The disclosed subject matter generally relates to compression molded preforms and systems and methods thereof, including resultant containers formed by such compression molded preforms. More specifically, the disclosed subject matter relates to compression molded preforms that form containers with bottom end portions that are movable, for example invertible, upon being subjected to hot-fill, hot-fill related, and/or elevated temperature operations.
Various embodiments (i.e., one, some, or all) of the disclosed subject matter relate to a compression molded plastic preform for forming a blow molded plastic container having an invertible base portion, the preform having a hollow body defining an inner volume. The preform body can comprise: a first, open end defining an opening into the inner volume, the first end having threads; a second, closed end opposite the first end in a length-wise direction of the preform body; and an intermediate portion between the first end and the second end, the intermediate portion having a sidewall extending in the length-wise direction of the preform body along a central longitudinal axis of the preform body. The second end of the preform body is gateless and optionally without a weld line. More specifically, a portion of the second end located at the central longitudinal axis of the preform body is gateless and optionally without a weld line. In various embodiments the second end is generally hemispherical, with an entirety of an outer surface of the second hemispherical end being smooth and an entirety of an inner surface of the second hemispherical end being smooth and without any sharp transitions. Optionally, the second end has a portion that is thinner than any other portion of the preform. The preform body can include a transition portion formed on an outer surface of the preform body where the intermediate portion meets the second end. The transition portion may transition from the sidewall of the intermediate portion along a first radius of a first direction to a portion of the second end along a second radius of a second direction substantially opposite the first direction.
In various embodiments, an entirety of an inner surface of the second hemispherical end is smooth and without sharp transitions except for a protruding portion that is formed at the central longitudinal axis and protrudes inward into the inner volume of the preform body. The protruding portion can be configured to mate with a stretch rod during stretching of the container during the blow molding process in order to maintain the stretch rod substantially centered at the central longitudinal axis. Further, in various embodiments, the entirety of the second end can be configured to be oriented during a blow molding operation to form the blow molded container. Optionally, the portion of the second end that is thinner than any other portion of the preform is the entire second end. In various embodiments, the second end has a portion at the central longitudinal axis that is the thinnest portion of the preform. Optionally, a minimum thickness of the second end is 50% or less than a maximum thickness of the sidewall.
In various embodiments, the first radius of the transition portion is less than the second radius of the portion of the second end, wherein the first direction of the first radius is generally inward and the direction of the second radius being generally outward. The configuration of the transition portion can assist with thinning of the base portion during blow molding. Further, in various embodiments, the transition portion can be configured to form a standing surface for the blow molded container and the second end can be configured to form the invertible base portion. In various embodiments, the base portion can be invertible in response to internal pressures experienced by the container upon hot-filling and cooling. In various embodiments, the transition portion is configured to form a standing surface for the blow molded container, the second end is configured to form the invertible base portion, and the base portion is configured to be mechanically inverted to reduce a vacuum created in a hot-filled and cooled sealed container. Optionally, the second end is configured to form the invertible base portion, wherein the base portion can be configured to pull inward under vacuum pressure during hot-fill and cooling operations.
Various embodiments also include a system comprising means for forming a compression molded plastic preform and means for blow molding the compression molded preform to form a blow molded plastic container. The compression molded plastic preform includes a body which can define an inner volume and have a first open end which defines an opening into the inner volume, a second closed end opposite the first end, and a sidewall portion extending from the first end to the second end. The second end of the preform body is gateless and can be rounded, wherein an entirety of an outer surface thereof can be smooth and an entirety of an inner surface of the second end can be smooth and without one or more stepped transitions. Optionally, the second end can have a portion that is thinner than any portion of the sidewall portion. The blow molded plastic container can include a sidewall, a standing portion, and a movable base portion. Optionally, the sidewall can have a thickness greater than the movable base portion, and an entirety of the movable base portion being oriented during the blow molding process.
In various embodiments, the means for forming a compression molded plastic preform can include: means for extruding a rod of plastic material; means for cutting the rod of plastic material to a desired length; means for transferring the plastic material of a desired length forming; and means for compression molding a molten billet produced by heating of the transferred plastic material. The means for compression molding can include a mold cavity and a mold top with a core mold, wherein the mold cavity and core mold are of respective geometries to form the compression molded plastic preform. In various embodiments, the system can further comprise means for hot-filling the blow molded container with a product; means for sealing the hot-filled container; means for cooling the hot-filled and sealed container; and means for reducing a vacuum in the container. In various embodiments, the means for reducing a vacuum can include inward movement of the movable base portion. Optionally, in various embodiments, the formed plastic container may be free of any vacuum panels on its sidewall.
Various embodiments also can include a method comprising providing a predetermined amount of plastic material and compression molding the amount of plastic material to form a plastic preform. The plastic preform can have a geometry to form a blow molded container with a bottom end base portion that is invertible to compensate for an induced vacuum in the container caused by hot-filling and cooling operations. The preform has a body defining an inner volume and comprising: an open end defining an opening into the inner volume; a closed end opposite the open end in a length-wise direction of the preform body; and a sidewall between the open and closed ends that extends in the length-wise direction of the preform body along a central longitudinal axis thereof. The closed end of the preform body is gateless and can be rounded, wherein an entirety of an outer surface of the closed end can be smooth, and an entirety of an inner surface of the closed end may also be smooth. In various embodiment, the sidewall has a first thickness immediately adjacent a transition portion between the sidewall and the closed end, the transition portion has a thickness less than the immediately adjacent sidewall portion, and the closed end has a thickness that decreases from the thickness of the transition portion to a minimum thickness of the preform at the central longitudinal axis of the preform body.
In various embodiments, the method can further comprise blow molding said compression molded plastic preform to form a blow molded plastic container. The blow molded container can have a sidewall formed based on the configuration of the sidewall of the preform, a support structure for supporting the container in an upright position on a flat surface, the support structure being formed based on the configuration of said transition portion, and a movable base portion that is formed based on the configuration of the closed end of the preform, the center of the movable base portion at the central longitudinal axis being oriented as a result of the blow molding operation. Optionally, the movable portion can be initially formed at a downward angle with respect to the horizontal. The movable base portion can be configured to move in response to internal forces within the container. Optionally, in various embodiments the movable portion can be at all times at or above a plane running through a bottom most portion of the support structure. In various embodiments, the movable base portion can be caused to be pulled inward toward the interior of the container in response to a hot-filling and cooling operation. Further, optionally, the entirety of the inner surface of the closed end may be void of stepped or sharp transitions.
The accompanying drawings illustrate embodiments of the disclosed subject matter. The disclosed subject matter will be best understood by reading the ensuing specification in conjunction with the drawing figures, in which like elements are designated by like reference numerals, and wherein:
Generally speaking, various embodiments of the disclosed subject matter involve compression molded preforms for forming invertible base hot-fill containers, and systems and methods thereof, including resultant containers formed by such compression molded preforms.
A preform according to various embodiments of the disclosed subject matter includes a body with a first open end, a second closed end or end cap of hemispherical shape, for example, and a sidewall extending between the first end and the second end. At least a portion of the closed end can be thinner than any portion of the sidewall. Alternatively, the closed end and the sidewall can be of substantially the same thickness, or have portions thereof of substantially the same thickness. Further, the closed end is gateless and can have an inner surface that is substantially smooth along its entire area. The compression molded preform may be blow molded to form a plastic container with an invertible or movable base. The invertible or movable base can be responsive to or moved based on internal forces or pressures associated with processing the container, such as hot-filling and cooling and/or elevating the temperature of the contents after filling and capping (e.g., pasteurization).
