This application generally relates to the field of coaxial cable connectors and more specifically to a compression connector for various types of coaxial cable, the connector including a mechanism for reliably seizing each of the center and outer conductors of an inserted prepared coaxial cable end in a sequential fashion.
Coaxial cables are well known as a transmission medium that are installed on a widespread basis for purposes of carrying signals for communication networks, such as cable television (CATV) and computer networks, among others. A coaxial cable used for these purposes must, at some point, be connected to network connector parts. Typical coaxial cables are defined, such as 75 ohm and 50 ohm cables, by a center conductor, an outer conductor and an intermediate foam dielectric layer disposed therebetween, the outer conductor being covered by a protective sheath. The center conductor can be solid in terms of its construction or hollow as to various applications, thereby reducing material usage and stiffness. Coaxial cables can include smooth-walled and corrugated versions, depending on the application and signals to be carried.
When affixing a cable connector to a corrugated or other coaxial cable for termination thereof, it is necessary to provide both good electrical and mechanical contact between the cable connector and the center and outer conductors of the prepared coaxial cable end. Each of these types of coaxial cables face particular difficulties as to both mechanical and electrical interconnectivity, such as impedance matching, noise reduction and the like. It is also desirable to connect each of the center and outer conductors without having to reposition the cable connector during the connection operation. With regard to this, it may be required to seat the inner conductor first or alternatively seize the outer conductor first as opposed to attempting to seize each contemporaneously.
According to one aspect, there is described a compression connector for a coaxial cable, said coaxial cable comprising a center conductor, an outer conductor and a dielectric layer disposed therebetween, said connector comprising: a connector body having opposing first and second ends and a center passageway defined therethrough; an insulator disposed within said center passageway adjacent said first end of said connector; a compression sleeve movably connected to the second end of said connector body; first means disposed in the center passageway for seizing said outer conductor; and second means disposed in the center passageway for seizing said center conductor. The compression sleeve is axially movable from the second end to the first end of the connector body to cause the first and second means to sequentially engage the cable such that seizure of the outer conductor of the cable occurs either before or after seizure of the center conductor.
In one version, the outer conductor of the prepared coaxial cable is seized prior to the center conductor. In another version of the herein described compression connector, the center conductor is seized prior to the outer conductor.
In one version, a clamp is provided to seize the outer conductor, the clamp including an outer portion in contact with an interior surface of the connector body. The clamp is caused to translate axially with the compression sleeve wherein the interior surface of the connector body includes a first diameter and a narrower second diameter separated by a transitional area. When the clamp is axially translated and traverses the transitional area, the clamp is caused to compress inwardly thereby seizing the outer conductor of the coaxial cable.
The insulator retains a hollow conductive pin within an axial opening. According to one version, the conductive pin includes a collet portion extending outside the insulator that receives the center conductor of a prepared coaxial cable. The axial movement of the compression sleeve causes engagement between a drive member and the collet portion, causing the collet portion to be advanced into the opening of the insulator, the latter being in fixed relation relative to the connector body. As the collet portion is axially advanced by the drive member, the collet portion seizes the center conductor.
According to another aspect, there is provided a compression connector for a coaxial cable end, said coaxial cable end comprising an exposed center conductor extending from a distal end, an exposed outer conductor extending over an axial portion adjacent said exposed center conductor and a dielectric layer disposed therebetween, said connector comprising a connector body having opposing first and second ends and a center passageway defined therethrough, said center passageway having a first diameter and a different second diameter linked by a transitional section. An insulator is disposed within the center passageway adjacent said first end of said connector, as well as a compression sleeve that is movably connected to the second end of the connector body. A clamp disposed in relation to said compression sleeve is mounted for axial movement within the center passageway, said clamp having an external surface in contact with the interior surface of said center passageway and an internal surface that is configured for engagement with the center conductor of an engaged cable end. The connector also includes a conductive member disposed in an axial opening of said insulator, said conductive member having means for seizing said center conductor, said compression sleeve being axially movable from said second end to said first end to cause said clamp and said conductive member to sequentially engage the outer and center conductors of said cable and in which seizure of said outer conductor occurs either before or after seizure of said center conductor.
In one version, the means for seizing the center conductor includes a collet portion provided at one end of the conductive member. The collet portion is made up of a plurality of flexible fingers, the collet portion being disposed outside of the insulator. According to one embodiment, the collet portion is defined by a transition diameter that is tapered, this diameter being greater than that of the insulator opening. A drive element disposed in relation to the clamp engages and causes the collet portion to be driven into the insulator opening, closing the collet portion and thereby seizing the center conductor.
