This application is based on and claims the benefit of priority to Japanese Patent Application No. 2014-246770 filed on Dec. 5, 2014, the content of which is hereby incorporated by reference in its entirety.
The present invention relates to a compressed air supplying device of a sewing machine used in a looper threading device of an overlock sewing machine.
An overlock sewing machine is provided with a plurality of loopers, and since it is necessary to thread each of the loopers with respectively different looper threads, threading operations were troublesome.
Patent Literature 1 discloses a device for threading a thread to a hollow looper point using compressed air.
In the above conventional device, when compressed air is sent to a thread path, a lever is manually pushed down for pushing a piston of an air pump in. Then, operations of the lever are directly linked with movements of the piston, so that the changes in lever operations have a direct effect on the movements of the piston. Namely, the velocities for pushing the piston differ with the forces for pushing down the lever. Accordingly, the flow velocities of compressed air were different depending on operations, so that there are some cases in which threads are not be delivered up to the looper points.
[Patent Literature 1] Japanese Patent Laid-Open Publication No. 1994-277383
One or more embodiments of the present invention provide a compressed air supplying device of a sewing machine capable of supplying compressed air stably irrespective of operation manners of users.
One or more embodiments of the present invention provide a compressed air supplying device of a sewing machine comprising an air pump portion including a piston; a piston biasing portion for biasing force to the piston in the direction which the air pump exhausts air, and for driving the piston in the exhaust air direction, by applying biasing force;
an operating member for making the air pump portion to perform intake air; and an operating force transmitting mechanism transmitting operating force of the operating member to the piston for actuating the piston only in an intake air direction in which the air pump portion intakes air against the biasing force of the piston biasing portion by the operating force.
One or more embodiments of the present invention provide a compressed air supplying device of a sewing machine wherein in the compressed air supplying device of a sewing machine according to Embodiment (1), the operating member is a lever-like member capable of performing reciprocating movements, and wherein the operating force transmitting mechanism constitutes a ratchet mechanism outputting only rotations in one direction from among rotations generated by reciprocating movements of the operating member.
One or more embodiments of the present invention provide a compressed air supplying device of a sewing machine wherein the compressed air supplying device of a sewing machine according to Embodiment (2) comprises; driving arm portion being swingably connected to the piston, and a piston returning arm portion provided to be swingably and integrally with the driving arm portion and being rotationally moved by means of a cam portion provided at the operating force transmitting mechanism in a direction in which the piston moves in the intake air direction, wherein the piston biasing portion applies biasing force to the piston by means of the piston driving shaft portion and, wherein when the operating member is operated in a specified direction, the piston returning arm portion is moved by the cam portion to move the piston in the intake air direction up to a specified position, and when the specified position is exceeded, engagement between the cam portion and the piston returning arm portion (18) is released such that the piston is driven in the exhaust air direction by the biasing force of the piston biasing portion.
According to one or more embodiments of the present invention, the compressed air supplying device of a sewing machine is capable of supplying compressed air stably manner irrespective of operation manners of users.
An example for carrying out the present invention will now be explained with reference to the drawings and others.
Each of the drawings indicated hereinafter including
Further, while explanations are made upon indicating specific numerical values, shapes and materials in the following explanations, they may be suitably changed.
Moreover, for ease of understanding and for convenience sake, explanations will be made by suitably using the directions of left, right, up and down as indicated by arrows in
The compressed air supplying device according to the present embodiment is assembled in a sewing machine main body (not shown) or a unit base 1.
An air pump unit (air pump portion) 2 is comprised of an air pump 3 and a piston 4, wherein an outer peripheral surface 4a of the piston 4 fitting with an inner peripheral surface 3a of the air pump 3 is formed with a groove 4b into which an O ring 5 is fit. The air pump unit 2 generates compressed air through reciprocating movements of the piston 4 within the air pump 3.