Generally speaking, compression molding includes placing a preheated polymer into an open, heated mold cavity, closing a mold top over the mold cavity to encase the preheated polymer, and then applying pressure (and heat) to force the material to contact all areas of the mold. Throughout the process, heat and pressure may be maintained until the polymer has cured. Heat and pressure may be varied or set at different values for different parts of the preform, depending, for example, upon a thickness or a thinness of a particular portion of the preform.
System 100 can include an extruder 110 including a die nozzle for extruding a rod of plastic material to be formed by compression molding into a desired plastic preform. The plastic can be extruded in any suitable shape, form, or amount, such as in a ½″ diameter rod 197 of plastic material at a weight of 37.5 g, for example. In various embodiments the amount of plastic material is chosen based on an inner volume and/or surface characteristics of the mold. The plastic material can be any suitable material, including thermosets or thermoplastics, such as polyethylene terephthalate (“PET”). Though a rod of material has been discussed above, the plastic can be provided in any suitable format, such as plastic pellets or a sheet of plastic material, in which case the system's extruder 110 would be replaced with a suitable alternative for supplying plastic material of a particular form.
In various embodiments, the plastic material can be extruded from extruder 110 to a holder 120. Alternatively, the plastic material can be extruded directly to a mold cavity. As shown in
Once the rod 197 of plastic material is deposited in the cavity of mold 140, the plastic material is heated to form a molten billet 198. A mold top 145 is closed over mold 140 to encase the molten billet 198. The mold top 145 can include a core mold portion 147 that forms the inner volume of the preform. The molten billet is subjected to heat and pressure to force the material to contact all areas of the mold 140 and mold top 145 (including core mold portion 147). Pressure and optionally heat may be maintained until the polymer has cured. As noted above, heat and/or pressure may be varied or set to different values for different parts of the preform, depending, for example, upon a thickness or thinness of a particular portion of the preform. The cured plastic material can be allowed to cool, the mold top 145 is opened, and preform 200 is removed from the mold. Preforms according to various embodiments of the disclosed subject matter can have respective thicknesses of their sidewalls and closed ends relatively close in value, as will be discussed in more detail below. Thus, in various embodiments, because the thicknesses of the sidewall and the closed end are relatively close, compression molding of the preform may be performed more easily, because differences in temperature and pressure are not as significant for the different areas and pressure and temperature regulation can be improved or more easily controlled.
In various embodiments, the cavity of mold 140, the mold top 145, and the core mold portion 147 have respective geometries to form compression molded plastic preforms according to various embodiments of the disclosed subject matter, such as those shown in
Systems according to various embodiments of the disclosed subject matter also can include a blow molder that blow molds compression molded preforms according to various embodiments of the disclosed subject matter into blow molded containers, such as bottles and jars. In various embodiments, preforms according to various embodiments of the disclosed subject matter can form containers with movable base portions, which can be moved based on internal pressures of the filled container. The blow molder can perform blow molding in any suitable fashion, such as by injection blow molding or stretch blow molding.
Systems according to various embodiments of the disclosed subject matter also can include a filling apparatus that fills the blow molded container with a consumable product, for example, a fluid, such as a liquid (e.g., water, soda, tea, applesauce, etc.). Optionally, the product can be hot-filled into the container. After filling, the container can be sealed by any suitable means, using any suitable seal, such as a snap fit top, a twist or screw on top or cap, etc. In various embodiments, the top or cap is configured to mate with the structure of the open end of the preform and blow molded container. For example, the cap or top may have threads which cooperate with threads of the preform and blow molded container to seal the container. In the case of a hot-filled container, the contents of the container may be allowed to cool to ambient temperature on their own or cooled by a specific cooling apparatus, such as a refrigerator, waterspray, fans, or the like.
Upon hot-filling the container and/or upon sealing of the hot-filled container, internal forces may be present within the container (e.g., force due to weight of the product, elevated temperatures, etc.). Such forces can be compensated for using a flexible or movable portion at a bottom end of the container base. The movable portion can have a geometry based on the shape and configuration of the compression molded preform and can move in response to an internal force or forces caused by hot-filling of a product into the container. For example, the movable portion may move downward to a desired amount or may move downward no more than a desired amount. Such movement can be based on the hot-filled product, the geometry of the movable portion, and/or the temperature of the hot-filled product.
Upon cooling of the hot-filled container, a vacuum may be induced in the sealed container. In various embodiments the vacuum is compensated for, for example, by reducing it, eliminating it, or creating an overpressure in the container. The vacuum can be compensated for by any suitable means. For example, in various embodiments of the disclosed subject matter, the container base (i.e., the bottom end of the container) can have a flexible or movable portion. Optionally, the flexible or movable portion can be the same as the portion of the container that can move in response to filling and capping a hot-filled container. Alternatively, this flexible or movable portion may be different from the portion of the container that can move in response to filling and capping a hot-filled container, or it can have overlapping features.
The movable portion can have a geometry based on the shape and configuration of the preform and can be movable, for example, inward, to reduce, to eliminate, or to create an overpressure in the container. Optionally, the movable portion can be pulled inward by the force of the vacuum itself. Alternatively, the movable portion may be moved inward by a mechanical apparatus, such as a push rod. In various embodiments the movable portion may be inverted inward, either by the force of the internal vacuum or by a mechanical apparatus. Optionally, the movable bottom end portion is caused to move such that no other portion of the container is caused to move by the induced vacuum. For example, based on the specific configuration and/or respective thicknesses of the movable bottom end portion and the sidewalls of the container, when a vacuum is induced in the container only the movable bottom end portion moves or is caused to move to compensate for the vacuum, and the sidewalls of the container remain substantially unmoved or without deformation.
The movable portion may move upward and/or downward in response to pressure or force variations within the container during various processing operations. In various embodiments, the blow molded container can have a standing surface, and the movable portion's movement may not exceed in a downward direction a plane passing through the standing surface of the container. Thus, a stable standing surface is maintained for the container throughout various processing operations despite the internal pressures and forces and the movement of the movable portion of the container in response thereto.
Preforms formed by injection molding, such as the one shown in
Preforms made by compression molding, such the preforms 200, 400 shown in
The preform 200 includes a body defining an inner volume and having an open end 230 which defines an opening into the inner volume, a closed end 210 opposite the open end in an axial, length-wise direction of the preform body, and a sidewall 220 that extends from the open end 230 to the closed end 210 along a central longitudinal axis of the preform body. In various embodiments, sidewall 220 can have a relatively thin portion 224 adjacent open end 230. Portion 224 may be thinned to form a shoulder portion of the container that leads to the neck and open end of the container.
In various embodiments, the open end 230 can have a cylindrical finish with external threads provided to mate with a closure, such as a cap or lid. In various embodiments, the cylindrical finish can have a ring-shaped flange portion provided, for example, to facilitate handling or further processing of the preform.
As mentioned above, the closed end 210 is gateless. Thus, an end portion 214 of the closed end 210 located at the central longitudinal axis is gateless. Thus, the entirety of the closed end 210, including its center, is configured to be oriented during blow molding operation to form the blow molded container. Further, in various embodiments the closed end 210 is without a weld line, such as a weld line that protrudes from the preform body or otherwise. Closed end 210 can be rounded, for example, in the form of a hemisphere, a half globe, or a dome. Moreover, in various embodiments, an entire or substantially entire outer surface of the closed end can be smooth. The outside of the closed end of the preform can be smooth in order to facilitate removal of the preform 200 from the mold. Closed end 210 is configured to form a movable or invertible base portion of a subsequently formed container.
