Compression isolator for a suspension damper

Information

  • Patent Grant
  • 10400847
  • Patent Number
    10,400,847
  • Date Filed
    Friday, October 6, 2017
    6 years ago
  • Date Issued
    Tuesday, September 3, 2019
    4 years ago
  • Inventors
  • Original Assignees
    • Fox Factory, Inc. (Braselton, GA, US)
  • Examiners
    • Sahni; Vishal R
Abstract
A method and apparatus for a damper. The damper comprises a fluid chamber having a piston dividing the chamber into a compression and rebound sides, a reservoir in fluid communication with the compression side of the chamber, and an isolator disposed between the compression side and the reservoir, whereby the isolator obstructs fluid flow between the compression side and the reservoir. In one embodiment, a bypass provides a fluid path between the compression side and the isolator.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

Embodiments of the present invention generally relate to a suspension damper assembly for a vehicle. More specifically, the invention relates to a compression isolator for use with a vehicle damper.


Description of Related Art

Vehicle suspension systems typically include a spring component or components and a dampening component or components. Typically, mechanical springs, like helical springs are used with some type of viscous fluid-based dampening mechanism and the two are mounted functionally in parallel.


SUMMARY OF THE INVENTION

Embodiments herein generally comprise a fluid chamber having a piston dividing the chamber into a compression and rebound sides, a reservoir in fluid communication with the compression side of the chamber, and an isolator disposed in a fluid flow path between the compression side and the reservoir, whereby the isolator obstructs fluid flow between the compression side and the reservoir. In one embodiment, a bypass provides a fluid path between the compression side and the isolator.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features can be understood in detail, a more particular description may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a section view of a damper with a piston in a first position within a chamber.



FIG. 2 is a section view of the damper of FIG. 1, with the piston in a second position.



FIG. 3 is a section view of the damper of FIG. 1, with the piston in a third position.



FIG. 4 is a section view of an alternative embodiment of a damper.





DESCRIPTION OF EMBODIMENTS


FIG. 1 is a section view of a damper 200 that is typically used in a vehicle suspension in order to control excessive movement of a spring (not shown). The damper 200 includes a fluid-filled chamber 122 having a piston 202 and rod 19 for reciprocation therein as the damper operates. At each end, the damper 200 is provided with mounting eyes 205, 207 for mounting to different parts of the vehicle. The piston 202 is equipped with shims 49, 51 that meter fluid through the piston 202 as it moves in a compression or rebound stroke in the cylinder. For example, in FIG. 1 the piston 202 is shown in a compression stroke as noted by rod 19 movement directional arrow 203. As it moves towards a far end (e.g. 205) of the cylinder, fluid travels from a compression side 120 to a rebound side 125 via shim 49 along a path 48. In a rebound stroke (not shown) shim 51 is utilized to meter fluid in an opposite direction through the piston 202.


In addition to the shimmed paths 49, 51 through the piston 202, fluid can travel between the compression 120 and rebound 125 sides of the chamber by utilizing an annular bypass 38 formed between the chamber 122 and an outer housing 123. While the bypass 38 utilizes an annular area and is co-axially disposed around the chamber 122 in the embodiment shown, it could comprise any number of designs so long as it provides an alternative fluid path between compression and rebound sides and around the piston 202. An internal bypass damper is shown and described in U.S. Pat. No. 6,296,092 which is entirely incorporated herein by reference. From the compression side 120 of the chamber, fluid may, in one embodiment, enter the bypass 38 through one of two ports 28, 30. On the rebound side, communication between the chamber and the bypass 38 is through port 24. The bypass 38 is a convenient way to provide “position sensitive” dampening. For example, on the compression side 120 of the chamber, the ports 28, 30 are axially spaced along the wall of the chamber. During a first portion of a compression stroke (shown in FIG. 1), both ports 28, 30 are open and a relatively large volume of fluid in the compression side 120 is free to utilize the bypass 38 to avoid the dampening effects of the piston shim 49. During a second portion of a compression stroke port 28 is closed by passage of the piston 202 and bypass fluid becomes limited to port 30 which results in increased compression damping.


At an end opposite the rod 19, the damper 200 includes a reservoir 110 for collecting fluid as the fluid capacity of the chamber decreases due to the volume of the encroaching piston rod 19 during a compression stroke. The reservoir 110 includes a floating piston 14 that acts to transfer pressure between damping fluid on one side and a gas pocket 18 on another side. As fluid enters the reservoir 110, the floating piston 14 moves (arrow 20) to compress the gas pocket and enlarge the volume of the reservoir 110 thereby compensating for the volume of the rod 19. In a rebound stroke of the piston 202, the reservoir returns fluid to the chamber 122 by operating in a reverse fashion (e.g. the pressurized gas pocket expands and damping fluid leaves the reservoir). A fill valve 15 permits access to the gas pocket, permitting the pressure in the pocket 18 to be adjusted based upon various conditions and preferences.



FIG. 1 also shows an embodiment of a compression isolator assembly 5. The isolator is constructed and arranged to prevent fluid from rapidly acting upon floating piston 14 of the reservoir 110. Without the isolator 5 a rapid or direct action of the compression damping fluid on the floating piston 14 can cause cavitation wherein a vacuum is created on the rebound side 125 of the chamber and the gas in the gas pocket essentially collapses, causing the damper to cease functioning properly. Cavitation is inhibited by the isolator 5 and an aperture 100 formed in the isolator 5 that adds additional dampening between the compression side and the reservoir in the event of a rapid movement of damping fluid towards the reservoir. Under normal circumstances, the isolator 5 does not create a noticeable effect on the dampening action of the damper. Rather, it is designed to operate only in high velocity compression events, such as a sudden terrain feature like a square edge bump, to prevent rapid compression from suddenly collapsing the nitrogen gas (or other compressible material) in pocket 18 due to a rapidly moving floating piston 14.


