This invention relates generally to a system for storing and distributing compressed gas.
Often a substantial portion of pressurized gas stored in tanks cannot be used because of the need to supply gas from the tank at some minimum pressure. Typically there is an inherent drop in pressure as gas is extracted from the storage tank. The inherent drop in pressure limits the ability to use the storage tanks to top-off other pressurized storage tanks.
Natural gas is typically stored in tanks at pressures in the range of 4,000 psi for distribution and consumption. Tanks have been designed to contain even higher pressures as a means for maximizing the amount of gas which can be put into a given tank. However, the use of higher pressure cannot be justified when considering the additional weight, cost of the tank and the expense associated with pressurizing the gas to higher pressure. In addition, depending on the type of gas, higher pressure may only provide an insignificant increase in the amount of gas in the tank because of the super supercompressibility factor “z” correction to the ideal gas law for that gas.
At standard or atmospheric conditions, the gas z factor is always approximately 1, which means that the gas behaves as an ideal gas. At high pressures, the z factor increases above 1, where the gas is no longer super-compressible. At these conditions, the specific volume of the gas is becoming so small, and the distance between molecules is much smaller, such that the density is more strongly affected by the volume occupied by the individual molecules. Hence, the z factor continues to increase above unity as the pressure increases. Under these conditions, the addition of a relatively small amount of gas to a tank can cause a dramatic increase in pressure.
The amount of gas stored becomes:
The plot is for natural gas at a temperature of 90° F. The significant change in z factor with pressure limits the effectiveness of using higher pressure to store greater amounts of gas. For example, the z factor for natural gas at 2,000 psi is 0.704. This means that for a given volume and temperature the amount of gas stored is 1.42 (1/0.704) times higher than that of an ideal gas at that temperature. This means that the amount of hydrogen stored is equivalent to an ideal gas at 2,841 psi. On the other hand, the z factor at 4,000 psi is 0.84 giving an equivalent storage of 4,761 psi, nearly 5,000 psi. At 6,000 psi, the z factor is 1. However at 10,000 psi the z factor is about 1.5 which gives an equivalent storage of only about 6,600 psi. Thus, the diminishing returns realized by trying to use higher pressure to store increased amounts of natural gas is often not justified by the additional cost associated with the higher pressure tanks and associated equipment.
The problem of being limited by a maximum practical pressure at which a gas is stored is compounded by the inherent drop in pressure that occurs as gas is consumed from the tank. Often, there is a minimum residual tank pressure below which gas cannot be effectively utilized. For example, the application may be gas stored for subsequent supply to some other tank such as for a natural gas powered vehicles. If a vehicle to be refueled already contains hydrogen stored at 2,000 psi and needs to take on additional fuel to a level of 4,000 psi, then a resupply tank that contains gas at a pressure of only 3,000 psi will be of limited utility as a direct supply source.
If the full amount of gas can be supplied from a tank at or near the tanks maximum pressure, then the net result will be equivalent, from a usage perspective, to being able to store a greater amount of gas in the tank. A greater amount of gas will enter and leave the tank during a given charge discharge cycle.
Accordingly, it is seen that a need remains for a method and apparatus for storing and distributing compressed gas in an effective manner. It is to the provision of such therefore that the present invention is primarily directed.
A pressurized gas storage system is hereby disclosed for maintaining a minimum pressure of gas stored in a tank in a preferred form of the invention. Referring to a first preferred embodiment of the invention shown in
The secondary fluid 7 is supplied to and exits tank pressure chamber 9 through an inlet outlet port 6. The flexible bladder 4 is positioned inside of gas tank 2 and couple to an inlet outlet port 8 so that it may expand and contract within the confines of the tank. The primary fluid 5 is contained within bladder 4 wherein it enters and exits the bladder through port 8. A gas pickup tube 10 extends the interior length of the bladder 4 such that gas entering and exiting bladder 4 passes through tube 10. The tube 10 has access openings, pores or ports 12 extending along its longitudinal length such that in the event of a collapse of bladder 4 near inlet/outlet port 8, which may occur when the bladder is being emptied, flow of the primary fluid from other regions within the bladder to inlet/outlet port 8 will be maintained. The region inside tank 2 that is exterior to bladder 4, referred to herein as the pressure chamber 9, is filled with the pressurized secondary fluid 7.
The system also includes a pump 18, fluid reservoir 14, pressure relief valve 24 and controller 26 function to maintain the pressure of the secondary fluid 7 within a narrow preselected range of pressures and thereby the pressure inside of gas tank 2. Motorized pressure pump 18 extracts the secondary fluid 7 from reservoir 14 via conduit 16, pressurizes the secondary fluid 7, and supplies it to inlet/outlet port 6 via conduit 20 as indicated by flow arrows 23. On the other hand, pressure relief valve 24 allows pressurized secondary fluid to return from tank 2 to reservoir 14 via conduit 22, as indicated by arrow 25.