An inner surface of the closed end 210 also can be rounded, for example, in the form of a hemisphere, a half globe, or a dome. Optionally, the inner surface of the closed end 210 may generally conform to the shape of the outer surface of the closed end 210, varying slightly because of a change in thickness at the closed end 210 in various embodiments, for example. In various embodiments, the inner surface of the closed end 210 can be smooth and without any (i.e., one or more) stepped or sharp transitions or variations in thickness. Optionally, an entirety of the inner surface of the closed end 210 can be smooth and without sharp or stepped transitions or variations in thickness, except for a protruding portion formed at the central longitudinal axis and that protrudes inward into the inner volume of the preform body (not shown in the embodiment of
In various embodiments, the preform body can include a transition portion 212 where the sidewall 220 and closed end 210 meet. In various embodiments the transition portion 212 is formed on an outer surface of the preform body where the sidewall 220 meets the closed end 210. The configuration and geometry of the transition portion 212 can assist with forming a relatively thin and movable base portion during blow molding. Further, a portion of the transition portion 212 can form or assist with forming a standing or support surface, such as a standing ring, for the blow molded container to support itself, for example on a flat surface. The support surface generally may be thicker than the movable base portion.
Thicknesses of various portions of the preform 200, and in particular respective thicknesses of the closed end 210, the transition portion 212, and the sidewall 220, can determine the final material distribution of the container, the material properties, and the container geometry. In various embodiments, the closed end 210 can have a portion that is thinner than any portion of the sidewall 220. Optionally, the closed end 210 can have a portion that is thinner than any other portion of the preform 210. In various embodiments, the portion of the closed end 210 that is thinner than any other portion of the preform 200 is the entire closed end. Optionally, the thickness of the closed end 210 may or may not vary, and the thinnest portion of the preform is the portion 214 at the central longitudinal axis of the preform. In various embodiments, the sidewall 220 can have a first thickness immediately adjacent the transition portion 212; the transition portion 212 can have a thickness less than the immediately adjacent sidewall portion, in some cases continuously decreasing toward the closed end 210; and the closed end 210 can have a thickness that decreases from the thickness of the transition portion 212 to a minimum thickness of the preform 200 at portion 214 located at the central longitudinal axis of the preform.
The preform 200 design (including thicknesses and geometry) can affect the final material distribution for the subsequent container, the material's subsequent properties, and the container geometry. For example, the preform 200 shown in FIGS. 2C and 2D—in conjunction with a blow molding cavity—has a geometry to form a base of a container with a bottom end portion that is thin enough to allow movement in the subsequent container due to internal pressure influence, but with sidewalls thicker than the bottom end portion such that deformation is confined to the movable bottom end portion, without deformation or significant deformation of the sidewalls of the container. For example, a minimum thickness of the second end 210 can be 50% or less than a maximum thickness of the sidewall 220. As but one specific example of thickness dimensions of compression molded preforms according to various embodiments of the disclosed subject matter, an end portion 210 of the preform 200 that forms a movable bottom end portion of the base can have a minimum thickness of 1.5 mm at portion 214, for example, and sidewalls 220 of the preform can have a maximum thickness of 3.5 mm, thereby providing a thin, flexible bottom end of the container with a relatively thick sidewall.
As discussed above, for injection molded containers, crystallinity of a gate portion can cause the preform to resist or unsatisfactorily perform stretching or orientation during formation of the container. Such resistance or unsatisfactory performance by the gate portion during blow molding can cause a thin part surrounding the gate portion to tear or holes in the base to be formed. To prevent tearing or holes from forming, when the container formed from an injection molded preform is blow molded, a hold gate area or pedestal may be used to keeps the gate portion from stretching. Item 166 in
The base portion can be configured to move in response to internal forces within the container. In particular, the movable bottom end portion can move upward and/or downward, depending upon the pressure or force experienced. In various embodiments, the movable portion's movement is contained such that it is at all times at or above a plane running through a bottom most portion of the support structure 302. In various embodiments, the movable base portion is caused to be pulled inward toward the interior of the container in response to a hot-filling and cooling operation. Alternatively, the movable base portion, for example, movable portion 306, is configured to be mechanically pushed in order to move the movable portion 306, and optionally movable portion 304, toward an interior of the container in order to compensate a vacuum force inside the container. In various embodiments the movable portion 304 and optionally movable portion 306 can be inverted by the internal vacuum pressure itself, by a mechanical apparatus, or by a combination thereof.
The movable bottom end portion may have a thickness that is either even in thickness or transitions gradually to a thinnest portion at the central longitudinal axis of the container. For example, portion 304 may be of a same thickness as portion 306, and their thicknesses may be uniform. Alternatively, portion 304 may have a thickness that decreases as it approaches portion 306. Portion 306 can have either a uniform thickness less than the thickness of portion 304, or it can have a thickness that decreases to a thinnest portion at the central longitudinal axis of the container. Thus, an entirety of the movable bottom end portion (i.e., portions 304 and 306) can be oriented as a result of the blow molding operation.
The preform 400 includes a body defining an inner volume and having an open end 430 which defines an opening into the inner volume, a closed end 410 opposite the open end in an axial, length-wise direction of the preform body, and a sidewall 420 that extends from the open end 430 to the closed end 410 along a central longitudinal axis of the preform body. In various embodiments, sidewall 420 can have a relatively thin portion 424 adjacent open end 430. Portion 424 may be thinned to form a shoulder portion of the container that leads to the neck and open end of the container.
In various embodiments, the open end 430 can have a cylindrical finish with external threads provided to mate with a closure, such as a cap or lid. In various embodiments, the cylindrical finish can have a ring-shaped flange portion provided, for example, to facilitate handling or further processing of the preform.
As mentioned above, the closed end 410 is gateless. Thus, an end portion 411 of the closed end 410 located at the central longitudinal axis is also gateless. Accordingly, an entirety of the closed end 410 is configured to be oriented during blow molding operation to form the blow molded container. Further, in various embodiments the closed end 410 is without a weld line, visible or otherwise. Closed end 410 can be rounded, for example, in the form of a hemisphere, a half globe, or a dome. Moreover, in various embodiments, an entire or substantially entire outer surface of the closed end can be smooth. The outside of the closed end of the preform can be smooth in order to facilitate removal of the preform 400 from the mold. Closed end 401 is configured to form a movable or invertible base portion of a subsequently formed container.
An inner surface of the closed end 410 also can be generally rounded, for example, in the form of a hemisphere, a half globe, or a dome. Optionally, the inner surface of the closed end 410 may generally conform to the shape of the outer surface of the closed end 410, varying slightly because of a change in thickness at the closed end 410 in various embodiments, for example. In various embodiments, the inner surface of the closed end 410 can be smooth and without any (i.e., one or more) stepped or sharp transitions or variations in thickness. Optionally, as shown in
In various embodiments, the preform body can include a transition portion 412 where the sidewall 420 and closed end 410 meet. In various embodiments the transition portion 412 is formed on an outer surface of the preform body where the sidewall 420 meets the closed end 410. In various embodiments, the configuration and geometry of the transition portion 412 can assist with creation of a thin base portion during blow molding. Further, a portion of the transition portion 412 can form or assist with forming a standing or support surface, such as a standing ring, for the blow molded container to support itself, for example on a flat surface.
In various embodiments the transition portion 412 can include a first portion and a second portion, the first portion being adjacent sidewall 420 and the second portion being adjacent closed end 410. In various embodiments the first portion may be viewed as a bump with respect to the second portion. First portion may be curved and have a radius of curvature R1. Likewise, the second portion may be curved and have a radius of curvature R2. In various embodiments the radii of curvature are different. Optionally, second radius of curvature R2 is greater than the first radius of curvature R1. Moreover, the orientations of the first and second radii of curvature are different, opposite, for example. In various embodiments, the direction of the radius of curvature (R1) for the first portion is generally inward and the direction of the radius of curvature (R2) for the second portion is generally outward.
