Embodiments relate to a compression driver with a side-firing compression chamber, such as for use in a horn driver.
There are two major types of compression drivers, the first utilizing a dome diaphragm, and the other using an annular flexural diaphragm. The majority of modern annular diaphragms are made of polymer films. The advantage of annular diaphragms is the smaller radial dimensions of the moving part of the diaphragm compared to the dome diaphragms having the same diameter of the moving voice coil. The small radial clamping dimension of the annular diaphragm shifts the mechanical breakup resonances of the diaphragm to higher frequencies where they can be better mechanically damped, since the damping is more efficient at high frequencies in polymer films. Better damping is indicative of the smoother frequency response and lower nonlinear distortion generated by diaphragms' breakups at high frequency.
In a compression driver, the diaphragm is loaded by a compression chamber, which is a thin layer of air separating the diaphragm from a phasing plug. The phasing plug receives an acoustical signal produced by the vibrating diaphragm and directs it to the exit of the compression driver. One of the primary features of a conventional compression driver is the difference between the larger effective area of the diaphragm and the smaller area of the compression chamber exit. The smaller area of the compression chamber exit increases its input impedance that loads the diaphragm. In theory, a compression driver reaches maximum efficiency when the mechanical output impedance of the vibrating diaphragm equals the loading impedance of the acoustical load. This assumption is approximate because, in reality, both impedances are different, complex, frequency-dependent functions.
A typical compression chamber has a single or multiple narrow exits expanding to the exit of the compression driver. Two types of linear distortion may occur in the compression chamber. One type is the attenuation of the high frequency sound pressure signal caused by the compliance of air trapped in the compression chamber. The volume of entrapped air is characterized by an acoustical compliance which is proportional to the volume of compression chamber. Acoustical compliance acts as a low-pass filter of the first order and it mitigates the high frequency signal. The second type of distortion is the irregularity of the high frequency sound pressure level (SPL) frequency response caused by air resonances in the compression chamber. The latter typically interact with high frequency mechanical resonances of the vibrating diaphragm.
In one embodiment, a compression driver includes a magnet assembly and a waveguide mounted to the magnet assembly, the waveguide having a first side, an opposed second side, and a central aperture forming an exit of the compression driver. An annular diaphragm is disposed above the magnet assembly and adjacent the second side of the waveguide, the diaphragm having an external flat portion generally coplanar with an internal flat portion. A compression chamber is defined between the diaphragm and the second side of the waveguide, the second side of the waveguide having a final segment that tapers toward the central aperture, wherein part of the diaphragm is loaded by the compression chamber and part of the diaphragm radiates directly to the exit of the compression driver.
In another embodiment, a compression driver includes a magnet assembly including a back plate having a centrally disposed pole piece, and a hub portion mounted to the pole piece. A waveguide is mounted to the magnet assembly, the waveguide having a first side and an opposed second side, the waveguide having a central aperture generally aligned with the hub portion and forming an exit of the compression driver. An annular diaphragm is disposed above the magnet assembly and adjacent the second side of the waveguide, the diaphragm having a V-shaped section between an external flat portion and an internal flat portion. A compression chamber is defined between the diaphragm and the second side of the waveguide, the second side of the waveguide having an initial segment which is generally parallel to the external flat portion of the diaphragm and a final segment that tapers toward the central aperture, such that part of the diaphragm is loaded by the compression chamber and part of the diaphragm radiates directly to the exit of the compression driver.