In yet another version, the means for seizing the center conductor includes a plurality of spring contacts that are disposed within the hollow interior of the conductive member. The conductive member is disposed within the insulator opening such that the center conductor is seized when the cable end is advanced a predetermined distance therein. In the instance of coaxial cables having more than one center conductor, a plurality of conductive pins are provided, each having the seizing means.
The positioning of the transitional surface and the drive element are arranged within the connector body so as to stagger or sequentially permit seizure of either the center conductor or the outer conductors of a prepared coaxial cable end. For example, the insulator can be fixedly attached in one version in which the clamp engages the outer conductor first and then the inner conductor. In another version, the insulator is movably disposed to permit seizure of the inner conductor by the insulator and then permit the clamp to engage the outer conductor.
The above compression connector design is applicable for use with various types of coaxial cable, including but not limited to spiral corrugated, corrugated and smooth-walled coaxial cables.
According to yet another aspect, there is provided a connector for a coaxial cable end, said coaxial cable end comprising an exposed center conductor extending from a distal end, an exposed outer conductor extending over an axial portion adjacent said exposed center conductor and a dielectric layer disposed therebetween, said connector comprising a connector body having opposing first and second ends and a center passageway defined therethrough, said center passageway having a first inner diameter and a different second inner diameter linked by a transitional section; an insulator disposed within said center passageway adjacent said first end of said connector; a compression sleeve movably connected to the second end of said connector body; a clamp disposed in relation to said compression sleeve and mounted for axial movement within said center passageway, said clamp having an external surface in contact with the interior surface of said center passageway and an internal surface that is configured for engagement with the center conductor of an engaged cable end; and a conductive member disposed in an axial opening of said insulator, said conductive member having means for seizing said center conductor, said compression sleeve being axially movable from said second end to said first end to cause said clamp and said conductive member to sequentially engage the outer and center conductors of said cable and in which seizure of said outer conductor occurs either before or after seizure of said center conductor; a conductive member disposed in an axial opening of said insulator, said conductive member including at least one seizing element for seizing said center conductor, said compression sleeve being axially movable from said second end toward said first end to cause said clamp and said at least one seizing element to sequentially engage the outer conductor and inner conductors of said coaxial cable.
An advantage is that a compression connector has been developed in which the center conductor can be secured out of sequence with that of the ground, which may be desirable in some attachment situations. For example, in the instance the coaxial cable were “live” at the time of connection, such sequencing would be preferable.
These and other features and advantages will become readily apparent from the following Detailed Description, which should be read in conjunction with the accompanying drawings.
The following description relates to certain exemplary embodiments of a compression conductor for use with various types of coaxial cable, including corrugated, spiral corrugated and smooth-walled coaxial cables. Throughout the course of this description, various terms are used in order to provide a suitable frame of reference with regard to the accompanying drawings. These terms, however, are not intended to constrict the definition or scope of the present invention, unless so specifically noted.
Turning to
Another spiral corrugated coaxial cable 10′ end is shown for termination onto a compression conductor in
Referring to
Referring to
At least a portion of the conductive pin 30 is hollow, the pin being defined by a pin portion 32 and a collet portion 34 at opposing ends, the pin extending through the insulator opening 56 with the collet portion 34 extending outwardly from the insulator 28. The collet portion 34 includes a set of electrically conductive contacts surrounded by a plurality of flexible finger sections or tines. A drive insulator or mandrel 36 is positioned for axial movement within the center passageway 23 between the collet portion 34 and a clamp 38, the mandrel having a through opening 37 that is axially aligned with the insulator opening 56.
In this version, the mandrel 36 includes a surface facing the proximal body end 42 that is essentially planar such that this surface can engage the dielectric layer 16 of an inserted cable end 10,
In terms of assembly, the clamp 38 is positioned proximally from the drive mandrel 36 and is defined by a body made from a compliant material and having an interior annular surface 45 that is geometrically congruent to that of the spiral corrugations of the outer conductor layer 14 of the coaxial cable 10. That is, the interior annular surface 45 is defined by a plurality of protrusions and notches formed in a spiral configuration matching those of the outer conductor layer 14 of the coaxial cable 10. Referring to the exploded view of
The compression sleeve 40 is defined by an exterior portion formed over an axial section of the connector body 22, as well as an extending drive portion 44 that engages into the connector 20 against an annular flange 46 of a drive ring 48, the latter being fitted between the clamp 38 and the compression sleeve and including an annular slot sized to receive the periphery of the connector body 22. An annular seal element 50 made preferably from an elastomer fits snugly against the outer insulative jacket 12 of the prepared coaxial cable 10 during installation to prevent external environmental influences (i.e., moisture, grit, etc.) from entering the interior of the compression connector 10.