Thicknesses of various portions of the preform 400, and in particular respective thicknesses of the closed end 410, the transition portion 412, and the sidewall 420, can determine the final material distribution of the container, the material properties, and the container geometry. In various embodiments, the closed end can have a portion that is thinner than any portion of the sidewall 420. Optionally, the closed end 410 can have a portion that is thinner than any other portion of the preform 410. In the case of the preform 400 shown explicitly in
Method 500 can begin at S502 and proceed to S504, whereby an amount of plastic material can be provided for compression molding a preform according to various embodiments of the disclosed subject matter. The plastic material can be provided by any suitable system or apparatus, in any suitable form, such as described above. For example, the plastic may be provided in the form of a plastic rod of material cut off from an extruder. In various embodiments the amount of plastic material may be a predetermined amount.
Method 500 can proceed to S506. At S506 the amount of plastic material can be compression molded in a mold to form and make a plastic preform according to various embodiments of the disclosed subject matter as described herein. In various embodiments, method 500 can end upon creation of the preform.
At S508, the preform may be used to form or make a container. The container can be made using any suitable technique, such as blow molding, injection blow molding, or stretch blow molding. In various embodiments, the formed container can have a sidewall formed based on the configuration of the sidewall of the preform, a support structure (e.g., a standing ring or surface) for supporting the container in an upright position on a flat surface that is formed based on the configuration of said transition portion, and a movable base portion that is formed based on the configuration of the closed end and/or transition portion of the preform. More specifically, in various embodiments, the formed container can have a bottom end portion that is thin enough to be movable, for example invertible, to compensate for internal pressures within the filled container. Further, the center of the movable base portion at the central longitudinal axis can be oriented as a result of the blow molding operation. In various embodiments, the entire movable base portion can be oriented as a result of the blow molding operation. Note that the method 500 can begin at S508 and end with S508. Thus, the specific method of blow molding a preform according to various embodiments of the disclosed subject matter can constitute a method separate and distinct from forming the preform.
After S508, the method can proceed to S510. At S510, the container can be subjected to hot-filling and cooling operations. Generally speaking, hot-fill and cooling operations can include hot-filling the container with a consumable product, for example, a fluid, such as a liquid (e.g., water, soda, tea, applesauce, etc.), sealing the container with a top, lid, or cap, for example, and subjecting the filled and sealed container to a cooling operation, such as a refrigerator, a water stream, or simply allowing it to cool to ambient temperature of a room.
Upon hot-filling the container and/or upon sealing of the hot-filled container, internal forces may be present within the container (e.g., force due to weight of the product, elevated temperatures, etc.). Such pressures can be compensated for by a flexible or movable portion at a bottom end of the container base. The movable portion can have a geometry based on the shape and configuration of the preform and can move in response to an internal force or forces caused by hot-filling of a product into the container. For example, the movable portion may move downward to a desired amount or may move downward no more than a desired amount. Such movement can be based on the hot-filled product, the geometry of the movable portion, and/or the temperature of the hot-filled product.
Upon cooling of the hot-filled container, a vacuum may be induced in the sealed container. Thus, after S510, the method can proceed to S512. At S512, compensation for the internal vacuum formed in the container can be performed.
In various embodiments the vacuum is compensated for, for example, by reducing it, eliminating it, or creating an overpressure in the container. The vacuum can be compensated for by any suitable means. For example, in various embodiments of the disclosed subject matter, the container base (i.e., the bottom end of the container) can have a flexible or movable portion. Optionally, the flexible or movable portion can be the same as the portion of the container that can move in response to filling and capping a hot-filled container. Alternatively, this flexible or movable portion may be different from the portion of the container that can move in response to filling and capping a hot-filled container, or it can have overlapping features. Optionally, the container can have one or more supplemental vacuum panels located on the sidewall of the container, for example, to provide supplemental compensation of the internal vacuum. Each supplemental vacuum panel can reduce a first portion of the vacuum, and the movable end portion of the container can remove a second portion of the vacuum. In various embodiments, the supplemental vacuum panel or panels can prevent other portions of the container from deforming until the movable portion moves or is caused to move to reduce the vacuum pressure. Alternatively, no supplemental or additional vacuum panels may be provided on the sidewall or otherwise, and the movable bottom portion is the sole means by which to reduce, eliminate, or create an overpressure in the container.
