Compounds for the treatment of hepatitis C

Abstract
The disclosure provides compounds of formula I, including pharmaceutically acceptable salts, as well as compositions and methods of using the compounds. The compounds have activity against hepatitis C virus (HCV) and may be useful in treating those infected with HCV.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. provisional application Ser. No. 61/375,060 filed Aug. 19, 2010.


BACKGROUND OF THE INVENTION

The disclosure generally relates to the novel compounds of formula I including pharmaceutically acceptable salts, which have activity against hepatitis C virus (HCV) and are useful in treating those infected with HCV. The disclosure also relates to compositions and methods of using these compounds.


Hepatitis C virus (HCV) chronically infects an estimated 170 million people worldwide, with 3 to 4 million infected individuals in the United States alone (Boyer, N. and Marcellin, P. J. Hepatology. 2000, 32:98-112; Alter, M. J., et al. Engl. J. Med. 1999, 341:556-562). Prior to the mid 1990s, transfusion with infected blood products was the main route of HCV transmission. Following the introduction of blood screening methods, transmission via injection drug use became the primary risk factor. Chronic infection often leads to the development of severe liver complications, including fibrosis, cirrhosis, and hepatocellular carcinoma. HCV infection is also the leading cause of orthotopic liver transplantation in the United States. The degree to which disease progression is related to viral and cellular factors is not completely understood.


Considerable heterogeneity is found within the nucleotide and encoded amino acid sequence of the HCV genome (Simmonds, P. J. Gen. Virology. 2004, 85:3173-3188). Based on this sequence diversity, six major genotypes and multiple associated subtypes have been described. The genotypes of HCV differ in their worldwide distribution, and the clinical significance of the genetic heterogeneity of HCV remains elusive despite numerous studies of the possible effect of genotypes on pathogenesis and therapy.


Medical treatment for HCV is limited by the lack of a vaccine or approved therapies that specifically target the virus. Currently, patients undergo treatment with a combination of parenterally administered pegylated alpha-interferon and oral ribavirin. Genotype 1 HCV is the most difficult to treat and elimination of the virus (sustained virologic response) is achieved for only approximately 50% of patients (Fried, M. W. et al. N. Engl. J. Med. 2002, 347:975-982; Zeumzem, S, Nature Clinical Practice. 2008, 5:610-622). This poor treatment response, combined with often severe side effects induced by therapy, highlight a need for improved antiviral drugs with better efficacy and safety profiles.


HCV is a member of the Flaviviridae family of viruses with a single-stranded positive-sense RNA genome. Following infection of host cells, the 9.6 Kb genome is translated into a polyprotein precursor of approximately 3,000 amino acids (reviewed in Lindenbach, B. D. and Rice, C. M. Nature. 2005, 436:933-938; Moradpour, D, Penin, F., and Rice, C. M. Nature Reviews. 2007, 5:453-463). Post-translational processing by both cellular and viral proteases results in the generation of at least 10 separate viral proteins. The structural proteins (which by definition are found in mature virions) include core, E1, E2, and possibly p7, and originate from the amino-terminal region of the polyprotein. The core protein assembles into the viral nucleocapsid. The E1 and E2 glycoproteins form heterodimers that are found within the lipid envelope surrounding the viral particles, and mediate host cell receptor binding and entry of the virus into cells. It is unclear if p7 is a structural protein, and its role in replication has yet to be defined. However p7 is believed to form an ion channel in cellular membranes, preventing acidification of intracellular compartments in which virions are assembled, and it has been shown to be essential for viral replication and assembly. The nonstructural proteins NS2, NS3, NS4A, NS4B, NS5A, and NS5B are produced through maturational cleavages of the carboxy-terminal region of the polyprotein. NS2 along with the amino terminus of NS3 form the NS2-3 metalloprotease which cleaves at the N52-NS3 junction. Additionally, NS2 is involved in assembly and egress of nascent virions. The NS3 protein contains both a serine protease in its amino-terminal region, and a nucleotide-dependent RNA helicase in its carboxy-terminal region. NS3 forms a heterodimer with the NS4A protein, constituting the active protease which mediates cleavages of the polyprotein downstream of NS3, both in cis, at the NS3-NS4A cleavage site, and in trans, for the remaining NS4A-NS4B, NS4B-NS5A, NS5A-NS5B sites. The complex formation of the NS3 protein with NS4A seems necessary to the processing events, enhancing the proteolytic efficiency at all of the sites. The NS3 protein also exhibits nucleoside triphosphatase and RNA helicase activities. The NS4B protein has been shown to be important for localization of HCV proteins into replication complexes in altered membranous structures within the cell. NS5B encodes an RNA-dependent RNA polymerase that is involved in the replication of HCV.


Subgenomic HCV replicons, containing the untranslated regions 5′ and 3′ to the coding sequence fused to the nonstructural proteins or the full-length polyprotein, are competent for translation, viral protein expression, and replication within cultured cells (Lohmann, V. et al. Science. 1999, 285:110-113; Moradpour, D, Penin, F., and Rice, C. M. Nature Reviews. 2007, 5:453-463). The replicon system has proven valuable for the identification of inhibitors targeting the nonstructural proteins associated with these functions. However, only limited subsets of HCV genotypes have been used to generate functional replicons.


Other systems have been used to study the biology of the HCV structural proteins that mediate the entry into host cells. For example, virus-like-particles made in recombinant baculovirus-infected cells with the HCV core, E1 and E2 proteins have also been used to study the function of the HCV E1 and E2 proteins (Barth, H., et al. J. Biol. Chem. 2003, 278:41003-41012). In addition, pseudotyping systems where the E1 and E2 glycoproteins are used to functionally replace the glycoproteins of retroviruses have been developed (Bartosch, B., Dubuisson, J. and Cosset, F.-L. J. Exp. Med. 2003, 197:633-642; Hsu, M. et al. Proc. Natl. Acad. Sci. USA. 2003, 100:7271-7276). These systems yield HCV pseudoparticles that bind to and enter host cells in a manner which is believed to be analogous to the natural virus, thus making them a convenient tool to study the viral entry steps as well as to identify inhibitors block this process.


Recently, a full-length genotype 2a HCV clone, JFH1, was isolated and demonstrated the ability to replicate in vitro. Through repeated passage and adaptation in cell culture increased titers of infectious virus were produced (Lindenbach, B. D., et al. Science. 2005, 309:623-626; Wakita, T. et al. Nature Med. 2005, 11:791-796). In contrast to the HCV replicon or pseudotyping systems, the infectious virus is useful for studying the complete HCV replication cycle, including identifying inhibitors of not only the replication proteins, but those involved in early steps in virus infection (entry and uncoating) and production of progeny viruses (genome packaging, nucleocapsid assembly, virion envelopment and egress).


The invention provides technical advantages, for example, the compounds are novel and are effective against hepatitis C. Additionally, the compounds provide advantages for pharmaceutical uses, for example, with regard to one or more of their mechanism of action, binding, inhibition efficacy, target selectivity, solubility, safety profiles, or bioavailability.







DESCRIPTION OF THE INVENTION

One aspect of the invention is a compound of formula I




embedded image



where


Ar2 is phenyl substituted with 1 CON(R5)(R6) or SON(R5)(R6) and with 0-3 substituents selected from halo and alkyl;


Ar2 is phenyl substituted with 0-3 substituents selected from halo, alkyl, alkoxy, alkenyl, alkenyloxy, or CON(R7)(R8);


Ar3 is phenyl substituted with 0-3 substituents selected from halo, alkyl, and alkoxy;


Ar4 is phenyl or pyridinyl and is substituted with 0-3 substituents selected from halo, alkyl, and alkoxy;


R1 is alkyl, hydroxyalkyl, alkoxyalkyl, haloalkyl, cycloalkyl, hydroxycycloalkyl, alkoxycycloalkyl, halocycloalkyl, cycloalkenyl, benzyl, indanyl, or alkylcarbonyl;


R2 is alkyl, (Ar2)alkyl, (Ar2)cycloalkyl, or (R9)piperazinyl;


R3 is hydrogen;


R4 is hydrogen;


R5 is (R10)alkyl, ((R10)cycloalkyl)alkyl, ((R10)alkyl)cycloalkyl, (((R10)alkyl)cycloalkyl), alkylSO2, haloalkylSO2, (cycloalkyl)alkylSO2, alkenylSO2, cycloalkylSO2, (alkyl)cycloalkylSO2, (R10)alkylSO2, ((R10)cycloalkyl)alkylSO2, ((R10)alkyl)cycloalkylSO2, (((R10)alkyl)cycloalkyl)SO2, Ar4SO2, (R11)(R12)NSO2, or R13;


R6 is hydrogen or alkyl;


R7 is alkylSO2, cycloalkylSO2, or (Ar3)SO2;


R8 is hydrogen or alkyl;


R9 is alkylCO, cycloalkylCO, (Ar3)CO, alkylCO2, cycloalkylCO2, alkylSO2, cycloalkylSO2, or (Ar3)SO2;


R10 is hydrogen, halo, OR14, N(R15)(R16), CON(R17)(R18), SO2N(R19)(R20), or Ar4;


R11 is hydrogen or alkyl;


R12 is hydrogen or alkyl;


R13 is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl, and is substituted with 1 CON(R17)(R18) and with 0-2 substituents selected from alkyl, alkylCO and alkoxyCO;


or R13 is aminoalkyl and is substituted with 1 CON(R17)(R18) and with 0-2 substituents selected from alkyl, alkylCO and alkoxyCO;


or R13 is (imidazolyl)alkyl and is substituted with 1 CON(R17)(R18) and with 0-1 alkyl substituent;


R14 is hydrogen, alkyl, alkylCO, alkoxyCO, alkylaminoCO, or (Ar4)NHCO;


R15 is hydrogen, alkyl, cycloalkyl, (Ar4)alkyl, alkylCO, halolalkylCO, alkoxyCO, alkylNHCO, Ar4CO, alkylNHCO, Ar4NHCO, Ar4, (N-BOC-pyrrolidinyl)carboxyl or (N-BOC-piperidinyl)carboxyl;


R16 is hydrogen, alkyl;


or R15 and R16 taken together with the nitrogen to which they are attached is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl, and is substituted with 0-2 substituents selected from alkyl, alkylCO and Ar4;


or R15 and R16 taken together with the nitrogen to which they are attached is a [1-4.0-3.1-4] bridged bicyclic amine and is substituted with 0-3 substituents selected from alkyl, carboxy, alkoxycarbonyl, and carboxamido;


R17 is hydrogen, alkyl, alkylSO2, haloalkylSO2, hydroxyalkylSO2, alkoxyalkylSO2, (cycloalkyl)alkylSO2, alkenylSO2, cycloalkylSO2, (alkyl)cycloalkylSO2, SO2N(R19)(R20), Ar4, or R21;


R18 is hydrogen or alkyl;


or R17 and R18 taken together with the nitrogen to which they are attached is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl, and is substituted with 0-2 substituents selected from alkyl, alkylCO or Ar4;


or R17 and R18 taken together with the nitrogen to which they are attached is a [1-4.0-3.1-4] bridged bicyclic amine and is substituted with 0-3 substituents selected from alkyl, carboxy, alkoxycarbonyl, and carboxamido;


R19 is hydrogen, alkyl, cycloalkyl, (Ar4)alkyl, alkylCO, halolalkylCO, alkoxyCO, cycloalkylCO, alkylNHCO, Ar4CO, alkylNHCO, Ar4NHCO, Ar4, (N-BOC-piperidinyl)carboxamido, or (N-BOC-pyrrolidinyl)carboxamide;


R20 is hydrogen or alkyl;


R21 is alkyl or cycloalkyl and is substituted with 1 CON(R22)(R23) and with 0-2 substituents selected from halo, alkyl, haloalkyl, alkenyl, cycloalkyl, and halocycloalkyl;


R22 is hydrogen, alkyl, alkylSO2, haloalkylSO2, hydroxyalkylSO2, alkoxyalkylSO2, (cycloalkyl)alkylSO2, alkenylSO2, cycloalkylSO2, (alkyl)cycloalkylSO2, SO2N(R19)(R20), or Ar4; and


R23 is hydrogen or alkyl;


or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where R1 is haloalkyl or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where R1 is trifluoroethyl or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where Ar2 is phenyl substituted with 1 CON(R5)(R6) and with 0-3 substituents selected from halo and alkyl or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where R5 is alkylSO2, haloalkylSO2, (cycloalkyl)alkylSO2, alkenylSO2, cycloalkylSO2, (alkyl)cycloalkylSO2, (R10)alkylSO2, ((R10)cycloalkyl)alkylSO2, ((R10)alkyl)cycloalkylSO2, (((R10)alkyl)cycloalkyl)SO2, Ar4SO2, or (R11)(R12)NSO2; or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where R5 is (R10)alkyl, ((R10)cycloalkyl)alkyl, ((R10)alkyl)cycloalkyl, or (((R10)alkyl)cycloalkyl); R10 is CON(R17)(R18) or SO2N(R19)(R20); R17 is alkylSO2, haloalkylSO2, hydroxyalkylSO2, alkoxyalkylSO2, (cycloalkyl)alkylSO2, alkenylSO2, cycloalkylSO2, (alkyl)cycloalkylSO2, or SO2N(R19)(R20); and R19 is alkylCO, halolalkylCO, alkoxyCO, cycloalkylCO, alkylNHCO, Ar4CO, alkylNHCO, or Ar4NHCO; or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where R5 is (R10)alkyl, ((R10)cycloalkyl)alkyl, ((R10)alkyl)cycloalkyl, or (((R10)alkyl)cycloalkyl); R10 is CON(R17)(R18); R17 is R21; and R22 is alkylSO2, haloalkylSO2, hydroxyalkylSO2, alkoxyalkylSO2, (cycloalkyl)alkylSO2, alkenylSO2, cycloalkylSO2, (alkyl)cycloalkylSO2, or SO2N(R19)(R20); or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where R2 is (Ar2)cycloalkyl substituted with 0-2 substituents selected from halo, alkyl, alkoxy, alkenyl, and alkenyloxy, and substituted with 1 CON(R7)(R8); or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where R2 is (Ar2)cyclopropyl substituted with 0-2 substituents selected from halo, alkyl, alkoxy, alkenyl, and alkenyloxy, and substituted with 1 CON(R7)(R8); or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where N(R2)(R3) taken together is (R9)piperazinyl or ((R9)NH)piperidinyl; or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where Ar1 is phenyl substituted with 1 SON(R5)(R6) and with 0-3 substituents selected from halo and alkyl; or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where R1 is trifluoroethyl, or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where R2 is (Ar2)cycloalkyl, or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where R2 is (Ar2)cyclopropyl, or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where Ar1 is phenyl substituted with 1 CON(R5)(R6) and with 0-3 substituents selected from halo and alkyl, or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a compound of formula I where Ar2 is phenyl substituted with 1 SON(R5)(R6) and with 0-3 substituents selected from halo and alkyl, or a pharmaceutically acceptable salt thereof.


Any scope of any variable, including R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, Ar1, Ar2, Ar3, and Ar4, can be used independently with the scope of any other instance of a variable. Unless specified otherwise, these terms have the following meanings. “Alkyl” means a straight or branched alkyl group composed of 1 to 6 carbons. “Alkenyl” means a straight or branched alkyl group composed of 2 to 6 carbons with at least one double bond. “Cycloalkyl” means a monocyclic ring system composed of 3 to 7 carbons. “Alkylene” means a straight or branched divalent alkyl group composed of 1 to 6 carbons. “Alkenylene” means a straight or branched divalent alkyl group composed of 2 to 6 carbons with at least one double bond. “Cycloalkylene” means a divalent cycloalkane moiety composed of 3 to 7 carbons and includes gem-divalency (for example 1,1-cyclopropanediyl) as well as non-gem-divalency (for example, 1,4-cyclohexanediyl). Phenylene is a divalent benzene ring. “Hydroxyalkyl,” “alkoxy” and other terms with a substituted alkyl moiety include straight and branched isomers composed of 1 to 6 carbon atoms for the alkyl moiety. “Haloalkyl” and “haloalkoxy” include all halogenated isomers from monohalo substituted alkyl to perhalo substituted alkyl. “Aryl” includes carbocyclic and heterocyclic aromatic substituents. Parenthetic and multiparenthetic terms are intended to clarify bonding relationships to those skilled in the art. For example, a term such as ((R)alkyl) means an alkyl substituent further substituted with the substituent R.


The substituents described above may be attached at any suitable point of attachment unless otherwise specified. However, it is understood that the compounds encompassed by the present invention are those that are chemically stable as understood by those skilled in the art. Additionally, the compounds encompassed by the present disclosure are those that are suitably stable for use as a pharmaceutical agent.


The invention includes all pharmaceutically acceptable salt forms of the compounds. Pharmaceutically acceptable salts are those in which the counter ions do not contribute significantly to the physiological activity or toxicity of the compounds and as such function as pharmacological equivalents. These salts can be made according to common organic techniques employing commercially available reagents. Some anionic salt forms include acetate, acistrate, besylate, bromide, camsylate, chloride, citrate, fumarate, glucouronate, hydrobromide, hydrochloride, hydroiodide, iodide, lactate, maleate, mesylate, nitrate, pamoate, phosphate, succinate, sulfate, tartrate, tosylate, and xinofoate. Some cationic salt forms include ammonium, aluminum, benzathine, bismuth, calcium, choline, diethylamine, diethanolamine, lithium, magnesium, meglumine, 4-phenylcyclohexylamine, piperazine, potassium, sodium, tromethamine, and zinc.


Some of the compounds of the invention possess asymmetric carbon atoms (see, for example, the structures below). The invention includes all stereoisomeric forms, including enantiomers and diastereomers as well as mixtures of stereoisomers such as racemates. Some stereoisomers can be made using methods known in the art. Stereoisomeric mixtures of the compounds and related intermediates can be separated into individual isomers according to methods commonly known in the art. The use of wedges or hashes in the depictions of molecular structures in the following schemes and tables is intended only to indicate relative stereochemistry, and should not be interpreted as implying absolute stereochemical assignments.


The invention is intended to include all isotopes of atoms occurring in the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include deuterium and tritium. Isotopes of carbon include 13C and 14C. Isotopically-labeled compounds of the invention can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described herein, using an appropriate isotopically-labeled reagent in place of the non-labeled reagent otherwise employed. Such compounds may have a variety of potential uses, for example as standards and reagents in determining biological activity. In the case of stable isotopes, such compounds may have the potential to favorably modify biological, pharmacological, or pharmacokinetic properties.


Biological Methods

Infection Assays.


HCV pseudoparticles, produced using standardized methodology (Bartosch, B., Dubuisson, J. and Cosset, F.-L. J. Exp. Med. 2003, 197:633-642) were made via a liposome-based transfection procedure of 293T cells with plasmids expressing the murine leukemia virus capsid and polymerase proteins, an MLV genome encoding the luciferase reporter gene, and envelope glycoproteins from either HCV or vesicular stomatitis virus (VSV). The HCV E1 and E2 envelope coding sequences (genotype 1b) were amplified and isolated from infected patient serum. Media containing pseudoparticles was collected 3 days following transfection, filtered, and stored at −20° C. as a viral stock. Infections were performed in 384-well plates by mixing pseudovirus with 1×104 Huh7 cells/well in the presence or absence of test inhibitors, followed by incubation at 37° C. Luciferase activity, reflecting the degree of entry of the pseudoparticles into host cells, was measured 2 days after infection. The specificity of the compounds for inhibiting HCV was determined by evaluating inhibition of VSV pseudoparticle infection.


