COMPOUNDS AND USES THEREOF

Abstract
The present invention relates to compositions and methods for the treatment of BAF-related disorders, such as cancers and viral infections.
Description
BACKGROUND

Disorders can be affected by the BAF complex. BRD9 is a component of the BAF complex. The present invention relates to useful compositions and methods for the treatment of BAF complex-related disorders, such as cancer and infection.


SUMMARY

Bromodomain-containing protein 9 (BRD9) is a protein encoded by the BRD9 gene on chromosome 5. BRD9 is a component of the BAF (BRG1- or BRM-associated factors) complex, a SWI/SNF ATPase chromatin remodeling complex, and belongs to family IV of the bromodomain-containing proteins. BRD9 is present in several SWI/SNF ATPase chromatin remodeling complexes and is upregulated in multiple cancer cell lines. Accordingly, agents that reduce the levels and/or activity of BRD9 may provide new methods for the treatment of disease and disorders, such as cancer and infection. The inventors have found that depleting BRD9 in cells results in the depletion of the SS18-SSX fusion protein in those cells. The SS18-SSX fusion protein has been detected in more than 95% of synovial sarcoma tumors and is often the only cytogenetic abnormality in synovial sarcoma. Additionally, evidence suggests that the BAF complex is involved in cellular antiviral activities. Thus, agents that degrade BRD9 (e.g., compounds) are useful in the treatment of disorders (e.g., cancers or infections) related to BAF, BRD9, and/or SS18-SSX.


The present disclosure features compounds and methods useful for treating BAF-related disorders (e.g., cancer or infection).


In an aspect, the disclosure features a compound having the structure of Formula I:




embedded image


where


R1 is H, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C10 carbocyclyl;


Z1 is CR2 or N;


R2 is H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, or optionally substituted C2-C9 heteroaryl;




embedded image


X1 is a bond, O, NR3a,




embedded image


or CR4aR5a;


X2 is O, NR3b,




embedded image


or CR4bR5b;


X3 is O, NR3c,




embedded image


or CR4cR5c;


X4 is a bond, O, NR3d,




embedded image


or CR4dR5d;


X5 is O or NR3e and X6 is CR4fR5f, or X5 is CR4eR5e and X6 is O or NR3f;


X7 is O, NR3g, or CR4gR5g;


X8 is O, NR3h, or CR4hR5h;


each of R3a, R3b, R3c, and R3d is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3a and R4b, R4a and R3b, R4b and R4a, R3b and R4c, R4b and R4c, R3c and R4b, R3c and R4d, R4c and R4d, and/or R3d and R4c, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl;


each of R4a, R4b, R4c, and R4d is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, or optionally substituted amino, or R3a and R4b, R4a and R3b, R4b and R4a, R3b and R4c, R4b and R4c, R3c and R4b, R3c and R4d, R4c and R4d, and/or R3d and R4c, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl;


each of R5a, R5b, R5c, and R5d is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino;


each of R3e, R3f, R3g, and R3h is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3e and R4f or R4e and R3f, together with the atoms to which each is attached, combine to form optionally substituted heterocyclycl;


each of R4e, R4f, R4g, and R4h is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3e and R4f or R4e and R3f, together with the atoms to which each is attached, combine to form optionally substituted heterocyclycl;


each of R5e, R5f, R5g, and R5h is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino; and


G is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl, or a pharmaceutically acceptable salt thereof.


In some embodiments,




embedded image


In some embodiments,




embedded image


In some embodiments,




embedded image


In some embodiments, is




embedded image


In another aspect, the disclosure features a compound having the structure of Formula I:




embedded image


where


R1 is H, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C10 carbocyclyl;


Z1 is CR2 or N;


R2 is H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, or optionally substituted C2-C9 heteroaryl;




embedded image


X1 is a bond, O, NR3a, or CR4aR5a;


X2 is O, NR3b, or CR4bR5b;


X3 is O, NR3c, or CR4cR5c;


X4 is a bond, O, NR3d, or CR4dR5d;


each of R3a, R3b, R3c, and R3d is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3a and R4b, R4a and R3b, R4b and R4a, R3b and R4c, R4b and R4c, R3c and R4b, R3c and R4d, R4c and R4d, and/or R3d and R4c, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl;


each of R4a, R4b, R4c, and R4d is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, or optionally substituted amino, or R3a and R4b, R4a and R3b, R4b and R4a, R3b and R4c, R4b and R4c, R3c and R4b, R3c and R4d, R4c and R4d, and/or R3d and R4c, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl;


each of R5a, R5b, R5c, and R5d is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino; and G is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl, or a pharmaceutically acceptable salt thereof.


In some embodiments, R1 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C10 carbocyclyl. In some embodiments, R1 is H, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, or optionally substituted C3-C10 carbocyclyl. In some embodiments, R1 is H, optionally substituted C1-C6 alkyl, or optionally substituted C3-C10 carbocyclyl.


In some embodiments, R1 is H. In some embodiments, R1 is optionally substituted C1-C6 alkyl. In some embodiments, R1 is optionally substituted C2-C6 alkenyl. In some embodiments, R1 is optionally substituted C3-C10 carbocyclyl.


In some embodiments, optionally substituted C1-C6 alkyl is C1-C6 perfluoroalkyl.


In some embodiments, R1 is




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is H,




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is H,




embedded image


In some embodiments, R1 is H,




embedded image


In some embodiments, R1 is H,




embedded image


In some embodiments, R1 is H or




embedded image


In some embodiments, R1 is H. In some embodiments, R1 is




embedded image


In some embodiments, Z1 is CR2. In some embodiments, Z1 is N.


In some embodiments, R2 is H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl.


In some embodiments, R2 is H, halogen, or optionally substituted C1-C6 alkyl.


In some embodiments, R2 is H, F, or




embedded image


In some embodiments, R2 is H. In some embodiments, R2 is F. In some embodiments, R2 is




embedded image


In some embodiments, X1 is a bond, O, NR3a, or CR4aR5a; X2 is O, NR3b, or CR4bR5b; X3 is O, NR3c, or CR4cR5c; and X4 is a bond, O, NR3d, or CR4dR5d.


In some embodiments, X1 is a bond. In some embodiments, X1 is O, NR3a, or CR4aR5a. In some embodiments, X1 is O or NR3a. In some embodiments, X1 is NR3a or CR4aR5a In some embodiments, X2 is O or NR3b. In some embodiments, X2 is CR4bR5b. In some embodiments, X2 is NR3b or CR4bR5b.


In some embodiments, X3 is O or NR3c. In some embodiments, X3 is CR4cR5c. In some embodiments, X3 is NR3c or CR4cR5c.


In some embodiments, X4 is a bond. In some embodiments, X4 is O, NR3d, or CR4dR5d. In some embodiments, X4 is O or NR3d. In some embodiments, X4 is NR3d or CR4dR5d.


In some embodiments, X1 is O, NR3a, or CR4aR5a; X2 is O, NR3b, or CR4bR5b; X3 is O, NR3c, or CR4cR5c; and X4 is O, NR3d, or CR4dR5d.


In some embodiments, X1 is CR4aR5a; X2 is NR3b; X3 is CR4cR5c; and X4 is CR4dR5d. In some embodiments, X1 is CR4aR5a; X2 is CR4bR5b; X3 is NR3c; and X4 is CR4dR5d. In some embodiments, X1 is O or NR3a; X2 is CR4bR5b; X3 is CR4cR5c; and X4 is O or NR3d. In some embodiments, X1 is a bond; X2 is CR4bR5b; X3 is O or NR3c; and X4 is CR4dR5d. In some embodiments, X1 is CR4aR5a; X2 is CR4bR5b; X3 is CR4cR5c; and X4 is CR4dR5d. In some embodiments, X5 is NR3e and X6 is CR4fR5f.


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 acyl.


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide.


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C1-C6 acyl. In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, optionally substituted C1-C6 alkyl or optionally substituted C1-C6 heteroalkyl. In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, optionally substituted C1-C6 alkyl or optionally substituted C1-C6 acyl. In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, optionally substituted C1-C6 acyl. In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, optionally substituted sulfone or optionally substituted sulfonamide.


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, H, optionally substituted C1-C6 alkyl,




embedded image


where


R5 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl;


W1 is O or S;


W2 is NR7 or O;


R7 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl;


R8 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl; and


R9 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl.


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, C1-C6 alkyl,




embedded image


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, C1-C6 alkyl. In some embodiments, each of R3a, R3b, R3c, and R3d is, independently,




embedded image


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently,




embedded image


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently,




embedded image


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently,




embedded image


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, H, optionally substituted C1-C6 alkyl,




embedded image


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, H, C1-C6 alkyl,




embedded image


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, H, C1-C6 alkyl, or




embedded image


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, C1-C6 alkyl




embedded image


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, H, methyl, or




embedded image


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, optionally substituted C1-C6 alkyl.


In some embodiments, each of R4a, R4b, R4c, and R4d is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R4a, R4b, R4c, and R4d is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R4a, R4b, R4c, and R4d is H. In some embodiments, each of R4a, R4b, R4c, and R4d is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R4a, R4b, R4c, and R4d is, independently, H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 acyl.


In some embodiments, each of R4a, R4b, R4c, and R4d is, independently, H, optionally substituted C1-C6 alkyl,




embedded image


where


R6 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl;


W1 is O or S;


W2 is NR7 or O;


R7 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl;


R8 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl; and


R9 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl.


In some embodiments, each of R4a, R4b, R4c, and R4d is, independently, H, optionally substituted C1-C6 alkyl,




embedded image


In some embodiments, each of R4a, R4b, R4c, and R4d is, independently, H or optionally substituted C1-C6 alkyl. In some embodiments, each of R4a, R4b, R4c, and R4d is, independently, H.


In some embodiments, W1 is O. In some embodiments, W1 is S.


In some embodiments, W2 is O. In some embodiments, W2 is NR7.


In some embodiments, R6 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C10 carbocyclyl. In some embodiments, R6 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl. In some embodiments, R6 is H, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl. In some embodiments, R6 is optionally substituted C1-C6 alkyl or optionally substituted C1-C6 heteroalkyl. In some embodiments, R6 is optionally substituted C3-C10 carbocyclyl or optionally substituted C6-C10 aryl


In some embodiments, R6 is H, methyl, ethyl




embedded image


In some embodiments, R6 is H. In some embodiments, R6 is methyl, ethyl,




embedded image


In some embodiments, R6 is




embedded image


In some embodiments, R6 is H, methyl, ethyl,




embedded image


In some embodiments, R7 is H or optionally substituted C1-C6 alkyl. In some embodiments, R7 is H or methyl.


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, H, methyl,




embedded image


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, H, methyl,




embedded image


In some embodiments, R3a is H, methyl,




embedded image


In some embodiments, R3b is H, methyl,




embedded image


In some embodiments, R3c is H, methyl,




embedded image


In some embodiments, R3d is H, methyl,




embedded image


In some embodiments, R3a and R4b, R4a and R3b, R4b and R4a, R3b and R4c, R4b and R4c, R3c and


R4b, R3c and R4d, R4c and R4d, and/or R3d and R4c, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl.


In some embodiments, R3a and R4b, R4b and R4a, R4b and R4c, R3c and R4b, R3c and R4d, and/or R3d and R4c, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl.


In some embodiments, each of R5a, R5b, R5c, and R5d is, independently, H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl. In some embodiments, each of R5a, R5b, R5c, and R5d is H.


In some embodiments, each of R3e, R3f, R3g, and R3h is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide.


In some embodiments, each of R4e, R4f, R4g, and R4h is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide.


In some embodiments, each of R5e, R5f, R5g, and R5h is, independently, H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl. In some embodiments, each of R5e, R5f, R5g, and R5h is H.


In some embodiments, G is optionally substituted C3-C10 carbocyclyl or optionally substituted C2-C9 heterocyclyl. In some embodiments, G is optionally substituted C6-C10 aryl or optionally substituted C2-C9 heteroaryl.


In some embodiments, G is optionally substituted C3-C10 carbocyclyl. In some embodiments, G is optionally substituted C6-C10 aryl. In some embodiments, G is optionally substituted C2-C9 heterocyclyl. In some embodiments, G is optionally substituted C2-C9 heteroaryl.


In some embodiments, G is




embedded image


where


each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or optionally substituted C2-C9 heterocyclyl.


In some embodiments, each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or optionally substituted C2-C9 heterocyclyl.


In some embodiments, each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl; or RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heteroaryl or optionally substituted C2-C9 heterocyclyl.


In some embodiments, each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl.


In some embodiments, each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, F, Cl,




embedded image


In some embodiments, each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, F,




embedded image


In some embodiments, each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, F, Cl,




embedded image


In some embodiments, RG1 is H; RG2 is




embedded image


RG3 is



embedded image


RG4 is



embedded image


and RG5 is H. In some embodiments, RG1 is H; RG2 is




embedded image


RG3 is



embedded image


RG4 is H; and RG5 is




embedded image


In some embodiments, RG1 is H; RG2 is




embedded image


RG3 is



embedded image


RG4 is Cl or F; and RG5 is H. In some embodiments, RG1 is H; RG2 is




embedded image


RG3 is



embedded image


RG4 is H; and RG5 is H. In some embodiments, RG1 is H; RG2 is




embedded image


RG3 is



embedded image


RG4 is



embedded image


and RG5 is H.

In some embodiments, RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heteroaryl or optionally substituted C2-C9 heterocyclyl.


In some embodiments, RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl. In some embodiments, RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heteroaryl.


In some embodiments, G is




embedded image


where RG6 is H or optionally substituted C1-C6 alkyl. In some embodiments, G is




embedded image


where RG6 is H or optionally substituted C1-C6 alkyl.


In some embodiments, RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl or optionally substituted C2-C9 heteroaryl.


In some embodiments, G is




embedded image


where RG6 is H or optionally substituted C1-C6 alkyl.


In some embodiments, RG6 is H,




embedded image


In some embodiments, RG6 is H or




embedded image


In some embodiments, RG6 is H.


In some embodiments, RG1 is H, F,




embedded image


In some embodiments, RG1 is H.


In some embodiments, RG2 is H, F,




embedded image


In some embodiments, RG2 is H.


In some embodiments, RG3 is H, F,




embedded image


In some embodiments, RG3 is H.


In some embodiments, RG4 is H, F,




embedded image


In some embodiments, RG4 is H.


In some embodiments, RG5 is H, F,




embedded image


In some embodiments, RG5 is H.


In some embodiments, one or more of RG1, RG2, RG3, RG4, and RG5 is H. In some embodiments, two or more of RG1, RG2, RG3, RG4, and RG5 is H. In some embodiments, three or more of RG1, RG2, RG3, RG4, and RG5 is H. In some embodiments, each of RG1, RG2, RG3, RG4, and RG5 is H.


In some embodiments, G is




embedded image


where


each of RG7, RG8, RG9, RG10, and RG11 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG7 and RG8, RG8 and RG9, RG9 and RG10, and/or RG10 and RG11, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl.


In some embodiments, each of RG7, RG8, RG9, RG10, and RG11 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino; or RG7 and RG8, RG8 and RG9, RG9 and RG10, and/or RG10 and RG11, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl.


In some embodiments, each of RG7, RG8, RG9, RG10, and RG11 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl; or RG7 and RG8, RG8 and RG9, RG9 and RG10, and/or RG10 and RG11, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl.


In some embodiments, each of RG7, RG8, RG9, RG10, and RG11 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl.


In some embodiments, each of RG7, RG8, RG9, RG10, and RG11 is, independently, H, F, Cl,




embedded image


In some embodiments, RG8 is




embedded image


In some embodiments, G is




embedded image


In some embodiments, RG7 is H; RG8 is




embedded image


RG9 is H; and RG11 is H.


In some embodiments, G is




embedded image


where


each of RG12, RG13, and RG14 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG12 and RG14, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or optionally substituted C2-C9 heterocyclyl.


In some embodiments, each of RG12, RG13, and RG14 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino; or RG12 and RG14, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or optionally substituted C2-C9 heterocyclyl.


In some embodiments, the structure of Formula I has the structure of Formula Ia:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula I has the structure of Formula Ib:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula I has the structure of Formula Ic:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula I has the structure of Formula Id:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula I has the structure of Formula Ie:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula I has the structure of Formula If:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula I has the structure of Formula Ig:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula I has the structure of Formula Ih:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula I has the structure of Formula Ii:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula I has the structure of Formula Ij:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the compound has the structure of any one of compounds B1-B21 in Table 1A, or a pharmaceutically acceptable salt thereof. In some embodiments, the compound has the structure of any one of compounds B22-B24 in Table 1B, or a pharmaceutically acceptable salt thereof.


In an aspect, the disclosure features a compound having the structure of any one of compounds B1-B21 in Table 1A, or a pharmaceutically acceptable salt thereof.


In another aspect, the disclosure features a compound having the structure of any one of compounds B22-B24 in Table 1B, or a pharmaceutically acceptable salt thereof.









TABLE 1A







Compounds B1-B21 of the Disclosure








Compound



No.
Structure





B1 


embedded image







B2 


embedded image







B3 


embedded image







B4 


embedded image







B5 


embedded image







B6 


embedded image







B7 


embedded image







B8 


embedded image







B9 


embedded image







B10


embedded image







B11


embedded image







B12


embedded image







B13


embedded image







B14


embedded image







B15


embedded image







B16


embedded image







B17


embedded image







B18


embedded image







B19


embedded image







B20


embedded image







B21


embedded image


















TABLE 1B







Compounds B22-B24 of the Disclosure










Compound




No.
Structure






B22


embedded image








B23


embedded image








B24


embedded image











In another aspect, the disclosure features a compound having the structure of Formula II:





A-L-B   Formula II,


where


B is a degradation moiety,


L is a linker, and


A has the structure of Formula III:




embedded image


where


R1 is H, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C10 carbocyclyl;


Z1 is CR2 or N;


R2 is H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, or optionally substituted C2-C9 heteroaryl;




embedded image


X1′ is a bond, O, NR3a′, or CR4a′R5a′;


X2′ is O, NR3b′, or CR4b′R5b′;


X3′ is O, NR3c′, or CR4c′R5c′;


X4′ is a bond, O, NR3d′, or CR4d′R5d′;


X5′ is O, NR3e′, or CR4e′R5e′;


X6′ is O, NR3f′, or CR4f′R5f′;


X7′ is O, NR3g′, or CR4g′R5g′;


each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,




embedded image


halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3a′ and R4b′, R4a′ and R3b′, R4b′ and R4a′, R3b′ and R4c′, R4b′ and R4c′, R3c′ and R4b′, R3c′ and R4d′, R4c′ and R4d′, and/or R3d′ and R4c′, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl;


R3′ is absent, optionally substituted C1-C6 alkylene, optionally substituted C1-C6 heteroalkylene, optionally substituted C3-C10 carbocyclylene, optionally substituted C2-C9 heterocyclylene, optionally substituted C6-C10 arylene, optionally substituted C2-C9 heteroarylene, optionally substituted C2-C6 alkenylene, optionally substituted C2-C6 heteroalkenylene, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino;


each of R4a′, R4b′, R4c′, and R4d′ is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, thiol, optionally substituted sulfone, or optionally substituted amino, or R3a′ and R4b′, R4a′ and R3b′, R4b′ and R4a′, R3b′ and R4c′, R4b′ and R4c′, R3c′ and R4b′, R3c′ and R4d′, R4c′ and R4d′, and/or R3d′ and R4c′, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl;


each of R5a′, R5b′, R5′, and R5d′ is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino;


each of R3e′, R3f′, and R3g′ is, independently, H,




embedded image


halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3e and R4f or R4e and R3f, together with the atoms to which each is attached, combine to form optionally substituted heterocyclycl;


each of R4e′, R4f′, and R4g′ is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3e′ and R4f′ or R4e′ and R3f′, together with the atoms to which each is attached, combine to form optionally substituted heterocyclycl;


each of R5e′, R5f′, and R5g′ is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino;


G″ is




embedded image


optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl;


G′ is optionally substituted C3-C10 carbocyclylene, C2-C9 heterocyclylene, optionally substituted C6-C10 arylene, or optionally substituted C2-C9 heteroarylene; and


A1 is a bond between A and the linker,


where one of R3a′, R3b′, R3c′, R3d′, R3e′, R3f′, and R3g′ is




embedded image


or G is



embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments,




embedded image


In some embodiments,




embedded image


is




embedded image


In some embodiments,




embedded image


In another aspect, the disclosure features a compound having the structure of Formula II:





A-L-B   Formula II,


where


B is a degradation moiety,


L is a linker, and


A has the structure of Formula III:




embedded image


where


R1 is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C10 carbocyclyl;


Z1 is CR2 or N;


R2 is H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, or optionally substituted C2-C9 heteroaryl;




embedded image


X1′ is a bond, O, NR3a′, or CR4a′R5a′;


X2′ is O, NR3b′, or CR4b′R5b′;


X3′ is O, NR3c′, or CR4c′R5c′;


X4′ is a bond, O, NR3d′, or CR4d′R5d′;


each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,




embedded image


halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3a′ and R4b, R4a′ and R3b′, R4b′ and R4a′, R3b′ and R4c′, R4b′ and R4c′, R3c′ and R4b′, R3c′ and R4d′, R4c′ and R4d′, and/or R3d′ and R4c′, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl;


R3′ is absent, optionally substituted C1-C6 alkylene, optionally substituted C1-C6 heteroalkylene, optionally substituted C3-C10 carbocyclylene, optionally substituted C2-C9 heterocyclylene, optionally substituted C6-C10 arylene, optionally substituted C2-C9 heteroarylene, optionally substituted C2-C6 alkenylene, optionally substituted C2-C6 heteroalkenylene, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino;


each of R4a′, R4b′, R4c′, and R4d′ is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, thiol, optionally substituted sulfone, or optionally substituted amino, or R3a′ and R4b, R4a′ and R3b′, R4b′ and R4a′, R3b′ and R4c′, R4b′ and R4c′, R3c′ and R4b′, R3c′ and R4d′, R4c′ and R4d′, and/or R3d′ and R4c′, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl;


each of R5a′, R5b′, R5c′, and R5d′ is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino;


G″ is




embedded image


optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl;


G′ is optionally substituted C3-C10 carbocyclylene, C2-C9 heterocyclylene, optionally substituted C6-C10 arylene, or optionally substituted C2-C9 heteroarylene; and


A1 is a bond between A and the linker,


where one of R3a′, R3b′, R3c′, and R3d′ is




embedded image


or G is



embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, R1 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C10 carbocyclyl. In some embodiments, R1 is H, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, or optionally substituted C3-C10 carbocyclyl. In some embodiments, R1 is H, optionally substituted C1-C6 alkyl, or optionally substituted C3-C10 carbocyclyl.


In some embodiments, R1 is H. In some embodiments, R1 is optionally substituted C1-C6 alkyl. In some embodiments, R1 is optionally substituted C2-C6 alkenyl. In some embodiments, R1 is optionally substituted C3-C10 carbocyclyl.


In some embodiments, optionally substituted C1-C6 alkyl is C1-C6 perfluoroalkyl.


In some embodiments, R1 is




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is H,




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is H,




embedded image


In some embodiments, R1 is H,




embedded image


In some embodiments, R1 is H,




embedded image


In some embodiments, R1 is H or




embedded image


In some embodiments, R1 is H. In some embodiments, R1 is




embedded image


In some embodiments, Z1 is CR2. In some embodiments, Z1 is N.


In some embodiments, R2 is H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl.


In some embodiments, R2 is H, halogen, or optionally substituted C1-C6 alkyl.


In some embodiments, R2 is H, F, or




embedded image


In some embodiments, R2 is H. In some embodiments, R2 is F. In some embodiments, R2 is




embedded image


In some embodiments, X1′ is a bond. In some embodiments, X1 is O, NR3a′, or CR4a′R5a′. In some embodiments, X1′ is O or NR3a′. In some embodiments, X1′ is NR3a′ or CR4a′R5a′.


In some embodiments, X2′ is O or NR3b′. In some embodiments, X2′ is CR4b′R5b′. In some embodiments, X2′ is NR3b′ or CR4b′R5b′.


In some embodiments, X3′ is O or NR3c′. In some embodiments, X3′ is CR4c′R5c′. In some embodiments, X3′ is NR3c′ or CR4c′R5c′.


In some embodiments, X4′ is a bond. In some embodiments, X4′ is O, NR3d′, or CR4d′R5d′. In some embodiments, X4′ is O or NR3d′. In some embodiments, X4′ is NR3d′ or CR4d′R5d′.


In some embodiments, X1′ is O, NR3a′, or CR4a′R5a′; X2′ is O, NR3b′, or CR4b′R5b′; X3′ is O, NR3c′, or CR4c′R5c′; and X4′ is O, NR3d′, or CR4d′R5d′.


In some embodiments, X1′ is CR4a‘R5a’; X2′ is NR3b′; X3′ is CR4c′R5c′; and X4′ is CR4d′R5d′.


In some embodiments, X1′ is CR4a′R5a′; X2′ is CR4b′R5b′; X3′ is NR3c′; and X4′ is CR4d′R5d′.


In some embodiments, X1′ is O or NR3a′; X2′ is CR4b′R5b′; X3′ is CR4c′R5c′; and X4′ is O or NR3d′.


In some embodiments, X1′ is a bond; X2′ is CR4b′R5b′; X3′ is O or NR3c′; and X4′ is CR4d′R5d′.


In some embodiments, X1′ is CR4a′R5a′; X2′ is CR4b′R5b′; X3′ is CR4c′R5c′; and X4′ is CR4d′R5d′.


In some embodiments, X5′ is CR4e′R5e′ and X6′ is NR3f′.


In some embodiments, each of R3a′, R3b′, R3′, and R3d′ is, independently, H,




embedded image


optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,




embedded image


optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,




embedded image


optionally substituted C1-C6 alkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,




embedded image


optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 acyl.


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


optionally substituted C1-C6 alkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide.


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C1-C6 acyl. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


optionally substituted C1-C6 alkyl or optionally substituted C1-C6 heteroalkyl. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


optionally substituted C1-C6 alkyl or optionally substituted C1-C6 acyl. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


or optionally substituted C1-C6 acyl. In some embodiments, each of R3a′, R3′, R3c′, and R3d′ is, independently,




embedded image


optionally substituted sulfone, or optionally substituted sulfonamide.


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,




embedded image


optionally substituted C1-C6 alkyl,




embedded image


where


R6 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl;


W1 is O or S;


W2 is NR7 or O;


R7 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl;


R8 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl; and


R9 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl.


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


C1-C6 alkyl,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


or C1-C6 alkyl. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d is, independently,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,




embedded image


optionally substituted C1-C6 alkyl,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,




embedded image


C1-C6 alkyl,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,




embedded image


C1-C6 alkyl, or




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


C1-C6 alkyl, or




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,




embedded image


methyl, or




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently




embedded image


or optionally substituted C1-C6 alkyl.


In some embodiments, each of R4a′, R4b′, R4c′, and R4d′ is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R4a′, R4b′, R4c′, and R4d′ is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R4a, R4b′, R4c′, and R4d′ is H. In some embodiments, each of R4a′, R4b′, R4c′, and R4d′ is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R4a′, R4b′, R4c′, and R4d′ is, independently, H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 acyl.


In some embodiments, each of R4a′, R4b′, R4c′, and R4d′ is, independently, H, optionally substituted C1-C6 alkyl,




embedded image


where


R6 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl;


W1 is O or S;


W2 is NR7 or O;


R7 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl;


R8 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl; and


R9 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl.


In some embodiments, each of R4a′, R4b′, R4c′, and R4d′ is, independently, H, optionally substituted C1-C6 alkyl,




embedded image


In some embodiments, each of R4a′, R4b′, R4c′, and R4d′ is, independently, H or optionally substituted C1-C6 alkyl. In some embodiments, each of R4a′, R4b′, R4c′, and R4d′ is, independently, H.


In some embodiments, W1 is O. In some embodiments, W1 is S.


In some embodiments, W2 is O. In some embodiments, W2 is NR7.


In some embodiments, R6 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C10 carbocyclyl. In some embodiments, R6 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl. In some embodiments, R6 is H, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl. In some embodiments, R6 is optionally substituted C1-C6 alkyl or optionally substituted C1-C6 heteroalkyl. In some embodiments, R6 is optionally substituted C3-C10 carbocyclyl or optionally substituted C6-C10 aryl


In some embodiments, R6 is H, methyl, ethyl,




embedded image


In some embodiments, R6 is H or




embedded image


In some embodiments, R6 is methyl, ethyl,




embedded image


In some embodiments, R6 is or




embedded image


In some embodiments, R6 is H. In some embodiments, R6 is H, methyl, ethyl,




embedded image


In some embodiments, R7 is H or optionally substituted C1-C6 alkyl. In some embodiments, R7 is H or methyl.


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,




embedded image


methyl,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,




embedded image


methyl,




embedded image


In some embodiments, R3a′ is H,




embedded image


methyl




embedded image


In some embodiments, R3b′ is H,




embedded image


methyl,




embedded image


In some embodiments, R3c′ is H




embedded image


methyl,




embedded image


In some embodiments, R3d′ is H,




embedded image


methyl,




embedded image


In some embodiments, one of R3a′, R3b′, R3c′, and R3d′ is




embedded image


In some embodiments, R3b′ is




embedded image


In some embodiments, R3c′ is




embedded image


In some embodiments, R3′ is absent.


In some embodiments, R3a′ and R4b′, R4a′ and R3b′, R4b′ and R4a′, R3b′ and R4c′, R4b′ and R4c′, R3c′ and R4b′, R3c′ and R4d′, R4c′ and R4d′, and/or R3d′ and R4c′, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl.


In some embodiments, R3a′ and R4b′, R4a′ and R3b′, R3b′ and R4′, R4b′ and R3′, R3c′ and R4d, and/or R4c′ and R3d′, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl.


In some embodiments, each of R5a, R5b, R5c, and R5d is, independently, H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl. In some embodiments, each of R5a, R5b, R5c, and R5d is H.


In some embodiments, each of R3e′, R3f′, and R3g′ is, independently H,




embedded image


optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide.


In some embodiments, each of R4e′, R4f′, and R4g′ is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide.


In some embodiments, each of R5e′, R5f′, and R5g′ is, independently, H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl. In some embodiments, each of R5e′, R5f′, and R5g′ is H.


In some embodiments, G″ is optionally substituted C3-C10 carbocyclyl or optionally substituted C2-C9 heterocyclyl. In some embodiments, G″ is optionally substituted C6-C10 aryl or optionally substituted C2-C9 heteroaryl.


In some embodiments, G″ is optionally substituted C3-C10 carbocyclyl. In some embodiments, G is optionally substituted C6-C10 aryl. In some embodiments, G is optionally substituted C2-C9 heterocyclyl. In some embodiments, G″ is optionally substituted C2-C9 heteroaryl.


In some embodiments, G″ is




embedded image


where


each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or optionally substituted C2-C9 heterocyclyl.


In some embodiments, each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or optionally substituted C2-C9 heterocyclyl.


In some embodiments, each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl; or RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heteroaryl or optionally substituted C2-C9 heterocyclyl.


In some embodiments, each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl.


In some embodiments, each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, F, Cl,




embedded image


In some embodiments, each of RG1, RG2, RG3, RG4 and RG5 is, independently, H, F




embedded image


In some embodiments, each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, F, Cl,




embedded image


In some embodiments, RG1 is H; RG2 is




embedded image


RG3 is



embedded image


RG4 is



embedded image


and RG5 is H. In some embodiments, RG1 is H; RG2 is




embedded image


RG3 is



embedded image


RG4 is H; and RG5 is




embedded image


In some embodiments, RG1 is H; RG2 is




embedded image


RG3 is



embedded image


RG4 is Cl or F; and RG5 is H. In some embodiments, RG1 is H; RG2 is




embedded image


RG3 is



embedded image


RG4 is H; and RG5 is H. In some embodiments, RG1 is H; RG2 is




embedded image


RG3 is



embedded image


RG4 is



embedded image


and RG5 is H.

In some embodiments, RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heteroaryl or optionally substituted C2-C9 heterocyclyl.


In some embodiments, RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl. In some embodiments, RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heteroaryl.


In some embodiments, RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl. In some embodiments, RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heteroaryl.


In some embodiments, G″ is




embedded image


where RG6 is H or optionally substituted C1-C6 alkyl. In some embodiments, G″ is




embedded image


where RG6 is H or optionally substituted C1-C6 alkyl.


In some embodiments, G″ is




embedded image


where RG6 is H or optionally substituted C1-C6 alkyl.


In some embodiments, RG6 is H,




embedded image


In some embodiments, RG6 is H or




embedded image


In some embodiments, RG6 is H.


In some embodiments, RG1 is H, F,




embedded image


In some embodiments, RG1 is H.


In some embodiments, RG2 is H, F,




embedded image


In some embodiments, RG2 is H.


In some embodiments, RG3 is H, F,




embedded image


In some embodiments, RG3 is H.


In some embodiments, RG4 is H, F,




embedded image


In some embodiments, RG4 is H.


In some embodiments, RG5 is H, F,




embedded image


In some embodiments, RG5 is H.


In some embodiments, one or more of RG1, RG2, RG3, RG4, and RG5 is H. In some embodiments, two or more of RG1, RG2, RG3, RG4, and RG5 is H. In some embodiments, three or more of RG1, RG2, RG3, RG4, and RG5 is H. In some embodiments, each of RG1, RG2, RG3, RG4, and RG5 is H.


In some embodiments, G″ is




embedded image


where


each of RG7, RG8, RG9, RG10, and RG11 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG7 and RG8, RG8 and RG9, RG9 and RG10, and/or RG10 and RG11, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl.


In some embodiments, each of RG7, RG8, RG9, RG10, and RG11 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino; or RG7 and RG8, RG8 and RG9, RG9 and RG10, and/or RG10 and RG11, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl.


In some embodiments, each of RG7, RG8, RG9, RG10, and RG11 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl; or RG7 and RG8, RG8 and RG9, RG9 and RG10, and/or RG10 and RG11, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl.


In some embodiments, each of RG7, RG8, RG9, RG10, and RG11 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl.


In some embodiments, each of RG7, RG8, RG9, RG10, and RG11 is, independently, H, F, Cl,




embedded image


In some embodiments, RG8 is




embedded image


In some embodiments, G″ is




embedded image


In some embodiments, RG7 is H; RG8 is




embedded image


RG9 is H; and RG11 is H.


In some embodiments, G″ is




embedded image


where


each of RG12, RG13, and RG14 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG12 and RG14, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or optionally substituted C2-C9 heterocyclyl.


In some embodiments, each of RG12, RG13, and RG14 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino; or RG12 and RG14, together with the carbon atoms to which each is attached, combine to form optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or optionally substituted C2-C9 heterocyclyl.


In some embodiments, G″ is




embedded image


In some embodiments, G′ is optionally substituted C3-C10 carbocyclylene or optionally substituted C2-C9 heterocyclylene. In some embodiments, G′ is optionally substituted C6-C10 arylene or optionally substituted C2-C9 heteroarylene.


In some embodiments, G′ is optionally substituted C3-C10 carbocyclylene. In some embodiments, G′ is optionally substituted C6-C10 arylene. In some embodiments, G′ is optionally substituted C2-C9 heterocyclylene. In some embodiments, G′ is optionally substituted C2-C9 heteroarylene.


In some embodiments, G′ is




embedded image


where


each of RG1′, RG2′, RG3′, RG4′, and RG5′ is, independently, H, A1, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG1′ and RG2′, RG2′ and RG3′, RG3′ and RG4′, and/or RG4′ and RG5′, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or optionally substituted C2-C9 heterocyclyl, any of which is optionally substituted with A1, where one of RG1′, RG2′, RG3′, RG4′, and RG5′ is A1, or custom-character is substituted with A1.


In some embodiments, each of RG1′, RG2′, RG3′, RG4′, and RG5′ is, independently, H, A1, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG1′ and RG2′, RG2′ and RG3′, RG3′ and RG4′, and/or RG4′ and RG5′, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or optionally substituted C2-C9 heterocyclyl, any of which is optionally substituted with A1, where one of RG1′, RG2′, RG3′, RG4′, and RG5′ is A1, or custom-character is substituted with A1.


In some embodiments, each of RG1′, RG2′, RG3′, RG4′, and RG5′ is, independently, H, A1, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl; or RG1′ and RG2′, RG2′ and RG3′, RG3′ and RG4′, and/or RG4′ and RG5′, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C2-C9 heteroaryl or optionally substituted C2-C9 heterocyclyl, any of which is optionally substituted with A1, where one of RG1′, RG2′, RG3′, RG4′, and RG5′ is A1, or custom-character is substituted with A1.


In some embodiments, each of RG1′, RG2′, RG3′, RG4′, and RG5′ is, independently, H, A1, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl.


In some embodiments, each of RG1′, RG2′, RG3′, RG4′, and RG5′ is, independently, H, A1, F, Cl,




embedded image


In some embodiments, each of RG1′, RG2′, RG3′, RG4′, and RG5′ is, independently, H, A1, F,




embedded image


In some embodiments, each of RG1′, RG2′, RG3′, RG4′, and RG5′ is, independently, H, A1, F, Cl,




embedded image


In some embodiments, RG3′ is A1.


In some embodiments, RG1′ is H; RG2′ is




embedded image


RG3′ is A1; RG4′ is




embedded image


and RG5′ is H. In some embodiments, RG1′ is H; RG2′ is




embedded image


RG3′ is A; RG4′ is H; and RG5′ is




embedded image


In some embodiments, RG1′ is H; RG2′ is




embedded image


RG3′ is A1; RG4′ is Cl or F; and RG5′ is H. In some embodiments, RG1′ is H; RG2′ is




embedded image


RG3′ is A1; RG4′ is H; and RG5′ is H. In some embodiments, RG1′ is H; RG2′ is




embedded image


RG3′ is A1; RG4′ is




embedded image


and RG5′ is H.

In some embodiments, RG1′ and RG2′, RG2′ and RG3′, RG3′ and RG4, and/or RG4′ and RG5′, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C2-C9 heterocyclyl, which is optionally substituted with A1, where one of RG1′, RG2′, RG3′, RG4′ and RG5′ is A1, or custom-character is substituted with A1. In some embodiments, RG1′ and RG2′, RG2′ and RG3′, RG3′, and RG4′, and/or RG4′ and RG5′, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C2-C9 heteroaryl, which is optionally substituted with A1, where one of RG1′, RG2′, RG3′, RG4′, and RG5′ is A1, or custom-character is substituted with A1.


In some embodiments, G′ is




embedded image


where RG6′ is H, A1, or optionally substituted C1-C6 alkyl. In some embodiments, G′ is




embedded image


where RG6′ is H, A1, or optionally substituted C1-C6 alkyl.


In some embodiments, RG1′ and RG2′, RG2′ and RG3′, RG3′ and RG4′, and/or RG4′ and RG5′, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C2-C9 heterocyclyl or optionally substituted C2-C9 heteroaryl, any of which is optionally substituted with A1, where one of RG1′, RG2′, RG3′, RG4′, and RG5′ is A1, or custom-character is substituted with A1.


In some embodiments, G′ is




embedded image


where RG6′ is H, A1, or optionally substituted C1-C6 alkyl.


In some embodiments, RG6′ is H, A1,




embedded image


In some embodiments, RG6′ is H, A1, or




embedded image


In some embodiments, RG6′ is H or A1.


In some embodiments, RG6′ is H. In some embodiments, RG6′ is A1.


In some embodiments, RG1′ is H, A1, F,




embedded image


In some embodiments, RG1′ is H.


In some embodiments, RG2′ is H, A1, F,




embedded image


In some embodiments, RG2′ is H.


In some embodiments, RG3′ is H, A1, F,




embedded image


In some embodiments, RG3′ is H.


In some embodiments, RG4′ is H, A1, F,




embedded image


In some embodiments, RG4′ is H.


In some embodiments, RG5′ is H, A1, F,




embedded image


In some embodiments, RG5′ is H.


In some embodiments, one or more of RG1′, RG2′, RG3′, RG4′, and RG5′ is H. In some embodiments, two or more of RG1′, RG2′, RG3′, RG4′, and RG5′ is H. In some embodiments, three or more of RG1′, RG2′, RG3′, RG4′, and RG5′ is H.


In some embodiments, RG1′ is A1. In some embodiments, RG2′ is A1. In some embodiments, RG3′ is A1. In some embodiments, RG4′ is A1. In some embodiments, RG5′ is A1. In some embodiments, custom-character is substituted with A1.


In some embodiments, G′ is




embedded image


where


each of RG7′, RG8′, RG9′, RG10′, and RG11′ is, independently, H, A1, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG7′ and RG8′, RG8′ and RG9′, RG9′ and RG10′, and/or RG10′ and RG11′, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl, any of which is optionally substituted with A1, where one of RG7′, RG8′, RG9′, RG10′, and RG11′ is A1; or custom-character is substituted with A1.


In some embodiments, each of RG7′, RG8′, RG9′, RG10′, and RG11′ is, independently, H, A1, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG7′ and RG8′, RG8′ and RG9′, RG9′ and RG10′, and/or RG10′ and RG11′, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl, any of which is optionally substituted with A1, where one of RG7′, RG8′, RG9′, RG10′, and RG11′ is A1; or custom-character is substituted with A1.


In some embodiments, each of RG7′, RG8′, RG9′, RG10′, and RG11′ is, independently, H, A1, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl; or RG7′ and RG8′, RG8′ and RG9′, RG9′ and RG10′, and/or RG10′ and RG11′, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl, any of which is optionally substituted with A1, where one of RG7′, RG8′, RG9′, RG10′, and RG11′ is A1; or custom-character is substituted with A1.


In some embodiments, each of RG7′, RG8′, RG9′, RG10′, and RG11′ is, independently, H, A1, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl.


In some embodiments, each of RG7′, RG8′, RG9′, RG10′, and RG11′ is, independently, H, A1, F, Cl,




embedded image


In some embodiments, RG8′ is




embedded image


In some embodiments, G′ is




embedded image


In some embodiments, RG7′ is H; RG8′ is




embedded image


RG9′ is A1; and RG11′ is H.


In some embodiments, G′ is




embedded image


where


each of RG12′, RG13′, and RG14′ is, independently, H, A1, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG12′ and RG14′ together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or optionally substituted C2-C9 heterocyclyl, any of which is optionally substituted with A1, where one of RG12′, RG13′, and RG14′ is A1; or custom-character is substituted with A1.


In some embodiments, each of RG12′, RG13′, and RG14′ is, independently, H, A1, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C3-C6 carbocyclyl, optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl, hydroxyl, thiol, or optionally substituted amino; or RG12′ and RG14′, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or optionally substituted C2-C9 heterocyclyl, any of which is optionally substituted with A1, where one of RG12′, RG13′, and RG14′ is A1; or custom-character is substituted with A1.


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R3a′ R3b′, R3c′, and R3d′ is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 acyl.


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R3a′, R3b′, R3c, and R3d′ is, independently, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C1-C6 acyl. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, optionally substituted C1-C6 alkyl or optionally substituted C1-C6 heteroalkyl. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, optionally substituted C1-C6 alkyl or optionally substituted C1-C6 acyl. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, or optionally substituted C1-C6 acyl. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, optionally substituted sulfone, or optionally substituted sulfonamide.


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H, optionally substituted C1-C6 alkyl,




embedded image


where


R6 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl;


W1 is O or S;


W2 is NR7 or O;


R7 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl;


R8 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl; and


R9 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl.


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, C1-C6 alkyl,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, or C1-C6 alkyl. In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H, optionally substituted C1-C6 alkyl,




embedded image


In some embodiments, each of R3a′, R3b′, R3c, and R3d′ is, independently, H, C1-C6 alkyl,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H, C1-C6 alkyl, or




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, C1-C6 alkyl or




embedded image


In some embodiments, each of R3a, R3b, R3c, and R3d is, independently, H, methyl, or




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, optionally substituted C1-C6 alkyl.


In some embodiments, W1 is O. In some embodiments, W1 is S.


In some embodiments, W2 is O. In some embodiments, W2 is NR7.


In some embodiments, R6 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C10 carbocyclyl. In some embodiments, R6 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl. In some embodiments, R6 is H, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl. In some embodiments, R6 is optionally substituted C1-C6 alkyl or optionally substituted C1-C6 heteroalkyl. In some embodiments, R6 is optionally substituted C3-C10 carbocyclyl or optionally substituted C6-C10 aryl


In some embodiments, R6 is H, methyl, ethyl,




embedded image


In some embodiments, R6 is H or




embedded image


In some embodiments, R6 is methyl, ethyl,




embedded image


In some embodiments, R6 is or




embedded image


In some embodiments, R6 is H. In some embodiments, R6 is H, methyl, ethyl,




embedded image


In some embodiments, R7 is H or optionally substituted C1-C6 alkyl. In some embodiments, R7 is H or methyl.


In some embodiments, each of R3a′, R3b′, R3c, and R3d′ is, independently, H, methyl,




embedded image


In some embodiments, each of R3a′, R3b′, R3c′, and R3d′ is, independently, H, methyl,




embedded image


In some embodiments, R3a′ is H, methyl,




embedded image


In some embodiments, R3b′ is H, methyl,




embedded image


In some embodiments, R3c′ is H, methyl,




embedded image


In some embodiments, R3d′ is H, methyl,




embedded image


In some embodiments, A has the structure of Formula IIIa:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIb:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIc:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIId:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIe:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIf:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIg:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIh:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIi:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIj:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIk:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIm:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIn:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIo:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIp:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIq:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIr:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, A has the structure of Formula IIIs:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the degradation moiety is a ubiquitin ligase binding moiety.


In some embodiments, the ubiquitin ligase binding moiety comprises Cereblon ligands, IAP (Inhibitors of Apoptosis) ligands, mouse double minute 2 homolog (MDM2), or von Hippel-Lindau (VHL) ligands, or derivatives or analogs thereof.


In some embodiments, the degradation moiety is a ubiquitin ligase binding moiety.


In some embodiments, the ubiquitin ligase binding moiety comprises Cereblon ligands, IAP (Inhibitors of Apoptosis) ligands, mouse double minute 2 homolog (MDM2), or von Hippel-Lindau (VHL) ligands, or derivatives or analogs thereof.


In some embodiments, the degradation moiety includes the structure of Formula Y:




embedded image


where


A2 is a bond between the degradation moiety and the linker;


v1 is 0, 1, 2, 3, 4, or 5;


u1 is 1, 2, or 3;


T1 is a bond or




embedded image


T2 is




embedded image


R5A is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl;


each RJ1 is, independently, halogen, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl; and


J is absent, optionally substituted C3-C10 carbocyclylene, optionally substituted C6-C10 arylene, optionally substituted C2-C9 heterocyclylene, or optionally substituted C2-C9 heteroarylene, or a pharmaceutically acceptable salt thereof.


In some embodiments, T1 is a bond. In some embodiments, T1 is




embedded image


In some embodiments, T2 is




embedded image


In some embodiments, T2 is or




embedded image


In some embodiments, T2 is




embedded image


In some embodiments, the structure of Formula Y has the structure of Formula Y1:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula Y has the structure of Formula Y2:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula Y has the structure of Formula Z:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, u1 is 1. In some embodiments, u1 is 2. In some embodiments u1 is 3.


In some embodiments, the structure of Formula Z has the structure of Formula AA:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula Z has the structure of Formula AB:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula Z has the structure of Formula AC:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, v1 is 0, 1, 2, or 3. In some embodiments, v1 is 0. In some embodiments, v1 is 1. In some embodiments, v1 is 2. In some embodiments, v1 is 3.


In some embodiments, the structure of Formula AA has the structure of Formula AA1:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula AB has the structure of Formula AB1:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula AC has the structure of Formula AC1:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, J is absent. In some embodiments, J is optionally substituted C3-C10 carbocyclylene or optionally substituted C6-C10 arylene. In some embodiments, J is optionally substituted C2-C9 heterocyclylene or optionally substituted C2-C9 heteroarylene.


In some embodiments, J is optionally substituted heterocyclylene. In some embodiments, J is optionally substituted C6-C10 arylene.


In some embodiments, the structure of Formula AA has the structure of Formula AA2:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula AA has the structure of Formula AA3:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula AA has the structure of Formula AA4:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, RAS is H or optionally substituted C1-C6 alkyl. In some embodiments, RA5 is H or methyl. In some embodiments, RA5 is H. In some embodiments, RA5 is methyl.


In some embodiments, the structure of Formula AA has the structure of Formula A:




embedded image


where


Y1 is




embedded image


RA5 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl;


RA6 is H or optionally substituted C1-C6 alkyl; and RA7 is H or optionally substituted C1-C6 alkyl; or RA6 and RA7, together with the carbon atom to which each is bound, combine to form optionally substituted C3-C6 carbocyclyl or optionally substituted C2-C5 heterocyclyl; or RA6 and RA7, together with the carbon atom to which each is bound, combine to form optionally substituted C3-C6 carbocyclyl or optionally substituted C2-C5 heterocyclyl;


RA8 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl;


each of RA1, RA2, RA3, and RA4 is, independently, H, A2, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, hydroxyl, thiol, or optionally substituted amino; or RA1 and RA2, RA2 and RA3, and/or RA3 and RA4, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl, any of which is optionally substituted with A2, where one of RA1, RA2, RA3, and RA4 is A2, or custom-character is substituted with A2, or a pharmaceutically acceptable salt thereof.


In some embodiments, each of RA1, RA2, RA3, and RA4 is, independently, H, A2, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino; or RA1 and RA2, RA2 and RA3, and/or RA3 and RA4, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl, any of which is optionally substituted with A2, where one of RA1, RA2, RA3, and RA4 is A2, or custom-character is substituted with A2, or a pharmaceutically acceptable salt thereof.


In some embodiments, each of RA1, RA2, RA3, and RA4 is, H, A2, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, hydroxyl, optionally substituted amino; or RA1 and RA2, RA2 and RA3, or RA3 and RA4, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C2-C9 heterocyclyl, which is optionally substituted with A2, where one of RA1, RA2, RA3, and RA4 is A2, or custom-character is substituted with A2.


In some embodiments, each of RA1, RA2, RA3, and RA4 is, independently, H, A2, F,




embedded image


or RA1 and RA2, RA2 and RA3, or RA3 and RA4, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C2-C9 heterocyclyl, which is optionally substituted with A2, where one of RA1, RA2, RA3, and RA4 is A2, or custom-character is substituted with A2.


In some embodiments, RA1 is A2. In some embodiments, RA2 is A2. In some embodiments, RA3 is A2. In some embodiments, RA4 is A2. In some embodiments, RA5 is A2.


In some embodiments, RA5 is H or optionally substituted C1-C6 alkyl.


In some embodiments, RA5 is H or




embedded image


In some embodiments, RA5 is H. In some embodiments, RA5 is




embedded image


In some embodiments, Y1 is




embedded image


In some embodiments, Y1 is




embedded image


In some embodiments, Y1 is




embedded image


In some embodiments, each of RA6 and RA7 is, independently, H, F,




embedded image


or RA6 and RA7, together with the carbon atom to which each is bound, combine to form




embedded image


In some embodiments, Y1 is




embedded image


In some embodiments, the structure of Formula A has the structure of Formula A1:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula A has the structure of Formula A2:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula A has the structure of Formula A3:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula A has the structure of Formula A4:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula A has the structure of Formula A5:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula A has the structure of Formula A6:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula A has the structure of Formula A7:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula A has the structure of Formula A8:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula A has the structure of Formula A9:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula A has the structure of Formula A10:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, wherein the structure of Formula A is




embedded image


embedded image


or derivative or analog thereof.


In some embodiments, the structure of Formula A is




embedded image


In some embodiments, the structure of Formula A is




embedded image


or derivative or analog thereof.


In some embodiments,




embedded image


where RA9 is H, A2, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl.


In some embodiments, the structure of Formula A is




embedded image


In some embodiments, RA9 is H, A2, or optionally substituted C1-C6 alkyl. In some embodiments, RA9 is H, A2, or methyl. In some embodiments, R9A is H. In some embodiments, R9A is methyl. In some embodiments, RA9 is A2.


In some embodiments, the structure of Formula A is




embedded image


In some embodiments, the structure of Formula AA has the structure of Formula B:




embedded image


where


RA5 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl;


each of RA1, RA2, RA3, and RA4 is, independently, H, A2, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted —O—C3-C6 carbocyclyl, hydroxyl, thiol, or optionally substituted amino; or RA1 and RA2, RA2 and RA3, and/or RA3 and RA4, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl, any of which is optionally substituted with A2, where one of RA1, RA2, RA3, and RA4 is A2, or custom-character is substituted with A2, or a pharmaceutically acceptable salt thereof.


In some embodiments, each of RA1, RA2, RA3, and RA4 is, H, A2, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, hydroxyl, optionally substituted amino; or RA1 and RA2, RA2 and RA3, or RA3 and RA4, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C2-C9 heterocyclyl, which is optionally substituted with A2, where one of RA1, RA2, RA3, and RA4 is A2, or custom-character is substituted with A2.


In some embodiments, each of RA1, RA2, RA3, and RA4 is, independently, H, A2, F,




embedded image


or RA1 and RA2, RA2 and RA3, or RA3 and RA4, together with the carbon atoms to which each is attached, combine to form custom-character; and custom-character is optionally substituted C2-C9 heterocyclyl, which is optionally substituted with A2, where one of RA1, RA2, RA3, and RA4 is A2, or custom-character is substituted with A2.


In some embodiments, RA1 is A2. In some embodiments, RA2 is A2. In some embodiments, RA3 is A2. In some embodiments, RA4 is A2. In some embodiments, RA5 is A2.


In some embodiments, RA5 is H or optionally substituted C1-C6 alkyl.


In some embodiments, RA5 is H or




embedded image


In some embodiments, RA5 is H. In some embodiments, RA5 is




embedded image


In some embodiments, the structure of Formula B has the structure of Formula B1:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula B has the structure of Formula B2:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula B has the structure of Formula B3:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula B has the structure of Formula B4:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula B is




embedded image


In some embodiments, the structure of Formula B is




embedded image


In some embodiments, the structure of Formula B is




embedded image


In some embodiments, the ubiquitin ligase binding moiety comprises a von Hippel-Lindau ligand.


In some embodiments, the von Hippel-Lindau ligand has the structure of




embedded image


or derivative or analog thereof.


In some embodiments, the degradation moiety includes the structure of Formula C:




embedded image


where


RB1 is H, A2, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl;


RB2 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl;


RB3 is A2, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C6-C10 aryl, optionally substituted C1-C6 alkyl C3-C10 carbocyclyl, or optionally substituted C1-C6 alkyl C6-C10 aryl;


RB4 is H, optionally substituted C1-C6 alkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C6-C10 aryl, optionally substituted C1-C6 alkyl C3-C10 carbocyclyl, or optionally substituted C1-C6 alkyl C6-C10 aryl;


RB5 is H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl;


v2 is 0, 1, 2, 3, or 4;


each RB6 is, independently, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxy, thiol, or optionally substituted amino; and


each of RB7 and RB8 is, independently, H, halogen, optionally substituted C1-C6 alkyl, or optionally substituted C6-C10 aryl,


where one of RB1 and RB3 is A2, or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula C is




embedded image


or derivative or analog thereof.


In some embodiments, the structure of Formula C is




embedded image


In some embodiments, the degrader moiety includes the structure of Formula D:




embedded image


where


A2 is a bond between B and the linker;


each of RC1, RC2, and RC7 is, independently, H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl;


RC3 is optionally substituted C1-C6 alkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C6-C10 aryl, optionally substituted C1-C6 alkyl C3-C10 carbocyclyl, or optionally substituted C1-C6 alkyl C6-C10 aryl;


RC5 is optionally substituted C1-C6 alkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C6-C10 aryl, optionally substituted C1-C6 alkyl C3-C10 carbocyclyl, or optionally substituted C1-C6 alkyl C6-C10 aryl;


v3 is 0, 1, 2, 3, or 4;


each RC8 is, independently, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxy, thiol, or optionally substituted amino;


v4 is 0, 1, 2, 3, or 4; and


each RC9 is, independently, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxy, thiol, or optionally substituted amino, or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula D is




embedded image


or derivative or analog thereof.


In some embodiments, the degrader moiety includes the structure of Formula E:




embedded image


where


A2 is a bond between B and the linker;


each of RC10 and RC11 is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C6-C10 aryl, optionally substituted C1-C6 alkyl C3-C10 carbocyclyl, or optionally substituted C1-C6 alkyl C6-C10 aryl;


v5 is 0, 1, 2, 3, or 4;


each RC12 is, independently, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxy, thiol, or optionally substituted amino;


v6 is 0, 1, 2, 3, or 4; and


each R21 is, independently, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxy, thiol, or optionally substituted amino, or a pharmaceutically acceptable salt thereof.


In some embodiments, the structure of Formula E is




embedded image


or derivative or analog thereof.


In some embodiments, the degradation moiety includes the structure of Formula FA:




embedded image


where




embedded image


or a bicyclic moiety which is substituted with A2 and substituted with one or more groups independently selected from H, RFF1, and oxo;



custom-character is a single bond or a double bond;


u2 is 0, 1, 2, or 3;


A2 is a bond between the degrader and the linker;


YFa is CRFbRFc, C═O, C═S, C═CH2, SO2, S(O), P(O)Oalkyl, P(O)NHalkyl, P(O)N(alkyl)2, P(O)alkyl, P(O)OH, P(O)NH2;


YFb is NH, NRFF1, CH2, CHRFF1, C(RFF1)2, O, or S;


YFc is CRFdRFe, C═O, C═S, C═CH2, SO2, S(O), P(O)Oalkyl, P(O)NHalkyl, P(O)N(alkyl)2, P(O)alkyl, P(O)OH, P(O)NH2;


each of RFb, RFc, RFd, and RFe is, independently, H, alkyl, aliphatic, heteroaliphatic, aryl, heteroaryl, carbocyclyl, hydroxyl, alkoxy, amino, —NHalkyl, or —Nalkyl2;


or RFb and RFc, together with the carbon atom to which each is attached, combine to form a 3-, 4-, 5-, or 6-membered spirocarbocyclylene, or a 4-, 5-, or 6-membered spiroheterocyclylene comprising 1 or 2 heteroatoms selected from N and O;


or RFd and RFe, together with the carbon atom to which each is attached, combine to form a 3-, 4-, 5-, or 6-membered spirocarbocyclylene, or a 4-, 5-, or 6-membered spiroheterocyclylene comprising 1 or 2 heteroatoms selected from N and O; and


or RFd and RFb, together with the carbon atoms to which each is attached, combine to form a 1, 2, 3, or 4 carbon bridged ring;


each of YFd and YFf is, independently, CH2, CHRFF2, C(RFF2)2, C(O), N, NH, NRFF3, O, S, or S(O);


YFe is a bond or a divalent moiety attached to YFd and YFf that contains 1 to 5 contiguous carbon atoms that form a 3 to 8-membered ring,

    • wherein 1, 2, or 3 carbon atoms can be replaced with a nitrogen, oxygen, or sulfur atom;
    • wherein one of the ring atoms is substituted with A2 and the others are substituted with one or more groups independently selected from H and RFF1; and
    • wherein the contiguous atoms of YFe can be attached through a single or double bond;


each RFF1 is, independently, H, alkyl, alkenyl, alkynyl, aliphatic, heteroaliphatic, carbocyclyl, halogen, hydroxyl, amino, cyano, alkoxy, aryl, heteroaryl, heterocyclyl, alkylamino, alkylhydroxyl, or haloalkyl;


each RFF2 is, independently, alkyl, alkene, alkyne, halogen, hydroxyl, alkoxy, azide, amino, —C(O)H, —C(O)OH, —C(O)(aliphatic, including alkyl), —C(O)O(aliphatic, including alkyl), —NH(aliphatic, including alkyl), —N(aliphatic including alkyl)(aliphatic including alkyl), —NHSO2alkyl, —N(alkyl)SO2alkyl, —NHSO2aryl, —N(alkyl)SO2aryl, —NHSO2alkenyl, —N(alkyl)SO2alkenyl, —NHSO2alkynyl, —N(alkyl)SO2alkynyl, aliphatic, heteroaliphatic, aryl, heteroaryl, hetercyclic, carbocyclic, cyano, nitro, nitroso, —SH, —Salkyl, or haloalkyl; and


RFF3 is alkyl, alkenyl, alkynyl, —C(O)H, —C(O)OH, —C(O)alkyl, or —C(O)Oalkyl,


wherein if YFd or YFf is substituted with A2, then YFe is a bond, or a pharmaceutically acceptable salt thereof.


In some embodiments, the compound of Formula FA has the structure of Formula FA1:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the degradation moiety includes the structure of Formula FB:




embedded image


where




embedded image


or a bicyclic moiety which is substituted with A2 and substituted with one or more groups independently selected from H, RFF1, and oxo;


A2 is a bond between the degrader and the linker;


YFa is CRFbRFc, C═O, C═S, C═CH2, SO2, S(O), P(O)Oalkyl, P(O)NHalkyl, P(O)N(alkyl)2, P(O)alkyl, P(O)OH, P(O)NH2;


each of YFb and YFg is, independently, NH, NRFF1, CH2, CHRFF1, C(RFF1)2, O, or S;


YFc is CRFdRFe, C═O, C═S, C═CH2, SO2, S(O), P(O)Oalkyl, P(O)NHalkyl, P(O)N(alkyl)2, P(O)alkyl, P(O)OH, P(O)NH2;


each of RFb, RFc, RFd, RFe, RFf, and RFg is, independently, H, alkyl, aliphatic, heteroaliphatic, aryl, heteroaryl, carbocyclyl, hydroxyl, alkoxy, amino, —NHalkyl, or —Nalkyl2;


or RFb and RFc, together with the carbon atom to which each is attached, combine to form a 3-, 4-, 5-, or 6-membered spirocarbocyclylene, or a 4-, 5-, or 6-membered spiroheterocyclylene comprising 1 or 2 heteroatoms selected from N and O;


or RFd and RFe, together with the carbon atom to which each is attached, combine to form a 3-, 4-, 5-, or 6-membered spirocarbocyclylene, or a 4-, 5-, or 6-membered spiroheterocyclylene comprising 1 or 2 heteroatoms selected from N and O;


or RFf and RFg, together with the carbon atom to which each is attached, combine to form a 3-, 4-, 5-, or 6-membered spirocarbocyclylene, or a 4-, 5-, or 6-membered spiroheterocyclylene comprising 1 or 2 heteroatoms selected from N and O;


or RFd and RFb, together with the carbon atoms to which each is attached, combine to form a 1, 2, 3, or 4 carbon bridged ring;


or RFd and RFf, together with the carbon atoms to which each is attached, combine to form a 1, 2, 3, or 4 carbon bridged ring;


or RFb and RFg, together with the carbon atoms to which each is attached, combine to form a 1, 2, 3, or 4 carbon bridged ring;


each of YFd and YFf is, independently, CH2, CHRFF2, C(RFF2)2, C(O), N, NH, NRFF3, O, S, or S(O);


YFe is a bond or a divalent moiety attached to YFd and YFf that contains 1 to 5 contiguous carbon atoms that form a 3 to 3-membered ring,

    • wherein 1, 2, or 3 carbon atoms can be replaced with a nitrogen, oxygen, or sulfur atom;
    • wherein one of the ring atoms is substituted with A2 and the others are substituted with one or more groups independently selected from H and RFF1; and
    • wherein the contiguous atoms of YFe can be attached through a single or double bond;


each RFF1 is, independently, H, alkyl, alkenyl, alkynyl, aliphatic, heteroaliphatic, carbocyclyl, halogen, hydroxyl, amino, cyano, alkoxy, aryl, heteroaryl, heterocyclyl, alkylamino, alkylhydroxyl, or haloalkyl;


each RFF2 is, independently, alkyl, alkene, alkyne, halogen, hydroxyl, alkoxy, azide, amino, —C(O)H, —C(O)OH, —C(O)(aliphatic, including alkyl), —C(O)O(aliphatic, including alkyl), —NH(aliphatic, including alkyl), —N(aliphatic including alkyl)(aliphatic including alkyl), —NHSO2alkyl, —N(alkyl)SO2alkyl, —NHSO2aryl, —N(alkyl)SO2aryl, —NHSO2alkenyl, —N(alkyl)SO2alkenyl, —NHSO2alkynyl, —N(alkyl)SO2alkynyl, aliphatic, heteroaliphatic, aryl, heteroaryl, hetercyclic, carbocyclic, cyano, nitro, nitroso, —SH, —Salkyl, or haloalkyl; and


RFF3 is alkyl, alkenyl, alkynyl, —C(O)H, —C(O)OH, —C(O)alkyl, or —C(O)Oalkyl,


wherein if YFd or is substituted with A2, then YFe is a bond, or a pharmaceutically acceptable salt thereof.


In some embodiments, the compound of Formula FB has the structure of Formula FB1:




embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the degradation moiety includes the structure of Formula F1:




embedded image


where A2 is a bond between the degrader and the linker; and RF1 is absent or O, or a pharmaceutically acceptable salt thereof.


In some embodiments, RF1 is absent. In some embodiments, RF1 is O.


In some embodiments, the structure of Formula F1 is




embedded image


In some embodiments, the degradation moiety includes the structure Formula F2:




embedded image


where A2 is a bond between the degrader and the linker; and Y2 is CH2 or NH, or a pharmaceutically acceptable salt thereof.


In some embodiments, Y2 is NH. In some embodiments, Y2 is CH2.


In some embodiments, structure of Formula F2 is




embedded image


In some embodiments, the degradation moiety includes the structure Formula G:




embedded image


where A2 is a bond between the degrader and the linker; and Y3 is CH2 or NH, or a pharmaceutically acceptable salt thereof.


In some embodiments, Y3 is NH. In some embodiments, Y3 is CH2.


In some embodiments, structure of Formula G is




embedded image


The degradation moiety may also include structures found in, e.g., WO2017/197036; WO2019/204354, WO2019/236483, WO2020/010177; and WO2020/010227, the structures of which are herein incorporated by reference.


In some embodiments, the linker has the structure of Formula IV:





A1-(B1)f-(C1)g-(B2)h-(D)-(B3)i-(C2)j-(B4)k-A2   Formula IV


where


A1 is a bond between the linker and A;


A2 is a bond between B and the linker;


each of B1, B2, B3, and B4 is, independently, optionally substituted C1-C2 alkylene, optionally substituted C1-C3 heteroalkylene, O, S, S(O)2, or NRN;


each RN is, independently, H, optionally substituted C1-4 alkyl, optionally substituted C2-4 alkenyl, optionally substituted C2-4 alkynyl, optionally substituted C2-6 heterocyclyl, optionally substituted C6-12 aryl, or optionally substituted C1-7 heteroalkyl;


each of C1 and C2 is, independently, carbonyl, thiocarbonyl, sulphonyl, or phosphoryl;


each of f, g, h, i, j, and k is, independently, 0 or 1; and


D is optionally substituted C1-10 alkylene, optionally substituted C2-10 alkenylene, optionally substituted C2-10 alkynylene, optionally substituted C2-6 heterocyclylene, optionally substituted C6-12 arylene, optionally substituted C2-C10 polyethylene glycol, or optionally substituted C1-10 heteroalkylene, or a chemical bond linking A1-(B1)f-(C1)g-(B2)h- to -(B3)i-(C2)j-(B4)k-A2.


In some embodiments, each of B1, B2, B3, and B4 is, independently, optionally substituted C1-C4 alkylene, optionally substituted C1-C4 heteroalkylene, or NRN.


In some embodiments, each RN is, independently, H or optionally substituted C1-C4 alkylene.


In some embodiments, each RN is, independently, H or methyl.


In some embodiments, each of B1 and B4 is, independently,




embedded image


In some embodiments, B1 is




embedded image


In some embodiments, each of C1 and C2 is, independently




embedded image


In some embodiments, C1 is




embedded image


In some embodiments, B2 is NRN. In some embodiments, B2 is optionally substituted C1-C4 alkylene.


In some embodiments, f is 0. In some embodiments, f is 1. In some embodiments, g is 1. In some embodiments, h is 0. In some embodiments, h is 1. In some embodiments, i is 0. In some embodiments, j is 0. In some embodiments, k is 0.


In some embodiments, the linker has the structure of




embedded image


wherein


x is 1, 2, 3, 4, 5, 6, 7, or 8;


y is 1, 2, 3, or 4;


Rx is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C6 carbocyclyl;


Ry is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C6 carbocyclyl; and


W is O or NRw, wherein Rw is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C6 carbocyclyl.


In some embodiments, the linker has the structure of




embedded image


In some embodiments, Rx is H or me optionally substituted C1-C6 alkyl. In some embodiments, Ry is H or optionally substituted C1-C6 alkyl. In some embodiments, Rw is H or optionally substituted C1-C6 alkyl.


In some embodiments, Rx is H or methyl. In some embodiments, RY is H or methyl. In some embodiments, Rw is H or methyl.


In some embodiments, the linker has the structure of




embedded image


embedded image


embedded image


In some embodiments, the linker has the structure of




embedded image


In some embodiments, the linker has the structure of




embedded image


In some embodiments, the linker has the structure of Formula V:





A1-(E1)-(F1)—(C3)m-(E3)n-(F2)o1-(F3)o2-(E2)p-A2,   Formula V


where


A1 is a bond between the linker and A;


A2 is a bond between B and the linker;


each of m, n, o1, o2, and p is, independently, 0 or 1;


each of E1 and E2 is, independently, O, S, NRN, optionally substituted C1-10 alkylene, optionally substituted C2-10 alkenylene, optionally substituted C2-10 alkynylene, optionally substituted C2-C10 polyethylene glycol, or optionally substituted C1-10 heteroalkylene;


E3 is optionally substituted C1-C6 alkylene, optionally substituted C1-C6 heteroalkylene, O, S, or NRN;


each RN is, independently, H, optionally substituted C1-4 alkyl, optionally substituted C2-4 alkenyl, optionally substituted C2-4 alkynyl, optionally substituted C2-6 heterocyclyl, optionally substituted C6-12 aryl, or optionally substituted C1-7 heteroalkyl;


C3 is carbonyl, thiocarbonyl, sulphonyl, or phosphoryl; and


each of F1, F2, and F3 is, independently, optionally substituted C3-C10 carbocyclylene, optionally substituted C2-10 heterocyclylene, optionally substituted C6-C10 arylene, or optionally substituted C2-C9 heteroarylene.


In some embodiments, the linker has the structure of Formula Va:





A1-(E1)-(F1)—(C3)m-(E2)p-A2.   Formula Va


In some embodiments, the linker has the structure of Formula Vb:





A1-(E1)-(F1)-(E2)p-A2.   Formula Vb


In some embodiments, the linker has the structure of Formula Vc:





A1-(E1)-(F1)-A2.   Formula Vc


In some embodiments, the linker has the structure of Formula Vd:





A1-(E1)-(F1)—(C3)m-(F2)o1-A2.   Formula Vd


In some embodiments, the linker has the structure of Formula Ve:





A1-(E1)-(F1)-(E3)n-(F2)o1-(E2)p-A2.   Formula Ve


In some embodiments, the linker has the structure of Formula Vf:





A1-(E1)-(F1)-(C3)m-(E3)n-(F2)o1-(E2)p-A2.   Formula Vf


In some embodiments, the linker has the structure of Formula Vg:





A1-(E1)-(F1)—(C3)m-(E3)n-(F2)o1-(F3)o2-(E2)p-A2,   Formula Vg


In some embodiments, each of E1 and E2 is, independently, NRN, optionally substituted C1-10 alkyl, optionally substituted C2-C10 polyethylene glycol, or optionally substituted C1-10 heteroalkyl.


In some embodiments, E3 is optionally substituted C1-C6 alkylene, O, S, or NRN;


In some embodiments, E3 is optionally substituted C1-C6 alkylene. In some embodiments, E3 is optionally substituted C1-C3 alkylene. In some embodiments, E3 is O, S, or NRN.


In some embodiments, E3 is C1-C6 alkylene. In some embodiments, E3 is C1-C3 alkylene. In some embodiments, E3 is O.


In some embodiments, E3 is




embedded image


where a is 0, 1, 2, 3, 4, or 5.


In some embodiments, E3 is




embedded image


In some embodiments, each RN is, independently, H or optionally substituted C1-4 alkyl.


In some embodiments, each RN is, independently, H or methyl.


In some embodiments, E1 is




embedded image


where a is 0, 1, 2, 3, 4, or 5.


In some embodiments, E1 is




embedded image


where a is 0, 1, 2, 3, 4, or 5.


In some embodiments, E1 is




embedded image


In some embodiments, E1 is




embedded image


In some embodiments, E1 is




embedded image


embedded image


where


b is 0, 1, 2, 3, 4, 5, or 6;


Ra is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C6 carbocyclyl;


Rb is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C6 carbocyclyl; and


Rc is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C6 carbocyclyl.


In some embodiments, E1 is




embedded image


embedded image


In some embodiments, E1 is




embedded image


In some embodiments, E1 is




embedded image


In some embodiments, Ra is H or optionally substituted C1-C6 alkyl. In some embodiments, Rb is H or optionally substituted C1-C6 alkyl. In some embodiments, Rc is H or optionally substituted C1-C6 alkyl.


In some embodiments, Ra is H or methyl. In some embodiments, Rb is H or methyl. In some embodiments, Rc is H or methyl.


In some embodiments, b is 0, 1, 2, or 3. In some embodiments, b is 0. In some embodiments, b is 1. In some embodiments, b is 2. In some embodiments, b is 3.


In some embodiments, E1 is




embedded image


In some embodiments, E1 is




embedded image


In some embodiments, E1 is




embedded image


In some embodiments, E1 is




embedded image


In some embodiments, E1 is




embedded image


In some embodiments, E1 is




embedded image


In some embodiments, E2 is O, NRw,




embedded image


wherein


c is 0, 1, 2, 3, 4, 5, 6, 7, or 8;


d is 0, 1, 2, or 3;


e is 0, 1, 2, 3, 4, 5, or 6;


f is 0, 1, 2, 3, or 4;


Rd is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C6 carbocyclyl;


Re is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C6 carbocyclyl;


Rf is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C6 carbocyclyl;


Rg is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C6 carbocyclyl; and


W is O or NRw, wherein Rw is H or optionally substituted C1-C6 alkyl.


In some embodiments, E2 is O, NRw,




embedded image


In some embodiments, Rd is H or optionally substituted C1-C6 alkyl. In some embodiments, Re is H or optionally substituted C1-C6 alkyl. In some embodiments, Rf is H or optionally substituted C1-C6 alkyl. In some embodiments, Rg is H or optionally substituted C1-C6 alkyl. In some embodiments, Rw is H or optionally substituted C1-C6 alkyl.


In some embodiments, Rd is H or methyl. In some embodiments, Re is H or methyl. In some embodiments, Rf is H or methyl. In some embodiments, Rg is H or methyl. In some embodiments, Rw is H or methyl.


In some embodiments, E2 is




embedded image


In some embodiments, E2 is O,




embedded image


In some embodiments, each of F1, F2, or F3 is, independently, optionally substituted C3-C10 carbocyclylene.


In some embodiments, the C3-C10 carbocyclylene is monocyclic. In some embodiments, the C3-C10 carbocyclylene is polycyclic.


In some embodiments, the C3-C10 carbocyclylene is bicyclic.


In some embodiments, the C3-C10 carbocyclylene is bridged. In some embodiments, the C3-C10 carbocyclylene is fused. In some embodiments, the C3-C10 carbocyclylene is spirocyclic.


In some embodiments, the C3-C10 carbocyclylene is




embedded image


In some embodiments, F2 is




embedded image


In some embodiments, the C3-C10 carbocyclylene is




embedded image


In some embodiments, F1 is




embedded image


In some embodiments, each of F1, F2, or F3 is, independently, optionally substituted C2-C9 heterocyclylene.


In some embodiments, the C2-C9 heterocyclylene is monocyclic. In some embodiments, the C2-C9 heterocyclylene is polycyclic.


In some embodiments, the C2-C9 heterocyclylene is bicyclic.


In some embodiments, the C2-C9 heterocyclylene is bridged. In some embodiments, the C2-C9 heterocyclylene is fused. In some embodiments, the C2-C9 heterocyclylene is spirocyclic.


In some embodiments, the C2-C9 heterocyclylene includes a quaternary amine.


In some embodiments, the C2-C9 heterocyclylene is




embedded image


embedded image


where


q1 is 0, 1, 2, 3, or 4;


q2 is 0, 1, 2, 3, 4, 5, or 6;


q3 is 0, 1, 2, 3, 4, 5, 6, 7, or 8;


each Rh is, independently, 2H, halogen, optionally substituted C1-C6 alkyl, ORi2, or NRi3Ri4; or two Rh groups, together with the carbon atom to which each is attached, combine to form optionally substituted C3-C10 carbocyclyl or optionally substituted C2-C9 heterocyclyl; or two Rh groups, together with the carbon atoms to which each is attached, combine to form optionally substituted C3-C10 carbocyclyl or optionally substituted C2-C9 heterocyclyl;


Ri1 is H or optionally substituted C1-C6 alkyl;


Ri2 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C6 carbocyclyl;


Ri3 is H or optionally substituted C1-C6 alkyl; and


Ri4 is H or optionally substituted C1-C6 alkyl.


In some embodiments, each Rh is, independently, halogen, optionally substituted C1-C6 alkyl, ORi2, or NRi3Ri4. In some embodiments, Ri1 is H or optionally substituted C1-C6 alkyl. In some embodiments, Ri2 is H or optionally substituted C1-C6 alkyl. In some embodiments, Ri3 is H or optionally substituted C1-C6 alkyl. In some embodiments, Ri4 is H or optionally substituted C1-C6 alkyl.


In some embodiments, the C2-C9 heterocyclylene is




embedded image


In some embodiments, each Rh is, independently, halogen, optionally substituted C1-C6 alkyl, ORi2, or NRi3Ri4. In some embodiments, each Rh is, independently, halogen, optionally substituted C1-C6 alkyl, or NRi3Ri4.


In some embodiments, each Rh is, independently, 2H, halogen, cyano, optionally substituted C1-C6 alkyl, ORi2, or NRi3Ri4. In some embodiments, two Rh groups, together with the carbon atom to which each is attached, combine to form optionally substituted C3-C10 carbocyclyl or optionally substituted C2-C9 heterocyclyl. In some embodiments, two Rh groups, together with the carbon atoms to which each is attached, combine to form optionally substituted C3-C10 carbocyclyl or optionally substituted C2-C9 heterocyclyl.


In some embodiments, each Rh is, independently, H, 2H, F, methyl,




embedded image


In some embodiments, each Rh is, independently, F, methyl, or NRi3Ri4.


In some embodiments, q1 is 0, 1, or 2. In some embodiments, q1 is 0. In some embodiments, q1 is 1. In some embodiments, q1 is 2.


In some embodiments, q2 is 0, 1, or 2. In some embodiments, q2 is 0. In some embodiments, q2 is 1. In some embodiments, q2 is 2.


In some embodiments, q3 is 0, 1, or 2. In some embodiments, q3 is 0. In some embodiments, q3 is 1. In some embodiments, q3 is 2.


In some embodiments, the C2-C9 heterocyclylene is




embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the C2-C9 heterocyclylene is




embedded image


embedded image


In some embodiments, F1 is




embedded image


In some embodiments, F1 is




embedded image


In some embodiments, F2 is




embedded image


In some embodiments, F3 is




embedded image


In some embodiments, Ri1 is H or methyl. In some embodiments, Ri2 is H or methyl. In some embodiments, Ri3 is H or methyl. In some embodiments, Ri4 is H or methyl.


In some embodiments, the C2-C9 heterocyclylene is




embedded image


In some embodiments, the C2-C9 heterocyclylene is




embedded image


In some embodiments, the C2-C9 heterocyclylene is




embedded image


embedded image


In some embodiments, the C2-C9 heterocyclylene is




embedded image


In some embodiments, the C2-C9 heterocyclylene is




embedded image


In some embodiments, F1 is




embedded image


In some embodiments, F1 is




embedded image


In some embodiments, F1 is




embedded image


In some embodiments, F2 is




embedded image


In some embodiments, the C2-C9 heterocyclylene is




embedded image


embedded image


In some embodiments, the C2-C9 heterocyclylene is




embedded image


embedded image


In some embodiments, the C2-C9 heterocyclylene is




embedded image


In some embodiments, F1 is




embedded image


In some embodiments, F1 is




embedded image


In some embodiments, F1 is




embedded image


In some embodiments, F1 is




embedded image


In some embodiments, F2 is




embedded image


In some embodiments, F2 is




embedded image


In some embodiments, F2 is




embedded image


In some embodiments, each of F1, F2, or F3 is, independently, optionally substituted C6-C10 arylene.


In some embodiments, the C6-C10 arylene is




embedded image


In some embodiments, each of F1, F2, or F3 is, independently, optionally substituted C2-C9 heteroarylene.


In some embodiments, the C2-C9 heteroarylene is




embedded image


In some embodiments, F2 is




embedded image


In some embodiments, F2 is




embedded image


In some embodiments, C3 is




embedded image


In some embodiments, C3 is




embedded image


In some embodiments, m is 1. In some embodiments, p is 1.


In some embodiments, the linker has the structure of




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the linker has the structure of




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the linker has the structure of:




embedded image


embedded image


embedded image


embedded image


In some embodiments, the linker is a bond.


In some embodiments, the linker is optionally substituted C3-C10 carbocyclylene, optionally substituted C2-10 heterocyclylene, optionally substituted C6-C10 arylene, or optionally substituted C2-C9 heteroarylene.


In some embodiments, the linker is optionally substituted C3-C10 carbocyclylene or optionally substituted C2-10 heterocyclylene. In some embodiments, the linker is optionally substituted C6-C10 arylene or optionally substituted C2-C9 heteroarylene.


In some embodiments, the linker is optionally substituted C2-10 heterocyclylene.


