This invention relates to the field of compressed gas guns, and more particularly, to a compressed gas gun having a foregrip or front grip with a releasable door panel for ease of access to a battery compartment and other internal components of the foregrip.
Batteries, such as a standard 9V battery, power various electronic and electromechanical components of a compressed gpas gun and require occasional replacement. The battery may be mounted and housed in a compartment of the foregrip, or in a cartridge-like holder that is removable from a compartment of the foregrip. In or near the battery compartment may be a circuit board and controls (such as a “tournament mode” switch, power on/off switch, etc.). The on/off switch and status indicator(s) (such as a battery power indicator) may be mounted externally proximate the battery and circuit board. Thus, a user (such as a paintball sport player) may have different reasons for accessing a battery compartment.
However, typical compressed gas gun battery compartments may be difficult to access. The compartment may have an access panel that is affixed by several small screws. Therefore, in a sport where compressed gas guns are used, such as paintball, a paintball sport player must stop and slowly proceed to remove the access panel. When in the field of play, this procedure is particularly difficult and problematic.
Thus, there is the need for a compressed gas gun battery access mechanism that provides quick access to the battery and related internal electronics in order to facilitate quick battery replacement along with easy maintenance, cleaning, and upgrading of the internal components.
The present invention provides for a foregrip for a projectile launcher (compressed gas gun) having a proximal end, a distal end, a battery compartment, an access panel, and a release button. The proximal end is mounted to a projectile launcher and the distal end is positioned away from the projectile launcher. The release button is configured to separate the access panel from the foregrip. The release button is located on the proximal end of the foregrip.
In another embodiment, the present invention is directed to a projectile launcher having a main body, a barrel removably mounted to the main body, and a foregrip mounted to the main body. The foregrip includes an internal battery compartment, an access panel, and a release button. The release button is configured to separate the access panel from the foregrip. The barrel in the mounted position on the main body prevents actuation of the release button, requiring the barrel to be removed prior to actuation.
Certain terminology is used in the following description for convenience only and is not considered limiting. Words such as “front”, “back”, “top” and “bottom” designate directions in the drawings to which reference is made. This terminology includes the words specifically noted above, derivatives thereof and similar words. Additionally, the terms “a” and “one” are defined as including one or more of the referenced item unless specifically noted. The phrase “at least one” followed by a list of two or more items (such as A, B, or C) means any individual one of A, B or C as well as any combination thereof. The term “substantially” means within ±5% of a given value or ±5 degrees from a given angle, as appropriate. The terms “about” and “generally” mean within ±10% of a given value, as appropriate.
At the outset, it is understood that this invention is not limited only to the particular embodiments, methodology, materials, and modifications described herein, and as such may vary. It is also understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to limit the scope of the present invention, which is limited only by the appended claims.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices or materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the following example methods, devices, and materials are now described.
As shown in
A foregrip 50, such as one which may be used for the present invention, is shown in
As best shown in
Generally, the front 62 may be considered a door or access panel of the foregrip 50 for accessing the battery compartment 52. One skilled in the art would recognize that various structures may be utilized to attach the front 62 and rear 64 of the foregrip 50. The front 62 may be hinged along a bottom edge 68, a top edge 70, or longitudinally along either side edge 72, 74. The hinge 76 may be a piano hinge, a living hinge, a pivot mechanism, a door/gate hinge, or the like. The hinge 76 may be spring-biased toward an open position or a closed position. As an alternative to a hinge, the front 62 may be completely removable from the rear 64. In any such embodiment, it is preferable to provide a seal or gasket (not illustrated; e.g., rubber) along one or more of the edges 68, 70, 72, and 74 to protect internal components from debris and moisture. As shown in
As best shown in
One skilled in the art would appreciate that depressing the button 66 moves the head 80, waist 82, and/or foot 86 out of engagement with one of the front 62 or rear 64 of the handgrip 50 such that it can be released from the other of the front 62 or rear 64 of the handgrip 50 in which the button 66 is slidably mounted. For example, as shown in
The battery compartment 52 holds a battery 90 and may contain a variety of additional components, such as, e.g., a control circuit or motherboard 92 as discussed further below, a battery connector 94, sensors, an on/off switch, and the like. Likewise an additional battery (not illustrated) may be stored in the battery compartment, which may be electrically connected to the rest of the compressed gas gun 20 for additional power or may be held disconnected as a backup battery.