Compounds and Data Analysis.


Test compounds were serially diluted 3-fold in dimethyl sulfoxide (DMSO) to give a final concentration range in the assay of 50.0 μM to 0.04 μM. Maximum activity (100% of control) and background were derived from control wells containing DMSO but no inhibitor or from uninfected wells, respectively. The individual signals in each of the compound test wells were then divided by the averaged control values after background subtraction and multiplied by 100% to determine percent activity. Assays were performed in duplicate and average EC50 values (reflecting the concentration at which 50% inhibition of virus replication was achieved) were calculated. Compound EC50 data is expressed as A:=0.5-100 nM; B=100-1000 nM; C=1000-5000 nM). Representative data for compounds are reported in Table 1.











TABLE 1





Examples
EC50 (nM)
EC50 (nM)

















1001
A



1002
A


1003
A


1004
A
5.3


1005
A


1006
A
39


1007
A


1008
A
81


1009
A


1010
A


1011
A
0.48


1012
A
0.25


1013
A


1014
A


1015
A


1016
A


1017
A


1018
A


1019
A


1020
A


1021
A
94


1022
A


1023
A


1024
A


1025
A


1026
B
103


1027
A


1028
A
60


1029
A


1030
A


1031
A


1032
A


1033
A


1034
A


1035
A


1036
A


1037
A


1038
A


1039
A


1040
A


1041
A


1042
A


1043
A


1044
A


1045
A


1046
A


1047
A


1048
A


1049
A


1050
A


47
A


2002
A


2003
B
293


2004
A


2005
C
1270


2006
A


2007
B
487


2008
A


2009
A
97


2010
A
67


2011
A


2012
A


2013
A


2014
A


2015
A


2016
A


2017
A
3.2


2018
A


2019
A


2020
A


2021
A


2022
A


2023
A


2024
A


2025
A


2026
A


2027
A


2028
A


2029
A


2030
A


2031
A


2032
A
1.3


2033
A


2034
A


2035
A


2036
A


2037
A


2038
A


2039
A


2040
A


2041
A


2042
A


2043
A


2044
A


2045
A
0.72


2046
A


2047
A


2048
A


2049
A


2050
A


2051
A


2052
A


2053
A


2054
A


2055
A


2056
A


2057
A


2058
A


2059
A


2060
A


2061
A


2062
A


2063
A
37.9


2064
A


2065
A


2066
A


2067
A


2068
A


2069
A


2070
A


2071
A


2072
A


2073
A


2074
A


2075
A


2076
A


2077
A


2078
A


2079
A


2080
A


2081
A


2082
A


2083
A


2084
A
6.0


2085
A


2086
A


2087
A


2088
A


2089
A


2090
A


2091
A


2092
A


2093
A


2094
A


2095
A


2096
A


3001
C


3002
B
477


3003
B
822


3004
C
1642


3005
C


3006
C
2698


3007
C
2803


3008
B
976


3009
C


4000
A


4001
A


4002
A


4003
A


4004
A
2.6


4005
A


5000
A


5001
NA


5002
A


6000
A


7001
A


7002
A


7003
A


8001
C


8002
C


8003
C


8004
C
2977


8005
C


8006
C
2988


8007
C
5399


8008
C


8009
C


8010
C


8011
A


8012
A


8013
A


8014
A
12.7


8015
A


8016
A


8017
A


8018
A


8019
A


8020
A


8021
A


8022
C


8023
C


8024
C


8025
C


8026
C


8027
C


8028
C
17590


8029
C


8030
C


8031
C


8032
C


8033
C
36140


8034
C
22990


8035
C


8036
C


8037
C


8038
C


8039
NA


8040
C


8041
C


8042
A


8043
NA


8044
NA


8045
NA


8046
NA


8047
NA









Pharmaceutical Compositions and Methods of Treatment

The compounds demonstrate activity against HCV NS5B and can be useful in treating HCV and HCV infection. Therefore, another aspect of the invention is a composition comprising a compound, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.


Another aspect of the invention is a composition further comprising a compound having anti-HCV activity.


Another aspect of the invention is a composition where the compound having anti-HCV activity is an interferon. Another aspect of the invention is where the interferon is selected from interferon alpha 2B, pegylated interferon alpha, consensus interferon, interferon alpha 2A, and lymphoblastoid interferon tau.


Another aspect of the invention is a composition where the compound having anti-HCV activity is a cyclosporin. Another aspect of the invention is where the cyclosporin is cyclosporin A.


Another aspect of the invention is a composition where the compound having anti-HCV activity is selected from the group consisting of interleukin 2, interleukin 6, interleukin 12, a compound that enhances the development of a type 1 helper T cell response, interfering RNA, anti-sense RNA, Imiqimod, ribavirin, an inosine 5′-monophospate dehydrogenase inhibitor, amantadine, and rimantadine.


Another aspect of the invention is a composition where the compound having anti-HCV activity is effective to inhibit the function of a target selected from HCV metalloprotease, HCV serine protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, IMPDH, and a nucleoside analog for the treatment of an HCV infection.


Another aspect of the invention is a composition comprising a compound, or a pharmaceutically acceptable salt thereof, a pharmaceutically acceptable carrier, an interferon and ribavirin.


Another aspect of the invention is a method of inhibiting the function of the HCV replicon comprising contacting the HCV replicon with a compound or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a method of inhibiting the function of the HCV NS5B protein comprising contacting the HCV NS5B protein with a compound or a pharmaceutically acceptable salt thereof.


Another aspect of the invention is a method of treating an HCV infection in a patient comprising administering to the patient a therapeutically effective amount of a compound or a pharmaceutically acceptable salt thereof. In another embodiment the compound is effective to inhibit the function of the HCV replicon. In another embodiment the compound is effective to inhibit the function of the HCV NS5B protein.


Another aspect of the invention is a method of treating an HCV infection in a patient comprising administering to the patient a therapeutically effective amount of a compound, or a pharmaceutically acceptable salt thereof, in conjunction with (prior to, after, or concurrently) another compound having anti-HCV activity.


Another aspect of the invention is the method where the other compound having anti-HCV activity is an interferon.


Another aspect of the invention is the method where the interferon is selected from interferon alpha 2B, pegylated interferon alpha, consensus interferon, interferon alpha 2A, and lymphoblastoid interferon tau.


Another aspect of the invention is the method where the other compound having anti-HCV activity is a cyclosporin.


Another aspect of the invention is the method where the cyclosporin is cyclosporin A.


Another aspect of the invention is the method where the other compound having anti-HCV activity is selected from interleukin 2, interleukin 6, interleukin 12, a compound that enhances the development of a type 1 helper T cell response, interfering RNA, anti-sense RNA, Imiqimod, ribavirin, an inosine 5′-monophospate dehydrogenase inhibitor, amantadine, and rimantadine.


Another aspect of the invention is the method where the other compound having anti-HCV activity is effective to inhibit the function of a target selected from the group consisting of HCV metalloprotease, HCV serine protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, IMPDH, and a nucleoside analog for the treatment of an HCV infection.


Another aspect of the invention is the method where the other compound having anti-HCV activity is effective to inhibit the function of target in the HCV life cycle other than the HCV NS5B protein.


“Therapeutically effective” means the amount of agent required to provide a meaningful patient benefit as understood by practitioners in the field of hepatitis and HCV infection.


“Patient” means a person infected with the HCV virus and suitable for therapy as understood by practitioners in the field of hepatitis and HCV infection.


“Treatment,” “therapy,” “regimen,” “HCV infection,” and related terms are used as understood by practitioners in the field of hepatitis and HCV infection.


The compounds of this invention are generally given as pharmaceutical compositions comprised of a therapeutically effective amount of a compound or its pharmaceutically acceptable salt and a pharmaceutically acceptable carrier and may contain conventional excipients. Pharmaceutically acceptable carriers are those conventionally known carriers having acceptable safety profiles. Compositions encompass all common solid and liquid forms including for example capsules, tablets, losenges, and powders as well as liquid suspensions, syrups, elixers, and solutions. Compositions are made using common formulation techniques, and conventional excipients (such as binding and wetting agents) and vehicles (such as water and alcohols) are generally used for compositions. See, for example, Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., 17th edition, 1985.


Solid compositions are normally formulated in dosage units and compositions providing from about 1 to 1000 mg of the active ingredient per dose are preferred. Some examples of dosages are 1 mg, 10 mg, 100 mg, 250 mg, 500 mg, and 1000 mg. Generally, other agents will be present in a unit range similar to agents of that class used clinically. Typically, this is 0.25-1000 mg/unit.


Liquid compositions are usually in dosage unit ranges. Generally, the liquid composition will be in a unit dosage range of 1-100 mg/mL. Some examples of dosages are 1 mg/mL, 10 mg/mL, 25 mg/mL, 50 mg/mL, and 100 mg/mL. Generally, other agents will be present in a unit range similar to agents of that class used clinically. Typically, this is 1-100 mg/mL.


The invention encompasses all conventional modes of administration; oral and parenteral methods are preferred. Generally, the dosing regimen will be similar to other agents used clinically. Typically, the daily dose will be 1-100 mg/kg body weight daily. Generally, more compound is required orally and less parenterally. The specific dosing regime, however, will be determined by a physician using sound medical judgement.


The invention also encompasses methods where the compound is given in combination therapy. That is, the compound can be used in conjunction with, but separately from, other agents useful in treating hepatitis and HCV infection. In these combination methods, the compound will generally be given in a daily dose of 1-100 mg/kg body weight daily in conjunction with other agents. The other agents generally will be given in the amounts used therapeutically. The specific dosing regime, however, will be determined by a physician using sound medical judgement.


Some examples of compounds suitable for compositions and methods are listed in Table 2.












TABLE 2






Physiological
Type of Inhibitor or



Brand Name
Class
Target
Source Company







NIM811

Cyclophilin
Novartis




Inhibitor


Zadaxin

Immuno-modulator
Sciclone


Suvus

Methylene blue
Bioenvision


Actilon

TLR9 agonist
Coley


(CPG10101)


Batabulin (T67)
Anticancer
β-tubulin inhibitor
Tularik Inc., South





San Francisco, CA


ISIS 14803
Antiviral
antisense
ISIS





Pharmaceuticals





Inc, Carlsbad,





CA/Elan





Phamaceuticals





Inc., New York, NY


Summetrel
Antiviral
antiviral
Endo





Pharmaceuticals





Holdings Inc.,





Chadds Ford, PA


GS-9132 (ACH-
Antiviral
HCV Inhibitor
Achillion/Gilead


806)


Pyrazolopyrimidine
Antiviral
HCV Inhibitors
Arrow


compounds and


Therapeutics Ltd.


salts From WO-


2005047288


26 May 2005


Levovirin
Antiviral
IMPDH inhibitor
Ribapharm Inc.,





Costa Mesa, CA


Merimepodib
Antiviral
IMPDH inhibitor
Vertex


(VX-497)


Pharmaceuticals





Inc., Cambridge, MA


XTL-6865 (XTL-
Antiviral
monoclonal
XTL


002)

antibody
Biopharmaceuticals





Ltd., Rehovot,





Isreal


Telaprevir
Antiviral
NS3 serine protease
Vertex


(VX-950, LY-

inhibitor
Pharmaceuticals


570310)


Inc., Cambridge,





MA/Eli Lilly and





Co. Inc.,





Indianapolis, IN


HCV-796
Antiviral
NS5B Replicase
Wyeth/




Inhibitor
Viropharma


NM-283
Antiviral
NS5B Replicase
Idenix/Novartis




Inhibitor


GL-59728
Antiviral
NS5B Replicase
Gene Labs/




Inhibitor
Novartis


GL-60667
Antiviral
NS5B Replicase
Gene Labs/




Inhibitor
Novartis


2′C MeA
Antiviral
NS5B Replicase
Gilead




Inhibitor


PSI 6130
Antiviral
NS5B Replicase
Roche




Inhibitor


R1626
Antiviral
NS5B Replicase
Roche




Inhibitor


2′C Methyl
Antiviral
NS5B Replicase
Merck


adenosine

Inhibitor


JTK-003
Antiviral
RdRp inhibitor
Japan Tobacco





Inc., Tokyo, Japan


Levovirin
Antiviral
ribavirin
ICN





Pharmaceuticals,





Costa Mesa, CA


Ribavirin
Antiviral
ribavirin
Schering-Plough





Corporation,





Kenilworth, NJ


Viramidine
Antiviral
Ribavirin Prodrug
Ribapharm Inc.,





Costa Mesa, CA


Heptazyme
Antiviral
ribozyme
Ribozyme





Pharmaceuticals





Inc., Boulder, CO


BILN-2061
Antiviral
serine protease
Boehringer




inhibitor
Ingelheim Pharma





KG, Ingelheim,





Germany


SCH 503034
Antiviral
serine protease
Schering Plough




inhibitor


Zadazim
Immune modulator
Immune modulator
SciClone





Pharmaceuticals





Inc., San Mateo, CA


Ceplene
Immunomodulator
immune modulator
Maxim





Pharmaceuticals





Inc., San Diego, CA


CellCept
Immunosuppressant
HCV IgG immuno-
F. Hoffmann-La




suppressant
Roche LTD, Basel,





Switzerland


Civacir
Immunosuppressant
HCV IgG immuno-
Nabi




suppressant
Biopharmaceuticals





Inc., Boca Raton, FL


Albuferon - α
Interferon
albumin IFN-α2b
Human Genome





Sciences Inc.,





Rockville, MD


Infergen A
Interferon
IFN
InterMune




alfacon-1
Pharmaceuticals





Inc., Brisbane, CA


Omega IFN
Interferon
IFN-ω
Intarcia





Therapeutics


IFN-β and
Interferon
IFN-β and EMZ701
Transition


EMZ701


Therapeutics Inc.,





Ontario, Canada


Rebif
Interferon
IFN-β1a
Serono, Geneva,





Switzerland


Roferon A
Interferon
IFN-α2a
F. Hoffmann-La





Roche LTD, Basel,





Switzerland


Intron A
Interferon
IFN-α2b
Schering-Plough





Corporation,





Kenilworth, NJ


Intron A and
Interferon
IFN-α2b/α1-
RegeneRx


Zadaxin

thymosin
Biopharma. Inc.,





Bethesda, MD/





SciClone





Pharmaceuticals





Inc, San Mateo, CA


Rebetron
Interferon
IFN-α2b/ribavirin
Schering-Plough





Corporation,





Kenilworth, NJ


Actimmune
Interferon
INF-γ
InterMune Inc.,





Brisbane, CA


Interferon-β
Interferon
Interferon-β-1a
Serono


Multiferon
Interferon
Long lasting IFN
Viragen/





Valentis


Wellferon
Interferon
Lympho-blastoid
GlaxoSmithKline




IFN-αn1
plc, Uxbridge, UK


Omniferon
Interferon
natural IFN-α
Viragen Inc.,





Plantation, FL


Pegasys
Interferon
PEGylated IFN-α2a
F. Hoffmann-La





Roche LTD, Basel,





Switzerland


Pegasys and
Interferon
PEGylated IFN-α2a/
Maxim


Ceplene

immune modulator
Pharmaceuticals





Inc., San Diego, CA


Pegasys and
Interferon
PEGylated IFN-
F. Hoffmann-La


Ribavirin

α2a/ribavirin
Roche LTD, Basel,





Switzerland


PEG-Intron
Interferon
PEGylated IFN-α2b
Schering-Plough





Corporation,





Kenilworth, NJ


PEG-Intron/
Interferon
PEGylated IFN-
Schering-Plough


Ribavirin

α2b/ribavirin
Corporation,





Kenilworth, NJ


IP-501
Liver protection
antifibrotic
Indevus





Pharmaceuticals





Inc., Lexington, MA


IDN-6556
Liver protection
caspase inhibitor
Idun





Pharmaceuticals





Inc., San Diego, CA


ITMN-191 (R-
Antiviral
serine protease
InterMune


7227)

inhibitor
Pharmaceuticals





Inc., Brisbane, CA


GL-59728
Antiviral
NS5B Replicase
Genelabs




Inhibitor


ANA-971
Antiviral
TLR-7 agonist
Anadys


Boceprevir
Antiviral
serine protease
Schering Plough




inhibitor


TMS-435
Antiviral
serine protease
Tibotec BVBA,




inhibitor
Mechelen,





Belgium


BI-201335
Antiviral
serine protease
Boehringer




inhibitor
Ingelheim Pharma





KG, Ingelheim,





Germany


MK-7009
Antiviral
serine protease
Merck




inhibitor


PF-00868554
Antiviral
replicase inhibitor
Pfizer


ANA598
Antiviral
Non-Nucleoside
Anadys




NS5B Polymerase
Pharmaceuticals,




Inhibitor
Inc., San Diego,





CA, USA


IDX375
Antiviral
Non-Nucleoside
Idenix




Replicase Inhibitor
Pharmaceuticals,





Cambridge, MA, USA


BILB 1941
Antiviral
NS5B Polymerase
Boehringer




Inhibitor
Ingelheim Canada





Ltd R&D, Laval,





QC, Canada


PSI-7851
Antiviral
Nucleoside
Pharmasset,




Polymerase
Princeton, NJ, USA




inhibitor


VCH-759
Antiviral
NS5B Polymerase
ViroChem Pharma




Inhibitor


VCH-916
Antiviral
NS5B Polymerase
ViroChem Pharma




Inhibitor


GS-9190
Antiviral
NS5B Polymerase
Gilead




Inhibitor


Peg-interferon
Antiviral
Interferon
ZymoGenetics/


lamda


Bristol-Myers Squibb









Synthetic Methods

The compounds may be made by methods known in the art including those described below and including variations within the skill of the art. Some reagents and intermediates are known in the art. Other reagents and intermediates can be made by methods known in the art using readily available materials. The variables (e.g. numbered “R” substituents) used to describe the synthesis of the compounds are intended only to illustrate how to make the compounds and are not to be confused with variables used in the claims or in other sections of the specification. The following methods are for illustrative purposes and are not intended to limit the scope of the invention.


Abbreviations used in the schemes generally follow conventions used in the art. Chemical abbreviations used in the specification and examples are defined as follows: “NaHMDS” for sodium bis(trimethylsilyl)amide; “DMF” for N,N-dimethylformamide; “MeOH” for methanol; “NBS” for N-bromosuccinimide; “Ar” for aryl; “TFA” for trifluoroacetic acid; “LAH” for lithium aluminum hydride; “BOC”, “DMSO” for dimethylsulfoxide; “h” for hours; “rt” for room temperature or retention time (context will dictate); “min” for minutes; “EtOAc” for ethyl acetate; “THF” for tetrahydrofuran; “EDTA” for ethylenediaminetetraacetic acid; “Et2O” for diethyl ether; “DMAP” for 4-dimethylaminopyridine; “DCE” for 1,2-dichloroethane; “ACN” for acetonitrile; “DME” for 1,2-dimethoxyethane; “HOBt” for 1-hydroxybenzotriazole hydrate; “DIEA” for diisopropylethylamine, “Nf” for CF3(CF2)3SO2—; and “TMOF” for trimethylorthoformate.