In some embodiments, the C2-C9 heterocyclylene is monocyclic. In some embodiments, the C2-C9 heterocyclylene is polycyclic.


In some embodiments, the C2-C9 heterocyclylene is bicyclic.


In some embodiments, the C2-C9 heterocyclylene is bridged. In some embodiments, the C2-C9 heterocyclylene is fused. In some embodiments, the C2-C9 heterocyclylene is spirocyclic.


In some embodiments, the linker has the structure of




embedded image


In some embodiments, the linker has the structure of




embedded image


In some embodiments, the compound has the structure of any one of compounds D1-D38 in Table 2A, or a pharmaceutically acceptable salt thereof. In some embodiments, the compound has the structure of any one of compounds D1-D33 in Table 2A, or a pharmaceutically acceptable salt thereof. In some embodiments, the compound has the structure of any one of compounds D34-D38 in Table 2A, or a pharmaceutically acceptable salt thereof. In some embodiments, the compound has the structure of any one of compounds D39-D302 in Table 2B, or a pharmaceutically acceptable salt thereof. In some embodiments, the compound has the structure of any one of compounds D303-D375 in Table 2C, or a pharmaceutically acceptable salt thereof.


In some embodiments, the compound has the structure of any one of compounds D9, D22, D25, D28, or D29 in Table 2A, or a pharmaceutically acceptable salt thereof. In some embodiments, the compound has the structure of any one of compounds D39-D49, D51, D52, D55, D56, D58, D58, D63, D64, D68, D69, D71-D73, D76, D78, D80-89, D91, D93, D95-107, D109, D110, D112-119, D121, D123-D1256, D127, D128, D130-D136, D138-D143, D145-D147, D149, D151, D152, D154-D166, D169-D174, D178-D183, D195-D201, D222, D224, D227, D231, D246, D251, D253-256, D283, or D299-302 in Table 2B, or a pharmaceutically acceptable salt thereof. In some embodiments, the compound has the structure of any one of compounds D303, D304, D306-D312, D314, D315, D317-D327, D329, D330, D332-336, D338-D342, D344-D348, D350, OR D353-D373, or a pharmaceutically acceptable salt thereof.


In an aspect, the disclosure features compounds D1-D38 in Table 2A, or a pharmaceutically acceptable salt thereof.


In another aspect, the disclosure features compounds D1-D33 in Table 2A, or a pharmaceutically acceptable salt thereof.


In another aspect, the disclosure features compounds D39-D302 in Table 2B, or a pharmaceutically acceptable salt thereof.


In yet another aspect, the disclosure features compounds D303-D375 in Table 2C, or a pharmaceutically acceptable salt thereof.









TABLE 2A







Compounds D1-D38 of the Disclosure








Compound No.
Structure





D1


embedded image







D2


embedded image







D3


embedded image







D4


embedded image







D5


embedded image







D6


embedded image







D7


embedded image







D8


embedded image







D9


embedded image







D10


embedded image







D11


embedded image







D12


embedded image







D13


embedded image







D14


embedded image







D15


embedded image







D16


embedded image







D17


embedded image







D18


embedded image







D19


embedded image







D20


embedded image







D21


embedded image







D22


embedded image







D23


embedded image







D24


embedded image







D25


embedded image







D26


embedded image







D27


embedded image







D28


embedded image







D29


embedded image







D30


embedded image







D31


embedded image







D32


embedded image







D33


embedded image







D34


embedded image







D35


embedded image







D36


embedded image







D37


embedded image







D38


embedded image


















TABLE 2B







Compounds D39-D302 of the Disclosure








Com-



pound



No.
Structure





D39


embedded image







D40


embedded image







D41


embedded image







D42


embedded image







D43


embedded image







D44


embedded image







D45


embedded image







D46


embedded image







D47


embedded image







D48


embedded image







D49


embedded image







D50


embedded image







D51


embedded image







D52


embedded image







D53


embedded image







D54


embedded image







D55


embedded image







D56


embedded image







D57


embedded image







D58


embedded image







D59


embedded image







D60


embedded image







D61


embedded image







D62


embedded image







D63


embedded image







D64


embedded image







D65


embedded image







D66


embedded image







D67


embedded image







D68


embedded image







D69


embedded image







D70


embedded image







D71


embedded image







D72


embedded image







D73


embedded image







D74


embedded image







D75


embedded image







D76


embedded image







D77


embedded image







D78


embedded image







D79


embedded image







D80


embedded image







D81


embedded image







D82


embedded image







D83


embedded image







D84


embedded image







D85


embedded image







D86


embedded image







D87


embedded image







D88


embedded image







D89


embedded image







D90


embedded image







D91


embedded image







D92


embedded image







D93


embedded image







D94


embedded image







D95


embedded image







D96


embedded image







D97


embedded image







D98


embedded image







D99


embedded image







D100


embedded image







D101


embedded image







D102


embedded image







D103


embedded image







D104


embedded image







D105


embedded image







D106


embedded image







D107


embedded image







D109


embedded image







D110


embedded image







D111


embedded image







D112


embedded image







D113


embedded image







D114


embedded image







D115


embedded image







D116


embedded image







D117


embedded image







D118


embedded image







D119


embedded image







D120


embedded image







D121


embedded image







D122


embedded image







D123


embedded image







D124


embedded image







D125


embedded image







D126


embedded image







D127


embedded image







D128


embedded image







D129


embedded image







D130


embedded image







D131


embedded image







D132


embedded image







D133


embedded image







D134


embedded image







D135


embedded image







D136


embedded image







D137


embedded image







D138


embedded image







D139


embedded image







D140


embedded image







D141


embedded image







D142


embedded image







D143


embedded image







D144


embedded image







D145


embedded image







D146


embedded image







D147


embedded image







D148


embedded image







D149


embedded image







D150


embedded image







D151


embedded image







D152


embedded image







D153


embedded image







D154


embedded image







D155


embedded image







D156


embedded image







D157


embedded image







D158


embedded image







D159


embedded image







D161


embedded image







D162


embedded image







D163


embedded image







D164


embedded image







D165


embedded image







D166


embedded image







D167


embedded image







D168


embedded image







D169


embedded image







D170


embedded image







D171


embedded image







D172


embedded image







D173


embedded image







D174


embedded image







D175


embedded image







D176


embedded image







D177


embedded image







D178


embedded image







D179


embedded image







D180


embedded image







D181


embedded image







D182


embedded image







D183


embedded image







D184


embedded image







D185


embedded image







D186


embedded image







D187


embedded image







D188


embedded image







D189


embedded image







D190


embedded image







D191


embedded image







D192


embedded image







D193


embedded image







D194


embedded image







D195


embedded image







D196


embedded image







D197


embedded image







D198


embedded image







D199


embedded image







D200


embedded image







D201


embedded image







D202


embedded image







D203


embedded image







D204


embedded image







D205


embedded image







D206


embedded image







D207


embedded image







D208


embedded image







D209


embedded image







D210


embedded image







D211


embedded image







D212


embedded image







D213


embedded image







D214


embedded image







D215


embedded image







D216


embedded image







D217


embedded image







D218


embedded image







D219


embedded image







D220


embedded image







D221


embedded image







D222


embedded image







D223


embedded image







D224


embedded image







D225


embedded image







D226


embedded image







D227


embedded image







D228


embedded image







D229


embedded image







D230


embedded image







D231


embedded image







D232


embedded image







D233


embedded image







D234


embedded image







D235


embedded image







D236


embedded image







D237


embedded image







D238


embedded image







D239


embedded image







D240


embedded image







D241


embedded image







D242


embedded image







D243


embedded image







D244


embedded image







D245


embedded image







D246


embedded image







D247


embedded image







D248


embedded image







D249


embedded image







D250


embedded image







D251


embedded image







D252


embedded image







D253


embedded image







D254


embedded image







D255


embedded image







D256


embedded image







D257


embedded image







D258


embedded image







D259


embedded image







D260


embedded image







D261


embedded image







D262


embedded image







D263


embedded image







D264


embedded image







D265


embedded image







D266


embedded image







D267


embedded image







D268


embedded image







D269


embedded image







D270


embedded image







D271


embedded image







D272


embedded image







D273


embedded image







D274


embedded image







D275


embedded image







D276


embedded image







D277


embedded image







D278


embedded image







D279


embedded image







D280


embedded image







D281


embedded image







D282


embedded image







D283


embedded image







D284


embedded image







D285


embedded image







D286


embedded image







D287


embedded image







D288


embedded image







D289


embedded image







D290


embedded image







D291


embedded image







D292


embedded image







D293


embedded image







D294


embedded image







D295


embedded image







D296


embedded image







D297


embedded image







D298


embedded image







D299


embedded image







D300


embedded image







D301


embedded image







D302


embedded image


















TABLE 2C







Compounds D303-D375 of the Disclosure










Compound




No.
Structure






D303


embedded image








D304


embedded image








D305


embedded image








D306


embedded image








D307


embedded image








D308


embedded image








D309


embedded image








D310


embedded image








D311


embedded image








D312


embedded image








D313


embedded image








D314


embedded image








D315


embedded image








D316


embedded image








D317


embedded image








D318


embedded image








D319


embedded image








D320


embedded image








D321


embedded image








D322


embedded image








D323


embedded image








D324


embedded image








D325


embedded image








D326


embedded image








D327


embedded image








D328


embedded image








D329


embedded image








D330


embedded image








D331


embedded image








D332


embedded image








D333


embedded image








D334


embedded image








D335


embedded image








D336


embedded image








D337


embedded image








D338


embedded image








D339


embedded image








D340


embedded image








D341


embedded image








D342


embedded image








D343


embedded image








D344


embedded image








D345


embedded image








D346


embedded image








D347


embedded image








D348


embedded image








D349


embedded image








D350


embedded image








D351


embedded image








D352


embedded image








D353


embedded image








D354


embedded image








D355


embedded image








D356


embedded image








D357


embedded image








D358


embedded image








D359


embedded image








D360


embedded image








D361


embedded image








D362


embedded image








D363


embedded image








D364


embedded image








D365


embedded image








D366


embedded image








D367


embedded image








D368


embedded image








D369


embedded image








D370


embedded image








D371


embedded image








D372


embedded image








D373


embedded image








D374


embedded image








D375


embedded image











In an aspect, the disclosure features a compound having the structure of DD1, or a pharmaceutically acceptable salt thereof.




embedded image


In another aspect, the disclosure features a pharmaceutical composition including any of the foregoing compounds, or pharmaceutically acceptable salts thereof, and a pharmaceutically acceptable excipient.


In an aspect, the disclosure features a method of inhibiting the level and/or activity of BRD9 in a cell, the method involving contacting the cell with an effective amount of any of the foregoing compounds, or pharmaceutically acceptable salts thereof, or a pharmaceutical composition thereof.


In another aspect, the disclosure features a method of reducing the level and/or activity of BRD9 in a cell, the method involving contacting the cell with an effective amount of any of the foregoing compounds, or pharmaceutically acceptable salts thereof, or a pharmaceutical composition thereof.


In some embodiments, the cell is a cancer cell.


In some embodiments, the cancer is a malignant, rhabdoid tumor, a CD8+ T-cell lymphoma, endometrial carcinoma, ovarian carcinoma, bladder cancer, stomach cancer, pancreatic cancer, esophageal cancer, prostate cancer, renal cell carcinoma, melanoma, colorectal cancer, a sarcoma (e.g., a soft tissue sarcoma, synovial sarcoma, Ewing's sarcoma, osteosarcoma, rhabdomyosarcoma, adult fibrosarcoma, alveolar soft-part sarcoma, angiosarcoma, clear cell sarcoma, desmoplastic small round cell tumor, epithelioid sarcoma, fibromyxoid sarcoma, gastrointestinal stromal tumor, Kaposi sarcoma, liposarcoma, leiomyosarcoma, malignant mesenchymoma malignant peripheral nerve sheath tumors, myxofibrosarcoma, low-grade rhabdomyosarcoma), non-small cell lung cancer (e.g., squamous or adenocarcinoma), stomach cancer, or breast cancer. In some embodiments, the cancer is a malignant, rhabdoid tumor, a CD8+ T-cell lymphoma, endometrial carcinoma, ovarian carcinoma, bladder cancer, stomach cancer, pancreatic cancer, esophageal cancer, prostate cancer, renal cell carcinoma, melanoma, or colorectal cancer. In some embodiments, the cancer is a sarcoma (e.g., synovial sarcoma or Ewing's sarcoma), non-small cell lung cancer (e.g., squamous or adenocarcinoma), stomach cancer, or breast cancer. In some embodiments, the cancer is sarcoma (e.g., synovial sarcoma or Ewing's sarcoma). In some embodiments, the sarcoma is synovial sarcoma.


In an aspect, the disclosure features a method of treating a BAF complex-related disorder in a subject in need thereof, the method involving administering to the subject an effective amount of any of the foregoing compounds, or pharmaceutically acceptable salts thereof, or a pharmaceutical composition thereof. In some embodiments, the BAF complex-related disorder is cancer. In some embodiments, the BAF complex-related disorder is infection.


In another aspect, the disclosure features a method of treating an SS18-SSX fusion protein-related disorder in a subject in need thereof, the method involving administering to the subject an effective amount of any of the foregoing compounds, or pharmaceutically acceptable salts thereof, or a pharmaceutical composition thereof. In some embodiments, the SS18-SSX fusion protein-related disorder is cancer. In some embodiments, the SS18-SSX fusion protein-related disorder is infection. In some embodiments of any of the foregoing methods, the SS18-SSX fusion protein is a SS18-SSX1 fusion protein, a SS18-SSX2 fusion protein, or a SS18-SSX4 fusion protein.


In yet another aspect, the disclosure features a method of treating a BRD9-related disorder in a subject in need thereof, the method involving administering to the subject an effective amount of any of the foregoing compounds, or pharmaceutically acceptable salts thereof, or a pharmaceutical composition thereof. In some embodiments, the BRD9-related disorder is cancer. In some embodiments, the BRD9-related disorder is infection.


In some embodiments, the cancer is squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, hepatocellular carcinomas, and renal cell carcinomas, cancer of the bladder, bowel, breast, cervix, colon, esophagus, head, kidney, liver, lung, neck, ovary, pancreas, prostate, and stomach; leukemias; benign and malignant lymphomas, particularly Burkitt's lymphoma and Non-Hodgkin's lymphoma; benign and malignant melanomas; myeloproliferative diseases; sarcomas, including Ewing's sarcoma, hemangiosarcoma, Kaposi's sarcoma, liposarcoma, myosarcomas, peripheral neuroepithelioma, synovial sarcoma, gliomas, astrocytomas, oligodendrogliomas, ependymomas, gliobastomas, neuroblastomas, ganglioneuromas, gangliogliomas, medulloblastomas, pineal cell tumors, meningiomas, meningeal sarcomas, neurofibromas, and Schwannomas; bowel cancer, breast cancer, prostate cancer, cervical cancer, uterine cancer, lung cancer, ovarian cancer, testicular cancer, thyroid cancer, astrocytoma, esophageal cancer, pancreatic cancer, stomach cancer, liver cancer, colon cancer, melanoma; carcinosarcoma, Hodgkin's disease, Wilms' tumor and teratocarcinomas. Additional cancers which may be treated using the disclosed compounds according to the present invention include, for example, acute granulocytic leukemia, acute lymphocytic leukemia (ALL), acute myelogenous leukemia (AML), adenocarcinoma, adenosarcoma, adrenal cancer, adrenocortical carcinoma, anal cancer, anaplastic astrocytoma, angiosarcoma, appendix cancer, astrocytoma, Basal cell carcinoma, B-Cell lymphoma, bile duct cancer, bladder cancer, bone cancer, bone marrow cancer, bowel cancer, brain cancer, brain stem glioma, breast cancer, triple (estrogen, progesterone and HER-2) negative breast cancer, double negative breast cancer (two of estrogen, progesterone and HER-2 are negative), single negative (one of estrogen, progesterone and HER-2 is negative), estrogen-receptor positive, HER2-negative breast cancer, estrogen receptor-negative breast cancer, estrogen receptor positive breast cancer, metastatic breast cancer, luminal A breast cancer, luminal B breast cancer, Her2-negative breast cancer, HER2-positive or negative breast cancer, progesterone receptor-negative breast cancer, progesterone receptor-positive breast cancer, recurrent breast cancer, carcinoid tumors, cervical cancer, cholangiocarcinoma, chondrosarcoma, chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), colon cancer, colorectal cancer, craniopharyngioma, cutaneous lymphoma, cutaneous melanoma, diffuse astrocytoma, ductal carcinoma in situ (DCIS), endometrial cancer, ependymoma, epithelioid sarcoma, esophageal cancer, ewing sarcoma, extrahepatic bile duct cancer, eye cancer, fallopian tube cancer, fibrosarcoma, gallbladder cancer, gastric cancer, gastrointestinal cancer, gastrointestinal carcinoid cancer, gastrointestinal stromal tumors (GIST), germ cell tumor glioblastoma multiforme (GBM), glioma, hairy cell leukemia, head and neck cancer, hemangioendothelioma, Hodgkin lymphoma, hypopharyngeal cancer, infiltrating ductal carcinoma (IDC), infiltrating lobular carcinoma (ILC), inflammatory breast cancer (IBC), intestinal Cancer, intrahepatic bile duct cancer, invasive/infiltrating breast cancer, Islet cell cancer, jaw cancer, Kaposi sarcoma, kidney cancer, laryngeal cancer, leiomyosarcoma, leptomeningeal metastases, leukemia, lip cancer, liposarcoma, liver cancer, lobular carcinoma in situ, low-grade astrocytoma, lung cancer, lymph node cancer, lymphoma, male breast cancer, medullary carcinoma, medulloblastoma, melanoma, meningioma, Merkel cell carcinoma, mesenchymal chondrosarcoma, mesenchymous, mesothelioma metastatic breast cancer, metastatic melanoma metastatic squamous neck cancer, mixed gliomas, monodermal teratoma, mouth cancer mucinous carcinoma, mucosal melanoma, multiple myeloma, Mycosis Fungoides, myelodysplastic syndrome, nasal cavity cancer, nasopharyngeal cancer, neck cancer, neuroblastoma, neuroendocrine tumors (NETs), non-Hodgkin's lymphoma, non-small cell lung cancer (NSCLC), oat cell cancer, ocular cancer, ocular melanoma, oligodendroglioma, oral cancer, oral cavity cancer, oropharyngeal cancer, osteogenic sarcoma, osteosarcoma, ovarian cancer, ovarian epithelial cancer ovarian germ cell tumor, ovarian primary peritoneal carcinoma, ovarian sex cord stromal tumor, Paget's disease, pancreatic cancer, papillary carcinoma, paranasal sinus cancer, parathyroid cancer, pelvic cancer, penile cancer, peripheral nerve cancer, peritoneal cancer, pharyngeal cancer, pheochromocytoma, pilocytic astrocytoma, pineal region tumor, pineoblastoma, pituitary gland cancer, primary central nervous system (CNS) lymphoma, prostate cancer, rectal cancer, renal cell carcinoma, renal pelvis cancer, rhabdomyosarcoma, salivary gland cancer, soft tissue sarcoma, bone sarcoma, sarcoma, sinus cancer, skin cancer, small cell lung cancer (SCLC), small intestine cancer, spinal cancer, spinal column cancer, spinal cord cancer, squamous cell carcinoma, stomach cancer, synovial sarcoma, T-cell lymphoma, testicular cancer, throat cancer, thymoma/thymic carcinoma, thyroid cancer, tongue cancer, tonsil cancer, transitional cell cancer, tubal cancer, tubular carcinoma, undiagnosed cancer, ureteral cancer, urethral cancer, uterine adenocarcinoma, uterine cancer, uterine sarcoma, vaginal cancer, vulvar cancer, T-cell lineage acute lymphoblastic leukemia (T-ALL), T-cell lineage lymphoblastic lymphoma (T-LL), peripheral T-cell lymphoma, Adult T-cell leukemia, Pre-B ALL, Pre-B lymphomas, large B-cell lymphoma, Burkitts lymphoma, B-cell ALL, Philadelphia chromosome positive ALL, Philadelphia chromosome positive CML, juvenile myelomonocytic leukemia (JMML), acute promyelocytic leukemia (a subtype of AML), large granular lymphocytic leukemia, Adult T-cell chronic leukemia, diffuse large B cell lymphoma, follicular lymphoma; Mucosa-Associated Lymphatic Tissue lymphoma (MALT), small cell lymphocytic lymphoma, mediastinal large B cell lymphoma, nodal marginal zone B cell lymphoma (NMZL); splenic marginal zone lymphoma (SMZL); intravascular large B-cell lymphoma; primary effusion lymphoma; or lymphomatoid granulomatosis; B-cell prolymphocytic leukemia; splenic lymphoma/leukemia, unclassifiable, splenic diffuse red pulp small B-cell lymphoma; lymphoplasmacytic lymphoma; heavy chain diseases, for example, Alpha heavy chain disease, Gamma heavy chain disease, Mu heavy chain disease, plasma cell myeloma, solitary plasmacytoma of bone; extraosseous plasmacytoma; primary cutaneous follicle center lymphoma, T cell/histocyte rich large B-cell lymphoma, DLBCL associated with chronic inflammation; Epstein-Barr virus (EBV)+ DLBCL of the elderly; primary mediastinal (thymic) large B-cell lymphoma, primary cutaneous DLBCL, leg type, ALK+ large B-cell lymphoma, plasmablastic lymphoma; large B-cell lymphoma arising in HHV8-associated multicentric, Castleman disease; B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma, or B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma.


In some embodiments, the cancer is a malignant, rhabdoid tumor, a CD8+ T-cell lymphoma, endometrial carcinoma, ovarian carcinoma, bladder cancer, stomach cancer, pancreatic cancer, esophageal cancer, prostate cancer, renal cell carcinoma, melanoma, colorectal cancer, a sarcoma (e.g., a soft tissue sarcoma, synovial sarcoma, Ewing's sarcoma, osteosarcoma, rhabdomyosarcoma, adult fibrosarcoma, alveolar soft-part sarcoma, angiosarcoma, clear cell sarcoma, desmoplastic small round cell tumor, epithelioid sarcoma, fibromyxoid sarcoma, gastrointestinal stromal tumor, Kaposi sarcoma, liposarcoma, leiomyosarcoma, malignant mesenchymoma malignant peripheral nerve sheath tumors, myxofibrosarcoma, low-grade rhabdomyosarcoma), non-small cell lung cancer (e.g., squamous or adenocarcinoma), stomach cancer, or breast cancer. In some embodiments, the cancer is a malignant, rhabdoid tumor, a CD8+ T-cell lymphoma, endometrial carcinoma, ovarian carcinoma, bladder cancer, stomach cancer, pancreatic cancer, esophageal cancer, prostate cancer, renal cell carcinoma, melanoma, or colorectal cancer. In some embodiments, the cancer is a sarcoma (e.g., synovial sarcoma or Ewing's sarcoma), non-small cell lung cancer (e.g., squamous or adenocarcinoma), stomach cancer, or breast cancer. In some embodiments, the cancer is sarcoma (e.g., synovial sarcoma or Ewing's sarcoma). In some embodiments, the sarcoma is synovial sarcoma.


In some embodiments, the infection is viral infection (e.g., an infection with a virus of the Retroviridae family such as the lentiviruses (e.g. Human immunodeficiency virus (HIV) and deltaretroviruses (e.g., human T cell leukemia virus I (HTLV-I), human T cell leukemia virus II (HTLV-II)); Hepadnaviridae family (e.g. hepatitis B virus (HBV)); Flaviviridae family (e.g. hepatitis C virus (HCV)); Adenoviridae family (e.g. Human Adenovirus); Herpesviridae family (e.g. Human cytomegalovirus (HCMV), Epstein-Barr virus, herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2), human herpesvirus 6 (HHV-6), Herpesvitus K*, CMV, varicella-zoster virus); Papillomaviridae family (e.g. Human Papillomavirus (HPV, HPV E1)); Parvoviridae family (e.g. Parvovirus B19); Polyomaviridae family (e.g. JC virus and BK virus); Paramyxoviridae family (e.g. Measles virus); or Togaviridae family (e.g. Rubella virus)). In some embodiments, the disorder is Coffin Siris, Neurofibromatosis (e.g., NF-1, NF-2, or Schwannomatosis), or Multiple Meningioma. In an aspect, the disclosure features a method of treating a cancer in a subject in need thereof, the method including administering to the subject an effective amount of any of the foregoing compounds, or pharmaceutically acceptable salts thereof, or any of the foregoing pharmaceutical compositions.


In some embodiments, the cancer is squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, hepatocellular carcinomas, and renal cell carcinomas, cancer of the bladder, bowel, breast, cervix, colon, esophagus, head, kidney, liver, lung, neck, ovary, pancreas, prostate, and stomach; leukemias; benign and malignant lymphomas, particularly Burkitt's lymphoma and Non-Hodgkin's lymphoma; benign and malignant melanomas; myeloproliferative diseases; sarcomas, including Ewing's sarcoma, hemangiosarcoma, Kaposi's sarcoma, liposarcoma, myosarcomas, peripheral neuroepithelioma, synovial sarcoma, gliomas, astrocytomas, oligodendrogliomas, ependymomas, gliobastomas, neuroblastomas, ganglioneuromas, gangliogliomas, medulloblastomas, pineal cell tumors, meningiomas, meningeal sarcomas, neurofibromas, and Schwannomas; bowel cancer, breast cancer, prostate cancer, cervical cancer, uterine cancer, lung cancer, ovarian cancer, testicular cancer, thyroid cancer, astrocytoma, esophageal cancer, pancreatic cancer, stomach cancer, liver cancer, colon cancer, melanoma; carcinosarcoma, Hodgkin's disease, Wilms' tumor and teratocarcinomas. Additional cancers which may be treated using the disclosed compounds according to the present invention include, for example, acute granulocytic leukemia, acute lymphocytic leukemia (ALL), acute myelogenous leukemia (AML), adenocarcinoma, adenosarcoma, adrenal cancer, adrenocortical carcinoma, anal cancer, anaplastic astrocytoma, angiosarcoma, appendix cancer, astrocytoma, Basal cell carcinoma, B-Cell lymphoma, bile duct cancer, bladder cancer, bone cancer, bone marrow cancer, bowel cancer, brain cancer, brain stem glioma, breast cancer, triple (estrogen, progesterone and HER-2) negative breast cancer, double negative breast cancer (two of estrogen, progesterone and HER-2 are negative), single negative (one of estrogen, progesterone and HER-2 is negative), estrogen-receptor positive, HER2-negative breast cancer, estrogen receptor-negative breast cancer, estrogen receptor positive breast cancer, metastatic breast cancer, luminal A breast cancer, luminal B breast cancer, Her2-negative breast cancer, HER2-positive or negative breast cancer, progesterone receptor-negative breast cancer, progesterone receptor-positive breast cancer, recurrent breast cancer, carcinoid tumors, cervical cancer, cholangiocarcinoma, chondrosarcoma, chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), colon cancer, colorectal cancer, craniopharyngioma, cutaneous lymphoma, cutaneous melanoma, diffuse astrocytoma, ductal carcinoma in situ (DCIS), endometrial cancer, ependymoma, epithelioid sarcoma, esophageal cancer, ewing sarcoma, extrahepatic bile duct cancer, eye cancer, fallopian tube cancer, fibrosarcoma, gallbladder cancer, gastric cancer, gastrointestinal cancer, gastrointestinal carcinoid cancer, gastrointestinal stromal tumors (GIST), germ cell tumor glioblastoma multiforme (GBM), glioma, hairy cell leukemia, head and neck cancer, hemangioendothelioma, Hodgkin lymphoma, hypopharyngeal cancer, infiltrating ductal carcinoma (IDC), infiltrating lobular carcinoma (ILC), inflammatory breast cancer (IBC), intestinal Cancer, intrahepatic bile duct cancer, invasive/infiltrating breast cancer, Islet cell cancer, jaw cancer, Kaposi sarcoma, kidney cancer, laryngeal cancer, leiomyosarcoma, leptomeningeal metastases, leukemia, lip cancer, liposarcoma, liver cancer, lobular carcinoma in situ, low-grade astrocytoma, lung cancer, lymph node cancer, lymphoma, male breast cancer, medullary carcinoma, medulloblastoma, melanoma, meningioma, Merkel cell carcinoma, mesenchymal chondrosarcoma, mesenchymous, mesothelioma metastatic breast cancer, metastatic melanoma metastatic squamous neck cancer, mixed gliomas, monodermal teratoma, mouth cancer mucinous carcinoma, mucosal melanoma, multiple myeloma, Mycosis Fungoides, myelodysplastic syndrome, nasal cavity cancer, nasopharyngeal cancer, neck cancer, neuroblastoma, neuroendocrine tumors (NETs), non-Hodgkin's lymphoma, non-small cell lung cancer (NSCLC), oat cell cancer, ocular cancer, ocular melanoma, oligodendroglioma, oral cancer, oral cavity cancer, oropharyngeal cancer, osteogenic sarcoma, osteosarcoma, ovarian cancer, ovarian epithelial cancer ovarian germ cell tumor, ovarian primary peritoneal carcinoma, ovarian sex cord stromal tumor, Paget's disease, pancreatic cancer, papillary carcinoma, paranasal sinus cancer, parathyroid cancer, pelvic cancer, penile cancer, peripheral nerve cancer, peritoneal cancer, pharyngeal cancer, pheochromocytoma, pilocytic astrocytoma, pineal region tumor, pineoblastoma, pituitary gland cancer, primary central nervous system (CNS) lymphoma, prostate cancer, rectal cancer, renal cell carcinoma, renal pelvis cancer, rhabdomyosarcoma, salivary gland cancer, soft tissue sarcoma, bone sarcoma, sarcoma, sinus cancer, skin cancer, small cell lung cancer (SCLC), small intestine cancer, spinal cancer, spinal column cancer, spinal cord cancer, squamous cell carcinoma, stomach cancer, synovial sarcoma, T-cell lymphoma, testicular cancer, throat cancer, thymoma/thymic carcinoma, thyroid cancer, tongue cancer, tonsil cancer, transitional cell cancer, tubal cancer, tubular carcinoma, undiagnosed cancer, ureteral cancer, urethral cancer, uterine adenocarcinoma, uterine cancer, uterine sarcoma, vaginal cancer, vulvar cancer, T-cell lineage acute lymphoblastic leukemia (T-ALL), T-cell lineage lymphoblastic lymphoma (T-LL), peripheral T-cell lymphoma, Adult T-cell leukemia, Pre-B ALL, Pre-B lymphomas, large B-cell lymphoma, Burkitts lymphoma, B-cell ALL, Philadelphia chromosome positive ALL, Philadelphia chromosome positive CML, juvenile myelomonocytic leukemia (JMML), acute promyelocytic leukemia (a subtype of AML), large granular lymphocytic leukemia, Adult T-cell chronic leukemia, diffuse large B cell lymphoma, follicular lymphoma; Mucosa-Associated Lymphatic Tissue lymphoma (MALT), small cell lymphocytic lymphoma, mediastinal large B cell lymphoma, nodal marginal zone B cell lymphoma (NMZL); splenic marginal zone lymphoma (SMZL); intravascular large B-cell lymphoma; primary effusion lymphoma; or lymphomatoid granulomatosis; B-cell prolymphocytic leukemia; splenic lymphoma/leukemia, unclassifiable, splenic diffuse red pulp small B-cell lymphoma; lymphoplasmacytic lymphoma; heavy chain diseases, for example, Alpha heavy chain disease, Gamma heavy chain disease, Mu heavy chain disease, plasma cell myeloma, solitary plasmacytoma of bone; extraosseous plasmacytoma; primary cutaneous follicle center lymphoma, T cell/histocyte rich large B-cell lymphoma, DLBCL associated with chronic inflammation; Epstein-Barr virus (EBV)+ DLBCL of the elderly; primary mediastinal (thymic) large B-cell lymphoma, primary cutaneous DLBCL, leg type, ALK+ large B-cell lymphoma, plasmablastic lymphoma; large B-cell lymphoma arising in HHV8-associated multicentric, Castleman disease; B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma, or B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma.


In some embodiments, the cancer is a malignant, rhabdoid tumor, a CD8+ T-cell lymphoma, endometrial carcinoma, ovarian carcinoma, bladder cancer, stomach cancer, pancreatic cancer, esophageal cancer, prostate cancer, renal cell carcinoma, melanoma, colorectal cancer, a sarcoma (e.g., a soft tissue sarcoma, synovial sarcoma, Ewing's sarcoma, osteosarcoma, rhabdomyosarcoma, adult fibrosarcoma, alveolar soft-part sarcoma, angiosarcoma, clear cell sarcoma, desmoplastic small round cell tumor, epithelioid sarcoma, fibromyxoid sarcoma, gastrointestinal stromal tumor, Kaposi sarcoma, liposarcoma, leiomyosarcoma, malignant mesenchymoma malignant peripheral nerve sheath tumors, myxofibrosarcoma, low-grade rhabdomyosarcoma), non-small cell lung cancer (e.g., squamous or adenocarcinoma), stomach cancer, or breast cancer. In some embodiments, the cancer is a malignant, rhabdoid tumor, a CD8+ T-cell lymphoma, endometrial carcinoma, ovarian carcinoma, bladder cancer, stomach cancer, pancreatic cancer, esophageal cancer, prostate cancer, renal cell carcinoma, melanoma, or colorectal cancer. In some embodiments, the cancer is a sarcoma (e.g., synovial sarcoma or Ewing's sarcoma), non-small cell lung cancer (e.g., squamous or adenocarcinoma), stomach cancer, or breast cancer. In some embodiments, the cancer is sarcoma (e.g., synovial sarcoma or Ewing's sarcoma). In some embodiments, the sarcoma is synovial sarcoma.


In another aspect, the disclosure features a method for treating a viral infection in a subject in need thereof. This method includes administering to the subject an effective amount of any of the foregoing compounds, or pharmaceutically acceptable salts thereof, or any of the foregoing pharmaceutical compositions. In some embodiments, the viral infection is an infection with a virus of the Retroviridae family such as the lentiviruses (e.g. Human immunodeficiency virus (HIV) and deltaretroviruses (e.g., human T cell leukemia virus I (HTLV-I), human T cell leukemia virus II (HTLV-II)); Hepadnaviridae family (e.g. hepatitis B virus (HBV)), Flaviviridae family (e.g. hepatitis C virus (HCV)), Adenoviridae family (e.g. Human Adenovirus), Herpesviridae family (e.g. Human cytomegalovirus (HCMV), Epstein-Barr virus, herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2), human herpesvirus 6 (HHV-6), Herpesvitus K*, CMV, varicella-zoster virus), Papillomaviridae family (e.g. Human Papillomavirus (HPV, HPV E1)), Parvoviridae family (e.g. Parvovirus B19), Polyomaviridae family (e.g. JC virus and BK virus), Paramyxoviridae family (e.g. Measles virus), Togaviridae family (e.g. Rubella virus).


In another embodiment of any of the foregoing methods, the method further includes administering to the subject an additional anticancer therapy (e.g., chemotherapeutic or cytotoxic agent or radiotherapy).


In particular embodiments, the additional anticancer therapy is: a chemotherapeutic or cytotoxic agent (e.g., doxorubicin or ifosfamide), a differentiation-inducing agent (e.g., retinoic acid, vitamin D, cytokines), a hormonal agent, an immunological agent, or an anti-angiogenic agent. Chemotherapeutic and cytotoxic agents include, but are not limited to, alkylating agents, cytotoxic antibiotics, antimetabolites, vinca alkaloids, etoposides, and others (e.g., paclitaxel, taxol, docetaxel, taxotere, cis-platinum). A list of additional compounds having anticancer activity can be found in L. Brunton, B. Chabner and B. Knollman (eds). Goodman and Gilman's The Pharmacological Basis of Therapeutics, Twelfth Edition, 2011, McGraw Hill Companies, New York, N.Y.


In particular embodiments, the compound of the invention and the additional anticancer therapy and any of the foregoing compounds or pharmaceutical compositions are administered within 28 days of each other (e.g., within 21, 14, 10, 7, 5, 4, 3, 2, or 1 days) or within 24 hours (e.g., 12, 6, 3, 2, or 1 hours; or concomitantly) each in an amount that together are effective to treat the subject.


Chemical Terms

The terminology employed herein is for the purpose of describing particular embodiments and is not intended to be limiting.


For any of the following chemical definitions, a number following an atomic symbol indicates that total number of atoms of that element that are present in a particular chemical moiety. As will be understood, other atoms, such as hydrogen atoms, or substituent groups, as described herein, may be present, as necessary, to satisfy the valences of the atoms. For example, an unsubstituted C2 alkyl group has the formula —CH2CH3. When used with the groups defined herein, a reference to the number of carbon atoms includes the divalent carbon in acetal and ketal groups but does not include the carbonyl carbon in acyl, ester, carbonate, or carbamate groups. A reference to the number of oxygen, nitrogen, or sulfur atoms in a heteroaryl group only includes those atoms that form a part of a heterocyclic ring.


Herein a phrase of the form “optionally substituted X” (e.g., optionally substituted alkyl) is intended to be equivalent to “X, wherein X is optionally substituted” (e.g., “alkyl, wherein said alkyl is optionally substituted”). It is not intended to mean that the feature “X” (e.g., alkyl) per se is optional. As described herein, certain compounds of interest may contain one or more “optionally substituted” moieties. In general, the term “substituted”, whether preceded by the term “optionally” or not, means that one or more hydrogens of the designated moiety are replaced with a suitable substituent, e.g., any of the substituents or groups described herein. Unless otherwise indicated, an “optionally substituted” group may have a suitable substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position. Combinations of substituents envisioned by the present disclosure are preferably those that result in the formation of stable or chemically feasible compounds. The term “stable”, as used herein, refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and, in certain embodiments, their recovery, purification, and use for one or more of the purposes disclosed herein.


The term “aliphatic,” as used herein, refers to a saturated or unsaturated, straight, branched, or cyclic hydrocarbon. “Aliphatic” is intended herein to include, but is not limited to, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and cycloalkynyl moieties, and thus incorporates each of these definitions. In one embodiment, “aliphatic” is used to indicate those aliphatic groups having 1-20 carbon atoms. The aliphatic chain can be, for example, mono-unsaturated, di-unsaturated, tri-unsaturated, or polyunsaturated, or alkynyl. Unsaturated aliphatic groups can be in a cis or trans configuration. In one embodiment, the aliphatic group contains from 1 to about 12 carbon atoms, more generally from 1 to about 6 carbon atoms or from 1 to about 4 carbon atoms. In one embodiment, the aliphatic group contains from 1 to about 8 carbon atoms. In certain embodiments, the aliphatic group is C1-C2, C1-C3, C1-C4, C1-C5, or C1-C6. The specified ranges as used herein indicate an aliphatic group having each member of the range described as an independent species. For example, the term C1-C6 aliphatic as used herein indicates a straight or branched alkyl, alkenyl, or alkynyl group having from 1, 2, 3, 4, 5, or 6 carbon atoms and is intended to mean that each of these is described as an independent species. For example, the term C1-C4 aliphatic as used herein indicates a straight or branched alkyl, alkenyl, or alkynyl group having from 1, 2, 3, or 4 carbon atoms and is intended to mean that each of these is described as an independent species. In one embodiment, the aliphatic group is substituted with one or more functional groups that results in the formation of a stable moiety.


The term “heteroaliphatic,” as used herein, refers to an aliphatic moiety that contains at least one heteroatom in the chain, for example, an amine, carbonyl, carboxy, oxo, thio, phosphate, phosphonate, nitrogen, phosphorus, silicon, or boron atoms in place of a carbon atom. In one embodiment, the only heteroatom is nitrogen. In one embodiment, the only heteroatom is oxygen. In one embodiment, the only heteroatom is sulfur. “Heteroaliphatic” is intended herein to include, but is not limited to, heteroalkyl, heteroalkenyl, heteroalkynyl, heterocycloalkyl, heterocycloalkenyl, and heterocycloalkynyl moieties. In one embodiment, “heteroaliphatic” is used to indicate a heteroaliphatic group (cyclic, acyclic, substituted, unsubstituted, branched or unbranched) having 1-20 carbon atoms. In one embodiment, the heteroaliphatic group is optionally substituted in a manner that results in the formation of a stable moiety. Nonlimiting examples of heteroaliphatic moieties are polyethylene glycol, polyalkylene glycol, amide, polyamide, polylactide, polyglycolide, thioether, ether, alkyl-heterocycle-alkyl, —O-alkyl-O-alkyl, and alkyl-O-haloalkyl.


The term “acyl,” as used herein, represents a hydrogen or an alkyl group that is attached to a parent molecular group through a carbonyl group, as defined herein, and is exemplified by formyl (i.e., a carboxyaldehyde group), acetyl, trifluoroacetyl, propionyl, and butanoyl. Exemplary unsubstituted acyl groups include from 1 to 6, from 1 to 11, or from 1 to 21 carbons.


The term “alkyl,” as used herein, refers to a branched or straight-chain monovalent saturated aliphatic hydrocarbon radical of 1 to 20 carbon atoms (e.g., 1 to 16 carbon atoms, 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 3 carbon atoms). An “alkylene” is a divalent alkyl group.


The term “alkenyl,” as used herein, alone or in combination with other groups, refers to a straight chain or branched hydrocarbon residue having a carbon-carbon double bond and having 2 to 20 carbon atoms (e.g., 2 to 16 carbon atoms, 2 to 10 carbon atoms, 2 to 6, or 2 carbon atoms). An “alkenylene” is a divalent alkenyl group.


The term “alkynyl,” as used herein, alone or in combination with other groups, refers to a straight chain or branched hydrocarbon residue having a carbon-carbon triple bond and having 2 to 20 carbon atoms (e.g., 2 to 16 carbon atoms, 2 to 10 carbon atoms, 2 to 6, or 2 carbon atoms). An “alkynylene” is a divalent alkynyl group.


The term “amino,” as used herein, represents —N(RN1)2, wherein each RN1 is, independently, H, OH, NO2, N(RN2)2, SO2ORN2, SO2RN2, SORN2, an N-protecting group, alkyl, alkoxy, aryl, arylalkyl, cycloalkyl, acyl (e.g., acetyl, trifluoroacetyl, or others described herein), wherein each of these recited RN1 groups can be optionally substituted; or two RN1 combine to form an alkylene or heteroalkylene, and wherein each RN2 is, independently, H, alkyl, or aryl. The amino groups of the compounds described herein can be an unsubstituted amino (i.e., —NH2) or a substituted amino (i.e., —N(RN1)2).


The term “aryl,” as used herein, refers to an aromatic mono- or polycarbocyclic radical of, e.g., 6 to 12, carbon atoms having at least one aromatic ring. Examples of such groups include, but are not limited to, phenyl, naphthyl, 1,2,3,4-tetrahydronaphthyl, 1,2-dihydronaphthyl, indanyl, and 1H-indenyl.


The term “arylalkyl,” as used herein, represents an alkyl group substituted with an aryl group. Exemplary unsubstituted arylalkyl groups are from 7 to 30 carbons (e.g., from 7 to 16 or from 7 to 20 carbons, such as C1-C6 alkyl C6-C10 aryl, C1-C10 alkyl C6-C10 aryl, or C1-C20 alkyl C6-C10 aryl), such as, benzyl and phenethyl. In some embodiments, the alkyl and the aryl each can be further substituted with 1, 2, 3, or 4 substituent groups as defined herein for the respective groups.


The term “azido,” as used herein, represents a —N3 group.


The term “bridged cyclyl,” as used herein, refers to a bridged polycyclic group of 5 to 20 atoms, containing from 1 to 3 bridges. Bridged cyclyl includes bridged carbocyclyl (e.g., norbornyl) and bridged heterocyclyl (e.g., 1,4-diazabicyclo[2.2.2]octane).


The term “cyano,” as used herein, represents a —CN group.


The term “carbocyclyl,” as used herein, refers to a non-aromatic C3-C12, monocyclic or polycyclic (e.g., bicyclic or tricyclic) structure in which the rings are formed by carbon atoms. Carbocyclyl structures include cycloalkyl groups (e.g., cyclohexyl) and unsaturated carbocyclyl radicals (e.g., cyclohexenyl). Polycyclic carbocyclyl includes spirocyclic carbocyclyl, bridged carbocyclyl, and fused carbocyclyl. A “carbocyclylene” is a divalent carbocyclyl group.


The term “cycloalkyl,” as used herein, refers to a saturated, non-aromatic, monovalent mono- or polycarbocyclic radical of 3 to 10, preferably 3 to 6 carbon atoms. This term is further exemplified by radicals such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, norbornyl, and adamantyl.


The terms “halo” or “halogen,” as used herein, mean a fluorine (fluoro), chlorine (chloro), bromine (bromo), or iodine (iodo) radical.


The term “heteroalkyl,” as used herein, refers to an alkyl group, as defined herein, in which one or more of the constituent carbon atoms have been replaced by nitrogen, oxygen, or sulfur. In some embodiments, the heteroalkyl group can be further substituted with 1, 2, 3, or 4 substituent groups as described herein for alkyl groups. Examples of heteroalkyl groups are an “alkoxy” which, as used herein, refers to alkyl-O— (e.g., methoxy and ethoxy), and an “alkylamino” which, as used herein, refers to —N(alkyl)RNa, where RNa is H or alkyl (e.g., methylamino). A “heteroalkylene” is a divalent heteroalkyl group.


The term “heteroalkenyl,” as used herein, refers to an alkenyl group, as defined herein, in which one or more of the constituent carbon atoms have been replaced by nitrogen, oxygen, or sulfur. In some embodiments, the heteroalkenyl group can be further substituted with 1, 2, 3, or 4 substituent groups as described herein for alkenyl groups. Examples of heteroalkenyl groups are an “alkenoxy” which, as used herein, refers to alkenyl-O—. A “heteroalkenylene” is a divalent heteroalkenyl group.


The term “heteroalkynyl,” as used herein, refers to an alkynyl group, as defined herein, in which one or more of the constituent carbon atoms have been replaced by nitrogen, oxygen, or sulfur. In some embodiments, the heteroalkynyl group can be further substituted with 1, 2, 3, or 4 substituent groups as described herein for alkynyl groups. Examples of heteroalkynyl groups are an “alkynoxy” which, as used herein, refers to alkynyl-O—. A “heteroalkynylene” is a divalent heteroalkynyl group.


The term “heteroaryl,” as used herein, refers to an aromatic monocyclic or polycyclic structure of 5 to 12 atoms having at least one aromatic ring containing 1, 2, or 3 ring atoms selected from nitrogen, oxygen, and sulfur, with the remaining ring atoms being carbon. One or two ring carbon atoms of the heteroaryl group may be replaced with a carbonyl group. Examples of heteroaryl groups are pyridyl, pyrazoyl, benzooxazolyl, benzoimidazolyl, benzothiazolyl, imidazolyl, oxaxolyl, and thiazolyl. A “heteroarylene” is a divalent heteroaryl group.


The term “heteroarylalkyl,” as used herein, represents an alkyl group substituted with a heteroaryl group. Exemplary unsubstituted heteroarylalkyl groups are from 7 to 30 carbons (e.g., from 7 to 16 or from 7 to 20 carbons, such as C1-C6 alkyl C2-C9 heteroaryl, C1-C10 alkyl C2-C9 heteroaryl, or C1-C20 alkyl C2-C9 heteroaryl). In some embodiments, the alkyl and the heteroaryl each can be further substituted with 1, 2, 3, or 4 substituent groups as defined herein for the respective groups.


The term “heterocyclyl,” as used herein, refers a monocyclic or polycyclic radical (e.g., bicyclic or tricyclic) having 3 to 12 atoms having at least one non-aromatic ring containing 1, 2, 3, or 4 ring atoms selected from N, O, or S, and no aromatic ring containing any N, O, or S atoms. Polycyclic heterocyclyl includes spirocyclic heterocyclyl, bridged heterocyclyl, and fused heterocyclyl. Examples of heterocyclyl groups include, but are not limited to, morpholinyl, thiomorpholinyl, furyl, piperazinyl, piperidinyl, pyranyl, pyrrolidinyl, tetrahydropyranyl, tetrahydrofuranyl, and 1,3-dioxanyl. A “heterocyclylene” is a divalent heterocyclyl group.


The term “heterocyclylalkyl,” as used herein, represents an alkyl group substituted with a heterocyclyl group. Exemplary unsubstituted heterocyclylalkyl groups are from 7 to 30 carbons (e.g., from 7 to 16 or from 7 to 20 carbons, such as C1-C6 alkyl C2-C9 heterocyclyl, C1-C10 alkyl C2-C9 heterocyclyl, or C1-C20 alkyl C2-C9 heterocyclyl). In some embodiments, the alkyl and the heterocyclyl each can be further substituted with 1, 2, 3, or 4 substituent groups as defined herein for the respective groups.


The term “hydroxyalkyl,” as used herein, represents alkyl group substituted with an —OH group.


The term “hydroxyl,” as used herein, represents an —OH group.


The term “imine,” as used herein, represents ═NRN group, where RN is, e.g., H or alkyl.


The term “N-protecting group,” as used herein, represents those groups intended to protect an amino group against undesirable reactions during synthetic procedures. Commonly used N-protecting groups are disclosed in Greene, “Protective Groups in Organic Synthesis,” 3rd Edition (John Wiley & Sons, New York, 1999). N-protecting groups include, but are not limited to, acyl, aryloyl, or carbamyl groups such as formyl, acetyl, propionyl, pivaloyl, t-butylacetyl, 2-chloroacetyl, 2-bromoacetyl, trifluoroacetyl, trichloroacetyl, phthalyl, o-nitrophenoxyacetyl, α-chlorobutyryl, benzoyl, 4-chlorobenzoyl, 4-bromobenzoyl, 4-nitrobenzoyl, and chiral auxiliaries such as protected or unprotected D, L, or D, L-amino acids such as alanine, leucine, and phenylalanine; sulfonyl-containing groups such as benzenesulfonyl, and p-toluenesulfonyl; carbamate forming groups such as benzyloxycarbonyl, p-chlorobenzyloxycarbonyl, p-methoxybenzyloxycarbonyl, p-nitrobenzyloxycarbonyl, 2-nitrobenzyloxycarbonyl, p-bromobenzyloxycarbonyl, 3,4-dimethoxybenzyloxycarbonyl, 3,5-dimethoxybenzyloxycarbonyl, 2,4-20 dimethoxybenzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-nitro-4,5-dimethoxybenzyloxycarbonyl, 3,4,5-trimethoxybenzyloxycarbonyl, 1-(p-biphenylyl)-1-methylethoxycarbonyl, α,α-dimethyl-3,5-dimethoxybenzyloxycarbonyl, benzhydryloxy carbonyl, t-butyloxycarbonyl, diisopropylmethoxycarbonyl, isopropyloxycarbonyl, ethoxycarbonyl, methoxycarbonyl, allyloxycarbonyl, 2,2,2,-trichloroethoxycarbonyl, phenoxycarbonyl, 4-nitrophenoxy carbonyl, fluorenyl-9-methoxycarbonyl, cyclopentyloxycarbonyl, adamantyloxycarbonyl, cyclohexyloxycarbonyl, and phenylthiocarbonyl, arylalkyl groups such as benzyl, triphenylmethyl, and benzyloxymethyl, and silyl groups, such as trimethylsilyl. Preferred N-protecting groups are alloc, formyl, acetyl, benzoyl, pivaloyl, t-butylacetyl, alanyl, phenylsulfonyl, benzyl, t-butyloxycarbonyl (Boc), and benzyloxycarbonyl (Cbz).


The term “nitro,” as used herein, represents an —NO2 group.


The term “oxo,” as used herein, represents an ═O group.


The term “thiol,” as used herein, represents an —SH group.


The alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl (e.g., cycloalkyl), aryl, heteroaryl, and heterocyclyl groups may be substituted or unsubstituted. When substituted, there will generally be 1 to 4 substituents present, unless otherwise specified. Substituents include, for example: alkyl (e.g., unsubstituted and substituted, where the substituents include any group described herein, e.g., aryl, halo, hydroxy), aryl (e.g., substituted and unsubstituted phenyl), carbocyclyl (e.g., substituted and unsubstituted cycloalkyl), halogen (e.g., fluoro), hydroxyl, heteroalkyl (e.g., substituted and unsubstituted methoxy, ethoxy, or thioalkoxy), heteroaryl, heterocyclyl, amino (e.g., NH2 or mono- or dialkyl amino), azido, cyano, nitro, oxo, sulfonyl, or thiol. Aryl, carbocyclyl (e.g., cycloalkyl), heteroaryl, and heterocyclyl groups may also be substituted with alkyl (unsubstituted and substituted such as arylalkyl (e.g., substituted and unsubstituted benzyl)).


Compounds described herein (e.g., compounds of the invention) can have one or more asymmetric carbon atoms and can exist in the form of optically pure enantiomers, mixtures of enantiomers such as, for example, racemates, optically pure diastereoisomers, mixtures of diastereoisomers, diastereoisomeric racemates, or mixtures of diastereoisomeric racemates. The optically active forms can be obtained for example by resolution of the racemates, by asymmetric synthesis or asymmetric chromatography (chromatography with a chiral adsorbent or eluant). That is, certain of the disclosed compounds may exist in various stereoisomeric forms. Stereoisomers are compounds that differ only in their spatial arrangement. Enantiomers are pairs of stereoisomers whose mirror images are not superimposable, most commonly because they contain an asymmetrically substituted carbon atom that acts as a chiral center. “Enantiomer” means one of a pair of molecules that are mirror images of each other and are not superimposable. Diastereomers are stereoisomers that are not related as mirror images, most commonly because they contain two or more asymmetrically substituted carbon atoms and represent the configuration of substituents around one or more chiral carbon atoms. Enantiomers of a compound can be prepared, for example, by separating an enantiomer from a racemate using one or more well-known techniques and methods, such as, for example, chiral chromatography and separation methods based thereon. The appropriate technique and/or method for separating an enantiomer of a compound described herein from a racemic mixture can be readily determined by those of skill in the art. “Racemate” or “racemic mixture” means a compound containing two enantiomers, wherein such mixtures exhibit no optical activity; i.e., they do not rotate the plane of polarized light. “Geometric isomer” means isomers that differ in the orientation of substituent atoms in relationship to a carbon-carbon double bond, to a cycloalkyl ring, or to a bridged bicyclic system. Atoms (other than H) on each side of a carbon-carbon double bond may be in an E (substituents are on opposite sides of the carbon-carbon double bond) or Z (substituents are oriented on the same side) configuration. “R,” “S,” “S*,” “R*,” “E,” “Z,” “cis,” and “trans,” indicate configurations relative to the core molecule. Certain of the disclosed compounds may exist in atropisomeric forms. Atropisomers are stereoisomers resulting from hindered rotation about single bonds where the steric strain barrier to rotation is high enough to allow for the isolation of the conformers. The compounds described herein (e.g., the compounds of the invention) may be prepared as individual isomers by either isomer-specific synthesis or resolved from an isomeric mixture. Conventional resolution techniques include forming the salt of a free base of each isomer of an isomeric pair using an optically active acid (followed by fractional crystallization and regeneration of the free base), forming the salt of the acid form of each isomer of an isomeric pair using an optically active amine (followed by fractional crystallization and regeneration of the free acid), forming an ester or amide of each of the isomers of an isomeric pair using an optically pure acid, amine or alcohol (followed by chromatographic separation and removal of the chiral auxiliary), or resolving an isomeric mixture of either a starting material or a final product using various well known chromatographic methods. When the stereochemistry of a disclosed compound is named or depicted by structure, the named or depicted stereoisomer is at least 60%, 70%, 80%, 90%, 99%, or 99.9% by weight relative to the other stereoisomers. When a single enantiomer is named or depicted by structure, the depicted or named enantiomer is at least 60%, 70%, 80%, 90%, 99%, or 99.9% by weight optically pure. When a single diastereomer is named or depicted by structure, the depicted or named diastereomer is at least 60%, 70%, 80%, 90%, 99%, or 99.9% by weight pure. Percent optical purity is the ratio of the weight of the enantiomer or over the weight of the enantiomer plus the weight of its optical isomer. Diastereomeric purity by weight is the ratio of the weight of one diastereomer or over the weight of all the diastereomers. When the stereochemistry of a disclosed compound is named or depicted by structure, the named or depicted stereoisomer is at least 60%, 70%, 80%, 90%, 99%, or 99.9% by mole fraction pure relative to the other stereoisomers. When a single enantiomer is named or depicted by structure, the depicted or named enantiomer is at least 60%, 70%, 80%, 90%, 99%, or 99.9% by mole fraction pure. When a single diastereomer is named or depicted by structure, the depicted or named diastereomer is at least 60%, 70%, 80%, 90%, 99%, or 99.9% by mole fraction pure. Percent purity by mole fraction is the ratio of the moles of the enantiomer or over the moles of the enantiomer plus the moles of its optical isomer. Similarly, percent purity by moles fraction is the ratio of the moles of the diastereomer or over the moles of the diastereomer plus the moles of its isomer. When a disclosed compound is named or depicted by structure without indicating the stereochemistry, and the compound has at least one chiral center, it is to be understood that the name or structure encompasses either enantiomer of the compound free from the corresponding optical isomer, a racemic mixture of the compound, or mixtures enriched in one enantiomer relative to its corresponding optical isomer. When a disclosed compound is named or depicted by structure without indicating the stereochemistry and has two or more chiral centers, it is to be understood that the name or structure encompasses a diastereomer free of other diastereomers, a number of diastereomers free from other diastereomeric pairs, mixtures of diastereomers, mixtures of diastereomeric pairs, mixtures of diastereomers in which one diastereomer is enriched relative to the other diastereomer(s), or mixtures of diastereomers in which one or more diastereomer is enriched relative to the other diastereomers. The invention embraces all of these forms.


Compounds of the present disclosure also include all of the isotopes of the atoms occurring in the intermediate or final compounds. “Isotopes” refers to atoms having the same atomic number but different mass numbers resulting from a different number of neutrons in the nuclei. For example, isotopes of hydrogen include tritium and deuterium.


Unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. Exemplary isotopes that can be incorporated into compounds of the present invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine, chlorine, and iodine, such as 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 32P, 33P, 35S, 18F, 36Cl, 123I and 125I. Isotopically-labeled compounds (e.g., those labeled with 3H and 14C) can be useful in compound or substrate tissue distribution assays. Tritiated (i.e., 3H) and carbon-14 (i.e., 14C) isotopes can be useful for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (i.e., 2H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements). In some embodiments, one or more hydrogen atoms are replaced by 2H or 3H, or one or more carbon atoms are replaced by 13C- or 14C-enriched carbon. Positron emitting isotopes such as 15O, 13N, 11C, and 18F are useful for positron emission tomography (PET) studies to examine substrate receptor occupancy. Preparations of isotopically labelled compounds are known to those of skill in the art. For example, isotopically labeled compounds can generally be prepared by following procedures analogous to those disclosed for compounds of the present invention described herein, by substituting an isotopically labeled reagent for a non-isotopically labeled reagent.


As is known in the art, many chemical entities can adopt a variety of different solid forms such as, for example, amorphous forms or crystalline forms (e.g., polymorphs, hydrates, solvate). In some embodiments, compounds of the present invention may be utilized in any such form, including in any solid form. In some embodiments, compounds described or depicted herein may be provided or utilized in hydrate or solvate form.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials are described herein for use in the present disclosure; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, sequences, database entries, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.


Definitions

In this application, unless otherwise clear from context, (i) the term “a” may be understood to mean “at least one”; (ii) the term “or” may be understood to mean “and/or”; and (iii) the terms “including” and “including” may be understood to encompass itemized components or steps whether presented by themselves or together with one or more additional components or steps.


As used herein, the terms “about” and “approximately” refer to a value that is within 10% above or below the value being described. For example, the term “about 5 nM” indicates a range of from 4.5 to 5.5 nM.


As used herein, the term “administration” refers to the administration of a composition (e.g., a compound or a preparation that includes a compound as described herein) to a subject or system. Administration to an animal subject (e.g., to a human) may be by any appropriate route. For example, in some embodiments, administration may be bronchial (including by bronchial instillation), buccal, enteral, interdermal, intra-arterial, intradermal, intragastric, intramedullary, intramuscular, intranasal, intraperitoneal, intrathecal, intratumoral, intravenous, intraventricular, mucosal, nasal, oral, rectal, subcutaneous, sublingual, topical, tracheal (including by intratracheal instillation), transdermal, vaginal, and vitreal.


As used herein, the term “adult soft tissue sarcoma” refers to a sarcoma that develops in the soft tissues of the body, typically in adolescent and adult subjects (e.g., subjects who are at least 10 years old, 11 years old, 12 years old, 13 years old, 14 years old, 15 years old, 16 years old, 17 years old, 18 years old, or 19 years old). Non-limiting examples of adult soft tissue sarcoma include, but are not limited to, synovial sarcoma, fibrosarcoma, malignant fibrous histiocytoma, dermatofibrosarcoma, liposarcoma, leiomyosarcoma, hemangiosarcoma, Kaposi's sarcoma, lymphangiosarcoma, malignant peripheral nerve sheath tumor/neurofibrosarcoma, extraskeletal chondrosarcoma, extraskeletal osteosarcoma, extraskeletal myxoid chondrosarcoma, and extraskeletal mesenchymal.


The term “antisense,” as used herein, refers to a nucleic acid comprising a polynucleotide that is sufficiently complementary to all or a portion of a gene, primary transcript, or processed mRNA, so as to interfere with expression of the endogenous gene (e.g., BRD9). “Complementary” polynucleotides are those that are capable of base pairing according to the standard Watson-Crick complementarity rules.


Specifically, purines will base pair with pyrimidines to form a combination of guanine paired with cytosine (G:C) and adenine paired with either thymine (A:T) in the case of DNA, or adenine paired with uracil (A:U) in the case of RNA. It is understood that two polynucleotides may hybridize to each other even if they are not completely complementary to each other, provided that each has at least one region that is substantially complementary to the other.


The term “antisense nucleic acid” includes single-stranded RNA as well as double-stranded DNA expression cassettes that can be transcribed to produce an antisense RNA. “Active” antisense nucleic acids are antisense RNA molecules that are capable of selectively hybridizing with a primary transcript or mRNA encoding a polypeptide having at least 80% sequence identity (e.g., 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.9% identity, or more) with the targeted polypeptide sequence (e.g., a BRD9 polypeptide sequence). The antisense nucleic acid can be complementary to an entire coding strand, or to only a portion thereof. In some embodiments, an antisense nucleic acid molecule is antisense to a “coding region” of the coding strand of a nucleotide sequence. The term “coding region” refers to the region of the nucleotide sequence comprising codons that are translated into amino acid residues. In some embodiments, the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of a nucleotide sequence. The term “noncoding region” refers to 5′ and 3′ sequences that flank the coding region that are not translated into amino acids (i.e., also referred to as 5′ and 3′ untranslated regions). The antisense nucleic acid molecule can be complementary to the entire coding region of mRNA, or can be antisense to only a portion of the coding or noncoding region of an mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides in length.


As used herein, the term “BAF complex” refers to the BRG1- or HRBM-associated factors complex in a human cell.


As used herein, the term “BAF complex-related disorder” refers to a disorder that is caused or affected by the level and/or activity of a BAF complex.


As used herein, the terms “GBAF complex” and “GBAF” refer to a SWI/SNF ATPase chromatin remodeling complex in a human cell. GBAF complex subunits may include, but are not limited to, ACTB, ACTL6A, ACTL6B, BICRA, BICRAL, BRD9, SMARCA2, SMARCA4, SMARCC1, SMARCD1, SMARCD2, SMARCD3, and SS18. The term “cancer” refers to a condition caused by the proliferation of malignant neoplastic cells, such as tumors, neoplasms, carcinomas, sarcomas, leukemias, and lymphomas.


As used herein, the term “BRD9” refers to bromodomain-containing protein 9, a component of the BAF (BRG1- or BRM-associated factors) complex, a SWI/SNF ATPase chromatin remodeling complex, and belongs to family IV of the bromodomain-containing proteins. BRD9 is encoded by the BRD9 gene, the nucleic acid sequence of which is set forth in SEQ ID NO: 1. The term “BRD9” also refers to natural variants of the wild-type BRD9 protein, such as proteins having at least 85% identity (e.g., 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.9% identity, or more) to the amino acid sequence of wild-type BRD9, which is set forth in SEQ ID NO: 2.


As used herein, the term “BRD9-related disorder” refers to a disorder that is caused or affected by the level and/or activity of BRD9. The term “cancer” refers to a condition caused by the proliferation of malignant neoplastic cells, such as tumors, neoplasms, carcinomas, sarcomas, leukemias, and lymphomas.


As used herein, a “combination therapy” or “administered in combination” means that two (or more) different agents or treatments are administered to a subject as part of a defined treatment regimen for a particular disease or condition. The treatment regimen defines the doses and periodicity of administration of each agent such that the effects of the separate agents on the subject overlap. In some embodiments, the delivery of the two or more agents is simultaneous or concurrent and the agents may be co-formulated. In some embodiments, the two or more agents are not co-formulated and are administered in a sequential manner as part of a prescribed regimen. In some embodiments, administration of two or more agents or treatments in combination is such that the reduction in a symptom, or other parameter related to the disorder is greater than what would be observed with one agent or treatment delivered alone or in the absence of the other. The effect of the two treatments can be partially additive, wholly additive, or greater than additive (e.g., synergistic). Sequential or substantially simultaneous administration of each therapeutic agent can be effected by any appropriate route including, but not limited to, oral routes, intravenous routes, intramuscular routes, and direct absorption through mucous membrane tissues. The therapeutic agents can be administered by the same route or by different routes. For example, a first therapeutic agent of the combination may be administered by intravenous injection while a second therapeutic agent of the combination may be administered orally.


A “compound of the present invention” and similar terms as used herein, whether explicitly noted or not, refers to compounds useful for treating BAF-related disorders (e.g., cancer or infection) described herein, including, e.g., compounds of Formula I or Formula II (e.g., compounds of Table 2A, Table 2B, and Table 2C), as well as salts (e.g., pharmaceutically acceptable salts), solvates, hydrates, stereoisomers (including atropisomers), and tautomers thereof. Those skilled in the art will appreciate that certain compounds described herein can exist in one or more different isomeric (e.g., stereoisomers, geometric isomers, atropisomers, and tautomers) or isotopic (e.g., in which one or more atoms has been substituted with a different isotope of the atom, such as hydrogen substituted for deuterium) forms. Unless otherwise indicated or clear from context, a depicted structure can be understood to represent any such isomeric or isotopic form, individually or in combination. Compounds described herein can be asymmetric (e.g., having one or more stereocenters). All stereoisomers, such as enantiomers and diastereomers, are intended unless otherwise indicated. Compounds of the present disclosure that contain asymmetrically substituted carbon atoms can be isolated in optically active or racemic forms. Methods on how to prepare optically active forms from optically active starting materials are known in the art, such as by resolution of racemic mixtures or by stereoselective synthesis. Many geometric isomers of olefins, C═N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present disclosure. Cis and trans geometric isomers of the compounds of the present disclosure are described and may be isolated as a mixture of isomers or as separated isomeric forms. In some embodiments, one or more compounds depicted herein may exist in different tautomeric forms. As will be clear from context, unless explicitly excluded, references to such compounds encompass all such tautomeric forms. In some embodiments, tautomeric forms result from the swapping of a single bond with an adjacent double bond and the concomitant migration of a proton. In certain embodiments, a tautomeric form may be a prototropic tautomer, which is an isomeric protonation states having the same empirical formula and total charge as a reference form. Examples of moieties with prototropic tautomeric forms are ketone-enol pairs, amide-imidic acid pairs, lactam-lactim pairs, amide-imidic acid pairs, enamine-imine pairs, and annular forms where a proton can occupy two or more positions of a heterocyclic system, such as, 1H- and 3H-imidazole, 1H-, 2H- and 4H-1,2,4-triazole, 1H- and 2H-isoindole, and 1H- and 2H-pyrazole. In some embodiments, tautomeric forms can be in equilibrium or sterically locked into one form by appropriate substitution. In certain embodiments, tautomeric forms result from acetal interconversion.


As used herein, the term “degrader” refers to a small molecule compound including a degradation moiety, wherein the compound interacts with a protein (e.g., BRD9) in a way which results in degradation of the protein, e.g., binding of the compound results in at least 5% reduction of the level of the protein, e.g., in a cell or subject.


As used herein, the term “degradation moiety” refers to a moiety whose binding results in degradation of a protein, e.g., BRD9. In one example, the moiety binds to a protease or a ubiquitin ligase that metabolizes the protein, e.g., BRD9.


By “determining the level of a protein” is meant the detection of a protein, or an mRNA encoding the protein, by methods known in the art either directly or indirectly. “Directly determining” means performing a process (e.g., performing an assay or test on a sample or “analyzing a sample” as that term is defined herein) to obtain the physical entity or value. “Indirectly determining” refers to receiving the physical entity or value from another party or source (e.g., a third-party laboratory that directly acquired the physical entity or value). Methods to measure protein level generally include, but are not limited to, western blotting, immunoblotting, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), immunoprecipitation, immunofluorescence, surface plasmon resonance, chemiluminescence, fluorescent polarization, phosphorescence, immunohistochemical analysis, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, liquid chromatography (LC)-mass spectrometry, microcytometry, microscopy, fluorescence activated cell sorting (FACS), and flow cytometry, as well as assays based on a property of a protein including, but not limited to, enzymatic activity or interaction with other protein partners. Methods to measure mRNA levels are known in the art.


As used herein, the terms “effective amount,” “therapeutically effective amount,” and “a “sufficient amount” of an agent that reduces the level and/or activity of BRD9 (e.g., in a cell or a subject) described herein refer to a quantity sufficient to, when administered to the subject, including a human, effect beneficial or desired results, including clinical results, and, as such, an “effective amount” or synonym thereto depends on the context in which it is being applied. For example, in the context of treating cancer, it is an amount of the agent that reduces the level and/or activity of BRD9 sufficient to achieve a treatment response as compared to the response obtained without administration of the agent that reduces the level and/or activity of BRD9. The amount of a given agent that reduces the level and/or activity of BRD9 described herein that will correspond to such an amount will vary depending upon various factors, such as the given agent, the pharmaceutical formulation, the route of administration, the type of disease or disorder, the identity of the subject (e.g., age, sex, and/or weight) or host being treated, and the like, but can nevertheless be routinely determined by one of skill in the art. Also, as used herein, a “therapeutically effective amount” of an agent that reduces the level and/or activity of BRD9 of the present disclosure is an amount which results in a beneficial or desired result in a subject as compared to a control. As defined herein, a therapeutically effective amount of an agent that reduces the level and/or activity of BRD9 of the present disclosure may be readily determined by one of ordinary skill by routine methods known in the art. Dosage regimen may be adjusted to provide the optimum therapeutic response.


As used herein, the term “inhibitor” refers to any agent which reduces the level and/or activity of a protein (e.g., BRD9). Non-limiting examples of inhibitors include small molecule inhibitors, degraders, antibodies, enzymes, or polynucleotides (e.g., siRNA).


The term “inhibitory RNA agent” refers to an RNA, or analog thereof, having sufficient sequence complementarity to a target RNA to direct RNA interference. Examples also include a DNA that can be used to make the RNA. RNA interference (RNAi) refers to a sequence-specific or selective process by which a target molecule (e.g., a target gene, protein, or RNA) is down-regulated. Generally, an interfering RNA (“iRNA”) is a double-stranded short-interfering RNA (siRNA), short hairpin RNA (shRNA), or single-stranded micro-RNA (miRNA) that results in catalytic degradation of specific mRNAs, and also can be used to lower or inhibit gene expression.


By “level” is meant a level of a protein, or mRNA encoding the protein, as compared to a reference. The reference can be any useful reference, as defined herein. By a “decreased level” or an “increased level” of a protein is meant a decrease or increase in protein level, as compared to a reference (e.g., a decrease or an increase by about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 100%, about 150%, about 200%, about 300%, about 400%, about 500%, or more; a decrease or an increase of more than about 10%, about 15%, about 20%, about 50%, about 75%, about 100%, or about 200%, as compared to a reference; a decrease or an increase by less than about 0.01-fold, about 0.02-fold, about 0.1-fold, about 0.3-fold, about 0.5-fold, about 0.8-fold, or less; or an increase by more than about 1.2-fold, about 1.4-fold, about 1.5-fold, about 1.8-fold, about 2.0-fold, about 3.0-fold, about 3.5-fold, about 4.5-fold, about 5.0-fold, about 10-fold, about 15-fold, about 20-fold, about 30-fold, about 40-fold, about 50-fold, about 100-fold, about 1000-fold, or more). A level of a protein may be expressed in mass/vol (e.g., g/dL, mg/mL, μg/mL, ng/mL) or percentage relative to total protein or mRNA in a sample.


The terms “miRNA” and “microRNA” refer to an RNA agent, preferably a single-stranded agent, of about 10-50 nucleotides in length, preferably between about 15-25 nucleotides in length, which is capable of directing or mediating RNA interference. Naturally-occurring miRNAs are generated from stem-loop precursor RNAs (i.e., pre-miRNAs) by Dicer. The term “Dicer” as used herein, includes Dicer as well as any Dicer ortholog or homolog capable of processing dsRNA structures into siRNAs, miRNAs, siRNA-like or miRNA-like molecules. The term microRNA (“miRNA”) is used interchangeably with the term “small temporal RNA” (“stRNA”) based on the fact that naturally-occurring miRNAs have been found to be expressed in a temporal fashion (e.g., during development).


By “modulating the activity of a BAF complex,” is meant altering the level of an activity related to a BAF complex (e.g., GBAF), or a related downstream effect. The activity level of a BAF complex may be measured using any method known in the art, e.g., the methods described in Kadoch et al, Cell 153:71-85 (2013), the methods of which are herein incorporated by reference.


“Percent (%) sequence identity” with respect to a reference polynucleotide or polypeptide sequence is defined as the percentage of nucleic acids or amino acids in a candidate sequence that are identical to the nucleic acids or amino acids in the reference polynucleotide or polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid or amino acid sequence identity can be achieved in various ways that are within the capabilities of one of skill in the art, for example, using publicly available computer software such as BLAST, BLAST-2, or Megalign software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For example, percent sequence identity values may be generated using the sequence comparison computer program BLAST. As an illustration, the percent sequence identity of a given nucleic acid or amino acid sequence, A, to, with, or against a given nucleic acid or amino acid sequence, B, (which can alternatively be phrased as a given nucleic acid or amino acid sequence, A that has a certain percent sequence identity to, with, or against a given nucleic acid or amino acid sequence, B) is calculated as follows:





100 multiplied by (the fraction X/Y)


where X is the number of nucleotides or amino acids scored as identical matches by a sequence alignment program (e.g., BLAST) in that program's alignment of A and B, and where Y is the total number of nucleic acids in B. It will be appreciated that where the length of nucleic acid or amino acid sequence A is not equal to the length of nucleic acid or amino acid sequence B, the percent sequence identity of A to B will not equal the percent sequence identity of B to A.


A “pharmaceutically acceptable excipient,” as used herein, refers any ingredient other than the compounds described herein (for example, a vehicle capable of suspending or dissolving the active compound) and having the properties of being substantially nontoxic and non-inflammatory in a patient. Excipients may include, for example: antiadherents, antioxidants, binders, coatings, compression aids, disintegrants, dyes (colors), emollients, emulsifiers, fillers (diluents), film formers or coatings, flavors, fragrances, glidants (flow enhancers), lubricants, preservatives, printing inks, sorbents, suspensing or dispersing agents, sweeteners, and waters of hydration. Exemplary excipients include, but are not limited to: butylated hydroxytoluene (BHT), calcium carbonate, calcium phosphate (dibasic), calcium stearate, croscarmellose, crosslinked polyvinyl pyrrolidone, citric acid, crospovidone, cysteine, ethylcellulose, gelatin, hydroxypropyl cellulose, hydroxypropyl methylcellulose, lactose, magnesium stearate, maltitol, mannitol, methionine, methylcellulose, methyl paraben, microcrystalline cellulose, polyethylene glycol, polyvinyl pyrrolidone, povidone, pregelatinized starch, propyl paraben, retinyl palmitate, shellac, silicon dioxide, sodium carboxymethyl cellulose, sodium citrate, sodium starch glycolate, sorbitol, starch (corn), stearic acid, sucrose, talc, titanium dioxide, vitamin A, vitamin E, vitamin C, and xylitol.


As used herein, the term “pharmaceutically acceptable salt” means any pharmaceutically acceptable salt of the compound of any of the compounds described herein. For example, pharmaceutically acceptable salts of any of the compounds described herein include those that are within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and animals without undue toxicity, irritation, allergic response and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, pharmaceutically acceptable salts are described in: Berge et al., J. Pharmaceutical Sciences 66:1-19, 1977 and in Pharmaceutical Salts: Properties, Selection, and Use, (Eds. P. H. Stahl and C. G. Wermuth), Wiley-VCH, 2008. The salts can be prepared in situ during the final isolation and purification of the compounds described herein or separately by reacting a free base group with a suitable organic acid.


The compounds described herein may have ionizable groups so as to be capable of preparation as pharmaceutically acceptable salts. These salts may be acid addition salts involving inorganic or organic acids or the salts may, in the case of acidic forms of the compounds described herein, be prepared from inorganic or organic bases. Frequently, the compounds are prepared or used as pharmaceutically acceptable salts prepared as addition products of pharmaceutically acceptable acids or bases. Suitable pharmaceutically acceptable acids and bases and methods for preparation of the appropriate salts are well-known in the art. Salts may be prepared from pharmaceutically acceptable non-toxic acids and bases including inorganic and organic acids and bases. Representative acid addition salts include acetate, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptonate, glycerophosphate, hemisulfate, heptonate, hexanoate, hydrobromide, hydrochloride, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, toluenesulfonate, undecanoate, and valerate salts. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, and magnesium, as well as nontoxic ammonium, quaternary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, and ethylamine.


The term “pharmaceutical composition,” as used herein, represents a composition containing a compound described herein formulated with a pharmaceutically acceptable excipient, and manufactured or sold with the approval of a governmental regulatory agency as part of a therapeutic regimen for the treatment of disease in a mammal. Pharmaceutical compositions can be formulated, for example, for oral administration in unit dosage form (e.g., a tablet, capsule, caplet, gelcap, or syrup); for topical administration (e.g., as a cream, gel, lotion, or ointment); for intravenous administration (e.g., as a sterile solution free of particulate emboli and in a solvent system suitable for intravenous use); or in any other pharmaceutically acceptable formulation.


By “reducing the activity of BRD9,” is meant decreasing the level of an activity related to an BRD9, or a related downstream effect. A non-limiting example of inhibition of an activity of BRD9 is decreasing the level of a BAF complex (e.g., GBAF) in a cell. The activity level of BRD9 may be measured using any method known in the art. In some embodiments, an agent which reduces the activity of BRD9 is a small molecule BRD9 inhibitor. In some embodiments, an agent which reduces the activity of BRD9 is a small molecule BRD9 degrader.


By “reducing the level of BRD9,” is meant decreasing the level of BRD9 in a cell or subject. The level of BRD9 may be measured using any method known in the art.


By a “reference” is meant any useful reference used to compare protein or mRNA levels. The reference can be any sample, standard, standard curve, or level that is used for comparison purposes. The reference can be a normal reference sample or a reference standard or level. A “reference sample” can be, for example, a control, e.g., a predetermined negative control value such as a “normal control” or a prior sample taken from the same subject; a sample from a normal healthy subject, such as a normal cell or normal tissue; a sample (e.g., a cell or tissue) from a subject not having a disease; a sample from a subject that is diagnosed with a disease, but not yet treated with a compound described herein; a sample from a subject that has been treated by a compound described herein; or a sample of a purified protein (e.g., any described herein) at a known normal concentration. By “reference standard or level” is meant a value or number derived from a reference sample. A “normal control value” is a pre-determined value indicative of non-disease state, e.g., a value expected in a healthy control subject. Typically, a normal control value is expressed as a range (“between X and Y”), a high threshold (“no higher than X”), or a low threshold (“no lower than X”). A subject having a measured value within the normal control value for a particular biomarker is typically referred to as “within normal limits” for that biomarker. A normal reference standard or level can be a value or number derived from a normal subject not having a disease or disorder (e.g., cancer); a subject that has been treated with a compound described herein. In preferred embodiments, the reference sample, standard, or level is matched to the sample subject sample by at least one of the following criteria: age, weight, sex, disease stage, and overall health. A standard curve of levels of a purified protein, e.g., any described herein, within the normal reference range can also be used as a reference.


The terms “short interfering RNA” and “siRNA” (also known as “small interfering RNAs”) refer to an RNA agent, preferably a double-stranded agent, of about 10-50 nucleotides in length, the strands optionally having overhanging ends comprising, for example 1, 2 or 3 overhanging nucleotides (or nucleotide analogs), which is capable of directing or mediating RNA interference. Naturally-occurring siRNAs are generated from longer dsRNA molecules (e.g., >25 nucleotides in length) by a cell's RNAi machinery (e.g., Dicer or a homolog thereof).


The term “shRNA”, as used herein, refers to an RNA agent having a stem-loop structure, comprising a first and second region of complementary sequence, the degree of complementarity and orientation of the regions being sufficient such that base pairing occurs between the regions, the first and second regions being joined by a loop region, the loop resulting from a lack of base pairing between nucleotides (or nucleotide analogs) within the loop region.


As used herein, the term “subject” refers to any organism to which a composition in accordance with the invention may be administered, e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes. Typical subjects include any animal (e.g., mammals such as mice, rats, rabbits, non-human primates, and humans). A subject may seek or be in need of treatment, require treatment, be receiving treatment, be receiving treatment in the future, or be a human or animal who is under care by a trained professional for a particular disease or condition.


As used herein, the term “SS18-SSX fusion protein-related disorder” refers to a disorder that is caused or affected by the level and/or activity of SS18-SSX fusion protein.