In operation, when it is desired to remove and/or replace a battery, the user removes the barrel 40, presses the button 66 to release the front 62 from the rear 64 of the handgrip 50, and moves the front 62 away from the rear 64 to reveal the battery compartment 52. With the battery compartment 52 thus accessed, the battery can be easily removed or replaced as desired.
The battery compartment 52 may also contain various controls for operational settings and a “tournament lock” switch, which is generally known in the art to lock the various settings according to predetermined metrics so as to maintain a fair playing field.
In operating the compressed gas gun 10, the trigger 22 is squeezed, thereby actuating the compressed gas cylinder (not shown) attached to the connection 16 to release bursts of compressed gas. The bursts of gas are used to fire paintballs outwardly through the barrel 40. The projectiles (e.g., paintballs) are continually fed by a projectile loader (not shown) to the firing chamber. The battery 90 provides power for the control circuit 92. The battery 90 also powers other electric, electromechanical, and electronic components throughout the compressed gas gun such as solenoids or other actuators for firing, and the like.
The control circuit 92 is, for example, a motherboard or other such processor for executing instructions stored in a memory. The control circuit 92 operates and monitors various electromechanical and electronic components of the compressed gas gun 10 and can control settings such as firing rate and gas pressure, as is known in the art. The control circuit 92 preferably consists of an integrated circuit which performs cycle control logic, an amplifier, a means of controlling valve coil current, e.g. a variable resistor with a “velocity control dial” protruding to the exterior of the control circuit, and a multi-position switch which can be used to disable the trigger 54 (one switch position), or select between semi-automatic (second switch position) and fully-automatic (third switch position) operation when the trigger 22 is pulled. The control circuit 92 may monitor battery power levels and provide indication when there is a lower battery, such as by a LED light, audible signal, or the like.
The arrangement of the present invention, having a releasable access panel 62 and strategically placed release button 66, provides advantages over the prior art. The battery 90 and other internal electronics can be readily accessed without the use of tools (such as a screwdriver). At the same time, accidental opening is prevented. The present invention provides quick and easy use while in the field, particularly for replacing a used battery.
Additionally, the indirectly accessed release mechanism 66 allows for a simplified exterior with a streamlined aesthetic. It also protects the release mechanism from dirt, debris, or accidental actuation. The internal components are likewise protected from dirt and debris, but can be readily and fully accessed when desired. The hinge 76 allows the front 62 and rear 64 to stay attached when the body is opened, and likewise there are no small parts (such as screws) that can be lost.
It is to be appreciated that the operating characteristics of the compressed gas gun (i.e., compressed gas-powered projectile accelerator) of the present invention may utilize non-electronic or electronic components (for example, in the internal trigger mechanism) without altering the inventive concepts and principles embodied therein. Any electronic components, particularly solenoid valves, may be powered by the battery 90 (or multiple batteries) in the battery compartment 52, and selectively energized by the control circuit 92. It is also to be appreciated that additional, optional controls can be incorporated into the control circuit 92 of the preferred electronic embodiment of the compressed gas-powered projectile accelerator of the present invention without altering the inventive concepts and principles embodied therein, such as additional switch positions controlling additional operating modes where the projectile accelerator accelerates finite numbers of projectiles, greater than one, generally known as “burst modes” when the trigger 22 is pulled, as compared to semi-automatic operation, where a single projectile is accelerated per trigger 54 pull, and fully-automatic operation, where projectile acceleration cycles continue successively as long as the trigger 22 remains pulled rearward. Additionally, the timing between cycles can be electronically controlled, and said timing can be made adjustable by the inclusion of an additional control dial in the control circuit 92. The various controls and dials may be mounted inside the battery compartment 52 or externally on the foregrip 50.