Abbreviations are defined as follows: “1×” for once, “2×” for twice, “3×” for thrice, “° C.” for degrees Celsius, “eq” for equivalent or equivalents, “g” for gram or grams, “mg” for milligram or milligrams, “L” for liter or liters, “mL” for milliliter or milliliters, “μL” for microliter or microliters, “N” for normal, “M” for molar, “mmol” for millimole or millimoles, “min” for minute or minutes, “h” for hour or hours, “rt” for room temperature, “RT” for retention time, “atm” for atmosphere, “psi” for pounds per square inch, “conc.” for concentrate, “sat” or “sat'd” for saturated, “MW” for molecular weight, “mp” for melting point, “ee” for enantiomeric excess, “MS” or “Mass Spec” for mass spectrometry, “ESI” for electrospray ionization mass spectroscopy, “HR” for high resolution, “HRMS” for high resolution mass spectrometry, “LCMS” for liquid chromatography mass spectrometry, “HPLC” for high pressure liquid chromatography, “RP HPLC” for reverse phase HPLC, “TLC” or “tlc” for thin layer chromatography, “NMR” for nuclear magnetic resonance spectroscopy, “1H” for proton, “6” for delta, “δ” for singlet, “d” for doublet, “t” for triplet, “q” for quartet, “m” for multiplet, “br” for broad, “Hz” for hertz, and “α”, “β”, “R”, “S”, “E”, and “Z” are stereochemical designations familiar to one skilled in the art.


It will be evident to one skilled in the art that the present disclosure is not limited to the foregoing illustrative examples, and that it can be embodied in other specific forms without departing from the essential attributes thereof. It is therefore desired that the examples be considered in all respects as illustrative and not restrictive, reference being made to the appended claims, rather than to the foregoing examples, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.


Example 1001
Preparation of Compound 1001



embedded image




embedded image



Step 1:


To a solution of 2,4,6-trichloro-1,3,5-triazine (15 g, 81 mmol) in THF (300 mL) was added 2,2,2-trifluoroethanol (8.14 g, 81 mmol) and Hunig's Base (15.63 mL, 89 mmol). The resulting mixture was stirred for 16 h. After removal of most THF and precipitape through a plug washing with THF, the filtrate was concentrate to give a crude that will be used as it is.


Step 2:


To a solution of the product in Step 1 above (10 g, 40.3 mmol) in THF (100 mL) was added tert-butyl 4-aminobenzoate (7.79 g, 40.3 mmol) and Hunig's Base (7.04 mL, 40.3 mmol). The resulting mixture was stirred for 16 h. The precipitate was filtered and washed with Et2O, dried, then washed with water and dried to give 10.6 g of the desired product as a solid. LC-MS (Condition A), MS m/z (M++H) 405.0.


Step 3:


To a slurry of tert-butyl 4-(4-chloro-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoate (3.6 g, 8.89 mmol) and 1-(4-chlorophenyl)cyclopropanamine (1.491 g, 8.89 mmol) in THF (50 mL) was stirred for 5 h at 80° C. The precipitate was filtrated through a plug washing with THF to give acrude product that was purified by Biotage eluting with 4/1-hexane/ethyl acetate to give 1.8 g of tert-butyl 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoate as a solid. LC-MS (Condition A), MS m/z (M++H) 536.0. A solution of above tert-butyl 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoate (4 g, 7.46 mmol) and HCl in dioxane (7.46 ml, 4 M) was stirred for 4 h. Concentration gav 3.58 g of the desired product as a solid, LC-MS (Condition A), MS m/z (M++H) 480.05.


Step 4:


To a solution of 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoic acid (20 mg, 0.042 mmol) in DMF (2 mL) solution were added EDCI (16 mg, 0.083 mmol), cyclopropanesulfonamide (10.0 mg, 0.083 mmol) and DMAP (10 mg, 0.083 mmol). The mixture was stirred at room temperature for 16 hs. The residue was purified by prep.HPLC to give Compound 1001 as white solid (9.9 mg, 39%). 1H NMR (400 MHz, MeOD) δ ppm 1.12 (m, 2H), 1.33 (m, 6H), 3.12 (m, 1H), 4.87 (s, 2H), 7.25 (m, 4H), 7.68 (m, 3H), 7.88 (m, 1H); LC-MS (Condition A), MS m/z 583.1 (M++H).


Example 1002
Preparation of Compound 1002



embedded image


The Compound 1002 was synthesized following the procedure reported in Example 1001. Methanesulfonamide was used as starting material instead of cyclopropanesulfonamide in step 4. 1H NMR (400 MHz, MeOD) δ ppm 1.33 (m, 4H), 3.96 (s, 3H), 4.87 (m, 2H), 7.25 (m, 4H), 7.68 (m, 3H), 7.88 (m, 1H); LC-MS (Condition A), MS m/z 557.0 (M++H).


Example 1003
Preparation of Compounds 1003



embedded image


The Compound 1003 was synthesized following the procedure reported in Example 1001. Ethanesulfonamide was used as starting material instead of cyclopropanesulfonamide in step 4. 1H NMR (400 MHz, MeOD) δ ppm 1.33 (m, 7H), 3.52 (m, 2H), 4.87 (m, 2H), 7.25 (m, 4H), 7.68 (m, 3H), 7.88 (m, 1H); LC-MS (Condition A), MS m/z 571.1 (M++H).


Example 1004
Preparation of Compounds 1004



embedded image


The Compound 1003 was synthesized following the procedure reported in Example 1001. Ethenesulfonamide was used as starting material instead of cyclopropanesulfonamide in step 4. LC-MS (Condition A), MS m/z 569.0 (M++H).


Example 1005
Preparation of Compounds 1005



embedded image


The Compound 1005 was synthesized following the procedure reported in Example 1001. Propane-2-sulfonamide was used as starting material instead of cyclopropanesulfonamide in step 4. LC-MS (Condition A), MS m/z 585.1 (M++H).


Example 1006
Preparation of Compounds 1006



embedded image


The Compound 1006 was synthesized following the procedure reported in Step 4 Example 1001. N,N-dimethylsulfamide was used as starting material instead of cyclopropanesulfonamide in step 4. LC-MS (Condition A), MS m/z 586.1 (M++H).


Example 1007
Preparation of Compounds 1007



embedded image


The Compound 1007 was synthesized following the procedure reported in Example 1001. 1-Propylcyclopropane-1-sulfonamide was used as starting material instead of cyclopropanesulfonamide in step 4. LC-MS (Condition A), MS m/z 625.1 (M++H).


Example 1008
Preparation of Compound 1008



embedded image


The Compound 1008 was synthesized following the procedure reported in Example 1001. 1-ethylcyclopropane-1-sulfonamide was used as starting material instead of cyclopropanesulfonamide in step 4. LC-MS (Condition A), MS m/z 611.1 (M++H).


Example 1009
Preparation of Compounds 1009



embedded image


Compound 1009 was prepared by the same method as Compound 1001 with the following modifications: 3-Chloropropane-1-sulfonamide instead of cyclopropanesulfonamide in Step 4 was used as a starting material to give Compound 1009 (130 mg, 38%). LC-MS (Condition B), MS m/z (M++H) 619.08.


Example 1010
Preparation of Compound 1010



embedded image


Compound 1010 was prepared by the same method as Compound 1001 with the following modifications: 1-(Methoxymethyl)cyclopropane-1-sulfonamide instead of cyclopropanesulfonamide in Step 4 was used as a starting material to give Compound 1010 (7 mg, 49%). LC-MS (Condition B), MS m/z (M++H) 627.27.


Example 1011
Preparation of Compound 1011



embedded image




embedded image



Step 1:


To a solution of 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoic acid (200 mg, 0.417 mmol), 1-formylcyclopropane-1-sulfonamide, TFA (110 mg, 0.417 mmol), and Hunig's Base (0.364 mL, 2.084 mmol) in CH2Cl2 (10 mL) was added PyBOP (325 mg, 0.625 mmol) and then stirred for 16 h. After concentration, the residue was purified by Biotage to give 200 mg of the product containing some impurity that will be used as it is. LC-MS (Condition B), MS m/z (M++H) 611.


Step 2:


A stirred solution of 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)-N-(1-formylcyclopropylsulfonyl)benzamide (30 mg, 0.049 mmol), the product of Step 1, Example 1051, in DCE (3 mL) was treated with pyrrolidine (4.19 mg, 0.059 mmol) followed by NaHB(OAc)3 (31.2 mg, 0.147 mmol). After stirring at rt for 16 h, the reaction was diluted with CH2Cl2 and quenched with NaHCO3, dried over Na2SO4, concentrated and purified by prep HPLC give 22 mg of the desired product as TFA salt. 1H NMR (400 MHz, MeOD) δ ppm 1.30-1.39 (m, 4H), 1.61-1.72 (m, 4H), 2.36 (t, J=7.05 Hz, 2H), 3.20 (s, 3H), 3.37 (t, J=6.55 Hz, 2H), 4.85 (m, 2H) 7.19-7.28 (m, 4H), 7.60 (t, J=8.31 Hz, 3H), 7.75-7.85 (m, 1H); LC-MS (Condition B), MS m/z (M++H) 666.


Example 1012
Preparation of Compound 1012



embedded image


Compound 1012 was prepared by the same method as Compound 1011 with the following modifications: Dimethylamine instead of pyrrolidine in Step 2 was used as a starting material to give Compound 1012 (10 mg, 39%). 1H NMR (400 MHz, MeOD) δ ppm 1.02-1.12 (m, 2H), 1.17-1.26 (m, 2H), 1.27-1.38 (m, 4H), 1.61-1.72 (m, 4H), 2.36 (t, J=6.92 Hz, 2H), 2.89-2.96 (m, 1H), 3.37 (t, J=6.55 Hz, 2H), 4.85 (m, 2H), 7.23 (m, 4H), 7.61 (m, 3H), 7.80 (m, 1H); LC-MS (Condition B), MS m/z (M++H) 640.


Example 1013
Preparation of Compound 1013



embedded image


Compound 1013 was prepared by the same method as Compound 1011 with the following modifications: Azetidine instead of pyrrolidine in Step 2 was used as a starting material to give Compound 1013 (10 mg, 36%). LC-MS (Condition B), MS m/z (M++H) 652.21.


Example 1014
Preparation of Compound 1014



embedded image


Compound 1014 was prepared by the same method as Compound 1011 with the following modifications: Diethylamine instead of pyrrolidine in Step 2 was used as a starting material to give Compound 1014 (11 mg, 40%). LC-MS (Condition B), MS m/z (M++H) 668.24.


Example 1015
Preparation of Compound 1015



embedded image


Compound 1015 was prepared by the same method as Compound 1011 with the following modifications: Morpholine instead of pyrrolidine in Step 2 was used as a starting material to give Compound 1015 (22 mg, 78%). LC-MS (Condition B), MS m/z (M++H) 682.20.


Example 1016
Preparation of Compound 1016



embedded image


Compound 1016 was prepared by the same method as Compound 1011 with the following modifications: 2,2-Dimethylpyrrolidine instead of pyrrolidine in Step 2 was used as a starting material to give Compound 1016 (10 mg, 36%). LC-MS (Condition B), MS m/z (M++H) 694.35.


Example 1017
Preparation of Compound 1017



embedded image


Compound 1017 was prepared by the same method as Compound 1011 with the following modifications: (1S,3S,5S)-2-Azabicyclo [3.1.0]hexane-3-carboxamide, HCl instead of pyrrolidine in Step 2 was used as a starting material to give Compound 1017 (5 mg, 17%). LC-MS (Condition B), MS m/z (M++H) 721.33.


Example 1018
Preparation of Compound 1018



embedded image


Compound 1018 was prepared by the same method as Compound 1011 with the following modifications: 1-(piperazin-1-yl)ethanone instead of pyrrolidine in Step 2 was used as a starting material to give Compound 1018 (15 mg, 52%). LC-MS (Condition B), MS m/z (M++H) 723.36.


Example 1019
Preparation of Compound 1019



embedded image


Compound 1019 was prepared by the same method as Compound 1011 with the following modifications: 1-(Pyridin-4-yl)piperazine instead of pyrrolidine in Step 2 was used as a starting material to give Compound 1019 (6 mg, 16%). LC-MS (Condition B), MS m/z (M++H) 758.36.


Example 1020
Preparation of Compound 1020



embedded image


Compound 1020 was prepared by the same method as Compound 1011 with the following modifications: 1-Methylpiperazine instead of pyrrolidine in Step 2 was used as a starting material to give Compound 1020 (15 mg, 47%). LC-MS (Condition B), MS m/z (M++H) 695.33.


Example 1021
Preparation of Compound 1021



embedded image


Compound 1021 was prepared by the same method as Compound 1011 with the following modifications: N-Methylaniline instead of pyrrolidine in Step 2 was used as a starting material to give compound 1021 (6 mg, 23%). LC-MS (Condition B), MS m/z (M++H) 702.33.


Example 1022
Preparation of Compound 1022



embedded image


Compound 1022 was prepared by the same method as Compound 1011 with the following modifications: N-Methylcyclopropanamine instead of pyrrolidine in Step 2 was used as a starting material to give compound 1022 (8 mg, 30%). LC-MS (Condition B), MS m/z (M++H) 666.30.


Example 1023
Preparation of Compound 1023



embedded image


Compound 1023 was prepared by the same method as Compound 1011 with the following modifications: 3,3-Dimethylpyrrolidine instead of pyrrolidine in Step 2 was used as a starting material to give compound 1023 (7 mg, 23%). LC-MS (Condition B), MS m/z (M++H) 694.35.


Example 1024
Preparation of Compound 1024



embedded image


Compound 1024 was prepared by the same method as Compound 1011 with the following modifications: 3-Azabicyclo[3.1.0]hexanee instead of pyrrolidine in Step 2 was used as a starting material to give Compound 1024 (5 mg, 18%). LC-MS (Condition B), MS m/z (M++H) 678.32.


Example 1025
Preparation of Compound 1025



embedded image




embedded image


To a solution of 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)-N-(1-formylcyclopropylsulfonyl)benzamide (50 mg, 0.082 mmol) in CH2Cl2 (5 mL) and MeOH (2.5 mL) was added NaBH4 (12.38 mg, 0.327 mmol) and then stirred for 2 h. The reaction was quenched with 1 N HCl and extracted with ethyl acetate, washed with water, dried over MgSO4, concentrated, purified by prep HPLC to give 40 mg (76%) of the desired product as a solid. LC-MS (Condition B), MS m/z (M++H) 613.12.


Example 1026
Preparation of Compound 1026



embedded image




embedded image


A stirred solution of 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)-N-(1-(hydroxymethyl)cyclopropylsulfonyl)benzamide (20 mg, 0.033 mmol) in DCE (3 mL) was treated with isocyanatomethane (1.861 mg, 0.033 mmol) followed by Hunig's Base (5.70 μl, 0.033 mmol). After stirring at rt for 16 h, concentration and purification by prep HPLC to give 5 mg (22%) of the desired product as a solid. LC-MS (Condition B), MS m/z (M++H) 670.28.


Example 1027
Preparation of Compound 1027



embedded image


Compound 1027 was prepared by the same method as Compound 1026 with the following modifications: 2-Isocyanatopropane instead of isocyanatomethane was used as a starting material to give Compound 1027 (13 mg, 54%). LC-MS (Condition B), MS m/z (M++H) 698.32.


Example 1028
Preparation of Compound 1028



embedded image


Compound 1028 was prepared by the same method as Compound 1026 with the following modifications: 3-Isocyanatopyridine instead of isocyanatomethane was used as a starting material to give Compound 1028 (7 mg, 26%). LC-MS (Condition B), MS m/z (M++H) 733.30.


Example 1029
Preparation of Compound 1029



embedded image




embedded image



Step 1:


4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoic acid (400 mg, 1.784 mmol), PyBOP (1266 mg, 2.432 mmol), and Hunig's Base (1.416 mL, 8.11 mmol) were stirred in DCM (Volume: 3 mL) for 3 days. The solvent was removed and the crude material was purified by silica gel chromatography using EtOAc followed by 5% MeOH/DCM to give tert-butyl 2-(N-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoyl)sulfamoyl)ethylcarbamate (1.1 g). 1H NMR (400 MHz, MeOD) δ ppm 1.27-1.52 (m, 13H), 3.55 (t, J=6.0 Hz, 2H), 3.69 (t, J=5.6 Hz, 2H), 4.83-5.02 (m, 2H), 7.21-7.36 (m, 4H), 7.66-7.82 (m, 3H), 7.89-7.98 (m, 1H); LC-MS (Method A), MS m/z (M++H) 686.0.


Step 2:


tert-butyl 2-(N-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoyl)sulfamoyl)ethylcarbamate (1.1 g, 1.603 mmol) and 4 N HCl in Dioxane (2 mL, 8.00 mmol) were stirred for 1 h then concentrated under vacuum to give N-(2-aminoethylsulfonyl)-4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamide as the HCl salt which was not purified further (410 mg). 1H NMR (400 MHz, DMSO-d6) δ ppm 1.21-1.48 (m, 4H), 3.17-3.31 (m, 2H), 3.83 (t, J=7.2 Hz, 2H), 4.15 (br s, 2H) (NH2), 5.00 (q, J=9.0 Hz, 2H), 7.19-7.39 (m, 4H), 7.69-7.83 (m, 2H), 7.92 (br. s., 3H), 8.86 (br. s., 1H), 10.13 (br. s., 1H); LC-MS (Condition A), MS m/z (M++H) 586.0.


Step 3:


To a solution of N-(2-aminoethylsulfonyl)-4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamide HCl salt (20 mg, 0.031 mmol) in Acetonitrile (Volume: 2 mL) was added 1,4-dibromobutane (6.96 mg, 0.032 mmol) and POTASSIUM CARBONATE (21.23 mg, 0.154 mmol). The mixture was heated to 65° C. for 16 h. After cooling to rt, the mixture was diluted with EtOAc, washed with water, and brine. The organic layer was dried over MgSO4 and concentrated. The crude product was purified by rev. phase preparative HPLC (Column: Sunfire prep C18 OBO 5 uM, 30×100 mm by Waters Corp) using a gradient of 20-100% ACN/water w/0.1% TFA modifier to give 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)-N-(2-(pyrrolidin-1-yl)ethylsulfonyl)benzamide (3 mg) as the TFA salt. 1H NMR (400 MHz, DMSO-d6) δ ppm 1.17-1.48 (m, 4H), 1.80-2.12 (m, 4H), 3.37-4.41 (m, 8H), 5.00 (q, J=9.0 Hz, 2H), 7.15-7.44 (m, 4H), 7.67-7.86 (m, 3H), 7.93 (s, 1H), 8.86 (br. s., 1H), 9.71 (br. s., 1H), 10.13 (br. s., 1H); LC-MS (Condition A), MS m/z (M++H) 640.0.


Example 1030
Preparation of Compound 1030



embedded image


Compound 1030 was prepared by the same method as Compound 1029 with the following modifications: 1-iodo-2-(2-iodoethoxy)ethane instead of 1,4-dibromobutane in Step 3 was used as a starting material to give compound 1030 (4 mg) as the TFA salt. 1H NMR (400 MHz, DMSO-d6) δ ppm 1.17-1.48 (m, 4H), 1.80-2.12 (m, 4H), 3.37-4.41 (m, 8H), 5.00 (q, J=9.0 Hz, 2H), 7.15-7.44 (m, 4H), 7.67-7.86 (m, 3H), 7.93 (s, 1H), 8.86 (br. s., 1H), 9.71 (br. s., 1H), 10.13 (br. s., 1H); LC-MS (Condition A), MS m/z (M++H) 656.0.