As used herein, the terms “treat,” “treated,” or “treating” mean both therapeutic treatment and prophylactic or preventative measures wherein the object is to prevent or slow down (lessen) an undesired physiological condition, disorder, or disease, or obtain beneficial or desired clinical results. Beneficial or desired clinical results include, but are not limited to, alleviation of symptoms; diminishment of the extent of a condition, disorder, or disease; stabilized (i.e., not worsening) state of condition, disorder, or disease; delay in onset or slowing of condition, disorder, or disease progression; amelioration of the condition, disorder, or disease state or remission (whether partial or total), whether detectable or undetectable; an amelioration of at least one measurable physical parameter, not necessarily discernible by the patient; or enhancement or improvement of condition, disorder, or disease. Treatment includes eliciting a clinically significant response without excessive levels of side effects. Treatment also includes prolonging survival as compared to expected survival if not receiving treatment.


As used herein, the terms “variant” and “derivative” are used interchangeably and refer to naturally-occurring, synthetic, and semi-synthetic analogues of a compound, peptide, protein, or other substance described herein. A variant or derivative of a compound, peptide, protein, or other substance described herein may retain or improve upon the biological activity of the original material.


The details of one or more embodiments of the invention are set forth in the description below. Other features, objects, and advantages of the invention will be apparent from the description and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a series of graphs illustrating the effect of specific guide RNA (sgRNA) targeting of the BRD9 BAF complex subunit on synovial sarcoma cell growth. The Y-axis indicated the dropout ratio. The X-axis indicates the nucleotide position of the BRD9 gene. The grey box indicates the range of the negative control sgRNAs in the screen. The SYO1 cell line carries SS18-SSX2 fusion protein. The breakpoint joining the N-terminal region of SS18 to the C-terminal region of SSX2 are indicated by the black lines in their respective panel. The linear protein sequence is show with BRD9 PFAM domains annotated from the PFAM database.



FIG. 2 is an image illustrating dose dependent depletion of BRD9 levels in a synovial sarcoma cell line (SYO1) in the presence of a BRD9 degrader.



FIG. 3 is an image illustrating sustained suppression of BRD9 levels in a synovial sarcoma cell line (SYO1) in the presence of a BRD9 degrader over 72 hours.



FIG. 4 is an image illustrating sustained suppression of BRD9 levels in two cell lines (293T and SYO1) in the presence of a BRD9 degrader over 5 days.



FIG. 5 is an image illustrating sustained suppression of BRD9 levels in synovial sarcoma cell lines (SYO1 and Yamato) in the presence of a BRD9 degrader over 7 days compared to the levels in cells treated with CRISPR reagents.



FIG. 6 is an image illustrating the effect on cell growth of six cell lines (SYO1, Yamato, A549, HS-SY-II, ASKA, and 293T) in the presence of a BRD9 degrader and a BRD9 inhibitor.



FIG. 7 is an image illustrating the effect on cell growth of two cell lines (SYO1 and G401) in the presence of a BRD9 degrader.



FIG. 8 is an image illustrating the effect on cell growth of three synovial sarcoma cell lines (SYO1, HS-SY-II, and ASKA) in the presence of a BRD9 degrader, BRD9 binder and E3 ligase binder.



FIG. 9 is an image illustrating the effect on cell growth of three non-synovial sarcoma cell lines (RD, HCT116, and Calu6) in the presence of a BRD9 degrader, BRD9 binder and E3 ligase binder.



FIG. 10 is a graph illustrating the percentage of SYO1 in various cell cycle phases following treatment with DMSO, Compound 1 at 200 nM, or Compound 1 at 1 μM for 8 or 13 days.



FIG. 11 is a series of contour plots illustrating the percentage of SYO1 cells in various cell cycle phases following treatment with DMSO, Compound 1 at 200 nM, Compound 1 at 1 μM, or lenalidomide at 200 nM for 8 days. Numerical values corresponding to each contour plot are found in the table below.



FIG. 12 is a series of contour plots illustrating the percentage of SYO1 cells in various cell cycle phases following treatment with DMSO, Compound 1 at 200 nM, Compound 1 at 1 μM, or lenalidomide at 200 nM for 13 days. Numerical values corresponding to each contour plot are found in the table below.



FIG. 13 is a series of contour plots illustrating the percentage of early- and late-apoptotic SYO1 cells following treatment with DMSO, Compound 1 at 200 nM, Compound 1 at 1 μM, or lenalidomide at 200 nM for 8 days. Numerical values corresponding to each contour plot are found in the table below.



FIG. 14 is a graph illustrating the proteins present in BAF complexes including the SS18-SSX fusion protein.





DETAILED DESCRIPTION

The present disclosure features compositions and methods useful for the treatment of BAF-related disorders (e.g., cancer and infection). The disclosure further features compositions and methods useful for inhibition of the level and/or activity of BRD9, e.g., for the treatment of disorders such as cancer (e.g., sarcoma) and infection (e.g., viral infection), e.g., in a subject in need thereof.


Compounds

Compounds described herein reduce the level of an activity related to BRD9, or a related downstream effect, or reduce the level of BRD9 in a cell or subject. Exemplary compounds described herein have the structure according to Formula I or Formula II.


Formula I is:




embedded image


where


R1 is H, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C10 carbocyclyl;


Z1 is CR2 or N;


R2 is H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, or optionally substituted C2-C9 heteroaryl;




embedded image


X1 is a bond, O, NR3a,




embedded image


or CR4aR5a;


X2 is O, NR3b,




embedded image


or CR4bR5b;


X3 is O, NR3c,




embedded image


or CR4cR5c;


X4 is a bond, O, NR3d,




embedded image


or CR4dR5d;


X5 is O or NR3e and X6 is CR4fR5f, or X5 is CR4eR5e and X6 is O or NR3f;


X7 is O, NR3g, or CR4gR5g;


X8 is O, NR3h, or CR4hR5h;


each of R3a, R3b, R3c, and R3d is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3a and R4b, R4a and R3b, R4b and R4a, R3b and R4c, R4b and R4c, R3c and R4b, R3c and R4d, R4c and R4d, and/or R3d and R4c, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl;


each of R4a, R4b, R4c, and R4d is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, or optionally substituted amino, or R3a and R4b, R4a and R3b, R4b and R4a, R3b and R4c, R4b and R4c, R3c and R4b, R3c and R4d, R4c and R4d, and/or R3d and R4c, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl;


each of R5a, R5b, R5c, and R5d is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino;


each of R3e, R3f, R3g, and R3h is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3e and R4f or R4e and R3f, together with the atoms to which each is attached, combine to form optionally substituted heterocyclycl;


each of R4e, R4f, R4g, and R4h is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3e and R4f or R4e and R3f, together with the atoms to which each is attached, combine to form optionally substituted heterocyclycl;


each of R5e, R5f, R5g, and R5h is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino; and


G is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl, or a pharmaceutically acceptable salt thereof.


Formula II is:





A-L-B   Formula II,


where


B is a degradation moiety,


L is a linker, and


A has the structure of Formula III:




embedded image


where


R1 is H, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C10 carbocyclyl;


Z1 is CR2 or N;


R2 is H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, or optionally substituted C2-C9 heteroaryl;




embedded image


X1′ is a bond, O, NR3a′, or CR4a′R5a′;


X2′ is O, NR3b′, or CR4b′R5b′;


X3′ is O, NR3c′, or CR4c′R5c′;


X4′ is a bond, O, NR3d′, or CR4d′R5d′;


X5′ is O, NR3e′, or CR4e′R5e′;


X6′ is O, NR3f′, or CR4f′R5f′;


X7′ is O, NR3g′, or CR4g′R59′;


each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,




embedded image


halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3a′ and R4b′, R4a′ and R3b′, R4b′ and R4a′, R3b′ and R4c′, R4b′ and R4c′, R3c′ and R4b′, R3c′ and R4d′, R4c′ and R4d′, and/or R3d′ and R4c′, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl;


R3′ is absent, optionally substituted C1-C6 alkylene, optionally substituted C1-C6 heteroalkylene, optionally substituted C3-C10 carbocyclylene, optionally substituted C2-C9 heterocyclylene, optionally substituted C6-C10 arylene, optionally substituted C2-C9 heteroarylene, optionally substituted C2-C6 alkenylene, optionally substituted C2-C6 heteroalkenylene, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino;


each of R4a′, R4b′, R4c′, and R4d′ is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, thiol, optionally substituted sulfone, or optionally substituted amino, or R3a′ and R4b, R4a′ and R3b′, R4b′ and R4a′, R3b′ and R4c′, R4b′ and R4c′, R3c′ and R4b′, R3c′ and R4d′, R4c′ and R4d′, and/or R3d′ and R4c′, together with the atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl;


each of R5a′, R5b′, R5c′, and R5d′ is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino;


each of R3e′, R3f′, and R3g′ is, independently, H,




embedded image


halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3e and R4f or R4e and R3f, together with the atoms to which each is attached, combine to form optionally substituted heterocyclycl;


each of R4e′, R4f′, and R4g′ is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, optionally substituted C1-C6 acyl, thiol, optionally substituted sulfone, optionally substituted sulfonamide, or optionally substituted amino, or R3e′ and R4f′ or R4e′ and R3f′, together with the atoms to which each is attached, combine to form optionally substituted heterocyclycl;


each of R5e′, R5f′, and R5g′ is, independently, H, halogen, hydroxyl, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino;


G″ is




embedded image


optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl;


G′ is optionally substituted C3-C10 carbocyclylene, C2-C9 heterocyclylene, optionally substituted C6-C10 arylene, or optionally substituted C2-C9 heteroarylene; and


A1 is a bond between A and the linker,


where one of R3a′, R3b′, R3c′, R3d′, R3e′, R3f′, and R3g′ is




embedded image


or G is



embedded image


or a pharmaceutically acceptable salt thereof.


In some embodiments, the compound has the structure of any one of compounds D1-D38 in Table 2A, or a pharmaceutically acceptable salt thereof. In some embodiments, the compound has the structure of any one of compounds D39-D302 in Table 2B, or a pharmaceutically acceptable salt thereof. In some embodiments, the compound has the structure of any one of compounds D303-D375 in Table 2C, or a pharmaceutically acceptable salt thereof.


Other embodiments, as well as exemplary methods for the synthesis of production of these compounds, are described herein.


Pharmaceutical Uses

The compounds described herein are useful in the methods of the invention and, while not bound by theory, are believed to exert their desirable effects through their ability to modulate the level, status, and/or activity of a BAF complex, e.g., by inhibiting the activity or level of the BRD9 protein in a cell within the BAF complex in a mammal.


An aspect of the present invention relates to methods of treating disorders related to BRD9 such as cancer in a subject in need thereof. In some embodiments, the compound is administered in an amount and for a time effective to result in one of (or more, e.g., two or more, three or more, four or more of): (a) reduced tumor size, (b) reduced rate of tumor growth, (c) increased tumor cell death (d) reduced tumor progression, (e) reduced number of metastases, (f) reduced rate of metastasis, (g) decreased tumor recurrence (h) increased survival of subject, and (i) increased progression free survival of a subject.


Treating cancer can result in a reduction in size or volume of a tumor. For example, after treatment, tumor size is reduced by 5% or greater (e.g., 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or greater) relative to its size prior to treatment. Size of a tumor may be measured by any reproducible means of measurement. For example, the size of a tumor may be measured as a diameter of the tumor.


Treating cancer may further result in a decrease in number of tumors. For example, after treatment, tumor number is reduced by 5% or greater (e.g., 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or greater) relative to number prior to treatment. Number of tumors may be measured by any reproducible means of measurement, e.g., the number of tumors may be measured by counting tumors visible to the naked eye or at a specified magnification (e.g., 2×, 3×, 4×, 5×, 10×, or 50×).


Treating cancer can result in a decrease in number of metastatic nodules in other tissues or organs distant from the primary tumor site. For example, after treatment, the number of metastatic nodules is reduced by 5% or greater (e.g., 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or greater) relative to number prior to treatment. The number of metastatic nodules may be measured by any reproducible means of measurement. For example, the number of metastatic nodules may be measured by counting metastatic nodules visible to the naked eye or at a specified magnification (e.g., 2×, 10×, or 50×).


Treating cancer can result in an increase in average survival time of a population of subjects treated according to the present invention in comparison to a population of untreated subjects. For example, the average survival time is increased by more than 30 days (more than 60 days, 90 days, or 120 days). An increase in average survival time of a population may be measured by any reproducible means. An increase in average survival time of a population may be measured, for example, by calculating for a population the average length of survival following initiation of treatment with the compound described herein. An increase in average survival time of a population may also be measured, for example, by calculating for a population the average length of survival following completion of a first round of treatment with a pharmaceutically acceptable salt of a compound described herein.


Treating cancer can also result in a decrease in the mortality rate of a population of treated subjects in comparison to an untreated population. For example, the mortality rate is decreased by more than 2% (e.g., more than 5%, 10%, or 25%). A decrease in the mortality rate of a population of treated subjects may be measured by any reproducible means, for example, by calculating for a population the average number of disease-related deaths per unit time following initiation of treatment with a pharmaceutically acceptable salt of a compound described herein. A decrease in the mortality rate of a population may also be measured, for example, by calculating for a population the average number of disease-related deaths per unit time following completion of a first round of treatment with a pharmaceutically acceptable salt of a compound described herein.


Combination Therapies

A method of the invention can be used alone or in combination with an additional therapeutic agent, e.g., other agents that treat cancer or symptoms associated therewith, or in combination with other types of therapies to treat cancer. In combination treatments, the dosages of one or more of the therapeutic compounds may be reduced from standard dosages when administered alone. For example, doses may be determined empirically from drug combinations and permutations or may be deduced by isobolographic analysis (e.g., Black et al., Neurology 65:S3-S6 (2005)). In this case, dosages of the compounds when combined should provide a therapeutic effect.


In some embodiments, the second therapeutic agent is a chemotherapeutic agent (e.g., a cytotoxic agent or other chemical compound useful in the treatment of cancer). These include alkylating agents, antimetabolites, folic acid analogs, pyrimidine analogs, purine analogs and related inhibitors, vinca alkaloids, epipodopyyllotoxins, antibiotics, L-Asparaginase, topoisomerase inhibitors, interferons, platinum coordination complexes, anthracenedione substituted urea, methyl hydrazine derivatives, adrenocortical suppressant, adrenocorticosteroides, progestins, estrogens, antiestrogen, androgens, antiandrogen, and gonadotropin-releasing hormone analog. Also included is 5-fluorouracil (5-FU), leucovorin (LV), irenotecan, oxaliplatin, capecitabine, paclitaxel, and doxetaxel. Non-limiting examples of chemotherapeutic agents include alkylating agents such as thiotepa and cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CB1-TM1); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimnustine; antibiotics such as the enediyne antibiotics (e.g., calicheamicin, especially calicheamicin gammaII and calicheamicin omegaII (see, e.g., Agnew, Chem. Intl. Ed Engl. 33:183-186 (1994)); dynemicin, including dynemicin A; bisphosphonates, such as clodronate; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, caminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® (doxorubicin, including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfomithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK® polysaccharide complex (JHS Natural Products, Eugene, Oreg.); razoxane; rhizoxin; sizofuran; spirogermanium; tenuazonic acid; triaziquone; 2,2′,2″-trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); cyclophosphamide; thiotepa; taxoids, e.g., TAXOL® (paclitaxel; Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANE®, cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, Ill.), and TAXOTERE® doxetaxel (Rhone-Poulenc Rorer, Antony, France); chloranbucil; GEMZAR® gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum coordination complexes such as cisplatin, oxaliplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitoxantrone; vincristine; NAVELBINE® vinorelbine; novantrone; teniposide; edatrexate; daunomycin; aminopterin; xeloda; ibandronate; irinotecan (e.g., CPT-11); topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoids such as retinoic acid; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above. Two or more chemotherapeutic agents can be used in a cocktail to be administered in combination with the first therapeutic agent described herein. Suitable dosing regimens of combination chemotherapies are known in the art and described in, for example, Saltz et al., Proc. Am. Soc. Clin. Oncol. 18:233a (1999), and Douillard et al., Lancet 355(9209):1041-1047 (2000).


In some embodiments, the second therapeutic agent is a therapeutic agent which is a biologic such a cytokine (e.g., interferon or an interleukin (e.g., IL-2)) used in cancer treatment. In some embodiments the biologic is an anti-angiogenic agent, such as an anti-VEGF agent, e.g., bevacizumab (AVASTIN®). In some embodiments the biologic is an immunoglobulin-based biologic, e.g., a monoclonal antibody (e.g., a humanized antibody, a fully human antibody, an Fc fusion protein or a functional fragment thereof) that agonizes a target to stimulate an anti-cancer response, or antagonizes an antigen important for cancer. Such agents include RITUXAN® (rituximab); ZENAPAX® (daclizumab); SIMULECT® (basiliximab); SYNAGIS® (palivizumab); REMICADE® (infliximab); HERCEPTIN® (trastuzumab); MYLOTARG® (gemtuzumab ozogamicin); CAMPATH® (alemtuzumab); ZEVALIN® (ibritumomab tiuxetan); HUMIRA® (adalimumab); XOLAIR® (omalizumab); BEXXAR® (tositumomab-I-131); RAPTIVA® (efalizumab); ERBITUX® (cetuximab); AVASTIN® (bevacizumab); TYSABRI® (natalizumab); ACTEMRA® (tocilizumab); VECTIBIX® (panitumumab); LUCENTIS® (ranibizumab); SOLIRIS® (eculizumab); CIMZIA® (certolizumab pegol); SIMPONI® (golimumab); ILARIS® (canakinumab); STELARA® (ustekinumab); ARZERRA® (ofatumumab); PROLIA® (denosumab); NUMAX® (motavizumab); ABTHRAX® (raxibacumab); BENLYSTA® (belimumab); YERVOY® (ipilimumab); ADCETRIS® (brentuximab vedotin); PERJETA® (pertuzumab); KADCYLA® (ado-trastuzumab emtansine); and GAZYVA® (obinutuzumab). Also included are antibody-drug conjugates.


The second agent may be a therapeutic agent which is a non-drug treatment. For example, the second therapeutic agent is radiation therapy, cryotherapy, hyperthermia, and/or surgical excision of tumor tissue.


The second agent may be a checkpoint inhibitor. In one embodiment, the inhibitor of checkpoint is an inhibitory antibody (e.g., a monospecific antibody such as a monoclonal antibody). The antibody may be, e.g., humanized or fully human. In some embodiments, the inhibitor of checkpoint is a fusion protein, e.g., an Fc-receptor fusion protein. In some embodiments, the inhibitor of checkpoint is an agent, such as an antibody, that interacts with a checkpoint protein. In some embodiments, the inhibitor of checkpoint is an agent, such as an antibody, that interacts with the ligand of a checkpoint protein. In some embodiments, the inhibitor of checkpoint is an inhibitor (e.g., an inhibitory antibody or small molecule inhibitor) of CTLA-4 (e.g., an anti-CTLA4 antibody or fusion a protein such as ipilimumab/YERVOY® or tremelimumab). In some embodiments, the inhibitor of checkpoint is an inhibitor (e.g., an inhibitory antibody or small molecule inhibitor) of PD-1 (e.g., nivolumab/OPDIVO®; pembrolizumab/KEYTRUDA®; pidilizumab/CT-011). In some embodiments, the inhibitor of checkpoint is an inhibitor (e.g., an inhibitory antibody or small molecule inhibitor) of PDL1 (e.g., MPDL3280A/RG7446; MEDI4736; MSB0010718C; BMS 936559). In some embodiments, the inhibitor of checkpoint is an inhibitor (e.g., an inhibitory antibody or Fc fusion or small molecule inhibitor) of PDL2 (e.g., a PDL2/Ig fusion protein such as AMP 224). In some embodiments, the inhibitor of checkpoint is an inhibitor (e.g., an inhibitory antibody or small molecule inhibitor) of B7-H3 (e.g., MGA271), B7-H4, BTLA, HVEM, TIM3, GAL9, LAG3, VISTA, KIR, 2B4, CD160, CGEN-15049, CHK 1, CHK2, A2aR, B-7 family ligands, or a combination thereof.


In some embodiments, the anti-cancer therapy is a T cell adoptive transfer (ACT) therapy. In some embodiments, the T cell is an activated T cell. The T cell may be modified to express a chimeric antigen receptor (CAR). CAR modified T (CAR-T) cells can be generated by any method known in the art. For example, the CAR-T cells can be generated by introducing a suitable expression vector encoding the CAR to a T cell. Prior to expansion and genetic modification of the T cells, a source of T cells is obtained from a subject. T cells can be obtained from a number of sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In certain embodiments of the present invention, any number of T cell lines available in the art, may be used. In some embodiments, the T cell is an autologous T cell. Whether prior to or after genetic modification of the T cells to express a desirable protein (e.g., a CAR), the T cells can be activated and expanded generally using methods as described, for example, in U.S. Pat. Nos. 6,352,694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and U.S. Patent Application Publication No. 20060121005.


In any of the combination embodiments described herein, the first and second therapeutic agents are administered simultaneously or sequentially, in either order. The first therapeutic agent may be administered immediately, up to 1 hour, up to 2 hours, up to 3 hours, up to 4 hours, up to 5 hours, up to 6 hours, up to 7 hours, up to, 8 hours, up to 9 hours, up to 10 hours, up to 11 hours, up to 12 hours, up to 13 hours, 14 hours, up to hours 16, up to 17 hours, up 18 hours, up to 19 hours up to 20 hours, up to 21 hours, up to 22 hours, up to 23 hours up to 24 hours or up to 1-7, 1-14, 1-21 or 1-30 days before or after the second therapeutic agent.


Pharmaceutical Compositions

The pharmaceutical compositions described herein are preferably formulated into pharmaceutical compositions for administration to human subjects in a biologically compatible form suitable for administration in vivo.


The compounds described herein may be used in the form of the free base, in the form of salts, solvates, and as prodrugs. All forms are within the methods described herein. In accordance with the methods of the invention, the described compounds or salts, solvates, or prodrugs thereof may be administered to a patient in a variety of forms depending on the selected route of administration, as will be understood by those skilled in the art. The compounds described herein may be administered, for example, by oral, parenteral, buccal, sublingual, nasal, rectal, patch, pump, intratumoral, or transdermal administration and the pharmaceutical compositions formulated accordingly. Parenteral administration includes intravenous, intraperitoneal, subcutaneous, intramuscular, transepithelial, nasal, intrapulmonary, intrathecal, rectal, and topical modes of administration. Parenteral administration may be by continuous infusion over a selected period of time.


A compound described herein may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsules, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet. For oral therapeutic administration, a compound described herein may be incorporated with an excipient and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, and wafers. A compound described herein may also be administered parenterally. Solutions of a compound described herein can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, DMSO, and mixtures thereof with or without alcohol, and in oils. Under ordinary conditions of storage and use, these preparations may contain a preservative to prevent the growth of microorganisms. Conventional procedures and ingredients for the selection and preparation of suitable formulations are described, for example, in Remington's Pharmaceutical Sciences (2012, 22nd ed.) and in The United States Pharmacopeia: The National Formulary (USP 41 NF36), published in 2018. The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form must be sterile and must be fluid to the extent that may be easily administered via syringe. Compositions for nasal administration may conveniently be formulated as aerosols, drops, gels, and powders. Aerosol formulations typically include a solution or fine suspension of the active substance in a physiologically acceptable aqueous or non-aqueous solvent and are usually presented in single or multidose quantities in sterile form in a sealed container, which can take the form of a cartridge or refill for use with an atomizing device. Alternatively, the sealed container may be a unitary dispensing device, such as a single dose nasal inhaler or an aerosol dispenser fitted with a metering valve which is intended for disposal after use. Where the dosage form includes an aerosol dispenser, it will contain a propellant, which can be a compressed gas, such as compressed air or an organic propellant, such as fluorochlorohydrocarbon. The aerosol dosage forms can also take the form of a pump-atomizer. Compositions suitable for buccal or sublingual administration include tablets, lozenges, and pastilles, where the active ingredient is formulated with a carrier, such as sugar, acacia, tragacanth, gelatin, and glycerine. Compositions for rectal administration are conveniently in the form of suppositories containing a conventional suppository base, such as cocoa butter. A compound described herein may be administered intratumorally, for example, as an intratumoral injection. Intratumoral injection is injection directly into the tumor vasculature and is specifically contemplated for discrete, solid, accessible tumors. Local, regional, or systemic administration also may be appropriate. A compound described herein may advantageously be contacted by administering an injection or multiple injections to the tumor, spaced for example, at approximately, 1 cm intervals. In the case of surgical intervention, the present invention may be used preoperatively, such as to render an inoperable tumor subject to resection. Continuous administration also may be applied where appropriate, for example, by implanting a catheter into a tumor or into tumor vasculature.


The compounds described herein may be administered to an animal, e.g., a human, alone or in combination with pharmaceutically acceptable carriers, as noted herein, the proportion of which is determined by the solubility and chemical nature of the compound, chosen route of administration, and standard pharmaceutical practice.


Dosages

The dosage of the compounds described herein, and/or compositions including a compound described herein, can vary depending on many factors, such as the pharmacodynamic properties of the compound; the mode of administration; the age, health, and weight of the recipient; the nature and extent of the symptoms; the frequency of the treatment, and the type of concurrent treatment, if any; and the clearance rate of the compound in the animal to be treated. One of skill in the art can determine the appropriate dosage based on the above factors. The compounds described herein may be administered initially in a suitable dosage that may be adjusted as required, depending on the clinical response. In general, satisfactory results may be obtained when the compounds described herein are administered to a human at a daily dosage of, for example, between 0.05 mg and 3000 mg (measured as the solid form). Dose ranges include, for example, between 10-1000 mg (e.g., 50-800 mg). In some embodiments, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, or 1000 mg of the compound is administered.


Alternatively, the dosage amount can be calculated using the body weight of the patient. For example, the dose of a compound, or pharmaceutical composition thereof, administered to a patient may range from 0.1-100 mg/kg (e.g., 0.1-50 mg/kg (e.g., 0.25-25 mg/kg)). In exemplary, non-limiting embodiments, the dose may range from 0.5-5.0 mg/kg (e.g., 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, or 5.0 mg/kg) or from 5.0-20 mg/kg (e.g., 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 mg/kg).


Kits

The invention also features kits including (a) a pharmaceutical composition including an agent that reduces the level and/or activity of BRD9 in a cell or subject described herein, and (b) a package insert with instructions to perform any of the methods described herein. In some embodiments, the kit includes (a) a pharmaceutical composition including an agent that reduces the level and/or activity of BRD9 in a cell or subject described herein, (b) an additional therapeutic agent (e.g., an anti-cancer agent), and (c) a package insert with instructions to perform any of the methods described herein.


EXAMPLES
Example 1—High Density Tiling sgRNA Screen Against Human BAF Complex Subunits in Synovial Sarcoma Cell Line SYO1

The following example shows that BRD9 sgRNA inhibits cell growth in synovial sarcoma cells.


Procedure: To perform high density sgRNA tiling screen, an sgRNA library against BAF complex subunits was custom synthesized at Cellecta (Mountain View, Calif.). Sequences of DNA encoding the BRD9-targeting sgRNAs used in this screen are listed in Table 3. Negative and positive control sgRNA were included in the library. Negative controls consisted of 200 sgRNAs that do not target human genome. The positive controls are sgRNAs targeting essential genes (CDC16, GTF2B, HSPA5, HSPA9, PAFAH1B1, PCNA, POLR2L, RPL9, and SF3A3). DNA sequences encoding all positive and negative control sgRNAs are listed in Table 4. Procedures for virus production, cell infection, and performing the sgRNA screen were previously described (Tsherniak et al, Cell 170:564-576 (2017); Munoz et al, Cancer Discovery 6:900-913 (2016)). For each sgRNA, 50 counts were added to the sequencing counts and for each time point the resulting counts were normalized to the total number of counts. The log 2 of the ratio between the counts (defined as dropout ratio) at day 24 and day 1 post-infection was calculated. For negative control sgRNAs, the 2.5 and 97.5 percentile of the log 2 dropout ratio of all non-targeting sgRNAs was calculated and considered as background (grey box in the graph). Protein domains were obtained from PFAM regions defined for the UNIPROT identifier: Q9H8M2.


Results: As shown in FIG. 1, targeted inhibition of the GBAF complex component BRD9 by sgRNA resulted in growth inhibition of the SYO1 synovial sarcoma cell line. sgRNAs against other components of the BAF complexes resulted in increased proliferation of cells, inhibition of cell growth, or had no effect on SYO1 cells. These data show that targeting various subunits of the GBAF complex represents a therapeutic strategy for the treatment of synovial sarcoma.









TABLE 3







BRD9 sgRNA Library








SEQ ID



NO.
Nucleic Acid Sequence





203
CAAGAAGCACAAGAAGCACA





204
CTTGTGCTTCTTGCCCATGG





205
CTTCTTGTGCTTCTTGCCCA





206
ACAAGAAGCACAAGGCCGAG





207
CTCGTAGGACGAGCGCCACT





208
CGAGTGGCGCTCGTCCTACG





209
GAGTGGCGCTCGTCCTACGA





210
AGGCTTCTCCAGGGGCTTGT





211
AGATTATGCCGACAAGCCCC





212
ACCTTCAGGACTAGCTTTAG





213
AGCTTTAGAGGCTTCTCCAG





214
CTAGCTTTAGAGGCTTCTCC





215
TAGCTTTAGAGGCTTCTCCA





216
CTAAAGCTAGTCCTGAAGGT





217
GCCTCTAAAGCTAGTCCTGA





218
CTTCACTTCCTCCGACCTTC





219
AAGCTAGTCCTGAAGGTCGG





220
AGTGAAGTGACTGAACTCTC





221
GTGACTGAACTCTCAGGATC





222
ATAGTAACTGGAGTCGTGGC





223
CATCATAGTAACTGGAGTCG





224
TGACCTGTCATCATAGTAAC





225
ACTCCAGTTACTATGATGAC





226
CTTTGTGCCTCTCTCGCTCA





227
GGTCAGACCATGAGCGAGAG





228
GAAGAAGAAGAAGTCCGAGA





229
GTCCAGATGCTTCTCCTTCT





230
GTCCGAGAAGGAGAAGCATC





231
GGAGAAGCATCTGGACGATG





232
TGAGGAAAGAAGGAAGCGAA





233
ATCTGGACGATGAGGAAAGA





234
AGAAGAAGCGGAAGCGAGAG





235
GAAGAAGCGGAAGCGAGAGA





236
CCGCCCAGGAAGAGAAGAAG





237
AGAGAGGGAGCACTGTGACA





238
AGGGAGCACTGTGACACGGA





239
GAGGGAGCACTGTGACACGG





240
GCACTGTGACACGGAGGGAG





241
GAGGCTGACGACTTTGATCC





242
AGGCTGACGACTTTGATCCT





243
TCCACCTCCACCTTCTTCCC





244
CGACTTTGATCCTGGGAAGA





245
CTTTGATCCTGGGAAGAAGG





246
TGATCCTGGGAAGAAGGTGG





247
TCCTGGGAAGAAGGTGGAGG





248
CGGACTGGCCGATCTGGGGG





249
ACGCTCGGACTGGCCGATCT





250
AGGTGGAGCCGCCCCCAGAT





251
CGCTCGGACTGGCCGATCTG





252
GCTCGGACTGGCCGATCTGG





253
CACGCTCGGACTGGCCGATC





254
TGTGTCCGGCACGCTCGGAC





255
CTGGCTGTGTCCGGCACGCT





256
ATCGGCCAGTCCGAGCGTGC





257
CACCCTTGCCTGGCTGTGTC





258
CGAGCGTGCCGGACACAGCC





259
TGTTCCAGGAGTTGCTGAAT





260
CACACCTATTCAGCAACTCC





261
GCTGGCGGAGGAAGTGTTCC





262
TTTACCTCTGAAGCTGGCGG





263
CCCCGGTTTACCTCTGAAGC





264
ACTTCCTCCGCCAGCTTCAG





265
CAGGAAAAGCAAAAAATCCA





266
GCTTTCAGAAAAGATCCCCA





267
AGGAAAAGCAAAAAATCCAT





268
GGAAAAGCAAAAAATCCATG





269
GGAGCAATTGCATCCGTGAC





270
GTCACGGATGCAATTGCTCC





271
TTTATTATCATTGAATATCC





272
AATGATAATAAAACATCCCA





273
ATAAAACATCCCATGGATTT





274
TTCATGGTGCCAAAATCCAT





275
TTTCATGGTGCCAAAATCCA





276
TAATGAATACAAGTCAGTTA





277
CAAGTCAGTTACGGAATTTA





278
ATAATGCAATGACATACAAT





279
AACTTGTAGTACACGGTATC





280
CTTCGCCAACTTGTAGTACA





281
AGATACCGTGTACTACAAGT





282
GCGAAGAAGATCCTTCACGC





283
TCATCTTAAAGCCTGCGTGA





284
TTCTCAGCAGGCAGCTCTTT





285
CAATGAAGATACAGCTGTTG





286
ACTGGTACAACTTCAGGGAC





287
CTTGTACTGGTACAACTTCA





288
ACTTGTACTGGTACAACTTC





289
TTGGCAGTTTCTACTTGTAC





290
TACCTGATAACTTCTCTACT





291
AGCCGAGTAGAGAAGTTATC





292
AGCTGCATGTTTGAGCCTGA





293
GCTGCATGTTTGAGCCTGAA





294
AAGCTGCAGGCATTCCCTTC





295
GGTACTGTCCGTCAAGCTGC





296
AGGGAATGCCTGCAGCTTGA





297
CTTGACGGACAGTACCGCAG





298
CGCCAGCACGTGCTCCTCTG





299
TACCGCAGAGGAGCACGTGC





300
AGAGGAGCACGTGCTGGCGC





301
GGAGCACGTGCTGGCGCTGG





302
AGCACGCAGCTGACGAAGCT





303
GCACGCAGCTGACGAAGCTC





304
CAGCTGACGAAGCTCGGGAC





305
AAGCTCGGGACAGGATCAAC





306
CCTTGCCGCCTGGGAGGAAC





307
AGGATCAACCGGTTCCTCCC





308
ATCAACCGGTTCCTCCCAGG





309
GCACTACCTTGCCGCCTGGG





310
AGAGCACTACCTTGCCGCCT





311
CCGGTTCCTCCCAGGCGGCA





312
TCCTCTTCAGATAGCCCATC





313
ATGGGCTATCTGAAGAGGAA





314
GGGCTATCTGAAGAGGAACG





315
TGGGCTATCTGAAGAGGAAC





316
TATCTGAAGAGGAACGGGGA





317
ATCTGAAGAGGAACGGGGAC





318
TGTTGACCACGCTGTAGAGC





319
GCTCTACAGCGTGGTCAACA





320
CGGGAGCCTGCTCTACAGCG





321
CGTGGTCAACACGGCCGAGC





322
CCCACCATCAGCGTCCGGCT





323
ACGGCCGAGCCGGACGCTGA





324
GGGCACCCACCATCAGCGTC





325
GCCGAGCCGGACGCTGATGG





326
CCATGTCCGTGTTGCAGAGG





327
CCGAGCCGGACGCTGATGGT





328
CGAGCTCAAGTCCACCGGGT





329
GCGAGCTCAAGTCCACCGGG





330
AGAGCGAGCTCAAGTCCACC





331
GAGAGCGAGCTCAAGTCCAC





332
GAAGCCTGGGAGTAGCTTAC





333
CTCTCCAGTAAGCTACTCCC





334
AGCCCAGCGTGGTGAAGCCT





335
AAGCCCAGCGTGGTGAAGCC





336
ACTCCCAGGCTTCACCACGC





337
CTCCCAGGCTTCACCACGCT





338
CTCGTCTTTGAAGCCCAGCG





339
CACTGGAGAGAAAGGTGACT





340
GCACTGGAGAGAAAGGTGAC





341
AGTAGTGGCACTGGAGAGAA





342
CGAAAGCGCAGTAGTGGCAC





343
CTGCATCGAAAGCGCAGTAG





344
ATGCAGAATAATTCAGTATT





345
AGTATTTGGCGACTTGAAGT





346
CGACTTGAAGTCGGACGAGA





347
GAGCTGCTCTACTCAGCCTA





348
CACGCCTGTCTCATCTCCGT





349
TCAGCCTACGGAGATGAGAC





350
CAGGCGTGCAGTGTGCGCTG





351
CCGCGGCCCCTCTAGCCTGC





352
CATCCTTCACAAACTCCTGC





353
TAGCCTGCAGGAGTTTGTGA





354
CAGGAGTTTGTGAAGGATGC





355
AGGAGTTTGTGAAGGATGCT





356
TGGGAGCTACAGCAAGAAAG





357
GAGCTACAGCAAGAAAGTGG





358
GAAAGTGGTGGACGACCTCC





359
CGCCTGTGATCTGGTCCAGG





360
CTCCGCCTGTGATCTGGTCC





361
GACCTCCTGGACCAGATCAC





362
CTCCTGGACCAGATCACAGG





363
GCTGGAAGAGCGTCCTAGAG





364
TGCAGCCCACCTGCTTCAGC





365
GACGCTCTTCCAGCTGAAGC





366
CTCTTCCAGCTGAAGCAGGT





367
GCTCTTCCAGCTGAAGCAGG





368
CCTCCAGATGAAGCCAAGGT





369
GCTTCATCTGGAGGCTTCAT





370
GGCTTCATCTGGAGGCTTCA





371
CTTACCTTGGCTTCATCTGG





372
AAACTTACCTTGGCTTCATC





373
GAAGCCTCCAGATGAAGCCA





374
TCCTAGGGTGTCCCCAACCT





375
CCTAGGGTGTCCCCAACCTG





376
GTGTCTGTCTCCACAGGTTG





377
TGTGTCTGTCTCCACAGGTT





378
CCACAGGTTGGGGACACCCT





379
AGAGCTGCTGCTGTCTCCTA





380
CAGAGCTGCTGCTGTCTCCT





381
AGACAGCAGCAGCTCTGTTC





382
ATCCACAGAAACGTCGGGAT





383
GAGATATCCACAGAAACGTC





384
GGAGATATCCACAGAAACGT





385
GTCCTATCCCGACGTTTCTG





386
TCTCCATGCTCAGCTCTCTG





387
CTCACCCAGAGAGCTGAGCA





388
ATCTCCATGCTCAGCTCTCT





389
TATCTCCATGCTCAGCTCTC





390
ATGTCCTGTTTACACAGGGA





391
TTACACAGGGAAGGTGAAGA





392
AGTTCAAATGGCTGTCGTCA





393
TGACGACAGCCATTTGAACT





394
AAGTTCAAATGGCTGTCGTC





395
TCGTCTCATCCAAGTTCAAA





396
TGAGACGACGAAGCTCCTGC





397
GTGCTTCGTGCAGGTCCTGC





398
GCAGGACCTGCACGAAGCAC





399
GCTCCGCCTGTGCTTCGTGC





400
GGACCTGCACGAAGCACAGG





401
CACGAAGCACAGGCGGAGCG





402
AGGCGGAGCGCGGCGGCTCT





403
AGGGAGCTGAGGTTGGACGA





404
GTTGGACAGGGAGCTGAGGT





405
AGGCGTTGGACAGGGAGCTG





406
CCCTCTCGGAGGCGTTGGAC





407
CCTCTCGGAGGCGTTGGACA





408
CTGGTCCCTCTCGGAGGCGT





409
CCCTGTCCAACGCCTCCGAG





410
CCTGTCCAACGCCTCCGAGA





411
GTGGTGCTGGTCCCTCTCGG





412
CAGGTGGTGCTGGTCCCTCT





413
GCATCTCACCCAGGTGGTGC





414
CGAGAGGGACCAGCACCACC





415
GAGAGGGACCAGCACCACCT





416
GTGGGGGCATCTCACCCAGG





417
CCCCGACACTCAGGCGAGAA





418
TCCCCGACACTCAGGCGAGA





419
AGCCCTTCTCGCCTGAGTGT





420
CTGGCTGCTCCCCGACACTC





421
CCCTTCTCGCCTGAGTGTCG





422
GCCCTTCTCGCCTGAGTGTC





423
TAGGGGTCGTGGGTGACGTC





424
AAGAAACTCATAGGGGTCGT





425
GAAGAAACTCATAGGGGTCG





426
GAGACTGAAGAAACTCATAG





427
GGAGACTGAAGAAACTCATA





428
TGGAGACTGAAGAAACTCAT





429
TCTTCAGTCTCCAGAGCCTG





430
TTGGCAGAGGCCGCAGGCTC





431
TAGGTCTTGGCAGAGGCCGC





432
CTAGAGTTAGGTCTTGGCAG





433
GGTGGTCTAGAGTTAGGTCT
















TABLE 4







Control sgRNA Library










SEQ





ID


Nucleic Acid


NO.
gRNA Label
Gene
Sequence





434
1|sg_Non_Targeting_Human_0001|
Non_Targeting_Human
GTAGCGAACGTGTCCGGCGT



Non_Targeting_Human







435
1|sg_Non_Targeting_Human_0002|
Non_Targeting_Human
GACCGGAACGATCTCGCGTA



Non_Targeting_Human







436
1|sg_Non_Targeting_Human_0003|
Non_Targeting_Human
GGCAGTCGTTCGGTTGATAT



Non_Targeting_Human







437
1|sg_Non_Targeting_Human_0004|
Non_Targeting_Human
GCTTGAGCACATACGCGAAT



Non_Targeting_Human







438
1|sg_Non_Targeting_Human_0005|
Non_Targeting_Human
GTGGTAGAATAACGTATTAC



Non_Targeting_Human







439
1|sg_Non_Targeting_Human_0006|
Non_Targeting_Human
GTCATACATGGATAAGGCTA



Non_Targeting_Human







440
1|sg_Non_Targeting_Human_0007|
Non_Targeting_Human
GATACACGAAGCATCACTAG



Non_Targeting_Human







441
1|sg_Non_Targeting_Human_0008|
Non_Targeting_Human
GAACGTTGGCACTACTTCAC



Non_Targeting_Human







442
1|sg_Non_Targeting_Human_0009|
Non_Targeting_Human
GATCCATGTAATGCGTTCGA



Non_Targeting_Human







443
1|sg_Non_Targeting_Human_0010|
Non_Targeting_Human
GTCGTGAAGTGCATTCGATC



Non_Targeting_Human







444
1|sg_Non_Targeting_Human_0011|
Non_Targeting_Human
GTTCGACTCGCGTGACCGTA



Non_Targeting_Human







445
1|sg_Non_Targeting_Human_0012|
Non_Targeting_Human
GAATCTACCGCAGCGGTTCG



Non_Targeting_Human







446
1|sg_Non_Targeting_Human_0013|
Non_Targeting_Human
GAAGTGACGTCGATTCGATA



Non_Targeting_Human







447
1|sg_Non_Targeting_Human_0014|
Non_Targeting_Human
GCGGTGTATGACAACCGCCG



Non_Targeting_Human







448
1|sg_Non_Targeting_Human_0015|
Non_Targeting_Human
GTACCGCGCCTGAAGTTCGC



Non_Targeting_Human







449
1|sg_Non_Targeting_Human_0016|
Non_Targeting_Human
GCAGCTCGTGTGTCGTACTC



Non_Targeting_Human







450
1|sg_Non_Targeting_Human_0017|
Non_Targeting_Human
GCGCCTTAAGAGTACTCATC



Non_Targeting_Human







451
1|sg_Non_Targeting_Human_0018|
Non_Targeting_Human
GAGTGTCGTCGTTGCTCCTA



Non_Targeting_Human







452
1|sg_Non_Targeting_Human_0019|
Non_Targeting_Human
GCAGCTCGACCTCAAGCCGT



Non_Targeting_Human







453
1|sg_Non_Targeting_Human_0020|
Non_Targeting_Human
GTATCCTGACCTACGCGCTG



Non_Targeting_Human







454
1|sg_Non_Targeting_Human_0021|
Non_Targeting_Human
GTGTATCTCAGCACGCTAAC



Non_Targeting_Human







455
1|sg_Non_Targeting_Human_0022|
Non_Targeting_Human
GTCGTCATACAACGGCAACG



Non_Targeting_Human







456
1|sg_Non_Targeting_Human_0023|
Non_Targeting_Human
GTCGTGCGCTTCCGGCGGTA



Non_Targeting_Human







457
1|sg_Non_Targeting_Human_0024|
Non_Targeting_Human
GCGGTCCTCAGTAAGCGCGT



Non_Targeting_Human







458
1|sg_Non_Targeting_Human_0025|
Non_Targeting_Human
GCTCTGCTGCGGAAGGATTC



Non_Targeting_Human







459
1|sg_Non_Targeting_Human_0026|
Non_Targeting_Human
GCATGGAGGAGCGTCGCAGA



Non_Targeting_Human







460
1|sg_Non_Targeting_Human_0027|
Non_Targeting_Human
GTAGCGCGCGTAGGAGTGGC



Non_Targeting_Human







461
1|sg_Non_Targeting_Human_0028|
Non_Targeting_Human
GATCACCTGCATTCGTACAC



Non_Targeting_Human







462
1|sg_Non_Targeting_Human_0029|
Non_Targeting_Human
GCACACCTAGATATCGAATG



Non_Targeting_Human







463
1|sg_Non_Targeting_Human_0030|
Non_Targeting_Human
GTTGATCAACGCGCTTCGCG



Non_Targeting_Human







464
1|sg_Non_Targeting_Human_0031|
Non_Targeting_Human
GCGTCTCACTCACTCCATCG



Non_Targeting_Human







465
1|sg_Non_Targeting_Human_0032|
Non_Targeting_Human
GCCGACCAACGTCAGCGGTA



Non_Targeting_Human







466
1|sg_Non_Targeting_Human_0033|
Non_Targeting_Human
GGATACGGTGCGTCAATCTA



Non_Targeting_Human







467
1|sg_Non_Targeting_Human_0034|
Non_Targeting_Human
GAATCCAGTGGCGGCGACAA



Non_Targeting_Human







468
1|sg_Non_Targeting_Human_0035|
Non_Targeting_Human
GCACTGTCAGTGCAACGATA



Non_Targeting_Human







469
1|sg_Non_Targeting_Human_0036|
Non_Targeting_Human
GCGATCCTCAAGTATGCTCA



Non_Targeting_Human







470
1|sg_Non_Targeting_Human_0037|
Non_Targeting_Human
GCTAATATCGACACGGCCGC



Non_Targeting_Human







471
1|sg_Non_Targeting_Human_0038|
Non_Targeting_Human
GGAGATGCATCGAAGTCGAT



Non_Targeting_Human







472
1|sg_Non_Targeting_Human_0039|
Non_Targeting_Human
GGATGCACTCCATCTCGTCT



Non_Targeting_Human







473
1|sg_Non_Targeting_Human_0040|
Non_Targeting_Human
GTGCCGAGTAATAACGCGAG



Non_Targeting_Human







474
1|sg_Non_Targeting_Human_0041|
Non_Targeting_Human
GAGATTCCGATGTAACGTAC



Non_Targeting_Human







475
1|sg_Non_Targeting_Human_0042|
Non_Targeting_Human
GTCGTCACGAGCAGGATTGC



Non_Targeting_Human







476
1|sg_Non_Targeting_Human_0043|
Non_Targeting_Human
GCGTTAGTCACTTAGCTCGA



Non_Targeting_Human







477
1|sg_Non_Targeting_Human_0044|
Non_Targeting_Human
GTTCACACGGTGTCGGATAG



Non_Targeting_Human







478
1|sg_Non_Targeting_Human_0045|
Non_Targeting_Human
GGATAGGTGACCTTAGTACG



Non_Targeting_Human







479
1|sg_Non_Targeting_Human_0046|
Non_Targeting_Human
GTATGAGTCAAGCTAATGCG



Non_Targeting_Human







480
1|sg_Non_Targeting_Human_0047|
Non_Targeting_Human
GCAACTATTGGAATACGTGA



Non_Targeting_Human







481
1|sg_Non_Targeting_Human_0048|
Non_Targeting_Human
GTTACCTTCGCTCGTCTATA



Non_Targeting_Human







482
1|sg_Non_Targeting_Human_0049|
Non_Targeting_Human
GTACCGAGCACCACAGGCCG



Non_Targeting_Human







483
1|sg_Non_Targeting_Human_0050|
Non_Targeting_Human
GTCAGCCATCGGATAGAGAT



Non_Targeting_Human







484
1|sg_Non_Targeting_Human_0051|
Non_Targeting_Human
GTACGGCACTCCTAGCCGCT



Non_Targeting_Human







485
1|sg_Non_Targeting_Human_0052|
Non_Targeting_Human
GGTCCTGTCGTATGCTTGCA



Non_Targeting_Human







486
1|sg_Non_Targeting_Human_0053|
Non_Targeting_Human
GCCGCAATATATGCGGTAAG



Non_Targeting_Human







487
1|sg_Non_Targeting_Human_0054|
Non_Targeting_Human
GCGCACGTATAATCCTGCGT



Non_Targeting_Human







488
1|sg_Non_Targeting_Human_0055|
Non_Targeting_Human
GTGCACAACACGATCCACGA



Non_Targeting_Human







489
1|sg_Non_Targeting_Human_0056|
Non_Targeting_Human
GCACAATGTTGACGTAAGTG



Non_Targeting_Human







490
1|sg_Non_Targeting_Human_0057|
Non_Targeting_Human
GTAAGATGCTGCTCACCGTG



Non_Targeting_Human







491
1|sg_Non_Targeting_Human_0058|
Non_Targeting_Human
GTCGGTGATCCAACGTATCG



Non_Targeting_Human







492
1|sg_Non_Targeting_Human_0059|
Non_Targeting_Human
GAGCTAGTAGGACGCAAGAC



Non_Targeting_Human







493
1|sg_Non_Targeting_Human_0060|
Non_Targeting_Human
GTACGTGGAAGCTTGTGGCC



Non_Targeting_Human







494
1|sg_Non_Targeting_Human_0061|
Non_Targeting_Human
GAGAACTGCCAGTTCTCGAT



Non_Targeting_Human







495
1|sg_Non_Targeting_Human_0062|
Non_Targeting_Human
GCCATTCGGCGCGGCACTTC



Non_Targeting_Human







496
1|sg_Non_Targeting_Human_0063|
Non_Targeting_Human
GCACACGACCAATCCGCTTC



Non_Targeting_Human







497
1|sg_Non_Targeting_Human_0064|
Non_Targeting_Human
GAGGTGATCGATTAAGTACA



Non_Targeting_Human







498
1|sg_Non_Targeting_Human_0065|
Non_Targeting_Human
GTCACTCGCAGACGCCTAAC



Non_Targeting_Human







499
1|sg_Non_Targeting_Human_0066|
Non_Targeting_Human
GCGCTACGGAATCATACGTT



Non_Targeting_Human







500
1|sg_Non_Targeting_Human_0067|
Non_Targeting_Human
GGTAGGACCTCACGGCGCGC



Non_Targeting_Human







501
1|sg_Non_Targeting_Human_0068|
Non_Targeting_Human
GAACTGCATCTTGTTGTAGT



Non_Targeting_Human







502
1|sg_Non_Targeting_Human_0069|
Non_Targeting_Human
GATCCTGATCCGGCGGCGCG



Non_Targeting_Human







503
1|sg_Non_Targeting_Human_0070|
Non_Targeting_Human
GGTATGCGCGATCCTGAGTT



Non_Targeting_Human







504
1|sg_Non_Targeting_Human_0071|
Non_Targeting_Human
GCGGAGCTAGAGAGCGGTCA



Non_Targeting_Human







505
1|sg_Non_Targeting_Human_0072|
Non_Targeting_Human
GAATGGCAATTACGGCTGAT



Non_Targeting_Human







506
1|sg_Non_Targeting_Human_0073|
Non_Targeting_Human
GTATGGTGAGTAGTCGCTTG



Non_Targeting_Human







507
1|sg_Non_Targeting_Human_0074|
Non_Targeting_Human
GTGTAATTGCGTCTAGTCGG



Non_Targeting_Human







508
1|sg_Non_Targeting_Human_0075|
Non_Targeting_Human
GGTCCTGGCGAGGAGCCTTG



Non_Targeting_Human







509
1|sg_Non_Targeting_Human_0076|
Non_Targeting_Human
GAAGATAAGTCGCTGTCTCG



Non_Targeting_Human







510
1|sg_Non_Targeting_Human_0077|
Non_Targeting_Human
GTCGGCGTTCTGTTGTGACT



Non_Targeting_Human







511
1|sg_Non_Targeting_Human_0078|
Non_Targeting_Human
GAGGCAAGCCGTTAGGTGTA



Non_Targeting_Human







512
1|sg_Non_Targeting_Human_0079|
Non_Targeting_Human
GCGGATCCAGATCTCATTCG



Non_Targeting_Human







513
1|sg_Non_Targeting_Human_0080|
Non_Targeting_Human
GGAACATAGGAGCACGTAGT



Non_Targeting_Human







514
1|sg_Non_Targeting_Human_0081|
Non_Targeting_Human
GTCATCATTATGGCGTAAGG



Non_Targeting_Human







515
1|sg_Non_Targeting_Human_0082|
Non_Targeting_Human
GCGACTAGCGCCATGAGCGG



Non_Targeting_Human







516
1|sg_Non_Targeting_Human_0083|
Non_Targeting_Human
GGCGAAGTTCGACATGACAC



Non_Targeting_Human







517
1|sg_Non_Targeting_Human_0084|
Non_Targeting_Human
GCTGTCGTGTGGAGGCTATG



Non_Targeting_Human







518
1|sg_Non_Targeting_Human_0085|
Non_Targeting_Human
GCGGAGAGCATTGACCTCAT



Non_Targeting_Human







519
1|sg_Non_Targeting_Human_0086|
Non_Targeting_Human
GACTAATGGACCAAGTCAGT



Non_Targeting_Human







520
1|sg_Non_Targeting_Human_0087|
Non_Targeting_Human
GCGGATTAGAGGTAATGCGG



Non_Targeting_Human







521
1|sg_Non_Targeting_Human_0088|
Non_Targeting_Human
GCCGACGGCAATCAGTACGC



Non_Targeting_Human







522
1|sg_Non_Targeting_Human_0089|
Non_Targeting_Human
GTAACCTCTCGAGCGATAGA



Non_Targeting_Human







523
1|sg_Non_Targeting_Human_0090|
Non_Targeting_Human
GACTTGTATGTGGCTTACGG



Non_Targeting_Human







524
1|sg_Non_Targeting_Human_0091|
Non_Targeting_Human
GTCACTGTGGTCGAACATGT



Non_Targeting_Human







525
1|sg_Non_Targeting_Human_0092|
Non_Targeting_Human
GTACTCCAATCCGCGATGAC



Non_Targeting_Human







526
1|sg_Non_Targeting_Human_0093|
Non_Targeting_Human
GCGTTGGCACGATGTTACGG



Non_Targeting_Human







527
1|sg_Non_Targeting_Human_0094|
Non_Targeting_Human
GAACCAGCCGGCTAGTATGA



Non_Targeting_Human







528
1|sg_Non_Targeting_Human_0095|
Non_Targeting_Human
GTATACTAGCTAACCACACG



Non_Targeting_Human







529
1|sg_Non_Targeting_Human_0096|
Non_Targeting_Human
GAATCGGAATAGTTGATTCG



Non_Targeting_Human







530
1|sg_Non_Targeting_Human_0097|
Non_Targeting_Human
GAGCACTTGCATGAGGCGGT



Non_Targeting_Human







531
1|sg_Non_Targeting_Human_0098|
Non_Targeting_Human
GAACGGCGATGAAGCCAGCC



Non_Targeting_Human







532
1|sg_Non_Targeting_Human_0099|
Non_Targeting_Human
GCAACCGAGATGAGAGGTTC



Non_Targeting_Human







533
1|sg_Non_Targeting_Human_0100|
Non_Targeting_Human
GCAAGATCAATATGCGTGAT



Non_Targeting_Human







534
1|sg_Non_Targeting_Human_GA_0101|
Non_Targeting_Human
ACGGAGGCTAAGCGTCGCAA



Non_Targeting_Human







535
1|sg_Non_Targeting_Human_GA_0102|
Non_Targeting_Human
CGCTTCCGCGGCCCGTTCAA



Non_Targeting_Human







536
1|sg_Non_Targeting_Human_GA_0103|
Non_Targeting_Human
ATCGTTTCCGCTTAACGGCG



Non_Targeting_Human







537
1|sg_Non_Targeting_Human_GA_0104|
Non_Targeting_Human
GTAGGCGCGCCGCTCTCTAC



Non_Targeting_Human







538
1|sg_Non_Targeting_Human_GA_0105|
Non_Targeting_Human
CCATATCGGGGCGAGACATG



Non_Targeting_Human







539
1|sg_Non_Targeting_Human_GA_0106|
Non_Targeting_Human
TACTAACGCCGCTCCTACAG



Non_Targeting_Human







540
1|sg_Non_Targeting_Human_GA_0107|
Non_Targeting_Human
TGAGGATCATGTCGAGCGCC



Non_Targeting_Human







541
1|sg_Non_Targeting_Human_GA_0108|
Non_Targeting_Human
GGGCCCGCATAGGATATCGC



Non_Targeting_Human







542
1|sg_Non_Targeting_Human_GA_0109|
Non_Targeting_Human
TAGACAACCGCGGAGAATGC



Non_Targeting_Human







543
1|sg_Non_Targeting_Human_GA_0110|
Non_Targeting_Human
ACGGGCGGCTATCGCTGACT



Non_Targeting_Human







544
1|sg_Non_Targeting_Human_GA_0111|
Non_Targeting_Human
CGCGGAAATTTTACCGACGA



Non_Targeting_Human







545
1|sg_Non_Targeting_Human_GA_0112|
Non_Targeting_Human
CTTACAATCGTCGGTCCAAT



Non_Targeting_Human







546
1|sg_Non_Targeting_Human_GA_0113|
Non_Targeting_Human
GCGTGCGTCCCGGGTTACCC



Non_Targeting_Human







547
1|sg_Non_Targeting_Human_GA_0114|
Non_Targeting_Human
CGGAGTAACAAGCGGACGGA



Non_Targeting_Human







548
1|sg_Non_Targeting_Human_GA_0115|
Non_Targeting_Human
CGAGTGTTATACGCACCGTT



Non_Targeting_Human







549
1|sg_Non_Targeting_Human_GA_0116|
Non_Targeting_Human
CGACTAACCGGAAACTTTTT



Non_Targeting_Human







550
1|sg_Non_Targeting_Human_GA_0117|
Non_Targeting_Human
CAACGGGTTCTCCCGGCTAC



Non_Targeting_Human







551
1|sg_Non_Targeting_Human_GA_0118|
Non_Targeting_Human
CAGGAGTCGCCGATACGCGT



Non_Targeting_Human







552
1|sg_Non_Targeting_Human_GA_0119|
Non_Targeting_Human
TTCACGTCGTCTCGCGACCA



Non_Targeting_Human







553
1|sg_Non_Targeting_Human_GA_0120|
Non_Targeting_Human
GTGTCGGATTCCGCCGCTTA



Non_Targeting_Human







554
1|sg_Non_Targeting_Human_GA_0121|
Non_Targeting_Human
CACGAACTCACACCGCGCGA



Non_Targeting_Human







555
1|sg_Non_Targeting_Human_GA_0122|
Non_Targeting_Human
CGCTAGTACGCTCCTCTATA



Non_Targeting_Human







556
1|sg_Non_Targeting_Human_GA_0123|
Non_Targeting_Human
TCGCGCTTGGGTTATACGCT



Non_Targeting_Human







557
1|sg_Non_Targeting_Human_GA_0124|
Non_Targeting_Human
CTATCTCGAGTGGTAATGCG



Non_Targeting_Human







558
1|sg_Non_Targeting_Human_GA_0125|
Non_Targeting_Human
AATCGACTCGAACTTCGTGT



Non_Targeting_Human







559
1|sg_Non_Targeting_Human_GA_0126|
Non_Targeting_Human
CCCGATGGACTATACCGAAC



Non_Targeting_Human







560
1|sg_Non_Targeting_Human_GA_0127|
Non_Targeting_Human
ACGTTCGAGTACGACCAGCT



Non_Targeting_Human







561
1|sg_Non_Targeting_Human_GA_0128|
Non_Targeting_Human
CGCGACGACTCAACCTAGTC



Non_Targeting_Human







562
1|sg_Non_Targeting_Human_GA_0129|
Non_Targeting_Human
GGTCACCGATCGAGAGCTAG



Non_Targeting_Human







563
1|sg_Non_Targeting_Human_GA_0130|
Non_Targeting_Human
CTCAACCGACCGTATGGTCA



Non_Targeting_Human







564
1|sg_Non_Targeting_Human_GA_0131|
Non_Targeting_Human
CGTATTCGACTCTCAACGCG



Non_Targeting_Human







565
1|sg_Non_Targeting_Human_GA_0132|
Non_Targeting_Human
CTAGCCGCCCAGATCGAGCC



Non_Targeting_Human







566
1|sg_Non_Targeting_Human_GA_0133|
Non_Targeting_Human
GAATCGACCGACACTAATGT



Non_Targeting_Human







567
1|sg_Non_Targeting_Human_GA_0134|
Non_Targeting_Human
ACTTCAGTTCGGCGTAGTCA



Non_Targeting_Human







568
1|sg_Non_Targeting_Human_GA_0135|
Non_Targeting_Human
GTGCGATGTCGCTTCAACGT



Non_Targeting_Human







569
1|sg_Non_Targeting_Human_GA_0136|
Non_Targeting_Human
CGCCTAATTTCCGGATCAAT



Non_Targeting_Human







570
1|sg_Non_Targeting_Human_GA_0137|
Non_Targeting_Human
CGTGGCCGGAACCGTCATAG



Non_Targeting_Human







571
1|sg_Non_Targeting_Human_GA_0138|
Non_Targeting_Human
ACCCTCCGAATCGTAACGGA



Non_Targeting_Human







572
1|sg_Non_Targeting_Human_GA_0139|
Non_Targeting_Human
AAACGGTACGACAGCGTGTG



Non_Targeting_Human







573
1|sg_Non_Targeting_Human_GA_0140|
Non_Targeting_Human
ACATAGTCGACGGCTCGATT



Non_Targeting_Human







574
1|sg_Non_Targeting_Human_GA_0141|
Non_Targeting_Human
GATGGCGCTTCAGTCGTCGG



Non_Targeting_Human







575
1|sg_Non_Targeting_Human_GA_0142|
Non_Targeting_Human
ATAATCCGGAAACGCTCGAC



Non_Targeting_Human







576
1|sg_Non_Targeting_Human_GA_0143|
Non_Targeting_Human
CGCCGGGCTGACAATTAACG



Non_Targeting_Human







577
1|sg_Non_Targeting_Human_GA_0144|
Non_Targeting_Human
CGTCGCCATATGCCGGTGGC



Non_Targeting_Human







578
1|sg_Non_Targeting_Human_GA_0145|
Non_Targeting_Human
CGGGCCTATAACACCATCGA



Non_Targeting_Human







579
1|sg_Non_Targeting_Human_GA_0146|
Non_Targeting_Human
CGCCGTTCCGAGATACTTGA



Non_Targeting_Human







580
1|sg_Non_Targeting_Human_GA_0147|
Non_Targeting_Human
CGGGACGTCGCGAAAATGTA



Non_Targeting_Human







581
1|sg_Non_Targeting_Human_GA_0148|
Non_Targeting_Human
TCGGCATACGGGACACACGC



Non_Targeting_Human







582
1|sg_Non_Targeting_Human_GA_0149|
Non_Targeting_Human
AGCTCCATCGCCGCGATAAT



Non_Targeting_Human







583
1|sg_Non_Targeting_Human_GA_0150|
Non_Targeting_Human
ATCGTATCATCAGCTAGCGC



Non_Targeting_Human







584
1|sg_Non_Targeting_Human_GA_0151|
Non_Targeting_Human
TCGATCGAGGTTGCATTCGG



Non_Targeting_Human







585
1|sg_Non_Targeting_Human_GA_0152|
Non_Targeting_Human
CTCGACAGTTCGTCCCGAGC



Non_Targeting_Human







586
1|sg_Non_Targeting_Human_GA_0153|
Non_Targeting_Human
CGGTAGTATTAATCGCTGAC



Non_Targeting_Human







587
1|sg_Non_Targeting_Human_GA_0154|
Non_Targeting_Human
TGAACGCGTGTTTCCTTGCA



Non_Targeting_Human







588
1|sg_Non_Targeting_Human_GA_0155|
Non_Targeting_Human
CGACGCTAGGTAACGTAGAG



Non_Targeting_Human







589
1|sg_Non_Targeting_Human_GA_0156|
Non_Targeting_Human
CATTGTTGAGCGGGCGCGCT



Non_Targeting_Human







590
1|sg_Non_Targeting_Human_GA_0157|
Non_Targeting_Human
CCGCTATTGAAACCGCCCAC



Non_Targeting_Human







591
1|sg_Non_Targeting_Human_GA_0158|
Non_Targeting_Human
AGACACGTCACCGGTCAAAA



Non_Targeting_Human







592
1|sg_Non_Targeting_Human_GA_0159|
Non_Targeting_Human
TTTACGATCTAGCGGCGTAG



Non_Targeting_Human







593
1|sg_Non_Targeting_Human_GA_0160|
Non_Targeting_Human
TTCGCACGATTGCACCTTGG



Non_Targeting_Human







594
1|sg_Non_Targeting_Human_GA_0161|
Non_Targeting_Human
GGTTAGAGACTAGGCGCGCG



Non_Targeting_Human







595
1|sg_Non_Targeting_Human_GA_0162|
Non_Targeting_Human
CCTCCGTGCTAACGCGGACG



Non_Targeting_Human







596
1|sg_Non_Targeting_Human_GA_0163|
Non_Targeting_Human
TTATCGCGTAGTGCTGACGT



Non_Targeting_Human







597
1|sg_Non_Targeting_Human_GA_0164|
Non_Targeting_Human
TACGCTTGCGTTTAGCGTCC



Non_Targeting_Human







598
1|sg_Non_Targeting_Human_GA_0165|
Non_Targeting_Human
CGCGGCCCACGCGTCATCGC



Non_Targeting_Human







599
1|sg_Non_Targeting_Human_GA_0166|
Non_Targeting_Human
AGCTCGCCATGTCGGTTCTC



Non_Targeting_Human







600
1|sg_Non_Targeting_Human_GA_0167|
Non_Targeting_Human
AACTAGCCCGAGCAGCTTCG



Non_Targeting_Human







601
1|sg_Non_Targeting_Human_GA_0168|
Non_Targeting_Human
CGCAAGGTGTCGGTAACCCT



Non_Targeting_Human







602
1|sg_Non_Targeting_Human_GA_0169|
Non_Targeting_Human
CTTCGACGCCATCGTGCTCA



Non_Targeting_Human







603
1|sg_Non_Targeting_Human_GA_0170|
Non_Targeting_Human
TCCTGGATACCGCGTGGTTA



Non_Targeting_Human







604
1|sg_Non_Targeting_Human_GA_0171|
Non_Targeting_Human
ATAGCCGCCGCTCATTACTT



Non_Targeting_Human







605
1|sg_Non_Targeting_Human_GA_0172|
Non_Targeting_Human
GTCGTCCGGGATTACAAAAT



Non_Targeting_Human







606
1|sg_Non_Targeting_Human_GA_0173|
Non_Targeting_Human
TAATGCTGCACACGCCGAAT



Non_Targeting_Human







607
1|sg_Non_Targeting_Human_GA_0174|
Non_Targeting_Human
TATCGCTTCCGATTAGTCCG



Non_Targeting_Human







608
1|sg_Non_Targeting_Human_GA_0175|
Non_Targeting_Human
GTACCATACCGCGTACCCTT



Non_Targeting_Human







609
1|sg_Non_Targeting_Human_GA_0176|
Non_Targeting_Human
TAAGATCCGCGGGTGGCAAC



Non_Targeting_Human







610
1|sg_Non_Targeting_Human_GA_0177|
Non_Targeting_Human
GTAGACGTCGTGAGCTTCAC



Non_Targeting_Human







611
1|sg_Non_Targeting_Human_GA_0178|
Non_Targeting_Human
TCGCGGACATAGGGCTCTAA



Non_Targeting_Human







612
1|sg_Non_Targeting_Human_GA_0179|
Non_Targeting_Human
AGCGCAGATAGCGCGTATCA



Non_Targeting_Human







613
1|sg_Non_Targeting_Human_GA_0180|
Non_Targeting_Human
GTTCGCTTCGTAACGAGGAA



Non_Targeting_Human







614
1|sg_Non_Targeting_Human_GA_0181|
Non_Targeting_Human
GACCCCCGATAACTTTTGAC



Non_Targeting_Human







615
1|sg_Non_Targeting_Human_GA_0182|
Non_Targeting_Human
ACGTCCATACTGTCGGCTAC



Non_Targeting_Human







616
1|sg_Non_Targeting_Human_GA_0183|
Non_Targeting_Human
GTACCATTGCCGGCTCCCTA



Non_Targeting_Human







617
1|sg_Non_Targeting_Human_GA_0184|
Non_Targeting_Human
TGGTTCCGTAGGTCGGTATA



Non_Targeting_Human







618
1|sg_Non_Targeting_Human_GA_0185|
Non_Targeting_Human
TCTGGCTTGACACGACCGTT



Non_Targeting_Human







619
1|sg_Non_Targeting_Human_GA_0186|
Non_Targeting_Human
CGCTAGGTCCGGTAAGTGCG



Non_Targeting_Human







620
1|sg_Non_Targeting_Human_GA_0187|
Non_Targeting_Human
AGCACGTAATGTCCGTGGAT



Non_Targeting_Human







621
1|sg_Non_Targeting_Human_GA_0188|
Non_Targeting_Human
AAGGCGCGCGAATGTGGCAG



Non_Targeting_Human







622
1|sg_Non_Targeting_Human_GA_0189|
Non_Targeting_Human
ACTGCGGAGCGCCCAATATC



Non_Targeting_Human







623
1|sg_Non_Targeting_Human_GA_0190|
Non_Targeting_Human
CGTCGAGTGCTCGAACTCCA



Non_Targeting_Human







624
1|sg_Non_Targeting_Human_GA_0191|
Non_Targeting_Human
TCGCAGCGGCGTGGGATCGG



Non_Targeting_Human







625
1|sg_Non_Targeting_Human_GA_0192|
Non_Targeting_Human
ATCTGTCCTAATTCGGATCG



Non_Targeting_Human







626
1|sg_Non_Targeting_Human_GA_0193|
Non_Targeting_Human
TGCGGCGTAATGCTTGAAAG



Non_Targeting_Human







627
1|sg_Non_Targeting_Human_GA_0194|
Non_Targeting_Human
CGAACTTAATCCCGTGGCAA



Non_Targeting_Human







628
1|sg_Non_Targeting_Human_GA_0195|
Non_Targeting_Human
GCCGTGTTGCTGGATACGCC



Non_Targeting_Human







629
1|sg_Non_Targeting_Human_GA_0196|
Non_Targeting_Human
TACCCTCCGGATACGGACTG



Non_Targeting_Human







630
1|sg_Non_Targeting_Human_GA_0197|
Non_Targeting_Human
CCGTTGGACTATGGCGGGTC



Non_Targeting_Human







631
1|sg_Non_Targeting_Human_GA_0198|
Non_Targeting_Human
GTACGGGGCGATCATCCACA



Non_Targeting_Human







632
1|sg_Non_Targeting_Human_GA_0199|
Non_Targeting_Human
AAGAGTAGTAGACGCCCGGG



Non_Targeting_Human







633
1|sg_Non_Targeting_Human_GA_0200|
Non_Targeting_Human
AAGAGCGAATCGATTTCGTG



Non_Targeting_Human







634
3|sg_hCDC16_CC_1|CDC16
CDC16
TCAACACCAGTGCCTGACGG





635
3|sg_hCDC16_CC_2|CDC16
CDC16
AAAGTAGCTTCACTCTCTCG





636
3|sg_hCDC16_CC_3|CDC16
CDC16
GAGCCAACCAATAGATGTCC





637
3|sg_hCDC16_CC_4|CDC16
CDC16
GCGCCGCCATGAACCTAGAG





638
3|sg_hGTF2B_CC_1|GTF2B
GTF2B
ACAAAGGTTGGAACAGAACC





639
3|sg_hGTF2B_CC_2|GTF2B
GTF2B
GGTGACCGGGTTATTGATGT





640
3|sg_hGTF2B_CC_3|GTF2B
GTF2B
TTAGTGGAGGACTACAGAGC





641
3|sg_hGTF2B_CC_4|GTF2B
GTF2B
ACATATAGCCCGTAAAGCTG





642
3|sg_hHSPA5_CC_1|HSPA5
HSPA5
CGTTGGCGATGATCTCCACG





643
3|sg_hHSPA5_CC_2|HSPA5
HSPA5
TGGCCTTTTCTACCTCGCGC





644
3|sg_hHSPA5_CC_3|HSPA5
HSPA5
AATGGAGATACTCATCTGGG





645
3|sg_hHSPA5_CC_4|HSPA5
HSPA5
GAAGCCCGTCCAGAAAGTGT





646
3|sg_hHSPA9_CC_1|HSPA9
HSPA9
CAATCTGAGGAACTCCACGA





647
3|sg_hHSPA9_CC_2|HSPA9
HSPA9
AGGCTGCGGCGCCCACGAGA





648
3|sg_hHSPA9_CC_3|HSPA9
HSPA9
ACTTTGACCAGGCCTTGCTA





649
3|sg_hHSPA9_CC_4|HSPA9
HSPA9
ACCTTCCATAACTGCCACGC





650
3|sg_hPAFAH1B1_CC_1|PAFAH1B1
PAFAH1B1
CGAGGCGTACATACCCAAGG





651
3|sg_hPAFAH1B1_CC_2|PAFAH1B1
PAFAH1B1
ATGGTACGGCCAAATCAAGA





652
3|sg_hPAFAH1B1_CC_3|PAFAH1B1
PAFAH1B1
TCTTGTAATCCCATACGCGT





653
3|sg_hPAFAH1B1_CC_4|PAFAH1B1
PAFAH1B1
ATTCACAGGACACAGAGAAT





654
3|sg_hPCNA_CC_1|PCNA
PCNA
CCAGGGCTCCATCCTCAAGA





655
3|sg_hPCNA_CC_2|PCNA
PCNA
TGAGCTGCACCAAAGAGACG





656
3|sg_hPCNA_CC_3|PCNA
PCNA
ATGTCTGCAGATGTACCCCT





657
3|sg_hPCNA_CC_4|PCNA
PCNA
CGAAGATAACGCGGATACCT





658
3|sg_hPOLR2L_CC_1|POLR2L
POLR2L
GCTGCAGGCCGAGTACACCG





659
3|sg_hPOLR2L_CC_2|POLR2L
POLR2L
ACAAGTGGGAGGCTTACCTG





660
3|sg_hPOLR2L_CC_3|POLR2L
POLR2L
GCAGCGTACAGGGATGATCA





661
3|sg_hPOLR2L_CC_4|POLR2L
POLR2L
GCAGTAGCGCTTCAGGCCCA





662
3|sg_hRPL9_CC_1|RPL9
RPL9
CAAATGGTGGGGTAACAGAA





663
3|sg_hRPL9_CC_2|RPL9
RPL9
GAAAGGAACTGGCTACCGTT





664
3|sg_hRPL9_CC_3|RPL9
RPL9
AGGGCTTCCGTTACAAGATG





665
3|sg_hRPL9_CC_4|RPL9
RPL9
GAACAAGCAACACCTAAAAG





666
3|sg_hSF3A3_CC_1|SF3A3
SF3A3
TGAGGAGAAGGAACGGCTCA





667
3|sg_hSF3A3_CC_2|SF3A3
SF3A3
GGAAGAATGCAGAGTATAAG





668
3|sg_hSF3A3_CC_3|SF3A3
SF3A3
GGAATTTGAGGAACTCCTGA





669
3|sg_hSF3A3_CC_4|SF3A3
SF3A3
GCTCACCGGCCATCCAGGAA





670
3|sg_hSF3B3_CC_1|SF3B3
SF3B3
ACTGGCCAGGAACGATGCGA





671
3|sg_hSF3B3_CC_2|SF3B3
SF3B3
GCAGCTCCAAGATCTTCCCA





672
3|sg_hSF3B3_CC_3|SF3B3
SF3B3
GAATGAGTACACAGAACGGA





673
3|sg_hSF3B3_CC_4|SF3B3
SF3B3
GGAGCAGGACAAGGTCGGGG









Example 2—BRD9 Degrader Depletes BRD9 Protein

The following example demonstrates the depletion of the BRD9 protein in synovial sarcoma cells treated with a BRD9 degrader.


Procedure: Cells were treated with DMSO or the BRD9 degrader, Compound 1 (also known as dBRD9, see Remillard et al, Angew. Chem. Int. Ed. Engl. 56(21):5738-5743 (2017); see structure of compound 1 below), for indicated doses and timepoints.




embedded image


Whole cell extracts were fractionated by SDS-PAGE and transferred to a polyvinylidene difluoride membrane using a transfer apparatus according to the manufacturer's protocols (Bio-Rad). After incubation with 5% nonfat milk in TBST (10 mM Tris, pH 8.0, 150 mM NaCl, 0.5% Tween 20) for 60 min, the membrane was incubated with antibodies against BRD9 (1:1,000, Bethyl laboratory A303-781A), GAPDH (1:5,000, Cell Signaling Technology), and/or MBP (1:1,000, BioRad) overnight at 4° C. Membranes were washed three times for 10 min and incubated with anti-mouse or anti-rabbit antibodies conjugated with either horseradish peroxidase (HRP, FIGS. 2-3) or IRDye (FIG. 4, 1:20,000, LI-COR) for at least 1 h. Blots were washed with TBST three times and developed with either the ECL system according to the manufacturer's protocols (FIGS. 2-3) or scanned on an Odyssey CLx Imaging system (FIG. 4).


Results: Treatment of SYO1 synovial sarcoma cells with the BRD9 degrader Compound 1 results in dose dependent (FIG. 2) and time dependent (FIG. 3) depletion of BRD9 in the cells. Further, as shown in FIG. 4, the depletion of BRD9 by Compound 1 is replicated in a non-synovial sarcoma cell line (293T) and may be sustained for at least 5 days.


Example 3—Inhibition of Growth of Synovial Cell Lines by BRD9 Inhibitors and BRD9 Degraders

The following example demonstrates that BRD9 degraders and inhibitors selectively inhibit growth of synovial sarcoma cells.


Procedures:


Cells were treated with DMSO or the BRD9 degrader, Compound 1, at indicated concentrations, and proliferation was monitored from day 7 to day 14 by measuring confluency over time using an IncuCyte live cell analysis system (FIG. 5). Growth medium and compounds were refreshed every 3-4 days.


Cells were seeded into 12-well plates and treated with DMSO, 1 μM BRD9 inhibitor, Compound 2 (also known as BI-7273, see Martin et al, J Med Chem. 59(10):4462-4475 (2016); see structure of compound 2 below), or 1 μM BRD9 degrader, Compound 1.




embedded image


The number of cells was optimized for each cell line. Growth medium and compounds were refreshed every 3-5 days. SYO1, Yamato, A549, 293T and HS-SY-II cells were fixed and stained at day 11. ASKA cells were fixed and stained at day 23. Staining was done by incubation with crystal violet solution (0.5 g Crystal Violet, 27 ml 37% Formaldehyde, 100 mL 10×PBS, 10 mL Methanol, 863 dH20 to 1 L) for 30 min followed by 3× washes with water and drying the plates for at least 24 h at room temperature. Subsequently plates were scanned on an Odyssey CLx Imaging system (FIG. 6).


Cells were seeded into 96-well ultra low cluster plate (Costar, #7007) in 200 μL complete media and treated at day 2 with DMSO, Staurosporin, or BRD9 degarder, Compound 1, at indicated doses (FIG. 3C). Media and compounds were changed every 5 d and cell colonies were imaged at day 14.


Results: As shown in FIGS. 5, 6, and 7, treatment of synovial sarcoma cell lines (SYO1, Yamato, HS-SY-II, and ASKA) with a BRD9 inhibitor, Compound 2, or a BRD9 degrader, Compound 1, results in inhibition of the growth of the cells, but does not result in inhibition of the growth of non-synovial control cancer cell lines (293T, A549, G401).


Example 4—Selective Inhibition of Growth of Synovial Cell Lines by BRD9 Degraders and BRD9 Binders

The following example demonstrates that BRD9 degraders and binders selectively inhibit growth of synovial sarcoma cells.


Procedure: Cells were seeded into 6-well or 12-well plates and were treated daily with a BRD9 degrader (Compound 1), a bromo-domain BRD9 binder (Compound 2), E3 ligase binder (lenalidomide), DMSO, or staurosporin (positive control for cell killing), at indicated concentrations. The number of cells was optimized for each cell line. Growth media was refreshed every 5 days. By day 14, medium was removed, cells were washed with PBS, and stained using 500 μL of 0.005% (w/v) crystal violet solution in 25% (v/v) methanol for at least 1 hour at room temperature. Subsequently plates were scanned on an Odyssey CLx Imaging system.


Results: As shown in FIGS. 8 and 9, treatment of synovial sarcoma cell lines (SYO1, HS-SY-II, and ASKA) with Compound 1 or Compound 2 resulted in inhibition of the growth of the cells, but did not result in inhibition of the growth of non-synovial control cancer cell lines (RD, HCT116, and Calu6). Overall, Compound 1 showed most significant growth inhibition in all synovial cell lines.


Example 5—Inhibition of Cell Growth in Synovial Sarcoma Cells

The following example shows that BRD9 degraders inhibit cell growth and induce apoptosis in synovial sarcoma cells.