In one embodiment, the compression isolator 5 seals a far end of the chamber 122 between the compression side 120 and the floating piston 14 of the reservoir 110, and fluid communication between the chamber and the reservoir is limited to a fluid path 105 through aperture 100. As shaft 19 moves in a compression stroke, damping fluid from the compression side 120 is compressed against compression isolator 5 and thereby forced back through piston assembly shim 49 (along flow path 48) to rebound chamber 125. During such compression, additional fluid travels from chamber 120 to chamber 125 by exiting aperture 28 or 30, traveling in annular space 38 (along paths 150, 151) and entering chamber 125 via aperture 24 (along path 154). At the same time, fluid in chamber 125, that corresponds to the incurring volume of shaft 19, is displaced from chamber 125 and exits via aperture 24 (along path 155) into annular space 38 toward reservoir 110.



FIGS. 1, 2 and 3 illustrate operation of the damper components at various stages in a compression stroke of the piston. In each stage, fluid utilizes a path 48 through piston shim 49. In FIG. 1, the piston is at an early stage in the stroke and both ports 28, 30 are exposed to the compression side 120 of the chamber and, as illustrated by directional arrows 150, 151 fluid is flowing to the rebound chamber utilizing bypass 38 with fluid entering port 24 shown by arrow 154. Also shown with directional arrows 152, 153, 155 is fluid flow from the compression side (152, 153) to the reservoir and from the rebound side (155) to the reservoir. The various (and sometimes opposing) arrows are simply used to illustrate the possible flow of the fluid in a dynamic system where flow direction is dependent upon a number of factors including the position of the piston in the chamber, the design of shim 49 in the piston 202, the sizes of the ports, and the characteristics of aperture 100 formed in the isolator 5.


As the piston 202 continues its movement towards the end of the chamber (as shown in FIG. 2) the piston passes port 28, effectively reducing by half the volume of fluid that can exit the compression side 120 into the bypass 38 and requiring that volume of fluid to pass through piston shim 49, along path 48. As shown in the Figure, port 28 is now open to the rebound side 125 of the chamber permitting fluid flow from the bypass to the rebound side 125 (along 156) and also permitting fluid to exit the rebound side 125 (along arrow 157) in the direction of the reservoir 110.


Finally, as shown in FIG. 3, the piston 202 has passed both ports 28 and 30 and the bypass is effectively closed to the entry of fluid from the compression side 120 of the chamber 122. Instead, all ports, 24, 28, and 30 serve to carry fluid from the rebound side 125 of the chamber to the reservoir 110 as is necessitated by the volume of the encroaching rod 19. Flow paths from each port towards the reservoir are shown with arrows 155, 157 and 158. Because the bypass is closed, dampening is increased as the piston moves closer to a “bottom-out” position at a far end of the chamber and fluid is increasingly forced through shim 49. FIGS. 1-3 illustrate an embodiment with a bypass 38 to provide position-sensitive damping along with cavitation protection provided by the compression isolator 5.



FIG. 4 is a section view of a damper 300 having a remote reservoir or “piggyback” 310. Like the embodiment of FIGS. 1-3, the damper includes an isolator 5 and an annular bypass 38 and includes axially disposed ports 24, 28, and 30 that permit varying amounts of fluid bypass depending upon the position of the piston 202 in the chamber 122. The primary difference in the embodiment of FIG. 4 is that the reservoir 310, floating piston 314 and gas pocket 318 are housed in a separate chamber 312 that is connected to the main damper with a fluid hose 301. In the damper of FIG. 4, the piston is shown partway through a compression stroke (as in FIG. 2) with aperture 28 on the rebound side of the piston and the various flow directions illustrated with arrows as in the previous figures. Specifically, fluid is exiting the compression side via port 30 and potentially migrating to both the rebound side (path 150) and to the reservoir (path 158). Concurrently, fluid is leaving the rebound side and traveling towards the reservoir along paths 155 and 157.


In one embodiment a simplified non-bypass type damper includes a compression isolator 5. In such embodiment (not shown) fluid travels, during a compression stroke, from the compression side of the piston to the rebound side of the piston only via flow such as along 48 through the piston. Fluid displaced by the incursion of rod 19 is pushed (along with pressure exerted due to compression of the compression side) toward the reservoir and floating piston. In such embodiment, the isolator 5 may have an aperture (in lieu of aperture 100 as shown in the Figures) or apertures located near or about a center of the isolator 5 and sized to allow normal damping flow but to restrict sudden large volume flow that may cause cavitation. It will be understood that the isolator can be used without a bypass by simply utilizing a metering device at an end of the chamber opposite the piston rod.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof. For example, the invention is shown in the embodiments as including a bypass that operates with the compression isolator. Similarly, the location and design of the reservoir is variable, as shown in the disclosed embodiments. Such variations are within the scope of the invention and the claims that follow.