The O ring 5 prevents leakage of air from a sliding surface between the inner peripheral surface 3a of the air pump 3 and the outer peripheral surface of the piston 4 during reciprocating movements of the piston 4.
The air pump 3 includes a through hole 3d on an upper end thereof and by inserting a bush 9, it is held to be swingably with respect to an air pump mounting plate 11 by means of a screw 10.
The air pump 3 includes an exhaust air opening 31 and an intake air opening 32, wherein a check valve 7 accommodating a small ball 6 is screw-coupled to the exhaust air opening 31. A check valve 8 similarly accommodating a small ball 6 is screw-coupled to the intake air opening 32.
A tube 12 is arranged in that one end 12a is coupled to the check valve 7 while the other end 12b is coupled to an inlet of a thread delivering mechanism (not shown). Accordingly, compressed air generated by the air pump unit 2 is introduced through the tube 12 to the thread delivering mechanism.
The check valve 7 and the check valve 8 restrict intake air actions and exhaust air actions of the air pump 3, and when the air pump 3 performs intake air and exhaust air in accordance with reciprocating movements of the piston 4, the exhaust air is directed only towards the thread delivering mechanism side while intake air is not performed from the thread delivering mechanism side.
At the time of intake air, the small ball 6 inserted into the check valve 8 screw-fastened to the intake air opening 32 of the air pump 3 is sucked in a depth direction of the intake air opening 32 with the descending of the piston 4, abuts a rib 32a and is stopped thereat. At this time, outside air passes through a clearance 32b and flows into the air pump 3.
In the exhaust air opening 31 at the time of intake air, the small ball 6 inserted into the check valve 7 screw-fastened to the exhaust air opening 31 is sucked in a depth direction of the exhaust air opening 31 with the descending of the piston 4 and is stopped at an exhaust air opening seat surface 31a to prevent inflow of outside air. The check valve 7 has the tube 12 coupled to its other end and communicates with the thread delivering mechanism by means of the tube 12, so that the actions of sucking air from the thread delivering mechanism will not be generated when the piston 4 descends. Namely, the flow of air which pulls a thread inserted into the thread delivering mechanism back will not be generated at the time of intake air.
Next, at the time of exhaust air, the small ball 6 of the exhaust air opening 31 is pushed out in the direction of the check valve 7 with the ascending of the piston 4, abuts a rib 7a of the check valve 7 and is stopped thereat. At this time, air within the air pump 3 passes through a clearance 7b and is exhausted to the exterior. As the check valve 7 communicates with the thread delivering mechanism by means of the tube 12, the air within the air pump 3 flows into the thread delivering mechanism.
In the intake air opening 32 at the time of exhausting air, the small ball 6 of the intake air opening 32 is pushed out in the direction of the check valve 8 with the ascending of the piston 4 and is stopped at an intake air opening seat surface 8a of the check valve 8 to prevent outflow of the air within the air pump 3.
In this manner, the outside air flows in only from the intake air opening 32 at the time of descending of the piston 4, while the air within the air pump 3 is exhausted only from the exhaust air opening 31 at the time of ascending of the piston 4.
Returning to
The piston driving shaft 14 is held at the sewing machine main body or the unit base 1 in a freely rotatable manner. The piston driving shaft 14 fixes the piston connecting plate 13, a piston driving arm 16 and a piston returning arm 18 on the shaft. The piston driving shaft 14, the piston connecting plate 13, the piston driving arm 16 and the piston returning arm 18 are integrated as a piston driving shaft portion and are swingably with the center being the piston driving shaft 14.
The piston driving arm 16 is fixed to an intermediate portion of the piston driving shaft 14. A spring peg 16a is provided at one end of the piston driving arm 16 while a stopper driving surface 16b is formed at the other end thereof. One end of the piston receiving spring 17 engages with the spring peg 16a, and the other end of the piston driving spring 17 is held at a suitable position of the sewing machine main body. With this arrangement, the piston driving shaft 14 is continuously biased in a counterclockwise direction (when seen from the right-side surface of the sewing machine). Accordingly, the piston 4 is continuously biased by the piston driving shaft 14 and the piston connecting plate 13 in the ascending direction, namely in the direction in which the air pump unit 2 performs exhaust air.