Procedure: SYO1 cells were treated for 8 or 13 days with DMSO, a BRD9 degrader (Compound 1) at 200 nM or 1 μM, or an E3 ligase binder (lenalidomide) at 200 nM. Compounds were refreshed every 5 days. Cell cycle analysis was performed using the Click-iT™ Plus EdU Flow Cytometry Assay (Invitrogen). The apoptosis assay was performed using the Annexin V-FITC Apoptosis Detection Kit (Sigma A9210). Assays were performed according to the manufacturer's protocol.


Results: As shown in FIGS. 10-13, treatment with Compound 1 for 8 or 13 days resulted in reduced numbers of cells in the S-phase of the cell cycle as compared to DMSO and lenalidomide. Treatment with Compound 1 for 8 days also resulted in increased numbers of early- and late-apoptotic cells as compared to DMSO controls.


Example 6—Composition for SS18-SSX1-BAF

The following example shows the identification of BRD9 as a component of SS18-SSX containing BAF complexes.


Procedure: A stable 293T cell line expressing HA-SS18SSX1 was generated using lentiviral integration. SS18-SSX1 containing BAF complexes were subject to affinity purification and subsequent mass spectrometry analysis revealed SS18-SSX1 interacting proteins.


Results: As shown in FIG. 14, BAF complexes including the SS18-SSX fusion protein also included BRD9. More than 5 unique peptides were identified for ARID1A (95 peptides), ARID1B (77 peptides), SMARCC1 (69 peptides), SMARCD1 (41 peptides), SMARCD2 (37 peptides), DPF2 (32 peptides), SMARCD3 (26 peptides), ACTL6A (25 peptides), BRD9 (22 peptides), DPF1 Isoform 2 (18 peptides), DPF3 (13 peptides), and ACTL6B (6 peptides).


Example 7—Preparation of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2,9-dimethyl-5H,6H,10H,11H, 11aH-pyrimido[4,3-a] 2,7-naphthyridine-1,8-dione (Compound B1)



embedded image


embedded image


Step 1: Preparation of 6-bromo-3-methyl-[1,2,4]triazolo[4,3-a]pyridin-8-amine (i-2)



embedded image


A solution of 2-chloro-4-methylpyridine-3-carbonitrile (3.00 g, 19.662 mmol, 1.00 equiv) in DMF-DMA (120.00 mL, 896.257 mmol, 45.58 equiv) was stirred for 6 hours at 110° C. The resulting mixture was concentrated. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:1). This resulted in 3.4 g (83.27%) of 2-chloro-4-[(E)-2-(dimethylamino)ethenyl]pyridine-3-carbonitrile as a light yellow solid. LCMS (ESI) m/z: [M+H]+=208.


Step 2: Preparation of 8-chloro-1,2-dihydro-2,7-naphthyridin-1-one (i-3)



embedded image


Into a 250-mL round-bottom flask, was placed 2-chloro-4-[(E)-2-(dimethylamino)ethenyl]pyridine-3-carbonitrile (3.40 g, 16.373 mmol, 1.00 equiv), H2SO4 (100.00 mL). The resulting solution was stirred for 2 hours at 110° C. The reaction was then quenched by the addition of 100 mL of water/ice. The pH of the solution was adjusted to pH>7 by addition of aqueous (aq.) K2CO3. The resulting solution was extracted with ethyl acetate (3×300 mL) and the organic layers combined and concentrated. This resulted in 2.7 g (91.32%) of 8-chloro-1,2-dihydro-2,7-naphthyridin-1-one as a light yellow solid. LCMS (ESI) m/z: [M+H]+=181.


Step 3: Preparation of 8-chloro-1,2-dihydro-2,7-naphthyridin-1-one (i-4)



embedded image


To a solution of 8-chloro-1,2-dihydro-2,7-naphthyridin-1-one (2.20 g, 12.182 mmol, 1.00 equiv) in THE (120.00 mL) was added NaH (321.00 mg, 13.376 mmol, 1.10 equiv) and Mel (3.45 g, 24.306 mmol, 2.00 equiv). The resulting solution was stirred for 2 hours at room temperature. The reaction was then quenched by the addition of 100 mL of water and extracted with ethyl acetate (3×250 mL), and the organic layers were combined and concentrated. This resulted in 2 g (84.36%) of 8-chloro-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one as a light yellow solid. LCMS (ESI) m/z: [M+H]+=195.


Step 4: Preparation of 8-ethenyl-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (i-5)



embedded image


To a solution of 8-chloro-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (2.0 g, 10.276 mmol, 1.00 equiv) in 1,4-dioxane (72.00 mL) and H2O (24.00 mL), was added Cs2CO3 (10.0 g, 30.727 mmol, 2.99 equiv) and 2-ethenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.2 g, 20.758 mmol, 2.02 equiv), Pd(dppf)Cl2.CH2Cl2 (1.68 g, 2.055 mmol, 0.20 equiv) at 25° C. The resulting solution was stirred for 2 hours at 80° C. The resulting mixture was concentrated. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:1). This resulted in 980 mg (51.21%) of 8-ethenyl-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one as a light yellow solid. LCMS (ESI) m/z: [M+H]+=187.


Step 5: Preparation of 2-methyl-8-[2-(methylamino)ethyl]-1,2-dihydro-2,7-naphthyridin-1-one (i-6)



embedded image


To a solution of 8-ethenyl-2-methyl-1, 2-dihydro-2, 7-naphthyridin-1-one (580 mg, 2.67 mmol, 1.00 equiv) in THE (2.00 mL) was added 4 M MeNH2 THF solution (20 mL) dropwise at 25° C. The resulting solution was stirred for 5 hours at 90° C. The reaction was cooled and concentrated, the crude product was purified by Flash-Prep-HPLC (Conditions (IntelFlash-1): Column, C18 silica gel; mobile phase, acetonitrile (MeCN or ACN) in water, 10% to 50% gradient in 10 minutes; detector, UV 254 nm). This resulted in 480 mg (71.0%) of 2-methyl-8-[2-(methylamino) ethyl]-1, 2-dihydro-2, 7-naphthyridin-1-one as light yellow oil. LCMS (ESI) m/z: [M+H]+=218.


Step 6: Preparation of 2-methyl-8-[2-(methylamino)ethyl]-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (i-7)



embedded image


To a solution of 2-methyl-8-[2-(methylamino)ethyl]-1,2-dihydro-2,7-naphthyridin-1-one (480.00 mg, 2.201 mmol, 1.00 equiv) in MeOH (10.00 mL) was added PtO2 (386.71 mg, 1.703 mmol, 0.74 equiv) under high pressure of H2 (22.0 atm) atmosphere at 25° C. The resulting solution was stirred for 12 hours at room temperature. The solids were filtered out. The filtrate was concentrated. This resulted in 350 mg crude of 2-methyl-8-[2-(methylamino)ethyl]-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one as light yellow oil, that was used directly without further purification. LCMS (ESI) m/z: [M+H]+=222.


Step 7: Preparation of 2,9-dimethyl-1H,2H,5H,6H,8H,9H,10H,11H,11aH-pyrimido[4,3-a]2,7-naphthyridine-1,8-dione (i-8)



embedded image


To a solution of 2-methyl-8-[2-(methylamino)ethyl]-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (350.00 mg, 1.576 mmol, 1.00 equiv) in THE (3.00 mL) was added CDI (1,1′-carbonyldiimidazole) (511.0 mg, 3.153 mmol, 2.00 equiv) at room temperature. The resulting solution was stirred for 6 hours at 70° C. The mixture was concentrated. This resulted in 340 mg crude of 2,9-dimethyl-1H,2H,5H,6H,8H,9H,10H,11H,11 aH-pyrimido[4,3-a]2,7-naphthyridine-1,8-dione as light yellow oil, that was used directly without further purification. LCMS (ESI) m/z: [M+H]+=248.


Step 8: Preparation of 4-bromo-2,9-dimethyl-1H,2H,5H,6H,8H,9H,10H,11H,11aH-pyrimido[4,3-a]2,7-naphthyridine-1,8-dione (i-9)



embedded image


To a solution of 2,9-dimethyl-1H,2H,5H,6H,8H,9H,1 OH, 11H,11 aH-pyrimido[4,3-a]2,7-naphthyridine-1,8-dione (340.00 mg, 1.371 mmol, 1.00 equiv) in HOAc (20.00 mL) was added NBS (732.1 mg, 4.113 mmol, 2.99 equiv) at room temperature. The resulting solution was stirred for 12 hours at room temperature. The mixture was concentrated. The crude product was purified by Flash-Prep-HPLC (conditions (IntelFlash-1): Column, C18 silica gel; mobile phase, MeCN/H2O=0 increasing to MeCN/H2O=100 within 30 minutes; Detector, 254 nm. This resulted in 385 mg of 4-bromo-2,9-dimethyl-1H,2H,5H,6H,8H,9H,10H,11H,11 aH-pyrimido[4,3-a]2,7-naphthyridine-1,8-dione as a light yellow solid. LCMS (ESI) m/z: [M+H]+=326.


Step 9: Preparation of 4-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-2,9-dimethyl-5,6,9,10,11,11a-hexahydro-1H-pyrimido[6,1-a][2,7]naphthyridine-1,8(2H)-dione (Compound B1)



embedded image


To a solution of 4-bromo-2,9-dimethyl-5H,6H,10H,11H,11 aH-pyrimido[4,3-a]2,7-naphthyridine-1,8-dione (110.00 mg, 0.337 mmol, 1.00 equiv) in Dioxane (4.00 mL) and H2O (1.00 mL) was added 4-[(dimethylamino)methyl]-3,5-dimethoxyphenylboronic acid (161.25 mg, 0.674 mmol, 2.00 equiv), Cs2CO3 (329.62 mg, 1.012 mmol, 3.00 equiv) and Pd(dppf)Cl2 (49.35 mg, 0.067 mmol, 0.20 equiv) at 25° C. The resulting solution was stirred for 12 hours at 80° C. The solids were filtered out. The filtrate was concentrated. The crude product was purified by Prep-HPLC with the following conditions: Column, SunFire Prep C18 OBD Column, 19, 150 mm 5 μm 10 nm; mobile phase, Water (0.1% FA) and ACN (3% Phase B up to 10% in 35 minutes); Detector, UV. This resulted in 12 mg (7.31%) of 4-(4-((dimethylamino) methyl)-3,5-dimethoxyphenyl)-2,9-dimethyl-5,6,9,10,11,11a-hexahydro-1H-pyrimido[6,1-a][2,7]naphthyridine-1,8(2H)-dione formate as a light yellow semi-solid. 1H NMR (300 MHz, Methanol-d4) δ 8.51 (s, 1.35H, FA), 7.66 (s, 1H), 6.74 (s, 2H), 4.75-4.46 (m, 2H), 4.38 (s, 2H), 3.96 (s, 6H), 3.64 (s, 3H), 3.61-3.50 (m, 1H), 3.29 (dd, J=5.3, 1.8 Hz, 1H), 2.99 (s, 4H), 2.89 (s, 6H), 2.85-2.73 (m, 1H), 2.70-2.54 (m, 1H), 2.39 (d, J=16.7 Hz, 1H), 1.73-1.49 (m, 1H). LCMS (ESI) m/z: [M+H]+=441.30.


Example 8—Preparation 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxylic acid (Compound B2)



embedded image


embedded image


Step 1: Preparation of 5-bromo-2-chloro-N-methylpyridine-4-carboxamide (i-11)



embedded image


To a solution of 5-bromo-2-chloropyridine-4-carboxylic acid (10 g, 42.292 mmol, 1 equiv) and methanamine (1.58 g, 50.751 mmol, 1.2 equiv) in solvent DCM (100 mL) was added HATU (24.12 g, 63.438 mmol, 1.5 equiv) and DIEA (27.33 g, 211.461 mmol, 5 equiv), The resulting solution was stirred at 25° C. for 2 hours. The resulting mixture was diluted with H2O (50 mL) and extracted with DCM (3×50 ml). The organic layers were dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with PE/EA (5:1) to afford 5-bromo-2-chloro-N-methylpyridine-4-carboxamide (8.3 g, 78.66%) as a white solid. LCMS (ESI) m/z: [M+H]+=248.9, 250.9.


Step 2: Preparation of 2-chloro-5-[(E)-2-ethoxyethenyl]-N-methylpyridine-4-carboxamide (i-12)



embedded image


To a solution of 5-bromo-2-chloro-N-methylpyridine-4-carboxamide (8.00 g, 32.065 mmol, 1.00 equiv) and 2-[(E)-2-ethoxyethenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (6.35 g, 32.065 mmol, 1.0 equiv) in dioxane (50.00 mL) and H2O (5.00 mL) was added Pd(dppf)Cl2 (2.35 g, 3.207 mmol, 0.1 equiv) and Cs2CO3 (20.90 g, 64.131 mmol, 2.0 equiv). The resulting solution was stirred at 90° C. for 2 hours under N2 atmosphere. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with PE/EA (4:1) to afford 2-chloro-5-[(E)-2-ethoxyethenyl]-N-methylpyridine-4-carboxamide (5.4 g, 69.97%) as a yellow solid. LCMS (ESI) m/z: [M+H]+=241.1.


Step 3: Preparation of 7-chloro-2-methyl-1,2-dihydro-2,6-naphthyridin-1-one (i-13)



embedded image


To a solution of 2-chloro-5-[(E)-2-ethoxyethenyl]-N-methylpyridine-4-carboxamide (5.40 g, 22.435 mmol, 1.00 equiv) in solvent TFA (20.00 mL) was refluxed at 100° C. for 3 hours. The mixture was basified with sodium bicarbonate saturated solution to pH 9. The resulting mixture was extracted with DCM (3×30 mL). The combined organic layers were washed with saturated sodium chloride solution and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with PE/EA (5:1) to afford 7-chloro-2-methyl-1,2-dihydro-2,6-naphthyridin-1-one (3.2 g, 73.29%) as a yellow solid. LCMS (ESI) m/z: [M+H]+=195.0.


Step 4: Preparation of methyl 6-methyl-5-oxo-5,6-dihydro-2,6-naphthyridine-3-carboxylate (i-14)



embedded image


To a solution of 7-chloro-2-methyl-1,2-dihydro-2,6-naphthyridin-1-one (3.20 g, 16.442 mmol, 1.00 equiv) and Pd(dppf)Cl2 (2.41 g, 3.288 mmol, 0.2 equiv) in MeOH (30.00 mL) and TEA (5 mL) was refluxed at 100° C. for 15 hours under 20 atm CO atmosphere. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with PE/EA (4:1) to afford methyl 6-methyl-5-oxo-5,6-dihydro-2,6-naphthyridine-3-carboxylate (1.8 g, 50.17%) as a yellow solid. LCMS (ESI) m/z: [M+H]+=219.1.


Step 5: Preparation of methyl 6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxylate (i-15)



embedded image


A solution of methyl 6-methyl-5-oxo-5,6-dihydro-2,6-naphthyridine-3-carboxylate (1.80 g, 8.249 mmol, 1.00 equiv) and PtO2 (0.94 g, 0.004 mmol, 0.5 equiv) in EtOH (20 mL) was stirred at 25° C. for 15 hours under 20 atm H2 atmosphere. The resulting mixture was concentrated under reduced pressure then purified by silica gel column chromatography, eluted with DCM/MeOH (10/1) to afford methyl 6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxylate (960 mg, 52.37%) as a yellow solid. LCMS (ESI) m/z: [M+H]+=223.1.


Step 6: Preparation of 2-tert-butyl 3-methyl 6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-2,3-dicarboxylate (i-16)



embedded image


A solution of methyl 6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxylate (900.00 mg, 4.050 mmol, 1.00 equiv) and (Boc)2O (2.65 g, 12.149 mmol, 3.0 equiv) in DCM (30.00 mL) was stirred at 25° C. for 1 hour. The resulting mixture was concentrated under reduced pressure then purified by silica gel column chromatography, eluted with PE/EA (5/1) to afford 2-tert-butyl 3-methyl 6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-2,3-dicarboxylate (760 mg, 58.22%) as a yellow solid. LCMS (ESI) m/z: [M+H]+=323.2.


Step 7: Preparation of 2-tert-butyl 3-methyl 8-bromo-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-2,3-dicarboxylate (i-17)



embedded image


A solution of 2-tert-butyl 3-methyl 6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-2,3-dicarboxylate (760.00 mg, 2.358 mmol, 1.00 equiv) and NBS (503.54 mg, 2.829 mmol, 1.20 equiv) in DCM (10.00 mL) was stirred at 25° C. for 2 hours. The resulting mixture was extracted with DCM (20 mL×3). The combined organic layers were washed with H2O and then dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure and purified by silica gel column chromatography, eluted with PE/EA (4/1) to afford 2-tert-butyl 3-methyl 8-bromo-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-2,3-dicarboxylate (680 mg, 71.88%) as a yellow solid. LCMS (ESI) m/z: [M+H]+=401.1, 403.1.


Step 8: Preparation of 2-tert-butyl 3-methyl 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-2,3-dicarboxylate (i-18)



embedded image


To a solution of 2-tert-butyl 3-methyl 8-bromo-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-2,3-dicarboxylate (680.00 mg, 1.695 mmol, 1.00 equiv) and [4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl] boronic acid (607.74 mg, 2.542 mmol, 1.50 equiv) in dioxane (10.00 mL) and H2O (2.00 mL) was added Pd(dppf)Cl2 (248.00 mg, 0.339 mmol, 0.20 equiv) and Cs2CO3 (1656.48 mg, 5.084 mmol, 3.00 equiv). The resulting solution was stirred at 90° C. for 2 hours. The resulting mixture was concentrated under reduced pressure then purified by silica gel column chromatography, eluted with DCM/MeOH (10/1) to afford 2-tert-butyl 3-methyl 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-2,3-dicarboxylate (480 mg, 54.93%) as a yellow solid. LCMS (ESI) m/z: [M+H]+=516.3.


Step 9: Preparation of 2-[(tert-butoxy)carbonyl]-8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxylic acid (i-19)



embedded image


A solution of 2-tert-butyl 3-methyl 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-2,3-dicarboxylate (480.00 mg, 0.931 mmol, 1.00 equiv) and LiOH (44.59 mg, 1.862 mmol, 2.00 equiv) in solvent EtOH (20.00 mL) was stirred at 25° C. for 2 hours. The residue was purified by reverse flash chromatography with the following conditions: column, C18 silica gel; mobile phase, MeCN in water, 10% to 20% gradient in 8 minutes; detector, UV 254 nm to afford 2-[(tert-butoxy)carbonyl]-8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4, 5,6-hexahydro-2,6-naphthyridine-3-carboxylic acid (210 mg, 44.97%) as a yellow solid. LCMS (ESI) m/z: [M+H]+=502.2.


Step 10: Preparation of 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxylic acid (Compound B2)



embedded image


2-[(tert-butoxy)carbonyl]-8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxylic acid (30.00 mg, 0.060 mmol, 1.00 equiv) was added to 4 M HCl 1,4-dioxane solution (5.00 mL), and the resulting solution was stirred at 25° C. for 1 hour. The residue was purified by reverse flash chromatography with the following conditions: column, C18 silica gel; mobile phase, MeCN in water, 10% to 50% gradient in 30 minutes; detector, UV 254 nm to afford 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxylic acid (18 mg, 74.96%) as a yellow solid. 1H NMR (400 MHz, Methanol-d4) δ 7.71 (s, 1H), 6.74 (s, 2H), 4.55-4.26 (m, 4H), 4.07 (d, J=16.9 Hz, 1H), 3.96 (s, 6H), 3.66 (s, 3H), 3.47-3.34 (m, 1H), 2.90 (m, 7H). LCMS (ESI) m/z: [M+H]+=402.25.


Example 9—Preparation of and 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N,6-dimethyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxamide and 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxamide (Compounds B3 and B4)



embedded image


Preparation of 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N,6-dimethyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxamide (Compound B3)



embedded image


8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxylic acid (30.00 mg, 0.075 mmol, 1.00 equiv), HATU (42.62 mg, 0.112 mmol, 1.50 equiv), and methyl amine (4.64 mg, 0.149 mmol, 2.00 equiv), and diisopropylethylamine (57.9 mg, 0.448 mmol, 6.00 equiv) were dissolved in DCM (5.0 mL). The resulting solution was stirred at 25° C. for 3 hours. The crude product was purified by Prep-HPLC (conditions: C18 silica gel; mobile phase, MeCN in water, 10% to 50% gradient in 30 minutes; detector, UV 254 nm) to afford 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N,6-dimethyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxamide (6.8 mg, 22%) as a yellow solid. 1H NMR (400 MHz, Methanol-d4) δ 7.50 (s, 1H), 6.62 (s, 2H), 3.88 (s, 6H), 3.85-3.69 (m, 4H), 3.63 (s, 3H), 3.52 (dd, J=10.4, 4.8 Hz, 1H), 2.96 (dd, J=17.5, 4.7 Hz, 1H), 2.81 (s, 3H), 2.55 (dd, J=17.7, 10.4 Hz, 1H), 2.42 (s, 6H). LCMS (ESI) m/z: [M+H]+=415.30.


Preparation of 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxamide (Compound B4)



embedded image


8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxylic acid (30.00 mg, 0.075 mmol, 1.00 equiv), HATU (42.62 mg, 0.112 mmol and 1.50 equiv), DIEA (57.95 mg, 0.448 mmol, 6.00 equiv) were dissolved in DCM (5.00 mL,). Then NH3 (2.55 mg, 0.149 mmol, 2.00 equiv) in DCM was added to the reaction, and the resulting solution was stirred at 25° C. for 3 hours. The crude product (30 mg) was purified by Prep-HPLC (conditions: C18 silica gel; mobile phase, MeCN in water, 10% to 50% gradient in 30 minutes; detector, UV 254 nm) to afford 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-6-methyl-5-oxo-1,2,3,4,5,6-hexahydro-2,6-naphthyridine-3-carboxamide (4.7 mg, 15.71%) as a yellow solid. 1H NMR (400 MHz, Methanol-d4) δ 7.50 (s, 1H), 6.59 (s, 2H), 3.86 (s, 6H), 3.83-3.66 (m, 4H), 3.63 (s, 3H), 3.57 (dd, J=10.4, 4.8 Hz, 1H), 3.05-2.94 (m, 1H), 2.58 (dd, J=17.8, 10.3 Hz, 1H), 2.32 (s, 6H). LCMS (ESI) m/z: [M+H]+=401.30.


Example 10—Preparation of 5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-N-ethyl-7-methyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide (Compound B5)



embedded image


Using the same procedure as for the synthesis of Compound B9 and substituting with ethyl isocyanate afforded 5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-N-ethyl-7-methyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide (18.8 mg, 521% yield) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ 7.61 (s, 1H), 6.61 (t, J=5.4 Hz, 1H), 6.55 (s, 2H), 4.19 (s, 2H), 3.75 (s, 5H), 3.47 (s, 3H), 3.43-3.34 (m, 4H), 3.11-2.97 (m, 2H), 2.09 (s, 6H), 1.00 (t, J=7.1 Hz, 3H). LCMS (ESI) m/z: [M+H]+=429.2.


Example 11—Preparation of 5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-N,N,7-trimethyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide (Compound B6)



embedded image


To a solution of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (30 mg, 83.9 μmol, 1 equiv) in DCM (1 mL) was added triethylamine (15.1 μL, 109 μmol, 1.3 equiv) and N,N-dimethylcarbamoyl chloride (8.48 μL, 92.2 μmol, 1.1 equiv) at RT. The reaction was stirred at RT for 2 hours. The reaction mixture was concentrated in vacuo. The crude was purified by flash chromatography eluting with 0-15% MeOH with 0.1% NH4OH in DCM to afford 5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-N,N,7-trimethyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide (5.2 mg, 14.5 yield) as a white solid. 1H NMR (400 MHz, Chloroform-d) δ 7.14 (s, 1H), 6.40 (s, 2H), 4.33 (s, 2H), 3.83 (s, 6H), 3.58 (s, 3H), 3.58 (m, 2H), 3.37 (t, J=5.6 Hz, 2H), 2.89 (s, 5H), 2.63-2.52 (m, 2H), 1.25 (s, 6H). LCMS (ESI) m/z: [M+H]+=429.2.


Example 12—Preparation of N-butyl-5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-7-methyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide (Compound B7



embedded image


Using the same procedure as for the synthesis of Compound B9 and substituting with 1-isocyanatobutane afforded N-butyl-5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-7-methyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide (18.8 mg, 49% yield) as a white solid. 1H NMR (400 MHz, Chloroform-d) δ 7.18 (s, 1H), 6.37 (s, 2H), 4.68 (t, J=5.5 Hz, 1H), 4.28 (s, 2H), 3.82 (s, 6H), 3.61 (s, 3H), 3.61 (m, 2H), 3.53 (s, 1H), 3.28 (td, J=7.1, 5.3 Hz, 2H), 2.57 (t, J=5.6 Hz, 2H), 2.30 (s, 6H), 1.59-1.45 (m, 9H), 1.43-1.30 (m, 2H), 0.93 (t, J=7.3 Hz, 3H). LCMS (ESI) m/z: [M+H]+=457.2.


Example 13—Preparation of N-cyclopropyl-5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-7-methyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide (Compound B8)



embedded image


Using the same procedure as for the synthesis of Compound B9 and substituting with cyclopropyl isocyanate afforded N-cyclopropyl-5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-7-methyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide (7.8 mg, 21% yield) as a white solid. 1H NMR (400 MHz, Chloroform-d) δ 7.18 (s, 1H), 6.37 (s, 2H), 4.93 (d, J=1.9 Hz, 1H), 4.23 (s, 2H), 3.82 (s, 6H), 3.60 (d, J=2.2 Hz, 5H), 3.54 (s, 2H), 2.70 (ddd, J=6.9, 4.6, 2.7 Hz, 1H), 2.56 (t, J=5.7 Hz, 2H), 2.31 (s, 6H), 1.25 (s, 6H), 0.79-0.69 (m, 2H), 0.56-0.38 (m, 2H). LCMS (ESI) m/z: [M+H]+=441.2.


Example 14—Preparation of 5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide (Compound B9)



embedded image


To a solution of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (20 mg, 55.9 μmol, 1 equiv) in anhydrous DCM (1 mL) was added N-methyl-1H-imidazole-1-carboxamide (7.7 mg, 61.4 μmol, 1.1 equiv) and triethylamine (10 μL, 72.6 μmol, 1.3 equiv). The reaction mixture was stirred at room temperature for 3 hours and concentrated in vacuo. The crude was purified by flash chromatography eluting with 0-15% MeOH w 0.1% NH4OH in DCM to afford 5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide (4.0 mg, 18% yield) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ 7.60 (s, 1H), 6.55 (s, 2H), 6.54 (bs, 1H), 4.19 (s, 2H), 3.75 (s, 6H), 3.47 (s, 3H), 3.39 (dd, J=12.4, 7.0 Hz, 4H), 2.57 (d, J=4.3 Hz, 3H), 2.48 (m, 2H), 2.10 (s, 6H). LCMS (ESI) m/z: [M+H]+=415.3.


Example 15—Preparation of N-(6-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-3-methyl-[1,2,4]triazolo[4,3-a]pyridin-8-yl)acetamide (Compound B10)



embedded image


Step 1: Preparation of 4-bromo-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (i-21)



embedded image


To a solution of 4-bromo-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (238 mg, 0.996 mmol, 1 equiv) in AcOH (2.0 mL) was added NaBH4 (263.64 mg, 6.969 mmol, 7 equiv). The mixture was stirred at 0° C. for 1 hour. Ammonium hydroxide was added to the resulting mixture until pH above 7, and then the resulting mixture was extracted with DCM (30 mL×3). The combined organic layers were dried over sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with DCM/MeOH (10:1) to afford 4-bromo-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (180 mg, 74.38%) as a white solid. LCMS (ESI) m/z: [M+H]+=243.


Step 2: Preparation of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (i-22)



embedded image


To a solution of 4-bromo-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (242 mg, 0.995 mmol, 1 equiv) and [4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]boronic acid (237.99 mg, 0.995 mmol, 1 equiv) in dioxane (5 mL) and H2O (0.5 mL) was added Pd(dppf)Cl2 (72.84 mg, 0.100 mmol, 0.1 equiv) and Cs2CO3 (973.02 mg, 2.986 mmol, 3.0 equiv). The resulting solution was stirred at 90° C. for 2 hours under N2. The mixture was diluted with 50 mL of H2O, and the resulting mixture was extracted with DCM (30 mL×3). The combined organic layers were dried over sodium sulfate, and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with DCM/MeOH (10:1) to afford 4-[4-[(dimethylamino) methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (200 mg, 56.21%) as a yellow solid. LCMS (ESI) m/z: [M+H]+=358.


Step 3: Preparation of 7-[2-[(tert-butyldimethylsilyl)oxy]ethyl]-4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (i-23)



embedded image


To a solution of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (200 mg, 0.560 mmol, 1 equiv) and 2-[(tert-butyldimethylsilyl)oxy]acetaldehyde (146.30 mg, 0.839 mmol, 1.5 equiv) in MeOH (5 mL) was added NaBH3CN (105.48 mg, 1.679 mmol, 3.0 equiv). The mixture was stirred at 25° C. for 1 hour. Then the mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with PE/EtOAc (1:1) to afford 7-[2-[(tert-butyldimethylsilyl)oxy]ethyl]-4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (224 mg, 77.5%) as a brown oil. LCMS (ESI) m/z: [M+H]+=516.


Step 4: Preparation of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-(2-hydroxyethyl)-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (Compound B10)



embedded image


To a solution of 7-[2-[(tert-butyldimethylsilyl)oxy]ethyl]-4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (90 mg, 0.174 mmol, 1 equiv) was dissolved in ACN (2.0 mL) was added TBAF (91.25 mg, 0.349 mmol, 2.0 equiv). The resulting solution was stirred at 25° C. for 1 hour. The mixture was concentrated under reduced pressure. The residue was purified by Prep-(conditions: column, Xselect Peptide CSH 19*150 mm 5 μm; Mobile Phase A: Water (0.1% FA), Mobile Phase B: MeOH-HPLC; Flow rate: 25 mL/minute; Gradient: 15% B to 15% B in 12 minutes; 220 nm; Rt: 9.51 minutes; detector, UV 254 nm) to afford gave 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-(2-hydroxyethyl)-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (10 mg, 14.27%) as a yellow solid. 1H NMR (300 MHz, Methanol-d4) δ 7.51 (s, 1H), 6.61 (s, 2H), 3.87 (s, 6H), 3.83-3.72 (m, 4H), 3.60 (d, J=14.7 Hz, 5H), 2.79-2.68 (m, 6H), 2.37 (s, 6H). LCMS (ESI) m/z: [M+H]+=402.40.


Example 16—Preparation of Ethyl 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-methyl-8-oxo-1,2,3,4,7,8-hexahydro-2,7-naphthyridine-2-carboxylate (Compound B11)



embedded image


Step 1: Preparation of 4-Bromo-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (i-25)



embedded image


To a solution of 4-bromo-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (500 mg, 2.091 mmol, 1 equiv) in AcOH (4.20 mL) was added NaBH4 (553.87 mg, 14.640 mmol, 7 equiv) at 0° C. The resulting solution was stirred at 0° C. for 1 hour. Ammonia was added to the resulting mixture until pH above 7. Then the mixture was diluted with water (10 mL) and extracted with DCM (30 mL×3). The combined organic layers were dried over saturated sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with DCM/MeOH (10:1) to afford 4-bromo-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (520 mg, 74.38%) as a white solid. LCMS (ESI) m/z: [M+H]+=243.


Step 2: Preparation of ethyl 5-bromo-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxylate (i-26)



embedded image


To a solution of 4-bromo-2-methyl-5,6,7,8-tetrahydro-2,7-naphthyridin-1-one (100.00 mg, 0.411 mmol, 1.00 equiv) in (5.00 mL) was added NaH (19.74 mg, 0.494 mmol, 1.20 equiv, 60%). Then ethyl chloroformate (66.96 mg, 0.617 mmol, 1.50 equiv) was added at 0° C. The resulting mixture was stirred for 2 hours at room temperature. The resulting mixture was concentrated under reduced pressure. The residue was purified by Prep-TLC (PE/EtOAc 5:1) to afford ethyl 5-bromo-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxylate (120 mg, 92.56%) as a yellow solid. LCMS (ESI) m/z: [M+H]+=315.


Step 3: Preparation of ethyl 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-methyl-8-oxo-1,2,3,4,7,8-hexahydro-2,7-naphthyridine-2-carboxylate (Compound B11)



embedded image


To a solution of ethyl 5-bromo-7-methyl-8-oxo-1,2,3,4,7,8-hexahydro-2,7-naphthyridine-2-carboxylate (96 mg, 0.305 mmol, 1 equiv) and [4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]boronic acid (72.82 mg, 0.305 mmol, 1 equiv) in dioxane (2 mL) and H2O (0.5 mL) was added Cs2CO3 (297.73 mg, 0.914 mmol, 3 equiv) and Pd(dppf)Cl2 (33.43 mg, 0.046 mmol, 0.15 equiv). The resulting solution was stirred at 90° C. for 2 hours (under N2 atmosphere). The resulting mixture was concentrated under reduced pressure. The crude product was purified by Prep-HPLC (conditions: XBridge Shield RP18 OBD Column, 5 μm, 19*150 mm; Mobile Phase A: Water (0.05% NH3/H2O), Mobile Phase B: ACN; Flow rate: 25 mL/minute; Gradient: 24% B to 37% B in 8 minutes; 220 nm; Rt: 7.9 minutes) to afford ethyl 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-methyl-8-oxo-1,2,3,4,7,8-hexahydro-2,7-naphthyridine-2-carboxylate (8.2 mg, 6.09%) as a light brown solid. 1H NMR (300 MHz, Methanol-d4) δ 7.56 (s, 1H), 6.61 (s, 2H), 4.47 (s, 2H), 4.20 (q, J=7.1 Hz, 2H), 3.87 (s, 6H), 3.71 (s, 2H), 3.62 (d, J=8.9 Hz, 5H), 2.65 (t, J=5.8 Hz, 2H), 2.34 (s, 6H), 1.31 (t, J=7.1 Hz, 3H). LCMS (ESI) m/z: [M+H]+=430.20.


Example 17—Preparation of 4-(3,5-dimethoxy-4-methylphenyl)-2-methyl-7-propanoyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (Compound B12)



embedded image


Step 1: Preparation of 4-bromo-2-methyl-7-propanoyl-6,8-dihydro-5H-2,7-naphthyridin-1-one (i-28)



embedded image


To a stirred mixture of 4-bromo-2-methyl-5,6,7,8-tetrahydro-2,7-naphthyridin-1-one (500.00 mg, 2.057 mmol, 1.00 equiv) and propanoic acid (182.83 mg, 2.468 mmol, 1.20 equiv) in DCM (25.00 mL) was added DIEA (79.75 mg, 0.617 mmol, 3.00 equiv). The mixture was stirred at room temperature for 5 minutes, then HATU (938.44 mg, 2.468 mmol, 1.20 equiv) was added. The mixture was stirred for 2 hours at room temperature, and the resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with CH2Cl2/MeOH (20:1) to afford 4-bromo-2-methyl-7-propanoyl-6,8-dihydro-5H-2,7-naphthyridin-1-one (502 mg, 78.88%) as a white solid.


Step 2: Preparation of 4-(3,5-dimethoxy-4-methylphenyl)-2-methyl-7-propanoyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (Compound B12)



embedded image


To a solution of 4-bromo-2-methyl-7-propanoyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (200 mg, 0.669 mmol, 1 equiv) and [4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]boronic acid (191.80 mg, 0.802 mmol, 1.20 equiv) in dioxane (10 mL) and H2O (1 mL) was added Cs2CO3 (653.45 mg, 2.006 mmol, 3.00 equiv) and Pd(dppf)Cl2.CH2Cl2 (49.13 mg, 0.060 mmol, 0.09 equiv). After stirring for 2 hours at 90° C. under a nitrogen atmosphere, the resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with DCM/MeOH (10/1) to afford 4-(3,5-dimethoxy-4-methylphenyl)-2-methyl-7-propanoyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (130 mg, 51.44%). 1H NMR (400 MHz, Methanol-d4) δ 7.61 (d, J=10.5 Hz, 1H), 6.75 (d, J=6.3 Hz, 2H), 4.56 (d, J=14.2 Hz, 1H), 4.39 (s, 2H), 3.96 (d, J=2.6 Hz, 6H), 3.76-3.57 (m, 5H), 2.90 (s, 6H), 2.72 (d, J=6.1 Hz, 1H), 2.64 (s, 1H), 2.53 (dq, J=15.0, 7.5 Hz, 1H), 1.31 (s, 1H), 1.17 (td, J=7.5, 3.8 Hz, 3H). LCMS (ESI) m/z: [M+H]+=414.30.


Example 18—Preparation of 7-acetyl-4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (Compound B13)



embedded image


To a stirred solution of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (45.4 mg, 0.127 mmol, 1 equiv) in DCM (3 mL) was added isocyanatotrimethylsilane (29.26 mg, 0.254 mmol, 2 equiv) and TEA (38.56 mg, 0.381 mmol, 3 equiv). The resulting mixture was stirred for 2 hours at room temperature. The crude product was purified by Prep-HPLC (conditions: XBridge Prep Phenyl OBD Column 5 μm, 19*250 mm; Mobile Phase A: Water (10 mmol/L NH4HCO3), Mobile Phase B: ACN; Flow rate: 25 mL/minute; Gradient: 14% B to 20% B in 8 minutes; 254 nm; Rt: 7.18 minutes) to afford 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-methyl-8-oxo-1,2,3,4,7,8-hexahydro-2,7-naphthyridine-2-carboxamide (6.6 mg, 12.35%) as a white solid. 1H NMR (400 MHz, MeOD) δ 7.57 (s, 1H), 6.61 (s, 2H), 4.41 (s, 2H), 3.87 (s, 6H), 3.68 (s, 2H), 3.64 (s, 3H), 3.55 (t, 2H), 2.68-2.65 (m, 2H), 2.31 (s, 6H). LCMS (ESI) m/z: [M+H]+=401.4.


Example 19—Preparation of 7-acetyl-4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (Compound B14)



embedded image


To the solution of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (35.7 mg, 0.100 mmol, 1 equiv) in DCM (3 mL) was added acetic acid (7.20 mg, 0.120 mmol, 1.2 equiv), HATU (56.96 mg, 0.150 mmol, 1.5 equiv), and DIEA (38.72 mg, 0.300 mmol, 3 equiv). The resulting solution was stirred at room temperature for 1 hour. The resulting solution was concentrated. The crude product was purified by Prep-HPLC (conditions: XBridge Shield RP18 OBD Column, 5 μm, 19*150 mm; Mobile Phase A: Water (0.1% FA), Mobile Phase B: ACN; Flow rate: 25 mL/minute; Gradient: 0% B to 15% B in 8 minutes; 254/220 nm; Rt: 7.03 minutes) to afford 7-acetyl-4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (7.3 mg, 17.64%) as a white solid. 1H NMR (400 MHz, MeOD) δ 7.58 (d, 1H), 6.61 (d, 2H), 4.55 (d, 2H), 3.87 (d, 6H), 3.75-3.67 (m, 3H), 3.64 (d, 4H), 2.74 (t, 1H), 2.64 (t, 1H), 2.33 (d, 6H), 2.22 (d, 3H). LCMS (ESI) m/z: [M+H]+=400.25.


Example 20—Preparation of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-ethyl-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one formic acid (Compound B15 formic acid)



embedded image


To the solution of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (20 mg, 0.056 mmol, 1 equiv) in MeOH (2 mL) was added acetaldehyde (24.65 mg, 0.560 mmol, 10 equiv) and NaBH3CN (10.55 mg, 0.168 mmol, 3 equiv). The resulting solution was stirred at room temperature for 1 hour. The resulting solution was concentrated. The crude product was purified by Prep-HPLC (conditions: XBridge Shield RP18 OBD Column, 5 μm, 19*150 mm; Mobile Phase A: Water (0.1% FA), Mobile Phase B: ACN; Flow rate: 25 mL/minute; Gradient: 0% B to 15% B in 8 minutes; 254/220 nm; Rt: 7.03 minutes) to afford 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-ethyl-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one formic acid (10.1 mg) as a white oil. 1H NMR (400 MHz, Methanol-d4) δ 8.47 (s, 1H), 7.59 (s, 1H), 6.73 (s, 2H), 4.38 (s, 2H), 3.96 (s, 6H), 3.74 (s, 2H), 3.64 (s, 3H), 2.89 (s, 1 OH), 2.76 (t, J=5.8 Hz, 2H), 1.31 (t, J=7.2 Hz, 3H). LCMS (ESI) m/z: [M+H]+=386.30.


Example 21—Preparation of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2,7-dimethyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one formic acid (Compound B16 formic acid)



embedded image


To the solution of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (20 mg, 0.056 mmol, 1 equiv) in MeOH (2 mL) was added formaldehyde (16.80 mg, 0.560 mmol, 10 equiv), NaBH3CN (10.55 mg, 0.168 mmol, 3 equiv). The resulting solution was stirred at room temperature for 1 hour. The resulting solution was concentrated. The crude product was purified by Prep-HPLC (conditions: XBridge Shield RP18 OBD Column, 5 μm, 19*150 mm; Mobile Phase A: Water (0.1% FA), Mobile Phase B: ACN; Flow rate: 25 mL/minute; Gradient: 0% B to 15% B in 8 minutes; 254/220 nm; Rt: 7.12 minutes) to afford 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2,7-dimethyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one formic acid (10.8 mg) as a white oil. 1H NMR (400 MHz, Methanol-d4) δ 8.48 (s, 1H), 7.58 (s, 1H), 6.73 (s, 2H), 4.38 (s, 2H), 3.96 (s, 6H), 3.67 (s, 2H), 3.63 (s, 3H), 2.89 (s, 6H), 2.84 (t, J=5.7 Hz, 2H), 2.75 (d, J=5.8 Hz, 2H), 2.66 (s, 3H). LCMS (ESI) m/z: [M+H]+=372.25.


Example 22—Preparation of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (Compound B17)



embedded image


Step 1: Preparation of 2-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydro-2,7-naphthyridin-1-one (i-30)



embedded image


To the solution of 4-bromo-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (2.7 g, 11.294 mmol, 1 equiv) in dioxane (15 mL) was added 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (3.44 g, 13.552 mmol, 1.2 equiv), Pd(dppf)Cl2 (0.83 g, 1.129 mmol, 0.1 equiv), and AcOK (3.33 g, 33.881 mmol, 3 equiv). The resulting solution was stirred at 90° C. for 2 hours under nitrogen atmosphere. The resulting solution was concentrated. The residue was purified by Flash column chromatography with EtOAc/PE (0-100%) to afford 2-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydro-2,7-naphthyridin-1-one (1.62 g, 50.13%) as light yellow solid. LCMS (ESI) m/z: [M+H]+=287.


Step 2: Preparation of 2,6-dimethoxy-4-(2-methyl-1-oxo-1,2-dihydro-2,7-naphthyridin-4-yl)benzaldehyde (i-31)



embedded image


To the solution of 2-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydro-2,7-naphthyridin-1-one (1.62 g, 5.662 mmol, 1 equiv) in dioxane (30 mL) was added 4-bromo-2,6-dimethoxybenzaldehyde (1.39 g, 5.662 mmol, 1 equiv), Pd(dppf)Cl2 (414.26 mg, 0.566 mmol, 0.1 equiv), Cs2CO3 (5.53 g, 16.985 mmol, 3 equiv), H2O (3 mL). The resulting solution was stirred at 90° C. for 2 hours under nitrogen atmosphere. The solution was concentrated. The residue was purified by Flash column chromatography with EtOAc/PE (0-100%) to give compound 2,6-dimethoxy-4-(2-methyl-1-oxo-1,2-dihydro-2,7-naphthyridin-4-yl)benzaldehyde (1.02 g, 55.55%) as yellow solid. LCMS (ESI) m/z: [M+H]+=325.


Step 3: Preparation of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (i-32)



embedded image


To the solution of 2,6-dimethoxy-4-(2-methyl-1-oxo-1,2-dihydro-2,7-naphthyridin-4-yl)benzaldehyde (1.20 g, 3.700 mmol, 1.00 equiv) in MeOH (10.00 mL) was added dimethylamine (362.02 mg, 4.440 mmol, 1.20 equiv) and NaBH3CN (697.52 mg, 11.100 mmol, 3.00 equiv). The resulting solution was stirred at room temperature for 2 hours. The residue was purified by silica gel column chromatography, eluted with CH2Cl2/MeOH (20:1) to afford 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (1 g, 76.48%) as a yellow solid. LCMS (ESI) m/z: [M+H]+=354.


Step 4: Preparation of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (Compound B17)



embedded image


To a stirred solution of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (1 g, 2.829 mmol, 1 equiv) in MeOH (15 mL) was added PtO2 (1 g, 4.404 mmol, 1.56 equiv). The resulting mixture was stirred for 6 hours at room temperature under hydrogen atmosphere. The resulting mixture was filtered, the filter cake was washed with methanol (3×100 mL). The filtrate was concentrated under reduced pressure. The crude product was purified by Prep-HPLC (conditions: XBridge Prep C18 OBD Column, 5 μm, 19*150 mm; Mobile Phase A: Water (0.1% FA), Mobile Phase B: ACN; Flow rate: 25 mL/minute; Gradient: 15% B to 35% B in 8 minutes; 254/220 nm; Rt: 5.35 minutes) to afford 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (27.2 mg, 2.59%) as a light yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 7.54 (s, 1H), 6.55 (s, 2H), 3.77 (s, 6H), 3.60 (s, 2H), 3.46 (s, 3H), 3.36 (s, 3H), 2.80 (s, 2H), 2.40 (s, 2H), 2.11 (s, 6H). LCMS (ESI) m/z: [M+H]+=358.30.


Example 23—Preparation of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (Compound B17)



embedded image


Step 1: Preparation of 4-bromo-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (i-34)



embedded image


To a solution of 4-bromo-1,2-dihydro-2,7-naphthyridin-1-one (4.96 g, 22.040 mmol, 1 equiv) and NaH (0.74 g, 30.856 mmol, 1.40 equiv) in DMF (30 mL, 387.653 mmol, 17.59 equiv) was added iodomethane (8.95 g, 63.035 mmol, 2.86 equiv). The resulting solution was stirred at 0° C. for 2 hours under N2 atmosphere. The resulting mixture was filtered, and the filter cake was washed with ice water to afford 4-bromo-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (4.5 g, 76.86%), which was used directly without further purification. LCMS (ESI) m/z: [M+H]+=239.0, 241.0.


Step 2: Preparation of 4-bromo-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (i-35)



embedded image


NaBH4(4.43 g, 117.120 mmol, 7 equiv) was slowly added to a solution of 4-bromo-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (4.00 g, 16.731 mmol, 1.00 equiv) in AcOH (20.00 mL). The resulting solution was stirred at 0° C. for 1 hour. Ammonia was added to the resulting mixture until pH above 7. Then the resulting mixture was extracted with DCM (3×30 mL). The combined organic layers were dried over by saturated sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with DCM/MeOH (10:1) to afford 4-bromo-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (2.2 g, 52.64%) as a yellow solid. LCMS (ESI) m/z: [M+H]+=243.0, 245.0.


Step 3: Preparation of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (Compound B17)



embedded image


To a solution of 4-bromo-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (2.00 g, 8.227 mmol, 1.00 equiv) and [4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]boronic acid (1.97 g, 8.227 mmol, 1.00 equiv) in dioxane (30 mL) and H2O (6 mL) was added Pd(dppf)Cl2(0.60 g, 0.823 mmol, 0.1 equiv) and Cs2CO3(8.04 g, 24.681 mmol, 3.0 equiv). The resulting solution was stirred at 90° C. for 2 hours under N2 atmosphere. The residue was purified by reverse flash chromatography (conditions: column, C18 silica gel; mobile phase, MeOH in water, 10% to 50% gradient in 30 minutes; detector, UV 254 nm) to afford 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (1.54 g, 52.21%) as a yellow solid. 1H NMR (300 MHz, Methanol-d4) δ 7.50 (s, 1H), 6.59 (s, 2H), 3.88 (s, 1H), 3.86 (s, 6H), 3.81 (s, 2H), 3.64 (d, J=14.9 Hz, 5H), 3.63 (s, 1H), 3.55 (s, 1H), 2.99 (dt, J=25.5, 5.8 Hz, 2H), 2.60 (dt, J=27.3, 5.7 Hz, 2H), 2.30 (s, 6H). LCMS (ESI) m/z: [M+H]+=358.25.


Example 24—Preparation of 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N,6-dimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (Compound B18)



embedded image


Step 1: Preparation of 4-bromo-2H-2,6-naphthyridin-1-one (i-37)



embedded image


To a stirred solution of 2H-2,6-naphthyridin-1-one (584.00 mg, 3.996 mmol, 1.00 equiv) in DCM (10.00 mL) was added NBS (640.09 mg, 3.596 mmol, 0.9 equiv) in portions at room temperature under air atmosphere. The mixture was stirred for another 1 hour. The reaction mixture was concentrated and purified by silica gel column chromatography, eluted with CH2Cl2/MeOH (10:1) to afford 4-bromo-2H-2,6-naphthyridin-1-one (1.2 g, 86.74%) as a light yellow solid. LCMS (ESI) m/z: [M+H]+=225, 227.


Step 2: Preparation of 4-bromo-2-methyl-2,6-naphthyridin-1-one (i-38)



embedded image


To a stirred solution of 4-bromo-2H-2,6-naphthyridin-1-one (600.00 mg, 2.666 mmol, 1.00 equiv) in DMF (15.00 mL) was added NaH (127.96 mg, 5.332 mmol, 2 equiv) in portions at 0° C. under nitrogen atmosphere. Then Mel (1513.71 mg, 10.665 mmol, 4 equiv) was added drop-wise. The mixture was stirred for another 1 hour at room temperature and quenched with water at 0° C. The product was precipitated by the addition of water. The precipitated solids were collected by filtration and washed with water (2×20 mL). The crude product 4-bromo-2-methyl-2,6-naphthyridin-1-one (369 mg, 57.89%) was used in the next step directly without further purification. LCMS (ESI) m/z: [M+H]+=239, 241.


Step 3: Preparation of 4-bromo-2-methyl-5,6,7,8-tetrahydro-2,6-naphthyridin-1-one (i-39)



embedded image


To a stirred solution of 4-bromo-2-methyl-2,6-naphthyridin-1-one (119.50 mg, 0.500 mmol, 1.00 equiv) in AcOH (5.00 mL) was added NaBH4 (132.38 mg, 3.499 mmol, 7.00 equiv) in portions at 0° C. under nitrogen atmosphere. The resulting mixture was stirred for 5 minutes at room temperature. Then, the mixture was poured into ice water, basified with ammonium hydroxide, and extracted with CH2Cl2 (3×50 mL). The combined organic layers were concentrated under reduced pressure and the resulting crude product 4-bromo-2-methyl-5, 6, 7, 8-tetrahydro-2,6-naphthyridin-1-one (128 mg, 87.43%) was used directly in the next step. LCMS (ESI) m/z: [M+H]+=243, 245.


Step 4: Preparation of 8-bromo-N,6-dimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (i-40)



embedded image


To a stirred solution of 4-bromo-2-methyl-5,6,7,8-tetrahydro-2,6-naphthyridin-1-one (128.00 mg, 0.527 mmol, 1.00 equiv) and N-methylimidazole-1-carboxamide (79.06 mg, 0.632 mmol, 1.20 equiv) in DCM (2.00 mL) was added Et3N (532.79 mg, 5.265 mmol, 10 equiv). The resulting mixture was stirred for 2 hours at room temperature under air atmosphere. The mixture was concentrated and purified by silica gel column chromatography, eluted with CH2Cl2/MeOH (12:1) to afford 8-bromo-N,6-dimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (153 mg, 80.35%). LCMS (ESI) m/z: [M+H]+=300, 302.


Step 5: Preparation of 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N,6-dimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (Compound B18)



embedded image


To a solution of 8-bromo-N,6-dimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (153.00 mg, 0.510 mmol, 1.00 equiv) and [[2,6-dimethoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methyl]dimethylamine (163.74 mg, 0.510 mmol, 1 equiv) in dioxane (5.00 mL) and H2O (1.00 mL) was added Cs2CO3 (498.25 mg, 1.529 mmol, 3 equiv) and Pd(dppf)Cl2.CH2Cl2 (41.63 mg, 0.051 mmol, 0.1 equiv). After stirring for 1.5 hours at 100° C. under a nitrogen atmosphere, the resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with CH2Cl2/MeOH (12:1) to afford a crude product, and the crude was further purified by Prep-HPLC (conditions: Xselect CSH F-Phenyl OBD column, 19*250, 5 μm; Mobile Phase A: Water (0.1% FA), Mobile Phase B: ACN; Flow rate: 25 mL/minute; Gradient:4 B to 22 B in 8 minutes; 254/220 nm; RT1:6.32 minutes) to afford 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N,6-dimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (49 mg, 23.19%) as a white solid. 1H NMR (300 MHz, Methanol-d4) δ 8.56 (brs, 0.5H, FA), 7.52 (s, 1H), 6.74 (s, 2H), 4.39 (s, 2H), 4.28 (s, 2H), 3.96 (s, 6H), 3.67-3.59 (m, 5H), 2.81 (s, 6H), 2.75-2.67 (m, 5H). LCMS (ESI) m/z: [M+H]+=415.35.


Example 25—Preparation of N-butyl-5-{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl}-7-methyl-8-oxo-1,2,3,4,7,8-hexahydro-2,7-naphthyridine-2-sulfonamide (compound B19)



embedded image


Step 1: Preparation of N-butyl-2-oxo-1,3-oxazolidine-3-sulfonamide (i-41)



embedded image


To a solution of chlorosulfonyl isocyanate (539 μL, 6.21 mmol, 1.00 equiv) in dry dichloromethane (8.8 mL) at 0° C. under nitrogen atmosphere was added a solution of 2-chloroethanol (416 μL, 6.21 mmol, 1.00 equiv) in dry dichloromethane (2.6 mL) dropwise over 30 minutes. The reaction mixture was then stirred at 0° C. for an additional 30 minutes. A solution of butylamine (674 μL, 6.83 mmol, 1.10 equiv) and triethylamine (1.88 mL, 13.6 mmol, 2.20 equiv) in dry dichloromethane (5.2 mL) was then added dropwise and the reaction mixture was warmed to room temperature and stirred for 2 hours. Then 1 N aqueous hydrochloric acid was added to adjust the pH to 2. The organic layer was separated and washed with 1 N aqueous hydrochloric acid (1×7 mL) then water (1×7 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to afford N-butyl-2-oxo-1,3-oxazolidine-3-sulfonamide (1.49 g, 100%) as a white solid. The crude product was used in the next step without further purification.


Step 2: Preparation of N-butyl-5-{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl}-7-methyl-8-oxo-1,2,3,4,7,8-hexahydro-2,7-naphthyridine-2-sulfonamide (compound B19)



embedded image


To a mixture of 4-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-2-methyl-5,6,7,8-tetrahydro-2,7-naphthyridin-1(2H)-one (48.0 mg, 134.6 μmol, 1.50 equiv) and N-butyl-2-oxo-1,3-oxazolidine-3-sulfonamide (20 mg, 89.8 μmol, 1.00 equiv) in dry acetonitrile (0.44 mL) at room temperature was added triethylamine (33.6 μL, 242 μmol, 2.70 equiv). The reaction mixture was stirred at 80° C. for 6 hours. The reaction mixture was then cooled down to room temperature and concentrated under reduced pressure. The residue was purified by flash silica gel chromatography, elution gradient 0 to 100% dichloromethane/methanol/ammonium hydroxide (90:10:1) in dichloromethane. Fractions containing the expected product were evaporated to dryness to afford 15.9 mg of impure product. Purification by Prep-HPLC (conditions: waters Xterra C18 Column, 19*100 mm, 10 μm particles; mobile phase A=0.1% ammonium hydroxide in water, mobile phase B=acetonitrile; flow Rate=40 mL/minute; gradient: 40-82% B in 6 minutes, then a 2 minutes hold at 98% B; wavelength=215 and 254 nm) afforded N-butyl-5-{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl}-7-methyl-8-oxo-1,2,3,4,7,8-hexahydro-2,7-naphthyridine-2-sulfonamide (3.5 mg, 7.9%) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ 7.64 (s, 1H), 7.36 (s, 1H), 6.57 (s, 2H), 4.00 (s, 2H), 3.77 (s, 6H), 3.49 (s, 3H), 3.40 (s, 2H), 3.23 (t, J=5.6 Hz, 2H), 2.89 (t, J=7.0 Hz, 2H), 2.63 (t, J=5.4 Hz, 2H), 2.10 (s, 6H), 1.46-1.37 (m, 2H), 1.34-1.25 (m, 2H), 0.85 (t, J=7.3 Hz, 3H). LCMS (ESI) m/z: [M+H]+=493.6.


Example 26—Preparation of N-butyl-5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-7-methyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carbothioamide (compound B20)



embedded image


4-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-2-methyl-5,6,7,8-tetrahydro-2,7-naphthyridin-1(2H)-one (25 mg, 0.069 mmol, 1.00 equiv) was dissolved in dichloromethane. Diisopropylethylamine (0.0126 mL, 0.104 mmol, 1.50 equiv) was then added followed by 1-isothiocyanatobutane (0.0133 ml, 0.0768 mmol, 1.10 equiv). The reaction was allowed to stir at room temperature for 1 hour. The solvent was removed under reduced pressure and the resulting oil was purified by prep-HPLC to obtain N-butyl-5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-7-methyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carbothioamide (30 mg, 47%). 1H NMR (400 MHz, DMSO-d6) δ 8.16 (s, 1H), 7.80 (t, J=5.3 Hz, 1H), 7.65 (s, 1H), 6.59 (s, 2H), 4.59 (s, 2H), 3.87 (q, J=5.1, 4.7 Hz, 2H), 3.77 (s, 6H), 3.51 (d, J=15.7 Hz, 7H), 3.15 (s, 1H), 2.57 (t, J=5.6 Hz, 2H), 2.19 (s, 6H), 1.52 (tt, J=8.0, 6.6 Hz, 2H), 1.27 (h, J=7.3 Hz, 2H), 0.87 (t, J=7.3 Hz, 3H). LCMS (ESI) m/z: [M+H]+=473.4.


Example 27—Preparation of 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N,N,6-trimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (compound B21)



embedded image


Step 1:preparation of 8-bromo-N,N,6-trimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (i-42)



embedded image


Using the same procedure as described in Example 24, step 4 and substituting with dimethylcarbamyl chloride (25.8 mg, 0.240 mmol, 1.20 equiv) afforded 8-bromo-N,N,6-trimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (73 mg, 94%) as an off-white solid. LCMS (ESI) m/z: [M+H]+=314.


Step 2: Preparation of 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N,N,6-trimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (compound B21)



embedded image


Using the same procedure as described in Example 23, step 2 and substituting with 8-bromo-N,N,6-trimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (64.2 mg, 0.204 mmol, 1.00 equiv) afforded 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N,N,6-trimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (26.1 mg, 29%) as an off-white solid. 1H NMR (400 MHz, DMSO-d6) δ 7.57 (s, 1H), 6.60 (s, 2H), 4.00 (s, 2H), 3.78 (s, 6H), 3.48 (s, 3H), 3.46 (s, 2H), 3.37 (t, J=5.9 Hz, 2H), 2.70 (s, 6H), 2.57 (t, J=6.0 Hz, 2H), 2.14 (s, 6H). LCMS (ESI) m/z: [M+H]+=429.35


Compound B22: LCMS 482.2.


Compound B23: LCMS 511.2; 1H NMR (400 MHz, DMSO-d6) δ 7.60 (s, 1H), 6.55 (s, 3H), 4.19 (s, 2H), 4.06 (d, J=5.3 Hz, 1H), 3.75 (s, 7H), 3.48 (d, J=8.1 Hz, 6H), 3.38 (t, J=5.5 Hz, 2H), 3.24 (s, 1H), 3.15 (d, J=4.6 Hz, 2H), 2.96 (s, 0H), 2.57 (d, J=4.2 Hz, 3H), 2.37 (s, 4H), 2.13 (s, 4H).


Example 28—Preparation of 5-(4-[[4-(4-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]butanoyl)piperazin-1-yl]methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (Compound D1)



embedded image


Compound D1 was prepared in a similar manner to the preparation of compound D2. PyBOP in step 3 was substituted with HATU. 5-(4-[[4-(4-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]butanoyl)piperazin-1-yl]methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (21.2 mg) was obtained as a white solid. 1H NMR (300 MHz, Methanol-d4) δ 7.80 (t, J=7.9 Hz, 1H), 7.57 (s, 1H), 7.48 (d, J=7.8 Hz, 2H), 6.64 (s, 2H), 5.11 (dd, J=12.1, 5.4 Hz, 1H), 4.36 (s, 2H), 4.30 (t, J=5.7 Hz, 2H), 4.00 (s, 2H), 3.88 (s, 6H), 3.80-3.69 (m, 4H), 3.64 (s, 3H), 3.53 (d, J=5.7 Hz, 2H), 2.94-2.81 (m, 5H), 2.78 (s, 4H), 2.72 (t, J=7.1 Hz, 3H), 2.67-2.59 (m, 2H), 2.22-2.09 (m, 3H). LCMS (ESI) m/z: [M+H]+=798.40.


Example 29—Preparation of 5-(4-[[4-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]acetyl)piperazin-1-yl]methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (Compound D2)



embedded image


Step 1: Preparation of tert-butyl4-([2,6-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phenyl]methyl)piperazine-1-carboxylate (i-44)



embedded image


A mixture of 5-(4-formyl-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (400.00 mg, 1.038 mmol, 1.00 equiv) and tert-butyl piperazine-1-carboxylate (193.30 mg, 1.038 mmol, 1.00 equiv) in MeOH (2 mL) was stirred for 30 minutes at room temperature under air atmosphere. To the above mixture was added NaBH(AcO)3 (439.92 mg, 2.076 mmol, 2.00 equiv) in portions for 2 hours at room temperature. The resulting mixture was concentrated under vacuum. The residue was purified by reverse flash chromatography (conditions: column, C18 silica gel; mobile phase, MeOH in water, 10% to 50% gradient in 50 minutes; detector, UV 254 nm). This resulted in tert-butyl4-([2,6-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phenyl]methyl)piperazine-1-carboxylate (300 mg, 52.02%) as a yellow oil. LCMS (ESI) m/z: [M+H]+=556.


Step 2: Preparation of 5-[3,5-dimethoxy-4-(piperazin-1-ylmethyl)phenyl]-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (i-45)



embedded image


A solution of TFA (1.00 mL) and tert-butyl 4-([2,6-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phenyl]methyl)piperazine-1-carboxylate (10.00 mg, 0.018 mmol, 1.00 equiv) in DCM (2.00 mL) was stirred for 1 hour at room temperature under air atmosphere. The reaction mixture was concentrated under vacuum. The crude product mixture was used in the next step directly without further purification. LCMS (ESI) m/z: [M+H]+=456.


Step 3: 5-(4-[[4-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]acetyl)piperazin-1-yl]methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (Compound D2)



embedded image


A mixture of [[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]acetic acid (36.47 mg, 0.110 mmol, 1.00 equiv), DIEA (70.93 mg, 0.549 mmol, 5.00 equiv), PyBOP (114.23 mg, 0.220 mmol, 2.00 equiv), and [[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]acetic acid (36.47 mg, 0.110 mmol, 1.00 equiv) in DMF (2 mL) was stirred for 2 hours at room temperature under air atmosphere. The crude product was purified by Prep-HPLC (conditions: SunFire C18 OBD Prep Column, 100A, 5 μm, 19 mm×250 mm; Mobile Phase A: water (0.1% FA), Mobile Phase B:ACN; Flow rate:25 mL/minute; Gradient:7 B to 20 B in 12 minutes; 254 nm; Rt:10.95 minutes) to afford 5-(4-[[4-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]acetyl)piperazin-1-yl]methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (21.2 mg) as a white solid. 1H NMR (300 MHz, Methanol-d4) δ 7.85-7.72 (m, 1H), 7.61-7.49 (m, 2H), 7.48-7.35 (m, 1H), 6.74 (s, 2H), 5.13 (dd, J=12.2, 5.4 Hz, 3H), 5.04 (d, J=4.2 Hz, 1H), 4.66-4.42 (m, 3H), 4.40-4.18 (m, 3H), 3.96 (s, 6H), 3.72-3.62 (m, 4H), 3.61-3.45 (m, 5H), 2.96-2.70 (m, 7H), 2.69-2.57 (m, 2H), 2.22-2.09 (m, 1H). LCMS (ESI) m/z: [M+H]+=770.55.


Example 30—Preparation of 5-(4-[[4-(4-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]butanoyl)-1-oxa-4,9-diazaspiro[5.5]undecan-9-yl]methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (Compound D3)



embedded image


Compound D3 was prepared in a similar manner to the preparation of compound D4. Compound D3 (19 mg, 19.2%) was obtained as an off-white solid. 1H NMR (300 MHz, Methanol-d4) δ 7.84-7.76 (m, 1H), 7.60 (d, J=7.8 Hz, 1H), 7.51-7.43 (m, 2H), 6.71 (d, J=5.0 Hz, 2H), 5.17-5.06 (m, 1H), 4.41-4.20 (m, 6H), 3.99-3.86 (m, 6H), 3.83-3.67 (m, 4H), 3.66-3.62 (m, 3H), 3.59-3.46 (m, 4H), 2.96-2.69 (m, 8H), 2.69-2.51 (m, 3H), 2.43-1.91 (m, 6H), 1.88-1.61 (m, 2H). LCMS (ESI) m/z: [M+H]+=868.80.


Example 31—Preparation of 5-(4-[[4-(5-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]pentanoyl)-1-oxa-4,9-diazaspiro[5.5]undecan-9-yl]methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D4)



embedded image


Step 1: Preparation of tert-butyl 9-([2,6-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phenyl]methyl)-1-oxa-4,9-diazaspiro[5.5]undecane-4-carboxylate (i-47)



embedded image


Using a similar procedure as described in Example 29, step 1 and substituting with tert-butyl1-oxa-4,9-diazaspiro[5.5]undecane-4-carboxylate (93.1 mg, 0.363 mmol, 1 equiv afforded tert-butyl9-([2,6-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phen yl]methyl)-1-oxa-4,9-diazaspiro[5.5]undecane-4-carboxylate (290 mg, 93.1%) as a light brown oil. LCMS (ESI) m/z: [M+H]+=626.


Step 2: Preparation of 5-(3, 5-dimethoxy-4-[1-oxa-4,9-diazaspiro[5.5]undecan-9-ylmethyl]phenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (i-48)



embedded image


Using a similar procedure as described in Example 29, step 2 afforded 5-(3,5-dimethoxy-4-[1-oxa-4,9-diazaspiro[5.5]undecan-9-ylmethyl]phenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (114 mg, 46.8%) as a light brown solid. LCMS (ESI) m/z: [M+H]+=526.


Step 3: Preparation of 5-(4-[[4-(5-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]pentanoyl)-1-oxa-4,9-diazaspiro[5.5]undecan-9-yl]methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D4)



embedded image


Using a similar procedure as described in Example 29, step 3 and substituting with 5-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]pentanoic acid (28.5 mg, 0.076 mmol, 1.00 equiv) and 5-(3,5-dimethoxy-4-[1-oxa-4,9-diazaspiro[5.5]undecan-9-ylmethyl]phenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (40 mg, 0.076 mmol, 1.00 equiv) afforded 5-(4-[[4-(5-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]pentanoyl)-1-oxa-4,9-diazaspiro[5.5]undecan-9-yl]methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (23 mg, 32.6%) as an off-white solid. 1H NMR (300 MHz, Methanol-d4) δ 8.55 (brs, 0.6H, formic acid), 7.79 (t, J=7.9 Hz, 1H), 7.58 (s, 1H), 7.46 (d, J=8.7 Hz, 2H), 6.70 (d, J=5.7 Hz, 2H), 5.15-5.07 (m, 1H), 4.39-4.25 (m, 6H), 3.93 (d, J=5.5 Hz, 6H), 3.82-3.72 (m, 2H), 3.64 (s, 5H), 3.59-3.50 (m, 4H), 3.31-3.05 (m, 4H), 2.93-2.83 (m, 1H), 2.78 (s, 3H), 2.77-2.56 (m, 6H), 2.21-2.03 (m, 3H), 2.01-1.68 (m, 6H). LCMS (ESI) m/z: [M+H]+=882.60.


Example 32—Preparation of 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-[2-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1-oxo-3H-isoindol-4-yl]amino]ethoxy)ethoxy]ethyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D5 formic acid)



embedded image


Compound D5 was prepared in a similar manner to the preparation of compound D21. Compound D5 formic acid (12.8 mg, 21.5%) was obtained as a green solid. 1H NMR (300 MHz, Methanol-d4) δ 8.56 (brs, 1.7H, FA), 7.55 (s, 1H), 7.24 (t, J=7.7 Hz, 1H), 7.09 (d, J=7.6 Hz, 1H), 6.91 (d, J=7.9 Hz, 1H), 6.71 (s, 2H), 5.19 (dd, J=13.4, 5.1 Hz, 1H), 4.39-4.27 (m, 5H), 4.09-3.98 (m, 2H), 3.94 (s, 6H), 3.67-3.50 (m, 14H), 3.40 (t, J=5.4 Hz, 2H), 3.04-2.91 (m, 2H), 2.85 (s, 6H), 2.61 (s, 2H), 2.53-2.39 (m, 1H), 2.24-2.12 (m, 1H). LCMS (ESI) m/z: [M−H]+=774.37.


Example 33—Preparation of 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-[2-[(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethyl)(methyl)amino]ethyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (Compound D6)



embedded image


Compound D6 was prepared in a similar manner to the preparation of compound D21. Compound D6 (2.1 mg, 3.45%) was obtained as a green solid. 1H NMR (300 MHz, Acetonitrile-d3) δ 9.17 (s, 1H), 7.58 (t, J=7.7 Hz, 1H), 7.43 (s, 1H), 7.15 (d, J=8.4 Hz, 1H), 7.06 (d, J=7.0 Hz, 1H), 6.67-6.47 (m, 4H), 4.95 (dd, J=12.2, 5.2 Hz, 1H), 4.35-4.17 (m, 4H), 3.87 (s, 6H), 3.77 (d, J=5.8 Hz, 2H), 3.55 (s, 4H), 3.44-3.24 (m, 5H), 2.92 (s, 3H), 2.77 (s, 6H), 2.73-2.60 (m, 3H), 2.54 (s, 2H), 2.30-2.22 (m, 1H), 2.14-2.02 (m, 1H). LCMS (ESI) m/z: [M−H]+=757.36.


Example 34—Preparation of 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethanesulfonyl)ethyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D7 formic acid)



embedded image


Compound D7 was prepared in a similar manner to the preparation of compound D21. Compound D7 formic acid (13.1 mg, 22.5%) was obtained as a green solid. 1H NMR (300 MHz, Methanol-d4) δ 8.56 (brs, 1H, FA), 7.66-7.54 (m, 2H), 7.12 (dd, J=17.2, 7.8 Hz, 2H), 6.69 (s, 2H), 5.05 (dd, J=12.6, 5.4 Hz, 1H), 4.35 (s, 2H), 4.24 (s, 2H), 3.94 (s, 6H), 3.89 (t, J=6.4 Hz, 2H), 3.70 (t, J=6.3 Hz, 2H), 3.63 (s, 3H), 3.49 (t, J=6.3 Hz, 4H), 3.42-3.37 (m, 2H), 2.86-2.68 (m, 9H), 2.67-2.60 (m, 3H), 2.13-2.01 (m, 1H). LCMS (ESI) m/z: [M+H]+=792.45.


Example 35—Preparation of N-(2-[[2-(5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carbonylamino)ethyl](methyl)amino]ethyl)-2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]acetamide formic acid (Compound D8 formic acid)



embedded image


Compound D7 was prepared in a similar manner to the preparation of compound D21. Compound D8 formic acid (10.9 mg, 19.24%) was obtained as a white solid. 1H NMR (300 MHz, Methanol-d4) δ 8.42 (brs, 2H, FA), 7.72-7.63 (m, 1H), 7.51 (s, 1H), 7.43-7.37 (m, 2H), 6.67 (s, 2H), 5.12 (dd, J=12.7, 5.4 Hz, 1H), 4.81 (s, 2H), 4.39 (s, 2H), 4.15 (s, 2H), 3.98 (s, 6H), 3.63-3.55 (m, 5H), 3.42 (s, 3H), 2.97-2.85 (m, 11H), 2.82-2.63 (m, 3H), 2.59 (s, 3H), 2.54-2.39 (m, 2H), 2.21-2.09 (m, 1H). LCMS (ESI) m/z: [M+H]+=815.36.


Example 36—Preparation of 5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-N-(8-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)amino)octyl)-7-methyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide formic acid (Compound D9 formic acid)



embedded image


Compound D9 was prepared in a similar manner to the preparation of compound D21. Compound D9 formic acid (9.7 mg, 23.93%) was obtained as a light yellow solid. LCMS (ESI) m/z: [M+H]+=784.60. 1H NMR (300 MHz, Methanol-d4) δ 8.56 (br s, 1H, FA), 7.61-7.50 (m, 2H), 6.96 (d, J=2.1 Hz, 1H), 6.82 (dd, J=8.4, 2.1 Hz, 1H), 6.69 (s, 2H), 5.05 (dd, J=12.4, 5.5 Hz, 1H), 4.36 (s, 2H), 4.21 (s, 2H), 3.93 (s, 6H), 3.63 (s, 3H), 3.54 (t, J=5.6 Hz, 2H), 3.25-3.15 (m, 4H), 2.96-2.81 (m, 1H), 2.75 (s, 8H), 2.63 (t, J=5.2 Hz, 2H), 2.15-2.03 (m, 1H), 1.73-1.61 (m, 2H), 1.60-1.49 (m, 2H), 1.48-1.33 (m, 8H).


Example 37—Preparation of 5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-N-(8-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamido)octyl)-7-methyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide formic acid (Compound D10 formic acid)



embedded image


Compound D10 was prepared in a similar manner to the preparation of compound D21. Compound D10 formic acid (8.5 mg, 21.8%) was obtained as a white solid. LCMS (ESI) m/z: [M+H]+=842.65. 1H NMR (300 MHz, Methanol-d4) δ 8.56 (br s, 0.6H, FA), 7.82 (dd, J=8.4, 7.4 Hz, 1H), 7.61-7.52 (m, 2H), 7.44 (d, J=8.4 Hz, 1H), 6.71 (s, 2H), 5.15 (dd, J=12.4, 5.5 Hz, 1H), 4.77 (s, 2H), 4.36 (s, 2H), 4.27 (s, 2H), 3.94 (s, 6H), 3.64 (s, 3H), 3.54 (t, J=5.6 Hz, 2H), 3.30 (s, 2H), 3.19 (t, J=7.0 Hz, 2H), 2.98-2.83 (m, 1H), 2.83-2.70 (m, 8H), 2.64 (t, J=5.4 Hz, 2H), 2.22-2.10 (m, 1H), 1.65-1.47 (m, 4H), 1.36 (s, 8H).


Example 38—Preparation of 5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-N-(5-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)pentyl)-7-methyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide formic acid (Compound D11 formic acid)



embedded image


Compound D11 was prepared in a similar manner to the preparation of compound D21. Compound D11 formic acid (8.7 mg, 20.7%) was obtained as a light yellow solid. 1H NMR (300 MHz, Methanol-d4) δ 8.56 (br s, 1H, FA), 7.60-7.52 (m, 2H), 7.04 (dd, J=9.4, 7.8 Hz, 2H), 6.71 (s, 2H), 5.04 (dd, J=12.2, 5.4 Hz, 1H), 4.36 (s, 2H), 4.26 (s, 2H), 3.94 (s, 6H), 3.64 (s, 3H), 3.53 (t, J=5.6 Hz, 2H), 3.36 (t, J=6.8 Hz, 2H), 3.25 (t, J=6.8 Hz, 2H), 2.87-2.72 (m, 8H), 2.70-2.59 (m, 3H), 2.15-2.03 (m, 1H), 1.78-1.66 (m, 2H), 1.66-1.56 (m, 2H), 1.56-1.45 (m, 2H). LCMS (ESI) m/z: [M+H]+=742.55.


Example 39—Preparation of 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-[2-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethoxy)ethoxy]ethyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D12 formic acid)



embedded image


Compound D12 was prepared in a similar manner to the preparation of compound D21. Compound D12 formic acid (100 mg, 17.1%) was obtained as a yellow solid. 1H NMR (300 MHz, Methanol-d4) δ 8.56 (br s, 0.9H, FA), 7.54 (s, 1H), 7.48 (dd, J=8.6, 7.1 Hz, 1H), 7.06 (d, J=8.5 Hz, 1H), 6.99 (d, J=7.1 Hz, 1H), 6.69 (s, 2H), 5.03 (dd, J=12.5, 5.4 Hz, 1H), 4.34 (s, 2H), 4.30 (s, 2H), 3.95 (s, 6H), 3.79 (t, J=5.2 Hz, 2H), 3.72-3.65 (m, 4H), 3.64-3.58 (m, 5H), 3.56-3.46 (m, 4H), 3.41 (t, J=5.4 Hz, 2H), 2.89-2.79 (m, 7H), 2.77-2.64 (m, 2H), 2.63-2.52 (m, 2H), 2.16-2.05 (m, 1H). LCMS (ESI) m/z: [M+H]+=812.45.


Example 40—Preparation of 5-(4-[[([[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]ethoxy)ethyl] carbamoyl]methyl)(methyl)amino]methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (Compound D13)



embedded image


Step 1: Preparation of 2,6-dimethoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (i-51)



embedded image


To a stirred solution of bis(pinacolato)diboron (7.62 g, 29.991 mmol, 1.50 equiv) and bis(pinacolato)diboron (7.62 g, 29.991 mmol, 1.50 equiv) in dioxane (70.00 mL) was added Pd(dppf)Cl2.CH2Cl2 (1.63 g, 1.999 mmol, 0.10 equiv) and AcOK (5.89 g, 59.982 mmol, 3.00 equiv). The resulting mixture was stirred for 1 hour at 90° C. under nitrogen atmosphere. Then the reaction was concentrated and purified by silica gel column chromatography, eluted with PE/EtOAc (10:1) to afford 2,6-dimethoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (6.3 g, 92.76%) as an orange solid. LCMS (ESI) m/z: [M+H]+=293.


Step 2: Preparation of 5-(4-formyl-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (i-43)



embedded image


To a stirred solution of 2,6-dimethoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (291.99 mg, 0.999 mmol, 1.00 equiv) and 5-bromo-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (300.00 mg, 0.999 mmol, 1.00 equiv) in dioxane (5.00 mL) and H2O (0.60 mL) was added Cs2CO3 (976.95 mg, 2.998 mmol, 3.00 equiv) and Pd(dppf)Cl2.CH2Cl2(81.62 mg, 0.100 mmol, 0.1 equiv). After stirring for 3 hours at 100° C. under a nitrogen atmosphere, the resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with CH2Cl2/MeOH (19:1) to afford 5-(4-formyl-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (257 mg, 66.72%) as a brown semi-solid. LCMS (ESI) m/z: [M+H]+=386.


Step 3: Preparation of tert-butyl2-[([2,6-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phenyl]methyl)(methyl)amino]acetate (i-53)



embedded image


To a stirred solution of 5-(4-formyl-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (222.00 mg, 0.576 mmol, 1.00 equiv) and tert-butyl 2-(methylamino)acetate hydrochloride (104.64 mg, 0.576 mmol, 1 equiv) in MeOH (5.00 mL) was added NaBH3CN (72.39 mg, 1.152 mmol, 2 equiv) in portions. The resulting mixture was stirred for 1 hour at room temperature under air atmosphere. Then the reaction mixture was concentrated, and the resulting residue was purified by silica gel column chromatography, eluted with CH2Cl2/MeOH (19:1) to afford tert-butyl 2-[([2,6-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phenyl]methyl)(methyl)amino] acetate (268 mg, 90.41%) as a light yellow solid. LCMS (ESI) m/z: [M+H]+=515.


Step 4: Preparation of [([2,6-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phenyl]methyl)(methyl)amino]acetic acid (i-54)



embedded image


A solution of tert-butyl 2-[([2,6-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phenyl]methyl)(methyl)amino]acetate (268.00 mg, 0.521 mmol, 1.00 equiv) and TFA (2.00 mL, 26.926 mmol, 51.70 equiv) in DCM (3 mL) was stirred for 1 hour at room temperature under air atmosphere. The reaction mixture was concentrated, and the resulting residue was purified by reverse flash chromatography (conditions: C18 silica gel column; mobile phase, MeCN in water, 10% to 50% gradient in 10 minutes; detector, UV 254 nm) to afford [([2,6-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phenyl]methyl) (methyl)amino]acetic acid (135 mg, 56.54%) as a light yellow oil. LCMS (ESI) m/z: [M+H]+=459.