Claims
  • 1. A vehicle suspension comprising: a fluid chamber housing, said fluid chamber housing defining a fluid chamber therein, said fluid chamber comprising: a compression side; anda rebound side;a piston disposed within said fluid chamber, said piston dividing said fluid chamber into said compression side and said rebound side;a compression isolator disposed within said fluid chamber housing, said compression isolator disposed at a location, and said compression isolator having a structure, which prevents a fluid from causing a floating piston to induce cavitation within said fluid, said compression isolator further comprising: a partition fixedly located within said compression side of said fluid chamber between said piston and said floating piston; andan aperture formed through said partition, said aperture having a configuration such that said compression isolator does not create a noticeable effect on a dampening action of said damper under normal operating conditions for said damper, said configuration of said aperture restricting fluid flow through said partition when a rate of said fluid flow, if unrestricted, may cause cavitation;a reservoir chamber housing physically distinct from said fluid chamber housing, said reservoir chamber housing defining a reservoir chamber therein, said reservoir chamber fluidically coupled with said fluid chamber, said reservoir chamber housing comprising: a fluid-fillable portion, said fluid-fillable portion configured to receive said fluid from said fluid chamber as a fluid capacity of said fluid chamber decreases during a compression stroke; anda gas pocket; andsaid floating piston disposed within said reservoir chamber, said floating piston movably sealing said fluid-fillable portion from said gas pocket, said floating piston configured to transfer pressure between fluid in said fluid-fillable portion of said fluid reservoir and said gas pocket; anda bypass chamber providing a fluid pathway between said compression side and said rebound side, said bypass chamber being in fluid communication with said fluid chamber via a set of ports disposed in a wall of said fluid chamber housing.
  • 2. The vehicle suspension of claim 1, wherein said bypass chamber further comprises: an annular area coaxially disposed around said fluid chamber.
  • 3. The vehicle suspension of claim 1, further comprising: a fluid hose having a first end and a second end, said first end of said fluid hose coupled to said reservoir chamber housing and said second end of said fluid hose coupled to said fluid chamber housing such that said fluid hose fluidically couples said reservoir chamber and said fluid chamber.
  • 4. A vehicle suspension comprising: a fluid chamber housing, said fluid chamber housing defining a fluid chamber therein, said fluid chamber comprising: a compression side; anda rebound side;a piston disposed within said fluid chamber, said piston dividing said fluid chamber into said compression side and said rebound side;a bypass chamber providing a fluid pathway between said compression side and said rebound side of said fluid chamber, said bypass chamber co-axially disposed around an outer surface of a wall of said fluid chamber housing and being in fluid communication with said fluid chamber via a set of ports disposed in said wall of said fluid chamber housing;a reservoir chamber disposed within said fluid chamber housing, said reservoir chamber fluidically coupled with said fluid chamber, said reservoir chamber comprising: a fluid-fillable portion, said fluid-fillable portion configured to receive fluid from said fluid chamber; anda gas pocket; anda floating piston disposed between and movably sealing said fluid-fillable portion and said gas pocket, said floating piston configured to transfer pressure between said fluid-fillable portion and said gas pocket; anda compression isolator disposed within said fluid chamber between said compression side and said fluid-fillable portion of said reservoir chamber, said compression isolator disposed at a location, and said compression isolator having a structure, which prevents said fluid from causing said floating piston to induce cavitation within said fluid, said compression isolator further comprising:a partition fixedly located within said compression side of said fluid chamber between said piston and said floating piston; andan aperture formed through said partition, said aperture having a configuration such that said compression isolator does not create a noticeable effect on a dampening action of the damper under normal operating conditions for said damper, said configuration of said aperture restricting fluid flow through said partition when a rate of said fluid flow, if unrestricted, may cause cavitation.
  • 5. The vehicle suspension of claim 4, wherein fluid flow through said bypass chamber is reduced as said piston moves in a compression stroke.
  • 6. The vehicle suspension of claim 4, comprising: at least three ports comprising said set of ports, said at least three ports formed through said wall of said fluid chamber housing and permitting fluid communication between said fluid chamber and said bypass chamber, said at least three ports axially spaced along said wall of said fluid chamber housing such that when said piston is in a first position, said at least three ports are between said piston and said compression isolator, and when said piston is in a second position, at least two of said at least three ports are between said piston and said compression isolator.
  • 7. The vehicle suspension of claim 6 wherein when said piston is in a third position, none of said at least three ports are between said piston and said compression isolator.
  • 8. The vehicle suspension of claim 7, wherein when said piston is in said first position and also when said piston is in said second position, said fluid communicates between said bypass chamber, said fluid-fillable portion of said reservoir chamber, said rebound side of said fluid chamber and said compression side of said fluid chamber, but when said piston is in said third position, said fluid communicates only between said bypass chamber, said fluid-fillable portion of said reservoir chamber and said rebound side of said fluid chamber.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of and claims the benefit of and claims priority to co-pending U.S. patent application Ser. No. 15/180,250, filed on Jun. 13, 2016, entitled “COMPRESSION ISOLATOR FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety. The U.S. patent application Ser. No. 15/180,250 is a continuation application of and claims the benefit of and claims priority to U.S. patent application Ser. No. 14/692,401, filed on Apr. 21, 2015, now U.S. Pat. No. 9,366,307, entitled “COMPRESSION ISOLATOR FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety. The U.S. patent application Ser. No. 14/692,401 is a continuation application of and claims the benefit of and claims priority to U.S. patent application Ser. No. 13/226,230, filed on Sep. 6, 2011, now U.S. Pat. No. 9,038,791, entitled “COMPRESSION ISOLATOR FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety. The U.S. patent application Ser. No. 13/226,230 claims the benefit of and claims priority to the U.S. Provisional Patent Application No. 61/380,177 filed on Sep. 3, 2010, entitled “COMPRESSION ISOLATOR FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety. The U.S. patent application Ser. No. 13/226,230 is also a continuation-in-part application of and claims the benefit of and claims priority to U.S. patent application Ser. No. 13/175,244, filed on Jul. 1, 2011, now U.S. Pat. No. 8,627,932, entitled “BYPASS FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety. The U.S. Pat. No. 8,627,932 claims the benefit of and claims priority to the U.S. Provisional Patent Application No. 61/361,127 filed on Jul. 2, 2010, entitled “BYPASS LOCK-OUT VALVE FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety. The U.S. patent application Ser. No. 13/226,230 is also a continuation-in-part application of and claims the benefit of and claims priority to U.S. patent application Ser. No. 13/010,697, filed on Jan. 20, 2011, now U.S. Pat. No. 8,857,580 entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety. The U.S. Pat. No. 8,857,580 claims the benefit of and claims priority to the U.S. Provisional Patent Application No. 61/296,826 filed on Jan. 20, 2010, entitled “BYPASS LOCK-OUT VALVE FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety. The U.S. patent application Ser. No. 13/226,230 is also a continuation-in-part application of and claims the benefit of and claims priority to U.S. patent application Ser. No. 12/684,072, filed on Jan. 7, 2010, now abandoned, entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety. The U.S. patent application Ser. No. 12/684,072 claims the benefit of and claims priority to the U.S. Provisional Patent Application No. 61/143,152 filed on Jan. 7, 2009, entitled “REMOTE BYPASS LOCK-OUT” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety.

