Heat sink generally refers to a thermally conductive structure that removes heat from a heat-generating element and transfers it to a thermal reservoir such as the ambient atmosphere, a pool of water, the earth, or outer space. Light-emitting elements, such as light-emitting diodes (LEDs) or semiconductor lasers, being less than 100-percent efficient, generate heat as well as light, and the generated heat must be removed to prevent the light-emitting element from overheating and consequently suffering loss of efficiency or a reduction in operating lifetime. Heat removal through radiation or through thermal convection from some light-emitting elements including LEDs and semiconductor lasers is not sufficient in most practical applications, and the use of a heat sink is generally required. The heat sink is most commonly constructed of a metal, such as aluminum, that is high in thermal conductivity, low in cost, and light in weight.
Heat is removed from the light-emitting element through a thermal interface between the light-emitting element and the heat sink. Generally, the light-emitting element has a thermal-interface surface that is pressed against a heat-extraction surface of the heat sink in order to generate sufficient thermal contact. Frequently, a formable thermally conductive material is included in the interface to improve the thermal contact and further facilitate heat flow from the light-emitting element into the heat sink.
The heat sink conducts the heat away from the interface and to various extremities, such as fins with large surface area to allow convective transfer of heat to the reservoir, which in most applications is the ambient air.
In practical applications a light-emitting element is frequently included as part of a fixture. The fixture is an assembly that may include such other items as a heat sink, a support or mount for the light-emitting element, items or features that provide mechanical or environmental protection of the light-emitting element, electronic circuitry used to supply power to the light-emitting element, an enclosure to house and protect the electronic circuitry, features to allow electrical interconnections between the electronic circuitry and the light-emitting element, and/or items or features designed to protect humans from electric shock.
A heat-sink assembly for removing heat from a light-emitting element is described.
In an example, a heat-sink assembly comprises two heat-sink elements that grip opposite edges of a light-emitting element with a compressive force and convert the compressive force into a transverse force that presses the thermal-interface surface of the light-emitting element against a heat-extraction surface of the heat-sink assembly.
In this example, the heat-sink elements are in contact with each other at a fulcrum about which the two elements can pivot with respect to each other, and a fastening mechanism located between the fulcrum and the light-emitting element applies compressive force drawing the two heat-sink elements together to grip the light-emitting element.
The heat-sink elements in this example are shaped to form a semi-enclosed space to house electrical circuitry, and a gap between the heat-sink elements allows the passage of electrical conductors, such as wires, from the light-emitting element outside of the semi-enclosed space to the electrical circuitry inside the semi-enclosed space. A gasket assembly is described that, acting in conjunction with the heat-sink elements in this example, helps to protect the electrical circuitry inside the semi-enclosed space from intrusion of liquids or other environmental influences.
Additional features of the heat-sink elements in this example create a recess within which the light-emitting element is situated and protected from some common sources of mechanical damage. The recess creates a convenient cavity to contain or support optically transparent materials, such as glass, plastic, or an optical potting compound, that can further protect the light-emitting element or shape the pattern of light that is emitted.
A compressive heat sink will become better understood through review of the following detailed description in conjunction with the drawings. The detailed description and drawings provide examples of the various embodiments described herein. Those skilled in the art will understand that the disclosed examples may be varied, modified, and altered without departing from the scope of the disclosed structures. Many variations are contemplated for different applications and design considerations; however, for the sake of brevity, not every contemplated variation is individually described in the following detailed description.
Examples of a compressive heat sink are now described in more detail with reference to
Any of a variety of mechanisms may be used to supply the compressive force F1.
As shown in an exemplary cross section in
As shown in the cross section of an exemplary heat-sink assembly 106 in
A semi-enclosed space 601 shown in
Heat-sink elements 107 and 108 may include features that may serve to protect light-emitting element 102 from possible mechanical damage and/or from degradation by environmental factors such as water and dust. As shown in the exemplary heat-sink assembly in
As shown in the three views and one detail of an exemplary heat-sink assembly in
A further example of a heat-sink assembly is shown in
Accordingly, while embodiments have been particularly shown and described, many variations may be made therein. Other combinations of features, functions, elements, and/or properties may be used. Such variations, whether they are directed to different combinations or directed to the same combinations, whether different, broader, narrower, or equal in scope, are also included.
A1. A heat-sink assembly for removing heat from a light-emitting element, the light-emitting element having a thermal-interface surface, a first edge, and a second edge, the first edge and the second edge being on respective spaced-apart portions of the light-emitting element and the thermal-interface surface extending at least partially between the first and second edges, the heat-sink assembly comprising:
a heat-sink element composed of a solid material;
a heat-extraction surface thermally connected to the heat-sink element;
a force redirection mechanism configured to convert to a transverse force a compressive force applied through the action of the heat-sink element pushing the force redirection mechanism in a first direction against the first edge of the light-emitting element, the transverse force acting on the light-emitting element in a second direction transverse to the first direction, the transverse force causing the thermal-interface surface of the light-emitting element to press toward the heat-extraction surface; and
a restraining element acting on the second edge of the light-emitting element to resist the compressive force.