Example 1031
Preparation of Compound 1031



embedded image


Compound 1031 was prepared by modification of Step 3 of the method to prepare compound 1029. N-(2-aminoethylsulfonyl)-4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamide HCl salt (20 mg, 0.031 mmol), formaldehyde (9.15 μl, 0.123 mmol), Et3N (21.41 μl, 0.154 mmol), were dissolved in DCM (Volume: 2 mL) and NaH(AcO)3 (26.0 mg, 0.123 mmol) was added to the solution. The reaction was stirred for 4 h. The solvent was removed under vacuum and the crude product was purified by rev. phase preparative HPLC (Column: Sunfire prep C18 OBO 5 uM, 30×100 mm by Waters Corp) using a gradient of 20-100% ACN/water w/0.1% TFA modifier to give Compound 1031 (15 mg) as the TFA salt. 1H NMR (400 MHz, DMSO-d6) δ ppm 1.17-1.48 (m, 4H), 1.80-2.12 (m, 4H), 3.37-4.41 (m, 8H), 5.00 (q, J=9.0 Hz, 2H), 7.15-7.44 (m, 4H), 7.67-7.86 (m, 3H), 7.93 (s, 1H), 8.86 (br. s., 1H), 9.71 (br. s., 1H), 10.13 (br. s., 1H); LC-MS (Condition A), MS m/z (M++H) 614.0.


Example 1032
Preparation of Compound 1032



embedded image


Compound 1032 was prepared by modification of Step 3 of the method to prepare compound 1029. N-(2-aminoethylsulfonyl)-4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamide HCl salt (20 mg, 0.031 mmol), acetaldehyde (6.77 mg, 0.154 mmol), AcOH (1.758 μl, 0.031 mmol), were dissolved in DCM (Volume: 2 mL) and SODIUM TRIACETOXYBOROHYDRIDE (32.6 mg, 0.154 mmol) was added to the solution. The reaction was stirred for 4 h. The solvent was removed under vacuum and the crude product was purified by rev. phase HPLC (Column: Sunfire prep C18 OBO 5 uM, 30×100 mm by Waters Corp) using a gradient of 20-100% ACN/water w/0.1% TFA modifier to give compound 1032 (23 mg) as the TFA salt. 1H NMR (400 MHz, DMSO-d6) δ ppm 1.19 (t, J=7.3 Hz, 6H), 1.27-1.42 (m, 4H), 3.14-3.29 (m, 4H), 3.45-3.58 (m, 2H), 3.97-4.10 (m, 2H), 5.00 (q, J=9.0 Hz, 2H), 7.16-7.40 (m, 4H), 7.69-7.85 (m, 3H), 7.93 (s, 1H), 8.85 (br. s., 1H), 9.46 (br. s., 1H), 10.13 (br. s., 1H); LC-MS (Condition A), MS m/z (M++H) 642.0.


Example 1033
Preparation of Compound 1033



embedded image


Compound 1033 was prepared by modification of Step 3 of the method to prepare compound 1029. N-(2-aminoethylsulfonyl)-4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamide HCl salt (20 mg, 0.031 mmol), pivalaldehyde (2.78 mg, 0.032 mmol), AcOH (1.758 μl, 0.031 mmol) were dissolved in DCM (Volume: 2 mL) and stirred for 2 h followed by the addition of SODIUM TRIACETOXYBOROHYDRIDE (13.02 mg, 0.061 mmol). The reaction was stirred for 4 h. The solvent was removed under vacuum and the crude product was purified by rev. phase HPLC (Column: Sunfire prep C18 OBO 5 uM, 30×100 mm by Waters Corp) using a gradient of 20-100% ACN/water w/0.1% TFA modifier to give compound 1033 (6 mg) as the TFA salt. 1H NMR (400 MHz, DMSO-d6) δ ppm 0.99 (s, 9H), 1.28-1.43 (m, 4H), 2.89 (t, J=6.1 Hz, 2H), 3.31-3.43 (m, 2H), 3.85-4.02 (m, 2H), 5.00 (q, J=8.8 Hz, 2H), 7.18-7.39 (m, 4H), 7.67-7.84 (m, 3H), 7.93 (s, 1H), 8.21 (br. s., 2H), 8.85 (br. s., 1H), 10.10 (br. s., 1H); LC-MS (Condition A), MS m/z (M++H) 656.0.


Example 1034
Preparation of Compound 1034



embedded image


Compound 11034 was prepared by the same method as Compound 1029 with the following modifications: benzaldehyde instead of pivalaldehyde in Step 3 was used as a starting material to give compound 1034 (7 mg) as the TFA salt. 1H NMR (400 MHz, DMSO-d6) δ ppm 1.20-1.45 (m, 4H), 3.32-3.46 (m, 2H), 3.85-4.01 (m, 2H), 4.26 (br. s., 2H), 5.00 (q, J=9.0 Hz, 2H), 7.20-7.30 (m, 2H), 7.31-7.39 (m, 2H), 7.41-7.57 (m, 5H), 7.67-7.85 (m, 3H), 7.88-8.00 (m, 1H), 8.85 (br. s., 1H), 8.99 (br. s., 2H), 10.13 (br. s., 1H); LC-MS (Condition A), MS m/z (M++H) 676.0.


Example 1035
Preparation of Compound 1035



embedded image


Compound 1035 was prepared by modification of Step 3 of the method to prepare compound 1029. N-(2-aminoethylsulfonyl)-4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamide HCl salt (20 mg, 0.031 mmol) was dissolved in DCM. To this solution was added propan-2-one (2.141 mg, 0.037 mmol) and TITANIUM(IV) ISOPROPDXIDE (18.00 μl, 0.061 mmol). The reaction was stirred for 16 h, then SODIUM TRIACETOXYBOROHYDRIDE (13.02 mg, 0.061 mmol) was added and the reaction was stirred for an additional 4 h. The reaction was quenched with a 1M solution of NaHSO4 and extracted with DCM. The organic layer was collected, dried over sodium sulfate, and concentrated under vacuum. The crude product was purified by rev. phase preparative HPLC (Column: Sunfire prep C18 OBO 5 uM, 30×100 mm by Waters Corp) using a gradient of 20-100% ACN/water w/0.1% TFA modifier to give Compound 1035 (5 mg) as the TFA salt. 1H NMR (400 MHz, DMSO-d6) δ ppm 1.23 (d, J=6.5 Hz, 6H), 1.28-1.43 (m, 4H), 3.28-3.46 (m, 3H), 3.81-3.93 (m, 2H), 5.00 (q, J=9.0 Hz, 2H), 7.19-7.30 (m, 2H), 7.30-7.39 (m, 2H), 7.66-7.85 (m, 3H), 7.88-7.97 (m, 1H), 8.53 (br. s., 2H), 8.85 (br. s., 1H), 10.12 (br. s., 1H); LC-MS (Condition A), MS m/z (M++H) 614.0.


Example 1036
Preparation of Compound 1036



embedded image


Compound 1036 was prepared by modification of Step 3 of the method to prepare compound 1029. N-(2-aminoethylsulfonyl)-4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamide HCl salt (20 mg, 0.031 mmol), and Hunig's Base (0.027 mL, 0.154 mmol) were dissolved in DCM (Volume: 2 mL). Acetyl chloride (2.65 mg, 0.034 mmol) was added to the reaction mixture and was stirred for 2 h. LC/MS showed the reaction to be complete. The solvent was removed under vacuum and the crude product was purified by rev. phase preparative HPLC (Column: Sunfire prep C18 OBO 5 uM, 30×100 mm by Waters Corp) using a gradient of 30-100% ACN/water w/0.1% TFA modifier to give Compound 1036 (10 mg). 1H NMR (400 MHz, DMSO-d6) δ ppm 1.26-1.44 (m, 4H), 1.73 (s, 3H), 3.46 (q, J=6.4 Hz, 2H), 3.65 (t, J=6.9 Hz, 2H), 5.00 (q, J=9.0 Hz, 2H), 7.17-7.40 (m, 4H), 7.67-7.83 (m, 3H), 7.87-7.97 (m, 1H), 8.05 (t, J=5.1 Hz, 1H), 8.85 (br. s., 1H), 10.11 (br. s., 1H), 11.83 (br. s., 1H); LC-MS (Condition A), MS m/z (M++H) 628.0.


Example 1037
Preparation of Compounds 1037



embedded image


Compound 1037 was prepared by the same method as Compound 1029 with the following modifications: benzoyl chloride instead of acetyl chloride in Step 3 was used as a starting material to give compound 1037 (10 mg). 1H NMR (400 MHz, DMSO-d6) δ ppm 1.24-1.49 (m, 4H), 3.65-3.74 (m, 2H), 3.76-3.83 (m, 2H), 5.00 (q, J=9.0 Hz, 2H), 7.19-7.56 (m, 7H), 7.65-7.97 (m, 6H), 8.62-8.71 (m, 1H), 8.84 (br. s., 1H), 10.10 (br. s., 1H), 11.89 (br. s., 1H); LC-MS (Condition A), MS m/z (M++H) 690.0.


Example 1038
Preparation of Compound 1038



embedded image


Compound 1038 was prepared by modification of Step 3 of the method to prepare compound 1029. N-(2-aminoethylsulfonyl)-4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamide HCl salt (25 mg, 0.043 mmol), isobutyric acid (5.64 mg, 0.064 mmol), PyBOP (33.3 mg, 0.064 mmol), and Hunig's Base (0.037 mL, 0.213 mmol) were stirred in DCM (Volume: 2 mL) for 16 h. The solvent was removed under vacuum and the crude product was purified by rev. phase preparative HPLC (Column: Sunfire prep C18 OBO 5 uM, 30×100 mm by Waters Corp) using a gradient of 30-100% ACN/water w/0.1% TFA modifier to give compound 1038 (18 mg). 1H NMR (400 MHz, MeOD) δ ppm 1.08 (d, 6H), 1.34-1.45 (m, 4H), 2.38 (quin, J=6.9 Hz, 1H), 3.63-3.71 (m, 2H), 3.71-3.78 (m, 2H), 4.90-4.94 (m, 2H), 7.23-7.36 (m, 4H), 7.67-7.82 (m, 3H), 7.88-7.99 (m, 1H), LC-MS (Condition A), MS m/z (M++H) 656.0.


Example 1039
Preparation of Compound 1039



embedded image


Compound 1039 was prepared by the same method as Compound 1038 with the following modifications: cyclopropane carboxylic acid instead of isobutyric acid in Step 3 was used as a starting material to give Compound 1110 (17 mg). 1H NMR (400 MHz, MeOD) δ ppm 0.61-0.72 (m, 2H), 0.75-0.83 (m, 2H), 1.34-1.51 (m, 5H), 3.65-3.72 (m, 2H), 3.72-3.78 (m, 2H), 4.87-4.95 (m, 2H), 7.23-7.35 (m, 4H), 7.66-7.81 (m, 3H), 7.88-7.98 (m, 1H); LC-MS (Condition A), MS m/z (M++H) 654.0.


Example 1040
Preparation of Compound 1040



embedded image


Compound 1040 was prepared by the same method as Compound 1038 with the following modifications: 3,3,3-trifluoropropanoic acid instead of isobutyric acid in Step 3 was used as a starting material to give compound 1040 (17 mg). 1H NMR (400 MHz, MeOD) δ ppm 7.87-7.99 (m, 1H), 7.67-7.81 (m, 3H), 7.23-7.34 (m, 4H), 4.86-4.94 (m, 2H), 3.67-3.81 (m, 4H), 3.15 (q, J=10.8 Hz, 2H), 1.33-1.47 (m, 4H); LC-MS (Condition A), MS m/z (M++H) 696.0.


Example 1041
Preparation of Compound 1041



embedded image


Compound 1041 was prepared by the same method as compound 1038 with the following modifications: (S)-1-(tert-butoxycarbonyl)pyrrolidine-2-carboxylic acid instead of isobutyric acid in Step 3 was used as a starting material. After HPLC, the product fractions were diluted with EtOAc and washed with water 2×, followed by brine. The organic layer was collected, dried over sodium sulfate, and concentrated under vacuum to give compound 1041 (18 mg). 1H NMR (400 MHz, MeOD) δ ppm 7.91 (s, 1H), 7.63-7.80 (m, 3H), 7.19-7.34 (m, 4H), 4.84-4.92 (m, 2H), 4.10 (dd, J=8.7, 3.9 Hz, 1H), 3.62-3.80 (m, 4H), 3.39-3.53 (m, 2H), 1.77-2.24 (m, 4H), 1.26-1.53 (m, 13H); LC-MS (Condition A), MS m/z (M++H) 783.0.


Example 1042
Preparation of Compound 1042



embedded image


Compound 1042 was prepared by the same method as compound 1038 with the following modifications: 1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid instead of isobutyric acid in Step 3 was used as a starting material. After HPLC, the product fractions were diluted with EtOAc and washed with water 2×, followed by brine. The organic layer was collected, dried over sodium sulfate, and concentrated under vacuum to give compound 1042 (18 mg). 1H NMR (400 MHz, MeOD) δ ppm 7.90-7.99 (m, 1H), 7.63-7.85 (m, 3H), 7.22-7.37 (m, 4H), 4.86-4.95 (m, 2H), 3.94-4.12 (m, 2H), 3.61-3.76 (m, 4H), 2.58-2.78 (m, 2H), 2.14-2.33 (m, 1H), 1.56-1.70 (m, 2H), 1.24-1.55 (m, 15H); LC-MS (Condition A), MS m/z (M++H) 797.0.


Example 1043
Preparation of Compound 1043



embedded image


Compound 1043 was prepared by the same method as Compound 1038 with the following modifications: nicotinic acid instead of isobutyric acid in Step 3 was used as a starting material to give compound 1043 (18 mg). 1H NMR (400 MHz, MeOD) δ ppm 9.01-9.05 (m, 1H), 8.76-8.81 (m, 1H), 8.46-8.54 (m, 1H), 7.63-7.90 (m, 5H), 7.23-7.37 (m, 4H), 4.88-4.94 (m, 2H), 3.88-3.99 (m, 4H), 1.35-1.46 (m, 4H); LC-MS (Condition A), MS m/z (M++H) 691.0.


Example 1044
Preparation of Compounds 1044



embedded image


Compound 1044 was prepared by modification of Step 3 of the method to prepare compound 1029. N-(2-aminoethylsulfonyl)-4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamide HCl salt (20 mg, 0.031 mmol), and Hunig's Base (0.027 mL, 0.154 mmol) were dissolved in DCM (Volume: 2 mL). Methyl chloroformate (5.81 mg, 0.061 mmol) was added to the reaction mixture and was stirred for 10 min then quenched with 2 drops of water. The solvent was removed under vacuum and the crude product was purified by rev. phase preparative HPLC (Column: Sunfire prep C18 OBO 5 uM, 30×100 mm by Waters Corp) using a gradient of 30-100% ACN/water w/0.1% TFA modifier to give compound 1044 (19 mg). 1H NMR (400 MHz, MeOD) δ ppm 7.87-7.98 (m, 1H), 7.67-7.81 (m, 3H), 7.23-7.37 (m, 4H), 4.87-4.94 (m, 2H), 3.70-3.78 (m, 2H), 3.58-3.64 (m, 2H), 3.54 (s, 3H), 1.35-1.46 (m, 4H); LC-MS (Condition A), MS m/z (M++H) 644.0.


Example 1045
Preparation of Compound 1045



embedded image


Compound 1045 was prepared by the same method as Compound 1044 with the following modifications: isoproply chloroformate instead of methyl chloroformate in Step 3 was used as a starting material to give Compound 1045 (18 mg). 1H NMR (400 MHz, MeOD) δ ppm 7.86-8.00 (m, 1H), 7.67-7.80 (m, 3H), 7.22-7.36 (m, 4H), 4.86-4.94 (m, 2H), 4.72-4.83 (m, 1H), 3.73 (t, J=6.1 Hz, 2H), 3.59 (t, J=6.3 Hz, 2H), 1.34-1.45 (m, 4H), 1.13 (d, J=6.3 Hz, 6H), LC-MS (Condition A), MS m/z (M++H) 672.0.


Example 1046
Preparation of Compound 1046



embedded image


Compound 1046 was prepared by the same method as Compound 1044 with the following modifications: neopentyl chloroformate instead of methyl chloroformate in Step 3 was used as a starting material to give Compound 1046 (13 mg). 1H NMR (400 MHz, MeOD) δ ppm 7.87-7.99 (m, 1H), 7.66-7.81 (m, 3H), 7.23-7.38 (m, 4H), 4.86-4.94 (m, 2H), 3.71-3.77 (m, 2H), 3.58-3.67 (m, 4H), 1.33-1.46 (m, 4H), 0.86 (s, 9H); LC-MS (Condition A), MS m/z (M++H) 700.0.


Example 1047
Preparation of Compound 1047



embedded image


Compound 1047 was prepared by modification of Step 3 of the method to prepare compound 1029. N-(2-aminoethylsulfonyl)-4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamide HCl salt (20 mg, 0.031 mmol), and Hunig's Base (0.027 mL, 0.154 mmol) were dissolved in DCM (Volume: 2 mL). Methyl isocyanate (3.50 mg, 0.061 mmol) was added to the reaction mixture and was stirred for 10 min then quenched with 2 drops of water. The solvent was removed under vacuum and the crude product was purified by rev. phase preparative HPLC (Column: Sunfire prep C18 OBO 5 uM, 30×100 mm by Waters Corp) using a gradient of 30-100% ACN/water w/0.1% TFA modifier to give compound 1047 (19 mg). 1H NMR (400 MHz, MeOD) δ ppm 1.34-1.45 (m, 4H), 2.63 (s, 3H), 3.60-3.68 (m, 2H), 3.68-3.75 (m, 2H), 4.87-4.94 (m, 2H), 7.22-7.36 (m, 4H), 7.65-7.81 (m, 3H), 7.86-7.98 (m, 1H); LC-MS (Condition A), MS m/z (M++H) 643.0.


Example 1048
Preparation of Compound 1048



embedded image


Compound 1048 was prepared by the same method as Compound 1047 with the following modifications: isopropyl isocyanate instead of methyl isocyanate in Step 3 was used as a starting material to give Compound 1119 (16 mg). 1H NMR (400 MHz, MeOD) δ ppm 1.06 (d, 6H), 1.33-1.45 (m, 4H), 3.59-3.78 (m, 4H), 4.73-4.83 (m, 1H), 4.86-4.96 (m, 2H), 7.20-7.36 (m, 4H), 7.66-7.81 (m, 3H), 7.87-7.98 (m, 1H); LC-MS (Condition A), MS m/z (M++H) 671.0.


Example 1049
Preparation of Compound 1049



embedded image


Compound 1049 was prepared by the same method as Compound 1047 with the following modifications: tert-butyl isocyanate instead of methyl isocyanate in Step 3 was used as a starting material to give Compound 1049 (15 mg). 1H NMR (400 MHz, MeOD) δ ppm 1.26 (s, 9H), 1.34-1.45 (m, 4H), 3.59 (t, J=5.6 Hz, 2H), 3.69 (t, J=5.8 Hz, 2H), 4.86-4.93 (m, 2H), 7.22-7.35 (m, 4H), 7.67-7.81 (m, 3H), 7.88-7.99 (m, 1H); LC-MS (Condition A), MS m/z (M++H) 685.0.