Step 5: Preparation of 5-(4-[[([[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]ethoxy)ethyl]carbamoyl]methyl)(methyl)amino] methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (Compound D13)



embedded image


To a stirred solution of [([2,6-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phenyl]methyl)(methyl)amino]acetic acid (70.00 mg, 0.153 mmol, 1.00 equiv) and 4-[2-(2-aminoethoxy)ethoxy]-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione (55.17 mg, 0.153 mmol, 1.00 equiv) in DMF (1.00 mL) was added DIEA (98.66 mg, 0.763 mmol, 5.00 equiv) and HATU (116.10 mg, 0.305 mmol, 2.00 equiv). The resulting mixture was stirred for 1 hour at room temperature. Then the solution was directly purified by Prep-HPLC (conditions: SunFire C18 OBD Prep Column, 100A, 5 μm, 19 mm×250 mm; Mobile Phase A: water (0.1% FA), Mobile Phase B: ACN; Flow rate: 25 mL/minute; Gradient: 9% B to 25% B in 12 minutes; 254 nm; Rt: 10.82 minutes) to afford 5-(4-[[([[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]ethoxy)ethyl]carbamoyl]methyl)(methyl)amino] methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (23 mg, 18.79%) as a yellow solid. 1H NMR (300 MHz, Methanol-d4) δ 8.52 (br s, 0.4H, FA), 7.66-7.57 (m, 1H), 7.54 (s, 1H), 7.30 (d, J=7.2 Hz, 1H), 7.16 (d, J=8.4 Hz, 1H), 6.63 (s, 2H), 5.11 (dd, J=12.8, 5.4 Hz, 1H), 4.32 (s, 2H), 4.10-3.93 (m, 4H), 3.90 (s, 6H), 3.65-3.48 (m, 1 OH), 3.42-3.37 (m, 3H), 2.88 (dd, J=12.6, 4.6 Hz, 2H), 2.77 (s, 3H), 2.65 (d, J=18.1 Hz, 3H), 2.55-2.48 (m, 3H), 2.07-2.12 (s, 1H). LCMS (ESI) m/z: [M+H]+=802.55.


Example 41—Preparation of 5-[4-[(dimethylamino)methyl]-2,5-dimethoxyphenyl]-N-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethoxy)ethyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D14 formic acid)



embedded image


To a stirred solution of triphosgene (13.2 mg, 0.044 mmol, 0.40 equiv) in DCM (1 mL) was added a solution of 4-[[2-(2-aminoethoxy)ethyl]amino]-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione (40.0 mg, 0.111 mmol, 1.00 equiv) and TEA (50 uL) in DCM (0.6 mL) dropwise at 0° C. After 2 minutes, additional TEA (30 uL) was added dropwise. The resulting mixture was stirred for additional 10 minutes at 0° C. 4-[4-[(dimethylamino)methyl]-2,5-dimethoxyphenyl]-2-methyl-5,6,7,8-tetrahydro-2,7-naphthyridin-1-one (39.7 mg, 0.111 mmol, 1.00 equiv) was then added in one portion. The reaction was stirred for additional 5 minutes at 0° C. and then warmed to room temperature for 25 minutes. The reaction solution was concentrated under vacuum. The crude product was purified by Prep-HPLC (conditions: SunFire C18 OBD Prep Column, 100 Å, 5 μm, 19 mm×250 mm; Mobile Phase A: water (0.1% FA), Mobile Phase B:ACN; Flow rate:25 mL/minute; Gradient:9 B to 19 B in 14 minutes; 254 nm; RT:15.53 minutes) to afford 5-[4-[(dimethylamino)methyl]-2,5-dimethoxyphenyl]-N-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethoxy)ethyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (5.9 mg, 6%) as a yellow solid. 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 0.4H, FA), 7.56 (dd, J=8.6, 7.1 Hz, 1H), 7.44 (s, 1H), 7.11 (d, J=9.3 Hz, 2H), 7.03 (d, J=7.0 Hz, 1H), 6.95 (s, 1H), 5.04 (dd, J=12.4, 5.4 Hz, 1H), 4.36 (br s, 2H), 4.09 (s, 2H), 3.89 (s, 3H), 3.81-3.70 (m, 6H), 3.66-3.56 (m, 6H), 3.51 (t, J=5.2 Hz, 2H), 3.43 (t, J=5.3 Hz, 2H), 2.89-2.62 (m, 9H), 2.53 (br s, 1H), 2.32 (br s, 1H), 2.11-2.02 (m, 1H). LCMS (ESI) m/z: [M+H]+=744.50.


Example 42—Preparation of 5-(4-[[3-(6-[[2-(2,6-Dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]hexanamido)azetidin-1-yl]methyl]-2,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D15 formic acid)



embedded image


Step 1: Preparation of 4-Formyl-2,5-dimethoxyphenylboronic acid (i-58)



embedded image


To a stirred solution of 4-bromo-2,5-dimethoxybenzaldehyde (200.00 mg, 0.816 mmol, 1.00 equiv) and bis(pinacolato)diboron (248.68 mg, 0.979 mmol, 1.2 equiv) in dioxane (2 mL) was added KOAc (160.19 mg, 1.632 mmol, 2 equiv) and Pd(dppf)Cl2 (59.71 mg, 0.082 mmol, 0.1 equiv). The mixture was stirred at 90° C. for 1 hour (under N2 atmosphere). The resulting mixture was concentrated under reduced pressure to afford 4-formyl-2,5-dimethoxyphenylboronic acid (400 mg, crude) as a brown solid. The crude product was used in the next step directly without further purification. LCMS (ESI) m/z: [M+H]+=211.3.


Step 2: Preparation of 5-(4-Formyl-2,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (i-59)



embedded image


To a stirred solution of 4-formyl-2,5-dimethoxyphenylboronic acid (107.00 mg, 0.510 mmol, 1.00 equiv) and 5-bromo-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (152.94 mg, 0.510 mmol, 1.00 equiv) in dioxane (1.00 mL) and H2O (5.00 mL) was added CS2CO3 (332.04 mg, 1.019 mmol, 2 equiv) and Pd(dppf)Cl2 (37.28 mg, 0.051 mmol, 0.1 equiv). The mixture was stirred at 90° C. for 1 hour (under N2 atmosphere). The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with CH2Cl2/MeOH (10:1) to afford 5-(4-formyl-2,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (247 mg, crude) as a brown solid. LCMS (ESI) m/z: [M+H]+=386.2.


Step 3: Preparation of tert-Butyl N-[1-([2,5-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phenyl]methyl)azetidin-3-yl]carbamate (i-60)



embedded image


To a stirred solution of 5-(4-formyl-2,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (100.00 mg, 0.259 mmol, 1.00 equiv) and tert-butyl N-(azetidin-3-yl)carbamate (44.69 mg, 0.259 mmol, 1 equiv) in MeOH (2.00 mL) was added NaBH(OAc)3 (109.98 mg, 0.519 mmol, 2 equiv). The mixture was stirred at room temperature for 1 h. The resulting mixture was concentrated under vacuum. The residue was purified by Prep-TLC (CH2Cl2/MeOH 10:1) to afford tert-butyl N-[1-([2,5-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phenyl]methyl)azetidin-3-yl]carbamate (100 mg, 71.16%) as a brown solid. LCMS (ESI) m/z: [M+H]+=542.2


Step 4: Preparation of afford 5-[4-[(3-Aminoazetidin-1-yl)methyl]-2,5-dimethoxyphenyl]-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (i-61)



embedded image


To a stirred solution of tert-butyl N-[1-([2,5-dimethoxy-4-[2-methyl-7-(methylcarbamoyl)-1-oxo-6,8-dihydro-5H-2,7-naphthyridin-4-yl]phenyl]methyl)azetidin-3-yl]carbamate (100.00 mg, 0.185 mmol, 1.00 equiv) in DCM (2.00 mL,) was added TFA (0.40 mL). The resulting mixture was concentrated under reduced pressure to afford 5-[4-[(3-aminoazetidin-1-yl)methyl]-2,5-dimethoxyphenyl]-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (80 mg, 98.14%) as a yellow solid. The crude product was used in the next step directly without further purification. LCMS (ESI) m/z: [M+H]+=442.2.


Step 5: Preparation of afford 5-(4-[[3-(6-[[2-(2,6-Dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]hexanamido)azetidin-1-yl]methyl]-2,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D15 formic acid)



embedded image


To a solution of 5-[4-[(3-aminoazetidin-1-yl)methyl]-2,5-dimethoxyphenyl]-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (70.00 mg, 0.159 mmol, 1.00 equiv) and 6-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]hexanoic acid (61.57 mg, 0.159 mmol, 1.00 equiv) in DMF (1 mL) was added DIEA (102.45 mg, 0.793 mmol, 5.00 equiv) and HATU (90.42 mg, 0.238 mmol, 1.50 equiv). The resulting solution was stirred at room temperature for 1 hour. Without any additional work-up, the mixture was purified by prep-HPLC (conditions: SunFire C18 OBD Prep Column, 100A, 5 μm, 19 mm×250 mm; Mobile Phase A: water (0.1% FA), Mobile Phase B:ACN; Flow rate:25 mL/minute; Gradient:9 B to 23 B in 14 minutes; 254 nm; Rt: 14.33 minutes) to give 5-(4-[[3-(6-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]hexanamido)azetidin-1-yl]methyl]-2,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (9.7 mg, 6.84%) as a white solid. 1H NMR (400 MHz, Methanol-d4) δ 8.49 (br s, 1H, FA), 7.78 (dd, J=8.4, 7.4 Hz, 1H), 7.49-7.41 (m, 3H), 7.06 (s, 1H), 6.88 (s, 1H), 5.10 (dd, J=12.5, 5.5 Hz, 1H), 4.55-4.44 (m, 1H), 4.34 (s, 2H), 4.25 (t, J=6.1 Hz, 2H), 4.11 (s, 2H), 4.06 (t, J=8.5 Hz, 2H), 3.86 (s, 3H), 3.76 (s, 3H), 3.74-3.64 (m, 3H), 3.61 (s, 3H), 2.95-2.65 (m, 6H), 2.52 (s, 2H), 2.29 (t, J=7.3 Hz, 2H), 2.18-2.07 (m, 1H), 1.96-1.85 (m, 2H), 1.81-1.69 (m, 2H), 1.66-1.54 (m, 2H). LCMS (ESI) m/z: [M+H]+=812.45.


Example 43—Preparation of 5-(4-[[3-(6-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]hexanamido)azetidin-1-yl]methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D16 formic acid)



embedded image


Compound D16 was prepared in a similar manner to the preparation of compound D21. 15 Compound D16 formic acid (15 mg, 40.8%) was obtained as a white solid. 1H NMR (400 MHz, Methanol-d4) δ 8.52 (br s, 1H, FA), 7.78 (dd, J=8.4, 7.3 Hz, 1H), 7.56 (s, 1H), 7.45 (dd, J=7.8, 2.7 Hz, 2H), 6.68 (s, 2H), 5.10 (dd, J=12.4, 5.5 Hz, 1H), 4.55-4.46 (m, 1H), 4.41-4.32 (m, 4H), 4.25 (t, J=6.1 Hz, 2H), 4.19 (s, 2H), 3.92 (s, 7H), 3.64 (s, 3H), 3.54 (t, J=5.6 Hz, 2H), 2.89-2.66 (m, 6H), 2.62 (t, J=5.6 Hz, 2H), 2.29 (t, J=7.3 Hz, 2H), 2.17-2.08 (m, 1H), 1.94-1.85 (m, 2H), 1.79-1.71 (m, 2H), 1.66-1.55 (m, 2H). LCMS (ESI) m/z: [M+H]+=812.45.


Example 44—Preparation of 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethoxy)ethyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D17 Formic Acid)



embedded image


Compound D17 formic acid was prepared in a similar manner to the preparation of compound D21. Compound D17 formic acid (75.8 mg, 22%) was obtained as a yellow solid. 1H NMR (300 MHz, Methanol-d4) δ 8.57 (s, 0.1H, FA), 7.62-7.50 (m, 2H), 7.11 (d, J=8.5 Hz, 1H), 7.03 (d, J=7.1 Hz, 1H), 6.72 (s, 2H), 5.03 (dd, J=12.3, 5.3 Hz, 1H), 4.38 (s, 2H), 4.27 (s, 2H), 3.94 (s, 6H), 3.74 (t, J=5.0 Hz, 2H), 3.67-3.61 (m, 5H), 3.51 (q, J=4.9 Hz, 4H), 3.44 (t, J=5.3 Hz, 2H), 2.80 (s, 7H), 2.78-2.56 (m, 4H), 2.13-2.00 (m, 1H). LCMS (ESI) m/z: [M+H]+=744.45.


Example 45—Preparation of 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-(5-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]pentyl)-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (Compound D18)



embedded image


Compound D18 was prepared in a similar manner to the preparation of compound D21. Compound D18 (5 mg, 12.10%) was obtained as a yellow solid. 1H NMR (300 MHz, Methanol-d4) δ 7.78 (dd, J=8.5, 7.2 Hz, 1H), 7.59 (s, 1H), 7.46 (d, J=1.7 Hz, 1H), 7.43 (s, 1H), 6.74 (s, 2H), 5.12 (dd, J=12.3, 5.4 Hz, 1H), 4.38 (s, 4H), 4.26 (t, J=6.1 Hz, 2H), 3.96 (s, 6H), 3.63 (s, 3H), 3.54 (d, J=5.6 Hz, 2H), 3.27 (t, J=6.6 Hz, 1H), 2.89 (s, 7H), 2.90-2.79 (m, 1H), 2.79-2.59 (m, 3H), 2.18-2.05 (m, 1H), 1.97-1.86 (m, 2H), 1.65 (s, 5H). LCMS (ESI) m/z: [M+H]+=743.65.


Example 46—Preparation of 4-[[9-(5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-methyl-8-oxo-1,2,3,4,7,8-hexahydro-2,7-naphthyridin-2-yl)-9-oxononyl]amino]-2-(2,6-dioxopiperidin-3-yl)-2,3-dihydro-1H-isoindole-1,3-dione (Compound D19)



embedded image


To a stirred solution of 9-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl]amino]nonanoic acid (100 mg, 0.233 mmol, 1 equiv) in DMF (2 mL) was added HATU (115.02 mg, 0.303 mmol, 1.3 equiv) and DIEA (150.46 mg, 1.164 mmol, 5.0 equiv). The mixture was stirred at 25° C. for 30 minutes, and then 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-1-one (83.23 mg, 0.233 mmol, 1 equiv) was added. The mixture was stirred at 25° C. for 2 hours. Then the mixture was diluted with water (20 mL) and extracted with DCM (20 mL×3). The organic layers were combined and washed with saturated sodium chloride (20 mL), then dried over anhydrous sodium sulfate, filtered, and concentrated to give a crude product. The residue was purified by Prep-HPLC (condition: XSelect CSH Prep C18 OBD Column, 5 μm, 19*150 mm; Mobile Phase A: Water (0.1% FA), Mobile Phase B: ACN; Flow rate: 25 mL/minute; Gradient: 20% B to 40% B in 8 minutes; 254/220 nm; Rt: 7.08 minutes; Detector, 254 nm) to give 4-[[9-(5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-methyl-8-oxo-1,2,3, 4,7,8-hexahydro-2,7-naphthyridin-2-yl)-9-oxononyl]amino]-2-(2,6-dioxopiperidin-3-yl)-2,3-dihydro-1H-isoindole-1,3-dione (25 mg, 32.5 μmol, 13.96%) as a yellow solid. 1H NMR (400 MHz, Methanol-d4) δ 7.64-7.51 (m, 2H), 7.04 (dd, J=7.9, 6.2 Hz, 2H), 6.72 (d, J=5.9 Hz, 2H), 5.12-5.01 (m, 1H), 4.62 (s, 2H), 4.55 (d, J=5.5 Hz, 2H), 4.33 (d, J=11.1 Hz, 2H), 3.95 (d, J=1.9 Hz, 6H), 3.75-3.63 (m, 5H), 2.86 (d, J=2.3 Hz, 7H), 2.80-2.68 (m, 3H), 2.67-2.59 (m, 1H), 2.50 (dt, J=17.8, 7.6 Hz, 2H), 2.17-2.08 (m, 1H), 1.67 (dd, J=13.6, 6.8 Hz, 4H), 1.45-1.31 (m, 8H). LCMS (ESI) m/z: [M+H]+=769.70.


Example 47—Preparation of ([4-[7-(6-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl]oxy]hexanoyl)-2-methyl-1-oxo-1,2,5,6,7,8-hexahydro-2,7-naphthyridin-4-yl]-2,6-dimethoxyphenyl]methyl)(methyl)aminyl (Compound D20)



embedded image


Compound D20 was prepared in a similar manner to the preparation of compound D19 and by substituting the carboxylic acid i-36 with 6-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl]oxy]hexanoic acid (130 mg, 0.336 mmol, 1.20 equiv) in dimethylformamide (3.0 mL). Compound D20 (7.8 mg, 3.74%) was obtained as a white solid. 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.76 (td, J=7.9, 3.5 Hz, 1H), 7.59 (d, J=12.7 Hz, 1H), 7.43 (q, J=5.8 Hz, 2H), 6.71 (s, 2H), 5.08 (dd, J=12.6, 5.5 Hz, 1H), 4.55 (s, 2H), 4.25 (dt, J=6.5, 3.2 Hz, 4H), 3.93 (d, J=4.5 Hz, 6H), 3.70 (dt, J=10.4, 5.6 Hz, 2H), 3.63 (d, J=2.9 Hz, 3H), 2.78 (d, J=6.0 Hz, 7H), 2.66 (s, 2H), 2.77-2.51 (m, 4H), 2.11 (tdd, J=10.7, 5.9, 3.1 Hz, 1H), 1.91 (h, J=6.4 Hz, 2H), 1.76 (p, J=7.5 Hz, 2H), 1.70-1.57 (m, 2H). LCMS (ESI) m/z: [M+H]+=728.50.


Example 48—Preparation of 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-5-yl]amino]ethoxy)ethyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D21 formic acid)



embedded image


Step 1: Preparation of tert-butyl N-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-5-yl]amino]ethoxy) ethyl]carbamate (i-65)



embedded image


To a stirred solution of 2-(2,6-dioxopiperidin-3-yl)-5-fluoroisoindole-1,3-dione (1.00 g, 3.620 mmol, 1.00 equiv) and tert-butyl N-[2-(2-aminoethoxy)ethyl]carbamate (1.48 g, 7.241 mmol, 2.00 equiv) in NMP (10 mL) was added DIEA (935.79 mg, 7.241 mmol, 2.00 equiv) at room temperature. The resulting mixture was stirred for 4 hours at 90° C. under nitrogen atmosphere. The residue was purified by reverse flash chromatography (conditions: column, C18 silica gel; mobile phase, ACN in water, 0% to 50% gradient in 20 minutes; detector, UV 254 nm). This resulted in tert-butyl N-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-5-yl]amino]ethoxy)ethyl]carbamate (430 mg, 25.79%) as a yellow oil. LCMS (ESI) m/z: [M+H]+=461.20.


Step 2: Preparation of 5-[[2-(2-aminoethoxy)ethyl]amino]-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione (i-66)



embedded image


A solution of tert-butyl N-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-5-yl]amino]ethoxy)ethyl] carbamate (400.00 mg, 0.869 mmol, 1.00 equiv) and TFA (1.00 mL) in DCM was stirred for 2 hours at room temperature. The resulting mixture was concentrated under vacuum. This resulted in 5-[[2-(2-aminoethoxy)ethyl]amino]-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione (220 mg, 70.28%) as a brown solid. LCMS (ESI) m/z: [M+H]+=361.14.


Step 3: Preparation of 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-5-yl]amino]ethoxy)ethyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D21 formic acid)



embedded image


A solution of 5-[[2-(2-aminoethoxy)ethyl]amino]-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione (60.00 mg, 0.166 mmol, 1.00 equiv) and CDI (29.70 mg, 0.183 mmol, 1.10 equiv) in acetonitrile (1.5 mL) and DMF (0.3 mL) was stirred for 2 hours at room temperature. Then 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-5,6,7,8-tetrahydro-2,7-naphthyridin-1-one (119.03 mg, 0.333 mmol, 2.00 equiv) and TEA (33.70 mg, 0.333 mmol, 2.00 equiv) was added to the reaction mixture. The resulting mixture was stirred for overnight at room temperature. The crude product was purified by Prep-HPLC (conditions: SunFire C18 OBD Prep Column, 100A, 5 μm, 19 mm×250 mm; mobile phase, Water (0.05% TFA) and ACN (12% Phase B up to 26% in 15 minutes); Detector, UV). This resulted in 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-5-yl]amino]ethoxy)ethyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (4 mg, 3.23%) as a green semi-solid. 1H NMR (400 MHz, Acetonitrile-d3) δ 9.31 (s, 1H), 9.03 (brs, 1.0H, FA), 7.51 (d, J=8.3 Hz, 1H), 7.40 (s, 1H), 7.00 (d, J=2.1 Hz, 1H), 6.91 (dd, J=8.3, 2.2 Hz, 1H), 6.60 (s, 2H), 6.18 (s, 1H), 5.67 (t, J=5.7 Hz, 1H), 4.92 (dd, J=12.5, 5.4 Hz, 1H), 4.28 (d, J=4.8 Hz, 4H), 3.85 (s, 6H), 3.71 (t, J=5.0 Hz, 2H), 3.58-3.49 (m, 7H), 3.39 (q, J=5.3 Hz, 2H), 3.34 (t, J=5.0 Hz, 2H), 2.77 (s, 6H), 2.75-2.65 (m, 2H), 2.57 (t, J=5.6 Hz, 2H), 1.35-1.24 (m, 1H). LCMS (ESI) m/z: [M+H]+=744.50.


Example 49—Preparation of 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-(5-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]pentyl)-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D22 formic acid)



embedded image


Compound D22 formic acid was prepared in a similar manner to the preparation of compound D21. Compound D22 formic acid (8.7 mg, 20.8%) was obtained as a light yellow solid. 1H NMR (400 MHz, Methanol-d4) δ 8.57 (brs, 0.7H, FA), 7.79 (d, J=8.3 Hz, 1H), 7.58 (s, 1H), 7.37 (d, J=2.2 Hz, 1H), 7.31 (dd, J=8.3, 2.3 Hz, 1H), 6.66 (s, 2H), 5.10 (dd, J=12.6, 5.4 Hz, 1H), 4.36 (s, 2H), 4.17 (t, J=6.3 Hz, 2H), 4.10 (s, 2H), 3.91 (s, 6H), 3.64 (s, 3H), 3.54 (t, J=5.6 Hz, 2H), 3.27 (t, J=6.6 Hz, 2H), 2.93-2.70 (m, 3H), 2.70-2.58 (m, 8H), 2.17-2.07 (m, 1H), 1.89 (p, J=6.5 Hz, 2H), 1.70-1.52 (m, 4H). LCMS (ESI) m/z: [M+H]+=743.35.


Example 50—Preparation of 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-[2-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethoxy)ethoxy]ethyl]-6-methyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide formic acid (Compound D23 formic acid)



embedded image


Step 1: Preparation of 4-bromo-2H-2,6-naphthyridin-1-one (i-68)



embedded image


To a stirred solution of 2H-2,6-naphthyridin-1-one (584.00 mg, 3.996 mmol, 1.00 equiv) in DCM (10.00 mL) was added NBS (640.09 mg, 3.596 mmol, 0.9 equiv) in portions at room temperature under air atmosphere. The mixture was stirred for another 1 hour. The reaction mixture was concentrated and purified by silica gel column chromatography, eluted with CH2Cl2/MeOH (12:1) to afford 4-bromo-2H-2,6-naphthyridin-1-one (1.18 g, 85.29%) as a light yellow solid. LCMS (ESI) m/z: [M+H]+=225, 227.


Step 2: Preparation of 4-bromo-2-methyl-2,6-naphthyridin-1-one (i-69)



embedded image


To a stirred solution of 4-bromo-2H-2,6-naphthyridin-1-one (1.18 g, 5.243 mmol, 1.00 equiv) in Mel (2.98 g, 20.974 mmol, 4.00 equiv) was added NaH (0.25 g, 10.487 mmol, 2.00 equiv) in portions at 0° C. under nitrogen atmosphere. Then Mel (1513.71 mg, 10.665 mmol, 4 equiv) was added drop-wise. The mixture was stirred for another 1 hour at room temperature and quenched with water at 0° C. The product was precipitated by the addition of water. The precipitated solids were collected by filtration and washed with water (2×20 mL). The crude product 4-bromo-2-methyl-2, 6-naphthyridin-1-one (568 mg, 45.31%) was used in the next step directly without further purification. LCMS (ESI) m/z: [M+H]+=239, 241.


Step 3: Preparation of 4-bromo-2-methyl-5,6,7,8-tetrahydro-2,6-naphthyridin-1-one (i-70)



embedded image


To a stirred solution of 4-bromo-2-methyl-2, 6-naphthyridin-1-one (239.10 mg, 1.000 mmol, 1.00 equiv) in AcOH (5.00 mL) was added NaBH4 (264.86 mg, 7.001 mmol, 7.00 equiv) in portions at 0° C. under nitrogen atmosphere. The resulting mixture was stirred for 5 minutes at room temperature. Then, the mixture was poured into ice water, basified with ammonium hydroxide, and extracted with CH2Cl2 (3×50 mL). The combined organic layers were concentrated under reduced pressure and the resulting crude product 4-bromo-2-methyl-5,6,7,8-tetrahydro-2,6-naphthyridin-1-one (237 mg, 80.91%) was used directly in the next step. LCMS (ESI) m/z: [M+H]+=243, 245.


Step 4: Preparation of 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-5,6,7,8-tetrahydro-2,6-naphthyridin-1-one (i-72)



embedded image


To a solution of 4-bromo-2-methyl-5,6,7,8-tetrahydro-2,6-naphthyridin-1-one (237.00 mg, 0.975 mmol, 1.00 equiv) and [[2,6-dimethoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methyl]dim ethylamine (313.15 mg, 0.975 mmol, 1 equiv) in dioxane (5.00 mL) and H2O (1.00 mL) was added Cs2CO3 (952.92 mg, 2.925 mmol, 3 equiv) and Pd(dppf)Cl2.CH2Cl2(79.61 mg, 0.097 mmol, 0.1 equiv). After stirring for 1.5 h at 100° C. under a nitrogen atmosphere, the resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with CH2Cl2/MeOH (12:1) to afford the crude product, 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-5,6,7,8-tetrahydro-2,6-naphthyridin-1-one (524 mg, 79.69%) as a dark brown solid. LCMS (ESI) m/z: [M+H]+=358.


Step 5: Preparation of 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-[2-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethoxy)ethoxy]ethyl]-6-methyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide formic acid (Compound D23 formic acid)



embedded image


To a stirred solution of 4-([2-[2-(2-aminoethoxy)ethoxy]ethyl]amino)-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione trifluoroacetic acid salt (40.40 mg, 0.078 mmol, 1.00 equiv) in DMF (0.30 mL) and MeCN (0.90 mL) was added CDI (13.90 mg, 0.086 mmol, 1.10 equiv). The mixture was stirred for 2 hours at room temperature under air atmosphere. Then 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-5,6,7,8-tetrahydro-2,6-naphthyridin-1-one (41.78 mg, 0.117 mmol, 1.50 equiv) and Et3N (23.66 mg, 0.234 mmol, 3.00 equiv) was added, and the final reaction mixture was stirred for overnight at room temperature under air atmosphere. Without any additional work-up, the resulting mixture was purified by Prep-HPLC (conditions: Xselect CSH F-Phenyl OBD Column 19*150 mm 5 μm; Mobile Phase A: Water (0.1% FA), Mobile Phase B: ACN; Flow rate: 25 mL/minute; Gradient: 9 B to 20 B in 10 minutes; 254 nm; Rt1:9.75 minutes) to afford 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-[2-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethoxy)ethoxy]ethyl]-6-methyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (21 mg, 33.49%) as a yellow solid. 1H NMR (300 MHz, Methanol-d4) δ 8.57 (brs, 0.7H, FA), 7.58-7.48 (m, 2H), 7.07 (dd, J=14.0, 7.8 Hz, 2H), 6.71 (s, 2H), 5.03 (dd, J=12.4, 5.4 Hz, 1H), 4.36 (s, 2H), 4.19 (s, 2H), 3.94 (s, 6H), 3.73 (t, J=5.2 Hz, 2H), 3.68-3.57 (m, 9H), 3.57-3.47 (m, 4H), 3.35 (s, 1H), 2.92-2.75 (m, 2H), 2.74 (s, 6H), 2.71-2.58 (m, 4H), 2.14-2.04 (m, 1H). LCMS (ESI) m/z: [M+H]+=788.50.


Example 51—Preparation of 8-(4-(((2-((2-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)ethoxy)ethyl)amino)-2-oxoethyl)(methyl)amino)methyl)-3,5-dimethoxyphenyl)-N,6-dimethyl-5-oxo-3,4,5,6-tetrahydro-2,6-naphthyridine-2(1H)-carboxamide (Compound D24)



embedded image


Compound D24 was prepared in a similar manner to the preparation of compound D13 and compound D23.


Example 52—Preparation of 5-[4-[(6-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]-N-methylhexanamido)methyl]-3,5-dimethoxyphenyl]-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (Compound D25)



embedded image


Step 1: Preparation of 5-bromo-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (1-75)



embedded image


Using a similar procedure as described in Example 24, step 4 and substituting with 4-bromo-2-methyl-5,6,7,8-tetrahydro-2,7-naphthyridin-1-one (243 mg, 1.000 mmol) afforded 5-bromo-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (348 mg, 98.6%) as a light yellow solid. LCMS (ESI) m/z: [M+H]+=300, 302.


Step 2: Preparation of 5-(4-formyl-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (i-76)



embedded image


Using a similar procedure as described in Example 23, step 3 and substituting with 5-bromo-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (100 mg, 0.333 mmol, 1.00 equiv) and 2,6-dimethoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (97.3 mg, 0.333 mmol, 1.00 equiv) afforded 5-(4-formyl-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (132 mg, 91.5%) as a light yellow solid. LCMS (ESI) m/z: [M+H]+=386.


Step 3: Preparation of 5-[3,5-dimethoxy-4-[(methylamino)methyl]phenyl]-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (i-77)



embedded image


To a stirred solution of 5-(4-formyl-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (100 mg, 0.259 mmol, 1.00 equiv) and triethylamine (78.76 mg, 0.778 mmol, 3.00 equiv) in methanol (1.00 mL) was added sodium cyanoborohydride (32.6 mg, 0.519 mmol, 2.00 equiv) in portions at room temperature. Solvent was then evaporated under reduced pressure and the residue was purified by silica gel column chromatography, eluted with dichloromethane/methanol (12:1) to afford 5-[3,5-dimethoxy-4-[(methylamino)methyl] phenyl]-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (71 mg, 68.3%) as a yellow solid. LCMS (ESI) m/z: [M+H]+=400.


Step 4: Preparation of 5-[4-[(6-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]-N-methylhexanamido)methyl]-3,5-dimethoxyphenyl]-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (Compound D25)



embedded image


Using a similar procedure as described in Example 46 and substituting with 5-[3,5-dimethoxy-4-[(methylamino)methyl]phenyl]-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (60 mg, 0.150 mmol, 1.00 equiv) and 6-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]hexanoic acid (58.2 mg, 0.150 mmol, 1.00 equiv) afforded 5-[4-[(6-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]-N-methylhexanamido)methyl]-3,5-dimethoxyphenyl]-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (30 mg, 25.5%) as an off-white solid. 1H NMR (300 MHz, Methanol-d4) δ 7.76 (dd, J=8.6, 7.2 Hz, 1H), 7.55 (d, J=2.8 Hz, 1H), 7.49-7.37 (m, 2H), 6.60 (d, J=14.9 Hz, 2H), 5.08 (dd, J=12.3, 5.5 Hz, 1H), 4.76-4.57 (m, 2H), 4.35 (s, 2H), 4.25 (t, J=6.1 Hz, 2H), 3.85 (d, J=11.5 Hz, 6H), 3.63 (d, J=3.6 Hz, 3H), 3.52 (q, J=5.2 Hz, 2H), 2.83 (d, J=2.0 Hz, 4H), 2.77 (d, J=6.8 Hz, 4H), 2.72-2.55 (m, 4H), 2.51-2.39 (m, 1H), 2.20-2.00 (m, 1H), 1.87 (d, J=7.8 Hz, 2H), 1.66 (dd, J=21.4, 2.6 Hz, 4H). LCMS (ESI) m/z: [M+H]+=771.40.


Example 53—Preparation of 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-[1-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-5-yl]oxy]ethyl)piperidin-4-yl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D26 formic acid)



embedded image


Compound D26 was prepared in a similar manner to the preparation of compound D21. Compound D26 formic acid (4.5 mg, 4.68%) was obtained as a white solid. 1H NMR (300 MHz, Methanol-d4) δ 8.48 (brs, 1.6H, FA), 7.85 (d, J=8.3 Hz, 1H), 7.60 (s, 1H), 7.49 (d, J=2.2 Hz, 1H), 7.39 (dd, J=8.3, 2.3 Hz, 1H), 6.74 (s, 2H), 5.13 (dd, J=12.3, 5.4 Hz, 1H), 4.39 (d, J=3.8 Hz, 6H), 3.95 (s, 6H), 3.78-3.68 (m, 1H), 3.64 (s, 3H), 3.56 (t, J=5.5 Hz, 2H), 3.29-3.22 (m, 2H), 3.13 (s, 2H), 2.89 (s, 6H), 2.86-2.71 (m, 3H), 2.69-2.54 (m, 4H), 2.22-2.09 (m, 1H), 2.01 (d, J=13.0 Hz, 2H), 1.81-1.64 (m, 2H). LCMS (ESI) m/z: [M+H]+=784.45.


Example 54—Preparation of 8-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethoxy)ethyl]-6-methyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide formic acid (Compound D27 formic acid)



embedded image


Compound D27 was prepared in a similar manner to the preparation of compound D23. Compound D27 formic acid (21 mg, 35.8%) was obtained as a yellow solid. 1H NMR (300 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.19 (brs, 0.4H, FA), 7.63-7.52 (m, 2H), 7.13 (d, J=8.6 Hz, 1H), 7.04 (d, J=7.1 Hz, 1H), 6.73-6.54 (m, 4H), 5.06 (dd, J=12.8, 5.3 Hz, 1H), 4.26 (s, 2H), 3.80 (s, 6H), 3.64-3.51 (m, 7H), 3.47 (s, 3H), 3.45-3.41 (m, 5H), 3.20-3.12 (m, 3H), 2.96-2.83 (m, 1H), 2.61 (s, 1H), 2.27 (s, 6H), 2.07-1.97 (m, 1H). LCMS (ESI) m/z: [M+H]+=744.35


Example 55—Preparation of 5-(4-[[4-(2-[4-[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-5-yl]piperazin-1-yl]ethyl)piperidin-1-yl]methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D28 formic acid)



embedded image


Using a similar procedure as described in Example 29, step 1 and substituting with 2-(2,6-dioxopiperidin-3-yl)-5-[4-[2-(piperidin-4-yl)ethyl]piperazin-1-yl]isoindole-1,3-dione (40 mg, 0.088 mmol, 1.00 equiv) in DMF (2 ml) and 5-(4-formyl-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide (34 mg, 0.088 mmol, 1.00 equiv) afforded 5-(4-[[4-(2-[4-[2-(2,6-dioxo piperidin-3-yl)-1,3-dioxoisoindol-5-yl]piperazin-1-yl]ethyl)piperidin-1-yl]methyl]-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (11.1 mg, 15.3%) as a yellow solid. 1H NMR (400 MHz, Methanol-d4) δ 8.34 (brs, 2.4H, FA), 7.72 (d, J=8.5 Hz, 1H), 7.58 (s, 1H), 7.40 (d, J=1.9 Hz, 1H), 7.27 (d, J=10.4 Hz, 1H), 6.73 (s, 2H), 5.09 (dd, J=12.5, 5.4 Hz, 1H), 4.36 (s, 4H), 3.96 (s, 7H), 3.64 (s, 3H), 3.57-3.49 (m, 8H), 3.20-3.04 (m, 2H), 2.96-2.82 (m, 2H), 2.78 (s, 4H), 2.76-2.67 (m, 6H), 2.67-2.60 (m, 2H), 2.59-2.52 (m, 2H), 2.14 (s, 1H), 2.01 (s, 2H), 1.77-1.48 (m, 5H). LCMS (ESI) m/z: [M+H]+=823.45.


Example 56—Preparation of 5-(4-((dimethylamino)methyl)-3,5-dimethoxyphenyl)-N-(8-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)amino)octyl)-7-methyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide formic acid (Compound D29 formic acid)



embedded image


Compound D29 was prepared in a similar manner to the preparation of compound D21. Compound D29 formic acid (2.4 mg, 4.9%) was obtained as a white solid. 1H NMR (300 MHz, Methanol-d4) δ 8.57 (brs, 0.8H, FA), 7.57 (s, 1H), 7.32 (t, J=7.8 Hz, 1H), 7.07 (d, J=7.4 Hz, 1H), 6.82 (d, J=7.9 Hz, 1H), 6.69 (s, 2H), 5.17 (dd, J=13.3, 5.2 Hz, 1H), 4.36 (s, 2H), 4.29 (d, J=3.2 Hz, 2H), 4.18 (s, 2H), 3.92 (s, 6H), 3.64 (s, 3H), 3.53 (t, J=5.8 Hz, 2H), 3.21 (q, J=7.3 Hz, 4H), 2.97-2.80 (m, 2H), 2.73 (s, 6H), 2.67-2.60 (m, 2H), 2.49 (dd, J=13.1, 4.8 Hz, 1H), 2.26-2.15 (m, 1H), 1.74-1.62 (m, 2H), 1.60-1.50 (m, 2H), 1.49-1.35 (m, 8H). LCMS (ESI) m/z: [M+H]+=770.25.


Example 57—Preparation of 5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-N-(2-[[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxy]ethoxy)ethyl](methyl)amino]ethyl)-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D30 formic acid)



embedded image


Compound D30 was prepared in a similar manner to the preparation of compound D21. Compound D30 formic acid (3 mg, 3.1%) was obtained as an off-white solid. 1H NMR (400 MHz, Methanol-d4) δ 8.55 (brs, 2.6H, FA), 7.70 (dd, J=8.5, 7.2 Hz, 1H), 7.57 (s, 1H), 7.44 (d, J=8.5 Hz, 1H), 7.36 (d, J=7.3 Hz, 1H), 5.10 (dd, J=12.7, 5.5 Hz, 1H), 4.42 (t, J=4.1 Hz, 2H), 4.37 (s, 2H), 4.21 (s, 2H), 4.04-3.98 (m, 4H), 3.97 (s, 6H), 3.63 (s, 3H), 3.55-3.45 (m, 3H), 3.44-3.35 (m, 3H), 3.26 (s, 2H), 2.93-2.82 (m, 1 OH), 2.79-2.65 (m, 2H), 2.63-2.48 (m, 2H), 2.19-2.10 (m, 1H). LCMS (ESI) m/z: [M+H]+=802.30.


Example 58—Preparation of 5-(4-((4-(5-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)oxy)pentanoyl)-1-oxa-4,9-diazaspiro[5.5]undecan-9-yl)methyl)-3,5-dimethoxyphenyl)-N,7-dimethyl-8-oxo-3,4,7,8-tetrahydro-2,7-naphthyridine-2(1H)-carboxamide formic acid (Compound D31 Formic Acid)



embedded image


Compound D31 was prepared in a similar manner to the preparation of compound D4. Compound D31 formic acid (3.6 mg, 9.4%) was obtained as a white solid. 1H NMR (400 MHz, Methanol-d4) δ 8.55 (brs, 0.8H, FA), 7.81 (dd, J=8.3, 5.2 Hz, 1H), 7.59 (s, 1H), 7.41 (d, J=2.3 Hz, 1H), 7.33 (dd, J=8.4, 2.2 Hz, 1H), 6.70 (d, J=4.2 Hz, 2H), 5.12 (dd, J=12.6, 5.4 Hz, 1H), 4.36 (s, 2H), 4.34-4.26 (m, 2H), 4.24-4.18 (m, 2H), 3.93 (d, J=3.0 Hz, 6H), 3.81-3.71 (m, 2H), 3.67-3.59 (m, 5H), 3.57-3.47 (m, 4H), 3.30-3.12 (m, 4H), 2.96-2.82 (m, 2H), 2.78 (s, 3H), 2.76-2.72 (m, 1H), 2.66-2.47 (m, 4H), 2.19-2.02 (m, 3H), 1.97-1.74 (m, 6H). LCMS (ESI) m/z: [M+H]+=882.25.


Example 59—Preparation of 5-[4-[(dimethylamino)methyl]-2,5-dimethoxyphenyl]-N-[2-(2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-5-yl]amino]ethoxy)ethyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carboxamide formic acid (Compound D32 Formic Acid)



embedded image


Compound D32 was prepared in a similar manner to the preparation of compound D21. Compound D32 formic acid (24.2 mg, 19.5%) was obtained as a green solid. 1H NMR (400 MHz, Methanol-d4) δ 8.55 (brs, 0.7H, FA), 7.51 (d, J=8.3 Hz, 1H), 7.43 (s, 1H), 7.07 (s, 1H), 7.03 (d, J=2.2 Hz, 1H), 6.91-6.87 (m, 2H), 5.03 (dd, J=12.6, 5.4 Hz, 1H), 4.33 (s, 2H), 4.06-3.93 (m, 2H), 3.86 (s, 3H), 3.73 (s, 6H), 3.61 (s, 6H), 3.45-3.38 (m, 4H), 2.90-2.84 (m, 1H), 2.78-2.69 (m, 2H), 2.69-2.47 (m, 8H), 2.11-2.04 (m, 1H).LCMS (ESI) m/z: [M+H]+=744.33.


Example 60—Preparation of 8-(4-(((2-(2-(4-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)piperazin-1-yl)ethoxy)ethyl)(methyl)amino)methyl)-3,5-dimethoxyphenyl)-N,N,6-trimethyl-5-oxo-3,4,5,6-tetrahydro-2,6-naphthyridine-2(1H)-carboxamide formic acid (Compound D33 formic acid)



embedded image


Step 1: Preparation of 8-(4-formyl-3,5-dimethoxyphenyl)-N,N,6-trimethyl-5-oxo-3,4,5,6-tetrahydro-2,6-naphthyridine-2(1H)-carboxamide (i-81)



embedded image


Using a similar procedure as described in Example 23, step 3 and substituting with 8-bromo-N,N,6-trimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (200 mg, 0.637 mmol, 1.00 equiv) and 4-formyl-3,5-dimethoxyphenylboronic acid (200.5 mg, 0.955 mmol, 1.50 equiv) afforded 8-(4-formyl-3,5-dimethoxyphenyl)-N,N,6-trimethyl-5-oxo-3,4,5,6-tetrahydro-2,6-naphthyridine-2(1H)-carboxamide (200.0 mg, 78.7%) as a yellow oil. LCMS (ESI) m/z: [M+H]+=400.


Step 2: Preparation of 8-(4-(((2-(2-(4-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)piperazin-1-yl)ethoxy)ethyl)(methyl)amino)methyl)-3,5-dimethoxyphenyl)-N,N,6-trimethyl-5-oxo-3,4,5,6-tetrahydro-2,6-naphthyridine-2(1H)-carboxamide formic acid (Compound D33 formic acid)



embedded image


Using a similar procedure as described in Example 52, step 3 and substituting with 8-(4-formyl-3,5-dimethoxyphenyl)-N,N,6-trimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide (30.0 mg, 0.075 mmol, 1.00 equiv) and 2-(2,6-dioxopiperidin-3-yl)-5-(4-[2-[2-(methylamino)ethoxy]ethyl]piperazin-1-yl)isoindole-1,3-dione (33.3 mg, 0.075 mmol, 1.00 equiv) afforded 8-[4-([[2-(2-[4-[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-5-yl]piperazin-1-yl]ethoxy)ethyl](methyl)amino]methyl)-3,5-dimethoxyphenyl]-N,N,6-trimethyl-5-oxo-3,4-dihydro-1H-2,6-naphthyridine-2-carboxamide formic acid (7.6 mg, 11.2%) as a yellow green solid. 1H-NMR (400 MHz, Methanol-d4) δ 8.47 (brs, 1.4H, FA), 7.69 (d, J=8.5 Hz, 1H), 7.50 (s, 1H), 7.34 (d, J=2.3 Hz, 1H), 7.24 (dd, J=8.6, 2.3 Hz, 1H), 6.77 (s, 2H), 5.08 (dd, J=12.4, 5.5 Hz, 1H), 4.50 (s, 2H), 4.09 (s, 2H), 3.97 (s, 6H), 3.92-3.87 (m, 2H), 3.76 (t, J=5.2 Hz, 2H), 3.61 (s, 3H), 3.51-3.45 (m, 8H), 2.90-2.86 (m, 4H), 2.83 (s, 6H), 2.79-2.71 (m, 1 OH), 2.17-2.07 (m, 1H). LCMS (ESI) m/z: [M+H]+=827.50.


Example 61—Preparation of (2S,4R)-1-[(2S)-2-(2-[2-[2-(5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carbonylamino)ethoxy]ethoxy]acetamido)-3,3-dimethylbutanoyl]-4-hydroxy-N-[[4-(4-methyl-1,3-thiazol-5-yl)phenyl]methyl]pyrrolidine-2-carboxamide formic acid (Compound D34 formic acid)



embedded image


To a stirred mixture of CDI (9.29 mg, 0.057 mmol, 1.10 equiv) in ACN (0.50 mL) and DMF (0.10 mL) was added (2S,4R)-1-[(2S)-2-[2-[2-(2-aminoethoxy)ethoxy]acetamido]-3,3-dimethylbutanoyl]-4-hydroxy-N-[[4-(4-methyl-1,3-thiazol-5-yl)phenyl]methyl]pyrrolidine-2-carboxamide (30 mg, 0.052 mmol, 1.00 equiv) and ACN (0.30 mL) dropwise at room temperature under nitrogen atmosphere. After 3 hours, 4-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-2-methyl-5,6,7,8-tetrahydro-2,7-naphthyridin-1-one (22.35 mg, 0.063 mmol, 1.20 equiv) and TEA (15.82 mg, 0.156 mmol, 3.00 equiv) were added. The resulting mixture was stirred at room temperature for 12 hours under nitrogen atmosphere. Without any additional work-up, the mixture was purified by Prep-HPLC (conditions: Gemini-NX C18 AXAI Packed, 21.2*150 mm, 5 μm; Mobile Phase A: Water (0.1% FA), Mobile Phase B: ACN; Flow rate: 25 mL/minute; Gradient: 10% B to 25% B in 12 minutes; 254/220 nm; RT: 12.30 minutes). This resulted in (2S,4R)-1-[(2S)-2-(2-[2-[2-(5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carbonylamino)ethoxy]ethoxy]acetamido)-3,3-dimethylbutanoyl]-4-hydroxy-N-[[4-(4-methyl-1,3-thiazol-5-yl)phenyl]methyl]pyrrolidine-2-carboxamide formic acid (13.9 mg, 26.23%) as a white solid. 1H NMR (400 MHz, Methanol-d4) δ 8.88 (s, 1H), 8.56 (brs, 1.0H, FA), 7.56 (s, 1H), 7.49-7.38 (m, 4H), 6.67 (s, 2H), 4.84-4.75 (m, 2H), 4.67-4.59 (m, 1H), 4.52 (s, 1H), 4.48-4.26 (m, 5H), 4.03-3.83 (m, 1 OH), 3.77-3.61 (m, 7H), 3.59 (s, 3H), 3.55-3.48 (m, 1H), 3.43-3.34 (m, 2H), 2.84 (s, 6H), 2.69-2.52 (m, 2H), 2.48 (s, 3H), 2.31 (dd, J=13.1, 7.7 Hz, 1H), 2.18-2.07 (m, 1H), 1.08 (s, 9H). LCMS (ESI) m/z: [M+H]+=959.55.


Example 62—Preparation of (2R,4S)-1-[(2R)-2-[2-(2-[2-[2-(5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carbonylamino)ethoxy]ethoxy]ethoxy)acetamido]-3,3-dimethylbutanoyl]-4-hydroxy-N-[[4-(4-methyl-1,3-thiazol-5-yl)phenyl]methyl]pyrrolidine-2-carboxamide (Compound D35)



embedded image


Compound D35 was prepared in a similar manner to the preparation of compound D34. Compound D35 (24.3 mg, 29.8%) was obtained as an off-white solid. 1H NMR (300 MHz, DMSO-d6) δ 8.98 (s, 1H), 8.59 (s, 1H), 8.17 (brs, 0.4H, FA), 7.64 (s, 1H), 7.40 (s, 5H), 6.66 (d, J=18.5 Hz, 3H), 5.15 (s, 1H), 4.63-4.53 (m, 1H), 4.51-4.32 (m, 3H), 4.31-4.17 (m, 3H), 3.97 (s, 2H), 3.81 (s, 7H), 3.72 (s, 2H), 3.63-3.47 (m, 12H), 3.40 (s, 4H), 3.20 (s, 2H), 2.44 (s, 6H), 2.35 (s, 5H), 2.13-2.00 (m, 1H), 1.98-1.82 (m, 1H), 0.95 (s, 9H). LCMS (ESI) m/z: [M+H]+=1003.60.


Example 63—Preparation of (2S,4R)-1-[(2S)-2-[6-(5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carbonylamino)hexanamido]-3,3-dimethylbutanoyl]-4-hydroxy-N-[[4-(4-methyl-1,3-thiazol-5-yl)phenyl]methyl]pyrrolidine-2-carboxamide (Compound D36)



embedded image


Compound D36 was prepared in a similar manner to the preparation of compound D34. Compound D36 formic acid (13.3 mg, 24.6%) was obtained as a white solid. 1H NMR (400 MHz, DMSO-d6) δ 9.05 (brs, 0.7H, FA), 8.99 (s, 1H), 8.56 (t, J=6.0 Hz, 1H), 7.83 (d, J=9.3 Hz, 1H), 7.66 (s, 1H), 7.41 (q, J=8.2 Hz, 4H), 6.73 (s, 2H), 6.65 (t, J=5.4 Hz, 1H), 6.51 (s, 0.3H, FA), 5.12 (d, J=3.6 Hz, 1H), 4.55 (d, J=9.4 Hz, 1H), 4.47-4.39 (m, 2H), 4.35 (s, 1H), 4.23 (s, 5H), 3.87 (s, 6H), 3.71-3.62 (m, 2H), 3.51 (s, 3H), 3.41 (t, J=5.5 Hz, 2H), 3.30-3.26 (m, 2H), 3.08-2.98 (m, 2H), 2.74 (s, 6H), 2.45 (s, 3H), 2.31-2.22 (m, 1H), 2.17-2.00 (m, 2H), 1.95-1.87 (m, 1H), 1.55-1.38 (m, 4H), 1.29-1.20 (m, 2H), 0.93 (s, 9H). LCMS (ESI) m/z: [M+H]+=927.55.


Example 64—Preparation of (2S,4R)-1-[(2S)-2-[8-(5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carbonylamino)octanamido]-3,3-dimethylbutanoyl]-4-hydroxy-N-[[4-(4-methyl-1,3-thiazol-5-yl)phenyl]methyl]pyrrolidine-2-carboxamide formic acid (Compound D37)



embedded image


Compound D37 was prepared in a similar manner to the preparation of compound D34. Compound D37 formic acid (19.9 mg, 37.9%) was obtained as a white solid. 1H NMR (400 MHz, Methanol-d4) δ 8.89 (s, 1H), 8.57 (brs, 0.6H, FA), 7.58 (s, 1H), 7.51-7.40 (m, 4H), 6.69 (s, 2H), 4.66 (s, 1H), 4.62-4.49 (m, 3H), 4.38 (d, J=12.6 Hz, 3H), 4.16 (s, 2H), 3.92 (s, 6H), 3.90 (s, 1H), 3.82 (dd, J=11.0, 3.9 Hz, 1H), 3.64 (s, 3H), 3.53 (t, J=5.5 Hz, 2H), 3.20 (t, J=7.1 Hz, 2H), 2.71 (s, 6H), 2.63 (t, J=5.2 Hz, 2H), 2.49 (s, 3H), 2.36-2.19 (m, 3H), 2.15-2.05 (m, 1H), 1.63 (t, J=6.8 Hz, 2H), 1.54 (t, J=7.0 Hz, 2H), 1.36 (s, 6H), 1.05 (s, 9H). LCMS (ESI) m/z: [M+H]+=955.55.


Example 65—Preparation of (2S,4R)-1-[(2S)-2-[10-(5-[4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl]-7-methyl-8-oxo-3,4-dihydro-1H-2,7-naphthyridine-2-carbonylamino)decanamido]-3,3-dimethylbutanoyl]-4-hydroxy-N-[[4-(4-methyl-1,3-thiazol-5-yl)phenyl]methyl]pyrrolidine-2-carboxamide (Compound D38)



embedded image


Compound D35 was prepared in a similar manner to the preparation of compound D34. Compound D35 formic acid (15.3 mg, 29.6%) was obtained as a white solid. 1H NMR (400 MHz, Methanol-d4) δ 8.90 (s, 1H), 8.57 (brs, 0.5H, FA), 7.59 (s, 1H), 7.52-7.41 (m, 4H), 6.69 (s, 2H), 4.65 (s, 1H), 4.62-4.49 (m, 3H), 4.40-4.34 (m, 3H), 4.14 (s, 2H), 3.92 (s, 7H), 3.82 (dd, J=10.9, 3.9 Hz, 1H), 3.64 (s, 3H), 3.54 (t, J=5.6 Hz, 2H), 3.20 (t, J=7.2 Hz, 2H), 2.69 (s, 6H), 2.63 (t, J=5.1 Hz, 2H), 2.49 (s, 3H), 2.37-2.19 (m, 3H), 2.14-2.05 (m, 1H), 1.68-1.48 (m, 4H), 1.34 (s, 1 OH), 1.05 (s, 9H). LCMS (ESI) m/z: [M+H]+=983.65.


Example 66—Preparation of Compounds D39-D302 and DD1

In analogy to the procedures described in the examples above, compounds D39-D302 and DD1 were prepared using the appropriate starting materials













Compound










No.
LCMS

1H NMR






D39
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 8.39 (s, 2H, FA), 7.66-7.61 (m,




m/z: [M + H]+ =
1H), 7.59 (s, 1H), 7.09 (d, J = 7.9 Hz, 2H), 6.72 (s, 2H), 5.11 (dd, J =



795.6
13.3, 5.2 Hz, 1H), 4.40 (d, J = 6.8 Hz, 2H), 4.35 (d, J = 7.5 Hz, 4H),




3.95 (s, 8H), 3.64 (s, 3H), 3.55 (t, J = 5.6 Hz, 2H), 3.32-3.17 (m, 4H),




2.99-2.69 (m, 11H), 2.69-2.60 (m, 2H), 2.49 (td, J = 13.1, 4.8 Hz,




1H), 2.41 (d, J = 7.0 Hz, 2H), 2.16 (dtd, J = 12.8, 5.3, 2.4 Hz, 1H),




1.91 (d, J = 13.4 Hz, 2H), 1.84 (d, J = 3.6 Hz, 1H), 1.40-1.26 (m,




2H).


D40
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 8.52 (s, 1H, FA), 7.58 (s, 1H), 7.45




m/z: [M + H]+ =
(d, J = 8.4 Hz, 1H), 7.38-7.29 (m, 2H), 6.70 (s, 2H), 5.15 (dd, J =



795.6
13.3, 5.1 Hz, 1H), 4.48-4.39 (m, 2H), 4.36 (s, 2H), 4.23 (s, 2H), 3.93




(s, 6H), 3.82-3.74 (m, 2H), 3.64 (s, 3H), 3.55 (t, J = 5.6 Hz, 2H), 3.18




(s, 4H), 2.92 (ddd, J = 18.3, 13.5, 5.4 Hz, 2H), 2.86-2.59 (m, 11H),




2.49 (td, J = 13.2, 4.7 Hz, 1H), 2.40 (d, J = 7.1 Hz, 2H), 2.19 (ddd, J =




10.0, 5.2, 2.6 Hz, 1H), 1.93 (d, J = 13.0 Hz, 2H), 1.77 (s, 1H), 1.45-




1.33 (m, 2H).


D41
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.09 (s, 1H), 7.70-7.64 (m, 2H),




m/z: [M + H]+ =
7.33 (d, J = 2.3 Hz, 1H), 7.29-7.22 (m, 1H), 6.69 (s, 2H), 6.58 (d, J =



837.5
5.0 Hz, 1H), 5.07 (dd, J = 12.9, 5.4 Hz, 1H), 4.62-4.46 (m, 2H), 4.07




(d, J = 13.0 Hz, 3H), 3.89-3.80 (m, 1H), 3.85 (s, 6H), 3.60-3.30 (m,




9H), 3.14-2.82 (m, 8H), 2.78 (d, J = 4.8 Hz, 1H), 2.63-2.52 (m, 5H),




2.17 (d, J = 17.0 Hz, 1H), 2.06-1.98 (m, 1H), 1.76 (d, J = 12.7 Hz,




2H), 1.60-1.52 (m, 3H), 1.27-1.13 (m, 2H), 0.86 (d, J = 6.7 Hz,




3H).


D42
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.14 (s, 0H), 7.64 (d,




m/z: [M + H]+ =
J = 9.1 Hz, 2H), 7.31 (d, J = 2.2 Hz, 1H), 7.27-7.18 (m, 1H), 6.60 (d,



851.75
J = 5.7 Hz, 3H), 5.07 (dd, J = 12.9, 5.4 Hz, 1H), 4.21 (s, 2H), 4.05 (d, J




J = 12.6 Hz, 2H), 3.79 (s, 6H), 3.66-3.46 (m, 5H), 3.41 (dd, J = 8.1,




2.8 Hz, 2H), 3.31 (s, 4H), 3.00-2.90 (m, 4H), 2.92-2.81 (m, 3H),




2.63-2.55 (m, 4H), 2.09-1.94 (m, 3H), 1.76 (d, J = 12.5 Hz, 2H),




1.63-1.33 (m, 3H), 1.30-1.13 (m, 3H), 1.10-0.95 (m, 6H).


D43
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.16 (s, FA, 1H), 7.67-




m/z: [M + H]+ =
7.62 (m, 2H), 7.30 (d, J = 2.3 Hz, 1H), 7.23 (dd, J = 8.8, 2.3 Hz, 1H),



867.35
6.71 (t, J = 5.5 Hz, 1H), 6.59 (s, 2H), 5.07 (dd, J = 12.9, 5.4 Hz, 1H),




4.22 (s, 2H), 4.03 (d, J = 13.0 Hz, 2H), 3.78 (s, 6H), 3.53 (s, 2H), 3.50




(s, 3H), 3.45-3.31 (m, 8H), 3.24 (s, 3H), 3.24-3.16 (m, 2H), 2.98-




2.82 (m, 3H), 2.63-2.53 (m, 2H), 2.43 (s, 5H), 2.35-2.30 (m, 3H),




2.04-1.97 (m, 1H), 1.74 (d, J = 12.7 Hz, 2H), 1.57 (s, 1H), 1.40-1.37




(m, 2H), 1.23-1.10 (m, 2H).


D44
LCMS (ESI)

1H NMR (400 MHz, MeOD) δ 8.49 (s, 2FA, 2H), 7.82 (d, J = 8.3 Hz,




m/z: [M + H]+ =
1H), 7.58 (s, 1H), 7.29 (d, J = 2.2 Hz, 1H), 7.25 (dd, J = 8.3, 2.3 Hz,



867.75
1H), 6.72 (s, 2H), 5.13 (dd, J = 12.6, 5.5 Hz, 1H), 4.38-4.30 (m, 3H),




3.95 (s, 5H), 3.90-3.81 (m, 1H), 3.80-3.62 (m, 1H), 3.58-3.50 (m,




3H), 3.52-3.45 (m, 1H), 3.15-3.04 (m, 2H), 2.78 (s, 4H), 2.77-2.74




(m, 1H), 2.73-2.68 (m, 1H), 2.67-2.57 (m, 3H), 2.56-2.50 (m, 4H),




2.25-2.09 (m, 1H), 2.09-1.97 (m, 6H), 1.88-1.79 (m, 4H), 1.58-




1.53 (m, 2H), 1.38-1.29 (m, 3H).


D45
LCMS (ESI)

1H NMR (400 MHz, MeOD) δ 8.49 (s, 2FA, 2H), 7.82 (d, J = 8.3 Hz,




m/z: [M + H]+ =
1H), 7.58 (s, 1H), 7.29 (d, J = 2.2 Hz, 1H), 7.25 (dd, J = 8.3, 2.3 Hz,



826.35
1H), 6.72 (s, 2H), 5.13 (dd, J = 12.6, 5.5 Hz, 1H), 4.38-4.30 (m, 3H),




3.95 (s, 5H), 3.90-3.81 (m, 1H), 3.80-3.62 (m, 1H), 3.58-3.50 (m,




3H), 3.52-3.45 (m, 1H), 3.15-3.04 (m, 2H), 2.78 (s, 4H), 2.77-2.74




(m, 1H), 2.73-2.68 (m, 1H), 2.67-2.57 (m, 3H), 2.56-2.50 (m, 4H),




2.25-2.09 (m, 1H), 2.09-1.97 (m, 6H), 1.88-1.79 (m, 4H), 1.58-




1.53 (m, 2H), 1.38-1.29 (m, 3H).


D46
LCMS (ESI)

1H NMR (400 MHz, DMSO) δ 11.09 (s, 1H), 8.20 (s, FA, 1H), 7.68-




m/z: [M + H]+ =
7.61 (m, 2H), 7.30 (d, J = 2.2 Hz, 1H), 7.22 (dd, J = 8.7, 2.3 Hz, 1H),



873.75
7.13 (t, J = 5.7, 5.7 Hz, 1H), 6.59 (s, 2H), 6.15-5.81 (m, 1H), 5.07




(dd, J = 12.9, 5.4 Hz, 1H), 4.26 (s, 2H), 4.03 (d, J = 12.9 Hz, 2H), 3.78




(s, 6H), 3.55-3.48 (m, 5H), 3.47-3.36 (m, 5H), 2.99-2.83 (m, 3H),




2.63-2.52 (m, 4H), 2.44-2.38 (m, 5H), 2.35-2.26 (m, 4H), 2.04-




1.97 (m, 1H), 1.78-1.70 (m, 2H), 1.65-1.47 (m, 1H), 1.40-1.32 (m,




2H), 1.26-1.11 (m, 2H).


D47
LCMS (ESI)

1H NMR (400 MHz, MeOD) δ 8.51 (s, 1H), 7.81 (d, J = 8.2 Hz, 1H),




m/z: [M + H]+ =
7.58 (s, 1H), 7.32-7.20 (m, 2H), 6.72 (s, 2H), 5.12 (dd, J = 12.6, 5.4



867.55
Hz, 1H), 4.41-4.31 (m, 4H), 3.95 (s, 6H), 3.64 (s, 3H), 3.59-3.45




(m, 5H), 3.11-3.07 (m, 2H), 2.92-2.82 (m, 1H), 2.81-2.69 (m, 5H),




2.67-2.59 (m, 3H), 2.53-2.57 (m, 4H), 2.20-2.09 (m, 1H), 2.08-




1.96 (m, 5H), 1.87-1.78 (m, 4H), 1.68-1.43 (m, 2H).


D48
LCMS (ESI)

1H NMR (400 MHz, MeOD) δ 7.68 (d, J = 8.5 Hz, 1H), 7.57 (s, 1H),




m/z: [M + H]+ =
7.36 (d, J = 2.3 Hz, 1H), 7.23 (dd, J = 8.6, 2.3 Hz, 1H), 6.73 (s, 2H),



826.55
5.08 (dd, J = 12.5, 5.5 Hz, 1H), 4.48-4.43 (m, 2H), 4.36 (s, 2H), 4.07




(d, J = 13.1 Hz, 2H), 3.94 (s, 6H), 3.64 (s, 4H), 3.58-3.50 (m, 9H),




3.22-3.17 (m, 2H), 3.01 (t, J = 12.4, 12.4 Hz, 2H), 2.93-2.83 (m,




1H), 2.80-2.70 (m, 2H), 2.69-2.59 (m, 2H), 2.18-2.06 (m, 1), 1.88




(d, J = 12.9 Hz, 2H), 1.74-1.68 (m, 3H), 1.44-1.34 (m, 2H).


D49
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4)6 7.61-7.50 (m, 2H), 7.18 (d, J =




m/z: [M + H]+ =
8.3 Hz, 1H), 6.73 (s, 2H), 5.13 (dd, J = 13.3, 5.2 Hz, 1H), 4.54-4.45



839.31
(m, 2H), 4.38-4.34 (m, 4H), 3.95 (s, 9H), 3.65-3.61 (m, 4H), 3.59-




3.51 (m, 4H), 3.37-3.32 (m, 2H), 3.18-3.08 (m, 2H), 3.04-2.98




(m, 4H), 2.96-2.86 (m, 1H), 2.86-2.80 (m, 2H), 2.79-2.74 (m, 5H),




2.64 (t, J = 5.7 Hz, 2H), 2.59-2.44 (m, 1H), 2.25-2.11 (m, 1H), 2.07-




1.95 (m, 2H), 1.80-1.47 (m, 5H).



LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 7.56 (s, 1H), 6.77-6.64 (m, 3H),



D50
m/z: [M + H]+ =
6.57 (s, 1H), 5.04 (dd, J = 13.2, 5.4 Hz, 1H), 4.48-4.28 (m, 6H), 4.17-



839.35
3.98 (m, 2H), 3.98-3.86 (m, 10H), 3.76-3.45 (m, 10H), 3.28-




3.20 (m, 3H), 3.16-3.01 (m, 2H), 2.94-2.81 (m, 1H), 2.81-2.71




(m, 4H), 2.66-2.56 (m, 2H), 2.43 (qd, J = 13.0, 4.7 Hz, 1H), 2.19-




2.07 (m, 1H), 2.06-1.87 (m, 3H), 1.86-1.69 (m, 3H), 1.67-1.48




(m, 2H).


D51
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 7.66-7.52 (m, 2H), 6.72 (s, 2H),




m/z: [M + H]+ =
6.57 (d, J = 8.1 Hz, 2H), 5.11 (dd, J = 13.3, 5.1 Hz, 1H), 4.70-4.09



821.40
(m, 10H), 3.96 (s, 6H), 3.91-3.73 (m, 4H), 3.64 (s, 3H), 3.55 (t, J =




5.6 Hz, 2H), 3.34 (s, 4H), 3.25-3.10 (m, 1H), 3.08-3.00 (m, 1H),




2.98-2.84 (m, 1H), 2.84-2.72 (m, 4H), 2.62 (t, J = 5.3 Hz, 2H), 2.58-




2.40 (m, 1H), 2.35-2.06 (m, 5H), 1.38 (d, J = 6.4 Hz, 3H).


D52
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 7.57 (s, 1H), 7.42 (d, J = 8.2 Hz,




m/z: [M + H]+ =
1H), 6.88 (d, J = 2.3 Hz, 1H), 6.80 (dd, J = 8.2, 2.3 Hz, 1H), 6.73 (s,



821.55
2H), 5.14 (dd, J = 13.3, 5.2 Hz, 1H), 4.60-4.45 (m, 2H), 4.43-4.31




(m, 5H), 4.31-4.10 (m, 3H), 3.97 (s, 6H), 3.89-3.70 (m, 5H), 3.64




(s, 3H), 3.55 (t, J = 5.6 Hz, 2H), 3.32 (s, 4H), 3.17-3.00 (m, 1H), 2.99-




2.85 (m, 1H), 2.85-2.80 (m, 1H), 2.78 (s, 3H), 2.62 (t, J = 5.5 Hz,




2H), 2.57-2.42 (m, 1H), 2.39-2.05 (m, 5H), 1.39 (d, J = 6.6 Hz, 3H).


D53
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 7.58 (s, 1H), 7.53 (dd, J = 8.4, 2.0




m/z: [M + H]+ =
Hz, 1H), 7.24 (dd, J = 8.4, 2.4 Hz, 1H), 7.13 (dd, J = 8.1, 2.3 Hz, 1H),



698.50
6.73 (d, J = 6.8 Hz, 2H), 5.15 (dd, J = 13.3, 5.1 Hz, 1H), 4.61 (s, 1H),




4.57-4.46 (m, 3H), 4.46-4.33 (m, 5H), 4.33-4.26 (m, 1H), 4.23-




4.14 (m, 1H), 3.97 (s, 2H), 3.91 (s, 4H), 3.64 (s, 3H), 3.54 (t, J = 5.5




Hz, 2H), 2.98 (d, J = 2.8 Hz, 3H), 2.98-2.86 (m, 1H), 2.82 (dd, J =




4.8, 2.5 Hz, 1H), 2.78 (s, 3H), 2.62 (s, 2H), 2.51 (qd, J = 13.2, 4.7 Hz,




1H), 2.19 (ddd, J = 10.6, 5.3, 2.9 Hz, 1H).


D54
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 8.46 (s, 2H, FA), 7.68-7.56 (m,




m/z: [M + H]+ =
2H), 7.07 (d, J = 9.3 Hz, 1H), 6.75-6.65 (m, 3H), 4.37 (s, 4H), 3.96 (s,



835.25
7H), 3.65 (s, 3H), 3.60-3.50 (m, 4H), 3.50-3.40 (m, 4H), 3.20-3.10




(m, 2H), 2.80-2.50 (m, 13H), 2.10-1.90 (m, 3H), 1.80-1.40 (m,




10H).


D55
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 10.96 (s, 1H), 7.66 (s, 1H), 7.52 (d,




m/z: [M + H]+ =
J = 8.7 Hz, 1H), 7.15-6.99 (m, 4H), 6.62 (s, 1H), 5.15-4.98 (m, 1H),



813.35
4.40-4.13 (m, 4H), 3.99-3.72 (m, 7H), 3.61-3.31 (m, 7H), 3.23-




2.94 (m, 5H), 2.95-2.69 (m, 3H), 2.66-2.56 (m, 4H), 2.45-2.22




(m, 6H), 2.05-1.88 (m, 1H), 1.75 (d, J = 12.3 Hz, 2H), 1.67-1.46




(m, 3H), 1.37-1.11 (m, 2H).


D56
LCMS (ESI)

1H NMR (300 MHz, MeOD) δ 8.45 (s, 2FA, 2H), 7.60 (d, J = 9.4 Hz,




m/z: [M + H]+ =
2H), 6.73 (s, 2H), 6.55 (d, J = 7.4 Hz, 2H), 5.10 (dd, J = 13.2, 5.1 Hz,



835.85
1H), 4.37 (d, J = 4.4 Hz, 6H), 3.95 (s, 6H), 3.74 (s, 4H), 3.64 (s, 3H),




3.55 (t, J = 5.2, 5.2 Hz, 4H), 3.20-3.06 (m, 2H), 2.97-2.77 (m, 1H),




2.81-2.75 (m, 5H), 2.73-2.59 (m, 5H), 2.51-2.45 (m, 3H), 2.23-




1.88 (m, 8H), 1.56 (s, 2H).


D57
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 7.58 (s, 1H), 7.35 (dd, J = 10.1,




m/z: [M + H]+ =
2.2 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.22 (dd, J = 10.1, 4.0 Hz, 1H),



811.30
6.77-6.71 (m, 2H), 5.36 (dd, J = 12.6, 5.3 Hz, 1H), 4.37 (d, J = 6.9




Hz, 4H), 4.04-3.87 (m, 6H), 3.65 (d, J = 6.4 Hz, 5H), 3.60-3.52 (m,




4H), 3.36-3.43 (m, 2H), 3.28 (d, J = 10.1 Hz, 3H), 3.18-3.05 (m,




2H), 2.93 (d, J = 5.0 Hz, 1H), 2.90 (d, J = 5.2 Hz, 1H), 2.86 (d, J = 4.0




Hz, 1H), 2.80-2.84 (m, 1H), 2.79 (s, 3H), 2.70 (dd, J = 13.0, 4.7 Hz,




1H), 2.63 (s, 3H), 2.33 (t, J = 5.0 Hz, 1H), 2.02 (t, J = 15.9 Hz, 3H),




1.80 (t, J = 8.2 Hz, 2H), 1.65-1.48 (m, 2H).


D58
825.5

1H NMR (400 MHz, DMSO-d6) δ 10.96 (s, 1H), 8.14 (s, 1H, FA), 7.89





(q, J = 4.2 Hz, 1H), 7.69 (s, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.13-7.03




(m, 2H), 6.73 (s, 2H), 5.06 (dd, J = 13.2, 5.1 Hz, 1H), 4.59 (s, 2H),




4.34 (d, J = 17.0 Hz, 1H), 4.21 (d, J = 17.0 Hz, 1H), 4.16 (s, 2H), 3.93




(t, J = 5.5 Hz, 2H), 3.87 (s, 6H), 3.53 (s, 3H), 3.48-3.40 (m, 6H), 3.01-




2.84 (m, 6H), 2.69-2.55 (m, 7H), 2.47-2.30 (m, 3H), 2.01-1.92 (m,




1H), 1.84 (d, J = 13.0 Hz, 2H), 1.68-1.29 (m, 5H).


D59
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 8.44 (s, 3H, FA), 7.59 (s, 1H), 7.40




m/z: [M + H]+ =
(d, J = 8.2 Hz, 1H), 6.88-6.69 (m, 4H), 5.21-5.04 (m, 2H), 4.43-



821.55
4.34 (m, 4H), 4.10-3.87 (m, 9H), 3.76-3.61 (m, 8H), 3.56 (s, 2H),




3.19-3.05 (m, 1H), 2.96-2.83 (m, 1H), 2.79 (s, 3H), 2.77-2.71 (m,




3H), 2.68-2.46 (m, 7H), 2.20 (s, 1H), 1.91 (s, 4H), 1.55 (d, J = 6.6




Hz, 3H).


D60
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.01 (s, 1H), 8.14 (s, 1H, FA), 7.65




m/z: [M + H]+ =
(s, 1H), 7.30 (s, 1H), 7.22 (s, 1H), 6.65-6.57 (m, 3H), 5.19 (dd, J =



633.30
11.6, 4.5 Hz, 1H), 4.22 (s, 2H), 3.81 (s, 6H), 3.67 (s, 2H), 3.50 (s, 3H),




3.43-3.31 (m, 6H), 2.96-2.70 (m, 6H), 2.67-2.56 (m, 6H), 2.19-




2.11 (m, 1H).


D61
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 7.79 (d, J = 7.6 Hz, 1H), 7.62 (s, 1H),




m/z: [M + H]+ =
6.75-6.63 (m, 3H), 6.28 (d, J = 1.6 Hz, 1H), 5.23 (dd, J = 12.5, 5.3 Hz,



700.25
1H), 4.31 (s, 2H), 4.22 (s, 2H), 3.94-3.87 (m, 2H), 3.87 (s, 6H), 3.50




(s, 3H), 3.4-3.36 (m, 4H), 3.32-3.10 (m, 4H), 2.94-2.81 (m, 1H),




2.70-2.60 (m, 1H), 2.59 (s, 3H), 2.58-2.50 (m, 2H), 2.49-2.42 (m,




1H), 2.22-2.08 (m, 1H).


D62
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 0.3H, FA), 7.56 (s, 1H),




m/z: [M + H]+ =
6.62 (s, 2H), 5.05 (dd, J = 12.6, 5.3 Hz, 1H), 4.37 (s, 2H), 3.88 (s, 6H),



664.40
3.84 (s, 2H), 3.64 (s, 3H), 3.54 (t, J = 5.6 Hz, 2H), 3.23 (s, 3H), 3.18




(d, J = 5.3 Hz, 4H), 2.93-2.72 (m, 9H), 2.65 (t, J = 5.6 Hz, 2H), 2.62-




2.49 (m, 1H), 2.25-2.12 (m, 1H).


D63
839.7

1H NMR (300 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.21 (s, 1H, FA), 7.86





(d, J = 4.4 Hz, 1H), 7.68 (t, J = 4.3 Hz, 2H), 7.33 (d, J = 2.2 Hz, 1H),




7.25 (dd, J = 8.7, 2.3 Hz, 1H), 6.61 (s, 2H), 5.07 (dd, J = 12.7, 5.4 Hz,




1H), 4.60 (s, 2H), 3.98-3.85 (m, 2H), 3.79 (s, 6H), 3.78 (s, 1H), 3.58




(s, 3H), 3.51 (s, 3H), 3.47-3.38 (m, 4H), 2.98-2.82 (m, 6H), 2.65-




2.54 (m, 3H), 2.49-2.44 (m, 3H), 2.33 (t, J = 7.3 Hz, 2H), 2.19-1.95




(m, 3H), 1.63 (d, J = 12.0 Hz, 2H), 1.48-1.02 (m, 5H).


D64
824.7
1HNMR (300 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.15 (s, 0.4H, FA),




7.74-7.63 (m, 2H), 7.36 (d, J = 2.2 Hz, 1H), 7.28 (dd, J = 8.6, 2.2




Hz, 1H), 6.73 (s, 2H), 5.08 (dd, J = 12.7, 5.4 Hz, 1H), 4.29 (s, 2H),




4.17 (s, 2H), 3.87 (s, 6H), 3.66 (s, 3H), 3.54-3.44 (m, 11H), 3.07-




2.79 (m, 4H), 2.64-2.53 (m, 7H), 2.49-2.40 (m, 2H), 2.09-1.97




(m, 1H), 1.85 (d, J = 13.0 Hz, 2H), 1.66-1.53 (m, 1H), 1.45 (s, 4H).


D65
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 7.73-7.52 (m, 3H), 7.40 (d, J = 2.6




m/z: [M + H]+ =
Hz, 1H), 6.71 (d, J = 2.0 Hz, 2H), 5.23 (dd, J = 11.4, 5.7 Hz, 1H), 4.20



836.65
(d, J = 8.2 Hz, 4H), 3.94 (s, 2H), 3.86 (s, 6H), 3.67-3.62 (m, 1H),




3.51 (s, 4H), 3.45-3.30 (m, 4H), 3.28-3.08 (m, 6H), 3.07-2.92 (m,




3H), 2.93-2.75 (m, 1H), 2.68-2.55 (m, 9H), 2.23-2.08 (m, 1H),




1.92-1.70 (m, 3H), 1.68-1.52 (m, 2H), 1.52-1.28 (m, 2H).


D66
752.3
1H NMR (300 MHz, Methanol-d4) δ 7.41 (d, J = 8.2 Hz, 1H), 7.23 (s,




1H), 6.88 (d, J = 2.2 Hz, 1H), 6.86 (s, 2H), 6.80 (dd, J = 8.2, 2.3 Hz,




1H), 5.14 (dd, J = 13.3, 5.1 Hz, 1H), 4.48 (s, 2H), 4.35 (dd, J = 27.7,




5.0 Hz, 6H), 4.13 (d, J = 10.3 Hz, 2H), 3.96 (s, 6H), 3.77 (d, J = 17.5




Hz, 4H), 3.63 (s, 3H), 3.49 (dd, J = 10.8, 6.4 Hz, 7H), 3.10 (d, J = 1.7




Hz, 2H), 2.99-2.84 (m, 1H), 2.79 (dd, J = 13.0, 2.7 Hz, 1H), 2.60-




2.41 (m, 1H), 2.32-2.02 (m, 4H).


D67
706.52

1H NMR (400 MHz, DMSO-d6) δ 10.81 (s, 1H), 8.17 (s, 2H), 7.60 (s,





1H), 6.56 (s, 3H), 5.73 (s, 1H), 4.19 (s, 2H), 3.76 (s, 6H), 3.51 (s, 2H),




3.47 (s, 3H), 3.38 (t, J = 5.5 Hz, 2H), 3.26-3.08 (m, 1H), 3.07-2.92




(m, 2H), 2.81 (d, J = 11.5 Hz, 2H), 2.57 (d, J = 4.2 Hz, 3H), 2.28 (t, J =




7.4 Hz, 3H), 2.04 (s, 1H), 1.57 (d, J = 12.0 Hz, 2H), 1.15 (s, 3H), 1.05




(d, J = 11.4 Hz, 2H).


D68
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.00 (s, 1H), 8.23 (s, 2H, FA), 7.69-




m/z:
7.62 (m, 2H), 7.49 (s, 1H), 7.40 (d, J = 7.9 Hz, 1H), 6.61 (s, 3H),



[M + H]+ = 808.43.
5.11 (dd, J = 13.2, 5.1 Hz, 1H), 4.46-4.26 (m, 3H), 4.22 (s, 2H), 3.80




(s, 6H), 3.64 (s, 2H), 3.50 (s, 3H), 3.44-3.36 (m, 2H), 3.05 (d, J =




10.6 Hz, 2H), 2.92 (d, J = 10.4 Hz, 3H), 2.67-2.57 (m, 5H), 2.49-




2.30 (m, 3H), 2.29-2.06 (m, 4H), 2.04-1.94 (m, 1H), 1.87-1.57




(m, 6H), 1.40 (s, 2H), 1.34-1.07 (m, 3H).


D69
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 7.67-7.48 (m, 2H), 7.45-7.32




m/z: [M + H]+ =
(m, 2H), 6.73 (d, J = 6.3 Hz, 2H), 5.25-5.09 (m, 1H), 4.52-4.42 (m,



809.40
2H), 4.37 (d, J = 3.6 Hz, 3H), 3.96 (s, 2H), 3.95 (s, 6H), 3.75 (d, J =




13.9 Hz, 2H), 3.64 (s, 3H), 3.60 (d, J = 12.7 Hz, 2H), 3.54 (d, J = 5.6




Hz, 2H), 3.32-3.25 (m, 3H), 3.19 (s, 1H), 3.18-3.05 (m, 2H), 2.98-




2.86 (m, 1H), 2.82 (dd, J = 4.8, 2.5 Hz, 1H), 2.78 (s, 3H), 2.64 (t, J =




5.6 Hz, 2H), 2.51 (qd, J = 13.2, 4.7 Hz, 1H), 2.24-2.14 (m, 1H), 2.04




(d, J = 13.9 Hz, 2H), 2.00-1.86 (m, 1H), 1.86-1.70 (m, 3H), 1.68-




1.51 (m, 2H).


D70
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 8.15 (s, 1H, FA), 7.73 (d, J = 8.5 Hz,




m/z:
1H), 7.66-7.49 (m, 3H), 7.38 (d, J = 2.2 Hz, 1H), 7.33-7.23 (m, 2H),



[M + H]+ = 824.35.
6.62-6.54 (m, 3H), 4.22 (s, 2H), 4.07 (d, J = 13.1 Hz, 2H), 3.78 (s,




6H), 3.55-3.49 (m, 5H), 3.44-3.39 (m, 4H), 2.97 (t, J = 12.5 Hz,




3H), 2.60 (d, J = 4.2 Hz, 4H), 2.44-2.31 (m, 8H), 1.76 (d, J = 12.9




Hz, 2H), 1.65-1.52 (m, 1H), 1.42-1.30 (m, 2H), 1.25-1.13 (m,




2H).