In another embodiment, a compression driver includes a magnet assembly including a back plate having a centrally disposed pole piece, and a hub portion mounted to the pole piece. A waveguide is mounted to the magnet assembly, the waveguide having a first side and an opposed second side, the waveguide having a central aperture generally aligned with the hub portion and forming an exit of the compression driver. An annular diaphragm is disposed above the magnet assembly and adjacent the second side of the waveguide, the diaphragm having a V-shaped section between an external flat portion and an internal flat portion, the hub portion extending generally parallel to and over at least a portion of the internal flat portion of the diaphragm. A compression chamber is defined between the diaphragm and the hub portion and between the diaphragm and the second side of the waveguide, the second side of the waveguide having a final segment that tapers toward the central aperture, such that part of the diaphragm is loaded by the compression chamber and part of the diaphragm radiates directly to the exit of the compression driver.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Embodiments of the compression driver disclosed herein include a side-firing compression chamber, where the compression chamber exit may be positioned by the internal diameter of the chamber. Therefore, part of the diaphragm is loaded by the “side-firing” compression chamber and part of the diaphragm radiates directly to the exit of the driver. The overall signal is a superposition of the compression chamber part and the direct-radiating part. This significantly simplifies the configuration of the compression driver and radial resonances are not excited in the audio frequency range. In addition, the simplicity in configuration provides lower production cost.
The acoustical behavior of a “side-firing” compression chamber open on its internal diameter is different from that of an annular compression chamber with hard walls on its internal and external diameters. Specifically, the side-firing compression chamber does not have a hard wall on its internal diameter, and it is loaded by the corresponding acoustical impedance of the waveguide and horn connected to it. Embodiments disclosed herein do not exhibit resonance behavior due to the different acoustical nature of the chamber and different boundary conditions. The compression driver maximizes the high-frequency SPL output as well as smoothness and simple equalizability of the SPL frequency response.
With reference first to
In the embodiments depicted herein, the diaphragm 28 is configured as an annular ring that is disposed coaxially with the central axis 12 above the magnet assembly 14. The diaphragm 28 may include a profiled section 30 such as a V-shaped section between an external generally flat portion 32 and an internal generally flat portion 34, wherein the external flat portion 32 and the internal flat portion 34 may be generally coplanar. In other implementations, the diaphragm 28 may have other suitable configurations.
With continuing reference to
The hub portion 36 may include a downwardly depending mounting member 44 which may have any configuration suitable for coupling the hub portion 36 to the rear section of the compression driver 10. In one embodiment, the mounting member 44 is provided in the form of a cylinder that is arranged to be press fit into a central bore 46 formed in the pole piece 22.
In the compression driver 10 disclosed herein, the typical front adapter and phasing plug are reduced to a single-piece, shallow waveguide 48 that provides compression, but only to a part of the diaphragm 28. The waveguide 48 is attached to the top plate 18, wherein a central aperture 50 of the waveguide 48 serves as a small diameter exit of the compression driver 10. The aperture 50 may be circular as shown, or alternatively may have another shape, such as elliptical or rectangular. As assembled, the central aperture 50 of the waveguide 48 is generally aligned with the hub portion 36. In one embodiment, the central aperture 50 is configured to substantially match the size and shape configuration of the horn inlet (not shown).
The small exit diameter of the compression driver 10 provides excellent control of the directivity at high frequencies up to 20 kHz. In one embodiment, the diameter of the central aperture 50 of the waveguide 48 is about 0.6 in., which may be smaller than the diameter of the diaphragm 28 (1.4 in.) and even smaller than the diameter of the voice coil 26 (1.0 in.). In the embodiments depicted, the height of the hub portion 36 does not extend above a height of the waveguide 48.
The waveguide 48 includes a generally planar first side 52, facing the horn (not shown), and an opposing second side 54 generally facing the diaphragm 28. A compression chamber 56 is defined in a space between the diaphragm 28 and the second side 54 of the waveguide 48 (see
Further extension of the side-firing compression chamber 56 towards the center of the driver 10 results in the onset of the first radial mode in the compression chamber 56.
The final embodiment shown in
The acoustical analysis of traditional and side-firing annular compression chambers is described below. The acoustical field in an annular compression chamber modeled by a flat annular ring is characterized by radial resonance modes (A. Voishvillo, “Compression Drivers' Phasing Plugs—Theory and Practice”, presented at the 141th AES Convention, 2016, Los Angeles, preprint 9618). In general, an acoustical field in the chamber results from the solution of the zero-order Bessel equation with Neumann boundary conditions (zero velocity at the internal and external radii).
where R1 and R2 are the internal and external radii of the compression chamber
c is the speed of sound.