In various embodiments, the movable portion can be pulled inward by the force of the vacuum itself. Optionally or alternatively, the movable portion may be moved by a mechanical apparatus, such as a push rod. In various embodiments the movable portion may be inverted, either by the force of the internal vacuum or by a mechanical apparatus. In various embodiments the movable bottom end portion is caused to move such that no other portion of the container is caused to move by the induced vacuum. For example, based on the specific configuration and/or respective thicknesses of the movable bottom end portion and the sidewalls of the container, when a vacuum is induced in the container only the movable bottom end portion moves or is caused to move to compensate for the vacuum, and the sidewalls of the container remain substantially unmoved or without deformation.
In
While the disclosed subject matter has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be or are apparent to those of ordinary skill in the applicable arts. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents, and variations that are within the spirit and scope of the disclosed subject matter described herein.
Number | Name | Date | Kind |
---|---|---|---|
1499239 | Malmquist | Jun 1924 | A |
D110624 | Mekeel, Jr. | Jul 1938 | S |
2124959 | Vogel | Jul 1938 | A |
2142257 | Saeta | Jan 1939 | A |
2378324 | Ray et al. | Jun 1945 | A |
2880902 | Owsen | Apr 1959 | A |
2960248 | Kuhlman | Nov 1960 | A |
2971671 | Shakman | Feb 1961 | A |
2982440 | Harrison | May 1961 | A |
3043461 | Glassco | Jul 1962 | A |
3081002 | Tauschinski et al. | Mar 1963 | A |
3090478 | Stanley | May 1963 | A |
3142371 | Rice et al. | Jul 1964 | A |
3174655 | Hurschman | Mar 1965 | A |
3198861 | Marvel | Aug 1965 | A |
3201111 | Afton | Aug 1965 | A |
3301293 | Santelli | Jan 1967 | A |
3325031 | Singier | Jun 1967 | A |
3397724 | Bolen et al. | Aug 1968 | A |
3409167 | Blanchard | Nov 1968 | A |
3417893 | Lieberman | Dec 1968 | A |
3426939 | Young | Feb 1969 | A |
3441982 | Tsukahara et al. | May 1969 | A |
3468443 | Marcus | Sep 1969 | A |
3483908 | Donovan | Dec 1969 | A |
3485355 | Stewart | Dec 1969 | A |
3693828 | Kneusel et al. | Sep 1972 | A |
3704140 | Petit et al. | Nov 1972 | A |
3727783 | Carmichael | Apr 1973 | A |
3791508 | Osborne et al. | Feb 1974 | A |
3819789 | Parker | Jun 1974 | A |
3904069 | Toukmanian | Sep 1975 | A |
3918920 | Barber | Nov 1975 | A |
3935955 | Das | Feb 1976 | A |
3941237 | MacGregor, Jr. | Mar 1976 | A |
3942673 | Lyu et al. | Mar 1976 | A |
3949033 | Uhlig | Apr 1976 | A |
3956441 | Uhlig | May 1976 | A |
4035455 | Rosenkranz et al. | Jul 1977 | A |
4036926 | Chang | Jul 1977 | A |
4037752 | Dulmaine et al. | Jul 1977 | A |
4117062 | Uhlig | Sep 1978 | A |
4123217 | Fischer et al. | Oct 1978 | A |
4125632 | Vosti et al. | Nov 1978 | A |
4134510 | Chang | Jan 1979 | A |
4158624 | Ford et al. | Jun 1979 | A |
4170622 | Uhlig | Oct 1979 | A |
4174782 | Obsomer | Nov 1979 | A |
4177239 | Gittner et al. | Dec 1979 | A |
4219137 | Hutchens | Aug 1980 | A |
4231483 | Dechenne et al. | Nov 1980 | A |
4247012 | Alberghini | Jan 1981 | A |
4301933 | Yoshino et al. | Nov 1981 | A |
4318489 | Snyder et al. | Mar 1982 | A |
4318882 | Agrawal et al. | Mar 1982 | A |
4338765 | Ohmori et al. | Jul 1982 | A |
4355728 | Ota et al. | Oct 1982 | A |
4377191 | Yamaguchi | Mar 1983 | A |
4378328 | Przytulla et al. | Mar 1983 | A |
4381061 | Cerny et al. | Apr 1983 | A |
D269158 | Gaunt | May 1983 | S |
4386701 | Galer | Jun 1983 | A |
4436216 | Chang | Mar 1984 | A |
4444308 | MacEwen | Apr 1984 | A |
4450878 | Takada et al. | May 1984 | A |
4465199 | Aoki | Aug 1984 | A |
4495974 | Pohorski | Jan 1985 | A |
4497855 | Agrawal et al. | Feb 1985 | A |
4525401 | Pocock et al. | Jun 1985 | A |
4542029 | Caner et al. | Sep 1985 | A |
4547333 | Takada | Oct 1985 | A |
4585158 | Wardlaw, III | Apr 1986 | A |
4610366 | Estes et al. | Sep 1986 | A |
4628669 | Herron et al. | Dec 1986 | A |
4642968 | McHenry et al. | Feb 1987 | A |
4645078 | Reyner | Feb 1987 | A |
4667454 | McHenry et al. | May 1987 | A |
4684025 | Copland et al. | Aug 1987 | A |
4685273 | Caner et al. | Aug 1987 | A |
D292378 | Brandt et al. | Oct 1987 | S |
4701121 | Jakobsen et al. | Oct 1987 | A |
4723661 | Hoppmann et al. | Feb 1988 | A |
4724855 | Jackson | Feb 1988 | A |
4725464 | Collette | Feb 1988 | A |
4747507 | Fitzgerald et al. | May 1988 | A |
4749092 | Sugiura et al. | Jun 1988 | A |
4769206 | Reymann et al. | Sep 1988 | A |
4773458 | Touzani | Sep 1988 | A |
4785949 | Krishnakumar et al. | Nov 1988 | A |
4785950 | Miller et al. | Nov 1988 | A |
4807424 | Robinson et al. | Feb 1989 | A |
4813556 | Lawrence | Mar 1989 | A |
4831050 | Cassidy et al. | May 1989 | A |
4836398 | Leftault, Jr. et al. | Jun 1989 | A |
4840289 | Fait et al. | Jun 1989 | A |
4850493 | Howard, Jr. | Jul 1989 | A |
4850494 | Howard, Jr. | Jul 1989 | A |
4863046 | Collette et al. | Sep 1989 | A |
4865206 | Behm et al. | Sep 1989 | A |
4867323 | Powers | Sep 1989 | A |
4880129 | McHenry et al. | Nov 1989 | A |
4887730 | Touzani | Dec 1989 | A |
4892205 | Powers et al. | Jan 1990 | A |
4896205 | Weber | Jan 1990 | A |
4921147 | Poirier | May 1990 | A |
4927679 | Beck | May 1990 | A |
4962863 | Wendling et al. | Oct 1990 | A |
4967538 | Leftault, Jr. et al. | Nov 1990 | A |
4978015 | Walker | Dec 1990 | A |
4997692 | Yoshino | Mar 1991 | A |
5004109 | Bartley et al. | Apr 1991 | A |
5005716 | Eberle | Apr 1991 | A |
5014868 | Wittig et al. | May 1991 | A |
5020691 | Nye | Jun 1991 | A |
5024340 | Alberghini et al. | Jun 1991 | A |
5033254 | Zenger | Jul 1991 | A |
5054632 | Alberghini et al. | Oct 1991 | A |
5060453 | Alberghini et al. | Oct 1991 | A |
5067622 | Garver et al. | Nov 1991 | A |
5090180 | Sorensen | Feb 1992 | A |
5092474 | Leigner | Mar 1992 | A |
5122327 | Spina et al. | Jun 1992 | A |
5133468 | Brunson et al. | Jul 1992 | A |
5141121 | Brown et al. | Aug 1992 | A |
5178290 | Ota et al. | Jan 1993 | A |
5199587 | Ota et al. | Apr 1993 | A |
5199588 | Hayashi | Apr 1993 | A |
5201438 | Norwood | Apr 1993 | A |
5217737 | Gygax et al. | Jun 1993 | A |
5234126 | Jonas et al. | Aug 1993 | A |
5244106 | Takacs | Sep 1993 | A |
5251424 | Zenger et al. | Oct 1993 | A |
5255889 | Collette et al. | Oct 1993 | A |
5261544 | Weaver, Jr. | Nov 1993 | A |
5279433 | Krishnakumar et al. | Jan 1994 | A |
5281387 | Collette et al. | Jan 1994 | A |
5310043 | Alcorn | May 1994 | A |
