



I-341:
616.2019



I-342:
598.2501



I-343:
514.1631



I-344:
558.9984



I-345:
558.2185



I-346:
572.2341



I-347:
558.2203



I-348:
570.2169



I-349:
525.2404



I-350:
602.1911



I-351:
561.1395



I-352:
454.0727



I-353:
473.1430



I-354:
501.1626



I-355:
497.0780



I-356:
473.1106



I-357:
464.1012



I-358:
504.1412



I-359:
532.1712



I-360:
484.0467



I-361:
512.0783



I-362:
580.1487



I-363:
496.0996



I-364:
468.0686



I-365:
566.1355



I-366:
559.1852



I-367:
566.1333



I-368:
468.0684



I-369:
564.1728



I-370:
550.1549



I-371:
491.1096



I-372:
518.1921



I-373:
490.1603



I-374:
564.1736



I-375:
550.1579



I-376:
596.2613



I-377:
486.1401



I-378:
630.2207



I-379:
559.1829



I-380:
573.1978



I-381:
616.2039



I-382:
587.2132



I-383:
599.2158



I-384:
585.1999



I-385:
492.106



I-386:
492.1055



I-387:
477.095



I-388:
477.0948



I-389:
602.1900



I-390:
588.1738



I-301:
573.1996



I-392:
599.2152



I-393:
587.2156



I-394:
437.1107



I-395:
511.0564



I-396:
650.1655



I-397:
664.1835










Example 21: Expression and Purification of Aurora Kinase Enzymes
Aurora A Enzyme Expression and Purification

Recombinant mouse Aurora A with an amino-terminus hexahistidine tag (His-Aurora A) was expressed using a standard baculovirus vector and insect cell expression system (Bac-to-Bac®, Invitrogen).


Soluble, recombinant mouse Aurora A was purified from insect cells using Ni-NTA agarose (Qiagen) as described by the manufacturer and further purified over an S75 size exclusion column (Amersham Pharmacia Biotech).


Aurora B Enzyme Expression and Purification

Recombinant mouse Aurora B with an amino-terminus hexahistidine tag (His-Aurora B) was expressed using a standard baculovirus vector and insect cell expression system (Bac-to-Bac®, Invitrogen).


Soluble, recombinant mouse Aurora B was purified from insect cells using Ni-NTA agarose (Qiagen) as described by the manufacturer.


Example 22: Aurora Kinase Enzyme Assays
Aurora A DELFIA® Kinase Assay

The mouse Aurora A enzymatic reaction totaled 25 μL and contained 25 mM Tris-HCl (pH 8.5), 2.5 mM MgCl2, 0.05% Surfact-AMPS-20, 5 mM Sodium Fluoride, 5 mM DTT, 250 μM ATP, 10 μM peptide substrate (Biotin-β-Ala-QTRRKSTGGKAPR-NH2), and 500 μM recombinant murine Aurora A enzyme. The enzymatic reaction mixture, with and without Aurora inhibitors, was incubated for 15 minutes at room temperature before termination with 100 μL of stop buffer (1% BSA, 0.05% Surfact-AMPS-20, and 100 mM EDTA). A total of 100 μL of the enzyme reaction mixture was transferred to wells of a Neutravidin-coated 96-well plate (Pierce) and incubated at room temperature for 30 minutes. The wells were washed with wash buffer (25 mM Tris, 150 mM sodium chloride, and 0.1% Tween 20) and incubated for 1 hour with 100 μL of antibody reaction mixture containing 1% BSA, 0.05% Surfact-AMPS-20, anti-phospho-PKA rabbit polyclonal antibody (1:2000, New England Biolabs), and europium labeled anti-rabbit IgG (1:2000, Perkin Elmer). The wells were washed and then the bound europium was liberated using 100 μL of Enhancement Solution (Perkin Elmer). Quantification of europium was done using a Wallac™ EnVision (Perkin Elmer).