050121.




embedded image


Compound 1050 was prepared by the same method as Compound 1047 with the following modifications: pyridine-3-isocyanate instead of methyl isocyanate in Step 3 was used as a starting material to give compound 1050 (15 mg). 1H NMR (400 MHz, MeOD) δ ppm 1.34-1.46 (m, 4H), 3.75-3.88 (m, 4H), 4.87-4.93 (m, 2H), 7.23-7.35 (m, 4H), 7.61-7.80 (m, 3H), 7.81-7.91 (m, 2H), 8.16 (ddd, J=8.6, 2.4, 1.3 Hz, 1H), 8.35 (d, J=5.5 Hz, 1H), 9.18 (d, J=2.3 Hz, 1H); LC-MS (Condition A), MS m/z (M++H) 706.0.


Examples 2001 and 2002
Preparation of Compounds 2001 and 2002



embedded image




embedded image



Step 1:


To a solution of 2,4-dichloro-6-(2,2,2-trifluoroethoxy)-1,3,5-triazine (2.009 g, 8.1 mmol) in THF (10 mL) was added methyl 4-aminobenzoate (1.224 g, 8.10 mmol) and Hunig's Base (1.415 mL, 8.10 mmol). The resulting mixture was stirred for 16 h. The precipitate was filtrated through a plug washing with THF to give 1.5 g of the desired product.


Step 2:


To a solution of methyl 4-(4-chloro-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoate (870 mg, 2.4 mmol) from Step 1 in THF (10 mL) was added 1-(4-chlorophenyl)cyclopropanamine, HCl (500 mg, 2.450 mmol) and Hunig's Base (1.677 mL, 9.60 mmol). The resulting mixture was stirred for 16 h. The precipitate was filtrated through a plug washing with THF to give acrude product that was purified by Biotage eluting with 4/1-hexane/ethyl acetate to give 1.1 g of the desired product as a solid.


Step 3:


To a solution of methyl 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoate (1.1 g, 2.227 mmol) from Step 2 in MeOH (10 mL), THF (10.00 mL) and Water (5.00 mL) was added MeOH (10 mL). The resulting solution was refluex for 0.5 h. After concentration, the residue was acidified by 1 N HCl and solid was collected with a plug washing with water to give a white solid (1 g) as a mixture that was used in the next step as it is.


Step 4:


To a solution of the products from Step 3 above (33 mg), (1R,2S)-1-amino-N-(cyclopropylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl (22.01 mg, 0.083 mmol), and N-ethyl-N-isopropylpropan-2-amine (0.060 mL, 0.344 mmol) in CH2Cl2 (2 mL) was added HATU (39.2 mg, 0.103 mmol). The resulting solution was stirred for 2 h. After concentration, the residue was purified by prep HPLC to give 22 mg of the first fraction Compound 2001 and 16 mg of the second fraction Compound 2002.


Data of compound 2001: LC-MS (Condition B), MS m/z 565.1 (M++H) 624.08.


Data of compound 2002: LC-MS (Condition B), MS m/z 565.1 (M++H) 692.07.


Examples 2003 and 2004
Preparation of Compounds 2003 and 2004



embedded image


Compounds 2003 and 2004 were prepared by the same method as Compounds 2001 and 2002 with the following modifications: (1S,2R)-2-Amino-N-(cyclopropylsulfonyl)bi(cyclopropane)-2-carboxamide, HCl instead of (1R,2S)-1-amino-N-(cyclopropylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl was used as a starting material in Step 4 to give Compounds 2003 (22 mg) and 2004 (16 mg).


Data of compound 2003: LC-MS (Condition B), MS m/z 565.1 (M++H) 638.09.


Data of compound 2004: LC-MS (Condition B), MS m/z 565.1 (M++H) 706.10.


Examples 2005 and 2006
Preparation of Compounds 2005 and 2006



embedded image


Compounds 2003 and 2004 were prepared by the same method as Compounds 2001 and 2002 with the following modifications: 1-Amino-N-(cyclopropylsulfonyl)cyclopropanecarboxamide, HCl instead of (1R,2S)-1-amino-N-(cyclopropylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl was used as a starting material in Step 4 to give Compounds 2005 (40 mg) and 2006 (16 mg).


Data of compound 2005: LC-MS (Condition B), MS m/z 565.1 (M++H) 598.04.


Data of compound 2006: LC-MS (Condition B), MS m/z 565.1 (M++H) 666.01.


Examples 2007 and 2008
Preparation of Compounds 2007 and 2008



embedded image


Compounds 2007 and 2008 were prepared by the same method as Compounds 2001 and 2002 with the following modifications: (1R,2R)-1-Amino-2-(difluoromethyl)-N-(1-methylcyclopropylsulfonyl)cyclopropanecarboxamide, HCl instead of (1R,2S)-1-amino-N-(cyclopropylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl was used as a starting material in Step 4 to give Compounds 2007 (22 mg) and 2008 (16 mg).


Data of compound 2007: LC-MS (Condition B), MS m/z 565.1 (M++H) 662.06.


Data of compound 2008: LC-MS (Condition B), MS m/z 565.1 (M++H) 730.04.


Example 2009
Preparation of Compound 2009



embedded image




embedded image



Step 1:


To a solution of 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoic acid (200 mg, 0.42 mmol) in DCM (5 mL) solution were added ethyl 2-aminoacetate (65 mg, 0.63 mmol), HATU (238 mg, 0.63 mmol) and iPr2NEt (0.22 mL, 1.25 mmol). The mixture was stirred at room temperature for 16 hs. The solvent was removed under vacuum. The residue was purified via silica gel column (EtOAC/Hexanes 20% to 40%) to give ethyl 2-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)acetate (240 mg, 100%) as white solid. LC-MS (Condition A), MS m/z 565.1 (M++H).


Step 2:


To a suspension of ethyl 2-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)acetate (240 mg, 0.43 mmol) in THF and water solution (6 mL, 1:1 ratio) was added NaOH (68 mg, 1.7 mmol). The mixture was heated to reflux for 2 hours. After cooling to room temperature, the reaction solution was acidified with 1N HCl. The product was extracted by EtOAc. The organic layer was washed with brine, dried over Na2SO4 and concentrated under vacuum. The crude product was used directly in the next step.


Step 3:


To a solution of intermediate from step 2 (20 mg, 0.037 mmol) in DMF (2 mL) were added EDCI (18 mg, 0.09 mmol), methanesulfonamide (9.0 mg, 0.09 mmol) and DMAP (11.4 mg, 0.09 mmol). The mixture was stirred at room temperature for 16 hs. The residue was purified by prep.HPLC to give Compound 2009 as white solid (2.6 mg, 11%). 1H NMR (400 MHz, MeOD) δ ppm 0.87 (m, 2H), 1.27 (s, 2H), 1.33 (m, 2H), 3.16 (s, 3H), 7.25 (m, 4H), 7.60-7.69 (m, 3H), 7.84 (m, 1H); LC-MS (Condition A), MS m/z 614.0 (M++H).


Example 2010
Preparation of Compound 2010



embedded image


The Compound 2010 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethenesulfonamide was used as starting material instead of methanesulfonamide. LC-MS (Condition A), MS m/z 626.0 (M++H).


Example 2011
Preparation of Compound 2011



embedded image


The Compound 2011 was synthesized following the procedure reported in Scheme 2 of Example 2009. 5-Aminovalerate HCl and ethenesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 656.1 (M++H).


Example 2012
Preparation of Compound 2012



embedded image


The Compound 2012 was synthesized following the procedure reported in Scheme 2 of Example 2009. 5-Aminovalerate HCl and cyclopropanesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 682.0 (M++H).


Example 2013
Preparation of Compound 2013



embedded image


The Compound 2013 was synthesized following the procedure reported in Scheme 2 of Example 2009. 5-Aminovalerate HCl and propane-2-sulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 684.1 (M++H).


Example 2014
Preparation of Compound 2014



embedded image


The Compound 2014 was synthesized following the procedure reported in Scheme 2 of Example 2009. 5-Aminovalerate HCl and ethanesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 670.1 (M++H).


Example 2015
Preparation of Compound 2015



embedded image


The Compound 2015 was synthesized following the procedure reported in Scheme 2 of Example 2009. 5-Aminovalerate HCl and ethenesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 668.0 (M++H).


Example 2016
Preparation of Compound 2016



embedded image


The Compound 2016 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 3-aminopropanoate and ethenesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 640.0 (M++H).


Example 2017
Preparation of Compound 2017



embedded image


The Compound 2017 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 4-aminobutyrate and ethenesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 654.0 (M++H).


Example 2018
Preparation of Compound 2018



embedded image


The Compound 2018 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 3-aminopropanoate was used as starting material instead of ethyl 2-aminoacetate. LC-MS (Condition A), MS m/z 628.0 (M++H).


Example 2019
Preparation of Compound 2019



embedded image


The Compound 2019 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 4-aminobutyrate were used as starting material instead of ethyl 2-aminoacetate. LC-MS (Condition A), MS m/z 642.0 (M++H).


Example 2020
Preparation of Compound 2020



embedded image


The Compound 2020 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 3-aminopropanoate and propane-2-sulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 656.0 (M++H).


Example 2021
Preparation of Compounds 2021



embedded image


The Compound 2021 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 3-aminopropanoate and cyclopropanesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 654.0 (M++H).


Example 2022
Preparation of Compounds 2022



embedded image


The Compound 2022 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 3-aminopropanoate and N,N-dimethylsulfamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 657.0 (M++H).


Example 2023
Preparation of Compounds 2023



embedded image


The Compound 2023 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 4-aminobutyrate and propane-2-sulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 670.0 (M++H).


Example 2024
Preparation of Compound 2024



embedded image


The Compound 2024 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 4-aminobutyrate and cyclopropanesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 668.0 (M++H).


Example 2025
Preparation of Compound 2025



embedded image


The Compound 2025 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 4-aminobutyrate and N,N-dimethylsulfamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 671.0 (M++H).


Example 026
Preparation of Compound 2026



embedded image


The Compound 2026 was synthesized following the procedure reported in Scheme 2 of Example 2009. 5-Aminovalerate HCl and (1R,2S)-1-amino-N-(cyclobutylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 805.0 (M++H).


Example 2027
Preparation of Compound 2027



embedded image


The Compound 2027 was synthesized following the procedure reported in Scheme 2 of Example 2009. 5-Aminovalerate HCl and (1R,2S)-1-amino-N-(tert-butylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 807.1 (M++H).


Example 2028
Preparation of Compound 2028



embedded image


The Compound 2028 was synthesized following the procedure reported in Scheme 2 of Example 2009. 5-Aminovalerate HCl and cyclobutanesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 696.0 (M++H).


Example 2029
Preparation of Compound 2029



embedded image


The Compound 2029 was synthesized following the procedure reported in Scheme 2 of Example 2009. 5-Aminovalerate HCl and 1-amino-N-(cyclopropylsulfonyl)cyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 765.0 (M++H).


Example 2030
Preparation of Compound 2030



embedded image


The Compound 2030 was synthesized following the procedure reported in Scheme 2 of Example 2009. 5-Aminovalerate HCl and N,N-dimethylsulfamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 685.0 (M++H).


Example 2031
Preparation of Compound 2031



embedded image


The Compound 2031 was synthesized following the procedure reported in Scheme 2 of Example 2009. 5-Aminovalerate HCl and (1R,2S)-1-amino-N-(cyclopropylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 791.0 (M++H).


Example 2032
Preparation of Compound 2032



embedded image


The Compound 2032 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 4-aminobutyrate and (1R,2S)-1-amino-N-(cyclobutylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 791.1 (M++H).


Example 2033
Preparation of Compound 2033



embedded image


The Compound 2033 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 4-aminobutyrate and 1-amino-N-(cyclopropylsulfonyl)cyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 751.0 (M++H).


Example 2034
Preparation of Compound 2034



embedded image


The Compound 2034 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 4-aminobutyrate and (1R,2S)-1-amino-N-(cyclopropylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 777.0 (M++H).


Example 2035
Preparation of Compound 2035



embedded image


The Compound 2035 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 4-aminobutyrate and (1R,2S)-1-amino-N-(tert-butylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 793.0 (M++H).


Example 2036
Preparation of Compound 2036



embedded image


The Compound 2036 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 4-aminobutyrate and (1S,2R)-2-amino-N-(cyclopropylsulfonyl)bi(cyclopropane)-2-carboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 791.0 (M++H).


Example 2037
Preparation of Compound 2037



embedded image


The Compound 2037 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 4-aminobutyrate and (1S,1′R,2R)-2-amino-N-(cyclopropylsulfonyl)-2′,2′-difluorobi(cyclopropane)-2-carboxamide, Cl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 827.0 (M++H).


Example 2038
Preparation of Compound 2038



embedded image


The Compound 2038 was synthesized following the procedure reported in Scheme 2 of Example 2009. Ethyl 4-aminobutyrate and (1R,2R)-1-amino-N-(cyclopropylsulfonyl)-2-(difluoromethyl)cyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide. LC-MS (Condition A), MS m/z 801.0 (M++H).


Example 2039
Preparation of Compound 2039



embedded image




embedded image



Step 1:


To a solution of 4-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)butanoic acid (300 mg, 0.53 mmol) in DCM (5 mL) was added (1S,2R)-ethyl 2-aminobi(cyclopropane)-2-carboxylate, HCl (131 mg, 0.64 mmol), HATU (303 mg, 0.80 mol) and iPr2NEt (0.93 mL, 5.31 mmol). The mixture was stirred at r.t. for 16 hours before all the solvents were removed under vacuum. All solvents were removed under vacuum and the residue was purified by silica gel column (EtOAC/Hexanes=40% to 60%) to (1S,2R)-ethyl 2-(4-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(02,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)butanamido)bi(cyclopropane)-2-carboxylate (370 mg, 97%) as a white solid. LC-MS (Condition A), MS m/z 685.0 (M++H).


Step 2:


To a suspension of 2-(4-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)butanamido)bi(cyclopropane)-2-carboxylate (370 mg, 0.52 mmol) in THF and water solution (6 mL, 1:1:1 ratio) was added LiOH (50 mg, 2.1 mmol). The mixture was heated at 65° C. for 16 hours. After cooling to room temperature, the reaction solution was acidified with 1N HCl. The product was extracted by EtOAc. The organic layer was washed with brine, dried over Na2SO4 and concentrated under vacuum. The crude product was used directly in the next step. LC-MS (Condition A), MS m/z 688.2 (M++H).


Step 3:


To a solution of (1S,2R)-2-(4-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)butanamido)bi(cyclopropane)-2-carboxylic acid (15 mg, 0.02 mmol) in THF solution was added CDI (7.0 mg, 0.04 mmol). The mixture was heated at 65° C. for 1 hour. After cooling to room temperature, methanesulfonamide (4.2 mg, 0.04 mmol) and DBU (9.9 ul, 0.07 mmol) were added to the mixture. The reaction mixture was stirred at r.t. for 16 hours. The solvent was evaporated and the residue was purified by preparative HPLC to afford 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)-N-(4-((1S,2R)-2-(methylsulfonylcarbamoyl)bi(cyclopropan)-2-ylamino)-4-oxobutyl)benzamide (6.7 mg, 40%) as a white solid. 1H NMR (400 MHz, MeOD) δ ppm 0.34 (m, 2H), 0.57 (q, J=9.20 Hz, 2H), 0.71-0.80 (m, 1H), 1.08-1.13 (m, 1H), 1.18 (ddd, J=9.41, 7.53, 7.40 Hz, 1H), 1.34-1.45 (m, 4H), 1.77 (dd, J=7.53, 5.02 Hz, 1H), 1.85-1.97 (m, 1H), 2.26-2.36 (m, 2H), 2.37 (m, 2H), 3.26 (s, 3H), 3.41-3.51 (m, 1H), 4.00 (s, 2H), 7.23-7.33 (m, 4H), 7.60-7.75 (m, 3H), 7.85 (m, 1H); LC-MS (Condition A), MS m/z 765.1 (M++H).


Example 2040
Preparation of Compound 2040



embedded image


The Compound 2040 was synthesized following the procedure reported in Scheme 3 of Example 2039. Ethenesulfonamide was used as starting material instead methanesulfonamide. 1H NMR (400 MHz, MeOD) δ ppm 0.32 (dd, J=4.64, 1.88 Hz, 2H), 0.50-0.56 (m, 2H), 0.70 (m, 1H), 1.10 (m, 2H), 1.34-1.44 (m, 4H), 1.73 (m 1H), 1.91 (m, 2H), 2.30 (d, J=6.53 Hz, 2H), 3.45 (m, 2H), 4.92 (s, 2H), 6.15 (d, J=9.79 Hz, 1H), 6.41 (d, J=16.56 Hz, 1H), 6.93 (dd, J=16.56, 10.04 Hz, 1H), 7.23-7.34 (m, 4H), 7.62-7.70 (m, 2H), 7.85 (m, 1H); LC-MS (Condition A), MS m/z 777.1 (M++H).


Example 2041
Preparation of Compound 2041



embedded image


The Compound 2041 was synthesized following the procedure reported in Scheme 3 of Example 2039. Propane-2-sulfonamide was used as starting material instead methanesulfonamide. 1H NMR (400 MHz, MeOD) δ ppm 0.34 (dd, J=4.89, 1.38 Hz, 2H), 0.50-0.61 (m, 2H), 0.75 (m, 1H), 1.08-1.19 (m, 2H), 1.38 (m, 10H), 1.77 (dd, J=7.40, 4.89 Hz, 1H), 1.87 (m, 1H), 1.95 (d, J=6.53 Hz, 1H), 2.25-2.35 (m, 2H), 3.46-3.55 (m, 2H), 3.72-3.82 (m, 1H), 4.91 (s, 2H), 7.29 (ddd, J=15.87, 6.59, 2.13 Hz, 4H), 7.61-7.76 (m, 3H), 7.85 (m, 1H); LC-MS (Condition A), MS m/z 793.1 (M++H).


Example 2042
Preparation of Compound 2042



embedded image


The Compound 2042 was synthesized following the procedure reported in Scheme 3 of Example 2039. Cyclobutanesulfonamide was used as starting material instead methanesulfonamide. LC-MS (Condition A), MS m/z 805.1 (M++H).


Example 2043
Preparation of Compound 2043



embedded image


The Compound 2043 was synthesized following the procedure reported in Scheme 3 of Example 2039. N,N-dimethylsulfamide was used as starting material instead methanesulfonamide. LC-MS (Condition A), MS m/z 794.1 (M++H).


Example 2044
Preparation of Compound 2044



embedded image


The Compound 2044 was synthesized following the procedure reported in Scheme 3 of Example 2039. 1-Fluorocyclopropane-1-sulfonamide was used as starting material instead methanesulfonamide. LC-MS (Condition A), MS m/z 809.1 (M++H).


Example 2045
Preparation of Compound 2045



embedded image


The Compound 2045 was synthesized following the procedure reported in Scheme 3 of Example 2039. 1-(difluoromethyl)cyclopropane-1-sulfonamide was used as starting material instead methanesulfonamide. LC-MS (Condition A), MS m/z 841.1 (M++H).


Example 2046
Preparation of Compound 2046



embedded image


The Compound 2046 was synthesized following the procedure reported in Scheme 3 of Example 2039. (1S,1′S,2R)-ethyl 2-amino-2′,2′-difluorobi(cyclopropane)-2-carboxylate, HCl was used as starting material (1S,2R)-ethyl 2-aminobi(cyclopropane)-2-carboxylate, HCl. LC-MS (Condition A), MS m/z 801.1 (M++H).