5333761 | Davis et al. | Aug 1994 | A |
5337909 | Vailliencourt | Aug 1994 | A |
5337924 | Dickie | Aug 1994 | A |
5341946 | Valliencourt et al. | Aug 1994 | A |
5389332 | Amari et al. | Feb 1995 | A |
5392937 | Prevot et al. | Feb 1995 | A |
5405015 | Bhatia et al. | Apr 1995 | A |
5407086 | Ota et al. | Apr 1995 | A |
5411699 | Collette et al. | May 1995 | A |
5454481 | Hsu | Oct 1995 | A |
5472105 | Krishnakumar et al. | Dec 1995 | A |
5472181 | Lowell | Dec 1995 | A |
RE35140 | Powers, Jr. | Jan 1996 | E |
5484052 | Pawloski et al. | Jan 1996 | A |
D366831 | Semersky et al. | Feb 1996 | S |
5492245 | Kalbanis | Feb 1996 | A |
5503283 | Semersky | Apr 1996 | A |
5543107 | Malik et al. | Aug 1996 | A |
5593063 | Claydon et al. | Jan 1997 | A |
5598941 | Semersky et al. | Feb 1997 | A |
5632397 | Fandeux et al. | May 1997 | A |
5642826 | Melrose | Jul 1997 | A |
5672730 | Cottman | Sep 1997 | A |
5687874 | Omori et al. | Nov 1997 | A |
5690244 | Darr | Nov 1997 | A |
5697489 | Deonarine et al. | Dec 1997 | A |
5704504 | Bueno | Jan 1998 | A |
5713480 | Petre et al. | Feb 1998 | A |
5718030 | Langmack et al. | Feb 1998 | A |
5730314 | Wiemann et al. | Mar 1998 | A |
5730914 | Ruppmann, Sr. | Mar 1998 | A |
5735420 | Nakamaki et al. | Apr 1998 | A |
5737827 | Kuse et al. | Apr 1998 | A |
5758802 | Wallays | Jun 1998 | A |
5762221 | Tobias et al. | Jun 1998 | A |
5780130 | Hansen et al. | Jul 1998 | A |
5785197 | Slat | Jul 1998 | A |
5819507 | Kaneko et al. | Oct 1998 | A |
5829614 | Collette et al. | Nov 1998 | A |
5860556 | Robbins, III | Jan 1999 | A |
5887739 | Prevot et al. | Mar 1999 | A |
5888598 | Brewster et al. | Mar 1999 | A |
5897090 | Smith et al. | Apr 1999 | A |
5906286 | Matsuno et al. | May 1999 | A |
5908128 | Krishnakumar et al. | Jun 1999 | A |
D413519 | Eberle et al. | Sep 1999 | S |
D415030 | Searle et al. | Oct 1999 | S |
5971184 | Krishnakumar et al. | Oct 1999 | A |
5976653 | Collette et al. | Nov 1999 | A |
5989661 | Krishnakumar et al. | Nov 1999 | A |
6016932 | Gaydosh et al. | Jan 2000 | A |
RE36639 | Okhai | Apr 2000 | E |
6045001 | Seul | Apr 2000 | A |
6051295 | Schloss et al. | Apr 2000 | A |
6063325 | Nahill et al. | May 2000 | A |
6065624 | Steinke | May 2000 | A |
6068110 | Kumakiri et al. | May 2000 | A |
6074596 | Jacquet | Jun 2000 | A |
6077554 | Wiemann et al. | Jun 2000 | A |
6090334 | Matsuno et al. | Jul 2000 | A |
6105815 | Mazda | Aug 2000 | A |
6113377 | Clark | Sep 2000 | A |
D433946 | Rollend et al. | Nov 2000 | S |
6176382 | Bazlur Rashid | Jan 2001 | B1 |
D440877 | Lichtman et al. | Apr 2001 | S |
6209710 | Mueller et al. | Apr 2001 | B1 |
6213325 | Cheng et al. | Apr 2001 | B1 |
6217818 | Collette et al. | Apr 2001 | B1 |
6228317 | Smith et al. | May 2001 | B1 |
6230912 | Rashid | May 2001 | B1 |
6248413 | Barel et al. | Jun 2001 | B1 |
6253809 | Paradies | Jul 2001 | B1 |
6273282 | Ogg et al. | Aug 2001 | B1 |
6277321 | Vailliencourt et al. | Aug 2001 | B1 |
6298638 | Bettle | Oct 2001 | B1 |
D450595 | Ogg et al. | Nov 2001 | S |
6354427 | Pickel et al. | Mar 2002 | B1 |
6375025 | Mooney | Apr 2002 | B1 |
6390316 | Mooney | May 2002 | B1 |
6413466 | Boyd et al. | Jul 2002 | B1 |
6439413 | Prevot et al. | Aug 2002 | B1 |
6460714 | Silvers et al. | Oct 2002 | B1 |
6467639 | Mooney | Oct 2002 | B2 |
6485669 | Boyd et al. | Nov 2002 | B1 |
6494333 | Sasaki et al. | Dec 2002 | B2 |
6502369 | Andison et al. | Jan 2003 | B1 |
6514451 | Boyd et al. | Feb 2003 | B1 |
6585123 | Pedmo et al. | Jul 2003 | B1 |
6585124 | Boyd et al. | Jul 2003 | B2 |
6595380 | Silvers | Jul 2003 | B2 |
6612451 | Tobias et al. | Sep 2003 | B2 |
6635217 | Britton | Oct 2003 | B1 |
D482976 | Melrose | Dec 2003 | S |
6662960 | Hong et al. | Dec 2003 | B2 |
6676883 | Hutchinson et al. | Jan 2004 | B2 |
D492201 | Pritchett et al. | Jun 2004 | S |
6749075 | Bourque et al. | Jun 2004 | B2 |
6749780 | Tobias | Jun 2004 | B2 |
6763968 | Boyd et al. | Jul 2004 | B1 |
6763969 | Melrose et al. | Jul 2004 | B1 |
6769561 | Futral et al. | Aug 2004 | B2 |
6779673 | Melrose et al. | Aug 2004 | B2 |
6796450 | Prevot et al. | Sep 2004 | B2 |
6920992 | Lane et al. | Jul 2005 | B2 |
6923334 | Melrose et al. | Aug 2005 | B2 |
6929138 | Melrose et al. | Aug 2005 | B2 |
6932230 | Pedmo et al. | Aug 2005 | B2 |
6942116 | Lisch et al. | Sep 2005 | B2 |
6974047 | Kelley et al. | Dec 2005 | B2 |
6983858 | Slat et al. | Jan 2006 | B2 |
7051073 | Dutta | May 2006 | B1 |
7051889 | Boukobza | May 2006 | B2 |
D522368 | Darr et al. | Jun 2006 | S |
7073675 | Trude | Jul 2006 | B2 |
7077279 | Melrose | Jul 2006 | B2 |
7080747 | Lane et al. | Jul 2006 | B2 |
D531910 | Melrose | Nov 2006 | S |
7137520 | Melrose | Nov 2006 | B1 |
7140505 | Roubal et al. | Nov 2006 | B2 |
7150372 | Lisch et al. | Dec 2006 | B2 |
D535884 | Davis et al. | Jan 2007 | S |
7159374 | Abercrombie, III et al. | Jan 2007 | B2 |
D538168 | Davis et al. | Mar 2007 | S |
D547664 | Davis et al. | Jul 2007 | S |
7334695 | Bysick et al. | Feb 2008 | B2 |
7350657 | Eaton et al. | Apr 2008 | B2 |
D572599 | Melrose | Jul 2008 | S |
7416089 | Kraft et al. | Aug 2008 | B2 |
D576041 | Melrose et al. | Sep 2008 | S |
7451886 | Lisch et al. | Nov 2008 | B2 |
7543713 | Trude et al. | Jun 2009 | B2 |
7552834 | Tanaka et al. | Jun 2009 | B2 |
7574846 | Sheets et al. | Aug 2009 | B2 |
7694842 | Melrose | Apr 2010 | B2 |
7726106 | Kelley et al. | Jun 2010 | B2 |
7735304 | Kelley et al. | Jun 2010 | B2 |
7748551 | Gatewood et al. | Jul 2010 | B2 |
D623952 | Yourist et al. | Sep 2010 | S |
7799264 | Trude | Sep 2010 | B2 |
7882971 | Kelley et al. | Feb 2011 | B2 |
7900425 | Bysick et al. | Mar 2011 | B2 |
7926243 | Kelley et al. | Apr 2011 | B2 |
D637495 | Gill et al. | May 2011 | S |
D637913 | Schlies et al. | May 2011 | S |
D641244 | Bysick et al. | Jul 2011 | S |
7980404 | Trude et al. | Jul 2011 | B2 |
8011166 | Sheets et al. | Sep 2011 | B2 |
8017065 | Trude et al. | Sep 2011 | B2 |
D646966 | Gill et al. | Oct 2011 | S |
8028498 | Melrose | Oct 2011 | B2 |
8075833 | Kelley | Dec 2011 | B2 |
D653119 | Hunter et al. | Jan 2012 | S |
8096098 | Kelley et al. | Jan 2012 | B2 |
D653550 | Hunter | Feb 2012 | S |
