The present disclosure relates to a compression device for applying cyclic external pressure to the outer surface of a patient receiving compression therapy. In particular, the present disclosure relates to a compression device that utilizes a lever advantage to cyclically apply pressure to a limb requiring compression therapy efficiency and precision.
Compression therapy systems are used in several medical applications to apply rapid compressions to one or more appendages (e.g., arms, hands, legs, and feet) of a body. For example, compressions therapy systems are used to treat chronic wounds by applying pressure to an appendage having wounds to improve circulation around the wounds, or to improve blood circulation to treat angina or congestive heart failure (CHF), e.g., as in enhanced external counterpulsation (EECP) devices.
In some prior art compression therapy systems, a compressor may be utilized to compress air for storage into a storage tank. The stored air is then delivered from the storage tank to the inflatable compression device through a valve in rapid low pressure bursts to apply compression to the appendage. After each burst of air fills the inflatable device, another valve is opened on the release the air to the ambient conditions thereby removing compression from the appendage being treated. While such prior art systems may have had utility, the continuous need for significant amounts of air from the storage tank require the use of a relatively large compressor requiring significant amount of power and capital expense. Further, in some instances, it may be difficult for the compressor to keep up with the rapid cycling required of particular applications, and/or the valving used may not be precise enough to provide compression as precisely as desired.
Accordingly, some prior art similar systems have attempted to address some of these issues. For example, U.S. Pat. No. 6,984,215 to Shah (“Shah”) discloses a compression therapy system that utilizes a piston system and a supplementary bladder to overcome some of the aforementioned issues. In particular, instead of venting to the ambient air, the system disclosed in Shah utilizes a supplementary bladder and valve such that the air that would otherwise be vented and compensated for by the compressor of prior art systems is recycled by a bladder and forced back into the compression device by direct compression from a piston.
While the Shah disclosure represents an improvement over prior-art systems in efficiency and control, the direct use of a piston, operating directly on the compressed air in a supplementary bladder, is not as mechanically efficient as possible. Additionally, such a system may require complex and expensive piston position sensors in order to ensure that the use of the piston doesn't exceed the maximum pressure in the compression device, the potential failure of which could potentially result in significant patient injury. Accordingly, it would be desired to have a system and method for providing cyclic compression to a therapeutic device which is more efficient than prior art designs, does not require complex and expensive position sensors, and which provides a fail-safe for potential over-inflation of the compression device.
The present disclosure provides a compression therapy device for vascular diseases and other therapies that overcomes some of the deficiencies of prior art compression devices. The compression device of the present disclosure may include a bladder including a therapeutic portion, a reservoir portion and a lever arm acting on the reservoir portion. In embodiments of the present disclosure, a compression therapy device may be provided that is specifically adapted for use on a patient's lower leg and foot and may be boot-shaped. The compression therapy device disclosed herein may be adapted and sized to receive a patient's foot and calf therein and may include an anterior portion that opens and closes, allowing for the patient's foot and calf to be inserted and removed. The therapeutic portion may surround the patient's calf when in the boot and the reservoir portion may be positioned anywhere in fluid communication with the therapeutic portion. There may be a constriction in the bladder between the therapeutic portion and the reservoir portion. A lever arm may be provided and arranged in such a way as to apply pressure to the reservoir portion, thereby forcing air into the therapeutic portion. An actuator, such as a piston, solenoid or other mechanical device, may be provided to operate the lever arm between an extended, non-compression position wherein the reservoir portion is allowed to expand and a retracted, compression position in which pneumatic pressure from the reservoir portion is forced into the therapeutic portion of the provided bladder.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings.
In the drawings:
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be used, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, may be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and make part of this disclosure.
As shown in
Surrounding the patient's foot and lower leg, when in the boot 100, may be a bladder 114. The bladder 114 may be filled with air (or another gas, fluid or non-Newtonian fluid) to provide pneumatic pressure around a patient's limb when inserted in the boot 100 by means of a pneumatic supply line 115 that is attached to a pneumatic pressure source 117. The bladder 114 may include a therapeutic portion 116 and a reservoir portion 118. In the current embodiment, the anterior portion 106 extends from a base 140 that provides a working chamber 142 below the boot 100. The reservoir portion 118 extends into the working chamber 142 and may be connected to the therapeutic portion 116 by a constriction 120. The boot 100 may have an inner floor 122 for separating the boot 100 from the working chamber 142 and for supporting a foot of a patient thereon. The constriction 120 of the bladder 114 may extend through an orifice or hole 124 in the inner floor 122 to connect the therapeutic portion 116 of the bladder 114 with the reservoir portion 118 of the bladder 114. The inner floor 122 may be used to separate a therapy chamber 126 of the boot 100 from a reservoir cavity 128 portion of the working chamber 142.