It is understood that this invention is not limited to the particular embodiments disclosed, but is intended to cover all modifications and combinations which are within the spirit and scope of the invention as described herein and/or defined by the appended claims, the above description, and/or shown in the attached drawings. One skilled in the art will appreciate that various changes are possible. For example, the release button 66 could be located on different areas of the foregrip 50, preferably with a two-stage actuation or the like to prevent accidental actuation.
Number | Name | Date | Kind |
---|---|---|---|
36571 | Moses | Sep 1862 | A |
572290 | Clement | Dec 1896 | A |
1183644 | Hill | May 1916 | A |
1545465 | Johnstone et al. | Jul 1925 | A |
2150288 | Moller | Feb 1937 | A |
3153874 | Merrill | Oct 1964 | A |
3229400 | Del Pozo, Jr. | Jan 1966 | A |
3233601 | Walther | Feb 1966 | A |
3318192 | Miller et al. | May 1967 | A |
3379188 | Walther | Apr 1968 | A |
3561149 | Center | Feb 1971 | A |
3791256 | Curtis et al. | Feb 1974 | A |
3913553 | Braughler et al. | Oct 1975 | A |
3996684 | Bauman et al. | Dec 1976 | A |
3996685 | Bauman et al. | Dec 1976 | A |
4044487 | Hutton et al. | Aug 1977 | A |
4299046 | Atchisson | Nov 1981 | A |
4344410 | Curran | Aug 1982 | A |
4541192 | Flodman et al. | Sep 1985 | A |
4660311 | Breiffeld et al. | Apr 1987 | A |
4757627 | Saligari | Jul 1988 | A |
4774929 | Milliman | Oct 1988 | A |
4999939 | Reese et al. | Mar 1991 | A |
5062231 | Braverman et al. | Nov 1991 | A |
5160795 | Milliman | Nov 1992 | A |
5165383 | Ebert et al. | Nov 1992 | A |
5225610 | Uria | Jul 1993 | A |
5335581 | Simon et al. | Aug 1994 | A |
5375362 | McGarry | Dec 1994 | A |
5404863 | Poor | Apr 1995 | A |
5529050 | D'Andrade | Jun 1996 | A |
5610362 | Bouvard | Mar 1997 | A |
5622160 | Casas Salva | Apr 1997 | A |
5711286 | Petrosyan et al. | Jan 1998 | A |
5878736 | Lotuaco, III | Mar 1999 | A |
5884615 | Casa Salva | Mar 1999 | A |
6119671 | Smith et al. | Sep 2000 | A |
6152333 | Binder | Nov 2000 | A |
6539659 | Casa Salva | Apr 2003 | B2 |
6578565 | Casas Salva | Jun 2003 | B2 |
6622416 | Kim | Sep 2003 | B2 |
6637310 | Borgwarth | Oct 2003 | B2 |
6705035 | Gussalli Beretta | Mar 2004 | B2 |
6766795 | Sullivan | Jul 2004 | B1 |
6811099 | Krestine | Nov 2004 | B2 |
6907687 | Rousseau et al. | Jun 2005 | B2 |
7207130 | Rousseau et al. | Apr 2007 | B2 |
7290539 | Maeda | Nov 2007 | B2 |
7591098 | Matthews | Sep 2009 | B2 |
7624723 | Gardner, Jr. | Dec 2009 | B2 |
7690373 | Telford et al. | Apr 2010 | B2 |
7726061 | Thummel | Jun 2010 | B1 |
7730882 | Liu | Jun 2010 | B2 |
7814695 | Keeney et al. | Oct 2010 | B1 |
7861451 | Moody | Jan 2011 | B1 |
7900622 | Douglas et al. | Mar 2011 | B2 |
7941954 | Carr et al. | May 2011 | B2 |
8056277 | Griffin | Nov 2011 | B2 |
8117782 | Gross | Feb 2012 | B2 |