D653957 | Yourist et al. | Feb 2012 | S |
8162655 | Trude et al. | Apr 2012 | B2 |
8171701 | Kelley et al. | May 2012 | B2 |
8235704 | Kelley | Aug 2012 | B2 |
8323555 | Trude et al. | Dec 2012 | B2 |
20010035391 | Young et al. | Nov 2001 | A1 |
20020063105 | Darr et al. | May 2002 | A1 |
20020074336 | Silvers | Jun 2002 | A1 |
20020096486 | Bourquet et al. | Jul 2002 | A1 |
20020153343 | Tobias et al. | Oct 2002 | A1 |
20020158038 | Heisel et al. | Oct 2002 | A1 |
20030015491 | Melrose et al. | Jan 2003 | A1 |
20030186006 | Schmidt et al. | Oct 2003 | A1 |
20030196926 | Tobias et al. | Oct 2003 | A1 |
20030205550 | Prevot et al. | Nov 2003 | A1 |
20030217947 | Ishikata et al. | Nov 2003 | A1 |
20040000533 | Kaminineni et al. | Jan 2004 | A1 |
20040016716 | Melrose et al. | Jan 2004 | A1 |
20040074864 | Melrose et al. | Apr 2004 | A1 |
20040129669 | Kelley et al. | Jul 2004 | A1 |
20040149677 | Slat et al. | Aug 2004 | A1 |
20040173565 | Semersky et al. | Sep 2004 | A1 |
20040212746 | Rosen | Oct 2004 | A1 |
20040232103 | Lisch et al. | Nov 2004 | A1 |
20050035083 | Pedmo et al. | Feb 2005 | A1 |
20050211662 | Eaton et al. | Sep 2005 | A1 |
20050218108 | Bangi et al. | Oct 2005 | A1 |
20060006133 | Lisch et al. | Jan 2006 | A1 |
20060051541 | Steele | Mar 2006 | A1 |
20060138074 | Melrose | Jun 2006 | A1 |
20060151425 | Kelley et al. | Jul 2006 | A1 |
20060231985 | Kelley | Oct 2006 | A1 |
20060243698 | Melrose | Nov 2006 | A1 |
20060255005 | Melrose et al. | Nov 2006 | A1 |
20060261031 | Melrose | Nov 2006 | A1 |
20070017892 | Melrose | Jan 2007 | A1 |
20070045222 | Denner et al. | Mar 2007 | A1 |
20070045312 | Abercrombie, III et al. | Mar 2007 | A1 |
20070051073 | Kelley et al. | Mar 2007 | A1 |
20070084821 | Bysick et al. | Apr 2007 | A1 |
20070125742 | Simpson, Jr. et al. | Jun 2007 | A1 |
20070125743 | Pritchett, Jr. et al. | Jun 2007 | A1 |
20070131644 | Melrose | Jun 2007 | A1 |
20070181403 | Sheets et al. | Aug 2007 | A1 |
20070199915 | Denner et al. | Aug 2007 | A1 |
20070199916 | Denner et al. | Aug 2007 | A1 |
20070215571 | Trude | Sep 2007 | A1 |
20070235905 | Trude et al. | Oct 2007 | A1 |
20080047964 | Denner et al. | Feb 2008 | A1 |
20080156847 | Hawk et al. | Jul 2008 | A1 |
20080257856 | Melrose et al. | Oct 2008 | A1 |
20090090728 | Trude et al. | Apr 2009 | A1 |
20090091067 | Trude et al. | Apr 2009 | A1 |
20090092720 | Trude et al. | Apr 2009 | A1 |
20090120530 | Kelley et al. | May 2009 | A1 |
20090134117 | Mooney | May 2009 | A1 |
20090202766 | Beuerle et al. | Aug 2009 | A1 |
20090293436 | Miyazaki et al. | Dec 2009 | A1 |
20100018838 | Kelley et al. | Jan 2010 | A1 |
20100116778 | Melrose | May 2010 | A1 |
20100133228 | Trude | Jun 2010 | A1 |
20100163513 | Pedmo | Jul 2010 | A1 |
20100170199 | Kelley et al. | Jul 2010 | A1 |
20100213204 | Melrose | Aug 2010 | A1 |
20100237083 | Trude et al. | Sep 2010 | A1 |
20100301058 | Trude et al. | Dec 2010 | A1 |
20110049083 | Scott et al. | Mar 2011 | A1 |
20110049084 | Yourist et al. | Mar 2011 | A1 |
20110084046 | Schlies et al. | Apr 2011 | A1 |
20110094618 | Melrose | Apr 2011 | A1 |
20110108515 | Gill et al. | May 2011 | A1 |
20110113731 | Bysick et al. | May 2011 | A1 |
20110132865 | Hunter et al. | Jun 2011 | A1 |
20110147392 | Trude et al. | Jun 2011 | A1 |
20110210133 | Melrose et al. | Sep 2011 | A1 |
20110266293 | Kelley et al. | Nov 2011 | A1 |
20110284493 | Yourist et al. | Nov 2011 | A1 |
20120104010 | Kelley | May 2012 | A1 |
20120132611 | Trude et al. | May 2012 | A1 |
20120152964 | Kelley et al. | Jun 2012 | A1 |
20120240515 | Kelley et al. | Sep 2012 | A1 |
20120266565 | Trude et al. | Oct 2012 | A1 |
20120267381 | Trude et al. | Oct 2012 | A1 |
20130000259 | Trude et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
2002257159 | Apr 2003 | AU |
2077717 | Mar 1993 | CA |
1761753 | Jan 1972 | DE |
P2102319.8 | Aug 1972 | DE |
3215866 | Nov 1983 | DE |
225 155 | Jun 1987 | EP |
225155 | Jun 1987 | EP |
346518 | Dec 1989 | EP |
0 502 391 | Sep 1992 | EP |
0 505054 | Sep 1992 | EP |
0521642 | Jan 1993 | EP |
0 551 788 | Jul 1993 | EP |
0666222 | Feb 1994 | EP |
0 739 703 | Oct 1996 | EP |
0 609 348 | Feb 1997 | EP |
0916406 | May 1999 | EP |
0957030 | Nov 1999 | EP |
1 063 076 | Dec 2000 | EP |
1571499 | Jun 1969 | FR |
2607109 | May 1988 | FR |
781103 | Aug 1957 | GB |
1113988 | May 1968 | GB |
2 050 919 | Jan 1981 | GB |
2372977 | Sep 2002 | GB |
48-31050 | Sep 1973 | JP |
49-28628 | Jul 1974 | JP |
54-72181 | Jun 1979 | JP |
S54-70185 | Jun 1979 | JP |
56-56830 | May 1981 | JP |
56-72730 | Jun 1981 | JP |
57-210829 | Jan 1982 | JP |
S57-17730 | Jan 1982 | JP |
57-37827 | Feb 1982 | JP |
57-37827 | Feb 1982 | JP |
57-126310 | Aug 1982 | JP |
61-192539 | Aug 1986 | JP |
63-189224 | Aug 1988 | JP |
64-004662 | Feb 1989 | JP |
3-43342 | Feb 1991 | JP |
3-43342 | Feb 1991 | JP |
03-076625 | Apr 1991 | JP |
4-10012 | Jan 1992 | JP |
5-193694 | Aug 1993 | JP |
53-10239 | Nov 1993 | JP |
06-270235 | Sep 1994 | JP |
6-336238 | Dec 1994 | JP |
07-300121 | Nov 1995 | JP |
H08-048322 | Feb 1996 | JP |
08-244747 | Sep 1996 | JP |
8-253220 | Oct 1996 | JP |
8-282633 | Oct 1996 | JP |
09-001639 | Jan 1997 | JP |
09-039934 | Feb 1997 | JP |
9-110045 | Apr 1997 | JP |
10-167226 | Jun 1998 | JP |
10-181734 | Jul 1998 | JP |
10-230919 | Sep 1998 | JP |
3056271 | Nov 1998 | JP |
11-218537 | Aug 1999 | JP |
2000-229615 | Aug 2000 | JP |
2002-127237 | May 2002 | JP |
2002-2160717 | Jun 2002 | JP |
2002-326618 | Nov 2002 | JP |
2003-095238 | Apr 2003 | JP |
2004-026307 | Jan 2004 | JP |
2006-501109 | Jan 2006 | JP |
2007-216981 | Aug 2007 | JP |
2008-189721 | Aug 2008 | JP |
240448 | Jun 1995 | NZ |
296014 | Oct 1998 | NZ |
335565 | Oct 1999 | NZ |
506684 | Sep 2001 | NZ |
512423 | Sep 2001 | NZ |
521694 | Oct 2003 | NZ |
WO 9309031 | May 1993 | WO |
WO 9312975 | Jul 1993 | WO |
WO 9405555 | Mar 1994 | WO |
WO 9406617 | Mar 1994 | WO |
WO 9703885 | Feb 1997 | WO |
WO 9714617 | Apr 1997 | WO |
WO 9734808 | Sep 1997 | WO |
WO 9734808 | Sep 1997 | WO |
WO 9921770 | May 1999 | WO |
WO 0038902 | Jul 2000 | WO |
WO 0051895 | Sep 2000 | WO |
WO 0112531 | Feb 2001 | WO |