D71
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 7.86-7.52 (m, 4H), 6.73 (s, 2H),




m/z:
5.10 (dd, J = 13.2, 5.2 Hz, 1H), 4.51-4.28 (m, 2H), 4.24 (d, J = 9.8



[M + H]+ = 809.43.
Hz, 4H), 3.88 (s, 6H), 3.67-3.58 (m, 2H), 3.51 (s, 3H), 3.43-3.28




(m, 6H), 3.22-2.99 (m, 6H), 2.96-2.72 (m, 4H), 2.67-2.53 (m, 8H),




2.48-2.33 (m, 2H), 2.10-1.95 (m, 4H).


D72
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 7.73 (d, J = 7.9 Hz, 1H), 7.62 (s, 1H),




m/z:
7.53-7.41 (m, 2H), 6.73 (s, 2H), 5.10 (dd, J = 13.2, 5.1 Hz, 1H), 4.50-



[M + H]+ = 809.43.
4.29 (m, 2H), 4.24 (d, J = 10.0 Hz, 4H), 3.87 (s, 6H), 3.67-3.54 (m,




5H), 3.44-3.28 (m, 6H), 3.19-2.86 (m, 8H), 2.79-2.72 (m, 2H),




2.67-2.52 (m, 8H), 2.47-2.31 (m, 2H), 2.06-1.95 (m, 4H).


D73
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.1 (br s, 1H), 8.26 (s, 2H, FA),




m/z: [M + H]+ =
7.64 (s, 1H), 7.55 (d, J = 8.9 Hz, 3H), 6.61 (s, 3H), 5.11 (dd, J = 13.2,



808.43
5.1 Hz, 1H), 4.42 (d, J = 17.1 Hz, 1H), 4.28 (d, J = 17.2 Hz, 1H), 4.22




(s, 2H), 3.80 (s, 6H), 3.62 (s, 2H), 3.50 (s, 3H), 3.40 (t, J = 5.9 Hz,




2H), 3.05 (d, J = 10.7 Hz, 2H), 2.90 (d, J = 12.0 Hz, 3H), 2.71-2.54




(m, 5H), 2.42 (s, 4H), 2.46-2.35 (m, 3H), 2.16 (q, J = 12.1 Hz, 4H),




2.05-1.93 (m, 1H), 1.82-1.58 (m, 6H), 1.41 (s, 2H), 1.32-1.12 (m,




3H).


D74
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 8.15 (s, 1H, FA), 7.64 (s, 1H), 6.68




m/z:
(s, 2H), 6.64-6.57 (m, 1H), 4.22 (s, 2H), 3.95 (s, 2H), 3.84 (s, 6H),



[M + H]+ = 701.50.
3.51 (s, 4H), 3.44-3.39 (m, 5H), 3.19-3.08 (m, 3H), 2.86 (s, 4H),




2.70-2.57 (m, 7H), 2.46-2.41 (m, 2H), 2.10 (s, 3H), 1.74 (s, 7H),




1.67-1.55 (m, 6H), 1.45-1.26 (m, 5H).


D75
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 8.22 (s, 1H, FA), 7.58 (s, 1H), 7.38




m/z:
(d, J = 6.1 Hz, 1H), 6.73 (s, 2H), 5.12 (dd, J = 12.7, 5.4 Hz, 1H), 4.36



[M + H]+ = 859.50.
(s, 4H), 3.95 (s, 6H), 3.64 (s, 3H), 3.55 (t, J = 5.6 Hz, 4H), 3.50 (t, J =




4.7 Hz, 4H), 3.18-3.06 (m, 2H), 2.98 (s, 4H), 2.90-2.69 (m, 8H),




2.64 (t, J = 5.7 Hz, 2H), 2.19-2.11 (m, 1H), 2.02 (d, J = 13.8 Hz, 2H),




1.80-1.46 (m, 5H).


D76
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.07 (s, 1H), 8.19 (s, 2H, FA), 8.09




m/z:
(s, 1H), 7.82 (s, 1H), 7.63 (s, 1H), 7.42 (d, J = 8.7 Hz, 2H), 6.93 (d, J =



[M + H]+ = 820.55.
8.7 Hz, 2H), 6.58 (s, 3H), 5.36 (dd, J = 11.9, 5.1 Hz, 1H), 4.21 (s, 2H),




3.78 (s, 6H), 3.52 (s, 2H), 3.50 (s, 3H), 3.42-3.39 (m, 6H), 3.14-




3.11 (m, 4H), 2.86-2.79 (m, 3H), 2.60 (d, J = 4.3 Hz, 4H), 2.49-




2.44 (m, 5H), 2.29-2.22 (m, 1H), 2.08-2.00 (m, 2H), 1.65-1.58




(m, 2H), 1.40-1.34 (m, 2H), 1.29-1.22 (m, 1H), 1.18-1.08 (m, 2H).


D77
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 8.41 (s, 1H, FA), 7.72 (d, J = 7.8




m/z:
Hz, 1H), 7.58 (s, 1H), 6.73 (s, 3H), 6.17 (s, 1H), 5.27 (dd, J = 12.3, 5.3



[M + H]+ = 811.55
Hz, 1H), 4.36 (s, 4H), 3.95 (s, 6H), 3.64 (s, 3H), 3.60-3.49 (m, 4H),




3.43 (s, 4H), 3.13-3.04 (m, 1H), 2.92-2.76 (m, 9H), 2.72-2.54 (m,




6H), 2.36-2.24 (m, 1H), 2.08-1.95 (m, 2H), 1.78-1.44 (m, 5H).


D78
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 8.50 (s, 2H, FA), 7.58 (s, 1H), 7.51




m/z: [M + H]+ =
(d, J = 9.6 Hz, 1H), 6.73 (s, 2H), 5.12 (dd, J = 12.8, 5.4 Hz, 1H), 4.36



858.50
(s, 4H), 3.96 (s, 6H), 3.64 (s, 4H), 3.55 (t, J = 5.6 Hz, 3H), 3.44 (s,




4H), 3.14-3.07 (m, 1H), 2.97-2.83 (m, 2H), 2.78 (s, 4H), 2.76-




2.69 (m, 5H), 2.66-2.57 (m, 4H), 2.17-2.11 (m, 1H), 2.06-1.98




(m, 2H), 1.75-1.49 (m, 5H).


D79
793.47



D80
826.37

1H NMR (400 MHz, DMSO-d6) δ 11.05 (s, 1H), 8.13 (s, 1H), 7.66 (d,





J = 8.5 Hz, 1H), 7.61 (s, 1H), 7.31 (d, J = 2.2 Hz, 1H), 7.23 (dd, J = 8.7,




2.3 Hz, 1H), 6.61 (s, 1H), 4.19 (s, 2H), 3.79 (s, 6H), 3.76 (s, 2H), 3.48




(s, 3H), 3.30 (s, 6H), 2.99 (t, J = 10.0 Hz, 2H), 2.57 (d, J = 4.1 Hz,




2H), 2.36-2.28 (m, 2H), 1.98 (d, J = 12.8 Hz, 1H), 1.37 (s, 3H), 1.80-




1.61 (m, 2H), 1.32-1.18 (m, 2H).


D81
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.15 (s, 2H, FA), 7.69




m/z:
(d, J = 8.5 Hz, 1H), 7.63 (s, 1H), 7.34 (s, 1H), 7.26 (d, J = 8.8 Hz, 1H),



[M + H]+ = 849.25.
6.75 (s, 1H), 6.64 (s, 2H), 5.07 (dd, J = 12.9, 5.3 Hz, 1H), 4.20 (s, 2H),




3.82 (s, 10H), 3.50 (s, 5H), 3.45-3.41 (m, 8H), 3.05-2.87 (m, 4H),




2.63-2.58 (m, 3H), 2.41-2.26 (m, 3H), 2.06-1.95 (m, 1H), 1.79-




1.66 (m, 2H), 1.45-1.36 (m, 3H), 1.33-1.21 (m, 2H), 0.57-0.51




(m, 2H), 0.45-0.39 (m, 2H).


D82
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 7.70 (d, J = 8.5 Hz, 1H), 7.64 (s, 1H),




m/z: [M + H]+ =
7.35 (d, J = 2.2 Hz, 1H), 7.27 (d, J = 8.9 Hz, 1H), 6.68-6.56 (m, 3H),



939.
5.72-5.59 (m, 2H), 5.27 (dd, J = 13.0, 5.3 Hz, 1H), 4.77 (p, J = 6.2




Hz, 1H), 4.22 (s, 2H), 3.82 (s, 8H), 3.50 (s, 3H), 3.47-3.38 (m, 8H),




3.16-2.96 (m, 4H), 2.90-2.66 (m, 2H), 2.65-2.53 (m, 7H), 2.40-




2.26 (m, 3H), 2.14-2.03 (m, 1H), 1.72 (d, J = 12.3 Hz, 2H), 1.47-




1.35 (m, 3H), 1.31-1.19 (m, 8H).


D83
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 10.98 (s, 1H), 8.16 (s, 2H, FA), 7.64




m/z:
(s, 1H), 7.44 (d, J = 11.8 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 6.65-6.52



[M + H]+ = 827.45.
(m, 3H), 5.09 (dd, J = 13.4, 5.0 Hz, 1H), 4.41-4.19 (m, 5H), 3.80 (s,




7H), 3.65 (s, 4H), 3.50 (s, 5H), 3.41 (s, 2H), 3.04 (s, 4H), 2.98-2.87




(m, 3H), 2.61-2.58 (m, 4H), 2.44-2.30 (m, 4H), 2.07-1.93 (m, 1H),




1.72-1.59 (m, 2H), 1.47-1.10 (m, 6H).


D84
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 10.98 (s, 1H), 8.16 (s, 2H, FA), 7.64




m/z:
(s, 1H), 7.43 (d, J = 11.6 Hz, 1H), 7.23 (d, J = 7.5 Hz, 1H), 6.66-6.56



[M + H]+ = 827.35.
(m, 3H), 5.08 (dd, J = 13.2, 5.1 Hz, 1H), 4.40-4.25 (m, 2H), 4.22 (s,




2H), 3.88-3.74 (m, 9H), 3.50 (s, 4H), 3.45-3.38 (m, 5H), 3.11 (s,




4H), 3.06-2.85 (m, 4H), 2.65-2.57 (m, 5H), 2.41-2.32 (m, 4H),




2.04-1.93 (m, 1H), 1.71 (d, J = 12.4 Hz, 2H), 1.44-1.24 (m, 5H).


D85
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 10.95 (s, 1H), 8.18 (s, 2H, FA), 7.64




m/z:
(s, 1H), 7.55-7.48 (m, 1H), 7.06 (d, J = 7.9 Hz, 2H), 6.65-6.56 (m,



[M + H]+ = 809.80.
3H), 5.05 (dd, J = 13.3, 5.1 Hz, 1H), 4.33 (d, J = 16.9 Hz, 1H), 4.26-




4.17 (m, 3H), 3.81 (s, 6H), 3.71 (s, 2H), 3.50 (s, 3H), 3.41 (t, J = 5.6




Hz, 3H), 3.30-3.24 (m, 5H), 3.02-2.85 (m, 4H), 2.63-2.52 (m,




6H), 2.43-2.23 (m, 6H), 2.00-1.92 (m, 1H), 1.68 (d, J = 12.5 Hz,




2H), 1.44-1.30 (m, 3H), 1.29-1.16 (m, 2H).


D86
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.10 (s, 1H), 8.16 (s, 1H, FA), 7.64




m/z:
(s, 1H), 7.24 (s, 1H), 7.05 (d, J = 13.2 Hz, 1H), 6.66 (s, 2H), 6.60 (d,



[M + H]+ = 840.40.
J = 4.6 Hz, 1H), 5.07 (dd, J = 12.8, 5.4 Hz, 1H), 4.22 (s, 2H), 3.87 (s,




2H), 3.83 (s, 6H), 3.53-3.44 (m, 8H), 3.43-3.38 (m, 3H), 3.09 (d,




J = 11.4 Hz, 2H), 2.94-2.83 (m, 1H), 2.63-2.54 (m, 6H), 2.49-2.41




(m, 5H), 2.37-2.30 (m, 2H), 2.06-1.97 (m, 1H), 1.73 (d, J = 12.6




Hz, 2H), 1.47-1.36 (m, 3H), 1.35-1.22 (m, 2H).


D87
LCMS (ESI)
.1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.16 (s, 1H, FA), 7.67-



m/z:
7.61 (m, 2H), 7.37 (t, J = 7.7 Hz, 1H), 6.66-6.55 (m, 3H), 5.10 (dd,



[M + H]+ = 840.95.
J = 12.8, 5.4 Hz, 1H), 4.22 (s, 2H), 3.81 (s, 6H), 3.74 (s, 2H), 3.50 (s,




4H), 3.41 (t, J = 5.5 Hz, 5H), 3.22 (t, J = 4.8 Hz, 5H), 2.99 (d, J = 11.2




Hz, 2H), 2.94-2.78 (m, 2H), 2.64-2.56 (m, 5H), 2.40-2.31 (m,




4H), 2.07-1.97 (m, 1H), 1.69 (d, J = 12.5 Hz, 2H), 1.38 (s, 3H), 1.29-




1.16 (m, 2H).


D88
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6, D20) δ 7.80 (d, J = 11.1 Hz, 1H),




m/z:
8.14(s, 0H, FA), 7.64 (s, 1H), 7.56 (s, 1H), 6.73 (s, 2H), 5.12 (dd, J =



[M + H]+ = 841.55.
12.8, 5.4 Hz, 1H), 4.31-4.14 (m, 4H), 3.87 (s, 6H), 3.51 (s, 3H), 3.48-




3.39 (m, 6H), 3.31-3.06 (m, 4H), 3.06-2.80 (m, 4H), 2.66-2.56




(m, 5H), 2.56-2.53 (m, 4H), 2.10-1.99 (m, 1H), 1.91-1.82 (m, 2H),




1.81-1.15 (m, 6H).


D89
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.02 (s, 1H), 8.27 (s, 1H, FA), 7.67-




m/z:
7.55 (m, 1H), 7.28 (t, J = 7.7 Hz, 1H), 6.92 (d, J = 7.4 Hz, 1H), 6.73



[M + H]+ = 782.65.
(d, J = 8.1 Hz, 1H), 6.67-6.62 (m, 1H), 6.59 (s, 2H), 5.56 (t, J = 5.0




Hz, 1H), 5.11 (dd, J = 13.2, 5.1 Hz, 1H), 4.27-4.06 (m, 5H), 3.83-




3.73 (m, 7H), 3.65 (s, 2H), 3.50 (s, 3H), 3.40 (t, J = 5.4 Hz, 2H), 3.28




(t, J = 7.1 Hz, 3H), 3.14-3.00 (m, 4H), 2.97-2.86 (m, 1H), 2.67-




2.53 (m, 2H), 2.34-2.25 (m, 1H), 2.09-1.98 (m, 1H), 1.98-1.84




(m, 2H), 1.63-1.50 (m, 2H), 1.43-1.21 (m, 10H).


D90
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.18(s, 0H, FA), 7.83




m/z:
(d, J = 8.3 Hz, 1H), 7.64 (s, 1H), 7.43 (d, J = 2.2 Hz, 1H), 7.35 (dd, J =



[M + H]+ = 755.65.
8.3, 2.3 Hz, 1H), 6.69 (t, J = 5.4 Hz, 1H), 6.64 (s, 2H), 5.12 (dd, J =




12.9, 5.3 Hz, 1H), 4.19 (dd, J = 13.5, 7.1 Hz, 4H), 3.91 (s, 2H), 3.82




(s, 6H), 3.65-3.55 (m, 4H), 3.50 (s, 3H), 3.41 (t, J = 5.3 Hz, 4H), 3.13-




3.04 (m, 2H), 2.96-2.83 (m, 1H), 2.66-2.55 (m, 2H), 2.15-2.00




(m, 3H), 1.85-1.68 (m, 2H), 1.57-1.37 (m, 4H).


D91
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 8.54 (br s, 1H, FA), 7.72 (d, J =




m/z: [M + H]+ =
8.4 Hz, 1H), 7.61 (s, 1H), 7.41 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 8.7 Hz,



811.70
1H), 6.98-6.87 (m, 2H), 5.10 (dd, J = 12.3, 5.3 Hz, 1H), 4.39-4.33




(m, 4H), 3.99 (s, 3H), 3.64 (s, 4H), 3.55 (s, 8H), 3.09 (t, J = 12.1 Hz,




2H), 2.92-2.80 (m, 5H), 2.80-2.71 (m, 5H), 2.64 (d, J = 5.9 Hz, 4H),




2.14 (s, 1H), 2.00 (s, 1H), 1.78-1.45 (m, 5H).


D92
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.16 (s, 2H, FA), 8.08




m/z:
(d, J = 1.7 Hz, 1H), 7.73-7.64 (m, 2H), 7.42 (d, J = 1.8 Hz, 1H), 7.34



[M + H]+ = 794.80.
(d, J = 2.2 Hz, 1H), 7.26 (dd, J = 8.7, 2.3 Hz, 1H), 6.61 (q, J = 4.4 Hz,




1H), 5.08 (dd, J = 12.8, 5.4 Hz, 1H), 4.22 (s, 2H), 3.85 (s, 3H), 3.69 (s,




2H), 3.50 (s, 3H), 3.46-3.40 (m, 8H), 2.98-2.83 (m, 3H), 2.64-




2.55 (m, 5H), 2.45-2.25 (m, 5H), 2.17 (t, J = 11.4 Hz, 2H), 2.06-




1.98 (m, 1H), 1.65 (d, J = 11.8 Hz, 2H), 1.44-1.09 (m, 6H


D93
848.51



D94
863.63



D95
863.56

1H NMR (400 MHz, DMSO-d6) δ 11.03 (s, 1H), 8.14 (s, 1H), 7.62 (d,





J = 8.6 Hz, 2H), 7.27 (d, J = 2.3 Hz, 1H), 7.20 (dd, J = 8.6, 2.4 Hz, 1H),




6.56 (s, 3H), 5.03 (dd, J = 13.0, 5.4 Hz, 1H), 4.19 (s, 2H), 4.10-3.91




(m, 3H), 3.76 (s, 6H), 3.51 (s, 2H), 3.47 (s, 3H), 3.37 (d, J = 5.8 Hz,




1H), 3.15 (d, J = 2.4 Hz, 2H), 2.92 (t, J = 12.1 Hz, 2H), 2.89-2.80 (m,




1H), 2.65 (q, J = 1.9 Hz, 1H), 2.57 (d, J = 4.3 Hz, 3H), 2.34-2.23 (m,




4H), 1.99 (d, J = 14.8 Hz, 3H), 1.77-1.67 (m, 2H), 1.59 (s, 5H), 1.28




(d, J = 7.0 Hz, 1H), 1.24-1.08 (m, 1H).


D96
835.56

1H NMR (400 MHz, DMSO-d6) δ 11.03 (s, 1H), 8.16 (s, 1H), 7.70-





7.49 (m, 2H), 7.28 (d, J = 2.3 Hz, 1H), 7.20 (dd, J = 8.7, 2.4 Hz, 1H),




6.55 (s, 2H), 5.04 (dd, J = 12.8, 5.4 Hz, 1H), 4.19 (s, 2H), 4.01 (d, J =




13.0 Hz, 2H), 3.75 (s, 5H), 3.73-3.59 (m, 2H), 3.47 (s, 3H), 3.38 (t,




J = 5.5 Hz, 2H), 3.15 (s, 2H), 2.99-2.88 (m, 2H), 2.88-2.79 (m, 1H),




2.57 (d, J = 4.3 Hz, 3H), 2.43-2.12 (m, 3H), 2.03-1.93 (m, 1H),




1.74 (d, J = 12.8 Hz, 2H), 1.62 (s, 1H), 1.43 (t, J = 7.1 Hz, 1H), 1.24-




1.12 (m, 2H), 0.43 (q, J = 4.8 Hz, 1H), 0.22-0.03 (m, 1H).


D97
890.39



D98
865.52



D99
837.59



D100
837.59



D101
850.44



D102
851.59



D103
867.5



D104
873.43



D105
831.57



D106
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 7.56 (s, 1H), 6.77-6.64 (m, 3H),




m/z: [M + H]+ =
6.57 (s, 1H), 5.04 (dd, J = 13.2, 5.4 Hz, 1H), 4.48-4.28 (m, 6H), 4.17-



878.55
3.98 (m, 2H), 3.98-3.86 (m, 10H), 3.76-3.45 (m, 10H), 3.28-




3.20 (m, 3H), 3.16-3.01 (m, 2H), 2.94-2.81 (m, 1H), 2.81-2.71




(m, 4H), 2.66-2.56 (m, 2H), 2.43 (qd, J = 13.0, 4.7 Hz, 1H), 2.19-




2.07 (m, 1H), 2.06-1.87 (m, 3H), 1.86-1.69 (m, 3H), 1.67-1.48




(m, 2H).


D107
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 8.45 (br s, 1H, FA), 7.64 (d, J =




m/z:
8.3 Hz, 1H), 7.58 (s, 1H), 6.82 (d, J = 2.0 Hz, 1H), 6.73 (s, 2H), 6.66



[M + H]+ = 835.45.
(dd, J = 8.3, 2.1 Hz, 1H), 5.07 (dd, J = 12.3, 5.4 Hz, 1H), 4.46 (s, 2H),




4.36 (s, 2H), 4.21-4.08 (m, 3H), 3.99-3.85 (m, 7H), 3.78 (s, 4H),




3.64 (s, 3H), 3.55 (t, J = 5.4 Hz, 2H), 2.97 (s, 2H), 2.91-2.68 (m, 6H),




2.66-2.58 (m, 4H), 2.51-2.41 (m, 2H), 2.19-2.01 (m, 1H), 1.97-




1.75 (m, 4H), 0.98 (d, J = 5.0 Hz, 3H).


D109
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.07 (s, 1H), 8.19 (s, 1H, FA), 7.64




m/z:
(d, J = 8.3 Hz, 2H), 6.77 (d, J = 2.1 Hz, 1H), 6.65 (dd, J = 8.4, 2.1 Hz,



[M + H]+ = 821.50.
1H), 6.62-6.57 (m, 3H), 5.05 (dd, J = 12.9, 5.4 Hz, 1H), 4.22 (s, 2H),




3.80 (s, 6H), 3.73 (s, 4H), 3.70 (s, 2H), 3.50 (s, 4H), 3.48-3.45 (m,




6H), 3.09-3.01 (m, 3H), 2.92-2.87 (m, 1H), 2.60 (d, J = 4.3 Hz, 4H),




2.45-2.40 (m, 2H), 2.28 (s, 4H), 2.05-1.97 (m, 1H), 1.78-1.69 (m,




4H).


D110
LCMS (ESI)




m/z: [M + H]+ =




794.30



D111
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.06 (s, 1H), 7.60 (s, 1H), 7.55 (d, J =




m/z:
8.4 Hz, 1H), 7.22-7.14 (m, 2H), 6.98 (dd, J = 8.5, 2.1 Hz, 1H), 6.64



[M + H]+ = 643.25.
(s, 2H), 6.58 (d, J = 4.6 Hz, 1H), 5.02 (dd, J = 13.0, 5.3 Hz, 1H), 4.32




(d, J = 5.3 Hz, 2H), 4.21 (s, 2H), 3.86 (s, 6H), 3.49 (s, 3H), 3.41 (d, J =




5.5 Hz, 3H), 2.95-2.81 (m, 1H), 2.59 (d, J = 4.3 Hz, 3H), 2.54 (s,




3H), 1.99 (d, J = 12.5 Hz, 1H).


D112
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.06 (s, 1H), 7.63 (t, J = 4.3 Hz,




m/z:
2H), 7.31 (d, J = 2.4 Hz, 1H), 7.11-7.01 (m, 1H), 6.64 (s, 2H), 6.58



[M + H]+ = 657.10.
(d, J = 4.5 Hz, 1H), 5.04 (dd, J = 12.9, 5.3 Hz, 1H), 4.64 (s, 2H), 4.20




(s, 2H), 3.85 (s, 6H), 3.48 (s, 3H), 3.09 (s, 3H), 2.86 (d, J = 12.5 Hz,




1H), 2.68 (p, J = 1.8 Hz, 3H), 2.59 (s, 3H), 2.58 (s, 6H), 2.00 (d, J =




12.5 Hz, 1H).


D113
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.18 (s, 1H), 7.86 (d,




m/z: [M + H]+ =
J = 7.7 Hz, 1H), 7.81-7.74 (m, 2H), 7.64 (s, 1H), 6.62 (s, 2H), 6.60-



822.70
6.57 (m, 1H), 5.14 (dd, J = 12.9, 5.4 Hz, 1H), 4.22 (s, 2H), 3.80 (s,




6H), 3.67 (s, 2H), 3.50 (s, 4H), 3.41 (t, J = 5.6 Hz, 4H), 3.03 (d, J =




10.9 Hz, 2H), 2.97-2.88 (m, 3H), 2.77 (t, J = 12.2 Hz, 1H), 2.63-




2.58 (m, 4H), 2.43-2.36 (m, 2H), 2.30-2.21 (m, 2H), 2.12-2.02




(m, 3H), 1.86-1.79 (m, 2H), 1.78-1.63 (m, 4H), 1.43-1.28 (m, 3H),




1.25-1.14 (m, 2H).


D114
LCMS (ESI)
1HNMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 9.24 (s, 1H, TFA), 8.32



m/z:
(s, 1H, TFA), 7.86 (d, J = 8.2 Hz, 1H), 7.64 (s, 1H), 7.35-7.26 (m,



[M + H]+ = 892.45.
2H), 6.75 (s, 2H), 6.62 (d, J = 4.6 Hz, 1H), 5.13 (dd, J = 12.8, 5.4 Hz,




1H), 5.09-5.00 (m, 1H), 4.27-4.10 (m, 4H), 3.89 (d, J = 2.4 Hz, 6H),




3.52 (s, 3H), 3.43-3.41 (m, 4H), 3.24-3.16 (m, 1H), 3.08-2.81 (m,




5H), 2.75-2.69 (m, 1H), 2.66-2.52 (m, 8H), 2.43-2.39 (m, 1H),




2.17-1.96 (m, 6H), 1.94-1.81 (m, 4H), 1.73-1.61 (m, 2H), 1.24 (s,




6H).


D115
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.18 (s, 1H, FA), 7.68




m/z:
(d, J = 8.5 Hz, 1H), 7.63 (s, 1H), 7.34 (d, J = 2.2 Hz, 1H), 7.26 (dd, J =



[M + H]+ = 809.35.
8.8, 2.3 Hz, 1H), 6.64 (s, 2H), 6.59 (q, J = 4.4 Hz, 1H), 5.07 (dd, J =




12.9, 5.4 Hz, 1H), 4.21 (s, 2H), 3.90 (s, 2H), 3.82 (s, 6H), 3.50 (s, 3H),




3.44-3.39 (m, 8H), 3.37-3.28 (m, 5H), 3.08 (t, J = 8.9 Hz, 2H), 2.94-




2.80 (m, 3H), 2.62-2.56 (m, 4H), 2.30 (t, J = 7.2 Hz, 2H), 2.21-




2.13 (m, 1H), 2.06-1.94 (m, 2H), 1.61-1.49 (m, 2H), 1.48-1.39




(m, 1H).


D116
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.19 (s, 2H, FA), 7.86-




m/z:
7.80 (m, 1H), 7.64 (s, 1H), 7.30-7.23 (m, 2H), 6.60 (s, 3H), 5.12



[M + H]+ = 699.40.
(dd, J = 12.8, 5.4 Hz, 1H), 4.94 (t, J = 5.5 Hz, 1H), 4.21 (s, 2H), 3.78




(s, 6H), 3.72-3.65 (m, 5H), 3.50 (s, 3H), 3.40 (s, 3H), 3.13-3.08 (m,




2H), 2.91-2.86 (m, 1H), 2.63-2.57 (m, 5H), 2.09-2.00 (m, 1H).


D117
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.15 (s, 1H), 9.47 (s, 1H, TFA),




m/z:
7.93 (d, J = 7.7 Hz, 1H), 7.87 (s, 1H), 7.83-7.77 (m, 1H), 7.64 (s,



[M + H]+ = 823.55.
1H), 6.74 (s, 2H), 6.63 (s, 1H), 5.16 (dd, J = 12.8, 5.4 Hz, 1H), 4.24 (d,




J = 7.7 Hz, 4H), 3.88 (s, 6H), 3.62 (d, J = 10.7 Hz, 2H), 3.52 (s, 3H),




3.44-3.31 (m, 6H), 3.21-3.00 (m, 7H), 2.98-2.72 (m, 4H), 2.66-




2.58 (m, 4H), 2.50-2.42 (m, 4H), 2.15-1.93 (m, 5H).


D118
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.18 (s, 2H, FA), 7.69




m/z:
(d, J = 8.5 Hz, 1H), 7.34 (d, J = 2.8 Hz, 2H), 7.26 (dd, J = 8.7, 2.2 Hz,



[M + H]+ = 849.50.
1H), 6.68-6.56 (m, 3H), 5.08 (dd, J = 12.8, 5.3 Hz, 1H), 4.23 (s, 2H),




3.82 (s, 9H), 3.49-3.30 (m, 10H), 3.07 (d, J = 11.1 Hz, 3H), 2.97-




2.73 (m, 3H), 2.63-2.55 (m, 6H), 2.40-2.30 (m, 2H), 2.08-1.97




(m, 1H), 1.73 (d, J = 12.2 Hz, 2H), 1.51-1.18 (m, 5H), 1.00 (s, 2H),




0.95-0.86 (m, 2H).


D119
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.06 (s, 1H), 8.95 (s, 1H), 7.73-




m/z: [M + H]+ =
7.61 (m, 2H), 6.94 (d, J = 2.2 Hz, 1H), 6.86 (dd, J = 8.6, 2.1 Hz, 1H),



766.25
6.74 (s, 2H), 6.70 (d, J = 7.2 Hz, 1H), 5.06 (dd, J = 12.8, 5.4 Hz, 1H),




4.28 (s, 2H), 4.22 (s, 2H), 3.88 (s, 7H), 3.59 (t, J = 9.6 Hz, 1H), 3.55-




3.48 (m, 5H), 3.45 (t, J = 5.5 Hz, 2H), 3.28-3.23 (m, 1H), 2.97-2.82




(m, 2H), 2.75 (s, 6H), 2.71-2.65 (m, 1H), 2.62-2.53 (m, 3H), 2.13-




1.94 (m, 3H), 1.71-1.59 (m, 1H), 1.55-1.41 (m, 1H).


D120
LCMS (ESI)




m/z: [M + H]+ =




810.20



D121
LCMS (ESI)




m/z: [M + H]+ =




810.45



D122
LCMS (ESI)




m/z: [M + H]+ =




780.35



D123
LCMS (ESI)




m/z: [M + H]+ =




780.25



D124
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 7.65 (d, J = 8.3 Hz, 1H), 7.57 (s,




m/z:
1H), 6.83 (d, J = 2.0 Hz, 1H), 6.73 (s, 2H), 6.66 (dd, J = 8.4, 2.1 Hz,



[M + H]+ = 849.30.
1H), 5.07 (dd, J = 12.2, 5.5 Hz, 1H), 4.38 (d, J = 15.8 Hz, 4H), 4.02 (d,




J = 9.2 Hz, 4H), 3.97 (s, 6H), 3.79 (s, 3H), 3.67-3.63 (m, 4H), 3.55 (t,




J = 5.5 Hz, 2H), 2.92-2.69 (m, 7H), 2.67-2.54 (m, 6H), 2.16-2.08




(m, 1H), 1.89 (s, 4H), 1.15 (s, 6H).


D125


1H NMR (300 MHz, DMSO-d6, D20) δ 7.91-7.80 (m, 1H), 7.59 (s,





1H), 7.36-7.25 (m, 2H), 6.70 (s, 2H), 5.11 (dd, J = 12.8, 5.4 Hz, 1H),




4.75 (t, J = 6.8 Hz, 1H), 4.30-4.09 (m, 4H), 3.85 (s, 6H), 3.61-3.60




(m, 5H), 3.47-3.35 (m, 5H), 3.19-2.77 (m, 8H), 2.66-2.57 (m, 5H),




2.12-1.74 (m, 5H), 1.55-1.34 (m, 2H), 1.32-1.16 (m, 6H), 1.05 (t,




J = 7.0 Hz, 1H).


D126
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.14 (s, 1H), 8.25 (s, 1H, FA), 7.91




m/z:
(d, J = 8.1 Hz, 1H), 7.88-7.80 (m, 2H), 7.61 (s, 1H), 6.57 (s, 3H),



[M + H]+ = 818.45.
5.17 (dd, J = 12.9, 5.4 Hz, 1H), 4.21 (s, 2H), 3.77 (s, 6H), 3.62 (s, 3H),




3.49 (s, 4H), 3.42-3.39 (d, J = 5.5 Hz, 6H), 3.01 (s, 3H), 2.93-2.70




(m, 2H), 2.59 (d, J = 4.1 Hz, 5H), 2.14-2.00 (m, 1H), 1.64 (s, 4H),




1.41 (s, 6H).


D127
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 8.49 (s, 2H), 7.72 (d, J = 8.4 Hz,




m/z:
1H), 7.58 (s, 1H), 7.39 (d, J = 2.4 Hz, 1H), 7.27 (dd, J = 8.5, 2.4 Hz,



[M + H]+ = 821.50.
1H), 6.73 (s, 2H), 5.61-5.54 (m, 1H), 5.09 (dd, J = 12.5, 5.4 Hz, 1H),




4.36 (s, 4H), 3.95 (s, 6H), 3.64 (s, 4H), 3.56-3.49 (m, 6H), 3.28-




3.22 (m, 2H), 3.18-3.13 (m, 2H), 2.91-2.83 (m, 1H), 2.78 (s, 4H),




2.75-2.40 (m, 12H), 2.16-2.08 (m, 1H).


D128
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.10 (s, 1H), 8.16 (s, 1H, FA), 7.83




m/z:
(d, J = 8.1 Hz, 1H), 7.63 (s, 1H), 7.31-7.25 (m, 2H), 6.63 (s, 2H),



[M + H]+ = 878.44.
6.58 (q, J = 4.4 Hz, 1H), 5.12 (dd, J = 12.9, 5.4 Hz, 1H), 4.98 (p, J =




6.7 Hz, 1H), 4.22 (s, 2H), 3.81 (s, 6H), 3.74 (s, 2H), 3.50 (s, 3H), 3.41




(t, J = 5.6 Hz, 7H), 3.01 (d, J = 10.0 Hz, 2H), 2.94-2.86 (m, 1H), 2.62-




2.57 (m, 4H), 2.46-2.38 (m, 3H), 2.31-2.13 (m, 4H), 2.09-2.00




(m, 1H), 1.96-1.87 (m, 1H), 1.84-1.75 (m, 2H), 1.68-1.47 (m, 5H),




1.41-1.29 (m, 1H), 1.25-1.08 (m, 2H), 0.84 (d, J = 6.4 Hz, 3H).


D129
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.27 (s, 1H, FA), 7.69




m/z:
(d, J = 8.5 Hz, 1H), 7.64 (s, 1H), 7.34 (d, J = 2.3 Hz, 1H), 7.26 (dd, J =



[M + H]+ = 821.35.
8.7, 2.2 Hz, 1H), 6.69-6.58 (m, 3H), 5.08 (dd, J = 12.9, 5.4 Hz, 1H),




4.22 (s, 2H), 3.96-3.87 (m, 2H), 3.83 (s, 8H), 3.50 (s, 3H), 3.46-




3.39 (m, 8H), 3.14-2.98 (m, 2H), 2.94-2.74 (m, 3H), 2.60 (d, J = 4.2




Hz, 3H), 2.57-2.54 (m, 2H), 2.46-2.41 (m, 2H), 2.38-2.29 (m,




2H), 2.20 (s, 1H), 2.06-1.98 (m, 1H), 1.85-1.78 (m, 1H), 1.76-




1.68 (m, 1H), 1.57-1.48 (m, 1H), 1.43-1.32 (m, 1H).


D130
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 7.63 (d, J = 8.5 Hz, 1H), 7.43 (d,




m/z: [M + H]+ =
J = 2.6 Hz, 1H), 7.28 (dd, J = 5.9, 2.1 Hz, 2H), 7.20 (d, J = 8.4 Hz, 1H),



823.25
6.56 (s, 2H), 5.09 (dd, J = 12.3, 5.4 Hz, 1H), 4.68-4.57 (m, 1H), 4.41-




4.14 (m, 2H), 3.88 (d, J = 1.1 Hz, 6H), 3.72-3.60 (m, 3H), 3.59-




3.49 (m, 4H), 3.30-3.18 (m, 4H), 3.06-2.86 (m, 4H), 2.90-2.76




(m, 5H), 2.78-2.36 (m, 10H), 2.30-2.11 (m, 2H), 2.07-1.76 (m,




3H), 1.44-1.28 (m, 1H).


D131
712.49



D132
767.52



D133
746.3



D134
774.3
1H NMR (400 MHz, DMSO-d6) δ 11.10 (s, 1H), 8.13 (s, 1H), 7.95-




7.84 (m, 2H), 7.83 (s, 2H), 7.60 (s, 1H), 6.56 (s, 3H), 5.73 (s, 2H),




5.13 (dd, J = 12.7, 5.4 Hz, 1H), 4.19 (s, 2H), 3.47 (s, 4H), 3.38 (t, J =




5.6 Hz, 2H), 3.30 (d, J = 8.7 Hz, 1H), 3.28 (s, 4H), 2.87 (td, J = 16.8,




15.2, 5.3 Hz, 1H), 2.57 (d, J = 4.2 Hz, 4H), 2.51 (s, 1H), 2.18 (t, J =




10.0 Hz, 2H), 2.05 (dd, J = 10.4, 4.7 Hz, 1H), 1.94-1.84 (m, 2H),




1.54 (d, J = 5.9 Hz, 4H).


D135
762.4
1H NMR (400 MHz, DMSO-d6) δ 11.10 (s, 1H), 8.12 (s, 1H), 7.95-




7.84 (m, 1H), 7.82 (dd, J = 7.4, 3.8 Hz, 2H), 7.60 (d, J = 7.0 Hz, 1H),




6.68 (s, 1H), 6.61 (d, J = 1.8 Hz, 2H), 6.56 (d, J = 4.3 Hz, 1H), 5.73 (s,




1H), 5.13 (dd, J = 12.8, 5.3 Hz, 1H), 4.19 (s, 2H), 3.86-3.78 (m, 7H),




3.48 (t, J = 3.1 Hz, 3H), 3.39 (t, J = 5.6 Hz, 2H), 3.24 (dd, J = 16.5, 8.3




Hz, 1H), 2.93-2.80 (m, 3H), 2.73 (s, 1H), 2.57 (dd, J = 4.2, 1.5 Hz,




4H), 2.38 (dt, J = 26.0, 9.7 Hz, 2H), 2.19 (dt, J = 20.1, 9.5 Hz, 2H),




2.08-2.00 (m, 1H), 1.95 (dd, J = 13.3, 7.0 Hz, 2H).


D136
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.21 (s, 2H, FA), 7.64




m/z:
(t, J = 4.1 Hz, 2H), 6.78 (d, J = 2.1 Hz, 1H), 6.68-6.57 (m, 4H), 5.05



[M + H]+ = 849.60.
(dd, J = 12.9, 5.4 Hz, 1H), 4.22 (s, 2H), 3.81 (s, 6H), 3.77-3.68 (m,




6H), 3.50 (s, 3H), 3.41 (t, J = 5.6 Hz, 2H), 2.98 (s, 2H), 2.94-2.83 (m,




1H), 2.63-2.52 (m, 7H), 2.47-2.19 (m, 6H), 2.10 (d, J = 7.0 Hz, 2H),




2.04-1.95 (m, 1H), 1.80-1.72 (m, 4H), 1.68 (d, J = 12.7 Hz, 2H),




1.61-1.50 (m, 1H), 1.23-1.10 (m, 2H).


D137
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.15 (s, 1H), 8.21 (s, 1H FA), 7.91




m/z:
(dd, J = 7.6, 0.9 Hz, 1H), 7.88-7.81 (m, 2H), 7.63 (s, 1H), 6.66-6.51



[M + H]+ = 832.40.
(m, 3H), 5.17 (dd, J = 12.8, 5.4 Hz, 1H), 4.21 (s, 2H), 3.77 (s, 6H),




3.40 (t, J = 5.5 Hz, 4H), 2.94-2.85 (m, 1H), 2.77 (t, J = 6.8 Hz, 2H),




2.63-2.54 (m, 7H), 2.42 (s, 4H), 2.12-2.00 (m, 1H), 1.62-1.44 (m,




6H), 1.41 (s, 6H).


D138
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.25 (s, 1H, FA), 7.69




m/z:
(d, J = 8.6 Hz, 1H), 7.64 (s, 1H), 7.35 (d, J = 2.3 Hz, 1H), 7.27 (dd, J =



[M + H]+ = 835.41.
8.7, 2.3 Hz, 1H), 6.65 (s, 2H), 6.61 (q, J = 4.4 Hz, 1H), 5.08 (dd, J =




12.9, 5.3 Hz, 1H), 4.22 (s, 2H), 4.00-3.92 (m, 1H), 3.92-3.78 (m,




8H), 3.50 (s, 5H), 3.47-3.38 (m, 9H), 3.13-3.05 (m, 1H), 2.94-




2.82 (m, 2H), 2.63-2.55 (m, 5H), 2.44-2.24 (m, 4H), 2.07-1.99




(m, 1H), 1.95-1.72 (m, 3H), 1.66-1.49 (m, 3H), 1.41-1.30 (m, 1H).


D139
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.18 (s, 2H, FA), 7.71-




m/z:
7.60 (m, 2H), 7.34 (d, J = 2.1 Hz, 1H), 7.29-7.22 (m, 1H), 6.62-



[M + H]+ = 824.50.
6.55 (m, 3H), 5.07 (dd, J = 12.6, 5.3 Hz, 1H), 4.22 (s, 2H), 3.78 (s,




6H), 3.56-3.49 (m, 6H), 3.45-3.38 (m, 8H), 2.93-2.82 (m, 1H),




2.66-2.53 (m, 8H), 2.47-2.31 (m, 12H), 2.06-1.98 (m, 1H).


D140
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.15 (s, 1H, FA), 7.72-




m/z:
7.62 (m, 2H), 7.34 (d, J = 2.2 Hz, 1H), 7.26 (d, J = 8.8 Hz, 1H), 6.67-



[M + H]+ = 908.55.
6.56 (m, 3H), 5.07 (dd, J = 12.7, 5.3 Hz, 1H), 4.22 (s, 2H), 3.84-




3.73 (m, 8H), 3.60 (s, 2H), 3.50 (s, 3H), 3.46-3.38 (m, 9H), 2.95-




2.83 (m, 1H), 2.76-2.65 (m, 3H), 2.64-2.53 (m, 9H), 2.40-2.23




(m, 6H), 2.17 (s, 2H), 2.08-1.98 (m, 1H), 1.91-1.80 (m, 2H), 1.67-




1.51 (m, 4H).


D141
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.04 (s, 1H), 8.18 (s, 2H), 7.74-




m/z: [M + H]+ =
7.47 (m, 2H), 7.26 (d, J = 2.2 Hz, 1H), 7.19 (dd, J = 8.7, 2.3 Hz, 1H),



851.51
6.54 (s, 3H), 5.03 (dd, J = 12.9, 5.4 Hz, 1H), 4.19 (s, 2H), 3.99 (d, J =




13.0 Hz, 2H), 3.81 (s, 2H), 3.74 (s, 6H), 3.46 (s, 3H), 3.37 (d, J = 5.7




Hz, 2H), 2.95-2.85 (m, 3H), 2.57 (d, J = 4.3 Hz, 3H), 2.14 (t, J = 7.5




Hz, 2H), 2.03-1.95 (m, 1H), 1.75-1.64 (m, 4H), 1.07 (d, J = 5.7 Hz,




7H), 1.00 (d, J = 6.6 Hz, 2H).


D142
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.10 (s, 1H), 8.14 (s, 1H), 7.91-




m/z: [M + H]+ =
7.81 (m, 2H), 7.60 (s, 1H), 6.56 (d, J = 3.9 Hz, 3H), 5.13 (dd, J = 12.7,



707.34
5.4 Hz, 1H), 4.19 (s, 2H), 3.77 (s, 5H), 3.55 (s, 2H), 3.48 (d, J = 10.1




Hz, 5H), 3.37 (t, J = 5.7 Hz, 3H), 3.19-3.14 (m, 2H), 2.87 (ddd, J =




16.7, 13.6, 5.4 Hz, 1H), 2.67-2.59 (m, 1H), 2.57 (d, J = 4.2 Hz, 3H),




2.11-1.98 (m, 1H).


D143
LCMS (ESI)




m/z: [M + H]+ =




735.38



D144
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.22 (s, 1H, FA), 7.70-




m/z: [M + H]+ =
7.59 (m, 2H), 6.91 (d, J = 2.1 Hz, 1H), 6.81 (dd, J = 8.6, 2.2 Hz, 1H),



821.5
6.63-6.53 (m, 3H), 5.06 (dd, J = 12.6, 5.4 Hz, 1H), 4.21 (s, 2H), 4.00




(q, J = 8.5 Hz, 2H), 3.88-3.81 (m, 2H), 3.78 (s, 6H), 3.68-3.57 (m,




3H), 3.54-3.45 (m, 8H), 3.25-3.16 (m, 4H), 3.10 (q, J = 7.3 Hz, 2H),




2.95-2.81 (m, 1H), 2.62-2.55 (m, 6H), 2.26-2.17 (m, 2H), 2.07-




1.96 (m, 1H).


D145
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 7.82-7.76 (m, 1H), 7.58 (s, 1H),




m/z:
7.51 (d, J = 2.3 Hz, 1H), 7.38 (dd, J = 8.5, 2.2 Hz, 1H), 6.73 (s, 2H),



[M + H]+ = 851.65.
5.11 (dd, J = 12.4, 5.4 Hz, 1H), 4.37 (d, J = 4.6 Hz, 4H), 4.25 (d, J =




13.6 Hz, 2H), 3.96 (d, J = 3.5 Hz, 6H), 3.75-3.60 (m, 6H), 3.60-




3.52 (m, 3H), 3.51-3.41 (m, 2H), 3.24-3.07 (m, 4H), 2.92-2.70




(m, 6H), 2.63 (s, 2H), 2.18-1.85 (m, 4H), 1.84-1.58 (m, 4H), 1.57-




1.48 (m, 6H).


D146
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.17 (s, 1H, FA), 7.68




m/z:
(d, J = 8.5 Hz, 1H), 7.63 (s, 1H), 7.34 (d, J = 2.2 Hz, 1H), 7.25 (dd, J =



[M + H]+ = 807.55.
8.7, 2.3 Hz, 1H), 6.66-6.56 (m, 3H), 5.07 (dd, J = 12.9, 5.4 Hz, 1H),




4.22 (s, 2H), 3.84 (s, 2H), 3.82 (s, 6H), 3.59 (s, 2H), 3.50 (s, 4H), 3.48




(s, 2H), 3.43-3.39 (m, 8H), 2.93-2.84 (m, 1H), 2.62-2.58 (m, 4H),




2.58-2.55 (m, 1H), 2.35 (t, J = 4.9 Hz, 4H), 2.27-2.19 (m, 2H), 2.06-




1.99 (m, 1H), 1.95 (t, J = 10.1 Hz, 2H).


D147
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.15 (s, 1H, FA), 7.68




m/z:
(d, J = 8.4 Hz, 1H), 7.64 (s, 1H), 7.34 (s, 1H), 7.25 (dd, J = 8.9, 2.3



[M + H]+ = 827.35.
Hz, 1H), 6.59 (s, 3H), 5.07 (dd, J = 12.8, 5.4 Hz, 1H), 4.22 (s, 2H),




3.79 (s, 6H), 3.57 (s, 2H), 3.50 (s, 3H), 3.46-3.37 (m, 10H), 2.94-




2.82 (m, 1H), 2.65-2.55 (m, 11H), 2.38-2.30 (m, 2H), 2.06-1.98




(m, 1H), 1.81 (t, J = 12.2 Hz, 2H), 1.74-1.54 (m, 2H).


D148
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.18 (s, 1H, FA), 7.68




m/z:
(d, J = 8.5 Hz, 1H), 7.63 (s, 1H), 7.34 (d, J = 2.2 Hz, 1H), 7.26 (dd, J =



[M + H]+ = 809.35.
8.8, 2.3 Hz, 1H), 6.64 (s, 2H), 6.59 (q, J = 4.4 Hz, 1H), 5.07 (dd, J =




12.9, 5.4 Hz, 1H), 4.21 (s, 2H), 3.90 (s, 2H), 3.82 (s, 6H), 3.50 (s, 3H),




3.44-3.39 (m, 8H), 3.37-3.28 (m, 5H), 3.08 (t, J = 8.9 Hz, 2H), 2.94-




2.80 (m, 3H), 2.62-2.56 (m, 4H), 2.30 (t, J = 7.2 Hz, 2H), 2.21-




2.13 (m, 1H), 2.06-1.94 (m, 2H), 1.61-1.49 (m, 2H), 1.48-1.39




(m, 1H).


D149
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.23 (s, 2H, FA), 7.83




m/z: [M + H]+ =
(dd, J = 8.2, 2.8 Hz, 1H), 7.63 (s, 1H), 7.34-7.23 (m, 2H), 6.66-6.57



824.75
(m, 3H), 5.12 (dd, J = 12.9, 5.4 Hz, 1H), 4.98-4.90 (m, 1H), 4.69 (p,




J = 7.1 Hz, 1H), 4.22 (s, 2H), 3.80 (d, J = 4.7 Hz, 6H), 3.71 (s, 2H),




3.50 (s, 3H), 3.40 (t, J = 5.5 Hz, 2H), 3.01-2.92 (m, 2H), 2.92-2.84




(m, 1H), 2.74-2.68 (m, 1H), 2.65-2.57 (m, 4H), 2.56-2.52 (m, 2H),




2.42-2.25 (m, 3H), 2.22-2.14 (m, 1H), 2.10-1.98 (m, 6H), 1.93-




1.57 (m, 4H), 1.49 (s, 1H), 1.25-1.07 (m, 2H).


D150
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.21 (s, 2H, FA), 7.68




m/z: [M + H]+ =
(d, J = 8.5 Hz, 1H), 7.64 (s, 1H), 7.34 (d, J = 2.2 Hz, 1H), 7.26 (dd, J =



769.45
8.7, 2.3 Hz, 1H), 6.66 (t, J = 5.5 Hz, 1H), 6.60 (s, 2H), 5.08 (dd, J =




12.9, 5.4 Hz, 1H), 4.23 (s, 2H), 3.79 (s, 6H), 3.54 (s, 2H), 3.50 (s, 3H),




3.46-3.39 (m, 7H), 3.22 (q, J = 6.5 Hz, 3H), 2.93-2.83 (m, 1H),




2.64-2.53 (m, 6H), 2.43 (t, J = 7.1 Hz, 2H), 2.21 (s, 6H), 2.06-1.98




(m, 1H).


D151
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.15 (s, 2H), 7.68 (d,




m/z: [M + H]+ =
J = 8.5 Hz, 1H), 7.63 (s, 1H), 7.34 (d, J = 2.2 Hz, 1H), 7.25 (dd, J = 8.6,



839.55
2.2 Hz, 1H), 6.59 (s, 3H), 5.08 (dd, J = 12.7, 5.3 Hz, 1H), 4.21 (s, 2H),




3.79 (s, 6H), 3.76-3.67 (m, 1H), 3.52 (s, 2H), 3.49 (s, 5H), 3.48-




3.35 (m, 10H), 2.98-2.80 (m, 1H), 2.75-2.55 (m, 7H), 2.50-2.43




(m, 2H), 2.36-2.26 (m, 2H), 2.19-1.97 (m, 2H), 1.85 (t, J = 10.7 Hz,




1H), 1.61-1.32 (m, 4H).


D152
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.14 (s, 1H, FA), 7.68




m/z:
(d, J = 8.5 Hz, 1H), 7.63 (s, 1H), 7.35 (s, 1H), 7.26 (dd, J = 8.7, 2.3



[M + H]+ = 825.70.
Hz, 1H), 6.62 (s, 2H), 6.61-6.57 (m, 1H), 5.08 (dd, J = 12.9, 5.3 Hz,




1H), 4.21 (s, 2H), 3.81 (s, 6H), 3.78-3.73 (m, 1H), 3.65 (s, 2H), 3.50




(s, 4H), 3.47-3.42 (m, 6H), 3.42-3.37 (m, 5H), 2.95-2.82 (m, 2H),




2.74-2.69 (m, 1H), 2.60 (d, J = 4.3 Hz, 5H), 2.58-2.54 (m, 4H),




2.31-2.21 (m, 1H), 2.12-1.97 (m, 2H), 1.68-1.51 (m, 2H).


D153
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 8.49 (s, 2H, FA), 7.74 (dd, J =




m/z:
16.5, 8.4 Hz, 1H), 7.57 (s, 1H), 7.27 (s, 1H), 7.13 (d, J = 8.8 Hz, 1H),



[M + H]+ = 835.60.
6.70 (s, 2H), 5.11 (dd, J = 12.7, 5.4 Hz, 1H), 4.34 (d, J = 11.5 Hz, 4H),




4.05-3.88 (m, 8H), 3.78 (d, J = 12.0 Hz, 2H), 3.71-3.61 (m, 5H),




3.57-3.40 (m, 5H), 3.12-2.99 (m, 2H), 2.89-2.68 (m, 9H), 2.62 (s,




3H), 2.18-2.09 (m, 1H), 1.93 (d, J = 13.8 Hz, 2H), 1.84-1.78 (m,




1H), 1.73-1.63 (m, 1H), 1.52 (s, 3H), 1.39-1.27 (m, 1H).


D154
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 8.51 (s, 2H), 7.70 (d, J = 8.5 Hz,




m/z:
1H), 7.57 (s, 1H), 7.37 (d, J = 2.2 Hz, 1H), 7.25 (dd, J = 8.6, 2.3 Hz,



[M + H]+ = 859.75.
1H), 6.72 (s, 2H), 5.09 (dd, J = 12.3, 5.4 Hz, 1H), 4.37 (d, J = 9.4 Hz,




4H), 3.95 (s, 6H), 3.70-3.62 (m, 4H), 3.60-3.45 (m, 7H), 3.18 (t, J =




12.6 Hz, 2H), 2.95-2.69 (m, 12H), 2.68-2.59 (m, 2H), 2.58-2.46




(m, 1H), 2.19-2.07 (m, 3H), 2.03-1.86 (m, 2H).


D155
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 7.79 (d, J = 8.4 Hz, 1H), 7.59 (s,




m/z:
1H), 7.50 (d, J = 2.1 Hz, 1H), 7.41-7.34 (m, 1H), 6.75 (s, 2H), 5.12



[M + H]+ = 859.50.
(dd, J = 12.4, 5.4 Hz, 1H), 4.50 (s, 2H), 4.36 (s, 2H), 3.96 (s, 6H), 3.94-




3.74 (m, 3H), 3.70-3.62 (m, 5H), 3.61-3.39 (m, 8H), 3.39-3.35




(m, 2H), 3.23-3.19 (m, 1H), 2.87-2.71 (m, 6H), 2.68-2.61 (m, 2H),




2.40-2.21 (m, 3H), 2.18-2.09 (m, 1H), 1.96-1.80 (m, 2H).


D156
737.88



D157
723.39



D158
738.37



D159
751.46



D161
751.39
NA


D162
751.32
NA


D163
765.39
NA


D164
766.4
1H NMR (400 MHz, DMSO-d6) δ 11.04 (s, 1H), 8.13 (s, 1H), 7.65-




7.57 (m, 2H), 6.75 (d, J = 2.1 Hz, 1H), 6.61 (dd, J = 8.4, 2.1 Hz, 1H),




6.56 (s, 2H), 6.54 (d, J = 4.5 Hz, 1H), 5.03 (dd, J = 12.9, 5.4 Hz, 1H),




4.19 (s, 2H), 4.05 (t, J = 7.7 Hz, 2H), 3.80 (dd, J = 8.9, 4.9 Hz, 2H),




3.76 (s, 5H), 3.54 (s, 2H), 3.47 (s, 3H), 3.37 (s, 1H), 3.25 (q, J = 5.9




Hz, 1H), 3.15 (s, 1H), 2.86 (ddd, J = 17.6, 13.9, 5.4 Hz, 1H), 2.61-




2.50 (m, 4H), 2.47-2.42 (m, 4H), 2.34-2.29 (m, 4H), 1.99 (dp, J =




12.2, 4.6, 4.0 Hz, 1H).


D165
737.4
1H NMR (400 MHz, DMSO-d6) δ 11.03 (s, 1H), 8.15 (s, 1H), 7.61 (d,




J = 8.8 Hz, 2H), 6.76 (d, J = 2.1 Hz, 1H), 6.62 (dd, J = 8.4, 2.1 Hz,




1H), 6.57 (s, 2H), 6.54 (dd, J = 5.8, 3.3 Hz, 1H), 5.03 (dd, J = 12.9, 5.4




Hz, 1H), 4.19 (s, 2H), 3.90 (q, J = 8.4 Hz, 4H), 3.77 (s, 6H), 3.47 (s,




3H), 3.38 (t, J = 5.5 Hz, 2H), 3.15 (s, 1H), 3.10 (s, 0H), 2.86 (ddd, J =




17.4, 13.9, 5.5 Hz, 1H), 2.77 (s, 2H), 2.61-2.48 (m, 6H), 2.05-1.93




(m, 3H).


D166
737.4
1H NMR (400 MHz, DMSO-d6) δ 11.04 (s, 1H), 8.13 (s, 1H), 7.65-




7.58 (m, 2H), 6.80 (d, J = 2.0 Hz, 1H), 6.72 (dd, J = 8.3, 2.0 Hz, 1H),




6.56 (d, J = 12.0 Hz, 3H), 5.03 (dd, J = 12.9, 5.4 Hz, 1H), 4.28 (dt, J =




8.3, 4.2 Hz, 1H), 4.19 (s, 2H), 3.77 (s, 6H), 3.78-3.66 (m, 2H), 3.47




(s, 3H), 3.38 (t, J = 5.6 Hz, 2H), 3.15 (s, 1H), 2.96-2.79 (m, 2H), 2.72




(s, 1H), 2.57 (d, J = 4.3 Hz, 4H), 2.51 (s, 1H), 2.45 (s, 0H), 2.03-1.85




(m, 2H).


D167
LCMS

1H NMR (300 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.24 (s, 2H, FA), 7.69-




(ESI) m/z:
7.59 (m, 2H), 6.89 (d, J = 2.1 Hz, 1H), 6.80 (dd, J = 8.6, 2.2 Hz, 1H),



[M + H]+ = 807.
6.60 (s, 3H), 5.05 (dd, J = 12.5, 5.4 Hz, 1H), 4.21 (s, 2H), 3.79 (s, 6H),




3.70-3.63 (m, 4H), 3.54-3.47 (m, 7H), 3.43-3.37 (m, 6H), 3.18-




3.10 (m, 4H), 3.04 (s, 2H), 2.91-2.82 (m, 1H), 2.63-2.56 (m, 5H),




2.39-2.31 (m, 1H), 2.15 (t, J = 6.8 Hz, 2H), 2.06-1.95 (m, 1H).


D168
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.09 (s, 1H), 7.69 (d, J = 8.5 Hz,




m/z:
1H), 7.64 (s, 1H), 7.35 (d, J = 2.3 Hz, 1H), 7.26 (dd, J = 8.7, 2.3 Hz,



[M + H]+ = 981.35.
1H), 6.69 (s, 2H), 6.60 (q, J = 4.4 Hz, 1H), 5.08 (dd, J = 12.9, 5.4 Hz,




1H), 4.22 (s, 2H), 4.14 (s, 2H), 4.00-3.91 (m, 2H), 3.86 (s, 6H), 3.70-




3.56 (m, 2H), 3.50 (s, 3H), 3.45-3.39 (m, 6H), 2.94-2.83 (m, 2H),




2.63-2.56 (m, 6H), 2.50-2.42 (m, 7H), 2.06-1.97 (m, 1H).


D169
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.21 (s, 1H, FA), 7.68




m/z:
(d, J = 8.5 Hz, 1H), 7.63 (s, 1H), 7.34 (d, J = 2.3 Hz, 1H), 7.26 (dd, J =



[M + H]+ = 795.35.
8.7, 2.3 Hz, 1H), 6.64-6.54 (m, 3H), 5.07 (dd, J = 12.9, 5.4 Hz, 1H),




4.22 (s, 2H), 3.80 (s, 6H), 3.73 (s, 2H), 3.50 (s, 4H), 3.45-3.37 (m,




8H), 2.95-2.79 (m, 2H), 2.66-2.56 (m, 6H), 2.49-2.44 (m, 3H),




2.40-2.32 (m, 3H), 2.31-2.26 (m, 2H), 2.07-1.96 (m, 1H), 1.91-




1.81 (m, 1H), 1.46-1.34 (m, 1H).


D170
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.19 (s, 1H, FA), 7.68-




m/z:
7.61 (m, 2H), 7.32 (d, J = 2.3 Hz, 1H), 7.24 (dd, J = 8.7, 2.3 Hz, 1H),



[M + H]+ = 795.35.
6.58 (s, 3H), 5.07 (dd, J = 12.9, 5.4 Hz, 1H), 4.21 (s, 2H), 4.04 (d, J =




12.7 Hz, 2H), 3.77 (s, 6H), 3.51 (d, J = 11.7 Hz, 6H), 3.40 (t, J = 5.6




Hz, 4H), 2.98-2.86 (m, 3H), 2.63-2.55 (m, 5H), 2.48-2.37 (m,




8H), 2.06-1.97 (m, 1H), 1.83 (d, J = 12.1 Hz, 2H), 1.43 (q, J = 11.7,




11.0 Hz, 2H).


D171
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 7.73 (d, J = 8.2 Hz, 1H), 7.57 (s,




m/z:
1H), 6.96 (d, J = 2.1 Hz, 1H), 6.81 (dd, J = 8.2, 2.1 Hz, 1H), 6.73 (d,



[M + H]+ = 823.55
J = 4.1 Hz, 2H), 5.09 (dd, J = 12.3, 5.4 Hz, 1H), 4.50-4.20 (m, 9H),




3.96 (d, J = 4.8 Hz, 6H), 3.64 (s, 3H), 3.62-3.52 (m, 4H), 3.25-3.02




(m, 4H), 2.96-2.82 (m, 4H), 2.81-2.69 (m, 5H), 2.67-2.60 (m, 2H),




2.18-1.86 (m, 4H), 1.80-1.52 (m, 4H).


D172
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 8.45 (s, 2H, FA), 7.68 (d, J = 8.4




m/z: [M + H]+ =
Hz, 1H), 7.58 (s, 1H), 7.09 (d, J = 2.1 Hz, 1H), 6.94 (dd, J = 8.5, 2.2



835.80.
Hz, 1H), 6.71 (s, 2H), 5.08 (dd, J = 12.4, 5.4 Hz, 1H), 4.74 (s, 1H),




4.35 (s, 4H), 4.14 (s, 1H), 3.93 (s, 6H), 3.71-3.60 (m, 5H), 3.58-




3.44 (m, 4H), 3.24 (d, J = 10.4 Hz, 1H), 3.16-3.01 (m, 3H), 2.97-




2.70 (m, 8H), 2.63 (t, J = 5.7 Hz, 2H), 2.28-2.07 (m, 3H), 1.96 (d, J =




13.4 Hz, 2H), 1.75-1.49 (m, 5H).


D173
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.20 (s, 2H, FA), 7.69-




m/z:
7.61 (m, 2H), 7.27 (d, J = 2.2 Hz, 1H), 7.21 (dd, J = 8.8, 2.4 Hz, 1H),



[M + H]+ = 851.40.
6.69-6.54 (m, 3H), 5.07 (dd, J = 12.9, 5.4 Hz, 1H), 4.22 (s, 2H), 4.03-




3.93 (m, 3H), 3.79 (s, 7H), 3.63 (s, 3H), 3.50 (s, 3H), 3.40 (t, J = 5.5




Hz, 2H), 2.99-2.84 (m, 5H), 2.59 (d, J = 4.3 Hz, 3H), 2.58-2.53 (m,




4H), 2.25 (s, 3H), 2.23-2.15 (m, 2H), 2.06-1.97 (m, 1H), 1.88-




1.71 (m, 2H), 1.63 (d, J = 12.5 Hz, 2H), 1.56-1.43 (m, 2H), 1.31 (s,




3H), 1.21-1.07 (m, 2H).


D174
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.18 (s, 1H, FA), 7.68




m/z:
(d, J = 8.5 Hz, 1H), 7.62 (s, 1H), 7.34 (d, J = 2.2 Hz, 1H), 7.25 (dd, J =



[M + H]+ = 849.35.
8.7, 2.0 Hz, 1H), 6.59 (s, 3H), 5.07 (dd, J = 12.8, 5.4 Hz, 1H), 4.21 (s,




2H), 3.78 (s, 6H), 3.60-3.37 (m, 15H), 2.96-2.80 (m, 4H), 2.63-




2.53 (m, 6H), 2.20 (s, 2H), 2.13-1.95 (m, 3H), 1.60-1.50 (m, 2H),




1.45-1.31 (m, 2H), 1.28-1.13 (m, 1H), 0.39 (s, 2H), 0.17 (s, 2H).


D175
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.19 (s, 1H, FA), 7.70-




m/z:
7.66 (m, 1H), 7.63 (d, J = 2.7 Hz, 1H), 7.35 (s, 1H), 7.26 (t, J = 7.9



[M + H]+ = 922.35.
Hz, 1H), 6.62-6.56 (m, 3H), 5.07 (dd, J = 13.0, 5.4 Hz, 1H), 4.21 (s,




2H), 3.77 (d, J = 2.7 Hz, 6H), 3.61 (s, 2H), 3.57-3.52 (m, 4H), 3.50-




3.47 (m, 4H), 3.44-3.40 (m, 7H), 3.34-3.30 (m, 3H), 2.94-2.84




(m, 1H), 2.63-2.58 (m, 6H), 2.57-2.54 (m, 5H), 2.48-2.41 (m, 3H),




2.41-2.23 (m, 2H), 2.06-1.97 (m, 1H), 1.72-1.58 (m, 2H), 1.56-




1.41 (m, 2H).


D176
792.29

1H NMR (400 MHz, DMSO-d6) δ 11.10 (d, J = 15.8 Hz, 1H), 8.14 (s,





2H), 7.78 (d, J = 16.8 Hz, 2H), 7.60 (s, 1H), 6.57 (d, J = 15.8 Hz, 3H),




5.20-4.89 (m, 2H), 4.19 (s, 2H), 3.96 (s, 3H), 3.79 (d, J = 3.5 Hz,




7H), 3.48 (s, 3H), 2.57 (d, J = 4.2 Hz, 3H), 1.88-1.64 (m, 1H), 1.45-




1.24 (m, 2H).


D177
764.92



D178
794.46



D179
LCMS (ESI)




m/z: [M + H]+ =




780.46



D180
LCMS (ESI)




m/z: [M + H]+ =




766.39



D181
LCMS (ESI)




m/z: [M + H]+ =




820.5



D182
LCMS (ESI)




m/z: [M + H]+ =




792.91



D183
LCMS (ESI)




m/z: [M + H]+ =




767.92



D184
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.06 (s, 1H), 8.20 (s, 2H, FA), 7.79-




m/z: [M + H]+ =
7.50 (m, 2H), 6.76 (d, J = 2.0 Hz, 1H), 6.67 (d, J = 7.8 Hz, 1H), 6.62



781.45
(s, 2H), 5.05 (dd, J = 12.6, 5.4 Hz, 1H), 4.88 (t, J = 5.4 Hz, 1H), 4.24




(s, 2H), 4.21-4.10 (m, 1H), 4.00 (d, J = 9.7 Hz, 1H), 3.80 (s, 6H),




3.75-3.59 (m, 4H), 3.51 (s, 4H), 3.46-3.37 (m, 3H), 3.20 (d, J = 6.2




Hz, 2H), 3.08 (t, J = 8.0 Hz, 1H), 2.98-2.80 (m, 1H), 2.71-2.59 (m,




3H), 2.58-2.54 (m, 2H), 2.29 (s, 6H), 2.08-1.91 (m, 2H), 1.76 (d,




J = 12.4 Hz, 1H).


D185
LCMS (ESI)




m/z: [M + H]+ =




795.25



D186
LCMS (ESI)




m/z: [M + H]+ =




867.6



D187
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.06 (s, 1H), 8.22 (s, 3H, FA), 7.66-




m/z: [M + H]+ =
7.58 (m, 2H), 6.83 (d, J = 2.0 Hz, 1H), 6.74 (dd, J = 8.3, 2.1 Hz, 1H),



795.55
6.64-6.56 (m, 3H), 5.05 (dd, J = 12.8, 5.4 Hz, 1H), 4.40-4.31 (m,




1H), 4.22 (s, 2H), 3.80 (s, 8H), 3.62 (s, 2H), 3.50 (s, 3H), 3.41 (t, J =




5.5 Hz, 2H), 3.20 (d, J = 6.7 Hz, 2H), 2.96-2.77 (m, 3H), 2.63-2.53




(m, 6H), 2.44 (t, J = 6.5 Hz, 3H), 2.31-2.25 (m, 6H), 2.07-1.90 (m,




3H).


D188
LCMS (ESI)




m/z: [M + H]+ =




809.65



D189
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.06 (s, 1H), 8.23 (s, 3H, FA), 7.76-




m/z: [M + H]+ =
7.55 (m, 2H), 6.79 (d, J = 2.1 Hz, 1H), 6.71-6.60 (m, 2H), 6.60 (s,



795.6
2H), 5.06 (dd, J = 12.7, 5.3 Hz, 1H), 4.23 (s, 2H), 4.06-3.87 (m, 4H),




3.79 (s, 6H), 3.51 (s, 5H), 3.47-3.37 (m, 2H), 3.24-3.13 (m, 2H),




2.98-2.75 (m, 4H), 2.68-2.51 (m, 7H), 2.19 (s, 6H), 2.04 (q, J =




12.6, 9.6 Hz, 3H).


D190
LCMS (ESI)




m/z: [M + H]+ =




809.65



D191
LCMS (ESI)




m/z: [M + H]+ =




809.45



D192
LCMS (ESI)




m/z: [M + H]+ =




781.7



D193
LCMS (ESI)




m/z: [M + H]+ =




936.55



D194
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.10 (s, 1H), 8.19 (s, 2H, FA), 7.83




m/z: [M + H]+ =
(d, J = 8.3 Hz, 1H), 7.64 (s, 1H), 7.42 (d, J = 2.2 Hz, 1H), 7.34 (dd, J =



824.35
8.3, 2.3 Hz, 1H), 6.68 (t, J = 5.7 Hz, 1H), 6.61 (s, 2H), 5.12 (dd, J =




12.9, 5.4 Hz, 1H), 4.25-4.13 (m, 4H), 3.80 (s, 6H), 3.63 (s, 3H), 3.50




(s, 4H), 3.40 (t, J = 5.5 Hz, 2H), 3.30 (s, 2H), 3.24 (s, 2H), 3.03 (t, J =




6.2 Hz, 2H), 2.96-2.81 (m, 1H), 2.66-2.55 (m, 4H), 2.28 (s, 7H),




2.15-2.03 (m, 3H), 1.86-1.71 (m, 4H)


D195
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.07 (s, 1H), 8.15 (s, 1H), 7.67 (d,




m/z:
J = 8.5 Hz, 1H), 7.63 (s, 1H), 7.32 (d, J = 2.2 Hz, 1H), 7.25 (dd, J = 8.6,



[M + H]+ = 837.65.
2.3 Hz, 1H), 6.69 (s, 2H), 6.59 (q, J = 4.4 Hz, 1H), 5.06 (dd, J = 12.8,




5.4 Hz, 1H), 4.22 (s, 2H), 4.16-4.00 (m, 4H), 3.85 (s, 6H), 3.54-




3.48 (m, 7H), 3.03-2.89 (m, 4H), 2.86-2.67 (m, 4H), 2.63-2.57




(m, 4H), 2.31-2.25 (m, 2H), 2.21 (s, 3H), 2.10-1.95 (m, 2H), 1.85-




1.71 (m, 4H), 1.69-1.59 (m, 1H), 1.54-1.40 (m, 2H), 1.37-1.23




(m, 2H).


D196
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.07 (s, 1H), 8.18 (s, 2H, FA), 7.69-




m/z:
7.61 (m, 2H), 6.95 (d, J = 2.1 Hz, 1H), 6.86 (dd, J = 8.6, 2.2 Hz, 1H),



[M + H]+ = 849.60.
6.64-6.55 (m, 3H), 5.06 (dd, J = 12.6, 5.4 Hz, 1H), 4.21 (s, 2H), 3.79




(s, 6H), 3.70-3.61 (m, 4H), 3.50 (s, 3H), 3.40 (t, J = 5.6 Hz, 2H), 3.30




(dd, J = 11.0, 2.6 Hz, 2H), 3.00-2.91 (m, 4H), 2.91-2.76 (m, 2H),




2.65-2.52 (m, 10H), 2.44-2.38 (m, 2H), 2.32-2.23 (m, 2H), 2.04-




1.94 (m, 1H), 1.63 (d, J = 12.2 Hz, 2H), 1.38-1.12 (m, 5H).


D197
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.06 (s, 1H), 8.19 (s, 2H, FA), 7.68-




m/z:
7.61 (m, 2H), 6.95 (d, J = 2.1 Hz, 1H), 6.87-6.81 (m, 1H), 6.59 (s,



[M + H]+ = 837.42.
3H), 5.06 (dd, J = 12.4, 5.4 Hz, 1H), 4.22 (s, 2H), 3.78 (s, 6H), 3.66-




3.53 (m, 5H), 3.50 (s, 4H), 3.41 (s, 2H), 3.21-3.10 (m, 4H), 2.90-




2.80 (m, 3H), 2.60 (d, J = 4.2 Hz, 3H), 2.43-2.39 (m, 2H), 2.18 (s,




3H), 2.13-1.98 (m, 4H), 1.90-1.79 (m, 1H), 1.62 (d, J = 11.9 Hz,




2H), 1.38-1.04 (m, 6H).


D198
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.07 (s, 1H), 8.20 (s, 2H, FA), 7.66-




m/z:
7.61 (m, 2H), 7.11 (d, J = 2.3 Hz, 1H), 7.03 (dd, J = 8.8, 2.4 Hz, 1H),



[M + H]+ = 837.65.
6.63-6.57 (m, 3H), 5.06 (dd, J = 12.9, 5.4 Hz, 1H), 4.22 (s, 2H), 3.79




(s, 6H), 3.69-3.59 (m, 7H), 3.50 (s, 3H), 3.40 (t, J = 5.5 Hz, 2H), 2.99-




2.80 (m, 4H), 2.73 (t, J = 5.1 Hz, 2H), 2.62-2.54 (m, 6H), 2.44 (t,




J = 7.2 Hz, 2H), 2.19 (t, J = 11.0 Hz, 2H), 2.06-1.95 (m, 1H), 1.85 (p,




J = 6.2, 5.6 Hz, 2H), 1.59 (d, J = 11.9 Hz, 2H), 1.38-1.01 (m, 6H).


D199
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 8.54 (s, 1H), 7.66 (d, J = 8.3 Hz,




m/z: [M + H]+ =
1H), 7.58 (s, 1H), 6.84 (d, J = 2.1 Hz, 1H), 6.74-6.66 (m, 3H), 5.07



835.60
(dd, J = 12.3, 5.4 Hz, 1H), 4.36 (s, 2H), 4.33 (s, 2H), 4.17 (s, 4H), 3.95




(s, 6H), 3.71-3.62 (m, 4H), 3.60-3.52 (m, 6H), 3.51-3.42 (m, 2H),




3.12-2.99 (m, 2H), 2.88-2.71 (m, 6H), 2.68-2.59 (m, 4H), 2.17-




2.07 (m, 1H), 1.95 (d, J = 13.5 Hz, 2H), 1.73-1.53 (m, 2H), 1.46-




1.36 (m, 2H).


D200
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.06 (s, 1H), 8.16 (s, 1H, FA), 7.69-




m/z:
7.60 (m, 2H), 7.32 (d, J = 2.2 Hz, 1H), 7.25 (dd, J = 8.7, 2.3 Hz, 1H),



[M + H]+ = 851.95.
6.64-6.54 (m, 3H), 5.07 (dd, J = 12.7, 5.4 Hz, 1H), 4.22 (s, 2H), 4.10




(d, J = 13.0 Hz, 2H), 3.80 (s, 6H), 3.69 (s, 2H), 3.50 (s, 3H), 3.44-




3.37 (m, 5H), 3.00-2.87 (m, 5H), 2.84-2.66 (m, 2H), 2.63-2.56




(m, 4H), 2.47-2.44 (m, 1H), 2.30-2.17 (m, 5H), 2.06-1.98 (m, 1H),




1.79 (d, J = 12.3 Hz, 2H), 1.65 (d, J = 12.3 Hz, 2H), 1.55-1.41 (m,




2H), 1.39-1.16 (m, 5H).


D201
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.07 (s, 1H), 8.19 (s, 1H, FA), 7.67




m/z: [M + H]+ =
(d, J = 8.5 Hz, 1H), 7.63 (s, 1H), 7.33 (d, J = 2.1 Hz, 1H), 7.24 (dd, J =



795.75
8.7, 2.3 Hz, 1H), 6.62-6.54 (m, 3H), 5.07 (dd, J = 12.7, 5.3 Hz, 1H),




4.22 (s, 2H), 3.79 (s, 6H), 3.53-3.49 (m, 6H), 3.43-3.39 (m, 8H),




2.93-2.82 (m, 3H), 2.60 (d, J = 4.3 Hz, 8H), 2.25-2.16 (m, 1H),




2.10-1.98 (m, 3H), 1.71 (d, J = 11.9 Hz, 2H), 1.47-1.31 (m, 2H).


D202
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.14 (s, 1H, FA), 7.70




m/z:
(d, J = 8.5 Hz, 1H), 7.64 (s, 1H), 7.35 (d, J = 2.3 Hz, 1H), 7.27 (dd, J =



[M + H]+ = 894.55.
8.8, 2.2 Hz, 1H), 6.72 (s, 2H), 6.60 (q, J = 4.2 Hz, 1H), 5.08 (dd, J =




12.7, 5.4 Hz, 1H), 4.28-4.11 (m, 4H), 3.87 (s, 6H), 3.64 (s, 2H), 3.51




(s, 3H), 3.49-3.40 (m, 9H), 3.15-3.00 (m, 4H), 2.97-2.82 (m, 2H),




2.65-2.54 (m, 10H), 2.47-2.28 (m, 6H), 2.12-1.96 (m, 3H), 1.85-




1.54 (m, 2H).


D203
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.11 (s, 1H), 8.17 (s, 1H FA), 7.84




m/z:
(dd, J = 8.4, 4.2 Hz, 1H), 7.63 (d, J = 3.5 Hz, 1H), 7.43 (s, 1H), 7.36



[M + H]+ = 868.50.
(d, J = 8.4 Hz, 1H), 6.65-6.53 (m, 3H), 5.12 (dd, J = 12.9, 5.4 Hz,




1H), 4.25-4.15 (m, 4H), 3.79 (d, J = 3.3 Hz, 6H), 3.69-3.54 (m, 5H),




3.50 (s, 3H), 3.45-3.29 (m, 8H), 2.97-2.83 (m, 1H), 2.65-2.54 (m,




7H), 2.47-2.32 (m, 3H), 2.07-1.93 (m, 3H), 1.75-1.60 (m, 2H),




1.59-1.44 (m, 2H).


D204
853.65



D205
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.19 (s, 2H, FA), 7.68-




m/z: [M + H]+ =
7.62 (m, 2H), 7.31 (d, J = 2.2 Hz, 1H), 7.23 (dd, J = 8.7, 2.3 Hz, 1H),



837.75
6.66 (t, J = 5.1 Hz, 1H), 6.60 (s, 2H), 5.07 (dd, J = 12.7, 5.4 Hz, 1H),




4.22 (s, 2H), 4.12-4.01 (m, 2H), 3.79 (s, 6H), 3.59 (s, 2H), 3.50 (s,




3H), 3.41 (t, J = 5.4 Hz, 4H), 3.22-3.13 (m, 4H), 2.95-2.81 (m, 4H),




2.65-2.55 (m, 3H), 2.25 (s, 8H), 2.05-1.96 (m, 1H), 1.89-1.67 (m,




4H), 1.53-1.36 (m, 2H), 1.27-1.12 (m, 2H).


D206
LCMS (ESI)




m/z: [M + H]+ =




867.65



D207
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.06 (s, 1H), 8.24 (s, 2H, FA), 7.64




m/z: [M + H]+ =
(d, J = 5.9 Hz, 2H), 6.96-6.41 (m, 5H), 5.20-4.86 (m, 1H), 4.46-



809.7
4.12 (m, 2H), 3.96 (t, J = 6.6 Hz, 6H), 3.79 (s, 6H), 3.65-3.30 (m,




9H), 3.11 (d, J = 6.9 Hz, 2H), 2.77 (s, 4H), 2.23 (s, 6H), 2.15-1.92




(m, 3H), 1.75-1.55 (m, 2H), 1.25-0.97 (m, 3H).