Since the equation (1) is the zero-order Bessel equation, its solutions exist in the following forms:
At k0=0 the solution exists in the form P0(r)=const
At ki≠0 the solution exists in the form:
P(kir)=AJ0(kir)+BY0(kir),i=1,2,3 (3)
where A and B are constants not depending on radius r, but depending on wave numbers ki, J0(kir) is a Bessel function of the first kind, zeroth order, and Y0(kir) is a Bessel function of the second kind, zeroth order.
Equation (4) for the search of the radial modes' wave numbers ki values and the corresponding frequencies of the modes in the chamber fi=kic/2π are derived from the equation (1) and the boundary conditions (5).
Y1(kiR1)J1(kiR2)+Y1(kiR2)J1(kiR1)=0 (4)
AJ1(kr)=−BY1(kr) at r=R1 and r=R2 (5)
i=1, 2, 3 . . . ∞
The equation (4) is solved numerically. The roots of (4) are the wave numbers ki corresponding to the i-order radial resonances in the annular compression chamber.
Distributions of the sound pressure across the chamber at the found frequencies of radial modes are obtained from a numerical solution of equation (6):
Fi(ki)=Ci(Y1(kiR2)J0(kir)−J1(kiR2)Y0(kir)) (6)
where Ci are constants not depending on r.
For the particular chamber shown in
f1=13.8 kHz
f2=26.8 kHz
f3=39.89 kHz
Frequency of the first mode is within the audio range whereas the frequencies of the second and third mode are above frequency range and do not present interest. By equating (6) to zero, and by solving the equation (6) numerically, radius R0 corresponding to the zero value of the first mode is found. If the assumption of the diaphragm's pistonic movement is valid, then by positioning the exit slot at the radius R0, the first radial mode is blocked (but is still excited in the compression chamber!). Therefore, the first mode does not produce a severe notch on the SPL frequency response at the frequency 13.8 kHz—
Acoustical behavior of the system consisting of the side-firing annular compression chamber and part of the diaphragm radiating directly into the acoustical load differs from that of traditional annular compression chamber and an annular narrow slot exit. The direct-radiating part of the diaphragm is loaded by the acoustical path to the driver's exit (short “waveguide”) and by the output impedance of the side-firing compression chamber. The chamber is loaded by the acoustical path that connects chamber's exit to the exit of the driver. Since the acoustical output impedance of the chamber is significantly higher than the impedance of acoustical path to the exit of the driver, the influence of the chamber's output impedance on radiation of the open part of the diaphragm may be ignored.
The frequencies of the resonance modes in the chamber are found through solution of Helmholtz equation in cylindrical coordinates with the corresponding boundary conditions (sound pressure gradient equals to zero at r=R1 and r=R2)—see (1) and (2). In case of the side-firing chamber, the situation is different. The boundary condition on the external radius R2 corresponds to the condition
whereas the boundary condition at the exit R1 is found from the following expression (7):
A side-firing compression chamber with an exit along its internal radius R1 does not have radial resonances at high frequencies if its acoustical loading can be approximated by a non-reactive acoustical impedance ρc/St (where ρ is air density and c is the speed of sound, and St is the area of the chamber's exit). A regular annular compression chamber has hard walls at external and internal radii that cause reflections of radially propagating sound waves and generate corresponding standing waves (resonances) that may adversely affect high-frequency SPL response. In a side-firing compression chamber, reflection from the exit may not occur, but acoustical signals excited at the different radial distances of the chamber come to the exit with different time delays and phases. If the radial dimension of the chamber is comparable with the wavelength of the radiated acoustical signal, a “combing effect” or “interference” may occur, and it would generate notches on the SPL frequency response. However, with an optimal radial dimension of the side-firing compression chamber, the adverse “interference” can be avoided.