Example 2047
Preparation of Compound 2047



embedded image


The Compound 2047 was synthesized following the procedure reported in Scheme 3 of Example 2039. (1S,1′S,2R)-ethyl 2-amino-2′,2′-difluorobi(cyclopropane)-2-carboxylate, HCl and ethanesulfonamide were used as starting material instead of (1S,2R)-ethyl 2-aminobi(cyclopropane)-2-carboxylate, HCl and methanesulfonamide. LC-MS (Condition A), MS m/z 816.1 (M++H).


Example 2048
Preparation of Compound 2048



embedded image


The Compound 2048 was synthesized following the procedure reported in Scheme 3 of Example 2039. (1S,1′S,2R)-ethyl 2-amino-2′,2′-difluorobi(cyclopropane)-2-carboxylate, HCl and Propane-2-sulfonamide were used as starting material instead of (1S,2R)-ethyl 2-aminobi(cyclopropane)-2-carboxylate, HCl and methanesulfonamide. LC-MS (Condition A), MS m/z 830.1 (M++H).


Example 2049
Preparation of Compound 2049



embedded image


The Compound 2049 was synthesized following the procedure reported in Scheme 3 of Example 2039. (1S,1′S,2R)-ethyl 2-amino-2′,2′-difluorobi(cyclopropane)-2-carboxylate, HCl and N,N-dimethylsulfamide were used as starting material instead of (1S,2R)-ethyl 2-aminobi(cyclopropane)-2-carboxylate, HCl and methanesulfonamide. LC-MS (Condition A), MS m/z 811.1 (M++H).


Example 2050
Preparation of Compound 2050



embedded image


The Compound 2050 was synthesized following the procedure reported in Scheme 3 of Example 2039. (1S,1′S,2R)-ethyl 2-amino-2′,2′-difluorobi(cyclopropane)-2-carboxylate, HCl and 2-methylpropane-2-sulfonamide were used as starting material instead of (1S,2R)-ethyl 2-aminobi(cyclopropane)-2-carboxylate, HCl and methanesulfonamide. LC-MS (Condition A), MS m/z 844.1 (M++H).


Example 2051
Preparation of Compound 2051



embedded image




embedded image



Step 1:


To a solution of 4-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)butanoic acid (300 mg, 0.53 mmol) in DCM (5 mL) was added (R)-tert-butyl 2-aminopropanoate, HCl (193 mg, 1.06 mmol), HATU (303 mg, 0.80 mol) and iPr2NEt (0.93 mL, 5.31 mmol). The mixture was stirred at r.t. for 16 hours before all the solvents were removed under vacuum. All solvents were removed under vacuum and the residue was purified by silica gel column (EtOAC/Hexanes=40% to 100%) to give (R)-tert-butyl 2-(4-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)butanamido)propanoate (200 mg, 54%) as a white solid. LC-MS (Condition A), MS m/z 692.1 (M++H).


Step 2:


(R)-tert-butyl 2-(4-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)butanamido)propanoate (200 mg, 0.29 mmol) in 4 M HCl dioxane solution was stirred at r.t. for 3 hours. All solvents were removed under vacuum to give product. The crude product was used directly in the next step. LC-MS (Condition A), MS m/z 636.0 (M++H).


Step 3:


To a solution of (R)-2-(4-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)butanamido)propanoic acid, HCl (15 mg, 0.02 mmol) in THF solution was added CDI (7.0 mg, 0.04 mmol). The mixture was heated at 65° C. for 1 hour. After cooling to room temperature, methanesulfonamide (4.2 mg, 0.04 mmol) and DBU (9.9 ul, 0.07 mmol) were added to the mixture. The reaction mixture was stirred at r.t. for 16 hours. The solvent was evaporated and the residue was purified by preparative HPLC to afford (R)-4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)-N-(4-(1-(methylsulfonamido)-1-oxopropan-2-ylamino)-4-oxobutyl)benzamide (5.9 mg, 33%) as a white solid. 1H NMR (400 MHz, MeOD) δ ppm 1.40 (m, 6H), 1.94 (m, 2H), 2.37 (m, 2H), 3.25 (s, 3H), 3.35 (s, 3H), 3.44 (dd, J=5.52, 2.76 Hz, 2H), 4.28 (m, 1H), 7.28 (m, 4H), 7.67 (m, 3H), 7.84 (m, 1H); LC-MS (Condition A), MS m/z 713.0 (M++H).


Example 2052
Preparation of Compound 2052



embedded image


The Compound 2052 was synthesized following the procedure reported in Scheme 4 of Example 2051. Propane-2-sulfonamide was used as starting material instead methanesulfonamide. 1H NMR (400 MHz, MeOD) δ ppm 1.34-1.43 (m, 10H), 1.88-1.98 (m, 2H), 2.29-2.40 (m, 2H), 3.40-3.51 (m, 2H), 3.65-3.75 (m, 1H), 4.28 (m, 1H), 4.92 (m, 2H), 7.23-7.33 (m, 4H), 7.61-7.72 (m, 3H), 7.80-7.91 (m, 1H); LC-MS (Condition A), MS m/z 741.1 (M++H).


Example 2053
Preparation of Compound 2053



embedded image


The Compound 2053 was synthesized following the procedure reported in Scheme 4 of Example 2051. Cyclopropanesulfonamide was used as starting material instead methanesulfonamide. 1H NMR (400 MHz, MeOD) δ ppm 1.06-1.16 (m, 2H), 1.20-1.32 (m, 2H), 1.34-1.44 (m, 7H), 1.90-1.99 (m, 2H), 2.30-2.40 (m, 2H), 2.96 (m 1H), 3.38-3.47 (m, 2H), 4.32 (m, 1H), 4.92 (m, 2H), 7.24-7.33 (m, 4H), 7.62-7.72 (m, 3H), 7.83 (m, 1H); LC-MS (Condition A), MS m/z 739.1 (M++H).


Example 2054
Preparation of Compounds 2054



embedded image


The Compound 2054 was synthesized following the procedure reported in Scheme 4 of Example 2051. (5)-tert-Butyl 2-aminopropanoate, HCl was used as starting material instead (R)-tert-butyl 2-aminopropanoate, HCl. LC-MS (Condition A), MS m/z 713.1 (M++H).


Example 2055
Preparation of Compound 2055



embedded image


The Compound 2055 was synthesized following the procedure reported in Scheme 4 of Example 2051. (5)-tert-butyl 2-aminopropanoate, HCl and propane-2-sulfonamide were used as starting material instead (R)-tert-butyl 2-aminopropanoate, HCl and methanesulfonamide. LC-MS (Condition A), MS m/z 741.1 (M++H).


Example 2056
Preparation of Compound 2056



embedded image


The Compound 2056 was synthesized following the procedure reported in Scheme 4 of Example 2051. (S)-tert-butyl 2-aminopropanoate, HCl and N,N-dimethylsulfamide were used as starting material instead (R)-tert-butyl 2-aminopropanoate, HCl and methanesulfonamide. LC-MS (Condition A), MS m/z 742.1 (M++H).


Example 2057
Preparation of Compounds 2057



embedded image


The Compound 2057 was synthesized following the procedure reported in Scheme 4 of Example 2051. (5)-tert-butyl 2-aminopropanoate, HCl and cyclopropanesulfonamide were used as starting material instead (R)-tert-butyl 2-aminopropanoate, HCl and methanesulfonamide. LC-MS (Condition A), MS m/z 739.0 (M++H).


Example 2058
Preparation of Compound 2058



embedded image


The Compound 2058 was synthesized following the procedure reported in Scheme 4 of Example 2051. (5)-tert-butyl 2-aminopropanoate, HCl and cyclobutanesulfonamide were used as starting material instead (R)-tert-butyl 2-aminopropanoate, HCl and methanesulfonamide. LC-MS (Condition A), MS m/z 753.1 (M++H).


Example 2059
Preparation of Compound 2059



embedded image


The Compound 2059 was synthesized following the procedure reported in Scheme 4 of Example 2051. tert-Butyl 3-aminopropanoate was used as starting material instead (R)-tert-butyl 2-aminopropanoate, HCl. LC-MS (Condition A), MS m/z 713.3 (M++H).


Example 2060
Preparation of Compounds 2060



embedded image


The Compound 2060 was synthesized following the procedure reported in Scheme 4 of Example 2051. tert-Butyl 3-aminopropanoate and N,N-dimethylsulfamide were used as starting material instead (R)-tert-butyl 2-aminopropanoate, HCl and methanesulfonamide. LC-MS (Condition A), MS m/z 742.3 (M++H).


Example 2061
Preparation of Compound 2061



embedded image


The Compound 2061 was synthesized following the procedure reported in Scheme 4 of Example 2051. tert-Butyl 3-aminopropanoate and propane-2-sulfonamide were used as starting material instead (R)-tert-butyl 2-aminopropanoate, HCl and methanesulfonamide. LC-MS (Condition A), MS m/z 741.4 (M++H).


Example 2062
Preparation of Compound 2062



embedded image


The Compound 2062 was synthesized following the procedure reported in Scheme 4 of Example 2051. tert-Butyl 3-aminopropanoate and cyclopropanesulfonamide were used as starting material instead (R)-tert-butyl 2-aminopropanoate, HCl and methanesulfonamide. LC-MS, MS m/z 739.3 (M++H).


Example 1063
Preparation of Compound 2063



embedded image


The Compound 2063 was synthesized following the procedure reported in Scheme 4 of Example 2051. tert-Butyl 3-aminopropanoate and cyclobutanesulfonamide were used as starting material instead (R)-tert-butyl 2-aminopropanoate, HCl and methanesulfonamide. LC-MS (Condition A), MS m/z 753.4 (M++H).


Example 2064
Preparation of Compound 2064



embedded image


The Compound 1064 was synthesized following the procedure reported in Scheme 4 of Example 2051. tert-Butyl 3-aminopropanoate and (1S,2R)-2-amino-N-(cyclopropylsulfonyl)bi(cyclopropane)-2-carboxamide were used as starting material instead (R)-tert-butyl 2-aminopropanoate, HCl and methanesulfonamide. LC-MS (Condition A), MS m/z 862.4 (M++H).


Example 2065
Preparation of Compound 2065



embedded image


The Compound 2065 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and (1R,2S)-1-amino-N-(cyclopropylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 20 mg (46%) of compound 2065. LC-MS (Condition A), MS m/z 789.23 (M++H).


Example 2066
Preparation of Compound 2066



embedded image


The Compound 2066 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and (1S,2R)-2-amino-N-(cyclopropylsulfonyl)bi(cyclopropane)-2-carboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 26 mg of compound 2066. LC-MS (Condition A), MS m/z 803.23 (M++H).


Example 2067
Preparation of Compound 2067



embedded image


The Compound 2067 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and 1-amino-N-(cyclopropylsulfonyl)cyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 17 mg of compound 2067. LC-MS (Condition B), MS m/z 763.22 (M++H).


Example 2068
Preparation of Compound 2068



embedded image


The Compound 2068 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and (1R,2S)-1-amino-N-(tert-butylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 20 mg of compound 2068. LC-MS (Condition B), MS m/z 805.24 (M++H).


Example 2069
Preparation of Compound 2069



embedded image


The Compound 2069 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and (1R,2S)-1-amino-N-(cyclobutylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 33 mg of compound 2069. LC-MS (Condition B), MS m/z 803.27 (M++H).


Example 2070
Preparation of Compound 2070



embedded image


The Compound 2070 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and cyclopropanesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 26 mg of compound 2070. LC-MS (Condition B), MS m/z 680.17 (M++H).


Example 2071
Preparation of Compound 2071



embedded image


The Compound 2071 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and was used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Step 1 to give 16 mg of compound 2071. LC-MS (Condition B), MS m/z 654.19 (M++H).


Example 2072
Preparation of Compound 2072



embedded image


The Compound 2072 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and ethenesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 6 mg of compound 2072. LC-MS (Condition B), MS m/z 666.21 (M++H).


Example 2073
Preparation of Compound 2073



embedded image


The Compound 2073 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and ethanesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 7 mg of compound 2073. LC-MS (Condition B), MS m/z 668.18 (M++H).


Example 2074
Preparation of Compound 2074



embedded image


The Compound 2074 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and propane-2-sulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 20 mg of compound 2074. LC-MS (Condition B), MS m/z 682.20 (M++H).


Example 2075
Preparation of Compound 2075



embedded image


The Compound 2075 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and 2-methylpropane-2-sulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 15 mg of compound 2075. LC-MS (Condition B), MS m/z 696.25 (M++H).


Example 2076
Preparation of Compound 2076



embedded image


The Compound 2076 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and 2-1-ethylcyclopropane-1-sulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 19 mg of compound 2076. LC-MS (Condition B), MS m/z 708.27 (M++H).


Example 2077
Preparation of Compound 2077



embedded image


The Compound 2077 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and 2-1-1-propylcyclopropane-1-sulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 20 mg of compound 2077. LC-MS (Condition B), MS m/z 722.30 (M++H).


Example 2078
Preparation of Compound 2078



embedded image


The Compound 2078 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and N,N-dimethylsulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 18 mg of compound 2078. LC-MS (Condition B), MS m/z 683.25 (M++H).


Example 2079
Preparation of Compound 2079



embedded image


The Compound 2079 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 1-(aminomethyl)cyclopropanecarboxylate, HCl and tert-butyl N-isopropylsulfamoylcarbamate were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 8 mg of compound 2079. LC-MS (Condition B), MS m/z 697.28 (M++H).


Example 2080
Preparation of Compound 2080



embedded image


The Compound 2080 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and (1R,2S)-1-amino-N-(cyclopropylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 20 mg of compound 2080. LC-MS (Condition B), MS m/z 791.27 (M++H).


Example 2081
Preparation of Compound 2081



embedded image


The Compound 2081 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and (1S,2R)-2-amino-N-(cyclopropylsulfonyl)bi(cyclopropane)-2-carboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 21 mg of compound 2081. LC-MS (Condition B), MS m/z 805.26 (M++H).


Example 2082
Preparation of Compound 2082



embedded image


The Compound 2082 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and (1R,2S)-1-amino-N-(tert-butylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 12 mg of compound 2082. LC-MS (Condition B), MS m/z 807.31 (M++H).


Example 2083
Preparation of Compound 2083



embedded image


The Compound 2083 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and (1R,2S)-1-amino-N-(cyclobutylsulfonyl)-2-vinylcyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 16 mg of compound 2083. LC-MS (Condition B), MS m/z 805.29 (M++H).


Example 2084
Preparation of Compound 2084



embedded image


The Compound 2084 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and cyclopropanesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 20 mg of compound 2084. LC-MS (Condition B), MS m/z 682.20 (M++H).


Example 2085
Preparation of Compound 2085



embedded image


The Compound 2085 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and was used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Step 1 to give 19 mg of compound 2085. LC-MS (Condition B), MS m/z 656.17 (M++H).


Example 2086
Preparation of Compound 2086



embedded image


The Compound 2086 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and ethenesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 18 mg of compound 2086. LC-MS (Condition B), MS m/z 668.18 (M++H).


Example 2087
Preparation of Compound 2087



embedded image


The Compound 2087 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and ethanesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 19 mg of compound 2087. LC-MS (Condition B), MS m/z 670.19 (M++H).


Example 2088
Preparation of Compound 2088



embedded image


The Compound 2088 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and propane-2-sulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 18 mg of compound 2088. LC-MS (Condition B), MS m/z 684.21 (M++H).


Example 2089
Preparation of Compound 2089



embedded image


The Compound 2089 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and cyclobutanesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 18 mg of compound 2089. LC-MS (Condition B), MS m/z 696.22 (M++H).


Example 2090
Preparation of Compound 2090



embedded image


The Compound 2090 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and 2-methylpropane-2-sulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 7 mg of compound 2090. LC-MS (Condition B), MS m/z 698.25 (M++H).


Example 2091
Preparation of Compound 2091



embedded image


The Compound 2091 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and 2-1-ethylcyclopropane-1-sulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 10 mg of compound 2091. LC-MS (Condition B), MS m/z 710.25 (M++H).


Example 2092
Preparation of Compound 2092



embedded image


The Compound 2092 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and 2-1-1-propylcyclopropane-1-sulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 8 mg of compound 2092. LC-MS (Condition B), MS m/z 724.27 (M++H).


Example 2093
Preparation of Compound 2093



embedded image


The Compound 2093 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and N,N-dimethylsulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 19 mg of compound 2093. LC-MS (Condition B), MS m/z 685.21 (M++H).


Example 2094
Preparation of Compound 2094



embedded image


The Compound 2094 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and t2-methoxyethanesulfonamide were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 22 mg of compound 2094. LC-MS (Condition B), MS m/z 697.28 (M++H).


Example 2095
Preparation of Compound 2095



embedded image


The Compound 2095 was synthesized following the procedure reported in Scheme 2 of Example 2009. Methyl 3-amino-2,2-dimethylpropanoate, HCl and 1-amino-N-(cyclopropylsulfonyl)cyclopropanecarboxamide, HCl were used as starting material instead of ethyl 2-aminoacetate and methanesulfonamide in Steps 1 and 3, respectively, to give 24 mg of compound 2095. LC-MS (Condition B), MS m/z 76.23 (M++H).


Example 2096
Preparation of Compound 2096



embedded image


The Compound 2096 was synthesized following the procedure reported in Scheme 2 of Example 2009 with following new conditions:


Modified Step 1:


To a solution of 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoic acid (50 mg) in DMF (2 mL) was added O-(benzotriazol-1-yl-N,N,N′,N′-tetramethyluronium tetrafluoroborate (23.82 mg) and (S)-methyl 2-amino-3-(tert-butoxycarbonylamino)propanoate hydrochloride (18.90 mg) and iPr2NEt (0.052 ml). After stirring at rt for 4 h, the mixture was purified by preparative HPLC to give (S)-methyl 3-(tert-butoxycarbonylamino)-2-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)propanoate.


Modified Step 2:


A suspension of (S)-methyl 3-(tert-butoxycarbonylamino)-2-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)propanoate (25 mg) and K2CO3 (25.4 mg) in acetone and water (1:1, 4 mL) was stirred at room temperature for 16 hours. The mixture was acidified to pH1. Solvents were removed under vacuum and the residue was purified by preparative HPLC to give (S)-3-(tert-butoxycarbonylamino)-2-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)propanoic acid (15.6 mg) and (S)-3-amino-2-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)propanoic acid (3.9 mg).


Modified Step 3:


To a solution of (S)-3-(tert-butoxycarbonylamino)-2-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)propanoic acid (10 mg) in CH2CL2 (5 mL) was added cyclopropanesulfonamide (3.64 mg), EDC (4.32 mg) and DMAP (5.50 mg). The resulting mixture was stirred at room temperature for 16 hours. Solvents were removed under vacuum and the residue was purified by preparative HPLC to give 1 mg of compound 2096. LC-MS (Condition D), MS m/z 769.3 (M++H).


Example 3001
Preparation of Compound 3001



embedded image




embedded image


embedded image



Step 1:


To a suspension of 2,4-dichloro-6-(2,2,2-trifluoroethoxy)-1,3,5-triazine (2 g, 8.06 mmol) in THF (25 mL) was added sulfanilamide (1.39 g, 8.06 mmol) and iPr2NEt (4.23 mL, 24.2 mmol). The mixture was stirred at room temperature for 16 hours. The solvent was removed under vacuum. The crude product 4-(4-chloro-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzenesulfonamide was used directly in the next step without further purification. LC-MS (Condition A), MS m/z 383.9 (M++H).