D208
LCMS (ESI)




m/z: [M + H]+ =




823.6



D209
LCMS (ESI)




m/z: [M + H]+ =




823.45



D210
LCMS (ESI)




m/z: [M + H]+ =




809.45



D211
LCMS (ESI)




m/z: [M + H]+ =




795.55



D212
LCMS (ESI)




m/z: [M + H]+ =




809.35



D213
LCMS (ESI)




m/z: [M + H]+ =




840.4



D214
LCMS (ESI)




m/z: [M + H]+ =




920.4



D215
LCMS (ESI)




m/z: [M + H]+ =




824.4



D216
LCMS (ESI)




m/z: [M + H]+ =




920.4



D217
LCMS (ESI)




m/z: [M + H]+ =




950.5



D218
LCMS (ESI)




m/z: [M + H]+ =




934.55



D219
LCMS (ESI)




m/z: [M + H]+ =




906.5



D220
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 8.47 (s, 2H, FA), 7.71-7.57 (m,




m/z: [M + H]+ =
2H), 7.36 (s, 1H), 7.24 (d, J = 8.6 Hz, 1H), 6.71 (s, 2H), 5.07 (dd, J =



920.5
12.3, 5.4 Hz, 1H), 4.38 (s, 4H), 4.10 (t, J = 9.0 Hz, 1H), 3.95 (s, 6H),




3.63 (s, 4H), 3.51 (s, 5H), 3.45-3.39 (m, 1H), 3.23-3.04 (m, 4H),




3.01-2.81 (m, 8H), 2.80-2.60 (m, 8H), 2.58-2.50 (m, 2H), 2.36-




2.22 (m, 1H), 2.20-2.03 (m, 3H), 2.00-1.76 (m, 6H), 1.75-1.58




(m, 3H).


D221
LCMS (ESI)




m/z: [M + H]+ =




906.5



D222
NA

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.15 (s, 2H, FA), 7.84





(d, J = 8.3 Hz, 1H), 7.64 (s, 1H), 7.43 (d, J = 2.3 Hz, 1H), 7.35 (dd, J =




8.4, 2.3 Hz, 1H), 6.67-6.56 (m, 3H), 5.12 (dd, J = 12.9, 5.3 Hz, 1H),




4.39-4.35 (m, 1H), 4.25-4.17 (m, 4H), 3.81 (s, 6H), 3.59 (t, J = 4.2




Hz, 2H), 3.50 (s, 4H), 3.41-3.38 (m, 3H), 2.94-2.85 (m, 1H), 2.67-




2.57 (m, 7H), 2.37-2.25 (m, 5H), 2.18 (s, 2H), 2.10-2.01 (m, 1H),




1.90-1.73 (m, 4H), 1.63-1.51 (m, 4H), 1.46-1.39 (m, 2H).


D223
LCMS (ESI)




m/z: [M + H]+ =




881.4



D224
LCMS (ESI)




m/z: [M + H]+ =




824.4



D225
LCMS (ESI)




m/z: [M + H]+ =




824.4



D226
LCMS (ESI)




m/z: [M + H]+ =




906.45



D227
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 8.55 (s, 2H, FA), 7.66 (d, J = 8.5




m/z: [M + H]+ =
Hz, 1H), 7.61 (s, 1H), 7.33 (d, J = 2.1 Hz, 1H), 7.22 (dd, J = 8.7, 2.2



851.6
Hz, 1H), 6.72 (s, 2H), 5.08 (dd, J = 12.3, 5.4 Hz, 1H), 4.44-4.34 (m,




4H), 4.13-4.00 (m, 2H), 3.95 (s, 6H), 3.64 (s, 3H), 3.57 (t, J = 5.4 Hz,




3H), 3.47-3.34 (m, 4H), 3.22 (t, J = 7.0 Hz, 2H), 3.13-2.94 (m, 3H),




2.88 (s, 7H), 2.78-2.62 (m, 4H), 2.24 (s, 2H), 2.16-2.07 (m, 1H),




2.03-1.77 (m, 5H), 1.62 (s, 1H), 1.46-1.29 (m, 2H).


D228
LCMS (ESI)




m/z: [M + H]+ =




810.7



D229
LCMS (ESI)




m/z: [M + H]+ =




881.6



D230
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.17 (s, 2H, FA), 7.69




m/z: [M + H]+ =
(d, J = 8.5 Hz, 1H), 7.65 (s, 1H), 7.35 (s, 1H), 7.31-7.23 (m, 1H),



892.5
6.82 (d, J = 7.4 Hz, 1H), 6.63 (s, 2H), 5.08 (dd, J = 12.8, 5.2 Hz, 1H),




4.22 (s, 2H), 4.03 (q, J = 7.9 Hz, 1H), 3.81 (s, 6H), 3.77-3.70 (m,




4H), 3.61 (s, 2H), 3.50 (s, 3H), 3.47-3.38 (m, 10H), 2.94-2.76 (m,




3H), 2.60-2.54 (m, 2H), 2.45-2.29 (m, 12H), 2.15 (t, J = 10.2 Hz,




2H), 2.08-1.97 (m, 1H), 1.51-1.33 (m, 4H).


D231
LCMS (ESI)




m/z: [M + H]+ =




809.45



D232
LCMS (ESI)




m/z: [M + H]+ =




920.45



D233
LCMS (ESI)




m/z: [M + H]+ =




868.45



D234
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.07 (s, 1H), 8.18 (s, 1H, FA), 7.67-




m/z: [M + H]+ =
7.59 (m, 2H), 6.93-6.85 (m, 2H), 6.77-6.71 (m, 1H), 6.60 (s, 2H),



823.45
5.04 (dd, J = 12.8, 5.4 Hz, 1H), 4.23 (s, 2H), 4.14-4.04 (m, 1H), 3.79




(s, 6H), 3.59 (s, 2H), 3.53-3.47 (m, 5H), 3.45-3.41 (m, 3H), 3.41 (s,




2H), 3.13-3.04 (m, 3H), 2.94-2.83 (m, 1H), 2.74-2.69 (m, 1H),




2.62-2.57 (m, 1H), 2.47-2.34 (m, 3H), 2.25 (s, 6H), 2.15 (t, J = 10.9




Hz, 1H), 2.05-1.89 (m, 4H), 1.79-1.68 (m, 2H), 1.65-1.56 (m,




2H).


D235
LCMS (ESI)




m/z: [M + H]+ =




852.45



D236
LCMS (ESI)




m/z: [M + H]+ =




837.45



D237
LCMS (ESI)




m/z: [M + H]+ =




838.4



D238
LCMS (ESI)




m/z: [M + H]+ =



D239
823.45




m/z: [M + H]+ =




824.85



D240
LCMS (ESI)




m/z: [M + H]+ =




920.5



D241
LCMS (ESI)




m/z: [M + H]+ =




795.4



D242
LCMS (ESI)




m/z: [M + H]+ =




838.45



D243
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.27 (s, 2H, FA), 7.68




m/z: [M + H]+ =
(d, J = 8.5 Hz, 1H), 7.64 (s, 1H), 7.34 (s, 1H), 7.26 (d, J = 8.7 Hz, 1H),



892.45
6.77 (s, 1H), 6.58 (s, 2H), 5.08 (dd, J = 12.8, 5.5 Hz, 1H), 4.28 (d, J =




5.9 Hz, 2H), 4.02-3.94 (m, 1H), 3.78 (s, 6H), 3.61-3.50 (m, 4H),




3.50-3.42 (m, 12H), 2.95-2.85 (m, 2H), 2.79-2.67 (m, 3H), 2.64-




2.56 (m, 3H), 2.40-2.25 (m, 4H), 2.14 (s, 6H), 2.05-1.81 (m, 3H),




1.76-1.67 (m, 1H), 1.63-1.47 (m, 5H).


D244
LCMS (ESI)




m/z: [M + H]+ =




824.45



D245
LCMS (ESI)




m/z: [M + H]+ =




906.45



D246
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.08 (s, 1H), 9.37 (s, 1H, TFA),




m/z: [M + H]+ =
9.04 (s, 1H), 7.69 (t, J = 4.1 Hz, 2H), 6.93 (s, 1H, TFA), 6.75 (d, J =



823.45
13.2 Hz, 3H), 6.65 (d, J = 8.3 Hz, 1H), 5.06 (dd, J = 12.8, 5.3 Hz, 1H),




4.31-4.09 (m, 4H), 3.89 (d, J = 6.6 Hz, 8H), 3.83 (s, 2H), 3.52 (s,




3H), 3.45 (s, 4H), 3.25-2.79 (m, 8H), 2.76 (d, J = 4.8 Hz, 6H), 2.66-




2.60 (m, 3H), 2.16 (d, J = 13.7 Hz, 2H), 1.95 (dd, J = 34.7, 19.8 Hz,




5H).


D247
LCMS (ESI)




m/z: [M + H]+ =




892.6



D248
LCMS (ESI)




m/z: [M + H]+ =




810.4



D249
LCMS (ESI)




m/z: [M + H]+ =




796.35



D250
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 8.42 (s, 2H, FA), 7.90 (d, J = 8.2 Hz,




m/z:
1H), 7.67 (s, 1H), 7.50 (d, J = 2.2 Hz, 1H), 7.39 (dd, J = 8.3, 2.3 Hz,



[M + H]+ = 838.35
1H), 6.78 (s, 2H), 6.59 (d, J = 7.1 Hz, 1H), 5.13 (dd, J = 12.9, 5.4 Hz,




1H), 4.48 (s, 2H), 4.31 (t, J = 5.7 Hz, 2H), 4.25 (s, 2H), 4.06 (q, J = 7.5




Hz, 1H), 3.88 (s, 6H), 3.52 (s, 6H), 3.46-3.39 (m, 2H), 3.11-3.05




(m, 2H), 3.01 (s, 6H), 2.93 (s, 2H), 2.92-2.80 (m, 1H), 2.63 (s, 1H),




2.61-2.53 (m, 2H), 2.35 (s, 2H), 2.10-2.04 (m, 1H), 1.94-1.83 (m,




2H), 1.70 (t, J = 6.8 Hz, 3H), 1.60-1.44 (m, 3H).


D251
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.17 (s, 1H, FA), 7.83




m/z:
(d, J = 8.2 Hz, 1H), 7.63 (s, 1H), 7.33-7.25 (m, 2H), 6.65-6.57 (m,



[M + H]+ = 878.85
3H), 5.12 (dd, J = 12.8, 5.4 Hz, 1H), 4.98 (q, J = 6.8 Hz, 1H), 4.22 (s,




2H), 3.79 (s, 6H), 3.63 (s, 2H), 3.50 (s, 3H), 3.41 (t, J = 5.5 Hz, 3H),




2.95-2.84 (m, 3H), 2.64-2.56 (m, 6H), 2.48-2.34 (m, 8H), 2.26-




2.15 (m, 2H), 2.09-2.00 (m, 1H), 1.87-1.78 (m, 2H), 1.70-1.55




(m, 6H), 1.42-1.32 (m, 2H), 1.31-1.10 (m, 3H).


D252
LCMS (ESI)




m/z:




[M + H]+ = 838.35



D253
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.17 (s, 1H, FA), 7.83




m/z:
(d, J = 8.1 Hz, 1H), 7.64 (s, 1H), 7.35-7.23 (m, 2H), 6.68-6.55 (m,



[M + H]+ = 864.85.
3H), 5.12 (dd, J = 12.9, 5.4 Hz, 1H), 5.04-4.93 (m, 1H), 4.22 (s, 2H),




3.81 (s, 6H), 3.73 (s, 2H), 3.50 (s, 3H), 3.43-3.41 (m, 3H), 3.01-




2.93 (m, 2H), 2.92-2.77 (m, 2H), 2.64-2.56 (m, 6H), 2.45-2.26




(m, 7H), 2.15-1.99 (m, 3H), 1.86-1.76 (m, 2H), 1.71-1.53 (m, 7H),




1.26-1.08 (m, 2H).


D254
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.21 (s, 1H, FA), 7.84




m/z:
(d, J = 8.3 Hz, 1H), 7.63 (s, 1H), 7.34-7.26 (m, 2H), 6.65-6.56 (m,



[M + H]+ = 878.65.
3H), 5.12 (dd, J = 12.8, 5.4 Hz, 1H), 5.03 (t, J = 6.9 Hz, 1H), 4.22 (s,




2H), 3.78 (s, 6H), 3.53-3.49 (m, 6H), 3.43-3.39 (m, 6H), 2.96-




2.78 (m, 4H), 2.64-2.56 (m, 5H), 2.47-2.44 (m, 1H), 2.15-2.00




(m, 4H), 1.92-1.82 (m, 2H), 1.67-1.43 (m, 9H).


D255
LCMS (ESI)
1H-NMR (400 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.15 (s, 1H, FA), 7.69



m/z:
(d, J = 8.5 Hz, 1H), 7.64 (s, 1H), 7.35 (d, J = 2.2 Hz, 1H), 7.27 (dd, J =



[M + H]+ = 835.45.
8.7, 2.3 Hz, 1H), 6.69 (s, 2H), 6.61 (q, J = 4.3 Hz, 1H), 5.08 (dd, J =




12.9, 5.4 Hz, 1H), 4.22 (s, 2H), 4.04 (s, 2H), 3.86 (s, 6H), 3.51 (s, 3H),




3.48-3.38 (m, 7H), 3.10-2.83 (m, 5H), 2.73 (t, J = 7.6 Hz, 1H), 2.64-




2.53 (m, 6H), 2.39 (s, 4H), 2.08-1.95 (m, 3H), 1.76 (s, 2H), 1.73-




1.57 (m, 4H).


D256
LCMS (ESI)

1H NMR (300 MHz, DMSO) δ 11.08 (s, 1H), 8.20 (d, FA, 2H), 7.73-




m/z:
7.61 (m, 2H), 7.39-7.18 (m, 2H), 6.60 (d, 3H), 5.07 (dd, 1H), 4.22 (s,



[M + H]+ = 809.
2H), 3.80 (s, 7H), 3.63 (d, 3H), 3.50 (s, 3H), 3.42 (d, 6H), 2.98-2.80




(m, 3H), 2.60 (d, 4H), 2.51-2.39 (m, 5H), 2.22-2.12 (m, 4H), 2.16-




1.95 (m, 1H), 1.69 (d, 2H), 1.60-1.45 (m, 1H), 1.22-1.05 (m, 2H);


D257
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 8.49 (s, 3H, FA), 7.81 (d, J = 8.4




m/z:
Hz, 1H), 7.56-7.48 (m, 2H), 7.39 (d, J = 8.6 Hz, 1H), 6.64 (s, 2H),



[M + H]+ = 809.50.
5.12 (dd, J = 12.6, 5.4 Hz, 1H), 4.35 (s, 2H), 4.10-4.02 (m, 3H), 3.90




(s, 6H), 3.89-3.85 (m, 3H), 3.84-3.62 (m, 9H), 3.55-3.48 (m, 3H),




3.08-3.01 (m, 1H), 2.98-2.83 (m, 2H), 2.78 (s, 3H), 2.76-2.70 (m,




2H), 2.64-2.57 (m, 2H), 2.44 (s, 1H), 2.17-1.98 (m, 4H), 1.39-




1.27 (m, 2H).


D258
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.11 (s, 1H), 8.37 (s, 1H, FA), 7.79




m/z:
(d, J = 8.3 Hz, 1H), 7.56 (d, J = 30.9 Hz, 2H), 7.47-7.31 (m, 1H),



[M + H]+ = 795.40.
6.61 (d, J = 5.4 Hz, 3H), 5.10 (dd, J = 13.0, 5.4 Hz, 1H), 4.21 (s, 2H),




3.91 (d, J = 8.9 Hz, 1H), 3.81 (s, 10H), 3.76-3.57 (m, 12H), 3.40 (t,




J = 5.6 Hz, 4H), 3.26 (t, J = 10.7 Hz, 2H), 2.98-2.82 (m, 1H), 2.71 (s,




1H), 2.66-2.54 (m, 5H), 2.28-2.20 (m, 1H), 2.09-1.98 (m, 1H),




1.84-1.79 (s, 1H).


D259
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 8.48 (s, 1H, FA), 7.84 (d, J = 8.3




m/z: [M + H]+ =
Hz, 1H), 7.60 (s, 1H), 7.46 (s, 1H), 7.40-7.34 (m, 1H), 6.72 (s, 2H),



854.4
5.13 (dd, J = 12.4, 5.4 Hz, 1H), 4.44-4.35 (m, 6H), 4.19-4.09 (m,




1H), 3.95 (s, 6H), 3.69-3.48 (m, 8H), 3.43-3.38 (m, 1H), 3.18-




3.11 (m, 2H), 2.92-2.72 (m, 13H), 2.65 (s, 2H), 2.21-2.10 (m, 1H),




1.98 (dd, J = 12.8, 7.2 Hz, 1H), 1.82-1.71 (m, 4H), 1.58-1.47 (m,




1H).


D260
LCMS (ESI)




m/z: [M + H]+ =




795.4



D261
LCMS (ESI)




m/z: [M + H]+ =




809.45



D262
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 8.43 (s, 2H, FA), 7.90 (d, J = 8.4 Hz,




m/z: [M + H]+ =
1H), 7.68 (s, 1H), 7.50 (d, J = 2.2 Hz, 1H), 7.39 (dd, J = 8.4, 2.3 Hz,



824.4
1H), 6.88 (d, J = 6.7 Hz, 1H), 6.77 (s, 2H), 5.14 (dd, J = 12.8, 5.4 Hz,




1H), 4.48 (s, 2H), 4.31 (t, J = 5.2 Hz, 4H), 4.25 (s, 2H), 4.13 (dq, J =




16.8, 8.2 Hz, 1H), 3.88 (s, 6H), 3.52 (s, 6H), 3.42 (t, J = 4.7 Hz, 2H),




3.01 (s, 6H), 2.96-2.84 (m, 4H), 2.63 (d, J = 3.8 Hz, 1H), 2.61-2.53




(m, 3H), 2.40-2.33 (m, 1H), 2.27-1.96 (m, 6H), 1.87-1.82 (m,




1H), 1.81-1.74 (m, 1H).


D263
LCMS (ESI)




m/z: [M + H]+ =




810.45



D264
LCMS (ESI)




m/z: [M + H]+ =




796.7



D265
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6 with a drop of D2O) δ 8.40 (s, 2H, FA),




m/z: [M + H]+ =
7.88 (d, J = 8.3 Hz, 1H), 7.66 (s, 1H), 7.48 (d, J = 2.3 Hz, 1H), 7.39



838.45
(dd, J = 8.4, 2.3 Hz, 1H), 6.74 (s, 2H), 5.12 (dd, J = 12.8, 5.4 Hz, 1H),




4.47 (s, 2H), 4.30 (t, J = 6.1 Hz, 2H), 4.23 (s, 2H), 3.86 (s, 6H), 3.55-




3.48 (m, 5H), 3.41 (s, 2H), 3.25 (s, 1H), 3.07-2.97 (m, 9H), 2.96-




2.81 (m, 3H), 2.75-2.70 (m, 1H), 2.66-2.55 (m, 5H), 2.34 (s, 1H),




2.24-2.14 (m, 1H), 2.09-1.94 (m, 3H), 1.52-1.42 (m, 2H), 1.03-




0.97 (m, 1H).


D266
LCMS (ESI)




m/z: [M + H]+ =




824.4



D267
LCMS (ESI)




m/z: [M + H]+ =




838.4



D268
LCMS (ESI)




m/z: [M + H]+ =




810.7



D269
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 8.51 (s, 2H, FA), 7.81 (d, J = 8.2




m/z: [M + H]+ =
Hz, 1H), 7.60 (s, 1H), 7.46 (s, 1H), 7.37 (d, J = 8.2 Hz, 1H), 6.71 (s,



824.45
2H), 5.12 (dd, J = 12.4, 5.4 Hz, 1H), 4.49 (s, 2H), 4.37 (d, J = 2.8 Hz,




4H), 3.95 (s, 6H), 3.63 (s, 3H), 3.58-3.52 (m, 2H), 3.37 (s, 2H), 3.27




(d, J = 7.3 Hz, 2H), 3.15 (s, 4H), 2.88 (s, 7H), 2.80-2.58 (m, 4H),




2.17-2.07 (m, 1H), 1.97-1.55 (m, 4H), 1.18-1.06 (m, 1H), 0.70-




0.60 (m, 1H), 0.37 (t, J = 5.1 Hz, 1H).


D270
LCMS (ESI)




m/z: [M + H]+ =




810.4



D271
LCMS (ESI)




m/z: [M + H]+ =




810.45



D272
LCMS (ESI)




m/z: [M + H]+ =




824.4



D273
LCMS (ESI)




m/z: [M + H]+ =




810.4



D274
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.18 (s, 2H, FA), 7.84




m/z: [M + H]+ =
(d, J = 8.3 Hz, 1H), 7.64 (s, 1H), 7.46 (dd, J = 4.0, 2.2 Hz, 1H), 7.37



796.35
(dt, J = 8.3, 2.3 Hz, 1H), 6.63 (s, 2H), 6.58 (d, J = 4.9 Hz, 1H), 5.12




(dd, J = 12.9, 5.4 Hz, 1H), 4.26 (d, J = 11.7 Hz, 4H), 3.89 (s, 1H), 3.80




(d, J = 1.9 Hz, 6H), 3.74-3.54 (m, 4H), 3.50 (s, 3H), 3.44 (d, J = 5.7




Hz, 2H), 3.18-3.10 (m, 2H), 3.03-2.98 (m, 1H), 2.92-2.84 (m,




3H), 2.74-2.69 (m, 1H), 2.32 (s, 5H), 2.22 (d, J = 13.6 Hz, 2H), 2.09-




2.04 (s, 2H), 1.80 (t, J = 11.3 Hz, 1H), 1.74-1.61 (m, 2H), 1.46 (d, J =




10.2 Hz, 1H). LCMS (ESI) m/z: [M + H]+ = 796.35


D275
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 8.56 (br s, 1H, FA), 7.82 (d, J =




m/z:
8.3 Hz, 1H), 7.58 (s, 1H), 7.30 (s, 1H), 7.25 (dd, J = 8.2, 2.2 Hz, 1H),



[M + H]+ = 864.45.
6.72 (s, 2H), 5.12 (dd, J = 12.7, 5.4 Hz, 1H), 4.97 (t, J = 6.6 Hz, 1H),




4.47 (s, 2H), 4.36 (s, 2H), 4.25 (t, J = 9.5 Hz, 2H), 4.01-3.90 (m, 8H),




3.64 (s, 3H), 3.60-3.49 (m, 5H), 3.47-3.42 (m, 1H), 3.23-3.17 (m,




1H), 2.95-2.82 (m, 3H), 2.80-2.67 (m, 5H), 2.64-2.54 (m, 4H),




2.18-2.10 (m, 1H), 2.03 (dd, J = 12.7, 6.2 Hz, 2H), 1.80-1.60 (m,




4H).


D276
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 7.84 (d, J = 8.3 Hz,




m/z:
1H), 7.70 (t, J = 5.8 Hz, 1H), 7.62 (s, 1H), 7.44 (d, J = 2.3 Hz, 1H),



[M + H]+ = 852.39.
7.36 (dd, J = 8.3, 2.3 Hz, 1H), 6.62-6.57 (m, 1H), 6.56 (s, 2H), 5.12




(dd, J = 12.9, 5.4 Hz, 1H), 4.19 (dd, J = 13.0, 6.6 Hz, 4H), 3.77 (s,




6H), 3.50 (s, 3H), 3.44 (s, 2H), 3.40 (t, J = 5.5 Hz, 2H), 3.40-3.35 (m,




2H), 3.07 (q, J = 6.5 Hz, 2H), 2.95-2.84 (m, 1H), 2.63-2.54 (m, 5H),




2.09-1.97 (m, 4H), 1.90 (s, 6H), 1.81-1.71 (m, 2H), 1.54-1.35 (m,




4H).


D277
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.23 (s, 1H, FA), 7.84




m/z:
(d, J = 8.3 Hz, 1H), 7.61 (s, 1H), 7.43 (d, J = 2.2 Hz, 1H), 7.35 (dd, J =



[M + H]+ = 820.55.
8.3, 2.3 Hz, 1H), 7.25 (t, J = 5.8 Hz, 1H), 6.64-6.54 (m, 3H), 5.13




(dd, J = 12.9, 5.4 Hz, 1H), 4.25-4.15 (m, 4H), 4.02-3.85 (m, 2H),




3.77 (s, 6H), 3.57 (s, 2H), 3.49 (s, 3H), 3.43-3.38 (m, 6H), 3.11 (q,




J = 6.5 Hz, 2H), 2.96-2.82 (m, 1H), 2.66-2.52 (m, 6H), 2.10-1.99




(m, 1H), 1.97-1.85 (m, 2H).


D278
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 8.48 (s, 1H, FA), 7.80 (d, J = 8.3




m/z:
Hz, 1H), 7.55 (s, 1H), 7.40 (d, J = 2.3 Hz, 1H), 7.32 (dd, J = 8.4, 2.3



[M + H]+ = 834.15
Hz, 1H), 6.63 (s, 2H), 5.11 (dd, J = 12.5, 5.4 Hz, 1H), 4.35 (s, 2H),




4.20 (t, J = 6.2 Hz, 2H), 4.16-4.06 (m, 1H), 4.02 (s, 2H), 3.88 (s, 6H),




3.88-3.83 (m, 4H), 3.63 (s, 3H), 3.53 (t, J = 5.6 Hz, 2H), 3.14 (t, J =




6.9 Hz, 2H), 2.95-2.83 (m, 1H), 2.80-2.67 (m, 5H), 2.65-2.60 (m,




2H), 2.18-2.09 (m, 1H), 1.97-1.86 (m, 2H), 1.80-1.67 (m, 2H).


D279
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 7.86 (d, J = 8.3 Hz,




m/z:
1H), 7.61 (s, 1H), 7.51 (s, 1H), 7.46 (d, J = 2.3 Hz, 1H), 7.37 (dd, J =



[M + H]+ = 806.45.
8.3, 2.3 Hz, 1H), 6.62-6.53 (m, 3H), 5.13 (dd, J = 12.9, 5.3 Hz, 1H),




4.24-4.16 (m, 4H), 4.04 (s, 1H), 3.78 (s, 6H), 3.59 (s, 2H), 3.49 (s,




3H), 3.47-3.36 (m, 7H), 3.31 (s, 1H), 2.95-2.83 (m, 1H), 2.64-




2.53 (m, 7H), 2.10-2.02 (m, 1H).


D280
LCMS (ESI)

1H NMR (300 MHz, DMSO-d6) δ 11.12 (s, 1H), 7.83 (dd, J = 8.5, 7.2




m/z:
Hz, 1H), 7.62 (s, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.47 (d, J = 7.2 Hz,



[M + H]+ = 820.60.
1H), 6.75-6.58 (m, 3H), 5.09 (dd, J = 12.8, 5.4 Hz, 1H), 4.28-4.19




(m, 4H), 3.96-3.61 (m, 8H), 3.50 (s, 3H), 3.40 (t, J = 5.5 Hz, 2H),




3.38 (s, 6H), 3.24-3.14 (m, 2H), 2.97-2.82 (m, 1H), 2.64-2.54 (m,




6H), 2.09-1.88 (m, 3H).


D281
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 10.08 (s, 1H, TFA),




m/z:
7.83 (dd, J = 8.5, 7.2 Hz, 1H), 7.69 (s, 1H), 7.64 (s, 1H), 7.53 (d, J =



[M + H]+ = 834.10
8.5 Hz, 1H), 7.47 (d, J = 7.3 Hz, 1H), 6.71 (s, 2H), 6.61 (q, J = 4.3 Hz,




1H), 5.09 (dd, J = 12.7, 5.5 Hz, 1H), 4.66-4.29 (m, 5H), 4.26-4.14




(m, 5H), 3.86 (s, 6H), 3.51 (s, 3H), 3.44-3.39 (m, 4H), 3.11-3.01




(m, 2H), 2.94-2.81 (m, 1H), 2.64-2.53 (m, 6H), 2.07-1.98 (m, 1H),




1.85-1.76 (m, 2H), 1.70-1.60 (m, 2H).


D282
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 7.84 (t, J = 7.8 Hz,




m/z: [M + H]+ =
1H), 7.62 (s, 1H), 7.55 (d, J = 8.6 Hz, 1H), 7.50 (d, J = 7.2 Hz, 1H),



806.60.
6.69-6.53 (m, 3H), 5.11 (dd, J = 12.8, 5.4 Hz, 1H), 4.49-4.00 (m,




7H), 3.79 (s, 7H), 3.56-3.47 (m, 4H), 3.44-3.37 (m, 5H), 2.94-




2.83 (m, 1H), 2.59 (d, J = 4.2 Hz, 4H), 2.57-2.53 (m, 4H), 2.07-




1.98 (m, 1H).


D283
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.11 (s, 1H), 7.82 (dd, J = 8.5, 7.3




m/z:
Hz, 1H), 7.69 (t, J = 5.8 Hz, 1H), 7.62 (s, 1H), 7.53 (d, J = 8.6 Hz, 1H),



[M + H]+ = 852.39.
7.45 (d, J = 7.2 Hz, 1H), 6.59 (d, J = 4.4 Hz, 1H), 6.56 (s, 2H), 5.08




(dd, J = 12.9, 5.4 Hz, 1H), 4.24-4.17 (m, 4H), 3.77 (s, 6H), 3.50 (s,




3H), 3.44 (s, 2H), 3.40 (t, J = 5.6 Hz, 2H), 3.37 (s, 2H), 3.11-3.03 (m,




2H), 2.93-2.81 (m, 1H), 2.61-2.55 (m, 5H), 2.07-1.98 (m, 4H),




1.90 (s, 6H), 1.81-1.73 (m, 2H), 1.54-1.38 (m, 4H).


D284
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.15 (s, 1H, FA), 7.67




m/z:
(d, J = 8.5 Hz, 1H), 7.63 (s, 1H), 7.33 (d, J = 2.3 Hz, 1H), 7.25 (dd, J =



[M + H]+ = 813.45
8.7, 2.3 Hz, 1H), 6.61 (d, J = 6.9 Hz, 3H), 5.07 (dd, J = 12.9, 5.4 Hz,




1H), 4.21 (s, 2H), 3.84-3.77 (m, 7H), 3.71 (s, 2H), 3.64-3.53 (m,




5H), 3.52-3.46 (m, 4H), 3.43-3.38 (m, 7H), 2.95-2.83 (m, 1H),




2.72 (s, 2H), 2.60-2.53 (m, 9H), 2.28 (s, 3H), 2.06-1.97 (m, 1H).


D285
LCMS (ESI)

1H NMR (300 MHz, Methanol-d4) δ 8.56 (br s, 1.7H, FA), 7.55 (s, 1H),




m/z:
7.24 (t, J = 7.7 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 6.91 (d, J = 7.9 Hz,



[M − H]+ = 774.37.
1H), 6.71 (s, 2H), 5.19 (dd, J = 13.4, 5.1 Hz, 1H), 4.39-4.27 (m, 5H),




4.09-3.98 (m, 2H), 3.94 (s, 6H), 3.67-3.50 (m, 14H), 3.40 (t, J = 5.4




Hz, 2H), 3.04-2.91 (m, 2H), 2.85 (s, 6H), 2.61 (s, 2H), 2.53-2.39




(m, 1H), 2.24-2.12 (m, 1H).


D286
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.18 (s, 1.0H, FA),




m/z:
7.83 (d, J = 8.3 Hz, 1H), 7.68-7.62 (m, 2H), 7.43 (d, J = 2.3 Hz, 1H),



[M + H]+ = 866.30.
7.35 (dd, J = 8.3, 2.3 Hz, 1H), 6.62-6.56 (m, 3H), 5.12 (dd, J = 12.9,




5.4 Hz, 1H), 4.25-4.13 (m, 4H), 3.78 (s, 6H), 3.54 (s, 2H), 3.50 (s,




3H), 3.42-3.38 (m, 3H), 3.05 (q, J = 6.6 Hz, 2H), 2.94-2.84 (m, 1H),




2.64-2.53 (m, 6H), 2.48 (s, 2H), 2.11 (s, 3H), 2.08-2.01 (m, 1H),




1.85 (s, 6H), 1.80-1.71 (m, 2H), 1.51-1.35 (m, 4H).


D287
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.16 (s, 0.7H, FA),




m/z:
7.68 (d, J = 8.5 Hz, 1H), 7.61 (s, 1H), 7.35 (d, J = 2.3 Hz, 1H), 7.26



[M + H]+ = 874.35.
(dd, J = 8.6, 2.3 Hz, 1H), 7.08 (t, J = 5.8 Hz, 1H), 6.58 (s, 3H), 5.07




(dd, J = 12.9, 5.3 Hz, 1H), 4.21 (s, 2H), 4.07-3.95 (m, 1H), 3.78 (s,




6H), 3.58 (s, 2H), 3.49 (s, 3H), 3.47-3.34 (m, 14H), 3.08 (q, J = 6.5




Hz, 2H), 2.94-2.82 (m, 1H), 2.59 (d, J = 4.2 Hz, 5H), 2.54 (s, 2H),




2.42 (t, J = 6.7 Hz, 2H), 2.07-1.99 (m, 1H).


D288
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.14 (s, 1H), 8.19 (s, 0.9H, FA),




m/z:
7.81 (dd, J = 8.6, 7.3 Hz, 1H), 7.68-7.61 (m, 2H), 7.52 (d, J = 8.6 Hz,



[M + H]+ = 866.25.
1H), 7.45 (d, J = 7.2 Hz, 1H), 6.64-6.54 (m, 3H), 5.08 (dd, J = 12.9,




5.4 Hz, 1H), 4.26-4.13 (m, 4H), 3.78 (s, 6H), 3.55-3.47 (m, 6H),




3.40 (t, J = 5.5 Hz, 2H), 3.08-3.01 (m, 2H), 2.93-2.82 (m, 1H), 2.63-




2.52 (m, 6H), 2.47 (s, 2H), 2.10 (s, 3H), 2.06-1.99 (m, 1H), 1.84 (s,




6H), 1.81-1.73 (m, 2H), 1.51-1.39 (m, 4H).


D289
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.19 (s, 0.9H, FA),




m/z:
7.83 (d, J = 8.3 Hz, 1H), 7.63 (s, 1H), 7.44 (d, J = 2.3 Hz, 1H), 7.36 (d,



[M + H]+ = 854.70.
J = 8.4 Hz, 1H), 6.58 (s, 3H), 5.12 (dd, J = 12.9, 5.4 Hz, 1H), 4.33-




4.26 (m, 2H), 4.21 (s, 2H), 3.97-3.89 (m, 1H), 3.76 (s, 8H), 3.70-




3.67 (m, 2H), 3.59 (s, 3H), 3.49 (s, 4H), 2.95-2.76 (m, 5H), 2.63-




2.52 (m, 10H), 2.29-2.19 (m, 1H), 2.18-2.10 (m, 1H), 2.09-1.99




(m, 1H), 1.52-1.28 (m, 2H).


D290
LCMS (ESI)

1H NMR (400 MHz, DMSO-d6, D2O) δ 8.53 (t, J = 5.8 Hz, TFA salt),




m/z:
7.84 (d, J = 8.3 Hz, 1H), 7.66 (s, 1H), 7.46 (d, J = 2.3 Hz, 1H), 7.40



[M + H]+ = 815.50.
(dd, J = 8.3, 2.3 Hz, 1H), 6.68 (s, 2H), 5.11 (dd, J = 12.9, 5.4 Hz, 1H),




4.77 (s, 2H), 4.22 (d, J = 4.7 Hz, 4H), 3.86 (s, 6H), 3.58-3.52 (m,




2H), 3.50 (s, 3H), 3.44-3.14 (m, 8H), 2.94-2.83 (m, 4H), 2.75 (s,




6H), 2.65-2.53 (m, 4H), 2.08-1.96 (m, 1H).


D291
LCMS (ESI)
1H-NMR (400 MHz, DMSO-d6) δ 11.01 (s, 1H), 8.31 (t, J = 5.3 Hz,



m/z:
1H), 8.22 (s, 0.8H, FA), 7.64 (s, 1H), 7.48 (t, J = 8.1 Hz, 1H), 6.68-



[M + H]+ = 797.55.
6.59 (m, 4H), 6.49 (d, J = 8.3 Hz, 1H), 5.18 (dd, J = 11.5, 5.6 Hz, 1H),




4.22 (s, 2H), 3.79 (s, 6H), 3.62 (s, 2H), 3.50 (s, 3H), 3.40 (t, J = 5.5




Hz, 2H), 3.14 (q, J = 6.6 Hz, 2H), 3.03 (q, J = 6.5 Hz, 2H), 2.90-2.76




(m, 1H), 2.70-2.58 (m, 2H), 2.58-2.52 (m, 5H), 2.27 (s, 6H), 2.20-




2.08 (m, 1H), 1.65-1.54 (m, 2H), 1.44-1.38 (m, 2H), 1.37-1.18




(m, 8H).


D292
LCMS (ESI)
1H-NMR (400 MHz, Methanol-d4) δ 8.55 (brs, 0.9H, FA), 7.53 (s, 1H),



m/z:
7.43 (t, J = 8.1 Hz, 1H), 6.70-6.63 (m, 3H), 6.51 (d, J = 8.3 Hz, 1H),



[M + H]+ = 801.50.
5.20-5.13 (m, 1H), 4.41-4.25 (m, 4H), 3.94 (s, 6H), 3.82-3.77 (m,




2H), 3.68 (s, 4H), 3.62-3.57 (m, 5H), 3.56-3.35 (m, 6H), 2.93-




2.79 (m, 8H), 2.78-2.69 (m, 1H), 2.62 (s, 3H), 2.58-2.50 (m, 2H),




2.23-2.14 (m, 1H).


D293
764.3

1H NMR (400 MHz, DMSO-d6) δ 7.72 (s, 1H), 7.41 (d, J = 8.6 Hz, 1H),





6.75-6.62 (m, 4H), 5.06 (dd, J = 13.2, 5.0 Hz, 1H), 4.35 (t, J = 18.7




Hz, 4H), 4.27-4.16 (m, 3H), 4.11-3.98 (m, 3H), 3.88 (s, 6H), 3.75-




3.62 (m, 5H), 3.53 (s, 3H), 3.31-3.12 (m, 3H), 3.05-2.82 (m, 8H),




2.81-2.73 (m, 1H), 2.70-2.56 (m, 3H), 2.42-2.32 (m, 1H), 2.18-




2.05 (m, 2H), 2.04-1.84 (m, 3H).


D294
866.45

1H NMR (400 MHz, DMSO-d6) δ 11.13 (s, 1H), 8.20 (s, 0.9H, FA),





7.81 (dd, J = 8.5, 7.2 Hz, 1H), 7.64 (t, J = 5.8 Hz, 1H), 7.58-7.49 (m,




2H), 7.44 (d, J = 7.2 Hz, 1H), 6.58 (s, 2H), 6.54 (q, J = 4.3 Hz, 1H),




5.08 (dd, J = 12.9, 5.4 Hz, 1H), 4.26 (s, 2H), 4.20 (t, J = 6.4 Hz, 2H),




3.79 (s, 6H), 3.56-3.49 (m, 4H), 3.47 (s, 3H), 3.05 (q, J = 6.4 Hz,




2H), 2.88 (ddd, J = 17.3, 14.1, 5.4 Hz, 1H), 2.63-2.55 (m, 1H), 2.55-




2.51 (m, 4H), 2.50-2.46 (m, 4H), 2.11 (s, 3H), 2.07-1.99 (m, 1H),




1.85 (s, 6H), 1.77 (t, J = 6.9 Hz, 2H), 1.50-1.39 (m, 4H).


D295
854.7

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.15 (s, 0.7H, FA),





7.83 (d, J = 8.3 Hz, 1H), 7.56 (s, 1H), 7.45 (d, J = 2.2 Hz, 1H), 7.36




(dd, J = 8.3, 2.3 Hz, 1H), 6.61 (s, 2H), 6.55 (q, J = 4.4 Hz, 1H), 5.12




(dd, J = 12.9, 5.4 Hz, 1H), 4.31-4.27 (m, 2H), 4.25 (s, 2H), 3.94-




3.88 (m, 1H), 3.79 (s, 8H), 3.75 (s, 2H), 3.72-3.68 (m, 3H), 3.47 (s,




4H), 3.10-3.01 (m, 2H), 2.99-2.81 (m, 3H), 2.69-2.52 (m, 10H),




2.41-2.32 (m, 1H), 2.31-2.21 (m, 1H), 2.08-1.97 (m, 1H), 1.64-




1.39 (m, 2H).


D296
813.45

1H NMR (400 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.16 (s, 1.1H, FA),





7.67 (d, J = 8.5 Hz, 1H), 7.56 (s, 1H), 7.34 (d, J = 2.3 Hz, 1H), 7.25




(dd, J = 8.7, 2.3 Hz, 1H), 6.63 (s, 2H), 6.54 (d, J = 4.5 Hz, 1H), 5.07




(dd, J = 12.9, 5.4 Hz, 1H), 4.27 (s, 2H), 3.82 (s, 6H), 3.73 (s, 2H), 3.63-




3.55 (m, 4H), 3.52 (t, J = 5.9 Hz, 2H), 3.46 (s, 3H), 3.45-3.38 (m,




8H), 2.94-2.84 (m, 1H), 2.75 (s, 2H), 2.64-2.54 (m, 9H), 2.35-




2.25 (m, 3H), 2.08-1.97 (m, 1H).


D297
802.55

1H NMR (400 MHz, DMSO-d6) δ 11.10 (s, 1H), 8.19 (s, 0.8H, FA),





7.82-7.72 (m, 2H), 7.54 (s, 1H), 7.48 (d, J = 8.6 Hz, 1H), 7.43 (d, J =




7.2 Hz, 1H), 6.57 (s, 2H), 6.56-6.51 (m, 1H), 5.08 (dd, J = 12.9, 5.4




Hz, 1H), 4.37-4.29 (m, 2H), 4.25 (s, 2H), 3.85-3.77 (m, 8H), 3.59




(t, J = 5.7 Hz, 2H), 3.54-3.50 (m, 4H), 3.46 (s, 3H), 3.34 (q, J = 5.9




Hz, 4H), 2.94 (s, 2H), 2.91-2.83 (m, 1H), 2.62-2.52 (m, 5H), 2.10




(s, 3H), 2.05-1.96 (m, 1H).


D298
827.5
1H-NMR (400 MHz, Methanol-d4) δ 8.47 (brs, 1.4H, FA), 7.69 (d, J =




8.5 Hz, 1H), 7.50 (s, 1H), 7.34 (d, J = 2.3 Hz, 1H), 7.24 (dd, J = 8.6,




2.3 Hz, 1H), 6.77 (s, 2H), 5.08 (dd, J = 12.4, 5.5 Hz, 1H), 4.50 (s, 2H),




4.09 (s, 2H), 3.97 (s, 6H), 3.92-3.87 (m, 2H), 3.76 (t, J = 5.2 Hz, 2H),




3.61 (s, 3H), 3.51-3.45 (m, 8H), 2.90-2.86 (m, 4H), 2.83 (s, 6H),




2.79-2.71 (m, 10H), 2.17-2.07 (m, 1H).


D299
809.94

1H NMR (400 MHz, DMSO-d6) δ 11.04 (s, 1H), 8.13 (s, 2H), 7.87 (s,





1H), 7.65 (d, J = 8.5 Hz, 1H), 7.31 (d, J = 2.3 Hz, 1H), 7.23 (dd, J =




8.7, 2.3 Hz, 1H), 6.68 (s, 2H), 6.33 (d, J = 4.5 Hz, 1H), 5.05 (dd, J =




12.9, 5.4 Hz, 1H), 3.81 (s, 5H), 3.65 (d, J = 3.1 Hz, 2H), 3.52 (s, 3H),




3.39 (d, J = 5.4 Hz, 4H), 3.15 (s, 2H), 2.97-2.78 (m, 3H), 2.58 (d, J =




4.3 Hz, 3H), 2.00 (dd, J = 9.2, 4.2 Hz, 1H), 1.64 (d, J = 12.6 Hz, 2H),




1.35 (s, 1H).


D300
738.82

1H NMR (400 MHz, DMSO-d6) δ 11.03 (s, 1H), 8.14 (s, 1H), 7.85 (d,





J = 11.1 Hz, 1H), 7.60 (d, J = 8.3 Hz, 1H), 6.70-6.56 (m, 3H), 5.02 (dd,




J = 12.9, 5.4 Hz, 1H), 4.68-4.54 (m, 2H), 4.38 (s, 2H), 3.80 (s, 6H),




3.73 (d, J = 19.6 Hz, 4H), 3.52 (s, 3H), 3.47 (s, 2H), 2.93-2.74 (m,




1H), 2.58 (dd, J = 4.4, 2.9 Hz, 4H), 2.37 (s, 4H), 2.05-1.91 (m, 1H),




1.69 (s, 4H).


D301
749.15

1H NMR (400 MHz, Methanol-d4) δ 7.41 (d, J = 7.8 Hz, 2H), 6.88 (d,





J = 2.2 Hz, 1H), 6.80 (dd, J = 8.2, 2.2 Hz, 1H), 6.70 (s, 2H), 5.14 (dd,




J = 13.3, 5.2 Hz, 1H), 4.51 (s, 2H), 4.47-4.20 (m, 4H), 4.15 (s, 2H),




3.95 (s, 6H), 3.77 (s, 4H), 3.61 (s, 3H), 3.55-3.35 (m, 5H), 3.15 (s,




1H), 3.29-3.01 (m, 1H), 2.98-2.85 (m, 1H), 2.80 (d, J = 17.6 Hz,




1H), 2.60 (t, J = 6.4 Hz, 2H), 2.51-2.47 (m, 3H), 2.25-2.04 (m, 5H),




1.85-1.79 (m, 2H), 1.72-1.67 (m, 2H).


D302
737.4
1H NMR (400 MHz, Methanol-d4) δ 8.33 (s, 2H, FA), 7.91 (s, 1H),




7.39 (d, J = 8.2 Hz, 1H), 6.85 (d, J = 2.2 Hz, 1H), 6.81-6.74 (m, 3H),




5.23 (t, J = 3.4 Hz, 2H), 5.14 (dd, J = 13.3, 5.2 Hz, 1H), 5.07 (t, J = 3.4




Hz, 2H), 4.45 (s, 2H), 4.42 (d, J = 16.5 Hz, 1H), 4.36 (d, J = 16.5 Hz,




1H), 4.22 (t, J = 9.4 Hz, 2H), 3.98 (s, 6H), 3.95 (d, J = 10.0 Hz, 2H),




3.71 (s, 3H), 3.68 (s, 4H), 3.20-3.10 (m, 1H), 2.98-2.86 (m, 1H),




2.84-2.69 (m, 3H), 2.61-2.42 (m, 5H), 2.23-2.13 (m, 1H), 1.94-




1.90 (m, 4H).


DD1
LCMS (ESI)

1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H, FA), 7.55 (s, 1H), 7.49




m/z:
(td, J = 8.6, 5.9 Hz, 1H), 7.28-7.20 (m, 1H), 7.19-7.12 (m, 1H),



[M + H]+ = 878.5.
6.63 (s, 2H), 4.36 (s, 2H), 3.96-3.82 (m, 8H), 3.64 (s, 3H), 3.59-3.49




(m, 4H), 3.31-3.24(m, 2H), 2.94-2.74 (m, 8H), 2.69-2.45 (m, 7H), 1.79




(d, J = 10.9 Hz, 2H), 1.62-1.46 (m, 5H).









Example 67—Preparation of Compounds D303-D375

In analogy to the procedures described in the examples above, compounds D303-D375 were prepared using the appropriate starting materials














Compound




No.
LCMS

1H NMR


















D303
669.2

1H NMR (400 MHz, DMSO-d6) δ 11.07 (s, 1H), 7.67 (d, J = 8.3 Hz, 1H),





7.60 (s, 1H), 6.82 (d, J = 2.1 Hz, 1H), 6.73-6.66 (m, 1H), 6.63-6.53 (m,




3H), 5.06 (dd, J = 12.9, 5.4 Hz, 1H), 4.44-4.36 (m, 3H), 4.20 (s, 2H),




4.16 (s, 2H), 3.73 (s, 6H), 3.48 (s, 3H), 3.42-3.35 (m, 2H), 2.95-2.81




(m, 1H), 2.63-2.57 (m, 4H), 2.57-2.51 (m, 3H), 2.07-1.96 (m, 1H).


D304
752.45

1H NMR (300 MHz, DMSO-d6) δ 10.97 (s, 1H), 7.65 (s, 1H), 7.38 (d, J =





8.2 Hz, 1H), 6.69 (d, J = 7.5 Hz, 2H), 6.61 (d, J = 5.1 Hz, 3H), 5.08 (dd,




J = 13.2, 5.1 Hz, 1H), 4.39-4.11 (m, 4H), 3.81 (s, 6H), 3.79-3.53 (m, 4H),




3.54-3.44 (m, 5H), 3.47-3.36 (m, 3H), 3.00-2.80 (m, 1H), 2.72-2.51




(m, 6H), 2.50-2.10 (m, 4H), 2.05-1.61 (m, 4H), 0.95 (d, J = 6.7 Hz, 3H).


D305
823.45

1H NMR (400 MHz, DMSO-d6) δ 8.14 (s, 1H, FA), 7.62 (s, 1H), 7.42 (d,





J = 8.4 Hz, 1H), 7.26 (dd, J = 8.4, 2.4 Hz, 1H), 7.16 (d, J = 2.3 Hz, 1H),




6.67-6.58 (m, 2H), 6.54 (s, 1H), 5.16 (dd, J = 13.5, 5.1 Hz, 1H), 4.37-4.16




(m, 4H), 3.84-3.70 (m, 10H), 3.50 (s, 3H), 3.40 (t, J = 5.7 Hz, 2H), 3.31 (s,




3H), 3.07-2.92 (m, 5H), 2.82-2.66 (m, 8H), 2.63-2.58 (m, 4H), 2.38 (dd,




2H), 2.05-1.93 (m, 1H), 1.75 (d, J = 12.5 Hz, 2H), 1.48 (s, 3H), 1.35-1.12




(m, 3H).


D306
774.4

1H NMR (300 MHz, DMSO-d6) δ 10.98 (s, 1H), 7.65 (s, 1H), 7.42 (d, J =





8.6 Hz, 1H), 6.75-6.65 (m, 4H), 6.61 (s, 1H), 5.08 (dd, J = 13.3, 5.0 Hz,




1H), 4.38-4.15 (m, 5H), 3.92 (s, 3H), 3.86 (s, 7H), 3.75 (s, 3H), 3.51 (s,




3H), 2.98-2.83 (m, 2H), 2.60 (s, 7H), 2.43-2.34 (m, 3H), 2.25-2.07




(m, 2H), 2.02-1.92 (m, 1H).


D307
693.2

1H NMR (300 MHz, DMSO-d6) δ 10.97 (s, 1H), 7.65 (s, 1H), 7.36 (d, J =





9.2 Hz, 1H), 7.17-7.07 (m, 3H), 6.65-6.60 (m, 2H), 6.23-5.73 (m, 1H),




5.08 (dd, J = 13.3, 5.1 Hz, 1H), 4.50 (s, 2H), 4.36-4.12 (m, 4H), 3.83 (s,




6H), 3.49 (s, 3H), 3.43 (d, J = 5.0 Hz, 4H), 2.90 (s, 4H), 2.62 (s, 2H), 2.44-




2.29 (m, 2H), 1.98 (d, J = 12.6 Hz, 1H).


D308
738.45

1H NMR (400 MHz, DMSO-d6) δ 10.97 (s, 1H), 8.18 (s, 1H, FA), 7.65 (s,





1H), 7.37 (d, J = 8.1 Hz, 1H), 6.77-6.65 (m, 2H), 6.63-6.53 (m, 3H),




5.08 (m, J = 13.3, 5.1 Hz, 1H), 4.39-4.12 (m, 4H), 3.79 (s, 6H), 3.57 (s,




4H), 3.50 (d, J = 4.1 Hz, 4H), 3.41 (m, J = 4.9 Hz, 4H), 2.91 (m, J = 17.6,




13.6, 5.3 Hz, 1H), 2.59 (d, J = 4.2 Hz, 6H), 2.44-2.33 (m, 4H), 2.03-




1.95 (m, 1H), 1.71 (m, J = 5.3 Hz, 4H).


D309
837.6

1H NMR (400 MHz, DMSO-d6) δ 10.98 (s, 1H), 7.63 (s, 1H), 7.42 (d, J =





8.5 Hz, 1H), 7.26 (dd, J = 8.5, 2.4 Hz, 1H), 7.15 (d, J = 2.3 Hz, 1H), 6.76-




6.50 (m, 3H), 5.10 (dd, J = 13.3, 5.1 Hz, 1H), 4.39-4.14 (m, 4H), 3.98-




3.66 (m, 8H), 3.50 (s, 3H), 3.45-3.38 (m, 2H), 3.33-3.26 (m, 4H), 3.00-




2.82 (m, 2H), 2.81-2.64 (m, 3H), 2.64-2.56 (m, 5H), 2.56-2.52 (m,




2H), 2.49-2.27 (m, 3H), 2.20 (s, 1H), 2.06-1.90 (m, 1H), 1.83-1.67




(m, 2H), 1.62-1.35 (m, 5H), 1.35-0.94 (m, 6H).


D310
835.5

1H NMR (400 MHz, Methanol-d4) δ 7.68-7.61 (m, 1H), 7.54 (s, 1H), 7.10





(d, J = 8.0 Hz, 2H), 6.61 (s, 2H), 5.12 (dd, J = 13.3, 5.1 Hz, 1H), 4.63 (s,




1H), 4.49-4.38 (m, 2H), 4.36 (s, 2H), 4.22 (s, 1H), 3.97 (d, J = 12.8 Hz,




2H), 3.87 (s, 7H), 3.63 (s, 4H), 3.53 (t, J = 5.6 Hz, 3H), 3.23 (s, 2H), 3.09




(s, 2H), 2.99-2.86 (m, 3H), 2.85-2.71 (m, 5H), 2.62 (d, J = 6.1 Hz, 2H),




2.54-2.41 (m, 1H), 2.22-2.13 (m, 1H), 1.89 (d, J = 12.5 Hz, 2H), 1.79-




1.71 (m, 2H), 1.66 (s, 1H), 1.44 (q, J = 11.2 Hz, 2H), 1.09-0.87 (m, 2H),




0.80 (s, 2H).


D311
885.45

1H NMR (400 MHz, DMSO-d6) δ 10.96 (s, 1H), 8.20 (s, 1H, FA), 7.61 (s,





1H), 7.50 (d, J = 8.5 Hz, 1H), 7.13 (t, J = 5.8 Hz, 1H), 7.08-6.99 (m, 2H),




6.55 (s, 2H), 6.17-5.76 (m, 1H), 5.05 (dd, J = 13.3, 5.1 Hz, 1H), 4.39-




4.11 (m, 5H), 3.87 (d, J = 12.3 Hz, 2H), 3.76 (s, 8H), 3.49 (s, 4H), 3.47-




3.33 (m, 6H), 2.98-2.76 (m, 4H), 2.73-2.69 (m, 2H), 2.66-2.54 (m,




3H), 2.57-2.52 (m, 1H), 2.41-2.32 (m, 1H), 2.00-1.92 (m, 1H), 1.76




(d, J = 12.5 Hz, 2H), 1.63-1.39 (m, 3H), 1.30-1.17 (m, 2H), 0.68-0.63




(m, 2H), 0.48 (s, 2H).


D312
885.45

1H NMR (400 MHz, DMSO-d6) δ 10.96 (s, 1H), 8.21 (s, 2H, TFA), 7.62 (s,





1H), 7.42 (d, J = 8.4 Hz, 1H), 7.26 (dd, J = 8.6, 2.4 Hz, 1H), 7.18-7.09




(m, 2H), 6.55 (s, 2H), 6.17-5.79 (m, 1H), 5.10 (dd, J = 13.3, 5.1 Hz, 1H),




4.45-4.13 (m, 5H), 3.86-3.66 (m, 10H), 3.55-3.48 (m, 5H), 3.48-




3.41 (m, 4H), 3.40-3.36 (m, 1H), 2.98-2.85 (m, 1H), 2.76-2.66 (m,




6H), 2.65-2.55 (m, 3H), 2.45-2.34 (m, 1H), 2.03-1.96 (m, 1H), 1.77




(d, J = 12.3 Hz, 2H), 1.51-1.47 (m, 3H), 1.28 (d, J = 11.7 Hz, 2H), 0.69-




0.65 (m, 2H), 0.51 (s, 2H).


D313
887.65

1H NMR (400 MHz, Methanol-d4) δ 7.81 (s, 1H), 7.71 (s, 2H), 7.58 (s, 1H),





6.73 (s, 2H), 5.90 (tt, J = 56.7, 4.2 Hz, 1H), 5.18 (dd, J = 13.3, 5.2 Hz, 1H),




4.77-4.45 (m, 3H), 4.41 (s, 2H), 4.30-4.01 (m, 1H), 3.95 (s, 6H), 3.80




(d, J = 12.1 Hz, 2H), 3.65 (s, 3H), 3.62-3.49 (m, 4H), 3.42 (s, 2H), 3.16




(br s, 1H), 3.00-2.76 (m, 3H), 2.75-2.61 (m, 5H), 2.61-2.42 (m, 2H),




2.26-2.16 (m, 1H), 2.08 (d, J = 13.6 Hz, 2H), 1.82 (s, 1H), 1.67 (s, 10H).


D314
835.5

1H NMR (400 MHz, Methanol-d4) δ 7.54 (s, 1H), 7.46 (d, J = 8.4 Hz, 1H),





7.39-7.30 (m, 2H), 6.61 (s, 2H), 5.15 (dd, J = 13.3, 5.2 Hz, 1H), 4.63 (s,




1H), 4.50-4.35 (m, 2H), 4.36 (s, 2H), 4.23 (s, 1H), 4.02-3.85 (m, 7H),




3.81 (d, J = 12.3 Hz, 2H), 3.66-3.61 (m, 4H), 3.56-3.51 (m, 3H), 3.34-




3.20 (m, 2H), 3.09 (s, 2H), 2.96-2.77 (m, 4H), 2.80-2.76 (m, 4H), 2.61




(s, 2H), 2.58-2.45 (m, 1H), 2.24-2.15 (m, 1H), 1.92 (d, J = 12.4 Hz,




2H), 1.77 (s, 2H), 1.61 (s, 1H), 1.50 (q, J = 10.8 Hz, 2H), 1.10 (s, 1H), 0.94-




0.73 (m, 3H).


D315
871.6

1H NMR (300 MHz, DMSO-d6) δ 10.98 (s, 1H), 8.18 (s, 1H, FA), 7.64 (s,





1H), 7.41 (d, J = 8.8 Hz, 1H), 6.76-6.68 (m, 2H), 6.63-6.58 (m, 3H),




5.10 (dd, 1H), 4.39-4.13 (m, 4H), 3.89 (d, J = 7.9 Hz, 2H), 3.79 (s, 6H),




3.69 (d, J = 8.0 Hz, 2H), 3.60 (s, 2H), 3.50 (s, 3H), 3.41 (s, 2H), 3.40 (s,




2H), 2.98-2.82 (m, 3H), 2.59 (d, J = 4.2 Hz, 5H), 2.44-2.34 (m, 4H),




2.18 (d, J = 7.2 Hz, 4H), 2.00 (s, 3H), 1.63 (d, J = 12.6 Hz, 2H), 1.50 (s,




1H), 1.17-1.02 (m, 2H).


D316
862.5

1H NMR (400 MHz, DMSO-d6) δ 10.98 (s, 1H), 7.63 (s, 1H), 7.42 (d, J =





8.4 Hz, 1H), 7.26 (dd, J = 8.5, 2.4 Hz, 1H), 7.15 (dd, J = 9.2, 4.1 Hz, 2H),




6.64 (s, 2H), 5.99 (t, J = 4.2 Hz, 1H), 5.09 (dd, J = 13.3, 5.1 Hz, 1H), 4.43-




4.10 (m, 5H), 3.78 (d, J = 27.4 Hz, 9H), 3.61 (s, 1H), 3.11 (s, 6H), 2.92




(s, 2H), 2.98-2.85 (m, 4H), 2.72 (d, J = 11.9 Hz, 2H), 2.62 (s, 3H), 2.55




(s, 3H), 2.46-2.30 (m, 3H), 2.06-1.89 (m, 1H), 1.82-1.68 (m, 2H),




1.53 (d, J = 40.7 Hz, 3H), 1.35-1.20 (m, 2H),.


D317
862.35

1H NMR (400 MHz, DMSO-d6) δ 10.95 (s, 1H), 8.16 (s, 1H, FA), 7.65 (s,





1H), 7.49 (d, J = 8.6 Hz, 1H), 7.13 (t, J = 5.7 Hz, 1H), 7.04 (s, 2H), 6.59 (s,




2H), 6.15-5.81 (m, 1H), 5.09-4.99 (m, 1H), 4.37-4.12 (m, 4H), 3.85




(d, J = 12.6 Hz, 2H), 3.78 (s, 6H), 3.53 (s, 2H), 3.49-3.39 (m, 6H), 2.95-




2.74 (m, 1H), 2.71-2.63 (m, 2H), 2.63-2.57 (m, 1H), 2.57-2.54 (m,




3H), 2.47-2.40 (m, 3H), 2.40-2.37 (m, 1H), 2.37-2.28 (m, 4H), 2.03-




1.88 (m, 1H), 1.73 (d, J = 13.8 Hz, 2H), 1.50(s, 1H), 1.42-1.31 (m, 2H),




1.27-1.12 (m, 2H),.


D318
840.55

1H NMR (300 MHz, DMSO-d6) δ 10.96 (s, 1H), 8.22 (s, 1H, FA), 7.63 (s,





1H), 7.50 (d, J = 8.8 Hz, 1H), 7.12-6.99 (m, 2H), 6.65-6.58 (m, 1H), 6.56




(s, 2H), 5.05 (dd, J = 13.2, 5.1 Hz, 1H), 4.38-4.12 (m, 4H), 3.92-3.81 (m,




4H), 3.78 (s, 6H), 3.49-3.34 (m, 4H), 3.00-2.70 (m, 5H), 2.65-2.54 (m,




4H), 2.41-2.15 (m, 5H), 2.14-1.91 (m, 3H), 1.80-1.67 (m, 2H), 1.60-




1.45 (m, 1H), 1.43-1.30 (m, 2H), 1.28-1.17 (m, 2H), 1.16-1.06 (m, 6H).


D319
840.55

1H NMR (300 MHz, Methanol-d4) δ 7.80-7.53 (m, 4H), 6.75 (s, 2H), 5.18





(dd, J = 13.3, 5.1 Hz, 1H), 4.62-4.42 (m, 4H), 4.36 (s, 2H), 3.98 (s, 6H),




3.93-3.72 (m, 5H), 3.61-3.50 (m, 3H), 3.29-3.21 (m, 3H), 3.02-2.81 (m,




4H), 2.78 (s, 4H), 2.69-2.60 (m, 2H), 2.57-2.44 (m, 1H), 2.30-2.15 (m,




1H), 2.12-1.97 (m, 2H), 1.91-2.69 (m, 4H), 1.66-1.51 (m, 7H).


D320
887.45

1H NMR (400 MHz, Methanol-d4) δ 7.68 (d, J = 9.2 Hz, 1H), 7.58 (s, 1H),





7.20-7.17 (m, 2H), 6.73 (s, 2H), 5.90 (tt, J = 56.6, 4.2 Hz, 1H), 5.13 (dd,




J = 13.3, 5.1 Hz, 1H), 4.62 (s, 1H), 4.53-4.33 (m, 4H), 4.13 (s, 1H), 3.95




(s, 7H), 3.92 (s, 1H), 3.64 (s, 3H), 3.60-3.54 (m, 3H), 3.53-3.49 (m,




1H), 3.47 (s, 2H), 3.15 (s, 1H), 3.05-2.93 (m, 3H), 2.96-2.86 (m, 1H),




2.85-2.75 (m, 4H), 2.64 (t, J = 5.2 Hz, 3H), 2.48 (qd, J = 13.2, 4.7 Hz,




1H), 2.23-2.12 (m, 1H), 1.90 (d, J = 12.6 Hz, 2H), 1.68 (s, 7H), 1.66-




1.59 (m, 2H), 1.51-1.37 (m, 2H).


D321
849.55

1H NMR (400 MHz, DMSO-d6) δ 10.96 (s, 1H), 7.62 (s, 1H), 7.54 (d, J =





8.3 Hz, 1H), 7.11 (s, 2H), 6.72 (s, 2H), 5.04 (dd, J = 13.2, 5.1 Hz, 1H),




4.58 (s, 1H), 4.38-4.14 (m, 4H), 3.97 (s, 3H), 3.89 (s, 7H), 3.62-3.57




(m, 4H), 3.51 (s, 3H), 3.41 (t, J = 5.6 Hz, 2H), 3.34-3.15 (m, 4H), 2.97-




2.78 (m, 3H), 2.67-2.55 (m, 6H), 2.56-2.50 (m, 2H), 2.45-2.29 (m,




1H), 2.22 (s, 1H), 2.03-1.81 (m, 3H), 1.82-1.68 (m, 4H), 1.64-1.55




(m, 1H), 1.31 (q, J = 10.7 Hz, 2H).


D322
899.5

1H NMR (300 MHz, Methanol-d4) δ 7.69 (d, J = 9.1 Hz, 1H), 7.59 (s, 1H),





7.20 (d, J = 7.1 Hz, 2H), 6.74 (s, 2H), 6.16-5.65 (m, 1H), 5.12 (dd, J =




13.2, 5.1 Hz, 1H), 4.58-4.26 (m, 6H), 4.06-3.86 (m, 9H), 3.76-3.65




(m, 4H), 3.67-3.46 (m, 7H), 3.40 (s, 2H), 3.24 (s, 2H), 3.03 (t, J = 12.2




Hz, 2H), 2.94-2.78 (m, 2H), 2.78-2.69 (m, 2H), 2.67-2.61 (m, 2H),




2.57-2.34 (m, 2H), 2.22-2.02 (m, 3H), 1.94 (d, J = 12.5 Hz, 2H), 1.74




(d, J = 33.3 Hz, 3H), 1.61-1.38 (m, 2H).


D323
840.5

1H NMR (300 MHz, Methanol-d4) δ 8.49 (s, 2H, FA), 7.58 (s, 1H), 7.45 (d,





J = 8.2 Hz, 1H), 7.37-7.30 (m, 2H), 6.73 (s, 2H), 5.15 (dd, J = 13.3, 5.1




Hz, 1H), 4.54-4.46 (m, 1H), 4.43-4.29 (m, 5H), 3.96 (s, 6H), 3.84-




3.68 (m, 4H), 3.64 (s, 3H), 3.55 (t, J = 5.3 Hz, 2H), 3.37 (s, 1H), 2.96-




2.72 (m, 6H), 2.64 (s, 3H), 2.58-2.44 (m, 3H), 2.24-2.12 (m, 1H), 1.95-




1.83 (m, 2H), 1.62-1.42 (m, 9H), 1.42-1.22 (m, 2H).


D324
840.5

1H NMR (400 MHz, Methanol-d4) δ 7.68 (d, J = 9.3 Hz, 1H), 7.58 (s, 1H),





7.20-7.17 (m, 2H), 6.74 (s, 2H), 5.13 (dd, J = 13.3, 5.1 Hz, 1H), 4.59 (d,




J = 13.5 Hz, 1H), 4.50-4.41 (m, 3H), 4.36 (s, 2H), 4.04-3.88 (m, 10H),




3.64 (s, 4H), 3.55 (t, J = 5.6 Hz, 2H), 3.37 (s, 1H), 3.24-3.13 (m, 1H),




3.08-2.84 (m, 6H), 2.83-2.75 (m, 1H), 2.68-2.59 (m, 2H), 2.52-2.41




(m, 1H), 2.23-2.12 (m, 1H), 1.91 (d, J = 12.9 Hz, 2H), 1.77-1.67 (m,




3H), 1.61 (d, J = 6.6 Hz, 6H), 1.52-1.40 (m, 2H).


D325
837.4

1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 1H, FA), 7.63 (d, J = 8.6 Hz,





1H), 7.57 (s, 1H), 7.11-7.05 (m, 2H), 6.72 (s, 2H), 5.11 (dd, J = 13.3, 5.1




Hz, 1H), 4.94-4.89 (m, 1H), 4.46 (s, 1H), 4.46-4.37 (m, 2H), 4.36 (s,




3H), 3.97-3.91 (m, 8H), 3.73-3.66 (m, 1H), 3.64 (s, 3H), 3.55 (t, J = 5.6




Hz, 2H), 3.00-2.89 (m, 1H), 2.89-2.80 (m, 3H), 2.78 (s, 5H), 2.63 (t, J =




5.6 Hz, 3H), 2.60-2.39 (m, 4H), 2.21-2.10 (m, 1H), 1.92-1.83 (m, 2H),




1.65 (s, 1H), 1.58-1.48 (m, 8H), 1.44-1.29 (m, 3H).


D326
837.45

1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 1H, FA), 7.58 (s, 1H), 7.45 (d,





J = 8.4 Hz, 1H), 7.39-7.26 (m, 2H), 6.73 (s, 2H), 5.15 (dd, J = 13.3, 5.1




Hz, 1H), 4.49-4.34 (m, 3H), 4.36 (s, 3H), 3.96 (s, 6H), 3.77 (d, J = 12.3




Hz, 2H), 3.74-3.66 (m, 1H), 3.64 (s, 3H), 3.55 (t, J = 5.6 Hz, 2H), 3.01-




2.86 (m, 2H), 2.86-2.76 (m, 6H), 2.75 (s, 1H), 2.64 (t, J = 5.7 Hz, 3H),




2.60-2.42 (m, 4H), 2.26-2.13 (m, 1H), 1.89 (s, 2H), 1.52 (d, J = 6.6 Hz,




9H), 1.48-1.35 (m, 3H).


D327
807.55

1H NMR (300 MHz, DMSO-d6) δ 10.99 (s, 1H), 8.19 (s, 1H), 7.61 (s, 1H),





7.41 (d, J = 8.4 Hz, 1H), 7.25 (d, J = 8.1 Hz, 1H), 7.15 (s, 1H), 6.76 (s,




2H), 6.60 (d, J = 4.2 Hz, 1H), 5.10 (dd, J = 13.2, 4.8 Hz, 1H), 4.33 (d, J =




17.1 Hz, 1H), 4.25-4.14 (m, 3H), 3.90-3.70 (m, 7H), 3.49 (s, 3H), 3.39




(s, 4H), 2.99-2.84 (m, 2H), 2.78-2.65 (m, 4H), 2.65-2.55 (m, 4H), 2.44-




2.30 (m, 10H), 2.04-1.93 (m, 1H), 1.75 (d, J = 11.7 Hz, 2H), 1.55-1.35




(m, 3H), 1.35-1.12 (m, 5H).


D328
876.3

1H NMR (300 MHz, DMSO-d6) δ 11.09 (s, 1H), 7.65 (t, J = 4.3 Hz, 2H),





7.32-7.09 (m, 3H), 6.58 (s, 2H), 5.99 (tt, J = 56.7, 4.3 Hz, 1H), 5.07 (dd,




J = 12.8, 5.4 Hz, 1H), 4.26 (s, 2H), 4.03 (d, J = 12.7 Hz, 2H), 3.77 (s, 6H),




3.51 (s, 2H), 3.46 (m, 2H), 3.44 (m, 2H), 3.43 (m, 2H), 2.91 (q, J = 14.2,




13.3 Hz, 4H), 2.61 (d, J = 3.6 Hz, 1H), 2.35 (d, J = 30.3 Hz, 10H), 2.01 (d,




J = 11.0 Hz, 1H), 1.74 (d, J = 12.6 Hz, 2H), 1.57 (s, 1H), 1.35 (d, J = 7.3




Hz, 2H), 1.19 (dd, J = 20.1, 9.1 Hz, 2H).


D329
853.4

1H NMR (400 MHz, DMSO-d6) δ 10.96 (s, 1H), 7.63 (s, 1H), 7.52 (d, J =





8.5 Hz, 1H), 7.10-7.04 (m, 2H), 6.70 (s, 2H), 6.62 (s, 1H), 5.05 (dd, J =




13.3, 5.1 Hz, 1H), 4.32 (d, J = 16.9 Hz, 1H), 4.25-4.15 (m, 4H), 3.85-




3.83 (m, 2H), 3.81-3.73 (m, 8H), 3.72-3.58 (m, 4H), 3.51 (s, 4H), 3.42 (s,




6H), 3.27-2.99 (m, 5H), 2.98-2.84 (m, 4H), 2.64-2.56 (m, 4H), 2.45-




2.28 (m, 1H), 2.02-1.89 (m, 1H), 1.75 (d, J = 12.4 Hz, 2H), 1.65-1.48




(m, 3H), 1.33-1.17 (m, 2H).


D330
845.4

1H NMR (300 MHz, DMSO-d6) δ 10.96 (s, 1H), 8.24 (s, 2H, FA), 7.64 (s,





1H), 7.52 (d, J = 8.4 Hz, 1H), 7.17-7.06 (m, 2H), 6.59 (s, 3H), 5.05 (dd,




J = 13.2, 5.0 Hz, 1H), 4.37-4.29 (m, 1H), 4.25-4.19 (m, 3H), 4.11-4.07




(m, 1H), 3.90-3.86 (m, 2H), 3.78 (s, 6H), 3.54-3.47 (m, 5H), 3.40 (t, J =




5.6 Hz, 3H), 3.24 (dd, J = 30.5, 13.2 Hz, 2H), 3.05-2.84 (m, 2H), 2.64-




2.57 (m, 4H), 2.47-2.26 (m, 10H), 2.15-2.06 (m, 1H), 2.01-1.81 (m,




3H), 1.53-1.40 (m, 1H), 1.37-1.18 (m, 1H).


D331
655.4
1H NMR (400 MHz, DMSO-d6) δ 10.94 (s, 1H), 7.60 (s, 1H), 7.51 (d, J =




8.3 Hz, 1H), 6.64-6.49 (m, 5H), 5.04 (dd, J = 13.3, 5.1 Hz, 1H), 4.36-




4.28 (m, 4H), 4.24-4.15 (m, 3H), 4.03-3.97 (m, 2H), 3.73 (s, 6H), 3.48




(s, 3H), 3.38 (t, J = 5.5 Hz, 2H), 2.97-2.83 (m, 1H), 2.63-2.53 (m, 6H),




2.42-2.27 (m, 1H), 1.99-1.92 (m, 1H).


D332
849.5
1H NMR (400 MHz, DMSO-d6) δ 10.99 (s, 1H), 7.62 (s, 1H), 7.49 (d, J =




8.4 Hz, 1H), 7.38 (dd, J = 8.5, 2.3 Hz, 1H), 7.32 (d, J = 2.3 Hz, 1H), 6.73




(s, 2H), 5.09 (dd, J = 13.3, 5.1 Hz, 1H), 4.65-4.43 (m, 1H), 4.44-4.15




(m, 4H), 3.89 (s, 6H), 3.81-3.76 (m, 4H), 3.57-3.31 (m, 4H), 3.41-




3.30 (m, 3H), 3.24-3.06 (m, 5H), 2.94-2.84 (m, 4H), 2.75-2.63 (m,




5H), 2.61-2.57 (m, 3H), 2.56-2.52 (m, 1H), 2.14-2.05 (m, 1H), 2.04-




1.96 (m, 1H), 1.96-1.79 (m, 4H), 1.74-1.69 (m, 2H), 1.60-1.56 (m,




1H), 1.46-1.36 (m, 2H).


D333
899.5

1H NMR (300 MHz, Methanol-d4) δ 7.72-7.56 (m, 4H), 6.74 (s, 2H), 6.16-





5.60 (m, 1H), 5.24-5.08 (m, 1H), 4.62-4.22 (m, 6H), 3.97 (s, 6H),




3.80 (d, J = 12.0 Hz, 2H), 3.70-3.46 (m, 8H), 3.44-3.33 (m, 4H), 3.29-




3.16 (m, 4H), 3.06 (s, 2H), 2.96-2.68 (m, 2H), 2.68-2.59 (m, 4H), 2.57-




2.46 (m, 1H), 2.41 (s, 1H), 2.12 (dt, J = 45.4, 6.8 Hz, 5H), 1.83-1.47




(m, 5H).


D334
875.4

1H NMR (300 MHz, Methanol-d4) δ 7.59 (s, 1H), 7.39 (d, J = 8.2 Hz, 1H),





7.04-6.67 (m, 4H), 5.14 (dd, J = 13.1, 5.1 Hz, 1H), 4.66-4.48 (m, 2H),




4.45-4.31 (m, 4H), 4.31-4.12 (m, 4H), 3.97 (s, 6H), 3.93-3.89 (m,




2H), 3.87-3.57 (m, 9H), 3.55 (t, J = 5.6 Hz, 3H), 2.98-2.80 (m, 3H),




2.78 (s, 3H), 2.76-2.66 (m, 2H), 2.66-2.60 (m, 2H), 2.57-2.43 (m,




1H), 2.26-2.13 (m, 1H), 2.11-1.98 (m, 1H), 1.93-1.70 (m, 3H).


D335
868.55

1H NMR (300 MHz, DMSO-d6) δ 10.98 (s, 1H), 8.14 (s, 0.4H, FA), 7.65 (s,





1H), 7.39 (d, J = 8.3 Hz, 1H), 7.33-7.25 (m, 1H), 7.20 (d, J = 8.0 Hz, 1H),




6.73-6.64 (m, 2H), 6.57 (s, 2H), 5.39 (d, J = 8.0 Hz, 1H), 5.08 (dd, J =




13.3, 5.1 Hz, 1H), 4.61 (s, 2H), 4.36-4.16 (m, 2H), 3.80 (s, 6H), 3.72-




3.57 (m, 6H), 3.48 (s, 3H), 3.14-2.81 (m, 5H), 2.70-2.56 (m, 5H), 2.49-




2.30 (m, 4H), 2.27-2.05 (m, 3H), 2.04-1.58 (m, 6H), 1.51-1.32 (m,




1H).


D336
885.4

1H NMR (400 MHz, MeOD) δ 8.47 (s, 2FA, 2H), 7.59 (s, 1H), 7.40 (d, J =





8.2 Hz, 1H), 6.86 (d, J = 2.2 Hz, 1H), 6.78 (dd, J = 8.2, 2.2 Hz, 1H), 6.73




(s, 2H), 6.07-5.71 (m, 1H), 5.14 (dd, J = 13.3, 5.1 Hz, 1H), 4.47-4.32




(m, 6H), 3.95 (s, 6H), 3.67 (d, J = 18.9 Hz, 7H), 3.61-3.48 (m, 6H), 3.15-




3.10 (m, 2H), 2.98-2.57 (m, 8H), 2.56-2.42 (m, 3H), 2.21-2.14 (m,




1H), 2.09-2.0 (m, 3H), 1.99-1.93 (m, 5H), 1.58-1.53 (m, 2H).


D337
837.5

1H NMR (300 MHz, DMSO-d6) δ 7.65 (d, J = 8.5 Hz, 1H), 7.29-7.16 (m,





2H), 6.50 (s, 2H), 4.99 (dd, J = 12.7, 5.5 Hz, 1H), 4.19 (d, J = 16.7 Hz,




4H), 3.96 (s, 3H), 3.77 (s, 6H), 3.50 (s, 4H), 3.34 (s, 8H), 3.10 (s, 2H),




2.94 (t, J = 12.3 Hz, 2H), 2.84-2.72 (m, 1H), 2.63 (d, J = 3.4 Hz, 1H),




2.55 (s, 3H), 2.4-2.5 (m, 1H), 2.18 (s, 2H), 2.10 (s, 3H), 2.06-1.96 (m,




1H), 1.73 (d, J = 12.4 Hz, 2H), 1.57 (s, 3H), 1.17 (d, J = 12.4 Hz, 2H).


D338
900.45

1H NMR (400 MHz, DMSO-d6) δ 11.13 (s, 1H), 8.03 (t, 1H), 7.86-7.71





(m, 1H), 7.57 (s, 1H), 7.35-7.21 (m, 2H), 6.73-6.59 (m, 3H), 5.12 (dd,




J = 12.8, 5.4 Hz, 1H), 4.98 (t, J = 6.8 Hz, 1H), 4.25 (s, 2H), 3.79 (s, 6H),




3.59 (s, 3H), 3.42 (t, J = 5.5 Hz, 3H), 2.99-2.81 (m, 3H), 2.66-2.57 (m,




5H), 2.46-2.37 (m, 2H), 2.37-1.98 (m, 9H), 1.80 (dd, J = 12.3, 6.3 Hz,




2H), 1.70-1.59 (m, 4H), 1.56 (t, J = 5.1 Hz, 2H), 1.48 (s, 1H), 1.17-0.98




(m, 2H).


D339
871.5

1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 1H, FA), 7.65-7.54 (m, 2H),





6.70 (s, 2H), 6.61-6.51 (m, 2H), 5.09 (dd, J = 13.2, 5.1 Hz, 1H), 4.61 (s,




2H), 4.47-4.27 (m, 6H), 4.05 (d, J = 7.9 Hz, 2H), 3.93 (s, 6H), 3.74 (d,




J = 8.0 Hz, 2H), 3.63 (s, 3H), 3.53 (t, J = 5.6 Hz, 4H), 3.17-3.01 (m, 2H),




2.95-2.85 (m, 1H), 2.82-2.73 (m, 4H), 2.72-2.58 (m, 3H), 2.57-2.39




(m, 3H), 2.37-2.27 (m, 2H), 2.18-2.07 (m, 3H), 2.05-1.97 (m, 2H),




1.96-1.83 (m, 1H), 1.51-1.40(m, 1H).