Operation of the system is such that a preselected maximum and minimum pressure of the stored primary fluid is maintained as the primary fluid is compressed into or extracted from gas tank 2. When primary fluid 5 is supplied to the bladder 4 within the gas tank 2, pressurized secondary fluid 7 within the pressure chamber 9 of the gas tank is allowed to flow back through valve 24 whenever the maximum preset pressure within the pressure chamber 9 is reached. This action is controlled by controller 26 which is electrically coupled to and in control of the inlet/outlet 8, pump 18, and the relief valve 24. Pressure relief valve 24 is basically an overpressure valve that opens to allow the return flow of secondary fluid 7 back to reservoir 14. Pressure relief valve 24 prevents over pressurization of gas tank 2 and allows the flow of secondary fluid 7 to reservoir 14 to make room for the inflowing of primary fluid 5 into the bladder inside gas tank 2. The pressure relief valve 24 does not open when the tank pressure is below its preset pressure level. On the other hand, pressurization pump 18 operates to pressurize secondary fluid 7 from reservoir 14 and supply it to the pressure chamber 9 of the gas tank 2 as the primary fluid 5 is removed from gas tank 2 when the pressure drops below a preset minimum sensed by controller 26. The controller 26 actuates pump 18 to operate to maintain a minimum pressure within tank 2 as primary fluid 5 is withdrawn from the bladder 4. By operating in this manner, primary fluid 5 is maintained at a sufficiently high pressure to function at a consistently effective pressurized fluid resupply source. Secondary fluid 7 is preferably a liquid so as to more easily enable more efficient pressurization and pumping.
A given volume of metal hydride may be selected for this application depending on the desired maximum and minimum pressures and the range of ambient temperatures to be experienced at the location where the compressed gas storage system is to be operated.
From
The volume of a typical natural gas tank is about 2.3 m3. Assume a minimum desired pressure of 4,000 psi after primary fluid 5 has been removed. From
From
Thus, it should be understood that the gas storage system includes a persistent pressure source to maintain the pressure within the pressure chamber 9 located within the gas tank 2. In the first embodiment of
It should also be understood that the relative positioning of the first and second fluid may be reversed, i.e., the secondary fluid 7 is positioned within the bladder while the primary fluid 5 is located between the bladder and the gas tank. In the reversed configuration, the secondary fluid inflates the bladder 4 to increase the pressure within the pressure chamber 9 containing the primary fluid, thereby maintaining the primary fluid at a constant high pressure. Obviously, the valves and associated equipment must be similarly changed.
With reference next to the embodiment shown in
The system's pressurized gas tank 2 is fitted with a primary fluid inlet/outlet port 8 and a secondary fluid inlet/outlet port 6. The secondary fluid 7 is supplied to and exits bladder 4 through port 6 so that it may expand and contract within the confines of the tank. The primary fluid 5 is contained within the chamber or area between the bladder and the pressure tank 2 wherein it enters and exits through port 8 and the gas pickup tube 10 coupled thereto. The region inside tank 2 that is exterior to bladder 4, referred in this embodiment as the pressure chamber 9, is filled with the primary fluid 5. The tank 2 also includes a pressure release valve 11 which prevents the accidental over pressurization of the tank.
The system also includes a pump 18, fluid reservoir 14, pressure relief valve 24 and controller 26 which function to maintain the pressure of the secondary fluid 7 within a narrow preselected range of pressures and thereby the pressure inside of tank 2. Motorized pressure pump 18 extracts the secondary fluid 7 from reservoir 14 via conduit 16, pressurizes the secondary fluid 7, and supplies it to inlet/outlet port 6 via conduit 20 as indicated by flow arrows 23 and thereafter the bladder 4. The pressure relief valve 24 allows pressurized secondary fluid to return from bladder 4 to reservoir 14 via conduit 22, as indicated by arrow 25.
Operation of the system is such that a preselected maximum and minimum pressure of the stored primary fluid is maintained as the primary fluid is compressed into or extracted from tank 2. When primary fluid 5 is supplied to the tank/pressure chamber 9, pressurized secondary fluid 7 within the bladder 4 is allowed to flow back through valve 24 whenever the maximum preset pressure within the pressure chamber 9 is reached. Pressure relief valve 24 is basically an overpressure valve that opens to allow the return flow of secondary fluid 7 back to reservoir 14. Pressure relief valve 24 prevents over pressurization of bladder and allows the flow of fluid 7 to reservoir 14 to make room for the inflowing of primary fluid 5 into the pressure chamber 9 inside tank 2. It does not open when the tank pressure is below its preset pressure level. On the other hand, pressurization pump 18 operates to pressurize secondary fluid 7 from reservoir 14 and supply it to bladder 4 as the primary fluid 5 is removed from tank 2 and the pressure drops below a preset minimum. Pump 18 operates to maintain a minimum pressure within tank 2 (pressure chamber 9) as primary fluid 5 is withdrawn. By operating in this manner, primary fluid 5 is maintained at a sufficiently high pressure to function at a consistently effective pressurized fluid resupply source. Secondary fluid 7 is preferably a liquid so as to more easily enable more efficient pressurization and pumping.
It should be understood that the reconfiguration of the bladder which changes pressure within either the pressure chamber 9 or the expandable bladder 4 should be considered to be a force. In
It thus is seen that a compressed gas storage system is now provided which overcomes problems associated with prior art systems. While this invention has been described in detail with particular references to the preferred embodiments thereof, it should be understood that many modifications, additions and deletions, in addition to those expressly recited, may be made thereto without departure from the spirit and scope of the invention.
Applicant claims the benefit of U.S. Provisional Patent Application Ser. No. 62/237,703 filed Oct. 6, 2015.
Number | Date | Country | |
---|---|---|---|
62237703 | Oct 2015 | US |