Compounds I-1 to I-12, I-14 to I-32, I-34, I-37, I-39, I-45, I-52 to I-55, I-57 to I-59.1-63 to I-69, I-73 to I-75, I-80, I-85, I-86, I-91, I-93 to I-96, I-98 to I-103, I-109, I-111 to I-113, I-117, I-118, I-120, I-126, I-128 to I-131, I-134 to I-138, I-142, I-145, I-147 to I-151, I-157, I-160 to

  • I-163, I-165, I-166, I-168 to I-171, I-173 to I-199, I-202 to I-211, I-213 to I-217, I-219 to I-235, I-237 to I-301, I-304 to I-310, I-313 to I-327, I-329 to I-335, I-337 to I-341, I-343, I-350 to I-355, I-357 to I-360, and I-362 to I-376 exhibited IC50 values less than or equal to 1.0 μM in this assay.


Compounds I-1 to I-12, I-14 to I-22, I-24 to I-32, I-52 to I-55, I-57, I-58, I-63, I-65 to I-67, I-69, I-73, I-86, I-93, I-98 to I-100, I-102, I-103, I-111 to I-113, I-117, I-128, I-130, I-135, I-145, I-147, I-148, I-160, I-161, I-163, I-171, I-174 to I-199, I-204 to I-206, I-208 to I-211, I-213 to I-217.1-219 to I-229, I-231 to I-235, I-237 to I-244, I-246 to I-257, I-259 to I-270, I-272, I-274, I-277, I-278, I-280 to I-301, I-304 to I-310, I-313 to I-319, I-321, I-323 to I-327, I-329 to I-334, I-337, I-338, I-341, I-343, I-350, I-351, I-353, I-355, I-357, I-359, I-362, I-365 to I-368, and I-371 to I-376 exhibited IC50 values less than or equal to 100 nM in this assay.


Aurora B DELFIA® Kinase Assay

The mouse Aurora B enzymatic reaction totaling 25 μL contained 25 mM Tris-HCl (pH 8.5), 2.5 mM MgCl2, 0.025% Surfact-AMPS-20 (Pierce), 1% Glycerol, 1 mM DTT, 1 mM ATP, 3 μM peptide substrate (Biotin-β-Ala-QTRRKSTGGKAPR-NH2), and 20 nM recombinant murine Aurora B enzyme. The enzymatic reaction mixture, with or without Aurora inhibitors, was incubated for 3 hours at room temperature before termination with 100 μL of stop buffer (1% BSA, 0.05% Surfact-AMPS-20, and 100 mM EDTA). A total of 100 μL of the enzyme reaction mixture was transferred to wells of a Neutravidin-coated 96-well plate (Pierce) and incubated at room temperature for 30 minutes. The wells were washed with wash buffer (25 mM Tris, 150 mM sodium chloride, and 0.1% Tween 20) and incubated for 1 hour with 100 μL of antibody reaction mix containing 1% BSA, 0.05% Surfact-AMPS-20, anti-phospho-PKA rabbit polyclonal antibody (1:2000, New England Biolabs), and europium labeled anti-rabbit IgG (1:2000, Perkin Elmer). The wells were washed and then the bound europium was liberated using 100 μL of Enhancement Solution (Perkin Elmer). Quantification of europium was done using a Wallac™ EnVision (Perkin Elmer).


Example 23: Cellular Assay
Aurora Phosphorylation Assays

Inhibition of Aurora A or Aurora B activity in whole cell systems can be assessed by determination of decreased phosphorylation of Aurora substrates. For example, determining decreased phosphorylation of histone H3 on Serine 10, an Aurora B substrate can be used to measure inhibition of Aurora B activity in a whole cell system. Alternatively, any known Aurora B substrate can be used in similar assay methods to assess inhibition of Aurora B activity. Similarly, Aurora A inhibition can be determined using analogous methods and known Aurora A substrates for detection.


In a specific example, HeLa cells were seeded in a 96-well cell culture plate (10×103 cells/well) and incubated overnight at 37° C. Cells were incubated with Aurora inhibitors for 1 hour at 37° C., fixed with 4% paraformaldehyde for 10 minutes and then permeabilized with 0.5% TritonX-100 in PBS. Cells were incubated with mouse anti-pHisH3 (1:120, Cell Signaling Technologies) and rabbit anti-mitotic marker (1:120, Millennium Pharmaceuticals Inc.) antibodies for 1 hour at room temperature. After washing with PBS the cells were stained with anti-rabbit IgG Alexa 488 (1:180, Molecular Probes) and anti-mouse IgG Alexa 594 (1:180) for 1 hour at room temperature. DNA was then stained with Hoechst solution (2 μg/ml). The percentage of pHisH3 and anti-mitotic positive cells were quantified using Discovery I and MetaMorph (Universal Imaging Corp.). Aurora B inhibition was determined by calculating the decrease of pHisH3 positive cells.