Referring to
It should be noted that the connector 20 is retained in a fixed and immovable position while the compression tool is in engagement therewith and during the time compressive force is applied in the direction shown by arrow a. Compression tool designs are known in the field to accomplish this type of stabilization and do not form an essential part of the present invention.
Referring to
As shown in
The compression connector 220 according to this embodiment is defined by a body 222 that includes a center cavity or passageway 223, the body having adjacent axial sections with different interior diameters that are separated by a transitional section or area 252. This transitional area 252 can be defined by a ramped, convex, concave or other shaped configuration that provides gradual demarcation. The connector 220 further includes a nut 224 rotatably secured to a distal end 241 of the body 222 by means of an annular flange 226. It should be noted that the nut is used on the end 241 of the connector, though it will be readily apparent that other means could be provided for securing same (not shown). An insulator 228 disposed within the center passageway 223 of the connector body 222 positions and holds a hollow conductive pin 230 within a defined opening 256. In this version, the insulator 228 is movably supported within the center passageway 223, wherein an annular shoulder 247 of the insulator is in spaced axial relation to a cylindrical retaining section 227 of the connector body 222, the retaining section having a defined bore that is sized snugly to receive a distal portion of the insulator.
The hollow conductive pin 230 includes a pin portion 232 and a collet portion 234 at opposing ends, the collet portion 234 being made up of a set of electrical contacts disposed within a plurality of flexible finger sections 235 or tines extending outwardly through the insulator opening 256. A drive insulator or mandrel 236 is positioned within the center passageway 223 between an end of the collet portion 234 and a clamp 238, the mandrel having a through opening 237 that is axially aligned with the insulator opening 256. The mandrel 236 can include a proximal surface that includes an extending portion sized to engage a hollow 58,
The clamp 238 is defined by an interior annular surface 245 that is geometrically congruent to the spiral corrugations of the outer conductor layer 14 of the coaxial cable 10,
The compression sleeve 240 includes a drive portion 244 that fits against an annular flange 246 of a drive ring 248 fitted between the clamp 238 and the compression sleeve. As in the previous version, the annular elastomeric seal element 250 fits snugly against the outer insulative jacket 12 of the corrugated coaxial cable 10 during installation thereof in order to prevent external environmental influences (i.e., moisture, grit, etc.) from entering the interior of the compression connector 10.
Referring to
Referring to
Alternatively and in lieu of a flexible collet portion, the hollow conductive pin can be provided with a series of spring contacts as described in U.S. patent application Ser. No. 12/421,894, filed Apr. 10 2009, the relevant portions of which are herein incorporated by reference. In this instance, the hollow conductive pin is not movable within the insulator opening and therefore the mandrel is not required to create mechanical contact to drive the conductive pin into the opening of the insulator. That is, the insulator and mandrel can be manufactured as a single integral component. In this version, axial advancement of the center insulator of a prepared coaxial cable end proceeds using a compression tool or by hand to a predetermined distance within the connector, and within the conductive pin until the center conductor is engaged by a plurality of leaf springs that extend into the hollow opening of the conductive pin. At least two or more leaf springs are equally spaced from one another circumferentially, creating both electrical and mechanical contact with the exposed center conductor. For purposes of corrugated and smooth-walled coaxial cables, this form of connector can be utilized and performed in conjunction with a clamp or other means in which seizure of each of the center conductor and outer conductors is made in a sequential fashion.
Still further and according to alternative embodiments, other forms of coaxial cable can be utilized for use with the compression connector of the present invention. That is, smooth-walled and/or other corrugated coaxial cables can be used with clamp designs configured for seizing the outer conductor layer 14 of the cable 10, as described for example in U.S. Ser. No. 11/743,633, previously incorporated herein by reference in its entirety.
In addition to the foregoing and also in combination therewith, the herein described compression connector can be used with still other coaxial cable configurations. For example, the fixed insulator and drive mandrel can each include multiple axial aligned openings in order to accommodate a prepared coaxial cable end having multiple center conductors as described in co-pending U.S. patent application Ser. No. 12/421,826, Apr. 10, 2009, the entire contents of which are incorporated by reference. According to this version, annular and other forms of corrugated and smooth-walled coaxial cables can also have each of their outer and respective center conductors seized sequentially.
It will be readily apparent that variations and modifications are possible that embody the intended inventive concepts, but without departing from the scope of the present invention as defined in the following claims.