Step 2:


To a suspension of 4-(4-chloro-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzenesulfonamide from step 1 (1 g, 2.61 mmol) in THF (20 mL) was added 1-(4-chlorophenyl)cyclopropanamine, HCl (0.53 g, 2.61 mmol) and iPr2NEt (1.35 mL, 10.4 mmol). The mixture was heated at reflux condition for 16 hours. The solvent was removed under vacuum. The crude product 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzenesulfonamide was used directly in the next step without further purification. LC-MS (Condition A), MS m/z 514.9 (M++H).


Step 3:


To a solution of 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzenesulfonamide (1 g, 1.94 mmol) in DCM (10 mL) solution were added PyBOP (1.21 g, 2.33 mmol), 1-((tert-butoxycarbonylamino)methyl)cyclopropanecarboxylic acid (0.46 g, 2.14 mmol) and DIEA (1.36 mL, 7.77 mmol). The mixture was stirred at room temperature for 16 hs. All solvents were removed under vacuum and the residue was purified by silica gel column (MeOH/hexane: 5%) to give tert-butyl (1-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)phenylsulfonylcarbamoyl)cyclopropyl)methylcarbamate (1.38 g, 100%) as a brown solid. LC-MS (Condition A), MS m/z 712.0 (M++H).


Step 4:


tert-butyl (1-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)phenylsulfonylcarbamoyl)cyclopropyl)methylcarbamate (1.38 g, 1.94 mmol) in 4 M HCl dioxane solution was stirred at r.t. for 3 hours. All solvents were removed under vacuum to give product. The crude product was used directly in the next step. LC-MS, MS m/z 612.0 (M++H).


Step 5:


To a solution of 1-(aminomethyl)-N-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)phenylsulfonyl)cyclopropanecarboxamide, HCl (30 mg, 0.05 mmol) in Acetonitrile (2 mL) was added 1,4-dibromobutane (10.6 mg, 0.05 mmol) and potassium carbonate (34 mg, 0.25 mmol). The mixture was heated to 65° C. for 16 h. After cooling to r.t, the solvent was evaporated and the residue was purified by preparative HPLC to afford 3.7 mg (11%) white solid as desired product. 1H NMR (400 MHz, MeOD) δ ppm 1.15 (m, 2H), 1.39 (m, 6H), 1.86 (m, 2H), 2.03 (m, 4H), 3.14 (m, 2H), 3.31 (m, 2H), 4.88 (m, 2H), 7.27 (m, 4H), 7.73 (m, 3H), 7.93 (m, 1H); LC-MS (Condition A), MS m/z 666.0 (M++H).


Example 3002
Preparation of Compound 3002



embedded image


The compound 3002 was synthesized following the procedure reported in Scheme 1 of Example 3001. 1,5-Diiodopentane was used as starting material in step 5 instead of 1,4-dibromobutane. LC-MS (Condition A), MS m/z 680.0 (M++H).


Example 3003
Preparation of Compound 3003



embedded image


The compound 3003 was synthesized following the procedure reported in Scheme 5 of Example 3001. 1-Iodo-2-(2-iodoethoxy)ethane was used as starting material in step 5 instead of 1,4-dibromobutane. 1H NMR (400 MHz, MeOD) δ ppm 1.10-1.20 (m, 2H), 1.33-1.40 (m, 4H), 1.43-1.47 (m, 2H), 3.15 (d, J=3.76 Hz, 2H), 3.22-3.33 (m, 2H), 3.34-3.36 (m, 2H), 3.85 (m, 4H), 4.88 (m, 2H), 7.22-7.31 (m, 4H), 7.71 (t, J=9.54 Hz, 3H), 7.90-7.98 (m, 1H); LC-MS (Condition A), MS m/z 681.9 (M++H).


Example 3004
Preparation of Compound 3004



embedded image


The compound 3004 was prepared by modification of Step 5 of Example 3001. 1-(aminomethyl)-N-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)phenylsulfonyl)cyclopropanecarboxamide, HCl (30 mg, 0.05 mmol), acetaldehyde (10.8 mg, 0.25 mmol), AcOH (2.81 nl, 0.05 mmol), were dissolved in DCM (2 mL) and sodium triacetoxyborohydride (52 mg, 0.25 mmol) was added to the solution. The reaction was stirred for 4 h. The solvent was removed under vacuum and the crude product was purified by rev. phase HPLC to give compound 3004 (5.6 mg, 16%) as a white solid. LC-MS (Condition A), MS m/z 668.0 (M++H).


Example 3005
Preparation of Compounds 3005



embedded image


The compound 3005 was prepared by modification of Step 5 of Example 3001. 1-(aminomethyl)-N-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)phenylsulfonyl)cyclopropanecarboxamide, HCl (30 mg, 0.05 mmol), propan-2-one (3.4 mg, 0.06 mmol), titanium(IV) isopropoxide (30 μl, 0.10 mmol), were dissolved in DCM (2 mL). The reaction was stirred for 16 h. Sodium triacetoxyborohydride (21 mg, 0.10 mmol) was added to the solution. The reaction was stirred for 4 h. The solvent was removed under vacuum and the crude product was purified by rev. phase HPLC to give compound 3005 (4.1 mg, 12.2%) as a white solid. 1H NMR (400 MHz, MeOD) δ ppm 0.90 (m, 2H), 1.31-1.44 (m, 10H), 1.87 (m, 1H), 3.17 (m, 4H), 4.92 (m, 2H), 7.29 (m 4H), 7.75 (m 3H), 7.95 (m 1H). LC-MS (Condition A), MS m/z 654.0 (M++H).


Example 3006
Preparation of Compound 3006



embedded image


The compound 3006 was prepared by modification of Step 5 of Example 3001. 1-(aminomethyl)-N-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)phenylsulfonyl)cyclopropanecarboxamide, HCl (30 mg, 0.05 mmol), formaldehyde (7.4 mg, 0.25 mmol), Et3N (14 μl, 0.25 mmol), were dissolved in DCM (2 mL) and sodium triacetoxyborohydride (52 mg, 0.25 mmol) was added to the solution. The reaction was stirred for 4 h. The solvent was removed under vacuum and the crude product was purified by rev. phase HPLC to give compound 3006 (2.0 mg, 6%) as a white solid. LC-MS (Condition A), MS m/z 640.0 (M++H).


Example 3007
Preparation of Compound 3007



embedded image


The compound 3007 was prepared by modification of Step 5 of Example 3001. 1-(aminomethyl)-N-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)phenylsulfonyl)cyclopropanecarboxamide, HCl (30 mg, 0.05 mmol), pivalaldehyde (4.2 mg, 0.05 mmol), AcOH (2.81 μl, 0.05 mmol), were dissolved in DCM (2 mL) and sodium triacetoxyborohydride (52 mg, 0.25 mmol) was added to the solution. The reaction was stirred for 4 h. The solvent was removed under vacuum and the crude product was purified by rev. phase HPLC to give compound 3007 (2.3 mg, 6.5%) as a white solid. LC-MS (Condition A), MS m/z 682.0 (M++H).


Example 3008
Preparation of Compound 3008



embedded image


The compound 3008 was prepared by modification of Step 5 of Example 3001. To a solution of 1-(aminomethyl)-N-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)phenylsulfonyl)cyclopropanecarboxamide, HCl (30 mg, 0.05 mmol) in DCM (5 mL) solution were added ethyl 2-(2-oxopyrrolidin-1-yl)acetic acid (14 mg, 0.10 mmol), HATU (28 mg, 0.07 mmol) and iPr2NEt (43 ul, 0.25 mmol). The mixture was stirred at room temperature for 16 hs. The solvent was removed under vacuum and the crude product was purified by rev. phase HPLC to give compound 3008 (3.7 mg, 10%) as a white solid. LC-MS (Condition A), MS m/z 737.0 (M++H).


Example 3009
Preparation of Compound 3009



embedded image


The Compound 3009 was prepared by modification of Step 5 of Example 3001. To a solution of 1-(aminomethyl)-N-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)phenylsulfonyl)cyclopropanecarboxamide, HCl (30 mg, 0.05 mmol) in DCM (5 mL) solution were added 1-dioxide-4-thiomorpholinepropanolic acid (10.2 mg, 0.05 mmol), HATU (28 mg, 0.07 mmol) and iPr2NEt (43 ul, 0.25 mmol). The mixture was stirred at room temperature for 16 hs. The solvent was removed under vacuum and the crude product was purified by rev. phase HPLC to give Compound 3009 (1.8 mg, 4.4%) as a white solid. LC-MS (Condition A), MS m/z 801.0 (M++H).


Example 4000
Preparation of Compounds 4000



embedded image




embedded image



Step 1:


4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoic acid (500 mg, 1.042 mmol), 2-aminoethanesulfonamide (142 mg, 1.146 mmol), HATU (594 mg, 1.563 mmol), and Hunig's Base (0.910 mL, 5.21 mmol) were stirred in DCM (Volume: 5 mL) for 16 h. The solvent was removed and the crude material was purified by silica gel chromatography using EtOAc to give 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)-N-(2-sulfamoylethyl)benzamide (150 mg). 1H NMR (400 MHz, MeOD) δ ppm 1.31-1.42 (m, 4H), 3.34-3.40 (m, 2H), 3.79-3.89 (m, 2H), 4.86-4.92 (m, 2H), 7.20-7.33 (m, 4H), 7.58-7.71 (m, 3H), 7.76-7.89 (m, 1H); LC-MS (Condition A), MS m/z (M++H) 585.9.


Step 2:


4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)-N-(2-sulfamoylethyl)benzamide (20 mg, 0.034 mmol), acetic acid (3.07 mg, 0.051 mmol), PyBOP (26.6 mg, 0.051 mmol), and Hunig's Base (0.030 mL, 0.171 mmol) were stirred in DCM (Volume: 3 mL) for 16 h. The solvent was removed under vacuum and the crude product was purified by rev. phase preparative HPLC (Column: Sunfire prep C18 OBO 5 uM, 30×100 mm by Waters Corp) using a gradient of 30-100% ACN/water w/0.1% TFA modifier to give compound 4000 (15 mg). 1H NMR (400 MHz, DMSO-d6) δ ppm 1.24-1.41 (m, 4H), 1.98 (s, 3H), 3.49-3.75 (m, 4H), 4.99 (q, J=9.0 Hz, 2H), 7.14-7.42 (m, 4H), 7.55-7.73 (m, 3H), 7.73-7.92 (m, 1H), 8.48 (br. s., 1H), 8.79 (br. s., 1H), 9.96 (br. s., 1H), 11.73 (s, 1H); LC-MS (Condition A), MS m/z (M++H) 627.9.


Example 401
Preparation of Compound 4001



embedded image


Compound 4001 was prepared by the same method as Compound 4000 with the following modifications: isobutyric acid instead of acetic acid in Step 3 was used as a starting material to give compound 4001 (14 mg). 1H NMR (400 MHz, DMSO-d6) δ ppm 1.03 (d, J=6.8 Hz, 6H), 1.26-1.42 (m, 4H), 2.44-2.57 (m, 1H), 3.63 (s, 4H), 4.99 (q, J=9.0 Hz, 2H), 7.16-7.41 (m, 4H), 7.59-7.93 (m, 4H), 8.51 (br. s., 1H), 8.79 (br. s., 1H), 9.95 (br. s., 1H), 11.68 (s, 1H); LC-MS (Condition A), MS m/z (M++H) 656.0.


Example 4002
Preparation of Compounds 4002



embedded image


Compound 4002 was prepared by the same method as Compound 4000 with the following modifications: cyclopropanecarboxylic acid instead of acetic acid in Step 3 was used as a starting material to give compound 4002 (12 mg). 1H NMR (400 MHz, MeOD) δ ppm 0.78-1.02 (m, 4H), 1.27-1.46 (m, 4H), 1.55-1.69 (m, 1H), 3.67-3.77 (m, 2H), 3.80-3.90 (m, 2H), 4.86-4.95 (m, 2H), 7.19-7.36 (m, 4H), 7.58-7.73 (m, 3H), 7.78-7.92 (m, 1H); LC-MS (Condition A), MS m/z (M++H) 654.0.


Example 4003
Preparation of Compounds 4003



embedded image


Compound 4003 was prepared by the same method as compound 4000 with the following modifications: 3,3,3-trifluoropropanoic acid instead of acetic acid in Step 3 was used as a starting material to give compound 4003 (12 mg). 1H NMR (400 MHz, DMSO-d6) δ ppm 1.18-1.45 (m, 4H), 3.56 (q, J=10.8 Hz, 2H), 3.62-3.75 (m, 4H), 4.99 (q, J=9.2 Hz, 2H), 7.14-7.43 (m, 4H), 7.56-7.93 (m, 4H), 8.44-8.62 (m, 1H), 8.80 (br. s., 1H), 9.96 (br. s., 1H), 12.23 (br. s., 1H); LC-MS (Condition A), MS m/z (M++H) 696.0.


Example 4004
Preparation of Compound 4004



embedded image


Compound 4004 was prepared by the same method as Compound 4000 with the following modifications: (S)-1-(tert-butoxycarbonyl)pyrrolidine-2-carboxylic acid instead of acetic acid in Step 3 was used as a starting material. After HPLC, the product fractions were diluted with EtOAc and washed with water 2×, followed by brine. The organic layer was collected, dried over sodium sulfate, and concentrated under vacuum to give compound 4004 (14 mg). 1H NMR (400 MHz, DMSO-d6) δ ppm 1.22-1.46 (m, 13H), 1.69-1.96 (m, 3H), 2.07-2.22 (m, 1H), 3.23-3.43 (m, 2H), 3.55-3.75 (m, 4H), 4.14 (dd, J=8.8, 4.5 Hz, 1H), 4.99 (q, J=9.0 Hz, 2H), 7.15-7.41 (m, 4H), 7.59-7.93 (m, 4H), 8.42-8.64 (m, 1H), 8.79 (br. s., 1H), 9.95 (br. s., 1H), 11.99 (s, 1H); LC-MS (Condition A), MS m/z (M++H) 783.0.


Example 4005
Preparation of Compounds 4005



embedded image


Compound 4005 was prepared by the same method as compound 4000 with the following modifications: 1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid instead of acetic acid in Step 3 was used as a starting material. After HPLC, the product fractions were diluted with EtOAc and washed with water 2×, followed by brine. The organic layer was collected, dried over sodium sulfate, and concentrated under vacuum to give compound 4005 (17 mg). 1H NMR (400 MHz, DMSO-d6) δ ppm 1.23-1.46 (m, 15H), 1.61-1.76 (m, 2H), 2.36-2.44 (m, 1H), 2.59-2.77 (m, 2H), 3.56-3.70 (m, 4H), 3.80-3.97 (m, 2H), 4.99 (q, J=9.0 Hz, 2H), 7.19-7.42 (m, 4H), 7.57-7.95 (m, 4H), 8.38-8.60 (m, 1H), 8.80 (br. s., 1H), 9.96 (br. s., 1H), 11.74 (s, 1H); LC-MS (Condition A), MS m/z (M++H) 797.0.


Example 5000
Preparation of Compounds 5000



embedded image




embedded image



Step 1:


4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoic acid (400 mg, 0.834 mmol), (2S,4R)-1-tert-butyl 2-methyl 4-aminopyrrolidine-1,2-dicarboxylate (224 mg, 0.917 mmol), PyBOP (651 mg, 1.250 mmol), and Hunig's Base (0.728 mL, 4.17 mmol) were stirred in DCM (Volume: 10 mL) for 3 days. The solvent was removed and the crude material was purified by silica gel chromatography using 60% EtOAc/hexanes to give (2R,4S)-1-tert-butyl 2-methyl 4-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)pyrrolidine-1,2-dicarboxylate (500 mg). 1H NMR (400 MHz, MeOD) δ ppm 1.33-1.41 (m, 4H), 1.43 (s, 9H), 2.25-2.48 (m, 2H), 3.39-3.47 (m, 1H), 3.78 (s, 3H), 3.81-3.90 (m, 1H), 4.46 (td, J=7.7, 4.8 Hz, 1H), 4.64 (qd, J=5.8, 5.6 Hz, 1H), 4.85-4.93 (m, 2H), 7.20-7.32 (m, 4H), 7.58-7.71 (m, 3H), 7.76-7.92 (m, 1H); LC-MS (Condition A), MS m/z (M++H) 706.1.


Step 2:


(2S,4R)-1-tert-butyl 2-methyl 4-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)pyrrolidine-1,2-dicarboxylate (500 mg, 0.708 mmol), was dissolved in THF (Ratio: 1.000, Volume: 4 mL) followed by the addition of LiOH (85 mg, 3.54 mmol) and Water (Ratio: 1.000, Volume: 4). The reaction was headed to 65° C. for 2 h. The reaction was diluted with EtOAc and acidified with 1N HCl. The organic layer was collected, washed with brine, dried over sodium sulfate, and concentrated under vacuum to give (2R,4S)-1-(tert-butoxycarbonyl)-4-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)pyrrolidine-2-carboxylic acid (490 mg) which was used in the next step without further purification. 1H NMR (400 MHz, MeOD) δ ppm 1.33-1.41 (m, 4H), 1.45 (s, 9H), 2.28-2.49 (m, 2H), 3.40-3.47 (m, 1H), 3.85 (dd, J=10.7, 6.9 Hz, 1H), 4.33-4.47 (m, 1H), 4.60-4.72 (m, 1H), 4.86-4.93 (m, 2H), 7.20-7.32 (m, 4H), 7.59-7.71 (m, 3H), 7.77-7.89 (m, 1H); LC-MS (Condition A), MS m/z (M++H) 692.0.


Step 3:


(2R,4S)-1-(tert-butoxycarbonyl)-4-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)pyrrolidine-2-carboxylic acid (20 mg, 0.029 mmol), cyclopropanesulfonamide (4.20 mg, 0.035 mmol), PyBOP (22.56 mg, 0.043 mmol), and Hunig's Base (0.025 mL, 0.144 mmol) were stirred in DCM (Volume: 2 mL) for 16 h. The solvent was removed under vacuum and the crude product was purified by rev. phase preparative HPLC (Column: Sunfire prep C18 OBO 5 uM, 30×100 mm by Waters Corp) using a gradient of 30-100% ACN/water w/0.1% TFA modifier. The product fractions were diluted with EtOAc and washed with water 2×, followed by brine. The organic layer was collected, dried over sodium sulfate, and concentrated under vacuum to give compound 5000 (14 mg). 1H NMR (500 MHz, MeOD) δ ppm 1.07-1.44 (m, 9H), 1.48 (s, 9H), 2.26-2.51 (m, 2H), 3.38-3.49 (m, 1H), 3.84-3.96 (m, 1H), 4.30-4.45 (m, 1H), 4.58-4.73 (m, 1H), 4.81-4.85 (m, 2H), 7.18-7.36 (m, 4H), 7.58-7.73 (m, 3H), 7.76-7.90 (m, 1H); LC-MS (Condition A), MS m/z (M++H) 795.0.


Example 5001
Preparation of Compound 5001



embedded image


Compound 5001 was prepared by the same method as Compound 5000 with the following modifications: 2-methylpropane-2-sulfonamide instead of cyclopropyl sulfonamide in Step 3 was used as a starting material to give Compound 1301 (6 mg). LC-MS (Condition A), MS m/z (M++H) 811.1.