A2. The heat-sink assembly of paragraph A1, wherein the heat-extraction surface is planar and wherein the force-redirection mechanism includes an inclined surface portion configured to be in contact with the first edge of the light-emitting element and inclined so that a first force applied by the inclined surface portion to the first edge of the light-emitting element and directed parallel to the heat-extraction surface results in a second force pressing the thermal-interface surface of the light-emitting element toward the heat-extraction surface.
A3. The heat-sink assembly of paragraph A1, further including a fastening mechanism supported relative to the heat-sink element, and configured to urge the heat-sink element toward the restraining element by tightening and produce the compressive force when the fastening mechanism is tightened.
A4. The heat-sink assembly of paragraph A3, further including a spacer, the spacer being a solid element or assembly situated between the heat-sink element and the restraining element and serving to limit the degree to which the fastening mechanism is able to cause bending of the heat-sink element or the restraining element.
A5. The heat-sink assembly of paragraph A1, wherein the heat-sink element and the restraining element are portions of a continuous unitary material and apply the compressive force through spring forces.
A6. The heat-sink assembly of paragraph A1, further including a compressive fastener contacting the heat-sink element and the restraining element at locations no greater than a first distance from the light-emitting element, the heat-sink element and the restraining element contacting each other at locations no less than the first distance from the light-emitting element, the compressive fastener forcing the heat-sink element and the restraining element toward each other to apply the compressive force.
A7. The heat-sink assembly of paragraph A1, wherein a thermally conductive medium, which may be solid or liquid, disposed between and conforming to portions of the thermal-interface surface and the heat-extraction surface acts to conduct heat from the thermal-interface surface to the heat-extraction surface.
A8. The heat-sink assembly of paragraph A1, wherein the shapes of the heat-sink element and the restraining element define a recess sized to accept the light-emitting element and prevent mechanical contact between sensitive portions of the light-emitting element and planar surfaces external to the recess.
A9. The heat-sink assembly of paragraph A8, wherein optically transmissive solid material is included in the recess, the solid material being configured as a barrier capable of resisting intrusion, onto sensitive portions of the light-emitting element, of dust or of liquid or of mechanical influences originating outside the recess.
A10. The heat-sink assembly of paragraph A8, wherein optically transmissive solid material is included in the recess, the solid material forming a seal over portions of the light-emitting element, which seal resists ingression of dust or of a liquid or of a gas from outside of the recess to the surface of the light-emitting element.
A11. The heat-sink assembly of paragraph A1, wherein the heat-sink element and the restraining element together bound a semi-enclosed interior space within which there exists at least one point distant from the nearest surface of the heat-sink element and equally distant from the restraining element, at which point the combined surface, comprising the set-theoretic union of all points on the surface of the heat-sink element and all points on the surface of the restraining element, subtends a total of at least nine steradians of solid angle.
A12. The heat-sink assembly of paragraph A11, wherein the semi-enclosed interior space includes a gasket assembly and a protected space, the gasket assembly comprising one or more elastomeric gaskets, the gasket assembly contacting and extending between the heat-sink element and the restraining element, the configuration of which gasket assembly is such that the gasket assembly resists ingression of dust or of a liquid or of a gas into the protected space.
A13. The heat-sink assembly of paragraph A12, wherein the gasket assembly includes a deformation gap between two gaskets or between a gasket and a surface of the heat-sink element or between a gasket and a surface of the restraining element, the deformation gap being a separation between a gasket surface and a surface that the gasket surface would be touching if the gasket surface were not deformed relative to a simpler shape, which deformation gap is filled with one or more materials that resist ingression of dust or of a liquid or of a gas into the protected space.
A14. The heat-sink assembly of paragraph A1, wherein the heat-sink element has the form of a solid elongated in a direction of elongation, the solid having a first length in the direction of elongation and a first cross section in a plane perpendicular to the direction of elongation, the first cross section being constant over most of the first length.
A15. The heat-sink assembly of paragraph A14, wherein the restraining element has the form of a solid elongated in a direction of elongation, the solid having a second length in the direction of elongation and a second cross section in a plane perpendicular to the direction of elongation, the second cross section being constant over most of the second length.
A16. The heat-sink assembly of paragraph A15, wherein the first cross section is identical to the second cross section.
The methods and apparatus described in the present disclosure are applicable to the general lighting industry, the decorative lighting industry, the specialty lighting industry, the agricultural lighting industry, the horticultural lighting industry, the research lighting industry, the military lighting industry, and all other industries in which LEDs or other electrically-powered sources are employed to produce light. They are also applicable to other industries in which heat is to be removed from heat-generating elements outside of an enclosure connected electrically to electrical circuitry inside the enclosure.
This application claims the benefit of U.S. Provisional Application No. 62/836,086, with filing date Apr. 19, 2019, which application is incorporated herein by reference in its entirety for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/028888 | 4/18/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/215042 | 10/22/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20010030037 | Hellbruck | Oct 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20220214033 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
62836086 | Apr 2019 | US |