For a detailed description of exemplary embodiments of the invention, reference will now be made to the accompanying drawings in which:
Connection 115 couples the host computer 105 and the target device 110 and may be a wireless, hard-wired, or optical connection. Interfaces 140A and 140B may be used to interpret data from or communicate data to connection 115 respectively according to any suitable data communication method. Connection 150 provides outputs from the circuitry 145 to interface 140B. As such, software 135 on host computer 105 communicates instructions to be implemented by circuitry 145 through interfaces 140A and 140B across connection 115. The results of how circuitry 145 implements the instructions is output through connection 150 and communicated back to host computer 105. These results are analyzed on host computer 105 and the instructions are modified so as to debug and profile applications to be executed on target 110 by circuitry 145.
Connection 150 may be a wireless, hard-wired, or optical connection. In the case of a hard-wired connection, connection 150 is preferably implemented in accordance with any suitable protocol such as a Joint Testing Action Group (JTAG) type of connection. Additionally, hard-wired connections may include a real time data exchange (RTDX) type of connection developed by Texas instruments, Inc. Briefly put, RTDX gives system developers continuous real-time visibility into the applications that are being implemented on the circuitry 145 instead of having to force the application to stop, via a breakpoint, in order to see the details of the application implementation. Both the circuitry 145 and the interface 140B may include interfacing circuitry to facilitate the implementation of JTAG, RTDX, or other interfacing standards.
The target 110 preferably includes the circuitry 145 executing code that is actively being debugged and profiled. In some embodiments, the target 110 may be a test fixture that accommodates the circuitry 145 when code being executed by the circuitry 145 is being debugged and profiled. The debugging and profiling may be completed prior to widespread deployment of the circuitry 145. For example, if the circuitry 145 is eventually used in cell phones, then the executable code may be designed using the target 110.
The circuitry 145 may include a single integrated circuit or multiple integrated circuits that will be implemented as part of an electronic device. For example, the circuitry 145 may include multi-chip modules comprising multiple separate integrated circuits that are encapsulated within the same packaging. Regardless of whether the circuitry 145 is implemented as a single-chip or multiple-chip module, the circuitry 145 may eventually be incorporated into an electronic device such as a cellular telephone, a portable gaming console, network routing equipment, etc.
Debugging and profiling the executable firmware code on the target 110 using breakpoints to see the details of the code execution is an intrusive process and affects the operation and performance of the code being executed on circuitry 145. As such, a true understanding of the operation and performance of the code execution on circuitry 145 is not gained through the use of breakpoints.
Table 1 is an exemplary table of the outputs on the various event streams 320-330, for a given trace interval:
As shown in Table 1 event data may occur simultaneously across the various event streams. For example, on the first line of the table a Sync Point with an id=1 may indicate that each of the streams is synchronized to each other and mark the start of a trace interval. On the other hand, on the last line of the table a Sync Point with an id=2 may indicate that each of the streams is synchronized to each other and mark the end of a trace interval. Note that the event data, such as the timing, PC, or memory data, may also occur simultaneously across the various event streams. In this case a priority may be given such that each event data is output in a given order.
Each event data shown in Table 1 may be represented by a data packet.
As discussed above, there is a limited bandwidth between the trace 310 and the computer 105. As shown in table 2 through the execution of code by processor 300, each command tends to have a characteristic execution pattern which in turn produces a characteristic event pattern. For example, the execution of the code may utilize system memory to produce a stall pattern associated with memory misses and conflicts. By counting the number of occurrences of one or more event patterns the event data may be output in a compressed format. By compressing the event data more events, or a greater frequency of events, may be monitored by the trace and still sent to a computer 105 to be interpreted.
As shown in Table 3, the eight event data packets needed to represent the event data from processor 300 using the format of
As shown in Table 4 a pattern of “1110” corresponding to bits D7-D4 is being counted. In the example output of processor 300 there are seven iterations of that pattern. As such a binary count value of “0111” is counted in bits D3-D0 for the count value. If the count range is not sufficient then, as was the case in the example of
As such the trace compression element 315 may be configured to detect and count patterns in order to compress the amount of event data that needs to be output to computer 105. The data output to computer 105 may be output in one or more data packets that indicate a pattern and a count value of the number of times that pattern has occurred. Software 135 may decode the data packets in order to determine the pattern of events and number of times it has occurred. It is noted that compression element 315 may also further compress the event data using know bit reduction methods such as Huffman coding.
While various system and method embodiments have been shown and described herein, it should be understood that the disclosed systems and methods may be embodied in many other specific forms without departing from the spirit or scope of the invention. The present examples are to be considered as illustrative and not restrictive. The intention is not to be limited to the details given herein, but may be modified within the scope of the appended claims along with their full scope of equivalents.
This application also may contain subject matter that may relate to the following commonly assigned co-pending applications incorporated herein by reference: “Scheme for Improving Bandwidth by Identifying Specific Fixed Pattern Sequences as Header Encoding Followed by the Pattern Count,” Ser. No. ______, filed May 16, 2006, Attorney Docket No. TI-37865 (1962-38000).