Example 5002
Preparation of Compound 5002



embedded image


Compound 5002w as prepared by modification of Step 3 of the method to prepare compound 1300. (2R,4S)-1-(tert-butoxycarbonyl)-4-(4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamido)pyrrolidine-2-carboxylic acid (20 mg, 0.029 mmol), (1S,2R)-2-amino-N-(cyclopropylsulfonyl)bi(cyclopropane)-2-carboxamide (8.47 mg, 0.035 mmol), PyBOP (22.56 mg, 0.043 mmol), and Hunig's Base (0.025 mL, 0.144 mmol) were stirred in DCM (Volume: 2 mL) for 16 h. The solvent was removed under vacuum and the crude product was purified by rev. phase preparative HPLC (Column: Sunfire prep C18 OBO 5 uM, 30×100 mm by Waters Corp) using a gradient of 30-100% ACN/water w/0.1% TFA modifier. The product fractions were diluted with EtOAc and washed with water 2×, followed by brine. The organic layer was collected, dried over sodium sulfate, and concentrated under vacuum to give Compound 5002 (14 mg). LC-MS (Condition A), MS m/z (M++H) 918.2.


Example 6000
Preparation of Compound 6000



embedded image




embedded image


embedded image



Step 1:


To a solution of tert-butyl 4-(4-chloro-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoate (2 g, 4.94 mmol) in THF (30 mL) was added 4-(1-aminocyclopropyl)phenol (0.811 g, 5.44 mmol) and Hunig's Base (3.45 mL, 19.76 mmol). The resulting mixture was stirred for 16 h. The reaction was then warmed to 65° C. for 2 h at which point the reaction became a homogeneous solution. The reaction was cooled and diluted with DCM and washed with water and brine. The organic layer was collected, dried over sodium sulfate, and concentrated under vacuum to give an oily residue. The residue was purified by silica gel chromatography using 20-40% EtOAc/Hexanes to give tert-butyl 4-(4-(1-(4-hydroxyphenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoate (2 g). 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.30-1.37 (m, 4H), 1.60 (s, 9H), 4.67-4.77 (m, 2H), 4.85 (br. s., 1H), 6.04 (br. s., 1H), 6.70-6.81 (m, 2H), 7.11-7.22 (m, 2H), 7.47-7.66 (m, 2H), 7.79-8.01 (m, 2H); LC-MS (Condition A), MS m/z (M++H) 518.0.


Step 2:


To a solution of tert-butyl 4-(4-(1-(4-hydroxyphenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoate (300 mg, 0.580 mmol) in DMF (Volume: 4 mL) was added ethyl 2-bromoacetate (0.067 mL, 0.609 mmol) and POTASSIUM CARBONATE (401 mg, 2.90 mmol). The mixture was at rt for 16 h. After cooling to rt, the mixture was diluted with EtOAc, washed with water, and brine. The organic layer was dried over MgSO4 and concentrated. The residue was purified by silica gel chromatography using 40% EtOAc/Hexanes to give tert-butyl 4-(4-(1-(4-(2-ethoxy-2-oxoethoxy)phenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoate (350 mg). LC-MS (Condition C), MS m/z (M++H) 576.4.


Step 3:


tert-butyl 4-(4-(1-(4-(2-ethoxy-2-oxoethoxy)phenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoate (350 mg, 0.580 mmol) and 4 N HCl in Dioxane (2 mL, 8.00 mmol) were stirred for 1 h then concentrated under vacuum to give 4-(4-(1-(4-(2-ethoxy-2-oxoethoxy)phenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoic acid (330 mg) which was used in the next step without purification. LC-MS (Condition A), MS m/z (M++H) 548.0.


Step 4:


4-(4-(1-(4-(2-ethoxy-2-oxoethoxy)phenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoic acid (330 mg, 0.603 mmol), (1-(pyrrolidin-1-ylmethyl)cyclopropyl)methanamine (112 mg, 0.723 mmol), HATU (344 mg, 0.904 mmol), and Hunig's Base (0.526 mL, 3.01 mmol) were stirred in DCM (Volume: 5 mL) for 16 h. The solvent was removed and the crude material was purified by silica gel chromatography using EtOAc then 5% DCM/MeOH to give ethyl 2-(4-(1-(4-(4-((1-(pyrrolidin-1-ylmethyl)cyclopropyl)methylcarbamoyl)phenylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)cyclopropyl)phenoxy)acetate (268 mg). LC-MS (Condition A), MS m/z (M++H) 684.1.


Step 5:


ethyl 2-(4-(1-(4-(4-((1-(pyrrolidin-1-ylmethyl)cyclopropyl)methylcarbamoyl)phenylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)cyclopropyl)phenoxy)acetate (268 mg, 0.392 mmol) was dissolved in THF (Ratio: 1.000, Volume: 2 mL) then LiOH (46.9 mg, 1.960 mmol) and Water (Ratio: 1.000, Volume: 2 mL) were added and the reaction was heated to 65° C. for 2 h. The solvent was removed under vacuum and water was added back to the flask and the pH adjusted to ˜7 with 1N HCl. A solid precipitated out of solution and this was collected, washed with water, and dried to give 2-(4-(1-(4-(4-((1-(pyrrolidin-1-ylmethyl)cyclopropyl)methylcarbamoyl)phenylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)cyclopropyl)phenoxy)acetic acid (130 mg). 1H NMR (400 MHz, MeOD) δ ppm 0.62-0.70 (m, 2H), 0.94-1.02 (m, 2H), 1.15-1.34 (m, 4H), 2.10 (br. s., 4H), 3.08 (br. s., 2H), 3.30-3.33 (m, 4H), 3.49 (s, 2H), 4.51 (s, 2H), 4.86-4.93 (m, 2H), 6.85-6.94 (m, 2H), 7.08-7.16 (m, 2H), 7.16-7.25 (m, 2H), 7.42-7.54 (m, 2H); LC-MS (Condition A), MS m/z (M++H) 656.1.


Step 6:


2-(4-(1-(4-(4-((1-(pyrrolidin-1-ylmethyl)cyclopropyl)methylcarbamoyl)phenylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)cyclopropyl)phenoxy)acetic acid (20 mg, 0.031 mmol), propane-2-sulfonamide (4.88 mg, 0.040 mmol), PyBOP (23.81 mg, 0.046 mmol), and Hunig's Base (0.027 mL, 0.153 mmol) were stirred in DCM (Volume: 3 mL) for 3 days. The solvent was removed and the crude material was purified by Prep-HPLC (Column: Sunfire prep C18 OBO 5 uM, 30×100 mm by Waters Corp) using a gradient of 10-60% ACN/water w/0.1% TFA modifier to give 4-(4-(1-(4-(2-(1-methylethylsulfonamido)-2-oxoethoxy)phenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)-N-((1-(pyrrolidin-1-ylmethyl)cyclopropyl)methyl)benzamide (5 mg). 1H NMR (500 MHz, MeOD) δ ppm 0.75 (s, 2H), 0.83 (s, 2H), 1.14-1.42 (m, 10H), 2.12-2.26 (m, 4H), 3.06-3.43 (m, 7H), 3.77-3.88 (m, 2H), 4.64 (s, 2H), 4.81-4.92 (m, 2H), 6.86-7.00 (m, 2H), 7.21-7.32 (m, 2H), 7.64-7.76 (m, 3H), 7.89 (s, 1H); LC-MS (Condition A), MS m/z (M++H) 761.2.


Example 7001
Preparation of Compounds 7001



embedded image




embedded image


embedded image



Step 1:


4-(1-(4-(4-(tert-butoxycarbonyl)phenylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)cyclopropyl)benzoic acid was prepared by the same method as Example 1001 step 3 with the following modifications: 4-(1-aminocyclopropyl)benzoic acid instead of 1-(4-chlorophenyl)cyclopropanamine was used as a starting material to give 4-(1-(4-(4-(tert-butoxycarbonyl)phenylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)cyclopropyl)benzoic acid (70 mg). LC-MS (Condition A), MS m/z (M++H) 546.1.


Step 2:


tert-butyl 4-(4-(1-(4-(cyclopropylsulfonylcarbamoyl)phenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoate was prepared by the same method as Example 1001 step 4 to give tert-butyl 4-(4-(1-(4-(cyclopropylsulfonylcarbamoyl)phenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoate (24 mg). LC-MS (Condition A), MS m/z (M++H) 649.2.


Step 3:


4-(4-(1-(4-(cyclopropylsulfonylcarbamoyl)phenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoic acid was prepared by the same method as Example 6000 step 3 to give 4-(4-(1-(4-(cyclopropylsulfonylcarbamoyl)phenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoic acid (20 mg). LC-MS (Condition A), MS m/z (M++H) 593.0.


Step 4:


N-(cyclopropylsulfonyl)-4-(1-(4-(4-((1-(pyrrolidin-1-ylmethyl)cyclopropyl)methylcarbamoyl)phenylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)cyclopropyl)benzamide was prepared by the same method as Example 6000 step 4 to give Compound 7001 (6 mg) as the TFA salt. LC-MS (Condition A), MS m/z (M++H) 729.2.


Example 7002
Preparation of Compounds 7002



embedded image


Compound 7002 was prepared by the same method as Compound 7002 with the following modifications: cyclobutane sulfonamide instead of cyclopropanesulfonamide in Step 2 was used as a starting material to give Compound 7002 (2.5 mg) as the TFA salt. LC-MS (Condition A), MS m/z (M++H) 743.2.


Example 7003
Preparation of Compounds 7003



embedded image


Compound 7003 was prepared by the same method as Compound 7001 with the following modifications: benzene sulfonamide instead of cyclopropanesulfonamide in Step 2 was used as a starting material to give Compound 7003 (5 mg) as the TFA salt. LC-MS (Condition A), MS m/z (M++H) 765.2.


Procedures for the Synthesis of 8000 Series Examples in Table 3.


Compounds in table 3 can be prepared similarly by either following method or above described methods.




embedded image


embedded image



Step 1:


To a slurry of methyl 4-(4-chloro-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoate (1.813 g, 5 mmol) and tert-butyl piperazine-1-carboxylate (1.024 g, 5.50 mmol) in THF (50 mL) was stirred at rt for 5 h. After concentration, the white solid was collected through a plug washing with water to give 2.51 g of the desired product after drying in house vacuum. LC-MS (Condition B), MS m/z (M++H) 512.10.


Step 2:


A mixture of tert-butyl 4-(4-(4-(methoxycarbonyl)phenylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl)piperazine-1-carboxylate (2.5 g, 4.88 mmol) and NaOH (0.780 g, 19.51 mmol) in THF (20 mL) and water (10.00 mL) was refluxed for 6 h. The reaction was diluted with water and extracted with ether (50 mL×2) to remove unreacted staring material, the inorganic layer was acidified with 1 N HCl, extracted with ethyl acetate, dried over MgSO4, concentrated to give 1.2 g of a crude product, which will be used in the next step as it is. LC-MS (Condition B), MS m/z (M++H) 499.08.


Step 3:


To a solution of 4-(4-(4-(tert-butoxycarbonyl)piperazin-1-yl)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoic acid (0.648 g, 1.3 mmol), 1-formylcyclopropane-1-sulfonamide (0.223 g, 1.495 mmol), and Hunig's Base (1.135 mL, 6.50 mmol) in CH2Cl2 (10 mL) was added PyBOP (0.812 g, 1.560 mmol) and then stirred for 16 h. After concentration, the residue was purified by Biotage eluting with ethyl acetate and then 10% MeOH in CH2Cl2 to give g of a crude product that containing some impurity, which will be used in next step as it is. LC-MS (Condition M), MS m/z (M++H) 630.10.


Step 4:


A stirred solution of tert-butyl 4-(4-(4-(1-formylcyclopropylsulfonylcarbamoyl)phenylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl)piperazine-1-carboxylate (400 mg, 0.635 mmol) in DCE (10 mL) was treated with dimethylamine, 2 M in THF (0.635 mL, 1.271 mmol) followed by NaBH(OAc)3 (404 mg, 1.906 mmol). After stirring at rt for 2 h, the reaction was diluted with CH2Cl2 and quenched with water, dried over Na2SO4, concentrated to give 400 mg that will be used as it is. LC-MS (Condition B), MS m/z (M++H) 659.18.


Step 5:


A solution of tert-butyl 4-(4-(4-(1-((dimethylamino)methyl)cyclopropylsulfonylcarbamoyl)phenylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl)piperazine-1-carboxylate (470 mg, 0.714 mmol) in TFA (Volume: 10 mL) was stirred for 2 h. Concentration gave 561 mg of a crude product as TFA salt that will be used in the next step as it is. LC-MS (Condition B), MS m/z (M++H) 559.10.


Step 6:


To a solution of N-(1-((dimethylamino)methyl)cyclopropylsulfonyl)-4-(4-(piperazin-1-yl)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzamide, 2 TFA (15 mg, 0.019 mmol) and Hunig's Base (0.033 mL, 0.191 mmol) in CH2Cl2 (1 mL) was added ethanesulfonyl chloride (7.36 mg, 0.057 mmol) and then stirred for 10 min. After quenching with water and concentration, the residue was purified by prep HPLC to give 10 mg (65%) of the Example 8023 in Table 1 as a TFA salt. 1H NMR (400 MHz, MeOD) δ ppm 1.28-1.36 (m, 5H), 1.73-1.80 (m, 2H), 3.05-3.10 (m, 8H), 3.33-3.39 (m, 4H), 3.72 (s, 2H), 3.98 (s, 4H), 4.82-4.92 (m, 2H), 7.82-7.87 (m, 2H), 7.93-7.98 (m, 2H); LC-MS (Condition B), MS m/z (M++H) 651.19.












TABLE 3








LM/MS, MS





m/z (M+ +H)


Examples
Structure
MW
Condition B







8001


embedded image


555.54
556.23





8002


embedded image


515.47
516.16





8003


embedded image


625.19
625.20





8004


embedded image


570.98
571.06





8005


embedded image


619.02
619.10





8006


embedded image


582.99
583.08





8007


embedded image


585.01
585.09





8008


embedded image


587.10
587.18





8009


embedded image


587.10
587.16





8010


embedded image


655.10
655.19





8011


embedded image


619.02
619.07





8012


embedded image


633.05
633.10





8013


embedded image


637.01
637.06





8014


embedded image


673.11
673.11





8015


embedded image


702.11
702.16





8016


embedded image


691.10
691.14





8017


embedded image


611.04
611.10





8018


embedded image


734.16
734.15





8019


embedded image


857.31
857.17





8020


embedded image


871.34
871.18





8021


embedded image


873.35
873.20





8022


embedded image


636.67
637.19





8023


embedded image


650.70
651.19





8024


embedded image


600.62
601.18





8025


embedded image


662.71
663.20





8026


embedded image


664.73
665.23





8027


embedded image


676.72
677.25





8028


embedded image


658.70
659.20





8029


embedded image


680.68
681.27





8030


embedded image


716.74
717.26





8031


embedded image


698.75
699.25





8032


embedded image


712.77
713.27





8033


embedded image


733.19
733.12





8034


embedded image


712.77
713.18





8035


embedded image


728.77
729.19





8036


embedded image


716.74
717.14





8037


embedded image


716.74
717.14





8038


embedded image


676.72
677.18





8039


embedded image


697.14
697.10





8040


embedded image


676.72
677.18





8041


embedded image


692.72
693.16





8042


embedded image


687.10
687.1 (condition A)





8043


embedded image


730.76
731.24





8044


embedded image


730.76
731.25





8045


embedded image


742.80
743.25





8046


embedded image


726.80
727.26





8047


embedded image


747.22
747.20









It will be evident to one skilled in the art that the present disclosure is not limited to the foregoing illustrative examples, and that it can be embodied in other specific forms without departing from the essential attributes thereof. It is therefore desired that the examples be considered in all respects as illustrative and not restrictive, reference being made to the appended claims, rather than to the foregoing examples, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims
  • 1. A compound of formula I
  • 2. A compound of claim 1 where R1 is haloalkyl or a pharmaceutically acceptable salt thereof.
  • 3. A compound of claim 1 where R1 is trifluoroethyl or a pharmaceutically acceptable salt thereof.
  • 4. A compound of claim 1 where R5 is alkylSO2, haloalkylSO2, (cycloalkyl)alkylSO2, alkenylSO2, cycloalkylSO2, (alkyl)cycloalkylSO2, (R10)alkylSO2, ((R10)cycloalkyl)alkylSO2, ((R10)alkyl)cycloalkylSO2, (((R10)alkyl)cycloalkyl)SO2, Ar4SO2, or (R11)(R12)NSO2; or a pharmaceutically acceptable salt thereof.
  • 5. A compound of claim 1 where R5 is (R10)alkyl, ((R10)cycloalkyl)alkyl, ((R10)alkyl)cycloalkyl, or (((R10)alkyl)cycloalkyl); CON(R17)(R18) or SO2N(R19)(R20); R17 is alkylSO2, haloalkylSO2, hydroxyalkylSO2, alkoxyalkylSO2, (cycloalkyl)alkylSO2, alkenylSO2, cycloalkylSO2, (alkyl)cycloalkylSO2, or SO2N(R19)(R20); and R19 is alkylCO, halolalkylCO, alkoxyCO, cycloalkylCO, alkylNHCO, Ar4CO, alkylNHCO, or Ar4NHCO; or a pharmaceutically acceptable salt thereof.
  • 6. A compound of claim 1 where R5 is (R10)alkyl, ((R10)cycloalkyl)alkyl, ((R10)alkyl)cycloalkyl, or (((R10)alkyl)cycloalkyl); R10 is CON(R17)(R18); R17 is R21; and R22 is alkylSO2, haloalkylSO2, hydroxyalkylSO2, alkoxyalkylSO2, (cycloalkyl)alkylSO2, alkenylSO2, cycloalkylSO2, (alkyl)cycloalkylSO2, or)SO2N(R19)(R20); or a pharmaceutically acceptable salt thereof.
  • 7. A compound of claim 1 where R2 is (Ar2)cycloalkyl where Ar2 is substituted with 0-2 substituents selected from halo, alkyl, alkoxy, alkenyl, and alkenyloxy, and substituted with 1 CON(R7)(R8); or a pharmaceutically acceptable salt thereof.
  • 8. A composition comprising a compound of claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • 9. A method of treating hepatitis C infection comprising administering a therapeutically effective amount of a compound of claim 1 to a patient.
US Referenced Citations (5)
Number Name Date Kind
4816064 Konno et al. Mar 1989 A
7163943 Timmer et al. Jan 2007 B2
7169785 Timmer et al. Jan 2007 B2
20090286778 Combs et al. Nov 2009 A1
20110086858 Wang et al. Apr 2011 A1
Foreign Referenced Citations (6)
Number Date Country
WO 2004026881 Apr 2004 WO
WO 2004089286 Oct 2004 WO
WO 2008057209 May 2008 WO
WO 2009091388 Jul 2009 WO
WO 2009132202 Oct 2009 WO
WO 2010118367 Oct 2010 WO
Non-Patent Literature Citations (2)
Entry
U.S. Appl. No. 13/086,036, filed Apr. 13, 2011, Wang et al.
U.S. Appl. No. 13/086,704, filed Apr. 14, 2011, Wang et al.
Related Publications (1)
Number Date Country
20120213729 A1 Aug 2012 US
Provisional Applications (1)
Number Date Country
61375060 Aug 2010 US