Comprehensive functional genomic analysis of the multi-disease associated CDKN2A/B locus

Information

  • Research Project
  • 10210579
  • ApplicationId
    10210579
  • Core Project Number
    R01AG065229
  • Full Project Number
    1R01AG065229-01A1
  • Serial Number
    065229
  • FOA Number
    PA-20-185
  • Sub Project Id
  • Project Start Date
    9/30/2021 - 3 years ago
  • Project End Date
    6/30/2026 - a year from now
  • Program Officer Name
    GUO, MAX
  • Budget Start Date
    9/30/2021 - 3 years ago
  • Budget End Date
    6/30/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    01
  • Suffix
    A1
  • Award Notice Date
    9/20/2021 - 3 years ago

Comprehensive functional genomic analysis of the multi-disease associated CDKN2A/B locus

ABSTRACT The incidence of cardiovascular disease (CVD), Type 2 diabetes (T2D) and cancers all dramatically increase as a function of age. The underlying mechanisms of these diseases, which vary, are incompletely understood. Genome-wide association studies (GWAS) have identified many SNPs that are associated with these conditions. One of the strongest associations comes from the CDKN2A/B locus on chromosome 9p21.3 which has been associated with multiple age-related diseases, as well as overall human lifespan. Within this 200 kb locus, there are three encoded proteins, p16INK4a, p14ARF and p15INK4b, and one antisense non-coding RNA, the inhibitor of CDK4 (INK4) locus (AS/ANRIL). To date, it has not been firmly established which, if any, of these genes are the risk genes for the associated diseases. There are ~193 disease-associated, noncoding SNPs in linkage disequilibrium (LDs) across this 200 kb region, represented by 18 lead SNPs used for GWAS analysis. While the mechanisms underlying the contribution of these SNPs to specific diseases are not fully understood, a single genetic region associated with multiple different age-related diseases suggests that this locus may modulate these conditions by promoting aging itself, perhaps via induction of cellular senescence as a common mechanism. In this application, we propose to apply an experimental approach using high throughput techniques we have recently developed including Reel-seq and FREP/SDCP-MS, to systematically dissect this locus. We will first identify the disease-associated functional SNPs (fSNPs), as well as the regulatory elements across the 58 kb core region primarily associated with cardiovascular diseases using Reel-seq. Next, we will identify the regulatory proteins that specifically bind to all the fSNPs, as well as the regulatory elements, using FREP/SDCP- MS. A range of relevant cell types related to atherosclerosis will be used to generate the nuclear extract required for our screens. We will demonstrate the role of these regulatory proteins by confirming their direct effects on p16INK4a, p14ARF, p15INK4b and AS/ANRIL expression, and subsequently on cell cycle regulation and cellular senescence. A range of complementary techniques such as RNAi, CRISPR/cas9 gene editing, will be employed. Such analysis will provide the first in-depth understanding of this critical genomic region, as well as a unique strategy to uncover unifying biochemical pathways that simultaneously regulate atherosclerosis, as well as potentially multiple other age-related diseases.

IC Name
NATIONAL INSTITUTE ON AGING
  • Activity
    R01
  • Administering IC
    AG
  • Application Type
    1
  • Direct Cost Amount
    390682
  • Indirect Cost Amount
    223177
  • Total Cost
    613859
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    866
  • Ed Inst. Type
    SCHOOLS OF MEDICINE
  • Funding ICs
    NIA:613859\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    GHD
  • Study Section Name
    Genetics of Health and Disease Study Section
  • Organization Name
    UNIVERSITY OF PITTSBURGH AT PITTSBURGH
  • Organization Department
    INTERNAL MEDICINE/MEDICINE
  • Organization DUNS
    004514360
  • Organization City
    PITTSBURGH
  • Organization State
    PA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    152133203
  • Organization District
    UNITED STATES