The piston driving spring (piston biasing portion) 17 is engaged with the spring peg 16a of the piston driving arm 16 and functions as a power source for pushing the piston 4 into the air pump 3.
The piston driving arm 16 is fixed to the piston driving shaft 14 and rotates with the piston driving shaft 14 as the center. The piston driving shaft 16 engages with the piston driving spring 17 by including the spring peg 16a at one end thereof. And, its biasing force make to rotate the piston driving shaft 14, so that movements of pushing the piston 4 perform.
The piston connecting plate 13 and the piston driving arm 16 have functions as a driving arm portion for transmitting the biasing force of the piston driving spring (piston biasing portion) 17 to the piston 4. The piston connecting plate 13 and the piston driving arm 16 might be comprised by different parts as in the present embodiment, and it is also possible to integrate and comprise them as a single part.
The piston returning arm (piston returning arm portion) 18 is fixed to the piston driving shaft 14 and transmits movements of the lever 20 to the piston driving shaft 14. By transmitting movements of the lever 20 to the piston driving shaft 14, the piston returning arm 18 returns the piston 4 from the pushed in state to the intake air state. After the piston returning arm 18 is pushed up clockwise (when seen from the right-side surface), by a lead cam surface (cam portion) 21b of an intermediate arm 21 to be described later, is detached from the lead cam surface 21b to rotate counterclockwise (when seen from the right-side surface) at once. Accordingly, the piston returning arm 18 pushes the piston 4 in, thereby changes the air pump 3 into the exhaust air state.
A lever shaft 19 is held at the sewing machine main body or unit base 1 in a freely rotatable manner. The lever 20 is inserted into a right end of the lever shaft 19 while the intermediate arm 21 is inserted to the left side thereof in a freely rotatable manner, and an intermediate arm spring 22 is fitted to the left end of the lever shaft 19 so as to bias the intermediate arm 21 in the direction of the lever 20.
The intermediate arm 21 is a member held at the lever shaft 19 in a freely rotatable manner for transmitting power from the lever 20 to the piston returning arm 18. The intermediate arm 21 also rotates the piston returning arm 18 by means of the lead cam surface 21b.
Moreover, the intermediate arm 21 is ratchet-coupled to the lever 20. As the lever 20 is rotated counterclockwise when seen from the right-side surface of the sewing machine, the intermediate arm 21 rotates counterclockwise (when seen from the right side) fitting with the lever 20 at a first fitting phase. With this arrangement, the piston returning arm 18 is rotated in a returning direction. On the other hand, when the lever 20 is rotated clockwise (when seen from the right side), the intermediate arm 21 is displaced to the left side against the intermediate arm spring 22. Next, when the lever 20 has rotated in a second fitting phase, the intermediate arm 21 returns to the right side by means of the biasing force of the intermediate arm spring 22.
In ratchet-coupling of the lever 20 and the intermediate arm 21, the intermediate arm spring 22 allows that the intermediate arm 21 displaces in lateral directions on the lever shaft 19 by means of biasing the intermediate arm 21 to the lever 20 side continuously.
The lever 20 is an operating member held at the right end of the lever shaft 19 in a freely rotatable manner for making the air pump unit 2 perform intake air by a user's operation. The lever 20 is ratchet-coupled to the intermediate arm 21 on the lever shaft 19. The lever 20 also allow that the piston 4 change from intake air movement to exhaust air movement by performing a single reciprocating of clockwise and counterclockwise (when seen from the right side).