WO 0140081 | Jun 2001 | WO |
WO 0174689 | Oct 2001 | WO |
WO 0202418 | Jan 2002 | WO |
WO 0218213 | Mar 2002 | WO |
WO 02085755 | Oct 2002 | WO |
WO 2004028910 | Apr 2004 | WO |
WO 2004106175 | Dec 2004 | WO |
WO 2004106176 | Dec 2004 | WO |
WO 2005012091 | Feb 2005 | WO |
WO 2005025999 | Mar 2005 | WO |
WO 2005087628 | Sep 2005 | WO |
WO 2006113428 | Oct 2006 | WO |
WO 2007047574 | Apr 2007 | WO |
WO 2007127337 | Nov 2007 | WO |
WO 2010058098 | May 2010 | WO |
Entry |
---|
U.S. Appl. No. 13/210,350, filed Aug. 15, 2011, Wurster et al. |
U.S. Appl. No. 13/251,966, filed Oct. 3, 2011, Howell et al. |
U.S. Appl. No. 13/210,358, filed Aug. 15, 2011, Wurster et al. |
U.S. Appl. No. 13/410,902, filed Mar. 2, 2012, Gill. |
Contents of U.S. Appl. No. 60/220,326, filed Jul. 24, 2000 dated Oct. 29, 2008. |
International Search Report for PCT/US2005/008374 dated Aug. 2, 2005. |
IPRP (including Written Opinion) for PCT/US2005/008374 dated Sep. 13, 2006. |
International Search Report for PCT/US2004/016405 dated Feb. 15, 2005. |
IPRP (including Written Opinion) for PCT/US2004/016405 dated Nov. 25, 2005. |
Office Action for Application No. EP 06 750 165.0-2307 dated Nov. 24, 2008. |
International Search Report for PCT/US2006/040361 dated Feb. 26, 2007. |
IPRP (including Written Opinion) for PCT/US2006/040361 dated Apr. 16, 2008. |
International Search Report for PCT/US2007/006318 dated Sep. 11, 2007. |
IPRP (including Written Opinion) PCT/US2007/006318 dated Sep. 16, 2008. |
IPRP (including Written Opinion) PCT/US2006/014055 dated Oct. 16, 2007. |
International Search Report for PCT/US2004/024581 dated Jul. 25, 2005. |
IPRP (including Written Opinion) for PCT/US2004/024581 dated Jan. 30, 2006. |
Official Notification for counterpart Japanese Application No. 2006-522084 dated May 19, 2009. |
Examination Report for counterpart New Zealand Application No. 545528 dated Jul. 1, 2008. |
Examination Report for counterpart New Zealand Application No. 569422 dated Jul. 1, 2008. |
Examination Report for New Zealand Application No. 550336 dated Mar. 26, 2009. |
Examination Report for counterpart New Zealand Application No. 545528 dated Sep. 20, 2007. |
Examination Report for counterpart New Zealand Application No. 569422 dated Sep. 29, 2009. |
Office Action for Chinese Application No. 2006800380748 dated Jul. 10, 2009. |
Examiner's Report for Australian Application No. 2006236674 dated Sep. 18, 2009. |
Examiner's Report for Australian Application No. 2006236674 dated Nov. 6, 2009. |
Office Action for Chinese Application No. 200680012360.7 dated Jul. 10, 2009. |
Examination Report for New Zealand Application No. 563134 dated Aug. 3, 2009. |
Office Action for European Application No. 07752979.0-2307 dated Aug. 21, 2009. |
“Application and Development of PET Plastic Bottle,” Publication of Tsinghad Tongfang Optical Disc Co. Ltd., Issue 4, 2000, p. 41. (No English language translation available). |
International Search Report for PCT/US2006/014055 dated Dec. 7, 2006. |
International Search Report and Written Opinion dated Mar. 15, 2010 for PCT/US2010/020045. |
International Search Report and Written Opinion dated Sep. 8, 2009 for PCT/US2009/051023. |
Chanda, M. & Roy, Salil K., Plastics Technology Handbook, Fourth Edition, 2007, CRC Press, Taylor & Francis Group, pp. 2-24-2-37. |
Office Action dated Feb. 3, 2010 for Canadian Application No. 2,604,231. |
Communication dated Mar. 9, 2010 for European Application No. 09 173 607.4 enclosing European search report and European search opinion dated Feb. 25, 2010. |
European Search Report for EPA 10185697.9 dated Mar. 21, 2011. |
International Search report dated Apr. 21, 2010 from corresponding PCT/US2009/066191 filed Dec. 1, 2009. |
International Preliminary Report on Patentability and Written Opinion dated Jun. 14, 2011 for PCT/US2009/066191. 7 pages. |
Office Action, Japanese Application No. 2008-506738 dated Aug. 23, 2011. |
Extended European Search Report for EPA 10185697.9 dated Jul. 6, 2011. |
Patent Abstracts of Japan, vol. 012, No. 464; Dec. 6, 1988. |
Patent Abstracts of Japan, vol. 2002, No. 09, Sep. 4, 2002. |
Patent Abstracts of Japan, vol. 015, No. 239, Jun. 20, 1991. |
Examination Report dated Jul. 25, 2012, in New Zealand Patent Application No. 593486. |
Taiwanese Office Action dated Jun. 10, 2012, Application No. 095113450. |
Japanese First Notice of Reasons for Rejection dated Aug. 23, 2011, in Application No. 2008-506738. |
Japanese Second Notice of Reasons for Rejection dated Jun. 11, 2012, in Application No. 2008-506738. |
Office Action dated Aug. 14, 2012, in Japanese Patent Application No. 2008-535769. |
Examiner's Report dated Feb. 15, 2011 in Application No. AU200630483. |
Office Action dated Oct. 31, 2011, in Australian Patent Application No. 2011203263. |
Office Action dated Jul. 19, 2011, in Japanese Patent Application No. 2008-535769. |
Office Action dated Dec. 6, 2011, in Japanese Patent Application No. 2008-535769. |
International Search Report and Written Opinion for PCT/US2012/050251 dated Nov. 16, 2012. |
International Search Report and Written Opinion for PCT/US2012/050256 dated Dec. 6, 2012. |
Requisition dated Feb. 3, 2010 for Canadian Application No. 2,604,231. |
Requisition dated Jan. 9, 2013 for Canadian Application No. 2,559,319. |
Office Action dated Feb. 5, 2013, in Mexican Patent Application No. MX/a/2008/004703. |
Office Action dated Jul. 26, 2010 for Canadian Application No. 2,527,001. |
Australian Office Action dated Mar. 3, 2011 in Application No. 2010246525. |
Australian Office Action dated Nov. 8, 2011, in Application No. 2011205106. |
Examiner Report dated May 26, 2010, in Australian Application No. 2004261654. |
Examiner Report dated Jul. 23, 2010, in Australian Application No. 2004261654. |
Requisition dated May 25, 2010 for Canadian Application No. 2,534,266. |
Communication dated Jun. 16, 2006, for European Application No. 04779595.0. |
Final Official Notification dated Mar. 23, 2010 for Japanese Application No. 2006-522084. |
International Search Report and Written Opinion dated Dec. 18, 2012, in PCT/US12/056330. |
Number | Date | Country | |
---|---|---|---|
20120107541 A1 | May 2012 | US |