1. Field
Example embodiments generally relate to sleeves usable in nuclear reactors for piping and component repair and replacement, such as to repair and replace piping in a Boiling Water Reactor (BWR) and jet pump sensing lines in BWRs.
2. Description of Related Art
Generally, BWRs include jet pumps as part of a recirculation system to effectively move coolant and moderator through a nuclear core. In order to evaluate operating conditions within the nuclear core, it may be desirable to monitor the flow rate through the core, including flow rate of coolant from the jet pumps. Typically, a jet pump sensing line is used to measure flow rate from the jet pumps by measuring a pressure differential between the inlet and nozzle of the jet pumps.
The jet pumps 150 are typically installed within a BWR and only accessible during scheduled plant outages for refueling and repair. These outages typically occur at several month intervals, and thus components within the core, including the jet pumps and jet pump sensing lines, must operate for lengthy periods before being inspected and/or repaired.
Further, BWR core operating conditions include high levels of radioactivity due to fission occurring in the fuel rods. Radioactivity, particularly the neutron flux generated in an operating nuclear reactor core, degrades the material strength and elasticity of core components over time. Components within the core, including jet pump sensing lines 100, are thus subject to premature brittling and cracking due to this radiation exposure. Accordingly, flow-induced vibration and lengthy operating cycles coupled with radiation can cause jet pump sensing lines to crack, rupture or otherwise fail, preventing an effective and/or accurate measurement of core flow rate within the core.
Related art jet pump sensing line repair mechanisms, for example, U.S. Pat. No. 5,752,807, involves replacing an entire failed jet pump sensing line, or using a slip-fit shrink memory alloy coupling, which must be specially fitted for the jet pump sensing line to be replaced.
An example embodiment is directed to a compression sleeve for use in BWR jet pump sensing line repair. The sleeve includes shaped ends to accommodate deformation and flow of the sleeve so as to form a seal between jet pump sensing line components. A mechanical coupling assembly for repairing a jet pump sensing line is configured to include the compression sleeve.
The present invention will become more apparent by describing, in detail, example embodiments thereof with reference to the attached drawings, wherein like elements are represented by like reference numerals, which are given by way of illustration only and thus do not limit the example embodiments herein.
The sleeve 200 includes two tapered ends 220, one at either end of the sleeve body 210. The tapered ends 220 are shaped to deform and provide a seal between sensing line 100 segments and/or replacement segments as the sleeve 200 is fastened thereto. The tapered ends 220 may also be configured to properly seat a fastening device that holds the sleeve 200 onto components of a sensing line during and after a repair evolution.
The second section 222 is adjacent to and generally continuous with the first section 221. The second section 222 may be shaped to deform and flow under the compressive forced exerted by a fastening device. As shown in
The third section 223 is adjacent the second section 222 and is farthest from the sleeve body 210. As shown in
Alternatively, the tapered ends 220 may take any shape which facilitates a seal and/or component seating when used in a sensing line 100 repairs. For example, the ends 220 can have any number of sections shaped to provide deformation and seating at different rates or displacements along the ends 220.
The tapered ends 220 may be configured to prevent fretting, or separation and tearing, of any part of the sleeve during installation and operation. As shown in
The example sleeve 200 is fabricated from a material designed to maintain physical properties in an operating nuclear core environment. The materials may be generally malleable and/or elastic in order to properly compress and flow when used in a sensing line 100 repair. The materials have a minimum strength to maintain sensing line 100 integrity and resistance to radiation-induced material failure. Example materials include malleable metals, for example, ninety-nice percent (99%) heat-annealed Nickel (Ni). These materials are subject to heat-annealing at high temperatures (2000° F. and greater) in order to yield the desired malleability.
As shown in
The example embodiments can be varied in many ways and still achieve repair of a jet pump sensing line 100. For example, the shape of the collar 300 and compression nut 310 can be varied to fit different configurations or seat differently against the compression sleeve 200. Further, several different sensing line 100 sizes can be accommodated by varying the inner diameter of one or more components in the mechanical coupling assembly 400. Such variations are not to be regarded as departure from the spirit and scope of the exemplary embodiments, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3406986 | Jennings | Oct 1968 | A |
4739916 | Ayres et al. | Apr 1988 | A |
4786090 | Mott | Nov 1988 | A |
5297187 | Sodergren et al. | Mar 1994 | A |
5615239 | Deaver et al. | Mar 1997 | A |
5675618 | Amburn et al. | Oct 1997 | A |
5918911 | Sims | Jul 1999 | A |
Number | Date | Country |
---|---|---|
1973-80356 | Jul 1973 | JP |
50-031296 | Mar 1975 | JP |
09-197084 | Jul 1997 | JP |
09-289817 | Oct 1997 | JP |
08-302882 | Nov 1998 | JP |
11-125245 | May 1999 | JP |
2006-204629 | Jul 2006 | JP |
2008-032468 | Feb 2008 | JP |
Entry |
---|
Merriam-Webster's Collegiate Dictionary, Merriam-Webster, Inc., Springfield, MA (USA), ISBN: 0-87779-709-9 (Tenth Ed., 1999), p. 251. |
Merriam-Webster's Collegiate Dictionary, Merriam-Webster, Inc., Springfield, MA (USA) ISBN:0-87779-709-9 (Tenth Ed. 1999), p. 251. |
Office action issued in connection with JP Application No. 2010-185696, Mar. 12, 2013. |
Number | Date | Country | |
---|---|---|---|
20080279325 A1 | Nov 2008 | US |