Ven'yaminova et al.(I), “Phosphorylation of Oligonucleotides by β-Cyanoethylphosphite,” Bioorg Khim.(Russian), 15(6), 844,846 (1989); Chem. Abstracts, 112, Abstract No. 56531 (1990); only abstract supplied.* |
Ven'yaminova et al.(II), “Automated H-Phosphonate Synthesis of Oligoribonucleotides Using 2′-O-Tetrahydropyranyl Protecting Group,” Bioorg. Khim.(Russian), 16(7), 941-950 (1990; Chem. Abstracts, 113, Abstract No. 231905 (1990; only abstract supplied.* |
Brill (II), “Facile Methods to Recycle Nucleosides During Solid Phase Synthesis of Oligonucleotides,” Tetrahedron Letters, 35(19), 3041-3044 (May 9, 1994).* |
Brill (III), Thioalkylation of Nucleoside-H-Phosphonates and Its Application to Solid Phase Synthesis of Oligonucleotides, Tetrahedron Letters, 36(5), 703-706 (Jan. 30, 1995).* |
Gryaznov et al., “A New Method for the Synthesis of Oligodeoxyribonucleotides Containing Internucleotide Phosphoramidate Bonds,” Tetrahedron Letters, 31(22), 3205-3208 (1990).* |
Wada et al., “2-Cyanoethyl Nucleoside 3′-Phosphonates as Novel Starting Materials for Oligonucleotide Synthesis,” Tetrahedron Letters, 29(33), 4143-4146 (1988).* |
Jankowska et al., “Studies on Aryl H-Phosphonates. I. An Efficient Method for the Preparation of Deoxyribo- and Ribonucleoside 3′-H-Phosphonate Monoesters by Transesterification of Diphenyl H-Phosphonate Monoesters by Transesterification of Diphenyl H-Phosphonate,” Tetrahedron Letters, 35(20), 3355-3358 (May 16, 1994).* |
Beaucage et al., “Advances in the Synthesis of Oligonucleotides by the Phosphoramidite Approach”, Tetra., 1992, 48(12), 2223-2311. |
Cook, “Medicinal chemistry of antisense oligonucleotides—future opportunities”, Anti-Cancer Drug Design, 1991, 6, 585-607. |
Cook, Medicinal Chemistry Strategies for Antisense Research, in Antisense Research and Applications., Crooke et al. (eds.), 1993, CRC Press, Inc. Boca Raton, FL. |
Delgardo et al., “The Uses and Properties of PEG-Linked Proteins”, Critical Rev. in Therapeutic Drug Carrier Systems, 1992, 9(3,4), 249-304. |
De Memaeker et al., “Amides as Substitute for the Phosphodiester Linkage in Antisense Oligonucleotides”, Synlett., 1993, 10, 733-736 (Oct., 1993). |
De Mesmaeker et al., “Comparison of Rigid and Flexible Backbones in Antisense Oligonucleotides”, Bioorg. Medic. Chem. Lett., 1994, 4(3), 395-398. |
De Mesmaeker et al., “Replacement of the Phosphodiester Linkage in Oligonucleotides: Comparison of Two Structural Amide Isomers”, Bioorg. Medic. Chem. Lett., 1994, 4(7), 873-878. |
Englisch et al., “Chemically Modified Oligonucleotides as Probes and Inhibitors”, Angew. Chem. Int. Ed. Engl., 1991, 30(6), 613-629 (Jun., 1991). |
Hotoda et al., “Tris(2,4,6-Tribromophenoxy) Dichlorophosphorane: A Novel Condensing Agent for Rapid Internucleotidic Bond Formation in the Phosphotriester Approach”, Tetra. Lett., 1987, 28(15), 1681-1684. |
Kroschwitz, J.I. (ed.), Concise Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, 1990, 858-859. |
Lebreton et al., “Synthesis of Thymidine Dimer Derivatives Containing an Amide Linkage and their Incorporation into Oligodeoxyribonucleotides”, Tetra. Lett., 1993, 34(40), 6383-6386. |
Lebreton et al., “Comparison of two Amides as Backbone Replacement of the Phosphodiester Linkage in Oligodeoxynucleotides”, Tetra. Lett., 1994, 35(29), 5225-5228. |
Lebreton et al., “Antisense Oligonucleotides with Alternating Phosphodiester-“Amide-3”Linkages”, Synlett., 1994, 2, 137-140 (Feb., 1994). |
Ouchi et al., “Synthesis and Antitumor Activity of Poly(Ethylene Glycol)s Linked to 5-Fluorouracil Via a Urethane or Urea Bond”, Drug Design and Discovery, 1992, 9, 93-105. |
Ravasio et al., “Selective Hydrogenations Promoted by Copper Catalysis. 1. Chemoselectivity, Regioselectivity, and Stereoselectivity in the Hydrogenation of 3-Substituted Steroids”, J. Org. Chem., 1991, 56, 4329-4333. |
Secrist et al., Abstract 21, Program and Abstracts, Tenth International Roundtable, Nucleosides, Nucleotides and their Biological Applications, Park City, Utah, Sep. 16-20, 1992. |
Sanghvi, Y.S., “Heterocyclic Base Modification in Nucleic acids and their Applications in Antisense Oligonucleotides”, Antisense Research and Applications, 1993, Chapter 15, CRC Press, Boca Raton, 273-288. |
Scremin et al., “Stepwise Regeneration and Recovery of Deoxyribonucleoside Phosphoramidite Monomers during Solid-Phase Oligonucleotide Synthesis”, J. Org. Chem., 1994, 59, 1963-1966. |
Uhlmann et al., “Antisense Oligonucleotides: A New Therapeutic Principle”, Chem. Rev., 1990, 90(4), 543-584 (Jun., 1990). |
Wada et al., “Nonoxidative Chlorination of Dialkyl Phosphonates to Dialkyl Phosphorochloridites. A New Approach to Oligonucleotide Synthesis”, J. Org. Chem., 1991, 56, 1243-1250. |
Wada et al., “Nucleoside 3′-N,N-Dialkylphosphonamidates as Novel Nucleotide Units for the Solution-Phase Oligonucleotide Synthesis”, Tetrahedron, 1993, 49(10), 2043-2054. |
Waldner et al., “Ureas as Backbone Replacements for the Phosphodiester Linkage in Oligonucletodies”, Synlett., 1994, 1, 57-61 (Jan., 1994). |
Waldner et al., “Synthesis of Oligodeoxyribonucleotides containing Dimers with Carbamate Moieties as Replacement of the Natural Phosphodiester Linkage”, Bioorg. Medic. Chem. Lett., 1994, 4(3), 405-408. |
Wolfgang, “Facile Methods to Recycle Nucleosides during Solid Phase Synthesis of Oligonucleotides”, Tetra. Lett., 1994, 35(19), 3041-3044. |