US Referenced Citations (475)
Number Name Date Kind
1492731 Kerr May 1924 A
1575973 Coleman Mar 1926 A
1923011 Moulton Aug 1933 A
1948600 Templeton Feb 1934 A
2018312 Moulton Oct 1935 A
2259437 Dean Oct 1941 A
2492331 Spring Dec 1949 A
2540525 Howarth et al. Feb 1951 A
2697600 Gregoire Dec 1954 A
2725076 Hansen et al. Nov 1955 A
2729308 Koski et al. Jan 1956 A
2784962 Sherburne Mar 1957 A
2838140 Rasmusson et al. Jun 1958 A
2846028 Gunther Aug 1958 A
2879971 Demay Mar 1959 A
2897613 Davidson et al. Aug 1959 A
2941629 Etienne et al. Jun 1960 A
2991804 Merkle Jul 1961 A
3085530 Williamson Apr 1963 A
3087583 Bruns Apr 1963 A
3202413 Colmerauer Aug 1965 A
3206153 Burke Sep 1965 A
3284076 Gibson Nov 1966 A
3286797 Leibfritz et al. Nov 1966 A
3405625 Carlson et al. Oct 1968 A
3419849 Anderson et al. Dec 1968 A
3420493 Kraft et al. Jan 1969 A
3528700 Janu et al. Sep 1970 A
3556137 Billeter et al. Jan 1971 A
3575442 Elliott et al. Apr 1971 A
3584331 Richard et al. Jun 1971 A
3603575 Arlasky et al. Sep 1971 A
3605960 Singer Sep 1971 A
3701544 Stankovich Oct 1972 A
3714953 Solvang Feb 1973 A
3750856 Kenworthy et al. Aug 1973 A
3784228 Hoffmann et al. Jan 1974 A
3791408 Saitou et al. Feb 1974 A
3830482 Norris Aug 1974 A
4022113 Blatt et al. May 1977 A
4036335 Thompson et al. Jul 1977 A
4072087 Mueller et al. Feb 1978 A
4103881 Simich Aug 1978 A
4139186 Postema et al. Feb 1979 A
4159106 Nyman et al. Jun 1979 A
4174098 Baker et al. Nov 1979 A
4183509 Nishikawa et al. Jan 1980 A
4305566 Grawunde Dec 1981 A
4333668 Hendrickson et al. Jun 1982 A
4334711 Mazur et al. Jun 1982 A
4337850 Shimokura et al. Jul 1982 A
4348016 Milly Sep 1982 A
4366969 Benya et al. Jan 1983 A
4474363 Numazawa et al. Oct 1984 A
4491207 Boonchanta et al. Jan 1985 A
4502673 Clark et al. Mar 1985 A
4548233 Wolfges Oct 1985 A
4620619 Emura et al. Nov 1986 A
4634142 Woods et al. Jan 1987 A
4655440 Eckert Apr 1987 A
4659104 Tanaka et al. Apr 1987 A
4660689 Hayashi et al. Apr 1987 A
4673194 Sugasawa Jun 1987 A
4709779 Takehara Dec 1987 A
4729459 Inagaki et al. Mar 1988 A
4732244 Verkuylen Mar 1988 A
4744444 Gillingham May 1988 A
4750735 Furgerson et al. Jun 1988 A
4765648 Mander et al. Aug 1988 A
4773671 Inagaki Sep 1988 A
4786034 Heess et al. Nov 1988 A
4821852 Yokoya Apr 1989 A
4826207 Yoshioka et al. May 1989 A
4830395 Foley May 1989 A
4836578 Soltis Jun 1989 A
4838394 Lemme et al. Jun 1989 A
4846317 Hudgens Jul 1989 A
4858733 Noguchi et al. Aug 1989 A
4919166 Sims et al. Apr 1990 A
4936424 Costa Jun 1990 A
4949262 Buma et al. Aug 1990 A
4949989 Kakizaki et al. Aug 1990 A
4975849 Ema et al. Dec 1990 A
4984819 Kakizaki et al. Jan 1991 A
5027303 Witte Jun 1991 A
5044614 Rau Sep 1991 A
5060959 Davis et al. Oct 1991 A
5074624 Stauble et al. Dec 1991 A
5076404 Gustafsson Dec 1991 A
5080392 Bazergui Jan 1992 A
5094325 Smith Mar 1992 A
5105918 Hagiwara et al. Apr 1992 A
5113980 Furrer et al. May 1992 A
5152547 Davis Oct 1992 A
5161653 Hare Nov 1992 A
5163742 Topfer et al. Nov 1992 A
5178242 Nakamura et al. Jan 1993 A
5203584 Butsuen et al. Apr 1993 A
5207774 Wolfe et al. May 1993 A
5230364 Leng et al. Jul 1993 A
5236169 Johnsen et al. Aug 1993 A
5248014 Ashiba Sep 1993 A
5259487 Petek et al. Nov 1993 A
5263559 Mettner Nov 1993 A
5265902 Lewis Nov 1993 A
5277283 Yamaoka et al. Jan 1994 A
5293971 Kanari Mar 1994 A
5307907 Nakamura et al. May 1994 A
5318066 Burgorf et al. Jun 1994 A
5348112 Vaillancourt Sep 1994 A
5372224 Samonil et al. Dec 1994 A
5390949 Naganathan et al. Feb 1995 A
5396973 Schwemmer et al. Mar 1995 A