The reservoir portion 118 may be located primarily in the working chamber 142 of the base 140 and be positioned between the inner floor 122 and a lever arm 130 that is mounted on one end thereof to a hinge or pivot 132 for pivotal movement within working chamber 142. In the current embodiment, the anterior end of the lever arm is coupled to the pivot 132 approximate the toe portion of the boot and extends posteriorly across the inner floor and provides the reservoir cavity 128 between the lever arm 130 and the inner floor 122 into which the reservoir portion 118 of the bladder is positioned. On the posterior end of the lever arm 130, an actuator 136 is mounted so as to affect pivotal movement of the lever arm 130 about the pivot 132 in compression 133 (up towards inner floor 122) and release 135 (down away from inner floor 122) directions. It will be understood, in accordance with the disclosure, that actuator 136 could be a piston, servo, solenoid, air actuator, electrical linear actuator, cam with an electrical motor, etc. In accordance with one embodiment of the disclosure, the lever arm 130 and pivot may be located proximate a toe end of the boot 100, the actuator 136 may be located at a heel end of the boot 100, and the reservoir portion 118 of the bladder 118 may be positioned between the lever arm 130 and the inner floor 122.
In accordance with this embodiment, the reservoir portion 118 may be positioned such that actuation of the actuator 136, and the corresponding lever arm 130, in the compression 133 direction compresses the reservoir portion 118 against the bottom of the inner floor 122 creating a decrease in the volume of the boot 100 and a corresponding relative increase in pressure in the therapeutic portion 116 of the bladder 114. Conversely, actuation of the actuator 136 in the release direction 135, and the corresponding lever arm 130 (or the release of any resistance to movement thereof), allows expansion of the reservoir portion 118 of the bladder 114 into the reservoir cavity 128 thereby increasing the volume of the boot 100 and, correspondingly, decreasing relative pressure in the therapeutic portion 116 of the bladder 114. In this manner, a cyclic increase and decrease in pressure may be accorded in the therapeutic portion 116 of the bladder as may be desired. More specifically, cyclic compression therapy may be provided to a limb, such as a foot, ankle, and/or calf of a patient as desired. For example, the actuator 136 may be connected to a patient heart rate monitor (such as via an EKG monitor, finger-tip pulse monitor, wrist pulse monitor or the like) so that the pressure in the therapeutic portion 116 of the bladder 114 fluctuates between high and low pressure states in timing with a patient's heartbeat
In the current embodiment, the actuator 136 includes a pneumatic driven piston 137 and a three-way valve 138A in fluid communication between the pneumatic supply line 115 and the piston 137. Referring to
Filling and deflating the bladder from the pneumatic source 117 involves a pair of one-way valves: an exhaust valve 138B and a fill valve 138C. To deflate the bladder 114, exhaust valve 138B is actuated and fill valve 138C is deactivated, allowing gas to flow from the bladder 114 through line 152 and out through an exhaust port in valve 138B. To fill the bladder 114, exhaust valve 138B is deactivated and fill valve 138C is activated, allowing gas to flow from the pneumatic pressure source 117 to the bladder 114 through line 152. When filling the bladder 114, the fill pressure will be at the maximum desired pressure for treatment, as discussed below. For example, the desired pressure for treatment of peripheral vascular disease is generally between approximately 50-60 mmHg. However, much higher pressures for different treatments (such as therapies for congestive heart failure) are contemplated and consistent with the present disclosure. The device 10 may also be configured with a pressure relief valve 150 to prevent over pressurization inflation of the bladder 114. Such a pressure relief valve 150 may be a poppet style and may be set at an opening pressure depending upon the purpose of boot. In an exemplary embodiment, the valve 150 be provided on line 152 and may have an opening pressure of 1.9 PSI. In an embodiment, line 152 may also include a pressure sensor 154.
