1. Field of the Invention
The present invention relates to a coaxial cable connector and, more particularly, to the disposition of an elastically deformable gasket within the connector body to provide a moisture seal when a cable is inserted into the connector.
2. Prior Art
There are many compression style coaxial cable connectors available for use outdoors which claim to be waterproof but, in fact, require that a number of factors to be perfect in order to realize this claim. Metal-to-metal tight seals require precision manufacturing to provide exact dimensions for fitting and sealing. When used in an outdoor application, the dimensions of adjacent parts of such precision connectors will change due to temperature fluctuations which can result in the failure of a moisture-proof seal. In addition, craft sensitivity factors such a proper insertion of the cable into the connector and proper adjustment of the compression tool to affect full compression are just some variables that can practically degrade performance.
In recent years, poor moisture ingress rejection has become a critical factor in the satellite market where DC current is passing through the coaxial connector along with RF signals. Low levels of moisture ingress into the connector may cause electrolytic corrosion with the DC present and result in unwanted electrical harmonic signals being generated. Accordingly, there is a continuing need for a coaxial cable connector for outdoor use which will impede the ingress of moisture into the connector under all climatic conditions to which the connector is exposed.
The present invention is directed to an improvement in a compression-type coaxial cable connector that substantially obviates one or more of the limitations of the related art. To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention includes an elastically deformable annular gasket disposed within the axial cavity within the connector body. When a cable is inserted into the axial cavity of the connector, the gasket deforms and seals the annular space between the cable jacket and the wall of the cavity to prevent moisture from passing the space sealed by the gasket.
The features of the invention believed to be novel are set forth with particularity in the appended claims. However the invention itself, both as to organization and method of operation, together with further objects and advantages thereof may be best understood by reference to the following description taken in conjunction with the accompanying drawings.
a-2d are enlarged views of the gasket housed within the axial conduit in the connector body of the connector of the present invention, showing the gasket undergoing progressive compression and deformation as the cable is advanced into the axial conduit in the connector body, the shape of the gasket after full insertion of the cable being illustrated at
Artisans will appreciate that compression-type coaxial cable connectors are well known in the art. Artisans will appreciate that most such connectors include a tubular connector body having a leading end and a trailing end in opposition thereto with a cylindrical cavity (“axial conduit”) in the trailing end thereof. A barbed shank is coaxially affixed to the connector body at the leading end thereof and projects rearwardly into the axial conduit. The leading end of the connector body has an adapter nut thereon that is operable for attaching the connector to a mating terminal. Such prior art connectors further include a compression sleeve slidingly mounted on the trailing end of the connector body. In operation, the prepared end of a coaxial cable is inserted through the compression sleeve and into the axial conduit. The cable is advanced until it cannot go further. The compression sleeve is then advanced over the connector body to force the connector body inwardly against the cable thereby completing the secure attachment of the connector to the cable. A disadvantage of such prior art connectors is that it is possible for moisture to enter the connector between the cable jacket and the connector body and corrode portions of the connector. The present invention is directed toward preventing ingress of such moisture by the inclusion of an elastically deformable gasket in the axial conduit in the connector body at the leading end thereof.
The progressive compression of the gasket 13 due to pressure exerted thereon by the leading end of cable 11 is shown in enlarged view in
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
4755152 | Elliot et al. | Jul 1988 | A |
5340332 | Nakajima et al. | Aug 1994 | A |
6848940 | Montena | Feb 2005 | B2 |
7018235 | Burris et al. | Mar 2006 | B1 |
7329149 | Montena | Feb 2008 | B2 |
7331820 | Burris et al. | Feb 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
60931510 | May 2007 | US |