5398787 Woessner et al. Mar 1995 A
5413196 Forster May 1995 A
5467280 Kimura Nov 1995 A
5480011 Nagai et al. Jan 1996 A
5551674 Johnsen Sep 1996 A
5553836 Ericson Sep 1996 A
5588510 Wilke Dec 1996 A
5597180 Ganzel et al. Jan 1997 A
5598337 Butsuen et al. Jan 1997 A
5601164 Ohsaki et al. Feb 1997 A
5651433 Wirth et al. Jul 1997 A
5657840 Lizell Aug 1997 A
5699885 Forster Dec 1997 A
5722645 Reitter Mar 1998 A
5803443 Chang Sep 1998 A
5810128 Eriksson et al. Sep 1998 A
5813731 Newman et al. Sep 1998 A
5826935 Defreitas et al. Oct 1998 A
5884921 Katsuda et al. Mar 1999 A
5937975 Forster Aug 1999 A
5954318 Kluhsman Sep 1999 A
5956951 O'Callaghan Sep 1999 A
5971116 Franklin Oct 1999 A
5992450 Parker et al. Nov 1999 A
5996745 Jones et al. Dec 1999 A
5996746 Turner et al. Dec 1999 A
5999868 Beno et al. Dec 1999 A
6000702 Streiter Dec 1999 A
6017047 Hoose Jan 2000 A
6035979 Foerster Mar 2000 A
6058340 Uchiyama et al. May 2000 A
6067490 Ichimaru et al. May 2000 A
6073536 Campbell Jun 2000 A
6073736 Franklin Jun 2000 A
6092011 Hiramoto et al. Jul 2000 A
6105988 Turner et al. Aug 2000 A
6131709 Jolly et al. Oct 2000 A
6135434 Marking Oct 2000 A
6151930 Carlson Nov 2000 A
6179098 Hayakawa et al. Jan 2001 B1
6213263 De Frenne Apr 2001 B1
6215217 Kurosawa et al. Apr 2001 B1
6244398 Girvin et al. Jun 2001 B1
6254067 Yih Jul 2001 B1
6279702 Koh Aug 2001 B1
6293530 Delorenzis et al. Sep 2001 B1
6296092 Marking Oct 2001 B1
6311962 Marking Nov 2001 B1
6318525 Vignocchi et al. Nov 2001 B1
6322468 Wing et al. Nov 2001 B1
6343807 Rathbun Feb 2002 B1
6360857 Fox et al. Mar 2002 B1
6371262 Katou et al. Apr 2002 B1
6371267 Kao et al. Apr 2002 B1
6378885 Ellsworth et al. Apr 2002 B1
6389341 Davis May 2002 B1
6390747 Commins May 2002 B1
6401883 Nyce et al. Jun 2002 B1
6415895 Marking et al. Jul 2002 B2
6427812 Crawley et al. Aug 2002 B2
6434460 Uchino et al. Aug 2002 B1
6446771 Sintorn et al. Sep 2002 B1
6474454 Matsumoto et al. Nov 2002 B2
6474753 Rieth et al. Nov 2002 B1
6501554 Hackney et al. Dec 2002 B1
6502837 Hamilton et al. Jan 2003 B1
6510929 Gordaninejad et al. Jan 2003 B1
6592136 Becker et al. Jul 2003 B2
6619615 Mayr et al. Sep 2003 B1
6648109 Farr et al. Nov 2003 B2
6659240 Dernebo Dec 2003 B2
6672687 Nishio Jan 2004 B2
6732033 Laplante et al. May 2004 B2
6782980 Nakadate Aug 2004 B2
6817454 Nezu et al. Nov 2004 B2
6857625 Löser et al. Feb 2005 B2
6863291 Miyoshi Mar 2005 B2
6905203 Kremers et al. Jun 2005 B2
6920951 Song et al. Jul 2005 B2
6923853 Kremers et al. Aug 2005 B2
6935157 Miller Aug 2005 B2
6952060 Goldner et al. Oct 2005 B2
6959921 Rose Nov 2005 B2
6966412 Braswell et al. Nov 2005 B2
6978871 Holiviers Dec 2005 B2
6978872 Turner Dec 2005 B2
6991076 McAndrews Jan 2006 B2
7025367 McKinnon et al. Apr 2006 B2
7076351 Hamilton et al. Jul 2006 B2
7128192 Fox Oct 2006 B2
7135794 Kühnel Nov 2006 B2
7163222 Becker et al. Jan 2007 B2
7234575 Anderfaas et al. Jun 2007 B2
7234680 Hull et al. Jun 2007 B2
7243763 Carlson Jul 2007 B2
7270221 McAndrews Sep 2007 B2
7287760 Quick et al. Oct 2007 B1
7293764 Fang Nov 2007 B2
7299112 Laplante et al. Nov 2007 B2
7316406 Kimura et al. Jan 2008 B2
7325660 Norgaard et al. Feb 2008 B2
7363129 Barnicle et al. Apr 2008 B1
7374028 Fox May 2008 B2
7397355 Tracy Jul 2008 B2
7413063 Davis Aug 2008 B1
7422092 Hitchcock et al. Sep 2008 B2
7441638 Hanawa Oct 2008 B2
7469910 Münster et al. Dec 2008 B2
7484603 Fox Feb 2009 B2
7490705 Fox Feb 2009 B2
7581743 Graney et al. Sep 2009 B2
7591352 Hanawa Sep 2009 B2