Consistent with an embodiment of the disclosure, one general operation of the boot 100 to provide therapy to a patient may be as follows. Initially, the actuator 136 may be set to zero (compression) state by an operator meaning that the actuator 136 is set to the farthest travel in the compression direction 133. The valve 138B in the pneumatic supply line 115 may be opened to the vent setting thereby allowing bladder 114 to achieve atmospheric pressure therein. The anterior portion 102 of the boot 100 may be rotated forward allowing the patient to place his foot and lower leg within the therapeutic portion 116 of the bladder 114. Next, the anterior portion 102 may be rotated closed about the patient's ankle and the strap 108 may be wrapped around the anterior portion and secured to the posterior portion 106 by nub 112 thereby securing the patient's ankle and foot securely in the boot 100. Next the valve 138C may be positioned in the fill setting and, utilizing the pneumatic pressure source 117 and sensor 154, pneumatic pressure may be supplied to the bladder 114 up to the desired maximum therapeutic pressure (determined based upon the therapy being provided). Thereafter, the valves 138B and 138C may be positioned in the therapeutic setting, thereby sealing bladder 114 to egress and ingress of pneumatic pressure. At this time, the actuator 136 may be cyclically actuated according to the timing and duration required by the therapy being delivered. As discussed above, the timing may be determined using control systems known to those of ordinary skill in the art for timing the actuator based upon heartbeat, heart rate, and/or other physiological readings, or based on a predetermined timing cycle.
As can be seen best in
As shown in
As shown in
Generally, program modules for the computer control of the controller 162 may include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the methods according to the present disclosure may be practiced with other computer system configurations, including single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based, hardware-based or programmable consumer electronics, and the like.
Some aspects of the present disclosure may also be practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. In some example distributed computing environments, program modules may be located in local and/or remote memory storage devices.
As shown in
An example computing environment 1300 for implementing various aspects includes a computer 1302, which may include a processing unit 1304, a system memory 1306 and/or a system bus 1308. The system bus 1308 may couple system components including, but not limited to, the system memory 1306 to the processing unit 1304. The processing unit 1304 can be any of various commercially available processors. Dual microprocessors and other multi-processor architectures may also be employed as the processing unit 1304.
The system bus 1308 can be any of several types of bus structures that may further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and/or a local bus using any of a variety of commercially available bus architectures. The system memory 1306 may include read only memory (ROM) 1310 and/or random access memory (RAM) 1312. A basic input/output system (BIOS) may be stored in a non-volatile memory 1310 such as ROM, EPROM, EEPROM. BIOS may contain basic routines that help to transfer information between elements within the computer 1302, such as during start-up. The RAM 1312 can also include a high-speed RAM such as static RAM for caching data.
The computer 1302 may further include an internal hard disk drive (HDD) 1314 (e.g., EIDE, S ATA), which may also be configured for external use in a suitable chassis, a magnetic floppy disk drive (FDD) 1316 (e.g., to read from or write to a removable diskette 1318), and/or an optical disk drive 1320 (e.g., reading a CD-ROM disk 1322 or, to read from or write to other high capacity optical media such as the DVD). The hard disk drive 1314, magnetic disk drive 1316, and/or optical disk drive 1320 can be connected to the system bus 1308 by a hard disk drive interface 1324, a magnetic disk drive interface 1326, and an optical drive interface 1328, respectively. The interface 1324 for external drive implementations may include at least one or both of Universal Serial Bus (USB) and IEEE 1394 interface technologies. Other external drive connection technologies are within the scope of the disclosure.
The drives and their associated computer-readable media may provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For the computer 1302, the drives and media may accommodate the storage of any data in a suitable digital format. Although the description of computer-readable media above refers to a HDD, a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of media which are readable by a computer, such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, may also be used in an example operating environment, and further, that any such media may contain computer-executable instructions.
A number of program modules can be stored in the drives and RAM 1312, including an operating system 1330, one or more application programs 1332, other program modules 1334, and/or program data 1336. All or portions of the operating system, applications, modules, and/or data can also be cached in the RAM 1312. It is to be appreciated that various commercially available operating systems or combinations of operating systems may be utilized.
A user can enter commands and information into the computer 1302 through one or more wired/wireless input devices, e.g., a keyboard 1338 and a pointing device, such as a mouse 1340. Other input devices may include a microphone, an IR remote control, a joystick, a game pad, a stylus pen, touch screen, or the like. These and other input devices are often connected to the processing unit 1304 through an input device interface 1342 that is coupled to the system bus 1308, but can be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a game port, a USB port, an IR interface, etc.
A monitor 1344 or other type of display device may also connected to the system bus 1308 via an interface, such as a video adapter 1346. In addition to the monitor 1344, a computer typically includes other peripheral output devices, such as speakers, printers, etc.
The computer 1302 may operate in a networked environment using logical connections via wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 1348. The remote computer(s) 1348 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor based entertainment appliance, a peer device, and/or other common network node, and/or may include many or all of the elements descrisupport structure relative to the computer 1302, although, for purposes of brevity, only a memory/storage device 1350 is illustrated. The logical connections depicted include wired/wireless connectivity to a local area network (LAN) 1352 and/or larger networks, e.g., a wide area network (WAN) 1354. Such LAN and WAN networking environments are commonplace in offices and health care facilities, and facilitate enterprise-wide computer networks, such as intranets, all of which may connect to a global communications network, e.g., the Internet.