8118017 | Lammonds | Feb 2012 | B2 |
8146580 | Wei | Apr 2012 | B2 |
8225542 | Houde-Walter | Jul 2012 | B2 |
8333181 | Rice | Dec 2012 | B1 |
8341866 | Gaddini | Jan 2013 | B1 |
8393104 | Moody | Mar 2013 | B1 |
8402683 | Cabahug | Mar 2013 | B2 |
8550061 | Maeda | Oct 2013 | B2 |
8550062 | Maeda | Oct 2013 | B2 |
8683731 | Kowalczyk | Apr 2014 | B2 |
8683990 | Macy | Apr 2014 | B2 |
8707604 | Troy | Apr 2014 | B2 |
8839542 | Dubois et al. | Sep 2014 | B2 |
8899219 | Macy | Dec 2014 | B2 |
8950387 | Stevens | Feb 2015 | B2 |
9062933 | Allen | Jun 2015 | B1 |
9182194 | Moore | Nov 2015 | B2 |
9228804 | Syrengelas | Jan 2016 | B2 |
9488445 | Houde-Walter | Nov 2016 | B2 |
9879945 | Tuller, Jr. | Jan 2018 | B2 |
9891023 | Compton | Feb 2018 | B2 |
9921027 | Bruhns | Mar 2018 | B2 |
10295303 | Buys | May 2019 | B2 |
10323901 | Masse | Jun 2019 | B2 |
20080295818 | Styles et al. | Dec 2008 | A1 |
20090025701 | Douglas | Jan 2009 | A1 |
20090120420 | Tippmann, Jr. et al. | May 2009 | A1 |
20090194088 | Tippman, Jr. et al. | Aug 2009 | A1 |
20090277066 | Burt et al. | Nov 2009 | A1 |
20110047850 | Rievley | Mar 2011 | A1 |
20120055061 | Hartley | Mar 2012 | A1 |
20140060510 | Macy | Apr 2014 | A1 |
20140144418 | Macy | May 2014 | A1 |
20140209082 | Stevens | Jul 2014 | A1 |
20150285577 | Faifer | Oct 2015 | A1 |
20160305736 | Maeda | Oct 2016 | A1 |
20170082399 | Moore | Mar 2017 | A1 |
20180156569 | Chavez | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2 056 635 | Mar 1981 | GB |
02 42708 | May 2002 | WO |
Entry |
---|
FT-12 Owner's Manual, Ver. 05/12, Manufactured by Tippman (24 pages). |
BT-4 Upgrade Kit Installation (Jan. 4, 2011). |
BT Delta Elite Operator Manual; BT Paintball Designs, Inc. 3217 East Washington Blvd. Fort Wayne, Indiana 46803 (undated, admitted prior art). |
BT Delta Operator Manual; BT Paintball Designs, Inc. 3217 East Washington Blvd. Fort Wayne, Indiana 46803 (Sep. 7, 2007). |
BT Omega Owner's Manual (Oct. 2009). |
BT-4 Marker Series Operator Manual; BT Paintball Designs, Inc. 3217 East Washington Blvd. Fort Wayne, Indiana 46803 (undated, admitted prior art). |
BT-4 Series Markers Owner's Manual; Empire Battle Tested Paintball 11723 Lime Kiln Rd., Neosho, MO 64850 (2010). |
TM7 Owner's Manual; Empire Battle Tested Paintball 11723 Lime Kiln Rd., Neosho, MO 64850 (2010). |
Invert Mini Manual; Kee Action Sports, 570 Mantua, NJ 08080 (Sep. 8, 2008). |
Invert Mini Manual; Kee Action Sports, 570 Mantua, NJ 08080 (2006). |
Owner's Manual Tactical Folding Foregrip; JT USA LLC; 252 Granite Street, Corona, CA 92879 U.S.A. (Dec. 2005). |
Viewloader .68 Caliber Semi-Automatic Paintball Markerowner's Manual and Do's and Don'ts of Marker Care; View Loader® Inc. P.O. Box 1956, Rogers, AR 72757 (Apr. 2003). |
Number | Date | Country | |
---|---|---|---|
20200141688 A1 | May 2020 | US |