7600616 Anderfaas et al. Oct 2009 B2
7628259 Norgaard et al. Dec 2009 B2
7631882 Hirao et al. Dec 2009 B2
7654369 Murray et al. Feb 2010 B2
7673936 Hsu et al. Mar 2010 B2
7684911 Seifert et al. Mar 2010 B2
7694785 Nakadate Apr 2010 B2
7694987 McAndrews Apr 2010 B2
7703585 Fox Apr 2010 B2
7722056 Inoue et al. May 2010 B2
7722069 Shirai May 2010 B2
7726042 Meschan Jun 2010 B2
7730906 Kleinert et al. Jun 2010 B2
7770701 Davis Aug 2010 B1
7779974 Timoney et al. Aug 2010 B2
7795711 Sauciuc et al. Sep 2010 B2
7837213 Colegrove et al. Nov 2010 B2
7857325 Copsey et al. Dec 2010 B2
7872764 Higgins-Luthman et al. Jan 2011 B2
7909348 Klieber et al. Mar 2011 B2
7931132 Braun Apr 2011 B2
7946163 Gartner May 2011 B2
8016349 Mouri et al. Sep 2011 B2
8056392 Ryan et al. Nov 2011 B2
8087676 McIntyre Jan 2012 B2
8091910 Hara et al. Jan 2012 B2
8104591 Barefoot et al. Jan 2012 B2
8127900 Inoue Mar 2012 B2
8136877 Walsh et al. Mar 2012 B2
8151952 Lenz et al. Apr 2012 B2
8191964 Hsu et al. Jun 2012 B2
8210106 Tai et al. Jul 2012 B2
8210330 Vandewal Jul 2012 B2
8256587 Bakke et al. Sep 2012 B2
8262062 Kamo et al. Sep 2012 B2
8262100 Thomas Sep 2012 B2
8285447 Bennett et al. Oct 2012 B2
8286982 Plantet et al. Oct 2012 B2
8291889 Shafer et al. Oct 2012 B2
8292274 Adoline et al. Oct 2012 B2
8307965 Föster et al. Nov 2012 B2
8308124 Hsu Nov 2012 B2
8317261 Walsh et al. Nov 2012 B2
8336683 McAndrews et al. Dec 2012 B2
8393446 Haugen Mar 2013 B2
8413773 Anderfaas et al. Apr 2013 B2
8423244 Proemm et al. Apr 2013 B2
8458080 Shirai Jun 2013 B2
8550551 Shirai Oct 2013 B2
8556048 Maeda et al. Oct 2013 B2
8556049 Jee Oct 2013 B2
8596663 Shirai et al. Dec 2013 B2
8622180 Wootten et al. Jan 2014 B2
8627932 Marking Jan 2014 B2
8641073 Lee et al. Feb 2014 B2
8655548 Ichida et al. Feb 2014 B2
8744699 Yamaguchi et al. Jun 2014 B2
8752682 Park et al. Jun 2014 B2
8763770 Marking Jul 2014 B2
8770357 Sims et al. Jul 2014 B2
8781680 Ichida et al. Jul 2014 B2
8781690 Hara et al. Jul 2014 B2
8814109 Calendrille et al. Aug 2014 B2
8833786 Camp et al. Sep 2014 B2
8838335 Bass et al. Sep 2014 B2
8857580 Marking Oct 2014 B2
8888115 Chubbuck et al. Nov 2014 B2
8936139 Franklin et al. Jan 2015 B2
8950771 Felsl et al. Feb 2015 B2
8955653 Marking Feb 2015 B2
8967343 Battlogg et al. Mar 2015 B2
8991571 Murakami Mar 2015 B2
9033122 Ericksen et al. May 2015 B2
9038791 Marking May 2015 B2
9073592 Hsu Jul 2015 B2
9120362 Marking Sep 2015 B2
9126647 Kuo Sep 2015 B2
9140325 Cox et al. Sep 2015 B2
9157523 Miki et al. Oct 2015 B2
9194456 Laird et al. Nov 2015 B2
9199690 Watarai Dec 2015 B2
9239090 Marking et al. Jan 2016 B2
9278598 Galasso et al. Mar 2016 B2
9353818 Marking May 2016 B2
9366307 Marking Jun 2016 B2
9422018 Pelot et al. Aug 2016 B2
9452654 Ericksen et al. Sep 2016 B2
9550405 Marking et al. Jan 2017 B2
9556925 Marking Jan 2017 B2
9616728 Marking Apr 2017 B2
9663181 Ericksen et al. May 2017 B2
9682604 Cox et al. Jun 2017 B2
9784333 Marking Oct 2017 B2
10040329 Ericksen et al. Aug 2018 B2
10094443 Marking Oct 2018 B2
20010017334 Vincent Aug 2001 A1
20010042663 Marking et al. Nov 2001 A1
20020000352 Matsumoto et al. Jan 2002 A1
20020032508 Uchino et al. Mar 2002 A1
20020050518 Roustaei May 2002 A1
20020063469 Nishio May 2002 A1
20020089107 Koh Jul 2002 A1
20020113347 Robbins et al. Aug 2002 A1
20020121416 Katayama et al. Sep 2002 A1
20020130000 Lisenker et al. Sep 2002 A1
20020130003 Lisenker et al. Sep 2002 A1
20020185581 Trask et al. Dec 2002 A1
20030001346 Hamilton et al. Jan 2003 A1
20030001358 Becker et al. Jan 2003 A1