The aforementioned effect presumes pistonic movement of the diaphragm. In reality, at high frequencies, the diaphragm may not vibrate as a piston, and its movement would be characterized by partial vibrations, i.e. mechanical resonances. A negative effect produced by the diaphragm's mechanical resonances is potential irregularity of the SPL response at high frequencies. Another negative aspect of the mechanical resonances is their interaction with acoustical resonances in the compression chamber that may cause inaccuracy of the driver performance's prediction based on the acoustical model and the assumption of the diaphragm's pistonic movement throughout the audio frequency range. A positive effect of the mechanical resonances is that the elevated level of the overall displacement, velocity, and acceleration at resonances produce higher SPL output. Such a diaphragm property is actually intentional and is a result of the mechanical structural FEA numerical optimization intended to increase the energy of the diaphragm vibration at the high frequency range.
In the above embodiments and analysis, in one example, dimensions of the compression chamber dimensions may be as follows: internal radius R1 is 6.2 mm, external radius R2 18 mm, radius of the V-shaped apex is 12.5 mm, depth of the diaphragm (distance from the apex to the flat part is 1.9 mm, internal flat part radii are 6.2 mm and 8.8 mm, external flat part radii are 15.6 mm and 18 mm, radius of the driver's acoustical exit is 7.6 mm. In addition, for the above analysis, the driver is loaded by a reference axisymmetric horn having 140 mm mouth radius and 190 mm length, and the acoustical FEA simulations correspond to 1 meter from the mouth of the horn.
The new topology is scalable for different diameters of the voice coil, and it provides significant simplification of the configuration of the compression driver and correspondingly lower production cost without sacrificing the driver's performance. The SPL frequency response is characterized by smoothness and easy equalizability, which implies the use of minimal components in a crossover network to match the driver's response with the response of its corresponding woofer. The compression driver can be used in cost-effective studio monitors, CBT arrays, karaoke systems, various other types of arrays, and in automotive audio systems.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4325456 | Ureda | Apr 1982 | A |
4975965 | Adamson | Dec 1990 | A |
5537481 | Voishvillo et al. | Jul 1996 | A |
5875252 | Lesage | Feb 1999 | A |
5878148 | Alexandrov | Mar 1999 | A |
6320970 | Czerwinski et al. | Nov 2001 | B1 |
6744899 | Grunberg | Jun 2004 | B1 |
7039211 | Werner | May 2006 | B2 |
8036408 | Voishvillo | Oct 2011 | B2 |
8077897 | Voishvillo | Dec 2011 | B2 |
8280091 | Voishvillo | Oct 2012 | B2 |
20030215107 | Werner | Nov 2003 | A1 |
20040156519 | Geddes | Aug 2004 | A1 |
20070147647 | Voishvillo | Jun 2007 | A1 |
20080013781 | Sagren | Jan 2008 | A1 |
20090154751 | Robineau | Jun 2009 | A1 |
20090310809 | Voishvillo | Dec 2009 | A1 |
20110085692 | Voishvillo | Apr 2011 | A1 |
20110168480 | Sterling et al. | Jul 2011 | A1 |
20120027238 | Voishillo | Feb 2012 | A1 |
20130070954 | Flavignard | Mar 2013 | A1 |
20150373445 | Voishvillo | Dec 2015 | A1 |
20160105744 | Voishvillo | Apr 2016 | A1 |
20180054671 | Voishvillo | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
102015209837 | Dec 2015 | DE |
1592281 | Nov 2005 | EP |
2640089 | Sep 2013 | EP |
Entry |
---|
Alex Voishvillo, Audio Engineering Society, Convention Paper 9618, Sep. 29-Oct. 2, 2016, Los Angeles, USA, 16 pages. |
International Search Report and Written Opinion for Application No. PCT/US2017/042715, dated Sep. 11, 2017, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20190149911 A1 | May 2019 | US |