When used in a LAN networking environment, the computer 1302 may be connected to the local network 1352 through a wired and/or wireless communication network interface or adapter 1356. The adaptor 1356 may facilitate wired or wireless communication to the LAN 1352, which may also include a wireless access point disposed thereon for communicating with the wireless adaptor 1356.
When used in a WAN networking environment, the computer 1302 can include a modem 1358, or may be connected to a communications server on the WAN 1354, or may have other devices for establishing communications over the WAN 1354, such as by way of the Internet. The modem 1358, which can be internal or external and a wired or wireless device, may be connected to the system bus 1308 via the serial port interface 1342. In a networked environment, program modules depicted relative to the computer 1302, or portions thereof, can be stored in the remote memory/storage device 1350. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers can be used.
The computer 1302 is operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag, and/or telephone. This includes at least Wi-Fi and Bluetooth™ wireless technologies. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.
Wi-Fi, or Wireless Fidelity, allows connection to the Internet from a couch at home, a support structure in a hotel room, or a conference room at work, without wires. Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out; anywhere within the range of a base station. Wi-Fi networks use radio technologies called IEEE 802.11x (a, b, g, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which use IEEE 802.3 or Ethernet). Wi-Fi networks can operate in the unlicensed 2.4 and 5 GHz radio bands. IEEE 802. 11 applies to generally to wireless LANs and provides 1 or 2 Mbps transmission in the 2.4 GHz band using either frequency hopping spread spectrum (FHSS) or direct sequence spread spectrum (DSSS). IEEE 802.11a is an extension to IEEE 802.11 that applies to wireless LANs and provides up to 54 Mbps in the 5 GHz band. IEEE 802.1 a uses an orthogonal frequency division multiplexing (OFDM) encoding scheme rather than FHSS or DSSS. IEEE 802.11b (also referred to as 802.11 High Rate DSSS or Wi-Fi) is an extension to 802.11 that applies to wireless LANs and provides 11 Mbps transmission (with a fallback to 5.5, 2 and 1 Mbps) in the 2.4 GHz band. IEEE 802.11g applies to wireless LANs and provides 20+ Mbps in the 2.4 GHz band. Products can operate in more than one band (e.g., dual band), so the networks can provide real-world performance similar to the basic I0BaseT wired Ethernet networks used in many offices.
While example embodiments have been set forth above for the purpose of disclosure, modifications of the disclosed embodiments as well as other embodiments thereof may occur to those skilled in the art. Accordingly, it is to be understood that the disclosure is not limited to the above precise embodiments and that changes may be made without departing from the scope. Likewise, it is to be understood that it is not necessary to meet any or all of the stated advantages or objects disclosed herein to fall within the scope of the disclosure, since inherent and/or unforeseen advantages may exist even though they may not have been explicitly discussed herein.
Number | Name | Date | Kind |
---|---|---|---|
3734087 | Sauer | May 1973 | A |
3795242 | Lerch | Mar 1974 | A |
4478214 | Lamont | Oct 1984 | A |
5245990 | Bertinin | Sep 1993 | A |
5383842 | Bertini | Jan 1995 | A |
5554103 | Zheng et al. | Sep 1996 | A |
5711760 | Ibrahim et al. | Jan 1998 | A |
6361512 | Mackay et al. | Mar 2002 | B1 |
6572621 | Zheng et al. | Jun 2003 | B1 |
6589194 | Calderon et al. | Jul 2003 | B1 |
6589267 | Hui | Jul 2003 | B1 |
6736786 | Shabty et al. | May 2004 | B1 |
6984215 | Shah et al. | Jan 2006 | B2 |
7044924 | Roth et al. | May 2006 | B1 |
7258676 | Calderon et al. | Aug 2007 | B2 |
8100841 | Rousso | Jan 2012 | B2 |
8449483 | Eddy | May 2013 | B2 |
8579792 | Pickett et al. | Nov 2013 | B2 |
20100063427 | Ingrao | Mar 2010 | A1 |
Entry |
---|
International Patent Application No. PCT/US2015/054129; Int'l Search Report and the Written Opinion; dated Jan. 19, 2016; 10 pages. |
International Patent Application No. PCT/US2015/054129; Int'l Preliminary Report on Patentability; dated Apr. 20, 2017; 8 pages. |
Number | Date | Country | |
---|---|---|---|
20160095787 A1 | Apr 2016 | US |