20030034697 Goldner et al. Feb 2003 A1
20030051954 Sendrea Mar 2003 A1
20030065430 Lu et al. Apr 2003 A1
20030075403 Dernebo Apr 2003 A1
20030103651 Novak Jun 2003 A1
20030160369 Laplante et al. Aug 2003 A1
20040017455 Kremers et al. Jan 2004 A1
20040021754 Kremers et al. Feb 2004 A1
20040075350 Kuhnel Apr 2004 A1
20040099312 Boyer et al. May 2004 A1
20040208687 Sicz et al. Oct 2004 A1
20040222056 Fox Nov 2004 A1
20040256778 Verriet Dec 2004 A1
20050077131 Russell Apr 2005 A1
20050098401 Hamilton et al. May 2005 A1
20050110229 Kimura et al. May 2005 A1
20050121269 Namuduri Jun 2005 A1
20050173849 Vandewal Aug 2005 A1
20050199455 Browne et al. Sep 2005 A1
20060064223 Voss Mar 2006 A1
20060065496 Fox Mar 2006 A1
20060066074 Turner et al. Mar 2006 A1
20060081431 Breese et al. Apr 2006 A1
20060096817 Norgaard et al. May 2006 A1
20060113834 Hanawa Jun 2006 A1
20060124414 Hanawa Jun 2006 A1
20060163551 Coenen et al. Jul 2006 A1
20060163787 Munster et al. Jul 2006 A1
20060175792 Sicz et al. Aug 2006 A1
20060185951 Tanaka Aug 2006 A1
20060213082 Meschan Sep 2006 A1
20060219503 Kim Oct 2006 A1
20060225976 Nakadate Oct 2006 A1
20060237272 Huang Oct 2006 A1
20060289258 Fox Dec 2006 A1
20070008096 Tracy Jan 2007 A1
20070034464 Barefoot Feb 2007 A1
20070039790 Timoney et al. Feb 2007 A1
20070051573 Norgaard et al. Mar 2007 A1
20070088475 Nordgren et al. Apr 2007 A1
20070090518 Sauciuc et al. Apr 2007 A1
20070119669 Anderfaas et al. May 2007 A1
20080006494 Vandewal Jan 2008 A1
20080018065 Hirao et al. Jan 2008 A1
20080029730 Kamo et al. Feb 2008 A1
20080041677 Namuduri Feb 2008 A1
20080059025 Furuichi et al. Mar 2008 A1
20080093820 McAndrews Apr 2008 A1
20080099968 Schroeder May 2008 A1
20080116622 Fox May 2008 A1
20080185244 Maeda et al. Aug 2008 A1
20080250844 Gartner Oct 2008 A1
20080303320 Schranz et al. Dec 2008 A1
20080314706 Lun et al. Dec 2008 A1
20090001684 McAndrews et al. Jan 2009 A1
20090020382 Van Weelden et al. Jan 2009 A1
20090071773 Lun Mar 2009 A1
20090121398 Inoue May 2009 A1
20090171532 Ryan et al. Jul 2009 A1
20090192673 Song et al. Jul 2009 A1
20090200126 Kondo et al. Aug 2009 A1
20090236807 Wootten et al. Sep 2009 A1
20090261542 McIntyre Oct 2009 A1
20090277736 McAndrews et al. Nov 2009 A1
20090288924 Murray et al. Nov 2009 A1
20090294231 Carlson et al. Dec 2009 A1
20090302558 Shirai Dec 2009 A1
20090324327 McAndrews et al. Dec 2009 A1
20100010709 Song Jan 2010 A1
20100032254 Anderfaas et al. Feb 2010 A1
20100044975 Yablon et al. Feb 2010 A1
20100059964 Morris Mar 2010 A1
20100066051 Haugen Mar 2010 A1
20100109277 Furrer May 2010 A1
20100170760 Marking Jul 2010 A1
20100207351 Klieber et al. Aug 2010 A1
20100244340 Wootten et al. Sep 2010 A1
20100252972 Cox et al. Oct 2010 A1
20100276238 Crasset Nov 2010 A1
20100276906 Galasso et al. Nov 2010 A1
20100308628 Hsu et al. Dec 2010 A1
20100314917 Hsieh et al. Dec 2010 A1
20100327542 Hara et al. Dec 2010 A1
20110086686 Avent et al. Apr 2011 A1
20110095507 Plantet et al. Apr 2011 A1
20110097139 Hsu et al. Apr 2011 A1
20110109060 Earle et al. May 2011 A1
20110127706 Sims et al. Jun 2011 A1
20110174582 Wootten et al. Jul 2011 A1
20110202236 Galasso et al. Aug 2011 A1
20110204201 Kodama et al. Aug 2011 A1
20110214956 Marking Sep 2011 A1
20110257848 Shirai Oct 2011 A1
20110284333 Krog et al. Nov 2011 A1
20120006949 Laird et al. Jan 2012 A1
20120018263 Marking Jan 2012 A1
20120018264 King Jan 2012 A1
20120048665 Marking Mar 2012 A1
20120080279 Galasso et al. Apr 2012 A1
20120181126 De Kock Jul 2012 A1