This application is a continuation-in-part application of U.S. Ser. No. 11/743,633, entitled Compression Connector for Coaxial Cable, filed May 2, 2007, the entire contents of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3764959 | Toma et al. | Oct 1973 | A |
3910673 | Stokes | Oct 1975 | A |
4531805 | Werth | Jul 1985 | A |
4579415 | Van Brunt et al. | Apr 1986 | A |
4676577 | Szegda | Jun 1987 | A |
4808128 | Werth | Feb 1989 | A |
4952174 | Sucht et al. | Aug 1990 | A |
5199894 | Kalny et al. | Apr 1993 | A |
5322454 | Thommen | Jun 1994 | A |
5393244 | Szegda | Feb 1995 | A |
5435745 | Booth | Jul 1995 | A |
5620339 | Gray et al. | Apr 1997 | A |
5720630 | Richmond et al. | Feb 1998 | A |
5766037 | Nelson | Jun 1998 | A |
5863220 | Holliday | Jan 1999 | A |
5938474 | Nelson | Aug 1999 | A |
6019519 | Grinderslev et al. | Feb 2000 | A |
6019636 | Langham | Feb 2000 | A |
6032358 | Wild | Mar 2000 | A |
6102738 | Macek et al. | Aug 2000 | A |
6109964 | Kooiman | Aug 2000 | A |
6133532 | Lundbäck et al. | Oct 2000 | A |
6183298 | Henningsen | Feb 2001 | B1 |
6206579 | Selfridge et al. | Mar 2001 | B1 |
6264374 | Selfridge et al. | Jul 2001 | B1 |
6267621 | Pitschi et al. | Jul 2001 | B1 |
6309251 | Tang | Oct 2001 | B1 |
6331123 | Rodrigues | Dec 2001 | B1 |
6386915 | Nelson | May 2002 | B1 |
6471545 | Hosler, Sr. | Oct 2002 | B1 |
6478618 | Wong | Nov 2002 | B2 |
6494743 | Lamatsch et al. | Dec 2002 | B1 |
6607398 | Henningsen | Aug 2003 | B2 |
6733336 | Montena et al. | May 2004 | B1 |
6840803 | Wlos et al. | Jan 2005 | B2 |
6884113 | Montena | Apr 2005 | B1 |
6939169 | Islam et al. | Sep 2005 | B2 |
6955562 | Henningsen | Oct 2005 | B1 |
7008264 | Wild | Mar 2006 | B2 |
7021965 | Montena | Apr 2006 | B1 |
7029304 | Montena | Apr 2006 | B2 |
7029326 | Montena | Apr 2006 | B2 |
7070447 | Montena | Jul 2006 | B1 |
7077699 | Islam et al. | Jul 2006 | B2 |
7086897 | Montena | Aug 2006 | B2 |
7104839 | Henningsen | Sep 2006 | B2 |
7108547 | Kisling et al. | Sep 2006 | B2 |
7112093 | Holland | Sep 2006 | B1 |
7128603 | Burris et al. | Oct 2006 | B2 |
7131868 | Montena | Nov 2006 | B2 |
7156560 | Seeley | Jan 2007 | B2 |
7156696 | Montena | Jan 2007 | B1 |
7163420 | Montena | Jan 2007 | B2 |
7189115 | Montena | Mar 2007 | B1 |
7207838 | Andreescu | Apr 2007 | B2 |
7264502 | Holland | Sep 2007 | B2 |
7278854 | Robinette et al. | Oct 2007 | B1 |
7303435 | Burris et al. | Dec 2007 | B2 |
7309255 | Rodrigues | Dec 2007 | B2 |
7347729 | Thomas et al. | Mar 2008 | B2 |
7351101 | Montena | Apr 2008 | B1 |
7357672 | Montena | Apr 2008 | B2 |
7458851 | Montena | Dec 2008 | B2 |
7497729 | Wei | Mar 2009 | B1 |
7566243 | Hung | Jul 2009 | B1 |
7588460 | Malloy et al. | Sep 2009 | B2 |
7993159 | Chawgo | Aug 2011 | B2 |
8007314 | Chawgo et al. | Aug 2011 | B2 |
20050079761 | Rodrigues | Apr 2005 | A1 |
20060014427 | Islam et al. | Jan 2006 | A1 |
20060134979 | Henningsen | Jun 2006 | A1 |
20060199431 | Paynter | Sep 2006 | A1 |
20060246774 | Buck | Nov 2006 | A1 |
20070149047 | Wild et al. | Jun 2007 | A1 |
20070270032 | Eriksen | Nov 2007 | A1 |
20080003873 | Henningsen | Jan 2008 | A1 |
20080274643 | Chawgo | Nov 2008 | A1 |
20090197465 | Montena et al. | Aug 2009 | A1 |
20090233482 | Chawgo et al. | Sep 2009 | A1 |
20100261381 | Montena et al. | Oct 2010 | A1 |
20100261382 | Montena et al. | Oct 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20090197465 A1 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11743633 | May 2007 | US |
Child | 12421855 | US |