A lever stopper 1a is a pin for stably holding the lever 20 at a terminating position of counterclockwise operations (when seen from the right side), and at the time of the completion of exhaust air by means of operating the lever 20. An arm portion hook 20a which integrally formed with the lever 20 comes into contact with the lever stopper 1a.
A ratchet mechanism formed by the lever 20, the intermediate arm 21 and the intermediate arm spring 22 allow to output only one direction of rotation from among rotations generated through reciprocating swinging of the lever 20. An operating force transmitting mechanism is constituted by the lever 20, the intermediate arm 21, the intermediate arm spring 22, the piston returning arm 18, the piston driving shaft 14, the piston driving arm 16 and the piston connecting plate 13. The operating force transmitting mechanism transmits the operating force to piston 4 against the biasing force of the piston driving spring (piston biasing portion) 17 by means of operating force of the lever (operating portion) 20 so that the air pump unit (air pump portion) 2 allow to actuate the piston 4 only in the intake air direction.
Movements of the ratchet-coupled portion between the lever 20 and the intermediate arm 21 will be explained here.
The states of
Next, behaviors of the piston 4 accompanying driving of the lever 20 for threading operations will be explained.
At a point of time in which rotation of the lever 20 is started from the state of
When movements shift from the state of
When movements shift from the state of
When movements shift from the state of
As explained above, according to the present embodiment, the compressed air supplying device make possible to drive the air pump unit at constant driving force by operating a manual lever without using a compressor or a motor or the like at low cost. Accordingly, the compressed air supplying device of the present embodiment become possible to supply compressed air stably irrespective of operation manners of users.
Moreover, the compressed air supplying device of the present embodiment can be comfortably used with no driving sounds caused by the use of an electric motor or the like.
As the present invention is not limited to the above-described embodiment, various modifications and changes of the embodiment are included in the scope of the present invention.
The present embodiment has been explained by giving an example in which a ratchet mechanism is used for transmitting only operations in one direction of the lever 20 to the piston 4. The present invention is not limited to this, and any mechanism can be used even if only operations in one direction of the operating member can be transmitted to the piston. For instance, it is possible to apply a mechanism of a known one-way clutch.
Further, the present embodiment has been explained by giving an example of a compressed air supplying device using the swingably-operated lever 20 as an operating member. The present invention is not limited to this, and it is, for instance, possible to use a rotationally-operated operating member in the compressed air supplying device.
Further, the present embodiment has been explained by giving an example of a compressed air supplying device using the manually-operated lever 20 as an operating member. The present invention is not limited to this, and it is, for instance, possible to apply an electric motor-operated operating member using a motor or solenoid or the like to the present invention. In a case of using electric motor-operated, the compressed air supplying device makes possible to supply stably compressed air by biasing the piston 4 in the exhaust air direction using spring force, with a simple structure.
In this respect, the present invention is not to be limited by the above-explained embodiments.
Number | Date | Country | Kind |
---|---|---|---|
2014-246770 | Dec 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1806268 | Schulze | May 1931 | A |
1904799 | Palmer | Apr 1933 | A |
4360324 | Ohara | Nov 1982 | A |
5345888 | Frankel | Sep 1994 | A |
20070116585 | Scalzi | May 2007 | A1 |
20110129360 | Clinciu | Jun 2011 | A1 |
20120210922 | Sakuma et al. | Aug 2012 | A1 |
20140008334 | Ash et al. | Jan 2014 | A1 |
20150167218 | Sakuma et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
593660 | Oct 1947 | GB |
1195069 | Jun 1970 | GB |
06-277383 | Oct 1994 | JP |
H11-57269 | Mar 1999 | JP |
2010-82150 | Apr 2010 | JP |
2014010108 | Jan 2014 | WO |
Entry |
---|
Australian Patent Examination Report dated Mar. 24, 2016, issued in Australian Patent Application No. 2015202822 (7 pages). |
Number | Date | Country | |
---|---|---|---|
20160160416 A1 | Jun 2016 | US |