Anti-Proliferation Assays

HCT-116 (1000) or other tumor cells in 100 μL of appropriate cell culture medium (McCoy's 5A for HCT-116, Invitrogen) supplemented with 10% fetal bovine serum (Invitrogen) was seeded in wells of a 96-well cell culture plate and incubated overnight at 37° C. Aurora inhibitors were added to the wells and the plates were incubated for 96 hours at 37° C. MTT or WST reagent (10 μL, Roche) was added to each well and incubated for 4 hours at 37° C. as described by the manufacturer. For MTT the metabolized dye was solubilized overnight according to manufacturer's instructions (Roche). The optical density for each well was read at 595 nm (primary) and 690 nm (reference) for the MTT and 450 nm for the WST using a spectrophotometer (Molecular Devices). For the MTT the reference optical density values were subtracted from the values of the primary wavelength. Percent inhibition was calculated using the values from a DMSO control set to 100%.


Example 24: In Vivo Assays
In Vivo Tumor Efficacy Model

HCT-116 (1×106) or other tumor cells in 100 μL of phosphate buffered saline were aseptically injected into the subcutaneous space in the right dorsal flank of female CD-1 nude mice (age 5-8 weeks, Charles River) using a 23-ga needle. Beginning at day 7 after inoculation tumors were measured twice weekly using a vernier caliper. Tumor volumes were calculated using standard procedures (0.5×(length*width2)). When the tumors reached a volume of approximately 200 mm3 mice were injected i.v. in the tail vein with Aurora inhibitors (100 μL) at various doses and schedules. All control groups received vehicle alone. Tumor size and body weight was measure twice a week and the study was terminated when the control tumors reached approximately 2000 mm3.


While the foregoing invention has been described in some detail for purposes of clarity and understanding, these particular embodiments are to be considered as illustrative and not restrictive. It will be appreciated by one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention, which is to be defined by the appended claims rather than by the specific embodiments.


The patent and scientific literature referred to herein establishes knowledge that is available to those with skill in the art. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The issued patents, applications, and references that are cited herein are hereby incorporated by reference to the same extent as if each was specifically and individually indicated to be incorporated by reference. In the case of inconsistencies, the present disclosure, including definitions, will control.