D340
853.4

1H NMR (400 MHz, DMSO-d6) δ 10.99 (s, 1H), 7.63 (s, 1H), 7.44 (d, J =





8.5 Hz, 1H), 7.33-7.26 (m, 1H), 7.20 (s, 1H), 6.70 (s, 2H), 6.62 (s, 1H),




5.10 (dd, J = 13.3, 5.1 Hz, 1H), 4.34 (d, J = 16.8 Hz, 1H), 4.25-4.17 (m,




4H), 3.81-3.77 (m, 8H), 3.76-3.72 (m, 6H), 3.51 (s, 3H), 3.40 (s, 6H),




3.24-3.00 (m, 4H), 2.98-2.85 (m, 3H), 2.76 (t, J = 11.9 Hz, 3H), 2.65-




2.52 (m, 4H), 2.43-2.34 (m, 1H), 2.04-1.94 (m, 1 H), 1.78 (d, J = 12.3 Hz,




2H), 1.66-1.45 (m, 3H), 1.39-1.23 (m, 2H).


D341
812.45

1H NMR (300 MHz, MeOD) δ 8.52 (s, FA, 1H), 7.57 (s, 1H), 7.45 (d, J =





8.3 Hz, 1H), 7.38-7.27 (m, 2H), 6.68 (s, 2H), 5.15 (dd, J = 13.2, 5.1 Hz,




1H), 4.51-4.33 (m, 4H), 4.11 (s, 2H), 3.91 (s, 6H), 3.77 (d, J = 12.2 Hz,




2H), 3.64 (s, 3H), 3.54 (t, J = 5.7, 5.7 Hz, 2H), 3.15-3.03 (m, 4H), 3.00-




2.85 (m, 4H), 2.85-2.68 (m, 6H), 2.66-2.61 (m, 2H), 2.59-2.42 (m,




1H), 2.23-2.13 (m, 1H), 1.87 (d, J = 12.3 Hz, 2H), 1.64-1.55 (m, 3H),




1.51-1.38 (m, 2H).


D342
850.35

1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 2H, FA), 8.10-7.81 (m,, 3H),





7.59 (s, 1H), 6.73 (s, 2H), 5.16 (dd, J = 12.6, 5.4 Hz, 1H), 4.37 (d, J = 3.4




Hz, 4H), 4.26-4.09 (m, 1 H), 3.95 (s, 6H), 3.80-3.65 (m, 4H), 3.59-3.36




(m, 6H), 3.11 (s, 3H), 2.90 (ddd, J = 17.6, 14.3, 5.1 Hz, 1H), 2.83-2.69




(m, 5H), 2.64 (t, J = 5.5 Hz, 2H), 2.30 (t, J = 13.5 Hz, 1H), 2.21-2.09 (m,




2H), 2.04 (d, J = 12.7 Hz, 3H), 1.96 (s, 1H), 1.78 (s, 3H), 1.65 (s, 2H), 1.58-




1.49 (m, 3H), 1.45 (d, J = 6.2 Hz, 3H).


D343
932.4

1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.19 (s, FA, 1H), 7.82 (d,





J = 8.2 Hz, 1H), 7.62 (s, 1H), 7.32-7.24 (m, 2H), 6.64-6.55 (m, 3H), 5.12




(dd, J = 12.8, 5.4 Hz, 1H), 5.01-4.94 (m, 1H), 4.21 (s, 2H), 3.86-3.71




(m, 8H), 3.54-3.47 (m, 5H), 3.05-2.90 (m, 2H), 2.90-2.76 (m, 5H),




2.73-2.68 (m, 1H), 2.64-2.55 (m, 5H), 2.45-2.40 (m, 4H), 2.07-1.96




(m, 3H), 1.92-1.75 (m, 3H), 1.64-1.45 (m, 6H), 1.32-1.11 (m, 2H).


D344
859.45

1H NMR (400 MHz, Methanol-d4) δ 7.69 (d, J = 2.1 Hz, 1H), 7.66-7.57





(m, 3H), 6.74 (s, 2H), 6.13-5.65 (m, 1H), 5.22-5.13 (m, 1H), 4.62-




4.37 (m, 6H), 3.95 (s, 6H), 3.88-3.74 (m, 3H), 3.65 (s, 3H), 3.60-3.55




(m, 7H), 3.53-3.49 (m, 1H), 3.44 (s, 3H), 3.27-3.20 (m, 2H), 3.19-3.09




(m, 2H), 2.99-2.85 (m, 1H), 2.81-2.76 (m, 1H), 2.66 (t, J = 5.6 Hz, 2H),




2.59-2.44 (m, 1H), 2.25-2.15(m, 1H), 2.03 (d, J = 13.2 Hz, 2H), 1.77-




1.73 (m, 3H), 1.68-1.58 (m, 2H).


D345
918.45

1H NMR (400 MHz, Methanol-d4) δ 7.58 (s, 1H), 7.48 (d, J = 8.3 Hz, 1H),





7.20 (d, J = 2.5 Hz, 1H), 7.15 (dd, J = 8.3, 2.4 Hz, 1H), 6.74 (d, J = 4.1 Hz,




2H), 5.16 (dd, J = 13.3, 5.1 Hz, 1H), 4.79 (t, J = 6.7 Hz, 1H), 4.50-4.42




(m, 2H), 4.36 (s, 4H), 3.96 (s, 6H), 3.69-3.59 (m, 5H), 3.55 (t, J = 5.6 Hz,




2H), 3.38-3.35 (m, 1H), 3.20-3.08 (m, 2H), 3.00-2.84 (m, 4H), 2.84-




2.81 (m, 1H), 2.78 (s, 3H), 2.68-2.58 (m, 3H), 2.57-2.45 (m, 4H), 2.37




(d, J = 14.8 Hz, 1H), 2.24-2.01 (m, 4H), 1.96-1.87 (m, 2H), 1.74-1.52




(m, 6H).


D346
845.4

1H NMR (300 MHz, DMSO-d6) δ 10.99 (s, 1H), 8.36 (s, 3H, FA), 7.64 (s,





1H), 7.44 (d, J = 8.3 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.20 (s, 1H), 6.58




(s, 3H), 5.10 (dd, J = 13.4, 4.9 Hz, 1H), 4.40-4.31 (m, 1H), 4.25-4.16




(m, 3H), 4.02-3.89 (m, 3H), 3.78 (s, 6H), 3.52-3.49 (m, 5H), 3.42-




3.37 (m, 3H), 3.23-3.14 (m, 1H), 3.14-3.05 (m, 1H), 2.97-2.84 (m,




2H), 2.62-2.56 (m, 4H), 2.44-2.28 (m, 10H), 2.05-1.94 (m, 2H), 1.92-




1.72 (m, 2H), 1.57-1.44 (m, 1H), 1.36-1.22 (m, 1H).


D347
882.4

1H NMR (300 MHz, DMSO-d6) δ 11.14 (s, 1H), 9.21 (d, J = 73.7 Hz, TFA





2H), 7.86 (d, J = 8.3 Hz, 1H), 7.77 (s, 1H), 7.34 (d, J = 2.3 Hz, 1H), 7.30




(d, J = 8.3 Hz, 1H), 6.77 (s, 2H), 6.66 (d, J = 4.5 Hz, 1H), 6.13 (s, 1H),




5.96 (s, 1H), 5.13 (dd, J = 12.9, 5.3 Hz, 1H), 5.05-4.97 (m, 1H), 4.23 (d,




J = 14.7 Hz, 4H), 3.88 (s, 6H), 3.18 (s, 2H), 3.07-2.78 (m, 7H), 2.60 (d,




J = 4.1 Hz, 8H), 2.18-1.69 (m, 11H), 1.63-1.39 (m, 2H).


D348
737.4
1H), 7.61-7.55 (m, 2H), 7.51 (dd, J = 8.4, 2.2 Hz, 1H), 6.80 (s, 2H), 5.17




(dd, J = 13.3, 5.2 Hz, 1H), 4.54-4.43 (m, 2H), 4.40 (s, 2H), 3.97 (s, 6H),




3.79 (d, J = 12.1 Hz, 2H), 3.67 (s, 3H), 3.48-3.42 (m, 5H), 3.32-3.24 (m,




3H), 3.15-3.01 (m, 6H), 2.92-2.84 (m, 3H), 2.84-2.74 (m, 1H), 2.60-




2.42 (m, 1H), 2.24-2.07 (m, 3H), 2.03-1.94 (m, 2H), 1.75-1.67 (m,




3H), 1.60-1.50 (m, 2H).


D349
796.25

1H NMR (400 MHz, DMSO-d6) δ 10.98 (s, 1H), 10.30-9.27 (m, 2H, TFA),





7.63 (d, J = 7.4 Hz, 1H), 7.41 (d, J = 8.8 Hz, 1H), 6.80-6.67 (m, 4H), 5.07




(dd, J = 13.2, 5.1 Hz, 1H), 4.43-4.26 (m, 6H), 4.24-4.18 (m, 2H), 4.10-




3.94 (m, 3H), 3.89 (d, J = 3.2 Hz, 6H), 3.76-3.70 (m, 2H), 3.69-3.59 (m,




5H), 3.51 (s, 3H), 3.27-3.08 (m, 2H), 3.05-2.84 (m, 3H), 2.70-2.56




(m, 4H), 2.45-2.36 (m, 1H), 2.17-2.06 (m, 2H), 2.03-1.88 (m, 3H).


D350
736.25

1H NMR (300 MHz, DMSO-d6) δ 7.68 (s, 1H), 7.41 (d, J = 8.8 Hz, 1H),





6.79-6.66 (m, 4H), 5.04 (dd, J = 13.2, 5.1 Hz, 1H), 4.34 (dd, J = 17.0, 5.4




Hz, 3H), 4.25-4.14 (m, 3H), 4.04-3.92 (m, 2H), 3.89 (s, 6H), 3.71 (s,




2H), 3.57-3.49 (m, 3H), 3.42 (s, 5H), 3.36 (s, 3H), 3.26-3.10 (m, 1H),




3.05-2.92 (m, 3H), 2.82 (q, J = 11.6, 9.6 Hz, 2H), 2.60 (d, J = 16.7 Hz,




1H), 2.36 (dt, J = 13.5, 6.6 Hz, 1H), 2.11 (d, J = 13.7 Hz, 2H), 1.93 (td, J =




17.8, 16.9, 9.8 Hz, 3H).


D351
695.25

1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H, FA), 7.66 (d, J = 8.2 Hz,





1H), 6.88 (s, 1H), 6.86 (d, J = 2.1 Hz, 1H), 6.69 (dd, J = 8.4, 2.1 Hz, 1H),




6.65 (s, 2H), 5.08 (dd, J = 12.5, 5.4 Hz, 1H), 4.10-3.98 (m, 2H), 3.98-




3.88 (m, 6H), 3.89-3.80 (m, 4H), 3.62 (s, 3H), 3.40 (t, J = 5.6 Hz, 2H),




3.05-2.81 (m, 4H), 2.81-2.68 (m, 3H), 2.56 (t, J = 6.2 Hz, 2H), 2.19-




1.97 (m, 5H), 1.85 (q, J = 5.9 Hz, 2H).


D352
750.3

1H NMR (400 MHz, DMSO-d6) δ 10.97 (s, 1H), 8.21 (s, 2H, FA), 7.47 (s,





1H), 7.37 (d, J = 8.0 Hz, 1H), 6.68 (d, J = 10.2 Hz, 2H), 6.63 (s, 2H), 5.08




(dd, J = 13.3, 5.1 Hz, 1H), 4.38-4.14 (m, 2H), 3.81 (s, 7H), 3.57 (s, 6H),




3.40 (d, J = 16.8 Hz, 4H), 3.29 (dd, J = 6.9, 4.7 Hz, 1H), 3.15 (s, 3H), 2.98-




2.84 (m, 1H), 2.77-2.68 (m, 2H), 2.59 (d, J = 16.1 Hz, 2H), 2.42 (d, J =




6.8 Hz, 2H), 2.39 (s, 3H), 2.28 (s, 4H), 1.98 (d, J = 12.0 Hz, 1H), 1.72 (t,




J = 5.3 Hz, 4H).


D353
763.6

1H NMR (300 MHz, MeOD) δ 7.71 (s, 1H), 7.42 (d, J = 8.2 Hz, 1H), 6.88





(d, J = 2.2 Hz, 1H), 6.80 (d, J = 3.3 Hz, 3H), 5.14 (dd, J = 13.2, 5.1 Hz,




1H), 4.53-4.31 (m, 4H), 3.98 (d, J = 3.5 Hz, 6H), 3.78 (d, J = 23.5 Hz,




4H), 3.70-3.58 (m, 7H), 3.31-3.25 (m, 1H), 3.24-2.96 (m, 7H), 2.96-




2.74 (m, 4H), 2.59-2.42 (m, 1H), 2.34-2.00 (m, 10H), 1.78-1.55 (m,




2H).


D354
807.45

1H NMR (400 MHz, DMSO-d6) δ 10.98 (s, 1H), 8.87 (s, 1H), 8.23 (s, 2H,





FA), 7.64-7.47 (m, 2H), 7.07-6.92 (m, 2H), 6.59 (s, 2H), 5.07 (dd, J =




13.4, 5.1 Hz, 1H), 4.86-4.78 (m, 1H), 4.38 (d, J = 17.2 Hz, 1H), 4.25 (d,




J = 17.3 Hz, 1H), 3.79 (s, 6H), 3.55 (s, 3H), 3.53 (s, 2H), 2.93-2.77 (m,




5H), 2.64-2.59 (m, 1H), 2.45-2.36 (m, 5H), 2.29-2.17 (m, 4H), 2.08-




1.99 (m, 5H), 1.80-1.75 (m, 2H), 1.61-1.51 (m, 6H), 1.45-1.41 (m,




1H), 1.07-0.99 (m, 2H).


D355
868.55

1H NMR (300 MHz, DMSO-d6) δ 10.98 (s, 1H), 8.14 (s, 0.4H, FA), 7.65 (s,





1H), 7.39 (d, J = 8.3 Hz, 1H), 7.33-7.25 (m, 1H), 7.20 (d, J = 8.0 Hz, 1H),




6.73-6.64 (m, 2H), 6.57 (s, 2H), 5.39 (d, J = 8.0 Hz, 1H), 5.08 (dd, J =




13.3, 5.1 Hz, 1H), 4.61 (s, 2H), 4.36-4.16 (m, 2H), 3.80 (s, 6H), 3.72-




3.57 (m, 6H), 3.48 (s, 3H), 3.14-2.81 (m, 5H), 2.70-2.56 (m, 5H), 2.49-




2.30 (m, 4H), 2.27-2.05 (m, 3H), 2.04-1.58 (m, 6H), 1.51-1.32 (m,




1H).


D356
666.4

1H NMR (300 MHz, DMSO-d6) δ 10.98 (s, 1H), 8.20 (s, 1H, FA), 7.76 (s,





1H), 7.37 (d, J = 8.1 Hz, 1H), 6.73-6.62 (m, 4H), 5.08 (dd, J = 13.2, 5.0




Hz, 1H), 4.38-4.12 (m, 2H), 3.82 (s, 6H), 3.56 (s, 3H), 3.53-3.47 (m, 6H),




3.02-2.82 (m, 3H), 2.72 (t, J = 7.5 Hz, 2H), 2.65-2.56 (m, 1H), 2.45-




2.27 (m, 5H), 2.05-1.94 (m, 3H), 1.81-1.63 (m, 4H).


D357
668.25

1H NMR (300 MHz, DMSO-d6) δ 8.24 (s, 1H, FA), 7.98 (s, 1H), 7.37 (d,





J = 8.1 Hz, 1H), 6.73-6.62 (m, 4H), 5.20 (s, 2H), 5.06 (dd, J = 13.2, 5.1 Hz,




1H), 4.93 (s, 2H), 4.38-4.12 (m, 2H), 3.82 (s, 6H), 3.60-3.51 (m, 9H),




2.98-2.80 (m, 1H), 2.65-2.53 (m, 3H), 2.42-2.26 (m, 3H), 2.03-1.93




(m, 1H), 1.79-1.69 (m, 4H).


D358
682.25

1H NMR (300 MHz, DMSO-d6) δ 8.22 (s, 1H, FA), 7.98 (s, 1H), 7.62 (d,





J = 8.2 Hz, 1H), 6.76 (d, J = 2.0 Hz, 1H), 6.64 (s, 3H), 5.20 (s, 2H), 5.04 (dd,




J = 12.8, 5.3 Hz, 1H), 4.93 (s, 2H), 3.81 (s, 6H), 3.72 (s, 4H), 3.56 (s, 3H),




3.53 (s, 2H), 2.90-2.78 (m, 1H), 2.64-2.52 (m, 2H), 2.47-2.35 (m,




4H), 2.05-1.95 (m, 1H), 1.76-1.70 (m, 4H).


D359
668.25

1H NMR (300 MHz, DMSO-d6) δ 8.22 (s, 1H, FA), 7.98 (s, 1H), 7.48 (d,





J = 8.2 Hz, 1H), 6.65 (s, 2H), 6.54-6.43 (m, 2H), 5.20 (s, 2H), 5.01 (dd, J =




13.3, 5.0 Hz, 1H), 4.92 (s, 2H), 4.36-4.02 (m, 2H), 3.82 (s, 6H), 3.61 (s,




9H), 2.88 (t, J = 14.3 Hz, 1H), 2.68-2.50 (m, 5H), 2.40-2.29 (m, 1H),




2.00-1.91 (m, 1H), 1.79-1.73 (m, 4H).


D360
681.4

1H NMR (400 MHz, DMSO-d6) δ 10.95 (s, 1H), 8.14 (s, 0.2H, FA), 7.50 (d,





J = 8.2 Hz, 1H), 6.90 (s, 1H), 6.64 (s, 2H), 6.57-6.45 (m, 2H), 5.49 (s,




1H), 5.04 (dd, J = 13.3, 5.1 Hz, 1H), 4.35-4.16 (m, 2H), 4.10-3.78 (m,




8H), 3.69 (s, 4H), 3.48 (s, 3H), 3.26 (s, 3H), 3.01-2.79 (m, 3H), 2.65-




2.55 (m, 2H), 2.48-2.43 (m, 2H), 2.41-2.35 (m, 1H), 2.05-1.77 (m,




5H), 1.69 (s, 2H),


D361
681.35

1H NMR (400 MHz, DMSO-d6) δ 10.98 (s, 1H), 8.15 (s, 0.2H, FA), 7.39 (d,





J = 8.1 Hz, 1H), 6.90 (s, 1H), 6.69 (d, J = 7.6 Hz, 2H), 6.66-6.52 (m, 2H),




5.47 (d, J = 2.8 Hz, 1H), 5.08 (dd, J = 13.3, 5.1 Hz, 1H), 4.35-4.16 (m,




2H), 3.91-3.74 (m, 8H), 3.62 (s, 4H), 3.48 (s, 3H), 3.26 (s, 4H), 2.96-




2.87 (m, 1H), 2.85-2.70 (m, 2H), 2.64-2.55 (m, 1H), 2.50-2.45 (m,




2H), 2.43-2.33 (m, 1H), 2.03-1.94 (m, 1H), 1.84 (s, 4H), 1.70 (s, 2H).


D362
627.2

1H NMR (300 MHz, DMSO-d6) δ 11.12 (s, 1H), 7.88-7.80 (m, 1H), 7.76





(s, 1H), 7.27 (d, J = 7.4 Hz, 2H), 6.67 (s, 2H), 5.12 (dd, J = 12.8, 5.3 Hz,




1H), 4.97 (s, 1H), 3.81 (s, 9H), 3.51 (s, 3H), 3.28-3.12 (m, 3H), 3.01-




2.80 (m, 3H), 2.70 (d, J = 7.6 Hz, 2H), 2.60 (d, J = 13.7 Hz, 2H), 2.00 (q,




J = 7.5 Hz, 3H).


D363
680.2

1H NMR (300 MHz, DMSO-d6) δ 11.08 (s, 1H), 8.18 (s, 1H, FA), 7.76 (s,





1H), 7.63 (d, J = 8.3 Hz, 1H), 6.78 (d, J = 2.1 Hz, 1H), 6.69-6.60 (m, 3H),




5.05 (dd, J = 12.8, 5.3 Hz, 1H), 3.81 (s, 6H), 3.73 (s, 3H), 3.51 (s, 5H),




2.96 (t, J = 7.5 Hz, 3H), 2.90-2.80 (m, 1H), 2.78-2.55 (m, 4H), 2.41 (s,




4H), 1.99 (t, J = 7.7 Hz, 3H), 1.72 (s, 4H).


D364
626.25

1H NMR (300 MHz, DMSO-d6) δ 10.98 (s, 1H), 7.77 (s, 1H), 7.42 (d, J =





8.4 Hz, 1H), 7.29-7.20 (m, 1H), 7.13 (d, J = 2.3 Hz, 1H), 6.67 (s, 2H),




5.09 (dd, J = 13.2, 5.1 Hz, 1H), 4.39-4.13 (m, 2H), 3.83 (s, 6H), 3.60 (s,




2H), 3.51 (s, 3H), 3.16 (s, 4H), 3.01-2.83 (m, 3H), 2.70 (d, J = 7.4 Hz,




2H), 2.58 (s, 5H), 2.41-2.30 (m, 1H), 1.98 (d, J = 8.4 Hz, 3H).


D365
621.35

1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 1H, FA), 7.83 (s, 1H), 7.76-





7.66 (m, 2H), 7.60 (d, J = 7.9 Hz, 1H), 6.79 (s, 2H), 5.17 (dd, J = 13.3, 5.2




Hz, 1H), 4.60-4.45 (m, 2H), 4.41-4.27 (m, 4H), 4.10 (q, J = 7.6 Hz, 2H),




3.97 (s, 6H), 3.85 (q, J = 8.2 Hz, 1H), 3.66 (s, 3H), 3.06-2.75 (m, 6H),




2.51 (qd, J = 13.2, 4.7 Hz, 1H), 2.24-2.18 (m, 1H), 2.15-2.02 (m, 2H).


D366
640.3

1H NMR (300 MHz, DMSO-d6) δ 11.09 (s, 1H), 7.76 (s, 1H), 7.67 (d, J =





8.4 Hz, 1H), 7.32 (s, 1H), 7.23 (d, J = 8.6 Hz, 1H), 6.68 (s, 2H), 5.07 (dd,




J = 13.1, 5.3 Hz, 1H), 3.83 (s, 6H), 3.67-3.57 (m, 2H), 3.51 (s, 3H), 3.40




(s, 5H), 2.96 (t, J = 7.3 Hz, 2H), 2.86 (d, J = 14.5 Hz, 1H), 2.70 (d, J = 7.5




Hz, 2H), 2.63-2.55 (m, 5H), 1.98 (q, J = 8.7, 7.2 Hz, 3H).


D367
623.15

1H NMR (300 MHz, DMSO-d6) δ 11.02 (s, 1H), 8.14 (s, 0.4H, FA), 8.01 (s,





1H), 7.74-7.58 (m, 3H), 6.69 (s, 2H), 5.20 (t, J = 3.5 Hz, 2H), 5.11 (dd,




J = 13.2, 5.1 Hz, 1H), 4.92 (t, J = 3.4 Hz, 2H), 4.57-4.30 (m, 2H), 4.02-




3.89 (m, 4H), 3.86 (s, 6H), 3.67-3.53 (m, 6H), 3.01-2.83 (m, 1H), 2.67-




2.55 (m, 1H), 2.49-2.30 (m, 1H), 2.08-1.96 (m, 1H).


D368
623.2

1H NMR (300 MHz, DMSO-d6 with a drop of D2O) δ 8.17 (s, 0.4H, FA),





7.96 (s, 1H), 7.70 (dd, J = 7.9, 0.7 Hz, 1H), 7.64 (t, J = 1.1 Hz, 1H), 7.52




(dd, J = 7.9, 1.4 Hz, 1H), 6.64 (s, 2H), 5.17 (d, J = 3.5 Hz, 2H), 5.08 (dd,




J = 13.2, 5.1 Hz, 1H), 4.92 (d, J = 3.3 Hz, 2H), 4.50-4.19 (m, 2H), 3.82 (s,




6H), 3.71-3.61 (m, 4H), 3.55 (s, 3H), 3.40 (q, J = 7.2 Hz, 1H), 3.29 (t, J =




7.0 Hz, 2H), 2.98-2.80 (m, 1H), 2.67-2.55 (m, 1H), 2.48-2.27 (m, 1H),




2.06-1.96 (m, 1H).


D369
621.3

1H NMR (300 MHz, DMSO-d6) δ 11.02 (s, 1H), 10.1 (d, 2H, TFA), 7.77





(dd, J = 11.4, 7.3 Hz, 2H), 7.69 (s, 1H), 7.58 (d, J = 7.9 Hz, 1H), 6.78 (d,




J = 3.3 Hz, 2H), 5.13 (dd, J = 13.2, 5.1 Hz, 1H), 4.53-4.08 (m, 9H), 3.90 (s,




6H), 3.51 (s, 3H), 2.93 (q, J = 9.5 Hz, 3H), 2.77-2.56 (m, 3H), 2.40-




2.24 (m, 1H), 1.99 (q, J = 7.5 Hz, 3H).


D370
651.3

1H NMR (300 MHz, DMSO-d6) δ 11.01 (s, 1H), 8.15 (.1.0 FA, s, 1H), 7.99





(s, 1H), 7.73-7.54 (m, 3H), 6.67 (s, 2H), 5.32-5.05 (m, 3H), 5.00-4.86




(m, 2H), 4.58-4.27 (m, 2H), 3.84 (s, 6H), 3.67 (s, 2H), 3.56 (s, 3H), 3.01-




2.79 (m, 3H), 2.75-2.55 (m, 2H), 2.47-2.20 (m, 3H), 2.11-1.95 (m,




1H), 1.95-1.80 (m, 2H), 1.76-1.53 (m, 2H).


D371
649.35

1H NMR (300 MHz, DMSO-d6) δ 11.01 (s, 1H), 8.19 (.1.0 FA, s, 1H), 7.75





(s, 1H), 7.68-7.55 (m, 3H), 6.66 (s, 2H), 5.11 (dd, J = 13.2, 5.1 Hz, 1H),




4.59-4.25 (m, 2H), 3.81 (s, 6H), 3.54 (s, 2H), 3.51 (s, 3H), 3.01-2.87




(m, 3H), 2.82-2.67 (m, 4H), 2.67-2.54 (m, 2H), 2.48-2.34 (m, 1H),




2.34-2.17 (m, 2H), 2.08-1.91 (m, 3H), 1.91-1.77 (m, 2H), 1.69-1.50




(m, 2H).


D372
765.6

1H NMR (300 MHz, DMSO-d6) δ 10.97 (s, 1H), 8.17 (s, FA, 1H), 7.99 (s,





1H), 7.37 (d, J = 8.2 Hz, 1H), 6.67 (s, 4H), 5.21 (s, 2H), 5.08 (dd, J = 13.2,




5.0 Hz, 1H), 4.94 (s, 2H), 4.35-4.14 (m, 2H), 3.83 (s, 6H), 3.67 (s, 2H),




3.57 (d, J = 3.8 Hz, 7H), 3.05-2.79 (m, 4H), 2.64-2.55 (m, 1H), 2.42-




2.17 (m, 6H), 2.17-2.06 (m, 2H), 2.04-1.91 (m, 1H), 1.84-1.58 (m,




6H), 1.58-1.47 (m, 1H), 1.28-0.95 (m, 2H).


D373
642.2

1H NMR (300 MHz, DMSO-d6) δ 11.09 (s, 1H), 8.14 (s, FA, 0.2H), 8.00 (s,





1H), 7.68 (d, J = 8.5 Hz, 1H), 7.38-7.17 (m, 2H), 6.68 (s, 2H), 5.21 (s,




2H), 5.07 (dd, J = 12.7, 5.4 Hz, 1H), 4.93 (s, 2H), 3.85 (s, 6H), 3.56 (s,




5H), 3.50-3.38 (m, 4H), 2.97-2.80 (m, 1H), 2.69-2.54 (m, 4H), 2.50-




2.40 (m, 2H), 2.11-1.95 (m, 1H).


D374
528.1

1H NMR (300 MHz, DMSO-d6) δ 11.00 (s, 1H), 7.82 (s, 1H), 7.67-7.42





(m, 3H), 6.78 (s, 2H), 5.13 (dd, 1H), 4.53-4.29 (m, 2H), 3.73 (s, 6H), 3.53




(s, 3H), 3.08-2.99 (m, 2H), 2.69 (d, 4H), 2.28 (s, 1H), 2.13-1.96 (m,




3H).


D375
612.25

1H NMR (400 MHz, DMSO-d6) δ 10.28 (s, 1H), 8.22 (s, 2H, FA), 7.74 (s,





1H), 7.14 (t, J = 8.0 Hz, 1H), 6.64 (s, 2H), 6.58 (d, J = 7.9 Hz, 1H), 6.35 (s,




1H), 6.28 (d, J = 8.4 Hz, 1H), 3.80 (s, 6H), 3.72 (t, J = 6.7 Hz, 2H), 3.50 (d,




J = 3.4 Hz, 6H), 2.96 (t, J = 7.5 Hz, 2H), 2.81-2.66 (m, 5H), 2.66-2.59




(m, 1H), 2.40 (s, 4H), 2.03-1.92 (m, 3H), 1.69 (t, J = 5.5 Hz, 4H).









Example 68—BRD9 bromodomain TR-FRET Competition Binding Assay

This example demonstrates the ability of the compounds of the disclosure to biochemically inhibit BRD9 bromodomain in a competition binding assay.


Procedure: His-Flag-BRD9 (P133-K239; Swiss Prot Q9H8M2; SEQ ID NO:1 mgsshhhhhhenlyfq/gdykddddkgslevlfqg/PAENESTPIQQLLEHFLRQLQRKDPHGFFAFPVTDAIAPGYSMII KHPMDFGTMKDKIVANEYKSVTEFKADFKLMCDNAMTYNRPDTVYYKLAKKILHAGFKMMSK) was cloned, expressed, purified, and then treated with TEV protease. Cleaved His tag was removed by purification. The binding of a biotinylated small molecule ligand of BRD9 was assessed via the LANCE® TR-FRET platform (PerkinElmer), and the compounds were assayed for inhibitory activity against this interaction.


Results: A mixture of biotinylated-ligand and SureLight™ Allophycocyanin-Streptavidin (APC-SA, PerkinElmer AD0201) in 50 mM HEPES (pH 7.4), 50 mM NaCl, 1 mM TCEP (pH 7), 0.01% (v/v) Tween-20, 0.01% (w/v) bovine serum albumin was added to a white 384-well PerkinElmer Proxiplate Plus plate. DMSO or 3-fold serially diluted compounds were then added to the Proxiplate followed by addition of Flag-BRD9. After a 10-minute incubation at room temperature, Eu-W1024 anti-FLAG (PerkinElmer, AD0273) was added. The final reaction mixture that contained 3.75 nM biotinylated ligand, 3 nM Flag-BRD9, 7.5 nM SureLight™ Allophycocyanin-Streptavidin, and 0.2 nM Eu-W1024 anti-FLAG was incubated at room temperature for 90 minutes.


The plates were then read on a PerkinElmer Envision plate reader to determine the ratio of emission at 665 nm over 615 nm. Data was normalized to a DMSO control (100%) and a no protein control (0%) and then fit to a four parameter, non-linear curve fit to calculate an IC50 (μM) as shown in Table 5. As shown by the results in Table 5, a number of compounds of the present disclosure exhibit an IC50 value of <1 μM for BRD9 binding, indicating their affinity for targeting BRD9.









TABLE 5







Bromodomain TR-FRET Binding










Compound No.
Bromodomain TR-FRET BRD9 IC50 (nM)







B1
NT



B2
+



B3
+



B4
+



B5
++++



B6
++



B7
++++



B8
+++



B9
++++



 B10
+



 B11
+



 B12
+



 B13
+++



 B14
+



 B15
+



 B16
+



 B17
+



 B18
+++



 B19
+++



 B20
+++



 B21
++



D1
NT



D2
NT



D3
NT



D4
NT



D5
NT



D6
NT



D7
NT



D8
NT



D9
NT



 D10
NT



 D11
NT



 D12
NT



 D13
NT



 D14
+++



 D15
+++



 D16
NT



 D17
+++



 D18
+++



 D19
+



 D20
+



 D21
+++



 D22
++++



 D23
++



 D24
++



 D25
NT



 D26
++++



 D27
++



 D28
++++



 D29
++++



 D30
++



 D31
++++



 D32
++



 D33
+++



 D34
+++



 D35
+++



 D36
+++



 D37
++++



 D38
++++







“+” indicates inhibitory effect of ≥1000 nM;



“++” indicates inhibitory effect of ≥100 nM;



“+++” indicates inhibitory effect of ≥10 nM;



“++++” indicates inhibitory effect of <10 nM;



“NT” indicates not tested






Example 69—SYO1 BRD9 NanoLuc Degradation Assay

This example demonstrates the ability of the compounds of the disclosure to degrade a Nanoluciferase-BRD9 fusion protein in a cell-based degradation assay.


Procedure: A stable SYO-1 cell line expressing 3×FLAG-NLuc-BRD9 was generated. On day 0 cells were seeded in 30 μL media into each well of 384-well cell culture plates. The seeding density was 8000 cells/well. On day 1, cells were treated with 30 nL DMSO or 30 nL of 3-fold serially DMSO-diluted compounds (10 points in duplicates with 1 μM as final top dose). Subsequently plates were incubated for 6 hours in a standard tissue culture incubator and equilibrated at room temperature for 15 minutes. Nanoluciferase activity was measured by adding 15 μL of freshly prepared Nano-Glo Luciferase Assay Reagent (Promega N1130), shaking the plates for 10 minutes and reading the bioluminescence using an EnVision reader.


Results: The Inhibition % was calculated using the following formula: % Inhibition=100×(LumHC−Lumsample)/(LumHC−LumLC). DMSO treated cells are employed as High Control (HC) and 1 μM of a known BRD9 degrader standard treated cells are employed as Low Control (LC). The data was fit to a four parameter, non-linear curve fit to calculate IC50 (μM) values as shown in Table 6A, Table 6B, and Table 6C. As shown by the results in Table 6A, Table 6B, and Table 6C, a number of compounds of the present disclosure exhibit an IC50 value of <1 μM for the degradation of BRD9, indicating their use as compounds for reducing the levels and/or activity of BRD9 and their potential for treating BRD9-related disorders.









TABLE 6A







SYO1 BRD9-NanoLuc Degradation










Compound No.
SYO1 BRD9-NanoLuc degradation IC50 (nM)







D1
+++



D2
+++



D3
++



D4
+++



D5
+



D6
++



D7
+++



D8
++



D9
++++



 D10
++



 D11
+++



 D12
+++



 D13
+



 D14
++



 D15
++



 D16
+++



 D17
+++



 D18
+++



 D19
+



 D20
+



 D21
+++



 D22
++++



 D23
+



 D24
+



 D25
++++



 D26
NT



 D27
NT



 D28
++++



 D29
++++



 D30
+



 D31
+++



 D32
++



 D33
+



 D34
NT



 D35
NT



 D36
NT



 D37
+++



 D38
+++







“+” indicates inhibitory effect of ≥1000 nM;



“++” indicates inhibitory effect of ≥100 nM;



“+++” indicates inhibitory effect of ≥10 nM;



“++++” indicates inhibitory effect of <10 nM;



“NT” indicates not tested













TABLE 6B







SYO1 BRD9-NanoLuc Degradation










Compound
SYO1 BRD9-NanoLuc



No.
degradation IC50 (nM)







B22
+



B23
+



B24
NT



D39
++++



D40
++++



D41
++++



D42
++++



D43
++++



D44
++++



D45
++++



D46
++++



D47
++++



D48
++++



D49
++++



D50
+++



D51
++++



D52
++++



D53
+++



D54
+



D55
++++



D56
++++



D57
+++



D58
++++



D59
+++



D60
++



D61
++



D62
+



D63
++++



D64
++++



D65
++



D66
++++



D67
++



D68
++++



D69
++++



D70
+



D71
++++



D72
++++



D73
++++



D74
+



D75
+++



D76
++++



D77
+++



D78
++++



D79
+



D80
++++



D81
++++



D82
++++



D83
++++



D84
++++



D85
++++



D86
++++



D87
++++



D88
++++



D89
++++



D90
+++



D91
++++



D92
+++



D93
++++



D94
NT



D95
++++



D96
++++



D97
++++



D98
++++



D99
++++



D100
++++



D101
++++



D102
++++



D103
++++



D104
++++



D105
++++



D106
++++



D107
++++



D109
++++



D110
++++



D111
+++



D112
++++



D113
++++



D114
++++



D115
++++



D116
++++



D117
++++



D118
++++



D119
++++



D120
++



D121
++++



D122
+++



D123
++++



D124
++++



D125
++++



D126
++



D127
++++



D128
++++



D129
+++



D130
++++



D131
++++



D132
++++



D133
++++



D134
++++



D135
++++



D136
++++



D137
+++



D138
++++



D139
++++



D140
++++



D141
++++



D142
++++



D143
++++



D144
+++



D145
++++



D146
++++



D147
++++



D148
+++



D149
++++



D150
+++



D151
++++



D152
++++



D153
+++



D154
++++



D155
++++



D156
++++



D157
++++



D158
++++



D159
++++



D161
++++



D162
++++



D163
++++



D164
++++



D165
++++



D166
++++



D167
+++



D168
+++



D169
++++



D170
++++



D171
++++



D172
++++



D173
++++



D174
++++



D175
++



D176
+++



D177
+++



D178
++++



D179
++++



D180
++++



D181
++++



D182
++++



D183
++++



D184
+++



D185
++



D186
+++



D187
+++



D188
++



D189
++



D190
++



D191
++



D192
++



D193
+



D194
++



D195
++++



D196
++++



D197
++++



D198
++++



D199
++++



D200
++++



D201
++++



D202
+++



D203
+++



D204
++



D205
+++



D206
++



D207
+++



D208
+++



D209
+++



D210
+++



D211
++



D212
+++



D213
++



D214
++



D215
++



D216
+



D217
+



D218
+++



D219
++



D220
++



D221
++



D222
++++



D223
+++



D224
++++



D225
+++



D226
+++



D227
++++



D228
+++



D229
+++



D230
+



D231
++++



D232
+++



D233
++



D234
+++



D235
++



D236
+++



D237
+



D238
+++



D239
+++



D240
++



D241
++



D242
++



D243
+



D244
++



D245
++



D246
++++



D247
++



D248
+



D249
+



D250
++



D251
++++



D252
++



D253
++++



D254
++++



D255
++++



D256
++++



D257
+



D258
++



D259
+++



D260
+++



D261
+++



D262
++



D263
++



D264
+



D265
++



D266
+++



D267
+++



D268
+++



D269
+++



D270
++



D271
+++



D272
++



D273
++



D274
++



D275
+++



D276
+++



D277
++



D278
+++



D279
++



D280
++



D281
+++



D282
++



D283
++++



D284
+++



D285
NT



D286
++



D287
++



D288
++



D289
+++



D290
+



D291
+++



D292
++



D293
++



D294
+



D295
++



D296
+



D297
+



D298
+



D299
++++



D300
++++



D301
++++



D302
++++



DD1
++++







“+” indicates inhibitory effect of ≥ 1000 nM;



“++” indicates inhibitory effect of ≥ 100 nM;



“+++” indicates inhibitory effect of ≥ 10 nM;



“++++” indicates inhibitory effect of < 10 nM;



“NT” indicates not tested













TABLE 6C







SYO1 BRD9-NanoLuc Degradation










Compound
SYO1 BRD9-NanoLuc



No.
degradation IC50 (nM)







D303
++++



D304
++++



D305
+



D306
++++



D307
++++



D308
++++



D309
++++



D310
++++



D311
++++



D312
++++



D313
+



D314
++++



D315
++++



D316
+



D317
++++



D318
++++



D319
++++



D320
++++



D321
++++



D322
++++



D323
++++



D324
++++



D325
++++



D326
++++



D327
++++



D328
+



D329
++++



D330
++++



D331
+++



D332
++++



D333
++++



D334
++++



D335
++++



D336
++++



D337
+



D338
++++



D339
++++



D340
++++



D341
++++



D342
++++



D343
+



D344
++++



D345
++++



D346
++++



D347
++++



D348
++++



D349
+++



D350
++++



D351
+++



D352
+++



D353
++++



D354
++++



D355
++++



D356
++++



D357
++++



D358
++++



D359
++++



D360
++++



D361
++++



D362
++++



D363
++++



D364
++++



D365
++++



D366
++++



D367
++++



D368
++++



D369
++++



D370
++++



D371
++++



D372
++++



D373
++++



D374
++++



D375
+







“+” indicates inhibitory effect of ≥ 1000 nM;



“++” indicates inhibitory effect of ≥ 100 nM;



“+++” indicates inhibitory effect of ≥ 10 nM;



“++++” indicates inhibitory effect of < 10 nM;



“NT” indicates not tested






Other Embodiments

All publications, patents, and patent applications mentioned in this specification are incorporated herein by reference in their entirety to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference in its entirety. Where a term in the present application is found to be defined differently in a document incorporated herein by reference, the definition provided herein is to serve as the definition for the term.


While the invention has been described in connection with specific embodiments thereof, it will be understood that invention is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure that come within known or customary practice within the art to which the invention pertains and may be applied to the essential features hereinbefore set forth, and follows in the scope of the claims.


Other embodiments are in the claims.

Claims
  • 1. A compound having the structure of Formula I:
  • 2. The compound of claim 1, wherein
  • 3. A compound having the structure of Formula II: A-L-B   Formula II,whereB is a degradation moiety,L is a linker, andA has the structure of Formula III:
  • 4. The compound of claim 3, wherein
  • 5. The compound of claim 4, wherein
  • 6. The compound of any one of claims 1 to 5, wherein R1 is H, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, or optionally substituted C3-C10 carbocyclyl.
  • 7. The compound of claim 6, wherein R1 is H.
  • 8. The compound of claim 6, wherein R1 is optionally substituted C1-C6 alkyl.
  • 9. The compound of claim 8, wherein R1 is
  • 10. The compound of claim 6, wherein R1 is optionally substituted C2-C6 alkenyl.
  • 11. The compound of claim 10, wherein R1 is
  • 12. The compound of claim 6, wherein R1 is optionally substituted C3-C10 carbocyclyl.
  • 13. The compound of claim 12, wherein R1 is
  • 14. The compound of claim 6, wherein R1 is H or
  • 15. The compound of any one of claims 1 to 14, wherein Z1 is N.
  • 16. The compound of any one of claims 1 to 14, wherein Z1 is CR2.
  • 17. The compound of claim 16, wherein R2 is H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C3-C10 carbocyclyl, or optionally substituted C6-C10 aryl.
  • 18. The compound of claim 17, wherein R2 is H, halogen, or optionally substituted C1-C6 alkyl.
  • 19. The compound of claim 18, wherein R2 is H, F, or
  • 20. The compound of any one of claims 3 to 19, wherein X1′ is a bond.
  • 21. The compound of any one of claims 3 to 19, wherein X1′ is O, NR3a′, or CR4a′R5a′.
  • 22. The compound of any one of claims 3 to 21, wherein X2′ is NR3b′ or CR4b′R5b′.
  • 23. The compound of claim 22, wherein X2′ is NR3b′.
  • 24. The compound of any one of claims 3 to 23, wherein X3′ is NR3c′ or CR4c′R5c′.
  • 25. The compound of any one of claims 3 to 24, wherein X4′ is a bond.
  • 26. The compound of any one of claims 3 to 24, wherein X4′ is O, NR3b′, or CR4b′R5b′.
  • 27. The compound of any one of claims 3 to 26, wherein X1′ is CR4a′R5a′; X2′ is NR3b′; X3′ is CR4c′R5c′; and X4′ is CR4d′R5d′.
  • 28. The compound of any one of claims 3 to 26, wherein X1′ is CR4a′R5a′; X2′ is CR4b′R5b′; X3′ is NR3c′; and X4′ is CR4d′R5d′.
  • 29. The compound of any one of claims 3 to 26, wherein X1′ is O or NR3a′; X2′ is CR4b′R5b′; X3′ is CR4c′R5c′; and X4′ is O or NR3d′.
  • 30. The compound of any one of claims 3 to 26, wherein X1′ is a bond; X2′ is CR4b′R5b′; X3′ is O or NR3c′; and X4′ is CR4d′R5d′.
  • 31. The compound of any one of claims 3 to 26, wherein X1′ is CR4a′R5a′; X2′ is CR4b′R5b′; X3′ is CR4c′R5c′; and X4′ is CR4d′R5d′.
  • 32. The compound of any one of claims 3 to 26, wherein X5′ is CR4e′R5e′ and X6′ is NR3f′.
  • 33. The compound of any one of claims 3 to 32, wherein each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,
  • 34. The compound of claim 33, wherein each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,
  • 35. The compound of claim 33, wherein each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,
  • 36. The compound of claim 35, wherein each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,
  • 37. The compound of claim 36, wherein each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,
  • 38. The compound of any one of claims 35 to 37, wherein each of R3a′, R3b′, R3c′, and R3d′ is, independently,
  • 39. The compound of any one of claims 3 to 38, wherein each of R4a′, R4b′, R4c′, and R4d′ is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide.
  • 40. The compound of claim 39, wherein each of R4a′, R4b′, R4c′, and R4d′ is, independently, H, optionally substituted C1-C6 alkyl,
  • 41. The compound of claim 40, wherein each of R4a′, R4b′, R4c′, and R4d′ is, independently, H or optionally substituted C1-C6 alkyl.
  • 42. The compound of claim 41, wherein each of R4a′, R4b′, R4c′, and R4d′ is H.
  • 43. The compound of any one of claims 35 to 42, wherein W1 is O.
  • 44. The compound of any one of claims 35 to 43, wherein W2 is NR7.
  • 45. The compound of any one of claims 35 to 44, wherein R6 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C10 carbocyclyl.
  • 46. The compound of claim 35, wherein R6 is H, methyl, ethyl,
  • 47. The compound of any one of claims 35 to 46, wherein R7 is H or optionally substituted C1-C6 alkyl.
  • 48. The compound of claim 47, wherein R7 is H or methyl.
  • 49. The compound of any one of claims 35 to 48, wherein each of R3a′, R3b′, R3c′, and R3d′ is, independently, H,
  • 50. The compound of any one of claims 3 to 49, wherein each of R5a′, R5b′, R5c′, and R5d′ is, independently, H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl.
  • 51. The compound of claim 50, wherein each of R5a′, R5b′, R5c′, and R5d′ is H.
  • 52. The compound of any one of claims 3 to 51, wherein one of R3a′, R3b′, R3c′, and R3d′ is
  • 53. The compound of claim 52, wherein R3b′ is
  • 54. The compound of claim 52, wherein R3c′ is
  • 55. The compound of any one of claims 52 to 54, wherein R3′ is absent.
  • 56. The compound of any one of claims 3 to 55, wherein each of R3e′, R3f′, and R3g′ is, independently H,
  • 57. The compound of any one of claims 3 to 56, wherein each of R4e′, R4f′, and R4g′ is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide.
  • 58. The compound of any one of claims 3 to 57, wherein each of R5e′, R5f′, and R5g′ is, independently, H, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl.
  • 59. The compound of any one of claims 32 to 58, wherein G″ is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl.
  • 60. The compound of claim 59, wherein G″ is optionally substituted C6-C10 aryl or optionally substituted C2-C9 heteroaryl.
  • 61. The compound of claim 60, wherein G″ is optionally substituted C6-C10 aryl.
  • 62. The compound of claim 1, wherein G″ is
  • 63. The compound of claim 62, wherein each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl; or RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heteroaryl or optionally substituted C2-C9 heterocyclyl.
  • 64. The compound of claim 63, wherein each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl.
  • 65. The compound of claim 64, wherein each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, F, Cl,
  • 66. The compound of claim 65, wherein each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, F,
  • 67. The compound of claim 66, wherein each of RG1, RG2, RG3, RG4, and RG5 is, independently, H, F, Cl,
  • 68. The compound of claim 67, wherein two or more of RG1, RG2, RG3, RG4, and RG5 is H.
  • 69. The compound of claim 68, wherein RG1 is H; RG2 is
  • 70. The compound of claim 68, wherein RG1 is H; RG2 is
  • 71. The compound of claim 68, wherein RG1 is H; RG2 is
  • 72. The compound of claim 68, wherein RG1 is H; RG2 is
  • 73. The compound of claim 68, wherein RG1 is H; RG2 is
  • 74. The compound of claim 63, wherein RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heterocyclyl.
  • 75. The compound of claim 63, wherein RG1 and RG2, RG2 and RG3, RG3 and RG4, and/or RG4 and RG5, together with the carbon atoms to which each is attached, combine to form optionally substituted C2-C9 heteroaryl.
  • 76. The compound of claim 74, wherein G″ is
  • 77. The compound of claim 75, wherein G″ is
  • 78. The compound of claim 76 or 77, wherein RG6 is H or
  • 79. The compound of claim 78, wherein RG6 is H.
  • 80. The compound of claim 61, wherein G″ is optionally substituted C2-C9 heteroaryl.
  • 81. The compound of claim 80, wherein G″ is
  • 82. The compound of claim 81, wherein each of RG7, RG8, RG9, RG10, and RG11 is, independently, H, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl.
  • 83. The compound of claim 81 or 82, wherein G″ is
  • 84. The compound of claim 83, wherein RG7 is H; RG8 is
  • 85. The compound of claim 80, wherein G″ is
  • 86. The compound of any one of claims 3 to 51, wherein G″ is
  • 87. The compound of claim 86, wherein G′ is optionally substituted C6-C10 aryl or optionally substituted C2-C9 heteroaryl.
  • 88. The compound of claim 87, wherein G′ is optionally substituted C6-C10 aryl.
  • 89. The compound of claim 88, wherein G′ is
  • 90. The compound of claim 89, wherein each of RG1′, RG2′, RG3′, RG4′, and RG5′ is, independently, H, A1, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl; or RG1′ and RG2′, RG2′ and RG3′, RG3′ and RG4′, and/or RG4′ and RG5′, together with the carbon atoms to which each is attached, combine to form ; and is optionally substituted C2-C9 heteroaryl or optionally substituted C2-C9 heterocyclyl, any of which is optionally substituted with A1,wherein one of RG1′, RG2′, RG3′, RG4′, and RG5′ is A1, or is substituted with A1.
  • 91. The compound of claim 90, wherein each of RG1′, RG2′, RG3′, RG4′, and RG5′ is, independently, H, A1, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl.
  • 92. The compound of claim 91, wherein each of RG1′, RG2′, RG3′, RG4′, and RG5′ is, independently, H, A1, F, Cl,
  • 93. The compound of claim 92, wherein each of RG1′, RG2′, RG3′, RG4′, and RG5′ is, independently, H, A1, F,
  • 94. The compound of claim 93, wherein each of RG1′, RG2′, RG3′, RG4′, and RG5′ is, independently, H, A1, F, Cl,
  • 95. The compound of claim 94, wherein RG3′ is A1.
  • 96. The compound of claim 95, wherein RG1′ is H; RG2′ is
  • 97. The compound of claim 95, wherein RG1′ is H; RG2′ is
  • 98. The compound of claim 95, wherein RG1′ is H; RG2′ is
  • 99. The compound of claim 95, wherein RG1′ is H; RG2′ is
  • 100. The compound of claim 95, wherein RG1′ is H; RG2′ is
  • 101. The compound of claim 90, wherein RG1′ and RG2′, RG2′ and RG3′, RG3′ and RG4′, and/or RG4′ and RG5′, together with the carbon atoms to which each is attached, combine to form ; and is optionally substituted C2-C9 heterocyclyl, which is optionally substituted with A1,wherein one of RG1′, RG2′, RG3′, RG4′, and RG5′ is A1, or is substituted with A1.
  • 102. The compound of claim 90, wherein RG1′ and RG2′, RG2′ and RG3′, RG3′ and RG4′, and/or RG4′ and RG5′, together with the carbon atoms to which each is attached, combine to form ; and is optionally substituted C2-C9 heteroaryl, which is optionally substituted with A1,wherein one of RG1′, RG2′, RG3′, RG4′, and RG5′ is A1, or is substituted with A1.
  • 103. The compound of claim 101, wherein G′ is
  • 104. The compound of claim 102, wherein G′ is
  • 105. The compound of claim 103 or 104, wherein RG6′ is H, A1, or
  • 106. The compound of claim 105, wherein RG6′ is H.
  • 107. The compound of claim 54, wherein G′ is optionally substituted C2-C9 heteroaryl.
  • 108. The compound of claim 107, wherein G′ is
  • 109. The compound of claim 108, wherein each of RG7′, RG8′, RG9′, RG10′, and RG11′ is, independently, H, A1, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, or optionally substituted —C1-C3 alkyl-C2-C5 heterocyclyl.
  • 110. The compound of claim 108 or 109, wherein G′ is
  • 111. The compound of claim 110, wherein RG7′ is H; RG8′ is
  • 112. The compound of claim 107, wherein G′ is
  • 113. The compound of any one of claims 86 to 112, wherein each of R3a′, R3b′, R3c′, and R3d′ is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C1-C6 acyl, optionally substituted sulfone, or optionally substituted sulfonamide.
  • 114. The compound of claim 113 wherein each of R3a′, R3b′, R3c′, and R3d′ is, independently, H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C1-C6 acyl.
  • 115. The compound of claim 113, wherein each of R3a′, R3b′, R3c′, and R3d′ is, independently, H, optionally substituted C1-C6 alkyl,
  • 116. The compound of claim 114, wherein each of R3a′, R3b′, R3c′, and R3d′ is, independently, H, optionally substituted C1-C6 alkyl,
  • 117. The compound of claim 115 or 116, wherein each of R3a′, R3b′, R3c′, and R3d′ is, independently, H, C1-C6 alkyl, or
  • 118. The compound of any one of claims 115 to 117, wherein each of R3a′, R3b′, R3c′ and R3d′ is, independently,
  • 119. The compound of any one of claims 115 to 118, wherein W1 is O.
  • 120. The compound of any one of claims 115 to 119, wherein W2 is NR7.
  • 121. The compound of any one of claims 115 to 120, wherein R6 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted C3-C10 carbocyclyl.
  • 122. The compound of claim 115, wherein R6 is H, methyl, ethyl,
  • 123. The compound of any one of claims 113 to 122, wherein R7 is H or optionally substituted C1-C6 alkyl.
  • 124. The compound of claim 123, wherein R7 is H or methyl.
  • 125. The compound of any one of claims 113 to 124, wherein each of R3a′, R3b′, R3c′ and R3d′ is, independently, H, methyl,
  • 126. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIa:
  • 127. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIb:
  • 128. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIc:
  • 129. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIf:
  • 130. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIg:
  • 131. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIh:
  • 132. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIi:
  • 133. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIj:
  • 134. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIk:
  • 135. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIm:
  • 136. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIn:
  • 137. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIo:
  • 138. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIp:
  • 139. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIq:
  • 140. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIr:
  • 141. The compound of any one of claims 3 to 125, wherein A has the structure of Formula IIIs:
  • 142. The compound of any one of claims 3 to 141, wherein the degradation moiety is a ubiquitin ligase binding moiety.
  • 143. The compound of claim 142, wherein the ubiquitin ligase binding moiety comprises Cereblon ligands, IAP (Inhibitors of Apoptosis) ligands, mouse double minute 2 homolog (MDM2), or von Hippel-Lindau (VHL) ligands, or derivatives or analogs thereof.
  • 144. The compound of claim 142 or 143, wherein the degradation moiety comprises the structure of Formula Y:
  • 145. The compound of claim 144, wherein T2 is
  • 146. The compound of claim 145, wherein T2 is
  • 147. The compound of claim 145, wherein T2 is
  • 148. The compound of any one of claims 144 to 147, wherein the structure of Formula Y has the structure of Formula Y1:
  • 149. The compound of claim 148, wherein T1 is a bond.
  • 150. the compound of claim 148, wherein T1 is
  • 151. The compound of any one of claims 144 to 150, wherein the structure of Formula Y has the structure of Formula Y2:
  • 152. The compound of any one of claims 144 to 150, wherein the structure of Formula Y has the structure of Formula Z:
  • 153. The compound of any one of claims 144 to 152, wherein u1 is 2.
  • 154. The compound of claim 153, wherein the structure of Formula Z has the structure of Formula AA0:
  • 155. The compound of any one of claims 144 to 152, wherein u1 is 1.
  • 156. The compound of claim 155, wherein the structure of Formula Z has the structure of Formula AB:
  • 157. The compound of any one of claims 144 to 152, wherein u1 is 3.
  • 158. The compound of claim 157, wherein the structure of Formula Z has the structure of Formula AC:
  • 159. The compound of any one of claims 144 to 158, wherein JA is absent.
  • 160. The compound of any one of claims 144 to 158, wherein JA is optionally substituted C1-C6 alkyl.
  • 161. The compound of claim 160, wherein JA is
  • 162. The compound of claim 161, wherein the structure of Formula AA0 has the structure of Formula AA0:
  • 163. The compound of any one of claims 144 to 162, wherein v1 is 0, 1, 2, or 3.
  • 164. The compound of claim 163, wherein v1 is 0.
  • 165. The compound of claim 164, wherein the structure of Formula AA has the structure of Formula AA1:
  • 166. The compound of any one of claims 144 to 165, wherein RA5 is H or optionally substituted C1-C6 alkyl.
  • 167. The compound of claim 166, wherein RA5 is H.
  • 168. The compound of claim 166, wherein RA5 is methyl.
  • 169. The compound of any one of claims 144 to 165, wherein RA5 is optionally substituted C1-C6 heteroalkyl.
  • 170. The compound of claim 169, wherein RA5 is
  • 171. The compound of claim 162, wherein the structure of Formula AA has the structure of Formula AA1:
  • 172. The compound of claim 156, wherein the structure of Formula AB has the structure of Formula AB1:
  • 173. The compound of claim 158, wherein the structure of Formula AC has the structure of Formula AC1:
  • 174. The compound of any one of claims 171 to 173, wherein J is absent.
  • 175. The compound of claim 174, wherein the structure of Formula AA1 has the structure of Formula AA2:
  • 176. The compound of any one of claims 171 to 173, wherein J is optionally substituted C3-C10 carbocyclylene or optionally substituted C6-C10 arylene.
  • 177. The compound of claim 176, wherein the structure of Formula AA has the structure of Formula AA4:
  • 178. The compound of any one of claims 171 to 173, wherein J is optionally substituted C2-C9 heterocyclylene or optionally substituted C2-C9 heteroarylene.
  • 179. The compound of claim 178, wherein the structure of Formula AA has the structure of Formula AA3:
  • 180. The compound of claim 178, wherein the structure of Formula AA has the structure of Formula A:
  • 181. The compound of claim 180, each of RA1, RA2, RA3, and RA4 is, independently, H, A2, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted C2-C9 heteroaryl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 heteroalkenyl, hydroxyl, thiol, or optionally substituted amino; or RA1 and RA2, RA2 and RA3, and/or RA3 and RA4, together with the carbon atoms to which each is attached, combine to form ; and is optionally substituted C6-C10 aryl, optionally substituted C3-C10 carbocyclyl, optionally substituted C2-C9 heteroaryl, or C2-C9 heterocyclyl, any of which is optionally substituted with A2,wherein one of RA1, RA2, RA3, and RA4 is A2, or is substituted with A2, or a pharmaceutically acceptable salt thereof.
  • 182. The compound of claim 181, wherein each of RA1, RA2, RA3, and RA4 is, H, A2, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, hydroxyl, optionally substituted amino; or RA1 and RA2, RA2 and RA3, or RA3 and RA4, together with the carbon atoms to which each is attached, combine to form ; and is optionally substituted C2-C9 heterocyclyl, which is optionally substituted with A2,wherein one of RA1, RA2, RA3, and RA4 is A2, or is substituted with A2.
  • 183. The compound of claim 182, wherein each of RA1, RA2, RA3, and RA4 is, independently, H, A2, F,
  • 184. The compound of any one of claims 180 to 183, wherein Y1 is
  • 185. The compound of claim 184, wherein Y1 is
  • 186. The compound of claim 184, wherein Y1 is
  • 187. The compound of claim 186, wherein Y1 is
  • 188. The compound of claim 187, wherein Y1 is
  • 189. The compound of any one of claims 180 to 188, wherein the structure of Formula A has the structure of Formula A1:
  • 190. The compound of any one of claims 180 to 188 wherein the structure of Formula A has the structure of Formula A2:
  • 191. The compound of any one of claims 180 to 188, wherein the structure of Formula A has the structure of Formula A3:
  • 192. The compound of any one of claims 180 to 188, wherein the structure of Formula A has the structure of Formula A4:
  • 193. The compound of any one of claims 180 to 188, wherein the structure of Formula A has the structure of Formula A5:
  • 194. The compound of any one of claims 180 to 188, wherein the structure of Formula A has the structure of Formula A6:
  • 195. The compound of any one of claims 180 to 188, wherein the structure of Formula A has the structure of Formula A7:
  • 196. The compound of any one of claims 180 to 188, wherein the structure of Formula A has the structure of Formula A8:
  • 197. The compound of any one of claims 180 to 188, wherein the structure of Formula A has the structure of Formula A9:
  • 198. The compound of any one of claims 180 to 188, wherein the structure of Formula A has the structure of Formula A10:
  • 199. The compound of any one of claims 180 to 198, wherein the structure of Formula A is
  • 200. The compound of claim 199, wherein the structure of Formula A is
  • 201. The compound of claim 200, wherein the structure of Formula A is
  • 202. The compound of any one of claims 180 to 198, wherein is
  • 203. The compound of claim 202, wherein the structure of Formula A is
  • 204. The compound of claim 203, wherein RA9 is H.
  • 205. The compound of claim 203, wherein RA9 is A2.
  • 206. The compound of claim 205, wherein the structure of Formula A is
  • 207. The compound of claim 178, wherein the structure of Formula AA has the structure of Formula B:
  • 208. The compound of claim 207, wherein each of RA1, RA2, RA3, and RA4 is, H, A2, halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted —O—C3-C6 carbocyclyl, hydroxyl, optionally substituted amino; or RA1 and RA2, RA2 and RA3, or RA3 and RA4, together with the carbon atoms to which each is attached, combine to form ; and is optionally substituted C2-C9 heterocyclyl, which is optionally substituted with A2,wherein one of RA1, RA2, RA3, and RA4 is A2, or is substituted with A2.
  • 209. The compound of claim 208, wherein each of RA1, RA2, RA3, and RA4 is, independently, H, A2, F,
  • 210. The compound of any one of claims 207 to 209, wherein the structure of Formula B has the structure of Formula B1:
  • 211. The compound of any one of claims 207 to 209, wherein the structure of Formula B has the structure of Formula B2:
  • 212. The compound of any one of claims 207 to 209, wherein the structure of Formula B has the structure of Formula B3:
  • 213. The compound of any one of claims 207 to 209, wherein the structure of Formula B has the structure of Formula B4:
  • 214. The compound of any one of claims 207 to 209, wherein the structure of Formula B is
  • 215. The compound of any one of claims 3 to 114, wherein the degradation moiety comprises the structure of Formula C:
  • 216. The compound of claim 215, wherein the structure of Formula C is
  • 217. The compound of any one of claims 3 to 114, wherein the degradation moiety comprises the structure of Formula D:
  • 218. The compound of claim 217, wherein the structure of Formula D is
  • 219. The compound of any one of claims 3 to 114, wherein the degradation moiety comprises the structure of Formula E:
  • 220. The compound of claim 219, wherein the structure of Formula E is
  • 221. The compound of any one of claims 3 to 114, wherein the degradation moiety comprises the structure of Formula FA:
  • 222. The compound of any one of claims 3 to 114, wherein the degradation moiety comprises the structure of Formula FB:
  • 223. The compound of any one of claims 3 to 114, wherein the degradation moiety comprises the structure of Formula F1:
  • 224. The compound of any one of claims 3 to 114, wherein the degradation moiety comprises the structure of Formula F2:
  • 225. The compound of any one of claims 3 to 114, wherein the degradation moiety comprises the structure of Formula G:
  • 226. The compound of any one of claims 3 to 225, wherein the linker has the structure of Formula IV: A1-(B1)f-(C1)g-(B2)h-(D)-(B3)i-(C2)j-(B4)k-A2   Formula IVwhereinA1 is a bond between the linker and A;A2 is a bond between B and the linker;each of B1, B2, B3, and B4 is, independently, optionally substituted C1-C2 alkyl, optionally substituted C1-C3 heteroalkyl, O, S, S(O)2, or NRN;each RN is, independently, H, optionally substituted C1-4 alkyl, optionally substituted C2-4 alkenyl, optionally substituted C2-4 alkynyl, optionally substituted C2-6 heterocyclyl, optionally substituted C6-12 aryl, or optionally substituted C1-7 heteroalkyl;each of C1 and C2 is, independently, carbonyl, thiocarbonyl, sulphonyl, or phosphoryl;each of f, g, h, i, j, and k is, independently, 0 or 1; andD is optionally substituted C1-10 alkyl, optionally substituted C2-10 alkenyl, optionally substituted C2-10 alkynyl, optionally substituted C2-6 heterocyclyl, optionally substituted C6-12 aryl, optionally substituted C2-C10 polyethylene glycol, or optionally substituted C1-10 heteroalkyl, or a chemical bond linking A1-(B1)f-(C1)g-(B2)h- to -(B3)i-(C2)j-(B4)k-A2.
  • 227. The method of claim 226, wherein each of B1, B2, B3, and B4 is, independently, optionally substituted C1-C4 alkyl, optionally substituted C1-C4 heteroalkyl, or NRN.
  • 228. The method of claim 226 or 227, wherein each RN is, independently, H or optionally substituted C1-C4 alkyl.
  • 229. The method of any one of claims 226 to 228, wherein each RN is, independently, H or methyl.
  • 230. The compound of any one of claims 226 to 229, wherein each of B1 and B4 is, independently,
  • 231. The compound of claim 230 wherein B1 is
  • 232. The compound of any one of claims 226 to 229, wherein each of C1 and C2 is, independently,
  • 233. The compound of claim 232, wherein C1 is
  • 234. The compound of any one of claims 226 to 233, wherein B2 is NRN.
  • 235. The compound of any one of claims 226 to 233, wherein B2 is optionally substituted C1-C4 alkyl.
  • 236. The compound of any one of claims 226 to 235, wherein f is 0.
  • 237. The compound of any one of claims 226 to 235, wherein f is 1.
  • 238. The compound of any one of claims 226 to 237, wherein g is 1.
  • 239. The compound of any one of claims 226 to 238, wherein h is 0.
  • 240. The compound of any one of claims 226 to 238, wherein h is 1.
  • 241. The compound of any one of claims 226 to 240, wherein i is 0.
  • 242. The compound of any one of claims 226 to 241, wherein j is 0.
  • 243. The compound of any one of claims 226 to 242, wherein k is 0.
  • 244. The compound of any one of claims 226 to 243, wherein the linker has the structure of
  • 245. The compound of any one of claims 226 to 244, wherein the linker has the structure of:
  • 246. The compound of any one of claims 226 to 245, wherein the linker has the structure of
  • 247. The compound of any one of claims 3 to 225, wherein the linker has the structure of Formula V: A1-(E1)-(F1)—(C3)m-(E3)n-(F2)o1-(F3)o2-(E2)p-A2,   Formula VwhereinA1 is a bond between the linker and A;A2 is a bond between B and the linker;each of m, n, o1, o2, and p is, independently, 0 or 1;each of E1 and E2 is, independently, O, S, NRN, optionally substituted C1-10 alkylene, optionally substituted C2-10 alkenylene, optionally substituted C2-10 alkynylene, optionally substituted C2-C10 polyethylene glycol, or optionally substituted C1-10 heteroalkylene;E3 is optionally substituted C1-C6 alkylene, optionally substituted C1-C6 heteroalkylene, O, S, or NRN;each RN is, independently, H, optionally substituted C1-4 alkyl, optionally substituted C2-4 alkenyl, optionally substituted C2-4 alkynyl, optionally substituted C2-6 heterocyclyl, optionally substituted C6-12 aryl, or optionally substituted C1-7 heteroalkyl;C3 is carbonyl, thiocarbonyl, sulphonyl, or phosphoryl; andeach of F1, F2, and F3 is, independently, optionally substituted C3-C10 carbocyclylene, optionally substituted C2-10 heterocyclylene, optionally substituted C6-C10 arylene, or optionally substituted C2-C9 heteroarylene.
  • 248. The compound of claim 247, wherein the linker has the structure of Formula Va: A1-(E1)-(F1)—(C3)m-(E2)p-A2.   Formula Va
  • 249. The compound of claim 247, wherein the linker has the structure of Formula Vb: A1-(E1)-(F1)-(E2)p-A2.   Formula Vb
  • 250. The compound of claim 247, wherein the linker has the structure of Formula Vc: A1-(E1)-(F1)-A2.   Formula Vc
  • 251. The compound of claim 247, wherein the linker has the structure of Formula Vd: A1-(E1)-(F1)—(C3)m-(F2)o1-A2.   Formula Vd
  • 252. The compound of claim 247, wherein the linker has the structure of Formula Ve: A1-(E1)-(F1)-(E3)n-(F2)o1-(E2)p-A2.   Formula Ve
  • 253. The compound of claim 247, wherein the linker has the structure of Formula Vf: A1-(E1)-(F1)-(C3)m-(E3)n-(F2)o1-(E2)p-A2.   Formula Vf
  • 254. The compound of claim 247, wherein the linker has the structure of Formula Vg: A1-(E1)-(F1)-(E3)n-(F2)o1-A2,   Formula Vg
  • 255. The compound of any one of claims 247 to 254, wherein each of E1 and E2 is, independently, NRN, optionally substituted C1-10 alkylene, optionally substituted C2-C10 polyethylene glycolene, or optionally substituted C1-10 heteroalkylene.
  • 256. The compound of any one of claims 247 to 255, wherein E3 is optionally substituted C1-C6 alkylene, O, S, or NRN.
  • 257. The compound of claim 256, wherein E3 is optionally substituted C1-C6 alkylene.
  • 258. The compound of claim 256, wherein E3 is optionally substituted C1-C3 alkylene.
  • 259. The compound of claim 256, wherein E3 is a
  • 260. The compound of claim 256, wherein E3 is
  • 261. The compound of claim 256, wherein E3 is O.
  • 262. The compound of any one of claims 247 to 261, wherein each RN is, independently, H or optionally substituted C1-4 alkyl.
  • 263. The compound of claim 262, wherein each RN is, independently, H or methyl.
  • 264. The compound of any one of claims 247 to 263, wherein E1 is
  • 265. The compound of claim 264, wherein E1 is
  • 266. The compound of claim 265, wherein E1 is
  • 267. The compound of any one of claims 247 to 266, wherein E1 is
  • 268. The compound of claim 267, wherein E1 is
  • 269. The compound of claim 268, wherein E1 is
  • 270. The compound of claim 267, wherein E1 is
  • 271. The compound of claim 270, wherein E1 is
  • 272. The compound of any one of claims 267 to 271, wherein Ra is H or methyl.
  • 273. The compound of claim 272, wherein Ra is H.
  • 274. The compound of claim 272, wherein Ra is methyl.
  • 275. The compound of any one of claims 247 to 274, wherein E2 is O, NRw,
  • 276. The compound of claim 275, wherein E2 is O,
  • 277. The compound of any one of claims 247 to 276, wherein each of F1, F2, or F3 is, independently, optionally substituted C3-C10 carbocyclylene.
  • 278. The compound of claim 277, wherein the C3-C10 carbocyclylene is monocyclic.
  • 279. The compound of claim 277, wherein the C3-C10 carbocyclylene is polycyclic.
  • 280. The compound of claim 279, wherein the C3-C10 carbocyclylene is fused.
  • 281. The compound of claim 279, wherein the C3-C10 carbocyclylene is spirocyclic.
  • 282. The compound of claim 279, wherein the C3-C10 carbocyclylene is bridged.
  • 283. The compound of claim 282, wherein the C3-C10 carbocyclylene is
  • 284. The compound of claim 283, wherein the C3-C10 carbocyclylene is
  • 285. The compound of any one of claims 247 to 276, wherein each of F1, F2, or F3 is, independently, optionally substituted C2-C6 heterocyclylene.
  • 286. The compound of claim 285, wherein the C2-C6 heterocyclylene is monocyclic.
  • 287. The compound of claim 286, wherein the C2-C6 heterocyclylene is
  • 288. The compound of claim 287, wherein the C2-C9 heterocyclylene is
  • 289. The compound of claim 287 or 288, wherein each Rh is, independently, 2H, halogen, cyano, optionally substituted C1-C6 alkyl, ORi2, or NRi3Ri4.
  • 290. The compound of claim 289, wherein each Rh 2H, F, methyl,
  • 291. The compound of claim 290, wherein each Rh is, independently, F, methyl, or NRi3Ri4.
  • 292. The compound of any one of claims 287 to 291, wherein q1 is 0, 1, or 2.
  • 293. The compound of any one of claims 287 to 292, wherein q2 is 0, 1, or 2.
  • 294. The compound of any one of claims 287 to 293, wherein q3 is 0, 1, or 2.
  • 295. The compound of any one of claims 287 to 294, wherein the C2-C9 heterocyclylene is
  • 296. The compound of claim 295, wherein the C2-C9 heterocyclylene is
  • 297. The compound of claim 296, wherein the C2-C9 heterocyclylene is
  • 298. The compound of any one of claims 287 to 297, wherein F1 is
  • 299. The compound of any one of claims 287 to 298, wherein F2 is
  • 300. The compound of any one of claims 287 to 298, wherein F3 is
  • 301. The compound of claim 285, wherein the C2-C6 heterocyclylene is polycyclic.
  • 302. The compound of claim 301, wherein the C2-C6 heterocyclylene is bicyclic.
  • 303. The compound of claim 301 or 302, wherein the C2-C6 heterocyclylene is bridged.
  • 304. The compound of claim 303, wherein the C2-C6 heterocyclylene is
  • 305. The compound of claim 301 or 302, wherein the C2-C6 heterocyclylene is fused.
  • 306. The compound of claim 305, wherein the C2-C9 heterocyclylene is
  • 307. The compound of claim 306, wherein F1 is
  • 308. The compound of claim 306 or 307, wherein F2 is
  • 309. The compound of claim 301 or 302, wherein the C2-C6 heterocyclylene is spirocyclic.
  • 310. The compound of claim 309, wherein the C2-C6 heterocyclylene is
  • 311. The compound of claim 310, wherein F1 is
  • 312. The compound of claim 310 or 311, wherein F2 is
  • 313. The compound of any one of claims 310 to 312, wherein F3 is
  • 314. The compound of any one of claims 285 to 313 wherein the C2-C9 heterocyclylene comprises a quaternary amine.
  • 315. The compound of any one of claims 247 to 276, wherein each of F1, F2, or F3 is, independently, optionally substituted C6-C10 arylene.
  • 316. The compound of claim 315, wherein the C6-C10 arylene is
  • 317. The compound of any one of claims 247 to 276, wherein each of F1, F2, or F3 is, independently, optionally substituted C2-C9 heteroarylene.
  • 318. The compound of claim 317, wherein the C2-C9 heteroarylene is
  • 319. The compound of claim 318, wherein F2 is
  • 320. The compound of claim 319, wherein F2 is
  • 321. The compound of any one of claims 247 to 320, C3 is
  • 322. The compound of claim 321, wherein C3 is
  • 323. The compound of any one of claims 247 to 322, wherein m is 1.
  • 324. The compound of any one of claims 247 to 322, wherein m is 0.
  • 325. The compound of any one of claims 247 to 324, wherein p is 1.
  • 326. The compound of any one of claims 247 to 324, wherein p is 0.
  • 327. The compound of any one of claims 247 to 326, wherein o1 is 1.
  • 328. The compound of any one of claims 247 to 326, wherein o1 is 0.
  • 329. The compound of any one of claims 247 to 328, wherein o2 is 1.
  • 330. The compound of any one of claims 247 to 328, wherein o2 is 0.
  • 331. The compound of any one of claims 247 to 330, wherein n is 1.
  • 332. The compound of any one of claims 247 to 330, wherein n is 0.
  • 333. The compound of any one of claims 247 to 332, wherein the linker has the structure of
  • 334. The compound of any one of claims 247 to 332, wherein the linker has the structure of
  • 335. The compound of any one of claims 247 to 332, wherein the linker has the structure of:
  • 336. The compound of any one of claims 3 to 225, wherein the linker is optionally substituted C3-C10 carbocyclylene, optionally substituted C2-10 heterocyclylene, optionally substituted C6-C10 arylene, or optionally substituted C2-C9 heteroarylene.
  • 337. The compound of claim 336, wherein the linker is optionally substituted C2-10 heterocyclylene
  • 338. The compound of claim 337, wherein the linker has the structure of
  • 339. The compound of claim 338, wherein the linker has the structure of
  • 340. The compound of any one of claims 3 to 225, wherein the linker is absent.
  • 341. The compound of claim 1, wherein the compound has the structure of any one of compounds B1-B6 in Table 1, or a pharmaceutically acceptable salt thereof.
  • 342. The compound of any one of claims 3 to 340, wherein the compound has the structure of any one of compounds D1-D31 in Table 2A, or a pharmaceutically acceptable salt thereof.
  • 343. The compound of any one of claims 3 to 340, wherein the compound has the structure of any one of compounds D32-D211 in Table 2B, or a pharmaceutically acceptable salt thereof.
  • 344. The compound of any one of claims 3 to 340, wherein the compound has the structure of any one of compounds D212-D343 in Table 2C, or a pharmaceutically acceptable salt thereof.
  • 345. A pharmaceutical composition comprising the compound of any one of claims 1 to 344 and a pharmaceutically acceptable excipient.
  • 346. A method of inhibiting the level of BRD9 in a cell, the method involving contacting the cell with an effective amount of a compound of any one of claims 1 to 344, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition of claim 345.
  • 347. A method of inhibiting the activity of BRD9 in a cell, the method involving contacting the cell with an effective amount of a compound of any one of claims 1 to 344, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition of claim 345.
  • 348. The method of claim 346 or 347, wherein the cell is a cancer cell.
  • 349. The method of claim 348, wherein the cancer is a malignant, rhabdoid tumor, a CD8+ T-cell lymphoma, endometrial carcinoma, ovarian carcinoma, bladder cancer, stomach cancer, pancreatic cancer, esophageal cancer, prostate cancer, renal cell carcinoma, melanoma, colorectal cancer, a sarcoma, non-small cell lung cancer, stomach cancer, or breast cancer.
  • 350. The method of claim 349, wherein the cancer is a sarcoma.
  • 351. The method of claim 350, wherein the sarcoma is a soft tissue sarcoma, synovial sarcoma, Ewing's sarcoma, osteosarcoma, rhabdomyosarcoma, adult fibrosarcoma, alveolar soft-part sarcoma, angiosarcoma, clear cell sarcoma, desmoplastic small round cell tumor, epithelioid sarcoma, fibromyxoid sarcoma, gastrointestinal stromal tumor, Kaposi sarcoma, liposarcoma, leiomyosarcoma, malignant mesenchymoma malignant peripheral nerve sheath tumors, myxofibrosarcoma, or low-grade rhabdomyosarcoma.
  • 352. The method of claim 351, wherein the sarcoma is synovial sarcoma.
  • 353. A method of treating a BAF complex-related disorder in a subject in need thereof, the method involving administering to the subject an effective amount of a compound of any one of claims 1 to 344, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition of claim 345.
  • 354. A method of treating an SS18-SSX fusion protein-related disorder in a subject in need thereof, the method involving administering to the subject an effective amount of a compound of any one of claims 1 to 344, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition of claim 345.
  • 355. A method of treating a BRD9-related disorder in a subject in need thereof, the method involving administering to the subject an effective amount of a compound of any one of claims 1 to 344, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition of claim 345.
  • 356. The method of any one of claims 353 to 355, wherein the disorder is cancer.
  • 357. A method of treating a cancer in a subject in need thereof, the method including administering to the subject an effective amount of a compound of any one of claims 1 to 344, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition of claim 345.
  • 358. The method of claim 356 or 357, wherein the cancer is a malignant, rhabdoid tumor, a CD8+ T-cell lymphoma, endometrial carcinoma, ovarian carcinoma, bladder cancer, stomach cancer, pancreatic cancer, esophageal cancer, prostate cancer, renal cell carcinoma, melanoma, colorectal cancer, a sarcoma, non-small cell lung cancer, stomach cancer, or breast cancer.
  • 359. The method of claim 358, wherein the cancer is a sarcoma.
  • 360. The method of claim 359, wherein the sarcoma is a soft tissue sarcoma, synovial sarcoma, Ewing's sarcoma, osteosarcoma, rhabdomyosarcoma, adult fibrosarcoma, alveolar soft-part sarcoma, angiosarcoma, clear cell sarcoma, desmoplastic small round cell tumor, epithelioid sarcoma, fibromyxoid sarcoma, gastrointestinal stromal tumor, Kaposi sarcoma, liposarcoma, leiomyosarcoma, malignant mesenchymoma malignant peripheral nerve sheath tumors, myxofibrosarcoma, or low-grade rhabdomyosarcoma.
  • 361. The method of claim 360, wherein the sarcoma is synovial sarcoma.
  • 362. The method of any one of claims 352 to 355, wherein the disorder is infection.
  • 363. A method of treating infection in a subject in need thereof, the method comprising administering to the subject an effective amount of a compound of any one of claims 1 to 342, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition of claim 343.
  • 364. The method of claim 362 or 363, wherein the infection is viral infection.
  • 365. The method of claim 364, wherein the viral infection is an infection with a virus of the Retroviridae family, Hepadnaviridae family, Flaviviridae family, Adenoviridae family, Herpesviridae family, Papillomaviridae family, Parvoviridae family, Polyomaviridae family, Paramyxoviridae family, or Togaviridae family.
  • 366. The method of claim 364 or 365, wherein the viral infection is Coffin Siris, Neurofibromatosis, or Multiple Meningioma.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/015744 1/29/2020 WO 00
Provisional Applications (2)
Number Date Country
62881114 Jul 2019 US
62798384 Jan 2019 US