This invention relates generally to compressed air systems, and more particularly to a compressed air system for a locomotive.
Compressed air systems are used to provide energy for driving a variety of devices in a variety of applications. One such application is a railroad locomotive where compressed air is used to power locomotive air brakes and pneumatic control systems.
A typical compressed air system will include a reservoir for storing a volume of compressed air. A motor-driven compressor is used to maintain the air pressure in the reservoir within a desired range of pressures. The reservoir pressure may be higher than the demand pressure for a device supplied by the system, in which case a pressure regulator may be used to reduce the pressure supplied to the device. The stored volume of compressed air in the reservoir provides an inertia that allows the compressor to be sized smaller than would otherwise be necessary if the compressor supplied the individual devices directly. Furthermore, the stored volume of compressed air in the reservoir allows the compressor to be cycled on and off less frequently than would otherwise be necessary in a direct-supply system. This is important because the electrical and mechanical transients that are generated during a motor/compressor start-up event may severely challenge the compressor motor and associated electrical contacts.
The size and operating pressures of the compressor and reservoir in a compressed air system are matters of design choice. A larger, higher-pressure reservoir will reduce the duty cycle of the compressor motor, but there are associated cost, size and weight constraints that must be considered. Furthermore, the control system set points used to control the compressor starts and stops may be varied within overall system limits. Compressed air systems for locomotives are designed with the benefit of experience accumulated during the operation of generations of locomotives. However, in spite of the optimization of system design, there have been instances of specific operating conditions unique to a particular locomotive or group of locomotives that result in an undesirably high duty cycle for the air compressor motor. Because such locomotive-specific conditions may be transient and may not be representative of conditions experienced by an entire fleet of locomotives, it is not necessarily desirable to further refine the compressed air system components in response to such conditions. Thus, a compressed air system that is less susceptible to excessive cycling of the compressor motor is desired.
An improved compressed air system 10 as may be used on a locomotive or other application is illustrated in
The compressed air system of
One embodiment of the present invention utilizes the reservoir pressure decay rate to forecast the pressure in the reservoir at a future point in time, as indicated at step 62, and if, as indicated at steps 64 and 66, the value of the predicted pressure at that future point in time is less than the lower specification limit set point, the compressor is allowed to run in the unloaded mode beyond the normal cool down time period, as indicated at step 68. For example, measuring the pressure in the reservoir at two different times, such as at 9-second intervals, and then dividing the difference in those two pressures by the time interval will calculate an average pressure decay rate. The average pressure decay rate is then extrapolated to a future point in time, for example to a time 86 seconds after the start of the cool down period (T=86 seconds). If, as determined at decision point 64, the forecast pressure (PT=86) is greater than the lower specification limit set point, then, as indicated at steps 70 and 72, the motor is allowed to be de-energized at the end of the normal 30-second cool down period. If, however, the forecast pressure (PT=86) is less than the lower specification limit set point, the motor is allowed to run in the unloaded mode until otherwise commanded. That is, the compressor is allowed to run in the unloaded mode for a first cool down period. In this case, when the pressure P does actually drop below the lower set point limit, the compressor is still running and can be quickly placed in the loaded mode by simply commanding the bypass valve to close, thus reducing the duty cycle on the compressor motor. Such a method is responsive to situations wherein the pressure in the reservoir is being consumed at a rate that would otherwise result in excessive starts and stops of the compressor motor, while still allowing the normal 30-second unloaded cool down period to be used when the pressure drop in the reservoir is at normal lower rates. That is, in this case the motor is deenergized at the end of a second cool down period. Prior art systems and methods of control that relied solely upon pressure set points were unresponsive to rates of pressure change and therefore were unable to provide the responsiveness of the present invention.
The speed of modern processors allows such calculations to be performed many times per second, e.g. every 100 milliseconds. In one exemplary embodiment controller 20 may calculate a rolling nine-second average pressure decay rate to successively update the pressure forecast for a predetermined point in time. The future point in time for the forecast may be selected with consideration to historical operating data for such systems, and/or it may be selected for ease of hardware implementation.
One may appreciate that other parameters related to the decay of pressure in the reservoir may be used. For example, other embodiments may be envisioned wherein a first or other derivative of pressure versus time may be used in the control logic. In still other embodiments, the rate of pressure decay may be extrapolated over a variable time period in response to different operating conditions or modes of the locomotive or compressed air supply system. Such extrapolations may be linear or non-linear. In its most general form, the present invention embodies a strategy to forecast the next request to turn on the compressor drive motor, and if that request is forecast to be within a sufficiently short time period, then the compressor is allowed to run in the unloaded mode to reduce the duty cycle and to prolong component life expectancy.
Aspects of the present invention can be embodied in the form of computer-implemented processes and apparatus for practicing those processes. Aspects of the present invention can also be embodied in the form of computer program code containing computer-readable instructions embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other computer-readable storage medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. Aspects of the present invention can also be embodied in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. When implemented on a general-purpose computer, the computer program code segments configure the computer to create specific logic circuits or processing modules. Other embodiments may be a microcontroller, such as a dedicated micro-controller, a Field Programmable Gate Array (FPGA) device, or Application Specific Integrated Circuit (ASIC) device.
While preferred embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Numerous variations, changes and substitutions will occur to those of skill in the art without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.
This application claims priority to a provisional application filed on Mar. 6, 2003, having application No. 60/452,621, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1521034 | Maxson | Dec 1924 | A |
3782858 | Deters | Jan 1974 | A |
3860363 | Silvern et al. | Jan 1975 | A |
4149827 | Hofmann, Jr. | Apr 1979 | A |
4201517 | Ferguson | May 1980 | A |
4819123 | Hatimaki | Apr 1989 | A |
4863355 | Odagiri et al. | Sep 1989 | A |
6004103 | Fisher et al. | Dec 1999 | A |
6027311 | Hill et al. | Feb 2000 | A |
6068447 | Foege | May 2000 | A |
6126402 | Fisher et al. | Oct 2000 | A |
6276281 | Mesalic et al. | Aug 2001 | B1 |
6390779 | Cunkelman | May 2002 | B1 |
6561766 | Nishimura et al. | May 2003 | B1 |
6595757 | Shen | Jul 2003 | B1 |
6599093 | Totsuka | Jul 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20040175273 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
60452621 | Mar 2003 | US |