Claims
  • 1. A compound of formula (A):
  • 2. The compound of claim 1, wherein: each of Rx and Ry independently is hydrogen, fluoro, or a C1-6 aliphatic optionally substituted with one or two R3; or Rx and Ry, taken together with the carbon atom to which they are attached, form an optionally substituted 3- to 6-membered cycloaliphatic ring;Re is hydrogen, —OH, —NHR4, —SH, or a C1-3 aliphatic optionally substituted with R3 or R7;Rf1 and Rf2 together form a bond;G is —H, —OH, —NH2, —O(C1-3 alkyl), —NH(C1-3 alkyl), —N(C1-3 alkyl)2, C1-3 alkyl, C1-3 fluoroalkyl, —O-L1-R7, —N(C1-3 alkyl)-L1-R7, or -L1-R7; andL1 is a covalent bond or C1-3 alkylene.
  • 3. The compound of claim 1, having formula (A-1):
  • 4. The compound of claim 3, having formula (C):
  • 5. The compound of claim 3, wherein each of Rx and Ry independently is hydrogen, fluoro, or a C1-6 aliphatic optionally substituted with one or two R3; or Rx and Ry, taken together with the carbon atom to which they are attached, form an optionally substituted 3- to 6-membered cycloaliphatic ring.
  • 6. The compound of claim 5, wherein Ring A is a substituted or unsubstituted ring selected from the group consisting of furano, dihydrofurano, thieno, dihydrothieno, cyclopenteno, cyclohexeno, 2H-pyrrolo, pyrrolo, pyrrolino, pyrrolidino, oxazolo, thiazolo, imidazolo, imidazolino, imidazolidino, pyrazolo, pyrazolino, pyrazolidino, isoxazolo, isothiazolo, oxadiazolo, triazolo, thiadiazolo, 2H-pyrano, 4H-pyrano, benzo, pyridino, piperidino, dioxano, morpholino, dithiano, thiomorpholino, pyridazino, pyrimidino, pyrazino, piperazino, and triazino.
  • 7. The compound of claim 6 wherein Ring A is a substituted or unsubstituted ring selected from the group consisting of furano, thieno, pyrrolo, oxazolo, thiazolo, imidazolo, pyrazolo, isoxazolo, isothiazolo, triazolo, benzo, pyridino, pyridazino, pyrimidino, and pyrazino.
  • 8. The compound of claim 3, wherein: each substitutable saturated ring carbon atom in Ring A is unsubstituted or substituted with ═O, ═S, ═C(R5)2, ═N—N(R4)2, ═N—OR5, ═N—NHC(O)R5, ═N—NHCO2R6, ═N—NHSO2R6, ═N—R5 or —Rb;each substitutable unsaturated ring carbon atom in Ring A is unsubstituted or substituted with —Rb;each substitutable ring nitrogen atom in Ring A is unsubstituted or substituted with —R9b;one ring nitrogen atom in Ring A optionally is oxidized;each Rb independently is -halo, —NO2, —CN, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —C≡C—R5, —C≡C—R10, —OR5, —SR6, —S(O)R6, —SO2R6, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —N(R4)—N(R4)2, N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, —P(O)(OR5)2, an optionally substituted aliphatic, or an optionally substituted aryl, heterocyclyl, or heteroaryl group; or two adjacent Rb, taken together with the intervening ring atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S;each R3 independently is selected from the group consisting of -halo, —OH, —O(C1-3 alkyl), —CN, —N(R4)2, —C(O)(C1-3 alkyl), —CO2H, —CO2(C1-3 alkyl), —C(O)NH2, and —C(O)NH(C1-3 alkyl);each R4 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group; or two R4 on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 5- to 6-membered heteroaryl or 4- to 8-membered heterocyclyl having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S;each R5 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;each R6 independently is an optionally substituted aliphatic or aryl group;each R7 independently is an optionally substituted aryl, heterocyclyl, or heteroaryl group;each R9b independently is —C(O)R5, —C(O)N(R4)2, —CO2R6, —SO2R6, —SO2N(R4)2, or a C1-4 aliphatic optionally substituted with R3 or R7; andeach R10 independently is —CO2R5 or —C(O)N(R4)2.
  • 9. The compound of claim 8, wherein: each Rb independently is selected from the group consisting of C1-6 aliphatic, C1-6 fluoroaliphatic, —R2b, —R7b, -T1-R2b, and -T1-R7b; or two adjacent Rb, taken together with the intervening ring atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S;T1 is a C1-6 alkylene chain optionally substituted with R3 or R3b, wherein T1 or a portion thereof optionally forms part of a 3- to 7-membered ring;each R3b independently is a C1-3 aliphatic optionally substituted with R3 or R7, or two substituents R3b on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring;each R2b independently is halo, —NO2, —CN, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —C≡C—R5, —C≡C—R10, —OR5, —SR6, —S(O)R6, —SO2R6, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —N(R4)—N(R4)2, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2; andeach R7b independently is an optionally substituted aryl, heteroaryl, or heterocyclyl group.
  • 10. The compound of claim 9, wherein Ring A is selected from the group consisting of:
  • 11. The compound of claim 10, wherein Ring A is selected from the group consisting of:
  • 12. The compound of claim 10, having formula (B):
  • 13. The compound of claim 12, wherein: Ring B is a mono- or bicyclic aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring;each substitutable saturated ring carbon atom in Ring B is unsubstituted or is substituted with ═O, ═S, ═C(R5)2, or Rc;each substitutable unsaturated ring carbon atom in Ring B is unsubstituted or is substituted with Rc;each substitutable ring nitrogen atom in Ring B is unsubstituted or substituted with R9c;each Rc independently is selected from the group consisting of C1-6 aliphatic, R2c, R7c, -T1-R2c, and -T1-R7c;T1 is a C1-6 alkylene chain optionally substituted with R3 or R3b, wherein T1 or a portion thereof optionally forms part of a 3- to 7-membered ring;R2c is -halo, —NO2, —CN, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —C≡C—R5, —C≡C—R10, —OR5, —SR6, —S(O)R6, —SO2R6, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —N(R4)—N(R4)2, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2;each R7C independently is an optionally substituted aryl, heterocyclyl, or heteroaryl group;each R9C independently is —C(O)R5, —C(O)N(R4)2, —CO2R6, —SO2R6, —SO2N(R4)2, or a C1-4 aliphatic optionally substituted with R3 or R7; andRing C is a mono- or bicyclic aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring;each substitutable saturated ring carbon atom in Ring C is unsubstituted or is substituted with ═O, ═S, ═C(R5)2, or Rd;each substitutable unsaturated ring carbon atom in Ring C is unsubstituted or is substituted with Rd;each substitutable ring nitrogen atom in Ring C is unsubstituted or is substituted with R9d;each Rd independently is selected from the group consisting of C1-6 aliphatic, R2d, R7d, -T2-R2d, -T2-R7d, —V-T3-R2d, and —V-T3-R7d;T2 is a C1-6 alkylene chain optionally substituted with R3 or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —N(R4)—N(R4)—, —N(R4)SO2—, or —SO2N(R4)—, and wherein T2 or a portion thereof optionally forms part of a 3-7 membered ring;T3 is a C1-6 alkylene chain optionally substituted with R3 or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —N(R4)—N(R4)—, —N(R4)SO2—, or —SO2N(R4)—, and wherein T3 or a portion thereof optionally forms part of a 3-7 membered ring;V is —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —C(NR4)═N—, —C(OR5)═N—, —N(R4)—N(R4)—, —N(R4)SO2—, —N(R4)SO2N(R4)—, —P(O)(R5)—, —P(O)(OR5)—O—, —P(O)—O—, or —P(O)(NR5)—N(R5)—;R2d is -halo, —NO2, —CN, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —C≡C—R5, —C≡C—R10, —OR5, —SR6, —S(O)R6, —SO2R6, —SO3R5, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, —N(R4)C(═NR4)—N(R4)—C(O)R5, —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —N(R4)—N(R4)2, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2;each R7d independently is an optionally substituted aryl, heterocyclyl, or heteroaryl group; andeach R9d independently is —C(O)R5, —C(O)N(R4)2, —CO2R6, —SO2R6, —SO2N(R4)2, or a C1-4 aliphatic optionally substituted with R3 or R7.
  • 14. The compound of claim 1, having formula (I):
  • 15. The compound of claim 14, having formula (II):
  • 16. The compound of claim 15, wherein Ring B is a substituted or unsubstituted mono- or bicyclic aryl or heteroaryl ring selected from the group consisting of furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, phenyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolizinyl, indolyl, isoindolyl, indazolyl, benzo[b]furanyl, benzo[b]thienyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, purinyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, naphthyridinyl, and pteridinyl.
  • 17. The compound of claim 15, wherein Ring B is a substituted or unsubstituted phenyl or pyridyl ring.
  • 18. The compound of claim 17, having formula (IIa):
  • 19-56. (canceled)
  • 57. A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier.
  • 58. (canceled)
  • 59. A method for treating an Aurora kinase-mediated disorder in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound according to claim 1.
  • 60-62. (canceled)
PRIORITY CLAIM

This application claims priority from U.S. Provisional Patent Application Ser. No. 60/571,653, filed on May 14, 2004, and U.S. Provisional Patent Application Ser. No. 60/617,221, filed on Oct. 8, 2004, each of which is hereby incorporated by reference in its entirety.

Provisional Applications (2)
Number Date Country
60617221 Oct 2004 US
60571653 May 2004 US
Divisions (2)
Number Date Country
Parent 16569809 Sep 2019 US
Child 17328618 US
Parent 15707484 Sep 2017 US
Child 16569809 US
Continuations (4)
Number Date Country
Parent 14810225 Jul 2015 US
Child 15707484 US
Parent 13644216 Oct 2012 US
Child 14810225 US
Parent 12472583 May 2009 US
Child 13644216 US
Parent 11127855 May 2005 US
Child 12472583 US