20120222927 Marking Sep 2012 A1
20120228906 McAndrews et al. Sep 2012 A1
20120253599 Shirai Oct 2012 A1
20120253600 Ichida et al. Oct 2012 A1
20120274043 Lee et al. Nov 2012 A1
20120305350 Ericksen et al. Dec 2012 A1
20120312648 Yu et al. Dec 2012 A1
20130001030 Goldasz et al. Jan 2013 A1
20130037361 Park et al. Feb 2013 A1
20130090195 Yamaguchi et al. Apr 2013 A1
20130119634 Camp et al. May 2013 A1
20130144489 Galasso et al. Jun 2013 A1
20130168195 Park et al. Jul 2013 A1
20130292218 Ericksen et al. Nov 2013 A1
20130333993 Yu Dec 2013 A1
20140008160 Marking et al. Jan 2014 A1
20140027219 Marking et al. Jan 2014 A1
20140048365 Kim Feb 2014 A1
20140061419 Wehage et al. Mar 2014 A1
20150081171 Ericksen et al. Mar 2015 A1
20150197308 Butora et al. Jul 2015 A1
20160153516 Marking Jun 2016 A1
20160185178 Galasso et al. Jun 2016 A1
20160265615 Marking Sep 2016 A1
20160290431 Marking Oct 2016 A1
20160319899 Franklin et al. Nov 2016 A1
20160355226 Pelot et al. Dec 2016 A1
20170008363 Ericksen et al. Jan 2017 A1
20170136843 Marking May 2017 A1
20170184174 Marking Jun 2017 A1
20170259876 Ericksen et al. Sep 2017 A1
20180031071 Marking Feb 2018 A1
20180326808 Ericksen et al. Nov 2018 A1
20180328446 Ericksen et al. Nov 2018 A1
20180334007 Ericksen et al. Nov 2018 A1
20180334008 Ericksen et al. Nov 2018 A1
20180339565 Ericksen et al. Nov 2018 A1
20180339566 Ericksen et al. Nov 2018 A1
20180339567 Ericksen et al. Nov 2018 A1
20180355946 Ericksen et al. Dec 2018 A1
20190032745 Marking Jan 2019 A1
Foreign Referenced Citations (28)
Number Date Country
3709447 Oct 1988 DE
3711442 Oct 1988 DE
3738048 May 1989 DE
3924166 Feb 1991 DE
4029090 Mar 1992 DE
4406918 Sep 1994 DE
202010012738 Dec 2010 DE
207409 Jan 1987 EP
304801 Mar 1989 EP
1241087 Sep 2002 EP
1355209 Oct 2003 EP
1623856 Feb 2006 EP
2248691 Nov 2010 EP
2357098 Aug 2011 EP
2410203 Jan 2012 EP
2848582 Mar 2015 EP
2289111 Nov 1995 GB
57173632 Oct 1982 JP
57173632 Nov 1982 JP
57182506 Nov 1982 JP
01106721 Apr 1989 JP
H0193637 Apr 1989 JP
04203540 Jul 1992 JP
05149364 Jun 1993 JP
2007302211 Nov 2007 JP
20070076226 Jul 2007 KR
9840231 Sep 1998 WO
9906231 Feb 1999 WO
Non-Patent Literature Citations (8)
Entry
Electronic Translation of DE3709447A1.
English language abstract for EP 0207409 (no date).
European Search Report, European Patent Application No. 14189773.6, dated May 4, 2015, 4 Pages.
EP Search Report for European Application No. 15163428.4, dated Jul. 3, 2017, 7 Pages.
“European Patent Office Final Decision dated Mar. 21, 2013”, European Patent Application No. 10161906.2.
“European Search Report for European Application No. 11172553, 2 pages, dated Sep. 25, 2017 (Sep. 25, 2017)”.
“European Search Report for European Application No. 11175126, 2 pages, dated Sep. 25, 2017 (Sep. 25, 2017)”.
“European Search Report and Written Opinion, European Patent Application No. 13165362.8”, dated Sep. 24, 2014, 6 Pages.
Related Publications (1)
Number Date Country
20180031071 A1 Feb 2018 US
Provisional Applications (4)
Number Date Country
61380177 Sep 2010 US
61361127 Jul 2010 US
61296826 Jan 2010 US
61143152 Jan 2009 US
Continuations (3)
Number Date Country
Parent 15180250 Jun 2016 US
Child 15726835 US
Parent 14692401 Apr 2015 US
Child 15180250 US
Parent 13226230 Sep 2011 US
Child 14692401 US
Continuation in Parts (4)
Number Date Country
Parent 13175244 Jul 2011 US
Child 13226230 US
Parent 13226230 US
Child 13226230 US
Parent 13010697 Jan 2011 US
Child 13226230 US
Parent 12684072 Jan 2010 US
Child 13010697 US